1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 28 29 #include "asm/assembler.inline.hpp" 30 #include "code/vmreg.hpp" 31 #include "code/SCCache.hpp" 32 #include "metaprogramming/enableIf.hpp" 33 #include "oops/compressedOops.hpp" 34 #include "oops/compressedKlass.hpp" 35 #include "runtime/vm_version.hpp" 36 #include "utilities/powerOfTwo.hpp" 37 38 class OopMap; 39 40 // MacroAssembler extends Assembler by frequently used macros. 41 // 42 // Instructions for which a 'better' code sequence exists depending 43 // on arguments should also go in here. 44 45 class MacroAssembler: public Assembler { 46 friend class LIR_Assembler; 47 48 public: 49 using Assembler::mov; 50 using Assembler::movi; 51 52 protected: 53 54 // Support for VM calls 55 // 56 // This is the base routine called by the different versions of call_VM_leaf. The interpreter 57 // may customize this version by overriding it for its purposes (e.g., to save/restore 58 // additional registers when doing a VM call). 59 virtual void call_VM_leaf_base( 60 address entry_point, // the entry point 61 int number_of_arguments, // the number of arguments to pop after the call 62 Label *retaddr = nullptr 63 ); 64 65 virtual void call_VM_leaf_base( 66 address entry_point, // the entry point 67 int number_of_arguments, // the number of arguments to pop after the call 68 Label &retaddr) { 69 call_VM_leaf_base(entry_point, number_of_arguments, &retaddr); 70 } 71 72 // This is the base routine called by the different versions of call_VM. The interpreter 73 // may customize this version by overriding it for its purposes (e.g., to save/restore 74 // additional registers when doing a VM call). 75 // 76 // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base 77 // returns the register which contains the thread upon return. If a thread register has been 78 // specified, the return value will correspond to that register. If no last_java_sp is specified 79 // (noreg) than rsp will be used instead. 80 virtual void call_VM_base( // returns the register containing the thread upon return 81 Register oop_result, // where an oop-result ends up if any; use noreg otherwise 82 Register java_thread, // the thread if computed before ; use noreg otherwise 83 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise 84 address entry_point, // the entry point 85 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call 86 bool check_exceptions // whether to check for pending exceptions after return 87 ); 88 89 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); 90 91 enum KlassDecodeMode { 92 KlassDecodeNone, 93 KlassDecodeZero, 94 KlassDecodeXor, 95 KlassDecodeMovk 96 }; 97 98 KlassDecodeMode klass_decode_mode(); 99 100 private: 101 static KlassDecodeMode _klass_decode_mode; 102 103 public: 104 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 105 106 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. 107 // The implementation is only non-empty for the InterpreterMacroAssembler, 108 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. 109 virtual void check_and_handle_popframe(Register java_thread); 110 virtual void check_and_handle_earlyret(Register java_thread); 111 112 void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1); 113 void rt_call(address dest, Register tmp = rscratch1); 114 115 // Load Effective Address 116 void lea(Register r, const Address &a) { 117 InstructionMark im(this); 118 a.lea(this, r); 119 } 120 121 /* Sometimes we get misaligned loads and stores, usually from Unsafe 122 accesses, and these can exceed the offset range. */ 123 Address legitimize_address(const Address &a, int size, Register scratch) { 124 if (a.getMode() == Address::base_plus_offset) { 125 if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) { 126 block_comment("legitimize_address {"); 127 lea(scratch, a); 128 block_comment("} legitimize_address"); 129 return Address(scratch); 130 } 131 } 132 return a; 133 } 134 135 void addmw(Address a, Register incr, Register scratch) { 136 ldrw(scratch, a); 137 addw(scratch, scratch, incr); 138 strw(scratch, a); 139 } 140 141 // Add constant to memory word 142 void addmw(Address a, int imm, Register scratch) { 143 ldrw(scratch, a); 144 if (imm > 0) 145 addw(scratch, scratch, (unsigned)imm); 146 else 147 subw(scratch, scratch, (unsigned)-imm); 148 strw(scratch, a); 149 } 150 151 void bind(Label& L) { 152 Assembler::bind(L); 153 code()->clear_last_insn(); 154 code()->set_last_label(pc()); 155 } 156 157 void membar(Membar_mask_bits order_constraint); 158 159 using Assembler::ldr; 160 using Assembler::str; 161 using Assembler::ldrw; 162 using Assembler::strw; 163 164 void ldr(Register Rx, const Address &adr); 165 void ldrw(Register Rw, const Address &adr); 166 void str(Register Rx, const Address &adr); 167 void strw(Register Rx, const Address &adr); 168 169 // Frame creation and destruction shared between JITs. 170 void build_frame(int framesize); 171 void remove_frame(int framesize); 172 173 virtual void _call_Unimplemented(address call_site) { 174 mov(rscratch2, call_site); 175 } 176 177 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__ 178 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention." 179 // https://reviews.llvm.org/D3311 180 181 #ifdef _WIN64 182 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__) 183 #else 184 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__) 185 #endif 186 187 // aliases defined in AARCH64 spec 188 189 template<class T> 190 inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); } 191 192 inline void cmp(Register Rd, unsigned char imm8) { subs(zr, Rd, imm8); } 193 inline void cmp(Register Rd, unsigned imm) = delete; 194 195 template<class T> 196 inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); } 197 198 inline void cmn(Register Rd, unsigned char imm8) { adds(zr, Rd, imm8); } 199 inline void cmn(Register Rd, unsigned imm) = delete; 200 201 void cset(Register Rd, Assembler::Condition cond) { 202 csinc(Rd, zr, zr, ~cond); 203 } 204 void csetw(Register Rd, Assembler::Condition cond) { 205 csincw(Rd, zr, zr, ~cond); 206 } 207 208 void cneg(Register Rd, Register Rn, Assembler::Condition cond) { 209 csneg(Rd, Rn, Rn, ~cond); 210 } 211 void cnegw(Register Rd, Register Rn, Assembler::Condition cond) { 212 csnegw(Rd, Rn, Rn, ~cond); 213 } 214 215 inline void movw(Register Rd, Register Rn) { 216 if (Rd == sp || Rn == sp) { 217 Assembler::addw(Rd, Rn, 0U); 218 } else { 219 orrw(Rd, zr, Rn); 220 } 221 } 222 inline void mov(Register Rd, Register Rn) { 223 assert(Rd != r31_sp && Rn != r31_sp, "should be"); 224 if (Rd == Rn) { 225 } else if (Rd == sp || Rn == sp) { 226 Assembler::add(Rd, Rn, 0U); 227 } else { 228 orr(Rd, zr, Rn); 229 } 230 } 231 232 inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); } 233 inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); } 234 235 inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); } 236 inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); } 237 238 inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); } 239 inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); } 240 241 inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 242 bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 243 } 244 inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) { 245 bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 246 } 247 248 inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 249 bfmw(Rd, Rn, lsb, (lsb + width - 1)); 250 } 251 inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) { 252 bfm(Rd, Rn, lsb , (lsb + width - 1)); 253 } 254 255 inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 256 sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 257 } 258 inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 259 sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 260 } 261 262 inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 263 sbfmw(Rd, Rn, lsb, (lsb + width - 1)); 264 } 265 inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 266 sbfm(Rd, Rn, lsb , (lsb + width - 1)); 267 } 268 269 inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 270 ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 271 } 272 inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 273 ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 274 } 275 276 inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 277 ubfmw(Rd, Rn, lsb, (lsb + width - 1)); 278 } 279 inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 280 ubfm(Rd, Rn, lsb , (lsb + width - 1)); 281 } 282 283 inline void asrw(Register Rd, Register Rn, unsigned imm) { 284 sbfmw(Rd, Rn, imm, 31); 285 } 286 287 inline void asr(Register Rd, Register Rn, unsigned imm) { 288 sbfm(Rd, Rn, imm, 63); 289 } 290 291 inline void lslw(Register Rd, Register Rn, unsigned imm) { 292 ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm)); 293 } 294 295 inline void lsl(Register Rd, Register Rn, unsigned imm) { 296 ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm)); 297 } 298 299 inline void lsrw(Register Rd, Register Rn, unsigned imm) { 300 ubfmw(Rd, Rn, imm, 31); 301 } 302 303 inline void lsr(Register Rd, Register Rn, unsigned imm) { 304 ubfm(Rd, Rn, imm, 63); 305 } 306 307 inline void rorw(Register Rd, Register Rn, unsigned imm) { 308 extrw(Rd, Rn, Rn, imm); 309 } 310 311 inline void ror(Register Rd, Register Rn, unsigned imm) { 312 extr(Rd, Rn, Rn, imm); 313 } 314 315 inline void sxtbw(Register Rd, Register Rn) { 316 sbfmw(Rd, Rn, 0, 7); 317 } 318 inline void sxthw(Register Rd, Register Rn) { 319 sbfmw(Rd, Rn, 0, 15); 320 } 321 inline void sxtb(Register Rd, Register Rn) { 322 sbfm(Rd, Rn, 0, 7); 323 } 324 inline void sxth(Register Rd, Register Rn) { 325 sbfm(Rd, Rn, 0, 15); 326 } 327 inline void sxtw(Register Rd, Register Rn) { 328 sbfm(Rd, Rn, 0, 31); 329 } 330 331 inline void uxtbw(Register Rd, Register Rn) { 332 ubfmw(Rd, Rn, 0, 7); 333 } 334 inline void uxthw(Register Rd, Register Rn) { 335 ubfmw(Rd, Rn, 0, 15); 336 } 337 inline void uxtb(Register Rd, Register Rn) { 338 ubfm(Rd, Rn, 0, 7); 339 } 340 inline void uxth(Register Rd, Register Rn) { 341 ubfm(Rd, Rn, 0, 15); 342 } 343 inline void uxtw(Register Rd, Register Rn) { 344 ubfm(Rd, Rn, 0, 31); 345 } 346 347 inline void cmnw(Register Rn, Register Rm) { 348 addsw(zr, Rn, Rm); 349 } 350 inline void cmn(Register Rn, Register Rm) { 351 adds(zr, Rn, Rm); 352 } 353 354 inline void cmpw(Register Rn, Register Rm) { 355 subsw(zr, Rn, Rm); 356 } 357 inline void cmp(Register Rn, Register Rm) { 358 subs(zr, Rn, Rm); 359 } 360 361 inline void negw(Register Rd, Register Rn) { 362 subw(Rd, zr, Rn); 363 } 364 365 inline void neg(Register Rd, Register Rn) { 366 sub(Rd, zr, Rn); 367 } 368 369 inline void negsw(Register Rd, Register Rn) { 370 subsw(Rd, zr, Rn); 371 } 372 373 inline void negs(Register Rd, Register Rn) { 374 subs(Rd, zr, Rn); 375 } 376 377 inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 378 addsw(zr, Rn, Rm, kind, shift); 379 } 380 inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 381 adds(zr, Rn, Rm, kind, shift); 382 } 383 384 inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 385 subsw(zr, Rn, Rm, kind, shift); 386 } 387 inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 388 subs(zr, Rn, Rm, kind, shift); 389 } 390 391 inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 392 subw(Rd, zr, Rn, kind, shift); 393 } 394 395 inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 396 sub(Rd, zr, Rn, kind, shift); 397 } 398 399 inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 400 subsw(Rd, zr, Rn, kind, shift); 401 } 402 403 inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 404 subs(Rd, zr, Rn, kind, shift); 405 } 406 407 inline void mnegw(Register Rd, Register Rn, Register Rm) { 408 msubw(Rd, Rn, Rm, zr); 409 } 410 inline void mneg(Register Rd, Register Rn, Register Rm) { 411 msub(Rd, Rn, Rm, zr); 412 } 413 414 inline void mulw(Register Rd, Register Rn, Register Rm) { 415 maddw(Rd, Rn, Rm, zr); 416 } 417 inline void mul(Register Rd, Register Rn, Register Rm) { 418 madd(Rd, Rn, Rm, zr); 419 } 420 421 inline void smnegl(Register Rd, Register Rn, Register Rm) { 422 smsubl(Rd, Rn, Rm, zr); 423 } 424 inline void smull(Register Rd, Register Rn, Register Rm) { 425 smaddl(Rd, Rn, Rm, zr); 426 } 427 428 inline void umnegl(Register Rd, Register Rn, Register Rm) { 429 umsubl(Rd, Rn, Rm, zr); 430 } 431 inline void umull(Register Rd, Register Rn, Register Rm) { 432 umaddl(Rd, Rn, Rm, zr); 433 } 434 435 #define WRAP(INSN) \ 436 void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \ 437 if (VM_Version::supports_a53mac() && Ra != zr) \ 438 nop(); \ 439 Assembler::INSN(Rd, Rn, Rm, Ra); \ 440 } 441 442 WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw) 443 WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl) 444 #undef WRAP 445 446 447 // macro assembly operations needed for aarch64 448 449 public: 450 451 enum FpPushPopMode { 452 PushPopFull, 453 PushPopSVE, 454 PushPopNeon, 455 PushPopFp 456 }; 457 458 // first two private routines for loading 32 bit or 64 bit constants 459 private: 460 461 void mov_immediate64(Register dst, uint64_t imm64); 462 void mov_immediate32(Register dst, uint32_t imm32); 463 464 int push(unsigned int bitset, Register stack); 465 int pop(unsigned int bitset, Register stack); 466 467 int push_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 468 int pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 469 470 int push_p(unsigned int bitset, Register stack); 471 int pop_p(unsigned int bitset, Register stack); 472 473 void mov(Register dst, Address a); 474 475 public: 476 477 void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); } 478 void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); } 479 480 void push_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) push_fp(regs.bits(), stack, mode); } 481 void pop_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) pop_fp(regs.bits(), stack, mode); } 482 483 static RegSet call_clobbered_gp_registers(); 484 485 void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); } 486 void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); } 487 488 // Push and pop everything that might be clobbered by a native 489 // runtime call except rscratch1 and rscratch2. (They are always 490 // scratch, so we don't have to protect them.) Only save the lower 491 // 64 bits of each vector register. Additional registers can be excluded 492 // in a passed RegSet. 493 void push_call_clobbered_registers_except(RegSet exclude); 494 void pop_call_clobbered_registers_except(RegSet exclude); 495 496 void push_call_clobbered_registers() { 497 push_call_clobbered_registers_except(RegSet()); 498 } 499 void pop_call_clobbered_registers() { 500 pop_call_clobbered_registers_except(RegSet()); 501 } 502 503 504 // now mov instructions for loading absolute addresses and 32 or 505 // 64 bit integers 506 507 inline void mov(Register dst, address addr) { mov_immediate64(dst, (uint64_t)addr); } 508 509 template<typename T, ENABLE_IF(std::is_integral<T>::value)> 510 inline void mov(Register dst, T o) { mov_immediate64(dst, (uint64_t)o); } 511 512 inline void movw(Register dst, uint32_t imm32) { mov_immediate32(dst, imm32); } 513 514 void mov(Register dst, RegisterOrConstant src) { 515 if (src.is_register()) 516 mov(dst, src.as_register()); 517 else 518 mov(dst, src.as_constant()); 519 } 520 521 void movptr(Register r, uintptr_t imm64); 522 523 void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64); 524 525 void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { 526 orr(Vd, T, Vn, Vn); 527 } 528 529 void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) { 530 fcvtsh(tmp, src); 531 smov(dst, tmp, H, 0); 532 } 533 534 void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) { 535 mov(tmp, H, 0, src); 536 fcvths(dst, tmp); 537 } 538 539 // Generalized Test Bit And Branch, including a "far" variety which 540 // spans more than 32KiB. 541 void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) { 542 assert(cond == EQ || cond == NE, "must be"); 543 544 if (isfar) 545 cond = ~cond; 546 547 void (Assembler::* branch)(Register Rt, int bitpos, Label &L); 548 if (cond == Assembler::EQ) 549 branch = &Assembler::tbz; 550 else 551 branch = &Assembler::tbnz; 552 553 if (isfar) { 554 Label L; 555 (this->*branch)(Rt, bitpos, L); 556 b(dest); 557 bind(L); 558 } else { 559 (this->*branch)(Rt, bitpos, dest); 560 } 561 } 562 563 // macro instructions for accessing and updating floating point 564 // status register 565 // 566 // FPSR : op1 == 011 567 // CRn == 0100 568 // CRm == 0100 569 // op2 == 001 570 571 inline void get_fpsr(Register reg) 572 { 573 mrs(0b11, 0b0100, 0b0100, 0b001, reg); 574 } 575 576 inline void set_fpsr(Register reg) 577 { 578 msr(0b011, 0b0100, 0b0100, 0b001, reg); 579 } 580 581 inline void clear_fpsr() 582 { 583 msr(0b011, 0b0100, 0b0100, 0b001, zr); 584 } 585 586 // FPCR : op1 == 011 587 // CRn == 0100 588 // CRm == 0100 589 // op2 == 000 590 591 inline void get_fpcr(Register reg) { 592 mrs(0b11, 0b0100, 0b0100, 0b000, reg); 593 } 594 595 inline void set_fpcr(Register reg) { 596 msr(0b011, 0b0100, 0b0100, 0b000, reg); 597 } 598 599 // DCZID_EL0: op1 == 011 600 // CRn == 0000 601 // CRm == 0000 602 // op2 == 111 603 inline void get_dczid_el0(Register reg) 604 { 605 mrs(0b011, 0b0000, 0b0000, 0b111, reg); 606 } 607 608 // CTR_EL0: op1 == 011 609 // CRn == 0000 610 // CRm == 0000 611 // op2 == 001 612 inline void get_ctr_el0(Register reg) 613 { 614 mrs(0b011, 0b0000, 0b0000, 0b001, reg); 615 } 616 617 inline void get_nzcv(Register reg) { 618 mrs(0b011, 0b0100, 0b0010, 0b000, reg); 619 } 620 621 inline void set_nzcv(Register reg) { 622 msr(0b011, 0b0100, 0b0010, 0b000, reg); 623 } 624 625 // idiv variant which deals with MINLONG as dividend and -1 as divisor 626 int corrected_idivl(Register result, Register ra, Register rb, 627 bool want_remainder, Register tmp = rscratch1); 628 int corrected_idivq(Register result, Register ra, Register rb, 629 bool want_remainder, Register tmp = rscratch1); 630 631 // Support for null-checks 632 // 633 // Generates code that causes a null OS exception if the content of reg is null. 634 // If the accessed location is M[reg + offset] and the offset is known, provide the 635 // offset. No explicit code generation is needed if the offset is within a certain 636 // range (0 <= offset <= page_size). 637 638 virtual void null_check(Register reg, int offset = -1); 639 static bool needs_explicit_null_check(intptr_t offset); 640 static bool uses_implicit_null_check(void* address); 641 642 static address target_addr_for_insn(address insn_addr, unsigned insn); 643 static address target_addr_for_insn_or_null(address insn_addr, unsigned insn); 644 static address target_addr_for_insn(address insn_addr) { 645 unsigned insn = *(unsigned*)insn_addr; 646 return target_addr_for_insn(insn_addr, insn); 647 } 648 static address target_addr_for_insn_or_null(address insn_addr) { 649 unsigned insn = *(unsigned*)insn_addr; 650 return target_addr_for_insn_or_null(insn_addr, insn); 651 } 652 653 // Required platform-specific helpers for Label::patch_instructions. 654 // They _shadow_ the declarations in AbstractAssembler, which are undefined. 655 static int pd_patch_instruction_size(address branch, address target); 656 static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) { 657 pd_patch_instruction_size(branch, target); 658 } 659 static address pd_call_destination(address branch) { 660 return target_addr_for_insn(branch); 661 } 662 #ifndef PRODUCT 663 static void pd_print_patched_instruction(address branch); 664 #endif 665 666 static int patch_oop(address insn_addr, address o); 667 static int patch_narrow_klass(address insn_addr, narrowKlass n); 668 669 // Return whether code is emitted to a scratch blob. 670 virtual bool in_scratch_emit_size() { 671 return false; 672 } 673 address emit_trampoline_stub(int insts_call_instruction_offset, address target); 674 static int max_trampoline_stub_size(); 675 void emit_static_call_stub(); 676 static int static_call_stub_size(); 677 678 // The following 4 methods return the offset of the appropriate move instruction 679 680 // Support for fast byte/short loading with zero extension (depending on particular CPU) 681 int load_unsigned_byte(Register dst, Address src); 682 int load_unsigned_short(Register dst, Address src); 683 684 // Support for fast byte/short loading with sign extension (depending on particular CPU) 685 int load_signed_byte(Register dst, Address src); 686 int load_signed_short(Register dst, Address src); 687 688 int load_signed_byte32(Register dst, Address src); 689 int load_signed_short32(Register dst, Address src); 690 691 // Support for sign-extension (hi:lo = extend_sign(lo)) 692 void extend_sign(Register hi, Register lo); 693 694 // Load and store values by size and signed-ness 695 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed); 696 void store_sized_value(Address dst, Register src, size_t size_in_bytes); 697 698 // Support for inc/dec with optimal instruction selection depending on value 699 700 // x86_64 aliases an unqualified register/address increment and 701 // decrement to call incrementq and decrementq but also supports 702 // explicitly sized calls to incrementq/decrementq or 703 // incrementl/decrementl 704 705 // for aarch64 the proper convention would be to use 706 // increment/decrement for 64 bit operations and 707 // incrementw/decrementw for 32 bit operations. so when porting 708 // x86_64 code we can leave calls to increment/decrement as is, 709 // replace incrementq/decrementq with increment/decrement and 710 // replace incrementl/decrementl with incrementw/decrementw. 711 712 // n.b. increment/decrement calls with an Address destination will 713 // need to use a scratch register to load the value to be 714 // incremented. increment/decrement calls which add or subtract a 715 // constant value greater than 2^12 will need to use a 2nd scratch 716 // register to hold the constant. so, a register increment/decrement 717 // may trash rscratch2 and an address increment/decrement trash 718 // rscratch and rscratch2 719 720 void decrementw(Address dst, int value = 1); 721 void decrementw(Register reg, int value = 1); 722 723 void decrement(Register reg, int value = 1); 724 void decrement(Address dst, int value = 1); 725 726 void incrementw(Address dst, int value = 1); 727 void incrementw(Register reg, int value = 1); 728 729 void increment(Register reg, int value = 1); 730 void increment(Address dst, int value = 1); 731 732 733 // Alignment 734 void align(int modulus); 735 void align(int modulus, int target); 736 737 // nop 738 void post_call_nop(); 739 740 // Stack frame creation/removal 741 void enter(bool strip_ret_addr = false); 742 void leave(); 743 744 // ROP Protection 745 void protect_return_address(); 746 void protect_return_address(Register return_reg); 747 void authenticate_return_address(); 748 void authenticate_return_address(Register return_reg); 749 void strip_return_address(); 750 void check_return_address(Register return_reg=lr) PRODUCT_RETURN; 751 752 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) 753 // The pointer will be loaded into the thread register. 754 void get_thread(Register thread); 755 756 // support for argument shuffling 757 void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 758 void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 759 void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 760 void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 761 void object_move( 762 OopMap* map, 763 int oop_handle_offset, 764 int framesize_in_slots, 765 VMRegPair src, 766 VMRegPair dst, 767 bool is_receiver, 768 int* receiver_offset); 769 770 771 // Support for VM calls 772 // 773 // It is imperative that all calls into the VM are handled via the call_VM macros. 774 // They make sure that the stack linkage is setup correctly. call_VM's correspond 775 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. 776 777 778 void call_VM(Register oop_result, 779 address entry_point, 780 bool check_exceptions = true); 781 void call_VM(Register oop_result, 782 address entry_point, 783 Register arg_1, 784 bool check_exceptions = true); 785 void call_VM(Register oop_result, 786 address entry_point, 787 Register arg_1, Register arg_2, 788 bool check_exceptions = true); 789 void call_VM(Register oop_result, 790 address entry_point, 791 Register arg_1, Register arg_2, Register arg_3, 792 bool check_exceptions = true); 793 794 // Overloadings with last_Java_sp 795 void call_VM(Register oop_result, 796 Register last_java_sp, 797 address entry_point, 798 int number_of_arguments = 0, 799 bool check_exceptions = true); 800 void call_VM(Register oop_result, 801 Register last_java_sp, 802 address entry_point, 803 Register arg_1, bool 804 check_exceptions = true); 805 void call_VM(Register oop_result, 806 Register last_java_sp, 807 address entry_point, 808 Register arg_1, Register arg_2, 809 bool check_exceptions = true); 810 void call_VM(Register oop_result, 811 Register last_java_sp, 812 address entry_point, 813 Register arg_1, Register arg_2, Register arg_3, 814 bool check_exceptions = true); 815 816 void get_vm_result (Register oop_result, Register thread); 817 void get_vm_result_2(Register metadata_result, Register thread); 818 819 // These always tightly bind to MacroAssembler::call_VM_base 820 // bypassing the virtual implementation 821 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); 822 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); 823 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 824 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); 825 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); 826 827 void call_VM_leaf(address entry_point, 828 int number_of_arguments = 0); 829 void call_VM_leaf(address entry_point, 830 Register arg_1); 831 void call_VM_leaf(address entry_point, 832 Register arg_1, Register arg_2); 833 void call_VM_leaf(address entry_point, 834 Register arg_1, Register arg_2, Register arg_3); 835 836 // These always tightly bind to MacroAssembler::call_VM_leaf_base 837 // bypassing the virtual implementation 838 void super_call_VM_leaf(address entry_point); 839 void super_call_VM_leaf(address entry_point, Register arg_1); 840 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 841 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 842 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); 843 844 // last Java Frame (fills frame anchor) 845 void set_last_Java_frame(Register last_java_sp, 846 Register last_java_fp, 847 address last_java_pc, 848 Register scratch); 849 850 void set_last_Java_frame(Register last_java_sp, 851 Register last_java_fp, 852 Label &last_java_pc, 853 Register scratch); 854 855 void set_last_Java_frame(Register last_java_sp, 856 Register last_java_fp, 857 Register last_java_pc, 858 Register scratch); 859 860 void reset_last_Java_frame(Register thread); 861 862 // thread in the default location (rthread) 863 void reset_last_Java_frame(bool clear_fp); 864 865 // Stores 866 void store_check(Register obj); // store check for obj - register is destroyed afterwards 867 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) 868 869 void resolve_jobject(Register value, Register tmp1, Register tmp2); 870 void resolve_global_jobject(Register value, Register tmp1, Register tmp2); 871 872 // C 'boolean' to Java boolean: x == 0 ? 0 : 1 873 void c2bool(Register x); 874 875 void load_method_holder_cld(Register rresult, Register rmethod); 876 void load_method_holder(Register holder, Register method); 877 878 // oop manipulations 879 void load_klass(Register dst, Register src); 880 void store_klass(Register dst, Register src); 881 void cmp_klass(Register oop, Register trial_klass, Register tmp); 882 883 void resolve_weak_handle(Register result, Register tmp1, Register tmp2); 884 void resolve_oop_handle(Register result, Register tmp1, Register tmp2); 885 void load_mirror(Register dst, Register method, Register tmp1, Register tmp2); 886 887 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 888 Register tmp1, Register tmp2); 889 890 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 891 Register tmp1, Register tmp2, Register tmp3); 892 893 void load_heap_oop(Register dst, Address src, Register tmp1, 894 Register tmp2, DecoratorSet decorators = 0); 895 896 void load_heap_oop_not_null(Register dst, Address src, Register tmp1, 897 Register tmp2, DecoratorSet decorators = 0); 898 void store_heap_oop(Address dst, Register val, Register tmp1, 899 Register tmp2, Register tmp3, DecoratorSet decorators = 0); 900 901 // currently unimplemented 902 // Used for storing null. All other oop constants should be 903 // stored using routines that take a jobject. 904 void store_heap_oop_null(Address dst); 905 906 void store_klass_gap(Register dst, Register src); 907 908 // This dummy is to prevent a call to store_heap_oop from 909 // converting a zero (like null) into a Register by giving 910 // the compiler two choices it can't resolve 911 912 void store_heap_oop(Address dst, void* dummy); 913 914 void encode_heap_oop(Register d, Register s); 915 void encode_heap_oop(Register r) { encode_heap_oop(r, r); } 916 void decode_heap_oop(Register d, Register s); 917 void decode_heap_oop(Register r) { decode_heap_oop(r, r); } 918 void encode_heap_oop_not_null(Register r); 919 void decode_heap_oop_not_null(Register r); 920 void encode_heap_oop_not_null(Register dst, Register src); 921 void decode_heap_oop_not_null(Register dst, Register src); 922 923 void set_narrow_oop(Register dst, jobject obj); 924 925 void encode_klass_not_null(Register r); 926 void decode_klass_not_null(Register r); 927 void encode_klass_not_null(Register dst, Register src); 928 void decode_klass_not_null(Register dst, Register src); 929 930 void set_narrow_klass(Register dst, Klass* k); 931 932 // if heap base register is used - reinit it with the correct value 933 void reinit_heapbase(); 934 935 DEBUG_ONLY(void verify_heapbase(const char* msg);) 936 937 void push_CPU_state(bool save_vectors = false, bool use_sve = false, 938 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 939 void pop_CPU_state(bool restore_vectors = false, bool use_sve = false, 940 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 941 942 void push_cont_fastpath(Register java_thread); 943 void pop_cont_fastpath(Register java_thread); 944 945 // Round up to a power of two 946 void round_to(Register reg, int modulus); 947 948 // java.lang.Math::round intrinsics 949 void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp); 950 void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp); 951 952 // allocation 953 void tlab_allocate( 954 Register obj, // result: pointer to object after successful allocation 955 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 956 int con_size_in_bytes, // object size in bytes if known at compile time 957 Register t1, // temp register 958 Register t2, // temp register 959 Label& slow_case // continuation point if fast allocation fails 960 ); 961 void verify_tlab(); 962 963 // interface method calling 964 void lookup_interface_method(Register recv_klass, 965 Register intf_klass, 966 RegisterOrConstant itable_index, 967 Register method_result, 968 Register scan_temp, 969 Label& no_such_interface, 970 bool return_method = true); 971 972 void lookup_interface_method_stub(Register recv_klass, 973 Register holder_klass, 974 Register resolved_klass, 975 Register method_result, 976 Register temp_reg, 977 Register temp_reg2, 978 int itable_index, 979 Label& L_no_such_interface); 980 981 // virtual method calling 982 // n.b. x86 allows RegisterOrConstant for vtable_index 983 void lookup_virtual_method(Register recv_klass, 984 RegisterOrConstant vtable_index, 985 Register method_result); 986 987 // Test sub_klass against super_klass, with fast and slow paths. 988 989 // The fast path produces a tri-state answer: yes / no / maybe-slow. 990 // One of the three labels can be null, meaning take the fall-through. 991 // If super_check_offset is -1, the value is loaded up from super_klass. 992 // No registers are killed, except temp_reg. 993 void check_klass_subtype_fast_path(Register sub_klass, 994 Register super_klass, 995 Register temp_reg, 996 Label* L_success, 997 Label* L_failure, 998 Label* L_slow_path, 999 RegisterOrConstant super_check_offset = RegisterOrConstant(-1)); 1000 1001 // The rest of the type check; must be wired to a corresponding fast path. 1002 // It does not repeat the fast path logic, so don't use it standalone. 1003 // The temp_reg and temp2_reg can be noreg, if no temps are available. 1004 // Updates the sub's secondary super cache as necessary. 1005 // If set_cond_codes, condition codes will be Z on success, NZ on failure. 1006 void check_klass_subtype_slow_path(Register sub_klass, 1007 Register super_klass, 1008 Register temp_reg, 1009 Register temp2_reg, 1010 Label* L_success, 1011 Label* L_failure, 1012 bool set_cond_codes = false); 1013 1014 // As above, but with a constant super_klass. 1015 // The result is in Register result, not the condition codes. 1016 bool lookup_secondary_supers_table(Register r_sub_klass, 1017 Register r_super_klass, 1018 Register temp1, 1019 Register temp2, 1020 Register temp3, 1021 FloatRegister vtemp, 1022 Register result, 1023 u1 super_klass_slot, 1024 bool stub_is_near = false); 1025 1026 void verify_secondary_supers_table(Register r_sub_klass, 1027 Register r_super_klass, 1028 Register temp1, 1029 Register temp2, 1030 Register result); 1031 1032 void lookup_secondary_supers_table_slow_path(Register r_super_klass, 1033 Register r_array_base, 1034 Register r_array_index, 1035 Register r_bitmap, 1036 Register temp1, 1037 Register result); 1038 1039 // Simplified, combined version, good for typical uses. 1040 // Falls through on failure. 1041 void check_klass_subtype(Register sub_klass, 1042 Register super_klass, 1043 Register temp_reg, 1044 Label& L_success); 1045 1046 void clinit_barrier(Register klass, 1047 Register thread, 1048 Label* L_fast_path = nullptr, 1049 Label* L_slow_path = nullptr); 1050 1051 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); 1052 1053 void verify_sve_vector_length(Register tmp = rscratch1); 1054 void reinitialize_ptrue() { 1055 if (UseSVE > 0) { 1056 sve_ptrue(ptrue, B); 1057 } 1058 } 1059 void verify_ptrue(); 1060 1061 // Debugging 1062 1063 // only if +VerifyOops 1064 void _verify_oop(Register reg, const char* s, const char* file, int line); 1065 void _verify_oop_addr(Address addr, const char * s, const char* file, int line); 1066 1067 void _verify_oop_checked(Register reg, const char* s, const char* file, int line) { 1068 if (VerifyOops) { 1069 _verify_oop(reg, s, file, line); 1070 } 1071 } 1072 void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) { 1073 if (VerifyOops) { 1074 _verify_oop_addr(reg, s, file, line); 1075 } 1076 } 1077 1078 // TODO: verify method and klass metadata (compare against vptr?) 1079 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 1080 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} 1081 1082 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__) 1083 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__) 1084 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__) 1085 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 1086 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 1087 1088 // Restore cpu control state after JNI call 1089 void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2); 1090 1091 // prints msg, dumps registers and stops execution 1092 void stop(const char* msg); 1093 1094 static void debug64(char* msg, int64_t pc, int64_t regs[]); 1095 1096 void untested() { stop("untested"); } 1097 1098 void unimplemented(const char* what = ""); 1099 1100 void should_not_reach_here() { stop("should not reach here"); } 1101 1102 void _assert_asm(Condition cc, const char* msg); 1103 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg) 1104 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg)) 1105 1106 // Stack overflow checking 1107 void bang_stack_with_offset(int offset) { 1108 // stack grows down, caller passes positive offset 1109 assert(offset > 0, "must bang with negative offset"); 1110 sub(rscratch2, sp, offset); 1111 str(zr, Address(rscratch2)); 1112 } 1113 1114 // Writes to stack successive pages until offset reached to check for 1115 // stack overflow + shadow pages. Also, clobbers tmp 1116 void bang_stack_size(Register size, Register tmp); 1117 1118 // Check for reserved stack access in method being exited (for JIT) 1119 void reserved_stack_check(); 1120 1121 // Arithmetics 1122 1123 void addptr(const Address &dst, int32_t src); 1124 void cmpptr(Register src1, Address src2); 1125 1126 void cmpoop(Register obj1, Register obj2); 1127 1128 // Various forms of CAS 1129 1130 void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 1131 Label &succeed, Label *fail); 1132 void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 1133 Label &succeed, Label *fail); 1134 1135 void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 1136 Label &succeed, Label *fail); 1137 1138 void atomic_add(Register prev, RegisterOrConstant incr, Register addr); 1139 void atomic_addw(Register prev, RegisterOrConstant incr, Register addr); 1140 void atomic_addal(Register prev, RegisterOrConstant incr, Register addr); 1141 void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr); 1142 1143 void atomic_xchg(Register prev, Register newv, Register addr); 1144 void atomic_xchgw(Register prev, Register newv, Register addr); 1145 void atomic_xchgl(Register prev, Register newv, Register addr); 1146 void atomic_xchglw(Register prev, Register newv, Register addr); 1147 void atomic_xchgal(Register prev, Register newv, Register addr); 1148 void atomic_xchgalw(Register prev, Register newv, Register addr); 1149 1150 void orptr(Address adr, RegisterOrConstant src) { 1151 ldr(rscratch1, adr); 1152 if (src.is_register()) 1153 orr(rscratch1, rscratch1, src.as_register()); 1154 else 1155 orr(rscratch1, rscratch1, src.as_constant()); 1156 str(rscratch1, adr); 1157 } 1158 1159 // A generic CAS; success or failure is in the EQ flag. 1160 // Clobbers rscratch1 1161 void cmpxchg(Register addr, Register expected, Register new_val, 1162 enum operand_size size, 1163 bool acquire, bool release, bool weak, 1164 Register result); 1165 1166 #ifdef ASSERT 1167 // Template short-hand support to clean-up after a failed call to trampoline 1168 // call generation (see trampoline_call() below), when a set of Labels must 1169 // be reset (before returning). 1170 template<typename Label, typename... More> 1171 void reset_labels(Label &lbl, More&... more) { 1172 lbl.reset(); reset_labels(more...); 1173 } 1174 template<typename Label> 1175 void reset_labels(Label &lbl) { 1176 lbl.reset(); 1177 } 1178 #endif 1179 1180 private: 1181 void compare_eq(Register rn, Register rm, enum operand_size size); 1182 1183 public: 1184 // AArch64 OpenJDK uses four different types of calls: 1185 // - direct call: bl pc_relative_offset 1186 // This is the shortest and the fastest, but the offset has the range: 1187 // +/-128MB for the release build, +/-2MB for the debug build. 1188 // 1189 // - far call: adrp reg, pc_relative_offset; add; bl reg 1190 // This is longer than a direct call. The offset has 1191 // the range +/-4GB. As the code cache size is limited to 4GB, 1192 // far calls can reach anywhere in the code cache. If a jump is 1193 // needed rather than a call, a far jump 'b reg' can be used instead. 1194 // All instructions are embedded at a call site. 1195 // 1196 // - trampoline call: 1197 // This is only available in C1/C2-generated code (nmethod). It is a combination 1198 // of a direct call, which is used if the destination of a call is in range, 1199 // and a register-indirect call. It has the advantages of reaching anywhere in 1200 // the AArch64 address space and being patchable at runtime when the generated 1201 // code is being executed by other threads. 1202 // 1203 // [Main code section] 1204 // bl trampoline 1205 // [Stub code section] 1206 // trampoline: 1207 // ldr reg, pc + 8 1208 // br reg 1209 // <64-bit destination address> 1210 // 1211 // If the destination is in range when the generated code is moved to the code 1212 // cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline 1213 // is not used. 1214 // The optimization does not remove the trampoline from the stub section. 1215 // This is necessary because the trampoline may well be redirected later when 1216 // code is patched, and the new destination may not be reachable by a simple BR 1217 // instruction. 1218 // 1219 // - indirect call: move reg, address; blr reg 1220 // This too can reach anywhere in the address space, but it cannot be 1221 // patched while code is running, so it must only be modified at a safepoint. 1222 // This form of call is most suitable for targets at fixed addresses, which 1223 // will never be patched. 1224 // 1225 // The patching we do conforms to the "Concurrent modification and 1226 // execution of instructions" section of the Arm Architectural 1227 // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC, 1228 // or SVC instructions to be modified while another thread is 1229 // executing them. 1230 // 1231 // To patch a trampoline call when the BL can't reach, we first modify 1232 // the 64-bit destination address in the trampoline, then modify the 1233 // BL to point to the trampoline, then flush the instruction cache to 1234 // broadcast the change to all executing threads. See 1235 // NativeCall::set_destination_mt_safe for the details. 1236 // 1237 // There is a benign race in that the other thread might observe the 1238 // modified BL before it observes the modified 64-bit destination 1239 // address. That does not matter because the destination method has been 1240 // invalidated, so there will be a trap at its start. 1241 // For this to work, the destination address in the trampoline is 1242 // always updated, even if we're not using the trampoline. 1243 1244 // Emit a direct call if the entry address will always be in range, 1245 // otherwise a trampoline call. 1246 // Supported entry.rspec(): 1247 // - relocInfo::runtime_call_type 1248 // - relocInfo::opt_virtual_call_type 1249 // - relocInfo::static_call_type 1250 // - relocInfo::virtual_call_type 1251 // 1252 // Return: the call PC or null if CodeCache is full. 1253 // Clobbers: rscratch1 1254 address trampoline_call(Address entry); 1255 1256 static bool far_branches() { 1257 return ReservedCodeCacheSize > branch_range; 1258 } 1259 1260 // Check if branches to the non nmethod section require a far jump 1261 static bool codestub_branch_needs_far_jump() { 1262 if (SCCache::is_on_for_write()) { 1263 // To calculate far_codestub_branch_size correctly. 1264 return true; 1265 } 1266 return CodeCache::max_distance_to_non_nmethod() > branch_range; 1267 } 1268 1269 // Emit a direct call/jump if the entry address will always be in range, 1270 // otherwise a far call/jump. 1271 // The address must be inside the code cache. 1272 // Supported entry.rspec(): 1273 // - relocInfo::external_word_type 1274 // - relocInfo::runtime_call_type 1275 // - relocInfo::none 1276 // In the case of a far call/jump, the entry address is put in the tmp register. 1277 // The tmp register is invalidated. 1278 // 1279 // Far_jump returns the amount of the emitted code. 1280 void far_call(Address entry, Register tmp = rscratch1); 1281 int far_jump(Address entry, Register tmp = rscratch1); 1282 1283 static int far_codestub_branch_size() { 1284 if (codestub_branch_needs_far_jump()) { 1285 return 3 * 4; // adrp, add, br 1286 } else { 1287 return 4; 1288 } 1289 } 1290 1291 // Emit the CompiledIC call idiom 1292 address ic_call(address entry, jint method_index = 0); 1293 static int ic_check_size(); 1294 int ic_check(int end_alignment); 1295 1296 public: 1297 1298 // Data 1299 1300 void mov_metadata(Register dst, Metadata* obj); 1301 Address allocate_metadata_address(Metadata* obj); 1302 Address constant_oop_address(jobject obj); 1303 1304 void movoop(Register dst, jobject obj); 1305 1306 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1307 void kernel_crc32(Register crc, Register buf, Register len, 1308 Register table0, Register table1, Register table2, Register table3, 1309 Register tmp, Register tmp2, Register tmp3); 1310 // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic. 1311 void kernel_crc32c(Register crc, Register buf, Register len, 1312 Register table0, Register table1, Register table2, Register table3, 1313 Register tmp, Register tmp2, Register tmp3); 1314 1315 // Stack push and pop individual 64 bit registers 1316 void push(Register src); 1317 void pop(Register dst); 1318 1319 void repne_scan(Register addr, Register value, Register count, 1320 Register scratch); 1321 void repne_scanw(Register addr, Register value, Register count, 1322 Register scratch); 1323 1324 typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm); 1325 typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift); 1326 1327 // If a constant does not fit in an immediate field, generate some 1328 // number of MOV instructions and then perform the operation 1329 void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 1330 add_sub_imm_insn insn1, 1331 add_sub_reg_insn insn2, bool is32); 1332 // Separate vsn which sets the flags 1333 void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 1334 add_sub_imm_insn insn1, 1335 add_sub_reg_insn insn2, bool is32); 1336 1337 #define WRAP(INSN, is32) \ 1338 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1339 wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1340 } \ 1341 \ 1342 void INSN(Register Rd, Register Rn, Register Rm, \ 1343 enum shift_kind kind, unsigned shift = 0) { \ 1344 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1345 } \ 1346 \ 1347 void INSN(Register Rd, Register Rn, Register Rm) { \ 1348 Assembler::INSN(Rd, Rn, Rm); \ 1349 } \ 1350 \ 1351 void INSN(Register Rd, Register Rn, Register Rm, \ 1352 ext::operation option, int amount = 0) { \ 1353 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1354 } 1355 1356 WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true) 1357 1358 #undef WRAP 1359 #define WRAP(INSN, is32) \ 1360 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1361 wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1362 } \ 1363 \ 1364 void INSN(Register Rd, Register Rn, Register Rm, \ 1365 enum shift_kind kind, unsigned shift = 0) { \ 1366 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1367 } \ 1368 \ 1369 void INSN(Register Rd, Register Rn, Register Rm) { \ 1370 Assembler::INSN(Rd, Rn, Rm); \ 1371 } \ 1372 \ 1373 void INSN(Register Rd, Register Rn, Register Rm, \ 1374 ext::operation option, int amount = 0) { \ 1375 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1376 } 1377 1378 WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true) 1379 1380 void add(Register Rd, Register Rn, RegisterOrConstant increment); 1381 void addw(Register Rd, Register Rn, RegisterOrConstant increment); 1382 void sub(Register Rd, Register Rn, RegisterOrConstant decrement); 1383 void subw(Register Rd, Register Rn, RegisterOrConstant decrement); 1384 1385 void adrp(Register reg1, const Address &dest, uint64_t &byte_offset); 1386 1387 void tableswitch(Register index, jint lowbound, jint highbound, 1388 Label &jumptable, Label &jumptable_end, int stride = 1) { 1389 adr(rscratch1, jumptable); 1390 subsw(rscratch2, index, lowbound); 1391 subsw(zr, rscratch2, highbound - lowbound); 1392 br(Assembler::HS, jumptable_end); 1393 add(rscratch1, rscratch1, rscratch2, 1394 ext::sxtw, exact_log2(stride * Assembler::instruction_size)); 1395 br(rscratch1); 1396 } 1397 1398 // Form an address from base + offset in Rd. Rd may or may not 1399 // actually be used: you must use the Address that is returned. It 1400 // is up to you to ensure that the shift provided matches the size 1401 // of your data. 1402 Address form_address(Register Rd, Register base, int64_t byte_offset, int shift); 1403 1404 // Return true iff an address is within the 48-bit AArch64 address 1405 // space. 1406 bool is_valid_AArch64_address(address a) { 1407 return ((uint64_t)a >> 48) == 0; 1408 } 1409 1410 // Load the base of the cardtable byte map into reg. 1411 void load_byte_map_base(Register reg); 1412 1413 // Load a constant address in the AOT Runtime Constants area 1414 void load_aotrc_address(Register reg, address a); 1415 1416 // Prolog generator routines to support switch between x86 code and 1417 // generated ARM code 1418 1419 // routine to generate an x86 prolog for a stub function which 1420 // bootstraps into the generated ARM code which directly follows the 1421 // stub 1422 // 1423 1424 public: 1425 1426 void ldr_constant(Register dest, const Address &const_addr) { 1427 if (NearCpool) { 1428 ldr(dest, const_addr); 1429 } else { 1430 uint64_t offset; 1431 adrp(dest, InternalAddress(const_addr.target()), offset); 1432 ldr(dest, Address(dest, offset)); 1433 } 1434 } 1435 1436 address read_polling_page(Register r, relocInfo::relocType rtype); 1437 void get_polling_page(Register dest, relocInfo::relocType rtype); 1438 1439 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1440 void update_byte_crc32(Register crc, Register val, Register table); 1441 void update_word_crc32(Register crc, Register v, Register tmp, 1442 Register table0, Register table1, Register table2, Register table3, 1443 bool upper = false); 1444 1445 address count_positives(Register ary1, Register len, Register result); 1446 1447 address arrays_equals(Register a1, Register a2, Register result, Register cnt1, 1448 Register tmp1, Register tmp2, Register tmp3, int elem_size); 1449 1450 void string_equals(Register a1, Register a2, Register result, Register cnt1); 1451 1452 void fill_words(Register base, Register cnt, Register value); 1453 address zero_words(Register base, uint64_t cnt); 1454 address zero_words(Register ptr, Register cnt); 1455 void zero_dcache_blocks(Register base, Register cnt); 1456 1457 static const int zero_words_block_size; 1458 1459 address byte_array_inflate(Register src, Register dst, Register len, 1460 FloatRegister vtmp1, FloatRegister vtmp2, 1461 FloatRegister vtmp3, Register tmp4); 1462 1463 void char_array_compress(Register src, Register dst, Register len, 1464 Register res, 1465 FloatRegister vtmp0, FloatRegister vtmp1, 1466 FloatRegister vtmp2, FloatRegister vtmp3, 1467 FloatRegister vtmp4, FloatRegister vtmp5); 1468 1469 void encode_iso_array(Register src, Register dst, 1470 Register len, Register res, bool ascii, 1471 FloatRegister vtmp0, FloatRegister vtmp1, 1472 FloatRegister vtmp2, FloatRegister vtmp3, 1473 FloatRegister vtmp4, FloatRegister vtmp5); 1474 1475 void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi, 1476 address pio2, address dsin_coef, address dcos_coef); 1477 private: 1478 // begin trigonometric functions support block 1479 void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2); 1480 void generate__kernel_rem_pio2(address two_over_pi, address pio2); 1481 void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef); 1482 void generate_kernel_cos(FloatRegister x, address dcos_coef); 1483 // end trigonometric functions support block 1484 void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 1485 Register src1, Register src2); 1486 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 1487 add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2); 1488 } 1489 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 1490 Register y, Register y_idx, Register z, 1491 Register carry, Register product, 1492 Register idx, Register kdx); 1493 void multiply_128_x_128_loop(Register y, Register z, 1494 Register carry, Register carry2, 1495 Register idx, Register jdx, 1496 Register yz_idx1, Register yz_idx2, 1497 Register tmp, Register tmp3, Register tmp4, 1498 Register tmp7, Register product_hi); 1499 void kernel_crc32_using_crypto_pmull(Register crc, Register buf, 1500 Register len, Register tmp0, Register tmp1, Register tmp2, 1501 Register tmp3); 1502 void kernel_crc32_using_crc32(Register crc, Register buf, 1503 Register len, Register tmp0, Register tmp1, Register tmp2, 1504 Register tmp3); 1505 void kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 1506 Register len, Register tmp0, Register tmp1, Register tmp2, 1507 Register tmp3); 1508 void kernel_crc32c_using_crc32c(Register crc, Register buf, 1509 Register len, Register tmp0, Register tmp1, Register tmp2, 1510 Register tmp3); 1511 void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 1512 Register len, Register tmp0, Register tmp1, Register tmp2, 1513 size_t table_offset); 1514 1515 void ghash_modmul (FloatRegister result, 1516 FloatRegister result_lo, FloatRegister result_hi, FloatRegister b, 1517 FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p, 1518 FloatRegister t1, FloatRegister t2, FloatRegister t3); 1519 void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state); 1520 public: 1521 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, 1522 Register tmp0, Register tmp1, Register tmp2, Register tmp3, 1523 Register tmp4, Register tmp5, Register tmp6, Register tmp7); 1524 void mul_add(Register out, Register in, Register offs, Register len, Register k); 1525 void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi, 1526 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1527 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1528 void ghash_multiply_wide(int index, 1529 FloatRegister result_lo, FloatRegister result_hi, 1530 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1531 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1532 void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi, 1533 FloatRegister p, FloatRegister z, FloatRegister t1); 1534 void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi, 1535 FloatRegister p, FloatRegister z, FloatRegister t1); 1536 void ghash_processBlocks_wide(address p, Register state, Register subkeyH, 1537 Register data, Register blocks, int unrolls); 1538 1539 1540 void aesenc_loadkeys(Register key, Register keylen); 1541 void aesecb_encrypt(Register from, Register to, Register keylen, 1542 FloatRegister data = v0, int unrolls = 1); 1543 void aesecb_decrypt(Register from, Register to, Register key, Register keylen); 1544 void aes_round(FloatRegister input, FloatRegister subkey); 1545 1546 // ChaCha20 functions support block 1547 void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec, 1548 FloatRegister cVec, FloatRegister dVec, FloatRegister scratch, 1549 FloatRegister tbl); 1550 void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec, 1551 FloatRegister dVec, bool colToDiag); 1552 1553 // Place an ISB after code may have been modified due to a safepoint. 1554 void safepoint_isb(); 1555 1556 private: 1557 // Return the effective address r + (r1 << ext) + offset. 1558 // Uses rscratch2. 1559 Address offsetted_address(Register r, Register r1, Address::extend ext, 1560 int offset, int size); 1561 1562 private: 1563 // Returns an address on the stack which is reachable with a ldr/str of size 1564 // Uses rscratch2 if the address is not directly reachable 1565 Address spill_address(int size, int offset, Register tmp=rscratch2); 1566 Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2); 1567 1568 bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const; 1569 1570 // Check whether two loads/stores can be merged into ldp/stp. 1571 bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const; 1572 1573 // Merge current load/store with previous load/store into ldp/stp. 1574 void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1575 1576 // Try to merge two loads/stores into ldp/stp. If success, returns true else false. 1577 bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1578 1579 public: 1580 void spill(Register Rx, bool is64, int offset) { 1581 if (is64) { 1582 str(Rx, spill_address(8, offset)); 1583 } else { 1584 strw(Rx, spill_address(4, offset)); 1585 } 1586 } 1587 void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1588 str(Vx, T, spill_address(1 << (int)T, offset)); 1589 } 1590 1591 void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1592 sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1593 } 1594 void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1595 sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1596 } 1597 1598 void unspill(Register Rx, bool is64, int offset) { 1599 if (is64) { 1600 ldr(Rx, spill_address(8, offset)); 1601 } else { 1602 ldrw(Rx, spill_address(4, offset)); 1603 } 1604 } 1605 void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1606 ldr(Vx, T, spill_address(1 << (int)T, offset)); 1607 } 1608 1609 void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1610 sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1611 } 1612 void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1613 sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1614 } 1615 1616 void spill_copy128(int src_offset, int dst_offset, 1617 Register tmp1=rscratch1, Register tmp2=rscratch2) { 1618 if (src_offset < 512 && (src_offset & 7) == 0 && 1619 dst_offset < 512 && (dst_offset & 7) == 0) { 1620 ldp(tmp1, tmp2, Address(sp, src_offset)); 1621 stp(tmp1, tmp2, Address(sp, dst_offset)); 1622 } else { 1623 unspill(tmp1, true, src_offset); 1624 spill(tmp1, true, dst_offset); 1625 unspill(tmp1, true, src_offset+8); 1626 spill(tmp1, true, dst_offset+8); 1627 } 1628 } 1629 void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset, 1630 int sve_vec_reg_size_in_bytes) { 1631 assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size"); 1632 for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) { 1633 spill_copy128(src_offset, dst_offset); 1634 src_offset += 16; 1635 dst_offset += 16; 1636 } 1637 } 1638 void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset, 1639 int sve_predicate_reg_size_in_bytes) { 1640 sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset)); 1641 sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset)); 1642 reinitialize_ptrue(); 1643 } 1644 void cache_wb(Address line); 1645 void cache_wbsync(bool is_pre); 1646 1647 // Code for java.lang.Thread::onSpinWait() intrinsic. 1648 void spin_wait(); 1649 1650 void lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow); 1651 void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow); 1652 1653 private: 1654 // Check the current thread doesn't need a cross modify fence. 1655 void verify_cross_modify_fence_not_required() PRODUCT_RETURN; 1656 1657 }; 1658 1659 #ifdef ASSERT 1660 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; } 1661 #endif 1662 1663 /** 1664 * class SkipIfEqual: 1665 * 1666 * Instantiating this class will result in assembly code being output that will 1667 * jump around any code emitted between the creation of the instance and it's 1668 * automatic destruction at the end of a scope block, depending on the value of 1669 * the flag passed to the constructor, which will be checked at run-time. 1670 */ 1671 class SkipIfEqual { 1672 private: 1673 MacroAssembler* _masm; 1674 Label _label; 1675 1676 public: 1677 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value); 1678 ~SkipIfEqual(); 1679 }; 1680 1681 struct tableswitch { 1682 Register _reg; 1683 int _insn_index; jint _first_key; jint _last_key; 1684 Label _after; 1685 Label _branches; 1686 }; 1687 1688 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP