1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 28 29 #include "asm/assembler.inline.hpp" 30 #include "code/vmreg.hpp" 31 #include "code/SCCache.hpp" 32 #include "metaprogramming/enableIf.hpp" 33 #include "oops/compressedOops.hpp" 34 #include "oops/compressedKlass.hpp" 35 #include "runtime/vm_version.hpp" 36 #include "utilities/powerOfTwo.hpp" 37 38 class OopMap; 39 40 // MacroAssembler extends Assembler by frequently used macros. 41 // 42 // Instructions for which a 'better' code sequence exists depending 43 // on arguments should also go in here. 44 45 class MacroAssembler: public Assembler { 46 friend class LIR_Assembler; 47 48 public: 49 using Assembler::mov; 50 using Assembler::movi; 51 52 protected: 53 54 // Support for VM calls 55 // 56 // This is the base routine called by the different versions of call_VM_leaf. The interpreter 57 // may customize this version by overriding it for its purposes (e.g., to save/restore 58 // additional registers when doing a VM call). 59 virtual void call_VM_leaf_base( 60 address entry_point, // the entry point 61 int number_of_arguments, // the number of arguments to pop after the call 62 Label *retaddr = nullptr 63 ); 64 65 virtual void call_VM_leaf_base( 66 address entry_point, // the entry point 67 int number_of_arguments, // the number of arguments to pop after the call 68 Label &retaddr) { 69 call_VM_leaf_base(entry_point, number_of_arguments, &retaddr); 70 } 71 72 // This is the base routine called by the different versions of call_VM. The interpreter 73 // may customize this version by overriding it for its purposes (e.g., to save/restore 74 // additional registers when doing a VM call). 75 // 76 // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base 77 // returns the register which contains the thread upon return. If a thread register has been 78 // specified, the return value will correspond to that register. If no last_java_sp is specified 79 // (noreg) than rsp will be used instead. 80 virtual void call_VM_base( // returns the register containing the thread upon return 81 Register oop_result, // where an oop-result ends up if any; use noreg otherwise 82 Register java_thread, // the thread if computed before ; use noreg otherwise 83 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise 84 address entry_point, // the entry point 85 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call 86 bool check_exceptions // whether to check for pending exceptions after return 87 ); 88 89 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); 90 91 enum KlassDecodeMode { 92 KlassDecodeNone, 93 KlassDecodeZero, 94 KlassDecodeXor, 95 KlassDecodeMovk 96 }; 97 98 // Calculate decoding mode based on given parameters, used for checking then ultimately setting. 99 static KlassDecodeMode klass_decode_mode(address base, int shift, const size_t range); 100 101 private: 102 static KlassDecodeMode _klass_decode_mode; 103 104 // Returns above setting with asserts 105 static KlassDecodeMode klass_decode_mode(); 106 107 public: 108 // Checks the decode mode and returns false if not compatible with preferred decoding mode. 109 static bool check_klass_decode_mode(address base, int shift, const size_t range); 110 111 // Sets the decode mode and returns false if cannot be set. 112 static bool set_klass_decode_mode(address base, int shift, const size_t range); 113 114 public: 115 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 116 117 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. 118 // The implementation is only non-empty for the InterpreterMacroAssembler, 119 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. 120 virtual void check_and_handle_popframe(Register java_thread); 121 virtual void check_and_handle_earlyret(Register java_thread); 122 123 void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1); 124 void rt_call(address dest, Register tmp = rscratch1); 125 126 // Load Effective Address 127 void lea(Register r, const Address &a) { 128 InstructionMark im(this); 129 a.lea(this, r); 130 } 131 132 /* Sometimes we get misaligned loads and stores, usually from Unsafe 133 accesses, and these can exceed the offset range. */ 134 Address legitimize_address(const Address &a, int size, Register scratch) { 135 if (a.getMode() == Address::base_plus_offset) { 136 if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) { 137 block_comment("legitimize_address {"); 138 lea(scratch, a); 139 block_comment("} legitimize_address"); 140 return Address(scratch); 141 } 142 } 143 return a; 144 } 145 146 void addmw(Address a, Register incr, Register scratch) { 147 ldrw(scratch, a); 148 addw(scratch, scratch, incr); 149 strw(scratch, a); 150 } 151 152 // Add constant to memory word 153 void addmw(Address a, int imm, Register scratch) { 154 ldrw(scratch, a); 155 if (imm > 0) 156 addw(scratch, scratch, (unsigned)imm); 157 else 158 subw(scratch, scratch, (unsigned)-imm); 159 strw(scratch, a); 160 } 161 162 void bind(Label& L) { 163 Assembler::bind(L); 164 code()->clear_last_insn(); 165 code()->set_last_label(pc()); 166 } 167 168 void membar(Membar_mask_bits order_constraint); 169 170 using Assembler::ldr; 171 using Assembler::str; 172 using Assembler::ldrw; 173 using Assembler::strw; 174 175 void ldr(Register Rx, const Address &adr); 176 void ldrw(Register Rw, const Address &adr); 177 void str(Register Rx, const Address &adr); 178 void strw(Register Rx, const Address &adr); 179 180 // Frame creation and destruction shared between JITs. 181 void build_frame(int framesize); 182 void remove_frame(int framesize); 183 184 virtual void _call_Unimplemented(address call_site) { 185 mov(rscratch2, call_site); 186 } 187 188 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__ 189 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention." 190 // https://reviews.llvm.org/D3311 191 192 #ifdef _WIN64 193 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__) 194 #else 195 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__) 196 #endif 197 198 // aliases defined in AARCH64 spec 199 200 template<class T> 201 inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); } 202 203 inline void cmp(Register Rd, unsigned char imm8) { subs(zr, Rd, imm8); } 204 inline void cmp(Register Rd, unsigned imm) = delete; 205 206 template<class T> 207 inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); } 208 209 inline void cmn(Register Rd, unsigned char imm8) { adds(zr, Rd, imm8); } 210 inline void cmn(Register Rd, unsigned imm) = delete; 211 212 void cset(Register Rd, Assembler::Condition cond) { 213 csinc(Rd, zr, zr, ~cond); 214 } 215 void csetw(Register Rd, Assembler::Condition cond) { 216 csincw(Rd, zr, zr, ~cond); 217 } 218 219 void cneg(Register Rd, Register Rn, Assembler::Condition cond) { 220 csneg(Rd, Rn, Rn, ~cond); 221 } 222 void cnegw(Register Rd, Register Rn, Assembler::Condition cond) { 223 csnegw(Rd, Rn, Rn, ~cond); 224 } 225 226 inline void movw(Register Rd, Register Rn) { 227 if (Rd == sp || Rn == sp) { 228 Assembler::addw(Rd, Rn, 0U); 229 } else { 230 orrw(Rd, zr, Rn); 231 } 232 } 233 inline void mov(Register Rd, Register Rn) { 234 assert(Rd != r31_sp && Rn != r31_sp, "should be"); 235 if (Rd == Rn) { 236 } else if (Rd == sp || Rn == sp) { 237 Assembler::add(Rd, Rn, 0U); 238 } else { 239 orr(Rd, zr, Rn); 240 } 241 } 242 243 inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); } 244 inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); } 245 246 inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); } 247 inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); } 248 249 inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); } 250 inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); } 251 252 inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 253 bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 254 } 255 inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) { 256 bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 257 } 258 259 inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 260 bfmw(Rd, Rn, lsb, (lsb + width - 1)); 261 } 262 inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) { 263 bfm(Rd, Rn, lsb , (lsb + width - 1)); 264 } 265 266 inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 267 sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 268 } 269 inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 270 sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 271 } 272 273 inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 274 sbfmw(Rd, Rn, lsb, (lsb + width - 1)); 275 } 276 inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 277 sbfm(Rd, Rn, lsb , (lsb + width - 1)); 278 } 279 280 inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 281 ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 282 } 283 inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 284 ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 285 } 286 287 inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 288 ubfmw(Rd, Rn, lsb, (lsb + width - 1)); 289 } 290 inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 291 ubfm(Rd, Rn, lsb , (lsb + width - 1)); 292 } 293 294 inline void asrw(Register Rd, Register Rn, unsigned imm) { 295 sbfmw(Rd, Rn, imm, 31); 296 } 297 298 inline void asr(Register Rd, Register Rn, unsigned imm) { 299 sbfm(Rd, Rn, imm, 63); 300 } 301 302 inline void lslw(Register Rd, Register Rn, unsigned imm) { 303 ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm)); 304 } 305 306 inline void lsl(Register Rd, Register Rn, unsigned imm) { 307 ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm)); 308 } 309 310 inline void lsrw(Register Rd, Register Rn, unsigned imm) { 311 ubfmw(Rd, Rn, imm, 31); 312 } 313 314 inline void lsr(Register Rd, Register Rn, unsigned imm) { 315 ubfm(Rd, Rn, imm, 63); 316 } 317 318 inline void rorw(Register Rd, Register Rn, unsigned imm) { 319 extrw(Rd, Rn, Rn, imm); 320 } 321 322 inline void ror(Register Rd, Register Rn, unsigned imm) { 323 extr(Rd, Rn, Rn, imm); 324 } 325 326 inline void sxtbw(Register Rd, Register Rn) { 327 sbfmw(Rd, Rn, 0, 7); 328 } 329 inline void sxthw(Register Rd, Register Rn) { 330 sbfmw(Rd, Rn, 0, 15); 331 } 332 inline void sxtb(Register Rd, Register Rn) { 333 sbfm(Rd, Rn, 0, 7); 334 } 335 inline void sxth(Register Rd, Register Rn) { 336 sbfm(Rd, Rn, 0, 15); 337 } 338 inline void sxtw(Register Rd, Register Rn) { 339 sbfm(Rd, Rn, 0, 31); 340 } 341 342 inline void uxtbw(Register Rd, Register Rn) { 343 ubfmw(Rd, Rn, 0, 7); 344 } 345 inline void uxthw(Register Rd, Register Rn) { 346 ubfmw(Rd, Rn, 0, 15); 347 } 348 inline void uxtb(Register Rd, Register Rn) { 349 ubfm(Rd, Rn, 0, 7); 350 } 351 inline void uxth(Register Rd, Register Rn) { 352 ubfm(Rd, Rn, 0, 15); 353 } 354 inline void uxtw(Register Rd, Register Rn) { 355 ubfm(Rd, Rn, 0, 31); 356 } 357 358 inline void cmnw(Register Rn, Register Rm) { 359 addsw(zr, Rn, Rm); 360 } 361 inline void cmn(Register Rn, Register Rm) { 362 adds(zr, Rn, Rm); 363 } 364 365 inline void cmpw(Register Rn, Register Rm) { 366 subsw(zr, Rn, Rm); 367 } 368 inline void cmp(Register Rn, Register Rm) { 369 subs(zr, Rn, Rm); 370 } 371 372 inline void negw(Register Rd, Register Rn) { 373 subw(Rd, zr, Rn); 374 } 375 376 inline void neg(Register Rd, Register Rn) { 377 sub(Rd, zr, Rn); 378 } 379 380 inline void negsw(Register Rd, Register Rn) { 381 subsw(Rd, zr, Rn); 382 } 383 384 inline void negs(Register Rd, Register Rn) { 385 subs(Rd, zr, Rn); 386 } 387 388 inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 389 addsw(zr, Rn, Rm, kind, shift); 390 } 391 inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 392 adds(zr, Rn, Rm, kind, shift); 393 } 394 395 inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 396 subsw(zr, Rn, Rm, kind, shift); 397 } 398 inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 399 subs(zr, Rn, Rm, kind, shift); 400 } 401 402 inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 403 subw(Rd, zr, Rn, kind, shift); 404 } 405 406 inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 407 sub(Rd, zr, Rn, kind, shift); 408 } 409 410 inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 411 subsw(Rd, zr, Rn, kind, shift); 412 } 413 414 inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 415 subs(Rd, zr, Rn, kind, shift); 416 } 417 418 inline void mnegw(Register Rd, Register Rn, Register Rm) { 419 msubw(Rd, Rn, Rm, zr); 420 } 421 inline void mneg(Register Rd, Register Rn, Register Rm) { 422 msub(Rd, Rn, Rm, zr); 423 } 424 425 inline void mulw(Register Rd, Register Rn, Register Rm) { 426 maddw(Rd, Rn, Rm, zr); 427 } 428 inline void mul(Register Rd, Register Rn, Register Rm) { 429 madd(Rd, Rn, Rm, zr); 430 } 431 432 inline void smnegl(Register Rd, Register Rn, Register Rm) { 433 smsubl(Rd, Rn, Rm, zr); 434 } 435 inline void smull(Register Rd, Register Rn, Register Rm) { 436 smaddl(Rd, Rn, Rm, zr); 437 } 438 439 inline void umnegl(Register Rd, Register Rn, Register Rm) { 440 umsubl(Rd, Rn, Rm, zr); 441 } 442 inline void umull(Register Rd, Register Rn, Register Rm) { 443 umaddl(Rd, Rn, Rm, zr); 444 } 445 446 #define WRAP(INSN) \ 447 void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \ 448 if (VM_Version::supports_a53mac() && Ra != zr) \ 449 nop(); \ 450 Assembler::INSN(Rd, Rn, Rm, Ra); \ 451 } 452 453 WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw) 454 WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl) 455 #undef WRAP 456 457 458 // macro assembly operations needed for aarch64 459 460 public: 461 462 enum FpPushPopMode { 463 PushPopFull, 464 PushPopSVE, 465 PushPopNeon, 466 PushPopFp 467 }; 468 469 // first two private routines for loading 32 bit or 64 bit constants 470 private: 471 472 void mov_immediate64(Register dst, uint64_t imm64); 473 void mov_immediate32(Register dst, uint32_t imm32); 474 475 int push(unsigned int bitset, Register stack); 476 int pop(unsigned int bitset, Register stack); 477 478 int push_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 479 int pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 480 481 int push_p(unsigned int bitset, Register stack); 482 int pop_p(unsigned int bitset, Register stack); 483 484 void mov(Register dst, Address a); 485 486 public: 487 488 void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); } 489 void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); } 490 491 void push_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) push_fp(regs.bits(), stack, mode); } 492 void pop_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) pop_fp(regs.bits(), stack, mode); } 493 494 static RegSet call_clobbered_gp_registers(); 495 496 void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); } 497 void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); } 498 499 // Push and pop everything that might be clobbered by a native 500 // runtime call except rscratch1 and rscratch2. (They are always 501 // scratch, so we don't have to protect them.) Only save the lower 502 // 64 bits of each vector register. Additional registers can be excluded 503 // in a passed RegSet. 504 void push_call_clobbered_registers_except(RegSet exclude); 505 void pop_call_clobbered_registers_except(RegSet exclude); 506 507 void push_call_clobbered_registers() { 508 push_call_clobbered_registers_except(RegSet()); 509 } 510 void pop_call_clobbered_registers() { 511 pop_call_clobbered_registers_except(RegSet()); 512 } 513 514 515 // now mov instructions for loading absolute addresses and 32 or 516 // 64 bit integers 517 518 inline void mov(Register dst, address addr) { mov_immediate64(dst, (uint64_t)addr); } 519 520 template<typename T, ENABLE_IF(std::is_integral<T>::value)> 521 inline void mov(Register dst, T o) { mov_immediate64(dst, (uint64_t)o); } 522 523 inline void movw(Register dst, uint32_t imm32) { mov_immediate32(dst, imm32); } 524 525 void mov(Register dst, RegisterOrConstant src) { 526 if (src.is_register()) 527 mov(dst, src.as_register()); 528 else 529 mov(dst, src.as_constant()); 530 } 531 532 void movptr(Register r, uintptr_t imm64); 533 534 void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64); 535 536 void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { 537 orr(Vd, T, Vn, Vn); 538 } 539 540 void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) { 541 fcvtsh(tmp, src); 542 smov(dst, tmp, H, 0); 543 } 544 545 void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) { 546 mov(tmp, H, 0, src); 547 fcvths(dst, tmp); 548 } 549 550 // Generalized Test Bit And Branch, including a "far" variety which 551 // spans more than 32KiB. 552 void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) { 553 assert(cond == EQ || cond == NE, "must be"); 554 555 if (isfar) 556 cond = ~cond; 557 558 void (Assembler::* branch)(Register Rt, int bitpos, Label &L); 559 if (cond == Assembler::EQ) 560 branch = &Assembler::tbz; 561 else 562 branch = &Assembler::tbnz; 563 564 if (isfar) { 565 Label L; 566 (this->*branch)(Rt, bitpos, L); 567 b(dest); 568 bind(L); 569 } else { 570 (this->*branch)(Rt, bitpos, dest); 571 } 572 } 573 574 // macro instructions for accessing and updating floating point 575 // status register 576 // 577 // FPSR : op1 == 011 578 // CRn == 0100 579 // CRm == 0100 580 // op2 == 001 581 582 inline void get_fpsr(Register reg) 583 { 584 mrs(0b11, 0b0100, 0b0100, 0b001, reg); 585 } 586 587 inline void set_fpsr(Register reg) 588 { 589 msr(0b011, 0b0100, 0b0100, 0b001, reg); 590 } 591 592 inline void clear_fpsr() 593 { 594 msr(0b011, 0b0100, 0b0100, 0b001, zr); 595 } 596 597 // FPCR : op1 == 011 598 // CRn == 0100 599 // CRm == 0100 600 // op2 == 000 601 602 inline void get_fpcr(Register reg) { 603 mrs(0b11, 0b0100, 0b0100, 0b000, reg); 604 } 605 606 inline void set_fpcr(Register reg) { 607 msr(0b011, 0b0100, 0b0100, 0b000, reg); 608 } 609 610 // DCZID_EL0: op1 == 011 611 // CRn == 0000 612 // CRm == 0000 613 // op2 == 111 614 inline void get_dczid_el0(Register reg) 615 { 616 mrs(0b011, 0b0000, 0b0000, 0b111, reg); 617 } 618 619 // CTR_EL0: op1 == 011 620 // CRn == 0000 621 // CRm == 0000 622 // op2 == 001 623 inline void get_ctr_el0(Register reg) 624 { 625 mrs(0b011, 0b0000, 0b0000, 0b001, reg); 626 } 627 628 inline void get_nzcv(Register reg) { 629 mrs(0b011, 0b0100, 0b0010, 0b000, reg); 630 } 631 632 inline void set_nzcv(Register reg) { 633 msr(0b011, 0b0100, 0b0010, 0b000, reg); 634 } 635 636 // idiv variant which deals with MINLONG as dividend and -1 as divisor 637 int corrected_idivl(Register result, Register ra, Register rb, 638 bool want_remainder, Register tmp = rscratch1); 639 int corrected_idivq(Register result, Register ra, Register rb, 640 bool want_remainder, Register tmp = rscratch1); 641 642 // Support for null-checks 643 // 644 // Generates code that causes a null OS exception if the content of reg is null. 645 // If the accessed location is M[reg + offset] and the offset is known, provide the 646 // offset. No explicit code generation is needed if the offset is within a certain 647 // range (0 <= offset <= page_size). 648 649 virtual void null_check(Register reg, int offset = -1); 650 static bool needs_explicit_null_check(intptr_t offset); 651 static bool uses_implicit_null_check(void* address); 652 653 static address target_addr_for_insn(address insn_addr, unsigned insn); 654 static address target_addr_for_insn_or_null(address insn_addr, unsigned insn); 655 static address target_addr_for_insn(address insn_addr) { 656 unsigned insn = *(unsigned*)insn_addr; 657 return target_addr_for_insn(insn_addr, insn); 658 } 659 static address target_addr_for_insn_or_null(address insn_addr) { 660 unsigned insn = *(unsigned*)insn_addr; 661 return target_addr_for_insn_or_null(insn_addr, insn); 662 } 663 664 // Required platform-specific helpers for Label::patch_instructions. 665 // They _shadow_ the declarations in AbstractAssembler, which are undefined. 666 static int pd_patch_instruction_size(address branch, address target); 667 static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) { 668 pd_patch_instruction_size(branch, target); 669 } 670 static address pd_call_destination(address branch) { 671 return target_addr_for_insn(branch); 672 } 673 #ifndef PRODUCT 674 static void pd_print_patched_instruction(address branch); 675 #endif 676 677 static int patch_oop(address insn_addr, address o); 678 static int patch_narrow_klass(address insn_addr, narrowKlass n); 679 680 // Return whether code is emitted to a scratch blob. 681 virtual bool in_scratch_emit_size() { 682 return false; 683 } 684 address emit_trampoline_stub(int insts_call_instruction_offset, address target); 685 static int max_trampoline_stub_size(); 686 void emit_static_call_stub(); 687 static int static_call_stub_size(); 688 689 // The following 4 methods return the offset of the appropriate move instruction 690 691 // Support for fast byte/short loading with zero extension (depending on particular CPU) 692 int load_unsigned_byte(Register dst, Address src); 693 int load_unsigned_short(Register dst, Address src); 694 695 // Support for fast byte/short loading with sign extension (depending on particular CPU) 696 int load_signed_byte(Register dst, Address src); 697 int load_signed_short(Register dst, Address src); 698 699 int load_signed_byte32(Register dst, Address src); 700 int load_signed_short32(Register dst, Address src); 701 702 // Support for sign-extension (hi:lo = extend_sign(lo)) 703 void extend_sign(Register hi, Register lo); 704 705 // Load and store values by size and signed-ness 706 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed); 707 void store_sized_value(Address dst, Register src, size_t size_in_bytes); 708 709 // Support for inc/dec with optimal instruction selection depending on value 710 711 // x86_64 aliases an unqualified register/address increment and 712 // decrement to call incrementq and decrementq but also supports 713 // explicitly sized calls to incrementq/decrementq or 714 // incrementl/decrementl 715 716 // for aarch64 the proper convention would be to use 717 // increment/decrement for 64 bit operations and 718 // incrementw/decrementw for 32 bit operations. so when porting 719 // x86_64 code we can leave calls to increment/decrement as is, 720 // replace incrementq/decrementq with increment/decrement and 721 // replace incrementl/decrementl with incrementw/decrementw. 722 723 // n.b. increment/decrement calls with an Address destination will 724 // need to use a scratch register to load the value to be 725 // incremented. increment/decrement calls which add or subtract a 726 // constant value greater than 2^12 will need to use a 2nd scratch 727 // register to hold the constant. so, a register increment/decrement 728 // may trash rscratch2 and an address increment/decrement trash 729 // rscratch and rscratch2 730 731 void decrementw(Address dst, int value = 1); 732 void decrementw(Register reg, int value = 1); 733 734 void decrement(Register reg, int value = 1); 735 void decrement(Address dst, int value = 1); 736 737 void incrementw(Address dst, int value = 1); 738 void incrementw(Register reg, int value = 1); 739 740 void increment(Register reg, int value = 1); 741 void increment(Address dst, int value = 1); 742 743 744 // Alignment 745 void align(int modulus); 746 void align(int modulus, int target); 747 748 // nop 749 void post_call_nop(); 750 751 // Stack frame creation/removal 752 void enter(bool strip_ret_addr = false); 753 void leave(); 754 755 // ROP Protection 756 void protect_return_address(); 757 void protect_return_address(Register return_reg); 758 void authenticate_return_address(); 759 void authenticate_return_address(Register return_reg); 760 void strip_return_address(); 761 void check_return_address(Register return_reg=lr) PRODUCT_RETURN; 762 763 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) 764 // The pointer will be loaded into the thread register. 765 void get_thread(Register thread); 766 767 // support for argument shuffling 768 void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 769 void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 770 void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 771 void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 772 void object_move( 773 OopMap* map, 774 int oop_handle_offset, 775 int framesize_in_slots, 776 VMRegPair src, 777 VMRegPair dst, 778 bool is_receiver, 779 int* receiver_offset); 780 781 782 // Support for VM calls 783 // 784 // It is imperative that all calls into the VM are handled via the call_VM macros. 785 // They make sure that the stack linkage is setup correctly. call_VM's correspond 786 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. 787 788 789 void call_VM(Register oop_result, 790 address entry_point, 791 bool check_exceptions = true); 792 void call_VM(Register oop_result, 793 address entry_point, 794 Register arg_1, 795 bool check_exceptions = true); 796 void call_VM(Register oop_result, 797 address entry_point, 798 Register arg_1, Register arg_2, 799 bool check_exceptions = true); 800 void call_VM(Register oop_result, 801 address entry_point, 802 Register arg_1, Register arg_2, Register arg_3, 803 bool check_exceptions = true); 804 805 // Overloadings with last_Java_sp 806 void call_VM(Register oop_result, 807 Register last_java_sp, 808 address entry_point, 809 int number_of_arguments = 0, 810 bool check_exceptions = true); 811 void call_VM(Register oop_result, 812 Register last_java_sp, 813 address entry_point, 814 Register arg_1, bool 815 check_exceptions = true); 816 void call_VM(Register oop_result, 817 Register last_java_sp, 818 address entry_point, 819 Register arg_1, Register arg_2, 820 bool check_exceptions = true); 821 void call_VM(Register oop_result, 822 Register last_java_sp, 823 address entry_point, 824 Register arg_1, Register arg_2, Register arg_3, 825 bool check_exceptions = true); 826 827 void get_vm_result (Register oop_result, Register thread); 828 void get_vm_result_2(Register metadata_result, Register thread); 829 830 // These always tightly bind to MacroAssembler::call_VM_base 831 // bypassing the virtual implementation 832 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); 833 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); 834 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 835 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); 836 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); 837 838 void call_VM_leaf(address entry_point, 839 int number_of_arguments = 0); 840 void call_VM_leaf(address entry_point, 841 Register arg_1); 842 void call_VM_leaf(address entry_point, 843 Register arg_1, Register arg_2); 844 void call_VM_leaf(address entry_point, 845 Register arg_1, Register arg_2, Register arg_3); 846 847 // These always tightly bind to MacroAssembler::call_VM_leaf_base 848 // bypassing the virtual implementation 849 void super_call_VM_leaf(address entry_point); 850 void super_call_VM_leaf(address entry_point, Register arg_1); 851 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 852 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 853 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); 854 855 // last Java Frame (fills frame anchor) 856 void set_last_Java_frame(Register last_java_sp, 857 Register last_java_fp, 858 address last_java_pc, 859 Register scratch); 860 861 void set_last_Java_frame(Register last_java_sp, 862 Register last_java_fp, 863 Label &last_java_pc, 864 Register scratch); 865 866 void set_last_Java_frame(Register last_java_sp, 867 Register last_java_fp, 868 Register last_java_pc, 869 Register scratch); 870 871 void reset_last_Java_frame(Register thread); 872 873 // thread in the default location (rthread) 874 void reset_last_Java_frame(bool clear_fp); 875 876 // Stores 877 void store_check(Register obj); // store check for obj - register is destroyed afterwards 878 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) 879 880 void resolve_jobject(Register value, Register tmp1, Register tmp2); 881 void resolve_global_jobject(Register value, Register tmp1, Register tmp2); 882 883 // C 'boolean' to Java boolean: x == 0 ? 0 : 1 884 void c2bool(Register x); 885 886 void load_method_holder_cld(Register rresult, Register rmethod); 887 void load_method_holder(Register holder, Register method); 888 889 // oop manipulations 890 void load_narrow_klass_compact(Register dst, Register src); 891 void load_klass(Register dst, Register src); 892 void store_klass(Register dst, Register src); 893 void cmp_klass(Register obj, Register klass, Register tmp); 894 void cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2); 895 896 void resolve_weak_handle(Register result, Register tmp1, Register tmp2); 897 void resolve_oop_handle(Register result, Register tmp1, Register tmp2); 898 void load_mirror(Register dst, Register method, Register tmp1, Register tmp2); 899 900 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 901 Register tmp1, Register tmp2); 902 903 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 904 Register tmp1, Register tmp2, Register tmp3); 905 906 void load_heap_oop(Register dst, Address src, Register tmp1, 907 Register tmp2, DecoratorSet decorators = 0); 908 909 void load_heap_oop_not_null(Register dst, Address src, Register tmp1, 910 Register tmp2, DecoratorSet decorators = 0); 911 void store_heap_oop(Address dst, Register val, Register tmp1, 912 Register tmp2, Register tmp3, DecoratorSet decorators = 0); 913 914 // currently unimplemented 915 // Used for storing null. All other oop constants should be 916 // stored using routines that take a jobject. 917 void store_heap_oop_null(Address dst); 918 919 void store_klass_gap(Register dst, Register src); 920 921 // This dummy is to prevent a call to store_heap_oop from 922 // converting a zero (like null) into a Register by giving 923 // the compiler two choices it can't resolve 924 925 void store_heap_oop(Address dst, void* dummy); 926 927 void encode_heap_oop(Register d, Register s); 928 void encode_heap_oop(Register r) { encode_heap_oop(r, r); } 929 void decode_heap_oop(Register d, Register s); 930 void decode_heap_oop(Register r) { decode_heap_oop(r, r); } 931 void encode_heap_oop_not_null(Register r); 932 void decode_heap_oop_not_null(Register r); 933 void encode_heap_oop_not_null(Register dst, Register src); 934 void decode_heap_oop_not_null(Register dst, Register src); 935 936 void set_narrow_oop(Register dst, jobject obj); 937 938 void encode_klass_not_null(Register r); 939 void decode_klass_not_null(Register r); 940 void encode_klass_not_null(Register dst, Register src); 941 void decode_klass_not_null(Register dst, Register src); 942 943 void set_narrow_klass(Register dst, Klass* k); 944 945 // if heap base register is used - reinit it with the correct value 946 void reinit_heapbase(); 947 948 DEBUG_ONLY(void verify_heapbase(const char* msg);) 949 950 void push_CPU_state(bool save_vectors = false, bool use_sve = false, 951 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 952 void pop_CPU_state(bool restore_vectors = false, bool use_sve = false, 953 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 954 955 void push_cont_fastpath(Register java_thread = rthread); 956 void pop_cont_fastpath(Register java_thread = rthread); 957 958 void inc_held_monitor_count(Register tmp); 959 void dec_held_monitor_count(Register tmp); 960 961 // Round up to a power of two 962 void round_to(Register reg, int modulus); 963 964 // java.lang.Math::round intrinsics 965 void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp); 966 void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp); 967 968 // allocation 969 void tlab_allocate( 970 Register obj, // result: pointer to object after successful allocation 971 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 972 int con_size_in_bytes, // object size in bytes if known at compile time 973 Register t1, // temp register 974 Register t2, // temp register 975 Label& slow_case // continuation point if fast allocation fails 976 ); 977 void verify_tlab(); 978 979 // interface method calling 980 void lookup_interface_method(Register recv_klass, 981 Register intf_klass, 982 RegisterOrConstant itable_index, 983 Register method_result, 984 Register scan_temp, 985 Label& no_such_interface, 986 bool return_method = true); 987 988 void lookup_interface_method_stub(Register recv_klass, 989 Register holder_klass, 990 Register resolved_klass, 991 Register method_result, 992 Register temp_reg, 993 Register temp_reg2, 994 int itable_index, 995 Label& L_no_such_interface); 996 997 // virtual method calling 998 // n.b. x86 allows RegisterOrConstant for vtable_index 999 void lookup_virtual_method(Register recv_klass, 1000 RegisterOrConstant vtable_index, 1001 Register method_result); 1002 1003 // Test sub_klass against super_klass, with fast and slow paths. 1004 1005 // The fast path produces a tri-state answer: yes / no / maybe-slow. 1006 // One of the three labels can be null, meaning take the fall-through. 1007 // If super_check_offset is -1, the value is loaded up from super_klass. 1008 // No registers are killed, except temp_reg. 1009 void check_klass_subtype_fast_path(Register sub_klass, 1010 Register super_klass, 1011 Register temp_reg, 1012 Label* L_success, 1013 Label* L_failure, 1014 Label* L_slow_path, 1015 Register super_check_offset = noreg); 1016 1017 // The rest of the type check; must be wired to a corresponding fast path. 1018 // It does not repeat the fast path logic, so don't use it standalone. 1019 // The temp_reg and temp2_reg can be noreg, if no temps are available. 1020 // Updates the sub's secondary super cache as necessary. 1021 // If set_cond_codes, condition codes will be Z on success, NZ on failure. 1022 void check_klass_subtype_slow_path(Register sub_klass, 1023 Register super_klass, 1024 Register temp_reg, 1025 Register temp2_reg, 1026 Label* L_success, 1027 Label* L_failure, 1028 bool set_cond_codes = false); 1029 1030 void check_klass_subtype_slow_path_linear(Register sub_klass, 1031 Register super_klass, 1032 Register temp_reg, 1033 Register temp2_reg, 1034 Label* L_success, 1035 Label* L_failure, 1036 bool set_cond_codes = false); 1037 1038 void check_klass_subtype_slow_path_table(Register sub_klass, 1039 Register super_klass, 1040 Register temp_reg, 1041 Register temp2_reg, 1042 Register temp3_reg, 1043 Register result_reg, 1044 FloatRegister vtemp_reg, 1045 Label* L_success, 1046 Label* L_failure, 1047 bool set_cond_codes = false); 1048 1049 // If r is valid, return r. 1050 // If r is invalid, remove a register r2 from available_regs, add r2 1051 // to regs_to_push, then return r2. 1052 Register allocate_if_noreg(const Register r, 1053 RegSetIterator<Register> &available_regs, 1054 RegSet ®s_to_push); 1055 1056 // Secondary subtype checking 1057 void lookup_secondary_supers_table_var(Register sub_klass, 1058 Register r_super_klass, 1059 Register temp1, 1060 Register temp2, 1061 Register temp3, 1062 FloatRegister vtemp, 1063 Register result, 1064 Label *L_success); 1065 1066 1067 // As above, but with a constant super_klass. 1068 // The result is in Register result, not the condition codes. 1069 bool lookup_secondary_supers_table_const(Register r_sub_klass, 1070 Register r_super_klass, 1071 Register temp1, 1072 Register temp2, 1073 Register temp3, 1074 FloatRegister vtemp, 1075 Register result, 1076 u1 super_klass_slot, 1077 bool stub_is_near = false); 1078 1079 void verify_secondary_supers_table(Register r_sub_klass, 1080 Register r_super_klass, 1081 Register temp1, 1082 Register temp2, 1083 Register result); 1084 1085 void lookup_secondary_supers_table_slow_path(Register r_super_klass, 1086 Register r_array_base, 1087 Register r_array_index, 1088 Register r_bitmap, 1089 Register temp1, 1090 Register result, 1091 bool is_stub = true); 1092 1093 // Simplified, combined version, good for typical uses. 1094 // Falls through on failure. 1095 void check_klass_subtype(Register sub_klass, 1096 Register super_klass, 1097 Register temp_reg, 1098 Label& L_success); 1099 1100 void clinit_barrier(Register klass, 1101 Register thread, 1102 Label* L_fast_path = nullptr, 1103 Label* L_slow_path = nullptr); 1104 1105 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); 1106 1107 void verify_sve_vector_length(Register tmp = rscratch1); 1108 void reinitialize_ptrue() { 1109 if (UseSVE > 0) { 1110 sve_ptrue(ptrue, B); 1111 } 1112 } 1113 void verify_ptrue(); 1114 1115 // Debugging 1116 1117 // only if +VerifyOops 1118 void _verify_oop(Register reg, const char* s, const char* file, int line); 1119 void _verify_oop_addr(Address addr, const char * s, const char* file, int line); 1120 1121 void _verify_oop_checked(Register reg, const char* s, const char* file, int line) { 1122 if (VerifyOops) { 1123 _verify_oop(reg, s, file, line); 1124 } 1125 } 1126 void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) { 1127 if (VerifyOops) { 1128 _verify_oop_addr(reg, s, file, line); 1129 } 1130 } 1131 1132 // TODO: verify method and klass metadata (compare against vptr?) 1133 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 1134 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} 1135 1136 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__) 1137 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__) 1138 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__) 1139 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 1140 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 1141 1142 // Restore cpu control state after JNI call 1143 void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2); 1144 1145 // prints msg, dumps registers and stops execution 1146 void stop(const char* msg); 1147 1148 static void debug64(char* msg, int64_t pc, int64_t regs[]); 1149 1150 void untested() { stop("untested"); } 1151 1152 void unimplemented(const char* what = ""); 1153 1154 void should_not_reach_here() { stop("should not reach here"); } 1155 1156 void _assert_asm(Condition cc, const char* msg); 1157 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg) 1158 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg)) 1159 1160 // Stack overflow checking 1161 void bang_stack_with_offset(int offset) { 1162 // stack grows down, caller passes positive offset 1163 assert(offset > 0, "must bang with negative offset"); 1164 sub(rscratch2, sp, offset); 1165 str(zr, Address(rscratch2)); 1166 } 1167 1168 // Writes to stack successive pages until offset reached to check for 1169 // stack overflow + shadow pages. Also, clobbers tmp 1170 void bang_stack_size(Register size, Register tmp); 1171 1172 // Check for reserved stack access in method being exited (for JIT) 1173 void reserved_stack_check(); 1174 1175 // Arithmetics 1176 1177 void addptr(const Address &dst, int32_t src); 1178 void cmpptr(Register src1, Address src2); 1179 1180 void cmpoop(Register obj1, Register obj2); 1181 1182 // Various forms of CAS 1183 1184 void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 1185 Label &succeed, Label *fail); 1186 void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 1187 Label &succeed, Label *fail); 1188 1189 void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 1190 Label &succeed, Label *fail); 1191 1192 void atomic_add(Register prev, RegisterOrConstant incr, Register addr); 1193 void atomic_addw(Register prev, RegisterOrConstant incr, Register addr); 1194 void atomic_addal(Register prev, RegisterOrConstant incr, Register addr); 1195 void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr); 1196 1197 void atomic_xchg(Register prev, Register newv, Register addr); 1198 void atomic_xchgw(Register prev, Register newv, Register addr); 1199 void atomic_xchgl(Register prev, Register newv, Register addr); 1200 void atomic_xchglw(Register prev, Register newv, Register addr); 1201 void atomic_xchgal(Register prev, Register newv, Register addr); 1202 void atomic_xchgalw(Register prev, Register newv, Register addr); 1203 1204 void orptr(Address adr, RegisterOrConstant src) { 1205 ldr(rscratch1, adr); 1206 if (src.is_register()) 1207 orr(rscratch1, rscratch1, src.as_register()); 1208 else 1209 orr(rscratch1, rscratch1, src.as_constant()); 1210 str(rscratch1, adr); 1211 } 1212 1213 // A generic CAS; success or failure is in the EQ flag. 1214 // Clobbers rscratch1 1215 void cmpxchg(Register addr, Register expected, Register new_val, 1216 enum operand_size size, 1217 bool acquire, bool release, bool weak, 1218 Register result); 1219 1220 #ifdef ASSERT 1221 // Template short-hand support to clean-up after a failed call to trampoline 1222 // call generation (see trampoline_call() below), when a set of Labels must 1223 // be reset (before returning). 1224 template<typename Label, typename... More> 1225 void reset_labels(Label &lbl, More&... more) { 1226 lbl.reset(); reset_labels(more...); 1227 } 1228 template<typename Label> 1229 void reset_labels(Label &lbl) { 1230 lbl.reset(); 1231 } 1232 #endif 1233 1234 private: 1235 void compare_eq(Register rn, Register rm, enum operand_size size); 1236 1237 public: 1238 // AArch64 OpenJDK uses four different types of calls: 1239 // - direct call: bl pc_relative_offset 1240 // This is the shortest and the fastest, but the offset has the range: 1241 // +/-128MB for the release build, +/-2MB for the debug build. 1242 // 1243 // - far call: adrp reg, pc_relative_offset; add; bl reg 1244 // This is longer than a direct call. The offset has 1245 // the range +/-4GB. As the code cache size is limited to 4GB, 1246 // far calls can reach anywhere in the code cache. If a jump is 1247 // needed rather than a call, a far jump 'b reg' can be used instead. 1248 // All instructions are embedded at a call site. 1249 // 1250 // - trampoline call: 1251 // This is only available in C1/C2-generated code (nmethod). It is a combination 1252 // of a direct call, which is used if the destination of a call is in range, 1253 // and a register-indirect call. It has the advantages of reaching anywhere in 1254 // the AArch64 address space and being patchable at runtime when the generated 1255 // code is being executed by other threads. 1256 // 1257 // [Main code section] 1258 // bl trampoline 1259 // [Stub code section] 1260 // trampoline: 1261 // ldr reg, pc + 8 1262 // br reg 1263 // <64-bit destination address> 1264 // 1265 // If the destination is in range when the generated code is moved to the code 1266 // cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline 1267 // is not used. 1268 // The optimization does not remove the trampoline from the stub section. 1269 // This is necessary because the trampoline may well be redirected later when 1270 // code is patched, and the new destination may not be reachable by a simple BR 1271 // instruction. 1272 // 1273 // - indirect call: move reg, address; blr reg 1274 // This too can reach anywhere in the address space, but it cannot be 1275 // patched while code is running, so it must only be modified at a safepoint. 1276 // This form of call is most suitable for targets at fixed addresses, which 1277 // will never be patched. 1278 // 1279 // The patching we do conforms to the "Concurrent modification and 1280 // execution of instructions" section of the Arm Architectural 1281 // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC, 1282 // or SVC instructions to be modified while another thread is 1283 // executing them. 1284 // 1285 // To patch a trampoline call when the BL can't reach, we first modify 1286 // the 64-bit destination address in the trampoline, then modify the 1287 // BL to point to the trampoline, then flush the instruction cache to 1288 // broadcast the change to all executing threads. See 1289 // NativeCall::set_destination_mt_safe for the details. 1290 // 1291 // There is a benign race in that the other thread might observe the 1292 // modified BL before it observes the modified 64-bit destination 1293 // address. That does not matter because the destination method has been 1294 // invalidated, so there will be a trap at its start. 1295 // For this to work, the destination address in the trampoline is 1296 // always updated, even if we're not using the trampoline. 1297 1298 // Emit a direct call if the entry address will always be in range, 1299 // otherwise a trampoline call. 1300 // Supported entry.rspec(): 1301 // - relocInfo::runtime_call_type 1302 // - relocInfo::opt_virtual_call_type 1303 // - relocInfo::static_call_type 1304 // - relocInfo::virtual_call_type 1305 // 1306 // Return: the call PC or null if CodeCache is full. 1307 // Clobbers: rscratch1 1308 address trampoline_call(Address entry); 1309 1310 static bool far_branches() { 1311 return ReservedCodeCacheSize > branch_range; 1312 } 1313 1314 // Check if branches to the non nmethod section require a far jump 1315 static bool codestub_branch_needs_far_jump() { 1316 if (SCCache::is_on_for_write()) { 1317 // To calculate far_codestub_branch_size correctly. 1318 return true; 1319 } 1320 return CodeCache::max_distance_to_non_nmethod() > branch_range; 1321 } 1322 1323 // Emit a direct call/jump if the entry address will always be in range, 1324 // otherwise a far call/jump. 1325 // The address must be inside the code cache. 1326 // Supported entry.rspec(): 1327 // - relocInfo::external_word_type 1328 // - relocInfo::runtime_call_type 1329 // - relocInfo::none 1330 // In the case of a far call/jump, the entry address is put in the tmp register. 1331 // The tmp register is invalidated. 1332 // 1333 // Far_jump returns the amount of the emitted code. 1334 void far_call(Address entry, Register tmp = rscratch1); 1335 int far_jump(Address entry, Register tmp = rscratch1); 1336 1337 static int far_codestub_branch_size() { 1338 if (codestub_branch_needs_far_jump()) { 1339 return 3 * 4; // adrp, add, br 1340 } else { 1341 return 4; 1342 } 1343 } 1344 1345 // Emit the CompiledIC call idiom 1346 address ic_call(address entry, jint method_index = 0); 1347 static int ic_check_size(); 1348 int ic_check(int end_alignment); 1349 1350 public: 1351 1352 // Data 1353 1354 void mov_metadata(Register dst, Metadata* obj); 1355 Address allocate_metadata_address(Metadata* obj); 1356 Address constant_oop_address(jobject obj); 1357 1358 void movoop(Register dst, jobject obj); 1359 1360 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1361 void kernel_crc32(Register crc, Register buf, Register len, 1362 Register table0, Register table1, Register table2, Register table3, 1363 Register tmp, Register tmp2, Register tmp3); 1364 // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic. 1365 void kernel_crc32c(Register crc, Register buf, Register len, 1366 Register table0, Register table1, Register table2, Register table3, 1367 Register tmp, Register tmp2, Register tmp3); 1368 1369 // Stack push and pop individual 64 bit registers 1370 void push(Register src); 1371 void pop(Register dst); 1372 1373 void repne_scan(Register addr, Register value, Register count, 1374 Register scratch); 1375 void repne_scanw(Register addr, Register value, Register count, 1376 Register scratch); 1377 1378 typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm); 1379 typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift); 1380 1381 // If a constant does not fit in an immediate field, generate some 1382 // number of MOV instructions and then perform the operation 1383 void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 1384 add_sub_imm_insn insn1, 1385 add_sub_reg_insn insn2, bool is32); 1386 // Separate vsn which sets the flags 1387 void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 1388 add_sub_imm_insn insn1, 1389 add_sub_reg_insn insn2, bool is32); 1390 1391 #define WRAP(INSN, is32) \ 1392 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1393 wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1394 } \ 1395 \ 1396 void INSN(Register Rd, Register Rn, Register Rm, \ 1397 enum shift_kind kind, unsigned shift = 0) { \ 1398 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1399 } \ 1400 \ 1401 void INSN(Register Rd, Register Rn, Register Rm) { \ 1402 Assembler::INSN(Rd, Rn, Rm); \ 1403 } \ 1404 \ 1405 void INSN(Register Rd, Register Rn, Register Rm, \ 1406 ext::operation option, int amount = 0) { \ 1407 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1408 } 1409 1410 WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true) 1411 1412 #undef WRAP 1413 #define WRAP(INSN, is32) \ 1414 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1415 wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1416 } \ 1417 \ 1418 void INSN(Register Rd, Register Rn, Register Rm, \ 1419 enum shift_kind kind, unsigned shift = 0) { \ 1420 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1421 } \ 1422 \ 1423 void INSN(Register Rd, Register Rn, Register Rm) { \ 1424 Assembler::INSN(Rd, Rn, Rm); \ 1425 } \ 1426 \ 1427 void INSN(Register Rd, Register Rn, Register Rm, \ 1428 ext::operation option, int amount = 0) { \ 1429 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1430 } 1431 1432 WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true) 1433 1434 void add(Register Rd, Register Rn, RegisterOrConstant increment); 1435 void addw(Register Rd, Register Rn, RegisterOrConstant increment); 1436 void sub(Register Rd, Register Rn, RegisterOrConstant decrement); 1437 void subw(Register Rd, Register Rn, RegisterOrConstant decrement); 1438 1439 void adrp(Register reg1, const Address &dest, uint64_t &byte_offset); 1440 1441 void tableswitch(Register index, jint lowbound, jint highbound, 1442 Label &jumptable, Label &jumptable_end, int stride = 1) { 1443 adr(rscratch1, jumptable); 1444 subsw(rscratch2, index, lowbound); 1445 subsw(zr, rscratch2, highbound - lowbound); 1446 br(Assembler::HS, jumptable_end); 1447 add(rscratch1, rscratch1, rscratch2, 1448 ext::sxtw, exact_log2(stride * Assembler::instruction_size)); 1449 br(rscratch1); 1450 } 1451 1452 // Form an address from base + offset in Rd. Rd may or may not 1453 // actually be used: you must use the Address that is returned. It 1454 // is up to you to ensure that the shift provided matches the size 1455 // of your data. 1456 Address form_address(Register Rd, Register base, int64_t byte_offset, int shift); 1457 1458 // Return true iff an address is within the 48-bit AArch64 address 1459 // space. 1460 bool is_valid_AArch64_address(address a) { 1461 return ((uint64_t)a >> 48) == 0; 1462 } 1463 1464 // Load the base of the cardtable byte map into reg. 1465 void load_byte_map_base(Register reg); 1466 1467 // Load a constant address in the AOT Runtime Constants area 1468 void load_aotrc_address(Register reg, address a); 1469 1470 // Prolog generator routines to support switch between x86 code and 1471 // generated ARM code 1472 1473 // routine to generate an x86 prolog for a stub function which 1474 // bootstraps into the generated ARM code which directly follows the 1475 // stub 1476 // 1477 1478 public: 1479 1480 void ldr_constant(Register dest, const Address &const_addr) { 1481 if (NearCpool) { 1482 ldr(dest, const_addr); 1483 } else { 1484 uint64_t offset; 1485 adrp(dest, InternalAddress(const_addr.target()), offset); 1486 ldr(dest, Address(dest, offset)); 1487 } 1488 } 1489 1490 address read_polling_page(Register r, relocInfo::relocType rtype); 1491 void get_polling_page(Register dest, relocInfo::relocType rtype); 1492 1493 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1494 void update_byte_crc32(Register crc, Register val, Register table); 1495 void update_word_crc32(Register crc, Register v, Register tmp, 1496 Register table0, Register table1, Register table2, Register table3, 1497 bool upper = false); 1498 1499 address count_positives(Register ary1, Register len, Register result); 1500 1501 address arrays_equals(Register a1, Register a2, Register result, Register cnt1, 1502 Register tmp1, Register tmp2, Register tmp3, int elem_size); 1503 1504 // Ensure that the inline code and the stub use the same registers. 1505 #define ARRAYS_HASHCODE_REGISTERS \ 1506 do { \ 1507 assert(result == r0 && \ 1508 ary == r1 && \ 1509 cnt == r2 && \ 1510 vdata0 == v3 && \ 1511 vdata1 == v2 && \ 1512 vdata2 == v1 && \ 1513 vdata3 == v0 && \ 1514 vmul0 == v4 && \ 1515 vmul1 == v5 && \ 1516 vmul2 == v6 && \ 1517 vmul3 == v7 && \ 1518 vpow == v12 && \ 1519 vpowm == v13, "registers must match aarch64.ad"); \ 1520 } while (0) 1521 1522 void string_equals(Register a1, Register a2, Register result, Register cnt1); 1523 1524 void fill_words(Register base, Register cnt, Register value); 1525 address zero_words(Register base, uint64_t cnt); 1526 address zero_words(Register ptr, Register cnt); 1527 void zero_dcache_blocks(Register base, Register cnt); 1528 1529 static const int zero_words_block_size; 1530 1531 address byte_array_inflate(Register src, Register dst, Register len, 1532 FloatRegister vtmp1, FloatRegister vtmp2, 1533 FloatRegister vtmp3, Register tmp4); 1534 1535 void char_array_compress(Register src, Register dst, Register len, 1536 Register res, 1537 FloatRegister vtmp0, FloatRegister vtmp1, 1538 FloatRegister vtmp2, FloatRegister vtmp3, 1539 FloatRegister vtmp4, FloatRegister vtmp5); 1540 1541 void encode_iso_array(Register src, Register dst, 1542 Register len, Register res, bool ascii, 1543 FloatRegister vtmp0, FloatRegister vtmp1, 1544 FloatRegister vtmp2, FloatRegister vtmp3, 1545 FloatRegister vtmp4, FloatRegister vtmp5); 1546 1547 void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi, 1548 address pio2, address dsin_coef, address dcos_coef); 1549 private: 1550 // begin trigonometric functions support block 1551 void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2); 1552 void generate__kernel_rem_pio2(address two_over_pi, address pio2); 1553 void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef); 1554 void generate_kernel_cos(FloatRegister x, address dcos_coef); 1555 // end trigonometric functions support block 1556 void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 1557 Register src1, Register src2); 1558 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 1559 add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2); 1560 } 1561 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 1562 Register y, Register y_idx, Register z, 1563 Register carry, Register product, 1564 Register idx, Register kdx); 1565 void multiply_128_x_128_loop(Register y, Register z, 1566 Register carry, Register carry2, 1567 Register idx, Register jdx, 1568 Register yz_idx1, Register yz_idx2, 1569 Register tmp, Register tmp3, Register tmp4, 1570 Register tmp7, Register product_hi); 1571 void kernel_crc32_using_crypto_pmull(Register crc, Register buf, 1572 Register len, Register tmp0, Register tmp1, Register tmp2, 1573 Register tmp3); 1574 void kernel_crc32_using_crc32(Register crc, Register buf, 1575 Register len, Register tmp0, Register tmp1, Register tmp2, 1576 Register tmp3); 1577 void kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 1578 Register len, Register tmp0, Register tmp1, Register tmp2, 1579 Register tmp3); 1580 void kernel_crc32c_using_crc32c(Register crc, Register buf, 1581 Register len, Register tmp0, Register tmp1, Register tmp2, 1582 Register tmp3); 1583 void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 1584 Register len, Register tmp0, Register tmp1, Register tmp2, 1585 size_t table_offset); 1586 1587 void ghash_modmul (FloatRegister result, 1588 FloatRegister result_lo, FloatRegister result_hi, FloatRegister b, 1589 FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p, 1590 FloatRegister t1, FloatRegister t2, FloatRegister t3); 1591 void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state); 1592 public: 1593 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, 1594 Register tmp0, Register tmp1, Register tmp2, Register tmp3, 1595 Register tmp4, Register tmp5, Register tmp6, Register tmp7); 1596 void mul_add(Register out, Register in, Register offs, Register len, Register k); 1597 void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi, 1598 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1599 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1600 void ghash_multiply_wide(int index, 1601 FloatRegister result_lo, FloatRegister result_hi, 1602 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1603 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1604 void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi, 1605 FloatRegister p, FloatRegister z, FloatRegister t1); 1606 void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi, 1607 FloatRegister p, FloatRegister z, FloatRegister t1); 1608 void ghash_processBlocks_wide(address p, Register state, Register subkeyH, 1609 Register data, Register blocks, int unrolls); 1610 1611 1612 void aesenc_loadkeys(Register key, Register keylen); 1613 void aesecb_encrypt(Register from, Register to, Register keylen, 1614 FloatRegister data = v0, int unrolls = 1); 1615 void aesecb_decrypt(Register from, Register to, Register key, Register keylen); 1616 void aes_round(FloatRegister input, FloatRegister subkey); 1617 1618 // ChaCha20 functions support block 1619 void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec, 1620 FloatRegister cVec, FloatRegister dVec, FloatRegister scratch, 1621 FloatRegister tbl); 1622 void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec, 1623 FloatRegister dVec, bool colToDiag); 1624 1625 // Place an ISB after code may have been modified due to a safepoint. 1626 void safepoint_isb(); 1627 1628 private: 1629 // Return the effective address r + (r1 << ext) + offset. 1630 // Uses rscratch2. 1631 Address offsetted_address(Register r, Register r1, Address::extend ext, 1632 int offset, int size); 1633 1634 private: 1635 // Returns an address on the stack which is reachable with a ldr/str of size 1636 // Uses rscratch2 if the address is not directly reachable 1637 Address spill_address(int size, int offset, Register tmp=rscratch2); 1638 Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2); 1639 1640 bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const; 1641 1642 // Check whether two loads/stores can be merged into ldp/stp. 1643 bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const; 1644 1645 // Merge current load/store with previous load/store into ldp/stp. 1646 void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1647 1648 // Try to merge two loads/stores into ldp/stp. If success, returns true else false. 1649 bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1650 1651 public: 1652 void spill(Register Rx, bool is64, int offset) { 1653 if (is64) { 1654 str(Rx, spill_address(8, offset)); 1655 } else { 1656 strw(Rx, spill_address(4, offset)); 1657 } 1658 } 1659 void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1660 str(Vx, T, spill_address(1 << (int)T, offset)); 1661 } 1662 1663 void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1664 sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1665 } 1666 void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1667 sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1668 } 1669 1670 void unspill(Register Rx, bool is64, int offset) { 1671 if (is64) { 1672 ldr(Rx, spill_address(8, offset)); 1673 } else { 1674 ldrw(Rx, spill_address(4, offset)); 1675 } 1676 } 1677 void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1678 ldr(Vx, T, spill_address(1 << (int)T, offset)); 1679 } 1680 1681 void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1682 sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1683 } 1684 void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1685 sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1686 } 1687 1688 void spill_copy128(int src_offset, int dst_offset, 1689 Register tmp1=rscratch1, Register tmp2=rscratch2) { 1690 if (src_offset < 512 && (src_offset & 7) == 0 && 1691 dst_offset < 512 && (dst_offset & 7) == 0) { 1692 ldp(tmp1, tmp2, Address(sp, src_offset)); 1693 stp(tmp1, tmp2, Address(sp, dst_offset)); 1694 } else { 1695 unspill(tmp1, true, src_offset); 1696 spill(tmp1, true, dst_offset); 1697 unspill(tmp1, true, src_offset+8); 1698 spill(tmp1, true, dst_offset+8); 1699 } 1700 } 1701 void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset, 1702 int sve_vec_reg_size_in_bytes) { 1703 assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size"); 1704 for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) { 1705 spill_copy128(src_offset, dst_offset); 1706 src_offset += 16; 1707 dst_offset += 16; 1708 } 1709 } 1710 void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset, 1711 int sve_predicate_reg_size_in_bytes) { 1712 sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset)); 1713 sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset)); 1714 reinitialize_ptrue(); 1715 } 1716 void cache_wb(Address line); 1717 void cache_wbsync(bool is_pre); 1718 1719 // Code for java.lang.Thread::onSpinWait() intrinsic. 1720 void spin_wait(); 1721 1722 void lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow); 1723 void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow); 1724 1725 private: 1726 // Check the current thread doesn't need a cross modify fence. 1727 void verify_cross_modify_fence_not_required() PRODUCT_RETURN; 1728 1729 }; 1730 1731 #ifdef ASSERT 1732 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; } 1733 #endif 1734 1735 struct tableswitch { 1736 Register _reg; 1737 int _insn_index; jint _first_key; jint _last_key; 1738 Label _after; 1739 Label _branches; 1740 }; 1741 1742 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP