1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 28 29 #include "asm/assembler.inline.hpp" 30 #include "code/vmreg.hpp" 31 #include "code/SCCache.hpp" 32 #include "metaprogramming/enableIf.hpp" 33 #include "oops/compressedOops.hpp" 34 #include "oops/compressedKlass.hpp" 35 #include "runtime/vm_version.hpp" 36 #include "utilities/powerOfTwo.hpp" 37 38 class OopMap; 39 40 // MacroAssembler extends Assembler by frequently used macros. 41 // 42 // Instructions for which a 'better' code sequence exists depending 43 // on arguments should also go in here. 44 45 class MacroAssembler: public Assembler { 46 friend class LIR_Assembler; 47 48 public: 49 using Assembler::mov; 50 using Assembler::movi; 51 52 protected: 53 54 // Support for VM calls 55 // 56 // This is the base routine called by the different versions of call_VM_leaf. The interpreter 57 // may customize this version by overriding it for its purposes (e.g., to save/restore 58 // additional registers when doing a VM call). 59 virtual void call_VM_leaf_base( 60 address entry_point, // the entry point 61 int number_of_arguments, // the number of arguments to pop after the call 62 Label *retaddr = nullptr 63 ); 64 65 virtual void call_VM_leaf_base( 66 address entry_point, // the entry point 67 int number_of_arguments, // the number of arguments to pop after the call 68 Label &retaddr) { 69 call_VM_leaf_base(entry_point, number_of_arguments, &retaddr); 70 } 71 72 // This is the base routine called by the different versions of call_VM. The interpreter 73 // may customize this version by overriding it for its purposes (e.g., to save/restore 74 // additional registers when doing a VM call). 75 // 76 // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base 77 // returns the register which contains the thread upon return. If a thread register has been 78 // specified, the return value will correspond to that register. If no last_java_sp is specified 79 // (noreg) than rsp will be used instead. 80 virtual void call_VM_base( // returns the register containing the thread upon return 81 Register oop_result, // where an oop-result ends up if any; use noreg otherwise 82 Register java_thread, // the thread if computed before ; use noreg otherwise 83 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise 84 address entry_point, // the entry point 85 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call 86 bool check_exceptions // whether to check for pending exceptions after return 87 ); 88 89 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); 90 91 enum KlassDecodeMode { 92 KlassDecodeNone, 93 KlassDecodeZero, 94 KlassDecodeXor, 95 KlassDecodeMovk 96 }; 97 98 KlassDecodeMode klass_decode_mode(); 99 100 private: 101 static KlassDecodeMode _klass_decode_mode; 102 103 public: 104 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 105 106 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. 107 // The implementation is only non-empty for the InterpreterMacroAssembler, 108 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. 109 virtual void check_and_handle_popframe(Register java_thread); 110 virtual void check_and_handle_earlyret(Register java_thread); 111 112 void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1); 113 void rt_call(address dest, Register tmp = rscratch1); 114 115 // Load Effective Address 116 void lea(Register r, const Address &a) { 117 InstructionMark im(this); 118 a.lea(this, r); 119 } 120 121 /* Sometimes we get misaligned loads and stores, usually from Unsafe 122 accesses, and these can exceed the offset range. */ 123 Address legitimize_address(const Address &a, int size, Register scratch) { 124 if (a.getMode() == Address::base_plus_offset) { 125 if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) { 126 block_comment("legitimize_address {"); 127 lea(scratch, a); 128 block_comment("} legitimize_address"); 129 return Address(scratch); 130 } 131 } 132 return a; 133 } 134 135 void addmw(Address a, Register incr, Register scratch) { 136 ldrw(scratch, a); 137 addw(scratch, scratch, incr); 138 strw(scratch, a); 139 } 140 141 // Add constant to memory word 142 void addmw(Address a, int imm, Register scratch) { 143 ldrw(scratch, a); 144 if (imm > 0) 145 addw(scratch, scratch, (unsigned)imm); 146 else 147 subw(scratch, scratch, (unsigned)-imm); 148 strw(scratch, a); 149 } 150 151 void bind(Label& L) { 152 Assembler::bind(L); 153 code()->clear_last_insn(); 154 code()->set_last_label(pc()); 155 } 156 157 void membar(Membar_mask_bits order_constraint); 158 159 using Assembler::ldr; 160 using Assembler::str; 161 using Assembler::ldrw; 162 using Assembler::strw; 163 164 void ldr(Register Rx, const Address &adr); 165 void ldrw(Register Rw, const Address &adr); 166 void str(Register Rx, const Address &adr); 167 void strw(Register Rx, const Address &adr); 168 169 // Frame creation and destruction shared between JITs. 170 void build_frame(int framesize); 171 void remove_frame(int framesize); 172 173 virtual void _call_Unimplemented(address call_site) { 174 mov(rscratch2, call_site); 175 } 176 177 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__ 178 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention." 179 // https://reviews.llvm.org/D3311 180 181 #ifdef _WIN64 182 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__) 183 #else 184 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__) 185 #endif 186 187 // aliases defined in AARCH64 spec 188 189 template<class T> 190 inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); } 191 192 inline void cmp(Register Rd, unsigned char imm8) { subs(zr, Rd, imm8); } 193 inline void cmp(Register Rd, unsigned imm) = delete; 194 195 template<class T> 196 inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); } 197 198 inline void cmn(Register Rd, unsigned char imm8) { adds(zr, Rd, imm8); } 199 inline void cmn(Register Rd, unsigned imm) = delete; 200 201 void cset(Register Rd, Assembler::Condition cond) { 202 csinc(Rd, zr, zr, ~cond); 203 } 204 void csetw(Register Rd, Assembler::Condition cond) { 205 csincw(Rd, zr, zr, ~cond); 206 } 207 208 void cneg(Register Rd, Register Rn, Assembler::Condition cond) { 209 csneg(Rd, Rn, Rn, ~cond); 210 } 211 void cnegw(Register Rd, Register Rn, Assembler::Condition cond) { 212 csnegw(Rd, Rn, Rn, ~cond); 213 } 214 215 inline void movw(Register Rd, Register Rn) { 216 if (Rd == sp || Rn == sp) { 217 Assembler::addw(Rd, Rn, 0U); 218 } else { 219 orrw(Rd, zr, Rn); 220 } 221 } 222 inline void mov(Register Rd, Register Rn) { 223 assert(Rd != r31_sp && Rn != r31_sp, "should be"); 224 if (Rd == Rn) { 225 } else if (Rd == sp || Rn == sp) { 226 Assembler::add(Rd, Rn, 0U); 227 } else { 228 orr(Rd, zr, Rn); 229 } 230 } 231 232 inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); } 233 inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); } 234 235 inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); } 236 inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); } 237 238 inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); } 239 inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); } 240 241 inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 242 bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 243 } 244 inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) { 245 bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 246 } 247 248 inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 249 bfmw(Rd, Rn, lsb, (lsb + width - 1)); 250 } 251 inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) { 252 bfm(Rd, Rn, lsb , (lsb + width - 1)); 253 } 254 255 inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 256 sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 257 } 258 inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 259 sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 260 } 261 262 inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 263 sbfmw(Rd, Rn, lsb, (lsb + width - 1)); 264 } 265 inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 266 sbfm(Rd, Rn, lsb , (lsb + width - 1)); 267 } 268 269 inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 270 ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 271 } 272 inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 273 ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 274 } 275 276 inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 277 ubfmw(Rd, Rn, lsb, (lsb + width - 1)); 278 } 279 inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 280 ubfm(Rd, Rn, lsb , (lsb + width - 1)); 281 } 282 283 inline void asrw(Register Rd, Register Rn, unsigned imm) { 284 sbfmw(Rd, Rn, imm, 31); 285 } 286 287 inline void asr(Register Rd, Register Rn, unsigned imm) { 288 sbfm(Rd, Rn, imm, 63); 289 } 290 291 inline void lslw(Register Rd, Register Rn, unsigned imm) { 292 ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm)); 293 } 294 295 inline void lsl(Register Rd, Register Rn, unsigned imm) { 296 ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm)); 297 } 298 299 inline void lsrw(Register Rd, Register Rn, unsigned imm) { 300 ubfmw(Rd, Rn, imm, 31); 301 } 302 303 inline void lsr(Register Rd, Register Rn, unsigned imm) { 304 ubfm(Rd, Rn, imm, 63); 305 } 306 307 inline void rorw(Register Rd, Register Rn, unsigned imm) { 308 extrw(Rd, Rn, Rn, imm); 309 } 310 311 inline void ror(Register Rd, Register Rn, unsigned imm) { 312 extr(Rd, Rn, Rn, imm); 313 } 314 315 inline void sxtbw(Register Rd, Register Rn) { 316 sbfmw(Rd, Rn, 0, 7); 317 } 318 inline void sxthw(Register Rd, Register Rn) { 319 sbfmw(Rd, Rn, 0, 15); 320 } 321 inline void sxtb(Register Rd, Register Rn) { 322 sbfm(Rd, Rn, 0, 7); 323 } 324 inline void sxth(Register Rd, Register Rn) { 325 sbfm(Rd, Rn, 0, 15); 326 } 327 inline void sxtw(Register Rd, Register Rn) { 328 sbfm(Rd, Rn, 0, 31); 329 } 330 331 inline void uxtbw(Register Rd, Register Rn) { 332 ubfmw(Rd, Rn, 0, 7); 333 } 334 inline void uxthw(Register Rd, Register Rn) { 335 ubfmw(Rd, Rn, 0, 15); 336 } 337 inline void uxtb(Register Rd, Register Rn) { 338 ubfm(Rd, Rn, 0, 7); 339 } 340 inline void uxth(Register Rd, Register Rn) { 341 ubfm(Rd, Rn, 0, 15); 342 } 343 inline void uxtw(Register Rd, Register Rn) { 344 ubfm(Rd, Rn, 0, 31); 345 } 346 347 inline void cmnw(Register Rn, Register Rm) { 348 addsw(zr, Rn, Rm); 349 } 350 inline void cmn(Register Rn, Register Rm) { 351 adds(zr, Rn, Rm); 352 } 353 354 inline void cmpw(Register Rn, Register Rm) { 355 subsw(zr, Rn, Rm); 356 } 357 inline void cmp(Register Rn, Register Rm) { 358 subs(zr, Rn, Rm); 359 } 360 361 inline void negw(Register Rd, Register Rn) { 362 subw(Rd, zr, Rn); 363 } 364 365 inline void neg(Register Rd, Register Rn) { 366 sub(Rd, zr, Rn); 367 } 368 369 inline void negsw(Register Rd, Register Rn) { 370 subsw(Rd, zr, Rn); 371 } 372 373 inline void negs(Register Rd, Register Rn) { 374 subs(Rd, zr, Rn); 375 } 376 377 inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 378 addsw(zr, Rn, Rm, kind, shift); 379 } 380 inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 381 adds(zr, Rn, Rm, kind, shift); 382 } 383 384 inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 385 subsw(zr, Rn, Rm, kind, shift); 386 } 387 inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 388 subs(zr, Rn, Rm, kind, shift); 389 } 390 391 inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 392 subw(Rd, zr, Rn, kind, shift); 393 } 394 395 inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 396 sub(Rd, zr, Rn, kind, shift); 397 } 398 399 inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 400 subsw(Rd, zr, Rn, kind, shift); 401 } 402 403 inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 404 subs(Rd, zr, Rn, kind, shift); 405 } 406 407 inline void mnegw(Register Rd, Register Rn, Register Rm) { 408 msubw(Rd, Rn, Rm, zr); 409 } 410 inline void mneg(Register Rd, Register Rn, Register Rm) { 411 msub(Rd, Rn, Rm, zr); 412 } 413 414 inline void mulw(Register Rd, Register Rn, Register Rm) { 415 maddw(Rd, Rn, Rm, zr); 416 } 417 inline void mul(Register Rd, Register Rn, Register Rm) { 418 madd(Rd, Rn, Rm, zr); 419 } 420 421 inline void smnegl(Register Rd, Register Rn, Register Rm) { 422 smsubl(Rd, Rn, Rm, zr); 423 } 424 inline void smull(Register Rd, Register Rn, Register Rm) { 425 smaddl(Rd, Rn, Rm, zr); 426 } 427 428 inline void umnegl(Register Rd, Register Rn, Register Rm) { 429 umsubl(Rd, Rn, Rm, zr); 430 } 431 inline void umull(Register Rd, Register Rn, Register Rm) { 432 umaddl(Rd, Rn, Rm, zr); 433 } 434 435 #define WRAP(INSN) \ 436 void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \ 437 if (VM_Version::supports_a53mac() && Ra != zr) \ 438 nop(); \ 439 Assembler::INSN(Rd, Rn, Rm, Ra); \ 440 } 441 442 WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw) 443 WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl) 444 #undef WRAP 445 446 447 // macro assembly operations needed for aarch64 448 449 public: 450 451 enum FpPushPopMode { 452 PushPopFull, 453 PushPopSVE, 454 PushPopNeon, 455 PushPopFp 456 }; 457 458 // first two private routines for loading 32 bit or 64 bit constants 459 private: 460 461 void mov_immediate64(Register dst, uint64_t imm64); 462 void mov_immediate32(Register dst, uint32_t imm32); 463 464 int push(unsigned int bitset, Register stack); 465 int pop(unsigned int bitset, Register stack); 466 467 int push_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 468 int pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 469 470 int push_p(unsigned int bitset, Register stack); 471 int pop_p(unsigned int bitset, Register stack); 472 473 void mov(Register dst, Address a); 474 475 public: 476 477 void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); } 478 void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); } 479 480 void push_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) push_fp(regs.bits(), stack, mode); } 481 void pop_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) pop_fp(regs.bits(), stack, mode); } 482 483 static RegSet call_clobbered_gp_registers(); 484 485 void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); } 486 void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); } 487 488 // Push and pop everything that might be clobbered by a native 489 // runtime call except rscratch1 and rscratch2. (They are always 490 // scratch, so we don't have to protect them.) Only save the lower 491 // 64 bits of each vector register. Additional registers can be excluded 492 // in a passed RegSet. 493 void push_call_clobbered_registers_except(RegSet exclude); 494 void pop_call_clobbered_registers_except(RegSet exclude); 495 496 void push_call_clobbered_registers() { 497 push_call_clobbered_registers_except(RegSet()); 498 } 499 void pop_call_clobbered_registers() { 500 pop_call_clobbered_registers_except(RegSet()); 501 } 502 503 504 // now mov instructions for loading absolute addresses and 32 or 505 // 64 bit integers 506 507 inline void mov(Register dst, address addr) { mov_immediate64(dst, (uint64_t)addr); } 508 509 template<typename T, ENABLE_IF(std::is_integral<T>::value)> 510 inline void mov(Register dst, T o) { mov_immediate64(dst, (uint64_t)o); } 511 512 inline void movw(Register dst, uint32_t imm32) { mov_immediate32(dst, imm32); } 513 514 void mov(Register dst, RegisterOrConstant src) { 515 if (src.is_register()) 516 mov(dst, src.as_register()); 517 else 518 mov(dst, src.as_constant()); 519 } 520 521 void movptr(Register r, uintptr_t imm64); 522 523 void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64); 524 525 void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { 526 orr(Vd, T, Vn, Vn); 527 } 528 529 void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) { 530 fcvtsh(tmp, src); 531 smov(dst, tmp, H, 0); 532 } 533 534 void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) { 535 mov(tmp, H, 0, src); 536 fcvths(dst, tmp); 537 } 538 539 // Generalized Test Bit And Branch, including a "far" variety which 540 // spans more than 32KiB. 541 void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) { 542 assert(cond == EQ || cond == NE, "must be"); 543 544 if (isfar) 545 cond = ~cond; 546 547 void (Assembler::* branch)(Register Rt, int bitpos, Label &L); 548 if (cond == Assembler::EQ) 549 branch = &Assembler::tbz; 550 else 551 branch = &Assembler::tbnz; 552 553 if (isfar) { 554 Label L; 555 (this->*branch)(Rt, bitpos, L); 556 b(dest); 557 bind(L); 558 } else { 559 (this->*branch)(Rt, bitpos, dest); 560 } 561 } 562 563 // macro instructions for accessing and updating floating point 564 // status register 565 // 566 // FPSR : op1 == 011 567 // CRn == 0100 568 // CRm == 0100 569 // op2 == 001 570 571 inline void get_fpsr(Register reg) 572 { 573 mrs(0b11, 0b0100, 0b0100, 0b001, reg); 574 } 575 576 inline void set_fpsr(Register reg) 577 { 578 msr(0b011, 0b0100, 0b0100, 0b001, reg); 579 } 580 581 inline void clear_fpsr() 582 { 583 msr(0b011, 0b0100, 0b0100, 0b001, zr); 584 } 585 586 // FPCR : op1 == 011 587 // CRn == 0100 588 // CRm == 0100 589 // op2 == 000 590 591 inline void get_fpcr(Register reg) { 592 mrs(0b11, 0b0100, 0b0100, 0b000, reg); 593 } 594 595 inline void set_fpcr(Register reg) { 596 msr(0b011, 0b0100, 0b0100, 0b000, reg); 597 } 598 599 // DCZID_EL0: op1 == 011 600 // CRn == 0000 601 // CRm == 0000 602 // op2 == 111 603 inline void get_dczid_el0(Register reg) 604 { 605 mrs(0b011, 0b0000, 0b0000, 0b111, reg); 606 } 607 608 // CTR_EL0: op1 == 011 609 // CRn == 0000 610 // CRm == 0000 611 // op2 == 001 612 inline void get_ctr_el0(Register reg) 613 { 614 mrs(0b011, 0b0000, 0b0000, 0b001, reg); 615 } 616 617 inline void get_nzcv(Register reg) { 618 mrs(0b011, 0b0100, 0b0010, 0b000, reg); 619 } 620 621 inline void set_nzcv(Register reg) { 622 msr(0b011, 0b0100, 0b0010, 0b000, reg); 623 } 624 625 // idiv variant which deals with MINLONG as dividend and -1 as divisor 626 int corrected_idivl(Register result, Register ra, Register rb, 627 bool want_remainder, Register tmp = rscratch1); 628 int corrected_idivq(Register result, Register ra, Register rb, 629 bool want_remainder, Register tmp = rscratch1); 630 631 // Support for null-checks 632 // 633 // Generates code that causes a null OS exception if the content of reg is null. 634 // If the accessed location is M[reg + offset] and the offset is known, provide the 635 // offset. No explicit code generation is needed if the offset is within a certain 636 // range (0 <= offset <= page_size). 637 638 virtual void null_check(Register reg, int offset = -1); 639 static bool needs_explicit_null_check(intptr_t offset); 640 static bool uses_implicit_null_check(void* address); 641 642 static address target_addr_for_insn(address insn_addr, unsigned insn); 643 static address target_addr_for_insn_or_null(address insn_addr, unsigned insn); 644 static address target_addr_for_insn(address insn_addr) { 645 unsigned insn = *(unsigned*)insn_addr; 646 return target_addr_for_insn(insn_addr, insn); 647 } 648 static address target_addr_for_insn_or_null(address insn_addr) { 649 unsigned insn = *(unsigned*)insn_addr; 650 return target_addr_for_insn_or_null(insn_addr, insn); 651 } 652 653 // Required platform-specific helpers for Label::patch_instructions. 654 // They _shadow_ the declarations in AbstractAssembler, which are undefined. 655 static int pd_patch_instruction_size(address branch, address target); 656 static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) { 657 pd_patch_instruction_size(branch, target); 658 } 659 static address pd_call_destination(address branch) { 660 return target_addr_for_insn(branch); 661 } 662 #ifndef PRODUCT 663 static void pd_print_patched_instruction(address branch); 664 #endif 665 666 static int patch_oop(address insn_addr, address o); 667 static int patch_narrow_klass(address insn_addr, narrowKlass n); 668 669 // Return whether code is emitted to a scratch blob. 670 virtual bool in_scratch_emit_size() { 671 return false; 672 } 673 address emit_trampoline_stub(int insts_call_instruction_offset, address target); 674 static int max_trampoline_stub_size(); 675 void emit_static_call_stub(); 676 static int static_call_stub_size(); 677 678 // The following 4 methods return the offset of the appropriate move instruction 679 680 // Support for fast byte/short loading with zero extension (depending on particular CPU) 681 int load_unsigned_byte(Register dst, Address src); 682 int load_unsigned_short(Register dst, Address src); 683 684 // Support for fast byte/short loading with sign extension (depending on particular CPU) 685 int load_signed_byte(Register dst, Address src); 686 int load_signed_short(Register dst, Address src); 687 688 int load_signed_byte32(Register dst, Address src); 689 int load_signed_short32(Register dst, Address src); 690 691 // Support for sign-extension (hi:lo = extend_sign(lo)) 692 void extend_sign(Register hi, Register lo); 693 694 // Load and store values by size and signed-ness 695 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed); 696 void store_sized_value(Address dst, Register src, size_t size_in_bytes); 697 698 // Support for inc/dec with optimal instruction selection depending on value 699 700 // x86_64 aliases an unqualified register/address increment and 701 // decrement to call incrementq and decrementq but also supports 702 // explicitly sized calls to incrementq/decrementq or 703 // incrementl/decrementl 704 705 // for aarch64 the proper convention would be to use 706 // increment/decrement for 64 bit operations and 707 // incrementw/decrementw for 32 bit operations. so when porting 708 // x86_64 code we can leave calls to increment/decrement as is, 709 // replace incrementq/decrementq with increment/decrement and 710 // replace incrementl/decrementl with incrementw/decrementw. 711 712 // n.b. increment/decrement calls with an Address destination will 713 // need to use a scratch register to load the value to be 714 // incremented. increment/decrement calls which add or subtract a 715 // constant value greater than 2^12 will need to use a 2nd scratch 716 // register to hold the constant. so, a register increment/decrement 717 // may trash rscratch2 and an address increment/decrement trash 718 // rscratch and rscratch2 719 720 void decrementw(Address dst, int value = 1); 721 void decrementw(Register reg, int value = 1); 722 723 void decrement(Register reg, int value = 1); 724 void decrement(Address dst, int value = 1); 725 726 void incrementw(Address dst, int value = 1); 727 void incrementw(Register reg, int value = 1); 728 729 void increment(Register reg, int value = 1); 730 void increment(Address dst, int value = 1); 731 732 733 // Alignment 734 void align(int modulus); 735 void align(int modulus, int target); 736 737 // nop 738 void post_call_nop(); 739 740 // Stack frame creation/removal 741 void enter(bool strip_ret_addr = false); 742 void leave(); 743 744 // ROP Protection 745 void protect_return_address(); 746 void protect_return_address(Register return_reg); 747 void authenticate_return_address(); 748 void authenticate_return_address(Register return_reg); 749 void strip_return_address(); 750 void check_return_address(Register return_reg=lr) PRODUCT_RETURN; 751 752 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) 753 // The pointer will be loaded into the thread register. 754 void get_thread(Register thread); 755 756 // support for argument shuffling 757 void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 758 void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 759 void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 760 void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 761 void object_move( 762 OopMap* map, 763 int oop_handle_offset, 764 int framesize_in_slots, 765 VMRegPair src, 766 VMRegPair dst, 767 bool is_receiver, 768 int* receiver_offset); 769 770 771 // Support for VM calls 772 // 773 // It is imperative that all calls into the VM are handled via the call_VM macros. 774 // They make sure that the stack linkage is setup correctly. call_VM's correspond 775 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. 776 777 778 void call_VM(Register oop_result, 779 address entry_point, 780 bool check_exceptions = true); 781 void call_VM(Register oop_result, 782 address entry_point, 783 Register arg_1, 784 bool check_exceptions = true); 785 void call_VM(Register oop_result, 786 address entry_point, 787 Register arg_1, Register arg_2, 788 bool check_exceptions = true); 789 void call_VM(Register oop_result, 790 address entry_point, 791 Register arg_1, Register arg_2, Register arg_3, 792 bool check_exceptions = true); 793 794 // Overloadings with last_Java_sp 795 void call_VM(Register oop_result, 796 Register last_java_sp, 797 address entry_point, 798 int number_of_arguments = 0, 799 bool check_exceptions = true); 800 void call_VM(Register oop_result, 801 Register last_java_sp, 802 address entry_point, 803 Register arg_1, bool 804 check_exceptions = true); 805 void call_VM(Register oop_result, 806 Register last_java_sp, 807 address entry_point, 808 Register arg_1, Register arg_2, 809 bool check_exceptions = true); 810 void call_VM(Register oop_result, 811 Register last_java_sp, 812 address entry_point, 813 Register arg_1, Register arg_2, Register arg_3, 814 bool check_exceptions = true); 815 816 void get_vm_result (Register oop_result, Register thread); 817 void get_vm_result_2(Register metadata_result, Register thread); 818 819 // These always tightly bind to MacroAssembler::call_VM_base 820 // bypassing the virtual implementation 821 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); 822 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); 823 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 824 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); 825 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); 826 827 void call_VM_leaf(address entry_point, 828 int number_of_arguments = 0); 829 void call_VM_leaf(address entry_point, 830 Register arg_1); 831 void call_VM_leaf(address entry_point, 832 Register arg_1, Register arg_2); 833 void call_VM_leaf(address entry_point, 834 Register arg_1, Register arg_2, Register arg_3); 835 836 // These always tightly bind to MacroAssembler::call_VM_leaf_base 837 // bypassing the virtual implementation 838 void super_call_VM_leaf(address entry_point); 839 void super_call_VM_leaf(address entry_point, Register arg_1); 840 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 841 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 842 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); 843 844 // last Java Frame (fills frame anchor) 845 void set_last_Java_frame(Register last_java_sp, 846 Register last_java_fp, 847 address last_java_pc, 848 Register scratch); 849 850 void set_last_Java_frame(Register last_java_sp, 851 Register last_java_fp, 852 Label &last_java_pc, 853 Register scratch); 854 855 void set_last_Java_frame(Register last_java_sp, 856 Register last_java_fp, 857 Register last_java_pc, 858 Register scratch); 859 860 void reset_last_Java_frame(Register thread); 861 862 // thread in the default location (rthread) 863 void reset_last_Java_frame(bool clear_fp); 864 865 // Stores 866 void store_check(Register obj); // store check for obj - register is destroyed afterwards 867 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) 868 869 void resolve_jobject(Register value, Register tmp1, Register tmp2); 870 void resolve_global_jobject(Register value, Register tmp1, Register tmp2); 871 872 // C 'boolean' to Java boolean: x == 0 ? 0 : 1 873 void c2bool(Register x); 874 875 void load_method_holder_cld(Register rresult, Register rmethod); 876 void load_method_holder(Register holder, Register method); 877 878 // oop manipulations 879 void load_narrow_klass_compact(Register dst, Register src); 880 void load_klass(Register dst, Register src); 881 void store_klass(Register dst, Register src); 882 void cmp_klass(Register obj, Register klass, Register tmp); 883 void cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2); 884 885 void resolve_weak_handle(Register result, Register tmp1, Register tmp2); 886 void resolve_oop_handle(Register result, Register tmp1, Register tmp2); 887 void load_mirror(Register dst, Register method, Register tmp1, Register tmp2); 888 889 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 890 Register tmp1, Register tmp2); 891 892 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 893 Register tmp1, Register tmp2, Register tmp3); 894 895 void load_heap_oop(Register dst, Address src, Register tmp1, 896 Register tmp2, DecoratorSet decorators = 0); 897 898 void load_heap_oop_not_null(Register dst, Address src, Register tmp1, 899 Register tmp2, DecoratorSet decorators = 0); 900 void store_heap_oop(Address dst, Register val, Register tmp1, 901 Register tmp2, Register tmp3, DecoratorSet decorators = 0); 902 903 // currently unimplemented 904 // Used for storing null. All other oop constants should be 905 // stored using routines that take a jobject. 906 void store_heap_oop_null(Address dst); 907 908 void store_klass_gap(Register dst, Register src); 909 910 // This dummy is to prevent a call to store_heap_oop from 911 // converting a zero (like null) into a Register by giving 912 // the compiler two choices it can't resolve 913 914 void store_heap_oop(Address dst, void* dummy); 915 916 void encode_heap_oop(Register d, Register s); 917 void encode_heap_oop(Register r) { encode_heap_oop(r, r); } 918 void decode_heap_oop(Register d, Register s); 919 void decode_heap_oop(Register r) { decode_heap_oop(r, r); } 920 void encode_heap_oop_not_null(Register r); 921 void decode_heap_oop_not_null(Register r); 922 void encode_heap_oop_not_null(Register dst, Register src); 923 void decode_heap_oop_not_null(Register dst, Register src); 924 925 void set_narrow_oop(Register dst, jobject obj); 926 927 void encode_klass_not_null(Register r); 928 void decode_klass_not_null(Register r); 929 void encode_klass_not_null(Register dst, Register src); 930 void decode_klass_not_null(Register dst, Register src); 931 932 void set_narrow_klass(Register dst, Klass* k); 933 934 // if heap base register is used - reinit it with the correct value 935 void reinit_heapbase(); 936 937 DEBUG_ONLY(void verify_heapbase(const char* msg);) 938 939 void push_CPU_state(bool save_vectors = false, bool use_sve = false, 940 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 941 void pop_CPU_state(bool restore_vectors = false, bool use_sve = false, 942 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 943 944 void push_cont_fastpath(Register java_thread = rthread); 945 void pop_cont_fastpath(Register java_thread = rthread); 946 947 void inc_held_monitor_count(Register tmp); 948 void dec_held_monitor_count(Register tmp); 949 950 // Round up to a power of two 951 void round_to(Register reg, int modulus); 952 953 // java.lang.Math::round intrinsics 954 void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp); 955 void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp); 956 957 // allocation 958 void tlab_allocate( 959 Register obj, // result: pointer to object after successful allocation 960 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 961 int con_size_in_bytes, // object size in bytes if known at compile time 962 Register t1, // temp register 963 Register t2, // temp register 964 Label& slow_case // continuation point if fast allocation fails 965 ); 966 void verify_tlab(); 967 968 // interface method calling 969 void lookup_interface_method(Register recv_klass, 970 Register intf_klass, 971 RegisterOrConstant itable_index, 972 Register method_result, 973 Register scan_temp, 974 Label& no_such_interface, 975 bool return_method = true); 976 977 void lookup_interface_method_stub(Register recv_klass, 978 Register holder_klass, 979 Register resolved_klass, 980 Register method_result, 981 Register temp_reg, 982 Register temp_reg2, 983 int itable_index, 984 Label& L_no_such_interface); 985 986 // virtual method calling 987 // n.b. x86 allows RegisterOrConstant for vtable_index 988 void lookup_virtual_method(Register recv_klass, 989 RegisterOrConstant vtable_index, 990 Register method_result); 991 992 // Test sub_klass against super_klass, with fast and slow paths. 993 994 // The fast path produces a tri-state answer: yes / no / maybe-slow. 995 // One of the three labels can be null, meaning take the fall-through. 996 // If super_check_offset is -1, the value is loaded up from super_klass. 997 // No registers are killed, except temp_reg. 998 void check_klass_subtype_fast_path(Register sub_klass, 999 Register super_klass, 1000 Register temp_reg, 1001 Label* L_success, 1002 Label* L_failure, 1003 Label* L_slow_path, 1004 Register super_check_offset = noreg); 1005 1006 // The rest of the type check; must be wired to a corresponding fast path. 1007 // It does not repeat the fast path logic, so don't use it standalone. 1008 // The temp_reg and temp2_reg can be noreg, if no temps are available. 1009 // Updates the sub's secondary super cache as necessary. 1010 // If set_cond_codes, condition codes will be Z on success, NZ on failure. 1011 void check_klass_subtype_slow_path(Register sub_klass, 1012 Register super_klass, 1013 Register temp_reg, 1014 Register temp2_reg, 1015 Label* L_success, 1016 Label* L_failure, 1017 bool set_cond_codes = false); 1018 1019 void check_klass_subtype_slow_path_linear(Register sub_klass, 1020 Register super_klass, 1021 Register temp_reg, 1022 Register temp2_reg, 1023 Label* L_success, 1024 Label* L_failure, 1025 bool set_cond_codes = false); 1026 1027 void check_klass_subtype_slow_path_table(Register sub_klass, 1028 Register super_klass, 1029 Register temp_reg, 1030 Register temp2_reg, 1031 Register temp3_reg, 1032 Register result_reg, 1033 FloatRegister vtemp_reg, 1034 Label* L_success, 1035 Label* L_failure, 1036 bool set_cond_codes = false); 1037 1038 // If r is valid, return r. 1039 // If r is invalid, remove a register r2 from available_regs, add r2 1040 // to regs_to_push, then return r2. 1041 Register allocate_if_noreg(const Register r, 1042 RegSetIterator<Register> &available_regs, 1043 RegSet ®s_to_push); 1044 1045 // Secondary subtype checking 1046 void lookup_secondary_supers_table_var(Register sub_klass, 1047 Register r_super_klass, 1048 Register temp1, 1049 Register temp2, 1050 Register temp3, 1051 FloatRegister vtemp, 1052 Register result, 1053 Label *L_success); 1054 1055 1056 // As above, but with a constant super_klass. 1057 // The result is in Register result, not the condition codes. 1058 bool lookup_secondary_supers_table_const(Register r_sub_klass, 1059 Register r_super_klass, 1060 Register temp1, 1061 Register temp2, 1062 Register temp3, 1063 FloatRegister vtemp, 1064 Register result, 1065 u1 super_klass_slot, 1066 bool stub_is_near = false); 1067 1068 void verify_secondary_supers_table(Register r_sub_klass, 1069 Register r_super_klass, 1070 Register temp1, 1071 Register temp2, 1072 Register result); 1073 1074 void lookup_secondary_supers_table_slow_path(Register r_super_klass, 1075 Register r_array_base, 1076 Register r_array_index, 1077 Register r_bitmap, 1078 Register temp1, 1079 Register result, 1080 bool is_stub = true); 1081 1082 // Simplified, combined version, good for typical uses. 1083 // Falls through on failure. 1084 void check_klass_subtype(Register sub_klass, 1085 Register super_klass, 1086 Register temp_reg, 1087 Label& L_success); 1088 1089 void clinit_barrier(Register klass, 1090 Register thread, 1091 Label* L_fast_path = nullptr, 1092 Label* L_slow_path = nullptr); 1093 1094 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); 1095 1096 void verify_sve_vector_length(Register tmp = rscratch1); 1097 void reinitialize_ptrue() { 1098 if (UseSVE > 0) { 1099 sve_ptrue(ptrue, B); 1100 } 1101 } 1102 void verify_ptrue(); 1103 1104 // Debugging 1105 1106 // only if +VerifyOops 1107 void _verify_oop(Register reg, const char* s, const char* file, int line); 1108 void _verify_oop_addr(Address addr, const char * s, const char* file, int line); 1109 1110 void _verify_oop_checked(Register reg, const char* s, const char* file, int line) { 1111 if (VerifyOops) { 1112 _verify_oop(reg, s, file, line); 1113 } 1114 } 1115 void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) { 1116 if (VerifyOops) { 1117 _verify_oop_addr(reg, s, file, line); 1118 } 1119 } 1120 1121 // TODO: verify method and klass metadata (compare against vptr?) 1122 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 1123 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} 1124 1125 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__) 1126 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__) 1127 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__) 1128 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 1129 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 1130 1131 // Restore cpu control state after JNI call 1132 void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2); 1133 1134 // prints msg, dumps registers and stops execution 1135 void stop(const char* msg); 1136 1137 static void debug64(char* msg, int64_t pc, int64_t regs[]); 1138 1139 void untested() { stop("untested"); } 1140 1141 void unimplemented(const char* what = ""); 1142 1143 void should_not_reach_here() { stop("should not reach here"); } 1144 1145 void _assert_asm(Condition cc, const char* msg); 1146 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg) 1147 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg)) 1148 1149 // Stack overflow checking 1150 void bang_stack_with_offset(int offset) { 1151 // stack grows down, caller passes positive offset 1152 assert(offset > 0, "must bang with negative offset"); 1153 sub(rscratch2, sp, offset); 1154 str(zr, Address(rscratch2)); 1155 } 1156 1157 // Writes to stack successive pages until offset reached to check for 1158 // stack overflow + shadow pages. Also, clobbers tmp 1159 void bang_stack_size(Register size, Register tmp); 1160 1161 // Check for reserved stack access in method being exited (for JIT) 1162 void reserved_stack_check(); 1163 1164 // Arithmetics 1165 1166 void addptr(const Address &dst, int32_t src); 1167 void cmpptr(Register src1, Address src2); 1168 1169 void cmpoop(Register obj1, Register obj2); 1170 1171 // Various forms of CAS 1172 1173 void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 1174 Label &succeed, Label *fail); 1175 void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 1176 Label &succeed, Label *fail); 1177 1178 void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 1179 Label &succeed, Label *fail); 1180 1181 void atomic_add(Register prev, RegisterOrConstant incr, Register addr); 1182 void atomic_addw(Register prev, RegisterOrConstant incr, Register addr); 1183 void atomic_addal(Register prev, RegisterOrConstant incr, Register addr); 1184 void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr); 1185 1186 void atomic_xchg(Register prev, Register newv, Register addr); 1187 void atomic_xchgw(Register prev, Register newv, Register addr); 1188 void atomic_xchgl(Register prev, Register newv, Register addr); 1189 void atomic_xchglw(Register prev, Register newv, Register addr); 1190 void atomic_xchgal(Register prev, Register newv, Register addr); 1191 void atomic_xchgalw(Register prev, Register newv, Register addr); 1192 1193 void orptr(Address adr, RegisterOrConstant src) { 1194 ldr(rscratch1, adr); 1195 if (src.is_register()) 1196 orr(rscratch1, rscratch1, src.as_register()); 1197 else 1198 orr(rscratch1, rscratch1, src.as_constant()); 1199 str(rscratch1, adr); 1200 } 1201 1202 // A generic CAS; success or failure is in the EQ flag. 1203 // Clobbers rscratch1 1204 void cmpxchg(Register addr, Register expected, Register new_val, 1205 enum operand_size size, 1206 bool acquire, bool release, bool weak, 1207 Register result); 1208 1209 #ifdef ASSERT 1210 // Template short-hand support to clean-up after a failed call to trampoline 1211 // call generation (see trampoline_call() below), when a set of Labels must 1212 // be reset (before returning). 1213 template<typename Label, typename... More> 1214 void reset_labels(Label &lbl, More&... more) { 1215 lbl.reset(); reset_labels(more...); 1216 } 1217 template<typename Label> 1218 void reset_labels(Label &lbl) { 1219 lbl.reset(); 1220 } 1221 #endif 1222 1223 private: 1224 void compare_eq(Register rn, Register rm, enum operand_size size); 1225 1226 public: 1227 // AArch64 OpenJDK uses four different types of calls: 1228 // - direct call: bl pc_relative_offset 1229 // This is the shortest and the fastest, but the offset has the range: 1230 // +/-128MB for the release build, +/-2MB for the debug build. 1231 // 1232 // - far call: adrp reg, pc_relative_offset; add; bl reg 1233 // This is longer than a direct call. The offset has 1234 // the range +/-4GB. As the code cache size is limited to 4GB, 1235 // far calls can reach anywhere in the code cache. If a jump is 1236 // needed rather than a call, a far jump 'b reg' can be used instead. 1237 // All instructions are embedded at a call site. 1238 // 1239 // - trampoline call: 1240 // This is only available in C1/C2-generated code (nmethod). It is a combination 1241 // of a direct call, which is used if the destination of a call is in range, 1242 // and a register-indirect call. It has the advantages of reaching anywhere in 1243 // the AArch64 address space and being patchable at runtime when the generated 1244 // code is being executed by other threads. 1245 // 1246 // [Main code section] 1247 // bl trampoline 1248 // [Stub code section] 1249 // trampoline: 1250 // ldr reg, pc + 8 1251 // br reg 1252 // <64-bit destination address> 1253 // 1254 // If the destination is in range when the generated code is moved to the code 1255 // cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline 1256 // is not used. 1257 // The optimization does not remove the trampoline from the stub section. 1258 // This is necessary because the trampoline may well be redirected later when 1259 // code is patched, and the new destination may not be reachable by a simple BR 1260 // instruction. 1261 // 1262 // - indirect call: move reg, address; blr reg 1263 // This too can reach anywhere in the address space, but it cannot be 1264 // patched while code is running, so it must only be modified at a safepoint. 1265 // This form of call is most suitable for targets at fixed addresses, which 1266 // will never be patched. 1267 // 1268 // The patching we do conforms to the "Concurrent modification and 1269 // execution of instructions" section of the Arm Architectural 1270 // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC, 1271 // or SVC instructions to be modified while another thread is 1272 // executing them. 1273 // 1274 // To patch a trampoline call when the BL can't reach, we first modify 1275 // the 64-bit destination address in the trampoline, then modify the 1276 // BL to point to the trampoline, then flush the instruction cache to 1277 // broadcast the change to all executing threads. See 1278 // NativeCall::set_destination_mt_safe for the details. 1279 // 1280 // There is a benign race in that the other thread might observe the 1281 // modified BL before it observes the modified 64-bit destination 1282 // address. That does not matter because the destination method has been 1283 // invalidated, so there will be a trap at its start. 1284 // For this to work, the destination address in the trampoline is 1285 // always updated, even if we're not using the trampoline. 1286 1287 // Emit a direct call if the entry address will always be in range, 1288 // otherwise a trampoline call. 1289 // Supported entry.rspec(): 1290 // - relocInfo::runtime_call_type 1291 // - relocInfo::opt_virtual_call_type 1292 // - relocInfo::static_call_type 1293 // - relocInfo::virtual_call_type 1294 // 1295 // Return: the call PC or null if CodeCache is full. 1296 // Clobbers: rscratch1 1297 address trampoline_call(Address entry); 1298 1299 static bool far_branches() { 1300 return ReservedCodeCacheSize > branch_range; 1301 } 1302 1303 // Check if branches to the non nmethod section require a far jump 1304 static bool codestub_branch_needs_far_jump() { 1305 if (SCCache::is_on_for_write()) { 1306 // To calculate far_codestub_branch_size correctly. 1307 return true; 1308 } 1309 return CodeCache::max_distance_to_non_nmethod() > branch_range; 1310 } 1311 1312 // Emit a direct call/jump if the entry address will always be in range, 1313 // otherwise a far call/jump. 1314 // The address must be inside the code cache. 1315 // Supported entry.rspec(): 1316 // - relocInfo::external_word_type 1317 // - relocInfo::runtime_call_type 1318 // - relocInfo::none 1319 // In the case of a far call/jump, the entry address is put in the tmp register. 1320 // The tmp register is invalidated. 1321 // 1322 // Far_jump returns the amount of the emitted code. 1323 void far_call(Address entry, Register tmp = rscratch1); 1324 int far_jump(Address entry, Register tmp = rscratch1); 1325 1326 static int far_codestub_branch_size() { 1327 if (codestub_branch_needs_far_jump()) { 1328 return 3 * 4; // adrp, add, br 1329 } else { 1330 return 4; 1331 } 1332 } 1333 1334 // Emit the CompiledIC call idiom 1335 address ic_call(address entry, jint method_index = 0); 1336 static int ic_check_size(); 1337 int ic_check(int end_alignment); 1338 1339 public: 1340 1341 // Data 1342 1343 void mov_metadata(Register dst, Metadata* obj); 1344 Address allocate_metadata_address(Metadata* obj); 1345 Address constant_oop_address(jobject obj); 1346 1347 void movoop(Register dst, jobject obj); 1348 1349 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1350 void kernel_crc32(Register crc, Register buf, Register len, 1351 Register table0, Register table1, Register table2, Register table3, 1352 Register tmp, Register tmp2, Register tmp3); 1353 // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic. 1354 void kernel_crc32c(Register crc, Register buf, Register len, 1355 Register table0, Register table1, Register table2, Register table3, 1356 Register tmp, Register tmp2, Register tmp3); 1357 1358 // Stack push and pop individual 64 bit registers 1359 void push(Register src); 1360 void pop(Register dst); 1361 1362 void repne_scan(Register addr, Register value, Register count, 1363 Register scratch); 1364 void repne_scanw(Register addr, Register value, Register count, 1365 Register scratch); 1366 1367 typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm); 1368 typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift); 1369 1370 // If a constant does not fit in an immediate field, generate some 1371 // number of MOV instructions and then perform the operation 1372 void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 1373 add_sub_imm_insn insn1, 1374 add_sub_reg_insn insn2, bool is32); 1375 // Separate vsn which sets the flags 1376 void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 1377 add_sub_imm_insn insn1, 1378 add_sub_reg_insn insn2, bool is32); 1379 1380 #define WRAP(INSN, is32) \ 1381 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1382 wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1383 } \ 1384 \ 1385 void INSN(Register Rd, Register Rn, Register Rm, \ 1386 enum shift_kind kind, unsigned shift = 0) { \ 1387 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1388 } \ 1389 \ 1390 void INSN(Register Rd, Register Rn, Register Rm) { \ 1391 Assembler::INSN(Rd, Rn, Rm); \ 1392 } \ 1393 \ 1394 void INSN(Register Rd, Register Rn, Register Rm, \ 1395 ext::operation option, int amount = 0) { \ 1396 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1397 } 1398 1399 WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true) 1400 1401 #undef WRAP 1402 #define WRAP(INSN, is32) \ 1403 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1404 wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1405 } \ 1406 \ 1407 void INSN(Register Rd, Register Rn, Register Rm, \ 1408 enum shift_kind kind, unsigned shift = 0) { \ 1409 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1410 } \ 1411 \ 1412 void INSN(Register Rd, Register Rn, Register Rm) { \ 1413 Assembler::INSN(Rd, Rn, Rm); \ 1414 } \ 1415 \ 1416 void INSN(Register Rd, Register Rn, Register Rm, \ 1417 ext::operation option, int amount = 0) { \ 1418 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1419 } 1420 1421 WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true) 1422 1423 void add(Register Rd, Register Rn, RegisterOrConstant increment); 1424 void addw(Register Rd, Register Rn, RegisterOrConstant increment); 1425 void sub(Register Rd, Register Rn, RegisterOrConstant decrement); 1426 void subw(Register Rd, Register Rn, RegisterOrConstant decrement); 1427 1428 void adrp(Register reg1, const Address &dest, uint64_t &byte_offset); 1429 1430 void tableswitch(Register index, jint lowbound, jint highbound, 1431 Label &jumptable, Label &jumptable_end, int stride = 1) { 1432 adr(rscratch1, jumptable); 1433 subsw(rscratch2, index, lowbound); 1434 subsw(zr, rscratch2, highbound - lowbound); 1435 br(Assembler::HS, jumptable_end); 1436 add(rscratch1, rscratch1, rscratch2, 1437 ext::sxtw, exact_log2(stride * Assembler::instruction_size)); 1438 br(rscratch1); 1439 } 1440 1441 // Form an address from base + offset in Rd. Rd may or may not 1442 // actually be used: you must use the Address that is returned. It 1443 // is up to you to ensure that the shift provided matches the size 1444 // of your data. 1445 Address form_address(Register Rd, Register base, int64_t byte_offset, int shift); 1446 1447 // Return true iff an address is within the 48-bit AArch64 address 1448 // space. 1449 bool is_valid_AArch64_address(address a) { 1450 return ((uint64_t)a >> 48) == 0; 1451 } 1452 1453 // Load the base of the cardtable byte map into reg. 1454 void load_byte_map_base(Register reg); 1455 1456 // Load a constant address in the AOT Runtime Constants area 1457 void load_aotrc_address(Register reg, address a); 1458 1459 // Prolog generator routines to support switch between x86 code and 1460 // generated ARM code 1461 1462 // routine to generate an x86 prolog for a stub function which 1463 // bootstraps into the generated ARM code which directly follows the 1464 // stub 1465 // 1466 1467 public: 1468 1469 void ldr_constant(Register dest, const Address &const_addr) { 1470 if (NearCpool) { 1471 ldr(dest, const_addr); 1472 } else { 1473 uint64_t offset; 1474 adrp(dest, InternalAddress(const_addr.target()), offset); 1475 ldr(dest, Address(dest, offset)); 1476 } 1477 } 1478 1479 address read_polling_page(Register r, relocInfo::relocType rtype); 1480 void get_polling_page(Register dest, relocInfo::relocType rtype); 1481 1482 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1483 void update_byte_crc32(Register crc, Register val, Register table); 1484 void update_word_crc32(Register crc, Register v, Register tmp, 1485 Register table0, Register table1, Register table2, Register table3, 1486 bool upper = false); 1487 1488 address count_positives(Register ary1, Register len, Register result); 1489 1490 address arrays_equals(Register a1, Register a2, Register result, Register cnt1, 1491 Register tmp1, Register tmp2, Register tmp3, int elem_size); 1492 1493 // Ensure that the inline code and the stub use the same registers. 1494 #define ARRAYS_HASHCODE_REGISTERS \ 1495 do { \ 1496 assert(result == r0 && \ 1497 ary == r1 && \ 1498 cnt == r2 && \ 1499 vdata0 == v3 && \ 1500 vdata1 == v2 && \ 1501 vdata2 == v1 && \ 1502 vdata3 == v0 && \ 1503 vmul0 == v4 && \ 1504 vmul1 == v5 && \ 1505 vmul2 == v6 && \ 1506 vmul3 == v7 && \ 1507 vpow == v12 && \ 1508 vpowm == v13, "registers must match aarch64.ad"); \ 1509 } while (0) 1510 1511 void string_equals(Register a1, Register a2, Register result, Register cnt1); 1512 1513 void fill_words(Register base, Register cnt, Register value); 1514 address zero_words(Register base, uint64_t cnt); 1515 address zero_words(Register ptr, Register cnt); 1516 void zero_dcache_blocks(Register base, Register cnt); 1517 1518 static const int zero_words_block_size; 1519 1520 address byte_array_inflate(Register src, Register dst, Register len, 1521 FloatRegister vtmp1, FloatRegister vtmp2, 1522 FloatRegister vtmp3, Register tmp4); 1523 1524 void char_array_compress(Register src, Register dst, Register len, 1525 Register res, 1526 FloatRegister vtmp0, FloatRegister vtmp1, 1527 FloatRegister vtmp2, FloatRegister vtmp3, 1528 FloatRegister vtmp4, FloatRegister vtmp5); 1529 1530 void encode_iso_array(Register src, Register dst, 1531 Register len, Register res, bool ascii, 1532 FloatRegister vtmp0, FloatRegister vtmp1, 1533 FloatRegister vtmp2, FloatRegister vtmp3, 1534 FloatRegister vtmp4, FloatRegister vtmp5); 1535 1536 void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi, 1537 address pio2, address dsin_coef, address dcos_coef); 1538 private: 1539 // begin trigonometric functions support block 1540 void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2); 1541 void generate__kernel_rem_pio2(address two_over_pi, address pio2); 1542 void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef); 1543 void generate_kernel_cos(FloatRegister x, address dcos_coef); 1544 // end trigonometric functions support block 1545 void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 1546 Register src1, Register src2); 1547 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 1548 add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2); 1549 } 1550 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 1551 Register y, Register y_idx, Register z, 1552 Register carry, Register product, 1553 Register idx, Register kdx); 1554 void multiply_128_x_128_loop(Register y, Register z, 1555 Register carry, Register carry2, 1556 Register idx, Register jdx, 1557 Register yz_idx1, Register yz_idx2, 1558 Register tmp, Register tmp3, Register tmp4, 1559 Register tmp7, Register product_hi); 1560 void kernel_crc32_using_crypto_pmull(Register crc, Register buf, 1561 Register len, Register tmp0, Register tmp1, Register tmp2, 1562 Register tmp3); 1563 void kernel_crc32_using_crc32(Register crc, Register buf, 1564 Register len, Register tmp0, Register tmp1, Register tmp2, 1565 Register tmp3); 1566 void kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 1567 Register len, Register tmp0, Register tmp1, Register tmp2, 1568 Register tmp3); 1569 void kernel_crc32c_using_crc32c(Register crc, Register buf, 1570 Register len, Register tmp0, Register tmp1, Register tmp2, 1571 Register tmp3); 1572 void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 1573 Register len, Register tmp0, Register tmp1, Register tmp2, 1574 size_t table_offset); 1575 1576 void ghash_modmul (FloatRegister result, 1577 FloatRegister result_lo, FloatRegister result_hi, FloatRegister b, 1578 FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p, 1579 FloatRegister t1, FloatRegister t2, FloatRegister t3); 1580 void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state); 1581 public: 1582 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, 1583 Register tmp0, Register tmp1, Register tmp2, Register tmp3, 1584 Register tmp4, Register tmp5, Register tmp6, Register tmp7); 1585 void mul_add(Register out, Register in, Register offs, Register len, Register k); 1586 void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi, 1587 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1588 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1589 void ghash_multiply_wide(int index, 1590 FloatRegister result_lo, FloatRegister result_hi, 1591 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1592 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1593 void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi, 1594 FloatRegister p, FloatRegister z, FloatRegister t1); 1595 void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi, 1596 FloatRegister p, FloatRegister z, FloatRegister t1); 1597 void ghash_processBlocks_wide(address p, Register state, Register subkeyH, 1598 Register data, Register blocks, int unrolls); 1599 1600 1601 void aesenc_loadkeys(Register key, Register keylen); 1602 void aesecb_encrypt(Register from, Register to, Register keylen, 1603 FloatRegister data = v0, int unrolls = 1); 1604 void aesecb_decrypt(Register from, Register to, Register key, Register keylen); 1605 void aes_round(FloatRegister input, FloatRegister subkey); 1606 1607 // ChaCha20 functions support block 1608 void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec, 1609 FloatRegister cVec, FloatRegister dVec, FloatRegister scratch, 1610 FloatRegister tbl); 1611 void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec, 1612 FloatRegister dVec, bool colToDiag); 1613 1614 // Place an ISB after code may have been modified due to a safepoint. 1615 void safepoint_isb(); 1616 1617 private: 1618 // Return the effective address r + (r1 << ext) + offset. 1619 // Uses rscratch2. 1620 Address offsetted_address(Register r, Register r1, Address::extend ext, 1621 int offset, int size); 1622 1623 private: 1624 // Returns an address on the stack which is reachable with a ldr/str of size 1625 // Uses rscratch2 if the address is not directly reachable 1626 Address spill_address(int size, int offset, Register tmp=rscratch2); 1627 Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2); 1628 1629 bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const; 1630 1631 // Check whether two loads/stores can be merged into ldp/stp. 1632 bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const; 1633 1634 // Merge current load/store with previous load/store into ldp/stp. 1635 void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1636 1637 // Try to merge two loads/stores into ldp/stp. If success, returns true else false. 1638 bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1639 1640 public: 1641 void spill(Register Rx, bool is64, int offset) { 1642 if (is64) { 1643 str(Rx, spill_address(8, offset)); 1644 } else { 1645 strw(Rx, spill_address(4, offset)); 1646 } 1647 } 1648 void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1649 str(Vx, T, spill_address(1 << (int)T, offset)); 1650 } 1651 1652 void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1653 sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1654 } 1655 void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1656 sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1657 } 1658 1659 void unspill(Register Rx, bool is64, int offset) { 1660 if (is64) { 1661 ldr(Rx, spill_address(8, offset)); 1662 } else { 1663 ldrw(Rx, spill_address(4, offset)); 1664 } 1665 } 1666 void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1667 ldr(Vx, T, spill_address(1 << (int)T, offset)); 1668 } 1669 1670 void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1671 sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1672 } 1673 void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1674 sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1675 } 1676 1677 void spill_copy128(int src_offset, int dst_offset, 1678 Register tmp1=rscratch1, Register tmp2=rscratch2) { 1679 if (src_offset < 512 && (src_offset & 7) == 0 && 1680 dst_offset < 512 && (dst_offset & 7) == 0) { 1681 ldp(tmp1, tmp2, Address(sp, src_offset)); 1682 stp(tmp1, tmp2, Address(sp, dst_offset)); 1683 } else { 1684 unspill(tmp1, true, src_offset); 1685 spill(tmp1, true, dst_offset); 1686 unspill(tmp1, true, src_offset+8); 1687 spill(tmp1, true, dst_offset+8); 1688 } 1689 } 1690 void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset, 1691 int sve_vec_reg_size_in_bytes) { 1692 assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size"); 1693 for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) { 1694 spill_copy128(src_offset, dst_offset); 1695 src_offset += 16; 1696 dst_offset += 16; 1697 } 1698 } 1699 void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset, 1700 int sve_predicate_reg_size_in_bytes) { 1701 sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset)); 1702 sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset)); 1703 reinitialize_ptrue(); 1704 } 1705 void cache_wb(Address line); 1706 void cache_wbsync(bool is_pre); 1707 1708 // Code for java.lang.Thread::onSpinWait() intrinsic. 1709 void spin_wait(); 1710 1711 void lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow); 1712 void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow); 1713 1714 private: 1715 // Check the current thread doesn't need a cross modify fence. 1716 void verify_cross_modify_fence_not_required() PRODUCT_RETURN; 1717 1718 }; 1719 1720 #ifdef ASSERT 1721 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; } 1722 #endif 1723 1724 struct tableswitch { 1725 Register _reg; 1726 int _insn_index; jint _first_key; jint _last_key; 1727 Label _after; 1728 Label _branches; 1729 }; 1730 1731 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP