1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.inline.hpp"
  30 #include "code/vmreg.hpp"
  31 #include "code/SCCache.hpp"
  32 #include "metaprogramming/enableIf.hpp"
  33 #include "oops/compressedOops.hpp"
  34 #include "oops/compressedKlass.hpp"
  35 #include "runtime/vm_version.hpp"
  36 #include "utilities/powerOfTwo.hpp"
  37 
  38 class OopMap;
  39 
  40 // MacroAssembler extends Assembler by frequently used macros.
  41 //
  42 // Instructions for which a 'better' code sequence exists depending
  43 // on arguments should also go in here.
  44 
  45 class MacroAssembler: public Assembler {
  46   friend class LIR_Assembler;
  47 
  48  public:
  49   using Assembler::mov;
  50   using Assembler::movi;
  51 
  52  protected:
  53 
  54   // Support for VM calls
  55   //
  56   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  57   // may customize this version by overriding it for its purposes (e.g., to save/restore
  58   // additional registers when doing a VM call).
  59   virtual void call_VM_leaf_base(
  60     address entry_point,               // the entry point
  61     int     number_of_arguments,        // the number of arguments to pop after the call
  62     Label *retaddr = nullptr
  63   );
  64 
  65   virtual void call_VM_leaf_base(
  66     address entry_point,               // the entry point
  67     int     number_of_arguments,        // the number of arguments to pop after the call
  68     Label &retaddr) {
  69     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  70   }
  71 
  72   // This is the base routine called by the different versions of call_VM. The interpreter
  73   // may customize this version by overriding it for its purposes (e.g., to save/restore
  74   // additional registers when doing a VM call).
  75   //
  76   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  77   // returns the register which contains the thread upon return. If a thread register has been
  78   // specified, the return value will correspond to that register. If no last_java_sp is specified
  79   // (noreg) than rsp will be used instead.
  80   virtual void call_VM_base(           // returns the register containing the thread upon return
  81     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  82     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  83     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  84     address  entry_point,              // the entry point
  85     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  86     bool     check_exceptions          // whether to check for pending exceptions after return
  87   );
  88 
  89   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  90 
  91   enum KlassDecodeMode {
  92     KlassDecodeNone,
  93     KlassDecodeZero,
  94     KlassDecodeXor,
  95     KlassDecodeMovk
  96   };
  97 
  98   // Calculate decoding mode based on given parameters, used for checking then ultimately setting.
  99   static KlassDecodeMode klass_decode_mode(address base, int shift, const size_t range);
 100 
 101  private:
 102   static KlassDecodeMode _klass_decode_mode;
 103 
 104   // Returns above setting with asserts
 105   static KlassDecodeMode klass_decode_mode();
 106 
 107  public:
 108   // Checks the decode mode and returns false if not compatible with preferred decoding mode.
 109   static bool check_klass_decode_mode(address base, int shift, const size_t range);
 110 
 111   // Sets the decode mode and returns false if cannot be set.
 112   static bool set_klass_decode_mode(address base, int shift, const size_t range);
 113 
 114  public:
 115   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
 116 
 117  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
 118  // The implementation is only non-empty for the InterpreterMacroAssembler,
 119  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
 120  virtual void check_and_handle_popframe(Register java_thread);
 121  virtual void check_and_handle_earlyret(Register java_thread);
 122 
 123   void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1);
 124   void rt_call(address dest, Register tmp = rscratch1);
 125 
 126   // Load Effective Address
 127   void lea(Register r, const Address &a) {
 128     InstructionMark im(this);
 129     a.lea(this, r);
 130   }
 131 
 132   /* Sometimes we get misaligned loads and stores, usually from Unsafe
 133      accesses, and these can exceed the offset range. */
 134   Address legitimize_address(const Address &a, int size, Register scratch) {
 135     if (a.getMode() == Address::base_plus_offset) {
 136       if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) {
 137         block_comment("legitimize_address {");
 138         lea(scratch, a);
 139         block_comment("} legitimize_address");
 140         return Address(scratch);
 141       }
 142     }
 143     return a;
 144   }
 145 
 146   void addmw(Address a, Register incr, Register scratch) {
 147     ldrw(scratch, a);
 148     addw(scratch, scratch, incr);
 149     strw(scratch, a);
 150   }
 151 
 152   // Add constant to memory word
 153   void addmw(Address a, int imm, Register scratch) {
 154     ldrw(scratch, a);
 155     if (imm > 0)
 156       addw(scratch, scratch, (unsigned)imm);
 157     else
 158       subw(scratch, scratch, (unsigned)-imm);
 159     strw(scratch, a);
 160   }
 161 
 162   void bind(Label& L) {
 163     Assembler::bind(L);
 164     code()->clear_last_insn();
 165     code()->set_last_label(pc());
 166   }
 167 
 168   void membar(Membar_mask_bits order_constraint);
 169 
 170   using Assembler::ldr;
 171   using Assembler::str;
 172   using Assembler::ldrw;
 173   using Assembler::strw;
 174 
 175   void ldr(Register Rx, const Address &adr);
 176   void ldrw(Register Rw, const Address &adr);
 177   void str(Register Rx, const Address &adr);
 178   void strw(Register Rx, const Address &adr);
 179 
 180   // Frame creation and destruction shared between JITs.
 181   void build_frame(int framesize);
 182   void remove_frame(int framesize);
 183 
 184   virtual void _call_Unimplemented(address call_site) {
 185     mov(rscratch2, call_site);
 186   }
 187 
 188 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__
 189 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention."
 190 // https://reviews.llvm.org/D3311
 191 
 192 #ifdef _WIN64
 193 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__)
 194 #else
 195 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 196 #endif
 197 
 198   // aliases defined in AARCH64 spec
 199 
 200   template<class T>
 201   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 202 
 203   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 204   inline void cmp(Register Rd, unsigned imm) = delete;
 205 
 206   template<class T>
 207   inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); }
 208 
 209   inline void cmn(Register Rd, unsigned char imm8)  { adds(zr, Rd, imm8); }
 210   inline void cmn(Register Rd, unsigned imm) = delete;
 211 
 212   void cset(Register Rd, Assembler::Condition cond) {
 213     csinc(Rd, zr, zr, ~cond);
 214   }
 215   void csetw(Register Rd, Assembler::Condition cond) {
 216     csincw(Rd, zr, zr, ~cond);
 217   }
 218 
 219   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 220     csneg(Rd, Rn, Rn, ~cond);
 221   }
 222   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 223     csnegw(Rd, Rn, Rn, ~cond);
 224   }
 225 
 226   inline void movw(Register Rd, Register Rn) {
 227     if (Rd == sp || Rn == sp) {
 228       Assembler::addw(Rd, Rn, 0U);
 229     } else {
 230       orrw(Rd, zr, Rn);
 231     }
 232   }
 233   inline void mov(Register Rd, Register Rn) {
 234     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 235     if (Rd == Rn) {
 236     } else if (Rd == sp || Rn == sp) {
 237       Assembler::add(Rd, Rn, 0U);
 238     } else {
 239       orr(Rd, zr, Rn);
 240     }
 241   }
 242 
 243   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 244   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 245 
 246   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 247   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 248 
 249   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 250   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 251 
 252   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 253     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 254   }
 255   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 256     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 257   }
 258 
 259   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 260     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 261   }
 262   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 263     bfm(Rd, Rn, lsb , (lsb + width - 1));
 264   }
 265 
 266   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 267     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 268   }
 269   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 270     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 271   }
 272 
 273   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 274     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 275   }
 276   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 277     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 278   }
 279 
 280   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 281     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 282   }
 283   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 284     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 285   }
 286 
 287   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 288     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 289   }
 290   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 291     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 292   }
 293 
 294   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 295     sbfmw(Rd, Rn, imm, 31);
 296   }
 297 
 298   inline void asr(Register Rd, Register Rn, unsigned imm) {
 299     sbfm(Rd, Rn, imm, 63);
 300   }
 301 
 302   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 303     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 304   }
 305 
 306   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 307     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 308   }
 309 
 310   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 311     ubfmw(Rd, Rn, imm, 31);
 312   }
 313 
 314   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 315     ubfm(Rd, Rn, imm, 63);
 316   }
 317 
 318   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 319     extrw(Rd, Rn, Rn, imm);
 320   }
 321 
 322   inline void ror(Register Rd, Register Rn, unsigned imm) {
 323     extr(Rd, Rn, Rn, imm);
 324   }
 325 
 326   inline void sxtbw(Register Rd, Register Rn) {
 327     sbfmw(Rd, Rn, 0, 7);
 328   }
 329   inline void sxthw(Register Rd, Register Rn) {
 330     sbfmw(Rd, Rn, 0, 15);
 331   }
 332   inline void sxtb(Register Rd, Register Rn) {
 333     sbfm(Rd, Rn, 0, 7);
 334   }
 335   inline void sxth(Register Rd, Register Rn) {
 336     sbfm(Rd, Rn, 0, 15);
 337   }
 338   inline void sxtw(Register Rd, Register Rn) {
 339     sbfm(Rd, Rn, 0, 31);
 340   }
 341 
 342   inline void uxtbw(Register Rd, Register Rn) {
 343     ubfmw(Rd, Rn, 0, 7);
 344   }
 345   inline void uxthw(Register Rd, Register Rn) {
 346     ubfmw(Rd, Rn, 0, 15);
 347   }
 348   inline void uxtb(Register Rd, Register Rn) {
 349     ubfm(Rd, Rn, 0, 7);
 350   }
 351   inline void uxth(Register Rd, Register Rn) {
 352     ubfm(Rd, Rn, 0, 15);
 353   }
 354   inline void uxtw(Register Rd, Register Rn) {
 355     ubfm(Rd, Rn, 0, 31);
 356   }
 357 
 358   inline void cmnw(Register Rn, Register Rm) {
 359     addsw(zr, Rn, Rm);
 360   }
 361   inline void cmn(Register Rn, Register Rm) {
 362     adds(zr, Rn, Rm);
 363   }
 364 
 365   inline void cmpw(Register Rn, Register Rm) {
 366     subsw(zr, Rn, Rm);
 367   }
 368   inline void cmp(Register Rn, Register Rm) {
 369     subs(zr, Rn, Rm);
 370   }
 371 
 372   inline void negw(Register Rd, Register Rn) {
 373     subw(Rd, zr, Rn);
 374   }
 375 
 376   inline void neg(Register Rd, Register Rn) {
 377     sub(Rd, zr, Rn);
 378   }
 379 
 380   inline void negsw(Register Rd, Register Rn) {
 381     subsw(Rd, zr, Rn);
 382   }
 383 
 384   inline void negs(Register Rd, Register Rn) {
 385     subs(Rd, zr, Rn);
 386   }
 387 
 388   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 389     addsw(zr, Rn, Rm, kind, shift);
 390   }
 391   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 392     adds(zr, Rn, Rm, kind, shift);
 393   }
 394 
 395   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 396     subsw(zr, Rn, Rm, kind, shift);
 397   }
 398   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 399     subs(zr, Rn, Rm, kind, shift);
 400   }
 401 
 402   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 403     subw(Rd, zr, Rn, kind, shift);
 404   }
 405 
 406   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 407     sub(Rd, zr, Rn, kind, shift);
 408   }
 409 
 410   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 411     subsw(Rd, zr, Rn, kind, shift);
 412   }
 413 
 414   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 415     subs(Rd, zr, Rn, kind, shift);
 416   }
 417 
 418   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 419     msubw(Rd, Rn, Rm, zr);
 420   }
 421   inline void mneg(Register Rd, Register Rn, Register Rm) {
 422     msub(Rd, Rn, Rm, zr);
 423   }
 424 
 425   inline void mulw(Register Rd, Register Rn, Register Rm) {
 426     maddw(Rd, Rn, Rm, zr);
 427   }
 428   inline void mul(Register Rd, Register Rn, Register Rm) {
 429     madd(Rd, Rn, Rm, zr);
 430   }
 431 
 432   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 433     smsubl(Rd, Rn, Rm, zr);
 434   }
 435   inline void smull(Register Rd, Register Rn, Register Rm) {
 436     smaddl(Rd, Rn, Rm, zr);
 437   }
 438 
 439   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 440     umsubl(Rd, Rn, Rm, zr);
 441   }
 442   inline void umull(Register Rd, Register Rn, Register Rm) {
 443     umaddl(Rd, Rn, Rm, zr);
 444   }
 445 
 446 #define WRAP(INSN)                                                            \
 447   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 448     if (VM_Version::supports_a53mac() && Ra != zr)                            \
 449       nop();                                                                  \
 450     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 451   }
 452 
 453   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 454   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 455 #undef WRAP
 456 
 457 
 458   // macro assembly operations needed for aarch64
 459 
 460 public:
 461 
 462   enum FpPushPopMode {
 463     PushPopFull,
 464     PushPopSVE,
 465     PushPopNeon,
 466     PushPopFp
 467   };
 468 
 469   // first two private routines for loading 32 bit or 64 bit constants
 470 private:
 471 
 472   void mov_immediate64(Register dst, uint64_t imm64);
 473   void mov_immediate32(Register dst, uint32_t imm32);
 474 
 475   int push(unsigned int bitset, Register stack);
 476   int pop(unsigned int bitset, Register stack);
 477 
 478   int push_fp(unsigned int bitset, Register stack, FpPushPopMode mode);
 479   int pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode);
 480 
 481   int push_p(unsigned int bitset, Register stack);
 482   int pop_p(unsigned int bitset, Register stack);
 483 
 484   void mov(Register dst, Address a);
 485 
 486 public:
 487 
 488   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 489   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 490 
 491   void push_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) push_fp(regs.bits(), stack, mode); }
 492   void pop_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) pop_fp(regs.bits(), stack, mode); }
 493 
 494   static RegSet call_clobbered_gp_registers();
 495 
 496   void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); }
 497   void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); }
 498 
 499   // Push and pop everything that might be clobbered by a native
 500   // runtime call except rscratch1 and rscratch2.  (They are always
 501   // scratch, so we don't have to protect them.)  Only save the lower
 502   // 64 bits of each vector register. Additional registers can be excluded
 503   // in a passed RegSet.
 504   void push_call_clobbered_registers_except(RegSet exclude);
 505   void pop_call_clobbered_registers_except(RegSet exclude);
 506 
 507   void push_call_clobbered_registers() {
 508     push_call_clobbered_registers_except(RegSet());
 509   }
 510   void pop_call_clobbered_registers() {
 511     pop_call_clobbered_registers_except(RegSet());
 512   }
 513 
 514 
 515   // now mov instructions for loading absolute addresses and 32 or
 516   // 64 bit integers
 517 
 518   inline void mov(Register dst, address addr)             { mov_immediate64(dst, (uint64_t)addr); }
 519 
 520   template<typename T, ENABLE_IF(std::is_integral<T>::value)>
 521   inline void mov(Register dst, T o)                      { mov_immediate64(dst, (uint64_t)o); }
 522 
 523   inline void movw(Register dst, uint32_t imm32)          { mov_immediate32(dst, imm32); }
 524 
 525   void mov(Register dst, RegisterOrConstant src) {
 526     if (src.is_register())
 527       mov(dst, src.as_register());
 528     else
 529       mov(dst, src.as_constant());
 530   }
 531 
 532   void movptr(Register r, uintptr_t imm64);
 533 
 534   void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64);
 535 
 536   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 537     orr(Vd, T, Vn, Vn);
 538   }
 539 
 540   void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) {
 541     fcvtsh(tmp, src);
 542     smov(dst, tmp, H, 0);
 543   }
 544 
 545   void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) {
 546     mov(tmp, H, 0, src);
 547     fcvths(dst, tmp);
 548   }
 549 
 550   // Generalized Test Bit And Branch, including a "far" variety which
 551   // spans more than 32KiB.
 552   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) {
 553     assert(cond == EQ || cond == NE, "must be");
 554 
 555     if (isfar)
 556       cond = ~cond;
 557 
 558     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 559     if (cond == Assembler::EQ)
 560       branch = &Assembler::tbz;
 561     else
 562       branch = &Assembler::tbnz;
 563 
 564     if (isfar) {
 565       Label L;
 566       (this->*branch)(Rt, bitpos, L);
 567       b(dest);
 568       bind(L);
 569     } else {
 570       (this->*branch)(Rt, bitpos, dest);
 571     }
 572   }
 573 
 574   // macro instructions for accessing and updating floating point
 575   // status register
 576   //
 577   // FPSR : op1 == 011
 578   //        CRn == 0100
 579   //        CRm == 0100
 580   //        op2 == 001
 581 
 582   inline void get_fpsr(Register reg)
 583   {
 584     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 585   }
 586 
 587   inline void set_fpsr(Register reg)
 588   {
 589     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 590   }
 591 
 592   inline void clear_fpsr()
 593   {
 594     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 595   }
 596 
 597   // FPCR : op1 == 011
 598   //        CRn == 0100
 599   //        CRm == 0100
 600   //        op2 == 000
 601 
 602   inline void get_fpcr(Register reg) {
 603     mrs(0b11, 0b0100, 0b0100, 0b000, reg);
 604   }
 605 
 606   inline void set_fpcr(Register reg) {
 607     msr(0b011, 0b0100, 0b0100, 0b000, reg);
 608   }
 609 
 610   // DCZID_EL0: op1 == 011
 611   //            CRn == 0000
 612   //            CRm == 0000
 613   //            op2 == 111
 614   inline void get_dczid_el0(Register reg)
 615   {
 616     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 617   }
 618 
 619   // CTR_EL0:   op1 == 011
 620   //            CRn == 0000
 621   //            CRm == 0000
 622   //            op2 == 001
 623   inline void get_ctr_el0(Register reg)
 624   {
 625     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 626   }
 627 
 628   inline void get_nzcv(Register reg) {
 629     mrs(0b011, 0b0100, 0b0010, 0b000, reg);
 630   }
 631 
 632   inline void set_nzcv(Register reg) {
 633     msr(0b011, 0b0100, 0b0010, 0b000, reg);
 634   }
 635 
 636   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 637   int corrected_idivl(Register result, Register ra, Register rb,
 638                       bool want_remainder, Register tmp = rscratch1);
 639   int corrected_idivq(Register result, Register ra, Register rb,
 640                       bool want_remainder, Register tmp = rscratch1);
 641 
 642   // Support for null-checks
 643   //
 644   // Generates code that causes a null OS exception if the content of reg is null.
 645   // If the accessed location is M[reg + offset] and the offset is known, provide the
 646   // offset. No explicit code generation is needed if the offset is within a certain
 647   // range (0 <= offset <= page_size).
 648 
 649   virtual void null_check(Register reg, int offset = -1);
 650   static bool needs_explicit_null_check(intptr_t offset);
 651   static bool uses_implicit_null_check(void* address);
 652 
 653   static address target_addr_for_insn(address insn_addr, unsigned insn);
 654   static address target_addr_for_insn_or_null(address insn_addr, unsigned insn);
 655   static address target_addr_for_insn(address insn_addr) {
 656     unsigned insn = *(unsigned*)insn_addr;
 657     return target_addr_for_insn(insn_addr, insn);
 658   }
 659   static address target_addr_for_insn_or_null(address insn_addr) {
 660     unsigned insn = *(unsigned*)insn_addr;
 661     return target_addr_for_insn_or_null(insn_addr, insn);
 662   }
 663 
 664   // Required platform-specific helpers for Label::patch_instructions.
 665   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 666   static int pd_patch_instruction_size(address branch, address target);
 667   static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) {
 668     pd_patch_instruction_size(branch, target);
 669   }
 670   static address pd_call_destination(address branch) {
 671     return target_addr_for_insn(branch);
 672   }
 673 #ifndef PRODUCT
 674   static void pd_print_patched_instruction(address branch);
 675 #endif
 676 
 677   static int patch_oop(address insn_addr, address o);
 678   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 679 
 680   // Return whether code is emitted to a scratch blob.
 681   virtual bool in_scratch_emit_size() {
 682     return false;
 683   }
 684   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 685   static int max_trampoline_stub_size();
 686   void emit_static_call_stub();
 687   static int static_call_stub_size();
 688 
 689   // The following 4 methods return the offset of the appropriate move instruction
 690 
 691   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 692   int load_unsigned_byte(Register dst, Address src);
 693   int load_unsigned_short(Register dst, Address src);
 694 
 695   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 696   int load_signed_byte(Register dst, Address src);
 697   int load_signed_short(Register dst, Address src);
 698 
 699   int load_signed_byte32(Register dst, Address src);
 700   int load_signed_short32(Register dst, Address src);
 701 
 702   // Support for sign-extension (hi:lo = extend_sign(lo))
 703   void extend_sign(Register hi, Register lo);
 704 
 705   // Load and store values by size and signed-ness
 706   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
 707   void store_sized_value(Address dst, Register src, size_t size_in_bytes);
 708 
 709   // Support for inc/dec with optimal instruction selection depending on value
 710 
 711   // x86_64 aliases an unqualified register/address increment and
 712   // decrement to call incrementq and decrementq but also supports
 713   // explicitly sized calls to incrementq/decrementq or
 714   // incrementl/decrementl
 715 
 716   // for aarch64 the proper convention would be to use
 717   // increment/decrement for 64 bit operations and
 718   // incrementw/decrementw for 32 bit operations. so when porting
 719   // x86_64 code we can leave calls to increment/decrement as is,
 720   // replace incrementq/decrementq with increment/decrement and
 721   // replace incrementl/decrementl with incrementw/decrementw.
 722 
 723   // n.b. increment/decrement calls with an Address destination will
 724   // need to use a scratch register to load the value to be
 725   // incremented. increment/decrement calls which add or subtract a
 726   // constant value greater than 2^12 will need to use a 2nd scratch
 727   // register to hold the constant. so, a register increment/decrement
 728   // may trash rscratch2 and an address increment/decrement trash
 729   // rscratch and rscratch2
 730 
 731   void decrementw(Address dst, int value = 1);
 732   void decrementw(Register reg, int value = 1);
 733 
 734   void decrement(Register reg, int value = 1);
 735   void decrement(Address dst, int value = 1);
 736 
 737   void incrementw(Address dst, int value = 1);
 738   void incrementw(Register reg, int value = 1);
 739 
 740   void increment(Register reg, int value = 1);
 741   void increment(Address dst, int value = 1);
 742 
 743 
 744   // Alignment
 745   void align(int modulus);
 746   void align(int modulus, int target);
 747 
 748   // nop
 749   void post_call_nop();
 750 
 751   // Stack frame creation/removal
 752   void enter(bool strip_ret_addr = false);
 753   void leave();
 754 
 755   // ROP Protection
 756   void protect_return_address();
 757   void protect_return_address(Register return_reg);
 758   void authenticate_return_address();
 759   void authenticate_return_address(Register return_reg);
 760   void strip_return_address();
 761   void check_return_address(Register return_reg=lr) PRODUCT_RETURN;
 762 
 763   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 764   // The pointer will be loaded into the thread register.
 765   void get_thread(Register thread);
 766 
 767   // support for argument shuffling
 768   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 769   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 770   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 771   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 772   void object_move(
 773                    OopMap* map,
 774                    int oop_handle_offset,
 775                    int framesize_in_slots,
 776                    VMRegPair src,
 777                    VMRegPair dst,
 778                    bool is_receiver,
 779                    int* receiver_offset);
 780 
 781 
 782   // Support for VM calls
 783   //
 784   // It is imperative that all calls into the VM are handled via the call_VM macros.
 785   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 786   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 787 
 788 
 789   void call_VM(Register oop_result,
 790                address entry_point,
 791                bool check_exceptions = true);
 792   void call_VM(Register oop_result,
 793                address entry_point,
 794                Register arg_1,
 795                bool check_exceptions = true);
 796   void call_VM(Register oop_result,
 797                address entry_point,
 798                Register arg_1, Register arg_2,
 799                bool check_exceptions = true);
 800   void call_VM(Register oop_result,
 801                address entry_point,
 802                Register arg_1, Register arg_2, Register arg_3,
 803                bool check_exceptions = true);
 804 
 805   // Overloadings with last_Java_sp
 806   void call_VM(Register oop_result,
 807                Register last_java_sp,
 808                address entry_point,
 809                int number_of_arguments = 0,
 810                bool check_exceptions = true);
 811   void call_VM(Register oop_result,
 812                Register last_java_sp,
 813                address entry_point,
 814                Register arg_1, bool
 815                check_exceptions = true);
 816   void call_VM(Register oop_result,
 817                Register last_java_sp,
 818                address entry_point,
 819                Register arg_1, Register arg_2,
 820                bool check_exceptions = true);
 821   void call_VM(Register oop_result,
 822                Register last_java_sp,
 823                address entry_point,
 824                Register arg_1, Register arg_2, Register arg_3,
 825                bool check_exceptions = true);
 826 
 827   void get_vm_result  (Register oop_result, Register thread);
 828   void get_vm_result_2(Register metadata_result, Register thread);
 829 
 830   // These always tightly bind to MacroAssembler::call_VM_base
 831   // bypassing the virtual implementation
 832   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 833   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 834   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 835   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 836   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 837 
 838   void call_VM_leaf(address entry_point,
 839                     int number_of_arguments = 0);
 840   void call_VM_leaf(address entry_point,
 841                     Register arg_1);
 842   void call_VM_leaf(address entry_point,
 843                     Register arg_1, Register arg_2);
 844   void call_VM_leaf(address entry_point,
 845                     Register arg_1, Register arg_2, Register arg_3);
 846 
 847   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 848   // bypassing the virtual implementation
 849   void super_call_VM_leaf(address entry_point);
 850   void super_call_VM_leaf(address entry_point, Register arg_1);
 851   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 852   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 853   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 854 
 855   // last Java Frame (fills frame anchor)
 856   void set_last_Java_frame(Register last_java_sp,
 857                            Register last_java_fp,
 858                            address last_java_pc,
 859                            Register scratch);
 860 
 861   void set_last_Java_frame(Register last_java_sp,
 862                            Register last_java_fp,
 863                            Label &last_java_pc,
 864                            Register scratch);
 865 
 866   void set_last_Java_frame(Register last_java_sp,
 867                            Register last_java_fp,
 868                            Register last_java_pc,
 869                            Register scratch);
 870 
 871   void reset_last_Java_frame(Register thread);
 872 
 873   // thread in the default location (rthread)
 874   void reset_last_Java_frame(bool clear_fp);
 875 
 876   // Stores
 877   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 878   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 879 
 880   void resolve_jobject(Register value, Register tmp1, Register tmp2);
 881   void resolve_global_jobject(Register value, Register tmp1, Register tmp2);
 882 
 883   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 884   void c2bool(Register x);
 885 
 886   void load_method_holder_cld(Register rresult, Register rmethod);
 887   void load_method_holder(Register holder, Register method);
 888 
 889   // oop manipulations
 890   void load_narrow_klass_compact(Register dst, Register src);
 891   void load_klass(Register dst, Register src);
 892   void store_klass(Register dst, Register src);
 893   void cmp_klass(Register obj, Register klass, Register tmp);
 894   void cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2);
 895 
 896   void resolve_weak_handle(Register result, Register tmp1, Register tmp2);
 897   void resolve_oop_handle(Register result, Register tmp1, Register tmp2);
 898   void load_mirror(Register dst, Register method, Register tmp1, Register tmp2);
 899 
 900   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 901                       Register tmp1, Register tmp2);
 902 
 903   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 904                        Register tmp1, Register tmp2, Register tmp3);
 905 
 906   void load_heap_oop(Register dst, Address src, Register tmp1,
 907                      Register tmp2, DecoratorSet decorators = 0);
 908 
 909   void load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 910                               Register tmp2, DecoratorSet decorators = 0);
 911   void store_heap_oop(Address dst, Register val, Register tmp1,
 912                       Register tmp2, Register tmp3, DecoratorSet decorators = 0);
 913 
 914   // currently unimplemented
 915   // Used for storing null. All other oop constants should be
 916   // stored using routines that take a jobject.
 917   void store_heap_oop_null(Address dst);
 918 
 919   void store_klass_gap(Register dst, Register src);
 920 
 921   // This dummy is to prevent a call to store_heap_oop from
 922   // converting a zero (like null) into a Register by giving
 923   // the compiler two choices it can't resolve
 924 
 925   void store_heap_oop(Address dst, void* dummy);
 926 
 927   void encode_heap_oop(Register d, Register s);
 928   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 929   void decode_heap_oop(Register d, Register s);
 930   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 931   void encode_heap_oop_not_null(Register r);
 932   void decode_heap_oop_not_null(Register r);
 933   void encode_heap_oop_not_null(Register dst, Register src);
 934   void decode_heap_oop_not_null(Register dst, Register src);
 935 
 936   void set_narrow_oop(Register dst, jobject obj);
 937 
 938   void encode_klass_not_null(Register r);
 939   void decode_klass_not_null(Register r);
 940   void encode_klass_not_null(Register dst, Register src);
 941   void decode_klass_not_null(Register dst, Register src);
 942 
 943   void set_narrow_klass(Register dst, Klass* k);
 944 
 945   // if heap base register is used - reinit it with the correct value
 946   void reinit_heapbase();
 947 
 948   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 949 
 950   void push_CPU_state(bool save_vectors = false, bool use_sve = false,
 951                       int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 952   void pop_CPU_state(bool restore_vectors = false, bool use_sve = false,
 953                      int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 954 
 955   void push_cont_fastpath(Register java_thread = rthread);
 956   void pop_cont_fastpath(Register java_thread = rthread);
 957 
 958   void inc_held_monitor_count(Register tmp);
 959   void dec_held_monitor_count(Register tmp);
 960 
 961   // Round up to a power of two
 962   void round_to(Register reg, int modulus);
 963 
 964   // java.lang.Math::round intrinsics
 965   void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp);
 966   void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp);
 967 
 968   // allocation
 969   void tlab_allocate(
 970     Register obj,                      // result: pointer to object after successful allocation
 971     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 972     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 973     Register t1,                       // temp register
 974     Register t2,                       // temp register
 975     Label&   slow_case                 // continuation point if fast allocation fails
 976   );
 977   void verify_tlab();
 978 
 979   // interface method calling
 980   void lookup_interface_method(Register recv_klass,
 981                                Register intf_klass,
 982                                RegisterOrConstant itable_index,
 983                                Register method_result,
 984                                Register scan_temp,
 985                                Label& no_such_interface,
 986                    bool return_method = true);
 987 
 988   void lookup_interface_method_stub(Register recv_klass,
 989                                     Register holder_klass,
 990                                     Register resolved_klass,
 991                                     Register method_result,
 992                                     Register temp_reg,
 993                                     Register temp_reg2,
 994                                     int itable_index,
 995                                     Label& L_no_such_interface);
 996 
 997   // virtual method calling
 998   // n.b. x86 allows RegisterOrConstant for vtable_index
 999   void lookup_virtual_method(Register recv_klass,
1000                              RegisterOrConstant vtable_index,
1001                              Register method_result);
1002 
1003   // Test sub_klass against super_klass, with fast and slow paths.
1004 
1005   // The fast path produces a tri-state answer: yes / no / maybe-slow.
1006   // One of the three labels can be null, meaning take the fall-through.
1007   // If super_check_offset is -1, the value is loaded up from super_klass.
1008   // No registers are killed, except temp_reg.
1009   void check_klass_subtype_fast_path(Register sub_klass,
1010                                      Register super_klass,
1011                                      Register temp_reg,
1012                                      Label* L_success,
1013                                      Label* L_failure,
1014                                      Label* L_slow_path,
1015                                      Register super_check_offset = noreg);
1016 
1017   // The rest of the type check; must be wired to a corresponding fast path.
1018   // It does not repeat the fast path logic, so don't use it standalone.
1019   // The temp_reg and temp2_reg can be noreg, if no temps are available.
1020   // Updates the sub's secondary super cache as necessary.
1021   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
1022   void check_klass_subtype_slow_path(Register sub_klass,
1023                                      Register super_klass,
1024                                      Register temp_reg,
1025                                      Register temp2_reg,
1026                                      Label* L_success,
1027                                      Label* L_failure,
1028                                      bool set_cond_codes = false);
1029 
1030   void check_klass_subtype_slow_path_linear(Register sub_klass,
1031                                             Register super_klass,
1032                                             Register temp_reg,
1033                                             Register temp2_reg,
1034                                             Label* L_success,
1035                                             Label* L_failure,
1036                                             bool set_cond_codes = false);
1037 
1038   void check_klass_subtype_slow_path_table(Register sub_klass,
1039                                            Register super_klass,
1040                                            Register temp_reg,
1041                                            Register temp2_reg,
1042                                            Register temp3_reg,
1043                                            Register result_reg,
1044                                            FloatRegister vtemp_reg,
1045                                            Label* L_success,
1046                                            Label* L_failure,
1047                                            bool set_cond_codes = false);
1048 
1049   // If r is valid, return r.
1050   // If r is invalid, remove a register r2 from available_regs, add r2
1051   // to regs_to_push, then return r2.
1052   Register allocate_if_noreg(const Register r,
1053                              RegSetIterator<Register> &available_regs,
1054                              RegSet &regs_to_push);
1055 
1056   // Secondary subtype checking
1057   void lookup_secondary_supers_table_var(Register sub_klass,
1058                                          Register r_super_klass,
1059                                          Register temp1,
1060                                          Register temp2,
1061                                          Register temp3,
1062                                          FloatRegister vtemp,
1063                                          Register result,
1064                                          Label *L_success);
1065 
1066 
1067   // As above, but with a constant super_klass.
1068   // The result is in Register result, not the condition codes.
1069   bool lookup_secondary_supers_table_const(Register r_sub_klass,
1070                                            Register r_super_klass,
1071                                            Register temp1,
1072                                            Register temp2,
1073                                            Register temp3,
1074                                            FloatRegister vtemp,
1075                                            Register result,
1076                                            u1 super_klass_slot,
1077                                            bool stub_is_near = false);
1078 
1079   void verify_secondary_supers_table(Register r_sub_klass,
1080                                      Register r_super_klass,
1081                                      Register temp1,
1082                                      Register temp2,
1083                                      Register result);
1084 
1085   void lookup_secondary_supers_table_slow_path(Register r_super_klass,
1086                                                Register r_array_base,
1087                                                Register r_array_index,
1088                                                Register r_bitmap,
1089                                                Register temp1,
1090                                                Register result,
1091                                                bool is_stub = true);
1092 
1093   // Simplified, combined version, good for typical uses.
1094   // Falls through on failure.
1095   void check_klass_subtype(Register sub_klass,
1096                            Register super_klass,
1097                            Register temp_reg,
1098                            Label& L_success);
1099 
1100   void clinit_barrier(Register klass,
1101                       Register thread,
1102                       Label* L_fast_path = nullptr,
1103                       Label* L_slow_path = nullptr);
1104 
1105   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1106 
1107   void verify_sve_vector_length(Register tmp = rscratch1);
1108   void reinitialize_ptrue() {
1109     if (UseSVE > 0) {
1110       sve_ptrue(ptrue, B);
1111     }
1112   }
1113   void verify_ptrue();
1114 
1115   // Debugging
1116 
1117   // only if +VerifyOops
1118   void _verify_oop(Register reg, const char* s, const char* file, int line);
1119   void _verify_oop_addr(Address addr, const char * s, const char* file, int line);
1120 
1121   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
1122     if (VerifyOops) {
1123       _verify_oop(reg, s, file, line);
1124     }
1125   }
1126   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
1127     if (VerifyOops) {
1128       _verify_oop_addr(reg, s, file, line);
1129     }
1130   }
1131 
1132 // TODO: verify method and klass metadata (compare against vptr?)
1133   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
1134   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
1135 
1136 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
1137 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
1138 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
1139 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
1140 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
1141 
1142   // Restore cpu control state after JNI call
1143   void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2);
1144 
1145   // prints msg, dumps registers and stops execution
1146   void stop(const char* msg);
1147 
1148   static void debug64(char* msg, int64_t pc, int64_t regs[]);
1149 
1150   void untested()                                { stop("untested"); }
1151 
1152   void unimplemented(const char* what = "");
1153 
1154   void should_not_reach_here()                   { stop("should not reach here"); }
1155 
1156   void _assert_asm(Condition cc, const char* msg);
1157 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg)
1158 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg))
1159 
1160   // Stack overflow checking
1161   void bang_stack_with_offset(int offset) {
1162     // stack grows down, caller passes positive offset
1163     assert(offset > 0, "must bang with negative offset");
1164     sub(rscratch2, sp, offset);
1165     str(zr, Address(rscratch2));
1166   }
1167 
1168   // Writes to stack successive pages until offset reached to check for
1169   // stack overflow + shadow pages.  Also, clobbers tmp
1170   void bang_stack_size(Register size, Register tmp);
1171 
1172   // Check for reserved stack access in method being exited (for JIT)
1173   void reserved_stack_check();
1174 
1175   // Arithmetics
1176 
1177   void addptr(const Address &dst, int32_t src);
1178   void cmpptr(Register src1, Address src2);
1179 
1180   void cmpoop(Register obj1, Register obj2);
1181 
1182   // Various forms of CAS
1183 
1184   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
1185                           Label &succeed, Label *fail);
1186   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
1187                   Label &succeed, Label *fail);
1188 
1189   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
1190                   Label &succeed, Label *fail);
1191 
1192   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
1193   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1194   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1195   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1196 
1197   void atomic_xchg(Register prev, Register newv, Register addr);
1198   void atomic_xchgw(Register prev, Register newv, Register addr);
1199   void atomic_xchgl(Register prev, Register newv, Register addr);
1200   void atomic_xchglw(Register prev, Register newv, Register addr);
1201   void atomic_xchgal(Register prev, Register newv, Register addr);
1202   void atomic_xchgalw(Register prev, Register newv, Register addr);
1203 
1204   void orptr(Address adr, RegisterOrConstant src) {
1205     ldr(rscratch1, adr);
1206     if (src.is_register())
1207       orr(rscratch1, rscratch1, src.as_register());
1208     else
1209       orr(rscratch1, rscratch1, src.as_constant());
1210     str(rscratch1, adr);
1211   }
1212 
1213   // A generic CAS; success or failure is in the EQ flag.
1214   // Clobbers rscratch1
1215   void cmpxchg(Register addr, Register expected, Register new_val,
1216                enum operand_size size,
1217                bool acquire, bool release, bool weak,
1218                Register result);
1219 
1220 #ifdef ASSERT
1221   // Template short-hand support to clean-up after a failed call to trampoline
1222   // call generation (see trampoline_call() below),  when a set of Labels must
1223   // be reset (before returning).
1224   template<typename Label, typename... More>
1225   void reset_labels(Label &lbl, More&... more) {
1226     lbl.reset(); reset_labels(more...);
1227   }
1228   template<typename Label>
1229   void reset_labels(Label &lbl) {
1230     lbl.reset();
1231   }
1232 #endif
1233 
1234 private:
1235   void compare_eq(Register rn, Register rm, enum operand_size size);
1236 
1237 public:
1238   // AArch64 OpenJDK uses four different types of calls:
1239   //   - direct call: bl pc_relative_offset
1240   //     This is the shortest and the fastest, but the offset has the range:
1241   //     +/-128MB for the release build, +/-2MB for the debug build.
1242   //
1243   //   - far call: adrp reg, pc_relative_offset; add; bl reg
1244   //     This is longer than a direct call. The offset has
1245   //     the range +/-4GB. As the code cache size is limited to 4GB,
1246   //     far calls can reach anywhere in the code cache. If a jump is
1247   //     needed rather than a call, a far jump 'b reg' can be used instead.
1248   //     All instructions are embedded at a call site.
1249   //
1250   //   - trampoline call:
1251   //     This is only available in C1/C2-generated code (nmethod). It is a combination
1252   //     of a direct call, which is used if the destination of a call is in range,
1253   //     and a register-indirect call. It has the advantages of reaching anywhere in
1254   //     the AArch64 address space and being patchable at runtime when the generated
1255   //     code is being executed by other threads.
1256   //
1257   //     [Main code section]
1258   //       bl trampoline
1259   //     [Stub code section]
1260   //     trampoline:
1261   //       ldr reg, pc + 8
1262   //       br reg
1263   //       <64-bit destination address>
1264   //
1265   //     If the destination is in range when the generated code is moved to the code
1266   //     cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline
1267   //     is not used.
1268   //     The optimization does not remove the trampoline from the stub section.
1269   //     This is necessary because the trampoline may well be redirected later when
1270   //     code is patched, and the new destination may not be reachable by a simple BR
1271   //     instruction.
1272   //
1273   //   - indirect call: move reg, address; blr reg
1274   //     This too can reach anywhere in the address space, but it cannot be
1275   //     patched while code is running, so it must only be modified at a safepoint.
1276   //     This form of call is most suitable for targets at fixed addresses, which
1277   //     will never be patched.
1278   //
1279   // The patching we do conforms to the "Concurrent modification and
1280   // execution of instructions" section of the Arm Architectural
1281   // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC,
1282   // or SVC instructions to be modified while another thread is
1283   // executing them.
1284   //
1285   // To patch a trampoline call when the BL can't reach, we first modify
1286   // the 64-bit destination address in the trampoline, then modify the
1287   // BL to point to the trampoline, then flush the instruction cache to
1288   // broadcast the change to all executing threads. See
1289   // NativeCall::set_destination_mt_safe for the details.
1290   //
1291   // There is a benign race in that the other thread might observe the
1292   // modified BL before it observes the modified 64-bit destination
1293   // address. That does not matter because the destination method has been
1294   // invalidated, so there will be a trap at its start.
1295   // For this to work, the destination address in the trampoline is
1296   // always updated, even if we're not using the trampoline.
1297 
1298   // Emit a direct call if the entry address will always be in range,
1299   // otherwise a trampoline call.
1300   // Supported entry.rspec():
1301   // - relocInfo::runtime_call_type
1302   // - relocInfo::opt_virtual_call_type
1303   // - relocInfo::static_call_type
1304   // - relocInfo::virtual_call_type
1305   //
1306   // Return: the call PC or null if CodeCache is full.
1307   // Clobbers: rscratch1
1308   address trampoline_call(Address entry);
1309 
1310   static bool far_branches() {
1311     return ReservedCodeCacheSize > branch_range;
1312   }
1313 
1314   // Check if branches to the non nmethod section require a far jump
1315   static bool codestub_branch_needs_far_jump() {
1316     if (SCCache::is_on_for_write()) {
1317       // To calculate far_codestub_branch_size correctly.
1318       return true;
1319     }
1320     return CodeCache::max_distance_to_non_nmethod() > branch_range;
1321   }
1322 
1323   // Emit a direct call/jump if the entry address will always be in range,
1324   // otherwise a far call/jump.
1325   // The address must be inside the code cache.
1326   // Supported entry.rspec():
1327   // - relocInfo::external_word_type
1328   // - relocInfo::runtime_call_type
1329   // - relocInfo::none
1330   // In the case of a far call/jump, the entry address is put in the tmp register.
1331   // The tmp register is invalidated.
1332   //
1333   // Far_jump returns the amount of the emitted code.
1334   void far_call(Address entry, Register tmp = rscratch1);
1335   int far_jump(Address entry, Register tmp = rscratch1);
1336 
1337   static int far_codestub_branch_size() {
1338     if (codestub_branch_needs_far_jump()) {
1339       return 3 * 4;  // adrp, add, br
1340     } else {
1341       return 4;
1342     }
1343   }
1344 
1345   // Emit the CompiledIC call idiom
1346   address ic_call(address entry, jint method_index = 0);
1347   static int ic_check_size();
1348   int ic_check(int end_alignment);
1349 
1350 public:
1351 
1352   // Data
1353 
1354   void mov_metadata(Register dst, Metadata* obj);
1355   Address allocate_metadata_address(Metadata* obj);
1356   Address constant_oop_address(jobject obj);
1357 
1358   void movoop(Register dst, jobject obj);
1359 
1360   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1361   void kernel_crc32(Register crc, Register buf, Register len,
1362         Register table0, Register table1, Register table2, Register table3,
1363         Register tmp, Register tmp2, Register tmp3);
1364   // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic.
1365   void kernel_crc32c(Register crc, Register buf, Register len,
1366         Register table0, Register table1, Register table2, Register table3,
1367         Register tmp, Register tmp2, Register tmp3);
1368 
1369   // Stack push and pop individual 64 bit registers
1370   void push(Register src);
1371   void pop(Register dst);
1372 
1373   void repne_scan(Register addr, Register value, Register count,
1374                   Register scratch);
1375   void repne_scanw(Register addr, Register value, Register count,
1376                    Register scratch);
1377 
1378   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1379   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1380 
1381   // If a constant does not fit in an immediate field, generate some
1382   // number of MOV instructions and then perform the operation
1383   void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
1384                              add_sub_imm_insn insn1,
1385                              add_sub_reg_insn insn2, bool is32);
1386   // Separate vsn which sets the flags
1387   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
1388                                add_sub_imm_insn insn1,
1389                                add_sub_reg_insn insn2, bool is32);
1390 
1391 #define WRAP(INSN, is32)                                                \
1392   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1393     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1394   }                                                                     \
1395                                                                         \
1396   void INSN(Register Rd, Register Rn, Register Rm,                      \
1397              enum shift_kind kind, unsigned shift = 0) {                \
1398     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1399   }                                                                     \
1400                                                                         \
1401   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1402     Assembler::INSN(Rd, Rn, Rm);                                        \
1403   }                                                                     \
1404                                                                         \
1405   void INSN(Register Rd, Register Rn, Register Rm,                      \
1406            ext::operation option, int amount = 0) {                     \
1407     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1408   }
1409 
1410   WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true)
1411 
1412 #undef WRAP
1413 #define WRAP(INSN, is32)                                                \
1414   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1415     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1416   }                                                                     \
1417                                                                         \
1418   void INSN(Register Rd, Register Rn, Register Rm,                      \
1419              enum shift_kind kind, unsigned shift = 0) {                \
1420     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1421   }                                                                     \
1422                                                                         \
1423   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1424     Assembler::INSN(Rd, Rn, Rm);                                        \
1425   }                                                                     \
1426                                                                         \
1427   void INSN(Register Rd, Register Rn, Register Rm,                      \
1428            ext::operation option, int amount = 0) {                     \
1429     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1430   }
1431 
1432   WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true)
1433 
1434   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1435   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1436   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1437   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1438 
1439   void adrp(Register reg1, const Address &dest, uint64_t &byte_offset);
1440 
1441   void tableswitch(Register index, jint lowbound, jint highbound,
1442                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1443     adr(rscratch1, jumptable);
1444     subsw(rscratch2, index, lowbound);
1445     subsw(zr, rscratch2, highbound - lowbound);
1446     br(Assembler::HS, jumptable_end);
1447     add(rscratch1, rscratch1, rscratch2,
1448         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1449     br(rscratch1);
1450   }
1451 
1452   // Form an address from base + offset in Rd.  Rd may or may not
1453   // actually be used: you must use the Address that is returned.  It
1454   // is up to you to ensure that the shift provided matches the size
1455   // of your data.
1456   Address form_address(Register Rd, Register base, int64_t byte_offset, int shift);
1457 
1458   // Return true iff an address is within the 48-bit AArch64 address
1459   // space.
1460   bool is_valid_AArch64_address(address a) {
1461     return ((uint64_t)a >> 48) == 0;
1462   }
1463 
1464   // Load the base of the cardtable byte map into reg.
1465   void load_byte_map_base(Register reg);
1466 
1467   // Load a constant address in the AOT Runtime Constants area
1468   void load_aotrc_address(Register reg, address a);
1469 
1470   // Prolog generator routines to support switch between x86 code and
1471   // generated ARM code
1472 
1473   // routine to generate an x86 prolog for a stub function which
1474   // bootstraps into the generated ARM code which directly follows the
1475   // stub
1476   //
1477 
1478   public:
1479 
1480   void ldr_constant(Register dest, const Address &const_addr) {
1481     if (NearCpool) {
1482       ldr(dest, const_addr);
1483     } else {
1484       uint64_t offset;
1485       adrp(dest, InternalAddress(const_addr.target()), offset);
1486       ldr(dest, Address(dest, offset));
1487     }
1488   }
1489 
1490   address read_polling_page(Register r, relocInfo::relocType rtype);
1491   void get_polling_page(Register dest, relocInfo::relocType rtype);
1492 
1493   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1494   void update_byte_crc32(Register crc, Register val, Register table);
1495   void update_word_crc32(Register crc, Register v, Register tmp,
1496         Register table0, Register table1, Register table2, Register table3,
1497         bool upper = false);
1498 
1499   address count_positives(Register ary1, Register len, Register result);
1500 
1501   address arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1502                         Register tmp1, Register tmp2, Register tmp3, int elem_size);
1503 
1504 // Ensure that the inline code and the stub use the same registers.
1505 #define ARRAYS_HASHCODE_REGISTERS \
1506   do {                      \
1507     assert(result == r0  && \
1508            ary    == r1  && \
1509            cnt    == r2  && \
1510            vdata0 == v3  && \
1511            vdata1 == v2  && \
1512            vdata2 == v1  && \
1513            vdata3 == v0  && \
1514            vmul0  == v4  && \
1515            vmul1  == v5  && \
1516            vmul2  == v6  && \
1517            vmul3  == v7  && \
1518            vpow   == v12 && \
1519            vpowm  == v13, "registers must match aarch64.ad"); \
1520   } while (0)
1521 
1522   void string_equals(Register a1, Register a2, Register result, Register cnt1);
1523 
1524   void fill_words(Register base, Register cnt, Register value);
1525   address zero_words(Register base, uint64_t cnt);
1526   address zero_words(Register ptr, Register cnt);
1527   void zero_dcache_blocks(Register base, Register cnt);
1528 
1529   static const int zero_words_block_size;
1530 
1531   address byte_array_inflate(Register src, Register dst, Register len,
1532                              FloatRegister vtmp1, FloatRegister vtmp2,
1533                              FloatRegister vtmp3, Register tmp4);
1534 
1535   void char_array_compress(Register src, Register dst, Register len,
1536                            Register res,
1537                            FloatRegister vtmp0, FloatRegister vtmp1,
1538                            FloatRegister vtmp2, FloatRegister vtmp3,
1539                            FloatRegister vtmp4, FloatRegister vtmp5);
1540 
1541   void encode_iso_array(Register src, Register dst,
1542                         Register len, Register res, bool ascii,
1543                         FloatRegister vtmp0, FloatRegister vtmp1,
1544                         FloatRegister vtmp2, FloatRegister vtmp3,
1545                         FloatRegister vtmp4, FloatRegister vtmp5);
1546 
1547   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1548       address pio2, address dsin_coef, address dcos_coef);
1549  private:
1550   // begin trigonometric functions support block
1551   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1552   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1553   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1554   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1555   // end trigonometric functions support block
1556   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1557                        Register src1, Register src2);
1558   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1559     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1560   }
1561   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1562                              Register y, Register y_idx, Register z,
1563                              Register carry, Register product,
1564                              Register idx, Register kdx);
1565   void multiply_128_x_128_loop(Register y, Register z,
1566                                Register carry, Register carry2,
1567                                Register idx, Register jdx,
1568                                Register yz_idx1, Register yz_idx2,
1569                                Register tmp, Register tmp3, Register tmp4,
1570                                Register tmp7, Register product_hi);
1571   void kernel_crc32_using_crypto_pmull(Register crc, Register buf,
1572         Register len, Register tmp0, Register tmp1, Register tmp2,
1573         Register tmp3);
1574   void kernel_crc32_using_crc32(Register crc, Register buf,
1575         Register len, Register tmp0, Register tmp1, Register tmp2,
1576         Register tmp3);
1577   void kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
1578         Register len, Register tmp0, Register tmp1, Register tmp2,
1579         Register tmp3);
1580   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1581         Register len, Register tmp0, Register tmp1, Register tmp2,
1582         Register tmp3);
1583   void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
1584         Register len, Register tmp0, Register tmp1, Register tmp2,
1585         size_t table_offset);
1586 
1587   void ghash_modmul (FloatRegister result,
1588                      FloatRegister result_lo, FloatRegister result_hi, FloatRegister b,
1589                      FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p,
1590                      FloatRegister t1, FloatRegister t2, FloatRegister t3);
1591   void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state);
1592 public:
1593   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1594                        Register tmp0, Register tmp1, Register tmp2, Register tmp3,
1595                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1596   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1597   void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi,
1598                       FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1599                       FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1600   void ghash_multiply_wide(int index,
1601                            FloatRegister result_lo, FloatRegister result_hi,
1602                            FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1603                            FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1604   void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi,
1605                     FloatRegister p, FloatRegister z, FloatRegister t1);
1606   void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi,
1607                     FloatRegister p, FloatRegister z, FloatRegister t1);
1608   void ghash_processBlocks_wide(address p, Register state, Register subkeyH,
1609                                 Register data, Register blocks, int unrolls);
1610 
1611 
1612   void aesenc_loadkeys(Register key, Register keylen);
1613   void aesecb_encrypt(Register from, Register to, Register keylen,
1614                       FloatRegister data = v0, int unrolls = 1);
1615   void aesecb_decrypt(Register from, Register to, Register key, Register keylen);
1616   void aes_round(FloatRegister input, FloatRegister subkey);
1617 
1618   // ChaCha20 functions support block
1619   void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec,
1620           FloatRegister cVec, FloatRegister dVec, FloatRegister scratch,
1621           FloatRegister tbl);
1622   void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec,
1623           FloatRegister dVec, bool colToDiag);
1624 
1625   // Place an ISB after code may have been modified due to a safepoint.
1626   void safepoint_isb();
1627 
1628 private:
1629   // Return the effective address r + (r1 << ext) + offset.
1630   // Uses rscratch2.
1631   Address offsetted_address(Register r, Register r1, Address::extend ext,
1632                             int offset, int size);
1633 
1634 private:
1635   // Returns an address on the stack which is reachable with a ldr/str of size
1636   // Uses rscratch2 if the address is not directly reachable
1637   Address spill_address(int size, int offset, Register tmp=rscratch2);
1638   Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2);
1639 
1640   bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const;
1641 
1642   // Check whether two loads/stores can be merged into ldp/stp.
1643   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1644 
1645   // Merge current load/store with previous load/store into ldp/stp.
1646   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1647 
1648   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1649   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1650 
1651 public:
1652   void spill(Register Rx, bool is64, int offset) {
1653     if (is64) {
1654       str(Rx, spill_address(8, offset));
1655     } else {
1656       strw(Rx, spill_address(4, offset));
1657     }
1658   }
1659   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1660     str(Vx, T, spill_address(1 << (int)T, offset));
1661   }
1662 
1663   void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1664     sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1665   }
1666   void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1667     sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1668   }
1669 
1670   void unspill(Register Rx, bool is64, int offset) {
1671     if (is64) {
1672       ldr(Rx, spill_address(8, offset));
1673     } else {
1674       ldrw(Rx, spill_address(4, offset));
1675     }
1676   }
1677   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1678     ldr(Vx, T, spill_address(1 << (int)T, offset));
1679   }
1680 
1681   void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1682     sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1683   }
1684   void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1685     sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1686   }
1687 
1688   void spill_copy128(int src_offset, int dst_offset,
1689                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1690     if (src_offset < 512 && (src_offset & 7) == 0 &&
1691         dst_offset < 512 && (dst_offset & 7) == 0) {
1692       ldp(tmp1, tmp2, Address(sp, src_offset));
1693       stp(tmp1, tmp2, Address(sp, dst_offset));
1694     } else {
1695       unspill(tmp1, true, src_offset);
1696       spill(tmp1, true, dst_offset);
1697       unspill(tmp1, true, src_offset+8);
1698       spill(tmp1, true, dst_offset+8);
1699     }
1700   }
1701   void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset,
1702                                             int sve_vec_reg_size_in_bytes) {
1703     assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size");
1704     for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) {
1705       spill_copy128(src_offset, dst_offset);
1706       src_offset += 16;
1707       dst_offset += 16;
1708     }
1709   }
1710   void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset,
1711                                                int sve_predicate_reg_size_in_bytes) {
1712     sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset));
1713     sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset));
1714     reinitialize_ptrue();
1715   }
1716   void cache_wb(Address line);
1717   void cache_wbsync(bool is_pre);
1718 
1719   // Code for java.lang.Thread::onSpinWait() intrinsic.
1720   void spin_wait();
1721 
1722   void lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow);
1723   void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow);
1724 
1725 private:
1726   // Check the current thread doesn't need a cross modify fence.
1727   void verify_cross_modify_fence_not_required() PRODUCT_RETURN;
1728 
1729 };
1730 
1731 #ifdef ASSERT
1732 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1733 #endif
1734 
1735 struct tableswitch {
1736   Register _reg;
1737   int _insn_index; jint _first_key; jint _last_key;
1738   Label _after;
1739   Label _branches;
1740 };
1741 
1742 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP