1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "compiler/compiler_globals.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interpreter/bytecodeHistogram.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "interpreter/interp_masm.hpp" 35 #include "interpreter/templateInterpreterGenerator.hpp" 36 #include "interpreter/templateTable.hpp" 37 #include "interpreter/bytecodeTracer.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "oops/arrayOop.hpp" 40 #include "oops/method.hpp" 41 #include "oops/methodCounters.hpp" 42 #include "oops/methodData.hpp" 43 #include "oops/oop.inline.hpp" 44 #include "oops/resolvedIndyEntry.hpp" 45 #include "oops/resolvedMethodEntry.hpp" 46 #include "prims/jvmtiExport.hpp" 47 #include "prims/jvmtiThreadState.hpp" 48 #include "runtime/arguments.hpp" 49 #include "runtime/deoptimization.hpp" 50 #include "runtime/frame.inline.hpp" 51 #include "runtime/globals.hpp" 52 #include "runtime/jniHandles.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "runtime/synchronizer.hpp" 56 #include "runtime/timer.hpp" 57 #include "runtime/vframeArray.hpp" 58 #include "utilities/checkedCast.hpp" 59 #include "utilities/debug.hpp" 60 #include "utilities/powerOfTwo.hpp" 61 #include <sys/types.h> 62 63 // Size of interpreter code. Increase if too small. Interpreter will 64 // fail with a guarantee ("not enough space for interpreter generation"); 65 // if too small. 66 // Run with +PrintInterpreter to get the VM to print out the size. 67 // Max size with JVMTI 68 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024; 69 70 #define __ _masm-> 71 72 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 73 address entry = __ pc(); 74 75 __ andr(esp, esp, -16); 76 __ mov(c_rarg3, esp); 77 // rmethod 78 // rlocals 79 // c_rarg3: first stack arg - wordSize 80 81 // adjust sp 82 __ sub(sp, c_rarg3, 18 * wordSize); 83 __ str(lr, Address(__ pre(sp, -2 * wordSize))); 84 __ call_VM(noreg, 85 CAST_FROM_FN_PTR(address, 86 InterpreterRuntime::slow_signature_handler), 87 rmethod, rlocals, c_rarg3); 88 89 // r0: result handler 90 91 // Stack layout: 92 // rsp: return address <- sp 93 // 1 garbage 94 // 8 integer args (if static first is unused) 95 // 1 float/double identifiers 96 // 8 double args 97 // stack args <- esp 98 // garbage 99 // expression stack bottom 100 // bcp (null) 101 // ... 102 103 // Restore LR 104 __ ldr(lr, Address(__ post(sp, 2 * wordSize))); 105 106 // Do FP first so we can use c_rarg3 as temp 107 __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers 108 109 for (int i = 0; i < Argument::n_float_register_parameters_c; i++) { 110 const FloatRegister r = as_FloatRegister(i); 111 112 Label d, done; 113 114 __ tbnz(c_rarg3, i, d); 115 __ ldrs(r, Address(sp, (10 + i) * wordSize)); 116 __ b(done); 117 __ bind(d); 118 __ ldrd(r, Address(sp, (10 + i) * wordSize)); 119 __ bind(done); 120 } 121 122 // c_rarg0 contains the result from the call of 123 // InterpreterRuntime::slow_signature_handler so we don't touch it 124 // here. It will be loaded with the JNIEnv* later. 125 __ ldr(c_rarg1, Address(sp, 1 * wordSize)); 126 for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) { 127 Register rm = as_Register(i), rn = as_Register(i+1); 128 __ ldp(rm, rn, Address(sp, i * wordSize)); 129 } 130 131 __ add(sp, sp, 18 * wordSize); 132 __ ret(lr); 133 134 return entry; 135 } 136 137 138 // 139 // Various method entries 140 // 141 142 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 143 // rmethod: Method* 144 // r19_sender_sp: sender sp 145 // esp: args 146 147 // These don't need a safepoint check because they aren't virtually 148 // callable. We won't enter these intrinsics from compiled code. 149 // If in the future we added an intrinsic which was virtually callable 150 // we'd have to worry about how to safepoint so that this code is used. 151 152 // mathematical functions inlined by compiler 153 // (interpreter must provide identical implementation 154 // in order to avoid monotonicity bugs when switching 155 // from interpreter to compiler in the middle of some 156 // computation) 157 // 158 // stack: 159 // [ arg ] <-- esp 160 // [ arg ] 161 // retaddr in lr 162 163 address entry_point = nullptr; 164 Register continuation = lr; 165 switch (kind) { 166 case Interpreter::java_lang_math_abs: 167 entry_point = __ pc(); 168 __ ldrd(v0, Address(esp)); 169 __ fabsd(v0, v0); 170 __ mov(sp, r19_sender_sp); // Restore caller's SP 171 break; 172 case Interpreter::java_lang_math_sqrt: 173 entry_point = __ pc(); 174 __ ldrd(v0, Address(esp)); 175 __ fsqrtd(v0, v0); 176 __ mov(sp, r19_sender_sp); 177 break; 178 case Interpreter::java_lang_math_sin : 179 case Interpreter::java_lang_math_cos : 180 case Interpreter::java_lang_math_tan : 181 case Interpreter::java_lang_math_log : 182 case Interpreter::java_lang_math_log10 : 183 case Interpreter::java_lang_math_exp : 184 entry_point = __ pc(); 185 __ ldrd(v0, Address(esp)); 186 __ mov(sp, r19_sender_sp); 187 __ mov(r23, lr); 188 continuation = r23; // The first free callee-saved register 189 generate_transcendental_entry(kind, 1); 190 break; 191 case Interpreter::java_lang_math_pow : 192 entry_point = __ pc(); 193 __ mov(r23, lr); 194 continuation = r23; 195 __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize)); 196 __ ldrd(v1, Address(esp)); 197 __ mov(sp, r19_sender_sp); 198 generate_transcendental_entry(kind, 2); 199 break; 200 case Interpreter::java_lang_math_fmaD : 201 if (UseFMA) { 202 entry_point = __ pc(); 203 __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize)); 204 __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize)); 205 __ ldrd(v2, Address(esp)); 206 __ fmaddd(v0, v0, v1, v2); 207 __ mov(sp, r19_sender_sp); // Restore caller's SP 208 } 209 break; 210 case Interpreter::java_lang_math_fmaF : 211 if (UseFMA) { 212 entry_point = __ pc(); 213 __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize)); 214 __ ldrs(v1, Address(esp, Interpreter::stackElementSize)); 215 __ ldrs(v2, Address(esp)); 216 __ fmadds(v0, v0, v1, v2); 217 __ mov(sp, r19_sender_sp); // Restore caller's SP 218 } 219 break; 220 default: 221 ; 222 } 223 if (entry_point) { 224 __ br(continuation); 225 } 226 227 return entry_point; 228 } 229 230 // double trigonometrics and transcendentals 231 // static jdouble dsin(jdouble x); 232 // static jdouble dcos(jdouble x); 233 // static jdouble dtan(jdouble x); 234 // static jdouble dlog(jdouble x); 235 // static jdouble dlog10(jdouble x); 236 // static jdouble dexp(jdouble x); 237 // static jdouble dpow(jdouble x, jdouble y); 238 239 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) { 240 address fn; 241 switch (kind) { 242 case Interpreter::java_lang_math_sin : 243 if (StubRoutines::dsin() == nullptr) { 244 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); 245 } else { 246 fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin()); 247 } 248 break; 249 case Interpreter::java_lang_math_cos : 250 if (StubRoutines::dcos() == nullptr) { 251 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); 252 } else { 253 fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos()); 254 } 255 break; 256 case Interpreter::java_lang_math_tan : 257 if (StubRoutines::dtan() == nullptr) { 258 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); 259 } else { 260 fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan()); 261 } 262 break; 263 case Interpreter::java_lang_math_log : 264 if (StubRoutines::dlog() == nullptr) { 265 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); 266 } else { 267 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog()); 268 } 269 break; 270 case Interpreter::java_lang_math_log10 : 271 if (StubRoutines::dlog10() == nullptr) { 272 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); 273 } else { 274 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10()); 275 } 276 break; 277 case Interpreter::java_lang_math_exp : 278 if (StubRoutines::dexp() == nullptr) { 279 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); 280 } else { 281 fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp()); 282 } 283 break; 284 case Interpreter::java_lang_math_pow : 285 if (StubRoutines::dpow() == nullptr) { 286 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 287 } else { 288 fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow()); 289 } 290 break; 291 default: 292 ShouldNotReachHere(); 293 fn = nullptr; // unreachable 294 } 295 __ mov(rscratch1, fn); 296 __ blr(rscratch1); 297 } 298 299 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { 300 assert(VM_Version::supports_float16(), "this intrinsic is not supported"); 301 // r19_sender_sp: sender sp 302 // stack: 303 // [ arg ] <-- esp 304 // [ arg ] 305 // retaddr in lr 306 // result in v0 307 308 address entry_point = __ pc(); 309 __ ldrw(c_rarg0, Address(esp)); 310 __ flt16_to_flt(v0, c_rarg0, v1); 311 __ mov(sp, r19_sender_sp); // Restore caller's SP 312 __ br(lr); 313 return entry_point; 314 } 315 316 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { 317 assert(VM_Version::supports_float16(), "this intrinsic is not supported"); 318 // r19_sender_sp: sender sp 319 // stack: 320 // [ arg ] <-- esp 321 // [ arg ] 322 // retaddr in lr 323 // result in c_rarg0 324 325 address entry_point = __ pc(); 326 __ ldrs(v0, Address(esp)); 327 __ flt_to_flt16(c_rarg0, v0, v1); 328 __ mov(sp, r19_sender_sp); // Restore caller's SP 329 __ br(lr); 330 return entry_point; 331 } 332 333 // Abstract method entry 334 // Attempt to execute abstract method. Throw exception 335 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 336 // rmethod: Method* 337 // r19_sender_sp: sender SP 338 339 address entry_point = __ pc(); 340 341 // abstract method entry 342 343 // pop return address, reset last_sp to null 344 __ empty_expression_stack(); 345 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 346 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 347 348 // throw exception 349 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 350 InterpreterRuntime::throw_AbstractMethodErrorWithMethod), 351 rmethod); 352 // the call_VM checks for exception, so we should never return here. 353 __ should_not_reach_here(); 354 355 return entry_point; 356 } 357 358 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 359 address entry = __ pc(); 360 361 #ifdef ASSERT 362 { 363 Label L; 364 __ ldr(rscratch1, Address(rfp, 365 frame::interpreter_frame_monitor_block_top_offset * 366 wordSize)); 367 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 368 __ mov(rscratch2, sp); 369 __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack 370 // grows negative) 371 __ br(Assembler::HS, L); // check if frame is complete 372 __ stop ("interpreter frame not set up"); 373 __ bind(L); 374 } 375 #endif // ASSERT 376 // Restore bcp under the assumption that the current frame is still 377 // interpreted 378 __ restore_bcp(); 379 380 // expression stack must be empty before entering the VM if an 381 // exception happened 382 __ empty_expression_stack(); 383 // throw exception 384 __ call_VM(noreg, 385 CAST_FROM_FN_PTR(address, 386 InterpreterRuntime::throw_StackOverflowError)); 387 return entry; 388 } 389 390 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 391 address entry = __ pc(); 392 // expression stack must be empty before entering the VM if an 393 // exception happened 394 __ empty_expression_stack(); 395 // setup parameters 396 397 // ??? convention: expect aberrant index in register r1 398 __ movw(c_rarg2, r1); 399 // ??? convention: expect array in register r3 400 __ mov(c_rarg1, r3); 401 __ call_VM(noreg, 402 CAST_FROM_FN_PTR(address, 403 InterpreterRuntime:: 404 throw_ArrayIndexOutOfBoundsException), 405 c_rarg1, c_rarg2); 406 return entry; 407 } 408 409 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 410 address entry = __ pc(); 411 412 // object is at TOS 413 __ pop(c_rarg1); 414 415 // expression stack must be empty before entering the VM if an 416 // exception happened 417 __ empty_expression_stack(); 418 419 __ call_VM(noreg, 420 CAST_FROM_FN_PTR(address, 421 InterpreterRuntime:: 422 throw_ClassCastException), 423 c_rarg1); 424 return entry; 425 } 426 427 address TemplateInterpreterGenerator::generate_exception_handler_common( 428 const char* name, const char* message, bool pass_oop) { 429 assert(!pass_oop || message == nullptr, "either oop or message but not both"); 430 address entry = __ pc(); 431 if (pass_oop) { 432 // object is at TOS 433 __ pop(c_rarg2); 434 } 435 // expression stack must be empty before entering the VM if an 436 // exception happened 437 __ empty_expression_stack(); 438 // setup parameters 439 __ lea(c_rarg1, Address((address)name)); 440 if (pass_oop) { 441 __ call_VM(r0, CAST_FROM_FN_PTR(address, 442 InterpreterRuntime:: 443 create_klass_exception), 444 c_rarg1, c_rarg2); 445 } else { 446 // kind of lame ExternalAddress can't take null because 447 // external_word_Relocation will assert. 448 if (message != nullptr) { 449 __ lea(c_rarg2, Address((address)message)); 450 } else { 451 __ mov(c_rarg2, NULL_WORD); 452 } 453 __ call_VM(r0, 454 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), 455 c_rarg1, c_rarg2); 456 } 457 // throw exception 458 __ b(address(Interpreter::throw_exception_entry())); 459 return entry; 460 } 461 462 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { 463 address entry = __ pc(); 464 465 // Restore stack bottom in case i2c adjusted stack 466 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 467 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 468 // and null it as marker that esp is now tos until next java call 469 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 470 __ restore_bcp(); 471 __ restore_locals(); 472 __ restore_constant_pool_cache(); 473 __ get_method(rmethod); 474 475 if (state == atos) { 476 Register obj = r0; 477 Register mdp = r1; 478 Register tmp = r2; 479 __ profile_return_type(mdp, obj, tmp); 480 } 481 482 const Register cache = r1; 483 const Register index = r2; 484 485 if (index_size == sizeof(u4)) { 486 __ load_resolved_indy_entry(cache, index); 487 __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedIndyEntry::num_parameters_offset()))); 488 __ add(esp, esp, cache, Assembler::LSL, 3); 489 } else { 490 // Pop N words from the stack 491 assert(index_size == sizeof(u2), "Can only be u2"); 492 __ load_method_entry(cache, index); 493 __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 494 __ add(esp, esp, cache, Assembler::LSL, 3); 495 } 496 497 // Restore machine SP 498 __ restore_sp_after_call(); 499 500 __ check_and_handle_popframe(rthread); 501 __ check_and_handle_earlyret(rthread); 502 503 __ get_dispatch(); 504 __ dispatch_next(state, step); 505 506 return entry; 507 } 508 509 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, 510 int step, 511 address continuation) { 512 address entry = __ pc(); 513 __ restore_bcp(); 514 __ restore_locals(); 515 __ restore_constant_pool_cache(); 516 __ get_method(rmethod); 517 __ get_dispatch(); 518 519 __ restore_sp_after_call(); // Restore SP to extended SP 520 521 // Restore expression stack pointer 522 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 523 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 524 // null last_sp until next java call 525 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 526 527 #if INCLUDE_JVMCI 528 // Check if we need to take lock at entry of synchronized method. This can 529 // only occur on method entry so emit it only for vtos with step 0. 530 if (EnableJVMCI && state == vtos && step == 0) { 531 Label L; 532 __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset())); 533 __ cbz(rscratch1, L); 534 // Clear flag. 535 __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset())); 536 // Take lock. 537 lock_method(); 538 __ bind(L); 539 } else { 540 #ifdef ASSERT 541 if (EnableJVMCI) { 542 Label L; 543 __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset())); 544 __ cbz(rscratch1, L); 545 __ stop("unexpected pending monitor in deopt entry"); 546 __ bind(L); 547 } 548 #endif 549 } 550 #endif 551 // handle exceptions 552 { 553 Label L; 554 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 555 __ cbz(rscratch1, L); 556 __ call_VM(noreg, 557 CAST_FROM_FN_PTR(address, 558 InterpreterRuntime::throw_pending_exception)); 559 __ should_not_reach_here(); 560 __ bind(L); 561 } 562 563 if (continuation == nullptr) { 564 __ dispatch_next(state, step); 565 } else { 566 __ jump_to_entry(continuation); 567 } 568 return entry; 569 } 570 571 address TemplateInterpreterGenerator::generate_result_handler_for( 572 BasicType type) { 573 address entry = __ pc(); 574 switch (type) { 575 case T_BOOLEAN: __ c2bool(r0); break; 576 case T_CHAR : __ uxth(r0, r0); break; 577 case T_BYTE : __ sxtb(r0, r0); break; 578 case T_SHORT : __ sxth(r0, r0); break; 579 case T_INT : __ uxtw(r0, r0); break; // FIXME: We almost certainly don't need this 580 case T_LONG : /* nothing to do */ break; 581 case T_VOID : /* nothing to do */ break; 582 case T_FLOAT : /* nothing to do */ break; 583 case T_DOUBLE : /* nothing to do */ break; 584 case T_OBJECT : 585 // retrieve result from frame 586 __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 587 // and verify it 588 __ verify_oop(r0); 589 break; 590 default : ShouldNotReachHere(); 591 } 592 __ ret(lr); // return from result handler 593 return entry; 594 } 595 596 address TemplateInterpreterGenerator::generate_safept_entry_for( 597 TosState state, 598 address runtime_entry) { 599 address entry = __ pc(); 600 __ push(state); 601 __ push_cont_fastpath(rthread); 602 __ call_VM(noreg, runtime_entry); 603 __ pop_cont_fastpath(rthread); 604 __ membar(Assembler::AnyAny); 605 __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos)); 606 return entry; 607 } 608 609 // Helpers for commoning out cases in the various type of method entries. 610 // 611 612 613 // increment invocation count & check for overflow 614 // 615 // Note: checking for negative value instead of overflow 616 // so we have a 'sticky' overflow test 617 // 618 // rmethod: method 619 // 620 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 621 Label done; 622 // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not. 623 int increment = InvocationCounter::count_increment; 624 Label no_mdo; 625 if (ProfileInterpreter) { 626 // Are we profiling? 627 __ ldr(r0, Address(rmethod, Method::method_data_offset())); 628 __ cbz(r0, no_mdo); 629 // Increment counter in the MDO 630 const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) + 631 in_bytes(InvocationCounter::counter_offset())); 632 const Address mask(r0, in_bytes(MethodData::invoke_mask_offset())); 633 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow); 634 __ b(done); 635 } 636 __ bind(no_mdo); 637 // Increment counter in MethodCounters 638 const Address invocation_counter(rscratch2, 639 MethodCounters::invocation_counter_offset() + 640 InvocationCounter::counter_offset()); 641 __ get_method_counters(rmethod, rscratch2, done); 642 const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset())); 643 __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow); 644 __ bind(done); 645 } 646 647 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 648 649 // Asm interpreter on entry 650 // On return (i.e. jump to entry_point) [ back to invocation of interpreter ] 651 // Everything as it was on entry 652 653 // InterpreterRuntime::frequency_counter_overflow takes two 654 // arguments, the first (thread) is passed by call_VM, the second 655 // indicates if the counter overflow occurs at a backwards branch 656 // (null bcp). We pass zero for it. The call returns the address 657 // of the verified entry point for the method or null if the 658 // compilation did not complete (either went background or bailed 659 // out). 660 __ mov(c_rarg1, 0); 661 __ call_VM(noreg, 662 CAST_FROM_FN_PTR(address, 663 InterpreterRuntime::frequency_counter_overflow), 664 c_rarg1); 665 666 __ b(do_continue); 667 } 668 669 // See if we've got enough room on the stack for locals plus overhead 670 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError 671 // without going through the signal handler, i.e., reserved and yellow zones 672 // will not be made usable. The shadow zone must suffice to handle the 673 // overflow. 674 // The expression stack grows down incrementally, so the normal guard 675 // page mechanism will work for that. 676 // 677 // NOTE: Since the additional locals are also always pushed (wasn't 678 // obvious in generate_method_entry) so the guard should work for them 679 // too. 680 // 681 // Args: 682 // r3: number of additional locals this frame needs (what we must check) 683 // rmethod: Method* 684 // 685 // Kills: 686 // r0 687 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) { 688 689 // monitor entry size: see picture of stack set 690 // (generate_method_entry) and frame_amd64.hpp 691 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 692 693 // total overhead size: entry_size + (saved rbp through expr stack 694 // bottom). be sure to change this if you add/subtract anything 695 // to/from the overhead area 696 const int overhead_size = 697 -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size; 698 699 const size_t page_size = os::vm_page_size(); 700 701 Label after_frame_check; 702 703 // see if the frame is greater than one page in size. If so, 704 // then we need to verify there is enough stack space remaining 705 // for the additional locals. 706 // 707 // Note that we use SUBS rather than CMP here because the immediate 708 // field of this instruction may overflow. SUBS can cope with this 709 // because it is a macro that will expand to some number of MOV 710 // instructions and a register operation. 711 __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize); 712 __ br(Assembler::LS, after_frame_check); 713 714 // compute rsp as if this were going to be the last frame on 715 // the stack before the red zone 716 717 // locals + overhead, in bytes 718 __ mov(r0, overhead_size); 719 __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize); // 2 slots per parameter. 720 721 const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset()); 722 __ ldr(rscratch1, stack_limit); 723 724 #ifdef ASSERT 725 Label limit_okay; 726 // Verify that thread stack limit is non-zero. 727 __ cbnz(rscratch1, limit_okay); 728 __ stop("stack overflow limit is zero"); 729 __ bind(limit_okay); 730 #endif 731 732 // Add stack limit to locals. 733 __ add(r0, r0, rscratch1); 734 735 // Check against the current stack bottom. 736 __ cmp(sp, r0); 737 __ br(Assembler::HI, after_frame_check); 738 739 // Remove the incoming args, peeling the machine SP back to where it 740 // was in the caller. This is not strictly necessary, but unless we 741 // do so the stack frame may have a garbage FP; this ensures a 742 // correct call stack that we can always unwind. The ANDR should be 743 // unnecessary because the sender SP in r19 is always aligned, but 744 // it doesn't hurt. 745 __ andr(sp, r19_sender_sp, -16); 746 747 // Note: the restored frame is not necessarily interpreted. 748 // Use the shared runtime version of the StackOverflowError. 749 assert(SharedRuntime::throw_StackOverflowError_entry() != nullptr, "stub not yet generated"); 750 __ far_jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry())); 751 752 // all done with frame size check 753 __ bind(after_frame_check); 754 } 755 756 // Allocate monitor and lock method (asm interpreter) 757 // 758 // Args: 759 // rmethod: Method* 760 // rlocals: locals 761 // 762 // Kills: 763 // r0 764 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs) 765 // rscratch1, rscratch2 (scratch regs) 766 void TemplateInterpreterGenerator::lock_method() { 767 // synchronize method 768 const Address access_flags(rmethod, Method::access_flags_offset()); 769 const Address monitor_block_top( 770 rfp, 771 frame::interpreter_frame_monitor_block_top_offset * wordSize); 772 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 773 774 #ifdef ASSERT 775 { 776 Label L; 777 __ ldrw(r0, access_flags); 778 __ tst(r0, JVM_ACC_SYNCHRONIZED); 779 __ br(Assembler::NE, L); 780 __ stop("method doesn't need synchronization"); 781 __ bind(L); 782 } 783 #endif // ASSERT 784 785 // get synchronization object 786 { 787 Label done; 788 __ ldrw(r0, access_flags); 789 __ tst(r0, JVM_ACC_STATIC); 790 // get receiver (assume this is frequent case) 791 __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0))); 792 __ br(Assembler::EQ, done); 793 __ load_mirror(r0, rmethod, r5, rscratch2); 794 795 #ifdef ASSERT 796 { 797 Label L; 798 __ cbnz(r0, L); 799 __ stop("synchronization object is null"); 800 __ bind(L); 801 } 802 #endif // ASSERT 803 804 __ bind(done); 805 } 806 807 // add space for monitor & lock 808 __ check_extended_sp(); 809 __ sub(sp, sp, entry_size); // add space for a monitor entry 810 __ sub(esp, esp, entry_size); 811 __ sub(rscratch1, sp, rfp); 812 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 813 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 814 __ sub(rscratch1, esp, rfp); 815 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 816 __ str(rscratch1, monitor_block_top); // set new monitor block top 817 818 // store object 819 __ str(r0, Address(esp, BasicObjectLock::obj_offset())); 820 __ mov(c_rarg1, esp); // object address 821 __ lock_object(c_rarg1); 822 } 823 824 // Generate a fixed interpreter frame. This is identical setup for 825 // interpreted methods and for native methods hence the shared code. 826 // 827 // Args: 828 // lr: return address 829 // rmethod: Method* 830 // rlocals: pointer to locals 831 // rcpool: cp cache 832 // stack_pointer: previous sp 833 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 834 // initialize fixed part of activation frame 835 if (native_call) { 836 __ sub(esp, sp, 14 * wordSize); 837 __ mov(rbcp, zr); 838 __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset); 839 __ stp(rscratch1, zr, Address(__ pre(sp, -14 * wordSize))); 840 // add 2 zero-initialized slots for native calls 841 __ stp(zr, zr, Address(sp, 12 * wordSize)); 842 } else { 843 __ sub(esp, sp, 12 * wordSize); 844 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); // get ConstMethod 845 __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase 846 __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset); 847 __ stp(rscratch1, rbcp, Address(__ pre(sp, -12 * wordSize))); 848 } 849 850 if (ProfileInterpreter) { 851 Label method_data_continue; 852 __ ldr(rscratch1, Address(rmethod, Method::method_data_offset())); 853 __ cbz(rscratch1, method_data_continue); 854 __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset()))); 855 __ bind(method_data_continue); 856 __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize)); // save Method* and mdp (method data pointer) 857 } else { 858 __ stp(zr, rmethod, Address(sp, 6 * wordSize)); // save Method* (no mdp) 859 } 860 861 __ protect_return_address(); 862 __ stp(rfp, lr, Address(sp, 10 * wordSize)); 863 __ lea(rfp, Address(sp, 10 * wordSize)); 864 865 __ ldr(rcpool, Address(rmethod, Method::const_offset())); 866 __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset())); 867 __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset())); 868 __ sub(rscratch1, rlocals, rfp); 869 __ lsr(rscratch1, rscratch1, Interpreter::logStackElementSize); // rscratch1 = rlocals - fp(); 870 // Store relativized rlocals, see frame::interpreter_frame_locals(). 871 __ stp(rscratch1, rcpool, Address(sp, 2 * wordSize)); 872 873 // set sender sp 874 // leave last_sp as null 875 __ stp(zr, r19_sender_sp, Address(sp, 8 * wordSize)); 876 877 // Get mirror 878 __ load_mirror(r10, rmethod, r5, rscratch2); 879 if (! native_call) { 880 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 881 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 882 __ add(rscratch1, rscratch1, MAX2(3, Method::extra_stack_entries())); 883 __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3); 884 __ andr(rscratch1, rscratch1, -16); 885 __ sub(rscratch2, rscratch1, rfp); 886 __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize); 887 // Store extended SP and mirror 888 __ stp(r10, rscratch2, Address(sp, 4 * wordSize)); 889 // Move SP out of the way 890 __ mov(sp, rscratch1); 891 } else { 892 // Make sure there is room for the exception oop pushed in case method throws 893 // an exception (see TemplateInterpreterGenerator::generate_throw_exception()) 894 __ sub(rscratch1, sp, 2 * wordSize); 895 __ sub(rscratch2, rscratch1, rfp); 896 __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize); 897 __ stp(r10, rscratch2, Address(sp, 4 * wordSize)); 898 __ mov(sp, rscratch1); 899 } 900 } 901 902 // End of helpers 903 904 // Various method entries 905 //------------------------------------------------------------------------------------------------------------------------ 906 // 907 // 908 909 // Method entry for java.lang.ref.Reference.get. 910 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 911 // Code: _aload_0, _getfield, _areturn 912 // parameter size = 1 913 // 914 // The code that gets generated by this routine is split into 2 parts: 915 // 1. The "intrinsified" code for G1 (or any SATB based GC), 916 // 2. The slow path - which is an expansion of the regular method entry. 917 // 918 // Notes:- 919 // * In the G1 code we do not check whether we need to block for 920 // a safepoint. If G1 is enabled then we must execute the specialized 921 // code for Reference.get (except when the Reference object is null) 922 // so that we can log the value in the referent field with an SATB 923 // update buffer. 924 // If the code for the getfield template is modified so that the 925 // G1 pre-barrier code is executed when the current method is 926 // Reference.get() then going through the normal method entry 927 // will be fine. 928 // * The G1 code can, however, check the receiver object (the instance 929 // of java.lang.Reference) and jump to the slow path if null. If the 930 // Reference object is null then we obviously cannot fetch the referent 931 // and so we don't need to call the G1 pre-barrier. Thus we can use the 932 // regular method entry code to generate the NPE. 933 // 934 // This code is based on generate_accessor_entry. 935 // 936 // rmethod: Method* 937 // r19_sender_sp: senderSP must preserve for slow path, set SP to it on fast path 938 939 // LR is live. It must be saved around calls. 940 941 address entry = __ pc(); 942 943 const int referent_offset = java_lang_ref_Reference::referent_offset(); 944 945 Label slow_path; 946 const Register local_0 = c_rarg0; 947 // Check if local 0 != null 948 // If the receiver is null then it is OK to jump to the slow path. 949 __ ldr(local_0, Address(esp, 0)); 950 __ cbz(local_0, slow_path); 951 952 // Load the value of the referent field. 953 const Address field_address(local_0, referent_offset); 954 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 955 bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch1, /*tmp2*/ rscratch2); 956 957 // areturn 958 __ andr(sp, r19_sender_sp, -16); // done with stack 959 __ ret(lr); 960 961 // generate a vanilla interpreter entry as the slow path 962 __ bind(slow_path); 963 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals)); 964 return entry; 965 966 } 967 968 /** 969 * Method entry for static native methods: 970 * int java.util.zip.CRC32.update(int crc, int b) 971 */ 972 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { 973 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 974 address entry = __ pc(); 975 976 // rmethod: Method* 977 // r19_sender_sp: senderSP must preserved for slow path 978 // esp: args 979 980 Label slow_path; 981 // If we need a safepoint check, generate full interpreter entry. 982 __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */); 983 984 // We don't generate local frame and don't align stack because 985 // we call stub code and there is no safepoint on this path. 986 987 // Load parameters 988 const Register crc = c_rarg0; // crc 989 const Register val = c_rarg1; // source java byte value 990 const Register tbl = c_rarg2; // scratch 991 992 // Arguments are reversed on java expression stack 993 __ ldrw(val, Address(esp, 0)); // byte value 994 __ ldrw(crc, Address(esp, wordSize)); // Initial CRC 995 996 uint64_t offset; 997 __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset); 998 __ add(tbl, tbl, offset); 999 1000 __ mvnw(crc, crc); // ~crc 1001 __ update_byte_crc32(crc, val, tbl); 1002 __ mvnw(crc, crc); // ~crc 1003 1004 // result in c_rarg0 1005 1006 __ andr(sp, r19_sender_sp, -16); 1007 __ ret(lr); 1008 1009 // generate a vanilla native entry as the slow path 1010 __ bind(slow_path); 1011 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); 1012 return entry; 1013 } 1014 1015 /** 1016 * Method entry for static native methods: 1017 * int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len) 1018 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 1019 */ 1020 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1021 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1022 address entry = __ pc(); 1023 1024 // rmethod,: Method* 1025 // r19_sender_sp: senderSP must preserved for slow path 1026 1027 Label slow_path; 1028 // If we need a safepoint check, generate full interpreter entry. 1029 __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */); 1030 1031 // We don't generate local frame and don't align stack because 1032 // we call stub code and there is no safepoint on this path. 1033 1034 // Load parameters 1035 const Register crc = c_rarg0; // crc 1036 const Register buf = c_rarg1; // source java byte array address 1037 const Register len = c_rarg2; // length 1038 const Register off = len; // offset (never overlaps with 'len') 1039 1040 // Arguments are reversed on java expression stack 1041 // Calculate address of start element 1042 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { 1043 __ ldr(buf, Address(esp, 2*wordSize)); // long buf 1044 __ ldrw(off, Address(esp, wordSize)); // offset 1045 __ add(buf, buf, off); // + offset 1046 __ ldrw(crc, Address(esp, 4*wordSize)); // Initial CRC 1047 } else { 1048 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array 1049 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 1050 __ ldrw(off, Address(esp, wordSize)); // offset 1051 __ add(buf, buf, off); // + offset 1052 __ ldrw(crc, Address(esp, 3*wordSize)); // Initial CRC 1053 } 1054 // Can now load 'len' since we're finished with 'off' 1055 __ ldrw(len, Address(esp, 0x0)); // Length 1056 1057 __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP 1058 1059 // We are frameless so we can just jump to the stub. 1060 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32())); 1061 1062 // generate a vanilla native entry as the slow path 1063 __ bind(slow_path); 1064 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); 1065 return entry; 1066 } 1067 1068 /** 1069 * Method entry for intrinsic-candidate (non-native) methods: 1070 * int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end) 1071 * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 1072 * Unlike CRC32, CRC32C does not have any methods marked as native 1073 * CRC32C also uses an "end" variable instead of the length variable CRC32 uses 1074 */ 1075 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1076 assert(UseCRC32CIntrinsics, "this intrinsic is not supported"); 1077 address entry = __ pc(); 1078 1079 // Prepare jump to stub using parameters from the stack 1080 const Register crc = c_rarg0; // initial crc 1081 const Register buf = c_rarg1; // source java byte array address 1082 const Register len = c_rarg2; // len argument to the kernel 1083 1084 const Register end = len; // index of last element to process 1085 const Register off = crc; // offset 1086 1087 __ ldrw(end, Address(esp)); // int end 1088 __ ldrw(off, Address(esp, wordSize)); // int offset 1089 __ sub(len, end, off); 1090 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf 1091 __ add(buf, buf, off); // + offset 1092 if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { 1093 __ ldrw(crc, Address(esp, 4*wordSize)); // long crc 1094 } else { 1095 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 1096 __ ldrw(crc, Address(esp, 3*wordSize)); // long crc 1097 } 1098 1099 __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP 1100 1101 // Jump to the stub. 1102 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C())); 1103 1104 return entry; 1105 } 1106 1107 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) { 1108 // See more discussion in stackOverflow.hpp. 1109 1110 const int shadow_zone_size = checked_cast<int>(StackOverflow::stack_shadow_zone_size()); 1111 const int page_size = (int)os::vm_page_size(); 1112 const int n_shadow_pages = shadow_zone_size / page_size; 1113 1114 #ifdef ASSERT 1115 Label L_good_limit; 1116 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit())); 1117 __ cbnz(rscratch1, L_good_limit); 1118 __ stop("shadow zone safe limit is not initialized"); 1119 __ bind(L_good_limit); 1120 1121 Label L_good_watermark; 1122 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1123 __ cbnz(rscratch1, L_good_watermark); 1124 __ stop("shadow zone growth watermark is not initialized"); 1125 __ bind(L_good_watermark); 1126 #endif 1127 1128 Label L_done; 1129 1130 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1131 __ cmp(sp, rscratch1); 1132 __ br(Assembler::HI, L_done); 1133 1134 for (int p = 1; p <= n_shadow_pages; p++) { 1135 __ sub(rscratch2, sp, p*page_size); 1136 __ str(zr, Address(rscratch2)); 1137 } 1138 1139 // Record the new watermark, but only if the update is above the safe limit. 1140 // Otherwise, the next time around the check above would pass the safe limit. 1141 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit())); 1142 __ cmp(sp, rscratch1); 1143 __ br(Assembler::LS, L_done); 1144 __ mov(rscratch1, sp); 1145 __ str(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1146 1147 __ bind(L_done); 1148 } 1149 1150 // Interpreter stub for calling a native method. (asm interpreter) 1151 // This sets up a somewhat different looking stack for calling the 1152 // native method than the typical interpreter frame setup. 1153 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { 1154 // determine code generation flags 1155 bool inc_counter = UseCompiler || CountCompiledCalls; 1156 1157 // r1: Method* 1158 // rscratch1: sender sp 1159 1160 address entry_point = __ pc(); 1161 1162 const Address constMethod (rmethod, Method::const_offset()); 1163 const Address access_flags (rmethod, Method::access_flags_offset()); 1164 const Address size_of_parameters(r2, ConstMethod:: 1165 size_of_parameters_offset()); 1166 1167 // get parameter size (always needed) 1168 __ ldr(r2, constMethod); 1169 __ load_unsigned_short(r2, size_of_parameters); 1170 1171 // Native calls don't need the stack size check since they have no 1172 // expression stack and the arguments are already on the stack and 1173 // we only add a handful of words to the stack. 1174 1175 // rmethod: Method* 1176 // r2: size of parameters 1177 // rscratch1: sender sp 1178 1179 // for natives the size of locals is zero 1180 1181 // compute beginning of parameters (rlocals) 1182 __ add(rlocals, esp, r2, ext::uxtx, 3); 1183 __ add(rlocals, rlocals, -wordSize); 1184 1185 // Pull SP back to minimum size: this avoids holes in the stack 1186 __ andr(sp, esp, -16); 1187 1188 // initialize fixed part of activation frame 1189 generate_fixed_frame(true); 1190 1191 // make sure method is native & not abstract 1192 #ifdef ASSERT 1193 __ ldrw(r0, access_flags); 1194 { 1195 Label L; 1196 __ tst(r0, JVM_ACC_NATIVE); 1197 __ br(Assembler::NE, L); 1198 __ stop("tried to execute non-native method as native"); 1199 __ bind(L); 1200 } 1201 { 1202 Label L; 1203 __ tst(r0, JVM_ACC_ABSTRACT); 1204 __ br(Assembler::EQ, L); 1205 __ stop("tried to execute abstract method in interpreter"); 1206 __ bind(L); 1207 } 1208 #endif 1209 1210 // Since at this point in the method invocation the exception 1211 // handler would try to exit the monitor of synchronized methods 1212 // which hasn't been entered yet, we set the thread local variable 1213 // _do_not_unlock_if_synchronized to true. The remove_activation 1214 // will check this flag. 1215 1216 const Address do_not_unlock_if_synchronized(rthread, 1217 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1218 __ mov(rscratch2, true); 1219 __ strb(rscratch2, do_not_unlock_if_synchronized); 1220 1221 // increment invocation count & check for overflow 1222 Label invocation_counter_overflow; 1223 if (inc_counter) { 1224 generate_counter_incr(&invocation_counter_overflow); 1225 } 1226 1227 Label continue_after_compile; 1228 __ bind(continue_after_compile); 1229 1230 bang_stack_shadow_pages(true); 1231 1232 // reset the _do_not_unlock_if_synchronized flag 1233 __ strb(zr, do_not_unlock_if_synchronized); 1234 1235 // check for synchronized methods 1236 // Must happen AFTER invocation_counter check and stack overflow check, 1237 // so method is not locked if overflows. 1238 if (synchronized) { 1239 lock_method(); 1240 } else { 1241 // no synchronization necessary 1242 #ifdef ASSERT 1243 { 1244 Label L; 1245 __ ldrw(r0, access_flags); 1246 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1247 __ br(Assembler::EQ, L); 1248 __ stop("method needs synchronization"); 1249 __ bind(L); 1250 } 1251 #endif 1252 } 1253 1254 // start execution 1255 #ifdef ASSERT 1256 { 1257 Label L; 1258 const Address monitor_block_top(rfp, 1259 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1260 __ ldr(rscratch1, monitor_block_top); 1261 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 1262 __ cmp(esp, rscratch1); 1263 __ br(Assembler::EQ, L); 1264 __ stop("broken stack frame setup in interpreter 1"); 1265 __ bind(L); 1266 } 1267 #endif 1268 1269 // jvmti support 1270 __ notify_method_entry(); 1271 1272 // work registers 1273 const Register t = r17; 1274 const Register result_handler = r19; 1275 1276 // allocate space for parameters 1277 __ ldr(t, Address(rmethod, Method::const_offset())); 1278 __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset())); 1279 1280 __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize); 1281 __ andr(sp, rscratch1, -16); 1282 __ mov(esp, rscratch1); 1283 1284 // get signature handler 1285 { 1286 Label L; 1287 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1288 __ cbnz(t, L); 1289 __ call_VM(noreg, 1290 CAST_FROM_FN_PTR(address, 1291 InterpreterRuntime::prepare_native_call), 1292 rmethod); 1293 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1294 __ bind(L); 1295 } 1296 1297 // call signature handler 1298 assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals, 1299 "adjust this code"); 1300 assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp, 1301 "adjust this code"); 1302 assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1, 1303 "adjust this code"); 1304 1305 // The generated handlers do not touch rmethod (the method). 1306 // However, large signatures cannot be cached and are generated 1307 // each time here. The slow-path generator can do a GC on return, 1308 // so we must reload it after the call. 1309 __ blr(t); 1310 __ get_method(rmethod); // slow path can do a GC, reload rmethod 1311 1312 1313 // result handler is in r0 1314 // set result handler 1315 __ mov(result_handler, r0); 1316 // pass mirror handle if static call 1317 { 1318 Label L; 1319 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1320 __ tbz(t, exact_log2(JVM_ACC_STATIC), L); 1321 // get mirror 1322 __ load_mirror(t, rmethod, r10, rscratch2); 1323 // copy mirror into activation frame 1324 __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize)); 1325 // pass handle to mirror 1326 __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize); 1327 __ bind(L); 1328 } 1329 1330 // get native function entry point in r10 1331 { 1332 Label L; 1333 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1334 ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry()); 1335 __ lea(rscratch2, unsatisfied); 1336 __ ldr(rscratch2, rscratch2); 1337 __ cmp(r10, rscratch2); 1338 __ br(Assembler::NE, L); 1339 __ call_VM(noreg, 1340 CAST_FROM_FN_PTR(address, 1341 InterpreterRuntime::prepare_native_call), 1342 rmethod); 1343 __ get_method(rmethod); 1344 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1345 __ bind(L); 1346 } 1347 1348 // pass JNIEnv 1349 __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset())); 1350 1351 // Set the last Java PC in the frame anchor to be the return address from 1352 // the call to the native method: this will allow the debugger to 1353 // generate an accurate stack trace. 1354 Label native_return; 1355 __ set_last_Java_frame(esp, rfp, native_return, rscratch1); 1356 1357 // change thread state 1358 #ifdef ASSERT 1359 { 1360 Label L; 1361 __ ldrw(t, Address(rthread, JavaThread::thread_state_offset())); 1362 __ cmp(t, (u1)_thread_in_Java); 1363 __ br(Assembler::EQ, L); 1364 __ stop("Wrong thread state in native stub"); 1365 __ bind(L); 1366 } 1367 #endif 1368 1369 // Change state to native 1370 __ mov(rscratch1, _thread_in_native); 1371 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1372 __ stlrw(rscratch1, rscratch2); 1373 1374 // Call the native method. 1375 __ blr(r10); 1376 __ bind(native_return); 1377 __ get_method(rmethod); 1378 // result potentially in r0 or v0 1379 1380 // Restore cpu control state after JNI call 1381 __ restore_cpu_control_state_after_jni(rscratch1, rscratch2); 1382 1383 // make room for the pushes we're about to do 1384 __ sub(rscratch1, esp, 4 * wordSize); 1385 __ andr(sp, rscratch1, -16); 1386 1387 // NOTE: The order of these pushes is known to frame::interpreter_frame_result 1388 // in order to extract the result of a method call. If the order of these 1389 // pushes change or anything else is added to the stack then the code in 1390 // interpreter_frame_result must also change. 1391 __ push(dtos); 1392 __ push(ltos); 1393 1394 __ verify_sve_vector_length(); 1395 1396 // change thread state 1397 __ mov(rscratch1, _thread_in_native_trans); 1398 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1399 __ stlrw(rscratch1, rscratch2); 1400 1401 // Force this write out before the read below 1402 if (!UseSystemMemoryBarrier) { 1403 __ dmb(Assembler::ISH); 1404 } 1405 1406 // check for safepoint operation in progress and/or pending suspend requests 1407 { 1408 Label L, Continue; 1409 1410 // No need for acquire as Java threads always disarm themselves. 1411 __ safepoint_poll(L, true /* at_return */, false /* acquire */, false /* in_nmethod */); 1412 __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset())); 1413 __ cbz(rscratch2, Continue); 1414 __ bind(L); 1415 1416 // Don't use call_VM as it will see a possible pending exception 1417 // and forward it and never return here preventing us from 1418 // clearing _last_native_pc down below. So we do a runtime call by 1419 // hand. 1420 // 1421 __ mov(c_rarg0, rthread); 1422 __ lea(rscratch2, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 1423 __ blr(rscratch2); 1424 __ get_method(rmethod); 1425 __ reinit_heapbase(); 1426 __ bind(Continue); 1427 } 1428 1429 // change thread state 1430 __ mov(rscratch1, _thread_in_Java); 1431 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1432 __ stlrw(rscratch1, rscratch2); 1433 1434 // reset_last_Java_frame 1435 __ reset_last_Java_frame(true); 1436 1437 if (CheckJNICalls) { 1438 // clear_pending_jni_exception_check 1439 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1440 } 1441 1442 // reset handle block 1443 __ ldr(t, Address(rthread, JavaThread::active_handles_offset())); 1444 __ str(zr, Address(t, JNIHandleBlock::top_offset())); 1445 1446 // If result is an oop unbox and store it in frame where gc will see it 1447 // and result handler will pick it up 1448 1449 { 1450 Label no_oop; 1451 __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT))); 1452 __ cmp(t, result_handler); 1453 __ br(Assembler::NE, no_oop); 1454 // Unbox oop result, e.g. JNIHandles::resolve result. 1455 __ pop(ltos); 1456 __ resolve_jobject(r0, t, rscratch2); 1457 __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 1458 // keep stack depth as expected by pushing oop which will eventually be discarded 1459 __ push(ltos); 1460 __ bind(no_oop); 1461 } 1462 1463 { 1464 Label no_reguard; 1465 __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset()))); 1466 __ ldrw(rscratch1, Address(rscratch1)); 1467 __ cmp(rscratch1, (u1)StackOverflow::stack_guard_yellow_reserved_disabled); 1468 __ br(Assembler::NE, no_reguard); 1469 1470 __ push_call_clobbered_registers(); 1471 __ mov(c_rarg0, rthread); 1472 __ lea(rscratch2, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); 1473 __ blr(rscratch2); 1474 __ pop_call_clobbered_registers(); 1475 1476 __ bind(no_reguard); 1477 } 1478 1479 // The method register is junk from after the thread_in_native transition 1480 // until here. Also can't call_VM until the bcp has been 1481 // restored. Need bcp for throwing exception below so get it now. 1482 __ get_method(rmethod); 1483 1484 // restore bcp to have legal interpreter frame, i.e., bci == 0 <=> 1485 // rbcp == code_base() 1486 __ ldr(rbcp, Address(rmethod, Method::const_offset())); // get ConstMethod* 1487 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); // get codebase 1488 // handle exceptions (exception handling will handle unlocking!) 1489 { 1490 Label L; 1491 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 1492 __ cbz(rscratch1, L); 1493 // Note: At some point we may want to unify this with the code 1494 // used in call_VM_base(); i.e., we should use the 1495 // StubRoutines::forward_exception code. For now this doesn't work 1496 // here because the rsp is not correctly set at this point. 1497 __ MacroAssembler::call_VM(noreg, 1498 CAST_FROM_FN_PTR(address, 1499 InterpreterRuntime::throw_pending_exception)); 1500 __ should_not_reach_here(); 1501 __ bind(L); 1502 } 1503 1504 // do unlocking if necessary 1505 { 1506 Label L; 1507 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1508 __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L); 1509 // the code below should be shared with interpreter macro 1510 // assembler implementation 1511 { 1512 Label unlock; 1513 // BasicObjectLock will be first in list, since this is a 1514 // synchronized method. However, need to check that the object 1515 // has not been unlocked by an explicit monitorexit bytecode. 1516 1517 // monitor expect in c_rarg1 for slow unlock path 1518 __ lea (c_rarg1, Address(rfp, // address of first monitor 1519 (intptr_t)(frame::interpreter_frame_initial_sp_offset * 1520 wordSize - sizeof(BasicObjectLock)))); 1521 1522 __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset())); 1523 __ cbnz(t, unlock); 1524 1525 // Entry already unlocked, need to throw exception 1526 __ MacroAssembler::call_VM(noreg, 1527 CAST_FROM_FN_PTR(address, 1528 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1529 __ should_not_reach_here(); 1530 1531 __ bind(unlock); 1532 __ unlock_object(c_rarg1); 1533 } 1534 __ bind(L); 1535 } 1536 1537 // jvmti support 1538 // Note: This must happen _after_ handling/throwing any exceptions since 1539 // the exception handler code notifies the runtime of method exits 1540 // too. If this happens before, method entry/exit notifications are 1541 // not properly paired (was bug - gri 11/22/99). 1542 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI); 1543 1544 // restore potential result in r0:d0, call result handler to 1545 // restore potential result in ST0 & handle result 1546 1547 __ pop(ltos); 1548 __ pop(dtos); 1549 1550 __ blr(result_handler); 1551 1552 // remove activation 1553 __ ldr(esp, Address(rfp, 1554 frame::interpreter_frame_sender_sp_offset * 1555 wordSize)); // get sender sp 1556 // remove frame anchor 1557 __ leave(); 1558 1559 // restore sender sp 1560 __ mov(sp, esp); 1561 1562 __ ret(lr); 1563 1564 if (inc_counter) { 1565 // Handle overflow of counter and compile method 1566 __ bind(invocation_counter_overflow); 1567 generate_counter_overflow(continue_after_compile); 1568 } 1569 1570 return entry_point; 1571 } 1572 1573 // 1574 // Generic interpreted method entry to (asm) interpreter 1575 // 1576 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { 1577 // determine code generation flags 1578 bool inc_counter = UseCompiler || CountCompiledCalls; 1579 1580 // rscratch1: sender sp 1581 address entry_point = __ pc(); 1582 1583 const Address constMethod(rmethod, Method::const_offset()); 1584 const Address access_flags(rmethod, Method::access_flags_offset()); 1585 const Address size_of_parameters(r3, 1586 ConstMethod::size_of_parameters_offset()); 1587 const Address size_of_locals(r3, ConstMethod::size_of_locals_offset()); 1588 1589 // get parameter size (always needed) 1590 // need to load the const method first 1591 __ ldr(r3, constMethod); 1592 __ load_unsigned_short(r2, size_of_parameters); 1593 1594 // r2: size of parameters 1595 1596 __ load_unsigned_short(r3, size_of_locals); // get size of locals in words 1597 __ sub(r3, r3, r2); // r3 = no. of additional locals 1598 1599 // see if we've got enough room on the stack for locals plus overhead. 1600 generate_stack_overflow_check(); 1601 1602 // compute beginning of parameters (rlocals) 1603 __ add(rlocals, esp, r2, ext::uxtx, 3); 1604 __ sub(rlocals, rlocals, wordSize); 1605 1606 __ mov(rscratch1, esp); 1607 1608 // r3 - # of additional locals 1609 // allocate space for locals 1610 // explicitly initialize locals 1611 // Initializing memory allocated for locals in the same direction as 1612 // the stack grows to ensure page initialization order according 1613 // to windows-aarch64 stack page growth requirement (see 1614 // https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-160#stack) 1615 { 1616 Label exit, loop; 1617 __ ands(zr, r3, r3); 1618 __ br(Assembler::LE, exit); // do nothing if r3 <= 0 1619 __ bind(loop); 1620 __ str(zr, Address(__ pre(rscratch1, -wordSize))); 1621 __ sub(r3, r3, 1); // until everything initialized 1622 __ cbnz(r3, loop); 1623 __ bind(exit); 1624 } 1625 1626 // Padding between locals and fixed part of activation frame to ensure 1627 // SP is always 16-byte aligned. 1628 __ andr(sp, rscratch1, -16); 1629 1630 // And the base dispatch table 1631 __ get_dispatch(); 1632 1633 // initialize fixed part of activation frame 1634 generate_fixed_frame(false); 1635 1636 // make sure method is not native & not abstract 1637 #ifdef ASSERT 1638 __ ldrw(r0, access_flags); 1639 { 1640 Label L; 1641 __ tst(r0, JVM_ACC_NATIVE); 1642 __ br(Assembler::EQ, L); 1643 __ stop("tried to execute native method as non-native"); 1644 __ bind(L); 1645 } 1646 { 1647 Label L; 1648 __ tst(r0, JVM_ACC_ABSTRACT); 1649 __ br(Assembler::EQ, L); 1650 __ stop("tried to execute abstract method in interpreter"); 1651 __ bind(L); 1652 } 1653 #endif 1654 1655 // Since at this point in the method invocation the exception 1656 // handler would try to exit the monitor of synchronized methods 1657 // which hasn't been entered yet, we set the thread local variable 1658 // _do_not_unlock_if_synchronized to true. The remove_activation 1659 // will check this flag. 1660 1661 const Address do_not_unlock_if_synchronized(rthread, 1662 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1663 __ mov(rscratch2, true); 1664 __ strb(rscratch2, do_not_unlock_if_synchronized); 1665 1666 Register mdp = r3; 1667 __ profile_parameters_type(mdp, r1, r2); 1668 1669 // increment invocation count & check for overflow 1670 Label invocation_counter_overflow; 1671 if (inc_counter) { 1672 generate_counter_incr(&invocation_counter_overflow); 1673 } 1674 1675 Label continue_after_compile; 1676 __ bind(continue_after_compile); 1677 1678 bang_stack_shadow_pages(false); 1679 1680 // reset the _do_not_unlock_if_synchronized flag 1681 __ strb(zr, do_not_unlock_if_synchronized); 1682 1683 // check for synchronized methods 1684 // Must happen AFTER invocation_counter check and stack overflow check, 1685 // so method is not locked if overflows. 1686 if (synchronized) { 1687 // Allocate monitor and lock method 1688 lock_method(); 1689 } else { 1690 // no synchronization necessary 1691 #ifdef ASSERT 1692 { 1693 Label L; 1694 __ ldrw(r0, access_flags); 1695 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1696 __ br(Assembler::EQ, L); 1697 __ stop("method needs synchronization"); 1698 __ bind(L); 1699 } 1700 #endif 1701 } 1702 1703 // start execution 1704 #ifdef ASSERT 1705 { 1706 Label L; 1707 const Address monitor_block_top (rfp, 1708 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1709 __ ldr(rscratch1, monitor_block_top); 1710 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 1711 __ cmp(esp, rscratch1); 1712 __ br(Assembler::EQ, L); 1713 __ stop("broken stack frame setup in interpreter 2"); 1714 __ bind(L); 1715 } 1716 #endif 1717 1718 // jvmti support 1719 __ notify_method_entry(); 1720 1721 __ dispatch_next(vtos); 1722 1723 // invocation counter overflow 1724 if (inc_counter) { 1725 // Handle overflow of counter and compile method 1726 __ bind(invocation_counter_overflow); 1727 generate_counter_overflow(continue_after_compile); 1728 } 1729 1730 return entry_point; 1731 } 1732 1733 // Method entry for java.lang.Thread.currentThread 1734 address TemplateInterpreterGenerator::generate_currentThread() { 1735 address entry_point = __ pc(); 1736 1737 __ ldr(r0, Address(rthread, JavaThread::vthread_offset())); 1738 __ resolve_oop_handle(r0, rscratch1, rscratch2); 1739 __ ret(lr); 1740 1741 return entry_point; 1742 } 1743 1744 // Not supported 1745 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; } 1746 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; } 1747 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; } 1748 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; } 1749 1750 //----------------------------------------------------------------------------- 1751 // Exceptions 1752 1753 void TemplateInterpreterGenerator::generate_throw_exception() { 1754 // Entry point in previous activation (i.e., if the caller was 1755 // interpreted) 1756 Interpreter::_rethrow_exception_entry = __ pc(); 1757 // Restore sp to interpreter_frame_last_sp even though we are going 1758 // to empty the expression stack for the exception processing. 1759 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1760 // r0: exception 1761 // r3: return address/pc that threw exception 1762 __ restore_bcp(); // rbcp points to call/send 1763 __ restore_locals(); 1764 __ restore_constant_pool_cache(); 1765 __ reinit_heapbase(); // restore rheapbase as heapbase. 1766 __ get_dispatch(); 1767 1768 // Entry point for exceptions thrown within interpreter code 1769 Interpreter::_throw_exception_entry = __ pc(); 1770 // If we came here via a NullPointerException on the receiver of a 1771 // method, rmethod may be corrupt. 1772 __ get_method(rmethod); 1773 // expression stack is undefined here 1774 // r0: exception 1775 // rbcp: exception bcp 1776 __ verify_oop(r0); 1777 __ mov(c_rarg1, r0); 1778 1779 // expression stack must be empty before entering the VM in case of 1780 // an exception 1781 __ empty_expression_stack(); 1782 // find exception handler address and preserve exception oop 1783 __ call_VM(r3, 1784 CAST_FROM_FN_PTR(address, 1785 InterpreterRuntime::exception_handler_for_exception), 1786 c_rarg1); 1787 1788 // Restore machine SP 1789 __ restore_sp_after_call(); 1790 1791 // r0: exception handler entry point 1792 // r3: preserved exception oop 1793 // rbcp: bcp for exception handler 1794 __ push_ptr(r3); // push exception which is now the only value on the stack 1795 __ br(r0); // jump to exception handler (may be _remove_activation_entry!) 1796 1797 // If the exception is not handled in the current frame the frame is 1798 // removed and the exception is rethrown (i.e. exception 1799 // continuation is _rethrow_exception). 1800 // 1801 // Note: At this point the bci is still the bxi for the instruction 1802 // which caused the exception and the expression stack is 1803 // empty. Thus, for any VM calls at this point, GC will find a legal 1804 // oop map (with empty expression stack). 1805 1806 // 1807 // JVMTI PopFrame support 1808 // 1809 1810 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 1811 __ empty_expression_stack(); 1812 // Set the popframe_processing bit in pending_popframe_condition 1813 // indicating that we are currently handling popframe, so that 1814 // call_VMs that may happen later do not trigger new popframe 1815 // handling cycles. 1816 __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1817 __ orr(r3, r3, JavaThread::popframe_processing_bit); 1818 __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1819 1820 { 1821 // Check to see whether we are returning to a deoptimized frame. 1822 // (The PopFrame call ensures that the caller of the popped frame is 1823 // either interpreted or compiled and deoptimizes it if compiled.) 1824 // In this case, we can't call dispatch_next() after the frame is 1825 // popped, but instead must save the incoming arguments and restore 1826 // them after deoptimization has occurred. 1827 // 1828 // Note that we don't compare the return PC against the 1829 // deoptimization blob's unpack entry because of the presence of 1830 // adapter frames in C2. 1831 Label caller_not_deoptimized; 1832 __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize)); 1833 // This is a return address, so requires authenticating for PAC. 1834 __ authenticate_return_address(c_rarg1); 1835 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1836 InterpreterRuntime::interpreter_contains), c_rarg1); 1837 __ cbnz(r0, caller_not_deoptimized); 1838 1839 // Compute size of arguments for saving when returning to 1840 // deoptimized caller 1841 __ get_method(r0); 1842 __ ldr(r0, Address(r0, Method::const_offset())); 1843 __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod:: 1844 size_of_parameters_offset()))); 1845 __ lsl(r0, r0, Interpreter::logStackElementSize); 1846 __ restore_locals(); // XXX do we need this? 1847 __ sub(rlocals, rlocals, r0); 1848 __ add(rlocals, rlocals, wordSize); 1849 // Save these arguments 1850 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1851 Deoptimization:: 1852 popframe_preserve_args), 1853 rthread, r0, rlocals); 1854 1855 __ remove_activation(vtos, 1856 /* throw_monitor_exception */ false, 1857 /* install_monitor_exception */ false, 1858 /* notify_jvmdi */ false); 1859 1860 // Inform deoptimization that it is responsible for restoring 1861 // these arguments 1862 __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit); 1863 __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 1864 1865 // Continue in deoptimization handler 1866 __ ret(lr); 1867 1868 __ bind(caller_not_deoptimized); 1869 } 1870 1871 __ remove_activation(vtos, 1872 /* throw_monitor_exception */ false, 1873 /* install_monitor_exception */ false, 1874 /* notify_jvmdi */ false); 1875 1876 // Restore the last_sp and null it out 1877 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1878 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 1879 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1880 1881 __ restore_bcp(); 1882 __ restore_locals(); 1883 __ restore_constant_pool_cache(); 1884 __ get_method(rmethod); 1885 __ get_dispatch(); 1886 1887 // The method data pointer was incremented already during 1888 // call profiling. We have to restore the mdp for the current bcp. 1889 if (ProfileInterpreter) { 1890 __ set_method_data_pointer_for_bcp(); 1891 } 1892 1893 // Clear the popframe condition flag 1894 __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset())); 1895 assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive"); 1896 1897 #if INCLUDE_JVMTI 1898 { 1899 Label L_done; 1900 1901 __ ldrb(rscratch1, Address(rbcp, 0)); 1902 __ cmpw(rscratch1, Bytecodes::_invokestatic); 1903 __ br(Assembler::NE, L_done); 1904 1905 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. 1906 // Detect such a case in the InterpreterRuntime function and return the member name argument, or null. 1907 1908 __ ldr(c_rarg0, Address(rlocals, 0)); 1909 __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp); 1910 1911 __ cbz(r0, L_done); 1912 1913 __ str(r0, Address(esp, 0)); 1914 __ bind(L_done); 1915 } 1916 #endif // INCLUDE_JVMTI 1917 1918 // Restore machine SP 1919 __ restore_sp_after_call(); 1920 1921 __ dispatch_next(vtos); 1922 // end of PopFrame support 1923 1924 Interpreter::_remove_activation_entry = __ pc(); 1925 1926 // preserve exception over this code sequence 1927 __ pop_ptr(r0); 1928 __ str(r0, Address(rthread, JavaThread::vm_result_offset())); 1929 // remove the activation (without doing throws on illegalMonitorExceptions) 1930 __ remove_activation(vtos, false, true, false); 1931 // restore exception 1932 __ get_vm_result(r0, rthread); 1933 1934 // In between activations - previous activation type unknown yet 1935 // compute continuation point - the continuation point expects the 1936 // following registers set up: 1937 // 1938 // r0: exception 1939 // lr: return address/pc that threw exception 1940 // esp: expression stack of caller 1941 // rfp: fp of caller 1942 __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize))); // save exception & return address 1943 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1944 SharedRuntime::exception_handler_for_return_address), 1945 rthread, lr); 1946 __ mov(r1, r0); // save exception handler 1947 __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize))); // restore exception & return address 1948 // We might be returning to a deopt handler that expects r3 to 1949 // contain the exception pc 1950 __ mov(r3, lr); 1951 // Note that an "issuing PC" is actually the next PC after the call 1952 __ br(r1); // jump to exception 1953 // handler of caller 1954 } 1955 1956 1957 // 1958 // JVMTI ForceEarlyReturn support 1959 // 1960 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { 1961 address entry = __ pc(); 1962 1963 __ restore_bcp(); 1964 __ restore_locals(); 1965 __ empty_expression_stack(); 1966 __ load_earlyret_value(state); 1967 1968 __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 1969 Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset()); 1970 1971 // Clear the earlyret state 1972 assert(JvmtiThreadState::earlyret_inactive == 0, "should be"); 1973 __ str(zr, cond_addr); 1974 1975 __ remove_activation(state, 1976 false, /* throw_monitor_exception */ 1977 false, /* install_monitor_exception */ 1978 true); /* notify_jvmdi */ 1979 __ ret(lr); 1980 1981 return entry; 1982 } // end of ForceEarlyReturn support 1983 1984 1985 1986 //----------------------------------------------------------------------------- 1987 // Helper for vtos entry point generation 1988 1989 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, 1990 address& bep, 1991 address& cep, 1992 address& sep, 1993 address& aep, 1994 address& iep, 1995 address& lep, 1996 address& fep, 1997 address& dep, 1998 address& vep) { 1999 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 2000 Label L; 2001 aep = __ pc(); __ push_ptr(); __ b(L); 2002 fep = __ pc(); __ push_f(); __ b(L); 2003 dep = __ pc(); __ push_d(); __ b(L); 2004 lep = __ pc(); __ push_l(); __ b(L); 2005 bep = cep = sep = 2006 iep = __ pc(); __ push_i(); 2007 vep = __ pc(); 2008 __ bind(L); 2009 generate_and_dispatch(t); 2010 } 2011 2012 //----------------------------------------------------------------------------- 2013 2014 void TemplateInterpreterGenerator::count_bytecode() { 2015 if (CountBytecodesPerThread) { 2016 Address bc_counter_addr(rthread, Thread::bc_counter_offset()); 2017 __ ldr(r10, bc_counter_addr); 2018 __ add(r10, r10, 1); 2019 __ str(r10, bc_counter_addr); 2020 } 2021 if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) { 2022 __ mov(r10, (address) &BytecodeCounter::_counter_value); 2023 __ atomic_add(noreg, 1, r10); 2024 } 2025 } 2026 2027 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { 2028 __ mov(r10, (address) &BytecodeHistogram::_counters[t->bytecode()]); 2029 __ atomic_addw(noreg, 1, r10); 2030 } 2031 2032 // Non-product code 2033 #ifndef PRODUCT 2034 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 2035 address entry = __ pc(); 2036 2037 __ protect_return_address(); 2038 __ push(lr); 2039 __ push(state); 2040 __ push(RegSet::range(r0, r15), sp); 2041 __ mov(c_rarg2, r0); // Pass itos 2042 __ call_VM(noreg, 2043 CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), 2044 c_rarg1, c_rarg2, c_rarg3); 2045 __ pop(RegSet::range(r0, r15), sp); 2046 __ pop(state); 2047 __ pop(lr); 2048 __ authenticate_return_address(); 2049 __ ret(lr); // return from result handler 2050 2051 return entry; 2052 } 2053 2054 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { 2055 // Calculate new index for counter: 2056 // _index = (_index >> log2_number_of_codes) | 2057 // (bytecode << log2_number_of_codes); 2058 Register index_addr = rscratch1; 2059 Register index = rscratch2; 2060 __ mov(index_addr, (address) &BytecodePairHistogram::_index); 2061 __ ldrw(index, index_addr); 2062 __ mov(r10, 2063 ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); 2064 __ orrw(index, r10, index, Assembler::LSR, 2065 BytecodePairHistogram::log2_number_of_codes); 2066 __ strw(index, index_addr); 2067 2068 // Bump bucket contents: 2069 // _counters[_index] ++; 2070 Register counter_addr = rscratch1; 2071 __ mov(r10, (address) &BytecodePairHistogram::_counters); 2072 __ lea(counter_addr, Address(r10, index, Address::lsl(LogBytesPerInt))); 2073 __ atomic_addw(noreg, 1, counter_addr); 2074 } 2075 2076 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 2077 // Call a little run-time stub to avoid blow-up for each bytecode. 2078 // The run-time runtime saves the right registers, depending on 2079 // the tosca in-state for the given template. 2080 2081 assert(Interpreter::trace_code(t->tos_in()) != nullptr, 2082 "entry must have been generated"); 2083 __ bl(RuntimeAddress(Interpreter::trace_code(t->tos_in()))); 2084 __ reinit_heapbase(); 2085 } 2086 2087 2088 void TemplateInterpreterGenerator::stop_interpreter_at() { 2089 Label L; 2090 __ push(rscratch1); 2091 __ mov(rscratch1, (address) &BytecodeCounter::_counter_value); 2092 __ ldr(rscratch1, Address(rscratch1)); 2093 __ mov(rscratch2, StopInterpreterAt); 2094 __ cmpw(rscratch1, rscratch2); 2095 __ br(Assembler::NE, L); 2096 __ brk(0); 2097 __ bind(L); 2098 __ pop(rscratch1); 2099 } 2100 2101 #endif // !PRODUCT