1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2025, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "asm/register.hpp" 29 #include "atomic_aarch64.hpp" 30 #include "compiler/oopMap.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "gc/shared/barrierSetAssembler.hpp" 33 #include "gc/shared/gc_globals.hpp" 34 #include "gc/shared/tlab_globals.hpp" 35 #include "interpreter/interpreter.hpp" 36 #include "memory/universe.hpp" 37 #include "nativeInst_aarch64.hpp" 38 #include "oops/instanceOop.hpp" 39 #include "oops/method.hpp" 40 #include "oops/objArrayKlass.hpp" 41 #include "oops/oop.inline.hpp" 42 #include "prims/methodHandles.hpp" 43 #include "prims/upcallLinker.hpp" 44 #include "runtime/arguments.hpp" 45 #include "runtime/atomic.hpp" 46 #include "runtime/continuation.hpp" 47 #include "runtime/continuationEntry.inline.hpp" 48 #include "runtime/frame.inline.hpp" 49 #include "runtime/handles.inline.hpp" 50 #include "runtime/javaThread.hpp" 51 #include "runtime/sharedRuntime.hpp" 52 #include "runtime/stubCodeGenerator.hpp" 53 #include "runtime/stubRoutines.hpp" 54 #include "utilities/align.hpp" 55 #include "utilities/checkedCast.hpp" 56 #include "utilities/debug.hpp" 57 #include "utilities/globalDefinitions.hpp" 58 #include "utilities/intpow.hpp" 59 #include "utilities/powerOfTwo.hpp" 60 #ifdef COMPILER2 61 #include "opto/runtime.hpp" 62 #endif 63 #if INCLUDE_ZGC 64 #include "gc/z/zThreadLocalData.hpp" 65 #endif 66 67 // Declaration and definition of StubGenerator (no .hpp file). 68 // For a more detailed description of the stub routine structure 69 // see the comment in stubRoutines.hpp 70 71 #undef __ 72 #define __ _masm-> 73 74 #ifdef PRODUCT 75 #define BLOCK_COMMENT(str) /* nothing */ 76 #else 77 #define BLOCK_COMMENT(str) __ block_comment(str) 78 #endif 79 80 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 81 82 // Stub Code definitions 83 84 class StubGenerator: public StubCodeGenerator { 85 private: 86 87 #ifdef PRODUCT 88 #define inc_counter_np(counter) ((void)0) 89 #else 90 void inc_counter_np_(uint& counter) { 91 __ incrementw(ExternalAddress((address)&counter)); 92 } 93 #define inc_counter_np(counter) \ 94 BLOCK_COMMENT("inc_counter " #counter); \ 95 inc_counter_np_(counter); 96 #endif 97 98 // Call stubs are used to call Java from C 99 // 100 // Arguments: 101 // c_rarg0: call wrapper address address 102 // c_rarg1: result address 103 // c_rarg2: result type BasicType 104 // c_rarg3: method Method* 105 // c_rarg4: (interpreter) entry point address 106 // c_rarg5: parameters intptr_t* 107 // c_rarg6: parameter size (in words) int 108 // c_rarg7: thread Thread* 109 // 110 // There is no return from the stub itself as any Java result 111 // is written to result 112 // 113 // we save r30 (lr) as the return PC at the base of the frame and 114 // link r29 (fp) below it as the frame pointer installing sp (r31) 115 // into fp. 116 // 117 // we save r0-r7, which accounts for all the c arguments. 118 // 119 // TODO: strictly do we need to save them all? they are treated as 120 // volatile by C so could we omit saving the ones we are going to 121 // place in global registers (thread? method?) or those we only use 122 // during setup of the Java call? 123 // 124 // we don't need to save r8 which C uses as an indirect result location 125 // return register. 126 // 127 // we don't need to save r9-r15 which both C and Java treat as 128 // volatile 129 // 130 // we don't need to save r16-18 because Java does not use them 131 // 132 // we save r19-r28 which Java uses as scratch registers and C 133 // expects to be callee-save 134 // 135 // we save the bottom 64 bits of each value stored in v8-v15; it is 136 // the responsibility of the caller to preserve larger values. 137 // 138 // so the stub frame looks like this when we enter Java code 139 // 140 // [ return_from_Java ] <--- sp 141 // [ argument word n ] 142 // ... 143 // -29 [ argument word 1 ] 144 // -28 [ saved Floating-point Control Register ] 145 // -26 [ saved v15 ] <--- sp_after_call 146 // -25 [ saved v14 ] 147 // -24 [ saved v13 ] 148 // -23 [ saved v12 ] 149 // -22 [ saved v11 ] 150 // -21 [ saved v10 ] 151 // -20 [ saved v9 ] 152 // -19 [ saved v8 ] 153 // -18 [ saved r28 ] 154 // -17 [ saved r27 ] 155 // -16 [ saved r26 ] 156 // -15 [ saved r25 ] 157 // -14 [ saved r24 ] 158 // -13 [ saved r23 ] 159 // -12 [ saved r22 ] 160 // -11 [ saved r21 ] 161 // -10 [ saved r20 ] 162 // -9 [ saved r19 ] 163 // -8 [ call wrapper (r0) ] 164 // -7 [ result (r1) ] 165 // -6 [ result type (r2) ] 166 // -5 [ method (r3) ] 167 // -4 [ entry point (r4) ] 168 // -3 [ parameters (r5) ] 169 // -2 [ parameter size (r6) ] 170 // -1 [ thread (r7) ] 171 // 0 [ saved fp (r29) ] <--- fp == saved sp (r31) 172 // 1 [ saved lr (r30) ] 173 174 // Call stub stack layout word offsets from fp 175 enum call_stub_layout { 176 sp_after_call_off = -28, 177 178 fpcr_off = sp_after_call_off, 179 d15_off = -26, 180 d13_off = -24, 181 d11_off = -22, 182 d9_off = -20, 183 184 r28_off = -18, 185 r26_off = -16, 186 r24_off = -14, 187 r22_off = -12, 188 r20_off = -10, 189 call_wrapper_off = -8, 190 result_off = -7, 191 result_type_off = -6, 192 method_off = -5, 193 entry_point_off = -4, 194 parameter_size_off = -2, 195 thread_off = -1, 196 fp_f = 0, 197 retaddr_off = 1, 198 }; 199 200 address generate_call_stub(address& return_address) { 201 assert((int)frame::entry_frame_after_call_words == -(int)sp_after_call_off + 1 && 202 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off, 203 "adjust this code"); 204 205 StubGenStubId stub_id = StubGenStubId::call_stub_id; 206 StubCodeMark mark(this, stub_id); 207 address start = __ pc(); 208 209 const Address sp_after_call (rfp, sp_after_call_off * wordSize); 210 211 const Address fpcr_save (rfp, fpcr_off * wordSize); 212 const Address call_wrapper (rfp, call_wrapper_off * wordSize); 213 const Address result (rfp, result_off * wordSize); 214 const Address result_type (rfp, result_type_off * wordSize); 215 const Address method (rfp, method_off * wordSize); 216 const Address entry_point (rfp, entry_point_off * wordSize); 217 const Address parameter_size(rfp, parameter_size_off * wordSize); 218 219 const Address thread (rfp, thread_off * wordSize); 220 221 const Address d15_save (rfp, d15_off * wordSize); 222 const Address d13_save (rfp, d13_off * wordSize); 223 const Address d11_save (rfp, d11_off * wordSize); 224 const Address d9_save (rfp, d9_off * wordSize); 225 226 const Address r28_save (rfp, r28_off * wordSize); 227 const Address r26_save (rfp, r26_off * wordSize); 228 const Address r24_save (rfp, r24_off * wordSize); 229 const Address r22_save (rfp, r22_off * wordSize); 230 const Address r20_save (rfp, r20_off * wordSize); 231 232 // stub code 233 234 address aarch64_entry = __ pc(); 235 236 // set up frame and move sp to end of save area 237 __ enter(); 238 __ sub(sp, rfp, -sp_after_call_off * wordSize); 239 240 // save register parameters and Java scratch/global registers 241 // n.b. we save thread even though it gets installed in 242 // rthread because we want to sanity check rthread later 243 __ str(c_rarg7, thread); 244 __ strw(c_rarg6, parameter_size); 245 __ stp(c_rarg4, c_rarg5, entry_point); 246 __ stp(c_rarg2, c_rarg3, result_type); 247 __ stp(c_rarg0, c_rarg1, call_wrapper); 248 249 __ stp(r20, r19, r20_save); 250 __ stp(r22, r21, r22_save); 251 __ stp(r24, r23, r24_save); 252 __ stp(r26, r25, r26_save); 253 __ stp(r28, r27, r28_save); 254 255 __ stpd(v9, v8, d9_save); 256 __ stpd(v11, v10, d11_save); 257 __ stpd(v13, v12, d13_save); 258 __ stpd(v15, v14, d15_save); 259 260 __ get_fpcr(rscratch1); 261 __ str(rscratch1, fpcr_save); 262 // Set FPCR to the state we need. We do want Round to Nearest. We 263 // don't want non-IEEE rounding modes or floating-point traps. 264 __ bfi(rscratch1, zr, 22, 4); // Clear DN, FZ, and Rmode 265 __ bfi(rscratch1, zr, 8, 5); // Clear exception-control bits (8-12) 266 __ set_fpcr(rscratch1); 267 268 // install Java thread in global register now we have saved 269 // whatever value it held 270 __ mov(rthread, c_rarg7); 271 // And method 272 __ mov(rmethod, c_rarg3); 273 274 // set up the heapbase register 275 __ reinit_heapbase(); 276 277 #ifdef ASSERT 278 // make sure we have no pending exceptions 279 { 280 Label L; 281 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 282 __ cmp(rscratch1, (u1)NULL_WORD); 283 __ br(Assembler::EQ, L); 284 __ stop("StubRoutines::call_stub: entered with pending exception"); 285 __ BIND(L); 286 } 287 #endif 288 // pass parameters if any 289 __ mov(esp, sp); 290 __ sub(rscratch1, sp, c_rarg6, ext::uxtw, LogBytesPerWord); // Move SP out of the way 291 __ andr(sp, rscratch1, -2 * wordSize); 292 293 BLOCK_COMMENT("pass parameters if any"); 294 Label parameters_done; 295 // parameter count is still in c_rarg6 296 // and parameter pointer identifying param 1 is in c_rarg5 297 __ cbzw(c_rarg6, parameters_done); 298 299 address loop = __ pc(); 300 __ ldr(rscratch1, Address(__ post(c_rarg5, wordSize))); 301 __ subsw(c_rarg6, c_rarg6, 1); 302 __ push(rscratch1); 303 __ br(Assembler::GT, loop); 304 305 __ BIND(parameters_done); 306 307 // call Java entry -- passing methdoOop, and current sp 308 // rmethod: Method* 309 // r19_sender_sp: sender sp 310 BLOCK_COMMENT("call Java function"); 311 __ mov(r19_sender_sp, sp); 312 __ blr(c_rarg4); 313 314 // we do this here because the notify will already have been done 315 // if we get to the next instruction via an exception 316 // 317 // n.b. adding this instruction here affects the calculation of 318 // whether or not a routine returns to the call stub (used when 319 // doing stack walks) since the normal test is to check the return 320 // pc against the address saved below. so we may need to allow for 321 // this extra instruction in the check. 322 323 // save current address for use by exception handling code 324 325 return_address = __ pc(); 326 327 // store result depending on type (everything that is not 328 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) 329 // n.b. this assumes Java returns an integral result in r0 330 // and a floating result in j_farg0 331 __ ldr(j_rarg2, result); 332 Label is_long, is_float, is_double, exit; 333 __ ldr(j_rarg1, result_type); 334 __ cmp(j_rarg1, (u1)T_OBJECT); 335 __ br(Assembler::EQ, is_long); 336 __ cmp(j_rarg1, (u1)T_LONG); 337 __ br(Assembler::EQ, is_long); 338 __ cmp(j_rarg1, (u1)T_FLOAT); 339 __ br(Assembler::EQ, is_float); 340 __ cmp(j_rarg1, (u1)T_DOUBLE); 341 __ br(Assembler::EQ, is_double); 342 343 // handle T_INT case 344 __ strw(r0, Address(j_rarg2)); 345 346 __ BIND(exit); 347 348 // pop parameters 349 __ sub(esp, rfp, -sp_after_call_off * wordSize); 350 351 #ifdef ASSERT 352 // verify that threads correspond 353 { 354 Label L, S; 355 __ ldr(rscratch1, thread); 356 __ cmp(rthread, rscratch1); 357 __ br(Assembler::NE, S); 358 __ get_thread(rscratch1); 359 __ cmp(rthread, rscratch1); 360 __ br(Assembler::EQ, L); 361 __ BIND(S); 362 __ stop("StubRoutines::call_stub: threads must correspond"); 363 __ BIND(L); 364 } 365 #endif 366 367 __ pop_cont_fastpath(rthread); 368 369 // restore callee-save registers 370 __ ldpd(v15, v14, d15_save); 371 __ ldpd(v13, v12, d13_save); 372 __ ldpd(v11, v10, d11_save); 373 __ ldpd(v9, v8, d9_save); 374 375 __ ldp(r28, r27, r28_save); 376 __ ldp(r26, r25, r26_save); 377 __ ldp(r24, r23, r24_save); 378 __ ldp(r22, r21, r22_save); 379 __ ldp(r20, r19, r20_save); 380 381 // restore fpcr 382 __ ldr(rscratch1, fpcr_save); 383 __ set_fpcr(rscratch1); 384 385 __ ldp(c_rarg0, c_rarg1, call_wrapper); 386 __ ldrw(c_rarg2, result_type); 387 __ ldr(c_rarg3, method); 388 __ ldp(c_rarg4, c_rarg5, entry_point); 389 __ ldp(c_rarg6, c_rarg7, parameter_size); 390 391 // leave frame and return to caller 392 __ leave(); 393 __ ret(lr); 394 395 // handle return types different from T_INT 396 397 __ BIND(is_long); 398 __ str(r0, Address(j_rarg2, 0)); 399 __ br(Assembler::AL, exit); 400 401 __ BIND(is_float); 402 __ strs(j_farg0, Address(j_rarg2, 0)); 403 __ br(Assembler::AL, exit); 404 405 __ BIND(is_double); 406 __ strd(j_farg0, Address(j_rarg2, 0)); 407 __ br(Assembler::AL, exit); 408 409 return start; 410 } 411 412 // Return point for a Java call if there's an exception thrown in 413 // Java code. The exception is caught and transformed into a 414 // pending exception stored in JavaThread that can be tested from 415 // within the VM. 416 // 417 // Note: Usually the parameters are removed by the callee. In case 418 // of an exception crossing an activation frame boundary, that is 419 // not the case if the callee is compiled code => need to setup the 420 // rsp. 421 // 422 // r0: exception oop 423 424 address generate_catch_exception() { 425 StubGenStubId stub_id = StubGenStubId::catch_exception_id; 426 StubCodeMark mark(this, stub_id); 427 address start = __ pc(); 428 429 // same as in generate_call_stub(): 430 const Address sp_after_call(rfp, sp_after_call_off * wordSize); 431 const Address thread (rfp, thread_off * wordSize); 432 433 #ifdef ASSERT 434 // verify that threads correspond 435 { 436 Label L, S; 437 __ ldr(rscratch1, thread); 438 __ cmp(rthread, rscratch1); 439 __ br(Assembler::NE, S); 440 __ get_thread(rscratch1); 441 __ cmp(rthread, rscratch1); 442 __ br(Assembler::EQ, L); 443 __ bind(S); 444 __ stop("StubRoutines::catch_exception: threads must correspond"); 445 __ bind(L); 446 } 447 #endif 448 449 // set pending exception 450 __ verify_oop(r0); 451 452 __ str(r0, Address(rthread, Thread::pending_exception_offset())); 453 __ mov(rscratch1, (address)__FILE__); 454 __ str(rscratch1, Address(rthread, Thread::exception_file_offset())); 455 __ movw(rscratch1, (int)__LINE__); 456 __ strw(rscratch1, Address(rthread, Thread::exception_line_offset())); 457 458 // complete return to VM 459 assert(StubRoutines::_call_stub_return_address != nullptr, 460 "_call_stub_return_address must have been generated before"); 461 __ b(StubRoutines::_call_stub_return_address); 462 463 return start; 464 } 465 466 // Continuation point for runtime calls returning with a pending 467 // exception. The pending exception check happened in the runtime 468 // or native call stub. The pending exception in Thread is 469 // converted into a Java-level exception. 470 // 471 // Contract with Java-level exception handlers: 472 // r0: exception 473 // r3: throwing pc 474 // 475 // NOTE: At entry of this stub, exception-pc must be in LR !! 476 477 // NOTE: this is always used as a jump target within generated code 478 // so it just needs to be generated code with no x86 prolog 479 480 address generate_forward_exception() { 481 StubGenStubId stub_id = StubGenStubId::forward_exception_id; 482 StubCodeMark mark(this, stub_id); 483 address start = __ pc(); 484 485 // Upon entry, LR points to the return address returning into 486 // Java (interpreted or compiled) code; i.e., the return address 487 // becomes the throwing pc. 488 // 489 // Arguments pushed before the runtime call are still on the stack 490 // but the exception handler will reset the stack pointer -> 491 // ignore them. A potential result in registers can be ignored as 492 // well. 493 494 #ifdef ASSERT 495 // make sure this code is only executed if there is a pending exception 496 { 497 Label L; 498 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 499 __ cbnz(rscratch1, L); 500 __ stop("StubRoutines::forward exception: no pending exception (1)"); 501 __ bind(L); 502 } 503 #endif 504 505 // compute exception handler into r19 506 507 // call the VM to find the handler address associated with the 508 // caller address. pass thread in r0 and caller pc (ret address) 509 // in r1. n.b. the caller pc is in lr, unlike x86 where it is on 510 // the stack. 511 __ mov(c_rarg1, lr); 512 // lr will be trashed by the VM call so we move it to R19 513 // (callee-saved) because we also need to pass it to the handler 514 // returned by this call. 515 __ mov(r19, lr); 516 BLOCK_COMMENT("call exception_handler_for_return_address"); 517 __ call_VM_leaf(CAST_FROM_FN_PTR(address, 518 SharedRuntime::exception_handler_for_return_address), 519 rthread, c_rarg1); 520 // Reinitialize the ptrue predicate register, in case the external runtime 521 // call clobbers ptrue reg, as we may return to SVE compiled code. 522 __ reinitialize_ptrue(); 523 524 // we should not really care that lr is no longer the callee 525 // address. we saved the value the handler needs in r19 so we can 526 // just copy it to r3. however, the C2 handler will push its own 527 // frame and then calls into the VM and the VM code asserts that 528 // the PC for the frame above the handler belongs to a compiled 529 // Java method. So, we restore lr here to satisfy that assert. 530 __ mov(lr, r19); 531 // setup r0 & r3 & clear pending exception 532 __ mov(r3, r19); 533 __ mov(r19, r0); 534 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 535 __ str(zr, Address(rthread, Thread::pending_exception_offset())); 536 537 #ifdef ASSERT 538 // make sure exception is set 539 { 540 Label L; 541 __ cbnz(r0, L); 542 __ stop("StubRoutines::forward exception: no pending exception (2)"); 543 __ bind(L); 544 } 545 #endif 546 547 // continue at exception handler 548 // r0: exception 549 // r3: throwing pc 550 // r19: exception handler 551 __ verify_oop(r0); 552 __ br(r19); 553 554 return start; 555 } 556 557 // Non-destructive plausibility checks for oops 558 // 559 // Arguments: 560 // r0: oop to verify 561 // rscratch1: error message 562 // 563 // Stack after saving c_rarg3: 564 // [tos + 0]: saved c_rarg3 565 // [tos + 1]: saved c_rarg2 566 // [tos + 2]: saved lr 567 // [tos + 3]: saved rscratch2 568 // [tos + 4]: saved r0 569 // [tos + 5]: saved rscratch1 570 address generate_verify_oop() { 571 StubGenStubId stub_id = StubGenStubId::verify_oop_id; 572 StubCodeMark mark(this, stub_id); 573 address start = __ pc(); 574 575 Label exit, error; 576 577 // save c_rarg2 and c_rarg3 578 __ stp(c_rarg3, c_rarg2, Address(__ pre(sp, -16))); 579 580 // __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr())); 581 __ lea(c_rarg2, ExternalAddress((address) StubRoutines::verify_oop_count_addr())); 582 __ ldr(c_rarg3, Address(c_rarg2)); 583 __ add(c_rarg3, c_rarg3, 1); 584 __ str(c_rarg3, Address(c_rarg2)); 585 586 // object is in r0 587 // make sure object is 'reasonable' 588 __ cbz(r0, exit); // if obj is null it is OK 589 590 BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler(); 591 bs_asm->check_oop(_masm, r0, c_rarg2, c_rarg3, error); 592 593 // return if everything seems ok 594 __ bind(exit); 595 596 __ ldp(c_rarg3, c_rarg2, Address(__ post(sp, 16))); 597 __ ret(lr); 598 599 // handle errors 600 __ bind(error); 601 __ ldp(c_rarg3, c_rarg2, Address(__ post(sp, 16))); 602 603 __ push(RegSet::range(r0, r29), sp); 604 // debug(char* msg, int64_t pc, int64_t regs[]) 605 __ mov(c_rarg0, rscratch1); // pass address of error message 606 __ mov(c_rarg1, lr); // pass return address 607 __ mov(c_rarg2, sp); // pass address of regs on stack 608 #ifndef PRODUCT 609 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 610 #endif 611 BLOCK_COMMENT("call MacroAssembler::debug"); 612 __ mov(rscratch1, CAST_FROM_FN_PTR(address, MacroAssembler::debug64)); 613 __ blr(rscratch1); 614 __ hlt(0); 615 616 return start; 617 } 618 619 // Generate indices for iota vector. 620 address generate_iota_indices(StubGenStubId stub_id) { 621 __ align(CodeEntryAlignment); 622 StubCodeMark mark(this, stub_id); 623 address start = __ pc(); 624 // B 625 __ emit_data64(0x0706050403020100, relocInfo::none); 626 __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none); 627 // H 628 __ emit_data64(0x0003000200010000, relocInfo::none); 629 __ emit_data64(0x0007000600050004, relocInfo::none); 630 // S 631 __ emit_data64(0x0000000100000000, relocInfo::none); 632 __ emit_data64(0x0000000300000002, relocInfo::none); 633 // D 634 __ emit_data64(0x0000000000000000, relocInfo::none); 635 __ emit_data64(0x0000000000000001, relocInfo::none); 636 // S - FP 637 __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f 638 __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f 639 // D - FP 640 __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d 641 __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d 642 return start; 643 } 644 645 // The inner part of zero_words(). This is the bulk operation, 646 // zeroing words in blocks, possibly using DC ZVA to do it. The 647 // caller is responsible for zeroing the last few words. 648 // 649 // Inputs: 650 // r10: the HeapWord-aligned base address of an array to zero. 651 // r11: the count in HeapWords, r11 > 0. 652 // 653 // Returns r10 and r11, adjusted for the caller to clear. 654 // r10: the base address of the tail of words left to clear. 655 // r11: the number of words in the tail. 656 // r11 < MacroAssembler::zero_words_block_size. 657 658 address generate_zero_blocks() { 659 Label done; 660 Label base_aligned; 661 662 Register base = r10, cnt = r11; 663 664 __ align(CodeEntryAlignment); 665 StubGenStubId stub_id = StubGenStubId::zero_blocks_id; 666 StubCodeMark mark(this, stub_id); 667 address start = __ pc(); 668 669 if (UseBlockZeroing) { 670 int zva_length = VM_Version::zva_length(); 671 672 // Ensure ZVA length can be divided by 16. This is required by 673 // the subsequent operations. 674 assert (zva_length % 16 == 0, "Unexpected ZVA Length"); 675 676 __ tbz(base, 3, base_aligned); 677 __ str(zr, Address(__ post(base, 8))); 678 __ sub(cnt, cnt, 1); 679 __ bind(base_aligned); 680 681 // Ensure count >= zva_length * 2 so that it still deserves a zva after 682 // alignment. 683 Label small; 684 int low_limit = MAX2(zva_length * 2, (int)BlockZeroingLowLimit); 685 __ subs(rscratch1, cnt, low_limit >> 3); 686 __ br(Assembler::LT, small); 687 __ zero_dcache_blocks(base, cnt); 688 __ bind(small); 689 } 690 691 { 692 // Number of stp instructions we'll unroll 693 const int unroll = 694 MacroAssembler::zero_words_block_size / 2; 695 // Clear the remaining blocks. 696 Label loop; 697 __ subs(cnt, cnt, unroll * 2); 698 __ br(Assembler::LT, done); 699 __ bind(loop); 700 for (int i = 0; i < unroll; i++) 701 __ stp(zr, zr, __ post(base, 16)); 702 __ subs(cnt, cnt, unroll * 2); 703 __ br(Assembler::GE, loop); 704 __ bind(done); 705 __ add(cnt, cnt, unroll * 2); 706 } 707 708 __ ret(lr); 709 710 return start; 711 } 712 713 714 typedef enum { 715 copy_forwards = 1, 716 copy_backwards = -1 717 } copy_direction; 718 719 // Helper object to reduce noise when telling the GC barriers how to perform loads and stores 720 // for arraycopy stubs. 721 class ArrayCopyBarrierSetHelper : StackObj { 722 BarrierSetAssembler* _bs_asm; 723 MacroAssembler* _masm; 724 DecoratorSet _decorators; 725 BasicType _type; 726 Register _gct1; 727 Register _gct2; 728 Register _gct3; 729 FloatRegister _gcvt1; 730 FloatRegister _gcvt2; 731 FloatRegister _gcvt3; 732 733 public: 734 ArrayCopyBarrierSetHelper(MacroAssembler* masm, 735 DecoratorSet decorators, 736 BasicType type, 737 Register gct1, 738 Register gct2, 739 Register gct3, 740 FloatRegister gcvt1, 741 FloatRegister gcvt2, 742 FloatRegister gcvt3) 743 : _bs_asm(BarrierSet::barrier_set()->barrier_set_assembler()), 744 _masm(masm), 745 _decorators(decorators), 746 _type(type), 747 _gct1(gct1), 748 _gct2(gct2), 749 _gct3(gct3), 750 _gcvt1(gcvt1), 751 _gcvt2(gcvt2), 752 _gcvt3(gcvt3) { 753 } 754 755 void copy_load_at_32(FloatRegister dst1, FloatRegister dst2, Address src) { 756 _bs_asm->copy_load_at(_masm, _decorators, _type, 32, 757 dst1, dst2, src, 758 _gct1, _gct2, _gcvt1); 759 } 760 761 void copy_store_at_32(Address dst, FloatRegister src1, FloatRegister src2) { 762 _bs_asm->copy_store_at(_masm, _decorators, _type, 32, 763 dst, src1, src2, 764 _gct1, _gct2, _gct3, _gcvt1, _gcvt2, _gcvt3); 765 } 766 767 void copy_load_at_16(Register dst1, Register dst2, Address src) { 768 _bs_asm->copy_load_at(_masm, _decorators, _type, 16, 769 dst1, dst2, src, 770 _gct1); 771 } 772 773 void copy_store_at_16(Address dst, Register src1, Register src2) { 774 _bs_asm->copy_store_at(_masm, _decorators, _type, 16, 775 dst, src1, src2, 776 _gct1, _gct2, _gct3); 777 } 778 779 void copy_load_at_8(Register dst, Address src) { 780 _bs_asm->copy_load_at(_masm, _decorators, _type, 8, 781 dst, noreg, src, 782 _gct1); 783 } 784 785 void copy_store_at_8(Address dst, Register src) { 786 _bs_asm->copy_store_at(_masm, _decorators, _type, 8, 787 dst, src, noreg, 788 _gct1, _gct2, _gct3); 789 } 790 }; 791 792 // Bulk copy of blocks of 8 words. 793 // 794 // count is a count of words. 795 // 796 // Precondition: count >= 8 797 // 798 // Postconditions: 799 // 800 // The least significant bit of count contains the remaining count 801 // of words to copy. The rest of count is trash. 802 // 803 // s and d are adjusted to point to the remaining words to copy 804 // 805 void generate_copy_longs(StubGenStubId stub_id, DecoratorSet decorators, Label &start, Register s, Register d, Register count) { 806 BasicType type; 807 copy_direction direction; 808 809 switch (stub_id) { 810 case copy_byte_f_id: 811 direction = copy_forwards; 812 type = T_BYTE; 813 break; 814 case copy_byte_b_id: 815 direction = copy_backwards; 816 type = T_BYTE; 817 break; 818 case copy_oop_f_id: 819 direction = copy_forwards; 820 type = T_OBJECT; 821 break; 822 case copy_oop_b_id: 823 direction = copy_backwards; 824 type = T_OBJECT; 825 break; 826 case copy_oop_uninit_f_id: 827 direction = copy_forwards; 828 type = T_OBJECT; 829 break; 830 case copy_oop_uninit_b_id: 831 direction = copy_backwards; 832 type = T_OBJECT; 833 break; 834 default: 835 ShouldNotReachHere(); 836 } 837 838 int unit = wordSize * direction; 839 int bias = (UseSIMDForMemoryOps ? 4:2) * wordSize; 840 841 const Register t0 = r3, t1 = r4, t2 = r5, t3 = r6, 842 t4 = r7, t5 = r11, t6 = r12, t7 = r13; 843 const Register stride = r14; 844 const Register gct1 = rscratch1, gct2 = rscratch2, gct3 = r10; 845 const FloatRegister gcvt1 = v6, gcvt2 = v7, gcvt3 = v16; // Note that v8-v15 are callee saved 846 ArrayCopyBarrierSetHelper bs(_masm, decorators, type, gct1, gct2, gct3, gcvt1, gcvt2, gcvt3); 847 848 assert_different_registers(rscratch1, rscratch2, t0, t1, t2, t3, t4, t5, t6, t7); 849 assert_different_registers(s, d, count, rscratch1, rscratch2); 850 851 Label again, drain; 852 853 __ align(CodeEntryAlignment); 854 855 StubCodeMark mark(this, stub_id); 856 857 __ bind(start); 858 859 Label unaligned_copy_long; 860 if (AvoidUnalignedAccesses) { 861 __ tbnz(d, 3, unaligned_copy_long); 862 } 863 864 if (direction == copy_forwards) { 865 __ sub(s, s, bias); 866 __ sub(d, d, bias); 867 } 868 869 #ifdef ASSERT 870 // Make sure we are never given < 8 words 871 { 872 Label L; 873 __ cmp(count, (u1)8); 874 __ br(Assembler::GE, L); 875 __ stop("genrate_copy_longs called with < 8 words"); 876 __ bind(L); 877 } 878 #endif 879 880 // Fill 8 registers 881 if (UseSIMDForMemoryOps) { 882 bs.copy_load_at_32(v0, v1, Address(s, 4 * unit)); 883 bs.copy_load_at_32(v2, v3, Address(__ pre(s, 8 * unit))); 884 } else { 885 bs.copy_load_at_16(t0, t1, Address(s, 2 * unit)); 886 bs.copy_load_at_16(t2, t3, Address(s, 4 * unit)); 887 bs.copy_load_at_16(t4, t5, Address(s, 6 * unit)); 888 bs.copy_load_at_16(t6, t7, Address(__ pre(s, 8 * unit))); 889 } 890 891 __ subs(count, count, 16); 892 __ br(Assembler::LO, drain); 893 894 int prefetch = PrefetchCopyIntervalInBytes; 895 bool use_stride = false; 896 if (direction == copy_backwards) { 897 use_stride = prefetch > 256; 898 prefetch = -prefetch; 899 if (use_stride) __ mov(stride, prefetch); 900 } 901 902 __ bind(again); 903 904 if (PrefetchCopyIntervalInBytes > 0) 905 __ prfm(use_stride ? Address(s, stride) : Address(s, prefetch), PLDL1KEEP); 906 907 if (UseSIMDForMemoryOps) { 908 bs.copy_store_at_32(Address(d, 4 * unit), v0, v1); 909 bs.copy_load_at_32(v0, v1, Address(s, 4 * unit)); 910 bs.copy_store_at_32(Address(__ pre(d, 8 * unit)), v2, v3); 911 bs.copy_load_at_32(v2, v3, Address(__ pre(s, 8 * unit))); 912 } else { 913 bs.copy_store_at_16(Address(d, 2 * unit), t0, t1); 914 bs.copy_load_at_16(t0, t1, Address(s, 2 * unit)); 915 bs.copy_store_at_16(Address(d, 4 * unit), t2, t3); 916 bs.copy_load_at_16(t2, t3, Address(s, 4 * unit)); 917 bs.copy_store_at_16(Address(d, 6 * unit), t4, t5); 918 bs.copy_load_at_16(t4, t5, Address(s, 6 * unit)); 919 bs.copy_store_at_16(Address(__ pre(d, 8 * unit)), t6, t7); 920 bs.copy_load_at_16(t6, t7, Address(__ pre(s, 8 * unit))); 921 } 922 923 __ subs(count, count, 8); 924 __ br(Assembler::HS, again); 925 926 // Drain 927 __ bind(drain); 928 if (UseSIMDForMemoryOps) { 929 bs.copy_store_at_32(Address(d, 4 * unit), v0, v1); 930 bs.copy_store_at_32(Address(__ pre(d, 8 * unit)), v2, v3); 931 } else { 932 bs.copy_store_at_16(Address(d, 2 * unit), t0, t1); 933 bs.copy_store_at_16(Address(d, 4 * unit), t2, t3); 934 bs.copy_store_at_16(Address(d, 6 * unit), t4, t5); 935 bs.copy_store_at_16(Address(__ pre(d, 8 * unit)), t6, t7); 936 } 937 938 { 939 Label L1, L2; 940 __ tbz(count, exact_log2(4), L1); 941 if (UseSIMDForMemoryOps) { 942 bs.copy_load_at_32(v0, v1, Address(__ pre(s, 4 * unit))); 943 bs.copy_store_at_32(Address(__ pre(d, 4 * unit)), v0, v1); 944 } else { 945 bs.copy_load_at_16(t0, t1, Address(s, 2 * unit)); 946 bs.copy_load_at_16(t2, t3, Address(__ pre(s, 4 * unit))); 947 bs.copy_store_at_16(Address(d, 2 * unit), t0, t1); 948 bs.copy_store_at_16(Address(__ pre(d, 4 * unit)), t2, t3); 949 } 950 __ bind(L1); 951 952 if (direction == copy_forwards) { 953 __ add(s, s, bias); 954 __ add(d, d, bias); 955 } 956 957 __ tbz(count, 1, L2); 958 bs.copy_load_at_16(t0, t1, Address(__ adjust(s, 2 * unit, direction == copy_backwards))); 959 bs.copy_store_at_16(Address(__ adjust(d, 2 * unit, direction == copy_backwards)), t0, t1); 960 __ bind(L2); 961 } 962 963 __ ret(lr); 964 965 if (AvoidUnalignedAccesses) { 966 Label drain, again; 967 // Register order for storing. Order is different for backward copy. 968 969 __ bind(unaligned_copy_long); 970 971 // source address is even aligned, target odd aligned 972 // 973 // when forward copying word pairs we read long pairs at offsets 974 // {0, 2, 4, 6} (in long words). when backwards copying we read 975 // long pairs at offsets {-2, -4, -6, -8}. We adjust the source 976 // address by -2 in the forwards case so we can compute the 977 // source offsets for both as {2, 4, 6, 8} * unit where unit = 1 978 // or -1. 979 // 980 // when forward copying we need to store 1 word, 3 pairs and 981 // then 1 word at offsets {0, 1, 3, 5, 7}. Rather than use a 982 // zero offset We adjust the destination by -1 which means we 983 // have to use offsets { 1, 2, 4, 6, 8} * unit for the stores. 984 // 985 // When backwards copyng we need to store 1 word, 3 pairs and 986 // then 1 word at offsets {-1, -3, -5, -7, -8} i.e. we use 987 // offsets {1, 3, 5, 7, 8} * unit. 988 989 if (direction == copy_forwards) { 990 __ sub(s, s, 16); 991 __ sub(d, d, 8); 992 } 993 994 // Fill 8 registers 995 // 996 // for forwards copy s was offset by -16 from the original input 997 // value of s so the register contents are at these offsets 998 // relative to the 64 bit block addressed by that original input 999 // and so on for each successive 64 byte block when s is updated 1000 // 1001 // t0 at offset 0, t1 at offset 8 1002 // t2 at offset 16, t3 at offset 24 1003 // t4 at offset 32, t5 at offset 40 1004 // t6 at offset 48, t7 at offset 56 1005 1006 // for backwards copy s was not offset so the register contents 1007 // are at these offsets into the preceding 64 byte block 1008 // relative to that original input and so on for each successive 1009 // preceding 64 byte block when s is updated. this explains the 1010 // slightly counter-intuitive looking pattern of register usage 1011 // in the stp instructions for backwards copy. 1012 // 1013 // t0 at offset -16, t1 at offset -8 1014 // t2 at offset -32, t3 at offset -24 1015 // t4 at offset -48, t5 at offset -40 1016 // t6 at offset -64, t7 at offset -56 1017 1018 bs.copy_load_at_16(t0, t1, Address(s, 2 * unit)); 1019 bs.copy_load_at_16(t2, t3, Address(s, 4 * unit)); 1020 bs.copy_load_at_16(t4, t5, Address(s, 6 * unit)); 1021 bs.copy_load_at_16(t6, t7, Address(__ pre(s, 8 * unit))); 1022 1023 __ subs(count, count, 16); 1024 __ br(Assembler::LO, drain); 1025 1026 int prefetch = PrefetchCopyIntervalInBytes; 1027 bool use_stride = false; 1028 if (direction == copy_backwards) { 1029 use_stride = prefetch > 256; 1030 prefetch = -prefetch; 1031 if (use_stride) __ mov(stride, prefetch); 1032 } 1033 1034 __ bind(again); 1035 1036 if (PrefetchCopyIntervalInBytes > 0) 1037 __ prfm(use_stride ? Address(s, stride) : Address(s, prefetch), PLDL1KEEP); 1038 1039 if (direction == copy_forwards) { 1040 // allowing for the offset of -8 the store instructions place 1041 // registers into the target 64 bit block at the following 1042 // offsets 1043 // 1044 // t0 at offset 0 1045 // t1 at offset 8, t2 at offset 16 1046 // t3 at offset 24, t4 at offset 32 1047 // t5 at offset 40, t6 at offset 48 1048 // t7 at offset 56 1049 1050 bs.copy_store_at_8(Address(d, 1 * unit), t0); 1051 bs.copy_store_at_16(Address(d, 2 * unit), t1, t2); 1052 bs.copy_load_at_16(t0, t1, Address(s, 2 * unit)); 1053 bs.copy_store_at_16(Address(d, 4 * unit), t3, t4); 1054 bs.copy_load_at_16(t2, t3, Address(s, 4 * unit)); 1055 bs.copy_store_at_16(Address(d, 6 * unit), t5, t6); 1056 bs.copy_load_at_16(t4, t5, Address(s, 6 * unit)); 1057 bs.copy_store_at_8(Address(__ pre(d, 8 * unit)), t7); 1058 bs.copy_load_at_16(t6, t7, Address(__ pre(s, 8 * unit))); 1059 } else { 1060 // d was not offset when we started so the registers are 1061 // written into the 64 bit block preceding d with the following 1062 // offsets 1063 // 1064 // t1 at offset -8 1065 // t3 at offset -24, t0 at offset -16 1066 // t5 at offset -48, t2 at offset -32 1067 // t7 at offset -56, t4 at offset -48 1068 // t6 at offset -64 1069 // 1070 // note that this matches the offsets previously noted for the 1071 // loads 1072 1073 bs.copy_store_at_8(Address(d, 1 * unit), t1); 1074 bs.copy_store_at_16(Address(d, 3 * unit), t3, t0); 1075 bs.copy_load_at_16(t0, t1, Address(s, 2 * unit)); 1076 bs.copy_store_at_16(Address(d, 5 * unit), t5, t2); 1077 bs.copy_load_at_16(t2, t3, Address(s, 4 * unit)); 1078 bs.copy_store_at_16(Address(d, 7 * unit), t7, t4); 1079 bs.copy_load_at_16(t4, t5, Address(s, 6 * unit)); 1080 bs.copy_store_at_8(Address(__ pre(d, 8 * unit)), t6); 1081 bs.copy_load_at_16(t6, t7, Address(__ pre(s, 8 * unit))); 1082 } 1083 1084 __ subs(count, count, 8); 1085 __ br(Assembler::HS, again); 1086 1087 // Drain 1088 // 1089 // this uses the same pattern of offsets and register arguments 1090 // as above 1091 __ bind(drain); 1092 if (direction == copy_forwards) { 1093 bs.copy_store_at_8(Address(d, 1 * unit), t0); 1094 bs.copy_store_at_16(Address(d, 2 * unit), t1, t2); 1095 bs.copy_store_at_16(Address(d, 4 * unit), t3, t4); 1096 bs.copy_store_at_16(Address(d, 6 * unit), t5, t6); 1097 bs.copy_store_at_8(Address(__ pre(d, 8 * unit)), t7); 1098 } else { 1099 bs.copy_store_at_8(Address(d, 1 * unit), t1); 1100 bs.copy_store_at_16(Address(d, 3 * unit), t3, t0); 1101 bs.copy_store_at_16(Address(d, 5 * unit), t5, t2); 1102 bs.copy_store_at_16(Address(d, 7 * unit), t7, t4); 1103 bs.copy_store_at_8(Address(__ pre(d, 8 * unit)), t6); 1104 } 1105 // now we need to copy any remaining part block which may 1106 // include a 4 word block subblock and/or a 2 word subblock. 1107 // bits 2 and 1 in the count are the tell-tale for whether we 1108 // have each such subblock 1109 { 1110 Label L1, L2; 1111 __ tbz(count, exact_log2(4), L1); 1112 // this is the same as above but copying only 4 longs hence 1113 // with only one intervening stp between the str instructions 1114 // but note that the offsets and registers still follow the 1115 // same pattern 1116 bs.copy_load_at_16(t0, t1, Address(s, 2 * unit)); 1117 bs.copy_load_at_16(t2, t3, Address(__ pre(s, 4 * unit))); 1118 if (direction == copy_forwards) { 1119 bs.copy_store_at_8(Address(d, 1 * unit), t0); 1120 bs.copy_store_at_16(Address(d, 2 * unit), t1, t2); 1121 bs.copy_store_at_8(Address(__ pre(d, 4 * unit)), t3); 1122 } else { 1123 bs.copy_store_at_8(Address(d, 1 * unit), t1); 1124 bs.copy_store_at_16(Address(d, 3 * unit), t3, t0); 1125 bs.copy_store_at_8(Address(__ pre(d, 4 * unit)), t2); 1126 } 1127 __ bind(L1); 1128 1129 __ tbz(count, 1, L2); 1130 // this is the same as above but copying only 2 longs hence 1131 // there is no intervening stp between the str instructions 1132 // but note that the offset and register patterns are still 1133 // the same 1134 bs.copy_load_at_16(t0, t1, Address(__ pre(s, 2 * unit))); 1135 if (direction == copy_forwards) { 1136 bs.copy_store_at_8(Address(d, 1 * unit), t0); 1137 bs.copy_store_at_8(Address(__ pre(d, 2 * unit)), t1); 1138 } else { 1139 bs.copy_store_at_8(Address(d, 1 * unit), t1); 1140 bs.copy_store_at_8(Address(__ pre(d, 2 * unit)), t0); 1141 } 1142 __ bind(L2); 1143 1144 // for forwards copy we need to re-adjust the offsets we 1145 // applied so that s and d are follow the last words written 1146 1147 if (direction == copy_forwards) { 1148 __ add(s, s, 16); 1149 __ add(d, d, 8); 1150 } 1151 1152 } 1153 1154 __ ret(lr); 1155 } 1156 } 1157 1158 // Small copy: less than 16 bytes. 1159 // 1160 // NB: Ignores all of the bits of count which represent more than 15 1161 // bytes, so a caller doesn't have to mask them. 1162 1163 void copy_memory_small(DecoratorSet decorators, BasicType type, Register s, Register d, Register count, int step) { 1164 bool is_backwards = step < 0; 1165 size_t granularity = uabs(step); 1166 int direction = is_backwards ? -1 : 1; 1167 1168 Label Lword, Lint, Lshort, Lbyte; 1169 1170 assert(granularity 1171 && granularity <= sizeof (jlong), "Impossible granularity in copy_memory_small"); 1172 1173 const Register t0 = r3; 1174 const Register gct1 = rscratch1, gct2 = rscratch2, gct3 = r10; 1175 ArrayCopyBarrierSetHelper bs(_masm, decorators, type, gct1, gct2, gct3, fnoreg, fnoreg, fnoreg); 1176 1177 // ??? I don't know if this bit-test-and-branch is the right thing 1178 // to do. It does a lot of jumping, resulting in several 1179 // mispredicted branches. It might make more sense to do this 1180 // with something like Duff's device with a single computed branch. 1181 1182 __ tbz(count, 3 - exact_log2(granularity), Lword); 1183 bs.copy_load_at_8(t0, Address(__ adjust(s, direction * wordSize, is_backwards))); 1184 bs.copy_store_at_8(Address(__ adjust(d, direction * wordSize, is_backwards)), t0); 1185 __ bind(Lword); 1186 1187 if (granularity <= sizeof (jint)) { 1188 __ tbz(count, 2 - exact_log2(granularity), Lint); 1189 __ ldrw(t0, Address(__ adjust(s, sizeof (jint) * direction, is_backwards))); 1190 __ strw(t0, Address(__ adjust(d, sizeof (jint) * direction, is_backwards))); 1191 __ bind(Lint); 1192 } 1193 1194 if (granularity <= sizeof (jshort)) { 1195 __ tbz(count, 1 - exact_log2(granularity), Lshort); 1196 __ ldrh(t0, Address(__ adjust(s, sizeof (jshort) * direction, is_backwards))); 1197 __ strh(t0, Address(__ adjust(d, sizeof (jshort) * direction, is_backwards))); 1198 __ bind(Lshort); 1199 } 1200 1201 if (granularity <= sizeof (jbyte)) { 1202 __ tbz(count, 0, Lbyte); 1203 __ ldrb(t0, Address(__ adjust(s, sizeof (jbyte) * direction, is_backwards))); 1204 __ strb(t0, Address(__ adjust(d, sizeof (jbyte) * direction, is_backwards))); 1205 __ bind(Lbyte); 1206 } 1207 } 1208 1209 Label copy_f, copy_b; 1210 Label copy_obj_f, copy_obj_b; 1211 Label copy_obj_uninit_f, copy_obj_uninit_b; 1212 1213 // All-singing all-dancing memory copy. 1214 // 1215 // Copy count units of memory from s to d. The size of a unit is 1216 // step, which can be positive or negative depending on the direction 1217 // of copy. If is_aligned is false, we align the source address. 1218 // 1219 1220 void copy_memory(DecoratorSet decorators, BasicType type, bool is_aligned, 1221 Register s, Register d, Register count, int step) { 1222 copy_direction direction = step < 0 ? copy_backwards : copy_forwards; 1223 bool is_backwards = step < 0; 1224 unsigned int granularity = uabs(step); 1225 const Register t0 = r3, t1 = r4; 1226 1227 // <= 80 (or 96 for SIMD) bytes do inline. Direction doesn't matter because we always 1228 // load all the data before writing anything 1229 Label copy4, copy8, copy16, copy32, copy80, copy_big, finish; 1230 const Register t2 = r5, t3 = r6, t4 = r7, t5 = r11; 1231 const Register t6 = r12, t7 = r13, t8 = r14, t9 = r15; 1232 const Register send = r17, dend = r16; 1233 const Register gct1 = rscratch1, gct2 = rscratch2, gct3 = r10; 1234 const FloatRegister gcvt1 = v6, gcvt2 = v7, gcvt3 = v16; // Note that v8-v15 are callee saved 1235 ArrayCopyBarrierSetHelper bs(_masm, decorators, type, gct1, gct2, gct3, gcvt1, gcvt2, gcvt3); 1236 1237 if (PrefetchCopyIntervalInBytes > 0) 1238 __ prfm(Address(s, 0), PLDL1KEEP); 1239 __ cmp(count, u1((UseSIMDForMemoryOps ? 96:80)/granularity)); 1240 __ br(Assembler::HI, copy_big); 1241 1242 __ lea(send, Address(s, count, Address::lsl(exact_log2(granularity)))); 1243 __ lea(dend, Address(d, count, Address::lsl(exact_log2(granularity)))); 1244 1245 __ cmp(count, u1(16/granularity)); 1246 __ br(Assembler::LS, copy16); 1247 1248 __ cmp(count, u1(64/granularity)); 1249 __ br(Assembler::HI, copy80); 1250 1251 __ cmp(count, u1(32/granularity)); 1252 __ br(Assembler::LS, copy32); 1253 1254 // 33..64 bytes 1255 if (UseSIMDForMemoryOps) { 1256 bs.copy_load_at_32(v0, v1, Address(s, 0)); 1257 bs.copy_load_at_32(v2, v3, Address(send, -32)); 1258 bs.copy_store_at_32(Address(d, 0), v0, v1); 1259 bs.copy_store_at_32(Address(dend, -32), v2, v3); 1260 } else { 1261 bs.copy_load_at_16(t0, t1, Address(s, 0)); 1262 bs.copy_load_at_16(t2, t3, Address(s, 16)); 1263 bs.copy_load_at_16(t4, t5, Address(send, -32)); 1264 bs.copy_load_at_16(t6, t7, Address(send, -16)); 1265 1266 bs.copy_store_at_16(Address(d, 0), t0, t1); 1267 bs.copy_store_at_16(Address(d, 16), t2, t3); 1268 bs.copy_store_at_16(Address(dend, -32), t4, t5); 1269 bs.copy_store_at_16(Address(dend, -16), t6, t7); 1270 } 1271 __ b(finish); 1272 1273 // 17..32 bytes 1274 __ bind(copy32); 1275 bs.copy_load_at_16(t0, t1, Address(s, 0)); 1276 bs.copy_load_at_16(t6, t7, Address(send, -16)); 1277 1278 bs.copy_store_at_16(Address(d, 0), t0, t1); 1279 bs.copy_store_at_16(Address(dend, -16), t6, t7); 1280 __ b(finish); 1281 1282 // 65..80/96 bytes 1283 // (96 bytes if SIMD because we do 32 byes per instruction) 1284 __ bind(copy80); 1285 if (UseSIMDForMemoryOps) { 1286 bs.copy_load_at_32(v0, v1, Address(s, 0)); 1287 bs.copy_load_at_32(v2, v3, Address(s, 32)); 1288 // Unaligned pointers can be an issue for copying. 1289 // The issue has more chances to happen when granularity of data is 1290 // less than 4(sizeof(jint)). Pointers for arrays of jint are at least 1291 // 4 byte aligned. Pointers for arrays of jlong are 8 byte aligned. 1292 // The most performance drop has been seen for the range 65-80 bytes. 1293 // For such cases using the pair of ldp/stp instead of the third pair of 1294 // ldpq/stpq fixes the performance issue. 1295 if (granularity < sizeof (jint)) { 1296 Label copy96; 1297 __ cmp(count, u1(80/granularity)); 1298 __ br(Assembler::HI, copy96); 1299 bs.copy_load_at_16(t0, t1, Address(send, -16)); 1300 1301 bs.copy_store_at_32(Address(d, 0), v0, v1); 1302 bs.copy_store_at_32(Address(d, 32), v2, v3); 1303 1304 bs.copy_store_at_16(Address(dend, -16), t0, t1); 1305 __ b(finish); 1306 1307 __ bind(copy96); 1308 } 1309 bs.copy_load_at_32(v4, v5, Address(send, -32)); 1310 1311 bs.copy_store_at_32(Address(d, 0), v0, v1); 1312 bs.copy_store_at_32(Address(d, 32), v2, v3); 1313 1314 bs.copy_store_at_32(Address(dend, -32), v4, v5); 1315 } else { 1316 bs.copy_load_at_16(t0, t1, Address(s, 0)); 1317 bs.copy_load_at_16(t2, t3, Address(s, 16)); 1318 bs.copy_load_at_16(t4, t5, Address(s, 32)); 1319 bs.copy_load_at_16(t6, t7, Address(s, 48)); 1320 bs.copy_load_at_16(t8, t9, Address(send, -16)); 1321 1322 bs.copy_store_at_16(Address(d, 0), t0, t1); 1323 bs.copy_store_at_16(Address(d, 16), t2, t3); 1324 bs.copy_store_at_16(Address(d, 32), t4, t5); 1325 bs.copy_store_at_16(Address(d, 48), t6, t7); 1326 bs.copy_store_at_16(Address(dend, -16), t8, t9); 1327 } 1328 __ b(finish); 1329 1330 // 0..16 bytes 1331 __ bind(copy16); 1332 __ cmp(count, u1(8/granularity)); 1333 __ br(Assembler::LO, copy8); 1334 1335 // 8..16 bytes 1336 bs.copy_load_at_8(t0, Address(s, 0)); 1337 bs.copy_load_at_8(t1, Address(send, -8)); 1338 bs.copy_store_at_8(Address(d, 0), t0); 1339 bs.copy_store_at_8(Address(dend, -8), t1); 1340 __ b(finish); 1341 1342 if (granularity < 8) { 1343 // 4..7 bytes 1344 __ bind(copy8); 1345 __ tbz(count, 2 - exact_log2(granularity), copy4); 1346 __ ldrw(t0, Address(s, 0)); 1347 __ ldrw(t1, Address(send, -4)); 1348 __ strw(t0, Address(d, 0)); 1349 __ strw(t1, Address(dend, -4)); 1350 __ b(finish); 1351 if (granularity < 4) { 1352 // 0..3 bytes 1353 __ bind(copy4); 1354 __ cbz(count, finish); // get rid of 0 case 1355 if (granularity == 2) { 1356 __ ldrh(t0, Address(s, 0)); 1357 __ strh(t0, Address(d, 0)); 1358 } else { // granularity == 1 1359 // Now 1..3 bytes. Handle the 1 and 2 byte case by copying 1360 // the first and last byte. 1361 // Handle the 3 byte case by loading and storing base + count/2 1362 // (count == 1 (s+0)->(d+0), count == 2,3 (s+1) -> (d+1)) 1363 // This does means in the 1 byte case we load/store the same 1364 // byte 3 times. 1365 __ lsr(count, count, 1); 1366 __ ldrb(t0, Address(s, 0)); 1367 __ ldrb(t1, Address(send, -1)); 1368 __ ldrb(t2, Address(s, count)); 1369 __ strb(t0, Address(d, 0)); 1370 __ strb(t1, Address(dend, -1)); 1371 __ strb(t2, Address(d, count)); 1372 } 1373 __ b(finish); 1374 } 1375 } 1376 1377 __ bind(copy_big); 1378 if (is_backwards) { 1379 __ lea(s, Address(s, count, Address::lsl(exact_log2(-step)))); 1380 __ lea(d, Address(d, count, Address::lsl(exact_log2(-step)))); 1381 } 1382 1383 // Now we've got the small case out of the way we can align the 1384 // source address on a 2-word boundary. 1385 1386 // Here we will materialize a count in r15, which is used by copy_memory_small 1387 // and the various generate_copy_longs stubs that we use for 2 word aligned bytes. 1388 // Up until here, we have used t9, which aliases r15, but from here on, that register 1389 // can not be used as a temp register, as it contains the count. 1390 1391 Label aligned; 1392 1393 if (is_aligned) { 1394 // We may have to adjust by 1 word to get s 2-word-aligned. 1395 __ tbz(s, exact_log2(wordSize), aligned); 1396 bs.copy_load_at_8(t0, Address(__ adjust(s, direction * wordSize, is_backwards))); 1397 bs.copy_store_at_8(Address(__ adjust(d, direction * wordSize, is_backwards)), t0); 1398 __ sub(count, count, wordSize/granularity); 1399 } else { 1400 if (is_backwards) { 1401 __ andr(r15, s, 2 * wordSize - 1); 1402 } else { 1403 __ neg(r15, s); 1404 __ andr(r15, r15, 2 * wordSize - 1); 1405 } 1406 // r15 is the byte adjustment needed to align s. 1407 __ cbz(r15, aligned); 1408 int shift = exact_log2(granularity); 1409 if (shift > 0) { 1410 __ lsr(r15, r15, shift); 1411 } 1412 __ sub(count, count, r15); 1413 1414 #if 0 1415 // ?? This code is only correct for a disjoint copy. It may or 1416 // may not make sense to use it in that case. 1417 1418 // Copy the first pair; s and d may not be aligned. 1419 __ ldp(t0, t1, Address(s, is_backwards ? -2 * wordSize : 0)); 1420 __ stp(t0, t1, Address(d, is_backwards ? -2 * wordSize : 0)); 1421 1422 // Align s and d, adjust count 1423 if (is_backwards) { 1424 __ sub(s, s, r15); 1425 __ sub(d, d, r15); 1426 } else { 1427 __ add(s, s, r15); 1428 __ add(d, d, r15); 1429 } 1430 #else 1431 copy_memory_small(decorators, type, s, d, r15, step); 1432 #endif 1433 } 1434 1435 __ bind(aligned); 1436 1437 // s is now 2-word-aligned. 1438 1439 // We have a count of units and some trailing bytes. Adjust the 1440 // count and do a bulk copy of words. If the shift is zero 1441 // perform a move instead to benefit from zero latency moves. 1442 int shift = exact_log2(wordSize/granularity); 1443 if (shift > 0) { 1444 __ lsr(r15, count, shift); 1445 } else { 1446 __ mov(r15, count); 1447 } 1448 if (direction == copy_forwards) { 1449 if (type != T_OBJECT) { 1450 __ bl(copy_f); 1451 } else if ((decorators & IS_DEST_UNINITIALIZED) != 0) { 1452 __ bl(copy_obj_uninit_f); 1453 } else { 1454 __ bl(copy_obj_f); 1455 } 1456 } else { 1457 if (type != T_OBJECT) { 1458 __ bl(copy_b); 1459 } else if ((decorators & IS_DEST_UNINITIALIZED) != 0) { 1460 __ bl(copy_obj_uninit_b); 1461 } else { 1462 __ bl(copy_obj_b); 1463 } 1464 } 1465 1466 // And the tail. 1467 copy_memory_small(decorators, type, s, d, count, step); 1468 1469 if (granularity >= 8) __ bind(copy8); 1470 if (granularity >= 4) __ bind(copy4); 1471 __ bind(finish); 1472 } 1473 1474 1475 void clobber_registers() { 1476 #ifdef ASSERT 1477 RegSet clobbered 1478 = MacroAssembler::call_clobbered_gp_registers() - rscratch1; 1479 __ mov(rscratch1, (uint64_t)0xdeadbeef); 1480 __ orr(rscratch1, rscratch1, rscratch1, Assembler::LSL, 32); 1481 for (RegSetIterator<Register> it = clobbered.begin(); *it != noreg; ++it) { 1482 __ mov(*it, rscratch1); 1483 } 1484 #endif 1485 1486 } 1487 1488 // Scan over array at a for count oops, verifying each one. 1489 // Preserves a and count, clobbers rscratch1 and rscratch2. 1490 void verify_oop_array (int size, Register a, Register count, Register temp) { 1491 Label loop, end; 1492 __ mov(rscratch1, a); 1493 __ mov(rscratch2, zr); 1494 __ bind(loop); 1495 __ cmp(rscratch2, count); 1496 __ br(Assembler::HS, end); 1497 if (size == wordSize) { 1498 __ ldr(temp, Address(a, rscratch2, Address::lsl(exact_log2(size)))); 1499 __ verify_oop(temp); 1500 } else { 1501 __ ldrw(temp, Address(a, rscratch2, Address::lsl(exact_log2(size)))); 1502 __ decode_heap_oop(temp); // calls verify_oop 1503 } 1504 __ add(rscratch2, rscratch2, 1); 1505 __ b(loop); 1506 __ bind(end); 1507 } 1508 1509 // Arguments: 1510 // stub_id - is used to name the stub and identify all details of 1511 // how to perform the copy. 1512 // 1513 // entry - is assigned to the stub's post push entry point unless 1514 // it is null 1515 // 1516 // Inputs: 1517 // c_rarg0 - source array address 1518 // c_rarg1 - destination array address 1519 // c_rarg2 - element count, treated as ssize_t, can be zero 1520 // 1521 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let 1522 // the hardware handle it. The two dwords within qwords that span 1523 // cache line boundaries will still be loaded and stored atomically. 1524 // 1525 // Side Effects: entry is set to the (post push) entry point so it 1526 // can be used by the corresponding conjoint copy 1527 // method 1528 // 1529 address generate_disjoint_copy(StubGenStubId stub_id, address *entry) { 1530 Register s = c_rarg0, d = c_rarg1, count = c_rarg2; 1531 RegSet saved_reg = RegSet::of(s, d, count); 1532 int size; 1533 bool aligned; 1534 bool is_oop; 1535 bool dest_uninitialized; 1536 switch (stub_id) { 1537 case jbyte_disjoint_arraycopy_id: 1538 size = sizeof(jbyte); 1539 aligned = false; 1540 is_oop = false; 1541 dest_uninitialized = false; 1542 break; 1543 case arrayof_jbyte_disjoint_arraycopy_id: 1544 size = sizeof(jbyte); 1545 aligned = true; 1546 is_oop = false; 1547 dest_uninitialized = false; 1548 break; 1549 case jshort_disjoint_arraycopy_id: 1550 size = sizeof(jshort); 1551 aligned = false; 1552 is_oop = false; 1553 dest_uninitialized = false; 1554 break; 1555 case arrayof_jshort_disjoint_arraycopy_id: 1556 size = sizeof(jshort); 1557 aligned = true; 1558 is_oop = false; 1559 dest_uninitialized = false; 1560 break; 1561 case jint_disjoint_arraycopy_id: 1562 size = sizeof(jint); 1563 aligned = false; 1564 is_oop = false; 1565 dest_uninitialized = false; 1566 break; 1567 case arrayof_jint_disjoint_arraycopy_id: 1568 size = sizeof(jint); 1569 aligned = true; 1570 is_oop = false; 1571 dest_uninitialized = false; 1572 break; 1573 case jlong_disjoint_arraycopy_id: 1574 // since this is always aligned we can (should!) use the same 1575 // stub as for case arrayof_jlong_disjoint_arraycopy 1576 ShouldNotReachHere(); 1577 break; 1578 case arrayof_jlong_disjoint_arraycopy_id: 1579 size = sizeof(jlong); 1580 aligned = true; 1581 is_oop = false; 1582 dest_uninitialized = false; 1583 break; 1584 case oop_disjoint_arraycopy_id: 1585 size = UseCompressedOops ? sizeof (jint) : sizeof (jlong); 1586 aligned = !UseCompressedOops; 1587 is_oop = true; 1588 dest_uninitialized = false; 1589 break; 1590 case arrayof_oop_disjoint_arraycopy_id: 1591 size = UseCompressedOops ? sizeof (jint) : sizeof (jlong); 1592 aligned = !UseCompressedOops; 1593 is_oop = true; 1594 dest_uninitialized = false; 1595 break; 1596 case oop_disjoint_arraycopy_uninit_id: 1597 size = UseCompressedOops ? sizeof (jint) : sizeof (jlong); 1598 aligned = !UseCompressedOops; 1599 is_oop = true; 1600 dest_uninitialized = true; 1601 break; 1602 case arrayof_oop_disjoint_arraycopy_uninit_id: 1603 size = UseCompressedOops ? sizeof (jint) : sizeof (jlong); 1604 aligned = !UseCompressedOops; 1605 is_oop = true; 1606 dest_uninitialized = true; 1607 break; 1608 default: 1609 ShouldNotReachHere(); 1610 break; 1611 } 1612 1613 __ align(CodeEntryAlignment); 1614 StubCodeMark mark(this, stub_id); 1615 address start = __ pc(); 1616 __ enter(); 1617 1618 if (entry != nullptr) { 1619 *entry = __ pc(); 1620 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 1621 BLOCK_COMMENT("Entry:"); 1622 } 1623 1624 DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT; 1625 if (dest_uninitialized) { 1626 decorators |= IS_DEST_UNINITIALIZED; 1627 } 1628 if (aligned) { 1629 decorators |= ARRAYCOPY_ALIGNED; 1630 } 1631 1632 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1633 bs->arraycopy_prologue(_masm, decorators, is_oop, s, d, count, saved_reg); 1634 1635 if (is_oop) { 1636 // save regs before copy_memory 1637 __ push(RegSet::of(d, count), sp); 1638 } 1639 { 1640 // UnsafeMemoryAccess page error: continue after unsafe access 1641 bool add_entry = !is_oop && (!aligned || sizeof(jlong) == size); 1642 UnsafeMemoryAccessMark umam(this, add_entry, true); 1643 copy_memory(decorators, is_oop ? T_OBJECT : T_BYTE, aligned, s, d, count, size); 1644 } 1645 1646 if (is_oop) { 1647 __ pop(RegSet::of(d, count), sp); 1648 if (VerifyOops) 1649 verify_oop_array(size, d, count, r16); 1650 } 1651 1652 bs->arraycopy_epilogue(_masm, decorators, is_oop, d, count, rscratch1, RegSet()); 1653 1654 __ leave(); 1655 __ mov(r0, zr); // return 0 1656 __ ret(lr); 1657 return start; 1658 } 1659 1660 // Arguments: 1661 // stub_id - is used to name the stub and identify all details of 1662 // how to perform the copy. 1663 // 1664 // nooverlap_target - identifes the (post push) entry for the 1665 // corresponding disjoint copy routine which can be 1666 // jumped to if the ranges do not actually overlap 1667 // 1668 // entry - is assigned to the stub's post push entry point unless 1669 // it is null 1670 // 1671 // 1672 // Inputs: 1673 // c_rarg0 - source array address 1674 // c_rarg1 - destination array address 1675 // c_rarg2 - element count, treated as ssize_t, can be zero 1676 // 1677 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let 1678 // the hardware handle it. The two dwords within qwords that span 1679 // cache line boundaries will still be loaded and stored atomically. 1680 // 1681 // Side Effects: 1682 // entry is set to the no-overlap entry point so it can be used by 1683 // some other conjoint copy method 1684 // 1685 address generate_conjoint_copy(StubGenStubId stub_id, address nooverlap_target, address *entry) { 1686 Register s = c_rarg0, d = c_rarg1, count = c_rarg2; 1687 RegSet saved_regs = RegSet::of(s, d, count); 1688 int size; 1689 bool aligned; 1690 bool is_oop; 1691 bool dest_uninitialized; 1692 switch (stub_id) { 1693 case jbyte_arraycopy_id: 1694 size = sizeof(jbyte); 1695 aligned = false; 1696 is_oop = false; 1697 dest_uninitialized = false; 1698 break; 1699 case arrayof_jbyte_arraycopy_id: 1700 size = sizeof(jbyte); 1701 aligned = true; 1702 is_oop = false; 1703 dest_uninitialized = false; 1704 break; 1705 case jshort_arraycopy_id: 1706 size = sizeof(jshort); 1707 aligned = false; 1708 is_oop = false; 1709 dest_uninitialized = false; 1710 break; 1711 case arrayof_jshort_arraycopy_id: 1712 size = sizeof(jshort); 1713 aligned = true; 1714 is_oop = false; 1715 dest_uninitialized = false; 1716 break; 1717 case jint_arraycopy_id: 1718 size = sizeof(jint); 1719 aligned = false; 1720 is_oop = false; 1721 dest_uninitialized = false; 1722 break; 1723 case arrayof_jint_arraycopy_id: 1724 size = sizeof(jint); 1725 aligned = true; 1726 is_oop = false; 1727 dest_uninitialized = false; 1728 break; 1729 case jlong_arraycopy_id: 1730 // since this is always aligned we can (should!) use the same 1731 // stub as for case arrayof_jlong_disjoint_arraycopy 1732 ShouldNotReachHere(); 1733 break; 1734 case arrayof_jlong_arraycopy_id: 1735 size = sizeof(jlong); 1736 aligned = true; 1737 is_oop = false; 1738 dest_uninitialized = false; 1739 break; 1740 case oop_arraycopy_id: 1741 size = UseCompressedOops ? sizeof (jint) : sizeof (jlong); 1742 aligned = !UseCompressedOops; 1743 is_oop = true; 1744 dest_uninitialized = false; 1745 break; 1746 case arrayof_oop_arraycopy_id: 1747 size = UseCompressedOops ? sizeof (jint) : sizeof (jlong); 1748 aligned = !UseCompressedOops; 1749 is_oop = true; 1750 dest_uninitialized = false; 1751 break; 1752 case oop_arraycopy_uninit_id: 1753 size = UseCompressedOops ? sizeof (jint) : sizeof (jlong); 1754 aligned = !UseCompressedOops; 1755 is_oop = true; 1756 dest_uninitialized = true; 1757 break; 1758 case arrayof_oop_arraycopy_uninit_id: 1759 size = UseCompressedOops ? sizeof (jint) : sizeof (jlong); 1760 aligned = !UseCompressedOops; 1761 is_oop = true; 1762 dest_uninitialized = true; 1763 break; 1764 default: 1765 ShouldNotReachHere(); 1766 } 1767 1768 StubCodeMark mark(this, stub_id); 1769 address start = __ pc(); 1770 __ enter(); 1771 1772 if (entry != nullptr) { 1773 *entry = __ pc(); 1774 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 1775 BLOCK_COMMENT("Entry:"); 1776 } 1777 1778 // use fwd copy when (d-s) above_equal (count*size) 1779 __ sub(rscratch1, d, s); 1780 __ cmp(rscratch1, count, Assembler::LSL, exact_log2(size)); 1781 __ br(Assembler::HS, nooverlap_target); 1782 1783 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1784 if (dest_uninitialized) { 1785 decorators |= IS_DEST_UNINITIALIZED; 1786 } 1787 if (aligned) { 1788 decorators |= ARRAYCOPY_ALIGNED; 1789 } 1790 1791 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1792 bs->arraycopy_prologue(_masm, decorators, is_oop, s, d, count, saved_regs); 1793 1794 if (is_oop) { 1795 // save regs before copy_memory 1796 __ push(RegSet::of(d, count), sp); 1797 } 1798 { 1799 // UnsafeMemoryAccess page error: continue after unsafe access 1800 bool add_entry = !is_oop && (!aligned || sizeof(jlong) == size); 1801 UnsafeMemoryAccessMark umam(this, add_entry, true); 1802 copy_memory(decorators, is_oop ? T_OBJECT : T_BYTE, aligned, s, d, count, -size); 1803 } 1804 if (is_oop) { 1805 __ pop(RegSet::of(d, count), sp); 1806 if (VerifyOops) 1807 verify_oop_array(size, d, count, r16); 1808 } 1809 bs->arraycopy_epilogue(_masm, decorators, is_oop, d, count, rscratch1, RegSet()); 1810 __ leave(); 1811 __ mov(r0, zr); // return 0 1812 __ ret(lr); 1813 return start; 1814 } 1815 1816 // Helper for generating a dynamic type check. 1817 // Smashes rscratch1, rscratch2. 1818 void generate_type_check(Register sub_klass, 1819 Register super_check_offset, 1820 Register super_klass, 1821 Register temp1, 1822 Register temp2, 1823 Register result, 1824 Label& L_success) { 1825 assert_different_registers(sub_klass, super_check_offset, super_klass); 1826 1827 BLOCK_COMMENT("type_check:"); 1828 1829 Label L_miss; 1830 1831 __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, nullptr, 1832 super_check_offset); 1833 __ check_klass_subtype_slow_path(sub_klass, super_klass, temp1, temp2, &L_success, nullptr); 1834 1835 // Fall through on failure! 1836 __ BIND(L_miss); 1837 } 1838 1839 // 1840 // Generate checkcasting array copy stub 1841 // 1842 // Input: 1843 // c_rarg0 - source array address 1844 // c_rarg1 - destination array address 1845 // c_rarg2 - element count, treated as ssize_t, can be zero 1846 // c_rarg3 - size_t ckoff (super_check_offset) 1847 // c_rarg4 - oop ckval (super_klass) 1848 // 1849 // Output: 1850 // r0 == 0 - success 1851 // r0 == -1^K - failure, where K is partial transfer count 1852 // 1853 address generate_checkcast_copy(StubGenStubId stub_id, address *entry) { 1854 bool dest_uninitialized; 1855 switch (stub_id) { 1856 case checkcast_arraycopy_id: 1857 dest_uninitialized = false; 1858 break; 1859 case checkcast_arraycopy_uninit_id: 1860 dest_uninitialized = true; 1861 break; 1862 default: 1863 ShouldNotReachHere(); 1864 } 1865 1866 Label L_load_element, L_store_element, L_do_card_marks, L_done, L_done_pop; 1867 1868 // Input registers (after setup_arg_regs) 1869 const Register from = c_rarg0; // source array address 1870 const Register to = c_rarg1; // destination array address 1871 const Register count = c_rarg2; // elementscount 1872 const Register ckoff = c_rarg3; // super_check_offset 1873 const Register ckval = c_rarg4; // super_klass 1874 1875 RegSet wb_pre_saved_regs = RegSet::range(c_rarg0, c_rarg4); 1876 RegSet wb_post_saved_regs = RegSet::of(count); 1877 1878 // Registers used as temps (r19, r20, r21, r22 are save-on-entry) 1879 const Register copied_oop = r22; // actual oop copied 1880 const Register count_save = r21; // orig elementscount 1881 const Register start_to = r20; // destination array start address 1882 const Register r19_klass = r19; // oop._klass 1883 1884 // Registers used as gc temps (r5, r6, r7 are save-on-call) 1885 const Register gct1 = r5, gct2 = r6, gct3 = r7; 1886 1887 //--------------------------------------------------------------- 1888 // Assembler stub will be used for this call to arraycopy 1889 // if the two arrays are subtypes of Object[] but the 1890 // destination array type is not equal to or a supertype 1891 // of the source type. Each element must be separately 1892 // checked. 1893 1894 assert_different_registers(from, to, count, ckoff, ckval, start_to, 1895 copied_oop, r19_klass, count_save); 1896 1897 __ align(CodeEntryAlignment); 1898 StubCodeMark mark(this, stub_id); 1899 address start = __ pc(); 1900 1901 __ enter(); // required for proper stackwalking of RuntimeStub frame 1902 1903 #ifdef ASSERT 1904 // caller guarantees that the arrays really are different 1905 // otherwise, we would have to make conjoint checks 1906 { Label L; 1907 __ b(L); // conjoint check not yet implemented 1908 __ stop("checkcast_copy within a single array"); 1909 __ bind(L); 1910 } 1911 #endif //ASSERT 1912 1913 // Caller of this entry point must set up the argument registers. 1914 if (entry != nullptr) { 1915 *entry = __ pc(); 1916 BLOCK_COMMENT("Entry:"); 1917 } 1918 1919 // Empty array: Nothing to do. 1920 __ cbz(count, L_done); 1921 __ push(RegSet::of(r19, r20, r21, r22), sp); 1922 1923 #ifdef ASSERT 1924 BLOCK_COMMENT("assert consistent ckoff/ckval"); 1925 // The ckoff and ckval must be mutually consistent, 1926 // even though caller generates both. 1927 { Label L; 1928 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1929 __ ldrw(start_to, Address(ckval, sco_offset)); 1930 __ cmpw(ckoff, start_to); 1931 __ br(Assembler::EQ, L); 1932 __ stop("super_check_offset inconsistent"); 1933 __ bind(L); 1934 } 1935 #endif //ASSERT 1936 1937 DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_CHECKCAST | ARRAYCOPY_DISJOINT; 1938 bool is_oop = true; 1939 int element_size = UseCompressedOops ? 4 : 8; 1940 if (dest_uninitialized) { 1941 decorators |= IS_DEST_UNINITIALIZED; 1942 } 1943 1944 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1945 bs->arraycopy_prologue(_masm, decorators, is_oop, from, to, count, wb_pre_saved_regs); 1946 1947 // save the original count 1948 __ mov(count_save, count); 1949 1950 // Copy from low to high addresses 1951 __ mov(start_to, to); // Save destination array start address 1952 __ b(L_load_element); 1953 1954 // ======== begin loop ======== 1955 // (Loop is rotated; its entry is L_load_element.) 1956 // Loop control: 1957 // for (; count != 0; count--) { 1958 // copied_oop = load_heap_oop(from++); 1959 // ... generate_type_check ...; 1960 // store_heap_oop(to++, copied_oop); 1961 // } 1962 __ align(OptoLoopAlignment); 1963 1964 __ BIND(L_store_element); 1965 bs->copy_store_at(_masm, decorators, T_OBJECT, element_size, 1966 __ post(to, element_size), copied_oop, noreg, 1967 gct1, gct2, gct3); 1968 __ sub(count, count, 1); 1969 __ cbz(count, L_do_card_marks); 1970 1971 // ======== loop entry is here ======== 1972 __ BIND(L_load_element); 1973 bs->copy_load_at(_masm, decorators, T_OBJECT, element_size, 1974 copied_oop, noreg, __ post(from, element_size), 1975 gct1); 1976 __ cbz(copied_oop, L_store_element); 1977 1978 __ load_klass(r19_klass, copied_oop);// query the object klass 1979 1980 BLOCK_COMMENT("type_check:"); 1981 generate_type_check(/*sub_klass*/r19_klass, 1982 /*super_check_offset*/ckoff, 1983 /*super_klass*/ckval, 1984 /*r_array_base*/gct1, 1985 /*temp2*/gct2, 1986 /*result*/r10, L_store_element); 1987 1988 // Fall through on failure! 1989 1990 // ======== end loop ======== 1991 1992 // It was a real error; we must depend on the caller to finish the job. 1993 // Register count = remaining oops, count_orig = total oops. 1994 // Emit GC store barriers for the oops we have copied and report 1995 // their number to the caller. 1996 1997 __ subs(count, count_save, count); // K = partially copied oop count 1998 __ eon(count, count, zr); // report (-1^K) to caller 1999 __ br(Assembler::EQ, L_done_pop); 2000 2001 __ BIND(L_do_card_marks); 2002 bs->arraycopy_epilogue(_masm, decorators, is_oop, start_to, count_save, rscratch1, wb_post_saved_regs); 2003 2004 __ bind(L_done_pop); 2005 __ pop(RegSet::of(r19, r20, r21, r22), sp); 2006 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); 2007 2008 __ bind(L_done); 2009 __ mov(r0, count); 2010 __ leave(); 2011 __ ret(lr); 2012 2013 return start; 2014 } 2015 2016 // Perform range checks on the proposed arraycopy. 2017 // Kills temp, but nothing else. 2018 // Also, clean the sign bits of src_pos and dst_pos. 2019 void arraycopy_range_checks(Register src, // source array oop (c_rarg0) 2020 Register src_pos, // source position (c_rarg1) 2021 Register dst, // destination array oo (c_rarg2) 2022 Register dst_pos, // destination position (c_rarg3) 2023 Register length, 2024 Register temp, 2025 Label& L_failed) { 2026 BLOCK_COMMENT("arraycopy_range_checks:"); 2027 2028 assert_different_registers(rscratch1, temp); 2029 2030 // if (src_pos + length > arrayOop(src)->length()) FAIL; 2031 __ ldrw(rscratch1, Address(src, arrayOopDesc::length_offset_in_bytes())); 2032 __ addw(temp, length, src_pos); 2033 __ cmpw(temp, rscratch1); 2034 __ br(Assembler::HI, L_failed); 2035 2036 // if (dst_pos + length > arrayOop(dst)->length()) FAIL; 2037 __ ldrw(rscratch1, Address(dst, arrayOopDesc::length_offset_in_bytes())); 2038 __ addw(temp, length, dst_pos); 2039 __ cmpw(temp, rscratch1); 2040 __ br(Assembler::HI, L_failed); 2041 2042 // Have to clean up high 32 bits of 'src_pos' and 'dst_pos'. 2043 __ movw(src_pos, src_pos); 2044 __ movw(dst_pos, dst_pos); 2045 2046 BLOCK_COMMENT("arraycopy_range_checks done"); 2047 } 2048 2049 // These stubs get called from some dumb test routine. 2050 // I'll write them properly when they're called from 2051 // something that's actually doing something. 2052 static void fake_arraycopy_stub(address src, address dst, int count) { 2053 assert(count == 0, "huh?"); 2054 } 2055 2056 2057 // 2058 // Generate 'unsafe' array copy stub 2059 // Though just as safe as the other stubs, it takes an unscaled 2060 // size_t argument instead of an element count. 2061 // 2062 // Input: 2063 // c_rarg0 - source array address 2064 // c_rarg1 - destination array address 2065 // c_rarg2 - byte count, treated as ssize_t, can be zero 2066 // 2067 // Examines the alignment of the operands and dispatches 2068 // to a long, int, short, or byte copy loop. 2069 // 2070 address generate_unsafe_copy(address byte_copy_entry, 2071 address short_copy_entry, 2072 address int_copy_entry, 2073 address long_copy_entry) { 2074 StubGenStubId stub_id = StubGenStubId::unsafe_arraycopy_id; 2075 2076 Label L_long_aligned, L_int_aligned, L_short_aligned; 2077 Register s = c_rarg0, d = c_rarg1, count = c_rarg2; 2078 2079 __ align(CodeEntryAlignment); 2080 StubCodeMark mark(this, stub_id); 2081 address start = __ pc(); 2082 __ enter(); // required for proper stackwalking of RuntimeStub frame 2083 2084 // bump this on entry, not on exit: 2085 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr); 2086 2087 __ orr(rscratch1, s, d); 2088 __ orr(rscratch1, rscratch1, count); 2089 2090 __ andr(rscratch1, rscratch1, BytesPerLong-1); 2091 __ cbz(rscratch1, L_long_aligned); 2092 __ andr(rscratch1, rscratch1, BytesPerInt-1); 2093 __ cbz(rscratch1, L_int_aligned); 2094 __ tbz(rscratch1, 0, L_short_aligned); 2095 __ b(RuntimeAddress(byte_copy_entry)); 2096 2097 __ BIND(L_short_aligned); 2098 __ lsr(count, count, LogBytesPerShort); // size => short_count 2099 __ b(RuntimeAddress(short_copy_entry)); 2100 __ BIND(L_int_aligned); 2101 __ lsr(count, count, LogBytesPerInt); // size => int_count 2102 __ b(RuntimeAddress(int_copy_entry)); 2103 __ BIND(L_long_aligned); 2104 __ lsr(count, count, LogBytesPerLong); // size => long_count 2105 __ b(RuntimeAddress(long_copy_entry)); 2106 2107 return start; 2108 } 2109 2110 // 2111 // Generate generic array copy stubs 2112 // 2113 // Input: 2114 // c_rarg0 - src oop 2115 // c_rarg1 - src_pos (32-bits) 2116 // c_rarg2 - dst oop 2117 // c_rarg3 - dst_pos (32-bits) 2118 // c_rarg4 - element count (32-bits) 2119 // 2120 // Output: 2121 // r0 == 0 - success 2122 // r0 == -1^K - failure, where K is partial transfer count 2123 // 2124 address generate_generic_copy(address byte_copy_entry, address short_copy_entry, 2125 address int_copy_entry, address oop_copy_entry, 2126 address long_copy_entry, address checkcast_copy_entry) { 2127 StubGenStubId stub_id = StubGenStubId::generic_arraycopy_id; 2128 2129 Label L_failed, L_objArray; 2130 Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs; 2131 2132 // Input registers 2133 const Register src = c_rarg0; // source array oop 2134 const Register src_pos = c_rarg1; // source position 2135 const Register dst = c_rarg2; // destination array oop 2136 const Register dst_pos = c_rarg3; // destination position 2137 const Register length = c_rarg4; 2138 2139 2140 // Registers used as temps 2141 const Register dst_klass = c_rarg5; 2142 2143 __ align(CodeEntryAlignment); 2144 2145 StubCodeMark mark(this, stub_id); 2146 2147 address start = __ pc(); 2148 2149 __ enter(); // required for proper stackwalking of RuntimeStub frame 2150 2151 // bump this on entry, not on exit: 2152 inc_counter_np(SharedRuntime::_generic_array_copy_ctr); 2153 2154 //----------------------------------------------------------------------- 2155 // Assembler stub will be used for this call to arraycopy 2156 // if the following conditions are met: 2157 // 2158 // (1) src and dst must not be null. 2159 // (2) src_pos must not be negative. 2160 // (3) dst_pos must not be negative. 2161 // (4) length must not be negative. 2162 // (5) src klass and dst klass should be the same and not null. 2163 // (6) src and dst should be arrays. 2164 // (7) src_pos + length must not exceed length of src. 2165 // (8) dst_pos + length must not exceed length of dst. 2166 // 2167 2168 // if (src == nullptr) return -1; 2169 __ cbz(src, L_failed); 2170 2171 // if (src_pos < 0) return -1; 2172 __ tbnz(src_pos, 31, L_failed); // i.e. sign bit set 2173 2174 // if (dst == nullptr) return -1; 2175 __ cbz(dst, L_failed); 2176 2177 // if (dst_pos < 0) return -1; 2178 __ tbnz(dst_pos, 31, L_failed); // i.e. sign bit set 2179 2180 // registers used as temp 2181 const Register scratch_length = r16; // elements count to copy 2182 const Register scratch_src_klass = r17; // array klass 2183 const Register lh = r15; // layout helper 2184 2185 // if (length < 0) return -1; 2186 __ movw(scratch_length, length); // length (elements count, 32-bits value) 2187 __ tbnz(scratch_length, 31, L_failed); // i.e. sign bit set 2188 2189 __ load_klass(scratch_src_klass, src); 2190 #ifdef ASSERT 2191 // assert(src->klass() != nullptr); 2192 { 2193 BLOCK_COMMENT("assert klasses not null {"); 2194 Label L1, L2; 2195 __ cbnz(scratch_src_klass, L2); // it is broken if klass is null 2196 __ bind(L1); 2197 __ stop("broken null klass"); 2198 __ bind(L2); 2199 __ load_klass(rscratch1, dst); 2200 __ cbz(rscratch1, L1); // this would be broken also 2201 BLOCK_COMMENT("} assert klasses not null done"); 2202 } 2203 #endif 2204 2205 // Load layout helper (32-bits) 2206 // 2207 // |array_tag| | header_size | element_type | |log2_element_size| 2208 // 32 30 24 16 8 2 0 2209 // 2210 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0 2211 // 2212 2213 const int lh_offset = in_bytes(Klass::layout_helper_offset()); 2214 2215 // Handle objArrays completely differently... 2216 const jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2217 __ ldrw(lh, Address(scratch_src_klass, lh_offset)); 2218 __ movw(rscratch1, objArray_lh); 2219 __ eorw(rscratch2, lh, rscratch1); 2220 __ cbzw(rscratch2, L_objArray); 2221 2222 // if (src->klass() != dst->klass()) return -1; 2223 __ load_klass(rscratch2, dst); 2224 __ eor(rscratch2, rscratch2, scratch_src_klass); 2225 __ cbnz(rscratch2, L_failed); 2226 2227 // if (!src->is_Array()) return -1; 2228 __ tbz(lh, 31, L_failed); // i.e. (lh >= 0) 2229 2230 // At this point, it is known to be a typeArray (array_tag 0x3). 2231 #ifdef ASSERT 2232 { 2233 BLOCK_COMMENT("assert primitive array {"); 2234 Label L; 2235 __ movw(rscratch2, Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift); 2236 __ cmpw(lh, rscratch2); 2237 __ br(Assembler::GE, L); 2238 __ stop("must be a primitive array"); 2239 __ bind(L); 2240 BLOCK_COMMENT("} assert primitive array done"); 2241 } 2242 #endif 2243 2244 arraycopy_range_checks(src, src_pos, dst, dst_pos, scratch_length, 2245 rscratch2, L_failed); 2246 2247 // TypeArrayKlass 2248 // 2249 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize); 2250 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize); 2251 // 2252 2253 const Register rscratch1_offset = rscratch1; // array offset 2254 const Register r15_elsize = lh; // element size 2255 2256 __ ubfx(rscratch1_offset, lh, Klass::_lh_header_size_shift, 2257 exact_log2(Klass::_lh_header_size_mask+1)); // array_offset 2258 __ add(src, src, rscratch1_offset); // src array offset 2259 __ add(dst, dst, rscratch1_offset); // dst array offset 2260 BLOCK_COMMENT("choose copy loop based on element size"); 2261 2262 // next registers should be set before the jump to corresponding stub 2263 const Register from = c_rarg0; // source array address 2264 const Register to = c_rarg1; // destination array address 2265 const Register count = c_rarg2; // elements count 2266 2267 // 'from', 'to', 'count' registers should be set in such order 2268 // since they are the same as 'src', 'src_pos', 'dst'. 2269 2270 assert(Klass::_lh_log2_element_size_shift == 0, "fix this code"); 2271 2272 // The possible values of elsize are 0-3, i.e. exact_log2(element 2273 // size in bytes). We do a simple bitwise binary search. 2274 __ BIND(L_copy_bytes); 2275 __ tbnz(r15_elsize, 1, L_copy_ints); 2276 __ tbnz(r15_elsize, 0, L_copy_shorts); 2277 __ lea(from, Address(src, src_pos));// src_addr 2278 __ lea(to, Address(dst, dst_pos));// dst_addr 2279 __ movw(count, scratch_length); // length 2280 __ b(RuntimeAddress(byte_copy_entry)); 2281 2282 __ BIND(L_copy_shorts); 2283 __ lea(from, Address(src, src_pos, Address::lsl(1)));// src_addr 2284 __ lea(to, Address(dst, dst_pos, Address::lsl(1)));// dst_addr 2285 __ movw(count, scratch_length); // length 2286 __ b(RuntimeAddress(short_copy_entry)); 2287 2288 __ BIND(L_copy_ints); 2289 __ tbnz(r15_elsize, 0, L_copy_longs); 2290 __ lea(from, Address(src, src_pos, Address::lsl(2)));// src_addr 2291 __ lea(to, Address(dst, dst_pos, Address::lsl(2)));// dst_addr 2292 __ movw(count, scratch_length); // length 2293 __ b(RuntimeAddress(int_copy_entry)); 2294 2295 __ BIND(L_copy_longs); 2296 #ifdef ASSERT 2297 { 2298 BLOCK_COMMENT("assert long copy {"); 2299 Label L; 2300 __ andw(lh, lh, Klass::_lh_log2_element_size_mask); // lh -> r15_elsize 2301 __ cmpw(r15_elsize, LogBytesPerLong); 2302 __ br(Assembler::EQ, L); 2303 __ stop("must be long copy, but elsize is wrong"); 2304 __ bind(L); 2305 BLOCK_COMMENT("} assert long copy done"); 2306 } 2307 #endif 2308 __ lea(from, Address(src, src_pos, Address::lsl(3)));// src_addr 2309 __ lea(to, Address(dst, dst_pos, Address::lsl(3)));// dst_addr 2310 __ movw(count, scratch_length); // length 2311 __ b(RuntimeAddress(long_copy_entry)); 2312 2313 // ObjArrayKlass 2314 __ BIND(L_objArray); 2315 // live at this point: scratch_src_klass, scratch_length, src[_pos], dst[_pos] 2316 2317 Label L_plain_copy, L_checkcast_copy; 2318 // test array classes for subtyping 2319 __ load_klass(r15, dst); 2320 __ cmp(scratch_src_klass, r15); // usual case is exact equality 2321 __ br(Assembler::NE, L_checkcast_copy); 2322 2323 // Identically typed arrays can be copied without element-wise checks. 2324 arraycopy_range_checks(src, src_pos, dst, dst_pos, scratch_length, 2325 rscratch2, L_failed); 2326 2327 __ lea(from, Address(src, src_pos, Address::lsl(LogBytesPerHeapOop))); 2328 __ add(from, from, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 2329 __ lea(to, Address(dst, dst_pos, Address::lsl(LogBytesPerHeapOop))); 2330 __ add(to, to, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 2331 __ movw(count, scratch_length); // length 2332 __ BIND(L_plain_copy); 2333 __ b(RuntimeAddress(oop_copy_entry)); 2334 2335 __ BIND(L_checkcast_copy); 2336 // live at this point: scratch_src_klass, scratch_length, r15 (dst_klass) 2337 { 2338 // Before looking at dst.length, make sure dst is also an objArray. 2339 __ ldrw(rscratch1, Address(r15, lh_offset)); 2340 __ movw(rscratch2, objArray_lh); 2341 __ eorw(rscratch1, rscratch1, rscratch2); 2342 __ cbnzw(rscratch1, L_failed); 2343 2344 // It is safe to examine both src.length and dst.length. 2345 arraycopy_range_checks(src, src_pos, dst, dst_pos, scratch_length, 2346 r15, L_failed); 2347 2348 __ load_klass(dst_klass, dst); // reload 2349 2350 // Marshal the base address arguments now, freeing registers. 2351 __ lea(from, Address(src, src_pos, Address::lsl(LogBytesPerHeapOop))); 2352 __ add(from, from, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 2353 __ lea(to, Address(dst, dst_pos, Address::lsl(LogBytesPerHeapOop))); 2354 __ add(to, to, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 2355 __ movw(count, length); // length (reloaded) 2356 Register sco_temp = c_rarg3; // this register is free now 2357 assert_different_registers(from, to, count, sco_temp, 2358 dst_klass, scratch_src_klass); 2359 // assert_clean_int(count, sco_temp); 2360 2361 // Generate the type check. 2362 const int sco_offset = in_bytes(Klass::super_check_offset_offset()); 2363 __ ldrw(sco_temp, Address(dst_klass, sco_offset)); 2364 2365 // Smashes rscratch1, rscratch2 2366 generate_type_check(scratch_src_klass, sco_temp, dst_klass, /*temps*/ noreg, noreg, noreg, 2367 L_plain_copy); 2368 2369 // Fetch destination element klass from the ObjArrayKlass header. 2370 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); 2371 __ ldr(dst_klass, Address(dst_klass, ek_offset)); 2372 __ ldrw(sco_temp, Address(dst_klass, sco_offset)); 2373 2374 // the checkcast_copy loop needs two extra arguments: 2375 assert(c_rarg3 == sco_temp, "#3 already in place"); 2376 // Set up arguments for checkcast_copy_entry. 2377 __ mov(c_rarg4, dst_klass); // dst.klass.element_klass 2378 __ b(RuntimeAddress(checkcast_copy_entry)); 2379 } 2380 2381 __ BIND(L_failed); 2382 __ mov(r0, -1); 2383 __ leave(); // required for proper stackwalking of RuntimeStub frame 2384 __ ret(lr); 2385 2386 return start; 2387 } 2388 2389 // 2390 // Generate stub for array fill. If "aligned" is true, the 2391 // "to" address is assumed to be heapword aligned. 2392 // 2393 // Arguments for generated stub: 2394 // to: c_rarg0 2395 // value: c_rarg1 2396 // count: c_rarg2 treated as signed 2397 // 2398 address generate_fill(StubGenStubId stub_id) { 2399 BasicType t; 2400 bool aligned; 2401 2402 switch (stub_id) { 2403 case jbyte_fill_id: 2404 t = T_BYTE; 2405 aligned = false; 2406 break; 2407 case jshort_fill_id: 2408 t = T_SHORT; 2409 aligned = false; 2410 break; 2411 case jint_fill_id: 2412 t = T_INT; 2413 aligned = false; 2414 break; 2415 case arrayof_jbyte_fill_id: 2416 t = T_BYTE; 2417 aligned = true; 2418 break; 2419 case arrayof_jshort_fill_id: 2420 t = T_SHORT; 2421 aligned = true; 2422 break; 2423 case arrayof_jint_fill_id: 2424 t = T_INT; 2425 aligned = true; 2426 break; 2427 default: 2428 ShouldNotReachHere(); 2429 }; 2430 2431 __ align(CodeEntryAlignment); 2432 StubCodeMark mark(this, stub_id); 2433 address start = __ pc(); 2434 2435 BLOCK_COMMENT("Entry:"); 2436 2437 const Register to = c_rarg0; // source array address 2438 const Register value = c_rarg1; // value 2439 const Register count = c_rarg2; // elements count 2440 2441 const Register bz_base = r10; // base for block_zero routine 2442 const Register cnt_words = r11; // temp register 2443 2444 __ enter(); 2445 2446 Label L_fill_elements, L_exit1; 2447 2448 int shift = -1; 2449 switch (t) { 2450 case T_BYTE: 2451 shift = 0; 2452 __ cmpw(count, 8 >> shift); // Short arrays (< 8 bytes) fill by element 2453 __ bfi(value, value, 8, 8); // 8 bit -> 16 bit 2454 __ bfi(value, value, 16, 16); // 16 bit -> 32 bit 2455 __ br(Assembler::LO, L_fill_elements); 2456 break; 2457 case T_SHORT: 2458 shift = 1; 2459 __ cmpw(count, 8 >> shift); // Short arrays (< 8 bytes) fill by element 2460 __ bfi(value, value, 16, 16); // 16 bit -> 32 bit 2461 __ br(Assembler::LO, L_fill_elements); 2462 break; 2463 case T_INT: 2464 shift = 2; 2465 __ cmpw(count, 8 >> shift); // Short arrays (< 8 bytes) fill by element 2466 __ br(Assembler::LO, L_fill_elements); 2467 break; 2468 default: ShouldNotReachHere(); 2469 } 2470 2471 // Align source address at 8 bytes address boundary. 2472 Label L_skip_align1, L_skip_align2, L_skip_align4; 2473 if (!aligned) { 2474 switch (t) { 2475 case T_BYTE: 2476 // One byte misalignment happens only for byte arrays. 2477 __ tbz(to, 0, L_skip_align1); 2478 __ strb(value, Address(__ post(to, 1))); 2479 __ subw(count, count, 1); 2480 __ bind(L_skip_align1); 2481 // Fallthrough 2482 case T_SHORT: 2483 // Two bytes misalignment happens only for byte and short (char) arrays. 2484 __ tbz(to, 1, L_skip_align2); 2485 __ strh(value, Address(__ post(to, 2))); 2486 __ subw(count, count, 2 >> shift); 2487 __ bind(L_skip_align2); 2488 // Fallthrough 2489 case T_INT: 2490 // Align to 8 bytes, we know we are 4 byte aligned to start. 2491 __ tbz(to, 2, L_skip_align4); 2492 __ strw(value, Address(__ post(to, 4))); 2493 __ subw(count, count, 4 >> shift); 2494 __ bind(L_skip_align4); 2495 break; 2496 default: ShouldNotReachHere(); 2497 } 2498 } 2499 2500 // 2501 // Fill large chunks 2502 // 2503 __ lsrw(cnt_words, count, 3 - shift); // number of words 2504 __ bfi(value, value, 32, 32); // 32 bit -> 64 bit 2505 __ subw(count, count, cnt_words, Assembler::LSL, 3 - shift); 2506 if (UseBlockZeroing) { 2507 Label non_block_zeroing, rest; 2508 // If the fill value is zero we can use the fast zero_words(). 2509 __ cbnz(value, non_block_zeroing); 2510 __ mov(bz_base, to); 2511 __ add(to, to, cnt_words, Assembler::LSL, LogBytesPerWord); 2512 address tpc = __ zero_words(bz_base, cnt_words); 2513 if (tpc == nullptr) { 2514 fatal("CodeCache is full at generate_fill"); 2515 } 2516 __ b(rest); 2517 __ bind(non_block_zeroing); 2518 __ fill_words(to, cnt_words, value); 2519 __ bind(rest); 2520 } else { 2521 __ fill_words(to, cnt_words, value); 2522 } 2523 2524 // Remaining count is less than 8 bytes. Fill it by a single store. 2525 // Note that the total length is no less than 8 bytes. 2526 if (t == T_BYTE || t == T_SHORT) { 2527 Label L_exit1; 2528 __ cbzw(count, L_exit1); 2529 __ add(to, to, count, Assembler::LSL, shift); // points to the end 2530 __ str(value, Address(to, -8)); // overwrite some elements 2531 __ bind(L_exit1); 2532 __ leave(); 2533 __ ret(lr); 2534 } 2535 2536 // Handle copies less than 8 bytes. 2537 Label L_fill_2, L_fill_4, L_exit2; 2538 __ bind(L_fill_elements); 2539 switch (t) { 2540 case T_BYTE: 2541 __ tbz(count, 0, L_fill_2); 2542 __ strb(value, Address(__ post(to, 1))); 2543 __ bind(L_fill_2); 2544 __ tbz(count, 1, L_fill_4); 2545 __ strh(value, Address(__ post(to, 2))); 2546 __ bind(L_fill_4); 2547 __ tbz(count, 2, L_exit2); 2548 __ strw(value, Address(to)); 2549 break; 2550 case T_SHORT: 2551 __ tbz(count, 0, L_fill_4); 2552 __ strh(value, Address(__ post(to, 2))); 2553 __ bind(L_fill_4); 2554 __ tbz(count, 1, L_exit2); 2555 __ strw(value, Address(to)); 2556 break; 2557 case T_INT: 2558 __ cbzw(count, L_exit2); 2559 __ strw(value, Address(to)); 2560 break; 2561 default: ShouldNotReachHere(); 2562 } 2563 __ bind(L_exit2); 2564 __ leave(); 2565 __ ret(lr); 2566 return start; 2567 } 2568 2569 address generate_data_cache_writeback() { 2570 const Register line = c_rarg0; // address of line to write back 2571 2572 __ align(CodeEntryAlignment); 2573 2574 StubGenStubId stub_id = StubGenStubId::data_cache_writeback_id; 2575 StubCodeMark mark(this, stub_id); 2576 2577 address start = __ pc(); 2578 __ enter(); 2579 __ cache_wb(Address(line, 0)); 2580 __ leave(); 2581 __ ret(lr); 2582 2583 return start; 2584 } 2585 2586 address generate_data_cache_writeback_sync() { 2587 const Register is_pre = c_rarg0; // pre or post sync 2588 2589 __ align(CodeEntryAlignment); 2590 2591 StubGenStubId stub_id = StubGenStubId::data_cache_writeback_sync_id; 2592 StubCodeMark mark(this, stub_id); 2593 2594 // pre wbsync is a no-op 2595 // post wbsync translates to an sfence 2596 2597 Label skip; 2598 address start = __ pc(); 2599 __ enter(); 2600 __ cbnz(is_pre, skip); 2601 __ cache_wbsync(false); 2602 __ bind(skip); 2603 __ leave(); 2604 __ ret(lr); 2605 2606 return start; 2607 } 2608 2609 void generate_arraycopy_stubs() { 2610 address entry; 2611 address entry_jbyte_arraycopy; 2612 address entry_jshort_arraycopy; 2613 address entry_jint_arraycopy; 2614 address entry_oop_arraycopy; 2615 address entry_jlong_arraycopy; 2616 address entry_checkcast_arraycopy; 2617 2618 generate_copy_longs(StubGenStubId::copy_byte_f_id, IN_HEAP | IS_ARRAY, copy_f, r0, r1, r15); 2619 generate_copy_longs(StubGenStubId::copy_byte_b_id, IN_HEAP | IS_ARRAY, copy_b, r0, r1, r15); 2620 2621 generate_copy_longs(StubGenStubId::copy_oop_f_id, IN_HEAP | IS_ARRAY, copy_obj_f, r0, r1, r15); 2622 generate_copy_longs(StubGenStubId::copy_oop_b_id, IN_HEAP | IS_ARRAY, copy_obj_b, r0, r1, r15); 2623 2624 generate_copy_longs(StubGenStubId::copy_oop_uninit_f_id, IN_HEAP | IS_ARRAY | IS_DEST_UNINITIALIZED, copy_obj_uninit_f, r0, r1, r15); 2625 generate_copy_longs(StubGenStubId::copy_oop_uninit_b_id, IN_HEAP | IS_ARRAY | IS_DEST_UNINITIALIZED, copy_obj_uninit_b, r0, r1, r15); 2626 2627 StubRoutines::aarch64::_zero_blocks = generate_zero_blocks(); 2628 2629 //*** jbyte 2630 // Always need aligned and unaligned versions 2631 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_copy(StubGenStubId::jbyte_disjoint_arraycopy_id, &entry); 2632 StubRoutines::_jbyte_arraycopy = generate_conjoint_copy(StubGenStubId::jbyte_arraycopy_id, entry, &entry_jbyte_arraycopy); 2633 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_copy(StubGenStubId::arrayof_jbyte_disjoint_arraycopy_id, &entry); 2634 StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_copy(StubGenStubId::arrayof_jbyte_arraycopy_id, entry, nullptr); 2635 2636 //*** jshort 2637 // Always need aligned and unaligned versions 2638 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_copy(StubGenStubId::jshort_disjoint_arraycopy_id, &entry); 2639 StubRoutines::_jshort_arraycopy = generate_conjoint_copy(StubGenStubId::jshort_arraycopy_id, entry, &entry_jshort_arraycopy); 2640 StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_copy(StubGenStubId::arrayof_jshort_disjoint_arraycopy_id, &entry); 2641 StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_copy(StubGenStubId::arrayof_jshort_arraycopy_id, entry, nullptr); 2642 2643 //*** jint 2644 // Aligned versions 2645 StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_copy(StubGenStubId::arrayof_jint_disjoint_arraycopy_id, &entry); 2646 StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_copy(StubGenStubId::arrayof_jint_arraycopy_id, entry, &entry_jint_arraycopy); 2647 // In 64 bit we need both aligned and unaligned versions of jint arraycopy. 2648 // entry_jint_arraycopy always points to the unaligned version 2649 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_copy(StubGenStubId::jint_disjoint_arraycopy_id, &entry); 2650 StubRoutines::_jint_arraycopy = generate_conjoint_copy(StubGenStubId::jint_arraycopy_id, entry, &entry_jint_arraycopy); 2651 2652 //*** jlong 2653 // It is always aligned 2654 StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_copy(StubGenStubId::arrayof_jlong_disjoint_arraycopy_id, &entry); 2655 StubRoutines::_arrayof_jlong_arraycopy = generate_conjoint_copy(StubGenStubId::arrayof_jlong_arraycopy_id, entry, &entry_jlong_arraycopy); 2656 StubRoutines::_jlong_disjoint_arraycopy = StubRoutines::_arrayof_jlong_disjoint_arraycopy; 2657 StubRoutines::_jlong_arraycopy = StubRoutines::_arrayof_jlong_arraycopy; 2658 2659 //*** oops 2660 { 2661 // With compressed oops we need unaligned versions; notice that 2662 // we overwrite entry_oop_arraycopy. 2663 bool aligned = !UseCompressedOops; 2664 2665 StubRoutines::_arrayof_oop_disjoint_arraycopy 2666 = generate_disjoint_copy(StubGenStubId::arrayof_oop_disjoint_arraycopy_id, &entry); 2667 StubRoutines::_arrayof_oop_arraycopy 2668 = generate_conjoint_copy(StubGenStubId::arrayof_oop_arraycopy_id, entry, &entry_oop_arraycopy); 2669 // Aligned versions without pre-barriers 2670 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit 2671 = generate_disjoint_copy(StubGenStubId::arrayof_oop_disjoint_arraycopy_uninit_id, &entry); 2672 StubRoutines::_arrayof_oop_arraycopy_uninit 2673 = generate_conjoint_copy(StubGenStubId::arrayof_oop_arraycopy_uninit_id, entry, nullptr); 2674 } 2675 2676 StubRoutines::_oop_disjoint_arraycopy = StubRoutines::_arrayof_oop_disjoint_arraycopy; 2677 StubRoutines::_oop_arraycopy = StubRoutines::_arrayof_oop_arraycopy; 2678 StubRoutines::_oop_disjoint_arraycopy_uninit = StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit; 2679 StubRoutines::_oop_arraycopy_uninit = StubRoutines::_arrayof_oop_arraycopy_uninit; 2680 2681 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy(StubGenStubId::checkcast_arraycopy_id, &entry_checkcast_arraycopy); 2682 StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy(StubGenStubId::checkcast_arraycopy_uninit_id, nullptr); 2683 2684 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy(entry_jbyte_arraycopy, 2685 entry_jshort_arraycopy, 2686 entry_jint_arraycopy, 2687 entry_jlong_arraycopy); 2688 2689 StubRoutines::_generic_arraycopy = generate_generic_copy(entry_jbyte_arraycopy, 2690 entry_jshort_arraycopy, 2691 entry_jint_arraycopy, 2692 entry_oop_arraycopy, 2693 entry_jlong_arraycopy, 2694 entry_checkcast_arraycopy); 2695 2696 StubRoutines::_jbyte_fill = generate_fill(StubGenStubId::jbyte_fill_id); 2697 StubRoutines::_jshort_fill = generate_fill(StubGenStubId::jshort_fill_id); 2698 StubRoutines::_jint_fill = generate_fill(StubGenStubId::jint_fill_id); 2699 StubRoutines::_arrayof_jbyte_fill = generate_fill(StubGenStubId::arrayof_jbyte_fill_id); 2700 StubRoutines::_arrayof_jshort_fill = generate_fill(StubGenStubId::arrayof_jshort_fill_id); 2701 StubRoutines::_arrayof_jint_fill = generate_fill(StubGenStubId::arrayof_jint_fill_id); 2702 } 2703 2704 void generate_math_stubs() { Unimplemented(); } 2705 2706 // Arguments: 2707 // 2708 // Inputs: 2709 // c_rarg0 - source byte array address 2710 // c_rarg1 - destination byte array address 2711 // c_rarg2 - K (key) in little endian int array 2712 // 2713 address generate_aescrypt_encryptBlock() { 2714 __ align(CodeEntryAlignment); 2715 StubGenStubId stub_id = StubGenStubId::aescrypt_encryptBlock_id; 2716 StubCodeMark mark(this, stub_id); 2717 2718 const Register from = c_rarg0; // source array address 2719 const Register to = c_rarg1; // destination array address 2720 const Register key = c_rarg2; // key array address 2721 const Register keylen = rscratch1; 2722 2723 address start = __ pc(); 2724 __ enter(); 2725 2726 __ ldrw(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); 2727 2728 __ aesenc_loadkeys(key, keylen); 2729 __ aesecb_encrypt(from, to, keylen); 2730 2731 __ mov(r0, 0); 2732 2733 __ leave(); 2734 __ ret(lr); 2735 2736 return start; 2737 } 2738 2739 // Arguments: 2740 // 2741 // Inputs: 2742 // c_rarg0 - source byte array address 2743 // c_rarg1 - destination byte array address 2744 // c_rarg2 - K (key) in little endian int array 2745 // 2746 address generate_aescrypt_decryptBlock() { 2747 assert(UseAES, "need AES cryptographic extension support"); 2748 __ align(CodeEntryAlignment); 2749 StubGenStubId stub_id = StubGenStubId::aescrypt_decryptBlock_id; 2750 StubCodeMark mark(this, stub_id); 2751 Label L_doLast; 2752 2753 const Register from = c_rarg0; // source array address 2754 const Register to = c_rarg1; // destination array address 2755 const Register key = c_rarg2; // key array address 2756 const Register keylen = rscratch1; 2757 2758 address start = __ pc(); 2759 __ enter(); // required for proper stackwalking of RuntimeStub frame 2760 2761 __ ldrw(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); 2762 2763 __ aesecb_decrypt(from, to, key, keylen); 2764 2765 __ mov(r0, 0); 2766 2767 __ leave(); 2768 __ ret(lr); 2769 2770 return start; 2771 } 2772 2773 // Arguments: 2774 // 2775 // Inputs: 2776 // c_rarg0 - source byte array address 2777 // c_rarg1 - destination byte array address 2778 // c_rarg2 - K (key) in little endian int array 2779 // c_rarg3 - r vector byte array address 2780 // c_rarg4 - input length 2781 // 2782 // Output: 2783 // x0 - input length 2784 // 2785 address generate_cipherBlockChaining_encryptAESCrypt() { 2786 assert(UseAES, "need AES cryptographic extension support"); 2787 __ align(CodeEntryAlignment); 2788 StubGenStubId stub_id = StubGenStubId::cipherBlockChaining_encryptAESCrypt_id; 2789 StubCodeMark mark(this, stub_id); 2790 2791 Label L_loadkeys_44, L_loadkeys_52, L_aes_loop, L_rounds_44, L_rounds_52; 2792 2793 const Register from = c_rarg0; // source array address 2794 const Register to = c_rarg1; // destination array address 2795 const Register key = c_rarg2; // key array address 2796 const Register rvec = c_rarg3; // r byte array initialized from initvector array address 2797 // and left with the results of the last encryption block 2798 const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16) 2799 const Register keylen = rscratch1; 2800 2801 address start = __ pc(); 2802 2803 __ enter(); 2804 2805 __ movw(rscratch2, len_reg); 2806 2807 __ ldrw(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); 2808 2809 __ ld1(v0, __ T16B, rvec); 2810 2811 __ cmpw(keylen, 52); 2812 __ br(Assembler::CC, L_loadkeys_44); 2813 __ br(Assembler::EQ, L_loadkeys_52); 2814 2815 __ ld1(v17, v18, __ T16B, __ post(key, 32)); 2816 __ rev32(v17, __ T16B, v17); 2817 __ rev32(v18, __ T16B, v18); 2818 __ BIND(L_loadkeys_52); 2819 __ ld1(v19, v20, __ T16B, __ post(key, 32)); 2820 __ rev32(v19, __ T16B, v19); 2821 __ rev32(v20, __ T16B, v20); 2822 __ BIND(L_loadkeys_44); 2823 __ ld1(v21, v22, v23, v24, __ T16B, __ post(key, 64)); 2824 __ rev32(v21, __ T16B, v21); 2825 __ rev32(v22, __ T16B, v22); 2826 __ rev32(v23, __ T16B, v23); 2827 __ rev32(v24, __ T16B, v24); 2828 __ ld1(v25, v26, v27, v28, __ T16B, __ post(key, 64)); 2829 __ rev32(v25, __ T16B, v25); 2830 __ rev32(v26, __ T16B, v26); 2831 __ rev32(v27, __ T16B, v27); 2832 __ rev32(v28, __ T16B, v28); 2833 __ ld1(v29, v30, v31, __ T16B, key); 2834 __ rev32(v29, __ T16B, v29); 2835 __ rev32(v30, __ T16B, v30); 2836 __ rev32(v31, __ T16B, v31); 2837 2838 __ BIND(L_aes_loop); 2839 __ ld1(v1, __ T16B, __ post(from, 16)); 2840 __ eor(v0, __ T16B, v0, v1); 2841 2842 __ br(Assembler::CC, L_rounds_44); 2843 __ br(Assembler::EQ, L_rounds_52); 2844 2845 __ aese(v0, v17); __ aesmc(v0, v0); 2846 __ aese(v0, v18); __ aesmc(v0, v0); 2847 __ BIND(L_rounds_52); 2848 __ aese(v0, v19); __ aesmc(v0, v0); 2849 __ aese(v0, v20); __ aesmc(v0, v0); 2850 __ BIND(L_rounds_44); 2851 __ aese(v0, v21); __ aesmc(v0, v0); 2852 __ aese(v0, v22); __ aesmc(v0, v0); 2853 __ aese(v0, v23); __ aesmc(v0, v0); 2854 __ aese(v0, v24); __ aesmc(v0, v0); 2855 __ aese(v0, v25); __ aesmc(v0, v0); 2856 __ aese(v0, v26); __ aesmc(v0, v0); 2857 __ aese(v0, v27); __ aesmc(v0, v0); 2858 __ aese(v0, v28); __ aesmc(v0, v0); 2859 __ aese(v0, v29); __ aesmc(v0, v0); 2860 __ aese(v0, v30); 2861 __ eor(v0, __ T16B, v0, v31); 2862 2863 __ st1(v0, __ T16B, __ post(to, 16)); 2864 2865 __ subw(len_reg, len_reg, 16); 2866 __ cbnzw(len_reg, L_aes_loop); 2867 2868 __ st1(v0, __ T16B, rvec); 2869 2870 __ mov(r0, rscratch2); 2871 2872 __ leave(); 2873 __ ret(lr); 2874 2875 return start; 2876 } 2877 2878 // Arguments: 2879 // 2880 // Inputs: 2881 // c_rarg0 - source byte array address 2882 // c_rarg1 - destination byte array address 2883 // c_rarg2 - K (key) in little endian int array 2884 // c_rarg3 - r vector byte array address 2885 // c_rarg4 - input length 2886 // 2887 // Output: 2888 // r0 - input length 2889 // 2890 address generate_cipherBlockChaining_decryptAESCrypt() { 2891 assert(UseAES, "need AES cryptographic extension support"); 2892 __ align(CodeEntryAlignment); 2893 StubGenStubId stub_id = StubGenStubId::cipherBlockChaining_decryptAESCrypt_id; 2894 StubCodeMark mark(this, stub_id); 2895 2896 Label L_loadkeys_44, L_loadkeys_52, L_aes_loop, L_rounds_44, L_rounds_52; 2897 2898 const Register from = c_rarg0; // source array address 2899 const Register to = c_rarg1; // destination array address 2900 const Register key = c_rarg2; // key array address 2901 const Register rvec = c_rarg3; // r byte array initialized from initvector array address 2902 // and left with the results of the last encryption block 2903 const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16) 2904 const Register keylen = rscratch1; 2905 2906 address start = __ pc(); 2907 2908 __ enter(); 2909 2910 __ movw(rscratch2, len_reg); 2911 2912 __ ldrw(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); 2913 2914 __ ld1(v2, __ T16B, rvec); 2915 2916 __ ld1(v31, __ T16B, __ post(key, 16)); 2917 __ rev32(v31, __ T16B, v31); 2918 2919 __ cmpw(keylen, 52); 2920 __ br(Assembler::CC, L_loadkeys_44); 2921 __ br(Assembler::EQ, L_loadkeys_52); 2922 2923 __ ld1(v17, v18, __ T16B, __ post(key, 32)); 2924 __ rev32(v17, __ T16B, v17); 2925 __ rev32(v18, __ T16B, v18); 2926 __ BIND(L_loadkeys_52); 2927 __ ld1(v19, v20, __ T16B, __ post(key, 32)); 2928 __ rev32(v19, __ T16B, v19); 2929 __ rev32(v20, __ T16B, v20); 2930 __ BIND(L_loadkeys_44); 2931 __ ld1(v21, v22, v23, v24, __ T16B, __ post(key, 64)); 2932 __ rev32(v21, __ T16B, v21); 2933 __ rev32(v22, __ T16B, v22); 2934 __ rev32(v23, __ T16B, v23); 2935 __ rev32(v24, __ T16B, v24); 2936 __ ld1(v25, v26, v27, v28, __ T16B, __ post(key, 64)); 2937 __ rev32(v25, __ T16B, v25); 2938 __ rev32(v26, __ T16B, v26); 2939 __ rev32(v27, __ T16B, v27); 2940 __ rev32(v28, __ T16B, v28); 2941 __ ld1(v29, v30, __ T16B, key); 2942 __ rev32(v29, __ T16B, v29); 2943 __ rev32(v30, __ T16B, v30); 2944 2945 __ BIND(L_aes_loop); 2946 __ ld1(v0, __ T16B, __ post(from, 16)); 2947 __ orr(v1, __ T16B, v0, v0); 2948 2949 __ br(Assembler::CC, L_rounds_44); 2950 __ br(Assembler::EQ, L_rounds_52); 2951 2952 __ aesd(v0, v17); __ aesimc(v0, v0); 2953 __ aesd(v0, v18); __ aesimc(v0, v0); 2954 __ BIND(L_rounds_52); 2955 __ aesd(v0, v19); __ aesimc(v0, v0); 2956 __ aesd(v0, v20); __ aesimc(v0, v0); 2957 __ BIND(L_rounds_44); 2958 __ aesd(v0, v21); __ aesimc(v0, v0); 2959 __ aesd(v0, v22); __ aesimc(v0, v0); 2960 __ aesd(v0, v23); __ aesimc(v0, v0); 2961 __ aesd(v0, v24); __ aesimc(v0, v0); 2962 __ aesd(v0, v25); __ aesimc(v0, v0); 2963 __ aesd(v0, v26); __ aesimc(v0, v0); 2964 __ aesd(v0, v27); __ aesimc(v0, v0); 2965 __ aesd(v0, v28); __ aesimc(v0, v0); 2966 __ aesd(v0, v29); __ aesimc(v0, v0); 2967 __ aesd(v0, v30); 2968 __ eor(v0, __ T16B, v0, v31); 2969 __ eor(v0, __ T16B, v0, v2); 2970 2971 __ st1(v0, __ T16B, __ post(to, 16)); 2972 __ orr(v2, __ T16B, v1, v1); 2973 2974 __ subw(len_reg, len_reg, 16); 2975 __ cbnzw(len_reg, L_aes_loop); 2976 2977 __ st1(v2, __ T16B, rvec); 2978 2979 __ mov(r0, rscratch2); 2980 2981 __ leave(); 2982 __ ret(lr); 2983 2984 return start; 2985 } 2986 2987 // Big-endian 128-bit + 64-bit -> 128-bit addition. 2988 // Inputs: 128-bits. in is preserved. 2989 // The least-significant 64-bit word is in the upper dword of each vector. 2990 // inc (the 64-bit increment) is preserved. Its lower dword must be zero. 2991 // Output: result 2992 void be_add_128_64(FloatRegister result, FloatRegister in, 2993 FloatRegister inc, FloatRegister tmp) { 2994 assert_different_registers(result, tmp, inc); 2995 2996 __ addv(result, __ T2D, in, inc); // Add inc to the least-significant dword of 2997 // input 2998 __ cm(__ HI, tmp, __ T2D, inc, result);// Check for result overflowing 2999 __ ext(tmp, __ T16B, tmp, tmp, 0x08); // Swap LSD of comparison result to MSD and 3000 // MSD == 0 (must be!) to LSD 3001 __ subv(result, __ T2D, result, tmp); // Subtract -1 from MSD if there was an overflow 3002 } 3003 3004 // CTR AES crypt. 3005 // Arguments: 3006 // 3007 // Inputs: 3008 // c_rarg0 - source byte array address 3009 // c_rarg1 - destination byte array address 3010 // c_rarg2 - K (key) in little endian int array 3011 // c_rarg3 - counter vector byte array address 3012 // c_rarg4 - input length 3013 // c_rarg5 - saved encryptedCounter start 3014 // c_rarg6 - saved used length 3015 // 3016 // Output: 3017 // r0 - input length 3018 // 3019 address generate_counterMode_AESCrypt() { 3020 const Register in = c_rarg0; 3021 const Register out = c_rarg1; 3022 const Register key = c_rarg2; 3023 const Register counter = c_rarg3; 3024 const Register saved_len = c_rarg4, len = r10; 3025 const Register saved_encrypted_ctr = c_rarg5; 3026 const Register used_ptr = c_rarg6, used = r12; 3027 3028 const Register offset = r7; 3029 const Register keylen = r11; 3030 3031 const unsigned char block_size = 16; 3032 const int bulk_width = 4; 3033 // NB: bulk_width can be 4 or 8. 8 gives slightly faster 3034 // performance with larger data sizes, but it also means that the 3035 // fast path isn't used until you have at least 8 blocks, and up 3036 // to 127 bytes of data will be executed on the slow path. For 3037 // that reason, and also so as not to blow away too much icache, 4 3038 // blocks seems like a sensible compromise. 3039 3040 // Algorithm: 3041 // 3042 // if (len == 0) { 3043 // goto DONE; 3044 // } 3045 // int result = len; 3046 // do { 3047 // if (used >= blockSize) { 3048 // if (len >= bulk_width * blockSize) { 3049 // CTR_large_block(); 3050 // if (len == 0) 3051 // goto DONE; 3052 // } 3053 // for (;;) { 3054 // 16ByteVector v0 = counter; 3055 // embeddedCipher.encryptBlock(v0, 0, encryptedCounter, 0); 3056 // used = 0; 3057 // if (len < blockSize) 3058 // break; /* goto NEXT */ 3059 // 16ByteVector v1 = load16Bytes(in, offset); 3060 // v1 = v1 ^ encryptedCounter; 3061 // store16Bytes(out, offset); 3062 // used = blockSize; 3063 // offset += blockSize; 3064 // len -= blockSize; 3065 // if (len == 0) 3066 // goto DONE; 3067 // } 3068 // } 3069 // NEXT: 3070 // out[outOff++] = (byte)(in[inOff++] ^ encryptedCounter[used++]); 3071 // len--; 3072 // } while (len != 0); 3073 // DONE: 3074 // return result; 3075 // 3076 // CTR_large_block() 3077 // Wide bulk encryption of whole blocks. 3078 3079 __ align(CodeEntryAlignment); 3080 StubGenStubId stub_id = StubGenStubId::counterMode_AESCrypt_id; 3081 StubCodeMark mark(this, stub_id); 3082 const address start = __ pc(); 3083 __ enter(); 3084 3085 Label DONE, CTR_large_block, large_block_return; 3086 __ ldrw(used, Address(used_ptr)); 3087 __ cbzw(saved_len, DONE); 3088 3089 __ mov(len, saved_len); 3090 __ mov(offset, 0); 3091 3092 // Compute #rounds for AES based on the length of the key array 3093 __ ldrw(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); 3094 3095 __ aesenc_loadkeys(key, keylen); 3096 3097 { 3098 Label L_CTR_loop, NEXT; 3099 3100 __ bind(L_CTR_loop); 3101 3102 __ cmp(used, block_size); 3103 __ br(__ LO, NEXT); 3104 3105 // Maybe we have a lot of data 3106 __ subsw(rscratch1, len, bulk_width * block_size); 3107 __ br(__ HS, CTR_large_block); 3108 __ BIND(large_block_return); 3109 __ cbzw(len, DONE); 3110 3111 // Setup the counter 3112 __ movi(v4, __ T4S, 0); 3113 __ movi(v5, __ T4S, 1); 3114 __ ins(v4, __ S, v5, 2, 2); // v4 contains { 0, 1 } 3115 3116 // 128-bit big-endian increment 3117 __ ld1(v0, __ T16B, counter); 3118 __ rev64(v16, __ T16B, v0); 3119 be_add_128_64(v16, v16, v4, /*tmp*/v5); 3120 __ rev64(v16, __ T16B, v16); 3121 __ st1(v16, __ T16B, counter); 3122 // Previous counter value is in v0 3123 // v4 contains { 0, 1 } 3124 3125 { 3126 // We have fewer than bulk_width blocks of data left. Encrypt 3127 // them one by one until there is less than a full block 3128 // remaining, being careful to save both the encrypted counter 3129 // and the counter. 3130 3131 Label inner_loop; 3132 __ bind(inner_loop); 3133 // Counter to encrypt is in v0 3134 __ aesecb_encrypt(noreg, noreg, keylen); 3135 __ st1(v0, __ T16B, saved_encrypted_ctr); 3136 3137 // Do we have a remaining full block? 3138 3139 __ mov(used, 0); 3140 __ cmp(len, block_size); 3141 __ br(__ LO, NEXT); 3142 3143 // Yes, we have a full block 3144 __ ldrq(v1, Address(in, offset)); 3145 __ eor(v1, __ T16B, v1, v0); 3146 __ strq(v1, Address(out, offset)); 3147 __ mov(used, block_size); 3148 __ add(offset, offset, block_size); 3149 3150 __ subw(len, len, block_size); 3151 __ cbzw(len, DONE); 3152 3153 // Increment the counter, store it back 3154 __ orr(v0, __ T16B, v16, v16); 3155 __ rev64(v16, __ T16B, v16); 3156 be_add_128_64(v16, v16, v4, /*tmp*/v5); 3157 __ rev64(v16, __ T16B, v16); 3158 __ st1(v16, __ T16B, counter); // Save the incremented counter back 3159 3160 __ b(inner_loop); 3161 } 3162 3163 __ BIND(NEXT); 3164 3165 // Encrypt a single byte, and loop. 3166 // We expect this to be a rare event. 3167 __ ldrb(rscratch1, Address(in, offset)); 3168 __ ldrb(rscratch2, Address(saved_encrypted_ctr, used)); 3169 __ eor(rscratch1, rscratch1, rscratch2); 3170 __ strb(rscratch1, Address(out, offset)); 3171 __ add(offset, offset, 1); 3172 __ add(used, used, 1); 3173 __ subw(len, len,1); 3174 __ cbnzw(len, L_CTR_loop); 3175 } 3176 3177 __ bind(DONE); 3178 __ strw(used, Address(used_ptr)); 3179 __ mov(r0, saved_len); 3180 3181 __ leave(); // required for proper stackwalking of RuntimeStub frame 3182 __ ret(lr); 3183 3184 // Bulk encryption 3185 3186 __ BIND (CTR_large_block); 3187 assert(bulk_width == 4 || bulk_width == 8, "must be"); 3188 3189 if (bulk_width == 8) { 3190 __ sub(sp, sp, 4 * 16); 3191 __ st1(v12, v13, v14, v15, __ T16B, Address(sp)); 3192 } 3193 __ sub(sp, sp, 4 * 16); 3194 __ st1(v8, v9, v10, v11, __ T16B, Address(sp)); 3195 RegSet saved_regs = (RegSet::of(in, out, offset) 3196 + RegSet::of(saved_encrypted_ctr, used_ptr, len)); 3197 __ push(saved_regs, sp); 3198 __ andr(len, len, -16 * bulk_width); // 8/4 encryptions, 16 bytes per encryption 3199 __ add(in, in, offset); 3200 __ add(out, out, offset); 3201 3202 // Keys should already be loaded into the correct registers 3203 3204 __ ld1(v0, __ T16B, counter); // v0 contains the first counter 3205 __ rev64(v16, __ T16B, v0); // v16 contains byte-reversed counter 3206 3207 // AES/CTR loop 3208 { 3209 Label L_CTR_loop; 3210 __ BIND(L_CTR_loop); 3211 3212 // Setup the counters 3213 __ movi(v8, __ T4S, 0); 3214 __ movi(v9, __ T4S, 1); 3215 __ ins(v8, __ S, v9, 2, 2); // v8 contains { 0, 1 } 3216 3217 for (int i = 0; i < bulk_width; i++) { 3218 FloatRegister v0_ofs = as_FloatRegister(v0->encoding() + i); 3219 __ rev64(v0_ofs, __ T16B, v16); 3220 be_add_128_64(v16, v16, v8, /*tmp*/v9); 3221 } 3222 3223 __ ld1(v8, v9, v10, v11, __ T16B, __ post(in, 4 * 16)); 3224 3225 // Encrypt the counters 3226 __ aesecb_encrypt(noreg, noreg, keylen, v0, bulk_width); 3227 3228 if (bulk_width == 8) { 3229 __ ld1(v12, v13, v14, v15, __ T16B, __ post(in, 4 * 16)); 3230 } 3231 3232 // XOR the encrypted counters with the inputs 3233 for (int i = 0; i < bulk_width; i++) { 3234 FloatRegister v0_ofs = as_FloatRegister(v0->encoding() + i); 3235 FloatRegister v8_ofs = as_FloatRegister(v8->encoding() + i); 3236 __ eor(v0_ofs, __ T16B, v0_ofs, v8_ofs); 3237 } 3238 3239 // Write the encrypted data 3240 __ st1(v0, v1, v2, v3, __ T16B, __ post(out, 4 * 16)); 3241 if (bulk_width == 8) { 3242 __ st1(v4, v5, v6, v7, __ T16B, __ post(out, 4 * 16)); 3243 } 3244 3245 __ subw(len, len, 16 * bulk_width); 3246 __ cbnzw(len, L_CTR_loop); 3247 } 3248 3249 // Save the counter back where it goes 3250 __ rev64(v16, __ T16B, v16); 3251 __ st1(v16, __ T16B, counter); 3252 3253 __ pop(saved_regs, sp); 3254 3255 __ ld1(v8, v9, v10, v11, __ T16B, __ post(sp, 4 * 16)); 3256 if (bulk_width == 8) { 3257 __ ld1(v12, v13, v14, v15, __ T16B, __ post(sp, 4 * 16)); 3258 } 3259 3260 __ andr(rscratch1, len, -16 * bulk_width); 3261 __ sub(len, len, rscratch1); 3262 __ add(offset, offset, rscratch1); 3263 __ mov(used, 16); 3264 __ strw(used, Address(used_ptr)); 3265 __ b(large_block_return); 3266 3267 return start; 3268 } 3269 3270 // Vector AES Galois Counter Mode implementation. Parameters: 3271 // 3272 // in = c_rarg0 3273 // len = c_rarg1 3274 // ct = c_rarg2 - ciphertext that ghash will read (in for encrypt, out for decrypt) 3275 // out = c_rarg3 3276 // key = c_rarg4 3277 // state = c_rarg5 - GHASH.state 3278 // subkeyHtbl = c_rarg6 - powers of H 3279 // counter = c_rarg7 - 16 bytes of CTR 3280 // return - number of processed bytes 3281 address generate_galoisCounterMode_AESCrypt() { 3282 address ghash_polynomial = __ pc(); 3283 __ emit_int64(0x87); // The low-order bits of the field 3284 // polynomial (i.e. p = z^7+z^2+z+1) 3285 // repeated in the low and high parts of a 3286 // 128-bit vector 3287 __ emit_int64(0x87); 3288 3289 __ align(CodeEntryAlignment); 3290 StubGenStubId stub_id = StubGenStubId::galoisCounterMode_AESCrypt_id; 3291 StubCodeMark mark(this, stub_id); 3292 address start = __ pc(); 3293 __ enter(); 3294 3295 const Register in = c_rarg0; 3296 const Register len = c_rarg1; 3297 const Register ct = c_rarg2; 3298 const Register out = c_rarg3; 3299 // and updated with the incremented counter in the end 3300 3301 const Register key = c_rarg4; 3302 const Register state = c_rarg5; 3303 3304 const Register subkeyHtbl = c_rarg6; 3305 3306 const Register counter = c_rarg7; 3307 3308 const Register keylen = r10; 3309 // Save state before entering routine 3310 __ sub(sp, sp, 4 * 16); 3311 __ st1(v12, v13, v14, v15, __ T16B, Address(sp)); 3312 __ sub(sp, sp, 4 * 16); 3313 __ st1(v8, v9, v10, v11, __ T16B, Address(sp)); 3314 3315 // __ andr(len, len, -512); 3316 __ andr(len, len, -16 * 8); // 8 encryptions, 16 bytes per encryption 3317 __ str(len, __ pre(sp, -2 * wordSize)); 3318 3319 Label DONE; 3320 __ cbz(len, DONE); 3321 3322 // Compute #rounds for AES based on the length of the key array 3323 __ ldrw(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); 3324 3325 __ aesenc_loadkeys(key, keylen); 3326 __ ld1(v0, __ T16B, counter); // v0 contains the first counter 3327 __ rev32(v16, __ T16B, v0); // v16 contains byte-reversed counter 3328 3329 // AES/CTR loop 3330 { 3331 Label L_CTR_loop; 3332 __ BIND(L_CTR_loop); 3333 3334 // Setup the counters 3335 __ movi(v8, __ T4S, 0); 3336 __ movi(v9, __ T4S, 1); 3337 __ ins(v8, __ S, v9, 3, 3); // v8 contains { 0, 0, 0, 1 } 3338 3339 assert(v0->encoding() < v8->encoding(), ""); 3340 for (int i = v0->encoding(); i < v8->encoding(); i++) { 3341 FloatRegister f = as_FloatRegister(i); 3342 __ rev32(f, __ T16B, v16); 3343 __ addv(v16, __ T4S, v16, v8); 3344 } 3345 3346 __ ld1(v8, v9, v10, v11, __ T16B, __ post(in, 4 * 16)); 3347 3348 // Encrypt the counters 3349 __ aesecb_encrypt(noreg, noreg, keylen, v0, /*unrolls*/8); 3350 3351 __ ld1(v12, v13, v14, v15, __ T16B, __ post(in, 4 * 16)); 3352 3353 // XOR the encrypted counters with the inputs 3354 for (int i = 0; i < 8; i++) { 3355 FloatRegister v0_ofs = as_FloatRegister(v0->encoding() + i); 3356 FloatRegister v8_ofs = as_FloatRegister(v8->encoding() + i); 3357 __ eor(v0_ofs, __ T16B, v0_ofs, v8_ofs); 3358 } 3359 __ st1(v0, v1, v2, v3, __ T16B, __ post(out, 4 * 16)); 3360 __ st1(v4, v5, v6, v7, __ T16B, __ post(out, 4 * 16)); 3361 3362 __ subw(len, len, 16 * 8); 3363 __ cbnzw(len, L_CTR_loop); 3364 } 3365 3366 __ rev32(v16, __ T16B, v16); 3367 __ st1(v16, __ T16B, counter); 3368 3369 __ ldr(len, Address(sp)); 3370 __ lsr(len, len, exact_log2(16)); // We want the count of blocks 3371 3372 // GHASH/CTR loop 3373 __ ghash_processBlocks_wide(ghash_polynomial, state, subkeyHtbl, ct, 3374 len, /*unrolls*/4); 3375 3376 #ifdef ASSERT 3377 { Label L; 3378 __ cmp(len, (unsigned char)0); 3379 __ br(Assembler::EQ, L); 3380 __ stop("stubGenerator: abort"); 3381 __ bind(L); 3382 } 3383 #endif 3384 3385 __ bind(DONE); 3386 // Return the number of bytes processed 3387 __ ldr(r0, __ post(sp, 2 * wordSize)); 3388 3389 __ ld1(v8, v9, v10, v11, __ T16B, __ post(sp, 4 * 16)); 3390 __ ld1(v12, v13, v14, v15, __ T16B, __ post(sp, 4 * 16)); 3391 3392 __ leave(); // required for proper stackwalking of RuntimeStub frame 3393 __ ret(lr); 3394 return start; 3395 } 3396 3397 class Cached64Bytes { 3398 private: 3399 MacroAssembler *_masm; 3400 Register _regs[8]; 3401 3402 public: 3403 Cached64Bytes(MacroAssembler *masm, RegSet rs): _masm(masm) { 3404 assert(rs.size() == 8, "%u registers are used to cache 16 4-byte data", rs.size()); 3405 auto it = rs.begin(); 3406 for (auto &r: _regs) { 3407 r = *it; 3408 ++it; 3409 } 3410 } 3411 3412 void gen_loads(Register base) { 3413 for (int i = 0; i < 8; i += 2) { 3414 __ ldp(_regs[i], _regs[i + 1], Address(base, 8 * i)); 3415 } 3416 } 3417 3418 // Generate code extracting i-th unsigned word (4 bytes) from cached 64 bytes. 3419 void extract_u32(Register dest, int i) { 3420 __ ubfx(dest, _regs[i / 2], 32 * (i % 2), 32); 3421 } 3422 }; 3423 3424 // Utility routines for md5. 3425 // Clobbers r10 and r11. 3426 void md5_FF(Cached64Bytes& reg_cache, Register r1, Register r2, Register r3, Register r4, 3427 int k, int s, int t) { 3428 Register rscratch3 = r10; 3429 Register rscratch4 = r11; 3430 3431 __ eorw(rscratch3, r3, r4); 3432 __ movw(rscratch2, t); 3433 __ andw(rscratch3, rscratch3, r2); 3434 __ addw(rscratch4, r1, rscratch2); 3435 reg_cache.extract_u32(rscratch1, k); 3436 __ eorw(rscratch3, rscratch3, r4); 3437 __ addw(rscratch4, rscratch4, rscratch1); 3438 __ addw(rscratch3, rscratch3, rscratch4); 3439 __ rorw(rscratch2, rscratch3, 32 - s); 3440 __ addw(r1, rscratch2, r2); 3441 } 3442 3443 void md5_GG(Cached64Bytes& reg_cache, Register r1, Register r2, Register r3, Register r4, 3444 int k, int s, int t) { 3445 Register rscratch3 = r10; 3446 Register rscratch4 = r11; 3447 3448 reg_cache.extract_u32(rscratch1, k); 3449 __ movw(rscratch2, t); 3450 __ addw(rscratch4, r1, rscratch2); 3451 __ addw(rscratch4, rscratch4, rscratch1); 3452 __ bicw(rscratch2, r3, r4); 3453 __ andw(rscratch3, r2, r4); 3454 __ addw(rscratch2, rscratch2, rscratch4); 3455 __ addw(rscratch2, rscratch2, rscratch3); 3456 __ rorw(rscratch2, rscratch2, 32 - s); 3457 __ addw(r1, rscratch2, r2); 3458 } 3459 3460 void md5_HH(Cached64Bytes& reg_cache, Register r1, Register r2, Register r3, Register r4, 3461 int k, int s, int t) { 3462 Register rscratch3 = r10; 3463 Register rscratch4 = r11; 3464 3465 __ eorw(rscratch3, r3, r4); 3466 __ movw(rscratch2, t); 3467 __ addw(rscratch4, r1, rscratch2); 3468 reg_cache.extract_u32(rscratch1, k); 3469 __ eorw(rscratch3, rscratch3, r2); 3470 __ addw(rscratch4, rscratch4, rscratch1); 3471 __ addw(rscratch3, rscratch3, rscratch4); 3472 __ rorw(rscratch2, rscratch3, 32 - s); 3473 __ addw(r1, rscratch2, r2); 3474 } 3475 3476 void md5_II(Cached64Bytes& reg_cache, Register r1, Register r2, Register r3, Register r4, 3477 int k, int s, int t) { 3478 Register rscratch3 = r10; 3479 Register rscratch4 = r11; 3480 3481 __ movw(rscratch3, t); 3482 __ ornw(rscratch2, r2, r4); 3483 __ addw(rscratch4, r1, rscratch3); 3484 reg_cache.extract_u32(rscratch1, k); 3485 __ eorw(rscratch3, rscratch2, r3); 3486 __ addw(rscratch4, rscratch4, rscratch1); 3487 __ addw(rscratch3, rscratch3, rscratch4); 3488 __ rorw(rscratch2, rscratch3, 32 - s); 3489 __ addw(r1, rscratch2, r2); 3490 } 3491 3492 // Arguments: 3493 // 3494 // Inputs: 3495 // c_rarg0 - byte[] source+offset 3496 // c_rarg1 - int[] SHA.state 3497 // c_rarg2 - int offset 3498 // c_rarg3 - int limit 3499 // 3500 address generate_md5_implCompress(StubGenStubId stub_id) { 3501 bool multi_block; 3502 switch (stub_id) { 3503 case md5_implCompress_id: 3504 multi_block = false; 3505 break; 3506 case md5_implCompressMB_id: 3507 multi_block = true; 3508 break; 3509 default: 3510 ShouldNotReachHere(); 3511 } 3512 __ align(CodeEntryAlignment); 3513 3514 StubCodeMark mark(this, stub_id); 3515 address start = __ pc(); 3516 3517 Register buf = c_rarg0; 3518 Register state = c_rarg1; 3519 Register ofs = c_rarg2; 3520 Register limit = c_rarg3; 3521 Register a = r4; 3522 Register b = r5; 3523 Register c = r6; 3524 Register d = r7; 3525 Register rscratch3 = r10; 3526 Register rscratch4 = r11; 3527 3528 Register state_regs[2] = { r12, r13 }; 3529 RegSet saved_regs = RegSet::range(r16, r22) - r18_tls; 3530 Cached64Bytes reg_cache(_masm, RegSet::of(r14, r15) + saved_regs); // using 8 registers 3531 3532 __ push(saved_regs, sp); 3533 3534 __ ldp(state_regs[0], state_regs[1], Address(state)); 3535 __ ubfx(a, state_regs[0], 0, 32); 3536 __ ubfx(b, state_regs[0], 32, 32); 3537 __ ubfx(c, state_regs[1], 0, 32); 3538 __ ubfx(d, state_regs[1], 32, 32); 3539 3540 Label md5_loop; 3541 __ BIND(md5_loop); 3542 3543 reg_cache.gen_loads(buf); 3544 3545 // Round 1 3546 md5_FF(reg_cache, a, b, c, d, 0, 7, 0xd76aa478); 3547 md5_FF(reg_cache, d, a, b, c, 1, 12, 0xe8c7b756); 3548 md5_FF(reg_cache, c, d, a, b, 2, 17, 0x242070db); 3549 md5_FF(reg_cache, b, c, d, a, 3, 22, 0xc1bdceee); 3550 md5_FF(reg_cache, a, b, c, d, 4, 7, 0xf57c0faf); 3551 md5_FF(reg_cache, d, a, b, c, 5, 12, 0x4787c62a); 3552 md5_FF(reg_cache, c, d, a, b, 6, 17, 0xa8304613); 3553 md5_FF(reg_cache, b, c, d, a, 7, 22, 0xfd469501); 3554 md5_FF(reg_cache, a, b, c, d, 8, 7, 0x698098d8); 3555 md5_FF(reg_cache, d, a, b, c, 9, 12, 0x8b44f7af); 3556 md5_FF(reg_cache, c, d, a, b, 10, 17, 0xffff5bb1); 3557 md5_FF(reg_cache, b, c, d, a, 11, 22, 0x895cd7be); 3558 md5_FF(reg_cache, a, b, c, d, 12, 7, 0x6b901122); 3559 md5_FF(reg_cache, d, a, b, c, 13, 12, 0xfd987193); 3560 md5_FF(reg_cache, c, d, a, b, 14, 17, 0xa679438e); 3561 md5_FF(reg_cache, b, c, d, a, 15, 22, 0x49b40821); 3562 3563 // Round 2 3564 md5_GG(reg_cache, a, b, c, d, 1, 5, 0xf61e2562); 3565 md5_GG(reg_cache, d, a, b, c, 6, 9, 0xc040b340); 3566 md5_GG(reg_cache, c, d, a, b, 11, 14, 0x265e5a51); 3567 md5_GG(reg_cache, b, c, d, a, 0, 20, 0xe9b6c7aa); 3568 md5_GG(reg_cache, a, b, c, d, 5, 5, 0xd62f105d); 3569 md5_GG(reg_cache, d, a, b, c, 10, 9, 0x02441453); 3570 md5_GG(reg_cache, c, d, a, b, 15, 14, 0xd8a1e681); 3571 md5_GG(reg_cache, b, c, d, a, 4, 20, 0xe7d3fbc8); 3572 md5_GG(reg_cache, a, b, c, d, 9, 5, 0x21e1cde6); 3573 md5_GG(reg_cache, d, a, b, c, 14, 9, 0xc33707d6); 3574 md5_GG(reg_cache, c, d, a, b, 3, 14, 0xf4d50d87); 3575 md5_GG(reg_cache, b, c, d, a, 8, 20, 0x455a14ed); 3576 md5_GG(reg_cache, a, b, c, d, 13, 5, 0xa9e3e905); 3577 md5_GG(reg_cache, d, a, b, c, 2, 9, 0xfcefa3f8); 3578 md5_GG(reg_cache, c, d, a, b, 7, 14, 0x676f02d9); 3579 md5_GG(reg_cache, b, c, d, a, 12, 20, 0x8d2a4c8a); 3580 3581 // Round 3 3582 md5_HH(reg_cache, a, b, c, d, 5, 4, 0xfffa3942); 3583 md5_HH(reg_cache, d, a, b, c, 8, 11, 0x8771f681); 3584 md5_HH(reg_cache, c, d, a, b, 11, 16, 0x6d9d6122); 3585 md5_HH(reg_cache, b, c, d, a, 14, 23, 0xfde5380c); 3586 md5_HH(reg_cache, a, b, c, d, 1, 4, 0xa4beea44); 3587 md5_HH(reg_cache, d, a, b, c, 4, 11, 0x4bdecfa9); 3588 md5_HH(reg_cache, c, d, a, b, 7, 16, 0xf6bb4b60); 3589 md5_HH(reg_cache, b, c, d, a, 10, 23, 0xbebfbc70); 3590 md5_HH(reg_cache, a, b, c, d, 13, 4, 0x289b7ec6); 3591 md5_HH(reg_cache, d, a, b, c, 0, 11, 0xeaa127fa); 3592 md5_HH(reg_cache, c, d, a, b, 3, 16, 0xd4ef3085); 3593 md5_HH(reg_cache, b, c, d, a, 6, 23, 0x04881d05); 3594 md5_HH(reg_cache, a, b, c, d, 9, 4, 0xd9d4d039); 3595 md5_HH(reg_cache, d, a, b, c, 12, 11, 0xe6db99e5); 3596 md5_HH(reg_cache, c, d, a, b, 15, 16, 0x1fa27cf8); 3597 md5_HH(reg_cache, b, c, d, a, 2, 23, 0xc4ac5665); 3598 3599 // Round 4 3600 md5_II(reg_cache, a, b, c, d, 0, 6, 0xf4292244); 3601 md5_II(reg_cache, d, a, b, c, 7, 10, 0x432aff97); 3602 md5_II(reg_cache, c, d, a, b, 14, 15, 0xab9423a7); 3603 md5_II(reg_cache, b, c, d, a, 5, 21, 0xfc93a039); 3604 md5_II(reg_cache, a, b, c, d, 12, 6, 0x655b59c3); 3605 md5_II(reg_cache, d, a, b, c, 3, 10, 0x8f0ccc92); 3606 md5_II(reg_cache, c, d, a, b, 10, 15, 0xffeff47d); 3607 md5_II(reg_cache, b, c, d, a, 1, 21, 0x85845dd1); 3608 md5_II(reg_cache, a, b, c, d, 8, 6, 0x6fa87e4f); 3609 md5_II(reg_cache, d, a, b, c, 15, 10, 0xfe2ce6e0); 3610 md5_II(reg_cache, c, d, a, b, 6, 15, 0xa3014314); 3611 md5_II(reg_cache, b, c, d, a, 13, 21, 0x4e0811a1); 3612 md5_II(reg_cache, a, b, c, d, 4, 6, 0xf7537e82); 3613 md5_II(reg_cache, d, a, b, c, 11, 10, 0xbd3af235); 3614 md5_II(reg_cache, c, d, a, b, 2, 15, 0x2ad7d2bb); 3615 md5_II(reg_cache, b, c, d, a, 9, 21, 0xeb86d391); 3616 3617 __ addw(a, state_regs[0], a); 3618 __ ubfx(rscratch2, state_regs[0], 32, 32); 3619 __ addw(b, rscratch2, b); 3620 __ addw(c, state_regs[1], c); 3621 __ ubfx(rscratch4, state_regs[1], 32, 32); 3622 __ addw(d, rscratch4, d); 3623 3624 __ orr(state_regs[0], a, b, Assembler::LSL, 32); 3625 __ orr(state_regs[1], c, d, Assembler::LSL, 32); 3626 3627 if (multi_block) { 3628 __ add(buf, buf, 64); 3629 __ add(ofs, ofs, 64); 3630 __ cmp(ofs, limit); 3631 __ br(Assembler::LE, md5_loop); 3632 __ mov(c_rarg0, ofs); // return ofs 3633 } 3634 3635 // write hash values back in the correct order 3636 __ stp(state_regs[0], state_regs[1], Address(state)); 3637 3638 __ pop(saved_regs, sp); 3639 3640 __ ret(lr); 3641 3642 return start; 3643 } 3644 3645 // Arguments: 3646 // 3647 // Inputs: 3648 // c_rarg0 - byte[] source+offset 3649 // c_rarg1 - int[] SHA.state 3650 // c_rarg2 - int offset 3651 // c_rarg3 - int limit 3652 // 3653 address generate_sha1_implCompress(StubGenStubId stub_id) { 3654 bool multi_block; 3655 switch (stub_id) { 3656 case sha1_implCompress_id: 3657 multi_block = false; 3658 break; 3659 case sha1_implCompressMB_id: 3660 multi_block = true; 3661 break; 3662 default: 3663 ShouldNotReachHere(); 3664 } 3665 3666 __ align(CodeEntryAlignment); 3667 3668 StubCodeMark mark(this, stub_id); 3669 address start = __ pc(); 3670 3671 Register buf = c_rarg0; 3672 Register state = c_rarg1; 3673 Register ofs = c_rarg2; 3674 Register limit = c_rarg3; 3675 3676 Label keys; 3677 Label sha1_loop; 3678 3679 // load the keys into v0..v3 3680 __ adr(rscratch1, keys); 3681 __ ld4r(v0, v1, v2, v3, __ T4S, Address(rscratch1)); 3682 // load 5 words state into v6, v7 3683 __ ldrq(v6, Address(state, 0)); 3684 __ ldrs(v7, Address(state, 16)); 3685 3686 3687 __ BIND(sha1_loop); 3688 // load 64 bytes of data into v16..v19 3689 __ ld1(v16, v17, v18, v19, __ T4S, multi_block ? __ post(buf, 64) : buf); 3690 __ rev32(v16, __ T16B, v16); 3691 __ rev32(v17, __ T16B, v17); 3692 __ rev32(v18, __ T16B, v18); 3693 __ rev32(v19, __ T16B, v19); 3694 3695 // do the sha1 3696 __ addv(v4, __ T4S, v16, v0); 3697 __ orr(v20, __ T16B, v6, v6); 3698 3699 FloatRegister d0 = v16; 3700 FloatRegister d1 = v17; 3701 FloatRegister d2 = v18; 3702 FloatRegister d3 = v19; 3703 3704 for (int round = 0; round < 20; round++) { 3705 FloatRegister tmp1 = (round & 1) ? v4 : v5; 3706 FloatRegister tmp2 = (round & 1) ? v21 : v22; 3707 FloatRegister tmp3 = round ? ((round & 1) ? v22 : v21) : v7; 3708 FloatRegister tmp4 = (round & 1) ? v5 : v4; 3709 FloatRegister key = (round < 4) ? v0 : ((round < 9) ? v1 : ((round < 14) ? v2 : v3)); 3710 3711 if (round < 16) __ sha1su0(d0, __ T4S, d1, d2); 3712 if (round < 19) __ addv(tmp1, __ T4S, d1, key); 3713 __ sha1h(tmp2, __ T4S, v20); 3714 if (round < 5) 3715 __ sha1c(v20, __ T4S, tmp3, tmp4); 3716 else if (round < 10 || round >= 15) 3717 __ sha1p(v20, __ T4S, tmp3, tmp4); 3718 else 3719 __ sha1m(v20, __ T4S, tmp3, tmp4); 3720 if (round < 16) __ sha1su1(d0, __ T4S, d3); 3721 3722 tmp1 = d0; d0 = d1; d1 = d2; d2 = d3; d3 = tmp1; 3723 } 3724 3725 __ addv(v7, __ T2S, v7, v21); 3726 __ addv(v6, __ T4S, v6, v20); 3727 3728 if (multi_block) { 3729 __ add(ofs, ofs, 64); 3730 __ cmp(ofs, limit); 3731 __ br(Assembler::LE, sha1_loop); 3732 __ mov(c_rarg0, ofs); // return ofs 3733 } 3734 3735 __ strq(v6, Address(state, 0)); 3736 __ strs(v7, Address(state, 16)); 3737 3738 __ ret(lr); 3739 3740 __ bind(keys); 3741 __ emit_int32(0x5a827999); 3742 __ emit_int32(0x6ed9eba1); 3743 __ emit_int32(0x8f1bbcdc); 3744 __ emit_int32(0xca62c1d6); 3745 3746 return start; 3747 } 3748 3749 3750 // Arguments: 3751 // 3752 // Inputs: 3753 // c_rarg0 - byte[] source+offset 3754 // c_rarg1 - int[] SHA.state 3755 // c_rarg2 - int offset 3756 // c_rarg3 - int limit 3757 // 3758 address generate_sha256_implCompress(StubGenStubId stub_id) { 3759 bool multi_block; 3760 switch (stub_id) { 3761 case sha256_implCompress_id: 3762 multi_block = false; 3763 break; 3764 case sha256_implCompressMB_id: 3765 multi_block = true; 3766 break; 3767 default: 3768 ShouldNotReachHere(); 3769 } 3770 3771 static const uint32_t round_consts[64] = { 3772 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 3773 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 3774 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 3775 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 3776 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 3777 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 3778 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 3779 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 3780 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 3781 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 3782 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 3783 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 3784 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 3785 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 3786 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 3787 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, 3788 }; 3789 3790 __ align(CodeEntryAlignment); 3791 3792 StubCodeMark mark(this, stub_id); 3793 address start = __ pc(); 3794 3795 Register buf = c_rarg0; 3796 Register state = c_rarg1; 3797 Register ofs = c_rarg2; 3798 Register limit = c_rarg3; 3799 3800 Label sha1_loop; 3801 3802 __ stpd(v8, v9, __ pre(sp, -32)); 3803 __ stpd(v10, v11, Address(sp, 16)); 3804 3805 // dga == v0 3806 // dgb == v1 3807 // dg0 == v2 3808 // dg1 == v3 3809 // dg2 == v4 3810 // t0 == v6 3811 // t1 == v7 3812 3813 // load 16 keys to v16..v31 3814 __ lea(rscratch1, ExternalAddress((address)round_consts)); 3815 __ ld1(v16, v17, v18, v19, __ T4S, __ post(rscratch1, 64)); 3816 __ ld1(v20, v21, v22, v23, __ T4S, __ post(rscratch1, 64)); 3817 __ ld1(v24, v25, v26, v27, __ T4S, __ post(rscratch1, 64)); 3818 __ ld1(v28, v29, v30, v31, __ T4S, rscratch1); 3819 3820 // load 8 words (256 bits) state 3821 __ ldpq(v0, v1, state); 3822 3823 __ BIND(sha1_loop); 3824 // load 64 bytes of data into v8..v11 3825 __ ld1(v8, v9, v10, v11, __ T4S, multi_block ? __ post(buf, 64) : buf); 3826 __ rev32(v8, __ T16B, v8); 3827 __ rev32(v9, __ T16B, v9); 3828 __ rev32(v10, __ T16B, v10); 3829 __ rev32(v11, __ T16B, v11); 3830 3831 __ addv(v6, __ T4S, v8, v16); 3832 __ orr(v2, __ T16B, v0, v0); 3833 __ orr(v3, __ T16B, v1, v1); 3834 3835 FloatRegister d0 = v8; 3836 FloatRegister d1 = v9; 3837 FloatRegister d2 = v10; 3838 FloatRegister d3 = v11; 3839 3840 3841 for (int round = 0; round < 16; round++) { 3842 FloatRegister tmp1 = (round & 1) ? v6 : v7; 3843 FloatRegister tmp2 = (round & 1) ? v7 : v6; 3844 FloatRegister tmp3 = (round & 1) ? v2 : v4; 3845 FloatRegister tmp4 = (round & 1) ? v4 : v2; 3846 3847 if (round < 12) __ sha256su0(d0, __ T4S, d1); 3848 __ orr(v4, __ T16B, v2, v2); 3849 if (round < 15) 3850 __ addv(tmp1, __ T4S, d1, as_FloatRegister(round + 17)); 3851 __ sha256h(v2, __ T4S, v3, tmp2); 3852 __ sha256h2(v3, __ T4S, v4, tmp2); 3853 if (round < 12) __ sha256su1(d0, __ T4S, d2, d3); 3854 3855 tmp1 = d0; d0 = d1; d1 = d2; d2 = d3; d3 = tmp1; 3856 } 3857 3858 __ addv(v0, __ T4S, v0, v2); 3859 __ addv(v1, __ T4S, v1, v3); 3860 3861 if (multi_block) { 3862 __ add(ofs, ofs, 64); 3863 __ cmp(ofs, limit); 3864 __ br(Assembler::LE, sha1_loop); 3865 __ mov(c_rarg0, ofs); // return ofs 3866 } 3867 3868 __ ldpd(v10, v11, Address(sp, 16)); 3869 __ ldpd(v8, v9, __ post(sp, 32)); 3870 3871 __ stpq(v0, v1, state); 3872 3873 __ ret(lr); 3874 3875 return start; 3876 } 3877 3878 // Double rounds for sha512. 3879 void sha512_dround(int dr, 3880 FloatRegister vi0, FloatRegister vi1, 3881 FloatRegister vi2, FloatRegister vi3, 3882 FloatRegister vi4, FloatRegister vrc0, 3883 FloatRegister vrc1, FloatRegister vin0, 3884 FloatRegister vin1, FloatRegister vin2, 3885 FloatRegister vin3, FloatRegister vin4) { 3886 if (dr < 36) { 3887 __ ld1(vrc1, __ T2D, __ post(rscratch2, 16)); 3888 } 3889 __ addv(v5, __ T2D, vrc0, vin0); 3890 __ ext(v6, __ T16B, vi2, vi3, 8); 3891 __ ext(v5, __ T16B, v5, v5, 8); 3892 __ ext(v7, __ T16B, vi1, vi2, 8); 3893 __ addv(vi3, __ T2D, vi3, v5); 3894 if (dr < 32) { 3895 __ ext(v5, __ T16B, vin3, vin4, 8); 3896 __ sha512su0(vin0, __ T2D, vin1); 3897 } 3898 __ sha512h(vi3, __ T2D, v6, v7); 3899 if (dr < 32) { 3900 __ sha512su1(vin0, __ T2D, vin2, v5); 3901 } 3902 __ addv(vi4, __ T2D, vi1, vi3); 3903 __ sha512h2(vi3, __ T2D, vi1, vi0); 3904 } 3905 3906 // Arguments: 3907 // 3908 // Inputs: 3909 // c_rarg0 - byte[] source+offset 3910 // c_rarg1 - int[] SHA.state 3911 // c_rarg2 - int offset 3912 // c_rarg3 - int limit 3913 // 3914 address generate_sha512_implCompress(StubGenStubId stub_id) { 3915 bool multi_block; 3916 switch (stub_id) { 3917 case sha512_implCompress_id: 3918 multi_block = false; 3919 break; 3920 case sha512_implCompressMB_id: 3921 multi_block = true; 3922 break; 3923 default: 3924 ShouldNotReachHere(); 3925 } 3926 3927 static const uint64_t round_consts[80] = { 3928 0x428A2F98D728AE22L, 0x7137449123EF65CDL, 0xB5C0FBCFEC4D3B2FL, 3929 0xE9B5DBA58189DBBCL, 0x3956C25BF348B538L, 0x59F111F1B605D019L, 3930 0x923F82A4AF194F9BL, 0xAB1C5ED5DA6D8118L, 0xD807AA98A3030242L, 3931 0x12835B0145706FBEL, 0x243185BE4EE4B28CL, 0x550C7DC3D5FFB4E2L, 3932 0x72BE5D74F27B896FL, 0x80DEB1FE3B1696B1L, 0x9BDC06A725C71235L, 3933 0xC19BF174CF692694L, 0xE49B69C19EF14AD2L, 0xEFBE4786384F25E3L, 3934 0x0FC19DC68B8CD5B5L, 0x240CA1CC77AC9C65L, 0x2DE92C6F592B0275L, 3935 0x4A7484AA6EA6E483L, 0x5CB0A9DCBD41FBD4L, 0x76F988DA831153B5L, 3936 0x983E5152EE66DFABL, 0xA831C66D2DB43210L, 0xB00327C898FB213FL, 3937 0xBF597FC7BEEF0EE4L, 0xC6E00BF33DA88FC2L, 0xD5A79147930AA725L, 3938 0x06CA6351E003826FL, 0x142929670A0E6E70L, 0x27B70A8546D22FFCL, 3939 0x2E1B21385C26C926L, 0x4D2C6DFC5AC42AEDL, 0x53380D139D95B3DFL, 3940 0x650A73548BAF63DEL, 0x766A0ABB3C77B2A8L, 0x81C2C92E47EDAEE6L, 3941 0x92722C851482353BL, 0xA2BFE8A14CF10364L, 0xA81A664BBC423001L, 3942 0xC24B8B70D0F89791L, 0xC76C51A30654BE30L, 0xD192E819D6EF5218L, 3943 0xD69906245565A910L, 0xF40E35855771202AL, 0x106AA07032BBD1B8L, 3944 0x19A4C116B8D2D0C8L, 0x1E376C085141AB53L, 0x2748774CDF8EEB99L, 3945 0x34B0BCB5E19B48A8L, 0x391C0CB3C5C95A63L, 0x4ED8AA4AE3418ACBL, 3946 0x5B9CCA4F7763E373L, 0x682E6FF3D6B2B8A3L, 0x748F82EE5DEFB2FCL, 3947 0x78A5636F43172F60L, 0x84C87814A1F0AB72L, 0x8CC702081A6439ECL, 3948 0x90BEFFFA23631E28L, 0xA4506CEBDE82BDE9L, 0xBEF9A3F7B2C67915L, 3949 0xC67178F2E372532BL, 0xCA273ECEEA26619CL, 0xD186B8C721C0C207L, 3950 0xEADA7DD6CDE0EB1EL, 0xF57D4F7FEE6ED178L, 0x06F067AA72176FBAL, 3951 0x0A637DC5A2C898A6L, 0x113F9804BEF90DAEL, 0x1B710B35131C471BL, 3952 0x28DB77F523047D84L, 0x32CAAB7B40C72493L, 0x3C9EBE0A15C9BEBCL, 3953 0x431D67C49C100D4CL, 0x4CC5D4BECB3E42B6L, 0x597F299CFC657E2AL, 3954 0x5FCB6FAB3AD6FAECL, 0x6C44198C4A475817L 3955 }; 3956 3957 __ align(CodeEntryAlignment); 3958 3959 StubCodeMark mark(this, stub_id); 3960 address start = __ pc(); 3961 3962 Register buf = c_rarg0; 3963 Register state = c_rarg1; 3964 Register ofs = c_rarg2; 3965 Register limit = c_rarg3; 3966 3967 __ stpd(v8, v9, __ pre(sp, -64)); 3968 __ stpd(v10, v11, Address(sp, 16)); 3969 __ stpd(v12, v13, Address(sp, 32)); 3970 __ stpd(v14, v15, Address(sp, 48)); 3971 3972 Label sha512_loop; 3973 3974 // load state 3975 __ ld1(v8, v9, v10, v11, __ T2D, state); 3976 3977 // load first 4 round constants 3978 __ lea(rscratch1, ExternalAddress((address)round_consts)); 3979 __ ld1(v20, v21, v22, v23, __ T2D, __ post(rscratch1, 64)); 3980 3981 __ BIND(sha512_loop); 3982 // load 128B of data into v12..v19 3983 __ ld1(v12, v13, v14, v15, __ T2D, __ post(buf, 64)); 3984 __ ld1(v16, v17, v18, v19, __ T2D, __ post(buf, 64)); 3985 __ rev64(v12, __ T16B, v12); 3986 __ rev64(v13, __ T16B, v13); 3987 __ rev64(v14, __ T16B, v14); 3988 __ rev64(v15, __ T16B, v15); 3989 __ rev64(v16, __ T16B, v16); 3990 __ rev64(v17, __ T16B, v17); 3991 __ rev64(v18, __ T16B, v18); 3992 __ rev64(v19, __ T16B, v19); 3993 3994 __ mov(rscratch2, rscratch1); 3995 3996 __ mov(v0, __ T16B, v8); 3997 __ mov(v1, __ T16B, v9); 3998 __ mov(v2, __ T16B, v10); 3999 __ mov(v3, __ T16B, v11); 4000 4001 sha512_dround( 0, v0, v1, v2, v3, v4, v20, v24, v12, v13, v19, v16, v17); 4002 sha512_dround( 1, v3, v0, v4, v2, v1, v21, v25, v13, v14, v12, v17, v18); 4003 sha512_dround( 2, v2, v3, v1, v4, v0, v22, v26, v14, v15, v13, v18, v19); 4004 sha512_dround( 3, v4, v2, v0, v1, v3, v23, v27, v15, v16, v14, v19, v12); 4005 sha512_dround( 4, v1, v4, v3, v0, v2, v24, v28, v16, v17, v15, v12, v13); 4006 sha512_dround( 5, v0, v1, v2, v3, v4, v25, v29, v17, v18, v16, v13, v14); 4007 sha512_dround( 6, v3, v0, v4, v2, v1, v26, v30, v18, v19, v17, v14, v15); 4008 sha512_dround( 7, v2, v3, v1, v4, v0, v27, v31, v19, v12, v18, v15, v16); 4009 sha512_dround( 8, v4, v2, v0, v1, v3, v28, v24, v12, v13, v19, v16, v17); 4010 sha512_dround( 9, v1, v4, v3, v0, v2, v29, v25, v13, v14, v12, v17, v18); 4011 sha512_dround(10, v0, v1, v2, v3, v4, v30, v26, v14, v15, v13, v18, v19); 4012 sha512_dround(11, v3, v0, v4, v2, v1, v31, v27, v15, v16, v14, v19, v12); 4013 sha512_dround(12, v2, v3, v1, v4, v0, v24, v28, v16, v17, v15, v12, v13); 4014 sha512_dround(13, v4, v2, v0, v1, v3, v25, v29, v17, v18, v16, v13, v14); 4015 sha512_dround(14, v1, v4, v3, v0, v2, v26, v30, v18, v19, v17, v14, v15); 4016 sha512_dround(15, v0, v1, v2, v3, v4, v27, v31, v19, v12, v18, v15, v16); 4017 sha512_dround(16, v3, v0, v4, v2, v1, v28, v24, v12, v13, v19, v16, v17); 4018 sha512_dround(17, v2, v3, v1, v4, v0, v29, v25, v13, v14, v12, v17, v18); 4019 sha512_dround(18, v4, v2, v0, v1, v3, v30, v26, v14, v15, v13, v18, v19); 4020 sha512_dround(19, v1, v4, v3, v0, v2, v31, v27, v15, v16, v14, v19, v12); 4021 sha512_dround(20, v0, v1, v2, v3, v4, v24, v28, v16, v17, v15, v12, v13); 4022 sha512_dround(21, v3, v0, v4, v2, v1, v25, v29, v17, v18, v16, v13, v14); 4023 sha512_dround(22, v2, v3, v1, v4, v0, v26, v30, v18, v19, v17, v14, v15); 4024 sha512_dround(23, v4, v2, v0, v1, v3, v27, v31, v19, v12, v18, v15, v16); 4025 sha512_dround(24, v1, v4, v3, v0, v2, v28, v24, v12, v13, v19, v16, v17); 4026 sha512_dround(25, v0, v1, v2, v3, v4, v29, v25, v13, v14, v12, v17, v18); 4027 sha512_dround(26, v3, v0, v4, v2, v1, v30, v26, v14, v15, v13, v18, v19); 4028 sha512_dround(27, v2, v3, v1, v4, v0, v31, v27, v15, v16, v14, v19, v12); 4029 sha512_dround(28, v4, v2, v0, v1, v3, v24, v28, v16, v17, v15, v12, v13); 4030 sha512_dround(29, v1, v4, v3, v0, v2, v25, v29, v17, v18, v16, v13, v14); 4031 sha512_dround(30, v0, v1, v2, v3, v4, v26, v30, v18, v19, v17, v14, v15); 4032 sha512_dround(31, v3, v0, v4, v2, v1, v27, v31, v19, v12, v18, v15, v16); 4033 sha512_dround(32, v2, v3, v1, v4, v0, v28, v24, v12, v0, v0, v0, v0); 4034 sha512_dround(33, v4, v2, v0, v1, v3, v29, v25, v13, v0, v0, v0, v0); 4035 sha512_dround(34, v1, v4, v3, v0, v2, v30, v26, v14, v0, v0, v0, v0); 4036 sha512_dround(35, v0, v1, v2, v3, v4, v31, v27, v15, v0, v0, v0, v0); 4037 sha512_dround(36, v3, v0, v4, v2, v1, v24, v0, v16, v0, v0, v0, v0); 4038 sha512_dround(37, v2, v3, v1, v4, v0, v25, v0, v17, v0, v0, v0, v0); 4039 sha512_dround(38, v4, v2, v0, v1, v3, v26, v0, v18, v0, v0, v0, v0); 4040 sha512_dround(39, v1, v4, v3, v0, v2, v27, v0, v19, v0, v0, v0, v0); 4041 4042 __ addv(v8, __ T2D, v8, v0); 4043 __ addv(v9, __ T2D, v9, v1); 4044 __ addv(v10, __ T2D, v10, v2); 4045 __ addv(v11, __ T2D, v11, v3); 4046 4047 if (multi_block) { 4048 __ add(ofs, ofs, 128); 4049 __ cmp(ofs, limit); 4050 __ br(Assembler::LE, sha512_loop); 4051 __ mov(c_rarg0, ofs); // return ofs 4052 } 4053 4054 __ st1(v8, v9, v10, v11, __ T2D, state); 4055 4056 __ ldpd(v14, v15, Address(sp, 48)); 4057 __ ldpd(v12, v13, Address(sp, 32)); 4058 __ ldpd(v10, v11, Address(sp, 16)); 4059 __ ldpd(v8, v9, __ post(sp, 64)); 4060 4061 __ ret(lr); 4062 4063 return start; 4064 } 4065 4066 // Execute one round of keccak of two computations in parallel. 4067 // One of the states should be loaded into the lower halves of 4068 // the vector registers v0-v24, the other should be loaded into 4069 // the upper halves of those registers. The ld1r instruction loads 4070 // the round constant into both halves of register v31. 4071 // Intermediate results c0...c5 and d0...d5 are computed 4072 // in registers v25...v30. 4073 // All vector instructions that are used operate on both register 4074 // halves in parallel. 4075 // If only a single computation is needed, one can only load the lower halves. 4076 void keccak_round(Register rscratch1) { 4077 __ eor3(v29, __ T16B, v4, v9, v14); // c4 = a4 ^ a9 ^ a14 4078 __ eor3(v26, __ T16B, v1, v6, v11); // c1 = a1 ^ a16 ^ a11 4079 __ eor3(v28, __ T16B, v3, v8, v13); // c3 = a3 ^ a8 ^a13 4080 __ eor3(v25, __ T16B, v0, v5, v10); // c0 = a0 ^ a5 ^ a10 4081 __ eor3(v27, __ T16B, v2, v7, v12); // c2 = a2 ^ a7 ^ a12 4082 __ eor3(v29, __ T16B, v29, v19, v24); // c4 ^= a19 ^ a24 4083 __ eor3(v26, __ T16B, v26, v16, v21); // c1 ^= a16 ^ a21 4084 __ eor3(v28, __ T16B, v28, v18, v23); // c3 ^= a18 ^ a23 4085 __ eor3(v25, __ T16B, v25, v15, v20); // c0 ^= a15 ^ a20 4086 __ eor3(v27, __ T16B, v27, v17, v22); // c2 ^= a17 ^ a22 4087 4088 __ rax1(v30, __ T2D, v29, v26); // d0 = c4 ^ rol(c1, 1) 4089 __ rax1(v26, __ T2D, v26, v28); // d2 = c1 ^ rol(c3, 1) 4090 __ rax1(v28, __ T2D, v28, v25); // d4 = c3 ^ rol(c0, 1) 4091 __ rax1(v25, __ T2D, v25, v27); // d1 = c0 ^ rol(c2, 1) 4092 __ rax1(v27, __ T2D, v27, v29); // d3 = c2 ^ rol(c4, 1) 4093 4094 __ eor(v0, __ T16B, v0, v30); // a0 = a0 ^ d0 4095 __ xar(v29, __ T2D, v1, v25, (64 - 1)); // a10' = rol((a1^d1), 1) 4096 __ xar(v1, __ T2D, v6, v25, (64 - 44)); // a1 = rol(a6^d1), 44) 4097 __ xar(v6, __ T2D, v9, v28, (64 - 20)); // a6 = rol((a9^d4), 20) 4098 __ xar(v9, __ T2D, v22, v26, (64 - 61)); // a9 = rol((a22^d2), 61) 4099 __ xar(v22, __ T2D, v14, v28, (64 - 39)); // a22 = rol((a14^d4), 39) 4100 __ xar(v14, __ T2D, v20, v30, (64 - 18)); // a14 = rol((a20^d0), 18) 4101 __ xar(v31, __ T2D, v2, v26, (64 - 62)); // a20' = rol((a2^d2), 62) 4102 __ xar(v2, __ T2D, v12, v26, (64 - 43)); // a2 = rol((a12^d2), 43) 4103 __ xar(v12, __ T2D, v13, v27, (64 - 25)); // a12 = rol((a13^d3), 25) 4104 __ xar(v13, __ T2D, v19, v28, (64 - 8)); // a13 = rol((a19^d4), 8) 4105 __ xar(v19, __ T2D, v23, v27, (64 - 56)); // a19 = rol((a23^d3), 56) 4106 __ xar(v23, __ T2D, v15, v30, (64 - 41)); // a23 = rol((a15^d0), 41) 4107 __ xar(v15, __ T2D, v4, v28, (64 - 27)); // a15 = rol((a4^d4), 27) 4108 __ xar(v28, __ T2D, v24, v28, (64 - 14)); // a4' = rol((a24^d4), 14) 4109 __ xar(v24, __ T2D, v21, v25, (64 - 2)); // a24 = rol((a21^d1), 2) 4110 __ xar(v8, __ T2D, v8, v27, (64 - 55)); // a21' = rol((a8^d3), 55) 4111 __ xar(v4, __ T2D, v16, v25, (64 - 45)); // a8' = rol((a16^d1), 45) 4112 __ xar(v16, __ T2D, v5, v30, (64 - 36)); // a16 = rol((a5^d0), 36) 4113 __ xar(v5, __ T2D, v3, v27, (64 - 28)); // a5 = rol((a3^d3), 28) 4114 __ xar(v27, __ T2D, v18, v27, (64 - 21)); // a3' = rol((a18^d3), 21) 4115 __ xar(v3, __ T2D, v17, v26, (64 - 15)); // a18' = rol((a17^d2), 15) 4116 __ xar(v25, __ T2D, v11, v25, (64 - 10)); // a17' = rol((a11^d1), 10) 4117 __ xar(v26, __ T2D, v7, v26, (64 - 6)); // a11' = rol((a7^d2), 6) 4118 __ xar(v30, __ T2D, v10, v30, (64 - 3)); // a7' = rol((a10^d0), 3) 4119 4120 __ bcax(v20, __ T16B, v31, v22, v8); // a20 = a20' ^ (~a21 & a22') 4121 __ bcax(v21, __ T16B, v8, v23, v22); // a21 = a21' ^ (~a22 & a23) 4122 __ bcax(v22, __ T16B, v22, v24, v23); // a22 = a22 ^ (~a23 & a24) 4123 __ bcax(v23, __ T16B, v23, v31, v24); // a23 = a23 ^ (~a24 & a20') 4124 __ bcax(v24, __ T16B, v24, v8, v31); // a24 = a24 ^ (~a20' & a21') 4125 4126 __ ld1r(v31, __ T2D, __ post(rscratch1, 8)); // rc = round_constants[i] 4127 4128 __ bcax(v17, __ T16B, v25, v19, v3); // a17 = a17' ^ (~a18' & a19) 4129 __ bcax(v18, __ T16B, v3, v15, v19); // a18 = a18' ^ (~a19 & a15') 4130 __ bcax(v19, __ T16B, v19, v16, v15); // a19 = a19 ^ (~a15 & a16) 4131 __ bcax(v15, __ T16B, v15, v25, v16); // a15 = a15 ^ (~a16 & a17') 4132 __ bcax(v16, __ T16B, v16, v3, v25); // a16 = a16 ^ (~a17' & a18') 4133 4134 __ bcax(v10, __ T16B, v29, v12, v26); // a10 = a10' ^ (~a11' & a12) 4135 __ bcax(v11, __ T16B, v26, v13, v12); // a11 = a11' ^ (~a12 & a13) 4136 __ bcax(v12, __ T16B, v12, v14, v13); // a12 = a12 ^ (~a13 & a14) 4137 __ bcax(v13, __ T16B, v13, v29, v14); // a13 = a13 ^ (~a14 & a10') 4138 __ bcax(v14, __ T16B, v14, v26, v29); // a14 = a14 ^ (~a10' & a11') 4139 4140 __ bcax(v7, __ T16B, v30, v9, v4); // a7 = a7' ^ (~a8' & a9) 4141 __ bcax(v8, __ T16B, v4, v5, v9); // a8 = a8' ^ (~a9 & a5) 4142 __ bcax(v9, __ T16B, v9, v6, v5); // a9 = a9 ^ (~a5 & a6) 4143 __ bcax(v5, __ T16B, v5, v30, v6); // a5 = a5 ^ (~a6 & a7) 4144 __ bcax(v6, __ T16B, v6, v4, v30); // a6 = a6 ^ (~a7 & a8') 4145 4146 __ bcax(v3, __ T16B, v27, v0, v28); // a3 = a3' ^ (~a4' & a0) 4147 __ bcax(v4, __ T16B, v28, v1, v0); // a4 = a4' ^ (~a0 & a1) 4148 __ bcax(v0, __ T16B, v0, v2, v1); // a0 = a0 ^ (~a1 & a2) 4149 __ bcax(v1, __ T16B, v1, v27, v2); // a1 = a1 ^ (~a2 & a3) 4150 __ bcax(v2, __ T16B, v2, v28, v27); // a2 = a2 ^ (~a3 & a4') 4151 4152 __ eor(v0, __ T16B, v0, v31); // a0 = a0 ^ rc 4153 } 4154 4155 // Arguments: 4156 // 4157 // Inputs: 4158 // c_rarg0 - byte[] source+offset 4159 // c_rarg1 - byte[] SHA.state 4160 // c_rarg2 - int block_size 4161 // c_rarg3 - int offset 4162 // c_rarg4 - int limit 4163 // 4164 address generate_sha3_implCompress(StubGenStubId stub_id) { 4165 bool multi_block; 4166 switch (stub_id) { 4167 case sha3_implCompress_id: 4168 multi_block = false; 4169 break; 4170 case sha3_implCompressMB_id: 4171 multi_block = true; 4172 break; 4173 default: 4174 ShouldNotReachHere(); 4175 } 4176 4177 static const uint64_t round_consts[24] = { 4178 0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 4179 0x8000000080008000L, 0x000000000000808BL, 0x0000000080000001L, 4180 0x8000000080008081L, 0x8000000000008009L, 0x000000000000008AL, 4181 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL, 4182 0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 4183 0x8000000000008003L, 0x8000000000008002L, 0x8000000000000080L, 4184 0x000000000000800AL, 0x800000008000000AL, 0x8000000080008081L, 4185 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L 4186 }; 4187 4188 __ align(CodeEntryAlignment); 4189 4190 StubCodeMark mark(this, stub_id); 4191 address start = __ pc(); 4192 4193 Register buf = c_rarg0; 4194 Register state = c_rarg1; 4195 Register block_size = c_rarg2; 4196 Register ofs = c_rarg3; 4197 Register limit = c_rarg4; 4198 4199 Label sha3_loop, rounds24_loop; 4200 Label sha3_512_or_sha3_384, shake128; 4201 4202 __ stpd(v8, v9, __ pre(sp, -64)); 4203 __ stpd(v10, v11, Address(sp, 16)); 4204 __ stpd(v12, v13, Address(sp, 32)); 4205 __ stpd(v14, v15, Address(sp, 48)); 4206 4207 // load state 4208 __ add(rscratch1, state, 32); 4209 __ ld1(v0, v1, v2, v3, __ T1D, state); 4210 __ ld1(v4, v5, v6, v7, __ T1D, __ post(rscratch1, 32)); 4211 __ ld1(v8, v9, v10, v11, __ T1D, __ post(rscratch1, 32)); 4212 __ ld1(v12, v13, v14, v15, __ T1D, __ post(rscratch1, 32)); 4213 __ ld1(v16, v17, v18, v19, __ T1D, __ post(rscratch1, 32)); 4214 __ ld1(v20, v21, v22, v23, __ T1D, __ post(rscratch1, 32)); 4215 __ ld1(v24, __ T1D, rscratch1); 4216 4217 __ BIND(sha3_loop); 4218 4219 // 24 keccak rounds 4220 __ movw(rscratch2, 24); 4221 4222 // load round_constants base 4223 __ lea(rscratch1, ExternalAddress((address) round_consts)); 4224 4225 // load input 4226 __ ld1(v25, v26, v27, v28, __ T8B, __ post(buf, 32)); 4227 __ ld1(v29, v30, v31, __ T8B, __ post(buf, 24)); 4228 __ eor(v0, __ T8B, v0, v25); 4229 __ eor(v1, __ T8B, v1, v26); 4230 __ eor(v2, __ T8B, v2, v27); 4231 __ eor(v3, __ T8B, v3, v28); 4232 __ eor(v4, __ T8B, v4, v29); 4233 __ eor(v5, __ T8B, v5, v30); 4234 __ eor(v6, __ T8B, v6, v31); 4235 4236 // block_size == 72, SHA3-512; block_size == 104, SHA3-384 4237 __ tbz(block_size, 7, sha3_512_or_sha3_384); 4238 4239 __ ld1(v25, v26, v27, v28, __ T8B, __ post(buf, 32)); 4240 __ ld1(v29, v30, v31, __ T8B, __ post(buf, 24)); 4241 __ eor(v7, __ T8B, v7, v25); 4242 __ eor(v8, __ T8B, v8, v26); 4243 __ eor(v9, __ T8B, v9, v27); 4244 __ eor(v10, __ T8B, v10, v28); 4245 __ eor(v11, __ T8B, v11, v29); 4246 __ eor(v12, __ T8B, v12, v30); 4247 __ eor(v13, __ T8B, v13, v31); 4248 4249 __ ld1(v25, v26, v27, __ T8B, __ post(buf, 24)); 4250 __ eor(v14, __ T8B, v14, v25); 4251 __ eor(v15, __ T8B, v15, v26); 4252 __ eor(v16, __ T8B, v16, v27); 4253 4254 // block_size == 136, bit4 == 0 and bit5 == 0, SHA3-256 or SHAKE256 4255 __ andw(c_rarg5, block_size, 48); 4256 __ cbzw(c_rarg5, rounds24_loop); 4257 4258 __ tbnz(block_size, 5, shake128); 4259 // block_size == 144, bit5 == 0, SHA3-224 4260 __ ldrd(v28, __ post(buf, 8)); 4261 __ eor(v17, __ T8B, v17, v28); 4262 __ b(rounds24_loop); 4263 4264 __ BIND(shake128); 4265 __ ld1(v28, v29, v30, v31, __ T8B, __ post(buf, 32)); 4266 __ eor(v17, __ T8B, v17, v28); 4267 __ eor(v18, __ T8B, v18, v29); 4268 __ eor(v19, __ T8B, v19, v30); 4269 __ eor(v20, __ T8B, v20, v31); 4270 __ b(rounds24_loop); // block_size == 168, SHAKE128 4271 4272 __ BIND(sha3_512_or_sha3_384); 4273 __ ld1(v25, v26, __ T8B, __ post(buf, 16)); 4274 __ eor(v7, __ T8B, v7, v25); 4275 __ eor(v8, __ T8B, v8, v26); 4276 __ tbz(block_size, 5, rounds24_loop); // SHA3-512 4277 4278 // SHA3-384 4279 __ ld1(v27, v28, v29, v30, __ T8B, __ post(buf, 32)); 4280 __ eor(v9, __ T8B, v9, v27); 4281 __ eor(v10, __ T8B, v10, v28); 4282 __ eor(v11, __ T8B, v11, v29); 4283 __ eor(v12, __ T8B, v12, v30); 4284 4285 __ BIND(rounds24_loop); 4286 __ subw(rscratch2, rscratch2, 1); 4287 4288 keccak_round(rscratch1); 4289 4290 __ cbnzw(rscratch2, rounds24_loop); 4291 4292 if (multi_block) { 4293 __ add(ofs, ofs, block_size); 4294 __ cmp(ofs, limit); 4295 __ br(Assembler::LE, sha3_loop); 4296 __ mov(c_rarg0, ofs); // return ofs 4297 } 4298 4299 __ st1(v0, v1, v2, v3, __ T1D, __ post(state, 32)); 4300 __ st1(v4, v5, v6, v7, __ T1D, __ post(state, 32)); 4301 __ st1(v8, v9, v10, v11, __ T1D, __ post(state, 32)); 4302 __ st1(v12, v13, v14, v15, __ T1D, __ post(state, 32)); 4303 __ st1(v16, v17, v18, v19, __ T1D, __ post(state, 32)); 4304 __ st1(v20, v21, v22, v23, __ T1D, __ post(state, 32)); 4305 __ st1(v24, __ T1D, state); 4306 4307 // restore callee-saved registers 4308 __ ldpd(v14, v15, Address(sp, 48)); 4309 __ ldpd(v12, v13, Address(sp, 32)); 4310 __ ldpd(v10, v11, Address(sp, 16)); 4311 __ ldpd(v8, v9, __ post(sp, 64)); 4312 4313 __ ret(lr); 4314 4315 return start; 4316 } 4317 4318 // Inputs: 4319 // c_rarg0 - long[] state0 4320 // c_rarg1 - long[] state1 4321 address generate_double_keccak() { 4322 static const uint64_t round_consts[24] = { 4323 0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 4324 0x8000000080008000L, 0x000000000000808BL, 0x0000000080000001L, 4325 0x8000000080008081L, 0x8000000000008009L, 0x000000000000008AL, 4326 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL, 4327 0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 4328 0x8000000000008003L, 0x8000000000008002L, 0x8000000000000080L, 4329 0x000000000000800AL, 0x800000008000000AL, 0x8000000080008081L, 4330 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L 4331 }; 4332 4333 // Implements the double_keccak() method of the 4334 // sun.secyrity.provider.SHA3Parallel class 4335 __ align(CodeEntryAlignment); 4336 StubCodeMark mark(this, "StubRoutines", "double_keccak"); 4337 address start = __ pc(); 4338 __ enter(); 4339 4340 Register state0 = c_rarg0; 4341 Register state1 = c_rarg1; 4342 4343 Label rounds24_loop; 4344 4345 // save callee-saved registers 4346 __ stpd(v8, v9, __ pre(sp, -64)); 4347 __ stpd(v10, v11, Address(sp, 16)); 4348 __ stpd(v12, v13, Address(sp, 32)); 4349 __ stpd(v14, v15, Address(sp, 48)); 4350 4351 // load states 4352 __ add(rscratch1, state0, 32); 4353 __ ld4(v0, v1, v2, v3, __ D, 0, state0); 4354 __ ld4(v4, v5, v6, v7, __ D, 0, __ post(rscratch1, 32)); 4355 __ ld4(v8, v9, v10, v11, __ D, 0, __ post(rscratch1, 32)); 4356 __ ld4(v12, v13, v14, v15, __ D, 0, __ post(rscratch1, 32)); 4357 __ ld4(v16, v17, v18, v19, __ D, 0, __ post(rscratch1, 32)); 4358 __ ld4(v20, v21, v22, v23, __ D, 0, __ post(rscratch1, 32)); 4359 __ ld1(v24, __ D, 0, rscratch1); 4360 __ add(rscratch1, state1, 32); 4361 __ ld4(v0, v1, v2, v3, __ D, 1, state1); 4362 __ ld4(v4, v5, v6, v7, __ D, 1, __ post(rscratch1, 32)); 4363 __ ld4(v8, v9, v10, v11, __ D, 1, __ post(rscratch1, 32)); 4364 __ ld4(v12, v13, v14, v15, __ D, 1, __ post(rscratch1, 32)); 4365 __ ld4(v16, v17, v18, v19, __ D, 1, __ post(rscratch1, 32)); 4366 __ ld4(v20, v21, v22, v23, __ D, 1, __ post(rscratch1, 32)); 4367 __ ld1(v24, __ D, 1, rscratch1); 4368 4369 // 24 keccak rounds 4370 __ movw(rscratch2, 24); 4371 4372 // load round_constants base 4373 __ lea(rscratch1, ExternalAddress((address) round_consts)); 4374 4375 __ BIND(rounds24_loop); 4376 __ subw(rscratch2, rscratch2, 1); 4377 keccak_round(rscratch1); 4378 __ cbnzw(rscratch2, rounds24_loop); 4379 4380 __ st4(v0, v1, v2, v3, __ D, 0, __ post(state0, 32)); 4381 __ st4(v4, v5, v6, v7, __ D, 0, __ post(state0, 32)); 4382 __ st4(v8, v9, v10, v11, __ D, 0, __ post(state0, 32)); 4383 __ st4(v12, v13, v14, v15, __ D, 0, __ post(state0, 32)); 4384 __ st4(v16, v17, v18, v19, __ D, 0, __ post(state0, 32)); 4385 __ st4(v20, v21, v22, v23, __ D, 0, __ post(state0, 32)); 4386 __ st1(v24, __ D, 0, state0); 4387 __ st4(v0, v1, v2, v3, __ D, 1, __ post(state1, 32)); 4388 __ st4(v4, v5, v6, v7, __ D, 1, __ post(state1, 32)); 4389 __ st4(v8, v9, v10, v11, __ D, 1, __ post(state1, 32)); 4390 __ st4(v12, v13, v14, v15, __ D, 1, __ post(state1, 32)); 4391 __ st4(v16, v17, v18, v19, __ D, 1, __ post(state1, 32)); 4392 __ st4(v20, v21, v22, v23, __ D, 1, __ post(state1, 32)); 4393 __ st1(v24, __ D, 1, state1); 4394 4395 // restore callee-saved vector registers 4396 __ ldpd(v14, v15, Address(sp, 48)); 4397 __ ldpd(v12, v13, Address(sp, 32)); 4398 __ ldpd(v10, v11, Address(sp, 16)); 4399 __ ldpd(v8, v9, __ post(sp, 64)); 4400 4401 __ leave(); // required for proper stackwalking of RuntimeStub frame 4402 __ mov(r0, zr); // return 0 4403 __ ret(lr); 4404 4405 return start; 4406 } 4407 4408 /** 4409 * Arguments: 4410 * 4411 * Inputs: 4412 * c_rarg0 - int crc 4413 * c_rarg1 - byte* buf 4414 * c_rarg2 - int length 4415 * 4416 * Output: 4417 * rax - int crc result 4418 */ 4419 address generate_updateBytesCRC32() { 4420 assert(UseCRC32Intrinsics, "what are we doing here?"); 4421 4422 __ align(CodeEntryAlignment); 4423 StubGenStubId stub_id = StubGenStubId::updateBytesCRC32_id; 4424 StubCodeMark mark(this, stub_id); 4425 4426 address start = __ pc(); 4427 4428 const Register crc = c_rarg0; // crc 4429 const Register buf = c_rarg1; // source java byte array address 4430 const Register len = c_rarg2; // length 4431 const Register table0 = c_rarg3; // crc_table address 4432 const Register table1 = c_rarg4; 4433 const Register table2 = c_rarg5; 4434 const Register table3 = c_rarg6; 4435 const Register tmp3 = c_rarg7; 4436 4437 BLOCK_COMMENT("Entry:"); 4438 __ enter(); // required for proper stackwalking of RuntimeStub frame 4439 4440 __ kernel_crc32(crc, buf, len, 4441 table0, table1, table2, table3, rscratch1, rscratch2, tmp3); 4442 4443 __ leave(); // required for proper stackwalking of RuntimeStub frame 4444 __ ret(lr); 4445 4446 return start; 4447 } 4448 4449 // ChaCha20 block function. This version parallelizes 4 quarter 4450 // round operations at a time. It uses 16 SIMD registers to 4451 // produce 4 blocks of key stream. 4452 // 4453 // state (int[16]) = c_rarg0 4454 // keystream (byte[256]) = c_rarg1 4455 // return - number of bytes of keystream (always 256) 4456 // 4457 // In this approach, we load the 512-bit start state sequentially into 4458 // 4 128-bit vectors. We then make 4 4-vector copies of that starting 4459 // state, with each successive set of 4 vectors having a +1 added into 4460 // the first 32-bit lane of the 4th vector in that group (the counter). 4461 // By doing this, we can perform the block function on 4 512-bit blocks 4462 // within one run of this intrinsic. 4463 // The alignment of the data across the 4-vector group is such that at 4464 // the start it is already aligned for the first round of each two-round 4465 // loop iteration. In other words, the corresponding lanes of each vector 4466 // will contain the values needed for that quarter round operation (e.g. 4467 // elements 0/4/8/12, 1/5/9/13, 2/6/10/14, etc.). 4468 // In between each full round, a lane shift must occur. Within a loop 4469 // iteration, between the first and second rounds, the 2nd, 3rd, and 4th 4470 // vectors are rotated left 32, 64 and 96 bits, respectively. The result 4471 // is effectively a diagonal orientation in columnar form. After the 4472 // second full round, those registers are left-rotated again, this time 4473 // 96, 64, and 32 bits - returning the vectors to their columnar organization. 4474 // After all 10 iterations, the original state is added to each 4-vector 4475 // working state along with the add mask, and the 4 vector groups are 4476 // sequentially written to the memory dedicated for the output key stream. 4477 // 4478 // For a more detailed explanation, see Goll and Gueron, "Vectorization of 4479 // ChaCha Stream Cipher", 2014 11th Int. Conf. on Information Technology: 4480 // New Generations, Las Vegas, NV, USA, April 2014, DOI: 10.1109/ITNG.2014.33 4481 address generate_chacha20Block_qrpar() { 4482 Label L_Q_twoRounds, L_Q_cc20_const; 4483 // The constant data is broken into two 128-bit segments to be loaded 4484 // onto SIMD registers. The first 128 bits are a counter add overlay 4485 // that adds +1/+0/+0/+0 to the vectors holding replicated state[12]. 4486 // The second 128-bits is a table constant used for 8-bit left rotations. 4487 // on 32-bit lanes within a SIMD register. 4488 __ BIND(L_Q_cc20_const); 4489 __ emit_int64(0x0000000000000001UL); 4490 __ emit_int64(0x0000000000000000UL); 4491 __ emit_int64(0x0605040702010003UL); 4492 __ emit_int64(0x0E0D0C0F0A09080BUL); 4493 4494 __ align(CodeEntryAlignment); 4495 StubGenStubId stub_id = StubGenStubId::chacha20Block_id; 4496 StubCodeMark mark(this, stub_id); 4497 address start = __ pc(); 4498 __ enter(); 4499 4500 const Register state = c_rarg0; 4501 const Register keystream = c_rarg1; 4502 const Register loopCtr = r10; 4503 const Register tmpAddr = r11; 4504 4505 const FloatRegister aState = v0; 4506 const FloatRegister bState = v1; 4507 const FloatRegister cState = v2; 4508 const FloatRegister dState = v3; 4509 const FloatRegister a1Vec = v4; 4510 const FloatRegister b1Vec = v5; 4511 const FloatRegister c1Vec = v6; 4512 const FloatRegister d1Vec = v7; 4513 // Skip the callee-saved registers v8 - v15 4514 const FloatRegister a2Vec = v16; 4515 const FloatRegister b2Vec = v17; 4516 const FloatRegister c2Vec = v18; 4517 const FloatRegister d2Vec = v19; 4518 const FloatRegister a3Vec = v20; 4519 const FloatRegister b3Vec = v21; 4520 const FloatRegister c3Vec = v22; 4521 const FloatRegister d3Vec = v23; 4522 const FloatRegister a4Vec = v24; 4523 const FloatRegister b4Vec = v25; 4524 const FloatRegister c4Vec = v26; 4525 const FloatRegister d4Vec = v27; 4526 const FloatRegister scratch = v28; 4527 const FloatRegister addMask = v29; 4528 const FloatRegister lrot8Tbl = v30; 4529 4530 // Load the initial state in the first 4 quadword registers, 4531 // then copy the initial state into the next 4 quadword registers 4532 // that will be used for the working state. 4533 __ ld1(aState, bState, cState, dState, __ T16B, Address(state)); 4534 4535 // Load the index register for 2 constant 128-bit data fields. 4536 // The first represents the +1/+0/+0/+0 add mask. The second is 4537 // the 8-bit left rotation. 4538 __ adr(tmpAddr, L_Q_cc20_const); 4539 __ ldpq(addMask, lrot8Tbl, Address(tmpAddr)); 4540 4541 __ mov(a1Vec, __ T16B, aState); 4542 __ mov(b1Vec, __ T16B, bState); 4543 __ mov(c1Vec, __ T16B, cState); 4544 __ mov(d1Vec, __ T16B, dState); 4545 4546 __ mov(a2Vec, __ T16B, aState); 4547 __ mov(b2Vec, __ T16B, bState); 4548 __ mov(c2Vec, __ T16B, cState); 4549 __ addv(d2Vec, __ T4S, d1Vec, addMask); 4550 4551 __ mov(a3Vec, __ T16B, aState); 4552 __ mov(b3Vec, __ T16B, bState); 4553 __ mov(c3Vec, __ T16B, cState); 4554 __ addv(d3Vec, __ T4S, d2Vec, addMask); 4555 4556 __ mov(a4Vec, __ T16B, aState); 4557 __ mov(b4Vec, __ T16B, bState); 4558 __ mov(c4Vec, __ T16B, cState); 4559 __ addv(d4Vec, __ T4S, d3Vec, addMask); 4560 4561 // Set up the 10 iteration loop 4562 __ mov(loopCtr, 10); 4563 __ BIND(L_Q_twoRounds); 4564 4565 // The first set of operations on the vectors covers the first 4 quarter 4566 // round operations: 4567 // Qround(state, 0, 4, 8,12) 4568 // Qround(state, 1, 5, 9,13) 4569 // Qround(state, 2, 6,10,14) 4570 // Qround(state, 3, 7,11,15) 4571 __ cc20_quarter_round(a1Vec, b1Vec, c1Vec, d1Vec, scratch, lrot8Tbl); 4572 __ cc20_quarter_round(a2Vec, b2Vec, c2Vec, d2Vec, scratch, lrot8Tbl); 4573 __ cc20_quarter_round(a3Vec, b3Vec, c3Vec, d3Vec, scratch, lrot8Tbl); 4574 __ cc20_quarter_round(a4Vec, b4Vec, c4Vec, d4Vec, scratch, lrot8Tbl); 4575 4576 // Shuffle the b1Vec/c1Vec/d1Vec to reorganize the state vectors to 4577 // diagonals. The a1Vec does not need to change orientation. 4578 __ cc20_shift_lane_org(b1Vec, c1Vec, d1Vec, true); 4579 __ cc20_shift_lane_org(b2Vec, c2Vec, d2Vec, true); 4580 __ cc20_shift_lane_org(b3Vec, c3Vec, d3Vec, true); 4581 __ cc20_shift_lane_org(b4Vec, c4Vec, d4Vec, true); 4582 4583 // The second set of operations on the vectors covers the second 4 quarter 4584 // round operations, now acting on the diagonals: 4585 // Qround(state, 0, 5,10,15) 4586 // Qround(state, 1, 6,11,12) 4587 // Qround(state, 2, 7, 8,13) 4588 // Qround(state, 3, 4, 9,14) 4589 __ cc20_quarter_round(a1Vec, b1Vec, c1Vec, d1Vec, scratch, lrot8Tbl); 4590 __ cc20_quarter_round(a2Vec, b2Vec, c2Vec, d2Vec, scratch, lrot8Tbl); 4591 __ cc20_quarter_round(a3Vec, b3Vec, c3Vec, d3Vec, scratch, lrot8Tbl); 4592 __ cc20_quarter_round(a4Vec, b4Vec, c4Vec, d4Vec, scratch, lrot8Tbl); 4593 4594 // Before we start the next iteration, we need to perform shuffles 4595 // on the b/c/d vectors to move them back to columnar organizations 4596 // from their current diagonal orientation. 4597 __ cc20_shift_lane_org(b1Vec, c1Vec, d1Vec, false); 4598 __ cc20_shift_lane_org(b2Vec, c2Vec, d2Vec, false); 4599 __ cc20_shift_lane_org(b3Vec, c3Vec, d3Vec, false); 4600 __ cc20_shift_lane_org(b4Vec, c4Vec, d4Vec, false); 4601 4602 // Decrement and iterate 4603 __ sub(loopCtr, loopCtr, 1); 4604 __ cbnz(loopCtr, L_Q_twoRounds); 4605 4606 // Once the counter reaches zero, we fall out of the loop 4607 // and need to add the initial state back into the working state 4608 // represented by the a/b/c/d1Vec registers. This is destructive 4609 // on the dState register but we no longer will need it. 4610 __ addv(a1Vec, __ T4S, a1Vec, aState); 4611 __ addv(b1Vec, __ T4S, b1Vec, bState); 4612 __ addv(c1Vec, __ T4S, c1Vec, cState); 4613 __ addv(d1Vec, __ T4S, d1Vec, dState); 4614 4615 __ addv(a2Vec, __ T4S, a2Vec, aState); 4616 __ addv(b2Vec, __ T4S, b2Vec, bState); 4617 __ addv(c2Vec, __ T4S, c2Vec, cState); 4618 __ addv(dState, __ T4S, dState, addMask); 4619 __ addv(d2Vec, __ T4S, d2Vec, dState); 4620 4621 __ addv(a3Vec, __ T4S, a3Vec, aState); 4622 __ addv(b3Vec, __ T4S, b3Vec, bState); 4623 __ addv(c3Vec, __ T4S, c3Vec, cState); 4624 __ addv(dState, __ T4S, dState, addMask); 4625 __ addv(d3Vec, __ T4S, d3Vec, dState); 4626 4627 __ addv(a4Vec, __ T4S, a4Vec, aState); 4628 __ addv(b4Vec, __ T4S, b4Vec, bState); 4629 __ addv(c4Vec, __ T4S, c4Vec, cState); 4630 __ addv(dState, __ T4S, dState, addMask); 4631 __ addv(d4Vec, __ T4S, d4Vec, dState); 4632 4633 // Write the final state back to the result buffer 4634 __ st1(a1Vec, b1Vec, c1Vec, d1Vec, __ T16B, __ post(keystream, 64)); 4635 __ st1(a2Vec, b2Vec, c2Vec, d2Vec, __ T16B, __ post(keystream, 64)); 4636 __ st1(a3Vec, b3Vec, c3Vec, d3Vec, __ T16B, __ post(keystream, 64)); 4637 __ st1(a4Vec, b4Vec, c4Vec, d4Vec, __ T16B, __ post(keystream, 64)); 4638 4639 __ mov(r0, 256); // Return length of output keystream 4640 __ leave(); 4641 __ ret(lr); 4642 4643 return start; 4644 } 4645 4646 // Helpers to schedule parallel operation bundles across vector 4647 // register sequences of size 2, 4 or 8. 4648 4649 // Implement various primitive computations across vector sequences 4650 4651 template<int N> 4652 void vs_addv(const VSeq<N>& v, Assembler::SIMD_Arrangement T, 4653 const VSeq<N>& v1, const VSeq<N>& v2) { 4654 for (int i = 0; i < N; i++) { 4655 __ addv(v[i], T, v1[i], v2[i]); 4656 } 4657 } 4658 4659 template<int N> 4660 void vs_subv(const VSeq<N>& v, Assembler::SIMD_Arrangement T, 4661 const VSeq<N>& v1, const VSeq<N>& v2) { 4662 for (int i = 0; i < N; i++) { 4663 __ subv(v[i], T, v1[i], v2[i]); 4664 } 4665 } 4666 4667 template<int N> 4668 void vs_mulv(const VSeq<N>& v, Assembler::SIMD_Arrangement T, 4669 const VSeq<N>& v1, const VSeq<N>& v2) { 4670 for (int i = 0; i < N; i++) { 4671 __ mulv(v[i], T, v1[i], v2[i]); 4672 } 4673 } 4674 4675 template<int N> 4676 void vs_negr(const VSeq<N>& v, Assembler::SIMD_Arrangement T, const VSeq<N>& v1) { 4677 for (int i = 0; i < N; i++) { 4678 __ negr(v[i], T, v1[i]); 4679 } 4680 } 4681 4682 template<int N> 4683 void vs_sshr(const VSeq<N>& v, Assembler::SIMD_Arrangement T, 4684 const VSeq<N>& v1, int shift) { 4685 for (int i = 0; i < N; i++) { 4686 __ sshr(v[i], T, v1[i], shift); 4687 } 4688 } 4689 4690 template<int N> 4691 void vs_andr(const VSeq<N>& v, const VSeq<N>& v1, const VSeq<N>& v2) { 4692 for (int i = 0; i < N; i++) { 4693 __ andr(v[i], __ T16B, v1[i], v2[i]); 4694 } 4695 } 4696 4697 template<int N> 4698 void vs_orr(const VSeq<N>& v, const VSeq<N>& v1, const VSeq<N>& v2) { 4699 for (int i = 0; i < N; i++) { 4700 __ orr(v[i], __ T16B, v1[i], v2[i]); 4701 } 4702 } 4703 4704 template<int N> 4705 void vs_notr(const VSeq<N>& v, const VSeq<N>& v1) { 4706 for (int i = 0; i < N; i++) { 4707 __ notr(v[i], __ T16B, v1[i]); 4708 } 4709 } 4710 4711 // load N/2 successive pairs of quadword values from memory in order 4712 // into N successive vector registers of the sequence via the 4713 // address supplied in base. 4714 template<int N> 4715 void vs_ldpq(const VSeq<N>& v, Register base) { 4716 for (int i = 0; i < N; i += 2) { 4717 __ ldpq(v[i], v[i+1], Address(base, 32 * i)); 4718 } 4719 } 4720 4721 // load N/2 successive pairs of quadword values from memory in order 4722 // into N vector registers of the sequence via the address supplied 4723 // in base using post-increment addressing 4724 template<int N> 4725 void vs_ldpq_post(const VSeq<N>& v, Register base) { 4726 for (int i = 0; i < N; i += 2) { 4727 __ ldpq(v[i], v[i+1], __ post(base, 32)); 4728 } 4729 } 4730 4731 // store N successive vector registers of the sequence into N/2 4732 // successive pairs of quadword memory locations via the address 4733 // supplied in base using post-increment addressing 4734 template<int N> 4735 void vs_stpq_post(const VSeq<N>& v, Register base) { 4736 for (int i = 0; i < N; i += 2) { 4737 __ stpq(v[i], v[i+1], __ post(base, 32)); 4738 } 4739 } 4740 4741 // load N/2 pairs of quadword values from memory into N vector 4742 // registers via the address supplied in base with each pair indexed 4743 // using the the start offset plus the corresponding entry in the 4744 // offsets array 4745 template<int N> 4746 void vs_ldpq_indexed(const VSeq<N>& v, Register base, int start, int (&offsets)[N/2]) { 4747 for (int i = 0; i < N/2; i++) { 4748 __ ldpq(v[2*i], v[2*i+1], Address(base, start + offsets[i])); 4749 } 4750 } 4751 4752 // store N vector registers into N/2 pairs of quadword memory 4753 // locations via the address supplied in base with each pair indexed 4754 // using the the start offset plus the corresponding entry in the 4755 // offsets array 4756 template<int N> 4757 void vs_stpq_indexed(const VSeq<N>& v, Register base, int start, int offsets[N/2]) { 4758 for (int i = 0; i < N/2; i++) { 4759 __ stpq(v[2*i], v[2*i+1], Address(base, start + offsets[i])); 4760 } 4761 } 4762 4763 // load N single quadword values from memory into N vector registers 4764 // via the address supplied in base with each value indexed using 4765 // the the start offset plus the corresponding entry in the offsets 4766 // array 4767 template<int N> 4768 void vs_ldr_indexed(const VSeq<N>& v, Assembler::SIMD_RegVariant T, Register base, 4769 int start, int (&offsets)[N]) { 4770 for (int i = 0; i < N; i++) { 4771 __ ldr(v[i], T, Address(base, start + offsets[i])); 4772 } 4773 } 4774 4775 // store N vector registers into N single quadword memory locations 4776 // via the address supplied in base with each value indexed using 4777 // the the start offset plus the corresponding entry in the offsets 4778 // array 4779 template<int N> 4780 void vs_str_indexed(const VSeq<N>& v, Assembler::SIMD_RegVariant T, Register base, 4781 int start, int (&offsets)[N]) { 4782 for (int i = 0; i < N; i++) { 4783 __ str(v[i], T, Address(base, start + offsets[i])); 4784 } 4785 } 4786 4787 // load N/2 pairs of quadword values from memory de-interleaved into 4788 // N vector registers 2 at a time via the address supplied in base 4789 // with each pair indexed using the the start offset plus the 4790 // corresponding entry in the offsets array 4791 template<int N> 4792 void vs_ld2_indexed(const VSeq<N>& v, Assembler::SIMD_Arrangement T, Register base, 4793 Register tmp, int start, int (&offsets)[N/2]) { 4794 for (int i = 0; i < N/2; i++) { 4795 __ add(tmp, base, start + offsets[i]); 4796 __ ld2(v[2*i], v[2*i+1], T, tmp); 4797 } 4798 } 4799 4800 // store N vector registers 2 at a time interleaved into N/2 pairs 4801 // of quadword memory locations via the address supplied in base 4802 // with each pair indexed using the the start offset plus the 4803 // corresponding entry in the offsets array 4804 template<int N> 4805 void vs_st2_indexed(const VSeq<N>& v, Assembler::SIMD_Arrangement T, Register base, 4806 Register tmp, int start, int (&offsets)[N/2]) { 4807 for (int i = 0; i < N/2; i++) { 4808 __ add(tmp, base, start + offsets[i]); 4809 __ st2(v[2*i], v[2*i+1], T, tmp); 4810 } 4811 } 4812 4813 // Helper routines for various flavours of dilithium montgomery 4814 // multiply 4815 4816 // Perform 16 32-bit Montgomery multiplications in parallel 4817 // See the montMul() method of the sun.security.provider.ML_DSA class. 4818 // 4819 // Computes 4x4S results 4820 // a = b * c * 2^-32 mod MONT_Q 4821 // Inputs: vb, vc - 4x4S vector register sequences 4822 // vq - 2x4S constants <MONT_Q, MONT_Q_INV_MOD_R> 4823 // Temps: vtmp - 4x4S vector sequence trashed after call 4824 // Outputs: va - 4x4S vector register sequences 4825 // vb, vc, vtmp and vq must all be disjoint 4826 // va must be disjoint from all other inputs/temps or must equal vc 4827 // n.b. MONT_R_BITS is 32, so the right shift by it is implicit. 4828 void dilithium_montmul16(const VSeq<4>& va, const VSeq<4>& vb, const VSeq<4>& vc, 4829 const VSeq<4>& vtmp, const VSeq<2>& vq) { 4830 assert(vs_disjoint(vb, vc), "vb and vc overlap"); 4831 assert(vs_disjoint(vb, vq), "vb and vq overlap"); 4832 assert(vs_disjoint(vb, vtmp), "vb and vtmp overlap"); 4833 4834 assert(vs_disjoint(vc, vq), "vc and vq overlap"); 4835 assert(vs_disjoint(vc, vtmp), "vc and vtmp overlap"); 4836 4837 assert(vs_disjoint(vq, vtmp), "vq and vtmp overlap"); 4838 4839 assert(vs_disjoint(va, vc) || vs_same(va, vc), "va and vc neither disjoint nor equal"); 4840 assert(vs_disjoint(va, vb), "va and vb overlap"); 4841 assert(vs_disjoint(va, vq), "va and vq overlap"); 4842 assert(vs_disjoint(va, vtmp), "va and vtmp overlap"); 4843 4844 // schedule 4 streams of instructions across the vector sequences 4845 for (int i = 0; i < 4; i++) { 4846 __ sqdmulh(vtmp[i], __ T4S, vb[i], vc[i]); // aHigh = hi32(2 * b * c) 4847 __ mulv(va[i], __ T4S, vb[i], vc[i]); // aLow = lo32(b * c) 4848 } 4849 4850 for (int i = 0; i < 4; i++) { 4851 __ mulv(va[i], __ T4S, va[i], vq[0]); // m = aLow * qinv 4852 } 4853 4854 for (int i = 0; i < 4; i++) { 4855 __ sqdmulh(va[i], __ T4S, va[i], vq[1]); // n = hi32(2 * m * q) 4856 } 4857 4858 for (int i = 0; i < 4; i++) { 4859 __ shsubv(va[i], __ T4S, vtmp[i], va[i]); // a = (aHigh - n) / 2 4860 } 4861 } 4862 4863 // Perform 2x16 32-bit Montgomery multiplications in parallel 4864 // See the montMul() method of the sun.security.provider.ML_DSA class. 4865 // 4866 // Computes 8x4S results 4867 // a = b * c * 2^-32 mod MONT_Q 4868 // Inputs: vb, vc - 8x4S vector register sequences 4869 // vq - 2x4S constants <MONT_Q, MONT_Q_INV_MOD_R> 4870 // Temps: vtmp - 4x4S vector sequence trashed after call 4871 // Outputs: va - 8x4S vector register sequences 4872 // vb, vc, vtmp and vq must all be disjoint 4873 // va must be disjoint from all other inputs/temps or must equal vc 4874 // n.b. MONT_R_BITS is 32, so the right shift by it is implicit. 4875 void vs_montmul32(const VSeq<8>& va, const VSeq<8>& vb, const VSeq<8>& vc, 4876 const VSeq<4>& vtmp, const VSeq<2>& vq) { 4877 // vb, vc, vtmp and vq must be disjoint. va must either be 4878 // disjoint from all other registers or equal vc 4879 4880 assert(vs_disjoint(vb, vc), "vb and vc overlap"); 4881 assert(vs_disjoint(vb, vq), "vb and vq overlap"); 4882 assert(vs_disjoint(vb, vtmp), "vb and vtmp overlap"); 4883 4884 assert(vs_disjoint(vc, vq), "vc and vq overlap"); 4885 assert(vs_disjoint(vc, vtmp), "vc and vtmp overlap"); 4886 4887 assert(vs_disjoint(vq, vtmp), "vq and vtmp overlap"); 4888 4889 assert(vs_disjoint(va, vc) || vs_same(va, vc), "va and vc neither disjoint nor equal"); 4890 assert(vs_disjoint(va, vb), "va and vb overlap"); 4891 assert(vs_disjoint(va, vq), "va and vq overlap"); 4892 assert(vs_disjoint(va, vtmp), "va and vtmp overlap"); 4893 4894 // we need to multiply the front and back halves of each sequence 4895 // 4x4S at a time because 4896 // 4897 // 1) we are currently only able to get 4-way instruction 4898 // parallelism at best 4899 // 4900 // 2) we need registers for the constants in vq and temporary 4901 // scratch registers to hold intermediate results so vtmp can only 4902 // be a VSeq<4> which means we only have 4 scratch slots 4903 4904 dilithium_montmul16(vs_front(va), vs_front(vb), vs_front(vc), vtmp, vq); 4905 dilithium_montmul16(vs_back(va), vs_back(vb), vs_back(vc), vtmp, vq); 4906 } 4907 4908 // perform combined montmul then add/sub on 4x4S vectors 4909 4910 void dilithium_montmul16_sub_add(const VSeq<4>& va0, const VSeq<4>& va1, const VSeq<4>& vc, 4911 const VSeq<4>& vtmp, const VSeq<2>& vq) { 4912 // compute a = montmul(a1, c) 4913 dilithium_montmul16(vc, va1, vc, vtmp, vq); 4914 // ouptut a1 = a0 - a 4915 vs_subv(va1, __ T4S, va0, vc); 4916 // and a0 = a0 + a 4917 vs_addv(va0, __ T4S, va0, vc); 4918 } 4919 4920 // perform combined add/sub then montul on 4x4S vectors 4921 4922 void dilithium_sub_add_montmul16(const VSeq<4>& va0, const VSeq<4>& va1, const VSeq<4>& vb, 4923 const VSeq<4>& vtmp1, const VSeq<4>& vtmp2, const VSeq<2>& vq) { 4924 // compute c = a0 - a1 4925 vs_subv(vtmp1, __ T4S, va0, va1); 4926 // output a0 = a0 + a1 4927 vs_addv(va0, __ T4S, va0, va1); 4928 // output a1 = b montmul c 4929 dilithium_montmul16(va1, vtmp1, vb, vtmp2, vq); 4930 } 4931 4932 // At these levels, the indices that correspond to the 'j's (and 'j+l's) 4933 // in the Java implementation come in sequences of at least 8, so we 4934 // can use ldpq to collect the corresponding data into pairs of vector 4935 // registers. 4936 // We collect the coefficients corresponding to the 'j+l' indexes into 4937 // the vector registers v0-v7, the zetas into the vector registers v16-v23 4938 // then we do the (Montgomery) multiplications by the zetas in parallel 4939 // into v16-v23, load the coeffs corresponding to the 'j' indexes into 4940 // v0-v7, then do the additions into v24-v31 and the subtractions into 4941 // v0-v7 and finally save the results back to the coeffs array. 4942 void dilithiumNttLevel0_4(const Register dilithiumConsts, 4943 const Register coeffs, const Register zetas) { 4944 int c1 = 0; 4945 int c2 = 512; 4946 int startIncr; 4947 // don't use callee save registers v8 - v15 4948 VSeq<8> vs1(0), vs2(16), vs3(24); // 3 sets of 8x4s inputs/outputs 4949 VSeq<4> vtmp = vs_front(vs3); // n.b. tmp registers overlap vs3 4950 VSeq<2> vq(30); // n.b. constants overlap vs3 4951 int offsets[4] = { 0, 32, 64, 96 }; 4952 4953 for (int level = 0; level < 5; level++) { 4954 int c1Start = c1; 4955 int c2Start = c2; 4956 if (level == 3) { 4957 offsets[1] = 32; 4958 offsets[2] = 128; 4959 offsets[3] = 160; 4960 } else if (level == 4) { 4961 offsets[1] = 64; 4962 offsets[2] = 128; 4963 offsets[3] = 192; 4964 } 4965 4966 // for levels 1 - 4 we simply load 2 x 4 adjacent values at a 4967 // time at 4 different offsets and multiply them in order by the 4968 // next set of input values. So we employ indexed load and store 4969 // pair instructions with arrangement 4S 4970 for (int i = 0; i < 4; i++) { 4971 // reload q and qinv 4972 vs_ldpq(vq, dilithiumConsts); // qInv, q 4973 // load 8x4S coefficients via second start pos == c2 4974 vs_ldpq_indexed(vs1, coeffs, c2Start, offsets); 4975 // load next 8x4S inputs == b 4976 vs_ldpq_post(vs2, zetas); 4977 // compute a == c2 * b mod MONT_Q 4978 vs_montmul32(vs2, vs1, vs2, vtmp, vq); 4979 // load 8x4s coefficients via first start pos == c1 4980 vs_ldpq_indexed(vs1, coeffs, c1Start, offsets); 4981 // compute a1 = c1 + a 4982 vs_addv(vs3, __ T4S, vs1, vs2); 4983 // compute a2 = c1 - a 4984 vs_subv(vs1, __ T4S, vs1, vs2); 4985 // output a1 and a2 4986 vs_stpq_indexed(vs3, coeffs, c1Start, offsets); 4987 vs_stpq_indexed(vs1, coeffs, c2Start, offsets); 4988 4989 int k = 4 * level + i; 4990 4991 if (k > 7) { 4992 startIncr = 256; 4993 } else if (k == 5) { 4994 startIncr = 384; 4995 } else { 4996 startIncr = 128; 4997 } 4998 4999 c1Start += startIncr; 5000 c2Start += startIncr; 5001 } 5002 5003 c2 /= 2; 5004 } 5005 } 5006 5007 // Dilithium NTT function except for the final "normalization" to |coeff| < Q. 5008 // Implements the method 5009 // static int implDilithiumAlmostNtt(int[] coeffs, int zetas[]) {} 5010 // of the Java class sun.security.provider 5011 // 5012 // coeffs (int[256]) = c_rarg0 5013 // zetas (int[256]) = c_rarg1 5014 address generate_dilithiumAlmostNtt() { 5015 5016 __ align(CodeEntryAlignment); 5017 StubGenStubId stub_id = StubGenStubId::dilithiumAlmostNtt_id; 5018 StubCodeMark mark(this, stub_id); 5019 address start = __ pc(); 5020 __ enter(); 5021 5022 const Register coeffs = c_rarg0; 5023 const Register zetas = c_rarg1; 5024 5025 const Register tmpAddr = r9; 5026 const Register dilithiumConsts = r10; 5027 const Register result = r11; 5028 // don't use callee save registers v8 - v15 5029 VSeq<8> vs1(0), vs2(16), vs3(24); // 3 sets of 8x4s inputs/outputs 5030 VSeq<4> vtmp = vs_front(vs3); // n.b. tmp registers overlap vs3 5031 VSeq<2> vq(30); // n.b. constants overlap vs3 5032 int offsets[4] = {0, 32, 64, 96}; 5033 int offsets1[8] = {16, 48, 80, 112, 144, 176, 208, 240 }; 5034 int offsets2[8] = { 0, 32, 64, 96, 128, 160, 192, 224 }; 5035 __ add(result, coeffs, 0); 5036 __ lea(dilithiumConsts, ExternalAddress((address) StubRoutines::aarch64::_dilithiumConsts)); 5037 5038 // Each level represents one iteration of the outer for loop of the Java version 5039 5040 // level 0-4 5041 dilithiumNttLevel0_4(dilithiumConsts, coeffs, zetas); 5042 5043 // level 5 5044 5045 // at level 5 the coefficients we need to combine with the zetas 5046 // are grouped in memory in blocks of size 4. So, for both sets of 5047 // coefficients we load 4 adjacent values at 8 different offsets 5048 // using an indexed ldr with register variant Q and multiply them 5049 // in sequence order by the next set of inputs. Likewise we store 5050 // the resuls using an indexed str with register variant Q. 5051 for (int i = 0; i < 1024; i += 256) { 5052 // reload constants q, qinv each iteration as they get clobbered later 5053 vs_ldpq(vq, dilithiumConsts); // qInv, q 5054 // load 32 (8x4S) coefficients via first offsets = c1 5055 vs_ldr_indexed(vs1, __ Q, coeffs, i, offsets1); 5056 // load next 32 (8x4S) inputs = b 5057 vs_ldpq_post(vs2, zetas); 5058 // a = b montul c1 5059 vs_montmul32(vs2, vs1, vs2, vtmp, vq); 5060 // load 32 (8x4S) coefficients via second offsets = c2 5061 vs_ldr_indexed(vs1, __ Q, coeffs, i, offsets2); 5062 // add/sub with result of multiply 5063 vs_addv(vs3, __ T4S, vs1, vs2); // a1 = a - c2 5064 vs_subv(vs1, __ T4S, vs1, vs2); // a0 = a + c1 5065 // write back new coefficients using same offsets 5066 vs_str_indexed(vs3, __ Q, coeffs, i, offsets2); 5067 vs_str_indexed(vs1, __ Q, coeffs, i, offsets1); 5068 } 5069 5070 // level 6 5071 // at level 6 the coefficients we need to combine with the zetas 5072 // are grouped in memory in pairs, the first two being montmul 5073 // inputs and the second add/sub inputs. We can still implement 5074 // the montmul+sub+add using 4-way parallelism but only if we 5075 // combine the coefficients with the zetas 16 at a time. We load 8 5076 // adjacent values at 4 different offsets using an ld2 load with 5077 // arrangement 2D. That interleaves the lower and upper halves of 5078 // each pair of quadwords into successive vector registers. We 5079 // then need to montmul the 4 even elements of the coefficients 5080 // register sequence by the zetas in order and then add/sub the 4 5081 // odd elements of the coefficients register sequence. We use an 5082 // equivalent st2 operation to store the results back into memory 5083 // de-interleaved. 5084 for (int i = 0; i < 1024; i += 128) { 5085 // reload constants q, qinv each iteration as they get clobbered later 5086 vs_ldpq(vq, dilithiumConsts); // qInv, q 5087 // load interleaved 16 (4x2D) coefficients via offsets 5088 vs_ld2_indexed(vs1, __ T2D, coeffs, tmpAddr, i, offsets); 5089 // load next 16 (4x4S) inputs 5090 vs_ldpq_post(vs_front(vs2), zetas); 5091 // mont multiply odd elements of vs1 by vs2 and add/sub into odds/evens 5092 dilithium_montmul16_sub_add(vs_even(vs1), vs_odd(vs1), 5093 vs_front(vs2), vtmp, vq); 5094 // store interleaved 16 (4x2D) coefficients via offsets 5095 vs_st2_indexed(vs1, __ T2D, coeffs, tmpAddr, i, offsets); 5096 } 5097 5098 // level 7 5099 // at level 7 the coefficients we need to combine with the zetas 5100 // occur singly with montmul inputs alterating with add/sub 5101 // inputs. Once again we can use 4-way parallelism to combine 16 5102 // zetas at a time. However, we have to load 8 adjacent values at 5103 // 4 different offsets using an ld2 load with arrangement 4S. That 5104 // interleaves the the odd words of each pair into one 5105 // coefficients vector register and the even words of the pair 5106 // into the next register. We then need to montmul the 4 even 5107 // elements of the coefficients register sequence by the zetas in 5108 // order and then add/sub the 4 odd elements of the coefficients 5109 // register sequence. We use an equivalent st2 operation to store 5110 // the results back into memory de-interleaved. 5111 5112 for (int i = 0; i < 1024; i += 128) { 5113 // reload constants q, qinv each iteration as they get clobbered later 5114 vs_ldpq(vq, dilithiumConsts); // qInv, q 5115 // load interleaved 16 (4x4S) coefficients via offsets 5116 vs_ld2_indexed(vs1, __ T4S, coeffs, tmpAddr, i, offsets); 5117 // load next 16 (4x4S) inputs 5118 vs_ldpq_post(vs_front(vs2), zetas); 5119 // mont multiply odd elements of vs1 by vs2 and add/sub into odds/evens 5120 dilithium_montmul16_sub_add(vs_even(vs1), vs_odd(vs1), 5121 vs_front(vs2), vtmp, vq); 5122 // store interleaved 16 (4x4S) coefficients via offsets 5123 vs_st2_indexed(vs1, __ T4S, coeffs, tmpAddr, i, offsets); 5124 } 5125 __ leave(); // required for proper stackwalking of RuntimeStub frame 5126 __ mov(r0, zr); // return 0 5127 __ ret(lr); 5128 5129 return start; 5130 } 5131 5132 // At these levels, the indices that correspond to the 'j's (and 'j+l's) 5133 // in the Java implementation come in sequences of at least 8, so we 5134 // can use ldpq to collect the corresponding data into pairs of vector 5135 // registers 5136 // We collect the coefficients that correspond to the 'j's into vs1 5137 // the coefficiets that correspond to the 'j+l's into vs2 then 5138 // do the additions into vs3 and the subtractions into vs1 then 5139 // save the result of the additions, load the zetas into vs2 5140 // do the (Montgomery) multiplications by zeta in parallel into vs2 5141 // finally save the results back to the coeffs array 5142 void dilithiumInverseNttLevel3_7(const Register dilithiumConsts, 5143 const Register coeffs, const Register zetas) { 5144 int c1 = 0; 5145 int c2 = 32; 5146 int startIncr; 5147 int offsets[4]; 5148 VSeq<8> vs1(0), vs2(16), vs3(24); // 3 sets of 8x4s inputs/outputs 5149 VSeq<4> vtmp = vs_front(vs3); // n.b. tmp registers overlap vs3 5150 VSeq<2> vq(30); // n.b. constants overlap vs3 5151 5152 offsets[0] = 0; 5153 5154 for (int level = 3; level < 8; level++) { 5155 int c1Start = c1; 5156 int c2Start = c2; 5157 if (level == 3) { 5158 offsets[1] = 64; 5159 offsets[2] = 128; 5160 offsets[3] = 192; 5161 } else if (level == 4) { 5162 offsets[1] = 32; 5163 offsets[2] = 128; 5164 offsets[3] = 160; 5165 } else { 5166 offsets[1] = 32; 5167 offsets[2] = 64; 5168 offsets[3] = 96; 5169 } 5170 5171 // for levels 3 - 7 we simply load 2 x 4 adjacent values at a 5172 // time at 4 different offsets and multiply them in order by the 5173 // next set of input values. So we employ indexed load and store 5174 // pair instructions with arrangement 4S 5175 for (int i = 0; i < 4; i++) { 5176 // load v1 32 (8x4S) coefficients relative to first start index 5177 vs_ldpq_indexed(vs1, coeffs, c1Start, offsets); 5178 // load v2 32 (8x4S) coefficients relative to second start index 5179 vs_ldpq_indexed(vs2, coeffs, c2Start, offsets); 5180 // a0 = v1 + v2 -- n.b. clobbers vqs 5181 vs_addv(vs3, __ T4S, vs1, vs2); 5182 // a1 = v1 - v2 5183 vs_subv(vs1, __ T4S, vs1, vs2); 5184 // save a1 relative to first start index 5185 vs_stpq_indexed(vs3, coeffs, c1Start, offsets); 5186 // load constants q, qinv each iteration as they get clobbered above 5187 vs_ldpq(vq, dilithiumConsts); // qInv, q 5188 // load b next 32 (8x4S) inputs 5189 vs_ldpq_post(vs2, zetas); 5190 // a = a1 montmul b 5191 vs_montmul32(vs2, vs1, vs2, vtmp, vq); 5192 // save a relative to second start index 5193 vs_stpq_indexed(vs2, coeffs, c2Start, offsets); 5194 5195 int k = 4 * level + i; 5196 5197 if (k < 24) { 5198 startIncr = 256; 5199 } else if (k == 25) { 5200 startIncr = 384; 5201 } else { 5202 startIncr = 128; 5203 } 5204 5205 c1Start += startIncr; 5206 c2Start += startIncr; 5207 } 5208 5209 c2 *= 2; 5210 } 5211 } 5212 5213 // Dilithium Inverse NTT function except the final mod Q division by 2^256. 5214 // Implements the method 5215 // static int implDilithiumAlmostInverseNtt(int[] coeffs, int[] zetas) {} of 5216 // the sun.security.provider.ML_DSA class. 5217 // 5218 // coeffs (int[256]) = c_rarg0 5219 // zetas (int[256]) = c_rarg1 5220 address generate_dilithiumAlmostInverseNtt() { 5221 5222 __ align(CodeEntryAlignment); 5223 StubGenStubId stub_id = StubGenStubId::dilithiumAlmostInverseNtt_id; 5224 StubCodeMark mark(this, stub_id); 5225 address start = __ pc(); 5226 __ enter(); 5227 5228 const Register coeffs = c_rarg0; 5229 const Register zetas = c_rarg1; 5230 5231 const Register tmpAddr = r9; 5232 const Register dilithiumConsts = r10; 5233 const Register result = r11; 5234 VSeq<8> vs1(0), vs2(16), vs3(24); // 3 sets of 8x4s inputs/outputs 5235 VSeq<4> vtmp = vs_front(vs3); // n.b. tmp registers overlap vs3 5236 VSeq<2> vq(30); // n.b. constants overlap vs3 5237 int offsets[4] = { 0, 32, 64, 96 }; 5238 int offsets1[8] = { 0, 32, 64, 96, 128, 160, 192, 224 }; 5239 int offsets2[8] = { 16, 48, 80, 112, 144, 176, 208, 240 }; 5240 5241 __ add(result, coeffs, 0); 5242 __ lea(dilithiumConsts, ExternalAddress((address) StubRoutines::aarch64::_dilithiumConsts)); 5243 5244 // Each level represents one iteration of the outer for loop of the Java version 5245 // level0 5246 5247 // level 0 5248 // At level 0 we need to interleave adjacent quartets of 5249 // coefficients before we multiply and add/sub by the next 16 5250 // zetas just as we did for level 7 in the multiply code. So we 5251 // load and store the values using an ld2/st2 with arrangement 4S 5252 for (int i = 0; i < 1024; i += 128) { 5253 // load constants q, qinv 5254 // n.b. this can be moved out of the loop as they do not get 5255 // clobbered by first two loops 5256 vs_ldpq(vq, dilithiumConsts); // qInv, q 5257 // a0/a1 load interleaved 32 (8x4S) coefficients 5258 vs_ld2_indexed(vs1, __ T4S, coeffs, tmpAddr, i, offsets); 5259 // b load next 32 (8x4S) inputs 5260 vs_ldpq_post(vs_front(vs2), zetas); 5261 // compute in parallel (a0, a1) = (a0 + a1, (a0 - a1) montmul b) 5262 // n.b. second half of vs2 provides temporary register storage 5263 dilithium_sub_add_montmul16(vs_even(vs1), vs_odd(vs1), 5264 vs_front(vs2), vs_back(vs2), vtmp, vq); 5265 // a0/a1 store interleaved 32 (8x4S) coefficients 5266 vs_st2_indexed(vs1, __ T4S, coeffs, tmpAddr, i, offsets); 5267 } 5268 5269 // level 1 5270 // At level 1 we need to interleave pairs of adjacent pairs of 5271 // coefficients before we multiply by the next 16 zetas just as we 5272 // did for level 6 in the multiply code. So we load and store the 5273 // values an ld2/st2 with arrangement 2D 5274 for (int i = 0; i < 1024; i += 128) { 5275 // a0/a1 load interleaved 32 (8x2D) coefficients 5276 vs_ld2_indexed(vs1, __ T2D, coeffs, tmpAddr, i, offsets); 5277 // b load next 16 (4x4S) inputs 5278 vs_ldpq_post(vs_front(vs2), zetas); 5279 // compute in parallel (a0, a1) = (a0 + a1, (a0 - a1) montmul b) 5280 // n.b. second half of vs2 provides temporary register storage 5281 dilithium_sub_add_montmul16(vs_even(vs1), vs_odd(vs1), 5282 vs_front(vs2), vs_back(vs2), vtmp, vq); 5283 // a0/a1 store interleaved 32 (8x2D) coefficients 5284 vs_st2_indexed(vs1, __ T2D, coeffs, tmpAddr, i, offsets); 5285 } 5286 5287 // level 2 5288 // At level 2 coefficients come in blocks of 4. So, we load 4 5289 // adjacent coefficients at 8 distinct offsets for both the first 5290 // and second coefficient sequences, using an ldr with register 5291 // variant Q then combine them with next set of 32 zetas. Likewise 5292 // we store the results using an str with register variant Q. 5293 for (int i = 0; i < 1024; i += 256) { 5294 // c0 load 32 (8x4S) coefficients via first offsets 5295 vs_ldr_indexed(vs1, __ Q, coeffs, i, offsets1); 5296 // c1 load 32 (8x4S) coefficients via second offsets 5297 vs_ldr_indexed(vs2, __ Q,coeffs, i, offsets2); 5298 // a0 = c0 + c1 n.b. clobbers vq which overlaps vs3 5299 vs_addv(vs3, __ T4S, vs1, vs2); 5300 // c = c0 - c1 5301 vs_subv(vs1, __ T4S, vs1, vs2); 5302 // store a0 32 (8x4S) coefficients via first offsets 5303 vs_str_indexed(vs3, __ Q, coeffs, i, offsets1); 5304 // b load 32 (8x4S) next inputs 5305 vs_ldpq_post(vs2, zetas); 5306 // reload constants q, qinv -- they were clobbered earlier 5307 vs_ldpq(vq, dilithiumConsts); // qInv, q 5308 // compute a1 = b montmul c 5309 vs_montmul32(vs2, vs1, vs2, vtmp, vq); 5310 // store a1 32 (8x4S) coefficients via second offsets 5311 vs_str_indexed(vs2, __ Q, coeffs, i, offsets2); 5312 } 5313 5314 // level 3-7 5315 dilithiumInverseNttLevel3_7(dilithiumConsts, coeffs, zetas); 5316 5317 __ leave(); // required for proper stackwalking of RuntimeStub frame 5318 __ mov(r0, zr); // return 0 5319 __ ret(lr); 5320 5321 return start; 5322 5323 } 5324 5325 // Dilithium multiply polynomials in the NTT domain. 5326 // Straightforward implementation of the method 5327 // static int implDilithiumNttMult( 5328 // int[] result, int[] ntta, int[] nttb {} of 5329 // the sun.security.provider.ML_DSA class. 5330 // 5331 // result (int[256]) = c_rarg0 5332 // poly1 (int[256]) = c_rarg1 5333 // poly2 (int[256]) = c_rarg2 5334 address generate_dilithiumNttMult() { 5335 5336 __ align(CodeEntryAlignment); 5337 StubGenStubId stub_id = StubGenStubId::dilithiumNttMult_id; 5338 StubCodeMark mark(this, stub_id); 5339 address start = __ pc(); 5340 __ enter(); 5341 5342 Label L_loop; 5343 5344 const Register result = c_rarg0; 5345 const Register poly1 = c_rarg1; 5346 const Register poly2 = c_rarg2; 5347 5348 const Register dilithiumConsts = r10; 5349 const Register len = r11; 5350 5351 VSeq<8> vs1(0), vs2(16), vs3(24); // 3 sets of 8x4s inputs/outputs 5352 VSeq<4> vtmp = vs_front(vs3); // n.b. tmp registers overlap vs3 5353 VSeq<2> vq(30); // n.b. constants overlap vs3 5354 VSeq<8> vrsquare(29, 0); // for montmul by constant RSQUARE 5355 5356 __ lea(dilithiumConsts, ExternalAddress((address) StubRoutines::aarch64::_dilithiumConsts)); 5357 5358 // load constants q, qinv 5359 vs_ldpq(vq, dilithiumConsts); // qInv, q 5360 // load constant rSquare into v29 5361 __ ldr(v29, __ Q, Address(dilithiumConsts, 48)); // rSquare 5362 5363 __ mov(len, zr); 5364 __ add(len, len, 1024); 5365 5366 __ BIND(L_loop); 5367 5368 // b load 32 (8x4S) next inputs from poly1 5369 vs_ldpq_post(vs1, poly1); 5370 // c load 32 (8x4S) next inputs from poly2 5371 vs_ldpq_post(vs2, poly2); 5372 // compute a = b montmul c 5373 vs_montmul32(vs2, vs1, vs2, vtmp, vq); 5374 // compute a = rsquare montmul a 5375 vs_montmul32(vs2, vrsquare, vs2, vtmp, vq); 5376 // save a 32 (8x4S) results 5377 vs_stpq_post(vs2, result); 5378 5379 __ sub(len, len, 128); 5380 __ cmp(len, (u1)128); 5381 __ br(Assembler::GE, L_loop); 5382 5383 __ leave(); // required for proper stackwalking of RuntimeStub frame 5384 __ mov(r0, zr); // return 0 5385 __ ret(lr); 5386 5387 return start; 5388 5389 } 5390 5391 // Dilithium Motgomery multiply an array by a constant. 5392 // A straightforward implementation of the method 5393 // static int implDilithiumMontMulByConstant(int[] coeffs, int constant) {} 5394 // of the sun.security.provider.MLDSA class 5395 // 5396 // coeffs (int[256]) = c_rarg0 5397 // constant (int) = c_rarg1 5398 address generate_dilithiumMontMulByConstant() { 5399 5400 __ align(CodeEntryAlignment); 5401 StubGenStubId stub_id = StubGenStubId::dilithiumMontMulByConstant_id; 5402 StubCodeMark mark(this, stub_id); 5403 address start = __ pc(); 5404 __ enter(); 5405 5406 Label L_loop; 5407 5408 const Register coeffs = c_rarg0; 5409 const Register constant = c_rarg1; 5410 5411 const Register dilithiumConsts = r10; 5412 const Register result = r11; 5413 const Register len = r12; 5414 5415 VSeq<8> vs1(0), vs2(16), vs3(24); // 3 sets of 8x4s inputs/outputs 5416 VSeq<4> vtmp = vs_front(vs3); // n.b. tmp registers overlap vs3 5417 VSeq<2> vq(30); // n.b. constants overlap vs3 5418 VSeq<8> vconst(29, 0); // for montmul by constant 5419 5420 // results track inputs 5421 __ add(result, coeffs, 0); 5422 __ lea(dilithiumConsts, ExternalAddress((address) StubRoutines::aarch64::_dilithiumConsts)); 5423 5424 // load constants q, qinv -- they do not get clobbered by first two loops 5425 vs_ldpq(vq, dilithiumConsts); // qInv, q 5426 // copy caller supplied constant across vconst 5427 __ dup(vconst[0], __ T4S, constant); 5428 __ mov(len, zr); 5429 __ add(len, len, 1024); 5430 5431 __ BIND(L_loop); 5432 5433 // load next 32 inputs 5434 vs_ldpq_post(vs2, coeffs); 5435 // mont mul by constant 5436 vs_montmul32(vs2, vconst, vs2, vtmp, vq); 5437 // write next 32 results 5438 vs_stpq_post(vs2, result); 5439 5440 __ sub(len, len, 128); 5441 __ cmp(len, (u1)128); 5442 __ br(Assembler::GE, L_loop); 5443 5444 __ leave(); // required for proper stackwalking of RuntimeStub frame 5445 __ mov(r0, zr); // return 0 5446 __ ret(lr); 5447 5448 return start; 5449 5450 } 5451 5452 // Dilithium decompose poly. 5453 // Implements the method 5454 // static int implDilithiumDecomposePoly(int[] coeffs, int constant) {} 5455 // of the sun.security.provider.ML_DSA class 5456 // 5457 // input (int[256]) = c_rarg0 5458 // lowPart (int[256]) = c_rarg1 5459 // highPart (int[256]) = c_rarg2 5460 // twoGamma2 (int) = c_rarg3 5461 // multiplier (int) = c_rarg4 5462 address generate_dilithiumDecomposePoly() { 5463 5464 __ align(CodeEntryAlignment); 5465 StubGenStubId stub_id = StubGenStubId::dilithiumDecomposePoly_id; 5466 StubCodeMark mark(this, stub_id); 5467 address start = __ pc(); 5468 Label L_loop; 5469 5470 const Register input = c_rarg0; 5471 const Register lowPart = c_rarg1; 5472 const Register highPart = c_rarg2; 5473 const Register twoGamma2 = c_rarg3; 5474 const Register multiplier = c_rarg4; 5475 5476 const Register len = r9; 5477 const Register dilithiumConsts = r10; 5478 const Register tmp = r11; 5479 5480 VSeq<4> vs1(0), vs2(4), vs3(8); // 6 independent sets of 4x4s values 5481 VSeq<4> vs4(12), vs5(16), vtmp(20); 5482 VSeq<4> one(25, 0); // 7 constants for cross-multiplying 5483 VSeq<4> qminus1(26, 0); 5484 VSeq<4> g2(27, 0); 5485 VSeq<4> twog2(28, 0); 5486 VSeq<4> mult(29, 0); 5487 VSeq<4> q(30, 0); 5488 VSeq<4> qadd(31, 0); 5489 5490 __ enter(); 5491 5492 __ lea(dilithiumConsts, ExternalAddress((address) StubRoutines::aarch64::_dilithiumConsts)); 5493 5494 // save callee-saved registers 5495 __ stpd(v8, v9, __ pre(sp, -64)); 5496 __ stpd(v10, v11, Address(sp, 16)); 5497 __ stpd(v12, v13, Address(sp, 32)); 5498 __ stpd(v14, v15, Address(sp, 48)); 5499 5500 // populate constant registers 5501 __ mov(tmp, zr); 5502 __ add(tmp, tmp, 1); 5503 __ dup(one[0], __ T4S, tmp); // 1 5504 __ ldr(q[0], __ Q, Address(dilithiumConsts, 16)); // q 5505 __ ldr(qadd[0], __ Q, Address(dilithiumConsts, 64)); // addend for mod q reduce 5506 __ dup(twog2[0], __ T4S, twoGamma2); // 2 * gamma2 5507 __ dup(mult[0], __ T4S, multiplier); // multiplier for mod 2 * gamma reduce 5508 __ subv(qminus1[0], __ T4S, v30, v25); // q - 1 5509 __ sshr(g2[0], __ T4S, v28, 1); // gamma2 5510 5511 __ mov(len, zr); 5512 __ add(len, len, 1024); 5513 5514 __ BIND(L_loop); 5515 5516 // load next 4x4S inputs interleaved: rplus --> vs1 5517 __ ld4(vs1[0], vs1[1], vs1[2], vs1[3], __ T4S, __ post(input, 64)); 5518 5519 // rplus = rplus - ((rplus + qadd) >> 23) * q 5520 vs_addv(vtmp, __ T4S, vs1, qadd); 5521 vs_sshr(vtmp, __ T4S, vtmp, 23); 5522 vs_mulv(vtmp, __ T4S, vtmp, q); 5523 vs_subv(vs1, __ T4S, vs1, vtmp); 5524 5525 // rplus = rplus + ((rplus >> 31) & dilithium_q); 5526 vs_sshr(vtmp, __ T4S, vs1, 31); 5527 vs_andr(vtmp, vtmp, q); 5528 vs_addv(vs1, __ T4S, vs1, vtmp); 5529 5530 // quotient --> vs2 5531 // int quotient = (rplus * multiplier) >> 22; 5532 vs_mulv(vtmp, __ T4S, vs1, mult); 5533 vs_sshr(vs2, __ T4S, vtmp, 22); 5534 5535 // r0 --> vs3 5536 // int r0 = rplus - quotient * twoGamma2; 5537 vs_mulv(vtmp, __ T4S, vs2, twog2); 5538 vs_subv(vs3, __ T4S, vs1, vtmp); 5539 5540 // mask --> vs4 5541 // int mask = (twoGamma2 - r0) >> 22; 5542 vs_subv(vtmp, __ T4S, twog2, vs3); 5543 vs_sshr(vs4, __ T4S, vtmp, 22); 5544 5545 // r0 -= (mask & twoGamma2); 5546 vs_andr(vtmp, vs4, twog2); 5547 vs_subv(vs3, __ T4S, vs3, vtmp); 5548 5549 // quotient += (mask & 1); 5550 vs_andr(vtmp, vs4, one); 5551 vs_addv(vs2, __ T4S, vs2, vtmp); 5552 5553 // mask = (twoGamma2 / 2 - r0) >> 31; 5554 vs_subv(vtmp, __ T4S, g2, vs3); 5555 vs_sshr(vs4, __ T4S, vtmp, 31); 5556 5557 // r0 -= (mask & twoGamma2); 5558 vs_andr(vtmp, vs4, twog2); 5559 vs_subv(vs3, __ T4S, vs3, vtmp); 5560 5561 // quotient += (mask & 1); 5562 vs_andr(vtmp, vs4, one); 5563 vs_addv(vs2, __ T4S, vs2, vtmp); 5564 5565 // r1 --> vs5 5566 // int r1 = rplus - r0 - (dilithium_q - 1); 5567 vs_subv(vtmp, __ T4S, vs1, vs3); 5568 vs_subv(vs5, __ T4S, vtmp, qminus1); 5569 5570 // r1 --> vs1 (overwriting rplus) 5571 // r1 = (r1 | (-r1)) >> 31; // 0 if rplus - r0 == (dilithium_q - 1), -1 otherwise 5572 vs_negr(vtmp, __ T4S, vs5); 5573 vs_orr(vtmp, vs5, vtmp); 5574 vs_sshr(vs1, __ T4S, vtmp, 31); 5575 5576 // r0 += ~r1; 5577 vs_notr(vtmp, vs1); 5578 vs_addv(vs3, __ T4S, vs3, vtmp); 5579 5580 // r1 = r1 & quotient; 5581 vs_andr(vs1, vs2, vs1); 5582 5583 // store results inteleaved 5584 // lowPart[m] = r0; 5585 // highPart[m] = r1; 5586 __ st4(vs3[0], vs3[1], vs3[2], vs3[3], __ T4S, __ post(lowPart, 64)); 5587 __ st4(vs1[0], vs1[1], vs1[2], vs1[3], __ T4S, __ post(highPart, 64)); 5588 5589 5590 __ sub(len, len, 64); 5591 __ cmp(len, (u1)64); 5592 __ br(Assembler::GE, L_loop); 5593 5594 // restore callee-saved vector registers 5595 __ ldpd(v14, v15, Address(sp, 48)); 5596 __ ldpd(v12, v13, Address(sp, 32)); 5597 __ ldpd(v10, v11, Address(sp, 16)); 5598 __ ldpd(v8, v9, __ post(sp, 64)); 5599 5600 __ leave(); // required for proper stackwalking of RuntimeStub frame 5601 __ mov(r0, zr); // return 0 5602 __ ret(lr); 5603 5604 return start; 5605 5606 } 5607 5608 /** 5609 * Arguments: 5610 * 5611 * Inputs: 5612 * c_rarg0 - int crc 5613 * c_rarg1 - byte* buf 5614 * c_rarg2 - int length 5615 * c_rarg3 - int* table 5616 * 5617 * Output: 5618 * r0 - int crc result 5619 */ 5620 address generate_updateBytesCRC32C() { 5621 assert(UseCRC32CIntrinsics, "what are we doing here?"); 5622 5623 __ align(CodeEntryAlignment); 5624 StubGenStubId stub_id = StubGenStubId::updateBytesCRC32C_id; 5625 StubCodeMark mark(this, stub_id); 5626 5627 address start = __ pc(); 5628 5629 const Register crc = c_rarg0; // crc 5630 const Register buf = c_rarg1; // source java byte array address 5631 const Register len = c_rarg2; // length 5632 const Register table0 = c_rarg3; // crc_table address 5633 const Register table1 = c_rarg4; 5634 const Register table2 = c_rarg5; 5635 const Register table3 = c_rarg6; 5636 const Register tmp3 = c_rarg7; 5637 5638 BLOCK_COMMENT("Entry:"); 5639 __ enter(); // required for proper stackwalking of RuntimeStub frame 5640 5641 __ kernel_crc32c(crc, buf, len, 5642 table0, table1, table2, table3, rscratch1, rscratch2, tmp3); 5643 5644 __ leave(); // required for proper stackwalking of RuntimeStub frame 5645 __ ret(lr); 5646 5647 return start; 5648 } 5649 5650 /*** 5651 * Arguments: 5652 * 5653 * Inputs: 5654 * c_rarg0 - int adler 5655 * c_rarg1 - byte* buff 5656 * c_rarg2 - int len 5657 * 5658 * Output: 5659 * c_rarg0 - int adler result 5660 */ 5661 address generate_updateBytesAdler32() { 5662 __ align(CodeEntryAlignment); 5663 StubGenStubId stub_id = StubGenStubId::updateBytesAdler32_id; 5664 StubCodeMark mark(this, stub_id); 5665 address start = __ pc(); 5666 5667 Label L_simple_by1_loop, L_nmax, L_nmax_loop, L_by16, L_by16_loop, L_by1_loop, L_do_mod, L_combine, L_by1; 5668 5669 // Aliases 5670 Register adler = c_rarg0; 5671 Register s1 = c_rarg0; 5672 Register s2 = c_rarg3; 5673 Register buff = c_rarg1; 5674 Register len = c_rarg2; 5675 Register nmax = r4; 5676 Register base = r5; 5677 Register count = r6; 5678 Register temp0 = rscratch1; 5679 Register temp1 = rscratch2; 5680 FloatRegister vbytes = v0; 5681 FloatRegister vs1acc = v1; 5682 FloatRegister vs2acc = v2; 5683 FloatRegister vtable = v3; 5684 5685 // Max number of bytes we can process before having to take the mod 5686 // 0x15B0 is 5552 in decimal, the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 5687 uint64_t BASE = 0xfff1; 5688 uint64_t NMAX = 0x15B0; 5689 5690 __ mov(base, BASE); 5691 __ mov(nmax, NMAX); 5692 5693 // Load accumulation coefficients for the upper 16 bits 5694 __ lea(temp0, ExternalAddress((address) StubRoutines::aarch64::_adler_table)); 5695 __ ld1(vtable, __ T16B, Address(temp0)); 5696 5697 // s1 is initialized to the lower 16 bits of adler 5698 // s2 is initialized to the upper 16 bits of adler 5699 __ ubfx(s2, adler, 16, 16); // s2 = ((adler >> 16) & 0xffff) 5700 __ uxth(s1, adler); // s1 = (adler & 0xffff) 5701 5702 // The pipelined loop needs at least 16 elements for 1 iteration 5703 // It does check this, but it is more effective to skip to the cleanup loop 5704 __ cmp(len, (u1)16); 5705 __ br(Assembler::HS, L_nmax); 5706 __ cbz(len, L_combine); 5707 5708 __ bind(L_simple_by1_loop); 5709 __ ldrb(temp0, Address(__ post(buff, 1))); 5710 __ add(s1, s1, temp0); 5711 __ add(s2, s2, s1); 5712 __ subs(len, len, 1); 5713 __ br(Assembler::HI, L_simple_by1_loop); 5714 5715 // s1 = s1 % BASE 5716 __ subs(temp0, s1, base); 5717 __ csel(s1, temp0, s1, Assembler::HS); 5718 5719 // s2 = s2 % BASE 5720 __ lsr(temp0, s2, 16); 5721 __ lsl(temp1, temp0, 4); 5722 __ sub(temp1, temp1, temp0); 5723 __ add(s2, temp1, s2, ext::uxth); 5724 5725 __ subs(temp0, s2, base); 5726 __ csel(s2, temp0, s2, Assembler::HS); 5727 5728 __ b(L_combine); 5729 5730 __ bind(L_nmax); 5731 __ subs(len, len, nmax); 5732 __ sub(count, nmax, 16); 5733 __ br(Assembler::LO, L_by16); 5734 5735 __ bind(L_nmax_loop); 5736 5737 generate_updateBytesAdler32_accum(s1, s2, buff, temp0, temp1, 5738 vbytes, vs1acc, vs2acc, vtable); 5739 5740 __ subs(count, count, 16); 5741 __ br(Assembler::HS, L_nmax_loop); 5742 5743 // s1 = s1 % BASE 5744 __ lsr(temp0, s1, 16); 5745 __ lsl(temp1, temp0, 4); 5746 __ sub(temp1, temp1, temp0); 5747 __ add(temp1, temp1, s1, ext::uxth); 5748 5749 __ lsr(temp0, temp1, 16); 5750 __ lsl(s1, temp0, 4); 5751 __ sub(s1, s1, temp0); 5752 __ add(s1, s1, temp1, ext:: uxth); 5753 5754 __ subs(temp0, s1, base); 5755 __ csel(s1, temp0, s1, Assembler::HS); 5756 5757 // s2 = s2 % BASE 5758 __ lsr(temp0, s2, 16); 5759 __ lsl(temp1, temp0, 4); 5760 __ sub(temp1, temp1, temp0); 5761 __ add(temp1, temp1, s2, ext::uxth); 5762 5763 __ lsr(temp0, temp1, 16); 5764 __ lsl(s2, temp0, 4); 5765 __ sub(s2, s2, temp0); 5766 __ add(s2, s2, temp1, ext:: uxth); 5767 5768 __ subs(temp0, s2, base); 5769 __ csel(s2, temp0, s2, Assembler::HS); 5770 5771 __ subs(len, len, nmax); 5772 __ sub(count, nmax, 16); 5773 __ br(Assembler::HS, L_nmax_loop); 5774 5775 __ bind(L_by16); 5776 __ adds(len, len, count); 5777 __ br(Assembler::LO, L_by1); 5778 5779 __ bind(L_by16_loop); 5780 5781 generate_updateBytesAdler32_accum(s1, s2, buff, temp0, temp1, 5782 vbytes, vs1acc, vs2acc, vtable); 5783 5784 __ subs(len, len, 16); 5785 __ br(Assembler::HS, L_by16_loop); 5786 5787 __ bind(L_by1); 5788 __ adds(len, len, 15); 5789 __ br(Assembler::LO, L_do_mod); 5790 5791 __ bind(L_by1_loop); 5792 __ ldrb(temp0, Address(__ post(buff, 1))); 5793 __ add(s1, temp0, s1); 5794 __ add(s2, s2, s1); 5795 __ subs(len, len, 1); 5796 __ br(Assembler::HS, L_by1_loop); 5797 5798 __ bind(L_do_mod); 5799 // s1 = s1 % BASE 5800 __ lsr(temp0, s1, 16); 5801 __ lsl(temp1, temp0, 4); 5802 __ sub(temp1, temp1, temp0); 5803 __ add(temp1, temp1, s1, ext::uxth); 5804 5805 __ lsr(temp0, temp1, 16); 5806 __ lsl(s1, temp0, 4); 5807 __ sub(s1, s1, temp0); 5808 __ add(s1, s1, temp1, ext:: uxth); 5809 5810 __ subs(temp0, s1, base); 5811 __ csel(s1, temp0, s1, Assembler::HS); 5812 5813 // s2 = s2 % BASE 5814 __ lsr(temp0, s2, 16); 5815 __ lsl(temp1, temp0, 4); 5816 __ sub(temp1, temp1, temp0); 5817 __ add(temp1, temp1, s2, ext::uxth); 5818 5819 __ lsr(temp0, temp1, 16); 5820 __ lsl(s2, temp0, 4); 5821 __ sub(s2, s2, temp0); 5822 __ add(s2, s2, temp1, ext:: uxth); 5823 5824 __ subs(temp0, s2, base); 5825 __ csel(s2, temp0, s2, Assembler::HS); 5826 5827 // Combine lower bits and higher bits 5828 __ bind(L_combine); 5829 __ orr(s1, s1, s2, Assembler::LSL, 16); // adler = s1 | (s2 << 16) 5830 5831 __ ret(lr); 5832 5833 return start; 5834 } 5835 5836 void generate_updateBytesAdler32_accum(Register s1, Register s2, Register buff, 5837 Register temp0, Register temp1, FloatRegister vbytes, 5838 FloatRegister vs1acc, FloatRegister vs2acc, FloatRegister vtable) { 5839 // Below is a vectorized implementation of updating s1 and s2 for 16 bytes. 5840 // We use b1, b2, ..., b16 to denote the 16 bytes loaded in each iteration. 5841 // In non-vectorized code, we update s1 and s2 as: 5842 // s1 <- s1 + b1 5843 // s2 <- s2 + s1 5844 // s1 <- s1 + b2 5845 // s2 <- s2 + b1 5846 // ... 5847 // s1 <- s1 + b16 5848 // s2 <- s2 + s1 5849 // Putting above assignments together, we have: 5850 // s1_new = s1 + b1 + b2 + ... + b16 5851 // s2_new = s2 + (s1 + b1) + (s1 + b1 + b2) + ... + (s1 + b1 + b2 + ... + b16) 5852 // = s2 + s1 * 16 + (b1 * 16 + b2 * 15 + ... + b16 * 1) 5853 // = s2 + s1 * 16 + (b1, b2, ... b16) dot (16, 15, ... 1) 5854 __ ld1(vbytes, __ T16B, Address(__ post(buff, 16))); 5855 5856 // s2 = s2 + s1 * 16 5857 __ add(s2, s2, s1, Assembler::LSL, 4); 5858 5859 // vs1acc = b1 + b2 + b3 + ... + b16 5860 // vs2acc = (b1 * 16) + (b2 * 15) + (b3 * 14) + ... + (b16 * 1) 5861 __ umullv(vs2acc, __ T8B, vtable, vbytes); 5862 __ umlalv(vs2acc, __ T16B, vtable, vbytes); 5863 __ uaddlv(vs1acc, __ T16B, vbytes); 5864 __ uaddlv(vs2acc, __ T8H, vs2acc); 5865 5866 // s1 = s1 + vs1acc, s2 = s2 + vs2acc 5867 __ fmovd(temp0, vs1acc); 5868 __ fmovd(temp1, vs2acc); 5869 __ add(s1, s1, temp0); 5870 __ add(s2, s2, temp1); 5871 } 5872 5873 /** 5874 * Arguments: 5875 * 5876 * Input: 5877 * c_rarg0 - x address 5878 * c_rarg1 - x length 5879 * c_rarg2 - y address 5880 * c_rarg3 - y length 5881 * c_rarg4 - z address 5882 */ 5883 address generate_multiplyToLen() { 5884 __ align(CodeEntryAlignment); 5885 StubGenStubId stub_id = StubGenStubId::multiplyToLen_id; 5886 StubCodeMark mark(this, stub_id); 5887 5888 address start = __ pc(); 5889 const Register x = r0; 5890 const Register xlen = r1; 5891 const Register y = r2; 5892 const Register ylen = r3; 5893 const Register z = r4; 5894 5895 const Register tmp0 = r5; 5896 const Register tmp1 = r10; 5897 const Register tmp2 = r11; 5898 const Register tmp3 = r12; 5899 const Register tmp4 = r13; 5900 const Register tmp5 = r14; 5901 const Register tmp6 = r15; 5902 const Register tmp7 = r16; 5903 5904 BLOCK_COMMENT("Entry:"); 5905 __ enter(); // required for proper stackwalking of RuntimeStub frame 5906 __ multiply_to_len(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7); 5907 __ leave(); // required for proper stackwalking of RuntimeStub frame 5908 __ ret(lr); 5909 5910 return start; 5911 } 5912 5913 address generate_squareToLen() { 5914 // squareToLen algorithm for sizes 1..127 described in java code works 5915 // faster than multiply_to_len on some CPUs and slower on others, but 5916 // multiply_to_len shows a bit better overall results 5917 __ align(CodeEntryAlignment); 5918 StubGenStubId stub_id = StubGenStubId::squareToLen_id; 5919 StubCodeMark mark(this, stub_id); 5920 address start = __ pc(); 5921 5922 const Register x = r0; 5923 const Register xlen = r1; 5924 const Register z = r2; 5925 const Register y = r4; // == x 5926 const Register ylen = r5; // == xlen 5927 5928 const Register tmp0 = r3; 5929 const Register tmp1 = r10; 5930 const Register tmp2 = r11; 5931 const Register tmp3 = r12; 5932 const Register tmp4 = r13; 5933 const Register tmp5 = r14; 5934 const Register tmp6 = r15; 5935 const Register tmp7 = r16; 5936 5937 RegSet spilled_regs = RegSet::of(y, ylen); 5938 BLOCK_COMMENT("Entry:"); 5939 __ enter(); 5940 __ push(spilled_regs, sp); 5941 __ mov(y, x); 5942 __ mov(ylen, xlen); 5943 __ multiply_to_len(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7); 5944 __ pop(spilled_regs, sp); 5945 __ leave(); 5946 __ ret(lr); 5947 return start; 5948 } 5949 5950 address generate_mulAdd() { 5951 __ align(CodeEntryAlignment); 5952 StubGenStubId stub_id = StubGenStubId::mulAdd_id; 5953 StubCodeMark mark(this, stub_id); 5954 5955 address start = __ pc(); 5956 5957 const Register out = r0; 5958 const Register in = r1; 5959 const Register offset = r2; 5960 const Register len = r3; 5961 const Register k = r4; 5962 5963 BLOCK_COMMENT("Entry:"); 5964 __ enter(); 5965 __ mul_add(out, in, offset, len, k); 5966 __ leave(); 5967 __ ret(lr); 5968 5969 return start; 5970 } 5971 5972 // Arguments: 5973 // 5974 // Input: 5975 // c_rarg0 - newArr address 5976 // c_rarg1 - oldArr address 5977 // c_rarg2 - newIdx 5978 // c_rarg3 - shiftCount 5979 // c_rarg4 - numIter 5980 // 5981 address generate_bigIntegerRightShift() { 5982 __ align(CodeEntryAlignment); 5983 StubGenStubId stub_id = StubGenStubId::bigIntegerRightShiftWorker_id; 5984 StubCodeMark mark(this, stub_id); 5985 address start = __ pc(); 5986 5987 Label ShiftSIMDLoop, ShiftTwoLoop, ShiftThree, ShiftTwo, ShiftOne, Exit; 5988 5989 Register newArr = c_rarg0; 5990 Register oldArr = c_rarg1; 5991 Register newIdx = c_rarg2; 5992 Register shiftCount = c_rarg3; 5993 Register numIter = c_rarg4; 5994 Register idx = numIter; 5995 5996 Register newArrCur = rscratch1; 5997 Register shiftRevCount = rscratch2; 5998 Register oldArrCur = r13; 5999 Register oldArrNext = r14; 6000 6001 FloatRegister oldElem0 = v0; 6002 FloatRegister oldElem1 = v1; 6003 FloatRegister newElem = v2; 6004 FloatRegister shiftVCount = v3; 6005 FloatRegister shiftVRevCount = v4; 6006 6007 __ cbz(idx, Exit); 6008 6009 __ add(newArr, newArr, newIdx, Assembler::LSL, 2); 6010 6011 // left shift count 6012 __ movw(shiftRevCount, 32); 6013 __ subw(shiftRevCount, shiftRevCount, shiftCount); 6014 6015 // numIter too small to allow a 4-words SIMD loop, rolling back 6016 __ cmp(numIter, (u1)4); 6017 __ br(Assembler::LT, ShiftThree); 6018 6019 __ dup(shiftVCount, __ T4S, shiftCount); 6020 __ dup(shiftVRevCount, __ T4S, shiftRevCount); 6021 __ negr(shiftVCount, __ T4S, shiftVCount); 6022 6023 __ BIND(ShiftSIMDLoop); 6024 6025 // Calculate the load addresses 6026 __ sub(idx, idx, 4); 6027 __ add(oldArrNext, oldArr, idx, Assembler::LSL, 2); 6028 __ add(newArrCur, newArr, idx, Assembler::LSL, 2); 6029 __ add(oldArrCur, oldArrNext, 4); 6030 6031 // Load 4 words and process 6032 __ ld1(oldElem0, __ T4S, Address(oldArrCur)); 6033 __ ld1(oldElem1, __ T4S, Address(oldArrNext)); 6034 __ ushl(oldElem0, __ T4S, oldElem0, shiftVCount); 6035 __ ushl(oldElem1, __ T4S, oldElem1, shiftVRevCount); 6036 __ orr(newElem, __ T16B, oldElem0, oldElem1); 6037 __ st1(newElem, __ T4S, Address(newArrCur)); 6038 6039 __ cmp(idx, (u1)4); 6040 __ br(Assembler::LT, ShiftTwoLoop); 6041 __ b(ShiftSIMDLoop); 6042 6043 __ BIND(ShiftTwoLoop); 6044 __ cbz(idx, Exit); 6045 __ cmp(idx, (u1)1); 6046 __ br(Assembler::EQ, ShiftOne); 6047 6048 // Calculate the load addresses 6049 __ sub(idx, idx, 2); 6050 __ add(oldArrNext, oldArr, idx, Assembler::LSL, 2); 6051 __ add(newArrCur, newArr, idx, Assembler::LSL, 2); 6052 __ add(oldArrCur, oldArrNext, 4); 6053 6054 // Load 2 words and process 6055 __ ld1(oldElem0, __ T2S, Address(oldArrCur)); 6056 __ ld1(oldElem1, __ T2S, Address(oldArrNext)); 6057 __ ushl(oldElem0, __ T2S, oldElem0, shiftVCount); 6058 __ ushl(oldElem1, __ T2S, oldElem1, shiftVRevCount); 6059 __ orr(newElem, __ T8B, oldElem0, oldElem1); 6060 __ st1(newElem, __ T2S, Address(newArrCur)); 6061 __ b(ShiftTwoLoop); 6062 6063 __ BIND(ShiftThree); 6064 __ tbz(idx, 1, ShiftOne); 6065 __ tbz(idx, 0, ShiftTwo); 6066 __ ldrw(r10, Address(oldArr, 12)); 6067 __ ldrw(r11, Address(oldArr, 8)); 6068 __ lsrvw(r10, r10, shiftCount); 6069 __ lslvw(r11, r11, shiftRevCount); 6070 __ orrw(r12, r10, r11); 6071 __ strw(r12, Address(newArr, 8)); 6072 6073 __ BIND(ShiftTwo); 6074 __ ldrw(r10, Address(oldArr, 8)); 6075 __ ldrw(r11, Address(oldArr, 4)); 6076 __ lsrvw(r10, r10, shiftCount); 6077 __ lslvw(r11, r11, shiftRevCount); 6078 __ orrw(r12, r10, r11); 6079 __ strw(r12, Address(newArr, 4)); 6080 6081 __ BIND(ShiftOne); 6082 __ ldrw(r10, Address(oldArr, 4)); 6083 __ ldrw(r11, Address(oldArr)); 6084 __ lsrvw(r10, r10, shiftCount); 6085 __ lslvw(r11, r11, shiftRevCount); 6086 __ orrw(r12, r10, r11); 6087 __ strw(r12, Address(newArr)); 6088 6089 __ BIND(Exit); 6090 __ ret(lr); 6091 6092 return start; 6093 } 6094 6095 // Arguments: 6096 // 6097 // Input: 6098 // c_rarg0 - newArr address 6099 // c_rarg1 - oldArr address 6100 // c_rarg2 - newIdx 6101 // c_rarg3 - shiftCount 6102 // c_rarg4 - numIter 6103 // 6104 address generate_bigIntegerLeftShift() { 6105 __ align(CodeEntryAlignment); 6106 StubGenStubId stub_id = StubGenStubId::bigIntegerLeftShiftWorker_id; 6107 StubCodeMark mark(this, stub_id); 6108 address start = __ pc(); 6109 6110 Label ShiftSIMDLoop, ShiftTwoLoop, ShiftThree, ShiftTwo, ShiftOne, Exit; 6111 6112 Register newArr = c_rarg0; 6113 Register oldArr = c_rarg1; 6114 Register newIdx = c_rarg2; 6115 Register shiftCount = c_rarg3; 6116 Register numIter = c_rarg4; 6117 6118 Register shiftRevCount = rscratch1; 6119 Register oldArrNext = rscratch2; 6120 6121 FloatRegister oldElem0 = v0; 6122 FloatRegister oldElem1 = v1; 6123 FloatRegister newElem = v2; 6124 FloatRegister shiftVCount = v3; 6125 FloatRegister shiftVRevCount = v4; 6126 6127 __ cbz(numIter, Exit); 6128 6129 __ add(oldArrNext, oldArr, 4); 6130 __ add(newArr, newArr, newIdx, Assembler::LSL, 2); 6131 6132 // right shift count 6133 __ movw(shiftRevCount, 32); 6134 __ subw(shiftRevCount, shiftRevCount, shiftCount); 6135 6136 // numIter too small to allow a 4-words SIMD loop, rolling back 6137 __ cmp(numIter, (u1)4); 6138 __ br(Assembler::LT, ShiftThree); 6139 6140 __ dup(shiftVCount, __ T4S, shiftCount); 6141 __ dup(shiftVRevCount, __ T4S, shiftRevCount); 6142 __ negr(shiftVRevCount, __ T4S, shiftVRevCount); 6143 6144 __ BIND(ShiftSIMDLoop); 6145 6146 // load 4 words and process 6147 __ ld1(oldElem0, __ T4S, __ post(oldArr, 16)); 6148 __ ld1(oldElem1, __ T4S, __ post(oldArrNext, 16)); 6149 __ ushl(oldElem0, __ T4S, oldElem0, shiftVCount); 6150 __ ushl(oldElem1, __ T4S, oldElem1, shiftVRevCount); 6151 __ orr(newElem, __ T16B, oldElem0, oldElem1); 6152 __ st1(newElem, __ T4S, __ post(newArr, 16)); 6153 __ sub(numIter, numIter, 4); 6154 6155 __ cmp(numIter, (u1)4); 6156 __ br(Assembler::LT, ShiftTwoLoop); 6157 __ b(ShiftSIMDLoop); 6158 6159 __ BIND(ShiftTwoLoop); 6160 __ cbz(numIter, Exit); 6161 __ cmp(numIter, (u1)1); 6162 __ br(Assembler::EQ, ShiftOne); 6163 6164 // load 2 words and process 6165 __ ld1(oldElem0, __ T2S, __ post(oldArr, 8)); 6166 __ ld1(oldElem1, __ T2S, __ post(oldArrNext, 8)); 6167 __ ushl(oldElem0, __ T2S, oldElem0, shiftVCount); 6168 __ ushl(oldElem1, __ T2S, oldElem1, shiftVRevCount); 6169 __ orr(newElem, __ T8B, oldElem0, oldElem1); 6170 __ st1(newElem, __ T2S, __ post(newArr, 8)); 6171 __ sub(numIter, numIter, 2); 6172 __ b(ShiftTwoLoop); 6173 6174 __ BIND(ShiftThree); 6175 __ ldrw(r10, __ post(oldArr, 4)); 6176 __ ldrw(r11, __ post(oldArrNext, 4)); 6177 __ lslvw(r10, r10, shiftCount); 6178 __ lsrvw(r11, r11, shiftRevCount); 6179 __ orrw(r12, r10, r11); 6180 __ strw(r12, __ post(newArr, 4)); 6181 __ tbz(numIter, 1, Exit); 6182 __ tbz(numIter, 0, ShiftOne); 6183 6184 __ BIND(ShiftTwo); 6185 __ ldrw(r10, __ post(oldArr, 4)); 6186 __ ldrw(r11, __ post(oldArrNext, 4)); 6187 __ lslvw(r10, r10, shiftCount); 6188 __ lsrvw(r11, r11, shiftRevCount); 6189 __ orrw(r12, r10, r11); 6190 __ strw(r12, __ post(newArr, 4)); 6191 6192 __ BIND(ShiftOne); 6193 __ ldrw(r10, Address(oldArr)); 6194 __ ldrw(r11, Address(oldArrNext)); 6195 __ lslvw(r10, r10, shiftCount); 6196 __ lsrvw(r11, r11, shiftRevCount); 6197 __ orrw(r12, r10, r11); 6198 __ strw(r12, Address(newArr)); 6199 6200 __ BIND(Exit); 6201 __ ret(lr); 6202 6203 return start; 6204 } 6205 6206 address generate_count_positives(address &count_positives_long) { 6207 const u1 large_loop_size = 64; 6208 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 6209 int dcache_line = VM_Version::dcache_line_size(); 6210 6211 Register ary1 = r1, len = r2, result = r0; 6212 6213 __ align(CodeEntryAlignment); 6214 6215 StubGenStubId stub_id = StubGenStubId::count_positives_id; 6216 StubCodeMark mark(this, stub_id); 6217 6218 address entry = __ pc(); 6219 6220 __ enter(); 6221 // precondition: a copy of len is already in result 6222 // __ mov(result, len); 6223 6224 Label RET_ADJUST, RET_ADJUST_16, RET_ADJUST_LONG, RET_NO_POP, RET_LEN, ALIGNED, LOOP16, CHECK_16, 6225 LARGE_LOOP, POST_LOOP16, LEN_OVER_15, LEN_OVER_8, POST_LOOP16_LOAD_TAIL; 6226 6227 __ cmp(len, (u1)15); 6228 __ br(Assembler::GT, LEN_OVER_15); 6229 // The only case when execution falls into this code is when pointer is near 6230 // the end of memory page and we have to avoid reading next page 6231 __ add(ary1, ary1, len); 6232 __ subs(len, len, 8); 6233 __ br(Assembler::GT, LEN_OVER_8); 6234 __ ldr(rscratch2, Address(ary1, -8)); 6235 __ sub(rscratch1, zr, len, __ LSL, 3); // LSL 3 is to get bits from bytes. 6236 __ lsrv(rscratch2, rscratch2, rscratch1); 6237 __ tst(rscratch2, UPPER_BIT_MASK); 6238 __ csel(result, zr, result, Assembler::NE); 6239 __ leave(); 6240 __ ret(lr); 6241 __ bind(LEN_OVER_8); 6242 __ ldp(rscratch1, rscratch2, Address(ary1, -16)); 6243 __ sub(len, len, 8); // no data dep., then sub can be executed while loading 6244 __ tst(rscratch2, UPPER_BIT_MASK); 6245 __ br(Assembler::NE, RET_NO_POP); 6246 __ sub(rscratch2, zr, len, __ LSL, 3); // LSL 3 is to get bits from bytes 6247 __ lsrv(rscratch1, rscratch1, rscratch2); 6248 __ tst(rscratch1, UPPER_BIT_MASK); 6249 __ bind(RET_NO_POP); 6250 __ csel(result, zr, result, Assembler::NE); 6251 __ leave(); 6252 __ ret(lr); 6253 6254 Register tmp1 = r3, tmp2 = r4, tmp3 = r5, tmp4 = r6, tmp5 = r7, tmp6 = r10; 6255 const RegSet spilled_regs = RegSet::range(tmp1, tmp5) + tmp6; 6256 6257 count_positives_long = __ pc(); // 2nd entry point 6258 6259 __ enter(); 6260 6261 __ bind(LEN_OVER_15); 6262 __ push(spilled_regs, sp); 6263 __ andr(rscratch2, ary1, 15); // check pointer for 16-byte alignment 6264 __ cbz(rscratch2, ALIGNED); 6265 __ ldp(tmp6, tmp1, Address(ary1)); 6266 __ mov(tmp5, 16); 6267 __ sub(rscratch1, tmp5, rscratch2); // amount of bytes until aligned address 6268 __ add(ary1, ary1, rscratch1); 6269 __ orr(tmp6, tmp6, tmp1); 6270 __ tst(tmp6, UPPER_BIT_MASK); 6271 __ br(Assembler::NE, RET_ADJUST); 6272 __ sub(len, len, rscratch1); 6273 6274 __ bind(ALIGNED); 6275 __ cmp(len, large_loop_size); 6276 __ br(Assembler::LT, CHECK_16); 6277 // Perform 16-byte load as early return in pre-loop to handle situation 6278 // when initially aligned large array has negative values at starting bytes, 6279 // so LARGE_LOOP would do 4 reads instead of 1 (in worst case), which is 6280 // slower. Cases with negative bytes further ahead won't be affected that 6281 // much. In fact, it'll be faster due to early loads, less instructions and 6282 // less branches in LARGE_LOOP. 6283 __ ldp(tmp6, tmp1, Address(__ post(ary1, 16))); 6284 __ sub(len, len, 16); 6285 __ orr(tmp6, tmp6, tmp1); 6286 __ tst(tmp6, UPPER_BIT_MASK); 6287 __ br(Assembler::NE, RET_ADJUST_16); 6288 __ cmp(len, large_loop_size); 6289 __ br(Assembler::LT, CHECK_16); 6290 6291 if (SoftwarePrefetchHintDistance >= 0 6292 && SoftwarePrefetchHintDistance >= dcache_line) { 6293 // initial prefetch 6294 __ prfm(Address(ary1, SoftwarePrefetchHintDistance - dcache_line)); 6295 } 6296 __ bind(LARGE_LOOP); 6297 if (SoftwarePrefetchHintDistance >= 0) { 6298 __ prfm(Address(ary1, SoftwarePrefetchHintDistance)); 6299 } 6300 // Issue load instructions first, since it can save few CPU/MEM cycles, also 6301 // instead of 4 triples of "orr(...), addr(...);cbnz(...);" (for each ldp) 6302 // better generate 7 * orr(...) + 1 andr(...) + 1 cbnz(...) which saves 3 6303 // instructions per cycle and have less branches, but this approach disables 6304 // early return, thus, all 64 bytes are loaded and checked every time. 6305 __ ldp(tmp2, tmp3, Address(ary1)); 6306 __ ldp(tmp4, tmp5, Address(ary1, 16)); 6307 __ ldp(rscratch1, rscratch2, Address(ary1, 32)); 6308 __ ldp(tmp6, tmp1, Address(ary1, 48)); 6309 __ add(ary1, ary1, large_loop_size); 6310 __ sub(len, len, large_loop_size); 6311 __ orr(tmp2, tmp2, tmp3); 6312 __ orr(tmp4, tmp4, tmp5); 6313 __ orr(rscratch1, rscratch1, rscratch2); 6314 __ orr(tmp6, tmp6, tmp1); 6315 __ orr(tmp2, tmp2, tmp4); 6316 __ orr(rscratch1, rscratch1, tmp6); 6317 __ orr(tmp2, tmp2, rscratch1); 6318 __ tst(tmp2, UPPER_BIT_MASK); 6319 __ br(Assembler::NE, RET_ADJUST_LONG); 6320 __ cmp(len, large_loop_size); 6321 __ br(Assembler::GE, LARGE_LOOP); 6322 6323 __ bind(CHECK_16); // small 16-byte load pre-loop 6324 __ cmp(len, (u1)16); 6325 __ br(Assembler::LT, POST_LOOP16); 6326 6327 __ bind(LOOP16); // small 16-byte load loop 6328 __ ldp(tmp2, tmp3, Address(__ post(ary1, 16))); 6329 __ sub(len, len, 16); 6330 __ orr(tmp2, tmp2, tmp3); 6331 __ tst(tmp2, UPPER_BIT_MASK); 6332 __ br(Assembler::NE, RET_ADJUST_16); 6333 __ cmp(len, (u1)16); 6334 __ br(Assembler::GE, LOOP16); // 16-byte load loop end 6335 6336 __ bind(POST_LOOP16); // 16-byte aligned, so we can read unconditionally 6337 __ cmp(len, (u1)8); 6338 __ br(Assembler::LE, POST_LOOP16_LOAD_TAIL); 6339 __ ldr(tmp3, Address(__ post(ary1, 8))); 6340 __ tst(tmp3, UPPER_BIT_MASK); 6341 __ br(Assembler::NE, RET_ADJUST); 6342 __ sub(len, len, 8); 6343 6344 __ bind(POST_LOOP16_LOAD_TAIL); 6345 __ cbz(len, RET_LEN); // Can't shift left by 64 when len==0 6346 __ ldr(tmp1, Address(ary1)); 6347 __ mov(tmp2, 64); 6348 __ sub(tmp4, tmp2, len, __ LSL, 3); 6349 __ lslv(tmp1, tmp1, tmp4); 6350 __ tst(tmp1, UPPER_BIT_MASK); 6351 __ br(Assembler::NE, RET_ADJUST); 6352 // Fallthrough 6353 6354 __ bind(RET_LEN); 6355 __ pop(spilled_regs, sp); 6356 __ leave(); 6357 __ ret(lr); 6358 6359 // difference result - len is the count of guaranteed to be 6360 // positive bytes 6361 6362 __ bind(RET_ADJUST_LONG); 6363 __ add(len, len, (u1)(large_loop_size - 16)); 6364 __ bind(RET_ADJUST_16); 6365 __ add(len, len, 16); 6366 __ bind(RET_ADJUST); 6367 __ pop(spilled_regs, sp); 6368 __ leave(); 6369 __ sub(result, result, len); 6370 __ ret(lr); 6371 6372 return entry; 6373 } 6374 6375 void generate_large_array_equals_loop_nonsimd(int loopThreshold, 6376 bool usePrefetch, Label &NOT_EQUAL) { 6377 Register a1 = r1, a2 = r2, result = r0, cnt1 = r10, tmp1 = rscratch1, 6378 tmp2 = rscratch2, tmp3 = r3, tmp4 = r4, tmp5 = r5, tmp6 = r11, 6379 tmp7 = r12, tmp8 = r13; 6380 Label LOOP; 6381 6382 __ ldp(tmp1, tmp3, Address(__ post(a1, 2 * wordSize))); 6383 __ ldp(tmp2, tmp4, Address(__ post(a2, 2 * wordSize))); 6384 __ bind(LOOP); 6385 if (usePrefetch) { 6386 __ prfm(Address(a1, SoftwarePrefetchHintDistance)); 6387 __ prfm(Address(a2, SoftwarePrefetchHintDistance)); 6388 } 6389 __ ldp(tmp5, tmp7, Address(__ post(a1, 2 * wordSize))); 6390 __ eor(tmp1, tmp1, tmp2); 6391 __ eor(tmp3, tmp3, tmp4); 6392 __ ldp(tmp6, tmp8, Address(__ post(a2, 2 * wordSize))); 6393 __ orr(tmp1, tmp1, tmp3); 6394 __ cbnz(tmp1, NOT_EQUAL); 6395 __ ldp(tmp1, tmp3, Address(__ post(a1, 2 * wordSize))); 6396 __ eor(tmp5, tmp5, tmp6); 6397 __ eor(tmp7, tmp7, tmp8); 6398 __ ldp(tmp2, tmp4, Address(__ post(a2, 2 * wordSize))); 6399 __ orr(tmp5, tmp5, tmp7); 6400 __ cbnz(tmp5, NOT_EQUAL); 6401 __ ldp(tmp5, tmp7, Address(__ post(a1, 2 * wordSize))); 6402 __ eor(tmp1, tmp1, tmp2); 6403 __ eor(tmp3, tmp3, tmp4); 6404 __ ldp(tmp6, tmp8, Address(__ post(a2, 2 * wordSize))); 6405 __ orr(tmp1, tmp1, tmp3); 6406 __ cbnz(tmp1, NOT_EQUAL); 6407 __ ldp(tmp1, tmp3, Address(__ post(a1, 2 * wordSize))); 6408 __ eor(tmp5, tmp5, tmp6); 6409 __ sub(cnt1, cnt1, 8 * wordSize); 6410 __ eor(tmp7, tmp7, tmp8); 6411 __ ldp(tmp2, tmp4, Address(__ post(a2, 2 * wordSize))); 6412 // tmp6 is not used. MacroAssembler::subs is used here (rather than 6413 // cmp) because subs allows an unlimited range of immediate operand. 6414 __ subs(tmp6, cnt1, loopThreshold); 6415 __ orr(tmp5, tmp5, tmp7); 6416 __ cbnz(tmp5, NOT_EQUAL); 6417 __ br(__ GE, LOOP); 6418 // post-loop 6419 __ eor(tmp1, tmp1, tmp2); 6420 __ eor(tmp3, tmp3, tmp4); 6421 __ orr(tmp1, tmp1, tmp3); 6422 __ sub(cnt1, cnt1, 2 * wordSize); 6423 __ cbnz(tmp1, NOT_EQUAL); 6424 } 6425 6426 void generate_large_array_equals_loop_simd(int loopThreshold, 6427 bool usePrefetch, Label &NOT_EQUAL) { 6428 Register a1 = r1, a2 = r2, result = r0, cnt1 = r10, tmp1 = rscratch1, 6429 tmp2 = rscratch2; 6430 Label LOOP; 6431 6432 __ bind(LOOP); 6433 if (usePrefetch) { 6434 __ prfm(Address(a1, SoftwarePrefetchHintDistance)); 6435 __ prfm(Address(a2, SoftwarePrefetchHintDistance)); 6436 } 6437 __ ld1(v0, v1, v2, v3, __ T2D, Address(__ post(a1, 4 * 2 * wordSize))); 6438 __ sub(cnt1, cnt1, 8 * wordSize); 6439 __ ld1(v4, v5, v6, v7, __ T2D, Address(__ post(a2, 4 * 2 * wordSize))); 6440 __ subs(tmp1, cnt1, loopThreshold); 6441 __ eor(v0, __ T16B, v0, v4); 6442 __ eor(v1, __ T16B, v1, v5); 6443 __ eor(v2, __ T16B, v2, v6); 6444 __ eor(v3, __ T16B, v3, v7); 6445 __ orr(v0, __ T16B, v0, v1); 6446 __ orr(v1, __ T16B, v2, v3); 6447 __ orr(v0, __ T16B, v0, v1); 6448 __ umov(tmp1, v0, __ D, 0); 6449 __ umov(tmp2, v0, __ D, 1); 6450 __ orr(tmp1, tmp1, tmp2); 6451 __ cbnz(tmp1, NOT_EQUAL); 6452 __ br(__ GE, LOOP); 6453 } 6454 6455 // a1 = r1 - array1 address 6456 // a2 = r2 - array2 address 6457 // result = r0 - return value. Already contains "false" 6458 // cnt1 = r10 - amount of elements left to check, reduced by wordSize 6459 // r3-r5 are reserved temporary registers 6460 // Clobbers: v0-v7 when UseSIMDForArrayEquals, rscratch1, rscratch2 6461 address generate_large_array_equals() { 6462 Register a1 = r1, a2 = r2, result = r0, cnt1 = r10, tmp1 = rscratch1, 6463 tmp2 = rscratch2, tmp3 = r3, tmp4 = r4, tmp5 = r5, tmp6 = r11, 6464 tmp7 = r12, tmp8 = r13; 6465 Label TAIL, NOT_EQUAL, EQUAL, NOT_EQUAL_NO_POP, NO_PREFETCH_LARGE_LOOP, 6466 SMALL_LOOP, POST_LOOP; 6467 const int PRE_LOOP_SIZE = UseSIMDForArrayEquals ? 0 : 16; 6468 // calculate if at least 32 prefetched bytes are used 6469 int prefetchLoopThreshold = SoftwarePrefetchHintDistance + 32; 6470 int nonPrefetchLoopThreshold = (64 + PRE_LOOP_SIZE); 6471 RegSet spilled_regs = RegSet::range(tmp6, tmp8); 6472 assert_different_registers(a1, a2, result, cnt1, tmp1, tmp2, tmp3, tmp4, 6473 tmp5, tmp6, tmp7, tmp8); 6474 6475 __ align(CodeEntryAlignment); 6476 6477 StubGenStubId stub_id = StubGenStubId::large_array_equals_id; 6478 StubCodeMark mark(this, stub_id); 6479 6480 address entry = __ pc(); 6481 __ enter(); 6482 __ sub(cnt1, cnt1, wordSize); // first 8 bytes were loaded outside of stub 6483 // also advance pointers to use post-increment instead of pre-increment 6484 __ add(a1, a1, wordSize); 6485 __ add(a2, a2, wordSize); 6486 if (AvoidUnalignedAccesses) { 6487 // both implementations (SIMD/nonSIMD) are using relatively large load 6488 // instructions (ld1/ldp), which has huge penalty (up to x2 exec time) 6489 // on some CPUs in case of address is not at least 16-byte aligned. 6490 // Arrays are 8-byte aligned currently, so, we can make additional 8-byte 6491 // load if needed at least for 1st address and make if 16-byte aligned. 6492 Label ALIGNED16; 6493 __ tbz(a1, 3, ALIGNED16); 6494 __ ldr(tmp1, Address(__ post(a1, wordSize))); 6495 __ ldr(tmp2, Address(__ post(a2, wordSize))); 6496 __ sub(cnt1, cnt1, wordSize); 6497 __ eor(tmp1, tmp1, tmp2); 6498 __ cbnz(tmp1, NOT_EQUAL_NO_POP); 6499 __ bind(ALIGNED16); 6500 } 6501 if (UseSIMDForArrayEquals) { 6502 if (SoftwarePrefetchHintDistance >= 0) { 6503 __ subs(tmp1, cnt1, prefetchLoopThreshold); 6504 __ br(__ LE, NO_PREFETCH_LARGE_LOOP); 6505 generate_large_array_equals_loop_simd(prefetchLoopThreshold, 6506 /* prfm = */ true, NOT_EQUAL); 6507 __ subs(zr, cnt1, nonPrefetchLoopThreshold); 6508 __ br(__ LT, TAIL); 6509 } 6510 __ bind(NO_PREFETCH_LARGE_LOOP); 6511 generate_large_array_equals_loop_simd(nonPrefetchLoopThreshold, 6512 /* prfm = */ false, NOT_EQUAL); 6513 } else { 6514 __ push(spilled_regs, sp); 6515 if (SoftwarePrefetchHintDistance >= 0) { 6516 __ subs(tmp1, cnt1, prefetchLoopThreshold); 6517 __ br(__ LE, NO_PREFETCH_LARGE_LOOP); 6518 generate_large_array_equals_loop_nonsimd(prefetchLoopThreshold, 6519 /* prfm = */ true, NOT_EQUAL); 6520 __ subs(zr, cnt1, nonPrefetchLoopThreshold); 6521 __ br(__ LT, TAIL); 6522 } 6523 __ bind(NO_PREFETCH_LARGE_LOOP); 6524 generate_large_array_equals_loop_nonsimd(nonPrefetchLoopThreshold, 6525 /* prfm = */ false, NOT_EQUAL); 6526 } 6527 __ bind(TAIL); 6528 __ cbz(cnt1, EQUAL); 6529 __ subs(cnt1, cnt1, wordSize); 6530 __ br(__ LE, POST_LOOP); 6531 __ bind(SMALL_LOOP); 6532 __ ldr(tmp1, Address(__ post(a1, wordSize))); 6533 __ ldr(tmp2, Address(__ post(a2, wordSize))); 6534 __ subs(cnt1, cnt1, wordSize); 6535 __ eor(tmp1, tmp1, tmp2); 6536 __ cbnz(tmp1, NOT_EQUAL); 6537 __ br(__ GT, SMALL_LOOP); 6538 __ bind(POST_LOOP); 6539 __ ldr(tmp1, Address(a1, cnt1)); 6540 __ ldr(tmp2, Address(a2, cnt1)); 6541 __ eor(tmp1, tmp1, tmp2); 6542 __ cbnz(tmp1, NOT_EQUAL); 6543 __ bind(EQUAL); 6544 __ mov(result, true); 6545 __ bind(NOT_EQUAL); 6546 if (!UseSIMDForArrayEquals) { 6547 __ pop(spilled_regs, sp); 6548 } 6549 __ bind(NOT_EQUAL_NO_POP); 6550 __ leave(); 6551 __ ret(lr); 6552 return entry; 6553 } 6554 6555 // result = r0 - return value. Contains initial hashcode value on entry. 6556 // ary = r1 - array address 6557 // cnt = r2 - elements count 6558 // Clobbers: v0-v13, rscratch1, rscratch2 6559 address generate_large_arrays_hashcode(BasicType eltype) { 6560 const Register result = r0, ary = r1, cnt = r2; 6561 const FloatRegister vdata0 = v3, vdata1 = v2, vdata2 = v1, vdata3 = v0; 6562 const FloatRegister vmul0 = v4, vmul1 = v5, vmul2 = v6, vmul3 = v7; 6563 const FloatRegister vpow = v12; // powers of 31: <31^3, ..., 31^0> 6564 const FloatRegister vpowm = v13; 6565 6566 ARRAYS_HASHCODE_REGISTERS; 6567 6568 Label SMALL_LOOP, LARGE_LOOP_PREHEADER, LARGE_LOOP, TAIL, TAIL_SHORTCUT, BR_BASE; 6569 6570 unsigned int vf; // vectorization factor 6571 bool multiply_by_halves; 6572 Assembler::SIMD_Arrangement load_arrangement; 6573 switch (eltype) { 6574 case T_BOOLEAN: 6575 case T_BYTE: 6576 load_arrangement = Assembler::T8B; 6577 multiply_by_halves = true; 6578 vf = 8; 6579 break; 6580 case T_CHAR: 6581 case T_SHORT: 6582 load_arrangement = Assembler::T8H; 6583 multiply_by_halves = true; 6584 vf = 8; 6585 break; 6586 case T_INT: 6587 load_arrangement = Assembler::T4S; 6588 multiply_by_halves = false; 6589 vf = 4; 6590 break; 6591 default: 6592 ShouldNotReachHere(); 6593 } 6594 6595 // Unroll factor 6596 const unsigned uf = 4; 6597 6598 // Effective vectorization factor 6599 const unsigned evf = vf * uf; 6600 6601 __ align(CodeEntryAlignment); 6602 6603 StubGenStubId stub_id; 6604 switch (eltype) { 6605 case T_BOOLEAN: 6606 stub_id = StubGenStubId::large_arrays_hashcode_boolean_id; 6607 break; 6608 case T_BYTE: 6609 stub_id = StubGenStubId::large_arrays_hashcode_byte_id; 6610 break; 6611 case T_CHAR: 6612 stub_id = StubGenStubId::large_arrays_hashcode_char_id; 6613 break; 6614 case T_SHORT: 6615 stub_id = StubGenStubId::large_arrays_hashcode_short_id; 6616 break; 6617 case T_INT: 6618 stub_id = StubGenStubId::large_arrays_hashcode_int_id; 6619 break; 6620 default: 6621 stub_id = StubGenStubId::NO_STUBID; 6622 ShouldNotReachHere(); 6623 }; 6624 6625 StubCodeMark mark(this, stub_id); 6626 6627 address entry = __ pc(); 6628 __ enter(); 6629 6630 // Put 0-3'th powers of 31 into a single SIMD register together. The register will be used in 6631 // the SMALL and LARGE LOOPS' epilogues. The initialization is hoisted here and the register's 6632 // value shouldn't change throughout both loops. 6633 __ movw(rscratch1, intpow(31U, 3)); 6634 __ mov(vpow, Assembler::S, 0, rscratch1); 6635 __ movw(rscratch1, intpow(31U, 2)); 6636 __ mov(vpow, Assembler::S, 1, rscratch1); 6637 __ movw(rscratch1, intpow(31U, 1)); 6638 __ mov(vpow, Assembler::S, 2, rscratch1); 6639 __ movw(rscratch1, intpow(31U, 0)); 6640 __ mov(vpow, Assembler::S, 3, rscratch1); 6641 6642 __ mov(vmul0, Assembler::T16B, 0); 6643 __ mov(vmul0, Assembler::S, 3, result); 6644 6645 __ andr(rscratch2, cnt, (uf - 1) * vf); 6646 __ cbz(rscratch2, LARGE_LOOP_PREHEADER); 6647 6648 __ movw(rscratch1, intpow(31U, multiply_by_halves ? vf / 2 : vf)); 6649 __ mov(vpowm, Assembler::S, 0, rscratch1); 6650 6651 // SMALL LOOP 6652 __ bind(SMALL_LOOP); 6653 6654 __ ld1(vdata0, load_arrangement, Address(__ post(ary, vf * type2aelembytes(eltype)))); 6655 __ mulvs(vmul0, Assembler::T4S, vmul0, vpowm, 0); 6656 __ subsw(rscratch2, rscratch2, vf); 6657 6658 if (load_arrangement == Assembler::T8B) { 6659 // Extend 8B to 8H to be able to use vector multiply 6660 // instructions 6661 assert(load_arrangement == Assembler::T8B, "expected to extend 8B to 8H"); 6662 if (is_signed_subword_type(eltype)) { 6663 __ sxtl(vdata0, Assembler::T8H, vdata0, load_arrangement); 6664 } else { 6665 __ uxtl(vdata0, Assembler::T8H, vdata0, load_arrangement); 6666 } 6667 } 6668 6669 switch (load_arrangement) { 6670 case Assembler::T4S: 6671 __ addv(vmul0, load_arrangement, vmul0, vdata0); 6672 break; 6673 case Assembler::T8B: 6674 case Assembler::T8H: 6675 assert(is_subword_type(eltype), "subword type expected"); 6676 if (is_signed_subword_type(eltype)) { 6677 __ saddwv(vmul0, vmul0, Assembler::T4S, vdata0, Assembler::T4H); 6678 } else { 6679 __ uaddwv(vmul0, vmul0, Assembler::T4S, vdata0, Assembler::T4H); 6680 } 6681 break; 6682 default: 6683 __ should_not_reach_here(); 6684 } 6685 6686 // Process the upper half of a vector 6687 if (load_arrangement == Assembler::T8B || load_arrangement == Assembler::T8H) { 6688 __ mulvs(vmul0, Assembler::T4S, vmul0, vpowm, 0); 6689 if (is_signed_subword_type(eltype)) { 6690 __ saddwv2(vmul0, vmul0, Assembler::T4S, vdata0, Assembler::T8H); 6691 } else { 6692 __ uaddwv2(vmul0, vmul0, Assembler::T4S, vdata0, Assembler::T8H); 6693 } 6694 } 6695 6696 __ br(Assembler::HI, SMALL_LOOP); 6697 6698 // SMALL LOOP'S EPILOQUE 6699 __ lsr(rscratch2, cnt, exact_log2(evf)); 6700 __ cbnz(rscratch2, LARGE_LOOP_PREHEADER); 6701 6702 __ mulv(vmul0, Assembler::T4S, vmul0, vpow); 6703 __ addv(vmul0, Assembler::T4S, vmul0); 6704 __ umov(result, vmul0, Assembler::S, 0); 6705 6706 // TAIL 6707 __ bind(TAIL); 6708 6709 // The andr performs cnt % vf. The subtract shifted by 3 offsets past vf - 1 - (cnt % vf) pairs 6710 // of load + madd insns i.e. it only executes cnt % vf load + madd pairs. 6711 assert(is_power_of_2(vf), "can't use this value to calculate the jump target PC"); 6712 __ andr(rscratch2, cnt, vf - 1); 6713 __ bind(TAIL_SHORTCUT); 6714 __ adr(rscratch1, BR_BASE); 6715 __ sub(rscratch1, rscratch1, rscratch2, ext::uxtw, 3); 6716 __ movw(rscratch2, 0x1f); 6717 __ br(rscratch1); 6718 6719 for (size_t i = 0; i < vf - 1; ++i) { 6720 __ load(rscratch1, Address(__ post(ary, type2aelembytes(eltype))), 6721 eltype); 6722 __ maddw(result, result, rscratch2, rscratch1); 6723 } 6724 __ bind(BR_BASE); 6725 6726 __ leave(); 6727 __ ret(lr); 6728 6729 // LARGE LOOP 6730 __ bind(LARGE_LOOP_PREHEADER); 6731 6732 __ lsr(rscratch2, cnt, exact_log2(evf)); 6733 6734 if (multiply_by_halves) { 6735 // 31^4 - multiplier between lower and upper parts of a register 6736 __ movw(rscratch1, intpow(31U, vf / 2)); 6737 __ mov(vpowm, Assembler::S, 1, rscratch1); 6738 // 31^28 - remainder of the iteraion multiplier, 28 = 32 - 4 6739 __ movw(rscratch1, intpow(31U, evf - vf / 2)); 6740 __ mov(vpowm, Assembler::S, 0, rscratch1); 6741 } else { 6742 // 31^16 6743 __ movw(rscratch1, intpow(31U, evf)); 6744 __ mov(vpowm, Assembler::S, 0, rscratch1); 6745 } 6746 6747 __ mov(vmul3, Assembler::T16B, 0); 6748 __ mov(vmul2, Assembler::T16B, 0); 6749 __ mov(vmul1, Assembler::T16B, 0); 6750 6751 __ bind(LARGE_LOOP); 6752 6753 __ mulvs(vmul3, Assembler::T4S, vmul3, vpowm, 0); 6754 __ mulvs(vmul2, Assembler::T4S, vmul2, vpowm, 0); 6755 __ mulvs(vmul1, Assembler::T4S, vmul1, vpowm, 0); 6756 __ mulvs(vmul0, Assembler::T4S, vmul0, vpowm, 0); 6757 6758 __ ld1(vdata3, vdata2, vdata1, vdata0, load_arrangement, 6759 Address(__ post(ary, evf * type2aelembytes(eltype)))); 6760 6761 if (load_arrangement == Assembler::T8B) { 6762 // Extend 8B to 8H to be able to use vector multiply 6763 // instructions 6764 assert(load_arrangement == Assembler::T8B, "expected to extend 8B to 8H"); 6765 if (is_signed_subword_type(eltype)) { 6766 __ sxtl(vdata3, Assembler::T8H, vdata3, load_arrangement); 6767 __ sxtl(vdata2, Assembler::T8H, vdata2, load_arrangement); 6768 __ sxtl(vdata1, Assembler::T8H, vdata1, load_arrangement); 6769 __ sxtl(vdata0, Assembler::T8H, vdata0, load_arrangement); 6770 } else { 6771 __ uxtl(vdata3, Assembler::T8H, vdata3, load_arrangement); 6772 __ uxtl(vdata2, Assembler::T8H, vdata2, load_arrangement); 6773 __ uxtl(vdata1, Assembler::T8H, vdata1, load_arrangement); 6774 __ uxtl(vdata0, Assembler::T8H, vdata0, load_arrangement); 6775 } 6776 } 6777 6778 switch (load_arrangement) { 6779 case Assembler::T4S: 6780 __ addv(vmul3, load_arrangement, vmul3, vdata3); 6781 __ addv(vmul2, load_arrangement, vmul2, vdata2); 6782 __ addv(vmul1, load_arrangement, vmul1, vdata1); 6783 __ addv(vmul0, load_arrangement, vmul0, vdata0); 6784 break; 6785 case Assembler::T8B: 6786 case Assembler::T8H: 6787 assert(is_subword_type(eltype), "subword type expected"); 6788 if (is_signed_subword_type(eltype)) { 6789 __ saddwv(vmul3, vmul3, Assembler::T4S, vdata3, Assembler::T4H); 6790 __ saddwv(vmul2, vmul2, Assembler::T4S, vdata2, Assembler::T4H); 6791 __ saddwv(vmul1, vmul1, Assembler::T4S, vdata1, Assembler::T4H); 6792 __ saddwv(vmul0, vmul0, Assembler::T4S, vdata0, Assembler::T4H); 6793 } else { 6794 __ uaddwv(vmul3, vmul3, Assembler::T4S, vdata3, Assembler::T4H); 6795 __ uaddwv(vmul2, vmul2, Assembler::T4S, vdata2, Assembler::T4H); 6796 __ uaddwv(vmul1, vmul1, Assembler::T4S, vdata1, Assembler::T4H); 6797 __ uaddwv(vmul0, vmul0, Assembler::T4S, vdata0, Assembler::T4H); 6798 } 6799 break; 6800 default: 6801 __ should_not_reach_here(); 6802 } 6803 6804 // Process the upper half of a vector 6805 if (load_arrangement == Assembler::T8B || load_arrangement == Assembler::T8H) { 6806 __ mulvs(vmul3, Assembler::T4S, vmul3, vpowm, 1); 6807 __ mulvs(vmul2, Assembler::T4S, vmul2, vpowm, 1); 6808 __ mulvs(vmul1, Assembler::T4S, vmul1, vpowm, 1); 6809 __ mulvs(vmul0, Assembler::T4S, vmul0, vpowm, 1); 6810 if (is_signed_subword_type(eltype)) { 6811 __ saddwv2(vmul3, vmul3, Assembler::T4S, vdata3, Assembler::T8H); 6812 __ saddwv2(vmul2, vmul2, Assembler::T4S, vdata2, Assembler::T8H); 6813 __ saddwv2(vmul1, vmul1, Assembler::T4S, vdata1, Assembler::T8H); 6814 __ saddwv2(vmul0, vmul0, Assembler::T4S, vdata0, Assembler::T8H); 6815 } else { 6816 __ uaddwv2(vmul3, vmul3, Assembler::T4S, vdata3, Assembler::T8H); 6817 __ uaddwv2(vmul2, vmul2, Assembler::T4S, vdata2, Assembler::T8H); 6818 __ uaddwv2(vmul1, vmul1, Assembler::T4S, vdata1, Assembler::T8H); 6819 __ uaddwv2(vmul0, vmul0, Assembler::T4S, vdata0, Assembler::T8H); 6820 } 6821 } 6822 6823 __ subsw(rscratch2, rscratch2, 1); 6824 __ br(Assembler::HI, LARGE_LOOP); 6825 6826 __ mulv(vmul3, Assembler::T4S, vmul3, vpow); 6827 __ addv(vmul3, Assembler::T4S, vmul3); 6828 __ umov(result, vmul3, Assembler::S, 0); 6829 6830 __ mov(rscratch2, intpow(31U, vf)); 6831 6832 __ mulv(vmul2, Assembler::T4S, vmul2, vpow); 6833 __ addv(vmul2, Assembler::T4S, vmul2); 6834 __ umov(rscratch1, vmul2, Assembler::S, 0); 6835 __ maddw(result, result, rscratch2, rscratch1); 6836 6837 __ mulv(vmul1, Assembler::T4S, vmul1, vpow); 6838 __ addv(vmul1, Assembler::T4S, vmul1); 6839 __ umov(rscratch1, vmul1, Assembler::S, 0); 6840 __ maddw(result, result, rscratch2, rscratch1); 6841 6842 __ mulv(vmul0, Assembler::T4S, vmul0, vpow); 6843 __ addv(vmul0, Assembler::T4S, vmul0); 6844 __ umov(rscratch1, vmul0, Assembler::S, 0); 6845 __ maddw(result, result, rscratch2, rscratch1); 6846 6847 __ andr(rscratch2, cnt, vf - 1); 6848 __ cbnz(rscratch2, TAIL_SHORTCUT); 6849 6850 __ leave(); 6851 __ ret(lr); 6852 6853 return entry; 6854 } 6855 6856 address generate_dsin_dcos(bool isCos) { 6857 __ align(CodeEntryAlignment); 6858 StubGenStubId stub_id = (isCos ? StubGenStubId::dcos_id : StubGenStubId::dsin_id); 6859 StubCodeMark mark(this, stub_id); 6860 address start = __ pc(); 6861 __ generate_dsin_dcos(isCos, (address)StubRoutines::aarch64::_npio2_hw, 6862 (address)StubRoutines::aarch64::_two_over_pi, 6863 (address)StubRoutines::aarch64::_pio2, 6864 (address)StubRoutines::aarch64::_dsin_coef, 6865 (address)StubRoutines::aarch64::_dcos_coef); 6866 return start; 6867 } 6868 6869 // code for comparing 16 characters of strings with Latin1 and Utf16 encoding 6870 void compare_string_16_x_LU(Register tmpL, Register tmpU, Label &DIFF1, 6871 Label &DIFF2) { 6872 Register cnt1 = r2, tmp2 = r11, tmp3 = r12; 6873 FloatRegister vtmp = v1, vtmpZ = v0, vtmp3 = v2; 6874 6875 __ ldrq(vtmp, Address(__ post(tmp2, 16))); 6876 __ ldr(tmpU, Address(__ post(cnt1, 8))); 6877 __ zip1(vtmp3, __ T16B, vtmp, vtmpZ); 6878 // now we have 32 bytes of characters (converted to U) in vtmp:vtmp3 6879 6880 __ fmovd(tmpL, vtmp3); 6881 __ eor(rscratch2, tmp3, tmpL); 6882 __ cbnz(rscratch2, DIFF2); 6883 6884 __ ldr(tmp3, Address(__ post(cnt1, 8))); 6885 __ umov(tmpL, vtmp3, __ D, 1); 6886 __ eor(rscratch2, tmpU, tmpL); 6887 __ cbnz(rscratch2, DIFF1); 6888 6889 __ zip2(vtmp, __ T16B, vtmp, vtmpZ); 6890 __ ldr(tmpU, Address(__ post(cnt1, 8))); 6891 __ fmovd(tmpL, vtmp); 6892 __ eor(rscratch2, tmp3, tmpL); 6893 __ cbnz(rscratch2, DIFF2); 6894 6895 __ ldr(tmp3, Address(__ post(cnt1, 8))); 6896 __ umov(tmpL, vtmp, __ D, 1); 6897 __ eor(rscratch2, tmpU, tmpL); 6898 __ cbnz(rscratch2, DIFF1); 6899 } 6900 6901 // r0 = result 6902 // r1 = str1 6903 // r2 = cnt1 6904 // r3 = str2 6905 // r4 = cnt2 6906 // r10 = tmp1 6907 // r11 = tmp2 6908 address generate_compare_long_string_different_encoding(bool isLU) { 6909 __ align(CodeEntryAlignment); 6910 StubGenStubId stub_id = (isLU ? StubGenStubId::compare_long_string_LU_id : StubGenStubId::compare_long_string_UL_id); 6911 StubCodeMark mark(this, stub_id); 6912 address entry = __ pc(); 6913 Label SMALL_LOOP, TAIL, TAIL_LOAD_16, LOAD_LAST, DIFF1, DIFF2, 6914 DONE, CALCULATE_DIFFERENCE, LARGE_LOOP_PREFETCH, NO_PREFETCH, 6915 LARGE_LOOP_PREFETCH_REPEAT1, LARGE_LOOP_PREFETCH_REPEAT2; 6916 Register result = r0, str1 = r1, cnt1 = r2, str2 = r3, cnt2 = r4, 6917 tmp1 = r10, tmp2 = r11, tmp3 = r12, tmp4 = r14; 6918 FloatRegister vtmpZ = v0, vtmp = v1, vtmp3 = v2; 6919 RegSet spilled_regs = RegSet::of(tmp3, tmp4); 6920 6921 int prefetchLoopExitCondition = MAX2(64, SoftwarePrefetchHintDistance/2); 6922 6923 __ eor(vtmpZ, __ T16B, vtmpZ, vtmpZ); 6924 // cnt2 == amount of characters left to compare 6925 // Check already loaded first 4 symbols(vtmp and tmp2(LU)/tmp1(UL)) 6926 __ zip1(vtmp, __ T8B, vtmp, vtmpZ); 6927 __ add(str1, str1, isLU ? wordSize/2 : wordSize); 6928 __ add(str2, str2, isLU ? wordSize : wordSize/2); 6929 __ fmovd(isLU ? tmp1 : tmp2, vtmp); 6930 __ subw(cnt2, cnt2, 8); // Already loaded 4 symbols. Last 4 is special case. 6931 __ eor(rscratch2, tmp1, tmp2); 6932 __ mov(rscratch1, tmp2); 6933 __ cbnz(rscratch2, CALCULATE_DIFFERENCE); 6934 Register tmpU = isLU ? rscratch1 : tmp1, // where to keep U for comparison 6935 tmpL = isLU ? tmp1 : rscratch1; // where to keep L for comparison 6936 __ push(spilled_regs, sp); 6937 __ mov(tmp2, isLU ? str1 : str2); // init the pointer to L next load 6938 __ mov(cnt1, isLU ? str2 : str1); // init the pointer to U next load 6939 6940 __ ldr(tmp3, Address(__ post(cnt1, 8))); 6941 6942 if (SoftwarePrefetchHintDistance >= 0) { 6943 __ subs(rscratch2, cnt2, prefetchLoopExitCondition); 6944 __ br(__ LT, NO_PREFETCH); 6945 __ bind(LARGE_LOOP_PREFETCH); 6946 __ prfm(Address(tmp2, SoftwarePrefetchHintDistance)); 6947 __ mov(tmp4, 2); 6948 __ prfm(Address(cnt1, SoftwarePrefetchHintDistance)); 6949 __ bind(LARGE_LOOP_PREFETCH_REPEAT1); 6950 compare_string_16_x_LU(tmpL, tmpU, DIFF1, DIFF2); 6951 __ subs(tmp4, tmp4, 1); 6952 __ br(__ GT, LARGE_LOOP_PREFETCH_REPEAT1); 6953 __ prfm(Address(cnt1, SoftwarePrefetchHintDistance)); 6954 __ mov(tmp4, 2); 6955 __ bind(LARGE_LOOP_PREFETCH_REPEAT2); 6956 compare_string_16_x_LU(tmpL, tmpU, DIFF1, DIFF2); 6957 __ subs(tmp4, tmp4, 1); 6958 __ br(__ GT, LARGE_LOOP_PREFETCH_REPEAT2); 6959 __ sub(cnt2, cnt2, 64); 6960 __ subs(rscratch2, cnt2, prefetchLoopExitCondition); 6961 __ br(__ GE, LARGE_LOOP_PREFETCH); 6962 } 6963 __ cbz(cnt2, LOAD_LAST); // no characters left except last load 6964 __ bind(NO_PREFETCH); 6965 __ subs(cnt2, cnt2, 16); 6966 __ br(__ LT, TAIL); 6967 __ align(OptoLoopAlignment); 6968 __ bind(SMALL_LOOP); // smaller loop 6969 __ subs(cnt2, cnt2, 16); 6970 compare_string_16_x_LU(tmpL, tmpU, DIFF1, DIFF2); 6971 __ br(__ GE, SMALL_LOOP); 6972 __ cmn(cnt2, (u1)16); 6973 __ br(__ EQ, LOAD_LAST); 6974 __ bind(TAIL); // 1..15 characters left until last load (last 4 characters) 6975 __ add(cnt1, cnt1, cnt2, __ LSL, 1); // Address of 32 bytes before last 4 characters in UTF-16 string 6976 __ add(tmp2, tmp2, cnt2); // Address of 16 bytes before last 4 characters in Latin1 string 6977 __ ldr(tmp3, Address(cnt1, -8)); 6978 compare_string_16_x_LU(tmpL, tmpU, DIFF1, DIFF2); // last 16 characters before last load 6979 __ b(LOAD_LAST); 6980 __ bind(DIFF2); 6981 __ mov(tmpU, tmp3); 6982 __ bind(DIFF1); 6983 __ pop(spilled_regs, sp); 6984 __ b(CALCULATE_DIFFERENCE); 6985 __ bind(LOAD_LAST); 6986 // Last 4 UTF-16 characters are already pre-loaded into tmp3 by compare_string_16_x_LU. 6987 // No need to load it again 6988 __ mov(tmpU, tmp3); 6989 __ pop(spilled_regs, sp); 6990 6991 // tmp2 points to the address of the last 4 Latin1 characters right now 6992 __ ldrs(vtmp, Address(tmp2)); 6993 __ zip1(vtmp, __ T8B, vtmp, vtmpZ); 6994 __ fmovd(tmpL, vtmp); 6995 6996 __ eor(rscratch2, tmpU, tmpL); 6997 __ cbz(rscratch2, DONE); 6998 6999 // Find the first different characters in the longwords and 7000 // compute their difference. 7001 __ bind(CALCULATE_DIFFERENCE); 7002 __ rev(rscratch2, rscratch2); 7003 __ clz(rscratch2, rscratch2); 7004 __ andr(rscratch2, rscratch2, -16); 7005 __ lsrv(tmp1, tmp1, rscratch2); 7006 __ uxthw(tmp1, tmp1); 7007 __ lsrv(rscratch1, rscratch1, rscratch2); 7008 __ uxthw(rscratch1, rscratch1); 7009 __ subw(result, tmp1, rscratch1); 7010 __ bind(DONE); 7011 __ ret(lr); 7012 return entry; 7013 } 7014 7015 // r0 = input (float16) 7016 // v0 = result (float) 7017 // v1 = temporary float register 7018 address generate_float16ToFloat() { 7019 __ align(CodeEntryAlignment); 7020 StubGenStubId stub_id = StubGenStubId::hf2f_id; 7021 StubCodeMark mark(this, stub_id); 7022 address entry = __ pc(); 7023 BLOCK_COMMENT("Entry:"); 7024 __ flt16_to_flt(v0, r0, v1); 7025 __ ret(lr); 7026 return entry; 7027 } 7028 7029 // v0 = input (float) 7030 // r0 = result (float16) 7031 // v1 = temporary float register 7032 address generate_floatToFloat16() { 7033 __ align(CodeEntryAlignment); 7034 StubGenStubId stub_id = StubGenStubId::f2hf_id; 7035 StubCodeMark mark(this, stub_id); 7036 address entry = __ pc(); 7037 BLOCK_COMMENT("Entry:"); 7038 __ flt_to_flt16(r0, v0, v1); 7039 __ ret(lr); 7040 return entry; 7041 } 7042 7043 address generate_method_entry_barrier() { 7044 __ align(CodeEntryAlignment); 7045 StubGenStubId stub_id = StubGenStubId::method_entry_barrier_id; 7046 StubCodeMark mark(this, stub_id); 7047 7048 Label deoptimize_label; 7049 7050 address start = __ pc(); 7051 7052 BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler(); 7053 7054 if (bs_asm->nmethod_patching_type() == NMethodPatchingType::conc_instruction_and_data_patch) { 7055 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 7056 // We can get here despite the nmethod being good, if we have not 7057 // yet applied our cross modification fence (or data fence). 7058 Address thread_epoch_addr(rthread, in_bytes(bs_nm->thread_disarmed_guard_value_offset()) + 4); 7059 __ lea(rscratch2, ExternalAddress(bs_asm->patching_epoch_addr())); 7060 __ ldrw(rscratch2, rscratch2); 7061 __ strw(rscratch2, thread_epoch_addr); 7062 __ isb(); 7063 __ membar(__ LoadLoad); 7064 } 7065 7066 __ set_last_Java_frame(sp, rfp, lr, rscratch1); 7067 7068 __ enter(); 7069 __ add(rscratch2, sp, wordSize); // rscratch2 points to the saved lr 7070 7071 __ sub(sp, sp, 4 * wordSize); // four words for the returned {sp, fp, lr, pc} 7072 7073 __ push_call_clobbered_registers(); 7074 7075 __ mov(c_rarg0, rscratch2); 7076 __ call_VM_leaf 7077 (CAST_FROM_FN_PTR 7078 (address, BarrierSetNMethod::nmethod_stub_entry_barrier), 1); 7079 7080 __ reset_last_Java_frame(true); 7081 7082 __ mov(rscratch1, r0); 7083 7084 __ pop_call_clobbered_registers(); 7085 7086 __ cbnz(rscratch1, deoptimize_label); 7087 7088 __ leave(); 7089 __ ret(lr); 7090 7091 __ BIND(deoptimize_label); 7092 7093 __ ldp(/* new sp */ rscratch1, rfp, Address(sp, 0 * wordSize)); 7094 __ ldp(lr, /* new pc*/ rscratch2, Address(sp, 2 * wordSize)); 7095 7096 __ mov(sp, rscratch1); 7097 __ br(rscratch2); 7098 7099 return start; 7100 } 7101 7102 // r0 = result 7103 // r1 = str1 7104 // r2 = cnt1 7105 // r3 = str2 7106 // r4 = cnt2 7107 // r10 = tmp1 7108 // r11 = tmp2 7109 address generate_compare_long_string_same_encoding(bool isLL) { 7110 __ align(CodeEntryAlignment); 7111 StubGenStubId stub_id = (isLL ? StubGenStubId::compare_long_string_LL_id : StubGenStubId::compare_long_string_UU_id); 7112 StubCodeMark mark(this, stub_id); 7113 address entry = __ pc(); 7114 Register result = r0, str1 = r1, cnt1 = r2, str2 = r3, cnt2 = r4, 7115 tmp1 = r10, tmp2 = r11, tmp1h = rscratch1, tmp2h = rscratch2; 7116 7117 Label LARGE_LOOP_PREFETCH, LOOP_COMPARE16, DIFF, LESS16, LESS8, CAL_DIFFERENCE, LENGTH_DIFF; 7118 7119 // exit from large loop when less than 64 bytes left to read or we're about 7120 // to prefetch memory behind array border 7121 int largeLoopExitCondition = MAX2(64, SoftwarePrefetchHintDistance)/(isLL ? 1 : 2); 7122 7123 // before jumping to stub, pre-load 8 bytes already, so do comparison directly 7124 __ eor(rscratch2, tmp1, tmp2); 7125 __ cbnz(rscratch2, CAL_DIFFERENCE); 7126 7127 __ sub(cnt2, cnt2, wordSize/(isLL ? 1 : 2)); 7128 // update pointers, because of previous read 7129 __ add(str1, str1, wordSize); 7130 __ add(str2, str2, wordSize); 7131 if (SoftwarePrefetchHintDistance >= 0) { 7132 __ align(OptoLoopAlignment); 7133 __ bind(LARGE_LOOP_PREFETCH); 7134 __ prfm(Address(str1, SoftwarePrefetchHintDistance)); 7135 __ prfm(Address(str2, SoftwarePrefetchHintDistance)); 7136 7137 for (int i = 0; i < 4; i++) { 7138 __ ldp(tmp1, tmp1h, Address(str1, i * 16)); 7139 __ ldp(tmp2, tmp2h, Address(str2, i * 16)); 7140 __ cmp(tmp1, tmp2); 7141 __ ccmp(tmp1h, tmp2h, 0, Assembler::EQ); 7142 __ br(Assembler::NE, DIFF); 7143 } 7144 __ sub(cnt2, cnt2, isLL ? 64 : 32); 7145 __ add(str1, str1, 64); 7146 __ add(str2, str2, 64); 7147 __ subs(rscratch2, cnt2, largeLoopExitCondition); 7148 __ br(Assembler::GE, LARGE_LOOP_PREFETCH); 7149 __ cbz(cnt2, LENGTH_DIFF); // no more chars left? 7150 } 7151 7152 __ subs(rscratch1, cnt2, isLL ? 16 : 8); 7153 __ br(Assembler::LE, LESS16); 7154 __ align(OptoLoopAlignment); 7155 __ bind(LOOP_COMPARE16); 7156 __ ldp(tmp1, tmp1h, Address(__ post(str1, 16))); 7157 __ ldp(tmp2, tmp2h, Address(__ post(str2, 16))); 7158 __ cmp(tmp1, tmp2); 7159 __ ccmp(tmp1h, tmp2h, 0, Assembler::EQ); 7160 __ br(Assembler::NE, DIFF); 7161 __ sub(cnt2, cnt2, isLL ? 16 : 8); 7162 __ subs(rscratch2, cnt2, isLL ? 16 : 8); 7163 __ br(Assembler::LT, LESS16); 7164 7165 __ ldp(tmp1, tmp1h, Address(__ post(str1, 16))); 7166 __ ldp(tmp2, tmp2h, Address(__ post(str2, 16))); 7167 __ cmp(tmp1, tmp2); 7168 __ ccmp(tmp1h, tmp2h, 0, Assembler::EQ); 7169 __ br(Assembler::NE, DIFF); 7170 __ sub(cnt2, cnt2, isLL ? 16 : 8); 7171 __ subs(rscratch2, cnt2, isLL ? 16 : 8); 7172 __ br(Assembler::GE, LOOP_COMPARE16); 7173 __ cbz(cnt2, LENGTH_DIFF); 7174 7175 __ bind(LESS16); 7176 // each 8 compare 7177 __ subs(cnt2, cnt2, isLL ? 8 : 4); 7178 __ br(Assembler::LE, LESS8); 7179 __ ldr(tmp1, Address(__ post(str1, 8))); 7180 __ ldr(tmp2, Address(__ post(str2, 8))); 7181 __ eor(rscratch2, tmp1, tmp2); 7182 __ cbnz(rscratch2, CAL_DIFFERENCE); 7183 __ sub(cnt2, cnt2, isLL ? 8 : 4); 7184 7185 __ bind(LESS8); // directly load last 8 bytes 7186 if (!isLL) { 7187 __ add(cnt2, cnt2, cnt2); 7188 } 7189 __ ldr(tmp1, Address(str1, cnt2)); 7190 __ ldr(tmp2, Address(str2, cnt2)); 7191 __ eor(rscratch2, tmp1, tmp2); 7192 __ cbz(rscratch2, LENGTH_DIFF); 7193 __ b(CAL_DIFFERENCE); 7194 7195 __ bind(DIFF); 7196 __ cmp(tmp1, tmp2); 7197 __ csel(tmp1, tmp1, tmp1h, Assembler::NE); 7198 __ csel(tmp2, tmp2, tmp2h, Assembler::NE); 7199 // reuse rscratch2 register for the result of eor instruction 7200 __ eor(rscratch2, tmp1, tmp2); 7201 7202 __ bind(CAL_DIFFERENCE); 7203 __ rev(rscratch2, rscratch2); 7204 __ clz(rscratch2, rscratch2); 7205 __ andr(rscratch2, rscratch2, isLL ? -8 : -16); 7206 __ lsrv(tmp1, tmp1, rscratch2); 7207 __ lsrv(tmp2, tmp2, rscratch2); 7208 if (isLL) { 7209 __ uxtbw(tmp1, tmp1); 7210 __ uxtbw(tmp2, tmp2); 7211 } else { 7212 __ uxthw(tmp1, tmp1); 7213 __ uxthw(tmp2, tmp2); 7214 } 7215 __ subw(result, tmp1, tmp2); 7216 7217 __ bind(LENGTH_DIFF); 7218 __ ret(lr); 7219 return entry; 7220 } 7221 7222 enum string_compare_mode { 7223 LL, 7224 LU, 7225 UL, 7226 UU, 7227 }; 7228 7229 // The following registers are declared in aarch64.ad 7230 // r0 = result 7231 // r1 = str1 7232 // r2 = cnt1 7233 // r3 = str2 7234 // r4 = cnt2 7235 // r10 = tmp1 7236 // r11 = tmp2 7237 // z0 = ztmp1 7238 // z1 = ztmp2 7239 // p0 = pgtmp1 7240 // p1 = pgtmp2 7241 address generate_compare_long_string_sve(string_compare_mode mode) { 7242 StubGenStubId stub_id; 7243 switch (mode) { 7244 case LL: stub_id = StubGenStubId::compare_long_string_LL_id; break; 7245 case LU: stub_id = StubGenStubId::compare_long_string_LU_id; break; 7246 case UL: stub_id = StubGenStubId::compare_long_string_UL_id; break; 7247 case UU: stub_id = StubGenStubId::compare_long_string_UU_id; break; 7248 default: ShouldNotReachHere(); 7249 } 7250 7251 __ align(CodeEntryAlignment); 7252 address entry = __ pc(); 7253 Register result = r0, str1 = r1, cnt1 = r2, str2 = r3, cnt2 = r4, 7254 tmp1 = r10, tmp2 = r11; 7255 7256 Label LOOP, DONE, MISMATCH; 7257 Register vec_len = tmp1; 7258 Register idx = tmp2; 7259 // The minimum of the string lengths has been stored in cnt2. 7260 Register cnt = cnt2; 7261 FloatRegister ztmp1 = z0, ztmp2 = z1; 7262 PRegister pgtmp1 = p0, pgtmp2 = p1; 7263 7264 #define LOAD_PAIR(ztmp1, ztmp2, pgtmp1, src1, src2, idx) \ 7265 switch (mode) { \ 7266 case LL: \ 7267 __ sve_ld1b(ztmp1, __ B, pgtmp1, Address(str1, idx)); \ 7268 __ sve_ld1b(ztmp2, __ B, pgtmp1, Address(str2, idx)); \ 7269 break; \ 7270 case LU: \ 7271 __ sve_ld1b(ztmp1, __ H, pgtmp1, Address(str1, idx)); \ 7272 __ sve_ld1h(ztmp2, __ H, pgtmp1, Address(str2, idx, Address::lsl(1))); \ 7273 break; \ 7274 case UL: \ 7275 __ sve_ld1h(ztmp1, __ H, pgtmp1, Address(str1, idx, Address::lsl(1))); \ 7276 __ sve_ld1b(ztmp2, __ H, pgtmp1, Address(str2, idx)); \ 7277 break; \ 7278 case UU: \ 7279 __ sve_ld1h(ztmp1, __ H, pgtmp1, Address(str1, idx, Address::lsl(1))); \ 7280 __ sve_ld1h(ztmp2, __ H, pgtmp1, Address(str2, idx, Address::lsl(1))); \ 7281 break; \ 7282 default: \ 7283 ShouldNotReachHere(); \ 7284 } 7285 7286 StubCodeMark mark(this, stub_id); 7287 7288 __ mov(idx, 0); 7289 __ sve_whilelt(pgtmp1, mode == LL ? __ B : __ H, idx, cnt); 7290 7291 if (mode == LL) { 7292 __ sve_cntb(vec_len); 7293 } else { 7294 __ sve_cnth(vec_len); 7295 } 7296 7297 __ sub(rscratch1, cnt, vec_len); 7298 7299 __ bind(LOOP); 7300 7301 // main loop 7302 LOAD_PAIR(ztmp1, ztmp2, pgtmp1, src1, src2, idx); 7303 __ add(idx, idx, vec_len); 7304 // Compare strings. 7305 __ sve_cmp(Assembler::NE, pgtmp2, mode == LL ? __ B : __ H, pgtmp1, ztmp1, ztmp2); 7306 __ br(__ NE, MISMATCH); 7307 __ cmp(idx, rscratch1); 7308 __ br(__ LT, LOOP); 7309 7310 // post loop, last iteration 7311 __ sve_whilelt(pgtmp1, mode == LL ? __ B : __ H, idx, cnt); 7312 7313 LOAD_PAIR(ztmp1, ztmp2, pgtmp1, src1, src2, idx); 7314 __ sve_cmp(Assembler::NE, pgtmp2, mode == LL ? __ B : __ H, pgtmp1, ztmp1, ztmp2); 7315 __ br(__ EQ, DONE); 7316 7317 __ bind(MISMATCH); 7318 7319 // Crop the vector to find its location. 7320 __ sve_brkb(pgtmp2, pgtmp1, pgtmp2, false /* isMerge */); 7321 // Extract the first different characters of each string. 7322 __ sve_lasta(rscratch1, mode == LL ? __ B : __ H, pgtmp2, ztmp1); 7323 __ sve_lasta(rscratch2, mode == LL ? __ B : __ H, pgtmp2, ztmp2); 7324 7325 // Compute the difference of the first different characters. 7326 __ sub(result, rscratch1, rscratch2); 7327 7328 __ bind(DONE); 7329 __ ret(lr); 7330 #undef LOAD_PAIR 7331 return entry; 7332 } 7333 7334 void generate_compare_long_strings() { 7335 if (UseSVE == 0) { 7336 StubRoutines::aarch64::_compare_long_string_LL 7337 = generate_compare_long_string_same_encoding(true); 7338 StubRoutines::aarch64::_compare_long_string_UU 7339 = generate_compare_long_string_same_encoding(false); 7340 StubRoutines::aarch64::_compare_long_string_LU 7341 = generate_compare_long_string_different_encoding(true); 7342 StubRoutines::aarch64::_compare_long_string_UL 7343 = generate_compare_long_string_different_encoding(false); 7344 } else { 7345 StubRoutines::aarch64::_compare_long_string_LL 7346 = generate_compare_long_string_sve(LL); 7347 StubRoutines::aarch64::_compare_long_string_UU 7348 = generate_compare_long_string_sve(UU); 7349 StubRoutines::aarch64::_compare_long_string_LU 7350 = generate_compare_long_string_sve(LU); 7351 StubRoutines::aarch64::_compare_long_string_UL 7352 = generate_compare_long_string_sve(UL); 7353 } 7354 } 7355 7356 // R0 = result 7357 // R1 = str2 7358 // R2 = cnt1 7359 // R3 = str1 7360 // R4 = cnt2 7361 // Clobbers: rscratch1, rscratch2, v0, v1, rflags 7362 // 7363 // This generic linear code use few additional ideas, which makes it faster: 7364 // 1) we can safely keep at least 1st register of pattern(since length >= 8) 7365 // in order to skip initial loading(help in systems with 1 ld pipeline) 7366 // 2) we can use "fast" algorithm of finding single character to search for 7367 // first symbol with less branches(1 branch per each loaded register instead 7368 // of branch for each symbol), so, this is where constants like 7369 // 0x0101...01, 0x00010001...0001, 0x7f7f...7f, 0x7fff7fff...7fff comes from 7370 // 3) after loading and analyzing 1st register of source string, it can be 7371 // used to search for every 1st character entry, saving few loads in 7372 // comparison with "simplier-but-slower" implementation 7373 // 4) in order to avoid lots of push/pop operations, code below is heavily 7374 // re-using/re-initializing/compressing register values, which makes code 7375 // larger and a bit less readable, however, most of extra operations are 7376 // issued during loads or branches, so, penalty is minimal 7377 address generate_string_indexof_linear(bool str1_isL, bool str2_isL) { 7378 StubGenStubId stub_id; 7379 if (str1_isL) { 7380 if (str2_isL) { 7381 stub_id = StubGenStubId::string_indexof_linear_ll_id; 7382 } else { 7383 stub_id = StubGenStubId::string_indexof_linear_ul_id; 7384 } 7385 } else { 7386 if (str2_isL) { 7387 ShouldNotReachHere(); 7388 } else { 7389 stub_id = StubGenStubId::string_indexof_linear_uu_id; 7390 } 7391 } 7392 __ align(CodeEntryAlignment); 7393 StubCodeMark mark(this, stub_id); 7394 address entry = __ pc(); 7395 7396 int str1_chr_size = str1_isL ? 1 : 2; 7397 int str2_chr_size = str2_isL ? 1 : 2; 7398 int str1_chr_shift = str1_isL ? 0 : 1; 7399 int str2_chr_shift = str2_isL ? 0 : 1; 7400 bool isL = str1_isL && str2_isL; 7401 // parameters 7402 Register result = r0, str2 = r1, cnt1 = r2, str1 = r3, cnt2 = r4; 7403 // temporary registers 7404 Register tmp1 = r20, tmp2 = r21, tmp3 = r22, tmp4 = r23; 7405 RegSet spilled_regs = RegSet::range(tmp1, tmp4); 7406 // redefinitions 7407 Register ch1 = rscratch1, ch2 = rscratch2, first = tmp3; 7408 7409 __ push(spilled_regs, sp); 7410 Label L_LOOP, L_LOOP_PROCEED, L_SMALL, L_HAS_ZERO, 7411 L_HAS_ZERO_LOOP, L_CMP_LOOP, L_CMP_LOOP_NOMATCH, L_SMALL_PROCEED, 7412 L_SMALL_HAS_ZERO_LOOP, L_SMALL_CMP_LOOP_NOMATCH, L_SMALL_CMP_LOOP, 7413 L_POST_LOOP, L_CMP_LOOP_LAST_CMP, L_HAS_ZERO_LOOP_NOMATCH, 7414 L_SMALL_CMP_LOOP_LAST_CMP, L_SMALL_CMP_LOOP_LAST_CMP2, 7415 L_CMP_LOOP_LAST_CMP2, DONE, NOMATCH; 7416 // Read whole register from str1. It is safe, because length >=8 here 7417 __ ldr(ch1, Address(str1)); 7418 // Read whole register from str2. It is safe, because length >=8 here 7419 __ ldr(ch2, Address(str2)); 7420 __ sub(cnt2, cnt2, cnt1); 7421 __ andr(first, ch1, str1_isL ? 0xFF : 0xFFFF); 7422 if (str1_isL != str2_isL) { 7423 __ eor(v0, __ T16B, v0, v0); 7424 } 7425 __ mov(tmp1, str2_isL ? 0x0101010101010101 : 0x0001000100010001); 7426 __ mul(first, first, tmp1); 7427 // check if we have less than 1 register to check 7428 __ subs(cnt2, cnt2, wordSize/str2_chr_size - 1); 7429 if (str1_isL != str2_isL) { 7430 __ fmovd(v1, ch1); 7431 } 7432 __ br(__ LE, L_SMALL); 7433 __ eor(ch2, first, ch2); 7434 if (str1_isL != str2_isL) { 7435 __ zip1(v1, __ T16B, v1, v0); 7436 } 7437 __ sub(tmp2, ch2, tmp1); 7438 __ orr(ch2, ch2, str2_isL ? 0x7f7f7f7f7f7f7f7f : 0x7fff7fff7fff7fff); 7439 __ bics(tmp2, tmp2, ch2); 7440 if (str1_isL != str2_isL) { 7441 __ fmovd(ch1, v1); 7442 } 7443 __ br(__ NE, L_HAS_ZERO); 7444 __ subs(cnt2, cnt2, wordSize/str2_chr_size); 7445 __ add(result, result, wordSize/str2_chr_size); 7446 __ add(str2, str2, wordSize); 7447 __ br(__ LT, L_POST_LOOP); 7448 __ BIND(L_LOOP); 7449 __ ldr(ch2, Address(str2)); 7450 __ eor(ch2, first, ch2); 7451 __ sub(tmp2, ch2, tmp1); 7452 __ orr(ch2, ch2, str2_isL ? 0x7f7f7f7f7f7f7f7f : 0x7fff7fff7fff7fff); 7453 __ bics(tmp2, tmp2, ch2); 7454 __ br(__ NE, L_HAS_ZERO); 7455 __ BIND(L_LOOP_PROCEED); 7456 __ subs(cnt2, cnt2, wordSize/str2_chr_size); 7457 __ add(str2, str2, wordSize); 7458 __ add(result, result, wordSize/str2_chr_size); 7459 __ br(__ GE, L_LOOP); 7460 __ BIND(L_POST_LOOP); 7461 __ subs(zr, cnt2, -wordSize/str2_chr_size); // no extra characters to check 7462 __ br(__ LE, NOMATCH); 7463 __ ldr(ch2, Address(str2)); 7464 __ sub(cnt2, zr, cnt2, __ LSL, LogBitsPerByte + str2_chr_shift); 7465 __ eor(ch2, first, ch2); 7466 __ sub(tmp2, ch2, tmp1); 7467 __ orr(ch2, ch2, str2_isL ? 0x7f7f7f7f7f7f7f7f : 0x7fff7fff7fff7fff); 7468 __ mov(tmp4, -1); // all bits set 7469 __ b(L_SMALL_PROCEED); 7470 __ align(OptoLoopAlignment); 7471 __ BIND(L_SMALL); 7472 __ sub(cnt2, zr, cnt2, __ LSL, LogBitsPerByte + str2_chr_shift); 7473 __ eor(ch2, first, ch2); 7474 if (str1_isL != str2_isL) { 7475 __ zip1(v1, __ T16B, v1, v0); 7476 } 7477 __ sub(tmp2, ch2, tmp1); 7478 __ mov(tmp4, -1); // all bits set 7479 __ orr(ch2, ch2, str2_isL ? 0x7f7f7f7f7f7f7f7f : 0x7fff7fff7fff7fff); 7480 if (str1_isL != str2_isL) { 7481 __ fmovd(ch1, v1); // move converted 4 symbols 7482 } 7483 __ BIND(L_SMALL_PROCEED); 7484 __ lsrv(tmp4, tmp4, cnt2); // mask. zeroes on useless bits. 7485 __ bic(tmp2, tmp2, ch2); 7486 __ ands(tmp2, tmp2, tmp4); // clear useless bits and check 7487 __ rbit(tmp2, tmp2); 7488 __ br(__ EQ, NOMATCH); 7489 __ BIND(L_SMALL_HAS_ZERO_LOOP); 7490 __ clz(tmp4, tmp2); // potentially long. Up to 4 cycles on some cpu's 7491 __ cmp(cnt1, u1(wordSize/str2_chr_size)); 7492 __ br(__ LE, L_SMALL_CMP_LOOP_LAST_CMP2); 7493 if (str2_isL) { // LL 7494 __ add(str2, str2, tmp4, __ LSR, LogBitsPerByte); // address of "index" 7495 __ ldr(ch2, Address(str2)); // read whole register of str2. Safe. 7496 __ lslv(tmp2, tmp2, tmp4); // shift off leading zeroes from match info 7497 __ add(result, result, tmp4, __ LSR, LogBitsPerByte); 7498 __ lsl(tmp2, tmp2, 1); // shift off leading "1" from match info 7499 } else { 7500 __ mov(ch2, 0xE); // all bits in byte set except last one 7501 __ andr(ch2, ch2, tmp4, __ LSR, LogBitsPerByte); // byte shift amount 7502 __ ldr(ch2, Address(str2, ch2)); // read whole register of str2. Safe. 7503 __ lslv(tmp2, tmp2, tmp4); 7504 __ add(result, result, tmp4, __ LSR, LogBitsPerByte + str2_chr_shift); 7505 __ add(str2, str2, tmp4, __ LSR, LogBitsPerByte + str2_chr_shift); 7506 __ lsl(tmp2, tmp2, 1); // shift off leading "1" from match info 7507 __ add(str2, str2, tmp4, __ LSR, LogBitsPerByte + str2_chr_shift); 7508 } 7509 __ cmp(ch1, ch2); 7510 __ mov(tmp4, wordSize/str2_chr_size); 7511 __ br(__ NE, L_SMALL_CMP_LOOP_NOMATCH); 7512 __ BIND(L_SMALL_CMP_LOOP); 7513 str1_isL ? __ ldrb(first, Address(str1, tmp4, Address::lsl(str1_chr_shift))) 7514 : __ ldrh(first, Address(str1, tmp4, Address::lsl(str1_chr_shift))); 7515 str2_isL ? __ ldrb(ch2, Address(str2, tmp4, Address::lsl(str2_chr_shift))) 7516 : __ ldrh(ch2, Address(str2, tmp4, Address::lsl(str2_chr_shift))); 7517 __ add(tmp4, tmp4, 1); 7518 __ cmp(tmp4, cnt1); 7519 __ br(__ GE, L_SMALL_CMP_LOOP_LAST_CMP); 7520 __ cmp(first, ch2); 7521 __ br(__ EQ, L_SMALL_CMP_LOOP); 7522 __ BIND(L_SMALL_CMP_LOOP_NOMATCH); 7523 __ cbz(tmp2, NOMATCH); // no more matches. exit 7524 __ clz(tmp4, tmp2); 7525 __ add(result, result, 1); // advance index 7526 __ add(str2, str2, str2_chr_size); // advance pointer 7527 __ b(L_SMALL_HAS_ZERO_LOOP); 7528 __ align(OptoLoopAlignment); 7529 __ BIND(L_SMALL_CMP_LOOP_LAST_CMP); 7530 __ cmp(first, ch2); 7531 __ br(__ NE, L_SMALL_CMP_LOOP_NOMATCH); 7532 __ b(DONE); 7533 __ align(OptoLoopAlignment); 7534 __ BIND(L_SMALL_CMP_LOOP_LAST_CMP2); 7535 if (str2_isL) { // LL 7536 __ add(str2, str2, tmp4, __ LSR, LogBitsPerByte); // address of "index" 7537 __ ldr(ch2, Address(str2)); // read whole register of str2. Safe. 7538 __ lslv(tmp2, tmp2, tmp4); // shift off leading zeroes from match info 7539 __ add(result, result, tmp4, __ LSR, LogBitsPerByte); 7540 __ lsl(tmp2, tmp2, 1); // shift off leading "1" from match info 7541 } else { 7542 __ mov(ch2, 0xE); // all bits in byte set except last one 7543 __ andr(ch2, ch2, tmp4, __ LSR, LogBitsPerByte); // byte shift amount 7544 __ ldr(ch2, Address(str2, ch2)); // read whole register of str2. Safe. 7545 __ lslv(tmp2, tmp2, tmp4); 7546 __ add(result, result, tmp4, __ LSR, LogBitsPerByte + str2_chr_shift); 7547 __ add(str2, str2, tmp4, __ LSR, LogBitsPerByte + str2_chr_shift); 7548 __ lsl(tmp2, tmp2, 1); // shift off leading "1" from match info 7549 __ add(str2, str2, tmp4, __ LSR, LogBitsPerByte + str2_chr_shift); 7550 } 7551 __ cmp(ch1, ch2); 7552 __ br(__ NE, L_SMALL_CMP_LOOP_NOMATCH); 7553 __ b(DONE); 7554 __ align(OptoLoopAlignment); 7555 __ BIND(L_HAS_ZERO); 7556 __ rbit(tmp2, tmp2); 7557 __ clz(tmp4, tmp2); // potentially long. Up to 4 cycles on some CPU's 7558 // Now, perform compression of counters(cnt2 and cnt1) into one register. 7559 // It's fine because both counters are 32bit and are not changed in this 7560 // loop. Just restore it on exit. So, cnt1 can be re-used in this loop. 7561 __ orr(cnt2, cnt2, cnt1, __ LSL, BitsPerByte * wordSize / 2); 7562 __ sub(result, result, 1); 7563 __ BIND(L_HAS_ZERO_LOOP); 7564 __ mov(cnt1, wordSize/str2_chr_size); 7565 __ cmp(cnt1, cnt2, __ LSR, BitsPerByte * wordSize / 2); 7566 __ br(__ GE, L_CMP_LOOP_LAST_CMP2); // case of 8 bytes only to compare 7567 if (str2_isL) { 7568 __ lsr(ch2, tmp4, LogBitsPerByte + str2_chr_shift); // char index 7569 __ ldr(ch2, Address(str2, ch2)); // read whole register of str2. Safe. 7570 __ lslv(tmp2, tmp2, tmp4); 7571 __ add(str2, str2, tmp4, __ LSR, LogBitsPerByte + str2_chr_shift); 7572 __ add(tmp4, tmp4, 1); 7573 __ add(result, result, tmp4, __ LSR, LogBitsPerByte + str2_chr_shift); 7574 __ lsl(tmp2, tmp2, 1); 7575 __ mov(tmp4, wordSize/str2_chr_size); 7576 } else { 7577 __ mov(ch2, 0xE); 7578 __ andr(ch2, ch2, tmp4, __ LSR, LogBitsPerByte); // byte shift amount 7579 __ ldr(ch2, Address(str2, ch2)); // read whole register of str2. Safe. 7580 __ lslv(tmp2, tmp2, tmp4); 7581 __ add(tmp4, tmp4, 1); 7582 __ add(result, result, tmp4, __ LSR, LogBitsPerByte + str2_chr_shift); 7583 __ add(str2, str2, tmp4, __ LSR, LogBitsPerByte); 7584 __ lsl(tmp2, tmp2, 1); 7585 __ mov(tmp4, wordSize/str2_chr_size); 7586 __ sub(str2, str2, str2_chr_size); 7587 } 7588 __ cmp(ch1, ch2); 7589 __ mov(tmp4, wordSize/str2_chr_size); 7590 __ br(__ NE, L_CMP_LOOP_NOMATCH); 7591 __ BIND(L_CMP_LOOP); 7592 str1_isL ? __ ldrb(cnt1, Address(str1, tmp4, Address::lsl(str1_chr_shift))) 7593 : __ ldrh(cnt1, Address(str1, tmp4, Address::lsl(str1_chr_shift))); 7594 str2_isL ? __ ldrb(ch2, Address(str2, tmp4, Address::lsl(str2_chr_shift))) 7595 : __ ldrh(ch2, Address(str2, tmp4, Address::lsl(str2_chr_shift))); 7596 __ add(tmp4, tmp4, 1); 7597 __ cmp(tmp4, cnt2, __ LSR, BitsPerByte * wordSize / 2); 7598 __ br(__ GE, L_CMP_LOOP_LAST_CMP); 7599 __ cmp(cnt1, ch2); 7600 __ br(__ EQ, L_CMP_LOOP); 7601 __ BIND(L_CMP_LOOP_NOMATCH); 7602 // here we're not matched 7603 __ cbz(tmp2, L_HAS_ZERO_LOOP_NOMATCH); // no more matches. Proceed to main loop 7604 __ clz(tmp4, tmp2); 7605 __ add(str2, str2, str2_chr_size); // advance pointer 7606 __ b(L_HAS_ZERO_LOOP); 7607 __ align(OptoLoopAlignment); 7608 __ BIND(L_CMP_LOOP_LAST_CMP); 7609 __ cmp(cnt1, ch2); 7610 __ br(__ NE, L_CMP_LOOP_NOMATCH); 7611 __ b(DONE); 7612 __ align(OptoLoopAlignment); 7613 __ BIND(L_CMP_LOOP_LAST_CMP2); 7614 if (str2_isL) { 7615 __ lsr(ch2, tmp4, LogBitsPerByte + str2_chr_shift); // char index 7616 __ ldr(ch2, Address(str2, ch2)); // read whole register of str2. Safe. 7617 __ lslv(tmp2, tmp2, tmp4); 7618 __ add(str2, str2, tmp4, __ LSR, LogBitsPerByte + str2_chr_shift); 7619 __ add(tmp4, tmp4, 1); 7620 __ add(result, result, tmp4, __ LSR, LogBitsPerByte + str2_chr_shift); 7621 __ lsl(tmp2, tmp2, 1); 7622 } else { 7623 __ mov(ch2, 0xE); 7624 __ andr(ch2, ch2, tmp4, __ LSR, LogBitsPerByte); // byte shift amount 7625 __ ldr(ch2, Address(str2, ch2)); // read whole register of str2. Safe. 7626 __ lslv(tmp2, tmp2, tmp4); 7627 __ add(tmp4, tmp4, 1); 7628 __ add(result, result, tmp4, __ LSR, LogBitsPerByte + str2_chr_shift); 7629 __ add(str2, str2, tmp4, __ LSR, LogBitsPerByte); 7630 __ lsl(tmp2, tmp2, 1); 7631 __ sub(str2, str2, str2_chr_size); 7632 } 7633 __ cmp(ch1, ch2); 7634 __ br(__ NE, L_CMP_LOOP_NOMATCH); 7635 __ b(DONE); 7636 __ align(OptoLoopAlignment); 7637 __ BIND(L_HAS_ZERO_LOOP_NOMATCH); 7638 // 1) Restore "result" index. Index was wordSize/str2_chr_size * N until 7639 // L_HAS_ZERO block. Byte octet was analyzed in L_HAS_ZERO_LOOP, 7640 // so, result was increased at max by wordSize/str2_chr_size - 1, so, 7641 // respective high bit wasn't changed. L_LOOP_PROCEED will increase 7642 // result by analyzed characters value, so, we can just reset lower bits 7643 // in result here. Clear 2 lower bits for UU/UL and 3 bits for LL 7644 // 2) restore cnt1 and cnt2 values from "compressed" cnt2 7645 // 3) advance str2 value to represent next str2 octet. result & 7/3 is 7646 // index of last analyzed substring inside current octet. So, str2 in at 7647 // respective start address. We need to advance it to next octet 7648 __ andr(tmp2, result, wordSize/str2_chr_size - 1); // symbols analyzed 7649 __ lsr(cnt1, cnt2, BitsPerByte * wordSize / 2); 7650 __ bfm(result, zr, 0, 2 - str2_chr_shift); 7651 __ sub(str2, str2, tmp2, __ LSL, str2_chr_shift); // restore str2 7652 __ movw(cnt2, cnt2); 7653 __ b(L_LOOP_PROCEED); 7654 __ align(OptoLoopAlignment); 7655 __ BIND(NOMATCH); 7656 __ mov(result, -1); 7657 __ BIND(DONE); 7658 __ pop(spilled_regs, sp); 7659 __ ret(lr); 7660 return entry; 7661 } 7662 7663 void generate_string_indexof_stubs() { 7664 StubRoutines::aarch64::_string_indexof_linear_ll = generate_string_indexof_linear(true, true); 7665 StubRoutines::aarch64::_string_indexof_linear_uu = generate_string_indexof_linear(false, false); 7666 StubRoutines::aarch64::_string_indexof_linear_ul = generate_string_indexof_linear(true, false); 7667 } 7668 7669 void inflate_and_store_2_fp_registers(bool generatePrfm, 7670 FloatRegister src1, FloatRegister src2) { 7671 Register dst = r1; 7672 __ zip1(v1, __ T16B, src1, v0); 7673 __ zip2(v2, __ T16B, src1, v0); 7674 if (generatePrfm) { 7675 __ prfm(Address(dst, SoftwarePrefetchHintDistance), PSTL1STRM); 7676 } 7677 __ zip1(v3, __ T16B, src2, v0); 7678 __ zip2(v4, __ T16B, src2, v0); 7679 __ st1(v1, v2, v3, v4, __ T16B, Address(__ post(dst, 64))); 7680 } 7681 7682 // R0 = src 7683 // R1 = dst 7684 // R2 = len 7685 // R3 = len >> 3 7686 // V0 = 0 7687 // v1 = loaded 8 bytes 7688 // Clobbers: r0, r1, r3, rscratch1, rflags, v0-v6 7689 address generate_large_byte_array_inflate() { 7690 __ align(CodeEntryAlignment); 7691 StubGenStubId stub_id = StubGenStubId::large_byte_array_inflate_id; 7692 StubCodeMark mark(this, stub_id); 7693 address entry = __ pc(); 7694 Label LOOP, LOOP_START, LOOP_PRFM, LOOP_PRFM_START, DONE; 7695 Register src = r0, dst = r1, len = r2, octetCounter = r3; 7696 const int large_loop_threshold = MAX2(64, SoftwarePrefetchHintDistance)/8 + 4; 7697 7698 // do one more 8-byte read to have address 16-byte aligned in most cases 7699 // also use single store instruction 7700 __ ldrd(v2, __ post(src, 8)); 7701 __ sub(octetCounter, octetCounter, 2); 7702 __ zip1(v1, __ T16B, v1, v0); 7703 __ zip1(v2, __ T16B, v2, v0); 7704 __ st1(v1, v2, __ T16B, __ post(dst, 32)); 7705 __ ld1(v3, v4, v5, v6, __ T16B, Address(__ post(src, 64))); 7706 __ subs(rscratch1, octetCounter, large_loop_threshold); 7707 __ br(__ LE, LOOP_START); 7708 __ b(LOOP_PRFM_START); 7709 __ bind(LOOP_PRFM); 7710 __ ld1(v3, v4, v5, v6, __ T16B, Address(__ post(src, 64))); 7711 __ bind(LOOP_PRFM_START); 7712 __ prfm(Address(src, SoftwarePrefetchHintDistance)); 7713 __ sub(octetCounter, octetCounter, 8); 7714 __ subs(rscratch1, octetCounter, large_loop_threshold); 7715 inflate_and_store_2_fp_registers(true, v3, v4); 7716 inflate_and_store_2_fp_registers(true, v5, v6); 7717 __ br(__ GT, LOOP_PRFM); 7718 __ cmp(octetCounter, (u1)8); 7719 __ br(__ LT, DONE); 7720 __ bind(LOOP); 7721 __ ld1(v3, v4, v5, v6, __ T16B, Address(__ post(src, 64))); 7722 __ bind(LOOP_START); 7723 __ sub(octetCounter, octetCounter, 8); 7724 __ cmp(octetCounter, (u1)8); 7725 inflate_and_store_2_fp_registers(false, v3, v4); 7726 inflate_and_store_2_fp_registers(false, v5, v6); 7727 __ br(__ GE, LOOP); 7728 __ bind(DONE); 7729 __ ret(lr); 7730 return entry; 7731 } 7732 7733 /** 7734 * Arguments: 7735 * 7736 * Input: 7737 * c_rarg0 - current state address 7738 * c_rarg1 - H key address 7739 * c_rarg2 - data address 7740 * c_rarg3 - number of blocks 7741 * 7742 * Output: 7743 * Updated state at c_rarg0 7744 */ 7745 address generate_ghash_processBlocks() { 7746 // Bafflingly, GCM uses little-endian for the byte order, but 7747 // big-endian for the bit order. For example, the polynomial 1 is 7748 // represented as the 16-byte string 80 00 00 00 | 12 bytes of 00. 7749 // 7750 // So, we must either reverse the bytes in each word and do 7751 // everything big-endian or reverse the bits in each byte and do 7752 // it little-endian. On AArch64 it's more idiomatic to reverse 7753 // the bits in each byte (we have an instruction, RBIT, to do 7754 // that) and keep the data in little-endian bit order through the 7755 // calculation, bit-reversing the inputs and outputs. 7756 7757 StubGenStubId stub_id = StubGenStubId::ghash_processBlocks_id; 7758 StubCodeMark mark(this, stub_id); 7759 __ align(wordSize * 2); 7760 address p = __ pc(); 7761 __ emit_int64(0x87); // The low-order bits of the field 7762 // polynomial (i.e. p = z^7+z^2+z+1) 7763 // repeated in the low and high parts of a 7764 // 128-bit vector 7765 __ emit_int64(0x87); 7766 7767 __ align(CodeEntryAlignment); 7768 address start = __ pc(); 7769 7770 Register state = c_rarg0; 7771 Register subkeyH = c_rarg1; 7772 Register data = c_rarg2; 7773 Register blocks = c_rarg3; 7774 7775 FloatRegister vzr = v30; 7776 __ eor(vzr, __ T16B, vzr, vzr); // zero register 7777 7778 __ ldrq(v24, p); // The field polynomial 7779 7780 __ ldrq(v0, Address(state)); 7781 __ ldrq(v1, Address(subkeyH)); 7782 7783 __ rev64(v0, __ T16B, v0); // Bit-reverse words in state and subkeyH 7784 __ rbit(v0, __ T16B, v0); 7785 __ rev64(v1, __ T16B, v1); 7786 __ rbit(v1, __ T16B, v1); 7787 7788 __ ext(v4, __ T16B, v1, v1, 0x08); // long-swap subkeyH into v1 7789 __ eor(v4, __ T16B, v4, v1); // xor subkeyH into subkeyL (Karatsuba: (A1+A0)) 7790 7791 { 7792 Label L_ghash_loop; 7793 __ bind(L_ghash_loop); 7794 7795 __ ldrq(v2, Address(__ post(data, 0x10))); // Load the data, bit 7796 // reversing each byte 7797 __ rbit(v2, __ T16B, v2); 7798 __ eor(v2, __ T16B, v0, v2); // bit-swapped data ^ bit-swapped state 7799 7800 // Multiply state in v2 by subkey in v1 7801 __ ghash_multiply(/*result_lo*/v5, /*result_hi*/v7, 7802 /*a*/v1, /*b*/v2, /*a1_xor_a0*/v4, 7803 /*temps*/v6, v3, /*reuse/clobber b*/v2); 7804 // Reduce v7:v5 by the field polynomial 7805 __ ghash_reduce(/*result*/v0, /*lo*/v5, /*hi*/v7, /*p*/v24, vzr, /*temp*/v3); 7806 7807 __ sub(blocks, blocks, 1); 7808 __ cbnz(blocks, L_ghash_loop); 7809 } 7810 7811 // The bit-reversed result is at this point in v0 7812 __ rev64(v0, __ T16B, v0); 7813 __ rbit(v0, __ T16B, v0); 7814 7815 __ st1(v0, __ T16B, state); 7816 __ ret(lr); 7817 7818 return start; 7819 } 7820 7821 address generate_ghash_processBlocks_wide() { 7822 address small = generate_ghash_processBlocks(); 7823 7824 StubGenStubId stub_id = StubGenStubId::ghash_processBlocks_wide_id; 7825 StubCodeMark mark(this, stub_id); 7826 __ align(wordSize * 2); 7827 address p = __ pc(); 7828 __ emit_int64(0x87); // The low-order bits of the field 7829 // polynomial (i.e. p = z^7+z^2+z+1) 7830 // repeated in the low and high parts of a 7831 // 128-bit vector 7832 __ emit_int64(0x87); 7833 7834 __ align(CodeEntryAlignment); 7835 address start = __ pc(); 7836 7837 Register state = c_rarg0; 7838 Register subkeyH = c_rarg1; 7839 Register data = c_rarg2; 7840 Register blocks = c_rarg3; 7841 7842 const int unroll = 4; 7843 7844 __ cmp(blocks, (unsigned char)(unroll * 2)); 7845 __ br(__ LT, small); 7846 7847 if (unroll > 1) { 7848 // Save state before entering routine 7849 __ sub(sp, sp, 4 * 16); 7850 __ st1(v12, v13, v14, v15, __ T16B, Address(sp)); 7851 __ sub(sp, sp, 4 * 16); 7852 __ st1(v8, v9, v10, v11, __ T16B, Address(sp)); 7853 } 7854 7855 __ ghash_processBlocks_wide(p, state, subkeyH, data, blocks, unroll); 7856 7857 if (unroll > 1) { 7858 // And restore state 7859 __ ld1(v8, v9, v10, v11, __ T16B, __ post(sp, 4 * 16)); 7860 __ ld1(v12, v13, v14, v15, __ T16B, __ post(sp, 4 * 16)); 7861 } 7862 7863 __ cmp(blocks, (unsigned char)0); 7864 __ br(__ GT, small); 7865 7866 __ ret(lr); 7867 7868 return start; 7869 } 7870 7871 void generate_base64_encode_simdround(Register src, Register dst, 7872 FloatRegister codec, u8 size) { 7873 7874 FloatRegister in0 = v4, in1 = v5, in2 = v6; 7875 FloatRegister out0 = v16, out1 = v17, out2 = v18, out3 = v19; 7876 FloatRegister ind0 = v20, ind1 = v21, ind2 = v22, ind3 = v23; 7877 7878 Assembler::SIMD_Arrangement arrangement = size == 16 ? __ T16B : __ T8B; 7879 7880 __ ld3(in0, in1, in2, arrangement, __ post(src, 3 * size)); 7881 7882 __ ushr(ind0, arrangement, in0, 2); 7883 7884 __ ushr(ind1, arrangement, in1, 2); 7885 __ shl(in0, arrangement, in0, 6); 7886 __ orr(ind1, arrangement, ind1, in0); 7887 __ ushr(ind1, arrangement, ind1, 2); 7888 7889 __ ushr(ind2, arrangement, in2, 4); 7890 __ shl(in1, arrangement, in1, 4); 7891 __ orr(ind2, arrangement, in1, ind2); 7892 __ ushr(ind2, arrangement, ind2, 2); 7893 7894 __ shl(ind3, arrangement, in2, 2); 7895 __ ushr(ind3, arrangement, ind3, 2); 7896 7897 __ tbl(out0, arrangement, codec, 4, ind0); 7898 __ tbl(out1, arrangement, codec, 4, ind1); 7899 __ tbl(out2, arrangement, codec, 4, ind2); 7900 __ tbl(out3, arrangement, codec, 4, ind3); 7901 7902 __ st4(out0, out1, out2, out3, arrangement, __ post(dst, 4 * size)); 7903 } 7904 7905 /** 7906 * Arguments: 7907 * 7908 * Input: 7909 * c_rarg0 - src_start 7910 * c_rarg1 - src_offset 7911 * c_rarg2 - src_length 7912 * c_rarg3 - dest_start 7913 * c_rarg4 - dest_offset 7914 * c_rarg5 - isURL 7915 * 7916 */ 7917 address generate_base64_encodeBlock() { 7918 7919 static const char toBase64[64] = { 7920 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 7921 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 7922 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 7923 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 7924 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '/' 7925 }; 7926 7927 static const char toBase64URL[64] = { 7928 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 7929 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 7930 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 7931 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 7932 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '-', '_' 7933 }; 7934 7935 __ align(CodeEntryAlignment); 7936 StubGenStubId stub_id = StubGenStubId::base64_encodeBlock_id; 7937 StubCodeMark mark(this, stub_id); 7938 address start = __ pc(); 7939 7940 Register src = c_rarg0; // source array 7941 Register soff = c_rarg1; // source start offset 7942 Register send = c_rarg2; // source end offset 7943 Register dst = c_rarg3; // dest array 7944 Register doff = c_rarg4; // position for writing to dest array 7945 Register isURL = c_rarg5; // Base64 or URL character set 7946 7947 // c_rarg6 and c_rarg7 are free to use as temps 7948 Register codec = c_rarg6; 7949 Register length = c_rarg7; 7950 7951 Label ProcessData, Process48B, Process24B, Process3B, SIMDExit, Exit; 7952 7953 __ add(src, src, soff); 7954 __ add(dst, dst, doff); 7955 __ sub(length, send, soff); 7956 7957 // load the codec base address 7958 __ lea(codec, ExternalAddress((address) toBase64)); 7959 __ cbz(isURL, ProcessData); 7960 __ lea(codec, ExternalAddress((address) toBase64URL)); 7961 7962 __ BIND(ProcessData); 7963 7964 // too short to formup a SIMD loop, roll back 7965 __ cmp(length, (u1)24); 7966 __ br(Assembler::LT, Process3B); 7967 7968 __ ld1(v0, v1, v2, v3, __ T16B, Address(codec)); 7969 7970 __ BIND(Process48B); 7971 __ cmp(length, (u1)48); 7972 __ br(Assembler::LT, Process24B); 7973 generate_base64_encode_simdround(src, dst, v0, 16); 7974 __ sub(length, length, 48); 7975 __ b(Process48B); 7976 7977 __ BIND(Process24B); 7978 __ cmp(length, (u1)24); 7979 __ br(Assembler::LT, SIMDExit); 7980 generate_base64_encode_simdround(src, dst, v0, 8); 7981 __ sub(length, length, 24); 7982 7983 __ BIND(SIMDExit); 7984 __ cbz(length, Exit); 7985 7986 __ BIND(Process3B); 7987 // 3 src bytes, 24 bits 7988 __ ldrb(r10, __ post(src, 1)); 7989 __ ldrb(r11, __ post(src, 1)); 7990 __ ldrb(r12, __ post(src, 1)); 7991 __ orrw(r11, r11, r10, Assembler::LSL, 8); 7992 __ orrw(r12, r12, r11, Assembler::LSL, 8); 7993 // codec index 7994 __ ubfmw(r15, r12, 18, 23); 7995 __ ubfmw(r14, r12, 12, 17); 7996 __ ubfmw(r13, r12, 6, 11); 7997 __ andw(r12, r12, 63); 7998 // get the code based on the codec 7999 __ ldrb(r15, Address(codec, r15, Address::uxtw(0))); 8000 __ ldrb(r14, Address(codec, r14, Address::uxtw(0))); 8001 __ ldrb(r13, Address(codec, r13, Address::uxtw(0))); 8002 __ ldrb(r12, Address(codec, r12, Address::uxtw(0))); 8003 __ strb(r15, __ post(dst, 1)); 8004 __ strb(r14, __ post(dst, 1)); 8005 __ strb(r13, __ post(dst, 1)); 8006 __ strb(r12, __ post(dst, 1)); 8007 __ sub(length, length, 3); 8008 __ cbnz(length, Process3B); 8009 8010 __ BIND(Exit); 8011 __ ret(lr); 8012 8013 return start; 8014 } 8015 8016 void generate_base64_decode_simdround(Register src, Register dst, 8017 FloatRegister codecL, FloatRegister codecH, int size, Label& Exit) { 8018 8019 FloatRegister in0 = v16, in1 = v17, in2 = v18, in3 = v19; 8020 FloatRegister out0 = v20, out1 = v21, out2 = v22; 8021 8022 FloatRegister decL0 = v23, decL1 = v24, decL2 = v25, decL3 = v26; 8023 FloatRegister decH0 = v28, decH1 = v29, decH2 = v30, decH3 = v31; 8024 8025 Label NoIllegalData, ErrorInLowerHalf, StoreLegalData; 8026 8027 Assembler::SIMD_Arrangement arrangement = size == 16 ? __ T16B : __ T8B; 8028 8029 __ ld4(in0, in1, in2, in3, arrangement, __ post(src, 4 * size)); 8030 8031 // we need unsigned saturating subtract, to make sure all input values 8032 // in range [0, 63] will have 0U value in the higher half lookup 8033 __ uqsubv(decH0, __ T16B, in0, v27); 8034 __ uqsubv(decH1, __ T16B, in1, v27); 8035 __ uqsubv(decH2, __ T16B, in2, v27); 8036 __ uqsubv(decH3, __ T16B, in3, v27); 8037 8038 // lower half lookup 8039 __ tbl(decL0, arrangement, codecL, 4, in0); 8040 __ tbl(decL1, arrangement, codecL, 4, in1); 8041 __ tbl(decL2, arrangement, codecL, 4, in2); 8042 __ tbl(decL3, arrangement, codecL, 4, in3); 8043 8044 // higher half lookup 8045 __ tbx(decH0, arrangement, codecH, 4, decH0); 8046 __ tbx(decH1, arrangement, codecH, 4, decH1); 8047 __ tbx(decH2, arrangement, codecH, 4, decH2); 8048 __ tbx(decH3, arrangement, codecH, 4, decH3); 8049 8050 // combine lower and higher 8051 __ orr(decL0, arrangement, decL0, decH0); 8052 __ orr(decL1, arrangement, decL1, decH1); 8053 __ orr(decL2, arrangement, decL2, decH2); 8054 __ orr(decL3, arrangement, decL3, decH3); 8055 8056 // check illegal inputs, value larger than 63 (maximum of 6 bits) 8057 __ cm(Assembler::HI, decH0, arrangement, decL0, v27); 8058 __ cm(Assembler::HI, decH1, arrangement, decL1, v27); 8059 __ cm(Assembler::HI, decH2, arrangement, decL2, v27); 8060 __ cm(Assembler::HI, decH3, arrangement, decL3, v27); 8061 __ orr(in0, arrangement, decH0, decH1); 8062 __ orr(in1, arrangement, decH2, decH3); 8063 __ orr(in2, arrangement, in0, in1); 8064 __ umaxv(in3, arrangement, in2); 8065 __ umov(rscratch2, in3, __ B, 0); 8066 8067 // get the data to output 8068 __ shl(out0, arrangement, decL0, 2); 8069 __ ushr(out1, arrangement, decL1, 4); 8070 __ orr(out0, arrangement, out0, out1); 8071 __ shl(out1, arrangement, decL1, 4); 8072 __ ushr(out2, arrangement, decL2, 2); 8073 __ orr(out1, arrangement, out1, out2); 8074 __ shl(out2, arrangement, decL2, 6); 8075 __ orr(out2, arrangement, out2, decL3); 8076 8077 __ cbz(rscratch2, NoIllegalData); 8078 8079 // handle illegal input 8080 __ umov(r10, in2, __ D, 0); 8081 if (size == 16) { 8082 __ cbnz(r10, ErrorInLowerHalf); 8083 8084 // illegal input is in higher half, store the lower half now. 8085 __ st3(out0, out1, out2, __ T8B, __ post(dst, 24)); 8086 8087 __ umov(r10, in2, __ D, 1); 8088 __ umov(r11, out0, __ D, 1); 8089 __ umov(r12, out1, __ D, 1); 8090 __ umov(r13, out2, __ D, 1); 8091 __ b(StoreLegalData); 8092 8093 __ BIND(ErrorInLowerHalf); 8094 } 8095 __ umov(r11, out0, __ D, 0); 8096 __ umov(r12, out1, __ D, 0); 8097 __ umov(r13, out2, __ D, 0); 8098 8099 __ BIND(StoreLegalData); 8100 __ tbnz(r10, 5, Exit); // 0xff indicates illegal input 8101 __ strb(r11, __ post(dst, 1)); 8102 __ strb(r12, __ post(dst, 1)); 8103 __ strb(r13, __ post(dst, 1)); 8104 __ lsr(r10, r10, 8); 8105 __ lsr(r11, r11, 8); 8106 __ lsr(r12, r12, 8); 8107 __ lsr(r13, r13, 8); 8108 __ b(StoreLegalData); 8109 8110 __ BIND(NoIllegalData); 8111 __ st3(out0, out1, out2, arrangement, __ post(dst, 3 * size)); 8112 } 8113 8114 8115 /** 8116 * Arguments: 8117 * 8118 * Input: 8119 * c_rarg0 - src_start 8120 * c_rarg1 - src_offset 8121 * c_rarg2 - src_length 8122 * c_rarg3 - dest_start 8123 * c_rarg4 - dest_offset 8124 * c_rarg5 - isURL 8125 * c_rarg6 - isMIME 8126 * 8127 */ 8128 address generate_base64_decodeBlock() { 8129 8130 // The SIMD part of this Base64 decode intrinsic is based on the algorithm outlined 8131 // on http://0x80.pl/articles/base64-simd-neon.html#encoding-quadwords, in section 8132 // titled "Base64 decoding". 8133 8134 // Non-SIMD lookup tables are mostly dumped from fromBase64 array used in java.util.Base64, 8135 // except the trailing character '=' is also treated illegal value in this intrinsic. That 8136 // is java.util.Base64.fromBase64['='] = -2, while fromBase(URL)64ForNoSIMD['='] = 255 here. 8137 static const uint8_t fromBase64ForNoSIMD[256] = { 8138 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8139 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8140 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 62u, 255u, 255u, 255u, 63u, 8141 52u, 53u, 54u, 55u, 56u, 57u, 58u, 59u, 60u, 61u, 255u, 255u, 255u, 255u, 255u, 255u, 8142 255u, 0u, 1u, 2u, 3u, 4u, 5u, 6u, 7u, 8u, 9u, 10u, 11u, 12u, 13u, 14u, 8143 15u, 16u, 17u, 18u, 19u, 20u, 21u, 22u, 23u, 24u, 25u, 255u, 255u, 255u, 255u, 255u, 8144 255u, 26u, 27u, 28u, 29u, 30u, 31u, 32u, 33u, 34u, 35u, 36u, 37u, 38u, 39u, 40u, 8145 41u, 42u, 43u, 44u, 45u, 46u, 47u, 48u, 49u, 50u, 51u, 255u, 255u, 255u, 255u, 255u, 8146 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8147 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8148 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8149 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8150 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8151 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8152 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8153 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8154 }; 8155 8156 static const uint8_t fromBase64URLForNoSIMD[256] = { 8157 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8158 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8159 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 62u, 255u, 255u, 8160 52u, 53u, 54u, 55u, 56u, 57u, 58u, 59u, 60u, 61u, 255u, 255u, 255u, 255u, 255u, 255u, 8161 255u, 0u, 1u, 2u, 3u, 4u, 5u, 6u, 7u, 8u, 9u, 10u, 11u, 12u, 13u, 14u, 8162 15u, 16u, 17u, 18u, 19u, 20u, 21u, 22u, 23u, 24u, 25u, 255u, 255u, 255u, 255u, 63u, 8163 255u, 26u, 27u, 28u, 29u, 30u, 31u, 32u, 33u, 34u, 35u, 36u, 37u, 38u, 39u, 40u, 8164 41u, 42u, 43u, 44u, 45u, 46u, 47u, 48u, 49u, 50u, 51u, 255u, 255u, 255u, 255u, 255u, 8165 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8166 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8167 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8168 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8169 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8170 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8171 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8172 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8173 }; 8174 8175 // A legal value of base64 code is in range [0, 127]. We need two lookups 8176 // with tbl/tbx and combine them to get the decode data. The 1st table vector 8177 // lookup use tbl, out of range indices are set to 0 in destination. The 2nd 8178 // table vector lookup use tbx, out of range indices are unchanged in 8179 // destination. Input [64..126] is mapped to index [65, 127] in second lookup. 8180 // The value of index 64 is set to 0, so that we know that we already get the 8181 // decoded data with the 1st lookup. 8182 static const uint8_t fromBase64ForSIMD[128] = { 8183 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8184 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8185 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 62u, 255u, 255u, 255u, 63u, 8186 52u, 53u, 54u, 55u, 56u, 57u, 58u, 59u, 60u, 61u, 255u, 255u, 255u, 255u, 255u, 255u, 8187 0u, 255u, 0u, 1u, 2u, 3u, 4u, 5u, 6u, 7u, 8u, 9u, 10u, 11u, 12u, 13u, 8188 14u, 15u, 16u, 17u, 18u, 19u, 20u, 21u, 22u, 23u, 24u, 25u, 255u, 255u, 255u, 255u, 8189 255u, 255u, 26u, 27u, 28u, 29u, 30u, 31u, 32u, 33u, 34u, 35u, 36u, 37u, 38u, 39u, 8190 40u, 41u, 42u, 43u, 44u, 45u, 46u, 47u, 48u, 49u, 50u, 51u, 255u, 255u, 255u, 255u, 8191 }; 8192 8193 static const uint8_t fromBase64URLForSIMD[128] = { 8194 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8195 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 8196 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 255u, 62u, 255u, 255u, 8197 52u, 53u, 54u, 55u, 56u, 57u, 58u, 59u, 60u, 61u, 255u, 255u, 255u, 255u, 255u, 255u, 8198 0u, 255u, 0u, 1u, 2u, 3u, 4u, 5u, 6u, 7u, 8u, 9u, 10u, 11u, 12u, 13u, 8199 14u, 15u, 16u, 17u, 18u, 19u, 20u, 21u, 22u, 23u, 24u, 25u, 255u, 255u, 255u, 255u, 8200 63u, 255u, 26u, 27u, 28u, 29u, 30u, 31u, 32u, 33u, 34u, 35u, 36u, 37u, 38u, 39u, 8201 40u, 41u, 42u, 43u, 44u, 45u, 46u, 47u, 48u, 49u, 50u, 51u, 255u, 255u, 255u, 255u, 8202 }; 8203 8204 __ align(CodeEntryAlignment); 8205 StubGenStubId stub_id = StubGenStubId::base64_decodeBlock_id; 8206 StubCodeMark mark(this, stub_id); 8207 address start = __ pc(); 8208 8209 Register src = c_rarg0; // source array 8210 Register soff = c_rarg1; // source start offset 8211 Register send = c_rarg2; // source end offset 8212 Register dst = c_rarg3; // dest array 8213 Register doff = c_rarg4; // position for writing to dest array 8214 Register isURL = c_rarg5; // Base64 or URL character set 8215 Register isMIME = c_rarg6; // Decoding MIME block - unused in this implementation 8216 8217 Register length = send; // reuse send as length of source data to process 8218 8219 Register simd_codec = c_rarg6; 8220 Register nosimd_codec = c_rarg7; 8221 8222 Label ProcessData, Process64B, Process32B, Process4B, SIMDEnter, SIMDExit, Exit; 8223 8224 __ enter(); 8225 8226 __ add(src, src, soff); 8227 __ add(dst, dst, doff); 8228 8229 __ mov(doff, dst); 8230 8231 __ sub(length, send, soff); 8232 __ bfm(length, zr, 0, 1); 8233 8234 __ lea(nosimd_codec, ExternalAddress((address) fromBase64ForNoSIMD)); 8235 __ cbz(isURL, ProcessData); 8236 __ lea(nosimd_codec, ExternalAddress((address) fromBase64URLForNoSIMD)); 8237 8238 __ BIND(ProcessData); 8239 __ mov(rscratch1, length); 8240 __ cmp(length, (u1)144); // 144 = 80 + 64 8241 __ br(Assembler::LT, Process4B); 8242 8243 // In the MIME case, the line length cannot be more than 76 8244 // bytes (see RFC 2045). This is too short a block for SIMD 8245 // to be worthwhile, so we use non-SIMD here. 8246 __ movw(rscratch1, 79); 8247 8248 __ BIND(Process4B); 8249 __ ldrw(r14, __ post(src, 4)); 8250 __ ubfxw(r10, r14, 0, 8); 8251 __ ubfxw(r11, r14, 8, 8); 8252 __ ubfxw(r12, r14, 16, 8); 8253 __ ubfxw(r13, r14, 24, 8); 8254 // get the de-code 8255 __ ldrb(r10, Address(nosimd_codec, r10, Address::uxtw(0))); 8256 __ ldrb(r11, Address(nosimd_codec, r11, Address::uxtw(0))); 8257 __ ldrb(r12, Address(nosimd_codec, r12, Address::uxtw(0))); 8258 __ ldrb(r13, Address(nosimd_codec, r13, Address::uxtw(0))); 8259 // error detection, 255u indicates an illegal input 8260 __ orrw(r14, r10, r11); 8261 __ orrw(r15, r12, r13); 8262 __ orrw(r14, r14, r15); 8263 __ tbnz(r14, 7, Exit); 8264 // recover the data 8265 __ lslw(r14, r10, 10); 8266 __ bfiw(r14, r11, 4, 6); 8267 __ bfmw(r14, r12, 2, 5); 8268 __ rev16w(r14, r14); 8269 __ bfiw(r13, r12, 6, 2); 8270 __ strh(r14, __ post(dst, 2)); 8271 __ strb(r13, __ post(dst, 1)); 8272 // non-simd loop 8273 __ subsw(rscratch1, rscratch1, 4); 8274 __ br(Assembler::GT, Process4B); 8275 8276 // if exiting from PreProcess80B, rscratch1 == -1; 8277 // otherwise, rscratch1 == 0. 8278 __ cbzw(rscratch1, Exit); 8279 __ sub(length, length, 80); 8280 8281 __ lea(simd_codec, ExternalAddress((address) fromBase64ForSIMD)); 8282 __ cbz(isURL, SIMDEnter); 8283 __ lea(simd_codec, ExternalAddress((address) fromBase64URLForSIMD)); 8284 8285 __ BIND(SIMDEnter); 8286 __ ld1(v0, v1, v2, v3, __ T16B, __ post(simd_codec, 64)); 8287 __ ld1(v4, v5, v6, v7, __ T16B, Address(simd_codec)); 8288 __ mov(rscratch1, 63); 8289 __ dup(v27, __ T16B, rscratch1); 8290 8291 __ BIND(Process64B); 8292 __ cmp(length, (u1)64); 8293 __ br(Assembler::LT, Process32B); 8294 generate_base64_decode_simdround(src, dst, v0, v4, 16, Exit); 8295 __ sub(length, length, 64); 8296 __ b(Process64B); 8297 8298 __ BIND(Process32B); 8299 __ cmp(length, (u1)32); 8300 __ br(Assembler::LT, SIMDExit); 8301 generate_base64_decode_simdround(src, dst, v0, v4, 8, Exit); 8302 __ sub(length, length, 32); 8303 __ b(Process32B); 8304 8305 __ BIND(SIMDExit); 8306 __ cbz(length, Exit); 8307 __ movw(rscratch1, length); 8308 __ b(Process4B); 8309 8310 __ BIND(Exit); 8311 __ sub(c_rarg0, dst, doff); 8312 8313 __ leave(); 8314 __ ret(lr); 8315 8316 return start; 8317 } 8318 8319 // Support for spin waits. 8320 address generate_spin_wait() { 8321 __ align(CodeEntryAlignment); 8322 StubGenStubId stub_id = StubGenStubId::spin_wait_id; 8323 StubCodeMark mark(this, stub_id); 8324 address start = __ pc(); 8325 8326 __ spin_wait(); 8327 __ ret(lr); 8328 8329 return start; 8330 } 8331 8332 void generate_lookup_secondary_supers_table_stub() { 8333 StubGenStubId stub_id = StubGenStubId::lookup_secondary_supers_table_id; 8334 StubCodeMark mark(this, stub_id); 8335 8336 const Register 8337 r_super_klass = r0, 8338 r_array_base = r1, 8339 r_array_length = r2, 8340 r_array_index = r3, 8341 r_sub_klass = r4, 8342 r_bitmap = rscratch2, 8343 result = r5; 8344 const FloatRegister 8345 vtemp = v0; 8346 8347 for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) { 8348 StubRoutines::_lookup_secondary_supers_table_stubs[slot] = __ pc(); 8349 Label L_success; 8350 __ enter(); 8351 __ lookup_secondary_supers_table_const(r_sub_klass, r_super_klass, 8352 r_array_base, r_array_length, r_array_index, 8353 vtemp, result, slot, 8354 /*stub_is_near*/true); 8355 __ leave(); 8356 __ ret(lr); 8357 } 8358 } 8359 8360 // Slow path implementation for UseSecondarySupersTable. 8361 address generate_lookup_secondary_supers_table_slow_path_stub() { 8362 StubGenStubId stub_id = StubGenStubId::lookup_secondary_supers_table_slow_path_id; 8363 StubCodeMark mark(this, stub_id); 8364 8365 address start = __ pc(); 8366 const Register 8367 r_super_klass = r0, // argument 8368 r_array_base = r1, // argument 8369 temp1 = r2, // temp 8370 r_array_index = r3, // argument 8371 r_bitmap = rscratch2, // argument 8372 result = r5; // argument 8373 8374 __ lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result); 8375 __ ret(lr); 8376 8377 return start; 8378 } 8379 8380 #if defined (LINUX) && !defined (__ARM_FEATURE_ATOMICS) 8381 8382 // ARMv8.1 LSE versions of the atomic stubs used by Atomic::PlatformXX. 8383 // 8384 // If LSE is in use, generate LSE versions of all the stubs. The 8385 // non-LSE versions are in atomic_aarch64.S. 8386 8387 // class AtomicStubMark records the entry point of a stub and the 8388 // stub pointer which will point to it. The stub pointer is set to 8389 // the entry point when ~AtomicStubMark() is called, which must be 8390 // after ICache::invalidate_range. This ensures safe publication of 8391 // the generated code. 8392 class AtomicStubMark { 8393 address _entry_point; 8394 aarch64_atomic_stub_t *_stub; 8395 MacroAssembler *_masm; 8396 public: 8397 AtomicStubMark(MacroAssembler *masm, aarch64_atomic_stub_t *stub) { 8398 _masm = masm; 8399 __ align(32); 8400 _entry_point = __ pc(); 8401 _stub = stub; 8402 } 8403 ~AtomicStubMark() { 8404 *_stub = (aarch64_atomic_stub_t)_entry_point; 8405 } 8406 }; 8407 8408 // NB: For memory_order_conservative we need a trailing membar after 8409 // LSE atomic operations but not a leading membar. 8410 // 8411 // We don't need a leading membar because a clause in the Arm ARM 8412 // says: 8413 // 8414 // Barrier-ordered-before 8415 // 8416 // Barrier instructions order prior Memory effects before subsequent 8417 // Memory effects generated by the same Observer. A read or a write 8418 // RW1 is Barrier-ordered-before a read or a write RW 2 from the same 8419 // Observer if and only if RW1 appears in program order before RW 2 8420 // and [ ... ] at least one of RW 1 and RW 2 is generated by an atomic 8421 // instruction with both Acquire and Release semantics. 8422 // 8423 // All the atomic instructions {ldaddal, swapal, casal} have Acquire 8424 // and Release semantics, therefore we don't need a leading 8425 // barrier. However, there is no corresponding Barrier-ordered-after 8426 // relationship, therefore we need a trailing membar to prevent a 8427 // later store or load from being reordered with the store in an 8428 // atomic instruction. 8429 // 8430 // This was checked by using the herd7 consistency model simulator 8431 // (http://diy.inria.fr/) with this test case: 8432 // 8433 // AArch64 LseCas 8434 // { 0:X1=x; 0:X2=y; 1:X1=x; 1:X2=y; } 8435 // P0 | P1; 8436 // LDR W4, [X2] | MOV W3, #0; 8437 // DMB LD | MOV W4, #1; 8438 // LDR W3, [X1] | CASAL W3, W4, [X1]; 8439 // | DMB ISH; 8440 // | STR W4, [X2]; 8441 // exists 8442 // (0:X3=0 /\ 0:X4=1) 8443 // 8444 // If X3 == 0 && X4 == 1, the store to y in P1 has been reordered 8445 // with the store to x in P1. Without the DMB in P1 this may happen. 8446 // 8447 // At the time of writing we don't know of any AArch64 hardware that 8448 // reorders stores in this way, but the Reference Manual permits it. 8449 8450 void gen_cas_entry(Assembler::operand_size size, 8451 atomic_memory_order order) { 8452 Register prev = r3, ptr = c_rarg0, compare_val = c_rarg1, 8453 exchange_val = c_rarg2; 8454 bool acquire, release; 8455 switch (order) { 8456 case memory_order_relaxed: 8457 acquire = false; 8458 release = false; 8459 break; 8460 case memory_order_release: 8461 acquire = false; 8462 release = true; 8463 break; 8464 default: 8465 acquire = true; 8466 release = true; 8467 break; 8468 } 8469 __ mov(prev, compare_val); 8470 __ lse_cas(prev, exchange_val, ptr, size, acquire, release, /*not_pair*/true); 8471 if (order == memory_order_conservative) { 8472 __ membar(Assembler::StoreStore|Assembler::StoreLoad); 8473 } 8474 if (size == Assembler::xword) { 8475 __ mov(r0, prev); 8476 } else { 8477 __ movw(r0, prev); 8478 } 8479 __ ret(lr); 8480 } 8481 8482 void gen_ldadd_entry(Assembler::operand_size size, atomic_memory_order order) { 8483 Register prev = r2, addr = c_rarg0, incr = c_rarg1; 8484 // If not relaxed, then default to conservative. Relaxed is the only 8485 // case we use enough to be worth specializing. 8486 if (order == memory_order_relaxed) { 8487 __ ldadd(size, incr, prev, addr); 8488 } else { 8489 __ ldaddal(size, incr, prev, addr); 8490 __ membar(Assembler::StoreStore|Assembler::StoreLoad); 8491 } 8492 if (size == Assembler::xword) { 8493 __ mov(r0, prev); 8494 } else { 8495 __ movw(r0, prev); 8496 } 8497 __ ret(lr); 8498 } 8499 8500 void gen_swpal_entry(Assembler::operand_size size) { 8501 Register prev = r2, addr = c_rarg0, incr = c_rarg1; 8502 __ swpal(size, incr, prev, addr); 8503 __ membar(Assembler::StoreStore|Assembler::StoreLoad); 8504 if (size == Assembler::xword) { 8505 __ mov(r0, prev); 8506 } else { 8507 __ movw(r0, prev); 8508 } 8509 __ ret(lr); 8510 } 8511 8512 void generate_atomic_entry_points() { 8513 if (! UseLSE) { 8514 return; 8515 } 8516 __ align(CodeEntryAlignment); 8517 StubGenStubId stub_id = StubGenStubId::atomic_entry_points_id; 8518 StubCodeMark mark(this, stub_id); 8519 address first_entry = __ pc(); 8520 8521 // ADD, memory_order_conservative 8522 AtomicStubMark mark_fetch_add_4(_masm, &aarch64_atomic_fetch_add_4_impl); 8523 gen_ldadd_entry(Assembler::word, memory_order_conservative); 8524 AtomicStubMark mark_fetch_add_8(_masm, &aarch64_atomic_fetch_add_8_impl); 8525 gen_ldadd_entry(Assembler::xword, memory_order_conservative); 8526 8527 // ADD, memory_order_relaxed 8528 AtomicStubMark mark_fetch_add_4_relaxed 8529 (_masm, &aarch64_atomic_fetch_add_4_relaxed_impl); 8530 gen_ldadd_entry(MacroAssembler::word, memory_order_relaxed); 8531 AtomicStubMark mark_fetch_add_8_relaxed 8532 (_masm, &aarch64_atomic_fetch_add_8_relaxed_impl); 8533 gen_ldadd_entry(MacroAssembler::xword, memory_order_relaxed); 8534 8535 // XCHG, memory_order_conservative 8536 AtomicStubMark mark_xchg_4(_masm, &aarch64_atomic_xchg_4_impl); 8537 gen_swpal_entry(Assembler::word); 8538 AtomicStubMark mark_xchg_8_impl(_masm, &aarch64_atomic_xchg_8_impl); 8539 gen_swpal_entry(Assembler::xword); 8540 8541 // CAS, memory_order_conservative 8542 AtomicStubMark mark_cmpxchg_1(_masm, &aarch64_atomic_cmpxchg_1_impl); 8543 gen_cas_entry(MacroAssembler::byte, memory_order_conservative); 8544 AtomicStubMark mark_cmpxchg_4(_masm, &aarch64_atomic_cmpxchg_4_impl); 8545 gen_cas_entry(MacroAssembler::word, memory_order_conservative); 8546 AtomicStubMark mark_cmpxchg_8(_masm, &aarch64_atomic_cmpxchg_8_impl); 8547 gen_cas_entry(MacroAssembler::xword, memory_order_conservative); 8548 8549 // CAS, memory_order_relaxed 8550 AtomicStubMark mark_cmpxchg_1_relaxed 8551 (_masm, &aarch64_atomic_cmpxchg_1_relaxed_impl); 8552 gen_cas_entry(MacroAssembler::byte, memory_order_relaxed); 8553 AtomicStubMark mark_cmpxchg_4_relaxed 8554 (_masm, &aarch64_atomic_cmpxchg_4_relaxed_impl); 8555 gen_cas_entry(MacroAssembler::word, memory_order_relaxed); 8556 AtomicStubMark mark_cmpxchg_8_relaxed 8557 (_masm, &aarch64_atomic_cmpxchg_8_relaxed_impl); 8558 gen_cas_entry(MacroAssembler::xword, memory_order_relaxed); 8559 8560 AtomicStubMark mark_cmpxchg_4_release 8561 (_masm, &aarch64_atomic_cmpxchg_4_release_impl); 8562 gen_cas_entry(MacroAssembler::word, memory_order_release); 8563 AtomicStubMark mark_cmpxchg_8_release 8564 (_masm, &aarch64_atomic_cmpxchg_8_release_impl); 8565 gen_cas_entry(MacroAssembler::xword, memory_order_release); 8566 8567 AtomicStubMark mark_cmpxchg_4_seq_cst 8568 (_masm, &aarch64_atomic_cmpxchg_4_seq_cst_impl); 8569 gen_cas_entry(MacroAssembler::word, memory_order_seq_cst); 8570 AtomicStubMark mark_cmpxchg_8_seq_cst 8571 (_masm, &aarch64_atomic_cmpxchg_8_seq_cst_impl); 8572 gen_cas_entry(MacroAssembler::xword, memory_order_seq_cst); 8573 8574 ICache::invalidate_range(first_entry, __ pc() - first_entry); 8575 } 8576 #endif // LINUX 8577 8578 address generate_cont_thaw(Continuation::thaw_kind kind) { 8579 bool return_barrier = Continuation::is_thaw_return_barrier(kind); 8580 bool return_barrier_exception = Continuation::is_thaw_return_barrier_exception(kind); 8581 8582 address start = __ pc(); 8583 8584 if (return_barrier) { 8585 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 8586 __ mov(sp, rscratch1); 8587 } 8588 assert_asm(_masm, (__ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())), __ cmp(sp, rscratch1)), Assembler::EQ, "incorrect sp"); 8589 8590 if (return_barrier) { 8591 // preserve possible return value from a method returning to the return barrier 8592 __ fmovd(rscratch1, v0); 8593 __ stp(rscratch1, r0, Address(__ pre(sp, -2 * wordSize))); 8594 } 8595 8596 __ movw(c_rarg1, (return_barrier ? 1 : 0)); 8597 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), rthread, c_rarg1); 8598 __ mov(rscratch2, r0); // r0 contains the size of the frames to thaw, 0 if overflow or no more frames 8599 8600 if (return_barrier) { 8601 // restore return value (no safepoint in the call to thaw, so even an oop return value should be OK) 8602 __ ldp(rscratch1, r0, Address(__ post(sp, 2 * wordSize))); 8603 __ fmovd(v0, rscratch1); 8604 } 8605 assert_asm(_masm, (__ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())), __ cmp(sp, rscratch1)), Assembler::EQ, "incorrect sp"); 8606 8607 8608 Label thaw_success; 8609 // rscratch2 contains the size of the frames to thaw, 0 if overflow or no more frames 8610 __ cbnz(rscratch2, thaw_success); 8611 __ lea(rscratch1, RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry())); 8612 __ br(rscratch1); 8613 __ bind(thaw_success); 8614 8615 // make room for the thawed frames 8616 __ sub(rscratch1, sp, rscratch2); 8617 __ andr(rscratch1, rscratch1, -16); // align 8618 __ mov(sp, rscratch1); 8619 8620 if (return_barrier) { 8621 // save original return value -- again 8622 __ fmovd(rscratch1, v0); 8623 __ stp(rscratch1, r0, Address(__ pre(sp, -2 * wordSize))); 8624 } 8625 8626 // If we want, we can templatize thaw by kind, and have three different entries 8627 __ movw(c_rarg1, (uint32_t)kind); 8628 8629 __ call_VM_leaf(Continuation::thaw_entry(), rthread, c_rarg1); 8630 __ mov(rscratch2, r0); // r0 is the sp of the yielding frame 8631 8632 if (return_barrier) { 8633 // restore return value (no safepoint in the call to thaw, so even an oop return value should be OK) 8634 __ ldp(rscratch1, r0, Address(__ post(sp, 2 * wordSize))); 8635 __ fmovd(v0, rscratch1); 8636 } else { 8637 __ mov(r0, zr); // return 0 (success) from doYield 8638 } 8639 8640 // we're now on the yield frame (which is in an address above us b/c rsp has been pushed down) 8641 __ sub(sp, rscratch2, 2*wordSize); // now pointing to rfp spill 8642 __ mov(rfp, sp); 8643 8644 if (return_barrier_exception) { 8645 __ ldr(c_rarg1, Address(rfp, wordSize)); // return address 8646 __ authenticate_return_address(c_rarg1); 8647 __ verify_oop(r0); 8648 // save return value containing the exception oop in callee-saved R19 8649 __ mov(r19, r0); 8650 8651 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1); 8652 8653 // Reinitialize the ptrue predicate register, in case the external runtime call clobbers ptrue reg, as we may return to SVE compiled code. 8654 // __ reinitialize_ptrue(); 8655 8656 // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc 8657 8658 __ mov(r1, r0); // the exception handler 8659 __ mov(r0, r19); // restore return value containing the exception oop 8660 __ verify_oop(r0); 8661 8662 __ leave(); 8663 __ mov(r3, lr); 8664 __ br(r1); // the exception handler 8665 } else { 8666 // We're "returning" into the topmost thawed frame; see Thaw::push_return_frame 8667 __ leave(); 8668 __ ret(lr); 8669 } 8670 8671 return start; 8672 } 8673 8674 address generate_cont_thaw() { 8675 if (!Continuations::enabled()) return nullptr; 8676 8677 StubGenStubId stub_id = StubGenStubId::cont_thaw_id; 8678 StubCodeMark mark(this, stub_id); 8679 address start = __ pc(); 8680 generate_cont_thaw(Continuation::thaw_top); 8681 return start; 8682 } 8683 8684 address generate_cont_returnBarrier() { 8685 if (!Continuations::enabled()) return nullptr; 8686 8687 // TODO: will probably need multiple return barriers depending on return type 8688 StubGenStubId stub_id = StubGenStubId::cont_returnBarrier_id; 8689 StubCodeMark mark(this, stub_id); 8690 address start = __ pc(); 8691 8692 generate_cont_thaw(Continuation::thaw_return_barrier); 8693 8694 return start; 8695 } 8696 8697 address generate_cont_returnBarrier_exception() { 8698 if (!Continuations::enabled()) return nullptr; 8699 8700 StubGenStubId stub_id = StubGenStubId::cont_returnBarrierExc_id; 8701 StubCodeMark mark(this, stub_id); 8702 address start = __ pc(); 8703 8704 generate_cont_thaw(Continuation::thaw_return_barrier_exception); 8705 8706 return start; 8707 } 8708 8709 address generate_cont_preempt_stub() { 8710 if (!Continuations::enabled()) return nullptr; 8711 StubGenStubId stub_id = StubGenStubId::cont_preempt_id; 8712 StubCodeMark mark(this, stub_id); 8713 address start = __ pc(); 8714 8715 __ reset_last_Java_frame(true); 8716 8717 // Set sp to enterSpecial frame, i.e. remove all frames copied into the heap. 8718 __ ldr(rscratch2, Address(rthread, JavaThread::cont_entry_offset())); 8719 __ mov(sp, rscratch2); 8720 8721 Label preemption_cancelled; 8722 __ ldrb(rscratch1, Address(rthread, JavaThread::preemption_cancelled_offset())); 8723 __ cbnz(rscratch1, preemption_cancelled); 8724 8725 // Remove enterSpecial frame from the stack and return to Continuation.run() to unmount. 8726 SharedRuntime::continuation_enter_cleanup(_masm); 8727 __ leave(); 8728 __ ret(lr); 8729 8730 // We acquired the monitor after freezing the frames so call thaw to continue execution. 8731 __ bind(preemption_cancelled); 8732 __ strb(zr, Address(rthread, JavaThread::preemption_cancelled_offset())); 8733 __ lea(rfp, Address(sp, checked_cast<int32_t>(ContinuationEntry::size()))); 8734 __ lea(rscratch1, ExternalAddress(ContinuationEntry::thaw_call_pc_address())); 8735 __ ldr(rscratch1, Address(rscratch1)); 8736 __ br(rscratch1); 8737 8738 return start; 8739 } 8740 8741 // In sun.security.util.math.intpoly.IntegerPolynomial1305, integers 8742 // are represented as long[5], with BITS_PER_LIMB = 26. 8743 // Pack five 26-bit limbs into three 64-bit registers. 8744 void pack_26(Register dest0, Register dest1, Register dest2, Register src) { 8745 __ ldp(dest0, rscratch1, Address(src, 0)); // 26 bits 8746 __ add(dest0, dest0, rscratch1, Assembler::LSL, 26); // 26 bits 8747 __ ldp(rscratch1, rscratch2, Address(src, 2 * sizeof (jlong))); 8748 __ add(dest0, dest0, rscratch1, Assembler::LSL, 52); // 12 bits 8749 8750 __ add(dest1, zr, rscratch1, Assembler::LSR, 12); // 14 bits 8751 __ add(dest1, dest1, rscratch2, Assembler::LSL, 14); // 26 bits 8752 __ ldr(rscratch1, Address(src, 4 * sizeof (jlong))); 8753 __ add(dest1, dest1, rscratch1, Assembler::LSL, 40); // 24 bits 8754 8755 if (dest2->is_valid()) { 8756 __ add(dest2, zr, rscratch1, Assembler::LSR, 24); // 2 bits 8757 } else { 8758 #ifdef ASSERT 8759 Label OK; 8760 __ cmp(zr, rscratch1, Assembler::LSR, 24); // 2 bits 8761 __ br(__ EQ, OK); 8762 __ stop("high bits of Poly1305 integer should be zero"); 8763 __ should_not_reach_here(); 8764 __ bind(OK); 8765 #endif 8766 } 8767 } 8768 8769 // As above, but return only a 128-bit integer, packed into two 8770 // 64-bit registers. 8771 void pack_26(Register dest0, Register dest1, Register src) { 8772 pack_26(dest0, dest1, noreg, src); 8773 } 8774 8775 // Multiply and multiply-accumulate unsigned 64-bit registers. 8776 void wide_mul(Register prod_lo, Register prod_hi, Register n, Register m) { 8777 __ mul(prod_lo, n, m); 8778 __ umulh(prod_hi, n, m); 8779 } 8780 void wide_madd(Register sum_lo, Register sum_hi, Register n, Register m) { 8781 wide_mul(rscratch1, rscratch2, n, m); 8782 __ adds(sum_lo, sum_lo, rscratch1); 8783 __ adc(sum_hi, sum_hi, rscratch2); 8784 } 8785 8786 // Poly1305, RFC 7539 8787 8788 // See https://loup-vaillant.fr/tutorials/poly1305-design for a 8789 // description of the tricks used to simplify and accelerate this 8790 // computation. 8791 8792 address generate_poly1305_processBlocks() { 8793 __ align(CodeEntryAlignment); 8794 StubGenStubId stub_id = StubGenStubId::poly1305_processBlocks_id; 8795 StubCodeMark mark(this, stub_id); 8796 address start = __ pc(); 8797 Label here; 8798 __ enter(); 8799 RegSet callee_saved = RegSet::range(r19, r28); 8800 __ push(callee_saved, sp); 8801 8802 RegSetIterator<Register> regs = (RegSet::range(c_rarg0, r28) - r18_tls - rscratch1 - rscratch2).begin(); 8803 8804 // Arguments 8805 const Register input_start = *regs, length = *++regs, acc_start = *++regs, r_start = *++regs; 8806 8807 // R_n is the 128-bit randomly-generated key, packed into two 8808 // registers. The caller passes this key to us as long[5], with 8809 // BITS_PER_LIMB = 26. 8810 const Register R_0 = *++regs, R_1 = *++regs; 8811 pack_26(R_0, R_1, r_start); 8812 8813 // RR_n is (R_n >> 2) * 5 8814 const Register RR_0 = *++regs, RR_1 = *++regs; 8815 __ lsr(RR_0, R_0, 2); 8816 __ add(RR_0, RR_0, RR_0, Assembler::LSL, 2); 8817 __ lsr(RR_1, R_1, 2); 8818 __ add(RR_1, RR_1, RR_1, Assembler::LSL, 2); 8819 8820 // U_n is the current checksum 8821 const Register U_0 = *++regs, U_1 = *++regs, U_2 = *++regs; 8822 pack_26(U_0, U_1, U_2, acc_start); 8823 8824 static constexpr int BLOCK_LENGTH = 16; 8825 Label DONE, LOOP; 8826 8827 __ cmp(length, checked_cast<u1>(BLOCK_LENGTH)); 8828 __ br(Assembler::LT, DONE); { 8829 __ bind(LOOP); 8830 8831 // S_n is to be the sum of U_n and the next block of data 8832 const Register S_0 = *++regs, S_1 = *++regs, S_2 = *++regs; 8833 __ ldp(S_0, S_1, __ post(input_start, 2 * wordSize)); 8834 __ adds(S_0, U_0, S_0); 8835 __ adcs(S_1, U_1, S_1); 8836 __ adc(S_2, U_2, zr); 8837 __ add(S_2, S_2, 1); 8838 8839 const Register U_0HI = *++regs, U_1HI = *++regs; 8840 8841 // NB: this logic depends on some of the special properties of 8842 // Poly1305 keys. In particular, because we know that the top 8843 // four bits of R_0 and R_1 are zero, we can add together 8844 // partial products without any risk of needing to propagate a 8845 // carry out. 8846 wide_mul(U_0, U_0HI, S_0, R_0); wide_madd(U_0, U_0HI, S_1, RR_1); wide_madd(U_0, U_0HI, S_2, RR_0); 8847 wide_mul(U_1, U_1HI, S_0, R_1); wide_madd(U_1, U_1HI, S_1, R_0); wide_madd(U_1, U_1HI, S_2, RR_1); 8848 __ andr(U_2, R_0, 3); 8849 __ mul(U_2, S_2, U_2); 8850 8851 // Recycle registers S_0, S_1, S_2 8852 regs = (regs.remaining() + S_0 + S_1 + S_2).begin(); 8853 8854 // Partial reduction mod 2**130 - 5 8855 __ adds(U_1, U_0HI, U_1); 8856 __ adc(U_2, U_1HI, U_2); 8857 // Sum now in U_2:U_1:U_0. 8858 // Dead: U_0HI, U_1HI. 8859 regs = (regs.remaining() + U_0HI + U_1HI).begin(); 8860 8861 // U_2:U_1:U_0 += (U_2 >> 2) * 5 in two steps 8862 8863 // First, U_2:U_1:U_0 += (U_2 >> 2) 8864 __ lsr(rscratch1, U_2, 2); 8865 __ andr(U_2, U_2, (u8)3); 8866 __ adds(U_0, U_0, rscratch1); 8867 __ adcs(U_1, U_1, zr); 8868 __ adc(U_2, U_2, zr); 8869 // Second, U_2:U_1:U_0 += (U_2 >> 2) << 2 8870 __ adds(U_0, U_0, rscratch1, Assembler::LSL, 2); 8871 __ adcs(U_1, U_1, zr); 8872 __ adc(U_2, U_2, zr); 8873 8874 __ sub(length, length, checked_cast<u1>(BLOCK_LENGTH)); 8875 __ cmp(length, checked_cast<u1>(BLOCK_LENGTH)); 8876 __ br(~ Assembler::LT, LOOP); 8877 } 8878 8879 // Further reduce modulo 2^130 - 5 8880 __ lsr(rscratch1, U_2, 2); 8881 __ add(rscratch1, rscratch1, rscratch1, Assembler::LSL, 2); // rscratch1 = U_2 * 5 8882 __ adds(U_0, U_0, rscratch1); // U_0 += U_2 * 5 8883 __ adcs(U_1, U_1, zr); 8884 __ andr(U_2, U_2, (u1)3); 8885 __ adc(U_2, U_2, zr); 8886 8887 // Unpack the sum into five 26-bit limbs and write to memory. 8888 __ ubfiz(rscratch1, U_0, 0, 26); 8889 __ ubfx(rscratch2, U_0, 26, 26); 8890 __ stp(rscratch1, rscratch2, Address(acc_start)); 8891 __ ubfx(rscratch1, U_0, 52, 12); 8892 __ bfi(rscratch1, U_1, 12, 14); 8893 __ ubfx(rscratch2, U_1, 14, 26); 8894 __ stp(rscratch1, rscratch2, Address(acc_start, 2 * sizeof (jlong))); 8895 __ ubfx(rscratch1, U_1, 40, 24); 8896 __ bfi(rscratch1, U_2, 24, 3); 8897 __ str(rscratch1, Address(acc_start, 4 * sizeof (jlong))); 8898 8899 __ bind(DONE); 8900 __ pop(callee_saved, sp); 8901 __ leave(); 8902 __ ret(lr); 8903 8904 return start; 8905 } 8906 8907 // exception handler for upcall stubs 8908 address generate_upcall_stub_exception_handler() { 8909 StubGenStubId stub_id = StubGenStubId::upcall_stub_exception_handler_id; 8910 StubCodeMark mark(this, stub_id); 8911 address start = __ pc(); 8912 8913 // Native caller has no idea how to handle exceptions, 8914 // so we just crash here. Up to callee to catch exceptions. 8915 __ verify_oop(r0); 8916 __ movptr(rscratch1, CAST_FROM_FN_PTR(uint64_t, UpcallLinker::handle_uncaught_exception)); 8917 __ blr(rscratch1); 8918 __ should_not_reach_here(); 8919 8920 return start; 8921 } 8922 8923 // load Method* target of MethodHandle 8924 // j_rarg0 = jobject receiver 8925 // rmethod = result 8926 address generate_upcall_stub_load_target() { 8927 StubGenStubId stub_id = StubGenStubId::upcall_stub_load_target_id; 8928 StubCodeMark mark(this, stub_id); 8929 address start = __ pc(); 8930 8931 __ resolve_global_jobject(j_rarg0, rscratch1, rscratch2); 8932 // Load target method from receiver 8933 __ load_heap_oop(rmethod, Address(j_rarg0, java_lang_invoke_MethodHandle::form_offset()), rscratch1, rscratch2); 8934 __ load_heap_oop(rmethod, Address(rmethod, java_lang_invoke_LambdaForm::vmentry_offset()), rscratch1, rscratch2); 8935 __ load_heap_oop(rmethod, Address(rmethod, java_lang_invoke_MemberName::method_offset()), rscratch1, rscratch2); 8936 __ access_load_at(T_ADDRESS, IN_HEAP, rmethod, 8937 Address(rmethod, java_lang_invoke_ResolvedMethodName::vmtarget_offset()), 8938 noreg, noreg); 8939 __ str(rmethod, Address(rthread, JavaThread::callee_target_offset())); // just in case callee is deoptimized 8940 8941 __ ret(lr); 8942 8943 return start; 8944 } 8945 8946 #undef __ 8947 #define __ masm-> 8948 8949 class MontgomeryMultiplyGenerator : public MacroAssembler { 8950 8951 Register Pa_base, Pb_base, Pn_base, Pm_base, inv, Rlen, Ra, Rb, Rm, Rn, 8952 Pa, Pb, Pn, Pm, Rhi_ab, Rlo_ab, Rhi_mn, Rlo_mn, t0, t1, t2, Ri, Rj; 8953 8954 RegSet _toSave; 8955 bool _squaring; 8956 8957 public: 8958 MontgomeryMultiplyGenerator (Assembler *as, bool squaring) 8959 : MacroAssembler(as->code()), _squaring(squaring) { 8960 8961 // Register allocation 8962 8963 RegSetIterator<Register> regs = (RegSet::range(r0, r26) - r18_tls).begin(); 8964 Pa_base = *regs; // Argument registers 8965 if (squaring) 8966 Pb_base = Pa_base; 8967 else 8968 Pb_base = *++regs; 8969 Pn_base = *++regs; 8970 Rlen= *++regs; 8971 inv = *++regs; 8972 Pm_base = *++regs; 8973 8974 // Working registers: 8975 Ra = *++regs; // The current digit of a, b, n, and m. 8976 Rb = *++regs; 8977 Rm = *++regs; 8978 Rn = *++regs; 8979 8980 Pa = *++regs; // Pointers to the current/next digit of a, b, n, and m. 8981 Pb = *++regs; 8982 Pm = *++regs; 8983 Pn = *++regs; 8984 8985 t0 = *++regs; // Three registers which form a 8986 t1 = *++regs; // triple-precision accumuator. 8987 t2 = *++regs; 8988 8989 Ri = *++regs; // Inner and outer loop indexes. 8990 Rj = *++regs; 8991 8992 Rhi_ab = *++regs; // Product registers: low and high parts 8993 Rlo_ab = *++regs; // of a*b and m*n. 8994 Rhi_mn = *++regs; 8995 Rlo_mn = *++regs; 8996 8997 // r19 and up are callee-saved. 8998 _toSave = RegSet::range(r19, *regs) + Pm_base; 8999 } 9000 9001 private: 9002 void save_regs() { 9003 push(_toSave, sp); 9004 } 9005 9006 void restore_regs() { 9007 pop(_toSave, sp); 9008 } 9009 9010 template <typename T> 9011 void unroll_2(Register count, T block) { 9012 Label loop, end, odd; 9013 tbnz(count, 0, odd); 9014 cbz(count, end); 9015 align(16); 9016 bind(loop); 9017 (this->*block)(); 9018 bind(odd); 9019 (this->*block)(); 9020 subs(count, count, 2); 9021 br(Assembler::GT, loop); 9022 bind(end); 9023 } 9024 9025 template <typename T> 9026 void unroll_2(Register count, T block, Register d, Register s, Register tmp) { 9027 Label loop, end, odd; 9028 tbnz(count, 0, odd); 9029 cbz(count, end); 9030 align(16); 9031 bind(loop); 9032 (this->*block)(d, s, tmp); 9033 bind(odd); 9034 (this->*block)(d, s, tmp); 9035 subs(count, count, 2); 9036 br(Assembler::GT, loop); 9037 bind(end); 9038 } 9039 9040 void pre1(RegisterOrConstant i) { 9041 block_comment("pre1"); 9042 // Pa = Pa_base; 9043 // Pb = Pb_base + i; 9044 // Pm = Pm_base; 9045 // Pn = Pn_base + i; 9046 // Ra = *Pa; 9047 // Rb = *Pb; 9048 // Rm = *Pm; 9049 // Rn = *Pn; 9050 ldr(Ra, Address(Pa_base)); 9051 ldr(Rb, Address(Pb_base, i, Address::uxtw(LogBytesPerWord))); 9052 ldr(Rm, Address(Pm_base)); 9053 ldr(Rn, Address(Pn_base, i, Address::uxtw(LogBytesPerWord))); 9054 lea(Pa, Address(Pa_base)); 9055 lea(Pb, Address(Pb_base, i, Address::uxtw(LogBytesPerWord))); 9056 lea(Pm, Address(Pm_base)); 9057 lea(Pn, Address(Pn_base, i, Address::uxtw(LogBytesPerWord))); 9058 9059 // Zero the m*n result. 9060 mov(Rhi_mn, zr); 9061 mov(Rlo_mn, zr); 9062 } 9063 9064 // The core multiply-accumulate step of a Montgomery 9065 // multiplication. The idea is to schedule operations as a 9066 // pipeline so that instructions with long latencies (loads and 9067 // multiplies) have time to complete before their results are 9068 // used. This most benefits in-order implementations of the 9069 // architecture but out-of-order ones also benefit. 9070 void step() { 9071 block_comment("step"); 9072 // MACC(Ra, Rb, t0, t1, t2); 9073 // Ra = *++Pa; 9074 // Rb = *--Pb; 9075 umulh(Rhi_ab, Ra, Rb); 9076 mul(Rlo_ab, Ra, Rb); 9077 ldr(Ra, pre(Pa, wordSize)); 9078 ldr(Rb, pre(Pb, -wordSize)); 9079 acc(Rhi_mn, Rlo_mn, t0, t1, t2); // The pending m*n from the 9080 // previous iteration. 9081 // MACC(Rm, Rn, t0, t1, t2); 9082 // Rm = *++Pm; 9083 // Rn = *--Pn; 9084 umulh(Rhi_mn, Rm, Rn); 9085 mul(Rlo_mn, Rm, Rn); 9086 ldr(Rm, pre(Pm, wordSize)); 9087 ldr(Rn, pre(Pn, -wordSize)); 9088 acc(Rhi_ab, Rlo_ab, t0, t1, t2); 9089 } 9090 9091 void post1() { 9092 block_comment("post1"); 9093 9094 // MACC(Ra, Rb, t0, t1, t2); 9095 // Ra = *++Pa; 9096 // Rb = *--Pb; 9097 umulh(Rhi_ab, Ra, Rb); 9098 mul(Rlo_ab, Ra, Rb); 9099 acc(Rhi_mn, Rlo_mn, t0, t1, t2); // The pending m*n 9100 acc(Rhi_ab, Rlo_ab, t0, t1, t2); 9101 9102 // *Pm = Rm = t0 * inv; 9103 mul(Rm, t0, inv); 9104 str(Rm, Address(Pm)); 9105 9106 // MACC(Rm, Rn, t0, t1, t2); 9107 // t0 = t1; t1 = t2; t2 = 0; 9108 umulh(Rhi_mn, Rm, Rn); 9109 9110 #ifndef PRODUCT 9111 // assert(m[i] * n[0] + t0 == 0, "broken Montgomery multiply"); 9112 { 9113 mul(Rlo_mn, Rm, Rn); 9114 add(Rlo_mn, t0, Rlo_mn); 9115 Label ok; 9116 cbz(Rlo_mn, ok); { 9117 stop("broken Montgomery multiply"); 9118 } bind(ok); 9119 } 9120 #endif 9121 // We have very carefully set things up so that 9122 // m[i]*n[0] + t0 == 0 (mod b), so we don't have to calculate 9123 // the lower half of Rm * Rn because we know the result already: 9124 // it must be -t0. t0 + (-t0) must generate a carry iff 9125 // t0 != 0. So, rather than do a mul and an adds we just set 9126 // the carry flag iff t0 is nonzero. 9127 // 9128 // mul(Rlo_mn, Rm, Rn); 9129 // adds(zr, t0, Rlo_mn); 9130 subs(zr, t0, 1); // Set carry iff t0 is nonzero 9131 adcs(t0, t1, Rhi_mn); 9132 adc(t1, t2, zr); 9133 mov(t2, zr); 9134 } 9135 9136 void pre2(RegisterOrConstant i, RegisterOrConstant len) { 9137 block_comment("pre2"); 9138 // Pa = Pa_base + i-len; 9139 // Pb = Pb_base + len; 9140 // Pm = Pm_base + i-len; 9141 // Pn = Pn_base + len; 9142 9143 if (i.is_register()) { 9144 sub(Rj, i.as_register(), len); 9145 } else { 9146 mov(Rj, i.as_constant()); 9147 sub(Rj, Rj, len); 9148 } 9149 // Rj == i-len 9150 9151 lea(Pa, Address(Pa_base, Rj, Address::uxtw(LogBytesPerWord))); 9152 lea(Pb, Address(Pb_base, len, Address::uxtw(LogBytesPerWord))); 9153 lea(Pm, Address(Pm_base, Rj, Address::uxtw(LogBytesPerWord))); 9154 lea(Pn, Address(Pn_base, len, Address::uxtw(LogBytesPerWord))); 9155 9156 // Ra = *++Pa; 9157 // Rb = *--Pb; 9158 // Rm = *++Pm; 9159 // Rn = *--Pn; 9160 ldr(Ra, pre(Pa, wordSize)); 9161 ldr(Rb, pre(Pb, -wordSize)); 9162 ldr(Rm, pre(Pm, wordSize)); 9163 ldr(Rn, pre(Pn, -wordSize)); 9164 9165 mov(Rhi_mn, zr); 9166 mov(Rlo_mn, zr); 9167 } 9168 9169 void post2(RegisterOrConstant i, RegisterOrConstant len) { 9170 block_comment("post2"); 9171 if (i.is_constant()) { 9172 mov(Rj, i.as_constant()-len.as_constant()); 9173 } else { 9174 sub(Rj, i.as_register(), len); 9175 } 9176 9177 adds(t0, t0, Rlo_mn); // The pending m*n, low part 9178 9179 // As soon as we know the least significant digit of our result, 9180 // store it. 9181 // Pm_base[i-len] = t0; 9182 str(t0, Address(Pm_base, Rj, Address::uxtw(LogBytesPerWord))); 9183 9184 // t0 = t1; t1 = t2; t2 = 0; 9185 adcs(t0, t1, Rhi_mn); // The pending m*n, high part 9186 adc(t1, t2, zr); 9187 mov(t2, zr); 9188 } 9189 9190 // A carry in t0 after Montgomery multiplication means that we 9191 // should subtract multiples of n from our result in m. We'll 9192 // keep doing that until there is no carry. 9193 void normalize(RegisterOrConstant len) { 9194 block_comment("normalize"); 9195 // while (t0) 9196 // t0 = sub(Pm_base, Pn_base, t0, len); 9197 Label loop, post, again; 9198 Register cnt = t1, i = t2; // Re-use registers; we're done with them now 9199 cbz(t0, post); { 9200 bind(again); { 9201 mov(i, zr); 9202 mov(cnt, len); 9203 ldr(Rm, Address(Pm_base, i, Address::uxtw(LogBytesPerWord))); 9204 ldr(Rn, Address(Pn_base, i, Address::uxtw(LogBytesPerWord))); 9205 subs(zr, zr, zr); // set carry flag, i.e. no borrow 9206 align(16); 9207 bind(loop); { 9208 sbcs(Rm, Rm, Rn); 9209 str(Rm, Address(Pm_base, i, Address::uxtw(LogBytesPerWord))); 9210 add(i, i, 1); 9211 ldr(Rm, Address(Pm_base, i, Address::uxtw(LogBytesPerWord))); 9212 ldr(Rn, Address(Pn_base, i, Address::uxtw(LogBytesPerWord))); 9213 sub(cnt, cnt, 1); 9214 } cbnz(cnt, loop); 9215 sbc(t0, t0, zr); 9216 } cbnz(t0, again); 9217 } bind(post); 9218 } 9219 9220 // Move memory at s to d, reversing words. 9221 // Increments d to end of copied memory 9222 // Destroys tmp1, tmp2 9223 // Preserves len 9224 // Leaves s pointing to the address which was in d at start 9225 void reverse(Register d, Register s, Register len, Register tmp1, Register tmp2) { 9226 assert(tmp1->encoding() < r19->encoding(), "register corruption"); 9227 assert(tmp2->encoding() < r19->encoding(), "register corruption"); 9228 9229 lea(s, Address(s, len, Address::uxtw(LogBytesPerWord))); 9230 mov(tmp1, len); 9231 unroll_2(tmp1, &MontgomeryMultiplyGenerator::reverse1, d, s, tmp2); 9232 sub(s, d, len, ext::uxtw, LogBytesPerWord); 9233 } 9234 // where 9235 void reverse1(Register d, Register s, Register tmp) { 9236 ldr(tmp, pre(s, -wordSize)); 9237 ror(tmp, tmp, 32); 9238 str(tmp, post(d, wordSize)); 9239 } 9240 9241 void step_squaring() { 9242 // An extra ACC 9243 step(); 9244 acc(Rhi_ab, Rlo_ab, t0, t1, t2); 9245 } 9246 9247 void last_squaring(RegisterOrConstant i) { 9248 Label dont; 9249 // if ((i & 1) == 0) { 9250 tbnz(i.as_register(), 0, dont); { 9251 // MACC(Ra, Rb, t0, t1, t2); 9252 // Ra = *++Pa; 9253 // Rb = *--Pb; 9254 umulh(Rhi_ab, Ra, Rb); 9255 mul(Rlo_ab, Ra, Rb); 9256 acc(Rhi_ab, Rlo_ab, t0, t1, t2); 9257 } bind(dont); 9258 } 9259 9260 void extra_step_squaring() { 9261 acc(Rhi_mn, Rlo_mn, t0, t1, t2); // The pending m*n 9262 9263 // MACC(Rm, Rn, t0, t1, t2); 9264 // Rm = *++Pm; 9265 // Rn = *--Pn; 9266 umulh(Rhi_mn, Rm, Rn); 9267 mul(Rlo_mn, Rm, Rn); 9268 ldr(Rm, pre(Pm, wordSize)); 9269 ldr(Rn, pre(Pn, -wordSize)); 9270 } 9271 9272 void post1_squaring() { 9273 acc(Rhi_mn, Rlo_mn, t0, t1, t2); // The pending m*n 9274 9275 // *Pm = Rm = t0 * inv; 9276 mul(Rm, t0, inv); 9277 str(Rm, Address(Pm)); 9278 9279 // MACC(Rm, Rn, t0, t1, t2); 9280 // t0 = t1; t1 = t2; t2 = 0; 9281 umulh(Rhi_mn, Rm, Rn); 9282 9283 #ifndef PRODUCT 9284 // assert(m[i] * n[0] + t0 == 0, "broken Montgomery multiply"); 9285 { 9286 mul(Rlo_mn, Rm, Rn); 9287 add(Rlo_mn, t0, Rlo_mn); 9288 Label ok; 9289 cbz(Rlo_mn, ok); { 9290 stop("broken Montgomery multiply"); 9291 } bind(ok); 9292 } 9293 #endif 9294 // We have very carefully set things up so that 9295 // m[i]*n[0] + t0 == 0 (mod b), so we don't have to calculate 9296 // the lower half of Rm * Rn because we know the result already: 9297 // it must be -t0. t0 + (-t0) must generate a carry iff 9298 // t0 != 0. So, rather than do a mul and an adds we just set 9299 // the carry flag iff t0 is nonzero. 9300 // 9301 // mul(Rlo_mn, Rm, Rn); 9302 // adds(zr, t0, Rlo_mn); 9303 subs(zr, t0, 1); // Set carry iff t0 is nonzero 9304 adcs(t0, t1, Rhi_mn); 9305 adc(t1, t2, zr); 9306 mov(t2, zr); 9307 } 9308 9309 void acc(Register Rhi, Register Rlo, 9310 Register t0, Register t1, Register t2) { 9311 adds(t0, t0, Rlo); 9312 adcs(t1, t1, Rhi); 9313 adc(t2, t2, zr); 9314 } 9315 9316 public: 9317 /** 9318 * Fast Montgomery multiplication. The derivation of the 9319 * algorithm is in A Cryptographic Library for the Motorola 9320 * DSP56000, Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237. 9321 * 9322 * Arguments: 9323 * 9324 * Inputs for multiplication: 9325 * c_rarg0 - int array elements a 9326 * c_rarg1 - int array elements b 9327 * c_rarg2 - int array elements n (the modulus) 9328 * c_rarg3 - int length 9329 * c_rarg4 - int inv 9330 * c_rarg5 - int array elements m (the result) 9331 * 9332 * Inputs for squaring: 9333 * c_rarg0 - int array elements a 9334 * c_rarg1 - int array elements n (the modulus) 9335 * c_rarg2 - int length 9336 * c_rarg3 - int inv 9337 * c_rarg4 - int array elements m (the result) 9338 * 9339 */ 9340 address generate_multiply() { 9341 Label argh, nothing; 9342 bind(argh); 9343 stop("MontgomeryMultiply total_allocation must be <= 8192"); 9344 9345 align(CodeEntryAlignment); 9346 address entry = pc(); 9347 9348 cbzw(Rlen, nothing); 9349 9350 enter(); 9351 9352 // Make room. 9353 cmpw(Rlen, 512); 9354 br(Assembler::HI, argh); 9355 sub(Ra, sp, Rlen, ext::uxtw, exact_log2(4 * sizeof (jint))); 9356 andr(sp, Ra, -2 * wordSize); 9357 9358 lsrw(Rlen, Rlen, 1); // length in longwords = len/2 9359 9360 { 9361 // Copy input args, reversing as we go. We use Ra as a 9362 // temporary variable. 9363 reverse(Ra, Pa_base, Rlen, t0, t1); 9364 if (!_squaring) 9365 reverse(Ra, Pb_base, Rlen, t0, t1); 9366 reverse(Ra, Pn_base, Rlen, t0, t1); 9367 } 9368 9369 // Push all call-saved registers and also Pm_base which we'll need 9370 // at the end. 9371 save_regs(); 9372 9373 #ifndef PRODUCT 9374 // assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply"); 9375 { 9376 ldr(Rn, Address(Pn_base, 0)); 9377 mul(Rlo_mn, Rn, inv); 9378 subs(zr, Rlo_mn, -1); 9379 Label ok; 9380 br(EQ, ok); { 9381 stop("broken inverse in Montgomery multiply"); 9382 } bind(ok); 9383 } 9384 #endif 9385 9386 mov(Pm_base, Ra); 9387 9388 mov(t0, zr); 9389 mov(t1, zr); 9390 mov(t2, zr); 9391 9392 block_comment("for (int i = 0; i < len; i++) {"); 9393 mov(Ri, zr); { 9394 Label loop, end; 9395 cmpw(Ri, Rlen); 9396 br(Assembler::GE, end); 9397 9398 bind(loop); 9399 pre1(Ri); 9400 9401 block_comment(" for (j = i; j; j--) {"); { 9402 movw(Rj, Ri); 9403 unroll_2(Rj, &MontgomeryMultiplyGenerator::step); 9404 } block_comment(" } // j"); 9405 9406 post1(); 9407 addw(Ri, Ri, 1); 9408 cmpw(Ri, Rlen); 9409 br(Assembler::LT, loop); 9410 bind(end); 9411 block_comment("} // i"); 9412 } 9413 9414 block_comment("for (int i = len; i < 2*len; i++) {"); 9415 mov(Ri, Rlen); { 9416 Label loop, end; 9417 cmpw(Ri, Rlen, Assembler::LSL, 1); 9418 br(Assembler::GE, end); 9419 9420 bind(loop); 9421 pre2(Ri, Rlen); 9422 9423 block_comment(" for (j = len*2-i-1; j; j--) {"); { 9424 lslw(Rj, Rlen, 1); 9425 subw(Rj, Rj, Ri); 9426 subw(Rj, Rj, 1); 9427 unroll_2(Rj, &MontgomeryMultiplyGenerator::step); 9428 } block_comment(" } // j"); 9429 9430 post2(Ri, Rlen); 9431 addw(Ri, Ri, 1); 9432 cmpw(Ri, Rlen, Assembler::LSL, 1); 9433 br(Assembler::LT, loop); 9434 bind(end); 9435 } 9436 block_comment("} // i"); 9437 9438 normalize(Rlen); 9439 9440 mov(Ra, Pm_base); // Save Pm_base in Ra 9441 restore_regs(); // Restore caller's Pm_base 9442 9443 // Copy our result into caller's Pm_base 9444 reverse(Pm_base, Ra, Rlen, t0, t1); 9445 9446 leave(); 9447 bind(nothing); 9448 ret(lr); 9449 9450 return entry; 9451 } 9452 // In C, approximately: 9453 9454 // void 9455 // montgomery_multiply(julong Pa_base[], julong Pb_base[], 9456 // julong Pn_base[], julong Pm_base[], 9457 // julong inv, int len) { 9458 // julong t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator 9459 // julong *Pa, *Pb, *Pn, *Pm; 9460 // julong Ra, Rb, Rn, Rm; 9461 9462 // int i; 9463 9464 // assert(inv * Pn_base[0] == -1UL, "broken inverse in Montgomery multiply"); 9465 9466 // for (i = 0; i < len; i++) { 9467 // int j; 9468 9469 // Pa = Pa_base; 9470 // Pb = Pb_base + i; 9471 // Pm = Pm_base; 9472 // Pn = Pn_base + i; 9473 9474 // Ra = *Pa; 9475 // Rb = *Pb; 9476 // Rm = *Pm; 9477 // Rn = *Pn; 9478 9479 // int iters = i; 9480 // for (j = 0; iters--; j++) { 9481 // assert(Ra == Pa_base[j] && Rb == Pb_base[i-j], "must be"); 9482 // MACC(Ra, Rb, t0, t1, t2); 9483 // Ra = *++Pa; 9484 // Rb = *--Pb; 9485 // assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be"); 9486 // MACC(Rm, Rn, t0, t1, t2); 9487 // Rm = *++Pm; 9488 // Rn = *--Pn; 9489 // } 9490 9491 // assert(Ra == Pa_base[i] && Rb == Pb_base[0], "must be"); 9492 // MACC(Ra, Rb, t0, t1, t2); 9493 // *Pm = Rm = t0 * inv; 9494 // assert(Rm == Pm_base[i] && Rn == Pn_base[0], "must be"); 9495 // MACC(Rm, Rn, t0, t1, t2); 9496 9497 // assert(t0 == 0, "broken Montgomery multiply"); 9498 9499 // t0 = t1; t1 = t2; t2 = 0; 9500 // } 9501 9502 // for (i = len; i < 2*len; i++) { 9503 // int j; 9504 9505 // Pa = Pa_base + i-len; 9506 // Pb = Pb_base + len; 9507 // Pm = Pm_base + i-len; 9508 // Pn = Pn_base + len; 9509 9510 // Ra = *++Pa; 9511 // Rb = *--Pb; 9512 // Rm = *++Pm; 9513 // Rn = *--Pn; 9514 9515 // int iters = len*2-i-1; 9516 // for (j = i-len+1; iters--; j++) { 9517 // assert(Ra == Pa_base[j] && Rb == Pb_base[i-j], "must be"); 9518 // MACC(Ra, Rb, t0, t1, t2); 9519 // Ra = *++Pa; 9520 // Rb = *--Pb; 9521 // assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be"); 9522 // MACC(Rm, Rn, t0, t1, t2); 9523 // Rm = *++Pm; 9524 // Rn = *--Pn; 9525 // } 9526 9527 // Pm_base[i-len] = t0; 9528 // t0 = t1; t1 = t2; t2 = 0; 9529 // } 9530 9531 // while (t0) 9532 // t0 = sub(Pm_base, Pn_base, t0, len); 9533 // } 9534 9535 /** 9536 * Fast Montgomery squaring. This uses asymptotically 25% fewer 9537 * multiplies than Montgomery multiplication so it should be up to 9538 * 25% faster. However, its loop control is more complex and it 9539 * may actually run slower on some machines. 9540 * 9541 * Arguments: 9542 * 9543 * Inputs: 9544 * c_rarg0 - int array elements a 9545 * c_rarg1 - int array elements n (the modulus) 9546 * c_rarg2 - int length 9547 * c_rarg3 - int inv 9548 * c_rarg4 - int array elements m (the result) 9549 * 9550 */ 9551 address generate_square() { 9552 Label argh; 9553 bind(argh); 9554 stop("MontgomeryMultiply total_allocation must be <= 8192"); 9555 9556 align(CodeEntryAlignment); 9557 address entry = pc(); 9558 9559 enter(); 9560 9561 // Make room. 9562 cmpw(Rlen, 512); 9563 br(Assembler::HI, argh); 9564 sub(Ra, sp, Rlen, ext::uxtw, exact_log2(4 * sizeof (jint))); 9565 andr(sp, Ra, -2 * wordSize); 9566 9567 lsrw(Rlen, Rlen, 1); // length in longwords = len/2 9568 9569 { 9570 // Copy input args, reversing as we go. We use Ra as a 9571 // temporary variable. 9572 reverse(Ra, Pa_base, Rlen, t0, t1); 9573 reverse(Ra, Pn_base, Rlen, t0, t1); 9574 } 9575 9576 // Push all call-saved registers and also Pm_base which we'll need 9577 // at the end. 9578 save_regs(); 9579 9580 mov(Pm_base, Ra); 9581 9582 mov(t0, zr); 9583 mov(t1, zr); 9584 mov(t2, zr); 9585 9586 block_comment("for (int i = 0; i < len; i++) {"); 9587 mov(Ri, zr); { 9588 Label loop, end; 9589 bind(loop); 9590 cmp(Ri, Rlen); 9591 br(Assembler::GE, end); 9592 9593 pre1(Ri); 9594 9595 block_comment("for (j = (i+1)/2; j; j--) {"); { 9596 add(Rj, Ri, 1); 9597 lsr(Rj, Rj, 1); 9598 unroll_2(Rj, &MontgomeryMultiplyGenerator::step_squaring); 9599 } block_comment(" } // j"); 9600 9601 last_squaring(Ri); 9602 9603 block_comment(" for (j = i/2; j; j--) {"); { 9604 lsr(Rj, Ri, 1); 9605 unroll_2(Rj, &MontgomeryMultiplyGenerator::extra_step_squaring); 9606 } block_comment(" } // j"); 9607 9608 post1_squaring(); 9609 add(Ri, Ri, 1); 9610 cmp(Ri, Rlen); 9611 br(Assembler::LT, loop); 9612 9613 bind(end); 9614 block_comment("} // i"); 9615 } 9616 9617 block_comment("for (int i = len; i < 2*len; i++) {"); 9618 mov(Ri, Rlen); { 9619 Label loop, end; 9620 bind(loop); 9621 cmp(Ri, Rlen, Assembler::LSL, 1); 9622 br(Assembler::GE, end); 9623 9624 pre2(Ri, Rlen); 9625 9626 block_comment(" for (j = (2*len-i-1)/2; j; j--) {"); { 9627 lsl(Rj, Rlen, 1); 9628 sub(Rj, Rj, Ri); 9629 sub(Rj, Rj, 1); 9630 lsr(Rj, Rj, 1); 9631 unroll_2(Rj, &MontgomeryMultiplyGenerator::step_squaring); 9632 } block_comment(" } // j"); 9633 9634 last_squaring(Ri); 9635 9636 block_comment(" for (j = (2*len-i)/2; j; j--) {"); { 9637 lsl(Rj, Rlen, 1); 9638 sub(Rj, Rj, Ri); 9639 lsr(Rj, Rj, 1); 9640 unroll_2(Rj, &MontgomeryMultiplyGenerator::extra_step_squaring); 9641 } block_comment(" } // j"); 9642 9643 post2(Ri, Rlen); 9644 add(Ri, Ri, 1); 9645 cmp(Ri, Rlen, Assembler::LSL, 1); 9646 9647 br(Assembler::LT, loop); 9648 bind(end); 9649 block_comment("} // i"); 9650 } 9651 9652 normalize(Rlen); 9653 9654 mov(Ra, Pm_base); // Save Pm_base in Ra 9655 restore_regs(); // Restore caller's Pm_base 9656 9657 // Copy our result into caller's Pm_base 9658 reverse(Pm_base, Ra, Rlen, t0, t1); 9659 9660 leave(); 9661 ret(lr); 9662 9663 return entry; 9664 } 9665 // In C, approximately: 9666 9667 // void 9668 // montgomery_square(julong Pa_base[], julong Pn_base[], 9669 // julong Pm_base[], julong inv, int len) { 9670 // julong t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator 9671 // julong *Pa, *Pb, *Pn, *Pm; 9672 // julong Ra, Rb, Rn, Rm; 9673 9674 // int i; 9675 9676 // assert(inv * Pn_base[0] == -1UL, "broken inverse in Montgomery multiply"); 9677 9678 // for (i = 0; i < len; i++) { 9679 // int j; 9680 9681 // Pa = Pa_base; 9682 // Pb = Pa_base + i; 9683 // Pm = Pm_base; 9684 // Pn = Pn_base + i; 9685 9686 // Ra = *Pa; 9687 // Rb = *Pb; 9688 // Rm = *Pm; 9689 // Rn = *Pn; 9690 9691 // int iters = (i+1)/2; 9692 // for (j = 0; iters--; j++) { 9693 // assert(Ra == Pa_base[j] && Rb == Pa_base[i-j], "must be"); 9694 // MACC2(Ra, Rb, t0, t1, t2); 9695 // Ra = *++Pa; 9696 // Rb = *--Pb; 9697 // assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be"); 9698 // MACC(Rm, Rn, t0, t1, t2); 9699 // Rm = *++Pm; 9700 // Rn = *--Pn; 9701 // } 9702 // if ((i & 1) == 0) { 9703 // assert(Ra == Pa_base[j], "must be"); 9704 // MACC(Ra, Ra, t0, t1, t2); 9705 // } 9706 // iters = i/2; 9707 // assert(iters == i-j, "must be"); 9708 // for (; iters--; j++) { 9709 // assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be"); 9710 // MACC(Rm, Rn, t0, t1, t2); 9711 // Rm = *++Pm; 9712 // Rn = *--Pn; 9713 // } 9714 9715 // *Pm = Rm = t0 * inv; 9716 // assert(Rm == Pm_base[i] && Rn == Pn_base[0], "must be"); 9717 // MACC(Rm, Rn, t0, t1, t2); 9718 9719 // assert(t0 == 0, "broken Montgomery multiply"); 9720 9721 // t0 = t1; t1 = t2; t2 = 0; 9722 // } 9723 9724 // for (i = len; i < 2*len; i++) { 9725 // int start = i-len+1; 9726 // int end = start + (len - start)/2; 9727 // int j; 9728 9729 // Pa = Pa_base + i-len; 9730 // Pb = Pa_base + len; 9731 // Pm = Pm_base + i-len; 9732 // Pn = Pn_base + len; 9733 9734 // Ra = *++Pa; 9735 // Rb = *--Pb; 9736 // Rm = *++Pm; 9737 // Rn = *--Pn; 9738 9739 // int iters = (2*len-i-1)/2; 9740 // assert(iters == end-start, "must be"); 9741 // for (j = start; iters--; j++) { 9742 // assert(Ra == Pa_base[j] && Rb == Pa_base[i-j], "must be"); 9743 // MACC2(Ra, Rb, t0, t1, t2); 9744 // Ra = *++Pa; 9745 // Rb = *--Pb; 9746 // assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be"); 9747 // MACC(Rm, Rn, t0, t1, t2); 9748 // Rm = *++Pm; 9749 // Rn = *--Pn; 9750 // } 9751 // if ((i & 1) == 0) { 9752 // assert(Ra == Pa_base[j], "must be"); 9753 // MACC(Ra, Ra, t0, t1, t2); 9754 // } 9755 // iters = (2*len-i)/2; 9756 // assert(iters == len-j, "must be"); 9757 // for (; iters--; j++) { 9758 // assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be"); 9759 // MACC(Rm, Rn, t0, t1, t2); 9760 // Rm = *++Pm; 9761 // Rn = *--Pn; 9762 // } 9763 // Pm_base[i-len] = t0; 9764 // t0 = t1; t1 = t2; t2 = 0; 9765 // } 9766 9767 // while (t0) 9768 // t0 = sub(Pm_base, Pn_base, t0, len); 9769 // } 9770 }; 9771 9772 void generate_vector_math_stubs() { 9773 // Get native vector math stub routine addresses 9774 void* libsleef = nullptr; 9775 char ebuf[1024]; 9776 char dll_name[JVM_MAXPATHLEN]; 9777 if (os::dll_locate_lib(dll_name, sizeof(dll_name), Arguments::get_dll_dir(), "sleef")) { 9778 libsleef = os::dll_load(dll_name, ebuf, sizeof ebuf); 9779 } 9780 if (libsleef == nullptr) { 9781 log_info(library)("Failed to load native vector math library, %s!", ebuf); 9782 return; 9783 } 9784 // Method naming convention 9785 // All the methods are named as <OP><T><N>_<U><suffix> 9786 // Where: 9787 // <OP> is the operation name, e.g. sin 9788 // <T> is optional to indicate float/double 9789 // "f/d" for vector float/double operation 9790 // <N> is the number of elements in the vector 9791 // "2/4" for neon, and "x" for sve 9792 // <U> is the precision level 9793 // "u10/u05" represents 1.0/0.5 ULP error bounds 9794 // We use "u10" for all operations by default 9795 // But for those functions do not have u10 support, we use "u05" instead 9796 // <suffix> indicates neon/sve 9797 // "sve/advsimd" for sve/neon implementations 9798 // e.g. sinfx_u10sve is the method for computing vector float sin using SVE instructions 9799 // cosd2_u10advsimd is the method for computing 2 elements vector double cos using NEON instructions 9800 // 9801 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "sleef" JNI_LIB_SUFFIX, p2i(libsleef)); 9802 9803 // Math vector stubs implemented with SVE for scalable vector size. 9804 if (UseSVE > 0) { 9805 for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) { 9806 int vop = VectorSupport::VECTOR_OP_MATH_START + op; 9807 // Skip "tanh" because there is performance regression 9808 if (vop == VectorSupport::VECTOR_OP_TANH) { 9809 continue; 9810 } 9811 9812 // The native library does not support u10 level of "hypot". 9813 const char* ulf = (vop == VectorSupport::VECTOR_OP_HYPOT) ? "u05" : "u10"; 9814 9815 snprintf(ebuf, sizeof(ebuf), "%sfx_%ssve", VectorSupport::mathname[op], ulf); 9816 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_SCALABLE][op] = (address)os::dll_lookup(libsleef, ebuf); 9817 9818 snprintf(ebuf, sizeof(ebuf), "%sdx_%ssve", VectorSupport::mathname[op], ulf); 9819 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_SCALABLE][op] = (address)os::dll_lookup(libsleef, ebuf); 9820 } 9821 } 9822 9823 // Math vector stubs implemented with NEON for 64/128 bits vector size. 9824 for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) { 9825 int vop = VectorSupport::VECTOR_OP_MATH_START + op; 9826 // Skip "tanh" because there is performance regression 9827 if (vop == VectorSupport::VECTOR_OP_TANH) { 9828 continue; 9829 } 9830 9831 // The native library does not support u10 level of "hypot". 9832 const char* ulf = (vop == VectorSupport::VECTOR_OP_HYPOT) ? "u05" : "u10"; 9833 9834 snprintf(ebuf, sizeof(ebuf), "%sf4_%sadvsimd", VectorSupport::mathname[op], ulf); 9835 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libsleef, ebuf); 9836 9837 snprintf(ebuf, sizeof(ebuf), "%sf4_%sadvsimd", VectorSupport::mathname[op], ulf); 9838 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libsleef, ebuf); 9839 9840 snprintf(ebuf, sizeof(ebuf), "%sd2_%sadvsimd", VectorSupport::mathname[op], ulf); 9841 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libsleef, ebuf); 9842 } 9843 } 9844 9845 // Initialization 9846 void generate_initial_stubs() { 9847 // Generate initial stubs and initializes the entry points 9848 9849 // entry points that exist in all platforms Note: This is code 9850 // that could be shared among different platforms - however the 9851 // benefit seems to be smaller than the disadvantage of having a 9852 // much more complicated generator structure. See also comment in 9853 // stubRoutines.hpp. 9854 9855 StubRoutines::_forward_exception_entry = generate_forward_exception(); 9856 9857 StubRoutines::_call_stub_entry = 9858 generate_call_stub(StubRoutines::_call_stub_return_address); 9859 9860 // is referenced by megamorphic call 9861 StubRoutines::_catch_exception_entry = generate_catch_exception(); 9862 9863 // Initialize table for copy memory (arraycopy) check. 9864 if (UnsafeMemoryAccess::_table == nullptr) { 9865 UnsafeMemoryAccess::create_table(8 + 4); // 8 for copyMemory; 4 for setMemory 9866 } 9867 9868 if (UseCRC32Intrinsics) { 9869 // set table address before stub generation which use it 9870 StubRoutines::_crc_table_adr = (address)StubRoutines::aarch64::_crc_table; 9871 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); 9872 } 9873 9874 if (UseCRC32CIntrinsics) { 9875 StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(); 9876 } 9877 9878 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) { 9879 StubRoutines::_dsin = generate_dsin_dcos(/* isCos = */ false); 9880 } 9881 9882 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) { 9883 StubRoutines::_dcos = generate_dsin_dcos(/* isCos = */ true); 9884 } 9885 9886 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) && 9887 vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) { 9888 StubRoutines::_hf2f = generate_float16ToFloat(); 9889 StubRoutines::_f2hf = generate_floatToFloat16(); 9890 } 9891 } 9892 9893 void generate_continuation_stubs() { 9894 // Continuation stubs: 9895 StubRoutines::_cont_thaw = generate_cont_thaw(); 9896 StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier(); 9897 StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception(); 9898 StubRoutines::_cont_preempt_stub = generate_cont_preempt_stub(); 9899 } 9900 9901 void generate_final_stubs() { 9902 // support for verify_oop (must happen after universe_init) 9903 if (VerifyOops) { 9904 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); 9905 } 9906 9907 // arraycopy stubs used by compilers 9908 generate_arraycopy_stubs(); 9909 9910 StubRoutines::_method_entry_barrier = generate_method_entry_barrier(); 9911 9912 StubRoutines::aarch64::_spin_wait = generate_spin_wait(); 9913 9914 StubRoutines::_upcall_stub_exception_handler = generate_upcall_stub_exception_handler(); 9915 StubRoutines::_upcall_stub_load_target = generate_upcall_stub_load_target(); 9916 9917 #if defined (LINUX) && !defined (__ARM_FEATURE_ATOMICS) 9918 9919 generate_atomic_entry_points(); 9920 9921 #endif // LINUX 9922 9923 #ifdef COMPILER2 9924 if (UseSecondarySupersTable) { 9925 StubRoutines::_lookup_secondary_supers_table_slow_path_stub = generate_lookup_secondary_supers_table_slow_path_stub(); 9926 if (! InlineSecondarySupersTest) { 9927 generate_lookup_secondary_supers_table_stub(); 9928 } 9929 } 9930 #endif 9931 9932 StubRoutines::aarch64::set_completed(); // Inidicate that arraycopy and zero_blocks stubs are generated 9933 } 9934 9935 void generate_compiler_stubs() { 9936 #if COMPILER2_OR_JVMCI 9937 9938 if (UseSVE == 0) { 9939 StubRoutines::aarch64::_vector_iota_indices = generate_iota_indices(StubGenStubId::vector_iota_indices_id); 9940 } 9941 9942 // array equals stub for large arrays. 9943 if (!UseSimpleArrayEquals) { 9944 StubRoutines::aarch64::_large_array_equals = generate_large_array_equals(); 9945 } 9946 9947 // arrays_hascode stub for large arrays. 9948 StubRoutines::aarch64::_large_arrays_hashcode_boolean = generate_large_arrays_hashcode(T_BOOLEAN); 9949 StubRoutines::aarch64::_large_arrays_hashcode_byte = generate_large_arrays_hashcode(T_BYTE); 9950 StubRoutines::aarch64::_large_arrays_hashcode_char = generate_large_arrays_hashcode(T_CHAR); 9951 StubRoutines::aarch64::_large_arrays_hashcode_int = generate_large_arrays_hashcode(T_INT); 9952 StubRoutines::aarch64::_large_arrays_hashcode_short = generate_large_arrays_hashcode(T_SHORT); 9953 9954 // byte_array_inflate stub for large arrays. 9955 StubRoutines::aarch64::_large_byte_array_inflate = generate_large_byte_array_inflate(); 9956 9957 // countPositives stub for large arrays. 9958 StubRoutines::aarch64::_count_positives = generate_count_positives(StubRoutines::aarch64::_count_positives_long); 9959 9960 generate_compare_long_strings(); 9961 9962 generate_string_indexof_stubs(); 9963 9964 #ifdef COMPILER2 9965 if (UseMultiplyToLenIntrinsic) { 9966 StubRoutines::_multiplyToLen = generate_multiplyToLen(); 9967 } 9968 9969 if (UseSquareToLenIntrinsic) { 9970 StubRoutines::_squareToLen = generate_squareToLen(); 9971 } 9972 9973 if (UseMulAddIntrinsic) { 9974 StubRoutines::_mulAdd = generate_mulAdd(); 9975 } 9976 9977 if (UseSIMDForBigIntegerShiftIntrinsics) { 9978 StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift(); 9979 StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift(); 9980 } 9981 9982 if (UseMontgomeryMultiplyIntrinsic) { 9983 StubGenStubId stub_id = StubGenStubId::montgomeryMultiply_id; 9984 StubCodeMark mark(this, stub_id); 9985 MontgomeryMultiplyGenerator g(_masm, /*squaring*/false); 9986 StubRoutines::_montgomeryMultiply = g.generate_multiply(); 9987 } 9988 9989 if (UseMontgomerySquareIntrinsic) { 9990 StubGenStubId stub_id = StubGenStubId::montgomerySquare_id; 9991 StubCodeMark mark(this, stub_id); 9992 MontgomeryMultiplyGenerator g(_masm, /*squaring*/true); 9993 // We use generate_multiply() rather than generate_square() 9994 // because it's faster for the sizes of modulus we care about. 9995 StubRoutines::_montgomerySquare = g.generate_multiply(); 9996 } 9997 9998 generate_vector_math_stubs(); 9999 10000 #endif // COMPILER2 10001 10002 if (UseChaCha20Intrinsics) { 10003 StubRoutines::_chacha20Block = generate_chacha20Block_qrpar(); 10004 } 10005 10006 if (UseDilithiumIntrinsics) { 10007 StubRoutines::_dilithiumAlmostNtt = generate_dilithiumAlmostNtt(); 10008 StubRoutines::_dilithiumAlmostInverseNtt = generate_dilithiumAlmostInverseNtt(); 10009 StubRoutines::_dilithiumNttMult = generate_dilithiumNttMult(); 10010 StubRoutines::_dilithiumMontMulByConstant = generate_dilithiumMontMulByConstant(); 10011 StubRoutines::_dilithiumDecomposePoly = generate_dilithiumDecomposePoly(); 10012 } 10013 10014 if (UseBASE64Intrinsics) { 10015 StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock(); 10016 StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock(); 10017 } 10018 10019 // data cache line writeback 10020 StubRoutines::_data_cache_writeback = generate_data_cache_writeback(); 10021 StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync(); 10022 10023 if (UseAESIntrinsics) { 10024 StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock(); 10025 StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock(); 10026 StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt(); 10027 StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt(); 10028 StubRoutines::_counterMode_AESCrypt = generate_counterMode_AESCrypt(); 10029 } 10030 if (UseGHASHIntrinsics) { 10031 // StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks(); 10032 StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks_wide(); 10033 } 10034 if (UseAESIntrinsics && UseGHASHIntrinsics) { 10035 StubRoutines::_galoisCounterMode_AESCrypt = generate_galoisCounterMode_AESCrypt(); 10036 } 10037 10038 if (UseMD5Intrinsics) { 10039 StubRoutines::_md5_implCompress = generate_md5_implCompress(StubGenStubId::md5_implCompress_id); 10040 StubRoutines::_md5_implCompressMB = generate_md5_implCompress(StubGenStubId::md5_implCompressMB_id); 10041 } 10042 if (UseSHA1Intrinsics) { 10043 StubRoutines::_sha1_implCompress = generate_sha1_implCompress(StubGenStubId::sha1_implCompress_id); 10044 StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(StubGenStubId::sha1_implCompressMB_id); 10045 } 10046 if (UseSHA256Intrinsics) { 10047 StubRoutines::_sha256_implCompress = generate_sha256_implCompress(StubGenStubId::sha256_implCompress_id); 10048 StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(StubGenStubId::sha256_implCompressMB_id); 10049 } 10050 if (UseSHA512Intrinsics) { 10051 StubRoutines::_sha512_implCompress = generate_sha512_implCompress(StubGenStubId::sha512_implCompress_id); 10052 StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(StubGenStubId::sha512_implCompressMB_id); 10053 } 10054 if (UseSHA3Intrinsics) { 10055 StubRoutines::_sha3_implCompress = generate_sha3_implCompress(StubGenStubId::sha3_implCompress_id); 10056 StubRoutines::_double_keccak = generate_double_keccak(); 10057 StubRoutines::_sha3_implCompressMB = generate_sha3_implCompress(StubGenStubId::sha3_implCompressMB_id); 10058 } 10059 10060 if (UsePoly1305Intrinsics) { 10061 StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks(); 10062 } 10063 10064 // generate Adler32 intrinsics code 10065 if (UseAdler32Intrinsics) { 10066 StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32(); 10067 } 10068 10069 #endif // COMPILER2_OR_JVMCI 10070 } 10071 10072 public: 10073 StubGenerator(CodeBuffer* code, StubGenBlobId blob_id) : StubCodeGenerator(code, blob_id) { 10074 switch(blob_id) { 10075 case initial_id: 10076 generate_initial_stubs(); 10077 break; 10078 case continuation_id: 10079 generate_continuation_stubs(); 10080 break; 10081 case compiler_id: 10082 generate_compiler_stubs(); 10083 break; 10084 case final_id: 10085 generate_final_stubs(); 10086 break; 10087 default: 10088 fatal("unexpected blob id: %d", blob_id); 10089 break; 10090 }; 10091 } 10092 }; // end class declaration 10093 10094 void StubGenerator_generate(CodeBuffer* code, StubGenBlobId blob_id) { 10095 StubGenerator g(code, blob_id); 10096 } 10097 10098 10099 #if defined (LINUX) 10100 10101 // Define pointers to atomic stubs and initialize them to point to the 10102 // code in atomic_aarch64.S. 10103 10104 #define DEFAULT_ATOMIC_OP(OPNAME, SIZE, RELAXED) \ 10105 extern "C" uint64_t aarch64_atomic_ ## OPNAME ## _ ## SIZE ## RELAXED ## _default_impl \ 10106 (volatile void *ptr, uint64_t arg1, uint64_t arg2); \ 10107 aarch64_atomic_stub_t aarch64_atomic_ ## OPNAME ## _ ## SIZE ## RELAXED ## _impl \ 10108 = aarch64_atomic_ ## OPNAME ## _ ## SIZE ## RELAXED ## _default_impl; 10109 10110 DEFAULT_ATOMIC_OP(fetch_add, 4, ) 10111 DEFAULT_ATOMIC_OP(fetch_add, 8, ) 10112 DEFAULT_ATOMIC_OP(fetch_add, 4, _relaxed) 10113 DEFAULT_ATOMIC_OP(fetch_add, 8, _relaxed) 10114 DEFAULT_ATOMIC_OP(xchg, 4, ) 10115 DEFAULT_ATOMIC_OP(xchg, 8, ) 10116 DEFAULT_ATOMIC_OP(cmpxchg, 1, ) 10117 DEFAULT_ATOMIC_OP(cmpxchg, 4, ) 10118 DEFAULT_ATOMIC_OP(cmpxchg, 8, ) 10119 DEFAULT_ATOMIC_OP(cmpxchg, 1, _relaxed) 10120 DEFAULT_ATOMIC_OP(cmpxchg, 4, _relaxed) 10121 DEFAULT_ATOMIC_OP(cmpxchg, 8, _relaxed) 10122 DEFAULT_ATOMIC_OP(cmpxchg, 4, _release) 10123 DEFAULT_ATOMIC_OP(cmpxchg, 8, _release) 10124 DEFAULT_ATOMIC_OP(cmpxchg, 4, _seq_cst) 10125 DEFAULT_ATOMIC_OP(cmpxchg, 8, _seq_cst) 10126 10127 #undef DEFAULT_ATOMIC_OP 10128 10129 #endif // LINUX