1 /*
   2  * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "compiler/compiler_globals.hpp"
  30 #include "gc/shared/barrierSetAssembler.hpp"
  31 #include "interpreter/bytecodeHistogram.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "interpreter/interp_masm.hpp"
  35 #include "interpreter/templateInterpreterGenerator.hpp"
  36 #include "interpreter/templateTable.hpp"
  37 #include "interpreter/bytecodeTracer.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/arrayOop.hpp"
  40 #include "oops/method.hpp"
  41 #include "oops/methodCounters.hpp"
  42 #include "oops/methodData.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/resolvedIndyEntry.hpp"
  45 #include "oops/resolvedMethodEntry.hpp"
  46 #include "prims/jvmtiExport.hpp"
  47 #include "prims/jvmtiThreadState.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/deoptimization.hpp"
  50 #include "runtime/frame.inline.hpp"
  51 #include "runtime/globals.hpp"
  52 #include "runtime/jniHandles.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "runtime/synchronizer.hpp"
  56 #include "runtime/timer.hpp"
  57 #include "runtime/vframeArray.hpp"
  58 #include "utilities/checkedCast.hpp"
  59 #include "utilities/debug.hpp"
  60 #include "utilities/powerOfTwo.hpp"
  61 #include <sys/types.h>
  62 
  63 // Size of interpreter code.  Increase if too small.  Interpreter will
  64 // fail with a guarantee ("not enough space for interpreter generation");
  65 // if too small.
  66 // Run with +PrintInterpreter to get the VM to print out the size.
  67 // Max size with JVMTI
  68 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024;
  69 
  70 #define __ _masm->
  71 
  72 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  73   address entry = __ pc();
  74 
  75   __ andr(esp, esp, -16);
  76   __ mov(c_rarg3, esp);
  77   // rmethod
  78   // rlocals
  79   // c_rarg3: first stack arg - wordSize
  80 
  81   // adjust sp
  82   __ sub(sp, c_rarg3, 18 * wordSize);
  83   __ str(lr, Address(__ pre(sp, -2 * wordSize)));
  84   __ call_VM(noreg,
  85              CAST_FROM_FN_PTR(address,
  86                               InterpreterRuntime::slow_signature_handler),
  87              rmethod, rlocals, c_rarg3);
  88 
  89   // r0: result handler
  90 
  91   // Stack layout:
  92   // rsp: return address           <- sp
  93   //      1 garbage
  94   //      8 integer args (if static first is unused)
  95   //      1 float/double identifiers
  96   //      8 double args
  97   //        stack args              <- esp
  98   //        garbage
  99   //        expression stack bottom
 100   //        bcp (null)
 101   //        ...
 102 
 103   // Restore LR
 104   __ ldr(lr, Address(__ post(sp, 2 * wordSize)));
 105 
 106   // Do FP first so we can use c_rarg3 as temp
 107   __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers
 108 
 109   for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
 110     const FloatRegister r = as_FloatRegister(i);
 111 
 112     Label d, done;
 113 
 114     __ tbnz(c_rarg3, i, d);
 115     __ ldrs(r, Address(sp, (10 + i) * wordSize));
 116     __ b(done);
 117     __ bind(d);
 118     __ ldrd(r, Address(sp, (10 + i) * wordSize));
 119     __ bind(done);
 120   }
 121 
 122   // c_rarg0 contains the result from the call of
 123   // InterpreterRuntime::slow_signature_handler so we don't touch it
 124   // here.  It will be loaded with the JNIEnv* later.
 125   __ ldr(c_rarg1, Address(sp, 1 * wordSize));
 126   for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) {
 127     Register rm = as_Register(i), rn = as_Register(i+1);
 128     __ ldp(rm, rn, Address(sp, i * wordSize));
 129   }
 130 
 131   __ add(sp, sp, 18 * wordSize);
 132   __ ret(lr);
 133 
 134   return entry;
 135 }
 136 
 137 
 138 //
 139 // Various method entries
 140 //
 141 
 142 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
 143   // rmethod: Method*
 144   // r19_sender_sp: sender sp
 145   // esp: args
 146 
 147   // These don't need a safepoint check because they aren't virtually
 148   // callable. We won't enter these intrinsics from compiled code.
 149   // If in the future we added an intrinsic which was virtually callable
 150   // we'd have to worry about how to safepoint so that this code is used.
 151 
 152   // mathematical functions inlined by compiler
 153   // (interpreter must provide identical implementation
 154   // in order to avoid monotonicity bugs when switching
 155   // from interpreter to compiler in the middle of some
 156   // computation)
 157   //
 158   // stack:
 159   //        [ arg ] <-- esp
 160   //        [ arg ]
 161   // retaddr in lr
 162 
 163   address entry_point = nullptr;
 164   Register continuation = lr;
 165   switch (kind) {
 166   case Interpreter::java_lang_math_abs:
 167     entry_point = __ pc();
 168     __ ldrd(v0, Address(esp));
 169     __ fabsd(v0, v0);
 170     __ mov(sp, r19_sender_sp); // Restore caller's SP
 171     break;
 172   case Interpreter::java_lang_math_sqrt:
 173     entry_point = __ pc();
 174     __ ldrd(v0, Address(esp));
 175     __ fsqrtd(v0, v0);
 176     __ mov(sp, r19_sender_sp);
 177     break;
 178   case Interpreter::java_lang_math_sin :
 179   case Interpreter::java_lang_math_cos :
 180   case Interpreter::java_lang_math_tan :
 181   case Interpreter::java_lang_math_log :
 182   case Interpreter::java_lang_math_log10 :
 183   case Interpreter::java_lang_math_exp :
 184     entry_point = __ pc();
 185     __ ldrd(v0, Address(esp));
 186     __ mov(sp, r19_sender_sp);
 187     __ mov(r23, lr);
 188     continuation = r23;  // The first free callee-saved register
 189     generate_transcendental_entry(kind, 1);
 190     break;
 191   case Interpreter::java_lang_math_pow :
 192     entry_point = __ pc();
 193     __ mov(r23, lr);
 194     continuation = r23;
 195     __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize));
 196     __ ldrd(v1, Address(esp));
 197     __ mov(sp, r19_sender_sp);
 198     generate_transcendental_entry(kind, 2);
 199     break;
 200   case Interpreter::java_lang_math_fmaD :
 201     if (UseFMA) {
 202       entry_point = __ pc();
 203       __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize));
 204       __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize));
 205       __ ldrd(v2, Address(esp));
 206       __ fmaddd(v0, v0, v1, v2);
 207       __ mov(sp, r19_sender_sp); // Restore caller's SP
 208     }
 209     break;
 210   case Interpreter::java_lang_math_fmaF :
 211     if (UseFMA) {
 212       entry_point = __ pc();
 213       __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize));
 214       __ ldrs(v1, Address(esp, Interpreter::stackElementSize));
 215       __ ldrs(v2, Address(esp));
 216       __ fmadds(v0, v0, v1, v2);
 217       __ mov(sp, r19_sender_sp); // Restore caller's SP
 218     }
 219     break;
 220   default:
 221     ;
 222   }
 223   if (entry_point) {
 224     __ br(continuation);
 225   }
 226 
 227   return entry_point;
 228 }
 229 
 230   // double trigonometrics and transcendentals
 231   // static jdouble dsin(jdouble x);
 232   // static jdouble dcos(jdouble x);
 233   // static jdouble dtan(jdouble x);
 234   // static jdouble dlog(jdouble x);
 235   // static jdouble dlog10(jdouble x);
 236   // static jdouble dexp(jdouble x);
 237   // static jdouble dpow(jdouble x, jdouble y);
 238 
 239 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) {
 240   address fn;
 241   switch (kind) {
 242   case Interpreter::java_lang_math_sin :
 243     if (StubRoutines::dsin() == nullptr) {
 244       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 245     } else {
 246       fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin());
 247     }
 248     break;
 249   case Interpreter::java_lang_math_cos :
 250     if (StubRoutines::dcos() == nullptr) {
 251       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 252     } else {
 253       fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos());
 254     }
 255     break;
 256   case Interpreter::java_lang_math_tan :
 257     if (StubRoutines::dtan() == nullptr) {
 258       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 259     } else {
 260       fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan());
 261     }
 262     break;
 263   case Interpreter::java_lang_math_log :
 264     if (StubRoutines::dlog() == nullptr) {
 265       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 266     } else {
 267       fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog());
 268     }
 269     break;
 270   case Interpreter::java_lang_math_log10 :
 271     if (StubRoutines::dlog10() == nullptr) {
 272       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 273     } else {
 274       fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10());
 275     }
 276     break;
 277   case Interpreter::java_lang_math_exp :
 278     if (StubRoutines::dexp() == nullptr) {
 279       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 280     } else {
 281       fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp());
 282     }
 283     break;
 284   case Interpreter::java_lang_math_pow :
 285     if (StubRoutines::dpow() == nullptr) {
 286       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 287     } else {
 288       fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow());
 289     }
 290     break;
 291   default:
 292     ShouldNotReachHere();
 293     fn = nullptr;  // unreachable
 294   }
 295   __ mov(rscratch1, fn);
 296   __ blr(rscratch1);
 297 }
 298 
 299 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() {
 300   assert(VM_Version::supports_float16(), "this intrinsic is not supported");
 301   // r19_sender_sp: sender sp
 302   // stack:
 303   //        [ arg ] <-- esp
 304   //        [ arg ]
 305   // retaddr in lr
 306   // result in v0
 307 
 308   address entry_point = __ pc();
 309   __ ldrw(c_rarg0, Address(esp));
 310   __ flt16_to_flt(v0, c_rarg0, v1);
 311   __ mov(sp, r19_sender_sp); // Restore caller's SP
 312   __ br(lr);
 313   return entry_point;
 314 }
 315 
 316 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() {
 317   assert(VM_Version::supports_float16(), "this intrinsic is not supported");
 318   // r19_sender_sp: sender sp
 319   // stack:
 320   //        [ arg ] <-- esp
 321   //        [ arg ]
 322   // retaddr in lr
 323   // result in c_rarg0
 324 
 325   address entry_point = __ pc();
 326   __ ldrs(v0, Address(esp));
 327   __ flt_to_flt16(c_rarg0, v0, v1);
 328   __ mov(sp, r19_sender_sp); // Restore caller's SP
 329   __ br(lr);
 330   return entry_point;
 331 }
 332 
 333 // Abstract method entry
 334 // Attempt to execute abstract method. Throw exception
 335 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 336   // rmethod: Method*
 337   // r19_sender_sp: sender SP
 338 
 339   address entry_point = __ pc();
 340 
 341   // abstract method entry
 342 
 343   //  pop return address, reset last_sp to null
 344   __ empty_expression_stack();
 345   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
 346   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
 347 
 348   // throw exception
 349   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 350                                      InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
 351                                      rmethod);
 352   // the call_VM checks for exception, so we should never return here.
 353   __ should_not_reach_here();
 354 
 355   return entry_point;
 356 }
 357 
 358 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 359   address entry = __ pc();
 360 
 361 #ifdef ASSERT
 362   {
 363     Label L;
 364     __ ldr(rscratch1, Address(rfp,
 365                        frame::interpreter_frame_monitor_block_top_offset *
 366                        wordSize));
 367     __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
 368     __ mov(rscratch2, sp);
 369     __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack
 370                            // grows negative)
 371     __ br(Assembler::HS, L); // check if frame is complete
 372     __ stop ("interpreter frame not set up");
 373     __ bind(L);
 374   }
 375 #endif // ASSERT
 376   // Restore bcp under the assumption that the current frame is still
 377   // interpreted
 378   __ restore_bcp();
 379 
 380   // expression stack must be empty before entering the VM if an
 381   // exception happened
 382   __ empty_expression_stack();
 383   // throw exception
 384   __ call_VM(noreg,
 385              CAST_FROM_FN_PTR(address,
 386                               InterpreterRuntime::throw_StackOverflowError));
 387   return entry;
 388 }
 389 
 390 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
 391   address entry = __ pc();
 392   // expression stack must be empty before entering the VM if an
 393   // exception happened
 394   __ empty_expression_stack();
 395   // setup parameters
 396 
 397   // ??? convention: expect aberrant index in register r1
 398   __ movw(c_rarg2, r1);
 399   // ??? convention: expect array in register r3
 400   __ mov(c_rarg1, r3);
 401   __ call_VM(noreg,
 402              CAST_FROM_FN_PTR(address,
 403                               InterpreterRuntime::
 404                               throw_ArrayIndexOutOfBoundsException),
 405              c_rarg1, c_rarg2);
 406   return entry;
 407 }
 408 
 409 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 410   address entry = __ pc();
 411 
 412   // object is at TOS
 413   __ pop(c_rarg1);
 414 
 415   // expression stack must be empty before entering the VM if an
 416   // exception happened
 417   __ empty_expression_stack();
 418 
 419   __ call_VM(noreg,
 420              CAST_FROM_FN_PTR(address,
 421                               InterpreterRuntime::
 422                               throw_ClassCastException),
 423              c_rarg1);
 424   return entry;
 425 }
 426 
 427 address TemplateInterpreterGenerator::generate_exception_handler_common(
 428         const char* name, const char* message, bool pass_oop) {
 429   assert(!pass_oop || message == nullptr, "either oop or message but not both");
 430   address entry = __ pc();
 431   if (pass_oop) {
 432     // object is at TOS
 433     __ pop(c_rarg2);
 434   }
 435   // expression stack must be empty before entering the VM if an
 436   // exception happened
 437   __ empty_expression_stack();
 438   // setup parameters
 439   __ lea(c_rarg1, Address((address)name));
 440   if (pass_oop) {
 441     __ call_VM(r0, CAST_FROM_FN_PTR(address,
 442                                     InterpreterRuntime::
 443                                     create_klass_exception),
 444                c_rarg1, c_rarg2);
 445   } else {
 446     // kind of lame ExternalAddress can't take null because
 447     // external_word_Relocation will assert.
 448     if (message != nullptr) {
 449       __ lea(c_rarg2, Address((address)message));
 450     } else {
 451       __ mov(c_rarg2, NULL_WORD);
 452     }
 453     __ call_VM(r0,
 454                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 455                c_rarg1, c_rarg2);
 456   }
 457   // throw exception
 458   __ b(address(Interpreter::throw_exception_entry()));
 459   return entry;
 460 }
 461 
 462 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 463   address entry = __ pc();
 464 
 465   // Restore stack bottom in case i2c adjusted stack
 466   __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 467   __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
 468   // and null it as marker that esp is now tos until next java call
 469   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 470   __ restore_bcp();
 471   __ restore_locals();
 472   __ restore_constant_pool_cache();
 473   __ get_method(rmethod);
 474 
 475   if (state == atos) {
 476     Register obj = r0;
 477     Register mdp = r1;
 478     Register tmp = r2;
 479     __ profile_return_type(mdp, obj, tmp);
 480   }
 481 
 482   const Register cache = r1;
 483   const Register index = r2;
 484 
 485   if (index_size == sizeof(u4)) {
 486     __ load_resolved_indy_entry(cache, index);
 487     __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedIndyEntry::num_parameters_offset())));
 488     __ add(esp, esp, cache, Assembler::LSL, 3);
 489   } else {
 490     // Pop N words from the stack
 491     assert(index_size == sizeof(u2), "Can only be u2");
 492     __ load_method_entry(cache, index);
 493     __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())));
 494     __ add(esp, esp, cache, Assembler::LSL, 3);
 495   }
 496 
 497   // Restore machine SP
 498   __ restore_sp_after_call();
 499 
 500   __ check_and_handle_popframe(rthread);
 501   __ check_and_handle_earlyret(rthread);
 502 
 503   __ get_dispatch();
 504   __ dispatch_next(state, step);
 505 
 506   return entry;
 507 }
 508 
 509 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
 510                                                                int step,
 511                                                                address continuation) {
 512   address entry = __ pc();
 513   __ restore_bcp();
 514   __ restore_locals();
 515   __ restore_constant_pool_cache();
 516   __ get_method(rmethod);
 517   __ get_dispatch();
 518 
 519   __ restore_sp_after_call();  // Restore SP to extended SP
 520 
 521   // Restore expression stack pointer
 522   __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 523   __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
 524   // null last_sp until next java call
 525   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 526 
 527 #if INCLUDE_JVMCI
 528   // Check if we need to take lock at entry of synchronized method.  This can
 529   // only occur on method entry so emit it only for vtos with step 0.
 530   if (EnableJVMCI && state == vtos && step == 0) {
 531     Label L;
 532     __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset()));
 533     __ cbz(rscratch1, L);
 534     // Clear flag.
 535     __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset()));
 536     // Take lock.
 537     lock_method();
 538     __ bind(L);
 539   } else {
 540 #ifdef ASSERT
 541     if (EnableJVMCI) {
 542       Label L;
 543       __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset()));
 544       __ cbz(rscratch1, L);
 545       __ stop("unexpected pending monitor in deopt entry");
 546       __ bind(L);
 547     }
 548 #endif
 549   }
 550 #endif
 551   // handle exceptions
 552   {
 553     Label L;
 554     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 555     __ cbz(rscratch1, L);
 556     __ call_VM(noreg,
 557                CAST_FROM_FN_PTR(address,
 558                                 InterpreterRuntime::throw_pending_exception));
 559     __ should_not_reach_here();
 560     __ bind(L);
 561   }
 562 
 563   if (continuation == nullptr) {
 564     __ dispatch_next(state, step);
 565   } else {
 566     __ jump_to_entry(continuation);
 567   }
 568   return entry;
 569 }
 570 
 571 address TemplateInterpreterGenerator::generate_result_handler_for(
 572         BasicType type) {
 573     address entry = __ pc();
 574   switch (type) {
 575   case T_BOOLEAN: __ c2bool(r0);         break;
 576   case T_CHAR   : __ uxth(r0, r0);       break;
 577   case T_BYTE   : __ sxtb(r0, r0);        break;
 578   case T_SHORT  : __ sxth(r0, r0);        break;
 579   case T_INT    : __ uxtw(r0, r0);        break;  // FIXME: We almost certainly don't need this
 580   case T_LONG   : /* nothing to do */        break;
 581   case T_VOID   : /* nothing to do */        break;
 582   case T_FLOAT  : /* nothing to do */        break;
 583   case T_DOUBLE : /* nothing to do */        break;
 584   case T_OBJECT :
 585     // retrieve result from frame
 586     __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
 587     // and verify it
 588     __ verify_oop(r0);
 589     break;
 590   default       : ShouldNotReachHere();
 591   }
 592   __ ret(lr);                                  // return from result handler
 593   return entry;
 594 }
 595 
 596 address TemplateInterpreterGenerator::generate_safept_entry_for(
 597         TosState state,
 598         address runtime_entry) {
 599   address entry = __ pc();
 600   __ push(state);
 601   __ push_cont_fastpath(rthread);
 602   __ call_VM(noreg, runtime_entry);
 603   __ pop_cont_fastpath(rthread);
 604   __ membar(Assembler::AnyAny);
 605   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 606   return entry;
 607 }
 608 
 609 // Helpers for commoning out cases in the various type of method entries.
 610 //
 611 
 612 
 613 // increment invocation count & check for overflow
 614 //
 615 // Note: checking for negative value instead of overflow
 616 //       so we have a 'sticky' overflow test
 617 //
 618 // rmethod: method
 619 //
 620 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) {
 621   Label done;
 622   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
 623   int increment = InvocationCounter::count_increment;
 624   Label no_mdo;
 625   if (ProfileInterpreter) {
 626     // Are we profiling?
 627     __ ldr(r0, Address(rmethod, Method::method_data_offset()));
 628     __ cbz(r0, no_mdo);
 629     // Increment counter in the MDO
 630     const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) +
 631                                               in_bytes(InvocationCounter::counter_offset()));
 632     const Address mask(r0, in_bytes(MethodData::invoke_mask_offset()));
 633     __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow);
 634     __ b(done);
 635   }
 636   __ bind(no_mdo);
 637   // Increment counter in MethodCounters
 638   const Address invocation_counter(rscratch2,
 639                 MethodCounters::invocation_counter_offset() +
 640                 InvocationCounter::counter_offset());
 641   __ get_method_counters(rmethod, rscratch2, done);
 642   const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset()));
 643   __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow);
 644   __ bind(done);
 645 }
 646 
 647 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
 648 
 649   // Asm interpreter on entry
 650   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 651   // Everything as it was on entry
 652 
 653   // InterpreterRuntime::frequency_counter_overflow takes two
 654   // arguments, the first (thread) is passed by call_VM, the second
 655   // indicates if the counter overflow occurs at a backwards branch
 656   // (null bcp).  We pass zero for it.  The call returns the address
 657   // of the verified entry point for the method or null if the
 658   // compilation did not complete (either went background or bailed
 659   // out).
 660   __ mov(c_rarg1, 0);
 661   __ call_VM(noreg,
 662              CAST_FROM_FN_PTR(address,
 663                               InterpreterRuntime::frequency_counter_overflow),
 664              c_rarg1);
 665 
 666   __ b(do_continue);
 667 }
 668 
 669 // See if we've got enough room on the stack for locals plus overhead
 670 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 671 // without going through the signal handler, i.e., reserved and yellow zones
 672 // will not be made usable. The shadow zone must suffice to handle the
 673 // overflow.
 674 // The expression stack grows down incrementally, so the normal guard
 675 // page mechanism will work for that.
 676 //
 677 // NOTE: Since the additional locals are also always pushed (wasn't
 678 // obvious in generate_method_entry) so the guard should work for them
 679 // too.
 680 //
 681 // Args:
 682 //      r3: number of additional locals this frame needs (what we must check)
 683 //      rmethod: Method*
 684 //
 685 // Kills:
 686 //      r0
 687 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
 688 
 689   // monitor entry size: see picture of stack set
 690   // (generate_method_entry) and frame_amd64.hpp
 691   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 692 
 693   // total overhead size: entry_size + (saved rbp through expr stack
 694   // bottom).  be sure to change this if you add/subtract anything
 695   // to/from the overhead area
 696   const int overhead_size =
 697     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
 698 
 699   const size_t page_size = os::vm_page_size();
 700 
 701   Label after_frame_check;
 702 
 703   // see if the frame is greater than one page in size. If so,
 704   // then we need to verify there is enough stack space remaining
 705   // for the additional locals.
 706   //
 707   // Note that we use SUBS rather than CMP here because the immediate
 708   // field of this instruction may overflow.  SUBS can cope with this
 709   // because it is a macro that will expand to some number of MOV
 710   // instructions and a register operation.
 711   __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize);
 712   __ br(Assembler::LS, after_frame_check);
 713 
 714   // compute rsp as if this were going to be the last frame on
 715   // the stack before the red zone
 716 
 717   // locals + overhead, in bytes
 718   __ mov(r0, overhead_size);
 719   __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize);  // 2 slots per parameter.
 720 
 721   const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset());
 722   __ ldr(rscratch1, stack_limit);
 723 
 724 #ifdef ASSERT
 725   Label limit_okay;
 726   // Verify that thread stack limit is non-zero.
 727   __ cbnz(rscratch1, limit_okay);
 728   __ stop("stack overflow limit is zero");
 729   __ bind(limit_okay);
 730 #endif
 731 
 732   // Add stack limit to locals.
 733   __ add(r0, r0, rscratch1);
 734 
 735   // Check against the current stack bottom.
 736   __ cmp(sp, r0);
 737   __ br(Assembler::HI, after_frame_check);
 738 
 739   // Remove the incoming args, peeling the machine SP back to where it
 740   // was in the caller.  This is not strictly necessary, but unless we
 741   // do so the stack frame may have a garbage FP; this ensures a
 742   // correct call stack that we can always unwind.  The ANDR should be
 743   // unnecessary because the sender SP in r19 is always aligned, but
 744   // it doesn't hurt.
 745   __ andr(sp, r19_sender_sp, -16);
 746 
 747   // Note: the restored frame is not necessarily interpreted.
 748   // Use the shared runtime version of the StackOverflowError.
 749   assert(SharedRuntime::throw_StackOverflowError_entry() != nullptr, "stub not yet generated");
 750   __ far_jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry()));
 751 
 752   // all done with frame size check
 753   __ bind(after_frame_check);
 754 }
 755 
 756 // Allocate monitor and lock method (asm interpreter)
 757 //
 758 // Args:
 759 //      rmethod: Method*
 760 //      rlocals: locals
 761 //
 762 // Kills:
 763 //      r0
 764 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
 765 //      rscratch1, rscratch2 (scratch regs)
 766 void TemplateInterpreterGenerator::lock_method() {
 767   // synchronize method
 768   const Address access_flags(rmethod, Method::access_flags_offset());
 769   const Address monitor_block_top(
 770         rfp,
 771         frame::interpreter_frame_monitor_block_top_offset * wordSize);
 772   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 773 
 774 #ifdef ASSERT
 775   {
 776     Label L;
 777     __ ldrw(r0, access_flags);
 778     __ tst(r0, JVM_ACC_SYNCHRONIZED);
 779     __ br(Assembler::NE, L);
 780     __ stop("method doesn't need synchronization");
 781     __ bind(L);
 782   }
 783 #endif // ASSERT
 784 
 785   // get synchronization object
 786   {
 787     Label done;
 788     __ ldrw(r0, access_flags);
 789     __ tst(r0, JVM_ACC_STATIC);
 790     // get receiver (assume this is frequent case)
 791     __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0)));
 792     __ br(Assembler::EQ, done);
 793     __ load_mirror(r0, rmethod, r5, rscratch2);
 794 
 795 #ifdef ASSERT
 796     {
 797       Label L;
 798       __ cbnz(r0, L);
 799       __ stop("synchronization object is null");
 800       __ bind(L);
 801     }
 802 #endif // ASSERT
 803 
 804     __ bind(done);
 805   }
 806 
 807   // add space for monitor & lock
 808   __ check_extended_sp();
 809   __ sub(sp, sp, entry_size); // add space for a monitor entry
 810   __ sub(esp, esp, entry_size);
 811   __ sub(rscratch1, sp, rfp);
 812   __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
 813   __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize));
 814   __ sub(rscratch1, esp, rfp);
 815   __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
 816   __ str(rscratch1, monitor_block_top);  // set new monitor block top
 817 
 818   // store object
 819   __ str(r0, Address(esp, BasicObjectLock::obj_offset()));
 820   __ mov(c_rarg1, esp); // object address
 821   __ lock_object(c_rarg1);
 822 }
 823 
 824 // Generate a fixed interpreter frame. This is identical setup for
 825 // interpreted methods and for native methods hence the shared code.
 826 //
 827 // Args:
 828 //      lr: return address
 829 //      rmethod: Method*
 830 //      rlocals: pointer to locals
 831 //      rcpool: cp cache
 832 //      stack_pointer: previous sp
 833 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 834   // initialize fixed part of activation frame
 835   if (native_call) {
 836     __ sub(esp, sp, 14 *  wordSize);
 837     __ mov(rbcp, zr);
 838     __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset);
 839     __ stp(rscratch1, zr, Address(__ pre(sp, -14 * wordSize)));
 840     // add 2 zero-initialized slots for native calls
 841     __ stp(zr, zr, Address(sp, 12 * wordSize));
 842   } else {
 843     __ sub(esp, sp, 12 *  wordSize);
 844     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));    // get ConstMethod
 845     __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase
 846     __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset);
 847     __ stp(rscratch1, rbcp, Address(__ pre(sp, -12 * wordSize)));
 848   }
 849 
 850   if (ProfileInterpreter) {
 851     Label method_data_continue;
 852     __ ldr(rscratch1, Address(rmethod, Method::method_data_offset()));
 853     __ cbz(rscratch1, method_data_continue);
 854     __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset())));
 855     __ bind(method_data_continue);
 856     __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize));  // save Method* and mdp (method data pointer)
 857   } else {
 858     __ stp(zr, rmethod, Address(sp, 6 * wordSize));         // save Method* (no mdp)
 859   }
 860 
 861   __ protect_return_address();
 862   __ stp(rfp, lr, Address(sp, 10 * wordSize));
 863   __ lea(rfp, Address(sp, 10 * wordSize));
 864 
 865   __ ldr(rcpool, Address(rmethod, Method::const_offset()));
 866   __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset()));
 867   __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset()));
 868   __ sub(rscratch1, rlocals, rfp);
 869   __ lsr(rscratch1, rscratch1, Interpreter::logStackElementSize);   // rscratch1 = rlocals - fp();
 870   // Store relativized rlocals, see frame::interpreter_frame_locals().
 871   __ stp(rscratch1, rcpool, Address(sp, 2 * wordSize));
 872 
 873   // set sender sp
 874   // leave last_sp as null
 875   __ stp(zr, r19_sender_sp, Address(sp, 8 * wordSize));
 876 
 877   // Get mirror
 878   __ load_mirror(r10, rmethod, r5, rscratch2);
 879   if (! native_call) {
 880     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 881     __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 882     __ add(rscratch1, rscratch1, MAX2(3, Method::extra_stack_entries()));
 883     __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3);
 884     __ andr(rscratch1, rscratch1, -16);
 885     __ sub(rscratch2, rscratch1, rfp);
 886     __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize);
 887     // Store extended SP and mirror
 888     __ stp(r10, rscratch2, Address(sp, 4 * wordSize));
 889     // Move SP out of the way
 890     __ mov(sp, rscratch1);
 891   } else {
 892     // Make sure there is room for the exception oop pushed in case method throws
 893     // an exception (see TemplateInterpreterGenerator::generate_throw_exception())
 894     __ sub(rscratch1, sp, 2 * wordSize);
 895     __ sub(rscratch2, rscratch1, rfp);
 896     __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize);
 897     __ stp(r10, rscratch2, Address(sp, 4 * wordSize));
 898     __ mov(sp, rscratch1);
 899   }
 900 }
 901 
 902 // End of helpers
 903 
 904 // Various method entries
 905 //------------------------------------------------------------------------------------------------------------------------
 906 //
 907 //
 908 
 909 // Method entry for java.lang.ref.Reference.get.
 910 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 911   // Code: _aload_0, _getfield, _areturn
 912   // parameter size = 1
 913   //
 914   // The code that gets generated by this routine is split into 2 parts:
 915   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 916   //    2. The slow path - which is an expansion of the regular method entry.
 917   //
 918   // Notes:-
 919   // * In the G1 code we do not check whether we need to block for
 920   //   a safepoint. If G1 is enabled then we must execute the specialized
 921   //   code for Reference.get (except when the Reference object is null)
 922   //   so that we can log the value in the referent field with an SATB
 923   //   update buffer.
 924   //   If the code for the getfield template is modified so that the
 925   //   G1 pre-barrier code is executed when the current method is
 926   //   Reference.get() then going through the normal method entry
 927   //   will be fine.
 928   // * The G1 code can, however, check the receiver object (the instance
 929   //   of java.lang.Reference) and jump to the slow path if null. If the
 930   //   Reference object is null then we obviously cannot fetch the referent
 931   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 932   //   regular method entry code to generate the NPE.
 933   //
 934   // This code is based on generate_accessor_entry.
 935   //
 936   // rmethod: Method*
 937   // r19_sender_sp: senderSP must preserve for slow path, set SP to it on fast path
 938 
 939   // LR is live.  It must be saved around calls.
 940 
 941   address entry = __ pc();
 942 
 943   const int referent_offset = java_lang_ref_Reference::referent_offset();
 944 
 945   Label slow_path;
 946   const Register local_0 = c_rarg0;
 947   // Check if local 0 != null
 948   // If the receiver is null then it is OK to jump to the slow path.
 949   __ ldr(local_0, Address(esp, 0));
 950   __ cbz(local_0, slow_path);
 951 
 952   // Load the value of the referent field.
 953   const Address field_address(local_0, referent_offset);
 954   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
 955   bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch1, /*tmp2*/ rscratch2);
 956 
 957   // areturn
 958   __ andr(sp, r19_sender_sp, -16);  // done with stack
 959   __ ret(lr);
 960 
 961   // generate a vanilla interpreter entry as the slow path
 962   __ bind(slow_path);
 963   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 964   return entry;
 965 
 966 }
 967 
 968 /**
 969  * Method entry for static native methods:
 970  *   int java.util.zip.CRC32.update(int crc, int b)
 971  */
 972 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
 973   assert(UseCRC32Intrinsics, "this intrinsic is not supported");
 974   address entry = __ pc();
 975 
 976   // rmethod: Method*
 977   // r19_sender_sp: senderSP must preserved for slow path
 978   // esp: args
 979 
 980   Label slow_path;
 981   // If we need a safepoint check, generate full interpreter entry.
 982   __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */);
 983 
 984   // We don't generate local frame and don't align stack because
 985   // we call stub code and there is no safepoint on this path.
 986 
 987   // Load parameters
 988   const Register crc = c_rarg0;  // crc
 989   const Register val = c_rarg1;  // source java byte value
 990   const Register tbl = c_rarg2;  // scratch
 991 
 992   // Arguments are reversed on java expression stack
 993   __ ldrw(val, Address(esp, 0));              // byte value
 994   __ ldrw(crc, Address(esp, wordSize));       // Initial CRC
 995 
 996   uint64_t offset;
 997   __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset);
 998   __ add(tbl, tbl, offset);
 999 
1000   __ mvnw(crc, crc); // ~crc
1001   __ update_byte_crc32(crc, val, tbl);
1002   __ mvnw(crc, crc); // ~crc
1003 
1004   // result in c_rarg0
1005 
1006   __ andr(sp, r19_sender_sp, -16);
1007   __ ret(lr);
1008 
1009   // generate a vanilla native entry as the slow path
1010   __ bind(slow_path);
1011   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1012   return entry;
1013 }
1014 
1015 /**
1016  * Method entry for static native methods:
1017  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
1018  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
1019  */
1020 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1021   assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1022   address entry = __ pc();
1023 
1024   // rmethod,: Method*
1025   // r19_sender_sp: senderSP must preserved for slow path
1026 
1027   Label slow_path;
1028   // If we need a safepoint check, generate full interpreter entry.
1029   __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */);
1030 
1031   // We don't generate local frame and don't align stack because
1032   // we call stub code and there is no safepoint on this path.
1033 
1034   // Load parameters
1035   const Register crc = c_rarg0;  // crc
1036   const Register buf = c_rarg1;  // source java byte array address
1037   const Register len = c_rarg2;  // length
1038   const Register off = len;      // offset (never overlaps with 'len')
1039 
1040   // Arguments are reversed on java expression stack
1041   // Calculate address of start element
1042   if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
1043     __ ldr(buf, Address(esp, 2*wordSize)); // long buf
1044     __ ldrw(off, Address(esp, wordSize)); // offset
1045     __ add(buf, buf, off); // + offset
1046     __ ldrw(crc,   Address(esp, 4*wordSize)); // Initial CRC
1047   } else {
1048     __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array
1049     __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1050     __ ldrw(off, Address(esp, wordSize)); // offset
1051     __ add(buf, buf, off); // + offset
1052     __ ldrw(crc,   Address(esp, 3*wordSize)); // Initial CRC
1053   }
1054   // Can now load 'len' since we're finished with 'off'
1055   __ ldrw(len, Address(esp, 0x0)); // Length
1056 
1057   __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP
1058 
1059   // We are frameless so we can just jump to the stub.
1060   __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()));
1061 
1062   // generate a vanilla native entry as the slow path
1063   __ bind(slow_path);
1064   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1065   return entry;
1066 }
1067 
1068 /**
1069  * Method entry for intrinsic-candidate (non-native) methods:
1070  *   int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
1071  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
1072  * Unlike CRC32, CRC32C does not have any methods marked as native
1073  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1074  */
1075 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1076   assert(UseCRC32CIntrinsics, "this intrinsic is not supported");
1077   address entry = __ pc();
1078 
1079   // Prepare jump to stub using parameters from the stack
1080   const Register crc = c_rarg0; // initial crc
1081   const Register buf = c_rarg1; // source java byte array address
1082   const Register len = c_rarg2; // len argument to the kernel
1083 
1084   const Register end = len; // index of last element to process
1085   const Register off = crc; // offset
1086 
1087   __ ldrw(end, Address(esp)); // int end
1088   __ ldrw(off, Address(esp, wordSize)); // int offset
1089   __ sub(len, end, off);
1090   __ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf
1091   __ add(buf, buf, off); // + offset
1092   if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) {
1093     __ ldrw(crc, Address(esp, 4*wordSize)); // long crc
1094   } else {
1095     __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1096     __ ldrw(crc, Address(esp, 3*wordSize)); // long crc
1097   }
1098 
1099   __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP
1100 
1101   // Jump to the stub.
1102   __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C()));
1103 
1104   return entry;
1105 }
1106 
1107 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1108   // See more discussion in stackOverflow.hpp.
1109 
1110   const int shadow_zone_size = checked_cast<int>(StackOverflow::stack_shadow_zone_size());
1111   const int page_size = (int)os::vm_page_size();
1112   const int n_shadow_pages = shadow_zone_size / page_size;
1113 
1114 #ifdef ASSERT
1115   Label L_good_limit;
1116   __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit()));
1117   __ cbnz(rscratch1, L_good_limit);
1118   __ stop("shadow zone safe limit is not initialized");
1119   __ bind(L_good_limit);
1120 
1121   Label L_good_watermark;
1122   __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark()));
1123   __ cbnz(rscratch1, L_good_watermark);
1124   __ stop("shadow zone growth watermark is not initialized");
1125   __ bind(L_good_watermark);
1126 #endif
1127 
1128   Label L_done;
1129 
1130   __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark()));
1131   __ cmp(sp, rscratch1);
1132   __ br(Assembler::HI, L_done);
1133 
1134   for (int p = 1; p <= n_shadow_pages; p++) {
1135     __ sub(rscratch2, sp, p*page_size);
1136     __ str(zr, Address(rscratch2));
1137   }
1138 
1139   // Record the new watermark, but only if the update is above the safe limit.
1140   // Otherwise, the next time around the check above would pass the safe limit.
1141   __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit()));
1142   __ cmp(sp, rscratch1);
1143   __ br(Assembler::LS, L_done);
1144   __ mov(rscratch1, sp);
1145   __ str(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark()));
1146 
1147   __ bind(L_done);
1148 }
1149 
1150 // Interpreter stub for calling a native method. (asm interpreter)
1151 // This sets up a somewhat different looking stack for calling the
1152 // native method than the typical interpreter frame setup.
1153 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1154   // determine code generation flags
1155   bool inc_counter  = UseCompiler || CountCompiledCalls;
1156 
1157   // r1: Method*
1158   // rscratch1: sender sp
1159 
1160   address entry_point = __ pc();
1161 
1162   const Address constMethod       (rmethod, Method::const_offset());
1163   const Address access_flags      (rmethod, Method::access_flags_offset());
1164   const Address size_of_parameters(r2, ConstMethod::
1165                                        size_of_parameters_offset());
1166 
1167   // get parameter size (always needed)
1168   __ ldr(r2, constMethod);
1169   __ load_unsigned_short(r2, size_of_parameters);
1170 
1171   // Native calls don't need the stack size check since they have no
1172   // expression stack and the arguments are already on the stack and
1173   // we only add a handful of words to the stack.
1174 
1175   // rmethod: Method*
1176   // r2: size of parameters
1177   // rscratch1: sender sp
1178 
1179   // for natives the size of locals is zero
1180 
1181   // compute beginning of parameters (rlocals)
1182   __ add(rlocals, esp, r2, ext::uxtx, 3);
1183   __ add(rlocals, rlocals, -wordSize);
1184 
1185   // Pull SP back to minimum size: this avoids holes in the stack
1186   __ andr(sp, esp, -16);
1187 
1188   // initialize fixed part of activation frame
1189   generate_fixed_frame(true);
1190 
1191   // make sure method is native & not abstract
1192 #ifdef ASSERT
1193   __ ldrw(r0, access_flags);
1194   {
1195     Label L;
1196     __ tst(r0, JVM_ACC_NATIVE);
1197     __ br(Assembler::NE, L);
1198     __ stop("tried to execute non-native method as native");
1199     __ bind(L);
1200   }
1201   {
1202     Label L;
1203     __ tst(r0, JVM_ACC_ABSTRACT);
1204     __ br(Assembler::EQ, L);
1205     __ stop("tried to execute abstract method in interpreter");
1206     __ bind(L);
1207   }
1208 #endif
1209 
1210   // Since at this point in the method invocation the exception
1211   // handler would try to exit the monitor of synchronized methods
1212   // which hasn't been entered yet, we set the thread local variable
1213   // _do_not_unlock_if_synchronized to true. The remove_activation
1214   // will check this flag.
1215 
1216    const Address do_not_unlock_if_synchronized(rthread,
1217         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1218   __ mov(rscratch2, true);
1219   __ strb(rscratch2, do_not_unlock_if_synchronized);
1220 
1221   // increment invocation count & check for overflow
1222   Label invocation_counter_overflow;
1223   if (inc_counter) {
1224     generate_counter_incr(&invocation_counter_overflow);
1225   }
1226 
1227   Label continue_after_compile;
1228   __ bind(continue_after_compile);
1229 
1230   bang_stack_shadow_pages(true);
1231 
1232   // reset the _do_not_unlock_if_synchronized flag
1233   __ strb(zr, do_not_unlock_if_synchronized);
1234 
1235   // check for synchronized methods
1236   // Must happen AFTER invocation_counter check and stack overflow check,
1237   // so method is not locked if overflows.
1238   if (synchronized) {
1239     lock_method();
1240   } else {
1241     // no synchronization necessary
1242 #ifdef ASSERT
1243     {
1244       Label L;
1245       __ ldrw(r0, access_flags);
1246       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1247       __ br(Assembler::EQ, L);
1248       __ stop("method needs synchronization");
1249       __ bind(L);
1250     }
1251 #endif
1252   }
1253 
1254   // start execution
1255 #ifdef ASSERT
1256   {
1257     Label L;
1258     const Address monitor_block_top(rfp,
1259                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1260     __ ldr(rscratch1, monitor_block_top);
1261     __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
1262     __ cmp(esp, rscratch1);
1263     __ br(Assembler::EQ, L);
1264     __ stop("broken stack frame setup in interpreter 1");
1265     __ bind(L);
1266   }
1267 #endif
1268 
1269   // jvmti support
1270   __ notify_method_entry();
1271 
1272   // work registers
1273   const Register t = r17;
1274   const Register result_handler = r19;
1275 
1276   // allocate space for parameters
1277   __ ldr(t, Address(rmethod, Method::const_offset()));
1278   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
1279 
1280   __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize);
1281   __ andr(sp, rscratch1, -16);
1282   __ mov(esp, rscratch1);
1283 
1284   // get signature handler
1285   {
1286     Label L;
1287     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1288     __ cbnz(t, L);
1289     __ call_VM(noreg,
1290                CAST_FROM_FN_PTR(address,
1291                                 InterpreterRuntime::prepare_native_call),
1292                rmethod);
1293     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1294     __ bind(L);
1295   }
1296 
1297   // call signature handler
1298   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals,
1299          "adjust this code");
1300   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp,
1301          "adjust this code");
1302   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
1303           "adjust this code");
1304 
1305   // The generated handlers do not touch rmethod (the method).
1306   // However, large signatures cannot be cached and are generated
1307   // each time here.  The slow-path generator can do a GC on return,
1308   // so we must reload it after the call.
1309   __ blr(t);
1310   __ get_method(rmethod);        // slow path can do a GC, reload rmethod
1311 
1312 
1313   // result handler is in r0
1314   // set result handler
1315   __ mov(result_handler, r0);
1316   // pass mirror handle if static call
1317   {
1318     Label L;
1319     __ ldrw(t, Address(rmethod, Method::access_flags_offset()));
1320     __ tbz(t, exact_log2(JVM_ACC_STATIC), L);
1321     // get mirror
1322     __ load_mirror(t, rmethod, r10, rscratch2);
1323     // copy mirror into activation frame
1324     __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize));
1325     // pass handle to mirror
1326     __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize);
1327     __ bind(L);
1328   }
1329 
1330   // get native function entry point in r10
1331   {
1332     Label L;
1333     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1334     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1335     __ lea(rscratch2, unsatisfied);
1336     __ ldr(rscratch2, rscratch2);
1337     __ cmp(r10, rscratch2);
1338     __ br(Assembler::NE, L);
1339     __ call_VM(noreg,
1340                CAST_FROM_FN_PTR(address,
1341                                 InterpreterRuntime::prepare_native_call),
1342                rmethod);
1343     __ get_method(rmethod);
1344     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1345     __ bind(L);
1346   }
1347 
1348   // pass JNIEnv
1349   __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset()));
1350 
1351   // Set the last Java PC in the frame anchor to be the return address from
1352   // the call to the native method: this will allow the debugger to
1353   // generate an accurate stack trace.
1354   Label native_return;
1355   __ set_last_Java_frame(esp, rfp, native_return, rscratch1);
1356 
1357   // change thread state
1358 #ifdef ASSERT
1359   {
1360     Label L;
1361     __ ldrw(t, Address(rthread, JavaThread::thread_state_offset()));
1362     __ cmp(t, (u1)_thread_in_Java);
1363     __ br(Assembler::EQ, L);
1364     __ stop("Wrong thread state in native stub");
1365     __ bind(L);
1366   }
1367 #endif
1368 
1369   // Change state to native
1370   __ mov(rscratch1, _thread_in_native);
1371   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1372   __ stlrw(rscratch1, rscratch2);
1373 
1374   // Call the native method.
1375   __ blr(r10);
1376   __ bind(native_return);
1377   __ get_method(rmethod);
1378   // result potentially in r0 or v0
1379 
1380   // Restore cpu control state after JNI call
1381   __ restore_cpu_control_state_after_jni(rscratch1, rscratch2);
1382 
1383   // make room for the pushes we're about to do
1384   __ sub(rscratch1, esp, 4 * wordSize);
1385   __ andr(sp, rscratch1, -16);
1386 
1387   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
1388   // in order to extract the result of a method call. If the order of these
1389   // pushes change or anything else is added to the stack then the code in
1390   // interpreter_frame_result must also change.
1391   __ push(dtos);
1392   __ push(ltos);
1393 
1394   __ verify_sve_vector_length();
1395 
1396   // change thread state
1397   __ mov(rscratch1, _thread_in_native_trans);
1398   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1399   __ stlrw(rscratch1, rscratch2);
1400 
1401   // Force this write out before the read below
1402   if (!UseSystemMemoryBarrier) {
1403     __ dmb(Assembler::ISH);
1404   }
1405 
1406   // check for safepoint operation in progress and/or pending suspend requests
1407   {
1408     Label L, Continue;
1409 
1410     // No need for acquire as Java threads always disarm themselves.
1411     __ safepoint_poll(L, true /* at_return */, false /* acquire */, false /* in_nmethod */);
1412     __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset()));
1413     __ cbz(rscratch2, Continue);
1414     __ bind(L);
1415 
1416     // Don't use call_VM as it will see a possible pending exception
1417     // and forward it and never return here preventing us from
1418     // clearing _last_native_pc down below. So we do a runtime call by
1419     // hand.
1420     //
1421     __ mov(c_rarg0, rthread);
1422     __ lea(rscratch2, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
1423     __ blr(rscratch2);
1424     __ get_method(rmethod);
1425     __ reinit_heapbase();
1426     __ bind(Continue);
1427   }
1428 
1429   // change thread state
1430   __ mov(rscratch1, _thread_in_Java);
1431   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1432   __ stlrw(rscratch1, rscratch2);
1433 
1434   // reset_last_Java_frame
1435   __ reset_last_Java_frame(true);
1436 
1437   if (CheckJNICalls) {
1438     // clear_pending_jni_exception_check
1439     __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1440   }
1441 
1442   // reset handle block
1443   __ ldr(t, Address(rthread, JavaThread::active_handles_offset()));
1444   __ str(zr, Address(t, JNIHandleBlock::top_offset()));
1445 
1446   // If result is an oop unbox and store it in frame where gc will see it
1447   // and result handler will pick it up
1448 
1449   {
1450     Label no_oop;
1451     __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
1452     __ cmp(t, result_handler);
1453     __ br(Assembler::NE, no_oop);
1454     // Unbox oop result, e.g. JNIHandles::resolve result.
1455     __ pop(ltos);
1456     __ resolve_jobject(r0, t, rscratch2);
1457     __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
1458     // keep stack depth as expected by pushing oop which will eventually be discarded
1459     __ push(ltos);
1460     __ bind(no_oop);
1461   }
1462 
1463   {
1464     Label no_reguard;
1465     __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset())));
1466     __ ldrw(rscratch1, Address(rscratch1));
1467     __ cmp(rscratch1, (u1)StackOverflow::stack_guard_yellow_reserved_disabled);
1468     __ br(Assembler::NE, no_reguard);
1469 
1470     __ push_call_clobbered_registers();
1471     __ mov(c_rarg0, rthread);
1472     __ lea(rscratch2, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1473     __ blr(rscratch2);
1474     __ pop_call_clobbered_registers();
1475 
1476     __ bind(no_reguard);
1477   }
1478 
1479   // The method register is junk from after the thread_in_native transition
1480   // until here.  Also can't call_VM until the bcp has been
1481   // restored.  Need bcp for throwing exception below so get it now.
1482   __ get_method(rmethod);
1483 
1484   // restore bcp to have legal interpreter frame, i.e., bci == 0 <=>
1485   // rbcp == code_base()
1486   __ ldr(rbcp, Address(rmethod, Method::const_offset()));   // get ConstMethod*
1487   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));          // get codebase
1488   // handle exceptions (exception handling will handle unlocking!)
1489   {
1490     Label L;
1491     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
1492     __ cbz(rscratch1, L);
1493     // Note: At some point we may want to unify this with the code
1494     // used in call_VM_base(); i.e., we should use the
1495     // StubRoutines::forward_exception code. For now this doesn't work
1496     // here because the rsp is not correctly set at this point.
1497     __ MacroAssembler::call_VM(noreg,
1498                                CAST_FROM_FN_PTR(address,
1499                                InterpreterRuntime::throw_pending_exception));
1500     __ should_not_reach_here();
1501     __ bind(L);
1502   }
1503 
1504   // do unlocking if necessary
1505   {
1506     Label L;
1507     __ ldrw(t, Address(rmethod, Method::access_flags_offset()));
1508     __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L);
1509     // the code below should be shared with interpreter macro
1510     // assembler implementation
1511     {
1512       Label unlock;
1513       // BasicObjectLock will be first in list, since this is a
1514       // synchronized method. However, need to check that the object
1515       // has not been unlocked by an explicit monitorexit bytecode.
1516 
1517       // monitor expect in c_rarg1 for slow unlock path
1518       __ lea (c_rarg1, Address(rfp,   // address of first monitor
1519                                (intptr_t)(frame::interpreter_frame_initial_sp_offset *
1520                                           wordSize - sizeof(BasicObjectLock))));
1521 
1522       __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset()));
1523       __ cbnz(t, unlock);
1524 
1525       // Entry already unlocked, need to throw exception
1526       __ MacroAssembler::call_VM(noreg,
1527                                  CAST_FROM_FN_PTR(address,
1528                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1529       __ should_not_reach_here();
1530 
1531       __ bind(unlock);
1532       __ unlock_object(c_rarg1);
1533     }
1534     __ bind(L);
1535   }
1536 
1537   // jvmti support
1538   // Note: This must happen _after_ handling/throwing any exceptions since
1539   //       the exception handler code notifies the runtime of method exits
1540   //       too. If this happens before, method entry/exit notifications are
1541   //       not properly paired (was bug - gri 11/22/99).
1542   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1543 
1544   // restore potential result in r0:d0, call result handler to
1545   // restore potential result in ST0 & handle result
1546 
1547   __ pop(ltos);
1548   __ pop(dtos);
1549 
1550   __ blr(result_handler);
1551 
1552   // remove activation
1553   __ ldr(esp, Address(rfp,
1554                     frame::interpreter_frame_sender_sp_offset *
1555                     wordSize)); // get sender sp
1556   // remove frame anchor
1557   __ leave();
1558 
1559   // restore sender sp
1560   __ mov(sp, esp);
1561 
1562   __ ret(lr);
1563 
1564   if (inc_counter) {
1565     // Handle overflow of counter and compile method
1566     __ bind(invocation_counter_overflow);
1567     generate_counter_overflow(continue_after_compile);
1568   }
1569 
1570   return entry_point;
1571 }
1572 
1573 //
1574 // Generic interpreted method entry to (asm) interpreter
1575 //
1576 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1577   // determine code generation flags
1578   bool inc_counter  = UseCompiler || CountCompiledCalls;
1579 
1580   // rscratch1: sender sp
1581   address entry_point = __ pc();
1582 
1583   const Address constMethod(rmethod, Method::const_offset());
1584   const Address access_flags(rmethod, Method::access_flags_offset());
1585   const Address size_of_parameters(r3,
1586                                    ConstMethod::size_of_parameters_offset());
1587   const Address size_of_locals(r3, ConstMethod::size_of_locals_offset());
1588 
1589   // get parameter size (always needed)
1590   // need to load the const method first
1591   __ ldr(r3, constMethod);
1592   __ load_unsigned_short(r2, size_of_parameters);
1593 
1594   // r2: size of parameters
1595 
1596   __ load_unsigned_short(r3, size_of_locals); // get size of locals in words
1597   __ sub(r3, r3, r2); // r3 = no. of additional locals
1598 
1599   // see if we've got enough room on the stack for locals plus overhead.
1600   generate_stack_overflow_check();
1601 
1602   // compute beginning of parameters (rlocals)
1603   __ add(rlocals, esp, r2, ext::uxtx, 3);
1604   __ sub(rlocals, rlocals, wordSize);
1605 
1606   __ mov(rscratch1, esp);
1607 
1608   // r3 - # of additional locals
1609   // allocate space for locals
1610   // explicitly initialize locals
1611   // Initializing memory allocated for locals in the same direction as
1612   // the stack grows to ensure page initialization order according
1613   // to windows-aarch64 stack page growth requirement (see
1614   // https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-160#stack)
1615   {
1616     Label exit, loop;
1617     __ ands(zr, r3, r3);
1618     __ br(Assembler::LE, exit); // do nothing if r3 <= 0
1619     __ bind(loop);
1620     __ str(zr, Address(__ pre(rscratch1, -wordSize)));
1621     __ sub(r3, r3, 1); // until everything initialized
1622     __ cbnz(r3, loop);
1623     __ bind(exit);
1624   }
1625 
1626   // Padding between locals and fixed part of activation frame to ensure
1627   // SP is always 16-byte aligned.
1628   __ andr(sp, rscratch1, -16);
1629 
1630   // And the base dispatch table
1631   __ get_dispatch();
1632 
1633   // initialize fixed part of activation frame
1634   generate_fixed_frame(false);
1635 
1636   // make sure method is not native & not abstract
1637 #ifdef ASSERT
1638   __ ldrw(r0, access_flags);
1639   {
1640     Label L;
1641     __ tst(r0, JVM_ACC_NATIVE);
1642     __ br(Assembler::EQ, L);
1643     __ stop("tried to execute native method as non-native");
1644     __ bind(L);
1645   }
1646  {
1647     Label L;
1648     __ tst(r0, JVM_ACC_ABSTRACT);
1649     __ br(Assembler::EQ, L);
1650     __ stop("tried to execute abstract method in interpreter");
1651     __ bind(L);
1652   }
1653 #endif
1654 
1655   // Since at this point in the method invocation the exception
1656   // handler would try to exit the monitor of synchronized methods
1657   // which hasn't been entered yet, we set the thread local variable
1658   // _do_not_unlock_if_synchronized to true. The remove_activation
1659   // will check this flag.
1660 
1661    const Address do_not_unlock_if_synchronized(rthread,
1662         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1663   __ mov(rscratch2, true);
1664   __ strb(rscratch2, do_not_unlock_if_synchronized);
1665 
1666   Register mdp = r3;
1667   __ profile_parameters_type(mdp, r1, r2);
1668 
1669   // increment invocation count & check for overflow
1670   Label invocation_counter_overflow;
1671   if (inc_counter) {
1672     generate_counter_incr(&invocation_counter_overflow);
1673   }
1674 
1675   Label continue_after_compile;
1676   __ bind(continue_after_compile);
1677 
1678   bang_stack_shadow_pages(false);
1679 
1680   // reset the _do_not_unlock_if_synchronized flag
1681   __ strb(zr, do_not_unlock_if_synchronized);
1682 
1683   // check for synchronized methods
1684   // Must happen AFTER invocation_counter check and stack overflow check,
1685   // so method is not locked if overflows.
1686   if (synchronized) {
1687     // Allocate monitor and lock method
1688     lock_method();
1689   } else {
1690     // no synchronization necessary
1691 #ifdef ASSERT
1692     {
1693       Label L;
1694       __ ldrw(r0, access_flags);
1695       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1696       __ br(Assembler::EQ, L);
1697       __ stop("method needs synchronization");
1698       __ bind(L);
1699     }
1700 #endif
1701   }
1702 
1703   // start execution
1704 #ifdef ASSERT
1705   {
1706     Label L;
1707      const Address monitor_block_top (rfp,
1708                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1709     __ ldr(rscratch1, monitor_block_top);
1710     __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
1711     __ cmp(esp, rscratch1);
1712     __ br(Assembler::EQ, L);
1713     __ stop("broken stack frame setup in interpreter 2");
1714     __ bind(L);
1715   }
1716 #endif
1717 
1718   // jvmti support
1719   __ notify_method_entry();
1720 
1721   __ dispatch_next(vtos);
1722 
1723   // invocation counter overflow
1724   if (inc_counter) {
1725     // Handle overflow of counter and compile method
1726     __ bind(invocation_counter_overflow);
1727     generate_counter_overflow(continue_after_compile);
1728   }
1729 
1730   return entry_point;
1731 }
1732 
1733 // Method entry for java.lang.Thread.currentThread
1734 address TemplateInterpreterGenerator::generate_currentThread() {
1735   address entry_point = __ pc();
1736 
1737   __ ldr(r0, Address(rthread, JavaThread::vthread_offset()));
1738   __ resolve_oop_handle(r0, rscratch1, rscratch2);
1739   __ ret(lr);
1740 
1741   return entry_point;
1742 }
1743 
1744 // Not supported
1745 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; }
1746 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; }
1747 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; }
1748 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; }
1749 
1750 //-----------------------------------------------------------------------------
1751 // Exceptions
1752 
1753 void TemplateInterpreterGenerator::generate_throw_exception() {
1754   // Entry point in previous activation (i.e., if the caller was
1755   // interpreted)
1756   Interpreter::_rethrow_exception_entry = __ pc();
1757   // Restore sp to interpreter_frame_last_sp even though we are going
1758   // to empty the expression stack for the exception processing.
1759   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1760   // r0: exception
1761   // r3: return address/pc that threw exception
1762   __ restore_bcp();    // rbcp points to call/send
1763   __ restore_locals();
1764   __ restore_constant_pool_cache();
1765   __ reinit_heapbase();  // restore rheapbase as heapbase.
1766   __ get_dispatch();
1767 
1768   // Entry point for exceptions thrown within interpreter code
1769   Interpreter::_throw_exception_entry = __ pc();
1770   // If we came here via a NullPointerException on the receiver of a
1771   // method, rmethod may be corrupt.
1772   __ get_method(rmethod);
1773   // expression stack is undefined here
1774   // r0: exception
1775   // rbcp: exception bcp
1776   __ verify_oop(r0);
1777   __ mov(c_rarg1, r0);
1778 
1779   // expression stack must be empty before entering the VM in case of
1780   // an exception
1781   __ empty_expression_stack();
1782   // find exception handler address and preserve exception oop
1783   __ call_VM(r3,
1784              CAST_FROM_FN_PTR(address,
1785                           InterpreterRuntime::exception_handler_for_exception),
1786              c_rarg1);
1787 
1788   // Restore machine SP
1789   __ restore_sp_after_call();
1790 
1791   // r0: exception handler entry point
1792   // r3: preserved exception oop
1793   // rbcp: bcp for exception handler
1794   __ push_ptr(r3); // push exception which is now the only value on the stack
1795   __ br(r0); // jump to exception handler (may be _remove_activation_entry!)
1796 
1797   // If the exception is not handled in the current frame the frame is
1798   // removed and the exception is rethrown (i.e. exception
1799   // continuation is _rethrow_exception).
1800   //
1801   // Note: At this point the bci is still the bxi for the instruction
1802   // which caused the exception and the expression stack is
1803   // empty. Thus, for any VM calls at this point, GC will find a legal
1804   // oop map (with empty expression stack).
1805 
1806   //
1807   // JVMTI PopFrame support
1808   //
1809 
1810   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1811   __ empty_expression_stack();
1812   // Set the popframe_processing bit in pending_popframe_condition
1813   // indicating that we are currently handling popframe, so that
1814   // call_VMs that may happen later do not trigger new popframe
1815   // handling cycles.
1816   __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1817   __ orr(r3, r3, JavaThread::popframe_processing_bit);
1818   __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1819 
1820   {
1821     // Check to see whether we are returning to a deoptimized frame.
1822     // (The PopFrame call ensures that the caller of the popped frame is
1823     // either interpreted or compiled and deoptimizes it if compiled.)
1824     // In this case, we can't call dispatch_next() after the frame is
1825     // popped, but instead must save the incoming arguments and restore
1826     // them after deoptimization has occurred.
1827     //
1828     // Note that we don't compare the return PC against the
1829     // deoptimization blob's unpack entry because of the presence of
1830     // adapter frames in C2.
1831     Label caller_not_deoptimized;
1832     __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize));
1833     // This is a return address, so requires authenticating for PAC.
1834     __ authenticate_return_address(c_rarg1);
1835     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1836                                InterpreterRuntime::interpreter_contains), c_rarg1);
1837     __ cbnz(r0, caller_not_deoptimized);
1838 
1839     // Compute size of arguments for saving when returning to
1840     // deoptimized caller
1841     __ get_method(r0);
1842     __ ldr(r0, Address(r0, Method::const_offset()));
1843     __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod::
1844                                                     size_of_parameters_offset())));
1845     __ lsl(r0, r0, Interpreter::logStackElementSize);
1846     __ restore_locals(); // XXX do we need this?
1847     __ sub(rlocals, rlocals, r0);
1848     __ add(rlocals, rlocals, wordSize);
1849     // Save these arguments
1850     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1851                                            Deoptimization::
1852                                            popframe_preserve_args),
1853                           rthread, r0, rlocals);
1854 
1855     __ remove_activation(vtos,
1856                          /* throw_monitor_exception */ false,
1857                          /* install_monitor_exception */ false,
1858                          /* notify_jvmdi */ false);
1859 
1860     // Inform deoptimization that it is responsible for restoring
1861     // these arguments
1862     __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit);
1863     __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
1864 
1865     // Continue in deoptimization handler
1866     __ ret(lr);
1867 
1868     __ bind(caller_not_deoptimized);
1869   }
1870 
1871   __ remove_activation(vtos,
1872                        /* throw_monitor_exception */ false,
1873                        /* install_monitor_exception */ false,
1874                        /* notify_jvmdi */ false);
1875 
1876   // Restore the last_sp and null it out
1877   __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1878   __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
1879   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1880 
1881   __ restore_bcp();
1882   __ restore_locals();
1883   __ restore_constant_pool_cache();
1884   __ get_method(rmethod);
1885   __ get_dispatch();
1886 
1887   // The method data pointer was incremented already during
1888   // call profiling. We have to restore the mdp for the current bcp.
1889   if (ProfileInterpreter) {
1890     __ set_method_data_pointer_for_bcp();
1891   }
1892 
1893   // Clear the popframe condition flag
1894   __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset()));
1895   assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive");
1896 
1897 #if INCLUDE_JVMTI
1898   {
1899     Label L_done;
1900 
1901     __ ldrb(rscratch1, Address(rbcp, 0));
1902     __ cmpw(rscratch1, Bytecodes::_invokestatic);
1903     __ br(Assembler::NE, L_done);
1904 
1905     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1906     // Detect such a case in the InterpreterRuntime function and return the member name argument, or null.
1907 
1908     __ ldr(c_rarg0, Address(rlocals, 0));
1909     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp);
1910 
1911     __ cbz(r0, L_done);
1912 
1913     __ str(r0, Address(esp, 0));
1914     __ bind(L_done);
1915   }
1916 #endif // INCLUDE_JVMTI
1917 
1918   // Restore machine SP
1919   __ restore_sp_after_call();
1920 
1921   __ dispatch_next(vtos);
1922   // end of PopFrame support
1923 
1924   Interpreter::_remove_activation_entry = __ pc();
1925 
1926   // preserve exception over this code sequence
1927   __ pop_ptr(r0);
1928   __ str(r0, Address(rthread, JavaThread::vm_result_offset()));
1929   // remove the activation (without doing throws on illegalMonitorExceptions)
1930   __ remove_activation(vtos, false, true, false);
1931   // restore exception
1932   __ get_vm_result(r0, rthread);
1933 
1934   // In between activations - previous activation type unknown yet
1935   // compute continuation point - the continuation point expects the
1936   // following registers set up:
1937   //
1938   // r0: exception
1939   // lr: return address/pc that threw exception
1940   // esp: expression stack of caller
1941   // rfp: fp of caller
1942   __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize)));  // save exception & return address
1943   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1944                           SharedRuntime::exception_handler_for_return_address),
1945                         rthread, lr);
1946   __ mov(r1, r0);                               // save exception handler
1947   __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize)));  // restore exception & return address
1948   // We might be returning to a deopt handler that expects r3 to
1949   // contain the exception pc
1950   __ mov(r3, lr);
1951   // Note that an "issuing PC" is actually the next PC after the call
1952   __ br(r1);                                    // jump to exception
1953                                                 // handler of caller
1954 }
1955 
1956 
1957 //
1958 // JVMTI ForceEarlyReturn support
1959 //
1960 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1961   address entry = __ pc();
1962 
1963   __ restore_bcp();
1964   __ restore_locals();
1965   __ empty_expression_stack();
1966   __ load_earlyret_value(state);
1967 
1968   __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
1969   Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset());
1970 
1971   // Clear the earlyret state
1972   assert(JvmtiThreadState::earlyret_inactive == 0, "should be");
1973   __ str(zr, cond_addr);
1974 
1975   __ remove_activation(state,
1976                        false, /* throw_monitor_exception */
1977                        false, /* install_monitor_exception */
1978                        true); /* notify_jvmdi */
1979   __ ret(lr);
1980 
1981   return entry;
1982 } // end of ForceEarlyReturn support
1983 
1984 
1985 
1986 //-----------------------------------------------------------------------------
1987 // Helper for vtos entry point generation
1988 
1989 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
1990                                                          address& bep,
1991                                                          address& cep,
1992                                                          address& sep,
1993                                                          address& aep,
1994                                                          address& iep,
1995                                                          address& lep,
1996                                                          address& fep,
1997                                                          address& dep,
1998                                                          address& vep) {
1999   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2000   Label L;
2001   aep = __ pc();  __ push_ptr();  __ b(L);
2002   fep = __ pc();  __ push_f();    __ b(L);
2003   dep = __ pc();  __ push_d();    __ b(L);
2004   lep = __ pc();  __ push_l();    __ b(L);
2005   bep = cep = sep =
2006   iep = __ pc();  __ push_i();
2007   vep = __ pc();
2008   __ bind(L);
2009   generate_and_dispatch(t);
2010 }
2011 
2012 //-----------------------------------------------------------------------------
2013 
2014 // Non-product code
2015 #ifndef PRODUCT
2016 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2017   address entry = __ pc();
2018 
2019   __ protect_return_address();
2020   __ push(lr);
2021   __ push(state);
2022   __ push(RegSet::range(r0, r15), sp);
2023   __ mov(c_rarg2, r0);  // Pass itos
2024   __ call_VM(noreg,
2025              CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode),
2026              c_rarg1, c_rarg2, c_rarg3);
2027   __ pop(RegSet::range(r0, r15), sp);
2028   __ pop(state);
2029   __ pop(lr);
2030   __ authenticate_return_address();
2031   __ ret(lr);                                   // return from result handler
2032 
2033   return entry;
2034 }
2035 
2036 void TemplateInterpreterGenerator::count_bytecode() {
2037   __ mov(r10, (address) &BytecodeCounter::_counter_value);
2038   __ atomic_addw(noreg, 1, r10);
2039 }
2040 
2041 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2042   __ mov(r10, (address) &BytecodeHistogram::_counters[t->bytecode()]);
2043   __ atomic_addw(noreg, 1, r10);
2044 }
2045 
2046 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2047   // Calculate new index for counter:
2048   //   _index = (_index >> log2_number_of_codes) |
2049   //            (bytecode << log2_number_of_codes);
2050   Register index_addr = rscratch1;
2051   Register index = rscratch2;
2052   __ mov(index_addr, (address) &BytecodePairHistogram::_index);
2053   __ ldrw(index, index_addr);
2054   __ mov(r10,
2055          ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
2056   __ orrw(index, r10, index, Assembler::LSR,
2057           BytecodePairHistogram::log2_number_of_codes);
2058   __ strw(index, index_addr);
2059 
2060   // Bump bucket contents:
2061   //   _counters[_index] ++;
2062   Register counter_addr = rscratch1;
2063   __ mov(r10, (address) &BytecodePairHistogram::_counters);
2064   __ lea(counter_addr, Address(r10, index, Address::lsl(LogBytesPerInt)));
2065   __ atomic_addw(noreg, 1, counter_addr);
2066 }
2067 
2068 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2069   // Call a little run-time stub to avoid blow-up for each bytecode.
2070   // The run-time runtime saves the right registers, depending on
2071   // the tosca in-state for the given template.
2072 
2073   assert(Interpreter::trace_code(t->tos_in()) != nullptr,
2074          "entry must have been generated");
2075   __ bl(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
2076   __ reinit_heapbase();
2077 }
2078 
2079 
2080 void TemplateInterpreterGenerator::stop_interpreter_at() {
2081   Label L;
2082   __ push(rscratch1);
2083   __ mov(rscratch1, (address) &BytecodeCounter::_counter_value);
2084   __ ldr(rscratch1, Address(rscratch1));
2085   __ mov(rscratch2, StopInterpreterAt);
2086   __ cmpw(rscratch1, rscratch2);
2087   __ br(Assembler::NE, L);
2088   __ brk(0);
2089   __ bind(L);
2090   __ pop(rscratch1);
2091 }
2092 
2093 #endif // !PRODUCT