1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.inline.hpp"
  30 #include "code/vmreg.hpp"
  31 #include "metaprogramming/enableIf.hpp"
  32 #include "oops/compressedOops.hpp"
  33 #include "oops/compressedKlass.hpp"
  34 #include "runtime/vm_version.hpp"
  35 #include "utilities/powerOfTwo.hpp"
  36 
  37 class OopMap;
  38 
  39 // MacroAssembler extends Assembler by frequently used macros.
  40 //
  41 // Instructions for which a 'better' code sequence exists depending
  42 // on arguments should also go in here.
  43 
  44 class MacroAssembler: public Assembler {
  45   friend class LIR_Assembler;
  46 
  47  public:
  48   using Assembler::mov;
  49   using Assembler::movi;
  50 
  51  protected:
  52 
  53   // Support for VM calls
  54   //
  55   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  56   // may customize this version by overriding it for its purposes (e.g., to save/restore
  57   // additional registers when doing a VM call).
  58   virtual void call_VM_leaf_base(
  59     address entry_point,               // the entry point
  60     int     number_of_arguments,        // the number of arguments to pop after the call
  61     Label *retaddr = nullptr
  62   );
  63 
  64   virtual void call_VM_leaf_base(
  65     address entry_point,               // the entry point
  66     int     number_of_arguments,        // the number of arguments to pop after the call
  67     Label &retaddr) {
  68     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  69   }
  70 
  71   // This is the base routine called by the different versions of call_VM. The interpreter
  72   // may customize this version by overriding it for its purposes (e.g., to save/restore
  73   // additional registers when doing a VM call).
  74   //
  75   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  76   // returns the register which contains the thread upon return. If a thread register has been
  77   // specified, the return value will correspond to that register. If no last_java_sp is specified
  78   // (noreg) than rsp will be used instead.
  79   virtual void call_VM_base(           // returns the register containing the thread upon return
  80     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  81     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  82     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  83     address  entry_point,              // the entry point
  84     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  85     bool     check_exceptions          // whether to check for pending exceptions after return
  86   );
  87 
  88   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  89 
  90   enum KlassDecodeMode {
  91     KlassDecodeNone,
  92     KlassDecodeZero,
  93     KlassDecodeXor,
  94     KlassDecodeMovk
  95   };
  96 
  97   // Calculate decoding mode based on given parameters, used for checking then ultimately setting.
  98   static KlassDecodeMode klass_decode_mode(address base, int shift, const size_t range);
  99 
 100  private:
 101   static KlassDecodeMode _klass_decode_mode;
 102 
 103   // Returns above setting with asserts
 104   static KlassDecodeMode klass_decode_mode();
 105 
 106  public:
 107   // Checks the decode mode and returns false if not compatible with preferred decoding mode.
 108   static bool check_klass_decode_mode(address base, int shift, const size_t range);
 109 
 110   // Sets the decode mode and returns false if cannot be set.
 111   static bool set_klass_decode_mode(address base, int shift, const size_t range);
 112 
 113  public:
 114   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
 115 
 116  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
 117  // The implementation is only non-empty for the InterpreterMacroAssembler,
 118  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
 119  virtual void check_and_handle_popframe(Register java_thread);
 120  virtual void check_and_handle_earlyret(Register java_thread);
 121 
 122   void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1);
 123   void rt_call(address dest, Register tmp = rscratch1);
 124 
 125   // Load Effective Address
 126   void lea(Register r, const Address &a) {
 127     InstructionMark im(this);
 128     a.lea(this, r);
 129   }
 130 
 131   /* Sometimes we get misaligned loads and stores, usually from Unsafe
 132      accesses, and these can exceed the offset range. */
 133   Address legitimize_address(const Address &a, int size, Register scratch) {
 134     if (a.getMode() == Address::base_plus_offset) {
 135       if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) {
 136         block_comment("legitimize_address {");
 137         lea(scratch, a);
 138         block_comment("} legitimize_address");
 139         return Address(scratch);
 140       }
 141     }
 142     return a;
 143   }
 144 
 145   void addmw(Address a, Register incr, Register scratch) {
 146     ldrw(scratch, a);
 147     addw(scratch, scratch, incr);
 148     strw(scratch, a);
 149   }
 150 
 151   // Add constant to memory word
 152   void addmw(Address a, int imm, Register scratch) {
 153     ldrw(scratch, a);
 154     if (imm > 0)
 155       addw(scratch, scratch, (unsigned)imm);
 156     else
 157       subw(scratch, scratch, (unsigned)-imm);
 158     strw(scratch, a);
 159   }
 160 
 161   void bind(Label& L) {
 162     Assembler::bind(L);
 163     code()->clear_last_insn();
 164     code()->set_last_label(pc());
 165   }
 166 
 167   void membar(Membar_mask_bits order_constraint);
 168 
 169   using Assembler::ldr;
 170   using Assembler::str;
 171   using Assembler::ldrw;
 172   using Assembler::strw;
 173 
 174   void ldr(Register Rx, const Address &adr);
 175   void ldrw(Register Rw, const Address &adr);
 176   void str(Register Rx, const Address &adr);
 177   void strw(Register Rx, const Address &adr);
 178 
 179   // Frame creation and destruction shared between JITs.
 180   void build_frame(int framesize);
 181   void remove_frame(int framesize);
 182 
 183   virtual void _call_Unimplemented(address call_site) {
 184     mov(rscratch2, call_site);
 185   }
 186 
 187 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__
 188 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention."
 189 // https://reviews.llvm.org/D3311
 190 
 191 #ifdef _WIN64
 192 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__)
 193 #else
 194 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 195 #endif
 196 
 197   // aliases defined in AARCH64 spec
 198 
 199   template<class T>
 200   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 201 
 202   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 203   inline void cmp(Register Rd, unsigned imm) = delete;
 204 
 205   template<class T>
 206   inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); }
 207 
 208   inline void cmn(Register Rd, unsigned char imm8)  { adds(zr, Rd, imm8); }
 209   inline void cmn(Register Rd, unsigned imm) = delete;
 210 
 211   void cset(Register Rd, Assembler::Condition cond) {
 212     csinc(Rd, zr, zr, ~cond);
 213   }
 214   void csetw(Register Rd, Assembler::Condition cond) {
 215     csincw(Rd, zr, zr, ~cond);
 216   }
 217 
 218   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 219     csneg(Rd, Rn, Rn, ~cond);
 220   }
 221   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 222     csnegw(Rd, Rn, Rn, ~cond);
 223   }
 224 
 225   inline void movw(Register Rd, Register Rn) {
 226     if (Rd == sp || Rn == sp) {
 227       Assembler::addw(Rd, Rn, 0U);
 228     } else {
 229       orrw(Rd, zr, Rn);
 230     }
 231   }
 232   inline void mov(Register Rd, Register Rn) {
 233     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 234     if (Rd == Rn) {
 235     } else if (Rd == sp || Rn == sp) {
 236       Assembler::add(Rd, Rn, 0U);
 237     } else {
 238       orr(Rd, zr, Rn);
 239     }
 240   }
 241 
 242   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 243   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 244 
 245   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 246   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 247 
 248   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 249   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 250 
 251   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 252     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 253   }
 254   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 255     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 256   }
 257 
 258   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 259     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 260   }
 261   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 262     bfm(Rd, Rn, lsb , (lsb + width - 1));
 263   }
 264 
 265   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 266     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 267   }
 268   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 269     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 270   }
 271 
 272   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 273     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 274   }
 275   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 276     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 277   }
 278 
 279   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 280     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 281   }
 282   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 283     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 284   }
 285 
 286   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 287     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 288   }
 289   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 290     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 291   }
 292 
 293   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 294     sbfmw(Rd, Rn, imm, 31);
 295   }
 296 
 297   inline void asr(Register Rd, Register Rn, unsigned imm) {
 298     sbfm(Rd, Rn, imm, 63);
 299   }
 300 
 301   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 302     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 303   }
 304 
 305   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 306     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 307   }
 308 
 309   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 310     ubfmw(Rd, Rn, imm, 31);
 311   }
 312 
 313   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 314     ubfm(Rd, Rn, imm, 63);
 315   }
 316 
 317   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 318     extrw(Rd, Rn, Rn, imm);
 319   }
 320 
 321   inline void ror(Register Rd, Register Rn, unsigned imm) {
 322     extr(Rd, Rn, Rn, imm);
 323   }
 324 
 325   inline void sxtbw(Register Rd, Register Rn) {
 326     sbfmw(Rd, Rn, 0, 7);
 327   }
 328   inline void sxthw(Register Rd, Register Rn) {
 329     sbfmw(Rd, Rn, 0, 15);
 330   }
 331   inline void sxtb(Register Rd, Register Rn) {
 332     sbfm(Rd, Rn, 0, 7);
 333   }
 334   inline void sxth(Register Rd, Register Rn) {
 335     sbfm(Rd, Rn, 0, 15);
 336   }
 337   inline void sxtw(Register Rd, Register Rn) {
 338     sbfm(Rd, Rn, 0, 31);
 339   }
 340 
 341   inline void uxtbw(Register Rd, Register Rn) {
 342     ubfmw(Rd, Rn, 0, 7);
 343   }
 344   inline void uxthw(Register Rd, Register Rn) {
 345     ubfmw(Rd, Rn, 0, 15);
 346   }
 347   inline void uxtb(Register Rd, Register Rn) {
 348     ubfm(Rd, Rn, 0, 7);
 349   }
 350   inline void uxth(Register Rd, Register Rn) {
 351     ubfm(Rd, Rn, 0, 15);
 352   }
 353   inline void uxtw(Register Rd, Register Rn) {
 354     ubfm(Rd, Rn, 0, 31);
 355   }
 356 
 357   inline void cmnw(Register Rn, Register Rm) {
 358     addsw(zr, Rn, Rm);
 359   }
 360   inline void cmn(Register Rn, Register Rm) {
 361     adds(zr, Rn, Rm);
 362   }
 363 
 364   inline void cmpw(Register Rn, Register Rm) {
 365     subsw(zr, Rn, Rm);
 366   }
 367   inline void cmp(Register Rn, Register Rm) {
 368     subs(zr, Rn, Rm);
 369   }
 370 
 371   inline void negw(Register Rd, Register Rn) {
 372     subw(Rd, zr, Rn);
 373   }
 374 
 375   inline void neg(Register Rd, Register Rn) {
 376     sub(Rd, zr, Rn);
 377   }
 378 
 379   inline void negsw(Register Rd, Register Rn) {
 380     subsw(Rd, zr, Rn);
 381   }
 382 
 383   inline void negs(Register Rd, Register Rn) {
 384     subs(Rd, zr, Rn);
 385   }
 386 
 387   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 388     addsw(zr, Rn, Rm, kind, shift);
 389   }
 390   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 391     adds(zr, Rn, Rm, kind, shift);
 392   }
 393 
 394   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 395     subsw(zr, Rn, Rm, kind, shift);
 396   }
 397   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 398     subs(zr, Rn, Rm, kind, shift);
 399   }
 400 
 401   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 402     subw(Rd, zr, Rn, kind, shift);
 403   }
 404 
 405   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 406     sub(Rd, zr, Rn, kind, shift);
 407   }
 408 
 409   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 410     subsw(Rd, zr, Rn, kind, shift);
 411   }
 412 
 413   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 414     subs(Rd, zr, Rn, kind, shift);
 415   }
 416 
 417   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 418     msubw(Rd, Rn, Rm, zr);
 419   }
 420   inline void mneg(Register Rd, Register Rn, Register Rm) {
 421     msub(Rd, Rn, Rm, zr);
 422   }
 423 
 424   inline void mulw(Register Rd, Register Rn, Register Rm) {
 425     maddw(Rd, Rn, Rm, zr);
 426   }
 427   inline void mul(Register Rd, Register Rn, Register Rm) {
 428     madd(Rd, Rn, Rm, zr);
 429   }
 430 
 431   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 432     smsubl(Rd, Rn, Rm, zr);
 433   }
 434   inline void smull(Register Rd, Register Rn, Register Rm) {
 435     smaddl(Rd, Rn, Rm, zr);
 436   }
 437 
 438   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 439     umsubl(Rd, Rn, Rm, zr);
 440   }
 441   inline void umull(Register Rd, Register Rn, Register Rm) {
 442     umaddl(Rd, Rn, Rm, zr);
 443   }
 444 
 445 #define WRAP(INSN)                                                            \
 446   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 447     if (VM_Version::supports_a53mac() && Ra != zr)                            \
 448       nop();                                                                  \
 449     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 450   }
 451 
 452   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 453   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 454 #undef WRAP
 455 
 456 
 457   // macro assembly operations needed for aarch64
 458 
 459 public:
 460 
 461   enum FpPushPopMode {
 462     PushPopFull,
 463     PushPopSVE,
 464     PushPopNeon,
 465     PushPopFp
 466   };
 467 
 468   // first two private routines for loading 32 bit or 64 bit constants
 469 private:
 470 
 471   void mov_immediate64(Register dst, uint64_t imm64);
 472   void mov_immediate32(Register dst, uint32_t imm32);
 473 
 474   int push(unsigned int bitset, Register stack);
 475   int pop(unsigned int bitset, Register stack);
 476 
 477   int push_fp(unsigned int bitset, Register stack, FpPushPopMode mode);
 478   int pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode);
 479 
 480   int push_p(unsigned int bitset, Register stack);
 481   int pop_p(unsigned int bitset, Register stack);
 482 
 483   void mov(Register dst, Address a);
 484 
 485 public:
 486 
 487   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 488   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 489 
 490   void push_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) push_fp(regs.bits(), stack, mode); }
 491   void pop_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) pop_fp(regs.bits(), stack, mode); }
 492 
 493   static RegSet call_clobbered_gp_registers();
 494 
 495   void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); }
 496   void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); }
 497 
 498   // Push and pop everything that might be clobbered by a native
 499   // runtime call except rscratch1 and rscratch2.  (They are always
 500   // scratch, so we don't have to protect them.)  Only save the lower
 501   // 64 bits of each vector register. Additional registers can be excluded
 502   // in a passed RegSet.
 503   void push_call_clobbered_registers_except(RegSet exclude);
 504   void pop_call_clobbered_registers_except(RegSet exclude);
 505 
 506   void push_call_clobbered_registers() {
 507     push_call_clobbered_registers_except(RegSet());
 508   }
 509   void pop_call_clobbered_registers() {
 510     pop_call_clobbered_registers_except(RegSet());
 511   }
 512 
 513 
 514   // now mov instructions for loading absolute addresses and 32 or
 515   // 64 bit integers
 516 
 517   inline void mov(Register dst, address addr)             { mov_immediate64(dst, (uint64_t)addr); }
 518 
 519   template<typename T, ENABLE_IF(std::is_integral<T>::value)>
 520   inline void mov(Register dst, T o)                      { mov_immediate64(dst, (uint64_t)o); }
 521 
 522   inline void movw(Register dst, uint32_t imm32)          { mov_immediate32(dst, imm32); }
 523 
 524   void mov(Register dst, RegisterOrConstant src) {
 525     if (src.is_register())
 526       mov(dst, src.as_register());
 527     else
 528       mov(dst, src.as_constant());
 529   }
 530 
 531   void movptr(Register r, uintptr_t imm64);
 532 
 533   void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64);
 534 
 535   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 536     orr(Vd, T, Vn, Vn);
 537   }
 538 
 539   void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) {
 540     fcvtsh(tmp, src);
 541     smov(dst, tmp, H, 0);
 542   }
 543 
 544   void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) {
 545     mov(tmp, H, 0, src);
 546     fcvths(dst, tmp);
 547   }
 548 
 549   // Generalized Test Bit And Branch, including a "far" variety which
 550   // spans more than 32KiB.
 551   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) {
 552     assert(cond == EQ || cond == NE, "must be");
 553 
 554     if (isfar)
 555       cond = ~cond;
 556 
 557     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 558     if (cond == Assembler::EQ)
 559       branch = &Assembler::tbz;
 560     else
 561       branch = &Assembler::tbnz;
 562 
 563     if (isfar) {
 564       Label L;
 565       (this->*branch)(Rt, bitpos, L);
 566       b(dest);
 567       bind(L);
 568     } else {
 569       (this->*branch)(Rt, bitpos, dest);
 570     }
 571   }
 572 
 573   // macro instructions for accessing and updating floating point
 574   // status register
 575   //
 576   // FPSR : op1 == 011
 577   //        CRn == 0100
 578   //        CRm == 0100
 579   //        op2 == 001
 580 
 581   inline void get_fpsr(Register reg)
 582   {
 583     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 584   }
 585 
 586   inline void set_fpsr(Register reg)
 587   {
 588     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 589   }
 590 
 591   inline void clear_fpsr()
 592   {
 593     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 594   }
 595 
 596   // FPCR : op1 == 011
 597   //        CRn == 0100
 598   //        CRm == 0100
 599   //        op2 == 000
 600 
 601   inline void get_fpcr(Register reg) {
 602     mrs(0b11, 0b0100, 0b0100, 0b000, reg);
 603   }
 604 
 605   inline void set_fpcr(Register reg) {
 606     msr(0b011, 0b0100, 0b0100, 0b000, reg);
 607   }
 608 
 609   // DCZID_EL0: op1 == 011
 610   //            CRn == 0000
 611   //            CRm == 0000
 612   //            op2 == 111
 613   inline void get_dczid_el0(Register reg)
 614   {
 615     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 616   }
 617 
 618   // CTR_EL0:   op1 == 011
 619   //            CRn == 0000
 620   //            CRm == 0000
 621   //            op2 == 001
 622   inline void get_ctr_el0(Register reg)
 623   {
 624     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 625   }
 626 
 627   inline void get_nzcv(Register reg) {
 628     mrs(0b011, 0b0100, 0b0010, 0b000, reg);
 629   }
 630 
 631   inline void set_nzcv(Register reg) {
 632     msr(0b011, 0b0100, 0b0010, 0b000, reg);
 633   }
 634 
 635   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 636   int corrected_idivl(Register result, Register ra, Register rb,
 637                       bool want_remainder, Register tmp = rscratch1);
 638   int corrected_idivq(Register result, Register ra, Register rb,
 639                       bool want_remainder, Register tmp = rscratch1);
 640 
 641   // Support for null-checks
 642   //
 643   // Generates code that causes a null OS exception if the content of reg is null.
 644   // If the accessed location is M[reg + offset] and the offset is known, provide the
 645   // offset. No explicit code generation is needed if the offset is within a certain
 646   // range (0 <= offset <= page_size).
 647 
 648   virtual void null_check(Register reg, int offset = -1);
 649   static bool needs_explicit_null_check(intptr_t offset);
 650   static bool uses_implicit_null_check(void* address);
 651 
 652   static address target_addr_for_insn(address insn_addr, unsigned insn);
 653   static address target_addr_for_insn_or_null(address insn_addr, unsigned insn);
 654   static address target_addr_for_insn(address insn_addr) {
 655     unsigned insn = *(unsigned*)insn_addr;
 656     return target_addr_for_insn(insn_addr, insn);
 657   }
 658   static address target_addr_for_insn_or_null(address insn_addr) {
 659     unsigned insn = *(unsigned*)insn_addr;
 660     return target_addr_for_insn_or_null(insn_addr, insn);
 661   }
 662 
 663   // Required platform-specific helpers for Label::patch_instructions.
 664   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 665   static int pd_patch_instruction_size(address branch, address target);
 666   static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) {
 667     pd_patch_instruction_size(branch, target);
 668   }
 669   static address pd_call_destination(address branch) {
 670     return target_addr_for_insn(branch);
 671   }
 672 #ifndef PRODUCT
 673   static void pd_print_patched_instruction(address branch);
 674 #endif
 675 
 676   static int patch_oop(address insn_addr, address o);
 677   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 678 
 679   // Return whether code is emitted to a scratch blob.
 680   virtual bool in_scratch_emit_size() {
 681     return false;
 682   }
 683   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 684   static int max_trampoline_stub_size();
 685   void emit_static_call_stub();
 686   static int static_call_stub_size();
 687 
 688   // The following 4 methods return the offset of the appropriate move instruction
 689 
 690   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 691   int load_unsigned_byte(Register dst, Address src);
 692   int load_unsigned_short(Register dst, Address src);
 693 
 694   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 695   int load_signed_byte(Register dst, Address src);
 696   int load_signed_short(Register dst, Address src);
 697 
 698   int load_signed_byte32(Register dst, Address src);
 699   int load_signed_short32(Register dst, Address src);
 700 
 701   // Support for sign-extension (hi:lo = extend_sign(lo))
 702   void extend_sign(Register hi, Register lo);
 703 
 704   // Load and store values by size and signed-ness
 705   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
 706   void store_sized_value(Address dst, Register src, size_t size_in_bytes);
 707 
 708   // Support for inc/dec with optimal instruction selection depending on value
 709 
 710   // x86_64 aliases an unqualified register/address increment and
 711   // decrement to call incrementq and decrementq but also supports
 712   // explicitly sized calls to incrementq/decrementq or
 713   // incrementl/decrementl
 714 
 715   // for aarch64 the proper convention would be to use
 716   // increment/decrement for 64 bit operations and
 717   // incrementw/decrementw for 32 bit operations. so when porting
 718   // x86_64 code we can leave calls to increment/decrement as is,
 719   // replace incrementq/decrementq with increment/decrement and
 720   // replace incrementl/decrementl with incrementw/decrementw.
 721 
 722   // n.b. increment/decrement calls with an Address destination will
 723   // need to use a scratch register to load the value to be
 724   // incremented. increment/decrement calls which add or subtract a
 725   // constant value greater than 2^12 will need to use a 2nd scratch
 726   // register to hold the constant. so, a register increment/decrement
 727   // may trash rscratch2 and an address increment/decrement trash
 728   // rscratch and rscratch2
 729 
 730   void decrementw(Address dst, int value = 1);
 731   void decrementw(Register reg, int value = 1);
 732 
 733   void decrement(Register reg, int value = 1);
 734   void decrement(Address dst, int value = 1);
 735 
 736   void incrementw(Address dst, int value = 1);
 737   void incrementw(Register reg, int value = 1);
 738 
 739   void increment(Register reg, int value = 1);
 740   void increment(Address dst, int value = 1);
 741 
 742 
 743   // Alignment
 744   void align(int modulus);
 745   void align(int modulus, int target);
 746 
 747   // nop
 748   void post_call_nop();
 749 
 750   // Stack frame creation/removal
 751   void enter(bool strip_ret_addr = false);
 752   void leave();
 753 
 754   // ROP Protection
 755   void protect_return_address();
 756   void protect_return_address(Register return_reg);
 757   void authenticate_return_address();
 758   void authenticate_return_address(Register return_reg);
 759   void strip_return_address();
 760   void check_return_address(Register return_reg=lr) PRODUCT_RETURN;
 761 
 762   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 763   // The pointer will be loaded into the thread register.
 764   void get_thread(Register thread);
 765 
 766   // support for argument shuffling
 767   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 768   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 769   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 770   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 771   void object_move(
 772                    OopMap* map,
 773                    int oop_handle_offset,
 774                    int framesize_in_slots,
 775                    VMRegPair src,
 776                    VMRegPair dst,
 777                    bool is_receiver,
 778                    int* receiver_offset);
 779 
 780 
 781   // Support for VM calls
 782   //
 783   // It is imperative that all calls into the VM are handled via the call_VM macros.
 784   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 785   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 786 
 787 
 788   void call_VM(Register oop_result,
 789                address entry_point,
 790                bool check_exceptions = true);
 791   void call_VM(Register oop_result,
 792                address entry_point,
 793                Register arg_1,
 794                bool check_exceptions = true);
 795   void call_VM(Register oop_result,
 796                address entry_point,
 797                Register arg_1, Register arg_2,
 798                bool check_exceptions = true);
 799   void call_VM(Register oop_result,
 800                address entry_point,
 801                Register arg_1, Register arg_2, Register arg_3,
 802                bool check_exceptions = true);
 803 
 804   // Overloadings with last_Java_sp
 805   void call_VM(Register oop_result,
 806                Register last_java_sp,
 807                address entry_point,
 808                int number_of_arguments = 0,
 809                bool check_exceptions = true);
 810   void call_VM(Register oop_result,
 811                Register last_java_sp,
 812                address entry_point,
 813                Register arg_1, bool
 814                check_exceptions = true);
 815   void call_VM(Register oop_result,
 816                Register last_java_sp,
 817                address entry_point,
 818                Register arg_1, Register arg_2,
 819                bool check_exceptions = true);
 820   void call_VM(Register oop_result,
 821                Register last_java_sp,
 822                address entry_point,
 823                Register arg_1, Register arg_2, Register arg_3,
 824                bool check_exceptions = true);
 825 
 826   void get_vm_result  (Register oop_result, Register thread);
 827   void get_vm_result_2(Register metadata_result, Register thread);
 828 
 829   // These always tightly bind to MacroAssembler::call_VM_base
 830   // bypassing the virtual implementation
 831   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 832   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 833   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 834   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 835   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 836 
 837   void call_VM_leaf(address entry_point,
 838                     int number_of_arguments = 0);
 839   void call_VM_leaf(address entry_point,
 840                     Register arg_1);
 841   void call_VM_leaf(address entry_point,
 842                     Register arg_1, Register arg_2);
 843   void call_VM_leaf(address entry_point,
 844                     Register arg_1, Register arg_2, Register arg_3);
 845 
 846   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 847   // bypassing the virtual implementation
 848   void super_call_VM_leaf(address entry_point);
 849   void super_call_VM_leaf(address entry_point, Register arg_1);
 850   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 851   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 852   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 853 
 854   // last Java Frame (fills frame anchor)
 855   void set_last_Java_frame(Register last_java_sp,
 856                            Register last_java_fp,
 857                            address last_java_pc,
 858                            Register scratch);
 859 
 860   void set_last_Java_frame(Register last_java_sp,
 861                            Register last_java_fp,
 862                            Label &last_java_pc,
 863                            Register scratch);
 864 
 865   void set_last_Java_frame(Register last_java_sp,
 866                            Register last_java_fp,
 867                            Register last_java_pc,
 868                            Register scratch);
 869 
 870   void reset_last_Java_frame(Register thread);
 871 
 872   // thread in the default location (rthread)
 873   void reset_last_Java_frame(bool clear_fp);
 874 
 875   // Stores
 876   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 877   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 878 
 879   void resolve_jobject(Register value, Register tmp1, Register tmp2);
 880   void resolve_global_jobject(Register value, Register tmp1, Register tmp2);
 881 
 882   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 883   void c2bool(Register x);
 884 
 885   void load_method_holder_cld(Register rresult, Register rmethod);
 886   void load_method_holder(Register holder, Register method);
 887 
 888   // oop manipulations
 889   void load_narrow_klass_compact(Register dst, Register src);
 890   void load_klass(Register dst, Register src);
 891   void store_klass(Register dst, Register src);
 892   void cmp_klass(Register obj, Register klass, Register tmp);
 893   void cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2);
 894 
 895   void resolve_weak_handle(Register result, Register tmp1, Register tmp2);
 896   void resolve_oop_handle(Register result, Register tmp1, Register tmp2);
 897   void load_mirror(Register dst, Register method, Register tmp1, Register tmp2);
 898 
 899   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 900                       Register tmp1, Register tmp2);
 901 
 902   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 903                        Register tmp1, Register tmp2, Register tmp3);
 904 
 905   void load_heap_oop(Register dst, Address src, Register tmp1,
 906                      Register tmp2, DecoratorSet decorators = 0);
 907 
 908   void load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 909                               Register tmp2, DecoratorSet decorators = 0);
 910   void store_heap_oop(Address dst, Register val, Register tmp1,
 911                       Register tmp2, Register tmp3, DecoratorSet decorators = 0);
 912 
 913   // currently unimplemented
 914   // Used for storing null. All other oop constants should be
 915   // stored using routines that take a jobject.
 916   void store_heap_oop_null(Address dst);
 917 
 918   void store_klass_gap(Register dst, Register src);
 919 
 920   // This dummy is to prevent a call to store_heap_oop from
 921   // converting a zero (like null) into a Register by giving
 922   // the compiler two choices it can't resolve
 923 
 924   void store_heap_oop(Address dst, void* dummy);
 925 
 926   void encode_heap_oop(Register d, Register s);
 927   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 928   void decode_heap_oop(Register d, Register s);
 929   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 930   void encode_heap_oop_not_null(Register r);
 931   void decode_heap_oop_not_null(Register r);
 932   void encode_heap_oop_not_null(Register dst, Register src);
 933   void decode_heap_oop_not_null(Register dst, Register src);
 934 
 935   void set_narrow_oop(Register dst, jobject obj);
 936 
 937   void encode_klass_not_null(Register r);
 938   void decode_klass_not_null(Register r);
 939   void encode_klass_not_null(Register dst, Register src);
 940   void decode_klass_not_null(Register dst, Register src);
 941 
 942   void set_narrow_klass(Register dst, Klass* k);
 943 
 944   // if heap base register is used - reinit it with the correct value
 945   void reinit_heapbase();
 946 
 947   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 948 
 949   void push_CPU_state(bool save_vectors = false, bool use_sve = false,
 950                       int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 951   void pop_CPU_state(bool restore_vectors = false, bool use_sve = false,
 952                      int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 953 
 954   void push_cont_fastpath(Register java_thread = rthread);
 955   void pop_cont_fastpath(Register java_thread = rthread);
 956 
 957   void inc_held_monitor_count(Register tmp);
 958   void dec_held_monitor_count(Register tmp);
 959 
 960   // Round up to a power of two
 961   void round_to(Register reg, int modulus);
 962 
 963   // java.lang.Math::round intrinsics
 964   void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp);
 965   void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp);
 966 
 967   // allocation
 968   void tlab_allocate(
 969     Register obj,                      // result: pointer to object after successful allocation
 970     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 971     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 972     Register t1,                       // temp register
 973     Register t2,                       // temp register
 974     Label&   slow_case                 // continuation point if fast allocation fails
 975   );
 976   void verify_tlab();
 977 
 978   // interface method calling
 979   void lookup_interface_method(Register recv_klass,
 980                                Register intf_klass,
 981                                RegisterOrConstant itable_index,
 982                                Register method_result,
 983                                Register scan_temp,
 984                                Label& no_such_interface,
 985                    bool return_method = true);
 986 
 987   void lookup_interface_method_stub(Register recv_klass,
 988                                     Register holder_klass,
 989                                     Register resolved_klass,
 990                                     Register method_result,
 991                                     Register temp_reg,
 992                                     Register temp_reg2,
 993                                     int itable_index,
 994                                     Label& L_no_such_interface);
 995 
 996   // virtual method calling
 997   // n.b. x86 allows RegisterOrConstant for vtable_index
 998   void lookup_virtual_method(Register recv_klass,
 999                              RegisterOrConstant vtable_index,
1000                              Register method_result);
1001 
1002   // Test sub_klass against super_klass, with fast and slow paths.
1003 
1004   // The fast path produces a tri-state answer: yes / no / maybe-slow.
1005   // One of the three labels can be null, meaning take the fall-through.
1006   // If super_check_offset is -1, the value is loaded up from super_klass.
1007   // No registers are killed, except temp_reg.
1008   void check_klass_subtype_fast_path(Register sub_klass,
1009                                      Register super_klass,
1010                                      Register temp_reg,
1011                                      Label* L_success,
1012                                      Label* L_failure,
1013                                      Label* L_slow_path,
1014                                      Register super_check_offset = noreg);
1015 
1016   // The rest of the type check; must be wired to a corresponding fast path.
1017   // It does not repeat the fast path logic, so don't use it standalone.
1018   // The temp_reg and temp2_reg can be noreg, if no temps are available.
1019   // Updates the sub's secondary super cache as necessary.
1020   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
1021   void check_klass_subtype_slow_path(Register sub_klass,
1022                                      Register super_klass,
1023                                      Register temp_reg,
1024                                      Register temp2_reg,
1025                                      Label* L_success,
1026                                      Label* L_failure,
1027                                      bool set_cond_codes = false);
1028 
1029   void check_klass_subtype_slow_path_linear(Register sub_klass,
1030                                             Register super_klass,
1031                                             Register temp_reg,
1032                                             Register temp2_reg,
1033                                             Label* L_success,
1034                                             Label* L_failure,
1035                                             bool set_cond_codes = false);
1036 
1037   void check_klass_subtype_slow_path_table(Register sub_klass,
1038                                            Register super_klass,
1039                                            Register temp_reg,
1040                                            Register temp2_reg,
1041                                            Register temp3_reg,
1042                                            Register result_reg,
1043                                            FloatRegister vtemp_reg,
1044                                            Label* L_success,
1045                                            Label* L_failure,
1046                                            bool set_cond_codes = false);
1047 
1048   // If r is valid, return r.
1049   // If r is invalid, remove a register r2 from available_regs, add r2
1050   // to regs_to_push, then return r2.
1051   Register allocate_if_noreg(const Register r,
1052                              RegSetIterator<Register> &available_regs,
1053                              RegSet &regs_to_push);
1054 
1055   // Secondary subtype checking
1056   void lookup_secondary_supers_table_var(Register sub_klass,
1057                                          Register r_super_klass,
1058                                          Register temp1,
1059                                          Register temp2,
1060                                          Register temp3,
1061                                          FloatRegister vtemp,
1062                                          Register result,
1063                                          Label *L_success);
1064 
1065 
1066   // As above, but with a constant super_klass.
1067   // The result is in Register result, not the condition codes.
1068   bool lookup_secondary_supers_table_const(Register r_sub_klass,
1069                                            Register r_super_klass,
1070                                            Register temp1,
1071                                            Register temp2,
1072                                            Register temp3,
1073                                            FloatRegister vtemp,
1074                                            Register result,
1075                                            u1 super_klass_slot,
1076                                            bool stub_is_near = false);
1077 
1078   void verify_secondary_supers_table(Register r_sub_klass,
1079                                      Register r_super_klass,
1080                                      Register temp1,
1081                                      Register temp2,
1082                                      Register result);
1083 
1084   void lookup_secondary_supers_table_slow_path(Register r_super_klass,
1085                                                Register r_array_base,
1086                                                Register r_array_index,
1087                                                Register r_bitmap,
1088                                                Register temp1,
1089                                                Register result,
1090                                                bool is_stub = true);
1091 
1092   // Simplified, combined version, good for typical uses.
1093   // Falls through on failure.
1094   void check_klass_subtype(Register sub_klass,
1095                            Register super_klass,
1096                            Register temp_reg,
1097                            Label& L_success);
1098 
1099   void clinit_barrier(Register klass,
1100                       Register thread,
1101                       Label* L_fast_path = nullptr,
1102                       Label* L_slow_path = nullptr);
1103 
1104   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1105 
1106   void verify_sve_vector_length(Register tmp = rscratch1);
1107   void reinitialize_ptrue() {
1108     if (UseSVE > 0) {
1109       sve_ptrue(ptrue, B);
1110     }
1111   }
1112   void verify_ptrue();
1113 
1114   // Debugging
1115 
1116   // only if +VerifyOops
1117   void _verify_oop(Register reg, const char* s, const char* file, int line);
1118   void _verify_oop_addr(Address addr, const char * s, const char* file, int line);
1119 
1120   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
1121     if (VerifyOops) {
1122       _verify_oop(reg, s, file, line);
1123     }
1124   }
1125   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
1126     if (VerifyOops) {
1127       _verify_oop_addr(reg, s, file, line);
1128     }
1129   }
1130 
1131 // TODO: verify method and klass metadata (compare against vptr?)
1132   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
1133   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
1134 
1135 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
1136 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
1137 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
1138 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
1139 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
1140 
1141   // Restore cpu control state after JNI call
1142   void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2);
1143 
1144   // prints msg, dumps registers and stops execution
1145   void stop(const char* msg);
1146 
1147   static void debug64(char* msg, int64_t pc, int64_t regs[]);
1148 
1149   void untested()                                { stop("untested"); }
1150 
1151   void unimplemented(const char* what = "");
1152 
1153   void should_not_reach_here()                   { stop("should not reach here"); }
1154 
1155   void _assert_asm(Condition cc, const char* msg);
1156 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg)
1157 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg))
1158 
1159   // Stack overflow checking
1160   void bang_stack_with_offset(int offset) {
1161     // stack grows down, caller passes positive offset
1162     assert(offset > 0, "must bang with negative offset");
1163     sub(rscratch2, sp, offset);
1164     str(zr, Address(rscratch2));
1165   }
1166 
1167   // Writes to stack successive pages until offset reached to check for
1168   // stack overflow + shadow pages.  Also, clobbers tmp
1169   void bang_stack_size(Register size, Register tmp);
1170 
1171   // Check for reserved stack access in method being exited (for JIT)
1172   void reserved_stack_check();
1173 
1174   // Arithmetics
1175 
1176   void addptr(const Address &dst, int32_t src);
1177   void cmpptr(Register src1, Address src2);
1178 
1179   void cmpoop(Register obj1, Register obj2);
1180 
1181   // Various forms of CAS
1182 
1183   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
1184                           Label &succeed, Label *fail);
1185   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
1186                   Label &succeed, Label *fail);
1187 
1188   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
1189                   Label &succeed, Label *fail);
1190 
1191   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
1192   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1193   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1194   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1195 
1196   void atomic_xchg(Register prev, Register newv, Register addr);
1197   void atomic_xchgw(Register prev, Register newv, Register addr);
1198   void atomic_xchgl(Register prev, Register newv, Register addr);
1199   void atomic_xchglw(Register prev, Register newv, Register addr);
1200   void atomic_xchgal(Register prev, Register newv, Register addr);
1201   void atomic_xchgalw(Register prev, Register newv, Register addr);
1202 
1203   void orptr(Address adr, RegisterOrConstant src) {
1204     ldr(rscratch1, adr);
1205     if (src.is_register())
1206       orr(rscratch1, rscratch1, src.as_register());
1207     else
1208       orr(rscratch1, rscratch1, src.as_constant());
1209     str(rscratch1, adr);
1210   }
1211 
1212   // A generic CAS; success or failure is in the EQ flag.
1213   // Clobbers rscratch1
1214   void cmpxchg(Register addr, Register expected, Register new_val,
1215                enum operand_size size,
1216                bool acquire, bool release, bool weak,
1217                Register result);
1218 
1219 #ifdef ASSERT
1220   // Template short-hand support to clean-up after a failed call to trampoline
1221   // call generation (see trampoline_call() below),  when a set of Labels must
1222   // be reset (before returning).
1223   template<typename Label, typename... More>
1224   void reset_labels(Label &lbl, More&... more) {
1225     lbl.reset(); reset_labels(more...);
1226   }
1227   template<typename Label>
1228   void reset_labels(Label &lbl) {
1229     lbl.reset();
1230   }
1231 #endif
1232 
1233 private:
1234   void compare_eq(Register rn, Register rm, enum operand_size size);
1235 
1236 public:
1237   // AArch64 OpenJDK uses four different types of calls:
1238   //   - direct call: bl pc_relative_offset
1239   //     This is the shortest and the fastest, but the offset has the range:
1240   //     +/-128MB for the release build, +/-2MB for the debug build.
1241   //
1242   //   - far call: adrp reg, pc_relative_offset; add; bl reg
1243   //     This is longer than a direct call. The offset has
1244   //     the range +/-4GB. As the code cache size is limited to 4GB,
1245   //     far calls can reach anywhere in the code cache. If a jump is
1246   //     needed rather than a call, a far jump 'b reg' can be used instead.
1247   //     All instructions are embedded at a call site.
1248   //
1249   //   - trampoline call:
1250   //     This is only available in C1/C2-generated code (nmethod). It is a combination
1251   //     of a direct call, which is used if the destination of a call is in range,
1252   //     and a register-indirect call. It has the advantages of reaching anywhere in
1253   //     the AArch64 address space and being patchable at runtime when the generated
1254   //     code is being executed by other threads.
1255   //
1256   //     [Main code section]
1257   //       bl trampoline
1258   //     [Stub code section]
1259   //     trampoline:
1260   //       ldr reg, pc + 8
1261   //       br reg
1262   //       <64-bit destination address>
1263   //
1264   //     If the destination is in range when the generated code is moved to the code
1265   //     cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline
1266   //     is not used.
1267   //     The optimization does not remove the trampoline from the stub section.
1268   //     This is necessary because the trampoline may well be redirected later when
1269   //     code is patched, and the new destination may not be reachable by a simple BR
1270   //     instruction.
1271   //
1272   //   - indirect call: move reg, address; blr reg
1273   //     This too can reach anywhere in the address space, but it cannot be
1274   //     patched while code is running, so it must only be modified at a safepoint.
1275   //     This form of call is most suitable for targets at fixed addresses, which
1276   //     will never be patched.
1277   //
1278   // The patching we do conforms to the "Concurrent modification and
1279   // execution of instructions" section of the Arm Architectural
1280   // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC,
1281   // or SVC instructions to be modified while another thread is
1282   // executing them.
1283   //
1284   // To patch a trampoline call when the BL can't reach, we first modify
1285   // the 64-bit destination address in the trampoline, then modify the
1286   // BL to point to the trampoline, then flush the instruction cache to
1287   // broadcast the change to all executing threads. See
1288   // NativeCall::set_destination_mt_safe for the details.
1289   //
1290   // There is a benign race in that the other thread might observe the
1291   // modified BL before it observes the modified 64-bit destination
1292   // address. That does not matter because the destination method has been
1293   // invalidated, so there will be a trap at its start.
1294   // For this to work, the destination address in the trampoline is
1295   // always updated, even if we're not using the trampoline.
1296 
1297   // Emit a direct call if the entry address will always be in range,
1298   // otherwise a trampoline call.
1299   // Supported entry.rspec():
1300   // - relocInfo::runtime_call_type
1301   // - relocInfo::opt_virtual_call_type
1302   // - relocInfo::static_call_type
1303   // - relocInfo::virtual_call_type
1304   //
1305   // Return: the call PC or null if CodeCache is full.
1306   // Clobbers: rscratch1
1307   address trampoline_call(Address entry);
1308 
1309   static bool far_branches() {
1310     return ReservedCodeCacheSize > branch_range;
1311   }
1312 
1313   // Check if branches to the non nmethod section require a far jump
1314   static bool codestub_branch_needs_far_jump() {
1315     return CodeCache::max_distance_to_non_nmethod() > branch_range;
1316   }
1317 
1318   // Emit a direct call/jump if the entry address will always be in range,
1319   // otherwise a far call/jump.
1320   // The address must be inside the code cache.
1321   // Supported entry.rspec():
1322   // - relocInfo::external_word_type
1323   // - relocInfo::runtime_call_type
1324   // - relocInfo::none
1325   // In the case of a far call/jump, the entry address is put in the tmp register.
1326   // The tmp register is invalidated.
1327   //
1328   // Far_jump returns the amount of the emitted code.
1329   void far_call(Address entry, Register tmp = rscratch1);
1330   int far_jump(Address entry, Register tmp = rscratch1);
1331 
1332   static int far_codestub_branch_size() {
1333     if (codestub_branch_needs_far_jump()) {
1334       return 3 * 4;  // adrp, add, br
1335     } else {
1336       return 4;
1337     }
1338   }
1339 
1340   // Emit the CompiledIC call idiom
1341   address ic_call(address entry, jint method_index = 0);
1342   static int ic_check_size();
1343   int ic_check(int end_alignment);
1344 
1345 public:
1346 
1347   // Data
1348 
1349   void mov_metadata(Register dst, Metadata* obj);
1350   Address allocate_metadata_address(Metadata* obj);
1351   Address constant_oop_address(jobject obj);
1352 
1353   void movoop(Register dst, jobject obj);
1354 
1355   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1356   void kernel_crc32(Register crc, Register buf, Register len,
1357         Register table0, Register table1, Register table2, Register table3,
1358         Register tmp, Register tmp2, Register tmp3);
1359   // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic.
1360   void kernel_crc32c(Register crc, Register buf, Register len,
1361         Register table0, Register table1, Register table2, Register table3,
1362         Register tmp, Register tmp2, Register tmp3);
1363 
1364   // Stack push and pop individual 64 bit registers
1365   void push(Register src);
1366   void pop(Register dst);
1367 
1368   void repne_scan(Register addr, Register value, Register count,
1369                   Register scratch);
1370   void repne_scanw(Register addr, Register value, Register count,
1371                    Register scratch);
1372 
1373   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1374   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1375 
1376   // If a constant does not fit in an immediate field, generate some
1377   // number of MOV instructions and then perform the operation
1378   void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
1379                              add_sub_imm_insn insn1,
1380                              add_sub_reg_insn insn2, bool is32);
1381   // Separate vsn which sets the flags
1382   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
1383                                add_sub_imm_insn insn1,
1384                                add_sub_reg_insn insn2, bool is32);
1385 
1386 #define WRAP(INSN, is32)                                                \
1387   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1388     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1389   }                                                                     \
1390                                                                         \
1391   void INSN(Register Rd, Register Rn, Register Rm,                      \
1392              enum shift_kind kind, unsigned shift = 0) {                \
1393     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1394   }                                                                     \
1395                                                                         \
1396   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1397     Assembler::INSN(Rd, Rn, Rm);                                        \
1398   }                                                                     \
1399                                                                         \
1400   void INSN(Register Rd, Register Rn, Register Rm,                      \
1401            ext::operation option, int amount = 0) {                     \
1402     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1403   }
1404 
1405   WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true)
1406 
1407 #undef WRAP
1408 #define WRAP(INSN, is32)                                                \
1409   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1410     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1411   }                                                                     \
1412                                                                         \
1413   void INSN(Register Rd, Register Rn, Register Rm,                      \
1414              enum shift_kind kind, unsigned shift = 0) {                \
1415     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1416   }                                                                     \
1417                                                                         \
1418   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1419     Assembler::INSN(Rd, Rn, Rm);                                        \
1420   }                                                                     \
1421                                                                         \
1422   void INSN(Register Rd, Register Rn, Register Rm,                      \
1423            ext::operation option, int amount = 0) {                     \
1424     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1425   }
1426 
1427   WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true)
1428 
1429   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1430   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1431   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1432   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1433 
1434   void adrp(Register reg1, const Address &dest, uint64_t &byte_offset);
1435 
1436   void tableswitch(Register index, jint lowbound, jint highbound,
1437                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1438     adr(rscratch1, jumptable);
1439     subsw(rscratch2, index, lowbound);
1440     subsw(zr, rscratch2, highbound - lowbound);
1441     br(Assembler::HS, jumptable_end);
1442     add(rscratch1, rscratch1, rscratch2,
1443         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1444     br(rscratch1);
1445   }
1446 
1447   // Form an address from base + offset in Rd.  Rd may or may not
1448   // actually be used: you must use the Address that is returned.  It
1449   // is up to you to ensure that the shift provided matches the size
1450   // of your data.
1451   Address form_address(Register Rd, Register base, int64_t byte_offset, int shift);
1452 
1453   // Return true iff an address is within the 48-bit AArch64 address
1454   // space.
1455   bool is_valid_AArch64_address(address a) {
1456     return ((uint64_t)a >> 48) == 0;
1457   }
1458 
1459   // Load the base of the cardtable byte map into reg.
1460   void load_byte_map_base(Register reg);
1461 
1462   // Prolog generator routines to support switch between x86 code and
1463   // generated ARM code
1464 
1465   // routine to generate an x86 prolog for a stub function which
1466   // bootstraps into the generated ARM code which directly follows the
1467   // stub
1468   //
1469 
1470   public:
1471 
1472   void ldr_constant(Register dest, const Address &const_addr) {
1473     if (NearCpool) {
1474       ldr(dest, const_addr);
1475     } else {
1476       uint64_t offset;
1477       adrp(dest, InternalAddress(const_addr.target()), offset);
1478       ldr(dest, Address(dest, offset));
1479     }
1480   }
1481 
1482   address read_polling_page(Register r, relocInfo::relocType rtype);
1483   void get_polling_page(Register dest, relocInfo::relocType rtype);
1484 
1485   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1486   void update_byte_crc32(Register crc, Register val, Register table);
1487   void update_word_crc32(Register crc, Register v, Register tmp,
1488         Register table0, Register table1, Register table2, Register table3,
1489         bool upper = false);
1490 
1491   address count_positives(Register ary1, Register len, Register result);
1492 
1493   address arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1494                         Register tmp1, Register tmp2, Register tmp3, int elem_size);
1495 
1496 // Ensure that the inline code and the stub use the same registers.
1497 #define ARRAYS_HASHCODE_REGISTERS \
1498   do {                      \
1499     assert(result == r0  && \
1500            ary    == r1  && \
1501            cnt    == r2  && \
1502            vdata0 == v3  && \
1503            vdata1 == v2  && \
1504            vdata2 == v1  && \
1505            vdata3 == v0  && \
1506            vmul0  == v4  && \
1507            vmul1  == v5  && \
1508            vmul2  == v6  && \
1509            vmul3  == v7  && \
1510            vpow   == v12 && \
1511            vpowm  == v13, "registers must match aarch64.ad"); \
1512   } while (0)
1513 
1514   void string_equals(Register a1, Register a2, Register result, Register cnt1);
1515 
1516   void fill_words(Register base, Register cnt, Register value);
1517   address zero_words(Register base, uint64_t cnt);
1518   address zero_words(Register ptr, Register cnt);
1519   void zero_dcache_blocks(Register base, Register cnt);
1520 
1521   static const int zero_words_block_size;
1522 
1523   address byte_array_inflate(Register src, Register dst, Register len,
1524                              FloatRegister vtmp1, FloatRegister vtmp2,
1525                              FloatRegister vtmp3, Register tmp4);
1526 
1527   void char_array_compress(Register src, Register dst, Register len,
1528                            Register res,
1529                            FloatRegister vtmp0, FloatRegister vtmp1,
1530                            FloatRegister vtmp2, FloatRegister vtmp3,
1531                            FloatRegister vtmp4, FloatRegister vtmp5);
1532 
1533   void encode_iso_array(Register src, Register dst,
1534                         Register len, Register res, bool ascii,
1535                         FloatRegister vtmp0, FloatRegister vtmp1,
1536                         FloatRegister vtmp2, FloatRegister vtmp3,
1537                         FloatRegister vtmp4, FloatRegister vtmp5);
1538 
1539   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1540       address pio2, address dsin_coef, address dcos_coef);
1541  private:
1542   // begin trigonometric functions support block
1543   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1544   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1545   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1546   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1547   // end trigonometric functions support block
1548   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1549                        Register src1, Register src2);
1550   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1551     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1552   }
1553   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1554                              Register y, Register y_idx, Register z,
1555                              Register carry, Register product,
1556                              Register idx, Register kdx);
1557   void multiply_128_x_128_loop(Register y, Register z,
1558                                Register carry, Register carry2,
1559                                Register idx, Register jdx,
1560                                Register yz_idx1, Register yz_idx2,
1561                                Register tmp, Register tmp3, Register tmp4,
1562                                Register tmp7, Register product_hi);
1563   void kernel_crc32_using_crypto_pmull(Register crc, Register buf,
1564         Register len, Register tmp0, Register tmp1, Register tmp2,
1565         Register tmp3);
1566   void kernel_crc32_using_crc32(Register crc, Register buf,
1567         Register len, Register tmp0, Register tmp1, Register tmp2,
1568         Register tmp3);
1569   void kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
1570         Register len, Register tmp0, Register tmp1, Register tmp2,
1571         Register tmp3);
1572   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1573         Register len, Register tmp0, Register tmp1, Register tmp2,
1574         Register tmp3);
1575   void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
1576         Register len, Register tmp0, Register tmp1, Register tmp2,
1577         size_t table_offset);
1578 
1579   void ghash_modmul (FloatRegister result,
1580                      FloatRegister result_lo, FloatRegister result_hi, FloatRegister b,
1581                      FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p,
1582                      FloatRegister t1, FloatRegister t2, FloatRegister t3);
1583   void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state);
1584 public:
1585   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1586                        Register tmp0, Register tmp1, Register tmp2, Register tmp3,
1587                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1588   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1589   void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi,
1590                       FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1591                       FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1592   void ghash_multiply_wide(int index,
1593                            FloatRegister result_lo, FloatRegister result_hi,
1594                            FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1595                            FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1596   void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi,
1597                     FloatRegister p, FloatRegister z, FloatRegister t1);
1598   void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi,
1599                     FloatRegister p, FloatRegister z, FloatRegister t1);
1600   void ghash_processBlocks_wide(address p, Register state, Register subkeyH,
1601                                 Register data, Register blocks, int unrolls);
1602 
1603 
1604   void aesenc_loadkeys(Register key, Register keylen);
1605   void aesecb_encrypt(Register from, Register to, Register keylen,
1606                       FloatRegister data = v0, int unrolls = 1);
1607   void aesecb_decrypt(Register from, Register to, Register key, Register keylen);
1608   void aes_round(FloatRegister input, FloatRegister subkey);
1609 
1610   // ChaCha20 functions support block
1611   void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec,
1612           FloatRegister cVec, FloatRegister dVec, FloatRegister scratch,
1613           FloatRegister tbl);
1614   void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec,
1615           FloatRegister dVec, bool colToDiag);
1616 
1617   // Place an ISB after code may have been modified due to a safepoint.
1618   void safepoint_isb();
1619 
1620 private:
1621   // Return the effective address r + (r1 << ext) + offset.
1622   // Uses rscratch2.
1623   Address offsetted_address(Register r, Register r1, Address::extend ext,
1624                             int offset, int size);
1625 
1626 private:
1627   // Returns an address on the stack which is reachable with a ldr/str of size
1628   // Uses rscratch2 if the address is not directly reachable
1629   Address spill_address(int size, int offset, Register tmp=rscratch2);
1630   Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2);
1631 
1632   bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const;
1633 
1634   // Check whether two loads/stores can be merged into ldp/stp.
1635   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1636 
1637   // Merge current load/store with previous load/store into ldp/stp.
1638   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1639 
1640   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1641   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1642 
1643 public:
1644   void spill(Register Rx, bool is64, int offset) {
1645     if (is64) {
1646       str(Rx, spill_address(8, offset));
1647     } else {
1648       strw(Rx, spill_address(4, offset));
1649     }
1650   }
1651   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1652     str(Vx, T, spill_address(1 << (int)T, offset));
1653   }
1654 
1655   void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1656     sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1657   }
1658   void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1659     sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1660   }
1661 
1662   void unspill(Register Rx, bool is64, int offset) {
1663     if (is64) {
1664       ldr(Rx, spill_address(8, offset));
1665     } else {
1666       ldrw(Rx, spill_address(4, offset));
1667     }
1668   }
1669   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1670     ldr(Vx, T, spill_address(1 << (int)T, offset));
1671   }
1672 
1673   void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1674     sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1675   }
1676   void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1677     sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1678   }
1679 
1680   void spill_copy128(int src_offset, int dst_offset,
1681                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1682     if (src_offset < 512 && (src_offset & 7) == 0 &&
1683         dst_offset < 512 && (dst_offset & 7) == 0) {
1684       ldp(tmp1, tmp2, Address(sp, src_offset));
1685       stp(tmp1, tmp2, Address(sp, dst_offset));
1686     } else {
1687       unspill(tmp1, true, src_offset);
1688       spill(tmp1, true, dst_offset);
1689       unspill(tmp1, true, src_offset+8);
1690       spill(tmp1, true, dst_offset+8);
1691     }
1692   }
1693   void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset,
1694                                             int sve_vec_reg_size_in_bytes) {
1695     assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size");
1696     for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) {
1697       spill_copy128(src_offset, dst_offset);
1698       src_offset += 16;
1699       dst_offset += 16;
1700     }
1701   }
1702   void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset,
1703                                                int sve_predicate_reg_size_in_bytes) {
1704     sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset));
1705     sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset));
1706     reinitialize_ptrue();
1707   }
1708   void cache_wb(Address line);
1709   void cache_wbsync(bool is_pre);
1710 
1711   // Code for java.lang.Thread::onSpinWait() intrinsic.
1712   void spin_wait();
1713 
1714   void lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow);
1715   void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow);
1716 
1717 private:
1718   // Check the current thread doesn't need a cross modify fence.
1719   void verify_cross_modify_fence_not_required() PRODUCT_RETURN;
1720 
1721 };
1722 
1723 #ifdef ASSERT
1724 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1725 #endif
1726 
1727 struct tableswitch {
1728   Register _reg;
1729   int _insn_index; jint _first_key; jint _last_key;
1730   Label _after;
1731   Label _branches;
1732 };
1733 
1734 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP