1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 28 29 #include "asm/assembler.inline.hpp" 30 #include "code/vmreg.hpp" 31 #include "metaprogramming/enableIf.hpp" 32 #include "oops/compressedOops.hpp" 33 #include "oops/compressedKlass.hpp" 34 #include "runtime/vm_version.hpp" 35 #include "utilities/powerOfTwo.hpp" 36 37 class OopMap; 38 39 // MacroAssembler extends Assembler by frequently used macros. 40 // 41 // Instructions for which a 'better' code sequence exists depending 42 // on arguments should also go in here. 43 44 class MacroAssembler: public Assembler { 45 friend class LIR_Assembler; 46 47 public: 48 using Assembler::mov; 49 using Assembler::movi; 50 51 protected: 52 53 // Support for VM calls 54 // 55 // This is the base routine called by the different versions of call_VM_leaf. The interpreter 56 // may customize this version by overriding it for its purposes (e.g., to save/restore 57 // additional registers when doing a VM call). 58 virtual void call_VM_leaf_base( 59 address entry_point, // the entry point 60 int number_of_arguments, // the number of arguments to pop after the call 61 Label *retaddr = nullptr 62 ); 63 64 virtual void call_VM_leaf_base( 65 address entry_point, // the entry point 66 int number_of_arguments, // the number of arguments to pop after the call 67 Label &retaddr) { 68 call_VM_leaf_base(entry_point, number_of_arguments, &retaddr); 69 } 70 71 // This is the base routine called by the different versions of call_VM. The interpreter 72 // may customize this version by overriding it for its purposes (e.g., to save/restore 73 // additional registers when doing a VM call). 74 // 75 // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base 76 // returns the register which contains the thread upon return. If a thread register has been 77 // specified, the return value will correspond to that register. If no last_java_sp is specified 78 // (noreg) than rsp will be used instead. 79 virtual void call_VM_base( // returns the register containing the thread upon return 80 Register oop_result, // where an oop-result ends up if any; use noreg otherwise 81 Register java_thread, // the thread if computed before ; use noreg otherwise 82 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise 83 address entry_point, // the entry point 84 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call 85 bool check_exceptions // whether to check for pending exceptions after return 86 ); 87 88 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); 89 90 enum KlassDecodeMode { 91 KlassDecodeNone, 92 KlassDecodeZero, 93 KlassDecodeXor, 94 KlassDecodeMovk 95 }; 96 97 // Calculate decoding mode based on given parameters, used for checking then ultimately setting. 98 static KlassDecodeMode klass_decode_mode(address base, int shift, const size_t range); 99 100 private: 101 static KlassDecodeMode _klass_decode_mode; 102 103 // Returns above setting with asserts 104 static KlassDecodeMode klass_decode_mode(); 105 106 public: 107 // Checks the decode mode and returns false if not compatible with preferred decoding mode. 108 static bool check_klass_decode_mode(address base, int shift, const size_t range); 109 110 // Sets the decode mode and returns false if cannot be set. 111 static bool set_klass_decode_mode(address base, int shift, const size_t range); 112 113 public: 114 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 115 116 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. 117 // The implementation is only non-empty for the InterpreterMacroAssembler, 118 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. 119 virtual void check_and_handle_popframe(Register java_thread); 120 virtual void check_and_handle_earlyret(Register java_thread); 121 122 void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1); 123 void rt_call(address dest, Register tmp = rscratch1); 124 125 // Load Effective Address 126 void lea(Register r, const Address &a) { 127 InstructionMark im(this); 128 a.lea(this, r); 129 } 130 131 /* Sometimes we get misaligned loads and stores, usually from Unsafe 132 accesses, and these can exceed the offset range. */ 133 Address legitimize_address(const Address &a, int size, Register scratch) { 134 if (a.getMode() == Address::base_plus_offset) { 135 if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) { 136 block_comment("legitimize_address {"); 137 lea(scratch, a); 138 block_comment("} legitimize_address"); 139 return Address(scratch); 140 } 141 } 142 return a; 143 } 144 145 void addmw(Address a, Register incr, Register scratch) { 146 ldrw(scratch, a); 147 addw(scratch, scratch, incr); 148 strw(scratch, a); 149 } 150 151 // Add constant to memory word 152 void addmw(Address a, int imm, Register scratch) { 153 ldrw(scratch, a); 154 if (imm > 0) 155 addw(scratch, scratch, (unsigned)imm); 156 else 157 subw(scratch, scratch, (unsigned)-imm); 158 strw(scratch, a); 159 } 160 161 void bind(Label& L) { 162 Assembler::bind(L); 163 code()->clear_last_insn(); 164 code()->set_last_label(pc()); 165 } 166 167 void membar(Membar_mask_bits order_constraint); 168 169 using Assembler::ldr; 170 using Assembler::str; 171 using Assembler::ldrw; 172 using Assembler::strw; 173 174 void ldr(Register Rx, const Address &adr); 175 void ldrw(Register Rw, const Address &adr); 176 void str(Register Rx, const Address &adr); 177 void strw(Register Rx, const Address &adr); 178 179 // Frame creation and destruction shared between JITs. 180 void build_frame(int framesize); 181 void remove_frame(int framesize); 182 183 virtual void _call_Unimplemented(address call_site) { 184 mov(rscratch2, call_site); 185 } 186 187 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__ 188 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention." 189 // https://reviews.llvm.org/D3311 190 191 #ifdef _WIN64 192 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__) 193 #else 194 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__) 195 #endif 196 197 // aliases defined in AARCH64 spec 198 199 template<class T> 200 inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); } 201 202 inline void cmp(Register Rd, unsigned char imm8) { subs(zr, Rd, imm8); } 203 inline void cmp(Register Rd, unsigned imm) = delete; 204 205 template<class T> 206 inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); } 207 208 inline void cmn(Register Rd, unsigned char imm8) { adds(zr, Rd, imm8); } 209 inline void cmn(Register Rd, unsigned imm) = delete; 210 211 void cset(Register Rd, Assembler::Condition cond) { 212 csinc(Rd, zr, zr, ~cond); 213 } 214 void csetw(Register Rd, Assembler::Condition cond) { 215 csincw(Rd, zr, zr, ~cond); 216 } 217 218 void cneg(Register Rd, Register Rn, Assembler::Condition cond) { 219 csneg(Rd, Rn, Rn, ~cond); 220 } 221 void cnegw(Register Rd, Register Rn, Assembler::Condition cond) { 222 csnegw(Rd, Rn, Rn, ~cond); 223 } 224 225 inline void movw(Register Rd, Register Rn) { 226 if (Rd == sp || Rn == sp) { 227 Assembler::addw(Rd, Rn, 0U); 228 } else { 229 orrw(Rd, zr, Rn); 230 } 231 } 232 inline void mov(Register Rd, Register Rn) { 233 assert(Rd != r31_sp && Rn != r31_sp, "should be"); 234 if (Rd == Rn) { 235 } else if (Rd == sp || Rn == sp) { 236 Assembler::add(Rd, Rn, 0U); 237 } else { 238 orr(Rd, zr, Rn); 239 } 240 } 241 242 inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); } 243 inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); } 244 245 inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); } 246 inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); } 247 248 inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); } 249 inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); } 250 251 inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 252 bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 253 } 254 inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) { 255 bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 256 } 257 258 inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 259 bfmw(Rd, Rn, lsb, (lsb + width - 1)); 260 } 261 inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) { 262 bfm(Rd, Rn, lsb , (lsb + width - 1)); 263 } 264 265 inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 266 sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 267 } 268 inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 269 sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 270 } 271 272 inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 273 sbfmw(Rd, Rn, lsb, (lsb + width - 1)); 274 } 275 inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 276 sbfm(Rd, Rn, lsb , (lsb + width - 1)); 277 } 278 279 inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 280 ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 281 } 282 inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 283 ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 284 } 285 286 inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 287 ubfmw(Rd, Rn, lsb, (lsb + width - 1)); 288 } 289 inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 290 ubfm(Rd, Rn, lsb , (lsb + width - 1)); 291 } 292 293 inline void asrw(Register Rd, Register Rn, unsigned imm) { 294 sbfmw(Rd, Rn, imm, 31); 295 } 296 297 inline void asr(Register Rd, Register Rn, unsigned imm) { 298 sbfm(Rd, Rn, imm, 63); 299 } 300 301 inline void lslw(Register Rd, Register Rn, unsigned imm) { 302 ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm)); 303 } 304 305 inline void lsl(Register Rd, Register Rn, unsigned imm) { 306 ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm)); 307 } 308 309 inline void lsrw(Register Rd, Register Rn, unsigned imm) { 310 ubfmw(Rd, Rn, imm, 31); 311 } 312 313 inline void lsr(Register Rd, Register Rn, unsigned imm) { 314 ubfm(Rd, Rn, imm, 63); 315 } 316 317 inline void rorw(Register Rd, Register Rn, unsigned imm) { 318 extrw(Rd, Rn, Rn, imm); 319 } 320 321 inline void ror(Register Rd, Register Rn, unsigned imm) { 322 extr(Rd, Rn, Rn, imm); 323 } 324 325 inline void sxtbw(Register Rd, Register Rn) { 326 sbfmw(Rd, Rn, 0, 7); 327 } 328 inline void sxthw(Register Rd, Register Rn) { 329 sbfmw(Rd, Rn, 0, 15); 330 } 331 inline void sxtb(Register Rd, Register Rn) { 332 sbfm(Rd, Rn, 0, 7); 333 } 334 inline void sxth(Register Rd, Register Rn) { 335 sbfm(Rd, Rn, 0, 15); 336 } 337 inline void sxtw(Register Rd, Register Rn) { 338 sbfm(Rd, Rn, 0, 31); 339 } 340 341 inline void uxtbw(Register Rd, Register Rn) { 342 ubfmw(Rd, Rn, 0, 7); 343 } 344 inline void uxthw(Register Rd, Register Rn) { 345 ubfmw(Rd, Rn, 0, 15); 346 } 347 inline void uxtb(Register Rd, Register Rn) { 348 ubfm(Rd, Rn, 0, 7); 349 } 350 inline void uxth(Register Rd, Register Rn) { 351 ubfm(Rd, Rn, 0, 15); 352 } 353 inline void uxtw(Register Rd, Register Rn) { 354 ubfm(Rd, Rn, 0, 31); 355 } 356 357 inline void cmnw(Register Rn, Register Rm) { 358 addsw(zr, Rn, Rm); 359 } 360 inline void cmn(Register Rn, Register Rm) { 361 adds(zr, Rn, Rm); 362 } 363 364 inline void cmpw(Register Rn, Register Rm) { 365 subsw(zr, Rn, Rm); 366 } 367 inline void cmp(Register Rn, Register Rm) { 368 subs(zr, Rn, Rm); 369 } 370 371 inline void negw(Register Rd, Register Rn) { 372 subw(Rd, zr, Rn); 373 } 374 375 inline void neg(Register Rd, Register Rn) { 376 sub(Rd, zr, Rn); 377 } 378 379 inline void negsw(Register Rd, Register Rn) { 380 subsw(Rd, zr, Rn); 381 } 382 383 inline void negs(Register Rd, Register Rn) { 384 subs(Rd, zr, Rn); 385 } 386 387 inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 388 addsw(zr, Rn, Rm, kind, shift); 389 } 390 inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 391 adds(zr, Rn, Rm, kind, shift); 392 } 393 394 inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 395 subsw(zr, Rn, Rm, kind, shift); 396 } 397 inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 398 subs(zr, Rn, Rm, kind, shift); 399 } 400 401 inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 402 subw(Rd, zr, Rn, kind, shift); 403 } 404 405 inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 406 sub(Rd, zr, Rn, kind, shift); 407 } 408 409 inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 410 subsw(Rd, zr, Rn, kind, shift); 411 } 412 413 inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 414 subs(Rd, zr, Rn, kind, shift); 415 } 416 417 inline void mnegw(Register Rd, Register Rn, Register Rm) { 418 msubw(Rd, Rn, Rm, zr); 419 } 420 inline void mneg(Register Rd, Register Rn, Register Rm) { 421 msub(Rd, Rn, Rm, zr); 422 } 423 424 inline void mulw(Register Rd, Register Rn, Register Rm) { 425 maddw(Rd, Rn, Rm, zr); 426 } 427 inline void mul(Register Rd, Register Rn, Register Rm) { 428 madd(Rd, Rn, Rm, zr); 429 } 430 431 inline void smnegl(Register Rd, Register Rn, Register Rm) { 432 smsubl(Rd, Rn, Rm, zr); 433 } 434 inline void smull(Register Rd, Register Rn, Register Rm) { 435 smaddl(Rd, Rn, Rm, zr); 436 } 437 438 inline void umnegl(Register Rd, Register Rn, Register Rm) { 439 umsubl(Rd, Rn, Rm, zr); 440 } 441 inline void umull(Register Rd, Register Rn, Register Rm) { 442 umaddl(Rd, Rn, Rm, zr); 443 } 444 445 #define WRAP(INSN) \ 446 void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \ 447 if (VM_Version::supports_a53mac() && Ra != zr) \ 448 nop(); \ 449 Assembler::INSN(Rd, Rn, Rm, Ra); \ 450 } 451 452 WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw) 453 WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl) 454 #undef WRAP 455 456 457 // macro assembly operations needed for aarch64 458 459 public: 460 461 enum FpPushPopMode { 462 PushPopFull, 463 PushPopSVE, 464 PushPopNeon, 465 PushPopFp 466 }; 467 468 // first two private routines for loading 32 bit or 64 bit constants 469 private: 470 471 void mov_immediate64(Register dst, uint64_t imm64); 472 void mov_immediate32(Register dst, uint32_t imm32); 473 474 int push(unsigned int bitset, Register stack); 475 int pop(unsigned int bitset, Register stack); 476 477 int push_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 478 int pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 479 480 int push_p(unsigned int bitset, Register stack); 481 int pop_p(unsigned int bitset, Register stack); 482 483 void mov(Register dst, Address a); 484 485 public: 486 487 void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); } 488 void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); } 489 490 void push_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) push_fp(regs.bits(), stack, mode); } 491 void pop_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) pop_fp(regs.bits(), stack, mode); } 492 493 static RegSet call_clobbered_gp_registers(); 494 495 void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); } 496 void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); } 497 498 // Push and pop everything that might be clobbered by a native 499 // runtime call except rscratch1 and rscratch2. (They are always 500 // scratch, so we don't have to protect them.) Only save the lower 501 // 64 bits of each vector register. Additional registers can be excluded 502 // in a passed RegSet. 503 void push_call_clobbered_registers_except(RegSet exclude); 504 void pop_call_clobbered_registers_except(RegSet exclude); 505 506 void push_call_clobbered_registers() { 507 push_call_clobbered_registers_except(RegSet()); 508 } 509 void pop_call_clobbered_registers() { 510 pop_call_clobbered_registers_except(RegSet()); 511 } 512 513 514 // now mov instructions for loading absolute addresses and 32 or 515 // 64 bit integers 516 517 inline void mov(Register dst, address addr) { mov_immediate64(dst, (uint64_t)addr); } 518 519 template<typename T, ENABLE_IF(std::is_integral<T>::value)> 520 inline void mov(Register dst, T o) { mov_immediate64(dst, (uint64_t)o); } 521 522 inline void movw(Register dst, uint32_t imm32) { mov_immediate32(dst, imm32); } 523 524 void mov(Register dst, RegisterOrConstant src) { 525 if (src.is_register()) 526 mov(dst, src.as_register()); 527 else 528 mov(dst, src.as_constant()); 529 } 530 531 void movptr(Register r, uintptr_t imm64); 532 533 void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64); 534 535 void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { 536 orr(Vd, T, Vn, Vn); 537 } 538 539 void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) { 540 fcvtsh(tmp, src); 541 smov(dst, tmp, H, 0); 542 } 543 544 void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) { 545 mov(tmp, H, 0, src); 546 fcvths(dst, tmp); 547 } 548 549 // Generalized Test Bit And Branch, including a "far" variety which 550 // spans more than 32KiB. 551 void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) { 552 assert(cond == EQ || cond == NE, "must be"); 553 554 if (isfar) 555 cond = ~cond; 556 557 void (Assembler::* branch)(Register Rt, int bitpos, Label &L); 558 if (cond == Assembler::EQ) 559 branch = &Assembler::tbz; 560 else 561 branch = &Assembler::tbnz; 562 563 if (isfar) { 564 Label L; 565 (this->*branch)(Rt, bitpos, L); 566 b(dest); 567 bind(L); 568 } else { 569 (this->*branch)(Rt, bitpos, dest); 570 } 571 } 572 573 // macro instructions for accessing and updating floating point 574 // status register 575 // 576 // FPSR : op1 == 011 577 // CRn == 0100 578 // CRm == 0100 579 // op2 == 001 580 581 inline void get_fpsr(Register reg) 582 { 583 mrs(0b11, 0b0100, 0b0100, 0b001, reg); 584 } 585 586 inline void set_fpsr(Register reg) 587 { 588 msr(0b011, 0b0100, 0b0100, 0b001, reg); 589 } 590 591 inline void clear_fpsr() 592 { 593 msr(0b011, 0b0100, 0b0100, 0b001, zr); 594 } 595 596 // FPCR : op1 == 011 597 // CRn == 0100 598 // CRm == 0100 599 // op2 == 000 600 601 inline void get_fpcr(Register reg) { 602 mrs(0b11, 0b0100, 0b0100, 0b000, reg); 603 } 604 605 inline void set_fpcr(Register reg) { 606 msr(0b011, 0b0100, 0b0100, 0b000, reg); 607 } 608 609 // DCZID_EL0: op1 == 011 610 // CRn == 0000 611 // CRm == 0000 612 // op2 == 111 613 inline void get_dczid_el0(Register reg) 614 { 615 mrs(0b011, 0b0000, 0b0000, 0b111, reg); 616 } 617 618 // CTR_EL0: op1 == 011 619 // CRn == 0000 620 // CRm == 0000 621 // op2 == 001 622 inline void get_ctr_el0(Register reg) 623 { 624 mrs(0b011, 0b0000, 0b0000, 0b001, reg); 625 } 626 627 inline void get_nzcv(Register reg) { 628 mrs(0b011, 0b0100, 0b0010, 0b000, reg); 629 } 630 631 inline void set_nzcv(Register reg) { 632 msr(0b011, 0b0100, 0b0010, 0b000, reg); 633 } 634 635 // idiv variant which deals with MINLONG as dividend and -1 as divisor 636 int corrected_idivl(Register result, Register ra, Register rb, 637 bool want_remainder, Register tmp = rscratch1); 638 int corrected_idivq(Register result, Register ra, Register rb, 639 bool want_remainder, Register tmp = rscratch1); 640 641 // Support for null-checks 642 // 643 // Generates code that causes a null OS exception if the content of reg is null. 644 // If the accessed location is M[reg + offset] and the offset is known, provide the 645 // offset. No explicit code generation is needed if the offset is within a certain 646 // range (0 <= offset <= page_size). 647 648 virtual void null_check(Register reg, int offset = -1); 649 static bool needs_explicit_null_check(intptr_t offset); 650 static bool uses_implicit_null_check(void* address); 651 652 static address target_addr_for_insn(address insn_addr, unsigned insn); 653 static address target_addr_for_insn_or_null(address insn_addr, unsigned insn); 654 static address target_addr_for_insn(address insn_addr) { 655 unsigned insn = *(unsigned*)insn_addr; 656 return target_addr_for_insn(insn_addr, insn); 657 } 658 static address target_addr_for_insn_or_null(address insn_addr) { 659 unsigned insn = *(unsigned*)insn_addr; 660 return target_addr_for_insn_or_null(insn_addr, insn); 661 } 662 663 // Required platform-specific helpers for Label::patch_instructions. 664 // They _shadow_ the declarations in AbstractAssembler, which are undefined. 665 static int pd_patch_instruction_size(address branch, address target); 666 static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) { 667 pd_patch_instruction_size(branch, target); 668 } 669 static address pd_call_destination(address branch) { 670 return target_addr_for_insn(branch); 671 } 672 #ifndef PRODUCT 673 static void pd_print_patched_instruction(address branch); 674 #endif 675 676 static int patch_oop(address insn_addr, address o); 677 static int patch_narrow_klass(address insn_addr, narrowKlass n); 678 679 // Return whether code is emitted to a scratch blob. 680 virtual bool in_scratch_emit_size() { 681 return false; 682 } 683 address emit_trampoline_stub(int insts_call_instruction_offset, address target); 684 static int max_trampoline_stub_size(); 685 void emit_static_call_stub(); 686 static int static_call_stub_size(); 687 688 // The following 4 methods return the offset of the appropriate move instruction 689 690 // Support for fast byte/short loading with zero extension (depending on particular CPU) 691 int load_unsigned_byte(Register dst, Address src); 692 int load_unsigned_short(Register dst, Address src); 693 694 // Support for fast byte/short loading with sign extension (depending on particular CPU) 695 int load_signed_byte(Register dst, Address src); 696 int load_signed_short(Register dst, Address src); 697 698 int load_signed_byte32(Register dst, Address src); 699 int load_signed_short32(Register dst, Address src); 700 701 // Support for sign-extension (hi:lo = extend_sign(lo)) 702 void extend_sign(Register hi, Register lo); 703 704 // Load and store values by size and signed-ness 705 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed); 706 void store_sized_value(Address dst, Register src, size_t size_in_bytes); 707 708 // Support for inc/dec with optimal instruction selection depending on value 709 710 // x86_64 aliases an unqualified register/address increment and 711 // decrement to call incrementq and decrementq but also supports 712 // explicitly sized calls to incrementq/decrementq or 713 // incrementl/decrementl 714 715 // for aarch64 the proper convention would be to use 716 // increment/decrement for 64 bit operations and 717 // incrementw/decrementw for 32 bit operations. so when porting 718 // x86_64 code we can leave calls to increment/decrement as is, 719 // replace incrementq/decrementq with increment/decrement and 720 // replace incrementl/decrementl with incrementw/decrementw. 721 722 // n.b. increment/decrement calls with an Address destination will 723 // need to use a scratch register to load the value to be 724 // incremented. increment/decrement calls which add or subtract a 725 // constant value greater than 2^12 will need to use a 2nd scratch 726 // register to hold the constant. so, a register increment/decrement 727 // may trash rscratch2 and an address increment/decrement trash 728 // rscratch and rscratch2 729 730 void decrementw(Address dst, int value = 1); 731 void decrementw(Register reg, int value = 1); 732 733 void decrement(Register reg, int value = 1); 734 void decrement(Address dst, int value = 1); 735 736 void incrementw(Address dst, int value = 1); 737 void incrementw(Register reg, int value = 1); 738 739 void increment(Register reg, int value = 1); 740 void increment(Address dst, int value = 1); 741 742 743 // Alignment 744 void align(int modulus); 745 void align(int modulus, int target); 746 747 // nop 748 void post_call_nop(); 749 750 // Stack frame creation/removal 751 void enter(bool strip_ret_addr = false); 752 void leave(); 753 754 // ROP Protection 755 void protect_return_address(); 756 void protect_return_address(Register return_reg); 757 void authenticate_return_address(); 758 void authenticate_return_address(Register return_reg); 759 void strip_return_address(); 760 void check_return_address(Register return_reg=lr) PRODUCT_RETURN; 761 762 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) 763 // The pointer will be loaded into the thread register. 764 void get_thread(Register thread); 765 766 // support for argument shuffling 767 void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 768 void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 769 void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 770 void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 771 void object_move( 772 OopMap* map, 773 int oop_handle_offset, 774 int framesize_in_slots, 775 VMRegPair src, 776 VMRegPair dst, 777 bool is_receiver, 778 int* receiver_offset); 779 780 781 // Support for VM calls 782 // 783 // It is imperative that all calls into the VM are handled via the call_VM macros. 784 // They make sure that the stack linkage is setup correctly. call_VM's correspond 785 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. 786 787 788 void call_VM(Register oop_result, 789 address entry_point, 790 bool check_exceptions = true); 791 void call_VM(Register oop_result, 792 address entry_point, 793 Register arg_1, 794 bool check_exceptions = true); 795 void call_VM(Register oop_result, 796 address entry_point, 797 Register arg_1, Register arg_2, 798 bool check_exceptions = true); 799 void call_VM(Register oop_result, 800 address entry_point, 801 Register arg_1, Register arg_2, Register arg_3, 802 bool check_exceptions = true); 803 804 // Overloadings with last_Java_sp 805 void call_VM(Register oop_result, 806 Register last_java_sp, 807 address entry_point, 808 int number_of_arguments = 0, 809 bool check_exceptions = true); 810 void call_VM(Register oop_result, 811 Register last_java_sp, 812 address entry_point, 813 Register arg_1, bool 814 check_exceptions = true); 815 void call_VM(Register oop_result, 816 Register last_java_sp, 817 address entry_point, 818 Register arg_1, Register arg_2, 819 bool check_exceptions = true); 820 void call_VM(Register oop_result, 821 Register last_java_sp, 822 address entry_point, 823 Register arg_1, Register arg_2, Register arg_3, 824 bool check_exceptions = true); 825 826 void get_vm_result (Register oop_result, Register thread); 827 void get_vm_result_2(Register metadata_result, Register thread); 828 829 // These always tightly bind to MacroAssembler::call_VM_base 830 // bypassing the virtual implementation 831 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); 832 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); 833 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 834 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); 835 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); 836 837 void call_VM_leaf(address entry_point, 838 int number_of_arguments = 0); 839 void call_VM_leaf(address entry_point, 840 Register arg_1); 841 void call_VM_leaf(address entry_point, 842 Register arg_1, Register arg_2); 843 void call_VM_leaf(address entry_point, 844 Register arg_1, Register arg_2, Register arg_3); 845 846 // These always tightly bind to MacroAssembler::call_VM_leaf_base 847 // bypassing the virtual implementation 848 void super_call_VM_leaf(address entry_point); 849 void super_call_VM_leaf(address entry_point, Register arg_1); 850 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 851 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 852 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); 853 854 // last Java Frame (fills frame anchor) 855 void set_last_Java_frame(Register last_java_sp, 856 Register last_java_fp, 857 address last_java_pc, 858 Register scratch); 859 860 void set_last_Java_frame(Register last_java_sp, 861 Register last_java_fp, 862 Label &last_java_pc, 863 Register scratch); 864 865 void set_last_Java_frame(Register last_java_sp, 866 Register last_java_fp, 867 Register last_java_pc, 868 Register scratch); 869 870 void reset_last_Java_frame(Register thread); 871 872 // thread in the default location (rthread) 873 void reset_last_Java_frame(bool clear_fp); 874 875 // Stores 876 void store_check(Register obj); // store check for obj - register is destroyed afterwards 877 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) 878 879 void resolve_jobject(Register value, Register tmp1, Register tmp2); 880 void resolve_global_jobject(Register value, Register tmp1, Register tmp2); 881 882 // C 'boolean' to Java boolean: x == 0 ? 0 : 1 883 void c2bool(Register x); 884 885 void load_method_holder_cld(Register rresult, Register rmethod); 886 void load_method_holder(Register holder, Register method); 887 888 // oop manipulations 889 void load_narrow_klass_compact(Register dst, Register src); 890 void load_klass(Register dst, Register src); 891 void store_klass(Register dst, Register src); 892 void cmp_klass(Register obj, Register klass, Register tmp); 893 void cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2); 894 895 void resolve_weak_handle(Register result, Register tmp1, Register tmp2); 896 void resolve_oop_handle(Register result, Register tmp1, Register tmp2); 897 void load_mirror(Register dst, Register method, Register tmp1, Register tmp2); 898 899 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 900 Register tmp1, Register tmp2); 901 902 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 903 Register tmp1, Register tmp2, Register tmp3); 904 905 void load_heap_oop(Register dst, Address src, Register tmp1, 906 Register tmp2, DecoratorSet decorators = 0); 907 908 void load_heap_oop_not_null(Register dst, Address src, Register tmp1, 909 Register tmp2, DecoratorSet decorators = 0); 910 void store_heap_oop(Address dst, Register val, Register tmp1, 911 Register tmp2, Register tmp3, DecoratorSet decorators = 0); 912 913 // currently unimplemented 914 // Used for storing null. All other oop constants should be 915 // stored using routines that take a jobject. 916 void store_heap_oop_null(Address dst); 917 918 void store_klass_gap(Register dst, Register src); 919 920 // This dummy is to prevent a call to store_heap_oop from 921 // converting a zero (like null) into a Register by giving 922 // the compiler two choices it can't resolve 923 924 void store_heap_oop(Address dst, void* dummy); 925 926 void encode_heap_oop(Register d, Register s); 927 void encode_heap_oop(Register r) { encode_heap_oop(r, r); } 928 void decode_heap_oop(Register d, Register s); 929 void decode_heap_oop(Register r) { decode_heap_oop(r, r); } 930 void encode_heap_oop_not_null(Register r); 931 void decode_heap_oop_not_null(Register r); 932 void encode_heap_oop_not_null(Register dst, Register src); 933 void decode_heap_oop_not_null(Register dst, Register src); 934 935 void set_narrow_oop(Register dst, jobject obj); 936 937 void encode_klass_not_null(Register r); 938 void decode_klass_not_null(Register r); 939 void encode_klass_not_null(Register dst, Register src); 940 void decode_klass_not_null(Register dst, Register src); 941 942 void set_narrow_klass(Register dst, Klass* k); 943 944 // if heap base register is used - reinit it with the correct value 945 void reinit_heapbase(); 946 947 DEBUG_ONLY(void verify_heapbase(const char* msg);) 948 949 void push_CPU_state(bool save_vectors = false, bool use_sve = false, 950 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 951 void pop_CPU_state(bool restore_vectors = false, bool use_sve = false, 952 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 953 954 void push_cont_fastpath(Register java_thread = rthread); 955 void pop_cont_fastpath(Register java_thread = rthread); 956 957 void inc_held_monitor_count(Register tmp); 958 void dec_held_monitor_count(Register tmp); 959 960 // Round up to a power of two 961 void round_to(Register reg, int modulus); 962 963 // java.lang.Math::round intrinsics 964 void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp); 965 void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp); 966 967 // allocation 968 void tlab_allocate( 969 Register obj, // result: pointer to object after successful allocation 970 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 971 int con_size_in_bytes, // object size in bytes if known at compile time 972 Register t1, // temp register 973 Register t2, // temp register 974 Label& slow_case // continuation point if fast allocation fails 975 ); 976 void verify_tlab(); 977 978 // interface method calling 979 void lookup_interface_method(Register recv_klass, 980 Register intf_klass, 981 RegisterOrConstant itable_index, 982 Register method_result, 983 Register scan_temp, 984 Label& no_such_interface, 985 bool return_method = true); 986 987 void lookup_interface_method_stub(Register recv_klass, 988 Register holder_klass, 989 Register resolved_klass, 990 Register method_result, 991 Register temp_reg, 992 Register temp_reg2, 993 int itable_index, 994 Label& L_no_such_interface); 995 996 // virtual method calling 997 // n.b. x86 allows RegisterOrConstant for vtable_index 998 void lookup_virtual_method(Register recv_klass, 999 RegisterOrConstant vtable_index, 1000 Register method_result); 1001 1002 // Test sub_klass against super_klass, with fast and slow paths. 1003 1004 // The fast path produces a tri-state answer: yes / no / maybe-slow. 1005 // One of the three labels can be null, meaning take the fall-through. 1006 // If super_check_offset is -1, the value is loaded up from super_klass. 1007 // No registers are killed, except temp_reg. 1008 void check_klass_subtype_fast_path(Register sub_klass, 1009 Register super_klass, 1010 Register temp_reg, 1011 Label* L_success, 1012 Label* L_failure, 1013 Label* L_slow_path, 1014 Register super_check_offset = noreg); 1015 1016 // The rest of the type check; must be wired to a corresponding fast path. 1017 // It does not repeat the fast path logic, so don't use it standalone. 1018 // The temp_reg and temp2_reg can be noreg, if no temps are available. 1019 // Updates the sub's secondary super cache as necessary. 1020 // If set_cond_codes, condition codes will be Z on success, NZ on failure. 1021 void check_klass_subtype_slow_path(Register sub_klass, 1022 Register super_klass, 1023 Register temp_reg, 1024 Register temp2_reg, 1025 Label* L_success, 1026 Label* L_failure, 1027 bool set_cond_codes = false); 1028 1029 void check_klass_subtype_slow_path_linear(Register sub_klass, 1030 Register super_klass, 1031 Register temp_reg, 1032 Register temp2_reg, 1033 Label* L_success, 1034 Label* L_failure, 1035 bool set_cond_codes = false); 1036 1037 void check_klass_subtype_slow_path_table(Register sub_klass, 1038 Register super_klass, 1039 Register temp_reg, 1040 Register temp2_reg, 1041 Register temp3_reg, 1042 Register result_reg, 1043 FloatRegister vtemp_reg, 1044 Label* L_success, 1045 Label* L_failure, 1046 bool set_cond_codes = false); 1047 1048 // If r is valid, return r. 1049 // If r is invalid, remove a register r2 from available_regs, add r2 1050 // to regs_to_push, then return r2. 1051 Register allocate_if_noreg(const Register r, 1052 RegSetIterator<Register> &available_regs, 1053 RegSet ®s_to_push); 1054 1055 // Secondary subtype checking 1056 void lookup_secondary_supers_table_var(Register sub_klass, 1057 Register r_super_klass, 1058 Register temp1, 1059 Register temp2, 1060 Register temp3, 1061 FloatRegister vtemp, 1062 Register result, 1063 Label *L_success); 1064 1065 1066 // As above, but with a constant super_klass. 1067 // The result is in Register result, not the condition codes. 1068 bool lookup_secondary_supers_table_const(Register r_sub_klass, 1069 Register r_super_klass, 1070 Register temp1, 1071 Register temp2, 1072 Register temp3, 1073 FloatRegister vtemp, 1074 Register result, 1075 u1 super_klass_slot, 1076 bool stub_is_near = false); 1077 1078 void verify_secondary_supers_table(Register r_sub_klass, 1079 Register r_super_klass, 1080 Register temp1, 1081 Register temp2, 1082 Register result); 1083 1084 void lookup_secondary_supers_table_slow_path(Register r_super_klass, 1085 Register r_array_base, 1086 Register r_array_index, 1087 Register r_bitmap, 1088 Register temp1, 1089 Register result, 1090 bool is_stub = true); 1091 1092 // Simplified, combined version, good for typical uses. 1093 // Falls through on failure. 1094 void check_klass_subtype(Register sub_klass, 1095 Register super_klass, 1096 Register temp_reg, 1097 Label& L_success); 1098 1099 void clinit_barrier(Register klass, 1100 Register thread, 1101 Label* L_fast_path = nullptr, 1102 Label* L_slow_path = nullptr); 1103 1104 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); 1105 1106 void verify_sve_vector_length(Register tmp = rscratch1); 1107 void reinitialize_ptrue() { 1108 if (UseSVE > 0) { 1109 sve_ptrue(ptrue, B); 1110 } 1111 } 1112 void verify_ptrue(); 1113 1114 // Debugging 1115 1116 // only if +VerifyOops 1117 void _verify_oop(Register reg, const char* s, const char* file, int line); 1118 void _verify_oop_addr(Address addr, const char * s, const char* file, int line); 1119 1120 void _verify_oop_checked(Register reg, const char* s, const char* file, int line) { 1121 if (VerifyOops) { 1122 _verify_oop(reg, s, file, line); 1123 } 1124 } 1125 void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) { 1126 if (VerifyOops) { 1127 _verify_oop_addr(reg, s, file, line); 1128 } 1129 } 1130 1131 // TODO: verify method and klass metadata (compare against vptr?) 1132 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 1133 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} 1134 1135 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__) 1136 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__) 1137 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__) 1138 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 1139 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 1140 1141 // Restore cpu control state after JNI call 1142 void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2); 1143 1144 // prints msg, dumps registers and stops execution 1145 void stop(const char* msg); 1146 1147 static void debug64(char* msg, int64_t pc, int64_t regs[]); 1148 1149 void untested() { stop("untested"); } 1150 1151 void unimplemented(const char* what = ""); 1152 1153 void should_not_reach_here() { stop("should not reach here"); } 1154 1155 void _assert_asm(Condition cc, const char* msg); 1156 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg) 1157 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg)) 1158 1159 // Stack overflow checking 1160 void bang_stack_with_offset(int offset) { 1161 // stack grows down, caller passes positive offset 1162 assert(offset > 0, "must bang with negative offset"); 1163 sub(rscratch2, sp, offset); 1164 str(zr, Address(rscratch2)); 1165 } 1166 1167 // Writes to stack successive pages until offset reached to check for 1168 // stack overflow + shadow pages. Also, clobbers tmp 1169 void bang_stack_size(Register size, Register tmp); 1170 1171 // Check for reserved stack access in method being exited (for JIT) 1172 void reserved_stack_check(); 1173 1174 // Arithmetics 1175 1176 void addptr(const Address &dst, int32_t src); 1177 void cmpptr(Register src1, Address src2); 1178 1179 void cmpoop(Register obj1, Register obj2); 1180 1181 // Various forms of CAS 1182 1183 void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 1184 Label &succeed, Label *fail); 1185 void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 1186 Label &succeed, Label *fail); 1187 1188 void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 1189 Label &succeed, Label *fail); 1190 1191 void atomic_add(Register prev, RegisterOrConstant incr, Register addr); 1192 void atomic_addw(Register prev, RegisterOrConstant incr, Register addr); 1193 void atomic_addal(Register prev, RegisterOrConstant incr, Register addr); 1194 void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr); 1195 1196 void atomic_xchg(Register prev, Register newv, Register addr); 1197 void atomic_xchgw(Register prev, Register newv, Register addr); 1198 void atomic_xchgl(Register prev, Register newv, Register addr); 1199 void atomic_xchglw(Register prev, Register newv, Register addr); 1200 void atomic_xchgal(Register prev, Register newv, Register addr); 1201 void atomic_xchgalw(Register prev, Register newv, Register addr); 1202 1203 void orptr(Address adr, RegisterOrConstant src) { 1204 ldr(rscratch1, adr); 1205 if (src.is_register()) 1206 orr(rscratch1, rscratch1, src.as_register()); 1207 else 1208 orr(rscratch1, rscratch1, src.as_constant()); 1209 str(rscratch1, adr); 1210 } 1211 1212 // A generic CAS; success or failure is in the EQ flag. 1213 // Clobbers rscratch1 1214 void cmpxchg(Register addr, Register expected, Register new_val, 1215 enum operand_size size, 1216 bool acquire, bool release, bool weak, 1217 Register result); 1218 1219 #ifdef ASSERT 1220 // Template short-hand support to clean-up after a failed call to trampoline 1221 // call generation (see trampoline_call() below), when a set of Labels must 1222 // be reset (before returning). 1223 template<typename Label, typename... More> 1224 void reset_labels(Label &lbl, More&... more) { 1225 lbl.reset(); reset_labels(more...); 1226 } 1227 template<typename Label> 1228 void reset_labels(Label &lbl) { 1229 lbl.reset(); 1230 } 1231 #endif 1232 1233 private: 1234 void compare_eq(Register rn, Register rm, enum operand_size size); 1235 1236 public: 1237 // AArch64 OpenJDK uses four different types of calls: 1238 // - direct call: bl pc_relative_offset 1239 // This is the shortest and the fastest, but the offset has the range: 1240 // +/-128MB for the release build, +/-2MB for the debug build. 1241 // 1242 // - far call: adrp reg, pc_relative_offset; add; bl reg 1243 // This is longer than a direct call. The offset has 1244 // the range +/-4GB. As the code cache size is limited to 4GB, 1245 // far calls can reach anywhere in the code cache. If a jump is 1246 // needed rather than a call, a far jump 'b reg' can be used instead. 1247 // All instructions are embedded at a call site. 1248 // 1249 // - trampoline call: 1250 // This is only available in C1/C2-generated code (nmethod). It is a combination 1251 // of a direct call, which is used if the destination of a call is in range, 1252 // and a register-indirect call. It has the advantages of reaching anywhere in 1253 // the AArch64 address space and being patchable at runtime when the generated 1254 // code is being executed by other threads. 1255 // 1256 // [Main code section] 1257 // bl trampoline 1258 // [Stub code section] 1259 // trampoline: 1260 // ldr reg, pc + 8 1261 // br reg 1262 // <64-bit destination address> 1263 // 1264 // If the destination is in range when the generated code is moved to the code 1265 // cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline 1266 // is not used. 1267 // The optimization does not remove the trampoline from the stub section. 1268 // This is necessary because the trampoline may well be redirected later when 1269 // code is patched, and the new destination may not be reachable by a simple BR 1270 // instruction. 1271 // 1272 // - indirect call: move reg, address; blr reg 1273 // This too can reach anywhere in the address space, but it cannot be 1274 // patched while code is running, so it must only be modified at a safepoint. 1275 // This form of call is most suitable for targets at fixed addresses, which 1276 // will never be patched. 1277 // 1278 // The patching we do conforms to the "Concurrent modification and 1279 // execution of instructions" section of the Arm Architectural 1280 // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC, 1281 // or SVC instructions to be modified while another thread is 1282 // executing them. 1283 // 1284 // To patch a trampoline call when the BL can't reach, we first modify 1285 // the 64-bit destination address in the trampoline, then modify the 1286 // BL to point to the trampoline, then flush the instruction cache to 1287 // broadcast the change to all executing threads. See 1288 // NativeCall::set_destination_mt_safe for the details. 1289 // 1290 // There is a benign race in that the other thread might observe the 1291 // modified BL before it observes the modified 64-bit destination 1292 // address. That does not matter because the destination method has been 1293 // invalidated, so there will be a trap at its start. 1294 // For this to work, the destination address in the trampoline is 1295 // always updated, even if we're not using the trampoline. 1296 1297 // Emit a direct call if the entry address will always be in range, 1298 // otherwise a trampoline call. 1299 // Supported entry.rspec(): 1300 // - relocInfo::runtime_call_type 1301 // - relocInfo::opt_virtual_call_type 1302 // - relocInfo::static_call_type 1303 // - relocInfo::virtual_call_type 1304 // 1305 // Return: the call PC or null if CodeCache is full. 1306 // Clobbers: rscratch1 1307 address trampoline_call(Address entry); 1308 1309 static bool far_branches() { 1310 return ReservedCodeCacheSize > branch_range; 1311 } 1312 1313 // Check if branches to the non nmethod section require a far jump 1314 static bool codestub_branch_needs_far_jump() { 1315 return CodeCache::max_distance_to_non_nmethod() > branch_range; 1316 } 1317 1318 // Emit a direct call/jump if the entry address will always be in range, 1319 // otherwise a far call/jump. 1320 // The address must be inside the code cache. 1321 // Supported entry.rspec(): 1322 // - relocInfo::external_word_type 1323 // - relocInfo::runtime_call_type 1324 // - relocInfo::none 1325 // In the case of a far call/jump, the entry address is put in the tmp register. 1326 // The tmp register is invalidated. 1327 // 1328 // Far_jump returns the amount of the emitted code. 1329 void far_call(Address entry, Register tmp = rscratch1); 1330 int far_jump(Address entry, Register tmp = rscratch1); 1331 1332 static int far_codestub_branch_size() { 1333 if (codestub_branch_needs_far_jump()) { 1334 return 3 * 4; // adrp, add, br 1335 } else { 1336 return 4; 1337 } 1338 } 1339 1340 // Emit the CompiledIC call idiom 1341 address ic_call(address entry, jint method_index = 0); 1342 static int ic_check_size(); 1343 int ic_check(int end_alignment); 1344 1345 public: 1346 1347 // Data 1348 1349 void mov_metadata(Register dst, Metadata* obj); 1350 Address allocate_metadata_address(Metadata* obj); 1351 Address constant_oop_address(jobject obj); 1352 1353 void movoop(Register dst, jobject obj); 1354 1355 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1356 void kernel_crc32(Register crc, Register buf, Register len, 1357 Register table0, Register table1, Register table2, Register table3, 1358 Register tmp, Register tmp2, Register tmp3); 1359 // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic. 1360 void kernel_crc32c(Register crc, Register buf, Register len, 1361 Register table0, Register table1, Register table2, Register table3, 1362 Register tmp, Register tmp2, Register tmp3); 1363 1364 // Stack push and pop individual 64 bit registers 1365 void push(Register src); 1366 void pop(Register dst); 1367 1368 void repne_scan(Register addr, Register value, Register count, 1369 Register scratch); 1370 void repne_scanw(Register addr, Register value, Register count, 1371 Register scratch); 1372 1373 typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm); 1374 typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift); 1375 1376 // If a constant does not fit in an immediate field, generate some 1377 // number of MOV instructions and then perform the operation 1378 void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 1379 add_sub_imm_insn insn1, 1380 add_sub_reg_insn insn2, bool is32); 1381 // Separate vsn which sets the flags 1382 void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 1383 add_sub_imm_insn insn1, 1384 add_sub_reg_insn insn2, bool is32); 1385 1386 #define WRAP(INSN, is32) \ 1387 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1388 wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1389 } \ 1390 \ 1391 void INSN(Register Rd, Register Rn, Register Rm, \ 1392 enum shift_kind kind, unsigned shift = 0) { \ 1393 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1394 } \ 1395 \ 1396 void INSN(Register Rd, Register Rn, Register Rm) { \ 1397 Assembler::INSN(Rd, Rn, Rm); \ 1398 } \ 1399 \ 1400 void INSN(Register Rd, Register Rn, Register Rm, \ 1401 ext::operation option, int amount = 0) { \ 1402 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1403 } 1404 1405 WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true) 1406 1407 #undef WRAP 1408 #define WRAP(INSN, is32) \ 1409 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1410 wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1411 } \ 1412 \ 1413 void INSN(Register Rd, Register Rn, Register Rm, \ 1414 enum shift_kind kind, unsigned shift = 0) { \ 1415 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1416 } \ 1417 \ 1418 void INSN(Register Rd, Register Rn, Register Rm) { \ 1419 Assembler::INSN(Rd, Rn, Rm); \ 1420 } \ 1421 \ 1422 void INSN(Register Rd, Register Rn, Register Rm, \ 1423 ext::operation option, int amount = 0) { \ 1424 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1425 } 1426 1427 WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true) 1428 1429 void add(Register Rd, Register Rn, RegisterOrConstant increment); 1430 void addw(Register Rd, Register Rn, RegisterOrConstant increment); 1431 void sub(Register Rd, Register Rn, RegisterOrConstant decrement); 1432 void subw(Register Rd, Register Rn, RegisterOrConstant decrement); 1433 1434 void adrp(Register reg1, const Address &dest, uint64_t &byte_offset); 1435 1436 void tableswitch(Register index, jint lowbound, jint highbound, 1437 Label &jumptable, Label &jumptable_end, int stride = 1) { 1438 adr(rscratch1, jumptable); 1439 subsw(rscratch2, index, lowbound); 1440 subsw(zr, rscratch2, highbound - lowbound); 1441 br(Assembler::HS, jumptable_end); 1442 add(rscratch1, rscratch1, rscratch2, 1443 ext::sxtw, exact_log2(stride * Assembler::instruction_size)); 1444 br(rscratch1); 1445 } 1446 1447 // Form an address from base + offset in Rd. Rd may or may not 1448 // actually be used: you must use the Address that is returned. It 1449 // is up to you to ensure that the shift provided matches the size 1450 // of your data. 1451 Address form_address(Register Rd, Register base, int64_t byte_offset, int shift); 1452 1453 // Return true iff an address is within the 48-bit AArch64 address 1454 // space. 1455 bool is_valid_AArch64_address(address a) { 1456 return ((uint64_t)a >> 48) == 0; 1457 } 1458 1459 // Load the base of the cardtable byte map into reg. 1460 void load_byte_map_base(Register reg); 1461 1462 // Prolog generator routines to support switch between x86 code and 1463 // generated ARM code 1464 1465 // routine to generate an x86 prolog for a stub function which 1466 // bootstraps into the generated ARM code which directly follows the 1467 // stub 1468 // 1469 1470 public: 1471 1472 void ldr_constant(Register dest, const Address &const_addr) { 1473 if (NearCpool) { 1474 ldr(dest, const_addr); 1475 } else { 1476 uint64_t offset; 1477 adrp(dest, InternalAddress(const_addr.target()), offset); 1478 ldr(dest, Address(dest, offset)); 1479 } 1480 } 1481 1482 address read_polling_page(Register r, relocInfo::relocType rtype); 1483 void get_polling_page(Register dest, relocInfo::relocType rtype); 1484 1485 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1486 void update_byte_crc32(Register crc, Register val, Register table); 1487 void update_word_crc32(Register crc, Register v, Register tmp, 1488 Register table0, Register table1, Register table2, Register table3, 1489 bool upper = false); 1490 1491 address count_positives(Register ary1, Register len, Register result); 1492 1493 address arrays_equals(Register a1, Register a2, Register result, Register cnt1, 1494 Register tmp1, Register tmp2, Register tmp3, int elem_size); 1495 1496 // Ensure that the inline code and the stub use the same registers. 1497 #define ARRAYS_HASHCODE_REGISTERS \ 1498 do { \ 1499 assert(result == r0 && \ 1500 ary == r1 && \ 1501 cnt == r2 && \ 1502 vdata0 == v3 && \ 1503 vdata1 == v2 && \ 1504 vdata2 == v1 && \ 1505 vdata3 == v0 && \ 1506 vmul0 == v4 && \ 1507 vmul1 == v5 && \ 1508 vmul2 == v6 && \ 1509 vmul3 == v7 && \ 1510 vpow == v12 && \ 1511 vpowm == v13, "registers must match aarch64.ad"); \ 1512 } while (0) 1513 1514 void string_equals(Register a1, Register a2, Register result, Register cnt1); 1515 1516 void fill_words(Register base, Register cnt, Register value); 1517 address zero_words(Register base, uint64_t cnt); 1518 address zero_words(Register ptr, Register cnt); 1519 void zero_dcache_blocks(Register base, Register cnt); 1520 1521 static const int zero_words_block_size; 1522 1523 address byte_array_inflate(Register src, Register dst, Register len, 1524 FloatRegister vtmp1, FloatRegister vtmp2, 1525 FloatRegister vtmp3, Register tmp4); 1526 1527 void char_array_compress(Register src, Register dst, Register len, 1528 Register res, 1529 FloatRegister vtmp0, FloatRegister vtmp1, 1530 FloatRegister vtmp2, FloatRegister vtmp3, 1531 FloatRegister vtmp4, FloatRegister vtmp5); 1532 1533 void encode_iso_array(Register src, Register dst, 1534 Register len, Register res, bool ascii, 1535 FloatRegister vtmp0, FloatRegister vtmp1, 1536 FloatRegister vtmp2, FloatRegister vtmp3, 1537 FloatRegister vtmp4, FloatRegister vtmp5); 1538 1539 void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi, 1540 address pio2, address dsin_coef, address dcos_coef); 1541 private: 1542 // begin trigonometric functions support block 1543 void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2); 1544 void generate__kernel_rem_pio2(address two_over_pi, address pio2); 1545 void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef); 1546 void generate_kernel_cos(FloatRegister x, address dcos_coef); 1547 // end trigonometric functions support block 1548 void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 1549 Register src1, Register src2); 1550 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 1551 add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2); 1552 } 1553 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 1554 Register y, Register y_idx, Register z, 1555 Register carry, Register product, 1556 Register idx, Register kdx); 1557 void multiply_128_x_128_loop(Register y, Register z, 1558 Register carry, Register carry2, 1559 Register idx, Register jdx, 1560 Register yz_idx1, Register yz_idx2, 1561 Register tmp, Register tmp3, Register tmp4, 1562 Register tmp7, Register product_hi); 1563 void kernel_crc32_using_crypto_pmull(Register crc, Register buf, 1564 Register len, Register tmp0, Register tmp1, Register tmp2, 1565 Register tmp3); 1566 void kernel_crc32_using_crc32(Register crc, Register buf, 1567 Register len, Register tmp0, Register tmp1, Register tmp2, 1568 Register tmp3); 1569 void kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 1570 Register len, Register tmp0, Register tmp1, Register tmp2, 1571 Register tmp3); 1572 void kernel_crc32c_using_crc32c(Register crc, Register buf, 1573 Register len, Register tmp0, Register tmp1, Register tmp2, 1574 Register tmp3); 1575 void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 1576 Register len, Register tmp0, Register tmp1, Register tmp2, 1577 size_t table_offset); 1578 1579 void ghash_modmul (FloatRegister result, 1580 FloatRegister result_lo, FloatRegister result_hi, FloatRegister b, 1581 FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p, 1582 FloatRegister t1, FloatRegister t2, FloatRegister t3); 1583 void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state); 1584 public: 1585 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, 1586 Register tmp0, Register tmp1, Register tmp2, Register tmp3, 1587 Register tmp4, Register tmp5, Register tmp6, Register tmp7); 1588 void mul_add(Register out, Register in, Register offs, Register len, Register k); 1589 void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi, 1590 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1591 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1592 void ghash_multiply_wide(int index, 1593 FloatRegister result_lo, FloatRegister result_hi, 1594 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1595 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1596 void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi, 1597 FloatRegister p, FloatRegister z, FloatRegister t1); 1598 void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi, 1599 FloatRegister p, FloatRegister z, FloatRegister t1); 1600 void ghash_processBlocks_wide(address p, Register state, Register subkeyH, 1601 Register data, Register blocks, int unrolls); 1602 1603 1604 void aesenc_loadkeys(Register key, Register keylen); 1605 void aesecb_encrypt(Register from, Register to, Register keylen, 1606 FloatRegister data = v0, int unrolls = 1); 1607 void aesecb_decrypt(Register from, Register to, Register key, Register keylen); 1608 void aes_round(FloatRegister input, FloatRegister subkey); 1609 1610 // ChaCha20 functions support block 1611 void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec, 1612 FloatRegister cVec, FloatRegister dVec, FloatRegister scratch, 1613 FloatRegister tbl); 1614 void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec, 1615 FloatRegister dVec, bool colToDiag); 1616 1617 // Place an ISB after code may have been modified due to a safepoint. 1618 void safepoint_isb(); 1619 1620 private: 1621 // Return the effective address r + (r1 << ext) + offset. 1622 // Uses rscratch2. 1623 Address offsetted_address(Register r, Register r1, Address::extend ext, 1624 int offset, int size); 1625 1626 private: 1627 // Returns an address on the stack which is reachable with a ldr/str of size 1628 // Uses rscratch2 if the address is not directly reachable 1629 Address spill_address(int size, int offset, Register tmp=rscratch2); 1630 Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2); 1631 1632 bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const; 1633 1634 // Check whether two loads/stores can be merged into ldp/stp. 1635 bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const; 1636 1637 // Merge current load/store with previous load/store into ldp/stp. 1638 void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1639 1640 // Try to merge two loads/stores into ldp/stp. If success, returns true else false. 1641 bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1642 1643 public: 1644 void spill(Register Rx, bool is64, int offset) { 1645 if (is64) { 1646 str(Rx, spill_address(8, offset)); 1647 } else { 1648 strw(Rx, spill_address(4, offset)); 1649 } 1650 } 1651 void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1652 str(Vx, T, spill_address(1 << (int)T, offset)); 1653 } 1654 1655 void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1656 sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1657 } 1658 void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1659 sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1660 } 1661 1662 void unspill(Register Rx, bool is64, int offset) { 1663 if (is64) { 1664 ldr(Rx, spill_address(8, offset)); 1665 } else { 1666 ldrw(Rx, spill_address(4, offset)); 1667 } 1668 } 1669 void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1670 ldr(Vx, T, spill_address(1 << (int)T, offset)); 1671 } 1672 1673 void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1674 sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1675 } 1676 void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1677 sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1678 } 1679 1680 void spill_copy128(int src_offset, int dst_offset, 1681 Register tmp1=rscratch1, Register tmp2=rscratch2) { 1682 if (src_offset < 512 && (src_offset & 7) == 0 && 1683 dst_offset < 512 && (dst_offset & 7) == 0) { 1684 ldp(tmp1, tmp2, Address(sp, src_offset)); 1685 stp(tmp1, tmp2, Address(sp, dst_offset)); 1686 } else { 1687 unspill(tmp1, true, src_offset); 1688 spill(tmp1, true, dst_offset); 1689 unspill(tmp1, true, src_offset+8); 1690 spill(tmp1, true, dst_offset+8); 1691 } 1692 } 1693 void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset, 1694 int sve_vec_reg_size_in_bytes) { 1695 assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size"); 1696 for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) { 1697 spill_copy128(src_offset, dst_offset); 1698 src_offset += 16; 1699 dst_offset += 16; 1700 } 1701 } 1702 void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset, 1703 int sve_predicate_reg_size_in_bytes) { 1704 sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset)); 1705 sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset)); 1706 reinitialize_ptrue(); 1707 } 1708 void cache_wb(Address line); 1709 void cache_wbsync(bool is_pre); 1710 1711 // Code for java.lang.Thread::onSpinWait() intrinsic. 1712 void spin_wait(); 1713 1714 void lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow); 1715 void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow); 1716 1717 private: 1718 // Check the current thread doesn't need a cross modify fence. 1719 void verify_cross_modify_fence_not_required() PRODUCT_RETURN; 1720 1721 }; 1722 1723 #ifdef ASSERT 1724 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; } 1725 #endif 1726 1727 struct tableswitch { 1728 Register _reg; 1729 int _insn_index; jint _first_key; jint _last_key; 1730 Label _after; 1731 Label _branches; 1732 }; 1733 1734 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP