1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 28 29 #include "asm/assembler.inline.hpp" 30 #include "code/vmreg.hpp" 31 #include "metaprogramming/enableIf.hpp" 32 #include "oops/compressedOops.hpp" 33 #include "oops/compressedKlass.hpp" 34 #include "runtime/vm_version.hpp" 35 #include "utilities/powerOfTwo.hpp" 36 37 class OopMap; 38 39 // MacroAssembler extends Assembler by frequently used macros. 40 // 41 // Instructions for which a 'better' code sequence exists depending 42 // on arguments should also go in here. 43 44 class MacroAssembler: public Assembler { 45 friend class LIR_Assembler; 46 47 public: 48 using Assembler::mov; 49 using Assembler::movi; 50 51 protected: 52 53 // Support for VM calls 54 // 55 // This is the base routine called by the different versions of call_VM_leaf. The interpreter 56 // may customize this version by overriding it for its purposes (e.g., to save/restore 57 // additional registers when doing a VM call). 58 virtual void call_VM_leaf_base( 59 address entry_point, // the entry point 60 int number_of_arguments, // the number of arguments to pop after the call 61 Label *retaddr = nullptr 62 ); 63 64 virtual void call_VM_leaf_base( 65 address entry_point, // the entry point 66 int number_of_arguments, // the number of arguments to pop after the call 67 Label &retaddr) { 68 call_VM_leaf_base(entry_point, number_of_arguments, &retaddr); 69 } 70 71 // This is the base routine called by the different versions of call_VM. The interpreter 72 // may customize this version by overriding it for its purposes (e.g., to save/restore 73 // additional registers when doing a VM call). 74 // 75 // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base 76 // returns the register which contains the thread upon return. If a thread register has been 77 // specified, the return value will correspond to that register. If no last_java_sp is specified 78 // (noreg) than rsp will be used instead. 79 virtual void call_VM_base( // returns the register containing the thread upon return 80 Register oop_result, // where an oop-result ends up if any; use noreg otherwise 81 Register java_thread, // the thread if computed before ; use noreg otherwise 82 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise 83 address entry_point, // the entry point 84 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call 85 bool check_exceptions // whether to check for pending exceptions after return 86 ); 87 88 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); 89 90 enum KlassDecodeMode { 91 KlassDecodeNone, 92 KlassDecodeZero, 93 KlassDecodeXor, 94 KlassDecodeMovk 95 }; 96 97 KlassDecodeMode klass_decode_mode(); 98 99 private: 100 static KlassDecodeMode _klass_decode_mode; 101 102 public: 103 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 104 105 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. 106 // The implementation is only non-empty for the InterpreterMacroAssembler, 107 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. 108 virtual void check_and_handle_popframe(Register java_thread); 109 virtual void check_and_handle_earlyret(Register java_thread); 110 111 void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1); 112 void rt_call(address dest, Register tmp = rscratch1); 113 114 // Load Effective Address 115 void lea(Register r, const Address &a) { 116 InstructionMark im(this); 117 a.lea(this, r); 118 } 119 120 /* Sometimes we get misaligned loads and stores, usually from Unsafe 121 accesses, and these can exceed the offset range. */ 122 Address legitimize_address(const Address &a, int size, Register scratch) { 123 if (a.getMode() == Address::base_plus_offset) { 124 if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) { 125 block_comment("legitimize_address {"); 126 lea(scratch, a); 127 block_comment("} legitimize_address"); 128 return Address(scratch); 129 } 130 } 131 return a; 132 } 133 134 void addmw(Address a, Register incr, Register scratch) { 135 ldrw(scratch, a); 136 addw(scratch, scratch, incr); 137 strw(scratch, a); 138 } 139 140 // Add constant to memory word 141 void addmw(Address a, int imm, Register scratch) { 142 ldrw(scratch, a); 143 if (imm > 0) 144 addw(scratch, scratch, (unsigned)imm); 145 else 146 subw(scratch, scratch, (unsigned)-imm); 147 strw(scratch, a); 148 } 149 150 void bind(Label& L) { 151 Assembler::bind(L); 152 code()->clear_last_insn(); 153 code()->set_last_label(pc()); 154 } 155 156 void membar(Membar_mask_bits order_constraint); 157 158 using Assembler::ldr; 159 using Assembler::str; 160 using Assembler::ldrw; 161 using Assembler::strw; 162 163 void ldr(Register Rx, const Address &adr); 164 void ldrw(Register Rw, const Address &adr); 165 void str(Register Rx, const Address &adr); 166 void strw(Register Rx, const Address &adr); 167 168 // Frame creation and destruction shared between JITs. 169 void build_frame(int framesize); 170 void remove_frame(int framesize); 171 172 virtual void _call_Unimplemented(address call_site) { 173 mov(rscratch2, call_site); 174 } 175 176 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__ 177 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention." 178 // https://reviews.llvm.org/D3311 179 180 #ifdef _WIN64 181 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__) 182 #else 183 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__) 184 #endif 185 186 // aliases defined in AARCH64 spec 187 188 template<class T> 189 inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); } 190 191 inline void cmp(Register Rd, unsigned char imm8) { subs(zr, Rd, imm8); } 192 inline void cmp(Register Rd, unsigned imm) = delete; 193 194 template<class T> 195 inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); } 196 197 inline void cmn(Register Rd, unsigned char imm8) { adds(zr, Rd, imm8); } 198 inline void cmn(Register Rd, unsigned imm) = delete; 199 200 void cset(Register Rd, Assembler::Condition cond) { 201 csinc(Rd, zr, zr, ~cond); 202 } 203 void csetw(Register Rd, Assembler::Condition cond) { 204 csincw(Rd, zr, zr, ~cond); 205 } 206 207 void cneg(Register Rd, Register Rn, Assembler::Condition cond) { 208 csneg(Rd, Rn, Rn, ~cond); 209 } 210 void cnegw(Register Rd, Register Rn, Assembler::Condition cond) { 211 csnegw(Rd, Rn, Rn, ~cond); 212 } 213 214 inline void movw(Register Rd, Register Rn) { 215 if (Rd == sp || Rn == sp) { 216 Assembler::addw(Rd, Rn, 0U); 217 } else { 218 orrw(Rd, zr, Rn); 219 } 220 } 221 inline void mov(Register Rd, Register Rn) { 222 assert(Rd != r31_sp && Rn != r31_sp, "should be"); 223 if (Rd == Rn) { 224 } else if (Rd == sp || Rn == sp) { 225 Assembler::add(Rd, Rn, 0U); 226 } else { 227 orr(Rd, zr, Rn); 228 } 229 } 230 231 inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); } 232 inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); } 233 234 inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); } 235 inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); } 236 237 inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); } 238 inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); } 239 240 inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 241 bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 242 } 243 inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) { 244 bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 245 } 246 247 inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 248 bfmw(Rd, Rn, lsb, (lsb + width - 1)); 249 } 250 inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) { 251 bfm(Rd, Rn, lsb , (lsb + width - 1)); 252 } 253 254 inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 255 sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 256 } 257 inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 258 sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 259 } 260 261 inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 262 sbfmw(Rd, Rn, lsb, (lsb + width - 1)); 263 } 264 inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 265 sbfm(Rd, Rn, lsb , (lsb + width - 1)); 266 } 267 268 inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 269 ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 270 } 271 inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 272 ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 273 } 274 275 inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 276 ubfmw(Rd, Rn, lsb, (lsb + width - 1)); 277 } 278 inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 279 ubfm(Rd, Rn, lsb , (lsb + width - 1)); 280 } 281 282 inline void asrw(Register Rd, Register Rn, unsigned imm) { 283 sbfmw(Rd, Rn, imm, 31); 284 } 285 286 inline void asr(Register Rd, Register Rn, unsigned imm) { 287 sbfm(Rd, Rn, imm, 63); 288 } 289 290 inline void lslw(Register Rd, Register Rn, unsigned imm) { 291 ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm)); 292 } 293 294 inline void lsl(Register Rd, Register Rn, unsigned imm) { 295 ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm)); 296 } 297 298 inline void lsrw(Register Rd, Register Rn, unsigned imm) { 299 ubfmw(Rd, Rn, imm, 31); 300 } 301 302 inline void lsr(Register Rd, Register Rn, unsigned imm) { 303 ubfm(Rd, Rn, imm, 63); 304 } 305 306 inline void rorw(Register Rd, Register Rn, unsigned imm) { 307 extrw(Rd, Rn, Rn, imm); 308 } 309 310 inline void ror(Register Rd, Register Rn, unsigned imm) { 311 extr(Rd, Rn, Rn, imm); 312 } 313 314 inline void sxtbw(Register Rd, Register Rn) { 315 sbfmw(Rd, Rn, 0, 7); 316 } 317 inline void sxthw(Register Rd, Register Rn) { 318 sbfmw(Rd, Rn, 0, 15); 319 } 320 inline void sxtb(Register Rd, Register Rn) { 321 sbfm(Rd, Rn, 0, 7); 322 } 323 inline void sxth(Register Rd, Register Rn) { 324 sbfm(Rd, Rn, 0, 15); 325 } 326 inline void sxtw(Register Rd, Register Rn) { 327 sbfm(Rd, Rn, 0, 31); 328 } 329 330 inline void uxtbw(Register Rd, Register Rn) { 331 ubfmw(Rd, Rn, 0, 7); 332 } 333 inline void uxthw(Register Rd, Register Rn) { 334 ubfmw(Rd, Rn, 0, 15); 335 } 336 inline void uxtb(Register Rd, Register Rn) { 337 ubfm(Rd, Rn, 0, 7); 338 } 339 inline void uxth(Register Rd, Register Rn) { 340 ubfm(Rd, Rn, 0, 15); 341 } 342 inline void uxtw(Register Rd, Register Rn) { 343 ubfm(Rd, Rn, 0, 31); 344 } 345 346 inline void cmnw(Register Rn, Register Rm) { 347 addsw(zr, Rn, Rm); 348 } 349 inline void cmn(Register Rn, Register Rm) { 350 adds(zr, Rn, Rm); 351 } 352 353 inline void cmpw(Register Rn, Register Rm) { 354 subsw(zr, Rn, Rm); 355 } 356 inline void cmp(Register Rn, Register Rm) { 357 subs(zr, Rn, Rm); 358 } 359 360 inline void negw(Register Rd, Register Rn) { 361 subw(Rd, zr, Rn); 362 } 363 364 inline void neg(Register Rd, Register Rn) { 365 sub(Rd, zr, Rn); 366 } 367 368 inline void negsw(Register Rd, Register Rn) { 369 subsw(Rd, zr, Rn); 370 } 371 372 inline void negs(Register Rd, Register Rn) { 373 subs(Rd, zr, Rn); 374 } 375 376 inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 377 addsw(zr, Rn, Rm, kind, shift); 378 } 379 inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 380 adds(zr, Rn, Rm, kind, shift); 381 } 382 383 inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 384 subsw(zr, Rn, Rm, kind, shift); 385 } 386 inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 387 subs(zr, Rn, Rm, kind, shift); 388 } 389 390 inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 391 subw(Rd, zr, Rn, kind, shift); 392 } 393 394 inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 395 sub(Rd, zr, Rn, kind, shift); 396 } 397 398 inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 399 subsw(Rd, zr, Rn, kind, shift); 400 } 401 402 inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 403 subs(Rd, zr, Rn, kind, shift); 404 } 405 406 inline void mnegw(Register Rd, Register Rn, Register Rm) { 407 msubw(Rd, Rn, Rm, zr); 408 } 409 inline void mneg(Register Rd, Register Rn, Register Rm) { 410 msub(Rd, Rn, Rm, zr); 411 } 412 413 inline void mulw(Register Rd, Register Rn, Register Rm) { 414 maddw(Rd, Rn, Rm, zr); 415 } 416 inline void mul(Register Rd, Register Rn, Register Rm) { 417 madd(Rd, Rn, Rm, zr); 418 } 419 420 inline void smnegl(Register Rd, Register Rn, Register Rm) { 421 smsubl(Rd, Rn, Rm, zr); 422 } 423 inline void smull(Register Rd, Register Rn, Register Rm) { 424 smaddl(Rd, Rn, Rm, zr); 425 } 426 427 inline void umnegl(Register Rd, Register Rn, Register Rm) { 428 umsubl(Rd, Rn, Rm, zr); 429 } 430 inline void umull(Register Rd, Register Rn, Register Rm) { 431 umaddl(Rd, Rn, Rm, zr); 432 } 433 434 #define WRAP(INSN) \ 435 void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \ 436 if (VM_Version::supports_a53mac() && Ra != zr) \ 437 nop(); \ 438 Assembler::INSN(Rd, Rn, Rm, Ra); \ 439 } 440 441 WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw) 442 WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl) 443 #undef WRAP 444 445 446 // macro assembly operations needed for aarch64 447 448 public: 449 450 enum FpPushPopMode { 451 PushPopFull, 452 PushPopSVE, 453 PushPopNeon, 454 PushPopFp 455 }; 456 457 // first two private routines for loading 32 bit or 64 bit constants 458 private: 459 460 void mov_immediate64(Register dst, uint64_t imm64); 461 void mov_immediate32(Register dst, uint32_t imm32); 462 463 int push(unsigned int bitset, Register stack); 464 int pop(unsigned int bitset, Register stack); 465 466 int push_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 467 int pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 468 469 int push_p(unsigned int bitset, Register stack); 470 int pop_p(unsigned int bitset, Register stack); 471 472 void mov(Register dst, Address a); 473 474 public: 475 476 void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); } 477 void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); } 478 479 void push_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) push_fp(regs.bits(), stack, mode); } 480 void pop_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) pop_fp(regs.bits(), stack, mode); } 481 482 static RegSet call_clobbered_gp_registers(); 483 484 void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); } 485 void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); } 486 487 // Push and pop everything that might be clobbered by a native 488 // runtime call except rscratch1 and rscratch2. (They are always 489 // scratch, so we don't have to protect them.) Only save the lower 490 // 64 bits of each vector register. Additional registers can be excluded 491 // in a passed RegSet. 492 void push_call_clobbered_registers_except(RegSet exclude); 493 void pop_call_clobbered_registers_except(RegSet exclude); 494 495 void push_call_clobbered_registers() { 496 push_call_clobbered_registers_except(RegSet()); 497 } 498 void pop_call_clobbered_registers() { 499 pop_call_clobbered_registers_except(RegSet()); 500 } 501 502 503 // now mov instructions for loading absolute addresses and 32 or 504 // 64 bit integers 505 506 inline void mov(Register dst, address addr) { mov_immediate64(dst, (uint64_t)addr); } 507 508 template<typename T, ENABLE_IF(std::is_integral<T>::value)> 509 inline void mov(Register dst, T o) { mov_immediate64(dst, (uint64_t)o); } 510 511 inline void movw(Register dst, uint32_t imm32) { mov_immediate32(dst, imm32); } 512 513 void mov(Register dst, RegisterOrConstant src) { 514 if (src.is_register()) 515 mov(dst, src.as_register()); 516 else 517 mov(dst, src.as_constant()); 518 } 519 520 void movptr(Register r, uintptr_t imm64); 521 522 void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64); 523 524 void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { 525 orr(Vd, T, Vn, Vn); 526 } 527 528 void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) { 529 fcvtsh(tmp, src); 530 smov(dst, tmp, H, 0); 531 } 532 533 void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) { 534 mov(tmp, H, 0, src); 535 fcvths(dst, tmp); 536 } 537 538 // Generalized Test Bit And Branch, including a "far" variety which 539 // spans more than 32KiB. 540 void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) { 541 assert(cond == EQ || cond == NE, "must be"); 542 543 if (isfar) 544 cond = ~cond; 545 546 void (Assembler::* branch)(Register Rt, int bitpos, Label &L); 547 if (cond == Assembler::EQ) 548 branch = &Assembler::tbz; 549 else 550 branch = &Assembler::tbnz; 551 552 if (isfar) { 553 Label L; 554 (this->*branch)(Rt, bitpos, L); 555 b(dest); 556 bind(L); 557 } else { 558 (this->*branch)(Rt, bitpos, dest); 559 } 560 } 561 562 // macro instructions for accessing and updating floating point 563 // status register 564 // 565 // FPSR : op1 == 011 566 // CRn == 0100 567 // CRm == 0100 568 // op2 == 001 569 570 inline void get_fpsr(Register reg) 571 { 572 mrs(0b11, 0b0100, 0b0100, 0b001, reg); 573 } 574 575 inline void set_fpsr(Register reg) 576 { 577 msr(0b011, 0b0100, 0b0100, 0b001, reg); 578 } 579 580 inline void clear_fpsr() 581 { 582 msr(0b011, 0b0100, 0b0100, 0b001, zr); 583 } 584 585 // FPCR : op1 == 011 586 // CRn == 0100 587 // CRm == 0100 588 // op2 == 000 589 590 inline void get_fpcr(Register reg) { 591 mrs(0b11, 0b0100, 0b0100, 0b000, reg); 592 } 593 594 inline void set_fpcr(Register reg) { 595 msr(0b011, 0b0100, 0b0100, 0b000, reg); 596 } 597 598 // DCZID_EL0: op1 == 011 599 // CRn == 0000 600 // CRm == 0000 601 // op2 == 111 602 inline void get_dczid_el0(Register reg) 603 { 604 mrs(0b011, 0b0000, 0b0000, 0b111, reg); 605 } 606 607 // CTR_EL0: op1 == 011 608 // CRn == 0000 609 // CRm == 0000 610 // op2 == 001 611 inline void get_ctr_el0(Register reg) 612 { 613 mrs(0b011, 0b0000, 0b0000, 0b001, reg); 614 } 615 616 inline void get_nzcv(Register reg) { 617 mrs(0b011, 0b0100, 0b0010, 0b000, reg); 618 } 619 620 inline void set_nzcv(Register reg) { 621 msr(0b011, 0b0100, 0b0010, 0b000, reg); 622 } 623 624 // idiv variant which deals with MINLONG as dividend and -1 as divisor 625 int corrected_idivl(Register result, Register ra, Register rb, 626 bool want_remainder, Register tmp = rscratch1); 627 int corrected_idivq(Register result, Register ra, Register rb, 628 bool want_remainder, Register tmp = rscratch1); 629 630 // Support for null-checks 631 // 632 // Generates code that causes a null OS exception if the content of reg is null. 633 // If the accessed location is M[reg + offset] and the offset is known, provide the 634 // offset. No explicit code generation is needed if the offset is within a certain 635 // range (0 <= offset <= page_size). 636 637 virtual void null_check(Register reg, int offset = -1); 638 static bool needs_explicit_null_check(intptr_t offset); 639 static bool uses_implicit_null_check(void* address); 640 641 static address target_addr_for_insn(address insn_addr, unsigned insn); 642 static address target_addr_for_insn_or_null(address insn_addr, unsigned insn); 643 static address target_addr_for_insn(address insn_addr) { 644 unsigned insn = *(unsigned*)insn_addr; 645 return target_addr_for_insn(insn_addr, insn); 646 } 647 static address target_addr_for_insn_or_null(address insn_addr) { 648 unsigned insn = *(unsigned*)insn_addr; 649 return target_addr_for_insn_or_null(insn_addr, insn); 650 } 651 652 // Required platform-specific helpers for Label::patch_instructions. 653 // They _shadow_ the declarations in AbstractAssembler, which are undefined. 654 static int pd_patch_instruction_size(address branch, address target); 655 static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) { 656 pd_patch_instruction_size(branch, target); 657 } 658 static address pd_call_destination(address branch) { 659 return target_addr_for_insn(branch); 660 } 661 #ifndef PRODUCT 662 static void pd_print_patched_instruction(address branch); 663 #endif 664 665 static int patch_oop(address insn_addr, address o); 666 static int patch_narrow_klass(address insn_addr, narrowKlass n); 667 668 // Return whether code is emitted to a scratch blob. 669 virtual bool in_scratch_emit_size() { 670 return false; 671 } 672 address emit_trampoline_stub(int insts_call_instruction_offset, address target); 673 static int max_trampoline_stub_size(); 674 void emit_static_call_stub(); 675 static int static_call_stub_size(); 676 677 // The following 4 methods return the offset of the appropriate move instruction 678 679 // Support for fast byte/short loading with zero extension (depending on particular CPU) 680 int load_unsigned_byte(Register dst, Address src); 681 int load_unsigned_short(Register dst, Address src); 682 683 // Support for fast byte/short loading with sign extension (depending on particular CPU) 684 int load_signed_byte(Register dst, Address src); 685 int load_signed_short(Register dst, Address src); 686 687 int load_signed_byte32(Register dst, Address src); 688 int load_signed_short32(Register dst, Address src); 689 690 // Support for sign-extension (hi:lo = extend_sign(lo)) 691 void extend_sign(Register hi, Register lo); 692 693 // Load and store values by size and signed-ness 694 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed); 695 void store_sized_value(Address dst, Register src, size_t size_in_bytes); 696 697 // Support for inc/dec with optimal instruction selection depending on value 698 699 // x86_64 aliases an unqualified register/address increment and 700 // decrement to call incrementq and decrementq but also supports 701 // explicitly sized calls to incrementq/decrementq or 702 // incrementl/decrementl 703 704 // for aarch64 the proper convention would be to use 705 // increment/decrement for 64 bit operations and 706 // incrementw/decrementw for 32 bit operations. so when porting 707 // x86_64 code we can leave calls to increment/decrement as is, 708 // replace incrementq/decrementq with increment/decrement and 709 // replace incrementl/decrementl with incrementw/decrementw. 710 711 // n.b. increment/decrement calls with an Address destination will 712 // need to use a scratch register to load the value to be 713 // incremented. increment/decrement calls which add or subtract a 714 // constant value greater than 2^12 will need to use a 2nd scratch 715 // register to hold the constant. so, a register increment/decrement 716 // may trash rscratch2 and an address increment/decrement trash 717 // rscratch and rscratch2 718 719 void decrementw(Address dst, int value = 1); 720 void decrementw(Register reg, int value = 1); 721 722 void decrement(Register reg, int value = 1); 723 void decrement(Address dst, int value = 1); 724 725 void incrementw(Address dst, int value = 1); 726 void incrementw(Register reg, int value = 1); 727 728 void increment(Register reg, int value = 1); 729 void increment(Address dst, int value = 1); 730 731 732 // Alignment 733 void align(int modulus); 734 void align(int modulus, int target); 735 736 // nop 737 void post_call_nop(); 738 739 // Stack frame creation/removal 740 void enter(bool strip_ret_addr = false); 741 void leave(); 742 743 // ROP Protection 744 void protect_return_address(); 745 void protect_return_address(Register return_reg); 746 void authenticate_return_address(); 747 void authenticate_return_address(Register return_reg); 748 void strip_return_address(); 749 void check_return_address(Register return_reg=lr) PRODUCT_RETURN; 750 751 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) 752 // The pointer will be loaded into the thread register. 753 void get_thread(Register thread); 754 755 // support for argument shuffling 756 void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 757 void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 758 void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 759 void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 760 void object_move( 761 OopMap* map, 762 int oop_handle_offset, 763 int framesize_in_slots, 764 VMRegPair src, 765 VMRegPair dst, 766 bool is_receiver, 767 int* receiver_offset); 768 769 770 // Support for VM calls 771 // 772 // It is imperative that all calls into the VM are handled via the call_VM macros. 773 // They make sure that the stack linkage is setup correctly. call_VM's correspond 774 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. 775 776 777 void call_VM(Register oop_result, 778 address entry_point, 779 bool check_exceptions = true); 780 void call_VM(Register oop_result, 781 address entry_point, 782 Register arg_1, 783 bool check_exceptions = true); 784 void call_VM(Register oop_result, 785 address entry_point, 786 Register arg_1, Register arg_2, 787 bool check_exceptions = true); 788 void call_VM(Register oop_result, 789 address entry_point, 790 Register arg_1, Register arg_2, Register arg_3, 791 bool check_exceptions = true); 792 793 // Overloadings with last_Java_sp 794 void call_VM(Register oop_result, 795 Register last_java_sp, 796 address entry_point, 797 int number_of_arguments = 0, 798 bool check_exceptions = true); 799 void call_VM(Register oop_result, 800 Register last_java_sp, 801 address entry_point, 802 Register arg_1, bool 803 check_exceptions = true); 804 void call_VM(Register oop_result, 805 Register last_java_sp, 806 address entry_point, 807 Register arg_1, Register arg_2, 808 bool check_exceptions = true); 809 void call_VM(Register oop_result, 810 Register last_java_sp, 811 address entry_point, 812 Register arg_1, Register arg_2, Register arg_3, 813 bool check_exceptions = true); 814 815 void get_vm_result (Register oop_result, Register thread); 816 void get_vm_result_2(Register metadata_result, Register thread); 817 818 // These always tightly bind to MacroAssembler::call_VM_base 819 // bypassing the virtual implementation 820 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); 821 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); 822 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 823 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); 824 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); 825 826 void call_VM_leaf(address entry_point, 827 int number_of_arguments = 0); 828 void call_VM_leaf(address entry_point, 829 Register arg_1); 830 void call_VM_leaf(address entry_point, 831 Register arg_1, Register arg_2); 832 void call_VM_leaf(address entry_point, 833 Register arg_1, Register arg_2, Register arg_3); 834 835 // These always tightly bind to MacroAssembler::call_VM_leaf_base 836 // bypassing the virtual implementation 837 void super_call_VM_leaf(address entry_point); 838 void super_call_VM_leaf(address entry_point, Register arg_1); 839 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 840 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 841 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); 842 843 // last Java Frame (fills frame anchor) 844 void set_last_Java_frame(Register last_java_sp, 845 Register last_java_fp, 846 address last_java_pc, 847 Register scratch); 848 849 void set_last_Java_frame(Register last_java_sp, 850 Register last_java_fp, 851 Label &last_java_pc, 852 Register scratch); 853 854 void set_last_Java_frame(Register last_java_sp, 855 Register last_java_fp, 856 Register last_java_pc, 857 Register scratch); 858 859 void reset_last_Java_frame(Register thread); 860 861 // thread in the default location (rthread) 862 void reset_last_Java_frame(bool clear_fp); 863 864 // Stores 865 void store_check(Register obj); // store check for obj - register is destroyed afterwards 866 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) 867 868 void resolve_jobject(Register value, Register tmp1, Register tmp2); 869 void resolve_global_jobject(Register value, Register tmp1, Register tmp2); 870 871 // C 'boolean' to Java boolean: x == 0 ? 0 : 1 872 void c2bool(Register x); 873 874 void load_method_holder_cld(Register rresult, Register rmethod); 875 void load_method_holder(Register holder, Register method); 876 877 // oop manipulations 878 void load_narrow_klass_compact(Register dst, Register src); 879 void load_klass(Register dst, Register src); 880 void store_klass(Register dst, Register src); 881 void cmp_klass(Register obj, Register klass, Register tmp); 882 void cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2); 883 884 void resolve_weak_handle(Register result, Register tmp1, Register tmp2); 885 void resolve_oop_handle(Register result, Register tmp1, Register tmp2); 886 void load_mirror(Register dst, Register method, Register tmp1, Register tmp2); 887 888 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 889 Register tmp1, Register tmp2); 890 891 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 892 Register tmp1, Register tmp2, Register tmp3); 893 894 void load_heap_oop(Register dst, Address src, Register tmp1, 895 Register tmp2, DecoratorSet decorators = 0); 896 897 void load_heap_oop_not_null(Register dst, Address src, Register tmp1, 898 Register tmp2, DecoratorSet decorators = 0); 899 void store_heap_oop(Address dst, Register val, Register tmp1, 900 Register tmp2, Register tmp3, DecoratorSet decorators = 0); 901 902 // currently unimplemented 903 // Used for storing null. All other oop constants should be 904 // stored using routines that take a jobject. 905 void store_heap_oop_null(Address dst); 906 907 void store_klass_gap(Register dst, Register src); 908 909 // This dummy is to prevent a call to store_heap_oop from 910 // converting a zero (like null) into a Register by giving 911 // the compiler two choices it can't resolve 912 913 void store_heap_oop(Address dst, void* dummy); 914 915 void encode_heap_oop(Register d, Register s); 916 void encode_heap_oop(Register r) { encode_heap_oop(r, r); } 917 void decode_heap_oop(Register d, Register s); 918 void decode_heap_oop(Register r) { decode_heap_oop(r, r); } 919 void encode_heap_oop_not_null(Register r); 920 void decode_heap_oop_not_null(Register r); 921 void encode_heap_oop_not_null(Register dst, Register src); 922 void decode_heap_oop_not_null(Register dst, Register src); 923 924 void set_narrow_oop(Register dst, jobject obj); 925 926 void encode_klass_not_null(Register r); 927 void decode_klass_not_null(Register r); 928 void encode_klass_not_null(Register dst, Register src); 929 void decode_klass_not_null(Register dst, Register src); 930 931 void set_narrow_klass(Register dst, Klass* k); 932 933 // if heap base register is used - reinit it with the correct value 934 void reinit_heapbase(); 935 936 DEBUG_ONLY(void verify_heapbase(const char* msg);) 937 938 void push_CPU_state(bool save_vectors = false, bool use_sve = false, 939 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 940 void pop_CPU_state(bool restore_vectors = false, bool use_sve = false, 941 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 942 943 void push_cont_fastpath(Register java_thread = rthread); 944 void pop_cont_fastpath(Register java_thread = rthread); 945 946 void inc_held_monitor_count(Register tmp); 947 void dec_held_monitor_count(Register tmp); 948 949 // Round up to a power of two 950 void round_to(Register reg, int modulus); 951 952 // java.lang.Math::round intrinsics 953 void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp); 954 void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp); 955 956 // allocation 957 void tlab_allocate( 958 Register obj, // result: pointer to object after successful allocation 959 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 960 int con_size_in_bytes, // object size in bytes if known at compile time 961 Register t1, // temp register 962 Register t2, // temp register 963 Label& slow_case // continuation point if fast allocation fails 964 ); 965 void verify_tlab(); 966 967 // interface method calling 968 void lookup_interface_method(Register recv_klass, 969 Register intf_klass, 970 RegisterOrConstant itable_index, 971 Register method_result, 972 Register scan_temp, 973 Label& no_such_interface, 974 bool return_method = true); 975 976 void lookup_interface_method_stub(Register recv_klass, 977 Register holder_klass, 978 Register resolved_klass, 979 Register method_result, 980 Register temp_reg, 981 Register temp_reg2, 982 int itable_index, 983 Label& L_no_such_interface); 984 985 // virtual method calling 986 // n.b. x86 allows RegisterOrConstant for vtable_index 987 void lookup_virtual_method(Register recv_klass, 988 RegisterOrConstant vtable_index, 989 Register method_result); 990 991 // Test sub_klass against super_klass, with fast and slow paths. 992 993 // The fast path produces a tri-state answer: yes / no / maybe-slow. 994 // One of the three labels can be null, meaning take the fall-through. 995 // If super_check_offset is -1, the value is loaded up from super_klass. 996 // No registers are killed, except temp_reg. 997 void check_klass_subtype_fast_path(Register sub_klass, 998 Register super_klass, 999 Register temp_reg, 1000 Label* L_success, 1001 Label* L_failure, 1002 Label* L_slow_path, 1003 Register super_check_offset = noreg); 1004 1005 // The rest of the type check; must be wired to a corresponding fast path. 1006 // It does not repeat the fast path logic, so don't use it standalone. 1007 // The temp_reg and temp2_reg can be noreg, if no temps are available. 1008 // Updates the sub's secondary super cache as necessary. 1009 // If set_cond_codes, condition codes will be Z on success, NZ on failure. 1010 void check_klass_subtype_slow_path(Register sub_klass, 1011 Register super_klass, 1012 Register temp_reg, 1013 Register temp2_reg, 1014 Label* L_success, 1015 Label* L_failure, 1016 bool set_cond_codes = false); 1017 1018 void check_klass_subtype_slow_path_linear(Register sub_klass, 1019 Register super_klass, 1020 Register temp_reg, 1021 Register temp2_reg, 1022 Label* L_success, 1023 Label* L_failure, 1024 bool set_cond_codes = false); 1025 1026 void check_klass_subtype_slow_path_table(Register sub_klass, 1027 Register super_klass, 1028 Register temp_reg, 1029 Register temp2_reg, 1030 Register temp3_reg, 1031 Register result_reg, 1032 FloatRegister vtemp_reg, 1033 Label* L_success, 1034 Label* L_failure, 1035 bool set_cond_codes = false); 1036 1037 // If r is valid, return r. 1038 // If r is invalid, remove a register r2 from available_regs, add r2 1039 // to regs_to_push, then return r2. 1040 Register allocate_if_noreg(const Register r, 1041 RegSetIterator<Register> &available_regs, 1042 RegSet ®s_to_push); 1043 1044 // Secondary subtype checking 1045 void lookup_secondary_supers_table_var(Register sub_klass, 1046 Register r_super_klass, 1047 Register temp1, 1048 Register temp2, 1049 Register temp3, 1050 FloatRegister vtemp, 1051 Register result, 1052 Label *L_success); 1053 1054 1055 // As above, but with a constant super_klass. 1056 // The result is in Register result, not the condition codes. 1057 bool lookup_secondary_supers_table_const(Register r_sub_klass, 1058 Register r_super_klass, 1059 Register temp1, 1060 Register temp2, 1061 Register temp3, 1062 FloatRegister vtemp, 1063 Register result, 1064 u1 super_klass_slot, 1065 bool stub_is_near = false); 1066 1067 void verify_secondary_supers_table(Register r_sub_klass, 1068 Register r_super_klass, 1069 Register temp1, 1070 Register temp2, 1071 Register result); 1072 1073 void lookup_secondary_supers_table_slow_path(Register r_super_klass, 1074 Register r_array_base, 1075 Register r_array_index, 1076 Register r_bitmap, 1077 Register temp1, 1078 Register result, 1079 bool is_stub = true); 1080 1081 // Simplified, combined version, good for typical uses. 1082 // Falls through on failure. 1083 void check_klass_subtype(Register sub_klass, 1084 Register super_klass, 1085 Register temp_reg, 1086 Label& L_success); 1087 1088 void clinit_barrier(Register klass, 1089 Register thread, 1090 Label* L_fast_path = nullptr, 1091 Label* L_slow_path = nullptr); 1092 1093 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); 1094 1095 void verify_sve_vector_length(Register tmp = rscratch1); 1096 void reinitialize_ptrue() { 1097 if (UseSVE > 0) { 1098 sve_ptrue(ptrue, B); 1099 } 1100 } 1101 void verify_ptrue(); 1102 1103 // Debugging 1104 1105 // only if +VerifyOops 1106 void _verify_oop(Register reg, const char* s, const char* file, int line); 1107 void _verify_oop_addr(Address addr, const char * s, const char* file, int line); 1108 1109 void _verify_oop_checked(Register reg, const char* s, const char* file, int line) { 1110 if (VerifyOops) { 1111 _verify_oop(reg, s, file, line); 1112 } 1113 } 1114 void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) { 1115 if (VerifyOops) { 1116 _verify_oop_addr(reg, s, file, line); 1117 } 1118 } 1119 1120 // TODO: verify method and klass metadata (compare against vptr?) 1121 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 1122 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} 1123 1124 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__) 1125 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__) 1126 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__) 1127 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 1128 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 1129 1130 // Restore cpu control state after JNI call 1131 void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2); 1132 1133 // prints msg, dumps registers and stops execution 1134 void stop(const char* msg); 1135 1136 static void debug64(char* msg, int64_t pc, int64_t regs[]); 1137 1138 void untested() { stop("untested"); } 1139 1140 void unimplemented(const char* what = ""); 1141 1142 void should_not_reach_here() { stop("should not reach here"); } 1143 1144 void _assert_asm(Condition cc, const char* msg); 1145 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg) 1146 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg)) 1147 1148 // Stack overflow checking 1149 void bang_stack_with_offset(int offset) { 1150 // stack grows down, caller passes positive offset 1151 assert(offset > 0, "must bang with negative offset"); 1152 sub(rscratch2, sp, offset); 1153 str(zr, Address(rscratch2)); 1154 } 1155 1156 // Writes to stack successive pages until offset reached to check for 1157 // stack overflow + shadow pages. Also, clobbers tmp 1158 void bang_stack_size(Register size, Register tmp); 1159 1160 // Check for reserved stack access in method being exited (for JIT) 1161 void reserved_stack_check(); 1162 1163 // Arithmetics 1164 1165 void addptr(const Address &dst, int32_t src); 1166 void cmpptr(Register src1, Address src2); 1167 1168 void cmpoop(Register obj1, Register obj2); 1169 1170 // Various forms of CAS 1171 1172 void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 1173 Label &succeed, Label *fail); 1174 void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 1175 Label &succeed, Label *fail); 1176 1177 void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 1178 Label &succeed, Label *fail); 1179 1180 void atomic_add(Register prev, RegisterOrConstant incr, Register addr); 1181 void atomic_addw(Register prev, RegisterOrConstant incr, Register addr); 1182 void atomic_addal(Register prev, RegisterOrConstant incr, Register addr); 1183 void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr); 1184 1185 void atomic_xchg(Register prev, Register newv, Register addr); 1186 void atomic_xchgw(Register prev, Register newv, Register addr); 1187 void atomic_xchgl(Register prev, Register newv, Register addr); 1188 void atomic_xchglw(Register prev, Register newv, Register addr); 1189 void atomic_xchgal(Register prev, Register newv, Register addr); 1190 void atomic_xchgalw(Register prev, Register newv, Register addr); 1191 1192 void orptr(Address adr, RegisterOrConstant src) { 1193 ldr(rscratch1, adr); 1194 if (src.is_register()) 1195 orr(rscratch1, rscratch1, src.as_register()); 1196 else 1197 orr(rscratch1, rscratch1, src.as_constant()); 1198 str(rscratch1, adr); 1199 } 1200 1201 // A generic CAS; success or failure is in the EQ flag. 1202 // Clobbers rscratch1 1203 void cmpxchg(Register addr, Register expected, Register new_val, 1204 enum operand_size size, 1205 bool acquire, bool release, bool weak, 1206 Register result); 1207 1208 #ifdef ASSERT 1209 // Template short-hand support to clean-up after a failed call to trampoline 1210 // call generation (see trampoline_call() below), when a set of Labels must 1211 // be reset (before returning). 1212 template<typename Label, typename... More> 1213 void reset_labels(Label &lbl, More&... more) { 1214 lbl.reset(); reset_labels(more...); 1215 } 1216 template<typename Label> 1217 void reset_labels(Label &lbl) { 1218 lbl.reset(); 1219 } 1220 #endif 1221 1222 private: 1223 void compare_eq(Register rn, Register rm, enum operand_size size); 1224 1225 public: 1226 // AArch64 OpenJDK uses four different types of calls: 1227 // - direct call: bl pc_relative_offset 1228 // This is the shortest and the fastest, but the offset has the range: 1229 // +/-128MB for the release build, +/-2MB for the debug build. 1230 // 1231 // - far call: adrp reg, pc_relative_offset; add; bl reg 1232 // This is longer than a direct call. The offset has 1233 // the range +/-4GB. As the code cache size is limited to 4GB, 1234 // far calls can reach anywhere in the code cache. If a jump is 1235 // needed rather than a call, a far jump 'b reg' can be used instead. 1236 // All instructions are embedded at a call site. 1237 // 1238 // - trampoline call: 1239 // This is only available in C1/C2-generated code (nmethod). It is a combination 1240 // of a direct call, which is used if the destination of a call is in range, 1241 // and a register-indirect call. It has the advantages of reaching anywhere in 1242 // the AArch64 address space and being patchable at runtime when the generated 1243 // code is being executed by other threads. 1244 // 1245 // [Main code section] 1246 // bl trampoline 1247 // [Stub code section] 1248 // trampoline: 1249 // ldr reg, pc + 8 1250 // br reg 1251 // <64-bit destination address> 1252 // 1253 // If the destination is in range when the generated code is moved to the code 1254 // cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline 1255 // is not used. 1256 // The optimization does not remove the trampoline from the stub section. 1257 // This is necessary because the trampoline may well be redirected later when 1258 // code is patched, and the new destination may not be reachable by a simple BR 1259 // instruction. 1260 // 1261 // - indirect call: move reg, address; blr reg 1262 // This too can reach anywhere in the address space, but it cannot be 1263 // patched while code is running, so it must only be modified at a safepoint. 1264 // This form of call is most suitable for targets at fixed addresses, which 1265 // will never be patched. 1266 // 1267 // The patching we do conforms to the "Concurrent modification and 1268 // execution of instructions" section of the Arm Architectural 1269 // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC, 1270 // or SVC instructions to be modified while another thread is 1271 // executing them. 1272 // 1273 // To patch a trampoline call when the BL can't reach, we first modify 1274 // the 64-bit destination address in the trampoline, then modify the 1275 // BL to point to the trampoline, then flush the instruction cache to 1276 // broadcast the change to all executing threads. See 1277 // NativeCall::set_destination_mt_safe for the details. 1278 // 1279 // There is a benign race in that the other thread might observe the 1280 // modified BL before it observes the modified 64-bit destination 1281 // address. That does not matter because the destination method has been 1282 // invalidated, so there will be a trap at its start. 1283 // For this to work, the destination address in the trampoline is 1284 // always updated, even if we're not using the trampoline. 1285 1286 // Emit a direct call if the entry address will always be in range, 1287 // otherwise a trampoline call. 1288 // Supported entry.rspec(): 1289 // - relocInfo::runtime_call_type 1290 // - relocInfo::opt_virtual_call_type 1291 // - relocInfo::static_call_type 1292 // - relocInfo::virtual_call_type 1293 // 1294 // Return: the call PC or null if CodeCache is full. 1295 // Clobbers: rscratch1 1296 address trampoline_call(Address entry); 1297 1298 static bool far_branches() { 1299 return ReservedCodeCacheSize > branch_range; 1300 } 1301 1302 // Check if branches to the non nmethod section require a far jump 1303 static bool codestub_branch_needs_far_jump() { 1304 return CodeCache::max_distance_to_non_nmethod() > branch_range; 1305 } 1306 1307 // Emit a direct call/jump if the entry address will always be in range, 1308 // otherwise a far call/jump. 1309 // The address must be inside the code cache. 1310 // Supported entry.rspec(): 1311 // - relocInfo::external_word_type 1312 // - relocInfo::runtime_call_type 1313 // - relocInfo::none 1314 // In the case of a far call/jump, the entry address is put in the tmp register. 1315 // The tmp register is invalidated. 1316 // 1317 // Far_jump returns the amount of the emitted code. 1318 void far_call(Address entry, Register tmp = rscratch1); 1319 int far_jump(Address entry, Register tmp = rscratch1); 1320 1321 static int far_codestub_branch_size() { 1322 if (codestub_branch_needs_far_jump()) { 1323 return 3 * 4; // adrp, add, br 1324 } else { 1325 return 4; 1326 } 1327 } 1328 1329 // Emit the CompiledIC call idiom 1330 address ic_call(address entry, jint method_index = 0); 1331 static int ic_check_size(); 1332 int ic_check(int end_alignment); 1333 1334 public: 1335 1336 // Data 1337 1338 void mov_metadata(Register dst, Metadata* obj); 1339 Address allocate_metadata_address(Metadata* obj); 1340 Address constant_oop_address(jobject obj); 1341 1342 void movoop(Register dst, jobject obj); 1343 1344 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1345 void kernel_crc32(Register crc, Register buf, Register len, 1346 Register table0, Register table1, Register table2, Register table3, 1347 Register tmp, Register tmp2, Register tmp3); 1348 // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic. 1349 void kernel_crc32c(Register crc, Register buf, Register len, 1350 Register table0, Register table1, Register table2, Register table3, 1351 Register tmp, Register tmp2, Register tmp3); 1352 1353 // Stack push and pop individual 64 bit registers 1354 void push(Register src); 1355 void pop(Register dst); 1356 1357 void repne_scan(Register addr, Register value, Register count, 1358 Register scratch); 1359 void repne_scanw(Register addr, Register value, Register count, 1360 Register scratch); 1361 1362 typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm); 1363 typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift); 1364 1365 // If a constant does not fit in an immediate field, generate some 1366 // number of MOV instructions and then perform the operation 1367 void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 1368 add_sub_imm_insn insn1, 1369 add_sub_reg_insn insn2, bool is32); 1370 // Separate vsn which sets the flags 1371 void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 1372 add_sub_imm_insn insn1, 1373 add_sub_reg_insn insn2, bool is32); 1374 1375 #define WRAP(INSN, is32) \ 1376 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1377 wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1378 } \ 1379 \ 1380 void INSN(Register Rd, Register Rn, Register Rm, \ 1381 enum shift_kind kind, unsigned shift = 0) { \ 1382 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1383 } \ 1384 \ 1385 void INSN(Register Rd, Register Rn, Register Rm) { \ 1386 Assembler::INSN(Rd, Rn, Rm); \ 1387 } \ 1388 \ 1389 void INSN(Register Rd, Register Rn, Register Rm, \ 1390 ext::operation option, int amount = 0) { \ 1391 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1392 } 1393 1394 WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true) 1395 1396 #undef WRAP 1397 #define WRAP(INSN, is32) \ 1398 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1399 wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1400 } \ 1401 \ 1402 void INSN(Register Rd, Register Rn, Register Rm, \ 1403 enum shift_kind kind, unsigned shift = 0) { \ 1404 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1405 } \ 1406 \ 1407 void INSN(Register Rd, Register Rn, Register Rm) { \ 1408 Assembler::INSN(Rd, Rn, Rm); \ 1409 } \ 1410 \ 1411 void INSN(Register Rd, Register Rn, Register Rm, \ 1412 ext::operation option, int amount = 0) { \ 1413 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1414 } 1415 1416 WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true) 1417 1418 void add(Register Rd, Register Rn, RegisterOrConstant increment); 1419 void addw(Register Rd, Register Rn, RegisterOrConstant increment); 1420 void sub(Register Rd, Register Rn, RegisterOrConstant decrement); 1421 void subw(Register Rd, Register Rn, RegisterOrConstant decrement); 1422 1423 void adrp(Register reg1, const Address &dest, uint64_t &byte_offset); 1424 1425 void tableswitch(Register index, jint lowbound, jint highbound, 1426 Label &jumptable, Label &jumptable_end, int stride = 1) { 1427 adr(rscratch1, jumptable); 1428 subsw(rscratch2, index, lowbound); 1429 subsw(zr, rscratch2, highbound - lowbound); 1430 br(Assembler::HS, jumptable_end); 1431 add(rscratch1, rscratch1, rscratch2, 1432 ext::sxtw, exact_log2(stride * Assembler::instruction_size)); 1433 br(rscratch1); 1434 } 1435 1436 // Form an address from base + offset in Rd. Rd may or may not 1437 // actually be used: you must use the Address that is returned. It 1438 // is up to you to ensure that the shift provided matches the size 1439 // of your data. 1440 Address form_address(Register Rd, Register base, int64_t byte_offset, int shift); 1441 1442 // Return true iff an address is within the 48-bit AArch64 address 1443 // space. 1444 bool is_valid_AArch64_address(address a) { 1445 return ((uint64_t)a >> 48) == 0; 1446 } 1447 1448 // Load the base of the cardtable byte map into reg. 1449 void load_byte_map_base(Register reg); 1450 1451 // Prolog generator routines to support switch between x86 code and 1452 // generated ARM code 1453 1454 // routine to generate an x86 prolog for a stub function which 1455 // bootstraps into the generated ARM code which directly follows the 1456 // stub 1457 // 1458 1459 public: 1460 1461 void ldr_constant(Register dest, const Address &const_addr) { 1462 if (NearCpool) { 1463 ldr(dest, const_addr); 1464 } else { 1465 uint64_t offset; 1466 adrp(dest, InternalAddress(const_addr.target()), offset); 1467 ldr(dest, Address(dest, offset)); 1468 } 1469 } 1470 1471 address read_polling_page(Register r, relocInfo::relocType rtype); 1472 void get_polling_page(Register dest, relocInfo::relocType rtype); 1473 1474 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1475 void update_byte_crc32(Register crc, Register val, Register table); 1476 void update_word_crc32(Register crc, Register v, Register tmp, 1477 Register table0, Register table1, Register table2, Register table3, 1478 bool upper = false); 1479 1480 address count_positives(Register ary1, Register len, Register result); 1481 1482 address arrays_equals(Register a1, Register a2, Register result, Register cnt1, 1483 Register tmp1, Register tmp2, Register tmp3, int elem_size); 1484 1485 // Ensure that the inline code and the stub use the same registers. 1486 #define ARRAYS_HASHCODE_REGISTERS \ 1487 do { \ 1488 assert(result == r0 && \ 1489 ary == r1 && \ 1490 cnt == r2 && \ 1491 vdata0 == v3 && \ 1492 vdata1 == v2 && \ 1493 vdata2 == v1 && \ 1494 vdata3 == v0 && \ 1495 vmul0 == v4 && \ 1496 vmul1 == v5 && \ 1497 vmul2 == v6 && \ 1498 vmul3 == v7 && \ 1499 vpow == v12 && \ 1500 vpowm == v13, "registers must match aarch64.ad"); \ 1501 } while (0) 1502 1503 void string_equals(Register a1, Register a2, Register result, Register cnt1); 1504 1505 void fill_words(Register base, Register cnt, Register value); 1506 address zero_words(Register base, uint64_t cnt); 1507 address zero_words(Register ptr, Register cnt); 1508 void zero_dcache_blocks(Register base, Register cnt); 1509 1510 static const int zero_words_block_size; 1511 1512 address byte_array_inflate(Register src, Register dst, Register len, 1513 FloatRegister vtmp1, FloatRegister vtmp2, 1514 FloatRegister vtmp3, Register tmp4); 1515 1516 void char_array_compress(Register src, Register dst, Register len, 1517 Register res, 1518 FloatRegister vtmp0, FloatRegister vtmp1, 1519 FloatRegister vtmp2, FloatRegister vtmp3, 1520 FloatRegister vtmp4, FloatRegister vtmp5); 1521 1522 void encode_iso_array(Register src, Register dst, 1523 Register len, Register res, bool ascii, 1524 FloatRegister vtmp0, FloatRegister vtmp1, 1525 FloatRegister vtmp2, FloatRegister vtmp3, 1526 FloatRegister vtmp4, FloatRegister vtmp5); 1527 1528 void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi, 1529 address pio2, address dsin_coef, address dcos_coef); 1530 private: 1531 // begin trigonometric functions support block 1532 void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2); 1533 void generate__kernel_rem_pio2(address two_over_pi, address pio2); 1534 void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef); 1535 void generate_kernel_cos(FloatRegister x, address dcos_coef); 1536 // end trigonometric functions support block 1537 void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 1538 Register src1, Register src2); 1539 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 1540 add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2); 1541 } 1542 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 1543 Register y, Register y_idx, Register z, 1544 Register carry, Register product, 1545 Register idx, Register kdx); 1546 void multiply_128_x_128_loop(Register y, Register z, 1547 Register carry, Register carry2, 1548 Register idx, Register jdx, 1549 Register yz_idx1, Register yz_idx2, 1550 Register tmp, Register tmp3, Register tmp4, 1551 Register tmp7, Register product_hi); 1552 void kernel_crc32_using_crypto_pmull(Register crc, Register buf, 1553 Register len, Register tmp0, Register tmp1, Register tmp2, 1554 Register tmp3); 1555 void kernel_crc32_using_crc32(Register crc, Register buf, 1556 Register len, Register tmp0, Register tmp1, Register tmp2, 1557 Register tmp3); 1558 void kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 1559 Register len, Register tmp0, Register tmp1, Register tmp2, 1560 Register tmp3); 1561 void kernel_crc32c_using_crc32c(Register crc, Register buf, 1562 Register len, Register tmp0, Register tmp1, Register tmp2, 1563 Register tmp3); 1564 void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 1565 Register len, Register tmp0, Register tmp1, Register tmp2, 1566 size_t table_offset); 1567 1568 void ghash_modmul (FloatRegister result, 1569 FloatRegister result_lo, FloatRegister result_hi, FloatRegister b, 1570 FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p, 1571 FloatRegister t1, FloatRegister t2, FloatRegister t3); 1572 void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state); 1573 public: 1574 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, 1575 Register tmp0, Register tmp1, Register tmp2, Register tmp3, 1576 Register tmp4, Register tmp5, Register tmp6, Register tmp7); 1577 void mul_add(Register out, Register in, Register offs, Register len, Register k); 1578 void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi, 1579 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1580 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1581 void ghash_multiply_wide(int index, 1582 FloatRegister result_lo, FloatRegister result_hi, 1583 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1584 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1585 void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi, 1586 FloatRegister p, FloatRegister z, FloatRegister t1); 1587 void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi, 1588 FloatRegister p, FloatRegister z, FloatRegister t1); 1589 void ghash_processBlocks_wide(address p, Register state, Register subkeyH, 1590 Register data, Register blocks, int unrolls); 1591 1592 1593 void aesenc_loadkeys(Register key, Register keylen); 1594 void aesecb_encrypt(Register from, Register to, Register keylen, 1595 FloatRegister data = v0, int unrolls = 1); 1596 void aesecb_decrypt(Register from, Register to, Register key, Register keylen); 1597 void aes_round(FloatRegister input, FloatRegister subkey); 1598 1599 // ChaCha20 functions support block 1600 void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec, 1601 FloatRegister cVec, FloatRegister dVec, FloatRegister scratch, 1602 FloatRegister tbl); 1603 void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec, 1604 FloatRegister dVec, bool colToDiag); 1605 1606 // Place an ISB after code may have been modified due to a safepoint. 1607 void safepoint_isb(); 1608 1609 private: 1610 // Return the effective address r + (r1 << ext) + offset. 1611 // Uses rscratch2. 1612 Address offsetted_address(Register r, Register r1, Address::extend ext, 1613 int offset, int size); 1614 1615 private: 1616 // Returns an address on the stack which is reachable with a ldr/str of size 1617 // Uses rscratch2 if the address is not directly reachable 1618 Address spill_address(int size, int offset, Register tmp=rscratch2); 1619 Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2); 1620 1621 bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const; 1622 1623 // Check whether two loads/stores can be merged into ldp/stp. 1624 bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const; 1625 1626 // Merge current load/store with previous load/store into ldp/stp. 1627 void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1628 1629 // Try to merge two loads/stores into ldp/stp. If success, returns true else false. 1630 bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1631 1632 public: 1633 void spill(Register Rx, bool is64, int offset) { 1634 if (is64) { 1635 str(Rx, spill_address(8, offset)); 1636 } else { 1637 strw(Rx, spill_address(4, offset)); 1638 } 1639 } 1640 void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1641 str(Vx, T, spill_address(1 << (int)T, offset)); 1642 } 1643 1644 void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1645 sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1646 } 1647 void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1648 sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1649 } 1650 1651 void unspill(Register Rx, bool is64, int offset) { 1652 if (is64) { 1653 ldr(Rx, spill_address(8, offset)); 1654 } else { 1655 ldrw(Rx, spill_address(4, offset)); 1656 } 1657 } 1658 void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1659 ldr(Vx, T, spill_address(1 << (int)T, offset)); 1660 } 1661 1662 void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1663 sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1664 } 1665 void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1666 sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1667 } 1668 1669 void spill_copy128(int src_offset, int dst_offset, 1670 Register tmp1=rscratch1, Register tmp2=rscratch2) { 1671 if (src_offset < 512 && (src_offset & 7) == 0 && 1672 dst_offset < 512 && (dst_offset & 7) == 0) { 1673 ldp(tmp1, tmp2, Address(sp, src_offset)); 1674 stp(tmp1, tmp2, Address(sp, dst_offset)); 1675 } else { 1676 unspill(tmp1, true, src_offset); 1677 spill(tmp1, true, dst_offset); 1678 unspill(tmp1, true, src_offset+8); 1679 spill(tmp1, true, dst_offset+8); 1680 } 1681 } 1682 void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset, 1683 int sve_vec_reg_size_in_bytes) { 1684 assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size"); 1685 for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) { 1686 spill_copy128(src_offset, dst_offset); 1687 src_offset += 16; 1688 dst_offset += 16; 1689 } 1690 } 1691 void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset, 1692 int sve_predicate_reg_size_in_bytes) { 1693 sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset)); 1694 sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset)); 1695 reinitialize_ptrue(); 1696 } 1697 void cache_wb(Address line); 1698 void cache_wbsync(bool is_pre); 1699 1700 // Code for java.lang.Thread::onSpinWait() intrinsic. 1701 void spin_wait(); 1702 1703 void lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow); 1704 void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow); 1705 1706 private: 1707 // Check the current thread doesn't need a cross modify fence. 1708 void verify_cross_modify_fence_not_required() PRODUCT_RETURN; 1709 1710 }; 1711 1712 #ifdef ASSERT 1713 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; } 1714 #endif 1715 1716 struct tableswitch { 1717 Register _reg; 1718 int _insn_index; jint _first_key; jint _last_key; 1719 Label _after; 1720 Label _branches; 1721 }; 1722 1723 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP