1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 28 29 #include "asm/assembler.inline.hpp" 30 #include "code/aotCodeCache.hpp" 31 #include "code/vmreg.hpp" 32 #include "metaprogramming/enableIf.hpp" 33 #include "oops/compressedOops.hpp" 34 #include "oops/compressedKlass.hpp" 35 #include "runtime/vm_version.hpp" 36 #include "utilities/powerOfTwo.hpp" 37 38 class OopMap; 39 40 // MacroAssembler extends Assembler by frequently used macros. 41 // 42 // Instructions for which a 'better' code sequence exists depending 43 // on arguments should also go in here. 44 45 class MacroAssembler: public Assembler { 46 friend class LIR_Assembler; 47 48 public: 49 using Assembler::mov; 50 using Assembler::movi; 51 52 protected: 53 54 // Support for VM calls 55 // 56 // This is the base routine called by the different versions of call_VM_leaf. The interpreter 57 // may customize this version by overriding it for its purposes (e.g., to save/restore 58 // additional registers when doing a VM call). 59 virtual void call_VM_leaf_base( 60 address entry_point, // the entry point 61 int number_of_arguments, // the number of arguments to pop after the call 62 Label *retaddr = nullptr 63 ); 64 65 virtual void call_VM_leaf_base( 66 address entry_point, // the entry point 67 int number_of_arguments, // the number of arguments to pop after the call 68 Label &retaddr) { 69 call_VM_leaf_base(entry_point, number_of_arguments, &retaddr); 70 } 71 72 // This is the base routine called by the different versions of call_VM. The interpreter 73 // may customize this version by overriding it for its purposes (e.g., to save/restore 74 // additional registers when doing a VM call). 75 // 76 // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base 77 // returns the register which contains the thread upon return. If a thread register has been 78 // specified, the return value will correspond to that register. If no last_java_sp is specified 79 // (noreg) than rsp will be used instead. 80 virtual void call_VM_base( // returns the register containing the thread upon return 81 Register oop_result, // where an oop-result ends up if any; use noreg otherwise 82 Register java_thread, // the thread if computed before ; use noreg otherwise 83 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise 84 address entry_point, // the entry point 85 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call 86 bool check_exceptions // whether to check for pending exceptions after return 87 ); 88 89 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); 90 91 enum KlassDecodeMode { 92 KlassDecodeNone, 93 KlassDecodeZero, 94 KlassDecodeXor, 95 KlassDecodeMovk 96 }; 97 98 // Calculate decoding mode based on given parameters, used for checking then ultimately setting. 99 static KlassDecodeMode klass_decode_mode(address base, int shift, const size_t range); 100 101 private: 102 static KlassDecodeMode _klass_decode_mode; 103 104 // Returns above setting with asserts 105 static KlassDecodeMode klass_decode_mode(); 106 107 public: 108 // Checks the decode mode and returns false if not compatible with preferred decoding mode. 109 static bool check_klass_decode_mode(address base, int shift, const size_t range); 110 111 // Sets the decode mode and returns false if cannot be set. 112 static bool set_klass_decode_mode(address base, int shift, const size_t range); 113 114 public: 115 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 116 117 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. 118 // The implementation is only non-empty for the InterpreterMacroAssembler, 119 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. 120 virtual void check_and_handle_popframe(Register java_thread); 121 virtual void check_and_handle_earlyret(Register java_thread); 122 123 void safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod, Register tmp = rscratch1); 124 void rt_call(address dest, Register tmp = rscratch1); 125 126 // Load Effective Address 127 void lea(Register r, const Address &a) { 128 InstructionMark im(this); 129 a.lea(this, r); 130 } 131 132 // Whether materializing the given address for a LDR/STR requires an 133 // additional lea instruction. 134 static bool legitimize_address_requires_lea(const Address &a, int size) { 135 return a.getMode() == Address::base_plus_offset && 136 !Address::offset_ok_for_immed(a.offset(), exact_log2(size)); 137 } 138 139 /* Sometimes we get misaligned loads and stores, usually from Unsafe 140 accesses, and these can exceed the offset range. */ 141 Address legitimize_address(const Address &a, int size, Register scratch) { 142 if (legitimize_address_requires_lea(a, size)) { 143 block_comment("legitimize_address {"); 144 lea(scratch, a); 145 block_comment("} legitimize_address"); 146 return Address(scratch); 147 } 148 return a; 149 } 150 151 void addmw(Address a, Register incr, Register scratch) { 152 ldrw(scratch, a); 153 addw(scratch, scratch, incr); 154 strw(scratch, a); 155 } 156 157 // Add constant to memory word 158 void addmw(Address a, int imm, Register scratch) { 159 ldrw(scratch, a); 160 if (imm > 0) 161 addw(scratch, scratch, (unsigned)imm); 162 else 163 subw(scratch, scratch, (unsigned)-imm); 164 strw(scratch, a); 165 } 166 167 void bind(Label& L) { 168 Assembler::bind(L); 169 code()->clear_last_insn(); 170 code()->set_last_label(pc()); 171 } 172 173 void membar(Membar_mask_bits order_constraint); 174 175 using Assembler::ldr; 176 using Assembler::str; 177 using Assembler::ldrw; 178 using Assembler::strw; 179 180 void ldr(Register Rx, const Address &adr); 181 void ldrw(Register Rw, const Address &adr); 182 void str(Register Rx, const Address &adr); 183 void strw(Register Rx, const Address &adr); 184 185 // Frame creation and destruction shared between JITs. 186 void build_frame(int framesize); 187 void remove_frame(int framesize); 188 189 virtual void _call_Unimplemented(address call_site) { 190 mov(rscratch2, call_site); 191 } 192 193 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__ 194 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention." 195 // https://reviews.llvm.org/D3311 196 197 #ifdef _WIN64 198 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__) 199 #else 200 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__) 201 #endif 202 203 // aliases defined in AARCH64 spec 204 205 template<class T> 206 inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); } 207 208 inline void cmp(Register Rd, unsigned char imm8) { subs(zr, Rd, imm8); } 209 inline void cmp(Register Rd, unsigned imm) = delete; 210 211 template<class T> 212 inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); } 213 214 inline void cmn(Register Rd, unsigned char imm8) { adds(zr, Rd, imm8); } 215 inline void cmn(Register Rd, unsigned imm) = delete; 216 217 void cset(Register Rd, Assembler::Condition cond) { 218 csinc(Rd, zr, zr, ~cond); 219 } 220 void csetw(Register Rd, Assembler::Condition cond) { 221 csincw(Rd, zr, zr, ~cond); 222 } 223 224 void cneg(Register Rd, Register Rn, Assembler::Condition cond) { 225 csneg(Rd, Rn, Rn, ~cond); 226 } 227 void cnegw(Register Rd, Register Rn, Assembler::Condition cond) { 228 csnegw(Rd, Rn, Rn, ~cond); 229 } 230 231 inline void movw(Register Rd, Register Rn) { 232 if (Rd == sp || Rn == sp) { 233 Assembler::addw(Rd, Rn, 0U); 234 } else { 235 orrw(Rd, zr, Rn); 236 } 237 } 238 inline void mov(Register Rd, Register Rn) { 239 assert(Rd != r31_sp && Rn != r31_sp, "should be"); 240 if (Rd == Rn) { 241 } else if (Rd == sp || Rn == sp) { 242 Assembler::add(Rd, Rn, 0U); 243 } else { 244 orr(Rd, zr, Rn); 245 } 246 } 247 248 inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); } 249 inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); } 250 251 inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); } 252 inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); } 253 254 inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); } 255 inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); } 256 257 inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 258 bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 259 } 260 inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) { 261 bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 262 } 263 264 inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 265 bfmw(Rd, Rn, lsb, (lsb + width - 1)); 266 } 267 inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) { 268 bfm(Rd, Rn, lsb , (lsb + width - 1)); 269 } 270 271 inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 272 sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 273 } 274 inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 275 sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 276 } 277 278 inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 279 sbfmw(Rd, Rn, lsb, (lsb + width - 1)); 280 } 281 inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 282 sbfm(Rd, Rn, lsb , (lsb + width - 1)); 283 } 284 285 inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 286 ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 287 } 288 inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 289 ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 290 } 291 292 inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 293 ubfmw(Rd, Rn, lsb, (lsb + width - 1)); 294 } 295 inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 296 ubfm(Rd, Rn, lsb , (lsb + width - 1)); 297 } 298 299 inline void asrw(Register Rd, Register Rn, unsigned imm) { 300 sbfmw(Rd, Rn, imm, 31); 301 } 302 303 inline void asr(Register Rd, Register Rn, unsigned imm) { 304 sbfm(Rd, Rn, imm, 63); 305 } 306 307 inline void lslw(Register Rd, Register Rn, unsigned imm) { 308 ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm)); 309 } 310 311 inline void lsl(Register Rd, Register Rn, unsigned imm) { 312 ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm)); 313 } 314 315 inline void lsrw(Register Rd, Register Rn, unsigned imm) { 316 ubfmw(Rd, Rn, imm, 31); 317 } 318 319 inline void lsr(Register Rd, Register Rn, unsigned imm) { 320 ubfm(Rd, Rn, imm, 63); 321 } 322 323 inline void rorw(Register Rd, Register Rn, unsigned imm) { 324 extrw(Rd, Rn, Rn, imm); 325 } 326 327 inline void ror(Register Rd, Register Rn, unsigned imm) { 328 extr(Rd, Rn, Rn, imm); 329 } 330 331 inline void rolw(Register Rd, Register Rn, unsigned imm) { 332 extrw(Rd, Rn, Rn, (32 - imm)); 333 } 334 335 inline void rol(Register Rd, Register Rn, unsigned imm) { 336 extr(Rd, Rn, Rn, (64 - imm)); 337 } 338 339 using Assembler::rax1; 340 using Assembler::eor3; 341 342 inline void rax1(Register Rd, Register Rn, Register Rm) { 343 eor(Rd, Rn, Rm, ROR, 63); // Rd = Rn ^ rol(Rm, 1) 344 } 345 346 inline void eor3(Register Rd, Register Rn, Register Rm, Register Rk) { 347 assert(Rd != Rn, "Use tmp register"); 348 eor(Rd, Rm, Rk); 349 eor(Rd, Rd, Rn); 350 } 351 352 inline void sxtbw(Register Rd, Register Rn) { 353 sbfmw(Rd, Rn, 0, 7); 354 } 355 inline void sxthw(Register Rd, Register Rn) { 356 sbfmw(Rd, Rn, 0, 15); 357 } 358 inline void sxtb(Register Rd, Register Rn) { 359 sbfm(Rd, Rn, 0, 7); 360 } 361 inline void sxth(Register Rd, Register Rn) { 362 sbfm(Rd, Rn, 0, 15); 363 } 364 inline void sxtw(Register Rd, Register Rn) { 365 sbfm(Rd, Rn, 0, 31); 366 } 367 368 inline void uxtbw(Register Rd, Register Rn) { 369 ubfmw(Rd, Rn, 0, 7); 370 } 371 inline void uxthw(Register Rd, Register Rn) { 372 ubfmw(Rd, Rn, 0, 15); 373 } 374 inline void uxtb(Register Rd, Register Rn) { 375 ubfm(Rd, Rn, 0, 7); 376 } 377 inline void uxth(Register Rd, Register Rn) { 378 ubfm(Rd, Rn, 0, 15); 379 } 380 inline void uxtw(Register Rd, Register Rn) { 381 ubfm(Rd, Rn, 0, 31); 382 } 383 384 inline void cmnw(Register Rn, Register Rm) { 385 addsw(zr, Rn, Rm); 386 } 387 inline void cmn(Register Rn, Register Rm) { 388 adds(zr, Rn, Rm); 389 } 390 391 inline void cmpw(Register Rn, Register Rm) { 392 subsw(zr, Rn, Rm); 393 } 394 inline void cmp(Register Rn, Register Rm) { 395 subs(zr, Rn, Rm); 396 } 397 398 inline void negw(Register Rd, Register Rn) { 399 subw(Rd, zr, Rn); 400 } 401 402 inline void neg(Register Rd, Register Rn) { 403 sub(Rd, zr, Rn); 404 } 405 406 inline void negsw(Register Rd, Register Rn) { 407 subsw(Rd, zr, Rn); 408 } 409 410 inline void negs(Register Rd, Register Rn) { 411 subs(Rd, zr, Rn); 412 } 413 414 inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 415 addsw(zr, Rn, Rm, kind, shift); 416 } 417 inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 418 adds(zr, Rn, Rm, kind, shift); 419 } 420 421 inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 422 subsw(zr, Rn, Rm, kind, shift); 423 } 424 inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 425 subs(zr, Rn, Rm, kind, shift); 426 } 427 428 inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 429 subw(Rd, zr, Rn, kind, shift); 430 } 431 432 inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 433 sub(Rd, zr, Rn, kind, shift); 434 } 435 436 inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 437 subsw(Rd, zr, Rn, kind, shift); 438 } 439 440 inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 441 subs(Rd, zr, Rn, kind, shift); 442 } 443 444 inline void mnegw(Register Rd, Register Rn, Register Rm) { 445 msubw(Rd, Rn, Rm, zr); 446 } 447 inline void mneg(Register Rd, Register Rn, Register Rm) { 448 msub(Rd, Rn, Rm, zr); 449 } 450 451 inline void mulw(Register Rd, Register Rn, Register Rm) { 452 maddw(Rd, Rn, Rm, zr); 453 } 454 inline void mul(Register Rd, Register Rn, Register Rm) { 455 madd(Rd, Rn, Rm, zr); 456 } 457 458 inline void smnegl(Register Rd, Register Rn, Register Rm) { 459 smsubl(Rd, Rn, Rm, zr); 460 } 461 inline void smull(Register Rd, Register Rn, Register Rm) { 462 smaddl(Rd, Rn, Rm, zr); 463 } 464 465 inline void umnegl(Register Rd, Register Rn, Register Rm) { 466 umsubl(Rd, Rn, Rm, zr); 467 } 468 inline void umull(Register Rd, Register Rn, Register Rm) { 469 umaddl(Rd, Rn, Rm, zr); 470 } 471 472 #define WRAP(INSN) \ 473 void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \ 474 if (VM_Version::supports_a53mac() && Ra != zr) \ 475 nop(); \ 476 Assembler::INSN(Rd, Rn, Rm, Ra); \ 477 } 478 479 WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw) 480 WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl) 481 #undef WRAP 482 483 484 // macro assembly operations needed for aarch64 485 486 public: 487 488 enum FpPushPopMode { 489 PushPopFull, 490 PushPopSVE, 491 PushPopNeon, 492 PushPopFp 493 }; 494 495 // first two private routines for loading 32 bit or 64 bit constants 496 private: 497 498 void mov_immediate64(Register dst, uint64_t imm64); 499 void mov_immediate32(Register dst, uint32_t imm32); 500 501 int push(unsigned int bitset, Register stack); 502 int pop(unsigned int bitset, Register stack); 503 504 int push_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 505 int pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 506 507 int push_p(unsigned int bitset, Register stack); 508 int pop_p(unsigned int bitset, Register stack); 509 510 void mov(Register dst, Address a); 511 512 public: 513 514 void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); } 515 void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); } 516 517 void push_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) push_fp(regs.bits(), stack, mode); } 518 void pop_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) pop_fp(regs.bits(), stack, mode); } 519 520 static RegSet call_clobbered_gp_registers(); 521 522 void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); } 523 void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); } 524 525 // Push and pop everything that might be clobbered by a native 526 // runtime call except rscratch1 and rscratch2. (They are always 527 // scratch, so we don't have to protect them.) Only save the lower 528 // 64 bits of each vector register. Additional registers can be excluded 529 // in a passed RegSet. 530 void push_call_clobbered_registers_except(RegSet exclude); 531 void pop_call_clobbered_registers_except(RegSet exclude); 532 533 void push_call_clobbered_registers() { 534 push_call_clobbered_registers_except(RegSet()); 535 } 536 void pop_call_clobbered_registers() { 537 pop_call_clobbered_registers_except(RegSet()); 538 } 539 540 541 // now mov instructions for loading absolute addresses and 32 or 542 // 64 bit integers 543 544 inline void mov(Register dst, address addr) { mov_immediate64(dst, (uint64_t)addr); } 545 546 template<typename T, ENABLE_IF(std::is_integral<T>::value)> 547 inline void mov(Register dst, T o) { mov_immediate64(dst, (uint64_t)o); } 548 549 inline void movw(Register dst, uint32_t imm32) { mov_immediate32(dst, imm32); } 550 551 void mov(Register dst, RegisterOrConstant src) { 552 if (src.is_register()) 553 mov(dst, src.as_register()); 554 else 555 mov(dst, src.as_constant()); 556 } 557 558 void movptr(Register r, uintptr_t imm64); 559 560 void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64); 561 562 void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { 563 orr(Vd, T, Vn, Vn); 564 } 565 566 void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) { 567 fcvtsh(tmp, src); 568 smov(dst, tmp, H, 0); 569 } 570 571 void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) { 572 mov(tmp, H, 0, src); 573 fcvths(dst, tmp); 574 } 575 576 // Generalized Test Bit And Branch, including a "far" variety which 577 // spans more than 32KiB. 578 void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) { 579 assert(cond == EQ || cond == NE, "must be"); 580 581 if (isfar) 582 cond = ~cond; 583 584 void (Assembler::* branch)(Register Rt, int bitpos, Label &L); 585 if (cond == Assembler::EQ) 586 branch = &Assembler::tbz; 587 else 588 branch = &Assembler::tbnz; 589 590 if (isfar) { 591 Label L; 592 (this->*branch)(Rt, bitpos, L); 593 b(dest); 594 bind(L); 595 } else { 596 (this->*branch)(Rt, bitpos, dest); 597 } 598 } 599 600 // macro instructions for accessing and updating floating point 601 // status register 602 // 603 // FPSR : op1 == 011 604 // CRn == 0100 605 // CRm == 0100 606 // op2 == 001 607 608 inline void get_fpsr(Register reg) 609 { 610 mrs(0b11, 0b0100, 0b0100, 0b001, reg); 611 } 612 613 inline void set_fpsr(Register reg) 614 { 615 msr(0b011, 0b0100, 0b0100, 0b001, reg); 616 } 617 618 inline void clear_fpsr() 619 { 620 msr(0b011, 0b0100, 0b0100, 0b001, zr); 621 } 622 623 // FPCR : op1 == 011 624 // CRn == 0100 625 // CRm == 0100 626 // op2 == 000 627 628 inline void get_fpcr(Register reg) { 629 mrs(0b11, 0b0100, 0b0100, 0b000, reg); 630 } 631 632 inline void set_fpcr(Register reg) { 633 msr(0b011, 0b0100, 0b0100, 0b000, reg); 634 } 635 636 // DCZID_EL0: op1 == 011 637 // CRn == 0000 638 // CRm == 0000 639 // op2 == 111 640 inline void get_dczid_el0(Register reg) 641 { 642 mrs(0b011, 0b0000, 0b0000, 0b111, reg); 643 } 644 645 // CTR_EL0: op1 == 011 646 // CRn == 0000 647 // CRm == 0000 648 // op2 == 001 649 inline void get_ctr_el0(Register reg) 650 { 651 mrs(0b011, 0b0000, 0b0000, 0b001, reg); 652 } 653 654 inline void get_nzcv(Register reg) { 655 mrs(0b011, 0b0100, 0b0010, 0b000, reg); 656 } 657 658 inline void set_nzcv(Register reg) { 659 msr(0b011, 0b0100, 0b0010, 0b000, reg); 660 } 661 662 // idiv variant which deals with MINLONG as dividend and -1 as divisor 663 int corrected_idivl(Register result, Register ra, Register rb, 664 bool want_remainder, Register tmp = rscratch1); 665 int corrected_idivq(Register result, Register ra, Register rb, 666 bool want_remainder, Register tmp = rscratch1); 667 668 // Support for null-checks 669 // 670 // Generates code that causes a null OS exception if the content of reg is null. 671 // If the accessed location is M[reg + offset] and the offset is known, provide the 672 // offset. No explicit code generation is needed if the offset is within a certain 673 // range (0 <= offset <= page_size). 674 675 virtual void null_check(Register reg, int offset = -1); 676 static bool needs_explicit_null_check(intptr_t offset); 677 static bool uses_implicit_null_check(void* address); 678 679 static address target_addr_for_insn(address insn_addr, unsigned insn); 680 static address target_addr_for_insn_or_null(address insn_addr, unsigned insn); 681 static address target_addr_for_insn(address insn_addr) { 682 unsigned insn = *(unsigned*)insn_addr; 683 return target_addr_for_insn(insn_addr, insn); 684 } 685 static address target_addr_for_insn_or_null(address insn_addr) { 686 unsigned insn = *(unsigned*)insn_addr; 687 return target_addr_for_insn_or_null(insn_addr, insn); 688 } 689 690 // Required platform-specific helpers for Label::patch_instructions. 691 // They _shadow_ the declarations in AbstractAssembler, which are undefined. 692 static int pd_patch_instruction_size(address branch, address target); 693 static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) { 694 pd_patch_instruction_size(branch, target); 695 } 696 static address pd_call_destination(address branch) { 697 return target_addr_for_insn(branch); 698 } 699 #ifndef PRODUCT 700 static void pd_print_patched_instruction(address branch); 701 #endif 702 703 static int patch_oop(address insn_addr, address o); 704 static int patch_narrow_klass(address insn_addr, narrowKlass n); 705 706 // Return whether code is emitted to a scratch blob. 707 virtual bool in_scratch_emit_size() { 708 return false; 709 } 710 address emit_trampoline_stub(int insts_call_instruction_offset, address target); 711 static int max_trampoline_stub_size(); 712 void emit_static_call_stub(); 713 static int static_call_stub_size(); 714 715 // The following 4 methods return the offset of the appropriate move instruction 716 717 // Support for fast byte/short loading with zero extension (depending on particular CPU) 718 int load_unsigned_byte(Register dst, Address src); 719 int load_unsigned_short(Register dst, Address src); 720 721 // Support for fast byte/short loading with sign extension (depending on particular CPU) 722 int load_signed_byte(Register dst, Address src); 723 int load_signed_short(Register dst, Address src); 724 725 int load_signed_byte32(Register dst, Address src); 726 int load_signed_short32(Register dst, Address src); 727 728 // Support for sign-extension (hi:lo = extend_sign(lo)) 729 void extend_sign(Register hi, Register lo); 730 731 // Load and store values by size and signed-ness 732 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed); 733 void store_sized_value(Address dst, Register src, size_t size_in_bytes); 734 735 // Support for inc/dec with optimal instruction selection depending on value 736 737 // x86_64 aliases an unqualified register/address increment and 738 // decrement to call incrementq and decrementq but also supports 739 // explicitly sized calls to incrementq/decrementq or 740 // incrementl/decrementl 741 742 // for aarch64 the proper convention would be to use 743 // increment/decrement for 64 bit operations and 744 // incrementw/decrementw for 32 bit operations. so when porting 745 // x86_64 code we can leave calls to increment/decrement as is, 746 // replace incrementq/decrementq with increment/decrement and 747 // replace incrementl/decrementl with incrementw/decrementw. 748 749 // n.b. increment/decrement calls with an Address destination will 750 // need to use a scratch register to load the value to be 751 // incremented. increment/decrement calls which add or subtract a 752 // constant value greater than 2^12 will need to use a 2nd scratch 753 // register to hold the constant. so, a register increment/decrement 754 // may trash rscratch2 and an address increment/decrement trash 755 // rscratch and rscratch2 756 757 void decrementw(Address dst, int value = 1); 758 void decrementw(Register reg, int value = 1); 759 760 void decrement(Register reg, int value = 1); 761 void decrement(Address dst, int value = 1); 762 763 void incrementw(Address dst, int value = 1); 764 void incrementw(Register reg, int value = 1); 765 766 void increment(Register reg, int value = 1); 767 void increment(Address dst, int value = 1); 768 769 770 // Alignment 771 void align(int modulus); 772 void align(int modulus, int target); 773 774 // nop 775 void post_call_nop(); 776 777 // Stack frame creation/removal 778 void enter(bool strip_ret_addr = false); 779 void leave(); 780 781 // ROP Protection 782 void protect_return_address(); 783 void protect_return_address(Register return_reg); 784 void authenticate_return_address(); 785 void authenticate_return_address(Register return_reg); 786 void strip_return_address(); 787 void check_return_address(Register return_reg=lr) PRODUCT_RETURN; 788 789 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) 790 // The pointer will be loaded into the thread register. 791 void get_thread(Register thread); 792 793 // support for argument shuffling 794 void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 795 void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 796 void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 797 void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 798 void object_move( 799 OopMap* map, 800 int oop_handle_offset, 801 int framesize_in_slots, 802 VMRegPair src, 803 VMRegPair dst, 804 bool is_receiver, 805 int* receiver_offset); 806 807 808 // Support for VM calls 809 // 810 // It is imperative that all calls into the VM are handled via the call_VM macros. 811 // They make sure that the stack linkage is setup correctly. call_VM's correspond 812 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. 813 814 815 void call_VM(Register oop_result, 816 address entry_point, 817 bool check_exceptions = true); 818 void call_VM(Register oop_result, 819 address entry_point, 820 Register arg_1, 821 bool check_exceptions = true); 822 void call_VM(Register oop_result, 823 address entry_point, 824 Register arg_1, Register arg_2, 825 bool check_exceptions = true); 826 void call_VM(Register oop_result, 827 address entry_point, 828 Register arg_1, Register arg_2, Register arg_3, 829 bool check_exceptions = true); 830 831 // Overloadings with last_Java_sp 832 void call_VM(Register oop_result, 833 Register last_java_sp, 834 address entry_point, 835 int number_of_arguments = 0, 836 bool check_exceptions = true); 837 void call_VM(Register oop_result, 838 Register last_java_sp, 839 address entry_point, 840 Register arg_1, bool 841 check_exceptions = true); 842 void call_VM(Register oop_result, 843 Register last_java_sp, 844 address entry_point, 845 Register arg_1, Register arg_2, 846 bool check_exceptions = true); 847 void call_VM(Register oop_result, 848 Register last_java_sp, 849 address entry_point, 850 Register arg_1, Register arg_2, Register arg_3, 851 bool check_exceptions = true); 852 853 void get_vm_result_oop(Register oop_result, Register thread); 854 void get_vm_result_metadata(Register metadata_result, Register thread); 855 856 // These always tightly bind to MacroAssembler::call_VM_base 857 // bypassing the virtual implementation 858 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); 859 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); 860 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 861 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); 862 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); 863 864 void call_VM_leaf(address entry_point, 865 int number_of_arguments = 0); 866 void call_VM_leaf(address entry_point, 867 Register arg_1); 868 void call_VM_leaf(address entry_point, 869 Register arg_1, Register arg_2); 870 void call_VM_leaf(address entry_point, 871 Register arg_1, Register arg_2, Register arg_3); 872 873 // These always tightly bind to MacroAssembler::call_VM_leaf_base 874 // bypassing the virtual implementation 875 void super_call_VM_leaf(address entry_point); 876 void super_call_VM_leaf(address entry_point, Register arg_1); 877 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 878 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 879 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); 880 881 // last Java Frame (fills frame anchor) 882 void set_last_Java_frame(Register last_java_sp, 883 Register last_java_fp, 884 address last_java_pc, 885 Register scratch); 886 887 void set_last_Java_frame(Register last_java_sp, 888 Register last_java_fp, 889 Label &last_java_pc, 890 Register scratch); 891 892 void set_last_Java_frame(Register last_java_sp, 893 Register last_java_fp, 894 Register last_java_pc, 895 Register scratch); 896 897 void reset_last_Java_frame(Register thread); 898 899 // thread in the default location (rthread) 900 void reset_last_Java_frame(bool clear_fp); 901 902 // Stores 903 void store_check(Register obj); // store check for obj - register is destroyed afterwards 904 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) 905 906 void resolve_jobject(Register value, Register tmp1, Register tmp2); 907 void resolve_global_jobject(Register value, Register tmp1, Register tmp2); 908 909 // C 'boolean' to Java boolean: x == 0 ? 0 : 1 910 void c2bool(Register x); 911 912 void load_method_holder_cld(Register rresult, Register rmethod); 913 void load_method_holder(Register holder, Register method); 914 915 // oop manipulations 916 void load_narrow_klass_compact(Register dst, Register src); 917 void load_klass(Register dst, Register src); 918 void store_klass(Register dst, Register src); 919 void cmp_klass(Register obj, Register klass, Register tmp); 920 void cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2); 921 922 void resolve_weak_handle(Register result, Register tmp1, Register tmp2); 923 void resolve_oop_handle(Register result, Register tmp1, Register tmp2); 924 void load_mirror(Register dst, Register method, Register tmp1, Register tmp2); 925 926 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 927 Register tmp1, Register tmp2); 928 929 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 930 Register tmp1, Register tmp2, Register tmp3); 931 932 void load_heap_oop(Register dst, Address src, Register tmp1, 933 Register tmp2, DecoratorSet decorators = 0); 934 935 void load_heap_oop_not_null(Register dst, Address src, Register tmp1, 936 Register tmp2, DecoratorSet decorators = 0); 937 void store_heap_oop(Address dst, Register val, Register tmp1, 938 Register tmp2, Register tmp3, DecoratorSet decorators = 0); 939 940 // currently unimplemented 941 // Used for storing null. All other oop constants should be 942 // stored using routines that take a jobject. 943 void store_heap_oop_null(Address dst); 944 945 void store_klass_gap(Register dst, Register src); 946 947 // This dummy is to prevent a call to store_heap_oop from 948 // converting a zero (like null) into a Register by giving 949 // the compiler two choices it can't resolve 950 951 void store_heap_oop(Address dst, void* dummy); 952 953 void encode_heap_oop(Register d, Register s); 954 void encode_heap_oop(Register r) { encode_heap_oop(r, r); } 955 void decode_heap_oop(Register d, Register s); 956 void decode_heap_oop(Register r) { decode_heap_oop(r, r); } 957 void encode_heap_oop_not_null(Register r); 958 void decode_heap_oop_not_null(Register r); 959 void encode_heap_oop_not_null(Register dst, Register src); 960 void decode_heap_oop_not_null(Register dst, Register src); 961 962 void set_narrow_oop(Register dst, jobject obj); 963 964 void decode_klass_not_null_for_aot(Register dst, Register src); 965 void encode_klass_not_null_for_aot(Register dst, Register src); 966 void encode_klass_not_null(Register r); 967 void decode_klass_not_null(Register r); 968 void encode_klass_not_null(Register dst, Register src); 969 void decode_klass_not_null(Register dst, Register src); 970 971 void set_narrow_klass(Register dst, Klass* k); 972 973 // if heap base register is used - reinit it with the correct value 974 void reinit_heapbase(); 975 976 DEBUG_ONLY(void verify_heapbase(const char* msg);) 977 978 void push_CPU_state(bool save_vectors = false, bool use_sve = false, 979 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 980 void pop_CPU_state(bool restore_vectors = false, bool use_sve = false, 981 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 982 983 void push_cont_fastpath(Register java_thread = rthread); 984 void pop_cont_fastpath(Register java_thread = rthread); 985 986 void inc_held_monitor_count(Register tmp); 987 void dec_held_monitor_count(Register tmp); 988 989 // Round up to a power of two 990 void round_to(Register reg, int modulus); 991 992 // java.lang.Math::round intrinsics 993 void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp); 994 void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp); 995 996 // allocation 997 void tlab_allocate( 998 Register obj, // result: pointer to object after successful allocation 999 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 1000 int con_size_in_bytes, // object size in bytes if known at compile time 1001 Register t1, // temp register 1002 Register t2, // temp register 1003 Label& slow_case // continuation point if fast allocation fails 1004 ); 1005 void verify_tlab(); 1006 1007 // interface method calling 1008 void lookup_interface_method(Register recv_klass, 1009 Register intf_klass, 1010 RegisterOrConstant itable_index, 1011 Register method_result, 1012 Register scan_temp, 1013 Label& no_such_interface, 1014 bool return_method = true); 1015 1016 void lookup_interface_method_stub(Register recv_klass, 1017 Register holder_klass, 1018 Register resolved_klass, 1019 Register method_result, 1020 Register temp_reg, 1021 Register temp_reg2, 1022 int itable_index, 1023 Label& L_no_such_interface); 1024 1025 // virtual method calling 1026 // n.b. x86 allows RegisterOrConstant for vtable_index 1027 void lookup_virtual_method(Register recv_klass, 1028 RegisterOrConstant vtable_index, 1029 Register method_result); 1030 1031 // Test sub_klass against super_klass, with fast and slow paths. 1032 1033 // The fast path produces a tri-state answer: yes / no / maybe-slow. 1034 // One of the three labels can be null, meaning take the fall-through. 1035 // If super_check_offset is -1, the value is loaded up from super_klass. 1036 // No registers are killed, except temp_reg. 1037 void check_klass_subtype_fast_path(Register sub_klass, 1038 Register super_klass, 1039 Register temp_reg, 1040 Label* L_success, 1041 Label* L_failure, 1042 Label* L_slow_path, 1043 Register super_check_offset = noreg); 1044 1045 // The rest of the type check; must be wired to a corresponding fast path. 1046 // It does not repeat the fast path logic, so don't use it standalone. 1047 // The temp_reg and temp2_reg can be noreg, if no temps are available. 1048 // Updates the sub's secondary super cache as necessary. 1049 // If set_cond_codes, condition codes will be Z on success, NZ on failure. 1050 void check_klass_subtype_slow_path(Register sub_klass, 1051 Register super_klass, 1052 Register temp_reg, 1053 Register temp2_reg, 1054 Label* L_success, 1055 Label* L_failure, 1056 bool set_cond_codes = false); 1057 1058 void check_klass_subtype_slow_path_linear(Register sub_klass, 1059 Register super_klass, 1060 Register temp_reg, 1061 Register temp2_reg, 1062 Label* L_success, 1063 Label* L_failure, 1064 bool set_cond_codes = false); 1065 1066 void check_klass_subtype_slow_path_table(Register sub_klass, 1067 Register super_klass, 1068 Register temp_reg, 1069 Register temp2_reg, 1070 Register temp3_reg, 1071 Register result_reg, 1072 FloatRegister vtemp_reg, 1073 Label* L_success, 1074 Label* L_failure, 1075 bool set_cond_codes = false); 1076 1077 // If r is valid, return r. 1078 // If r is invalid, remove a register r2 from available_regs, add r2 1079 // to regs_to_push, then return r2. 1080 Register allocate_if_noreg(const Register r, 1081 RegSetIterator<Register> &available_regs, 1082 RegSet ®s_to_push); 1083 1084 // Secondary subtype checking 1085 void lookup_secondary_supers_table_var(Register sub_klass, 1086 Register r_super_klass, 1087 Register temp1, 1088 Register temp2, 1089 Register temp3, 1090 FloatRegister vtemp, 1091 Register result, 1092 Label *L_success); 1093 1094 1095 // As above, but with a constant super_klass. 1096 // The result is in Register result, not the condition codes. 1097 bool lookup_secondary_supers_table_const(Register r_sub_klass, 1098 Register r_super_klass, 1099 Register temp1, 1100 Register temp2, 1101 Register temp3, 1102 FloatRegister vtemp, 1103 Register result, 1104 u1 super_klass_slot, 1105 bool stub_is_near = false); 1106 1107 void verify_secondary_supers_table(Register r_sub_klass, 1108 Register r_super_klass, 1109 Register temp1, 1110 Register temp2, 1111 Register result); 1112 1113 void lookup_secondary_supers_table_slow_path(Register r_super_klass, 1114 Register r_array_base, 1115 Register r_array_index, 1116 Register r_bitmap, 1117 Register temp1, 1118 Register result, 1119 bool is_stub = true); 1120 1121 // Simplified, combined version, good for typical uses. 1122 // Falls through on failure. 1123 void check_klass_subtype(Register sub_klass, 1124 Register super_klass, 1125 Register temp_reg, 1126 Label& L_success); 1127 1128 void clinit_barrier(Register klass, 1129 Register thread, 1130 Label* L_fast_path = nullptr, 1131 Label* L_slow_path = nullptr); 1132 1133 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); 1134 1135 void verify_sve_vector_length(Register tmp = rscratch1); 1136 void reinitialize_ptrue() { 1137 if (UseSVE > 0) { 1138 sve_ptrue(ptrue, B); 1139 } 1140 } 1141 void verify_ptrue(); 1142 1143 // Debugging 1144 1145 // only if +VerifyOops 1146 void _verify_oop(Register reg, const char* s, const char* file, int line); 1147 void _verify_oop_addr(Address addr, const char * s, const char* file, int line); 1148 1149 void _verify_oop_checked(Register reg, const char* s, const char* file, int line) { 1150 if (VerifyOops) { 1151 _verify_oop(reg, s, file, line); 1152 } 1153 } 1154 void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) { 1155 if (VerifyOops) { 1156 _verify_oop_addr(reg, s, file, line); 1157 } 1158 } 1159 1160 // TODO: verify method and klass metadata (compare against vptr?) 1161 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 1162 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} 1163 1164 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__) 1165 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__) 1166 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__) 1167 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 1168 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 1169 1170 // Restore cpu control state after JNI call 1171 void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2); 1172 1173 // prints msg, dumps registers and stops execution 1174 void stop(const char* msg); 1175 1176 static void debug64(char* msg, int64_t pc, int64_t regs[]); 1177 1178 void untested() { stop("untested"); } 1179 1180 void unimplemented(const char* what = ""); 1181 1182 void should_not_reach_here() { stop("should not reach here"); } 1183 1184 void _assert_asm(Condition cc, const char* msg); 1185 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg) 1186 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg)) 1187 1188 // Stack overflow checking 1189 void bang_stack_with_offset(int offset) { 1190 // stack grows down, caller passes positive offset 1191 assert(offset > 0, "must bang with negative offset"); 1192 sub(rscratch2, sp, offset); 1193 str(zr, Address(rscratch2)); 1194 } 1195 1196 // Writes to stack successive pages until offset reached to check for 1197 // stack overflow + shadow pages. Also, clobbers tmp 1198 void bang_stack_size(Register size, Register tmp); 1199 1200 // Check for reserved stack access in method being exited (for JIT) 1201 void reserved_stack_check(); 1202 1203 // Arithmetics 1204 1205 // Clobber: rscratch1, rscratch2 1206 void addptr(const Address &dst, int32_t src); 1207 1208 // Clobber: rscratch1 1209 void cmpptr(Register src1, Address src2); 1210 1211 void cmpoop(Register obj1, Register obj2); 1212 1213 // Various forms of CAS 1214 1215 void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 1216 Label &succeed, Label *fail); 1217 void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 1218 Label &succeed, Label *fail); 1219 1220 void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 1221 Label &succeed, Label *fail); 1222 1223 void atomic_add(Register prev, RegisterOrConstant incr, Register addr); 1224 void atomic_addw(Register prev, RegisterOrConstant incr, Register addr); 1225 void atomic_addal(Register prev, RegisterOrConstant incr, Register addr); 1226 void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr); 1227 1228 void atomic_xchg(Register prev, Register newv, Register addr); 1229 void atomic_xchgw(Register prev, Register newv, Register addr); 1230 void atomic_xchgl(Register prev, Register newv, Register addr); 1231 void atomic_xchglw(Register prev, Register newv, Register addr); 1232 void atomic_xchgal(Register prev, Register newv, Register addr); 1233 void atomic_xchgalw(Register prev, Register newv, Register addr); 1234 1235 void orptr(Address adr, RegisterOrConstant src) { 1236 ldr(rscratch1, adr); 1237 if (src.is_register()) 1238 orr(rscratch1, rscratch1, src.as_register()); 1239 else 1240 orr(rscratch1, rscratch1, src.as_constant()); 1241 str(rscratch1, adr); 1242 } 1243 1244 // A generic CAS; success or failure is in the EQ flag. 1245 // Clobbers rscratch1 1246 void cmpxchg(Register addr, Register expected, Register new_val, 1247 enum operand_size size, 1248 bool acquire, bool release, bool weak, 1249 Register result); 1250 1251 #ifdef ASSERT 1252 // Template short-hand support to clean-up after a failed call to trampoline 1253 // call generation (see trampoline_call() below), when a set of Labels must 1254 // be reset (before returning). 1255 template<typename Label, typename... More> 1256 void reset_labels(Label &lbl, More&... more) { 1257 lbl.reset(); reset_labels(more...); 1258 } 1259 template<typename Label> 1260 void reset_labels(Label &lbl) { 1261 lbl.reset(); 1262 } 1263 #endif 1264 1265 private: 1266 void compare_eq(Register rn, Register rm, enum operand_size size); 1267 1268 public: 1269 // AArch64 OpenJDK uses four different types of calls: 1270 // - direct call: bl pc_relative_offset 1271 // This is the shortest and the fastest, but the offset has the range: 1272 // +/-128MB for the release build, +/-2MB for the debug build. 1273 // 1274 // - far call: adrp reg, pc_relative_offset; add; bl reg 1275 // This is longer than a direct call. The offset has 1276 // the range +/-4GB. As the code cache size is limited to 4GB, 1277 // far calls can reach anywhere in the code cache. If a jump is 1278 // needed rather than a call, a far jump 'b reg' can be used instead. 1279 // All instructions are embedded at a call site. 1280 // 1281 // - trampoline call: 1282 // This is only available in C1/C2-generated code (nmethod). It is a combination 1283 // of a direct call, which is used if the destination of a call is in range, 1284 // and a register-indirect call. It has the advantages of reaching anywhere in 1285 // the AArch64 address space and being patchable at runtime when the generated 1286 // code is being executed by other threads. 1287 // 1288 // [Main code section] 1289 // bl trampoline 1290 // [Stub code section] 1291 // trampoline: 1292 // ldr reg, pc + 8 1293 // br reg 1294 // <64-bit destination address> 1295 // 1296 // If the destination is in range when the generated code is moved to the code 1297 // cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline 1298 // is not used. 1299 // The optimization does not remove the trampoline from the stub section. 1300 // This is necessary because the trampoline may well be redirected later when 1301 // code is patched, and the new destination may not be reachable by a simple BR 1302 // instruction. 1303 // 1304 // - indirect call: move reg, address; blr reg 1305 // This too can reach anywhere in the address space, but it cannot be 1306 // patched while code is running, so it must only be modified at a safepoint. 1307 // This form of call is most suitable for targets at fixed addresses, which 1308 // will never be patched. 1309 // 1310 // The patching we do conforms to the "Concurrent modification and 1311 // execution of instructions" section of the Arm Architectural 1312 // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC, 1313 // or SVC instructions to be modified while another thread is 1314 // executing them. 1315 // 1316 // To patch a trampoline call when the BL can't reach, we first modify 1317 // the 64-bit destination address in the trampoline, then modify the 1318 // BL to point to the trampoline, then flush the instruction cache to 1319 // broadcast the change to all executing threads. See 1320 // NativeCall::set_destination_mt_safe for the details. 1321 // 1322 // There is a benign race in that the other thread might observe the 1323 // modified BL before it observes the modified 64-bit destination 1324 // address. That does not matter because the destination method has been 1325 // invalidated, so there will be a trap at its start. 1326 // For this to work, the destination address in the trampoline is 1327 // always updated, even if we're not using the trampoline. 1328 1329 // Emit a direct call if the entry address will always be in range, 1330 // otherwise a trampoline call. 1331 // Supported entry.rspec(): 1332 // - relocInfo::runtime_call_type 1333 // - relocInfo::opt_virtual_call_type 1334 // - relocInfo::static_call_type 1335 // - relocInfo::virtual_call_type 1336 // 1337 // Return: the call PC or null if CodeCache is full. 1338 // Clobbers: rscratch1 1339 address trampoline_call(Address entry); 1340 1341 static bool far_branches() { 1342 return ReservedCodeCacheSize > branch_range; 1343 } 1344 1345 // Check if branches to the non nmethod section require a far jump 1346 static bool codestub_branch_needs_far_jump() { 1347 if (AOTCodeCache::is_on_for_dump()) { 1348 // To calculate far_codestub_branch_size correctly. 1349 return true; 1350 } 1351 return CodeCache::max_distance_to_non_nmethod() > branch_range; 1352 } 1353 1354 // Emit a direct call/jump if the entry address will always be in range, 1355 // otherwise a far call/jump. 1356 // The address must be inside the code cache. 1357 // Supported entry.rspec(): 1358 // - relocInfo::external_word_type 1359 // - relocInfo::runtime_call_type 1360 // - relocInfo::none 1361 // In the case of a far call/jump, the entry address is put in the tmp register. 1362 // The tmp register is invalidated. 1363 // 1364 // Far_jump returns the amount of the emitted code. 1365 void far_call(Address entry, Register tmp = rscratch1); 1366 int far_jump(Address entry, Register tmp = rscratch1); 1367 1368 static int far_codestub_branch_size() { 1369 if (codestub_branch_needs_far_jump()) { 1370 return 3 * 4; // adrp, add, br 1371 } else { 1372 return 4; 1373 } 1374 } 1375 1376 // Emit the CompiledIC call idiom 1377 address ic_call(address entry, jint method_index = 0); 1378 static int ic_check_size(); 1379 int ic_check(int end_alignment); 1380 1381 public: 1382 1383 // Data 1384 1385 void mov_metadata(Register dst, Metadata* obj); 1386 Address allocate_metadata_address(Metadata* obj); 1387 Address constant_oop_address(jobject obj); 1388 1389 void movoop(Register dst, jobject obj); 1390 1391 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1392 void kernel_crc32(Register crc, Register buf, Register len, 1393 Register table0, Register table1, Register table2, Register table3, 1394 Register tmp, Register tmp2, Register tmp3); 1395 // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic. 1396 void kernel_crc32c(Register crc, Register buf, Register len, 1397 Register table0, Register table1, Register table2, Register table3, 1398 Register tmp, Register tmp2, Register tmp3); 1399 1400 // Stack push and pop individual 64 bit registers 1401 void push(Register src); 1402 void pop(Register dst); 1403 1404 void repne_scan(Register addr, Register value, Register count, 1405 Register scratch); 1406 void repne_scanw(Register addr, Register value, Register count, 1407 Register scratch); 1408 1409 typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm); 1410 typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift); 1411 1412 // If a constant does not fit in an immediate field, generate some 1413 // number of MOV instructions and then perform the operation 1414 void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 1415 add_sub_imm_insn insn1, 1416 add_sub_reg_insn insn2, bool is32); 1417 // Separate vsn which sets the flags 1418 void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 1419 add_sub_imm_insn insn1, 1420 add_sub_reg_insn insn2, bool is32); 1421 1422 #define WRAP(INSN, is32) \ 1423 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1424 wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1425 } \ 1426 \ 1427 void INSN(Register Rd, Register Rn, Register Rm, \ 1428 enum shift_kind kind, unsigned shift = 0) { \ 1429 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1430 } \ 1431 \ 1432 void INSN(Register Rd, Register Rn, Register Rm) { \ 1433 Assembler::INSN(Rd, Rn, Rm); \ 1434 } \ 1435 \ 1436 void INSN(Register Rd, Register Rn, Register Rm, \ 1437 ext::operation option, int amount = 0) { \ 1438 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1439 } 1440 1441 WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true) 1442 1443 #undef WRAP 1444 #define WRAP(INSN, is32) \ 1445 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1446 wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1447 } \ 1448 \ 1449 void INSN(Register Rd, Register Rn, Register Rm, \ 1450 enum shift_kind kind, unsigned shift = 0) { \ 1451 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1452 } \ 1453 \ 1454 void INSN(Register Rd, Register Rn, Register Rm) { \ 1455 Assembler::INSN(Rd, Rn, Rm); \ 1456 } \ 1457 \ 1458 void INSN(Register Rd, Register Rn, Register Rm, \ 1459 ext::operation option, int amount = 0) { \ 1460 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1461 } 1462 1463 WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true) 1464 1465 void add(Register Rd, Register Rn, RegisterOrConstant increment); 1466 void addw(Register Rd, Register Rn, RegisterOrConstant increment); 1467 void sub(Register Rd, Register Rn, RegisterOrConstant decrement); 1468 void subw(Register Rd, Register Rn, RegisterOrConstant decrement); 1469 1470 void adrp(Register reg1, const Address &dest, uint64_t &byte_offset); 1471 1472 void tableswitch(Register index, jint lowbound, jint highbound, 1473 Label &jumptable, Label &jumptable_end, int stride = 1) { 1474 adr(rscratch1, jumptable); 1475 subsw(rscratch2, index, lowbound); 1476 subsw(zr, rscratch2, highbound - lowbound); 1477 br(Assembler::HS, jumptable_end); 1478 add(rscratch1, rscratch1, rscratch2, 1479 ext::sxtw, exact_log2(stride * Assembler::instruction_size)); 1480 br(rscratch1); 1481 } 1482 1483 // Form an address from base + offset in Rd. Rd may or may not 1484 // actually be used: you must use the Address that is returned. It 1485 // is up to you to ensure that the shift provided matches the size 1486 // of your data. 1487 Address form_address(Register Rd, Register base, int64_t byte_offset, int shift); 1488 1489 // Return true iff an address is within the 48-bit AArch64 address 1490 // space. 1491 bool is_valid_AArch64_address(address a) { 1492 return ((uint64_t)a >> 48) == 0; 1493 } 1494 1495 // Load the base of the cardtable byte map into reg. 1496 void load_byte_map_base(Register reg); 1497 1498 // Prolog generator routines to support switch between x86 code and 1499 // generated ARM code 1500 1501 // routine to generate an x86 prolog for a stub function which 1502 // bootstraps into the generated ARM code which directly follows the 1503 // stub 1504 // 1505 1506 public: 1507 1508 address read_polling_page(Register r, relocInfo::relocType rtype); 1509 void get_polling_page(Register dest, relocInfo::relocType rtype); 1510 1511 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1512 void update_byte_crc32(Register crc, Register val, Register table); 1513 void update_word_crc32(Register crc, Register v, Register tmp, 1514 Register table0, Register table1, Register table2, Register table3, 1515 bool upper = false); 1516 1517 address count_positives(Register ary1, Register len, Register result); 1518 1519 address arrays_equals(Register a1, Register a2, Register result, Register cnt1, 1520 Register tmp1, Register tmp2, Register tmp3, int elem_size); 1521 1522 // Ensure that the inline code and the stub use the same registers. 1523 #define ARRAYS_HASHCODE_REGISTERS \ 1524 do { \ 1525 assert(result == r0 && \ 1526 ary == r1 && \ 1527 cnt == r2 && \ 1528 vdata0 == v3 && \ 1529 vdata1 == v2 && \ 1530 vdata2 == v1 && \ 1531 vdata3 == v0 && \ 1532 vmul0 == v4 && \ 1533 vmul1 == v5 && \ 1534 vmul2 == v6 && \ 1535 vmul3 == v7 && \ 1536 vpow == v12 && \ 1537 vpowm == v13, "registers must match aarch64.ad"); \ 1538 } while (0) 1539 1540 void string_equals(Register a1, Register a2, Register result, Register cnt1); 1541 1542 void fill_words(Register base, Register cnt, Register value); 1543 address zero_words(Register base, uint64_t cnt); 1544 address zero_words(Register ptr, Register cnt); 1545 void zero_dcache_blocks(Register base, Register cnt); 1546 1547 static const int zero_words_block_size; 1548 1549 address byte_array_inflate(Register src, Register dst, Register len, 1550 FloatRegister vtmp1, FloatRegister vtmp2, 1551 FloatRegister vtmp3, Register tmp4); 1552 1553 void char_array_compress(Register src, Register dst, Register len, 1554 Register res, 1555 FloatRegister vtmp0, FloatRegister vtmp1, 1556 FloatRegister vtmp2, FloatRegister vtmp3, 1557 FloatRegister vtmp4, FloatRegister vtmp5); 1558 1559 void encode_iso_array(Register src, Register dst, 1560 Register len, Register res, bool ascii, 1561 FloatRegister vtmp0, FloatRegister vtmp1, 1562 FloatRegister vtmp2, FloatRegister vtmp3, 1563 FloatRegister vtmp4, FloatRegister vtmp5); 1564 1565 void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi, 1566 address pio2, address dsin_coef, address dcos_coef); 1567 private: 1568 // begin trigonometric functions support block 1569 void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2); 1570 void generate__kernel_rem_pio2(address two_over_pi, address pio2); 1571 void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef); 1572 void generate_kernel_cos(FloatRegister x, address dcos_coef); 1573 // end trigonometric functions support block 1574 void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 1575 Register src1, Register src2); 1576 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 1577 add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2); 1578 } 1579 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 1580 Register y, Register y_idx, Register z, 1581 Register carry, Register product, 1582 Register idx, Register kdx); 1583 void multiply_128_x_128_loop(Register y, Register z, 1584 Register carry, Register carry2, 1585 Register idx, Register jdx, 1586 Register yz_idx1, Register yz_idx2, 1587 Register tmp, Register tmp3, Register tmp4, 1588 Register tmp7, Register product_hi); 1589 void kernel_crc32_using_crypto_pmull(Register crc, Register buf, 1590 Register len, Register tmp0, Register tmp1, Register tmp2, 1591 Register tmp3); 1592 void kernel_crc32_using_crc32(Register crc, Register buf, 1593 Register len, Register tmp0, Register tmp1, Register tmp2, 1594 Register tmp3); 1595 void kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 1596 Register len, Register tmp0, Register tmp1, Register tmp2, 1597 Register tmp3); 1598 void kernel_crc32c_using_crc32c(Register crc, Register buf, 1599 Register len, Register tmp0, Register tmp1, Register tmp2, 1600 Register tmp3); 1601 void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 1602 Register len, Register tmp0, Register tmp1, Register tmp2, 1603 size_t table_offset); 1604 1605 void ghash_modmul (FloatRegister result, 1606 FloatRegister result_lo, FloatRegister result_hi, FloatRegister b, 1607 FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p, 1608 FloatRegister t1, FloatRegister t2, FloatRegister t3); 1609 void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state); 1610 public: 1611 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, 1612 Register tmp0, Register tmp1, Register tmp2, Register tmp3, 1613 Register tmp4, Register tmp5, Register tmp6, Register tmp7); 1614 void mul_add(Register out, Register in, Register offs, Register len, Register k); 1615 void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi, 1616 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1617 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1618 void ghash_multiply_wide(int index, 1619 FloatRegister result_lo, FloatRegister result_hi, 1620 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1621 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1622 void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi, 1623 FloatRegister p, FloatRegister z, FloatRegister t1); 1624 void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi, 1625 FloatRegister p, FloatRegister z, FloatRegister t1); 1626 void ghash_processBlocks_wide(address p, Register state, Register subkeyH, 1627 Register data, Register blocks, int unrolls); 1628 1629 1630 void aesenc_loadkeys(Register key, Register keylen); 1631 void aesecb_encrypt(Register from, Register to, Register keylen, 1632 FloatRegister data = v0, int unrolls = 1); 1633 void aesecb_decrypt(Register from, Register to, Register key, Register keylen); 1634 void aes_round(FloatRegister input, FloatRegister subkey); 1635 1636 // ChaCha20 functions support block 1637 void cc20_qr_add4(FloatRegister (&addFirst)[4], 1638 FloatRegister (&addSecond)[4]); 1639 void cc20_qr_xor4(FloatRegister (&firstElem)[4], 1640 FloatRegister (&secondElem)[4], FloatRegister (&result)[4]); 1641 void cc20_qr_lrot4(FloatRegister (&sourceReg)[4], 1642 FloatRegister (&destReg)[4], int bits, FloatRegister table); 1643 void cc20_set_qr_registers(FloatRegister (&vectorSet)[4], 1644 const FloatRegister (&stateVectors)[16], int idx1, int idx2, 1645 int idx3, int idx4); 1646 1647 // Place an ISB after code may have been modified due to a safepoint. 1648 void safepoint_isb(); 1649 1650 private: 1651 // Return the effective address r + (r1 << ext) + offset. 1652 // Uses rscratch2. 1653 Address offsetted_address(Register r, Register r1, Address::extend ext, 1654 int offset, int size); 1655 1656 private: 1657 // Returns an address on the stack which is reachable with a ldr/str of size 1658 // Uses rscratch2 if the address is not directly reachable 1659 Address spill_address(int size, int offset, Register tmp=rscratch2); 1660 Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2); 1661 1662 bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const; 1663 1664 // Check whether two loads/stores can be merged into ldp/stp. 1665 bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const; 1666 1667 // Merge current load/store with previous load/store into ldp/stp. 1668 void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1669 1670 // Try to merge two loads/stores into ldp/stp. If success, returns true else false. 1671 bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1672 1673 public: 1674 void spill(Register Rx, bool is64, int offset) { 1675 if (is64) { 1676 str(Rx, spill_address(8, offset)); 1677 } else { 1678 strw(Rx, spill_address(4, offset)); 1679 } 1680 } 1681 void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1682 str(Vx, T, spill_address(1 << (int)T, offset)); 1683 } 1684 1685 void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1686 sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1687 } 1688 void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1689 sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1690 } 1691 1692 void unspill(Register Rx, bool is64, int offset) { 1693 if (is64) { 1694 ldr(Rx, spill_address(8, offset)); 1695 } else { 1696 ldrw(Rx, spill_address(4, offset)); 1697 } 1698 } 1699 void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1700 ldr(Vx, T, spill_address(1 << (int)T, offset)); 1701 } 1702 1703 void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1704 sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1705 } 1706 void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1707 sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1708 } 1709 1710 void spill_copy128(int src_offset, int dst_offset, 1711 Register tmp1=rscratch1, Register tmp2=rscratch2) { 1712 if (src_offset < 512 && (src_offset & 7) == 0 && 1713 dst_offset < 512 && (dst_offset & 7) == 0) { 1714 ldp(tmp1, tmp2, Address(sp, src_offset)); 1715 stp(tmp1, tmp2, Address(sp, dst_offset)); 1716 } else { 1717 unspill(tmp1, true, src_offset); 1718 spill(tmp1, true, dst_offset); 1719 unspill(tmp1, true, src_offset+8); 1720 spill(tmp1, true, dst_offset+8); 1721 } 1722 } 1723 void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset, 1724 int sve_vec_reg_size_in_bytes) { 1725 assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size"); 1726 for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) { 1727 spill_copy128(src_offset, dst_offset); 1728 src_offset += 16; 1729 dst_offset += 16; 1730 } 1731 } 1732 void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset, 1733 int sve_predicate_reg_size_in_bytes) { 1734 sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset)); 1735 sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset)); 1736 reinitialize_ptrue(); 1737 } 1738 void cache_wb(Address line); 1739 void cache_wbsync(bool is_pre); 1740 1741 // Code for java.lang.Thread::onSpinWait() intrinsic. 1742 void spin_wait(); 1743 1744 void lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow); 1745 void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow); 1746 1747 private: 1748 // Check the current thread doesn't need a cross modify fence. 1749 void verify_cross_modify_fence_not_required() PRODUCT_RETURN; 1750 1751 }; 1752 1753 #ifdef ASSERT 1754 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; } 1755 #endif 1756 1757 struct tableswitch { 1758 Register _reg; 1759 int _insn_index; jint _first_key; jint _last_key; 1760 Label _after; 1761 Label _branches; 1762 }; 1763 1764 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP