1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2021, Azul Systems, Inc. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "asm/macroAssembler.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/compiledIC.hpp" 31 #include "code/debugInfoRec.hpp" 32 #include "code/vtableStubs.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "interpreter/interpreter.hpp" 36 #include "interpreter/interp_masm.hpp" 37 #include "logging/log.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "nativeInst_aarch64.hpp" 40 #include "oops/klass.inline.hpp" 41 #include "oops/method.inline.hpp" 42 #include "prims/methodHandles.hpp" 43 #include "runtime/continuation.hpp" 44 #include "runtime/continuationEntry.inline.hpp" 45 #include "runtime/globals.hpp" 46 #include "runtime/jniHandles.hpp" 47 #include "runtime/safepointMechanism.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "runtime/signature.hpp" 50 #include "runtime/stubRoutines.hpp" 51 #include "runtime/timerTrace.hpp" 52 #include "runtime/vframeArray.hpp" 53 #include "utilities/align.hpp" 54 #include "utilities/formatBuffer.hpp" 55 #include "vmreg_aarch64.inline.hpp" 56 #ifdef COMPILER1 57 #include "c1/c1_Runtime1.hpp" 58 #endif 59 #ifdef COMPILER2 60 #include "adfiles/ad_aarch64.hpp" 61 #include "opto/runtime.hpp" 62 #endif 63 #if INCLUDE_JVMCI 64 #include "jvmci/jvmciJavaClasses.hpp" 65 #endif 66 67 #define __ masm-> 68 69 #ifdef PRODUCT 70 #define BLOCK_COMMENT(str) /* nothing */ 71 #else 72 #define BLOCK_COMMENT(str) __ block_comment(str) 73 #endif 74 75 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 76 77 // FIXME -- this is used by C1 78 class RegisterSaver { 79 const bool _save_vectors; 80 public: 81 RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {} 82 83 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); 84 void restore_live_registers(MacroAssembler* masm); 85 86 // Offsets into the register save area 87 // Used by deoptimization when it is managing result register 88 // values on its own 89 90 int reg_offset_in_bytes(Register r); 91 int r0_offset_in_bytes() { return reg_offset_in_bytes(r0); } 92 int rscratch1_offset_in_bytes() { return reg_offset_in_bytes(rscratch1); } 93 int v0_offset_in_bytes(); 94 95 // Total stack size in bytes for saving sve predicate registers. 96 int total_sve_predicate_in_bytes(); 97 98 // Capture info about frame layout 99 // Note this is only correct when not saving full vectors. 100 enum layout { 101 fpu_state_off = 0, 102 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1, 103 // The frame sender code expects that rfp will be in 104 // the "natural" place and will override any oopMap 105 // setting for it. We must therefore force the layout 106 // so that it agrees with the frame sender code. 107 r0_off = fpu_state_off + FPUStateSizeInWords, 108 rfp_off = r0_off + (Register::number_of_registers - 2) * Register::max_slots_per_register, 109 return_off = rfp_off + Register::max_slots_per_register, // slot for return address 110 reg_save_size = return_off + Register::max_slots_per_register}; 111 112 }; 113 114 int RegisterSaver::reg_offset_in_bytes(Register r) { 115 // The integer registers are located above the floating point 116 // registers in the stack frame pushed by save_live_registers() so the 117 // offset depends on whether we are saving full vectors, and whether 118 // those vectors are NEON or SVE. 119 120 int slots_per_vect = FloatRegister::save_slots_per_register; 121 122 #if COMPILER2_OR_JVMCI 123 if (_save_vectors) { 124 slots_per_vect = FloatRegister::slots_per_neon_register; 125 126 #ifdef COMPILER2 127 if (Matcher::supports_scalable_vector()) { 128 slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT); 129 } 130 #endif 131 } 132 #endif 133 134 int r0_offset = v0_offset_in_bytes() + (slots_per_vect * FloatRegister::number_of_registers) * BytesPerInt; 135 return r0_offset + r->encoding() * wordSize; 136 } 137 138 int RegisterSaver::v0_offset_in_bytes() { 139 // The floating point registers are located above the predicate registers if 140 // they are present in the stack frame pushed by save_live_registers(). So the 141 // offset depends on the saved total predicate vectors in the stack frame. 142 return (total_sve_predicate_in_bytes() / VMRegImpl::stack_slot_size) * BytesPerInt; 143 } 144 145 int RegisterSaver::total_sve_predicate_in_bytes() { 146 #ifdef COMPILER2 147 if (_save_vectors && Matcher::supports_scalable_vector()) { 148 return (Matcher::scalable_vector_reg_size(T_BYTE) >> LogBitsPerByte) * 149 PRegister::number_of_registers; 150 } 151 #endif 152 return 0; 153 } 154 155 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { 156 bool use_sve = false; 157 int sve_vector_size_in_bytes = 0; 158 int sve_vector_size_in_slots = 0; 159 int sve_predicate_size_in_slots = 0; 160 int total_predicate_in_bytes = total_sve_predicate_in_bytes(); 161 int total_predicate_in_slots = total_predicate_in_bytes / VMRegImpl::stack_slot_size; 162 163 #ifdef COMPILER2 164 use_sve = Matcher::supports_scalable_vector(); 165 if (use_sve) { 166 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 167 sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT); 168 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 169 } 170 #endif 171 172 #if COMPILER2_OR_JVMCI 173 if (_save_vectors) { 174 int extra_save_slots_per_register = 0; 175 // Save upper half of vector registers 176 if (use_sve) { 177 extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegister::save_slots_per_register; 178 } else { 179 extra_save_slots_per_register = FloatRegister::extra_save_slots_per_neon_register; 180 } 181 int extra_vector_bytes = extra_save_slots_per_register * 182 VMRegImpl::stack_slot_size * 183 FloatRegister::number_of_registers; 184 additional_frame_words += ((extra_vector_bytes + total_predicate_in_bytes) / wordSize); 185 } 186 #else 187 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 188 #endif 189 190 int frame_size_in_bytes = align_up(additional_frame_words * wordSize + 191 reg_save_size * BytesPerInt, 16); 192 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 193 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 194 // The caller will allocate additional_frame_words 195 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt; 196 // CodeBlob frame size is in words. 197 int frame_size_in_words = frame_size_in_bytes / wordSize; 198 *total_frame_words = frame_size_in_words; 199 200 // Save Integer and Float registers. 201 __ enter(); 202 __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes, total_predicate_in_bytes); 203 204 // Set an oopmap for the call site. This oopmap will map all 205 // oop-registers and debug-info registers as callee-saved. This 206 // will allow deoptimization at this safepoint to find all possible 207 // debug-info recordings, as well as let GC find all oops. 208 209 OopMapSet *oop_maps = new OopMapSet(); 210 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 211 212 for (int i = 0; i < Register::number_of_registers; i++) { 213 Register r = as_Register(i); 214 if (i <= rfp->encoding() && r != rscratch1 && r != rscratch2) { 215 // SP offsets are in 4-byte words. 216 // Register slots are 8 bytes wide, 32 floating-point registers. 217 int sp_offset = Register::max_slots_per_register * i + 218 FloatRegister::save_slots_per_register * FloatRegister::number_of_registers; 219 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), r->as_VMReg()); 220 } 221 } 222 223 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 224 FloatRegister r = as_FloatRegister(i); 225 int sp_offset = 0; 226 if (_save_vectors) { 227 sp_offset = use_sve ? (total_predicate_in_slots + sve_vector_size_in_slots * i) : 228 (FloatRegister::slots_per_neon_register * i); 229 } else { 230 sp_offset = FloatRegister::save_slots_per_register * i; 231 } 232 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg()); 233 } 234 235 return oop_map; 236 } 237 238 void RegisterSaver::restore_live_registers(MacroAssembler* masm) { 239 #ifdef COMPILER2 240 __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(), 241 Matcher::scalable_vector_reg_size(T_BYTE), total_sve_predicate_in_bytes()); 242 #else 243 #if !INCLUDE_JVMCI 244 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 245 #endif 246 __ pop_CPU_state(_save_vectors); 247 #endif 248 __ ldp(rfp, lr, Address(__ post(sp, 2 * wordSize))); 249 __ authenticate_return_address(); 250 } 251 252 // Is vector's size (in bytes) bigger than a size saved by default? 253 // 8 bytes vector registers are saved by default on AArch64. 254 // The SVE supported min vector size is 8 bytes and we need to save 255 // predicate registers when the vector size is 8 bytes as well. 256 bool SharedRuntime::is_wide_vector(int size) { 257 return size > 8 || (UseSVE > 0 && size >= 8); 258 } 259 260 // --------------------------------------------------------------------------- 261 // Read the array of BasicTypes from a signature, and compute where the 262 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 263 // quantities. Values less than VMRegImpl::stack0 are registers, those above 264 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 265 // as framesizes are fixed. 266 // VMRegImpl::stack0 refers to the first slot 0(sp). 267 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 268 // Register up to Register::number_of_registers are the 64-bit 269 // integer registers. 270 271 // Note: the INPUTS in sig_bt are in units of Java argument words, 272 // which are 64-bit. The OUTPUTS are in 32-bit units. 273 274 // The Java calling convention is a "shifted" version of the C ABI. 275 // By skipping the first C ABI register we can call non-static jni 276 // methods with small numbers of arguments without having to shuffle 277 // the arguments at all. Since we control the java ABI we ought to at 278 // least get some advantage out of it. 279 280 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 281 VMRegPair *regs, 282 int total_args_passed) { 283 284 // Create the mapping between argument positions and 285 // registers. 286 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 287 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7 288 }; 289 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 290 j_farg0, j_farg1, j_farg2, j_farg3, 291 j_farg4, j_farg5, j_farg6, j_farg7 292 }; 293 294 295 uint int_args = 0; 296 uint fp_args = 0; 297 uint stk_args = 0; 298 299 for (int i = 0; i < total_args_passed; i++) { 300 switch (sig_bt[i]) { 301 case T_BOOLEAN: 302 case T_CHAR: 303 case T_BYTE: 304 case T_SHORT: 305 case T_INT: 306 if (int_args < Argument::n_int_register_parameters_j) { 307 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 308 } else { 309 stk_args = align_up(stk_args, 2); 310 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 311 stk_args += 1; 312 } 313 break; 314 case T_VOID: 315 // halves of T_LONG or T_DOUBLE 316 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 317 regs[i].set_bad(); 318 break; 319 case T_LONG: 320 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 321 // fall through 322 case T_OBJECT: 323 case T_ARRAY: 324 case T_ADDRESS: 325 if (int_args < Argument::n_int_register_parameters_j) { 326 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 327 } else { 328 stk_args = align_up(stk_args, 2); 329 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 330 stk_args += 2; 331 } 332 break; 333 case T_FLOAT: 334 if (fp_args < Argument::n_float_register_parameters_j) { 335 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 336 } else { 337 stk_args = align_up(stk_args, 2); 338 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 339 stk_args += 1; 340 } 341 break; 342 case T_DOUBLE: 343 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 344 if (fp_args < Argument::n_float_register_parameters_j) { 345 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 346 } else { 347 stk_args = align_up(stk_args, 2); 348 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 349 stk_args += 2; 350 } 351 break; 352 default: 353 ShouldNotReachHere(); 354 break; 355 } 356 } 357 358 return stk_args; 359 } 360 361 // Patch the callers callsite with entry to compiled code if it exists. 362 static void patch_callers_callsite(MacroAssembler *masm) { 363 Label L; 364 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 365 __ cbz(rscratch1, L); 366 367 __ enter(); 368 __ push_CPU_state(); 369 370 // VM needs caller's callsite 371 // VM needs target method 372 // This needs to be a long call since we will relocate this adapter to 373 // the codeBuffer and it may not reach 374 375 #ifndef PRODUCT 376 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 377 #endif 378 379 __ mov(c_rarg0, rmethod); 380 __ mov(c_rarg1, lr); 381 __ authenticate_return_address(c_rarg1); 382 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 383 __ blr(rscratch1); 384 385 // Explicit isb required because fixup_callers_callsite may change the code 386 // stream. 387 __ safepoint_isb(); 388 389 __ pop_CPU_state(); 390 // restore sp 391 __ leave(); 392 __ bind(L); 393 } 394 395 static void gen_c2i_adapter(MacroAssembler *masm, 396 int total_args_passed, 397 int comp_args_on_stack, 398 const BasicType *sig_bt, 399 const VMRegPair *regs, 400 Label& skip_fixup) { 401 // Before we get into the guts of the C2I adapter, see if we should be here 402 // at all. We've come from compiled code and are attempting to jump to the 403 // interpreter, which means the caller made a static call to get here 404 // (vcalls always get a compiled target if there is one). Check for a 405 // compiled target. If there is one, we need to patch the caller's call. 406 patch_callers_callsite(masm); 407 408 __ bind(skip_fixup); 409 410 int words_pushed = 0; 411 412 // Since all args are passed on the stack, total_args_passed * 413 // Interpreter::stackElementSize is the space we need. 414 415 int extraspace = total_args_passed * Interpreter::stackElementSize; 416 417 __ mov(r19_sender_sp, sp); 418 419 // stack is aligned, keep it that way 420 extraspace = align_up(extraspace, 2*wordSize); 421 422 if (extraspace) 423 __ sub(sp, sp, extraspace); 424 425 // Now write the args into the outgoing interpreter space 426 for (int i = 0; i < total_args_passed; i++) { 427 if (sig_bt[i] == T_VOID) { 428 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 429 continue; 430 } 431 432 // offset to start parameters 433 int st_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 434 int next_off = st_off - Interpreter::stackElementSize; 435 436 // Say 4 args: 437 // i st_off 438 // 0 32 T_LONG 439 // 1 24 T_VOID 440 // 2 16 T_OBJECT 441 // 3 8 T_BOOL 442 // - 0 return address 443 // 444 // However to make thing extra confusing. Because we can fit a Java long/double in 445 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 446 // leaves one slot empty and only stores to a single slot. In this case the 447 // slot that is occupied is the T_VOID slot. See I said it was confusing. 448 449 VMReg r_1 = regs[i].first(); 450 VMReg r_2 = regs[i].second(); 451 if (!r_1->is_valid()) { 452 assert(!r_2->is_valid(), ""); 453 continue; 454 } 455 if (r_1->is_stack()) { 456 // memory to memory use rscratch1 457 int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size 458 + extraspace 459 + words_pushed * wordSize); 460 if (!r_2->is_valid()) { 461 // sign extend?? 462 __ ldrw(rscratch1, Address(sp, ld_off)); 463 __ str(rscratch1, Address(sp, st_off)); 464 465 } else { 466 467 __ ldr(rscratch1, Address(sp, ld_off)); 468 469 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 470 // T_DOUBLE and T_LONG use two slots in the interpreter 471 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 472 // ld_off == LSW, ld_off+wordSize == MSW 473 // st_off == MSW, next_off == LSW 474 __ str(rscratch1, Address(sp, next_off)); 475 #ifdef ASSERT 476 // Overwrite the unused slot with known junk 477 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaaaull); 478 __ str(rscratch1, Address(sp, st_off)); 479 #endif /* ASSERT */ 480 } else { 481 __ str(rscratch1, Address(sp, st_off)); 482 } 483 } 484 } else if (r_1->is_Register()) { 485 Register r = r_1->as_Register(); 486 if (!r_2->is_valid()) { 487 // must be only an int (or less ) so move only 32bits to slot 488 // why not sign extend?? 489 __ str(r, Address(sp, st_off)); 490 } else { 491 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 492 // T_DOUBLE and T_LONG use two slots in the interpreter 493 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 494 // jlong/double in gpr 495 #ifdef ASSERT 496 // Overwrite the unused slot with known junk 497 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaabull); 498 __ str(rscratch1, Address(sp, st_off)); 499 #endif /* ASSERT */ 500 __ str(r, Address(sp, next_off)); 501 } else { 502 __ str(r, Address(sp, st_off)); 503 } 504 } 505 } else { 506 assert(r_1->is_FloatRegister(), ""); 507 if (!r_2->is_valid()) { 508 // only a float use just part of the slot 509 __ strs(r_1->as_FloatRegister(), Address(sp, st_off)); 510 } else { 511 #ifdef ASSERT 512 // Overwrite the unused slot with known junk 513 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaacull); 514 __ str(rscratch1, Address(sp, st_off)); 515 #endif /* ASSERT */ 516 __ strd(r_1->as_FloatRegister(), Address(sp, next_off)); 517 } 518 } 519 } 520 521 __ mov(esp, sp); // Interp expects args on caller's expression stack 522 523 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset()))); 524 __ br(rscratch1); 525 } 526 527 528 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 529 int total_args_passed, 530 int comp_args_on_stack, 531 const BasicType *sig_bt, 532 const VMRegPair *regs) { 533 534 // Note: r19_sender_sp contains the senderSP on entry. We must 535 // preserve it since we may do a i2c -> c2i transition if we lose a 536 // race where compiled code goes non-entrant while we get args 537 // ready. 538 539 // Adapters are frameless. 540 541 // An i2c adapter is frameless because the *caller* frame, which is 542 // interpreted, routinely repairs its own esp (from 543 // interpreter_frame_last_sp), even if a callee has modified the 544 // stack pointer. It also recalculates and aligns sp. 545 546 // A c2i adapter is frameless because the *callee* frame, which is 547 // interpreted, routinely repairs its caller's sp (from sender_sp, 548 // which is set up via the senderSP register). 549 550 // In other words, if *either* the caller or callee is interpreted, we can 551 // get the stack pointer repaired after a call. 552 553 // This is why c2i and i2c adapters cannot be indefinitely composed. 554 // In particular, if a c2i adapter were to somehow call an i2c adapter, 555 // both caller and callee would be compiled methods, and neither would 556 // clean up the stack pointer changes performed by the two adapters. 557 // If this happens, control eventually transfers back to the compiled 558 // caller, but with an uncorrected stack, causing delayed havoc. 559 560 if (VerifyAdapterCalls && 561 (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) { 562 #if 0 563 // So, let's test for cascading c2i/i2c adapters right now. 564 // assert(Interpreter::contains($return_addr) || 565 // StubRoutines::contains($return_addr), 566 // "i2c adapter must return to an interpreter frame"); 567 __ block_comment("verify_i2c { "); 568 Label L_ok; 569 if (Interpreter::code() != nullptr) { 570 range_check(masm, rax, r11, 571 Interpreter::code()->code_start(), Interpreter::code()->code_end(), 572 L_ok); 573 } 574 if (StubRoutines::initial_stubs_code() != nullptr) { 575 range_check(masm, rax, r11, 576 StubRoutines::initial_stubs_code()->code_begin(), 577 StubRoutines::initial_stubs_code()->code_end(), 578 L_ok); 579 } 580 if (StubRoutines::final_stubs_code() != nullptr) { 581 range_check(masm, rax, r11, 582 StubRoutines::final_stubs_code()->code_begin(), 583 StubRoutines::final_stubs_code()->code_end(), 584 L_ok); 585 } 586 const char* msg = "i2c adapter must return to an interpreter frame"; 587 __ block_comment(msg); 588 __ stop(msg); 589 __ bind(L_ok); 590 __ block_comment("} verify_i2ce "); 591 #endif 592 } 593 594 // Cut-out for having no stack args. 595 int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord; 596 if (comp_args_on_stack) { 597 __ sub(rscratch1, sp, comp_words_on_stack * wordSize); 598 __ andr(sp, rscratch1, -16); 599 } 600 601 // Will jump to the compiled code just as if compiled code was doing it. 602 // Pre-load the register-jump target early, to schedule it better. 603 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_offset()))); 604 605 #if INCLUDE_JVMCI 606 if (EnableJVMCI) { 607 // check if this call should be routed towards a specific entry point 608 __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 609 Label no_alternative_target; 610 __ cbz(rscratch2, no_alternative_target); 611 __ mov(rscratch1, rscratch2); 612 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 613 __ bind(no_alternative_target); 614 } 615 #endif // INCLUDE_JVMCI 616 617 // Now generate the shuffle code. 618 for (int i = 0; i < total_args_passed; i++) { 619 if (sig_bt[i] == T_VOID) { 620 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 621 continue; 622 } 623 624 // Pick up 0, 1 or 2 words from SP+offset. 625 626 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 627 "scrambled load targets?"); 628 // Load in argument order going down. 629 int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize; 630 // Point to interpreter value (vs. tag) 631 int next_off = ld_off - Interpreter::stackElementSize; 632 // 633 // 634 // 635 VMReg r_1 = regs[i].first(); 636 VMReg r_2 = regs[i].second(); 637 if (!r_1->is_valid()) { 638 assert(!r_2->is_valid(), ""); 639 continue; 640 } 641 if (r_1->is_stack()) { 642 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 643 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size; 644 if (!r_2->is_valid()) { 645 // sign extend??? 646 __ ldrsw(rscratch2, Address(esp, ld_off)); 647 __ str(rscratch2, Address(sp, st_off)); 648 } else { 649 // 650 // We are using two optoregs. This can be either T_OBJECT, 651 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 652 // two slots but only uses one for thr T_LONG or T_DOUBLE case 653 // So we must adjust where to pick up the data to match the 654 // interpreter. 655 // 656 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 657 // are accessed as negative so LSW is at LOW address 658 659 // ld_off is MSW so get LSW 660 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 661 next_off : ld_off; 662 __ ldr(rscratch2, Address(esp, offset)); 663 // st_off is LSW (i.e. reg.first()) 664 __ str(rscratch2, Address(sp, st_off)); 665 } 666 } else if (r_1->is_Register()) { // Register argument 667 Register r = r_1->as_Register(); 668 if (r_2->is_valid()) { 669 // 670 // We are using two VMRegs. This can be either T_OBJECT, 671 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 672 // two slots but only uses one for thr T_LONG or T_DOUBLE case 673 // So we must adjust where to pick up the data to match the 674 // interpreter. 675 676 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 677 next_off : ld_off; 678 679 // this can be a misaligned move 680 __ ldr(r, Address(esp, offset)); 681 } else { 682 // sign extend and use a full word? 683 __ ldrw(r, Address(esp, ld_off)); 684 } 685 } else { 686 if (!r_2->is_valid()) { 687 __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off)); 688 } else { 689 __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off)); 690 } 691 } 692 } 693 694 __ mov(rscratch2, rscratch1); 695 __ push_cont_fastpath(rthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about; kills rscratch1 696 __ mov(rscratch1, rscratch2); 697 698 // 6243940 We might end up in handle_wrong_method if 699 // the callee is deoptimized as we race thru here. If that 700 // happens we don't want to take a safepoint because the 701 // caller frame will look interpreted and arguments are now 702 // "compiled" so it is much better to make this transition 703 // invisible to the stack walking code. Unfortunately if 704 // we try and find the callee by normal means a safepoint 705 // is possible. So we stash the desired callee in the thread 706 // and the vm will find there should this case occur. 707 708 __ str(rmethod, Address(rthread, JavaThread::callee_target_offset())); 709 710 __ br(rscratch1); 711 } 712 713 // --------------------------------------------------------------- 714 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 715 int total_args_passed, 716 int comp_args_on_stack, 717 const BasicType *sig_bt, 718 const VMRegPair *regs, 719 AdapterFingerPrint* fingerprint) { 720 address i2c_entry = __ pc(); 721 722 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 723 724 address c2i_unverified_entry = __ pc(); 725 Label skip_fixup; 726 727 Register data = rscratch2; 728 Register receiver = j_rarg0; 729 Register tmp = r10; // A call-clobbered register not used for arg passing 730 731 // ------------------------------------------------------------------------- 732 // Generate a C2I adapter. On entry we know rmethod holds the Method* during calls 733 // to the interpreter. The args start out packed in the compiled layout. They 734 // need to be unpacked into the interpreter layout. This will almost always 735 // require some stack space. We grow the current (compiled) stack, then repack 736 // the args. We finally end in a jump to the generic interpreter entry point. 737 // On exit from the interpreter, the interpreter will restore our SP (lest the 738 // compiled code, which relies solely on SP and not FP, get sick). 739 740 { 741 __ block_comment("c2i_unverified_entry {"); 742 // Method might have been compiled since the call site was patched to 743 // interpreted; if that is the case treat it as a miss so we can get 744 // the call site corrected. 745 __ ic_check(1 /* end_alignment */); 746 __ ldr(rmethod, Address(data, CompiledICData::speculated_method_offset())); 747 748 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 749 __ cbz(rscratch1, skip_fixup); 750 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 751 __ block_comment("} c2i_unverified_entry"); 752 } 753 754 address c2i_entry = __ pc(); 755 756 // Class initialization barrier for static methods 757 address c2i_no_clinit_check_entry = nullptr; 758 if (VM_Version::supports_fast_class_init_checks()) { 759 Label L_skip_barrier; 760 761 { // Bypass the barrier for non-static methods 762 __ ldrh(rscratch1, Address(rmethod, Method::access_flags_offset())); 763 __ andsw(zr, rscratch1, JVM_ACC_STATIC); 764 __ br(Assembler::EQ, L_skip_barrier); // non-static 765 } 766 767 __ load_method_holder(rscratch2, rmethod); 768 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 769 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 770 771 __ bind(L_skip_barrier); 772 c2i_no_clinit_check_entry = __ pc(); 773 } 774 775 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 776 bs->c2i_entry_barrier(masm); 777 778 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 779 780 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry); 781 } 782 783 static int c_calling_convention_priv(const BasicType *sig_bt, 784 VMRegPair *regs, 785 int total_args_passed) { 786 787 // We return the amount of VMRegImpl stack slots we need to reserve for all 788 // the arguments NOT counting out_preserve_stack_slots. 789 790 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 791 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, c_rarg6, c_rarg7 792 }; 793 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 794 c_farg0, c_farg1, c_farg2, c_farg3, 795 c_farg4, c_farg5, c_farg6, c_farg7 796 }; 797 798 uint int_args = 0; 799 uint fp_args = 0; 800 uint stk_args = 0; // inc by 2 each time 801 802 for (int i = 0; i < total_args_passed; i++) { 803 switch (sig_bt[i]) { 804 case T_BOOLEAN: 805 case T_CHAR: 806 case T_BYTE: 807 case T_SHORT: 808 case T_INT: 809 if (int_args < Argument::n_int_register_parameters_c) { 810 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 811 } else { 812 #ifdef __APPLE__ 813 // Less-than word types are stored one after another. 814 // The code is unable to handle this so bailout. 815 return -1; 816 #endif 817 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 818 stk_args += 2; 819 } 820 break; 821 case T_LONG: 822 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 823 // fall through 824 case T_OBJECT: 825 case T_ARRAY: 826 case T_ADDRESS: 827 case T_METADATA: 828 if (int_args < Argument::n_int_register_parameters_c) { 829 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 830 } else { 831 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 832 stk_args += 2; 833 } 834 break; 835 case T_FLOAT: 836 if (fp_args < Argument::n_float_register_parameters_c) { 837 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 838 } else { 839 #ifdef __APPLE__ 840 // Less-than word types are stored one after another. 841 // The code is unable to handle this so bailout. 842 return -1; 843 #endif 844 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 845 stk_args += 2; 846 } 847 break; 848 case T_DOUBLE: 849 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 850 if (fp_args < Argument::n_float_register_parameters_c) { 851 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 852 } else { 853 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 854 stk_args += 2; 855 } 856 break; 857 case T_VOID: // Halves of longs and doubles 858 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 859 regs[i].set_bad(); 860 break; 861 default: 862 ShouldNotReachHere(); 863 break; 864 } 865 } 866 867 return stk_args; 868 } 869 870 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 871 uint num_bits, 872 uint total_args_passed) { 873 // More than 8 argument inputs are not supported now. 874 assert(total_args_passed <= Argument::n_float_register_parameters_c, "unsupported"); 875 assert(num_bits >= 64 && num_bits <= 2048 && is_power_of_2(num_bits), "unsupported"); 876 877 static const FloatRegister VEC_ArgReg[Argument::n_float_register_parameters_c] = { 878 v0, v1, v2, v3, v4, v5, v6, v7 879 }; 880 881 // On SVE, we use the same vector registers with 128-bit vector registers on NEON. 882 int next_reg_val = num_bits == 64 ? 1 : 3; 883 for (uint i = 0; i < total_args_passed; i++) { 884 VMReg vmreg = VEC_ArgReg[i]->as_VMReg(); 885 regs[i].set_pair(vmreg->next(next_reg_val), vmreg); 886 } 887 return 0; 888 } 889 890 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 891 VMRegPair *regs, 892 int total_args_passed) 893 { 894 int result = c_calling_convention_priv(sig_bt, regs, total_args_passed); 895 guarantee(result >= 0, "Unsupported arguments configuration"); 896 return result; 897 } 898 899 900 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 901 // We always ignore the frame_slots arg and just use the space just below frame pointer 902 // which by this time is free to use 903 switch (ret_type) { 904 case T_FLOAT: 905 __ strs(v0, Address(rfp, -wordSize)); 906 break; 907 case T_DOUBLE: 908 __ strd(v0, Address(rfp, -wordSize)); 909 break; 910 case T_VOID: break; 911 default: { 912 __ str(r0, Address(rfp, -wordSize)); 913 } 914 } 915 } 916 917 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 918 // We always ignore the frame_slots arg and just use the space just below frame pointer 919 // which by this time is free to use 920 switch (ret_type) { 921 case T_FLOAT: 922 __ ldrs(v0, Address(rfp, -wordSize)); 923 break; 924 case T_DOUBLE: 925 __ ldrd(v0, Address(rfp, -wordSize)); 926 break; 927 case T_VOID: break; 928 default: { 929 __ ldr(r0, Address(rfp, -wordSize)); 930 } 931 } 932 } 933 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 934 RegSet x; 935 for ( int i = first_arg ; i < arg_count ; i++ ) { 936 if (args[i].first()->is_Register()) { 937 x = x + args[i].first()->as_Register(); 938 } else if (args[i].first()->is_FloatRegister()) { 939 __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize))); 940 } 941 } 942 __ push(x, sp); 943 } 944 945 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 946 RegSet x; 947 for ( int i = first_arg ; i < arg_count ; i++ ) { 948 if (args[i].first()->is_Register()) { 949 x = x + args[i].first()->as_Register(); 950 } else { 951 ; 952 } 953 } 954 __ pop(x, sp); 955 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 956 if (args[i].first()->is_Register()) { 957 ; 958 } else if (args[i].first()->is_FloatRegister()) { 959 __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize))); 960 } 961 } 962 } 963 964 static void verify_oop_args(MacroAssembler* masm, 965 const methodHandle& method, 966 const BasicType* sig_bt, 967 const VMRegPair* regs) { 968 Register temp_reg = r19; // not part of any compiled calling seq 969 if (VerifyOops) { 970 for (int i = 0; i < method->size_of_parameters(); i++) { 971 if (sig_bt[i] == T_OBJECT || 972 sig_bt[i] == T_ARRAY) { 973 VMReg r = regs[i].first(); 974 assert(r->is_valid(), "bad oop arg"); 975 if (r->is_stack()) { 976 __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 977 __ verify_oop(temp_reg); 978 } else { 979 __ verify_oop(r->as_Register()); 980 } 981 } 982 } 983 } 984 } 985 986 // on exit, sp points to the ContinuationEntry 987 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) { 988 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, ""); 989 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, ""); 990 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, ""); 991 992 stack_slots += (int)ContinuationEntry::size()/wordSize; 993 __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata 994 995 OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize)/ VMRegImpl::stack_slot_size, 0 /* arg_slots*/); 996 997 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 998 __ str(rscratch1, Address(sp, ContinuationEntry::parent_offset())); 999 __ mov(rscratch1, sp); // we can't use sp as the source in str 1000 __ str(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1001 1002 return map; 1003 } 1004 1005 // on entry c_rarg1 points to the continuation 1006 // sp points to ContinuationEntry 1007 // c_rarg3 -- isVirtualThread 1008 static void fill_continuation_entry(MacroAssembler* masm) { 1009 #ifdef ASSERT 1010 __ movw(rscratch1, ContinuationEntry::cookie_value()); 1011 __ strw(rscratch1, Address(sp, ContinuationEntry::cookie_offset())); 1012 #endif 1013 1014 __ str (c_rarg1, Address(sp, ContinuationEntry::cont_offset())); 1015 __ strw(c_rarg3, Address(sp, ContinuationEntry::flags_offset())); 1016 __ str (zr, Address(sp, ContinuationEntry::chunk_offset())); 1017 __ strw(zr, Address(sp, ContinuationEntry::argsize_offset())); 1018 __ strw(zr, Address(sp, ContinuationEntry::pin_count_offset())); 1019 1020 __ ldr(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1021 __ str(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1022 __ ldr(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1023 __ str(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1024 1025 __ str(zr, Address(rthread, JavaThread::cont_fastpath_offset())); 1026 __ str(zr, Address(rthread, JavaThread::held_monitor_count_offset())); 1027 } 1028 1029 // on entry, sp points to the ContinuationEntry 1030 // on exit, rfp points to the spilled rfp in the entry frame 1031 static void continuation_enter_cleanup(MacroAssembler* masm) { 1032 #ifndef PRODUCT 1033 Label OK; 1034 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1035 __ cmp(sp, rscratch1); 1036 __ br(Assembler::EQ, OK); 1037 __ stop("incorrect sp1"); 1038 __ bind(OK); 1039 #endif 1040 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1041 __ str(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1042 1043 if (CheckJNICalls) { 1044 // Check if this is a virtual thread continuation 1045 Label L_skip_vthread_code; 1046 __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset())); 1047 __ cbzw(rscratch1, L_skip_vthread_code); 1048 1049 // If the held monitor count is > 0 and this vthread is terminating then 1050 // it failed to release a JNI monitor. So we issue the same log message 1051 // that JavaThread::exit does. 1052 __ ldr(rscratch1, Address(rthread, JavaThread::jni_monitor_count_offset())); 1053 __ cbz(rscratch1, L_skip_vthread_code); 1054 1055 // Save return value potentially containing the exception oop in callee-saved R19. 1056 __ mov(r19, r0); 1057 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::log_jni_monitor_still_held)); 1058 // Restore potential return value. 1059 __ mov(r0, r19); 1060 1061 // For vthreads we have to explicitly zero the JNI monitor count of the carrier 1062 // on termination. The held count is implicitly zeroed below when we restore from 1063 // the parent held count (which has to be zero). 1064 __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset())); 1065 1066 __ bind(L_skip_vthread_code); 1067 } 1068 #ifdef ASSERT 1069 else { 1070 // Check if this is a virtual thread continuation 1071 Label L_skip_vthread_code; 1072 __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset())); 1073 __ cbzw(rscratch1, L_skip_vthread_code); 1074 1075 // See comment just above. If not checking JNI calls the JNI count is only 1076 // needed for assertion checking. 1077 __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset())); 1078 1079 __ bind(L_skip_vthread_code); 1080 } 1081 #endif 1082 1083 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1084 __ str(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1085 1086 __ ldr(rscratch2, Address(sp, ContinuationEntry::parent_offset())); 1087 __ str(rscratch2, Address(rthread, JavaThread::cont_entry_offset())); 1088 __ add(rfp, sp, (int)ContinuationEntry::size()); 1089 } 1090 1091 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread) 1092 // On entry: c_rarg1 -- the continuation object 1093 // c_rarg2 -- isContinue 1094 // c_rarg3 -- isVirtualThread 1095 static void gen_continuation_enter(MacroAssembler* masm, 1096 const methodHandle& method, 1097 const BasicType* sig_bt, 1098 const VMRegPair* regs, 1099 int& exception_offset, 1100 OopMapSet*oop_maps, 1101 int& frame_complete, 1102 int& stack_slots, 1103 int& interpreted_entry_offset, 1104 int& compiled_entry_offset) { 1105 //verify_oop_args(masm, method, sig_bt, regs); 1106 Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); 1107 1108 address start = __ pc(); 1109 1110 Label call_thaw, exit; 1111 1112 // i2i entry used at interp_only_mode only 1113 interpreted_entry_offset = __ pc() - start; 1114 { 1115 1116 #ifdef ASSERT 1117 Label is_interp_only; 1118 __ ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 1119 __ cbnzw(rscratch1, is_interp_only); 1120 __ stop("enterSpecial interpreter entry called when not in interp_only_mode"); 1121 __ bind(is_interp_only); 1122 #endif 1123 1124 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter) 1125 __ ldr(c_rarg1, Address(esp, Interpreter::stackElementSize*2)); 1126 __ ldr(c_rarg2, Address(esp, Interpreter::stackElementSize*1)); 1127 __ ldr(c_rarg3, Address(esp, Interpreter::stackElementSize*0)); 1128 __ push_cont_fastpath(rthread); 1129 1130 __ enter(); 1131 stack_slots = 2; // will be adjusted in setup 1132 OopMap* map = continuation_enter_setup(masm, stack_slots); 1133 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe, 1134 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway. 1135 1136 fill_continuation_entry(masm); 1137 1138 __ cbnz(c_rarg2, call_thaw); 1139 1140 const address tr_call = __ trampoline_call(resolve); 1141 if (tr_call == nullptr) { 1142 fatal("CodeCache is full at gen_continuation_enter"); 1143 } 1144 1145 oop_maps->add_gc_map(__ pc() - start, map); 1146 __ post_call_nop(); 1147 1148 __ b(exit); 1149 1150 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call); 1151 if (stub == nullptr) { 1152 fatal("CodeCache is full at gen_continuation_enter"); 1153 } 1154 } 1155 1156 // compiled entry 1157 __ align(CodeEntryAlignment); 1158 compiled_entry_offset = __ pc() - start; 1159 1160 __ enter(); 1161 stack_slots = 2; // will be adjusted in setup 1162 OopMap* map = continuation_enter_setup(masm, stack_slots); 1163 frame_complete = __ pc() - start; 1164 1165 fill_continuation_entry(masm); 1166 1167 __ cbnz(c_rarg2, call_thaw); 1168 1169 const address tr_call = __ trampoline_call(resolve); 1170 if (tr_call == nullptr) { 1171 fatal("CodeCache is full at gen_continuation_enter"); 1172 } 1173 1174 oop_maps->add_gc_map(__ pc() - start, map); 1175 __ post_call_nop(); 1176 1177 __ b(exit); 1178 1179 __ bind(call_thaw); 1180 1181 ContinuationEntry::_thaw_call_pc_offset = __ pc() - start; 1182 __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw())); 1183 oop_maps->add_gc_map(__ pc() - start, map->deep_copy()); 1184 ContinuationEntry::_return_pc_offset = __ pc() - start; 1185 __ post_call_nop(); 1186 1187 __ bind(exit); 1188 ContinuationEntry::_cleanup_offset = __ pc() - start; 1189 continuation_enter_cleanup(masm); 1190 __ leave(); 1191 __ ret(lr); 1192 1193 /// exception handling 1194 1195 exception_offset = __ pc() - start; 1196 { 1197 __ mov(r19, r0); // save return value contaning the exception oop in callee-saved R19 1198 1199 continuation_enter_cleanup(masm); 1200 1201 __ ldr(c_rarg1, Address(rfp, wordSize)); // return address 1202 __ authenticate_return_address(c_rarg1); 1203 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1); 1204 1205 // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc 1206 1207 __ mov(r1, r0); // the exception handler 1208 __ mov(r0, r19); // restore return value contaning the exception oop 1209 __ verify_oop(r0); 1210 1211 __ leave(); 1212 __ mov(r3, lr); 1213 __ br(r1); // the exception handler 1214 } 1215 1216 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call); 1217 if (stub == nullptr) { 1218 fatal("CodeCache is full at gen_continuation_enter"); 1219 } 1220 } 1221 1222 static void gen_continuation_yield(MacroAssembler* masm, 1223 const methodHandle& method, 1224 const BasicType* sig_bt, 1225 const VMRegPair* regs, 1226 OopMapSet* oop_maps, 1227 int& frame_complete, 1228 int& stack_slots, 1229 int& compiled_entry_offset) { 1230 enum layout { 1231 rfp_off1, 1232 rfp_off2, 1233 lr_off, 1234 lr_off2, 1235 framesize // inclusive of return address 1236 }; 1237 // assert(is_even(framesize/2), "sp not 16-byte aligned"); 1238 stack_slots = framesize / VMRegImpl::slots_per_word; 1239 assert(stack_slots == 2, "recheck layout"); 1240 1241 address start = __ pc(); 1242 1243 compiled_entry_offset = __ pc() - start; 1244 __ enter(); 1245 1246 __ mov(c_rarg1, sp); 1247 1248 frame_complete = __ pc() - start; 1249 address the_pc = __ pc(); 1250 1251 __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup 1252 1253 __ mov(c_rarg0, rthread); 1254 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 1255 __ call_VM_leaf(Continuation::freeze_entry(), 2); 1256 __ reset_last_Java_frame(true); 1257 1258 Label pinned; 1259 1260 __ cbnz(r0, pinned); 1261 1262 // We've succeeded, set sp to the ContinuationEntry 1263 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1264 __ mov(sp, rscratch1); 1265 continuation_enter_cleanup(masm); 1266 1267 __ bind(pinned); // pinned -- return to caller 1268 1269 // handle pending exception thrown by freeze 1270 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1271 Label ok; 1272 __ cbz(rscratch1, ok); 1273 __ leave(); 1274 __ lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 1275 __ br(rscratch1); 1276 __ bind(ok); 1277 1278 __ leave(); 1279 __ ret(lr); 1280 1281 OopMap* map = new OopMap(framesize, 1); 1282 oop_maps->add_gc_map(the_pc - start, map); 1283 } 1284 1285 void SharedRuntime::continuation_enter_cleanup(MacroAssembler* masm) { 1286 ::continuation_enter_cleanup(masm); 1287 } 1288 1289 static void gen_special_dispatch(MacroAssembler* masm, 1290 const methodHandle& method, 1291 const BasicType* sig_bt, 1292 const VMRegPair* regs) { 1293 verify_oop_args(masm, method, sig_bt, regs); 1294 vmIntrinsics::ID iid = method->intrinsic_id(); 1295 1296 // Now write the args into the outgoing interpreter space 1297 bool has_receiver = false; 1298 Register receiver_reg = noreg; 1299 int member_arg_pos = -1; 1300 Register member_reg = noreg; 1301 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1302 if (ref_kind != 0) { 1303 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1304 member_reg = r19; // known to be free at this point 1305 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1306 } else if (iid == vmIntrinsics::_invokeBasic) { 1307 has_receiver = true; 1308 } else if (iid == vmIntrinsics::_linkToNative) { 1309 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument 1310 member_reg = r19; // known to be free at this point 1311 } else { 1312 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1313 } 1314 1315 if (member_reg != noreg) { 1316 // Load the member_arg into register, if necessary. 1317 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1318 VMReg r = regs[member_arg_pos].first(); 1319 if (r->is_stack()) { 1320 __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1321 } else { 1322 // no data motion is needed 1323 member_reg = r->as_Register(); 1324 } 1325 } 1326 1327 if (has_receiver) { 1328 // Make sure the receiver is loaded into a register. 1329 assert(method->size_of_parameters() > 0, "oob"); 1330 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1331 VMReg r = regs[0].first(); 1332 assert(r->is_valid(), "bad receiver arg"); 1333 if (r->is_stack()) { 1334 // Porting note: This assumes that compiled calling conventions always 1335 // pass the receiver oop in a register. If this is not true on some 1336 // platform, pick a temp and load the receiver from stack. 1337 fatal("receiver always in a register"); 1338 receiver_reg = r2; // known to be free at this point 1339 __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1340 } else { 1341 // no data motion is needed 1342 receiver_reg = r->as_Register(); 1343 } 1344 } 1345 1346 // Figure out which address we are really jumping to: 1347 MethodHandles::generate_method_handle_dispatch(masm, iid, 1348 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1349 } 1350 1351 // --------------------------------------------------------------------------- 1352 // Generate a native wrapper for a given method. The method takes arguments 1353 // in the Java compiled code convention, marshals them to the native 1354 // convention (handlizes oops, etc), transitions to native, makes the call, 1355 // returns to java state (possibly blocking), unhandlizes any result and 1356 // returns. 1357 // 1358 // Critical native functions are a shorthand for the use of 1359 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1360 // functions. The wrapper is expected to unpack the arguments before 1361 // passing them to the callee. Critical native functions leave the state _in_Java, 1362 // since they block out GC. 1363 // Some other parts of JNI setup are skipped like the tear down of the JNI handle 1364 // block and the check for pending exceptions it's impossible for them 1365 // to be thrown. 1366 // 1367 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1368 const methodHandle& method, 1369 int compile_id, 1370 BasicType* in_sig_bt, 1371 VMRegPair* in_regs, 1372 BasicType ret_type) { 1373 if (method->is_continuation_native_intrinsic()) { 1374 int exception_offset = -1; 1375 OopMapSet* oop_maps = new OopMapSet(); 1376 int frame_complete = -1; 1377 int stack_slots = -1; 1378 int interpreted_entry_offset = -1; 1379 int vep_offset = -1; 1380 if (method->is_continuation_enter_intrinsic()) { 1381 gen_continuation_enter(masm, 1382 method, 1383 in_sig_bt, 1384 in_regs, 1385 exception_offset, 1386 oop_maps, 1387 frame_complete, 1388 stack_slots, 1389 interpreted_entry_offset, 1390 vep_offset); 1391 } else if (method->is_continuation_yield_intrinsic()) { 1392 gen_continuation_yield(masm, 1393 method, 1394 in_sig_bt, 1395 in_regs, 1396 oop_maps, 1397 frame_complete, 1398 stack_slots, 1399 vep_offset); 1400 } else { 1401 guarantee(false, "Unknown Continuation native intrinsic"); 1402 } 1403 1404 #ifdef ASSERT 1405 if (method->is_continuation_enter_intrinsic()) { 1406 assert(interpreted_entry_offset != -1, "Must be set"); 1407 assert(exception_offset != -1, "Must be set"); 1408 } else { 1409 assert(interpreted_entry_offset == -1, "Must be unset"); 1410 assert(exception_offset == -1, "Must be unset"); 1411 } 1412 assert(frame_complete != -1, "Must be set"); 1413 assert(stack_slots != -1, "Must be set"); 1414 assert(vep_offset != -1, "Must be set"); 1415 #endif 1416 1417 __ flush(); 1418 nmethod* nm = nmethod::new_native_nmethod(method, 1419 compile_id, 1420 masm->code(), 1421 vep_offset, 1422 frame_complete, 1423 stack_slots, 1424 in_ByteSize(-1), 1425 in_ByteSize(-1), 1426 oop_maps, 1427 exception_offset); 1428 if (nm == nullptr) return nm; 1429 if (method->is_continuation_enter_intrinsic()) { 1430 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset); 1431 } else if (method->is_continuation_yield_intrinsic()) { 1432 _cont_doYield_stub = nm; 1433 } else { 1434 guarantee(false, "Unknown Continuation native intrinsic"); 1435 } 1436 return nm; 1437 } 1438 1439 if (method->is_method_handle_intrinsic()) { 1440 vmIntrinsics::ID iid = method->intrinsic_id(); 1441 intptr_t start = (intptr_t)__ pc(); 1442 int vep_offset = ((intptr_t)__ pc()) - start; 1443 1444 // First instruction must be a nop as it may need to be patched on deoptimisation 1445 __ nop(); 1446 gen_special_dispatch(masm, 1447 method, 1448 in_sig_bt, 1449 in_regs); 1450 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1451 __ flush(); 1452 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1453 return nmethod::new_native_nmethod(method, 1454 compile_id, 1455 masm->code(), 1456 vep_offset, 1457 frame_complete, 1458 stack_slots / VMRegImpl::slots_per_word, 1459 in_ByteSize(-1), 1460 in_ByteSize(-1), 1461 nullptr); 1462 } 1463 address native_func = method->native_function(); 1464 assert(native_func != nullptr, "must have function"); 1465 1466 // An OopMap for lock (and class if static) 1467 OopMapSet *oop_maps = new OopMapSet(); 1468 intptr_t start = (intptr_t)__ pc(); 1469 1470 // We have received a description of where all the java arg are located 1471 // on entry to the wrapper. We need to convert these args to where 1472 // the jni function will expect them. To figure out where they go 1473 // we convert the java signature to a C signature by inserting 1474 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1475 1476 const int total_in_args = method->size_of_parameters(); 1477 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1478 1479 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1480 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1481 1482 int argc = 0; 1483 out_sig_bt[argc++] = T_ADDRESS; 1484 if (method->is_static()) { 1485 out_sig_bt[argc++] = T_OBJECT; 1486 } 1487 1488 for (int i = 0; i < total_in_args ; i++ ) { 1489 out_sig_bt[argc++] = in_sig_bt[i]; 1490 } 1491 1492 // Now figure out where the args must be stored and how much stack space 1493 // they require. 1494 int out_arg_slots; 1495 out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, total_c_args); 1496 1497 if (out_arg_slots < 0) { 1498 return nullptr; 1499 } 1500 1501 // Compute framesize for the wrapper. We need to handlize all oops in 1502 // incoming registers 1503 1504 // Calculate the total number of stack slots we will need. 1505 1506 // First count the abi requirement plus all of the outgoing args 1507 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1508 1509 // Now the space for the inbound oop handle area 1510 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1511 1512 int oop_handle_offset = stack_slots; 1513 stack_slots += total_save_slots; 1514 1515 // Now any space we need for handlizing a klass if static method 1516 1517 int klass_slot_offset = 0; 1518 int klass_offset = -1; 1519 int lock_slot_offset = 0; 1520 bool is_static = false; 1521 1522 if (method->is_static()) { 1523 klass_slot_offset = stack_slots; 1524 stack_slots += VMRegImpl::slots_per_word; 1525 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1526 is_static = true; 1527 } 1528 1529 // Plus a lock if needed 1530 1531 if (method->is_synchronized()) { 1532 lock_slot_offset = stack_slots; 1533 stack_slots += VMRegImpl::slots_per_word; 1534 } 1535 1536 // Now a place (+2) to save return values or temp during shuffling 1537 // + 4 for return address (which we own) and saved rfp 1538 stack_slots += 6; 1539 1540 // Ok The space we have allocated will look like: 1541 // 1542 // 1543 // FP-> | | 1544 // |---------------------| 1545 // | 2 slots for moves | 1546 // |---------------------| 1547 // | lock box (if sync) | 1548 // |---------------------| <- lock_slot_offset 1549 // | klass (if static) | 1550 // |---------------------| <- klass_slot_offset 1551 // | oopHandle area | 1552 // |---------------------| <- oop_handle_offset (8 java arg registers) 1553 // | outbound memory | 1554 // | based arguments | 1555 // | | 1556 // |---------------------| 1557 // | | 1558 // SP-> | out_preserved_slots | 1559 // 1560 // 1561 1562 1563 // Now compute actual number of stack words we need rounding to make 1564 // stack properly aligned. 1565 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1566 1567 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1568 1569 // First thing make an ic check to see if we should even be here 1570 1571 // We are free to use all registers as temps without saving them and 1572 // restoring them except rfp. rfp is the only callee save register 1573 // as far as the interpreter and the compiler(s) are concerned. 1574 1575 const Register receiver = j_rarg0; 1576 1577 Label exception_pending; 1578 1579 assert_different_registers(receiver, rscratch1); 1580 __ verify_oop(receiver); 1581 __ ic_check(8 /* end_alignment */); 1582 1583 // Verified entry point must be aligned 1584 int vep_offset = ((intptr_t)__ pc()) - start; 1585 1586 // If we have to make this method not-entrant we'll overwrite its 1587 // first instruction with a jump. For this action to be legal we 1588 // must ensure that this first instruction is a B, BL, NOP, BKPT, 1589 // SVC, HVC, or SMC. Make it a NOP. 1590 __ nop(); 1591 1592 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 1593 Label L_skip_barrier; 1594 __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass* 1595 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 1596 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1597 1598 __ bind(L_skip_barrier); 1599 } 1600 1601 // Generate stack overflow check 1602 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size())); 1603 1604 // Generate a new frame for the wrapper. 1605 __ enter(); 1606 // -2 because return address is already present and so is saved rfp 1607 __ sub(sp, sp, stack_size - 2*wordSize); 1608 1609 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1610 bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 1611 1612 // Frame is now completed as far as size and linkage. 1613 int frame_complete = ((intptr_t)__ pc()) - start; 1614 1615 // We use r20 as the oop handle for the receiver/klass 1616 // It is callee save so it survives the call to native 1617 1618 const Register oop_handle_reg = r20; 1619 1620 // 1621 // We immediately shuffle the arguments so that any vm call we have to 1622 // make from here on out (sync slow path, jvmti, etc.) we will have 1623 // captured the oops from our caller and have a valid oopMap for 1624 // them. 1625 1626 // ----------------- 1627 // The Grand Shuffle 1628 1629 // The Java calling convention is either equal (linux) or denser (win64) than the 1630 // c calling convention. However the because of the jni_env argument the c calling 1631 // convention always has at least one more (and two for static) arguments than Java. 1632 // Therefore if we move the args from java -> c backwards then we will never have 1633 // a register->register conflict and we don't have to build a dependency graph 1634 // and figure out how to break any cycles. 1635 // 1636 1637 // Record esp-based slot for receiver on stack for non-static methods 1638 int receiver_offset = -1; 1639 1640 // This is a trick. We double the stack slots so we can claim 1641 // the oops in the caller's frame. Since we are sure to have 1642 // more args than the caller doubling is enough to make 1643 // sure we can capture all the incoming oop args from the 1644 // caller. 1645 // 1646 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1647 1648 // Mark location of rfp (someday) 1649 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp)); 1650 1651 1652 int float_args = 0; 1653 int int_args = 0; 1654 1655 #ifdef ASSERT 1656 bool reg_destroyed[Register::number_of_registers]; 1657 bool freg_destroyed[FloatRegister::number_of_registers]; 1658 for ( int r = 0 ; r < Register::number_of_registers ; r++ ) { 1659 reg_destroyed[r] = false; 1660 } 1661 for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) { 1662 freg_destroyed[f] = false; 1663 } 1664 1665 #endif /* ASSERT */ 1666 1667 // For JNI natives the incoming and outgoing registers are offset upwards. 1668 GrowableArray<int> arg_order(2 * total_in_args); 1669 1670 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1671 arg_order.push(i); 1672 arg_order.push(c_arg); 1673 } 1674 1675 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1676 int i = arg_order.at(ai); 1677 int c_arg = arg_order.at(ai + 1); 1678 __ block_comment(err_msg("move %d -> %d", i, c_arg)); 1679 assert(c_arg != -1 && i != -1, "wrong order"); 1680 #ifdef ASSERT 1681 if (in_regs[i].first()->is_Register()) { 1682 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1683 } else if (in_regs[i].first()->is_FloatRegister()) { 1684 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1685 } 1686 if (out_regs[c_arg].first()->is_Register()) { 1687 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1688 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1689 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1690 } 1691 #endif /* ASSERT */ 1692 switch (in_sig_bt[i]) { 1693 case T_ARRAY: 1694 case T_OBJECT: 1695 __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1696 ((i == 0) && (!is_static)), 1697 &receiver_offset); 1698 int_args++; 1699 break; 1700 case T_VOID: 1701 break; 1702 1703 case T_FLOAT: 1704 __ float_move(in_regs[i], out_regs[c_arg]); 1705 float_args++; 1706 break; 1707 1708 case T_DOUBLE: 1709 assert( i + 1 < total_in_args && 1710 in_sig_bt[i + 1] == T_VOID && 1711 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1712 __ double_move(in_regs[i], out_regs[c_arg]); 1713 float_args++; 1714 break; 1715 1716 case T_LONG : 1717 __ long_move(in_regs[i], out_regs[c_arg]); 1718 int_args++; 1719 break; 1720 1721 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1722 1723 default: 1724 __ move32_64(in_regs[i], out_regs[c_arg]); 1725 int_args++; 1726 } 1727 } 1728 1729 // point c_arg at the first arg that is already loaded in case we 1730 // need to spill before we call out 1731 int c_arg = total_c_args - total_in_args; 1732 1733 // Pre-load a static method's oop into c_rarg1. 1734 if (method->is_static()) { 1735 1736 // load oop into a register 1737 __ movoop(c_rarg1, 1738 JNIHandles::make_local(method->method_holder()->java_mirror())); 1739 1740 // Now handlize the static class mirror it's known not-null. 1741 __ str(c_rarg1, Address(sp, klass_offset)); 1742 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1743 1744 // Now get the handle 1745 __ lea(c_rarg1, Address(sp, klass_offset)); 1746 // and protect the arg if we must spill 1747 c_arg--; 1748 } 1749 1750 // Change state to native (we save the return address in the thread, since it might not 1751 // be pushed on the stack when we do a stack traversal). It is enough that the pc() 1752 // points into the right code segment. It does not have to be the correct return pc. 1753 // We use the same pc/oopMap repeatedly when we call out. 1754 1755 Label native_return; 1756 if (LockingMode != LM_LEGACY && method->is_object_wait0()) { 1757 // For convenience we use the pc we want to resume to in case of preemption on Object.wait. 1758 __ set_last_Java_frame(sp, noreg, native_return, rscratch1); 1759 } else { 1760 intptr_t the_pc = (intptr_t) __ pc(); 1761 oop_maps->add_gc_map(the_pc - start, map); 1762 1763 __ set_last_Java_frame(sp, noreg, __ pc(), rscratch1); 1764 } 1765 1766 Label dtrace_method_entry, dtrace_method_entry_done; 1767 if (DTraceMethodProbes) { 1768 __ b(dtrace_method_entry); 1769 __ bind(dtrace_method_entry_done); 1770 } 1771 1772 // RedefineClasses() tracing support for obsolete method entry 1773 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1774 // protect the args we've loaded 1775 save_args(masm, total_c_args, c_arg, out_regs); 1776 __ mov_metadata(c_rarg1, method()); 1777 __ call_VM_leaf( 1778 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1779 rthread, c_rarg1); 1780 restore_args(masm, total_c_args, c_arg, out_regs); 1781 } 1782 1783 // Lock a synchronized method 1784 1785 // Register definitions used by locking and unlocking 1786 1787 const Register swap_reg = r0; 1788 const Register obj_reg = r19; // Will contain the oop 1789 const Register lock_reg = r13; // Address of compiler lock object (BasicLock) 1790 const Register old_hdr = r13; // value of old header at unlock time 1791 const Register lock_tmp = r14; // Temporary used by lightweight_lock/unlock 1792 const Register tmp = lr; 1793 1794 Label slow_path_lock; 1795 Label lock_done; 1796 1797 if (method->is_synchronized()) { 1798 Label count; 1799 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 1800 1801 // Get the handle (the 2nd argument) 1802 __ mov(oop_handle_reg, c_rarg1); 1803 1804 // Get address of the box 1805 1806 __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1807 1808 // Load the oop from the handle 1809 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 1810 1811 if (LockingMode == LM_MONITOR) { 1812 __ b(slow_path_lock); 1813 } else if (LockingMode == LM_LEGACY) { 1814 // Load (object->mark() | 1) into swap_reg %r0 1815 __ ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1816 __ orr(swap_reg, rscratch1, 1); 1817 1818 // Save (object->mark() | 1) into BasicLock's displaced header 1819 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 1820 1821 // src -> dest iff dest == r0 else r0 <- dest 1822 __ cmpxchg_obj_header(r0, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 1823 1824 // Hmm should this move to the slow path code area??? 1825 1826 // Test if the oopMark is an obvious stack pointer, i.e., 1827 // 1) (mark & 3) == 0, and 1828 // 2) sp <= mark < mark + os::pagesize() 1829 // These 3 tests can be done by evaluating the following 1830 // expression: ((mark - sp) & (3 - os::vm_page_size())), 1831 // assuming both stack pointer and pagesize have their 1832 // least significant 2 bits clear. 1833 // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg 1834 1835 __ sub(swap_reg, sp, swap_reg); 1836 __ neg(swap_reg, swap_reg); 1837 __ ands(swap_reg, swap_reg, 3 - (int)os::vm_page_size()); 1838 1839 // Save the test result, for recursive case, the result is zero 1840 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 1841 __ br(Assembler::NE, slow_path_lock); 1842 1843 __ bind(count); 1844 __ inc_held_monitor_count(rscratch1); 1845 } else { 1846 assert(LockingMode == LM_LIGHTWEIGHT, "must be"); 1847 __ lightweight_lock(lock_reg, obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock); 1848 } 1849 1850 // Slow path will re-enter here 1851 __ bind(lock_done); 1852 } 1853 1854 1855 // Finally just about ready to make the JNI call 1856 1857 // get JNIEnv* which is first argument to native 1858 __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset()))); 1859 1860 // Now set thread in native 1861 __ mov(rscratch1, _thread_in_native); 1862 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1863 __ stlrw(rscratch1, rscratch2); 1864 1865 __ rt_call(native_func); 1866 1867 // Verify or restore cpu control state after JNI call 1868 __ restore_cpu_control_state_after_jni(rscratch1, rscratch2); 1869 1870 // Unpack native results. 1871 switch (ret_type) { 1872 case T_BOOLEAN: __ c2bool(r0); break; 1873 case T_CHAR : __ ubfx(r0, r0, 0, 16); break; 1874 case T_BYTE : __ sbfx(r0, r0, 0, 8); break; 1875 case T_SHORT : __ sbfx(r0, r0, 0, 16); break; 1876 case T_INT : __ sbfx(r0, r0, 0, 32); break; 1877 case T_DOUBLE : 1878 case T_FLOAT : 1879 // Result is in v0 we'll save as needed 1880 break; 1881 case T_ARRAY: // Really a handle 1882 case T_OBJECT: // Really a handle 1883 break; // can't de-handlize until after safepoint check 1884 case T_VOID: break; 1885 case T_LONG: break; 1886 default : ShouldNotReachHere(); 1887 } 1888 1889 Label safepoint_in_progress, safepoint_in_progress_done; 1890 1891 // Switch thread to "native transition" state before reading the synchronization state. 1892 // This additional state is necessary because reading and testing the synchronization 1893 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1894 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1895 // VM thread changes sync state to synchronizing and suspends threads for GC. 1896 // Thread A is resumed to finish this native method, but doesn't block here since it 1897 // didn't see any synchronization is progress, and escapes. 1898 __ mov(rscratch1, _thread_in_native_trans); 1899 1900 __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset())); 1901 1902 // Force this write out before the read below 1903 if (!UseSystemMemoryBarrier) { 1904 __ dmb(Assembler::ISH); 1905 } 1906 1907 __ verify_sve_vector_length(); 1908 1909 // Check for safepoint operation in progress and/or pending suspend requests. 1910 { 1911 // No need for acquire as Java threads always disarm themselves. 1912 __ safepoint_poll(safepoint_in_progress, true /* at_return */, false /* acquire */, false /* in_nmethod */); 1913 __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset())); 1914 __ cbnzw(rscratch1, safepoint_in_progress); 1915 __ bind(safepoint_in_progress_done); 1916 } 1917 1918 // change thread state 1919 __ mov(rscratch1, _thread_in_Java); 1920 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1921 __ stlrw(rscratch1, rscratch2); 1922 1923 if (LockingMode != LM_LEGACY && method->is_object_wait0()) { 1924 // Check preemption for Object.wait() 1925 __ ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1926 __ cbz(rscratch1, native_return); 1927 __ str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1928 __ br(rscratch1); 1929 __ bind(native_return); 1930 1931 intptr_t the_pc = (intptr_t) __ pc(); 1932 oop_maps->add_gc_map(the_pc - start, map); 1933 } 1934 1935 Label reguard; 1936 Label reguard_done; 1937 __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 1938 __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled); 1939 __ br(Assembler::EQ, reguard); 1940 __ bind(reguard_done); 1941 1942 // native result if any is live 1943 1944 // Unlock 1945 Label unlock_done; 1946 Label slow_path_unlock; 1947 if (method->is_synchronized()) { 1948 1949 // Get locked oop from the handle we passed to jni 1950 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 1951 1952 Label done, not_recursive; 1953 1954 if (LockingMode == LM_LEGACY) { 1955 // Simple recursive lock? 1956 __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1957 __ cbnz(rscratch1, not_recursive); 1958 __ dec_held_monitor_count(rscratch1); 1959 __ b(done); 1960 } 1961 1962 __ bind(not_recursive); 1963 1964 // Must save r0 if if it is live now because cmpxchg must use it 1965 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1966 save_native_result(masm, ret_type, stack_slots); 1967 } 1968 1969 if (LockingMode == LM_MONITOR) { 1970 __ b(slow_path_unlock); 1971 } else if (LockingMode == LM_LEGACY) { 1972 // get address of the stack lock 1973 __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1974 // get old displaced header 1975 __ ldr(old_hdr, Address(r0, 0)); 1976 1977 // Atomic swap old header if oop still contains the stack lock 1978 Label count; 1979 __ cmpxchg_obj_header(r0, old_hdr, obj_reg, rscratch1, count, &slow_path_unlock); 1980 __ bind(count); 1981 __ dec_held_monitor_count(rscratch1); 1982 } else { 1983 assert(LockingMode == LM_LIGHTWEIGHT, ""); 1984 __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock); 1985 } 1986 1987 // slow path re-enters here 1988 __ bind(unlock_done); 1989 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1990 restore_native_result(masm, ret_type, stack_slots); 1991 } 1992 1993 __ bind(done); 1994 } 1995 1996 Label dtrace_method_exit, dtrace_method_exit_done; 1997 if (DTraceMethodProbes) { 1998 __ b(dtrace_method_exit); 1999 __ bind(dtrace_method_exit_done); 2000 } 2001 2002 __ reset_last_Java_frame(false); 2003 2004 // Unbox oop result, e.g. JNIHandles::resolve result. 2005 if (is_reference_type(ret_type)) { 2006 __ resolve_jobject(r0, r1, r2); 2007 } 2008 2009 if (CheckJNICalls) { 2010 // clear_pending_jni_exception_check 2011 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 2012 } 2013 2014 // reset handle block 2015 __ ldr(r2, Address(rthread, JavaThread::active_handles_offset())); 2016 __ str(zr, Address(r2, JNIHandleBlock::top_offset())); 2017 2018 __ leave(); 2019 2020 // Any exception pending? 2021 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2022 __ cbnz(rscratch1, exception_pending); 2023 2024 // We're done 2025 __ ret(lr); 2026 2027 // Unexpected paths are out of line and go here 2028 2029 // forward the exception 2030 __ bind(exception_pending); 2031 2032 // and forward the exception 2033 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2034 2035 // Slow path locking & unlocking 2036 if (method->is_synchronized()) { 2037 2038 __ block_comment("Slow path lock {"); 2039 __ bind(slow_path_lock); 2040 2041 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 2042 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2043 2044 // protect the args we've loaded 2045 save_args(masm, total_c_args, c_arg, out_regs); 2046 2047 __ mov(c_rarg0, obj_reg); 2048 __ mov(c_rarg1, lock_reg); 2049 __ mov(c_rarg2, rthread); 2050 2051 // Not a leaf but we have last_Java_frame setup as we want. 2052 // We don't want to unmount in case of contention since that would complicate preserving 2053 // the arguments that had already been marshalled into the native convention. So we force 2054 // the freeze slow path to find this native wrapper frame (see recurse_freeze_native_frame()) 2055 // and pin the vthread. Otherwise the fast path won't find it since we don't walk the stack. 2056 __ push_cont_fastpath(); 2057 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 2058 __ pop_cont_fastpath(); 2059 restore_args(masm, total_c_args, c_arg, out_regs); 2060 2061 #ifdef ASSERT 2062 { Label L; 2063 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2064 __ cbz(rscratch1, L); 2065 __ stop("no pending exception allowed on exit from monitorenter"); 2066 __ bind(L); 2067 } 2068 #endif 2069 __ b(lock_done); 2070 2071 __ block_comment("} Slow path lock"); 2072 2073 __ block_comment("Slow path unlock {"); 2074 __ bind(slow_path_unlock); 2075 2076 // If we haven't already saved the native result we must save it now as xmm registers 2077 // are still exposed. 2078 2079 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2080 save_native_result(masm, ret_type, stack_slots); 2081 } 2082 2083 __ mov(c_rarg2, rthread); 2084 __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2085 __ mov(c_rarg0, obj_reg); 2086 2087 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 2088 // NOTE that obj_reg == r19 currently 2089 __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2090 __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2091 2092 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)); 2093 2094 #ifdef ASSERT 2095 { 2096 Label L; 2097 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2098 __ cbz(rscratch1, L); 2099 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2100 __ bind(L); 2101 } 2102 #endif /* ASSERT */ 2103 2104 __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2105 2106 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2107 restore_native_result(masm, ret_type, stack_slots); 2108 } 2109 __ b(unlock_done); 2110 2111 __ block_comment("} Slow path unlock"); 2112 2113 } // synchronized 2114 2115 // SLOW PATH Reguard the stack if needed 2116 2117 __ bind(reguard); 2118 save_native_result(masm, ret_type, stack_slots); 2119 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 2120 restore_native_result(masm, ret_type, stack_slots); 2121 // and continue 2122 __ b(reguard_done); 2123 2124 // SLOW PATH safepoint 2125 { 2126 __ block_comment("safepoint {"); 2127 __ bind(safepoint_in_progress); 2128 2129 // Don't use call_VM as it will see a possible pending exception and forward it 2130 // and never return here preventing us from clearing _last_native_pc down below. 2131 // 2132 save_native_result(masm, ret_type, stack_slots); 2133 __ mov(c_rarg0, rthread); 2134 #ifndef PRODUCT 2135 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2136 #endif 2137 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 2138 __ blr(rscratch1); 2139 2140 // Restore any method result value 2141 restore_native_result(masm, ret_type, stack_slots); 2142 2143 __ b(safepoint_in_progress_done); 2144 __ block_comment("} safepoint"); 2145 } 2146 2147 // SLOW PATH dtrace support 2148 if (DTraceMethodProbes) { 2149 { 2150 __ block_comment("dtrace entry {"); 2151 __ bind(dtrace_method_entry); 2152 2153 // We have all of the arguments setup at this point. We must not touch any register 2154 // argument registers at this point (what if we save/restore them there are no oop? 2155 2156 save_args(masm, total_c_args, c_arg, out_regs); 2157 __ mov_metadata(c_rarg1, method()); 2158 __ call_VM_leaf( 2159 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2160 rthread, c_rarg1); 2161 restore_args(masm, total_c_args, c_arg, out_regs); 2162 __ b(dtrace_method_entry_done); 2163 __ block_comment("} dtrace entry"); 2164 } 2165 2166 { 2167 __ block_comment("dtrace exit {"); 2168 __ bind(dtrace_method_exit); 2169 save_native_result(masm, ret_type, stack_slots); 2170 __ mov_metadata(c_rarg1, method()); 2171 __ call_VM_leaf( 2172 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2173 rthread, c_rarg1); 2174 restore_native_result(masm, ret_type, stack_slots); 2175 __ b(dtrace_method_exit_done); 2176 __ block_comment("} dtrace exit"); 2177 } 2178 } 2179 2180 __ flush(); 2181 2182 nmethod *nm = nmethod::new_native_nmethod(method, 2183 compile_id, 2184 masm->code(), 2185 vep_offset, 2186 frame_complete, 2187 stack_slots / VMRegImpl::slots_per_word, 2188 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2189 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2190 oop_maps); 2191 2192 return nm; 2193 } 2194 2195 // this function returns the adjust size (in number of words) to a c2i adapter 2196 // activation for use during deoptimization 2197 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2198 assert(callee_locals >= callee_parameters, 2199 "test and remove; got more parms than locals"); 2200 if (callee_locals < callee_parameters) 2201 return 0; // No adjustment for negative locals 2202 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2203 // diff is counted in stack words 2204 return align_up(diff, 2); 2205 } 2206 2207 2208 //------------------------------generate_deopt_blob---------------------------- 2209 void SharedRuntime::generate_deopt_blob() { 2210 // Allocate space for the code 2211 ResourceMark rm; 2212 // Setup code generation tools 2213 int pad = 0; 2214 #if INCLUDE_JVMCI 2215 if (EnableJVMCI) { 2216 pad += 512; // Increase the buffer size when compiling for JVMCI 2217 } 2218 #endif 2219 const char* name = SharedRuntime::stub_name(SharedStubId::deopt_id); 2220 CodeBuffer buffer(name, 2048+pad, 1024); 2221 MacroAssembler* masm = new MacroAssembler(&buffer); 2222 int frame_size_in_words; 2223 OopMap* map = nullptr; 2224 OopMapSet *oop_maps = new OopMapSet(); 2225 RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0); 2226 2227 // ------------- 2228 // This code enters when returning to a de-optimized nmethod. A return 2229 // address has been pushed on the stack, and return values are in 2230 // registers. 2231 // If we are doing a normal deopt then we were called from the patched 2232 // nmethod from the point we returned to the nmethod. So the return 2233 // address on the stack is wrong by NativeCall::instruction_size 2234 // We will adjust the value so it looks like we have the original return 2235 // address on the stack (like when we eagerly deoptimized). 2236 // In the case of an exception pending when deoptimizing, we enter 2237 // with a return address on the stack that points after the call we patched 2238 // into the exception handler. We have the following register state from, 2239 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). 2240 // r0: exception oop 2241 // r19: exception handler 2242 // r3: throwing pc 2243 // So in this case we simply jam r3 into the useless return address and 2244 // the stack looks just like we want. 2245 // 2246 // At this point we need to de-opt. We save the argument return 2247 // registers. We call the first C routine, fetch_unroll_info(). This 2248 // routine captures the return values and returns a structure which 2249 // describes the current frame size and the sizes of all replacement frames. 2250 // The current frame is compiled code and may contain many inlined 2251 // functions, each with their own JVM state. We pop the current frame, then 2252 // push all the new frames. Then we call the C routine unpack_frames() to 2253 // populate these frames. Finally unpack_frames() returns us the new target 2254 // address. Notice that callee-save registers are BLOWN here; they have 2255 // already been captured in the vframeArray at the time the return PC was 2256 // patched. 2257 address start = __ pc(); 2258 Label cont; 2259 2260 // Prolog for non exception case! 2261 2262 // Save everything in sight. 2263 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2264 2265 // Normal deoptimization. Save exec mode for unpack_frames. 2266 __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved 2267 __ b(cont); 2268 2269 int reexecute_offset = __ pc() - start; 2270 #if INCLUDE_JVMCI && !defined(COMPILER1) 2271 if (UseJVMCICompiler) { 2272 // JVMCI does not use this kind of deoptimization 2273 __ should_not_reach_here(); 2274 } 2275 #endif 2276 2277 // Reexecute case 2278 // return address is the pc describes what bci to do re-execute at 2279 2280 // No need to update map as each call to save_live_registers will produce identical oopmap 2281 (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2282 2283 __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved 2284 __ b(cont); 2285 2286 #if INCLUDE_JVMCI 2287 Label after_fetch_unroll_info_call; 2288 int implicit_exception_uncommon_trap_offset = 0; 2289 int uncommon_trap_offset = 0; 2290 2291 if (EnableJVMCI) { 2292 implicit_exception_uncommon_trap_offset = __ pc() - start; 2293 2294 __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2295 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2296 2297 uncommon_trap_offset = __ pc() - start; 2298 2299 // Save everything in sight. 2300 reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2301 // fetch_unroll_info needs to call last_java_frame() 2302 Label retaddr; 2303 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2304 2305 __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2306 __ movw(rscratch1, -1); 2307 __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2308 2309 __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute); 2310 __ mov(c_rarg0, rthread); 2311 __ movw(c_rarg2, rcpool); // exec mode 2312 __ lea(rscratch1, 2313 RuntimeAddress(CAST_FROM_FN_PTR(address, 2314 Deoptimization::uncommon_trap))); 2315 __ blr(rscratch1); 2316 __ bind(retaddr); 2317 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 2318 2319 __ reset_last_Java_frame(false); 2320 2321 __ b(after_fetch_unroll_info_call); 2322 } // EnableJVMCI 2323 #endif // INCLUDE_JVMCI 2324 2325 int exception_offset = __ pc() - start; 2326 2327 // Prolog for exception case 2328 2329 // all registers are dead at this entry point, except for r0, and 2330 // r3 which contain the exception oop and exception pc 2331 // respectively. Set them in TLS and fall thru to the 2332 // unpack_with_exception_in_tls entry point. 2333 2334 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 2335 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 2336 2337 int exception_in_tls_offset = __ pc() - start; 2338 2339 // new implementation because exception oop is now passed in JavaThread 2340 2341 // Prolog for exception case 2342 // All registers must be preserved because they might be used by LinearScan 2343 // Exceptiop oop and throwing PC are passed in JavaThread 2344 // tos: stack at point of call to method that threw the exception (i.e. only 2345 // args are on the stack, no return address) 2346 2347 // The return address pushed by save_live_registers will be patched 2348 // later with the throwing pc. The correct value is not available 2349 // now because loading it from memory would destroy registers. 2350 2351 // NB: The SP at this point must be the SP of the method that is 2352 // being deoptimized. Deoptimization assumes that the frame created 2353 // here by save_live_registers is immediately below the method's SP. 2354 // This is a somewhat fragile mechanism. 2355 2356 // Save everything in sight. 2357 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2358 2359 // Now it is safe to overwrite any register 2360 2361 // Deopt during an exception. Save exec mode for unpack_frames. 2362 __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved 2363 2364 // load throwing pc from JavaThread and patch it as the return address 2365 // of the current frame. Then clear the field in JavaThread 2366 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2367 __ protect_return_address(r3); 2368 __ str(r3, Address(rfp, wordSize)); 2369 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2370 2371 #ifdef ASSERT 2372 // verify that there is really an exception oop in JavaThread 2373 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2374 __ verify_oop(r0); 2375 2376 // verify that there is no pending exception 2377 Label no_pending_exception; 2378 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2379 __ cbz(rscratch1, no_pending_exception); 2380 __ stop("must not have pending exception here"); 2381 __ bind(no_pending_exception); 2382 #endif 2383 2384 __ bind(cont); 2385 2386 // Call C code. Need thread and this frame, but NOT official VM entry 2387 // crud. We cannot block on this call, no GC can happen. 2388 // 2389 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2390 2391 // fetch_unroll_info needs to call last_java_frame(). 2392 2393 Label retaddr; 2394 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2395 #ifdef ASSERT 2396 { Label L; 2397 __ ldr(rscratch1, Address(rthread, JavaThread::last_Java_fp_offset())); 2398 __ cbz(rscratch1, L); 2399 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2400 __ bind(L); 2401 } 2402 #endif // ASSERT 2403 __ mov(c_rarg0, rthread); 2404 __ mov(c_rarg1, rcpool); 2405 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2406 __ blr(rscratch1); 2407 __ bind(retaddr); 2408 2409 // Need to have an oopmap that tells fetch_unroll_info where to 2410 // find any register it might need. 2411 oop_maps->add_gc_map(__ pc() - start, map); 2412 2413 __ reset_last_Java_frame(false); 2414 2415 #if INCLUDE_JVMCI 2416 if (EnableJVMCI) { 2417 __ bind(after_fetch_unroll_info_call); 2418 } 2419 #endif 2420 2421 // Load UnrollBlock* into r5 2422 __ mov(r5, r0); 2423 2424 __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset())); 2425 Label noException; 2426 __ cmpw(rcpool, Deoptimization::Unpack_exception); // Was exception pending? 2427 __ br(Assembler::NE, noException); 2428 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2429 // QQQ this is useless it was null above 2430 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2431 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 2432 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2433 2434 __ verify_oop(r0); 2435 2436 // Overwrite the result registers with the exception results. 2437 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2438 // I think this is useless 2439 // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2440 2441 __ bind(noException); 2442 2443 // Only register save data is on the stack. 2444 // Now restore the result registers. Everything else is either dead 2445 // or captured in the vframeArray. 2446 2447 // Restore fp result register 2448 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2449 // Restore integer result register 2450 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2451 2452 // Pop all of the register save area off the stack 2453 __ add(sp, sp, frame_size_in_words * wordSize); 2454 2455 // All of the register save area has been popped of the stack. Only the 2456 // return address remains. 2457 2458 // Pop all the frames we must move/replace. 2459 // 2460 // Frame picture (youngest to oldest) 2461 // 1: self-frame (no frame link) 2462 // 2: deopting frame (no frame link) 2463 // 3: caller of deopting frame (could be compiled/interpreted). 2464 // 2465 // Note: by leaving the return address of self-frame on the stack 2466 // and using the size of frame 2 to adjust the stack 2467 // when we are done the return to frame 3 will still be on the stack. 2468 2469 // Pop deoptimized frame 2470 __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset())); 2471 __ sub(r2, r2, 2 * wordSize); 2472 __ add(sp, sp, r2); 2473 __ ldp(rfp, zr, __ post(sp, 2 * wordSize)); 2474 2475 #ifdef ASSERT 2476 // Compilers generate code that bang the stack by as much as the 2477 // interpreter would need. So this stack banging should never 2478 // trigger a fault. Verify that it does not on non product builds. 2479 __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset())); 2480 __ bang_stack_size(r19, r2); 2481 #endif 2482 // Load address of array of frame pcs into r2 2483 __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset())); 2484 2485 // Trash the old pc 2486 // __ addptr(sp, wordSize); FIXME ???? 2487 2488 // Load address of array of frame sizes into r4 2489 __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset())); 2490 2491 // Load counter into r3 2492 __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset())); 2493 2494 // Now adjust the caller's stack to make up for the extra locals 2495 // but record the original sp so that we can save it in the skeletal interpreter 2496 // frame and the stack walking of interpreter_sender will get the unextended sp 2497 // value and not the "real" sp value. 2498 2499 const Register sender_sp = r6; 2500 2501 __ mov(sender_sp, sp); 2502 __ ldrw(r19, Address(r5, 2503 Deoptimization::UnrollBlock:: 2504 caller_adjustment_offset())); 2505 __ sub(sp, sp, r19); 2506 2507 // Push interpreter frames in a loop 2508 __ mov(rscratch1, (uint64_t)0xDEADDEAD); // Make a recognizable pattern 2509 __ mov(rscratch2, rscratch1); 2510 Label loop; 2511 __ bind(loop); 2512 __ ldr(r19, Address(__ post(r4, wordSize))); // Load frame size 2513 __ sub(r19, r19, 2*wordSize); // We'll push pc and fp by hand 2514 __ ldr(lr, Address(__ post(r2, wordSize))); // Load pc 2515 __ enter(); // Save old & set new fp 2516 __ sub(sp, sp, r19); // Prolog 2517 // This value is corrected by layout_activation_impl 2518 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2519 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2520 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2521 __ sub(r3, r3, 1); // Decrement counter 2522 __ cbnz(r3, loop); 2523 2524 // Re-push self-frame 2525 __ ldr(lr, Address(r2)); 2526 __ enter(); 2527 2528 // Allocate a full sized register save area. We subtract 2 because 2529 // enter() just pushed 2 words 2530 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2531 2532 // Restore frame locals after moving the frame 2533 __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2534 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2535 2536 // Call C code. Need thread but NOT official VM entry 2537 // crud. We cannot block on this call, no GC can happen. Call should 2538 // restore return values to their stack-slots with the new SP. 2539 // 2540 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2541 2542 // Use rfp because the frames look interpreted now 2543 // Don't need the precise return PC here, just precise enough to point into this code blob. 2544 address the_pc = __ pc(); 2545 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2546 2547 __ mov(c_rarg0, rthread); 2548 __ movw(c_rarg1, rcpool); // second arg: exec_mode 2549 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2550 __ blr(rscratch1); 2551 2552 // Set an oopmap for the call site 2553 // Use the same PC we used for the last java frame 2554 oop_maps->add_gc_map(the_pc - start, 2555 new OopMap( frame_size_in_words, 0 )); 2556 2557 // Clear fp AND pc 2558 __ reset_last_Java_frame(true); 2559 2560 // Collect return values 2561 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2562 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2563 // I think this is useless (throwing pc?) 2564 // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2565 2566 // Pop self-frame. 2567 __ leave(); // Epilog 2568 2569 // Jump to interpreter 2570 __ ret(lr); 2571 2572 // Make sure all code is generated 2573 masm->flush(); 2574 2575 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2576 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2577 #if INCLUDE_JVMCI 2578 if (EnableJVMCI) { 2579 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 2580 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 2581 } 2582 #endif 2583 } 2584 2585 // Number of stack slots between incoming argument block and the start of 2586 // a new frame. The PROLOG must add this many slots to the stack. The 2587 // EPILOG must remove this many slots. aarch64 needs two slots for 2588 // return address and fp. 2589 // TODO think this is correct but check 2590 uint SharedRuntime::in_preserve_stack_slots() { 2591 return 4; 2592 } 2593 2594 uint SharedRuntime::out_preserve_stack_slots() { 2595 return 0; 2596 } 2597 2598 2599 VMReg SharedRuntime::thread_register() { 2600 return rthread->as_VMReg(); 2601 } 2602 2603 //------------------------------generate_handler_blob------ 2604 // 2605 // Generate a special Compile2Runtime blob that saves all registers, 2606 // and setup oopmap. 2607 // 2608 SafepointBlob* SharedRuntime::generate_handler_blob(SharedStubId id, address call_ptr) { 2609 assert(is_polling_page_id(id), "expected a polling page stub id"); 2610 2611 ResourceMark rm; 2612 OopMapSet *oop_maps = new OopMapSet(); 2613 OopMap* map; 2614 2615 // Allocate space for the code. Setup code generation tools. 2616 const char* name = SharedRuntime::stub_name(id); 2617 CodeBuffer buffer(name, 2048, 1024); 2618 MacroAssembler* masm = new MacroAssembler(&buffer); 2619 2620 address start = __ pc(); 2621 address call_pc = nullptr; 2622 int frame_size_in_words; 2623 bool cause_return = (id == SharedStubId::polling_page_return_handler_id); 2624 RegisterSaver reg_save(id == SharedStubId::polling_page_vectors_safepoint_handler_id /* save_vectors */); 2625 2626 // When the signal occurred, the LR was either signed and stored on the stack (in which 2627 // case it will be restored from the stack before being used) or unsigned and not stored 2628 // on the stack. Stipping ensures we get the right value. 2629 __ strip_return_address(); 2630 2631 // Save Integer and Float registers. 2632 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2633 2634 // The following is basically a call_VM. However, we need the precise 2635 // address of the call in order to generate an oopmap. Hence, we do all the 2636 // work ourselves. 2637 2638 Label retaddr; 2639 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2640 2641 // The return address must always be correct so that frame constructor never 2642 // sees an invalid pc. 2643 2644 if (!cause_return) { 2645 // overwrite the return address pushed by save_live_registers 2646 // Additionally, r20 is a callee-saved register so we can look at 2647 // it later to determine if someone changed the return address for 2648 // us! 2649 __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset())); 2650 __ protect_return_address(r20); 2651 __ str(r20, Address(rfp, wordSize)); 2652 } 2653 2654 // Do the call 2655 __ mov(c_rarg0, rthread); 2656 __ lea(rscratch1, RuntimeAddress(call_ptr)); 2657 __ blr(rscratch1); 2658 __ bind(retaddr); 2659 2660 // Set an oopmap for the call site. This oopmap will map all 2661 // oop-registers and debug-info registers as callee-saved. This 2662 // will allow deoptimization at this safepoint to find all possible 2663 // debug-info recordings, as well as let GC find all oops. 2664 2665 oop_maps->add_gc_map( __ pc() - start, map); 2666 2667 Label noException; 2668 2669 __ reset_last_Java_frame(false); 2670 2671 __ membar(Assembler::LoadLoad | Assembler::LoadStore); 2672 2673 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2674 __ cbz(rscratch1, noException); 2675 2676 // Exception pending 2677 2678 reg_save.restore_live_registers(masm); 2679 2680 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2681 2682 // No exception case 2683 __ bind(noException); 2684 2685 Label no_adjust, bail; 2686 if (!cause_return) { 2687 // If our stashed return pc was modified by the runtime we avoid touching it 2688 __ ldr(rscratch1, Address(rfp, wordSize)); 2689 __ cmp(r20, rscratch1); 2690 __ br(Assembler::NE, no_adjust); 2691 __ authenticate_return_address(r20); 2692 2693 #ifdef ASSERT 2694 // Verify the correct encoding of the poll we're about to skip. 2695 // See NativeInstruction::is_ldrw_to_zr() 2696 __ ldrw(rscratch1, Address(r20)); 2697 __ ubfx(rscratch2, rscratch1, 22, 10); 2698 __ cmpw(rscratch2, 0b1011100101); 2699 __ br(Assembler::NE, bail); 2700 __ ubfx(rscratch2, rscratch1, 0, 5); 2701 __ cmpw(rscratch2, 0b11111); 2702 __ br(Assembler::NE, bail); 2703 #endif 2704 // Adjust return pc forward to step over the safepoint poll instruction 2705 __ add(r20, r20, NativeInstruction::instruction_size); 2706 __ protect_return_address(r20); 2707 __ str(r20, Address(rfp, wordSize)); 2708 } 2709 2710 __ bind(no_adjust); 2711 // Normal exit, restore registers and exit. 2712 reg_save.restore_live_registers(masm); 2713 2714 __ ret(lr); 2715 2716 #ifdef ASSERT 2717 __ bind(bail); 2718 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2719 #endif 2720 2721 // Make sure all code is generated 2722 masm->flush(); 2723 2724 // Fill-out other meta info 2725 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2726 } 2727 2728 // 2729 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2730 // 2731 // Generate a stub that calls into vm to find out the proper destination 2732 // of a java call. All the argument registers are live at this point 2733 // but since this is generic code we don't know what they are and the caller 2734 // must do any gc of the args. 2735 // 2736 RuntimeStub* SharedRuntime::generate_resolve_blob(SharedStubId id, address destination) { 2737 assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 2738 assert(is_resolve_id(id), "expected a resolve stub id"); 2739 2740 // allocate space for the code 2741 ResourceMark rm; 2742 2743 const char* name = SharedRuntime::stub_name(id); 2744 CodeBuffer buffer(name, 1000, 512); 2745 MacroAssembler* masm = new MacroAssembler(&buffer); 2746 2747 int frame_size_in_words; 2748 RegisterSaver reg_save(false /* save_vectors */); 2749 2750 OopMapSet *oop_maps = new OopMapSet(); 2751 OopMap* map = nullptr; 2752 2753 int start = __ offset(); 2754 2755 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2756 2757 int frame_complete = __ offset(); 2758 2759 { 2760 Label retaddr; 2761 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2762 2763 __ mov(c_rarg0, rthread); 2764 __ lea(rscratch1, RuntimeAddress(destination)); 2765 2766 __ blr(rscratch1); 2767 __ bind(retaddr); 2768 } 2769 2770 // Set an oopmap for the call site. 2771 // We need this not only for callee-saved registers, but also for volatile 2772 // registers that the compiler might be keeping live across a safepoint. 2773 2774 oop_maps->add_gc_map( __ offset() - start, map); 2775 2776 // r0 contains the address we are going to jump to assuming no exception got installed 2777 2778 // clear last_Java_sp 2779 __ reset_last_Java_frame(false); 2780 // check for pending exceptions 2781 Label pending; 2782 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2783 __ cbnz(rscratch1, pending); 2784 2785 // get the returned Method* 2786 __ get_vm_result_2(rmethod, rthread); 2787 __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod))); 2788 2789 // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch 2790 __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes())); 2791 reg_save.restore_live_registers(masm); 2792 2793 // We are back to the original state on entry and ready to go. 2794 2795 __ br(rscratch1); 2796 2797 // Pending exception after the safepoint 2798 2799 __ bind(pending); 2800 2801 reg_save.restore_live_registers(masm); 2802 2803 // exception pending => remove activation and forward to exception handler 2804 2805 __ str(zr, Address(rthread, JavaThread::vm_result_offset())); 2806 2807 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 2808 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2809 2810 // ------------- 2811 // make sure all code is generated 2812 masm->flush(); 2813 2814 // return the blob 2815 // frame_size_words or bytes?? 2816 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 2817 } 2818 2819 // Continuation point for throwing of implicit exceptions that are 2820 // not handled in the current activation. Fabricates an exception 2821 // oop and initiates normal exception dispatching in this 2822 // frame. Since we need to preserve callee-saved values (currently 2823 // only for C2, but done for C1 as well) we need a callee-saved oop 2824 // map and therefore have to make these stubs into RuntimeStubs 2825 // rather than BufferBlobs. If the compiler needs all registers to 2826 // be preserved between the fault point and the exception handler 2827 // then it must assume responsibility for that in 2828 // AbstractCompiler::continuation_for_implicit_null_exception or 2829 // continuation_for_implicit_division_by_zero_exception. All other 2830 // implicit exceptions (e.g., NullPointerException or 2831 // AbstractMethodError on entry) are either at call sites or 2832 // otherwise assume that stack unwinding will be initiated, so 2833 // caller saved registers were assumed volatile in the compiler. 2834 2835 RuntimeStub* SharedRuntime::generate_throw_exception(SharedStubId id, address runtime_entry) { 2836 assert(is_throw_id(id), "expected a throw stub id"); 2837 2838 const char* name = SharedRuntime::stub_name(id); 2839 2840 // Information about frame layout at time of blocking runtime call. 2841 // Note that we only have to preserve callee-saved registers since 2842 // the compilers are responsible for supplying a continuation point 2843 // if they expect all registers to be preserved. 2844 // n.b. aarch64 asserts that frame::arg_reg_save_area_bytes == 0 2845 enum layout { 2846 rfp_off = 0, 2847 rfp_off2, 2848 return_off, 2849 return_off2, 2850 framesize // inclusive of return address 2851 }; 2852 2853 int insts_size = 512; 2854 int locs_size = 64; 2855 2856 ResourceMark rm; 2857 const char* timer_msg = "SharedRuntime generate_throw_exception"; 2858 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 2859 2860 CodeBuffer code(name, insts_size, locs_size); 2861 OopMapSet* oop_maps = new OopMapSet(); 2862 MacroAssembler* masm = new MacroAssembler(&code); 2863 2864 address start = __ pc(); 2865 2866 // This is an inlined and slightly modified version of call_VM 2867 // which has the ability to fetch the return PC out of 2868 // thread-local storage and also sets up last_Java_sp slightly 2869 // differently than the real call_VM 2870 2871 __ enter(); // Save FP and LR before call 2872 2873 assert(is_even(framesize/2), "sp not 16-byte aligned"); 2874 2875 // lr and fp are already in place 2876 __ sub(sp, rfp, ((uint64_t)framesize-4) << LogBytesPerInt); // prolog 2877 2878 int frame_complete = __ pc() - start; 2879 2880 // Set up last_Java_sp and last_Java_fp 2881 address the_pc = __ pc(); 2882 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2883 2884 __ mov(c_rarg0, rthread); 2885 BLOCK_COMMENT("call runtime_entry"); 2886 __ mov(rscratch1, runtime_entry); 2887 __ blr(rscratch1); 2888 2889 // Generate oop map 2890 OopMap* map = new OopMap(framesize, 0); 2891 2892 oop_maps->add_gc_map(the_pc - start, map); 2893 2894 __ reset_last_Java_frame(true); 2895 2896 // Reinitialize the ptrue predicate register, in case the external runtime 2897 // call clobbers ptrue reg, as we may return to SVE compiled code. 2898 __ reinitialize_ptrue(); 2899 2900 __ leave(); 2901 2902 // check for pending exceptions 2903 #ifdef ASSERT 2904 Label L; 2905 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2906 __ cbnz(rscratch1, L); 2907 __ should_not_reach_here(); 2908 __ bind(L); 2909 #endif // ASSERT 2910 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2911 2912 // codeBlob framesize is in words (not VMRegImpl::slot_size) 2913 RuntimeStub* stub = 2914 RuntimeStub::new_runtime_stub(name, 2915 &code, 2916 frame_complete, 2917 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2918 oop_maps, false); 2919 return stub; 2920 } 2921 2922 #if INCLUDE_JFR 2923 2924 static void jfr_prologue(address the_pc, MacroAssembler* masm, Register thread) { 2925 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2926 __ mov(c_rarg0, thread); 2927 } 2928 2929 // The handle is dereferenced through a load barrier. 2930 static void jfr_epilogue(MacroAssembler* masm) { 2931 __ reset_last_Java_frame(true); 2932 } 2933 2934 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint. 2935 // It returns a jobject handle to the event writer. 2936 // The handle is dereferenced and the return value is the event writer oop. 2937 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() { 2938 enum layout { 2939 rbp_off, 2940 rbpH_off, 2941 return_off, 2942 return_off2, 2943 framesize // inclusive of return address 2944 }; 2945 2946 int insts_size = 1024; 2947 int locs_size = 64; 2948 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id); 2949 CodeBuffer code(name, insts_size, locs_size); 2950 OopMapSet* oop_maps = new OopMapSet(); 2951 MacroAssembler* masm = new MacroAssembler(&code); 2952 2953 address start = __ pc(); 2954 __ enter(); 2955 int frame_complete = __ pc() - start; 2956 address the_pc = __ pc(); 2957 jfr_prologue(the_pc, masm, rthread); 2958 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1); 2959 jfr_epilogue(masm); 2960 __ resolve_global_jobject(r0, rscratch1, rscratch2); 2961 __ leave(); 2962 __ ret(lr); 2963 2964 OopMap* map = new OopMap(framesize, 1); // rfp 2965 oop_maps->add_gc_map(the_pc - start, map); 2966 2967 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 2968 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 2969 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2970 oop_maps, false); 2971 return stub; 2972 } 2973 2974 // For c2: call to return a leased buffer. 2975 RuntimeStub* SharedRuntime::generate_jfr_return_lease() { 2976 enum layout { 2977 rbp_off, 2978 rbpH_off, 2979 return_off, 2980 return_off2, 2981 framesize // inclusive of return address 2982 }; 2983 2984 int insts_size = 1024; 2985 int locs_size = 64; 2986 2987 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_return_lease_id); 2988 CodeBuffer code(name, insts_size, locs_size); 2989 OopMapSet* oop_maps = new OopMapSet(); 2990 MacroAssembler* masm = new MacroAssembler(&code); 2991 2992 address start = __ pc(); 2993 __ enter(); 2994 int frame_complete = __ pc() - start; 2995 address the_pc = __ pc(); 2996 jfr_prologue(the_pc, masm, rthread); 2997 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1); 2998 jfr_epilogue(masm); 2999 3000 __ leave(); 3001 __ ret(lr); 3002 3003 OopMap* map = new OopMap(framesize, 1); // rfp 3004 oop_maps->add_gc_map(the_pc - start, map); 3005 3006 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 3007 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 3008 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3009 oop_maps, false); 3010 return stub; 3011 } 3012 3013 #endif // INCLUDE_JFR