1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.inline.hpp"
  30 #include "code/aotCodeCache.hpp"
  31 #include "code/vmreg.hpp"
  32 #include "metaprogramming/enableIf.hpp"
  33 #include "oops/compressedOops.hpp"
  34 #include "oops/compressedKlass.hpp"
  35 #include "runtime/vm_version.hpp"
  36 #include "utilities/powerOfTwo.hpp"
  37 
  38 class OopMap;
  39 
  40 // MacroAssembler extends Assembler by frequently used macros.
  41 //
  42 // Instructions for which a 'better' code sequence exists depending
  43 // on arguments should also go in here.
  44 
  45 class MacroAssembler: public Assembler {
  46   friend class LIR_Assembler;
  47 
  48  public:
  49   using Assembler::mov;
  50   using Assembler::movi;
  51 
  52  protected:
  53 
  54   // Support for VM calls
  55   //
  56   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  57   // may customize this version by overriding it for its purposes (e.g., to save/restore
  58   // additional registers when doing a VM call).
  59   virtual void call_VM_leaf_base(
  60     address entry_point,               // the entry point
  61     int     number_of_arguments,        // the number of arguments to pop after the call
  62     Label *retaddr = nullptr
  63   );
  64 
  65   virtual void call_VM_leaf_base(
  66     address entry_point,               // the entry point
  67     int     number_of_arguments,        // the number of arguments to pop after the call
  68     Label &retaddr) {
  69     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  70   }
  71 
  72   // This is the base routine called by the different versions of call_VM. The interpreter
  73   // may customize this version by overriding it for its purposes (e.g., to save/restore
  74   // additional registers when doing a VM call).
  75   //
  76   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  77   // returns the register which contains the thread upon return. If a thread register has been
  78   // specified, the return value will correspond to that register. If no last_java_sp is specified
  79   // (noreg) than rsp will be used instead.
  80   virtual void call_VM_base(           // returns the register containing the thread upon return
  81     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  82     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  83     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  84     address  entry_point,              // the entry point
  85     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  86     bool     check_exceptions          // whether to check for pending exceptions after return
  87   );
  88 
  89   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  90 
  91   enum KlassDecodeMode {
  92     KlassDecodeNone,
  93     KlassDecodeZero,
  94     KlassDecodeXor,
  95     KlassDecodeMovk
  96   };
  97 
  98   // Calculate decoding mode based on given parameters, used for checking then ultimately setting.
  99   static KlassDecodeMode klass_decode_mode(address base, int shift, const size_t range);
 100 
 101  private:
 102   static KlassDecodeMode _klass_decode_mode;
 103 
 104   // Returns above setting with asserts
 105   static KlassDecodeMode klass_decode_mode();
 106 
 107  public:
 108   // Checks the decode mode and returns false if not compatible with preferred decoding mode.
 109   static bool check_klass_decode_mode(address base, int shift, const size_t range);
 110 
 111   // Sets the decode mode and returns false if cannot be set.
 112   static bool set_klass_decode_mode(address base, int shift, const size_t range);
 113 
 114  public:
 115   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
 116 
 117  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
 118  // The implementation is only non-empty for the InterpreterMacroAssembler,
 119  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
 120  virtual void check_and_handle_popframe(Register java_thread);
 121  virtual void check_and_handle_earlyret(Register java_thread);
 122 
 123   void safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod, Register tmp = rscratch1);
 124   void rt_call(address dest, Register tmp = rscratch1);
 125 
 126   // Load Effective Address
 127   void lea(Register r, const Address &a) {
 128     InstructionMark im(this);
 129     a.lea(this, r);
 130   }
 131 
 132   // Whether materializing the given address for a LDR/STR requires an
 133   // additional lea instruction.
 134   static bool legitimize_address_requires_lea(const Address &a, int size) {
 135     return a.getMode() == Address::base_plus_offset &&
 136            !Address::offset_ok_for_immed(a.offset(), exact_log2(size));
 137   }
 138 
 139   /* Sometimes we get misaligned loads and stores, usually from Unsafe
 140      accesses, and these can exceed the offset range. */
 141   Address legitimize_address(const Address &a, int size, Register scratch) {
 142     if (legitimize_address_requires_lea(a, size)) {
 143       block_comment("legitimize_address {");
 144       lea(scratch, a);
 145       block_comment("} legitimize_address");
 146       return Address(scratch);
 147     }
 148     return a;
 149   }
 150 
 151   void addmw(Address a, Register incr, Register scratch) {
 152     ldrw(scratch, a);
 153     addw(scratch, scratch, incr);
 154     strw(scratch, a);
 155   }
 156 
 157   // Add constant to memory word
 158   void addmw(Address a, int imm, Register scratch) {
 159     ldrw(scratch, a);
 160     if (imm > 0)
 161       addw(scratch, scratch, (unsigned)imm);
 162     else
 163       subw(scratch, scratch, (unsigned)-imm);
 164     strw(scratch, a);
 165   }
 166 
 167   void bind(Label& L) {
 168     Assembler::bind(L);
 169     code()->clear_last_insn();
 170     code()->set_last_label(pc());
 171   }
 172 
 173   void membar(Membar_mask_bits order_constraint);
 174 
 175   using Assembler::ldr;
 176   using Assembler::str;
 177   using Assembler::ldrw;
 178   using Assembler::strw;
 179 
 180   void ldr(Register Rx, const Address &adr);
 181   void ldrw(Register Rw, const Address &adr);
 182   void str(Register Rx, const Address &adr);
 183   void strw(Register Rx, const Address &adr);
 184 
 185   // Frame creation and destruction shared between JITs.
 186   void build_frame(int framesize);
 187   void remove_frame(int framesize);
 188 
 189   virtual void _call_Unimplemented(address call_site) {
 190     mov(rscratch2, call_site);
 191   }
 192 
 193 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__
 194 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention."
 195 // https://reviews.llvm.org/D3311
 196 
 197 #ifdef _WIN64
 198 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__)
 199 #else
 200 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 201 #endif
 202 
 203   // aliases defined in AARCH64 spec
 204 
 205   template<class T>
 206   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 207 
 208   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 209   inline void cmp(Register Rd, unsigned imm) = delete;
 210 
 211   template<class T>
 212   inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); }
 213 
 214   inline void cmn(Register Rd, unsigned char imm8)  { adds(zr, Rd, imm8); }
 215   inline void cmn(Register Rd, unsigned imm) = delete;
 216 
 217   void cset(Register Rd, Assembler::Condition cond) {
 218     csinc(Rd, zr, zr, ~cond);
 219   }
 220   void csetw(Register Rd, Assembler::Condition cond) {
 221     csincw(Rd, zr, zr, ~cond);
 222   }
 223 
 224   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 225     csneg(Rd, Rn, Rn, ~cond);
 226   }
 227   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 228     csnegw(Rd, Rn, Rn, ~cond);
 229   }
 230 
 231   inline void movw(Register Rd, Register Rn) {
 232     if (Rd == sp || Rn == sp) {
 233       Assembler::addw(Rd, Rn, 0U);
 234     } else {
 235       orrw(Rd, zr, Rn);
 236     }
 237   }
 238   inline void mov(Register Rd, Register Rn) {
 239     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 240     if (Rd == Rn) {
 241     } else if (Rd == sp || Rn == sp) {
 242       Assembler::add(Rd, Rn, 0U);
 243     } else {
 244       orr(Rd, zr, Rn);
 245     }
 246   }
 247 
 248   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 249   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 250 
 251   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 252   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 253 
 254   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 255   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 256 
 257   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 258     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 259   }
 260   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 261     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 262   }
 263 
 264   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 265     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 266   }
 267   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 268     bfm(Rd, Rn, lsb , (lsb + width - 1));
 269   }
 270 
 271   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 272     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 273   }
 274   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 275     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 276   }
 277 
 278   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 279     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 280   }
 281   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 282     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 283   }
 284 
 285   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 286     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 287   }
 288   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 289     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 290   }
 291 
 292   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 293     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 294   }
 295   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 296     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 297   }
 298 
 299   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 300     sbfmw(Rd, Rn, imm, 31);
 301   }
 302 
 303   inline void asr(Register Rd, Register Rn, unsigned imm) {
 304     sbfm(Rd, Rn, imm, 63);
 305   }
 306 
 307   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 308     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 309   }
 310 
 311   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 312     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 313   }
 314 
 315   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 316     ubfmw(Rd, Rn, imm, 31);
 317   }
 318 
 319   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 320     ubfm(Rd, Rn, imm, 63);
 321   }
 322 
 323   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 324     extrw(Rd, Rn, Rn, imm);
 325   }
 326 
 327   inline void ror(Register Rd, Register Rn, unsigned imm) {
 328     extr(Rd, Rn, Rn, imm);
 329   }
 330 
 331   inline void rolw(Register Rd, Register Rn, unsigned imm) {
 332     extrw(Rd, Rn, Rn, (32 - imm));
 333   }
 334 
 335   inline void rol(Register Rd, Register Rn, unsigned imm) {
 336     extr(Rd, Rn, Rn, (64 - imm));
 337   }
 338 
 339   using Assembler::rax1;
 340   using Assembler::eor3;
 341 
 342   inline void rax1(Register Rd, Register Rn, Register Rm) {
 343     eor(Rd, Rn, Rm, ROR, 63); // Rd = Rn ^ rol(Rm, 1)
 344   }
 345 
 346   inline void eor3(Register Rd, Register Rn, Register Rm, Register Rk) {
 347     assert(Rd != Rn, "Use tmp register");
 348     eor(Rd, Rm, Rk);
 349     eor(Rd, Rd, Rn);
 350   }
 351 
 352   inline void sxtbw(Register Rd, Register Rn) {
 353     sbfmw(Rd, Rn, 0, 7);
 354   }
 355   inline void sxthw(Register Rd, Register Rn) {
 356     sbfmw(Rd, Rn, 0, 15);
 357   }
 358   inline void sxtb(Register Rd, Register Rn) {
 359     sbfm(Rd, Rn, 0, 7);
 360   }
 361   inline void sxth(Register Rd, Register Rn) {
 362     sbfm(Rd, Rn, 0, 15);
 363   }
 364   inline void sxtw(Register Rd, Register Rn) {
 365     sbfm(Rd, Rn, 0, 31);
 366   }
 367 
 368   inline void uxtbw(Register Rd, Register Rn) {
 369     ubfmw(Rd, Rn, 0, 7);
 370   }
 371   inline void uxthw(Register Rd, Register Rn) {
 372     ubfmw(Rd, Rn, 0, 15);
 373   }
 374   inline void uxtb(Register Rd, Register Rn) {
 375     ubfm(Rd, Rn, 0, 7);
 376   }
 377   inline void uxth(Register Rd, Register Rn) {
 378     ubfm(Rd, Rn, 0, 15);
 379   }
 380   inline void uxtw(Register Rd, Register Rn) {
 381     ubfm(Rd, Rn, 0, 31);
 382   }
 383 
 384   inline void cmnw(Register Rn, Register Rm) {
 385     addsw(zr, Rn, Rm);
 386   }
 387   inline void cmn(Register Rn, Register Rm) {
 388     adds(zr, Rn, Rm);
 389   }
 390 
 391   inline void cmpw(Register Rn, Register Rm) {
 392     subsw(zr, Rn, Rm);
 393   }
 394   inline void cmp(Register Rn, Register Rm) {
 395     subs(zr, Rn, Rm);
 396   }
 397 
 398   inline void negw(Register Rd, Register Rn) {
 399     subw(Rd, zr, Rn);
 400   }
 401 
 402   inline void neg(Register Rd, Register Rn) {
 403     sub(Rd, zr, Rn);
 404   }
 405 
 406   inline void negsw(Register Rd, Register Rn) {
 407     subsw(Rd, zr, Rn);
 408   }
 409 
 410   inline void negs(Register Rd, Register Rn) {
 411     subs(Rd, zr, Rn);
 412   }
 413 
 414   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 415     addsw(zr, Rn, Rm, kind, shift);
 416   }
 417   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 418     adds(zr, Rn, Rm, kind, shift);
 419   }
 420 
 421   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 422     subsw(zr, Rn, Rm, kind, shift);
 423   }
 424   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 425     subs(zr, Rn, Rm, kind, shift);
 426   }
 427 
 428   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 429     subw(Rd, zr, Rn, kind, shift);
 430   }
 431 
 432   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 433     sub(Rd, zr, Rn, kind, shift);
 434   }
 435 
 436   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 437     subsw(Rd, zr, Rn, kind, shift);
 438   }
 439 
 440   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 441     subs(Rd, zr, Rn, kind, shift);
 442   }
 443 
 444   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 445     msubw(Rd, Rn, Rm, zr);
 446   }
 447   inline void mneg(Register Rd, Register Rn, Register Rm) {
 448     msub(Rd, Rn, Rm, zr);
 449   }
 450 
 451   inline void mulw(Register Rd, Register Rn, Register Rm) {
 452     maddw(Rd, Rn, Rm, zr);
 453   }
 454   inline void mul(Register Rd, Register Rn, Register Rm) {
 455     madd(Rd, Rn, Rm, zr);
 456   }
 457 
 458   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 459     smsubl(Rd, Rn, Rm, zr);
 460   }
 461   inline void smull(Register Rd, Register Rn, Register Rm) {
 462     smaddl(Rd, Rn, Rm, zr);
 463   }
 464 
 465   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 466     umsubl(Rd, Rn, Rm, zr);
 467   }
 468   inline void umull(Register Rd, Register Rn, Register Rm) {
 469     umaddl(Rd, Rn, Rm, zr);
 470   }
 471 
 472 #define WRAP(INSN)                                                            \
 473   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 474     if (VM_Version::supports_a53mac() && Ra != zr)                            \
 475       nop();                                                                  \
 476     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 477   }
 478 
 479   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 480   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 481 #undef WRAP
 482 
 483 
 484   // macro assembly operations needed for aarch64
 485 
 486 public:
 487 
 488   enum FpPushPopMode {
 489     PushPopFull,
 490     PushPopSVE,
 491     PushPopNeon,
 492     PushPopFp
 493   };
 494 
 495   // first two private routines for loading 32 bit or 64 bit constants
 496 private:
 497 
 498   void mov_immediate64(Register dst, uint64_t imm64);
 499   void mov_immediate32(Register dst, uint32_t imm32);
 500 
 501   int push(unsigned int bitset, Register stack);
 502   int pop(unsigned int bitset, Register stack);
 503 
 504   int push_fp(unsigned int bitset, Register stack, FpPushPopMode mode);
 505   int pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode);
 506 
 507   int push_p(unsigned int bitset, Register stack);
 508   int pop_p(unsigned int bitset, Register stack);
 509 
 510   void mov(Register dst, Address a);
 511 
 512 public:
 513 
 514   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 515   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 516 
 517   void push_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) push_fp(regs.bits(), stack, mode); }
 518   void pop_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) pop_fp(regs.bits(), stack, mode); }
 519 
 520   static RegSet call_clobbered_gp_registers();
 521 
 522   void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); }
 523   void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); }
 524 
 525   // Push and pop everything that might be clobbered by a native
 526   // runtime call except rscratch1 and rscratch2.  (They are always
 527   // scratch, so we don't have to protect them.)  Only save the lower
 528   // 64 bits of each vector register. Additional registers can be excluded
 529   // in a passed RegSet.
 530   void push_call_clobbered_registers_except(RegSet exclude);
 531   void pop_call_clobbered_registers_except(RegSet exclude);
 532 
 533   void push_call_clobbered_registers() {
 534     push_call_clobbered_registers_except(RegSet());
 535   }
 536   void pop_call_clobbered_registers() {
 537     pop_call_clobbered_registers_except(RegSet());
 538   }
 539 
 540 
 541   // now mov instructions for loading absolute addresses and 32 or
 542   // 64 bit integers
 543 
 544   inline void mov(Register dst, address addr)             { mov_immediate64(dst, (uint64_t)addr); }
 545 
 546   template<typename T, ENABLE_IF(std::is_integral<T>::value)>
 547   inline void mov(Register dst, T o)                      { mov_immediate64(dst, (uint64_t)o); }
 548 
 549   inline void movw(Register dst, uint32_t imm32)          { mov_immediate32(dst, imm32); }
 550 
 551   void mov(Register dst, RegisterOrConstant src) {
 552     if (src.is_register())
 553       mov(dst, src.as_register());
 554     else
 555       mov(dst, src.as_constant());
 556   }
 557 
 558   void movptr(Register r, uintptr_t imm64);
 559 
 560   void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64);
 561 
 562   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 563     orr(Vd, T, Vn, Vn);
 564   }
 565 
 566   void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) {
 567     fcvtsh(tmp, src);
 568     smov(dst, tmp, H, 0);
 569   }
 570 
 571   void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) {
 572     mov(tmp, H, 0, src);
 573     fcvths(dst, tmp);
 574   }
 575 
 576   // Generalized Test Bit And Branch, including a "far" variety which
 577   // spans more than 32KiB.
 578   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) {
 579     assert(cond == EQ || cond == NE, "must be");
 580 
 581     if (isfar)
 582       cond = ~cond;
 583 
 584     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 585     if (cond == Assembler::EQ)
 586       branch = &Assembler::tbz;
 587     else
 588       branch = &Assembler::tbnz;
 589 
 590     if (isfar) {
 591       Label L;
 592       (this->*branch)(Rt, bitpos, L);
 593       b(dest);
 594       bind(L);
 595     } else {
 596       (this->*branch)(Rt, bitpos, dest);
 597     }
 598   }
 599 
 600   // macro instructions for accessing and updating floating point
 601   // status register
 602   //
 603   // FPSR : op1 == 011
 604   //        CRn == 0100
 605   //        CRm == 0100
 606   //        op2 == 001
 607 
 608   inline void get_fpsr(Register reg)
 609   {
 610     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 611   }
 612 
 613   inline void set_fpsr(Register reg)
 614   {
 615     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 616   }
 617 
 618   inline void clear_fpsr()
 619   {
 620     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 621   }
 622 
 623   // FPCR : op1 == 011
 624   //        CRn == 0100
 625   //        CRm == 0100
 626   //        op2 == 000
 627 
 628   inline void get_fpcr(Register reg) {
 629     mrs(0b11, 0b0100, 0b0100, 0b000, reg);
 630   }
 631 
 632   inline void set_fpcr(Register reg) {
 633     msr(0b011, 0b0100, 0b0100, 0b000, reg);
 634   }
 635 
 636   // DCZID_EL0: op1 == 011
 637   //            CRn == 0000
 638   //            CRm == 0000
 639   //            op2 == 111
 640   inline void get_dczid_el0(Register reg)
 641   {
 642     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 643   }
 644 
 645   // CTR_EL0:   op1 == 011
 646   //            CRn == 0000
 647   //            CRm == 0000
 648   //            op2 == 001
 649   inline void get_ctr_el0(Register reg)
 650   {
 651     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 652   }
 653 
 654   inline void get_nzcv(Register reg) {
 655     mrs(0b011, 0b0100, 0b0010, 0b000, reg);
 656   }
 657 
 658   inline void set_nzcv(Register reg) {
 659     msr(0b011, 0b0100, 0b0010, 0b000, reg);
 660   }
 661 
 662   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 663   int corrected_idivl(Register result, Register ra, Register rb,
 664                       bool want_remainder, Register tmp = rscratch1);
 665   int corrected_idivq(Register result, Register ra, Register rb,
 666                       bool want_remainder, Register tmp = rscratch1);
 667 
 668   // Support for null-checks
 669   //
 670   // Generates code that causes a null OS exception if the content of reg is null.
 671   // If the accessed location is M[reg + offset] and the offset is known, provide the
 672   // offset. No explicit code generation is needed if the offset is within a certain
 673   // range (0 <= offset <= page_size).
 674 
 675   virtual void null_check(Register reg, int offset = -1);
 676   static bool needs_explicit_null_check(intptr_t offset);
 677   static bool uses_implicit_null_check(void* address);
 678 
 679   static address target_addr_for_insn(address insn_addr, unsigned insn);
 680   static address target_addr_for_insn_or_null(address insn_addr, unsigned insn);
 681   static address target_addr_for_insn(address insn_addr) {
 682     unsigned insn = *(unsigned*)insn_addr;
 683     return target_addr_for_insn(insn_addr, insn);
 684   }
 685   static address target_addr_for_insn_or_null(address insn_addr) {
 686     unsigned insn = *(unsigned*)insn_addr;
 687     return target_addr_for_insn_or_null(insn_addr, insn);
 688   }
 689 
 690   // Required platform-specific helpers for Label::patch_instructions.
 691   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 692   static int pd_patch_instruction_size(address branch, address target);
 693   static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) {
 694     pd_patch_instruction_size(branch, target);
 695   }
 696   static address pd_call_destination(address branch) {
 697     return target_addr_for_insn(branch);
 698   }
 699 #ifndef PRODUCT
 700   static void pd_print_patched_instruction(address branch);
 701 #endif
 702 
 703   static int patch_oop(address insn_addr, address o);
 704   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 705 
 706   // Return whether code is emitted to a scratch blob.
 707   virtual bool in_scratch_emit_size() {
 708     return false;
 709   }
 710   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 711   static int max_trampoline_stub_size();
 712   void emit_static_call_stub();
 713   static int static_call_stub_size();
 714 
 715   // The following 4 methods return the offset of the appropriate move instruction
 716 
 717   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 718   int load_unsigned_byte(Register dst, Address src);
 719   int load_unsigned_short(Register dst, Address src);
 720 
 721   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 722   int load_signed_byte(Register dst, Address src);
 723   int load_signed_short(Register dst, Address src);
 724 
 725   int load_signed_byte32(Register dst, Address src);
 726   int load_signed_short32(Register dst, Address src);
 727 
 728   // Support for sign-extension (hi:lo = extend_sign(lo))
 729   void extend_sign(Register hi, Register lo);
 730 
 731   // Load and store values by size and signed-ness
 732   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
 733   void store_sized_value(Address dst, Register src, size_t size_in_bytes);
 734 
 735   // Support for inc/dec with optimal instruction selection depending on value
 736 
 737   // x86_64 aliases an unqualified register/address increment and
 738   // decrement to call incrementq and decrementq but also supports
 739   // explicitly sized calls to incrementq/decrementq or
 740   // incrementl/decrementl
 741 
 742   // for aarch64 the proper convention would be to use
 743   // increment/decrement for 64 bit operations and
 744   // incrementw/decrementw for 32 bit operations. so when porting
 745   // x86_64 code we can leave calls to increment/decrement as is,
 746   // replace incrementq/decrementq with increment/decrement and
 747   // replace incrementl/decrementl with incrementw/decrementw.
 748 
 749   // n.b. increment/decrement calls with an Address destination will
 750   // need to use a scratch register to load the value to be
 751   // incremented. increment/decrement calls which add or subtract a
 752   // constant value greater than 2^12 will need to use a 2nd scratch
 753   // register to hold the constant. so, a register increment/decrement
 754   // may trash rscratch2 and an address increment/decrement trash
 755   // rscratch and rscratch2
 756 
 757   void decrementw(Address dst, int value = 1);
 758   void decrementw(Register reg, int value = 1);
 759 
 760   void decrement(Register reg, int value = 1);
 761   void decrement(Address dst, int value = 1);
 762 
 763   void incrementw(Address dst, int value = 1);
 764   void incrementw(Register reg, int value = 1);
 765 
 766   void increment(Register reg, int value = 1);
 767   void increment(Address dst, int value = 1);
 768 
 769 
 770   // Alignment
 771   void align(int modulus);
 772   void align(int modulus, int target);
 773 
 774   // nop
 775   void post_call_nop();
 776 
 777   // Stack frame creation/removal
 778   void enter(bool strip_ret_addr = false);
 779   void leave();
 780 
 781   // ROP Protection
 782   void protect_return_address();
 783   void protect_return_address(Register return_reg);
 784   void authenticate_return_address();
 785   void authenticate_return_address(Register return_reg);
 786   void strip_return_address();
 787   void check_return_address(Register return_reg=lr) PRODUCT_RETURN;
 788 
 789   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 790   // The pointer will be loaded into the thread register.
 791   void get_thread(Register thread);
 792 
 793   // support for argument shuffling
 794   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 795   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 796   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 797   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 798   void object_move(
 799                    OopMap* map,
 800                    int oop_handle_offset,
 801                    int framesize_in_slots,
 802                    VMRegPair src,
 803                    VMRegPair dst,
 804                    bool is_receiver,
 805                    int* receiver_offset);
 806 
 807 
 808   // Support for VM calls
 809   //
 810   // It is imperative that all calls into the VM are handled via the call_VM macros.
 811   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 812   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 813 
 814 
 815   void call_VM(Register oop_result,
 816                address entry_point,
 817                bool check_exceptions = true);
 818   void call_VM(Register oop_result,
 819                address entry_point,
 820                Register arg_1,
 821                bool check_exceptions = true);
 822   void call_VM(Register oop_result,
 823                address entry_point,
 824                Register arg_1, Register arg_2,
 825                bool check_exceptions = true);
 826   void call_VM(Register oop_result,
 827                address entry_point,
 828                Register arg_1, Register arg_2, Register arg_3,
 829                bool check_exceptions = true);
 830 
 831   // Overloadings with last_Java_sp
 832   void call_VM(Register oop_result,
 833                Register last_java_sp,
 834                address entry_point,
 835                int number_of_arguments = 0,
 836                bool check_exceptions = true);
 837   void call_VM(Register oop_result,
 838                Register last_java_sp,
 839                address entry_point,
 840                Register arg_1, bool
 841                check_exceptions = true);
 842   void call_VM(Register oop_result,
 843                Register last_java_sp,
 844                address entry_point,
 845                Register arg_1, Register arg_2,
 846                bool check_exceptions = true);
 847   void call_VM(Register oop_result,
 848                Register last_java_sp,
 849                address entry_point,
 850                Register arg_1, Register arg_2, Register arg_3,
 851                bool check_exceptions = true);
 852 
 853   void get_vm_result_oop(Register oop_result, Register thread);
 854   void get_vm_result_metadata(Register metadata_result, Register thread);
 855 
 856   // These always tightly bind to MacroAssembler::call_VM_base
 857   // bypassing the virtual implementation
 858   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 859   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 860   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 861   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 862   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 863 
 864   void call_VM_leaf(address entry_point,
 865                     int number_of_arguments = 0);
 866   void call_VM_leaf(address entry_point,
 867                     Register arg_1);
 868   void call_VM_leaf(address entry_point,
 869                     Register arg_1, Register arg_2);
 870   void call_VM_leaf(address entry_point,
 871                     Register arg_1, Register arg_2, Register arg_3);
 872 
 873   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 874   // bypassing the virtual implementation
 875   void super_call_VM_leaf(address entry_point);
 876   void super_call_VM_leaf(address entry_point, Register arg_1);
 877   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 878   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 879   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 880 
 881   // last Java Frame (fills frame anchor)
 882   void set_last_Java_frame(Register last_java_sp,
 883                            Register last_java_fp,
 884                            address last_java_pc,
 885                            Register scratch);
 886 
 887   void set_last_Java_frame(Register last_java_sp,
 888                            Register last_java_fp,
 889                            Label &last_java_pc,
 890                            Register scratch);
 891 
 892   void set_last_Java_frame(Register last_java_sp,
 893                            Register last_java_fp,
 894                            Register last_java_pc,
 895                            Register scratch);
 896 
 897   void reset_last_Java_frame(Register thread);
 898 
 899   // thread in the default location (rthread)
 900   void reset_last_Java_frame(bool clear_fp);
 901 
 902   // Stores
 903   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 904   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 905 
 906   void resolve_jobject(Register value, Register tmp1, Register tmp2);
 907   void resolve_global_jobject(Register value, Register tmp1, Register tmp2);
 908 
 909   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 910   void c2bool(Register x);
 911 
 912   void load_method_holder_cld(Register rresult, Register rmethod);
 913   void load_method_holder(Register holder, Register method);
 914 
 915   // oop manipulations
 916   void load_narrow_klass_compact(Register dst, Register src);
 917   void load_klass(Register dst, Register src);
 918   void store_klass(Register dst, Register src);
 919   void cmp_klass(Register obj, Register klass, Register tmp);
 920   void cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2);
 921 
 922   void resolve_weak_handle(Register result, Register tmp1, Register tmp2);
 923   void resolve_oop_handle(Register result, Register tmp1, Register tmp2);
 924   void load_mirror(Register dst, Register method, Register tmp1, Register tmp2);
 925 
 926   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 927                       Register tmp1, Register tmp2);
 928 
 929   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 930                        Register tmp1, Register tmp2, Register tmp3);
 931 
 932   void load_heap_oop(Register dst, Address src, Register tmp1,
 933                      Register tmp2, DecoratorSet decorators = 0);
 934 
 935   void load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 936                               Register tmp2, DecoratorSet decorators = 0);
 937   void store_heap_oop(Address dst, Register val, Register tmp1,
 938                       Register tmp2, Register tmp3, DecoratorSet decorators = 0);
 939 
 940   // currently unimplemented
 941   // Used for storing null. All other oop constants should be
 942   // stored using routines that take a jobject.
 943   void store_heap_oop_null(Address dst);
 944 
 945   void store_klass_gap(Register dst, Register src);
 946 
 947   // This dummy is to prevent a call to store_heap_oop from
 948   // converting a zero (like null) into a Register by giving
 949   // the compiler two choices it can't resolve
 950 
 951   void store_heap_oop(Address dst, void* dummy);
 952 
 953   void encode_heap_oop(Register d, Register s);
 954   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 955   void decode_heap_oop(Register d, Register s);
 956   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 957   void encode_heap_oop_not_null(Register r);
 958   void decode_heap_oop_not_null(Register r);
 959   void encode_heap_oop_not_null(Register dst, Register src);
 960   void decode_heap_oop_not_null(Register dst, Register src);
 961 
 962   void set_narrow_oop(Register dst, jobject obj);
 963 
 964   void decode_klass_not_null_for_aot(Register dst, Register src);
 965   void encode_klass_not_null_for_aot(Register dst, Register src);
 966   void encode_klass_not_null(Register r);
 967   void decode_klass_not_null(Register r);
 968   void encode_klass_not_null(Register dst, Register src);
 969   void decode_klass_not_null(Register dst, Register src);
 970 
 971   void set_narrow_klass(Register dst, Klass* k);
 972 
 973   // if heap base register is used - reinit it with the correct value
 974   void reinit_heapbase();
 975 
 976   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 977 
 978   void push_CPU_state(bool save_vectors = false, bool use_sve = false,
 979                       int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 980   void pop_CPU_state(bool restore_vectors = false, bool use_sve = false,
 981                      int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 982 
 983   void push_cont_fastpath(Register java_thread = rthread);
 984   void pop_cont_fastpath(Register java_thread = rthread);
 985 
 986   void inc_held_monitor_count(Register tmp);
 987   void dec_held_monitor_count(Register tmp);
 988 
 989   // Round up to a power of two
 990   void round_to(Register reg, int modulus);
 991 
 992   // java.lang.Math::round intrinsics
 993   void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp);
 994   void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp);
 995 
 996   // allocation
 997   void tlab_allocate(
 998     Register obj,                      // result: pointer to object after successful allocation
 999     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1000     int      con_size_in_bytes,        // object size in bytes if   known at compile time
1001     Register t1,                       // temp register
1002     Register t2,                       // temp register
1003     Label&   slow_case                 // continuation point if fast allocation fails
1004   );
1005   void verify_tlab();
1006 
1007   // interface method calling
1008   void lookup_interface_method(Register recv_klass,
1009                                Register intf_klass,
1010                                RegisterOrConstant itable_index,
1011                                Register method_result,
1012                                Register scan_temp,
1013                                Label& no_such_interface,
1014                    bool return_method = true);
1015 
1016   void lookup_interface_method_stub(Register recv_klass,
1017                                     Register holder_klass,
1018                                     Register resolved_klass,
1019                                     Register method_result,
1020                                     Register temp_reg,
1021                                     Register temp_reg2,
1022                                     int itable_index,
1023                                     Label& L_no_such_interface);
1024 
1025   // virtual method calling
1026   // n.b. x86 allows RegisterOrConstant for vtable_index
1027   void lookup_virtual_method(Register recv_klass,
1028                              RegisterOrConstant vtable_index,
1029                              Register method_result);
1030 
1031   // Test sub_klass against super_klass, with fast and slow paths.
1032 
1033   // The fast path produces a tri-state answer: yes / no / maybe-slow.
1034   // One of the three labels can be null, meaning take the fall-through.
1035   // If super_check_offset is -1, the value is loaded up from super_klass.
1036   // No registers are killed, except temp_reg.
1037   void check_klass_subtype_fast_path(Register sub_klass,
1038                                      Register super_klass,
1039                                      Register temp_reg,
1040                                      Label* L_success,
1041                                      Label* L_failure,
1042                                      Label* L_slow_path,
1043                                      Register super_check_offset = noreg);
1044 
1045   // The rest of the type check; must be wired to a corresponding fast path.
1046   // It does not repeat the fast path logic, so don't use it standalone.
1047   // The temp_reg and temp2_reg can be noreg, if no temps are available.
1048   // Updates the sub's secondary super cache as necessary.
1049   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
1050   void check_klass_subtype_slow_path(Register sub_klass,
1051                                      Register super_klass,
1052                                      Register temp_reg,
1053                                      Register temp2_reg,
1054                                      Label* L_success,
1055                                      Label* L_failure,
1056                                      bool set_cond_codes = false);
1057 
1058   void check_klass_subtype_slow_path_linear(Register sub_klass,
1059                                             Register super_klass,
1060                                             Register temp_reg,
1061                                             Register temp2_reg,
1062                                             Label* L_success,
1063                                             Label* L_failure,
1064                                             bool set_cond_codes = false);
1065 
1066   void check_klass_subtype_slow_path_table(Register sub_klass,
1067                                            Register super_klass,
1068                                            Register temp_reg,
1069                                            Register temp2_reg,
1070                                            Register temp3_reg,
1071                                            Register result_reg,
1072                                            FloatRegister vtemp_reg,
1073                                            Label* L_success,
1074                                            Label* L_failure,
1075                                            bool set_cond_codes = false);
1076 
1077   // If r is valid, return r.
1078   // If r is invalid, remove a register r2 from available_regs, add r2
1079   // to regs_to_push, then return r2.
1080   Register allocate_if_noreg(const Register r,
1081                              RegSetIterator<Register> &available_regs,
1082                              RegSet &regs_to_push);
1083 
1084   // Secondary subtype checking
1085   void lookup_secondary_supers_table_var(Register sub_klass,
1086                                          Register r_super_klass,
1087                                          Register temp1,
1088                                          Register temp2,
1089                                          Register temp3,
1090                                          FloatRegister vtemp,
1091                                          Register result,
1092                                          Label *L_success);
1093 
1094 
1095   // As above, but with a constant super_klass.
1096   // The result is in Register result, not the condition codes.
1097   bool lookup_secondary_supers_table_const(Register r_sub_klass,
1098                                            Register r_super_klass,
1099                                            Register temp1,
1100                                            Register temp2,
1101                                            Register temp3,
1102                                            FloatRegister vtemp,
1103                                            Register result,
1104                                            u1 super_klass_slot,
1105                                            bool stub_is_near = false);
1106 
1107   void verify_secondary_supers_table(Register r_sub_klass,
1108                                      Register r_super_klass,
1109                                      Register temp1,
1110                                      Register temp2,
1111                                      Register result);
1112 
1113   void lookup_secondary_supers_table_slow_path(Register r_super_klass,
1114                                                Register r_array_base,
1115                                                Register r_array_index,
1116                                                Register r_bitmap,
1117                                                Register temp1,
1118                                                Register result,
1119                                                bool is_stub = true);
1120 
1121   // Simplified, combined version, good for typical uses.
1122   // Falls through on failure.
1123   void check_klass_subtype(Register sub_klass,
1124                            Register super_klass,
1125                            Register temp_reg,
1126                            Label& L_success);
1127 
1128   void clinit_barrier(Register klass,
1129                       Register thread,
1130                       Label* L_fast_path = nullptr,
1131                       Label* L_slow_path = nullptr);
1132 
1133   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1134 
1135   void verify_sve_vector_length(Register tmp = rscratch1);
1136   void reinitialize_ptrue() {
1137     if (UseSVE > 0) {
1138       sve_ptrue(ptrue, B);
1139     }
1140   }
1141   void verify_ptrue();
1142 
1143   // Debugging
1144 
1145   // only if +VerifyOops
1146   void _verify_oop(Register reg, const char* s, const char* file, int line);
1147   void _verify_oop_addr(Address addr, const char * s, const char* file, int line);
1148 
1149   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
1150     if (VerifyOops) {
1151       _verify_oop(reg, s, file, line);
1152     }
1153   }
1154   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
1155     if (VerifyOops) {
1156       _verify_oop_addr(reg, s, file, line);
1157     }
1158   }
1159 
1160 // TODO: verify method and klass metadata (compare against vptr?)
1161   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
1162   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
1163 
1164 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
1165 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
1166 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
1167 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
1168 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
1169 
1170   // Restore cpu control state after JNI call
1171   void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2);
1172 
1173   // prints msg, dumps registers and stops execution
1174   void stop(const char* msg);
1175 
1176   static void debug64(char* msg, int64_t pc, int64_t regs[]);
1177 
1178   void untested()                                { stop("untested"); }
1179 
1180   void unimplemented(const char* what = "");
1181 
1182   void should_not_reach_here()                   { stop("should not reach here"); }
1183 
1184   void _assert_asm(Condition cc, const char* msg);
1185 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg)
1186 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg))
1187 
1188   // Stack overflow checking
1189   void bang_stack_with_offset(int offset) {
1190     // stack grows down, caller passes positive offset
1191     assert(offset > 0, "must bang with negative offset");
1192     sub(rscratch2, sp, offset);
1193     str(zr, Address(rscratch2));
1194   }
1195 
1196   // Writes to stack successive pages until offset reached to check for
1197   // stack overflow + shadow pages.  Also, clobbers tmp
1198   void bang_stack_size(Register size, Register tmp);
1199 
1200   // Check for reserved stack access in method being exited (for JIT)
1201   void reserved_stack_check();
1202 
1203   // Arithmetics
1204 
1205   // Clobber: rscratch1, rscratch2
1206   void addptr(const Address &dst, int32_t src);
1207 
1208   // Clobber: rscratch1
1209   void cmpptr(Register src1, Address src2);
1210 
1211   void cmpoop(Register obj1, Register obj2);
1212 
1213   // Various forms of CAS
1214 
1215   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
1216                           Label &succeed, Label *fail);
1217   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
1218                   Label &succeed, Label *fail);
1219 
1220   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
1221                   Label &succeed, Label *fail);
1222 
1223   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
1224   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1225   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1226   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1227 
1228   void atomic_xchg(Register prev, Register newv, Register addr);
1229   void atomic_xchgw(Register prev, Register newv, Register addr);
1230   void atomic_xchgl(Register prev, Register newv, Register addr);
1231   void atomic_xchglw(Register prev, Register newv, Register addr);
1232   void atomic_xchgal(Register prev, Register newv, Register addr);
1233   void atomic_xchgalw(Register prev, Register newv, Register addr);
1234 
1235   void orptr(Address adr, RegisterOrConstant src) {
1236     ldr(rscratch1, adr);
1237     if (src.is_register())
1238       orr(rscratch1, rscratch1, src.as_register());
1239     else
1240       orr(rscratch1, rscratch1, src.as_constant());
1241     str(rscratch1, adr);
1242   }
1243 
1244   // A generic CAS; success or failure is in the EQ flag.
1245   // Clobbers rscratch1
1246   void cmpxchg(Register addr, Register expected, Register new_val,
1247                enum operand_size size,
1248                bool acquire, bool release, bool weak,
1249                Register result);
1250 
1251 #ifdef ASSERT
1252   // Template short-hand support to clean-up after a failed call to trampoline
1253   // call generation (see trampoline_call() below),  when a set of Labels must
1254   // be reset (before returning).
1255   template<typename Label, typename... More>
1256   void reset_labels(Label &lbl, More&... more) {
1257     lbl.reset(); reset_labels(more...);
1258   }
1259   template<typename Label>
1260   void reset_labels(Label &lbl) {
1261     lbl.reset();
1262   }
1263 #endif
1264 
1265 private:
1266   void compare_eq(Register rn, Register rm, enum operand_size size);
1267 
1268 public:
1269   // AArch64 OpenJDK uses four different types of calls:
1270   //   - direct call: bl pc_relative_offset
1271   //     This is the shortest and the fastest, but the offset has the range:
1272   //     +/-128MB for the release build, +/-2MB for the debug build.
1273   //
1274   //   - far call: adrp reg, pc_relative_offset; add; bl reg
1275   //     This is longer than a direct call. The offset has
1276   //     the range +/-4GB. As the code cache size is limited to 4GB,
1277   //     far calls can reach anywhere in the code cache. If a jump is
1278   //     needed rather than a call, a far jump 'b reg' can be used instead.
1279   //     All instructions are embedded at a call site.
1280   //
1281   //   - trampoline call:
1282   //     This is only available in C1/C2-generated code (nmethod). It is a combination
1283   //     of a direct call, which is used if the destination of a call is in range,
1284   //     and a register-indirect call. It has the advantages of reaching anywhere in
1285   //     the AArch64 address space and being patchable at runtime when the generated
1286   //     code is being executed by other threads.
1287   //
1288   //     [Main code section]
1289   //       bl trampoline
1290   //     [Stub code section]
1291   //     trampoline:
1292   //       ldr reg, pc + 8
1293   //       br reg
1294   //       <64-bit destination address>
1295   //
1296   //     If the destination is in range when the generated code is moved to the code
1297   //     cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline
1298   //     is not used.
1299   //     The optimization does not remove the trampoline from the stub section.
1300   //     This is necessary because the trampoline may well be redirected later when
1301   //     code is patched, and the new destination may not be reachable by a simple BR
1302   //     instruction.
1303   //
1304   //   - indirect call: move reg, address; blr reg
1305   //     This too can reach anywhere in the address space, but it cannot be
1306   //     patched while code is running, so it must only be modified at a safepoint.
1307   //     This form of call is most suitable for targets at fixed addresses, which
1308   //     will never be patched.
1309   //
1310   // The patching we do conforms to the "Concurrent modification and
1311   // execution of instructions" section of the Arm Architectural
1312   // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC,
1313   // or SVC instructions to be modified while another thread is
1314   // executing them.
1315   //
1316   // To patch a trampoline call when the BL can't reach, we first modify
1317   // the 64-bit destination address in the trampoline, then modify the
1318   // BL to point to the trampoline, then flush the instruction cache to
1319   // broadcast the change to all executing threads. See
1320   // NativeCall::set_destination_mt_safe for the details.
1321   //
1322   // There is a benign race in that the other thread might observe the
1323   // modified BL before it observes the modified 64-bit destination
1324   // address. That does not matter because the destination method has been
1325   // invalidated, so there will be a trap at its start.
1326   // For this to work, the destination address in the trampoline is
1327   // always updated, even if we're not using the trampoline.
1328 
1329   // Emit a direct call if the entry address will always be in range,
1330   // otherwise a trampoline call.
1331   // Supported entry.rspec():
1332   // - relocInfo::runtime_call_type
1333   // - relocInfo::opt_virtual_call_type
1334   // - relocInfo::static_call_type
1335   // - relocInfo::virtual_call_type
1336   //
1337   // Return: the call PC or null if CodeCache is full.
1338   // Clobbers: rscratch1
1339   address trampoline_call(Address entry);
1340 
1341   static bool far_branches() {
1342     return ReservedCodeCacheSize > branch_range;
1343   }
1344 
1345   // Check if branches to the non nmethod section require a far jump
1346   static bool codestub_branch_needs_far_jump() {
1347     if (AOTCodeCache::is_on_for_dump()) {
1348       // To calculate far_codestub_branch_size correctly.
1349       return true;
1350     }
1351     return CodeCache::max_distance_to_non_nmethod() > branch_range;
1352   }
1353 
1354   // Emit a direct call/jump if the entry address will always be in range,
1355   // otherwise a far call/jump.
1356   // The address must be inside the code cache.
1357   // Supported entry.rspec():
1358   // - relocInfo::external_word_type
1359   // - relocInfo::runtime_call_type
1360   // - relocInfo::none
1361   // In the case of a far call/jump, the entry address is put in the tmp register.
1362   // The tmp register is invalidated.
1363   //
1364   // Far_jump returns the amount of the emitted code.
1365   void far_call(Address entry, Register tmp = rscratch1);
1366   int far_jump(Address entry, Register tmp = rscratch1);
1367 
1368   static int far_codestub_branch_size() {
1369     if (codestub_branch_needs_far_jump()) {
1370       return 3 * 4;  // adrp, add, br
1371     } else {
1372       return 4;
1373     }
1374   }
1375 
1376   // Emit the CompiledIC call idiom
1377   address ic_call(address entry, jint method_index = 0);
1378   static int ic_check_size();
1379   int ic_check(int end_alignment);
1380 
1381 public:
1382 
1383   // Data
1384 
1385   void mov_metadata(Register dst, Metadata* obj);
1386   Address allocate_metadata_address(Metadata* obj);
1387   Address constant_oop_address(jobject obj);
1388 
1389   void movoop(Register dst, jobject obj);
1390 
1391   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1392   void kernel_crc32(Register crc, Register buf, Register len,
1393         Register table0, Register table1, Register table2, Register table3,
1394         Register tmp, Register tmp2, Register tmp3);
1395   // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic.
1396   void kernel_crc32c(Register crc, Register buf, Register len,
1397         Register table0, Register table1, Register table2, Register table3,
1398         Register tmp, Register tmp2, Register tmp3);
1399 
1400   // Stack push and pop individual 64 bit registers
1401   void push(Register src);
1402   void pop(Register dst);
1403 
1404   void repne_scan(Register addr, Register value, Register count,
1405                   Register scratch);
1406   void repne_scanw(Register addr, Register value, Register count,
1407                    Register scratch);
1408 
1409   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1410   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1411 
1412   // If a constant does not fit in an immediate field, generate some
1413   // number of MOV instructions and then perform the operation
1414   void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
1415                              add_sub_imm_insn insn1,
1416                              add_sub_reg_insn insn2, bool is32);
1417   // Separate vsn which sets the flags
1418   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
1419                                add_sub_imm_insn insn1,
1420                                add_sub_reg_insn insn2, bool is32);
1421 
1422 #define WRAP(INSN, is32)                                                \
1423   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1424     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1425   }                                                                     \
1426                                                                         \
1427   void INSN(Register Rd, Register Rn, Register Rm,                      \
1428              enum shift_kind kind, unsigned shift = 0) {                \
1429     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1430   }                                                                     \
1431                                                                         \
1432   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1433     Assembler::INSN(Rd, Rn, Rm);                                        \
1434   }                                                                     \
1435                                                                         \
1436   void INSN(Register Rd, Register Rn, Register Rm,                      \
1437            ext::operation option, int amount = 0) {                     \
1438     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1439   }
1440 
1441   WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true)
1442 
1443 #undef WRAP
1444 #define WRAP(INSN, is32)                                                \
1445   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1446     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1447   }                                                                     \
1448                                                                         \
1449   void INSN(Register Rd, Register Rn, Register Rm,                      \
1450              enum shift_kind kind, unsigned shift = 0) {                \
1451     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1452   }                                                                     \
1453                                                                         \
1454   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1455     Assembler::INSN(Rd, Rn, Rm);                                        \
1456   }                                                                     \
1457                                                                         \
1458   void INSN(Register Rd, Register Rn, Register Rm,                      \
1459            ext::operation option, int amount = 0) {                     \
1460     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1461   }
1462 
1463   WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true)
1464 
1465   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1466   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1467   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1468   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1469 
1470   void adrp(Register reg1, const Address &dest, uint64_t &byte_offset);
1471 
1472   void tableswitch(Register index, jint lowbound, jint highbound,
1473                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1474     adr(rscratch1, jumptable);
1475     subsw(rscratch2, index, lowbound);
1476     subsw(zr, rscratch2, highbound - lowbound);
1477     br(Assembler::HS, jumptable_end);
1478     add(rscratch1, rscratch1, rscratch2,
1479         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1480     br(rscratch1);
1481   }
1482 
1483   // Form an address from base + offset in Rd.  Rd may or may not
1484   // actually be used: you must use the Address that is returned.  It
1485   // is up to you to ensure that the shift provided matches the size
1486   // of your data.
1487   Address form_address(Register Rd, Register base, int64_t byte_offset, int shift);
1488 
1489   // Return true iff an address is within the 48-bit AArch64 address
1490   // space.
1491   bool is_valid_AArch64_address(address a) {
1492     return ((uint64_t)a >> 48) == 0;
1493   }
1494 
1495   // Load the base of the cardtable byte map into reg.
1496   void load_byte_map_base(Register reg);
1497 
1498   // Prolog generator routines to support switch between x86 code and
1499   // generated ARM code
1500 
1501   // routine to generate an x86 prolog for a stub function which
1502   // bootstraps into the generated ARM code which directly follows the
1503   // stub
1504   //
1505 
1506   public:
1507 
1508   address read_polling_page(Register r, relocInfo::relocType rtype);
1509   void get_polling_page(Register dest, relocInfo::relocType rtype);
1510 
1511   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1512   void update_byte_crc32(Register crc, Register val, Register table);
1513   void update_word_crc32(Register crc, Register v, Register tmp,
1514         Register table0, Register table1, Register table2, Register table3,
1515         bool upper = false);
1516 
1517   address count_positives(Register ary1, Register len, Register result);
1518 
1519   address arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1520                         Register tmp1, Register tmp2, Register tmp3, int elem_size);
1521 
1522 // Ensure that the inline code and the stub use the same registers.
1523 #define ARRAYS_HASHCODE_REGISTERS \
1524   do {                      \
1525     assert(result == r0  && \
1526            ary    == r1  && \
1527            cnt    == r2  && \
1528            vdata0 == v3  && \
1529            vdata1 == v2  && \
1530            vdata2 == v1  && \
1531            vdata3 == v0  && \
1532            vmul0  == v4  && \
1533            vmul1  == v5  && \
1534            vmul2  == v6  && \
1535            vmul3  == v7  && \
1536            vpow   == v12 && \
1537            vpowm  == v13, "registers must match aarch64.ad"); \
1538   } while (0)
1539 
1540   void string_equals(Register a1, Register a2, Register result, Register cnt1);
1541 
1542   void fill_words(Register base, Register cnt, Register value);
1543   address zero_words(Register base, uint64_t cnt);
1544   address zero_words(Register ptr, Register cnt);
1545   void zero_dcache_blocks(Register base, Register cnt);
1546 
1547   static const int zero_words_block_size;
1548 
1549   address byte_array_inflate(Register src, Register dst, Register len,
1550                              FloatRegister vtmp1, FloatRegister vtmp2,
1551                              FloatRegister vtmp3, Register tmp4);
1552 
1553   void char_array_compress(Register src, Register dst, Register len,
1554                            Register res,
1555                            FloatRegister vtmp0, FloatRegister vtmp1,
1556                            FloatRegister vtmp2, FloatRegister vtmp3,
1557                            FloatRegister vtmp4, FloatRegister vtmp5);
1558 
1559   void encode_iso_array(Register src, Register dst,
1560                         Register len, Register res, bool ascii,
1561                         FloatRegister vtmp0, FloatRegister vtmp1,
1562                         FloatRegister vtmp2, FloatRegister vtmp3,
1563                         FloatRegister vtmp4, FloatRegister vtmp5);
1564 
1565   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1566       address pio2, address dsin_coef, address dcos_coef);
1567  private:
1568   // begin trigonometric functions support block
1569   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1570   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1571   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1572   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1573   // end trigonometric functions support block
1574   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1575                        Register src1, Register src2);
1576   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1577     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1578   }
1579   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1580                              Register y, Register y_idx, Register z,
1581                              Register carry, Register product,
1582                              Register idx, Register kdx);
1583   void multiply_128_x_128_loop(Register y, Register z,
1584                                Register carry, Register carry2,
1585                                Register idx, Register jdx,
1586                                Register yz_idx1, Register yz_idx2,
1587                                Register tmp, Register tmp3, Register tmp4,
1588                                Register tmp7, Register product_hi);
1589   void kernel_crc32_using_crypto_pmull(Register crc, Register buf,
1590         Register len, Register tmp0, Register tmp1, Register tmp2,
1591         Register tmp3);
1592   void kernel_crc32_using_crc32(Register crc, Register buf,
1593         Register len, Register tmp0, Register tmp1, Register tmp2,
1594         Register tmp3);
1595   void kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
1596         Register len, Register tmp0, Register tmp1, Register tmp2,
1597         Register tmp3);
1598   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1599         Register len, Register tmp0, Register tmp1, Register tmp2,
1600         Register tmp3);
1601   void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
1602         Register len, Register tmp0, Register tmp1, Register tmp2,
1603         size_t table_offset);
1604 
1605   void ghash_modmul (FloatRegister result,
1606                      FloatRegister result_lo, FloatRegister result_hi, FloatRegister b,
1607                      FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p,
1608                      FloatRegister t1, FloatRegister t2, FloatRegister t3);
1609   void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state);
1610 public:
1611   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1612                        Register tmp0, Register tmp1, Register tmp2, Register tmp3,
1613                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1614   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1615   void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi,
1616                       FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1617                       FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1618   void ghash_multiply_wide(int index,
1619                            FloatRegister result_lo, FloatRegister result_hi,
1620                            FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1621                            FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1622   void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi,
1623                     FloatRegister p, FloatRegister z, FloatRegister t1);
1624   void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi,
1625                     FloatRegister p, FloatRegister z, FloatRegister t1);
1626   void ghash_processBlocks_wide(address p, Register state, Register subkeyH,
1627                                 Register data, Register blocks, int unrolls);
1628 
1629 
1630   void aesenc_loadkeys(Register key, Register keylen);
1631   void aesecb_encrypt(Register from, Register to, Register keylen,
1632                       FloatRegister data = v0, int unrolls = 1);
1633   void aesecb_decrypt(Register from, Register to, Register key, Register keylen);
1634   void aes_round(FloatRegister input, FloatRegister subkey);
1635 
1636   // ChaCha20 functions support block
1637   void cc20_qr_add4(FloatRegister (&addFirst)[4],
1638           FloatRegister (&addSecond)[4]);
1639   void cc20_qr_xor4(FloatRegister (&firstElem)[4],
1640           FloatRegister (&secondElem)[4], FloatRegister (&result)[4]);
1641   void cc20_qr_lrot4(FloatRegister (&sourceReg)[4],
1642           FloatRegister (&destReg)[4], int bits, FloatRegister table);
1643   void cc20_set_qr_registers(FloatRegister (&vectorSet)[4],
1644           const FloatRegister (&stateVectors)[16], int idx1, int idx2,
1645           int idx3, int idx4);
1646 
1647   // Place an ISB after code may have been modified due to a safepoint.
1648   void safepoint_isb();
1649 
1650 private:
1651   // Return the effective address r + (r1 << ext) + offset.
1652   // Uses rscratch2.
1653   Address offsetted_address(Register r, Register r1, Address::extend ext,
1654                             int offset, int size);
1655 
1656 private:
1657   // Returns an address on the stack which is reachable with a ldr/str of size
1658   // Uses rscratch2 if the address is not directly reachable
1659   Address spill_address(int size, int offset, Register tmp=rscratch2);
1660   Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2);
1661 
1662   bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const;
1663 
1664   // Check whether two loads/stores can be merged into ldp/stp.
1665   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1666 
1667   // Merge current load/store with previous load/store into ldp/stp.
1668   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1669 
1670   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1671   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1672 
1673 public:
1674   void spill(Register Rx, bool is64, int offset) {
1675     if (is64) {
1676       str(Rx, spill_address(8, offset));
1677     } else {
1678       strw(Rx, spill_address(4, offset));
1679     }
1680   }
1681   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1682     str(Vx, T, spill_address(1 << (int)T, offset));
1683   }
1684 
1685   void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1686     sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1687   }
1688   void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1689     sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1690   }
1691 
1692   void unspill(Register Rx, bool is64, int offset) {
1693     if (is64) {
1694       ldr(Rx, spill_address(8, offset));
1695     } else {
1696       ldrw(Rx, spill_address(4, offset));
1697     }
1698   }
1699   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1700     ldr(Vx, T, spill_address(1 << (int)T, offset));
1701   }
1702 
1703   void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1704     sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1705   }
1706   void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1707     sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1708   }
1709 
1710   void spill_copy128(int src_offset, int dst_offset,
1711                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1712     if (src_offset < 512 && (src_offset & 7) == 0 &&
1713         dst_offset < 512 && (dst_offset & 7) == 0) {
1714       ldp(tmp1, tmp2, Address(sp, src_offset));
1715       stp(tmp1, tmp2, Address(sp, dst_offset));
1716     } else {
1717       unspill(tmp1, true, src_offset);
1718       spill(tmp1, true, dst_offset);
1719       unspill(tmp1, true, src_offset+8);
1720       spill(tmp1, true, dst_offset+8);
1721     }
1722   }
1723   void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset,
1724                                             int sve_vec_reg_size_in_bytes) {
1725     assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size");
1726     for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) {
1727       spill_copy128(src_offset, dst_offset);
1728       src_offset += 16;
1729       dst_offset += 16;
1730     }
1731   }
1732   void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset,
1733                                                int sve_predicate_reg_size_in_bytes) {
1734     sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset));
1735     sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset));
1736     reinitialize_ptrue();
1737   }
1738   void cache_wb(Address line);
1739   void cache_wbsync(bool is_pre);
1740 
1741   // Code for java.lang.Thread::onSpinWait() intrinsic.
1742   void spin_wait();
1743 
1744   void lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow);
1745   void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow);
1746 
1747 private:
1748   // Check the current thread doesn't need a cross modify fence.
1749   void verify_cross_modify_fence_not_required() PRODUCT_RETURN;
1750 
1751 };
1752 
1753 #ifdef ASSERT
1754 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1755 #endif
1756 
1757 struct tableswitch {
1758   Register _reg;
1759   int _insn_index; jint _first_key; jint _last_key;
1760   Label _after;
1761   Label _branches;
1762 };
1763 
1764 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP