1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "compiler/disassembler.hpp" 30 #include "compiler/compiler_globals.hpp" 31 #include "gc/shared/barrierSetAssembler.hpp" 32 #include "interpreter/bytecodeHistogram.hpp" 33 #include "interpreter/interpreter.hpp" 34 #include "interpreter/interpreterRuntime.hpp" 35 #include "interpreter/interp_masm.hpp" 36 #include "interpreter/templateInterpreterGenerator.hpp" 37 #include "interpreter/templateTable.hpp" 38 #include "interpreter/bytecodeTracer.hpp" 39 #include "memory/resourceArea.hpp" 40 #include "oops/arrayOop.hpp" 41 #include "oops/method.hpp" 42 #include "oops/methodCounters.hpp" 43 #include "oops/methodData.hpp" 44 #include "oops/oop.inline.hpp" 45 #include "oops/resolvedIndyEntry.hpp" 46 #include "oops/resolvedMethodEntry.hpp" 47 #include "prims/jvmtiExport.hpp" 48 #include "prims/jvmtiThreadState.hpp" 49 #include "runtime/arguments.hpp" 50 #include "runtime/deoptimization.hpp" 51 #include "runtime/frame.inline.hpp" 52 #include "runtime/globals.hpp" 53 #include "runtime/jniHandles.hpp" 54 #include "runtime/sharedRuntime.hpp" 55 #include "runtime/stubRoutines.hpp" 56 #include "runtime/synchronizer.hpp" 57 #include "runtime/timer.hpp" 58 #include "runtime/vframeArray.hpp" 59 #include "utilities/checkedCast.hpp" 60 #include "utilities/debug.hpp" 61 #include "utilities/powerOfTwo.hpp" 62 #include <sys/types.h> 63 64 // Size of interpreter code. Increase if too small. Interpreter will 65 // fail with a guarantee ("not enough space for interpreter generation"); 66 // if too small. 67 // Run with +PrintInterpreter to get the VM to print out the size. 68 // Max size with JVMTI 69 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024; 70 71 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 72 73 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 74 address entry = __ pc(); 75 76 __ andr(esp, esp, -16); 77 __ mov(c_rarg3, esp); 78 // rmethod 79 // rlocals 80 // c_rarg3: first stack arg - wordSize 81 82 // adjust sp 83 __ sub(sp, c_rarg3, 18 * wordSize); 84 __ str(lr, Address(__ pre(sp, -2 * wordSize))); 85 __ call_VM(noreg, 86 CAST_FROM_FN_PTR(address, 87 InterpreterRuntime::slow_signature_handler), 88 rmethod, rlocals, c_rarg3); 89 90 // r0: result handler 91 92 // Stack layout: 93 // rsp: return address <- sp 94 // 1 garbage 95 // 8 integer args (if static first is unused) 96 // 1 float/double identifiers 97 // 8 double args 98 // stack args <- esp 99 // garbage 100 // expression stack bottom 101 // bcp (null) 102 // ... 103 104 // Restore LR 105 __ ldr(lr, Address(__ post(sp, 2 * wordSize))); 106 107 // Do FP first so we can use c_rarg3 as temp 108 __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers 109 110 for (int i = 0; i < Argument::n_float_register_parameters_c; i++) { 111 const FloatRegister r = as_FloatRegister(i); 112 113 Label d, done; 114 115 __ tbnz(c_rarg3, i, d); 116 __ ldrs(r, Address(sp, (10 + i) * wordSize)); 117 __ b(done); 118 __ bind(d); 119 __ ldrd(r, Address(sp, (10 + i) * wordSize)); 120 __ bind(done); 121 } 122 123 // c_rarg0 contains the result from the call of 124 // InterpreterRuntime::slow_signature_handler so we don't touch it 125 // here. It will be loaded with the JNIEnv* later. 126 __ ldr(c_rarg1, Address(sp, 1 * wordSize)); 127 for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) { 128 Register rm = as_Register(i), rn = as_Register(i+1); 129 __ ldp(rm, rn, Address(sp, i * wordSize)); 130 } 131 132 __ add(sp, sp, 18 * wordSize); 133 __ ret(lr); 134 135 return entry; 136 } 137 138 139 // 140 // Various method entries 141 // 142 143 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 144 // rmethod: Method* 145 // r19_sender_sp: sender sp 146 // esp: args 147 148 // These don't need a safepoint check because they aren't virtually 149 // callable. We won't enter these intrinsics from compiled code. 150 // If in the future we added an intrinsic which was virtually callable 151 // we'd have to worry about how to safepoint so that this code is used. 152 153 // mathematical functions inlined by compiler 154 // (interpreter must provide identical implementation 155 // in order to avoid monotonicity bugs when switching 156 // from interpreter to compiler in the middle of some 157 // computation) 158 // 159 // stack: 160 // [ arg ] <-- esp 161 // [ arg ] 162 // retaddr in lr 163 164 address entry_point = nullptr; 165 Register continuation = lr; 166 switch (kind) { 167 case Interpreter::java_lang_math_abs: 168 entry_point = __ pc(); 169 __ ldrd(v0, Address(esp)); 170 __ fabsd(v0, v0); 171 __ mov(sp, r19_sender_sp); // Restore caller's SP 172 break; 173 case Interpreter::java_lang_math_sqrt: 174 entry_point = __ pc(); 175 __ ldrd(v0, Address(esp)); 176 __ fsqrtd(v0, v0); 177 __ mov(sp, r19_sender_sp); 178 break; 179 case Interpreter::java_lang_math_sin : 180 case Interpreter::java_lang_math_cos : 181 case Interpreter::java_lang_math_tan : 182 case Interpreter::java_lang_math_log : 183 case Interpreter::java_lang_math_log10 : 184 case Interpreter::java_lang_math_exp : 185 entry_point = __ pc(); 186 __ ldrd(v0, Address(esp)); 187 __ mov(sp, r19_sender_sp); 188 __ mov(r23, lr); 189 continuation = r23; // The first free callee-saved register 190 generate_transcendental_entry(kind, 1); 191 break; 192 case Interpreter::java_lang_math_pow : 193 entry_point = __ pc(); 194 __ mov(r23, lr); 195 continuation = r23; 196 __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize)); 197 __ ldrd(v1, Address(esp)); 198 __ mov(sp, r19_sender_sp); 199 generate_transcendental_entry(kind, 2); 200 break; 201 case Interpreter::java_lang_math_fmaD : 202 if (UseFMA) { 203 entry_point = __ pc(); 204 __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize)); 205 __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize)); 206 __ ldrd(v2, Address(esp)); 207 __ fmaddd(v0, v0, v1, v2); 208 __ mov(sp, r19_sender_sp); // Restore caller's SP 209 } 210 break; 211 case Interpreter::java_lang_math_fmaF : 212 if (UseFMA) { 213 entry_point = __ pc(); 214 __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize)); 215 __ ldrs(v1, Address(esp, Interpreter::stackElementSize)); 216 __ ldrs(v2, Address(esp)); 217 __ fmadds(v0, v0, v1, v2); 218 __ mov(sp, r19_sender_sp); // Restore caller's SP 219 } 220 break; 221 default: 222 ; 223 } 224 if (entry_point) { 225 __ br(continuation); 226 } 227 228 return entry_point; 229 } 230 231 // double trigonometrics and transcendentals 232 // static jdouble dsin(jdouble x); 233 // static jdouble dcos(jdouble x); 234 // static jdouble dtan(jdouble x); 235 // static jdouble dlog(jdouble x); 236 // static jdouble dlog10(jdouble x); 237 // static jdouble dexp(jdouble x); 238 // static jdouble dpow(jdouble x, jdouble y); 239 240 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) { 241 address fn; 242 switch (kind) { 243 case Interpreter::java_lang_math_sin : 244 if (StubRoutines::dsin() == nullptr) { 245 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); 246 } else { 247 fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin()); 248 } 249 break; 250 case Interpreter::java_lang_math_cos : 251 if (StubRoutines::dcos() == nullptr) { 252 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); 253 } else { 254 fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos()); 255 } 256 break; 257 case Interpreter::java_lang_math_tan : 258 if (StubRoutines::dtan() == nullptr) { 259 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); 260 } else { 261 fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan()); 262 } 263 break; 264 case Interpreter::java_lang_math_log : 265 if (StubRoutines::dlog() == nullptr) { 266 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); 267 } else { 268 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog()); 269 } 270 break; 271 case Interpreter::java_lang_math_log10 : 272 if (StubRoutines::dlog10() == nullptr) { 273 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); 274 } else { 275 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10()); 276 } 277 break; 278 case Interpreter::java_lang_math_exp : 279 if (StubRoutines::dexp() == nullptr) { 280 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); 281 } else { 282 fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp()); 283 } 284 break; 285 case Interpreter::java_lang_math_pow : 286 if (StubRoutines::dpow() == nullptr) { 287 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 288 } else { 289 fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow()); 290 } 291 break; 292 default: 293 ShouldNotReachHere(); 294 fn = nullptr; // unreachable 295 } 296 __ mov(rscratch1, fn); 297 __ blr(rscratch1); 298 } 299 300 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { 301 assert(VM_Version::supports_float16(), "this intrinsic is not supported"); 302 // r19_sender_sp: sender sp 303 // stack: 304 // [ arg ] <-- esp 305 // [ arg ] 306 // retaddr in lr 307 // result in v0 308 309 address entry_point = __ pc(); 310 __ ldrw(c_rarg0, Address(esp)); 311 __ flt16_to_flt(v0, c_rarg0, v1); 312 __ mov(sp, r19_sender_sp); // Restore caller's SP 313 __ br(lr); 314 return entry_point; 315 } 316 317 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { 318 assert(VM_Version::supports_float16(), "this intrinsic is not supported"); 319 // r19_sender_sp: sender sp 320 // stack: 321 // [ arg ] <-- esp 322 // [ arg ] 323 // retaddr in lr 324 // result in c_rarg0 325 326 address entry_point = __ pc(); 327 __ ldrs(v0, Address(esp)); 328 __ flt_to_flt16(c_rarg0, v0, v1); 329 __ mov(sp, r19_sender_sp); // Restore caller's SP 330 __ br(lr); 331 return entry_point; 332 } 333 334 // Abstract method entry 335 // Attempt to execute abstract method. Throw exception 336 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 337 // rmethod: Method* 338 // r19_sender_sp: sender SP 339 340 address entry_point = __ pc(); 341 342 // abstract method entry 343 344 // pop return address, reset last_sp to null 345 __ empty_expression_stack(); 346 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 347 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 348 349 // throw exception 350 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 351 InterpreterRuntime::throw_AbstractMethodErrorWithMethod), 352 rmethod); 353 // the call_VM checks for exception, so we should never return here. 354 __ should_not_reach_here(); 355 356 return entry_point; 357 } 358 359 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 360 address entry = __ pc(); 361 362 #ifdef ASSERT 363 { 364 Label L; 365 __ ldr(rscratch1, Address(rfp, 366 frame::interpreter_frame_monitor_block_top_offset * 367 wordSize)); 368 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 369 __ mov(rscratch2, sp); 370 __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack 371 // grows negative) 372 __ br(Assembler::HS, L); // check if frame is complete 373 __ stop ("interpreter frame not set up"); 374 __ bind(L); 375 } 376 #endif // ASSERT 377 // Restore bcp under the assumption that the current frame is still 378 // interpreted 379 __ restore_bcp(); 380 381 // expression stack must be empty before entering the VM if an 382 // exception happened 383 __ empty_expression_stack(); 384 // throw exception 385 __ call_VM(noreg, 386 CAST_FROM_FN_PTR(address, 387 InterpreterRuntime::throw_StackOverflowError)); 388 return entry; 389 } 390 391 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 392 address entry = __ pc(); 393 // expression stack must be empty before entering the VM if an 394 // exception happened 395 __ empty_expression_stack(); 396 // setup parameters 397 398 // ??? convention: expect aberrant index in register r1 399 __ movw(c_rarg2, r1); 400 // ??? convention: expect array in register r3 401 __ mov(c_rarg1, r3); 402 __ call_VM(noreg, 403 CAST_FROM_FN_PTR(address, 404 InterpreterRuntime:: 405 throw_ArrayIndexOutOfBoundsException), 406 c_rarg1, c_rarg2); 407 return entry; 408 } 409 410 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 411 address entry = __ pc(); 412 413 // object is at TOS 414 __ pop(c_rarg1); 415 416 // expression stack must be empty before entering the VM if an 417 // exception happened 418 __ empty_expression_stack(); 419 420 __ call_VM(noreg, 421 CAST_FROM_FN_PTR(address, 422 InterpreterRuntime:: 423 throw_ClassCastException), 424 c_rarg1); 425 return entry; 426 } 427 428 address TemplateInterpreterGenerator::generate_exception_handler_common( 429 const char* name, const char* message, bool pass_oop) { 430 assert(!pass_oop || message == nullptr, "either oop or message but not both"); 431 address entry = __ pc(); 432 if (pass_oop) { 433 // object is at TOS 434 __ pop(c_rarg2); 435 } 436 // expression stack must be empty before entering the VM if an 437 // exception happened 438 __ empty_expression_stack(); 439 // setup parameters 440 __ lea(c_rarg1, Address((address)name)); 441 if (pass_oop) { 442 __ call_VM(r0, CAST_FROM_FN_PTR(address, 443 InterpreterRuntime:: 444 create_klass_exception), 445 c_rarg1, c_rarg2); 446 } else { 447 // kind of lame ExternalAddress can't take null because 448 // external_word_Relocation will assert. 449 if (message != nullptr) { 450 __ lea(c_rarg2, Address((address)message)); 451 } else { 452 __ mov(c_rarg2, NULL_WORD); 453 } 454 __ call_VM(r0, 455 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), 456 c_rarg1, c_rarg2); 457 } 458 // throw exception 459 __ b(address(Interpreter::throw_exception_entry())); 460 return entry; 461 } 462 463 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { 464 address entry = __ pc(); 465 466 // Restore stack bottom in case i2c adjusted stack 467 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 468 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 469 // and null it as marker that esp is now tos until next java call 470 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 471 __ restore_bcp(); 472 __ restore_locals(); 473 __ restore_constant_pool_cache(); 474 __ get_method(rmethod); 475 476 if (state == atos) { 477 Register obj = r0; 478 Register mdp = r1; 479 Register tmp = r2; 480 __ profile_return_type(mdp, obj, tmp); 481 } 482 483 const Register cache = r1; 484 const Register index = r2; 485 486 if (index_size == sizeof(u4)) { 487 __ load_resolved_indy_entry(cache, index); 488 __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedIndyEntry::num_parameters_offset()))); 489 __ add(esp, esp, cache, Assembler::LSL, 3); 490 } else { 491 // Pop N words from the stack 492 assert(index_size == sizeof(u2), "Can only be u2"); 493 __ load_method_entry(cache, index); 494 __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 495 __ add(esp, esp, cache, Assembler::LSL, 3); 496 } 497 498 // Restore machine SP 499 __ restore_sp_after_call(); 500 501 __ check_and_handle_popframe(rthread); 502 __ check_and_handle_earlyret(rthread); 503 504 __ get_dispatch(); 505 __ dispatch_next(state, step); 506 507 return entry; 508 } 509 510 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, 511 int step, 512 address continuation) { 513 address entry = __ pc(); 514 __ restore_bcp(); 515 __ restore_locals(); 516 __ restore_constant_pool_cache(); 517 __ get_method(rmethod); 518 __ get_dispatch(); 519 520 __ restore_sp_after_call(); // Restore SP to extended SP 521 522 // Restore expression stack pointer 523 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 524 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 525 // null last_sp until next java call 526 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 527 528 #if INCLUDE_JVMCI 529 // Check if we need to take lock at entry of synchronized method. This can 530 // only occur on method entry so emit it only for vtos with step 0. 531 if (EnableJVMCI && state == vtos && step == 0) { 532 Label L; 533 __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset())); 534 __ cbz(rscratch1, L); 535 // Clear flag. 536 __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset())); 537 // Take lock. 538 lock_method(); 539 __ bind(L); 540 } else { 541 #ifdef ASSERT 542 if (EnableJVMCI) { 543 Label L; 544 __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset())); 545 __ cbz(rscratch1, L); 546 __ stop("unexpected pending monitor in deopt entry"); 547 __ bind(L); 548 } 549 #endif 550 } 551 #endif 552 // handle exceptions 553 { 554 Label L; 555 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 556 __ cbz(rscratch1, L); 557 __ call_VM(noreg, 558 CAST_FROM_FN_PTR(address, 559 InterpreterRuntime::throw_pending_exception)); 560 __ should_not_reach_here(); 561 __ bind(L); 562 } 563 564 if (continuation == nullptr) { 565 __ dispatch_next(state, step); 566 } else { 567 __ jump_to_entry(continuation); 568 } 569 return entry; 570 } 571 572 address TemplateInterpreterGenerator::generate_result_handler_for( 573 BasicType type) { 574 address entry = __ pc(); 575 switch (type) { 576 case T_BOOLEAN: __ c2bool(r0); break; 577 case T_CHAR : __ uxth(r0, r0); break; 578 case T_BYTE : __ sxtb(r0, r0); break; 579 case T_SHORT : __ sxth(r0, r0); break; 580 case T_INT : __ uxtw(r0, r0); break; // FIXME: We almost certainly don't need this 581 case T_LONG : /* nothing to do */ break; 582 case T_VOID : /* nothing to do */ break; 583 case T_FLOAT : /* nothing to do */ break; 584 case T_DOUBLE : /* nothing to do */ break; 585 case T_OBJECT : 586 // retrieve result from frame 587 __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 588 // and verify it 589 __ verify_oop(r0); 590 break; 591 default : ShouldNotReachHere(); 592 } 593 __ ret(lr); // return from result handler 594 return entry; 595 } 596 597 address TemplateInterpreterGenerator::generate_safept_entry_for( 598 TosState state, 599 address runtime_entry) { 600 address entry = __ pc(); 601 __ push(state); 602 __ push_cont_fastpath(rthread); 603 __ call_VM(noreg, runtime_entry); 604 __ pop_cont_fastpath(rthread); 605 __ membar(Assembler::AnyAny); 606 __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos)); 607 return entry; 608 } 609 610 address TemplateInterpreterGenerator::generate_cont_resume_interpreter_adapter() { 611 if (!Continuations::enabled()) return nullptr; 612 address start = __ pc(); 613 614 __ restore_bcp(); 615 __ restore_locals(); 616 617 // Restore constant pool cache 618 __ ldr(rcpool, Address(rfp, frame::interpreter_frame_cache_offset * wordSize)); 619 620 // Restore Java expression stack pointer 621 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 622 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 623 // and NULL it as marker that esp is now tos until next java call 624 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 625 626 // Restore machine SP 627 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 628 __ lea(sp, Address(rfp, rscratch1, Address::lsl(LogBytesPerWord))); 629 630 // Restore method 631 __ ldr(rmethod, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 632 633 // Restore dispatch 634 uint64_t offset; 635 __ adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 636 __ add(rdispatch, rdispatch, offset); 637 638 __ ret(lr); 639 640 return start; 641 } 642 643 644 // Helpers for commoning out cases in the various type of method entries. 645 // 646 647 648 // increment invocation count & check for overflow 649 // 650 // Note: checking for negative value instead of overflow 651 // so we have a 'sticky' overflow test 652 // 653 // rmethod: method 654 // 655 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 656 Label done; 657 // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not. 658 int increment = InvocationCounter::count_increment; 659 Label no_mdo; 660 if (ProfileInterpreter) { 661 // Are we profiling? 662 __ ldr(r0, Address(rmethod, Method::method_data_offset())); 663 __ cbz(r0, no_mdo); 664 // Increment counter in the MDO 665 const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) + 666 in_bytes(InvocationCounter::counter_offset())); 667 const Address mask(r0, in_bytes(MethodData::invoke_mask_offset())); 668 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow); 669 __ b(done); 670 } 671 __ bind(no_mdo); 672 // Increment counter in MethodCounters 673 const Address invocation_counter(rscratch2, 674 MethodCounters::invocation_counter_offset() + 675 InvocationCounter::counter_offset()); 676 __ get_method_counters(rmethod, rscratch2, done); 677 const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset())); 678 __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow); 679 __ bind(done); 680 } 681 682 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 683 684 // Asm interpreter on entry 685 // On return (i.e. jump to entry_point) [ back to invocation of interpreter ] 686 // Everything as it was on entry 687 688 // InterpreterRuntime::frequency_counter_overflow takes two 689 // arguments, the first (thread) is passed by call_VM, the second 690 // indicates if the counter overflow occurs at a backwards branch 691 // (null bcp). We pass zero for it. The call returns the address 692 // of the verified entry point for the method or null if the 693 // compilation did not complete (either went background or bailed 694 // out). 695 __ mov(c_rarg1, 0); 696 __ call_VM(noreg, 697 CAST_FROM_FN_PTR(address, 698 InterpreterRuntime::frequency_counter_overflow), 699 c_rarg1); 700 701 __ b(do_continue); 702 } 703 704 // See if we've got enough room on the stack for locals plus overhead 705 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError 706 // without going through the signal handler, i.e., reserved and yellow zones 707 // will not be made usable. The shadow zone must suffice to handle the 708 // overflow. 709 // The expression stack grows down incrementally, so the normal guard 710 // page mechanism will work for that. 711 // 712 // NOTE: Since the additional locals are also always pushed (wasn't 713 // obvious in generate_method_entry) so the guard should work for them 714 // too. 715 // 716 // Args: 717 // r3: number of additional locals this frame needs (what we must check) 718 // rmethod: Method* 719 // 720 // Kills: 721 // r0 722 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) { 723 724 // monitor entry size: see picture of stack set 725 // (generate_method_entry) and frame_amd64.hpp 726 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 727 728 // total overhead size: entry_size + (saved rbp through expr stack 729 // bottom). be sure to change this if you add/subtract anything 730 // to/from the overhead area 731 const int overhead_size = 732 -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size; 733 734 const size_t page_size = os::vm_page_size(); 735 736 Label after_frame_check; 737 738 // see if the frame is greater than one page in size. If so, 739 // then we need to verify there is enough stack space remaining 740 // for the additional locals. 741 // 742 // Note that we use SUBS rather than CMP here because the immediate 743 // field of this instruction may overflow. SUBS can cope with this 744 // because it is a macro that will expand to some number of MOV 745 // instructions and a register operation. 746 __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize); 747 __ br(Assembler::LS, after_frame_check); 748 749 // compute rsp as if this were going to be the last frame on 750 // the stack before the red zone 751 752 // locals + overhead, in bytes 753 __ mov(r0, overhead_size); 754 __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize); // 2 slots per parameter. 755 756 const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset()); 757 __ ldr(rscratch1, stack_limit); 758 759 #ifdef ASSERT 760 Label limit_okay; 761 // Verify that thread stack limit is non-zero. 762 __ cbnz(rscratch1, limit_okay); 763 __ stop("stack overflow limit is zero"); 764 __ bind(limit_okay); 765 #endif 766 767 // Add stack limit to locals. 768 __ add(r0, r0, rscratch1); 769 770 // Check against the current stack bottom. 771 __ cmp(sp, r0); 772 __ br(Assembler::HI, after_frame_check); 773 774 // Remove the incoming args, peeling the machine SP back to where it 775 // was in the caller. This is not strictly necessary, but unless we 776 // do so the stack frame may have a garbage FP; this ensures a 777 // correct call stack that we can always unwind. The ANDR should be 778 // unnecessary because the sender SP in r19 is always aligned, but 779 // it doesn't hurt. 780 __ andr(sp, r19_sender_sp, -16); 781 782 // Note: the restored frame is not necessarily interpreted. 783 // Use the shared runtime version of the StackOverflowError. 784 assert(SharedRuntime::throw_StackOverflowError_entry() != nullptr, "stub not yet generated"); 785 __ far_jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry())); 786 787 // all done with frame size check 788 __ bind(after_frame_check); 789 } 790 791 // Allocate monitor and lock method (asm interpreter) 792 // 793 // Args: 794 // rmethod: Method* 795 // rlocals: locals 796 // 797 // Kills: 798 // r0 799 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs) 800 // rscratch1, rscratch2 (scratch regs) 801 void TemplateInterpreterGenerator::lock_method() { 802 // synchronize method 803 const Address access_flags(rmethod, Method::access_flags_offset()); 804 const Address monitor_block_top( 805 rfp, 806 frame::interpreter_frame_monitor_block_top_offset * wordSize); 807 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 808 809 #ifdef ASSERT 810 { 811 Label L; 812 __ ldrw(r0, access_flags); 813 __ tst(r0, JVM_ACC_SYNCHRONIZED); 814 __ br(Assembler::NE, L); 815 __ stop("method doesn't need synchronization"); 816 __ bind(L); 817 } 818 #endif // ASSERT 819 820 // get synchronization object 821 { 822 Label done; 823 __ ldrw(r0, access_flags); 824 __ tst(r0, JVM_ACC_STATIC); 825 // get receiver (assume this is frequent case) 826 __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0))); 827 __ br(Assembler::EQ, done); 828 __ load_mirror(r0, rmethod, r5, rscratch2); 829 830 #ifdef ASSERT 831 { 832 Label L; 833 __ cbnz(r0, L); 834 __ stop("synchronization object is null"); 835 __ bind(L); 836 } 837 #endif // ASSERT 838 839 __ bind(done); 840 } 841 842 // add space for monitor & lock 843 __ check_extended_sp(); 844 __ sub(sp, sp, entry_size); // add space for a monitor entry 845 __ sub(esp, esp, entry_size); 846 __ sub(rscratch1, sp, rfp); 847 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 848 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 849 __ sub(rscratch1, esp, rfp); 850 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 851 __ str(rscratch1, monitor_block_top); // set new monitor block top 852 853 // store object 854 __ str(r0, Address(esp, BasicObjectLock::obj_offset())); 855 __ mov(c_rarg1, esp); // object address 856 __ lock_object(c_rarg1); 857 } 858 859 // Generate a fixed interpreter frame. This is identical setup for 860 // interpreted methods and for native methods hence the shared code. 861 // 862 // Args: 863 // lr: return address 864 // rmethod: Method* 865 // rlocals: pointer to locals 866 // rcpool: cp cache 867 // stack_pointer: previous sp 868 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 869 // initialize fixed part of activation frame 870 if (native_call) { 871 __ sub(esp, sp, 14 * wordSize); 872 __ mov(rbcp, zr); 873 __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset); 874 __ stp(rscratch1, zr, Address(__ pre(sp, -14 * wordSize))); 875 // add 2 zero-initialized slots for native calls 876 __ stp(zr, zr, Address(sp, 12 * wordSize)); 877 } else { 878 __ sub(esp, sp, 12 * wordSize); 879 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); // get ConstMethod 880 __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase 881 __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset); 882 __ stp(rscratch1, rbcp, Address(__ pre(sp, -12 * wordSize))); 883 } 884 885 if (ProfileInterpreter) { 886 Label method_data_continue; 887 __ ldr(rscratch1, Address(rmethod, Method::method_data_offset())); 888 __ cbz(rscratch1, method_data_continue); 889 __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset()))); 890 __ bind(method_data_continue); 891 __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize)); // save Method* and mdp (method data pointer) 892 } else { 893 __ stp(zr, rmethod, Address(sp, 6 * wordSize)); // save Method* (no mdp) 894 } 895 896 __ protect_return_address(); 897 __ stp(rfp, lr, Address(sp, 10 * wordSize)); 898 __ lea(rfp, Address(sp, 10 * wordSize)); 899 900 __ ldr(rcpool, Address(rmethod, Method::const_offset())); 901 __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset())); 902 __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset())); 903 __ sub(rscratch1, rlocals, rfp); 904 __ lsr(rscratch1, rscratch1, Interpreter::logStackElementSize); // rscratch1 = rlocals - fp(); 905 // Store relativized rlocals, see frame::interpreter_frame_locals(). 906 __ stp(rscratch1, rcpool, Address(sp, 2 * wordSize)); 907 908 // set sender sp 909 // leave last_sp as null 910 __ stp(zr, r19_sender_sp, Address(sp, 8 * wordSize)); 911 912 // Get mirror 913 __ load_mirror(r10, rmethod, r5, rscratch2); 914 if (! native_call) { 915 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 916 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 917 __ add(rscratch1, rscratch1, MAX2(3, Method::extra_stack_entries())); 918 __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3); 919 __ andr(rscratch1, rscratch1, -16); 920 __ sub(rscratch2, rscratch1, rfp); 921 __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize); 922 // Store extended SP and mirror 923 __ stp(r10, rscratch2, Address(sp, 4 * wordSize)); 924 // Move SP out of the way 925 __ mov(sp, rscratch1); 926 } else { 927 // Make sure there is room for the exception oop pushed in case method throws 928 // an exception (see TemplateInterpreterGenerator::generate_throw_exception()) 929 __ sub(rscratch1, sp, 2 * wordSize); 930 __ sub(rscratch2, rscratch1, rfp); 931 __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize); 932 __ stp(r10, rscratch2, Address(sp, 4 * wordSize)); 933 __ mov(sp, rscratch1); 934 } 935 } 936 937 // End of helpers 938 939 // Various method entries 940 //------------------------------------------------------------------------------------------------------------------------ 941 // 942 // 943 944 // Method entry for java.lang.ref.Reference.get. 945 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 946 // Code: _aload_0, _getfield, _areturn 947 // parameter size = 1 948 // 949 // The code that gets generated by this routine is split into 2 parts: 950 // 1. The "intrinsified" code for G1 (or any SATB based GC), 951 // 2. The slow path - which is an expansion of the regular method entry. 952 // 953 // Notes:- 954 // * In the G1 code we do not check whether we need to block for 955 // a safepoint. If G1 is enabled then we must execute the specialized 956 // code for Reference.get (except when the Reference object is null) 957 // so that we can log the value in the referent field with an SATB 958 // update buffer. 959 // If the code for the getfield template is modified so that the 960 // G1 pre-barrier code is executed when the current method is 961 // Reference.get() then going through the normal method entry 962 // will be fine. 963 // * The G1 code can, however, check the receiver object (the instance 964 // of java.lang.Reference) and jump to the slow path if null. If the 965 // Reference object is null then we obviously cannot fetch the referent 966 // and so we don't need to call the G1 pre-barrier. Thus we can use the 967 // regular method entry code to generate the NPE. 968 // 969 // This code is based on generate_accessor_entry. 970 // 971 // rmethod: Method* 972 // r19_sender_sp: senderSP must preserve for slow path, set SP to it on fast path 973 974 // LR is live. It must be saved around calls. 975 976 address entry = __ pc(); 977 978 const int referent_offset = java_lang_ref_Reference::referent_offset(); 979 980 Label slow_path; 981 const Register local_0 = c_rarg0; 982 // Check if local 0 != null 983 // If the receiver is null then it is OK to jump to the slow path. 984 __ ldr(local_0, Address(esp, 0)); 985 __ cbz(local_0, slow_path); 986 987 // Load the value of the referent field. 988 const Address field_address(local_0, referent_offset); 989 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 990 bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch1, /*tmp2*/ rscratch2); 991 992 // areturn 993 __ andr(sp, r19_sender_sp, -16); // done with stack 994 __ ret(lr); 995 996 // generate a vanilla interpreter entry as the slow path 997 __ bind(slow_path); 998 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals)); 999 return entry; 1000 1001 } 1002 1003 /** 1004 * Method entry for static native methods: 1005 * int java.util.zip.CRC32.update(int crc, int b) 1006 */ 1007 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { 1008 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1009 address entry = __ pc(); 1010 1011 // rmethod: Method* 1012 // r19_sender_sp: senderSP must preserved for slow path 1013 // esp: args 1014 1015 Label slow_path; 1016 // If we need a safepoint check, generate full interpreter entry. 1017 __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */); 1018 1019 // We don't generate local frame and don't align stack because 1020 // we call stub code and there is no safepoint on this path. 1021 1022 // Load parameters 1023 const Register crc = c_rarg0; // crc 1024 const Register val = c_rarg1; // source java byte value 1025 const Register tbl = c_rarg2; // scratch 1026 1027 // Arguments are reversed on java expression stack 1028 __ ldrw(val, Address(esp, 0)); // byte value 1029 __ ldrw(crc, Address(esp, wordSize)); // Initial CRC 1030 1031 uint64_t offset; 1032 __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset); 1033 __ add(tbl, tbl, offset); 1034 1035 __ mvnw(crc, crc); // ~crc 1036 __ update_byte_crc32(crc, val, tbl); 1037 __ mvnw(crc, crc); // ~crc 1038 1039 // result in c_rarg0 1040 1041 __ andr(sp, r19_sender_sp, -16); 1042 __ ret(lr); 1043 1044 // generate a vanilla native entry as the slow path 1045 __ bind(slow_path); 1046 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); 1047 return entry; 1048 } 1049 1050 /** 1051 * Method entry for static native methods: 1052 * int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len) 1053 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 1054 */ 1055 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1056 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1057 address entry = __ pc(); 1058 1059 // rmethod,: Method* 1060 // r19_sender_sp: senderSP must preserved for slow path 1061 1062 Label slow_path; 1063 // If we need a safepoint check, generate full interpreter entry. 1064 __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */); 1065 1066 // We don't generate local frame and don't align stack because 1067 // we call stub code and there is no safepoint on this path. 1068 1069 // Load parameters 1070 const Register crc = c_rarg0; // crc 1071 const Register buf = c_rarg1; // source java byte array address 1072 const Register len = c_rarg2; // length 1073 const Register off = len; // offset (never overlaps with 'len') 1074 1075 // Arguments are reversed on java expression stack 1076 // Calculate address of start element 1077 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { 1078 __ ldr(buf, Address(esp, 2*wordSize)); // long buf 1079 __ ldrw(off, Address(esp, wordSize)); // offset 1080 __ add(buf, buf, off); // + offset 1081 __ ldrw(crc, Address(esp, 4*wordSize)); // Initial CRC 1082 } else { 1083 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array 1084 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 1085 __ ldrw(off, Address(esp, wordSize)); // offset 1086 __ add(buf, buf, off); // + offset 1087 __ ldrw(crc, Address(esp, 3*wordSize)); // Initial CRC 1088 } 1089 // Can now load 'len' since we're finished with 'off' 1090 __ ldrw(len, Address(esp, 0x0)); // Length 1091 1092 __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP 1093 1094 // We are frameless so we can just jump to the stub. 1095 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32())); 1096 1097 // generate a vanilla native entry as the slow path 1098 __ bind(slow_path); 1099 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); 1100 return entry; 1101 } 1102 1103 /** 1104 * Method entry for intrinsic-candidate (non-native) methods: 1105 * int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end) 1106 * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 1107 * Unlike CRC32, CRC32C does not have any methods marked as native 1108 * CRC32C also uses an "end" variable instead of the length variable CRC32 uses 1109 */ 1110 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1111 assert(UseCRC32CIntrinsics, "this intrinsic is not supported"); 1112 address entry = __ pc(); 1113 1114 // Prepare jump to stub using parameters from the stack 1115 const Register crc = c_rarg0; // initial crc 1116 const Register buf = c_rarg1; // source java byte array address 1117 const Register len = c_rarg2; // len argument to the kernel 1118 1119 const Register end = len; // index of last element to process 1120 const Register off = crc; // offset 1121 1122 __ ldrw(end, Address(esp)); // int end 1123 __ ldrw(off, Address(esp, wordSize)); // int offset 1124 __ sub(len, end, off); 1125 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf 1126 __ add(buf, buf, off); // + offset 1127 if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { 1128 __ ldrw(crc, Address(esp, 4*wordSize)); // long crc 1129 } else { 1130 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 1131 __ ldrw(crc, Address(esp, 3*wordSize)); // long crc 1132 } 1133 1134 __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP 1135 1136 // Jump to the stub. 1137 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C())); 1138 1139 return entry; 1140 } 1141 1142 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) { 1143 // See more discussion in stackOverflow.hpp. 1144 1145 const int shadow_zone_size = checked_cast<int>(StackOverflow::stack_shadow_zone_size()); 1146 const int page_size = (int)os::vm_page_size(); 1147 const int n_shadow_pages = shadow_zone_size / page_size; 1148 1149 #ifdef ASSERT 1150 Label L_good_limit; 1151 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit())); 1152 __ cbnz(rscratch1, L_good_limit); 1153 __ stop("shadow zone safe limit is not initialized"); 1154 __ bind(L_good_limit); 1155 1156 Label L_good_watermark; 1157 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1158 __ cbnz(rscratch1, L_good_watermark); 1159 __ stop("shadow zone growth watermark is not initialized"); 1160 __ bind(L_good_watermark); 1161 #endif 1162 1163 Label L_done; 1164 1165 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1166 __ cmp(sp, rscratch1); 1167 __ br(Assembler::HI, L_done); 1168 1169 for (int p = 1; p <= n_shadow_pages; p++) { 1170 __ sub(rscratch2, sp, p*page_size); 1171 __ str(zr, Address(rscratch2)); 1172 } 1173 1174 // Record the new watermark, but only if the update is above the safe limit. 1175 // Otherwise, the next time around the check above would pass the safe limit. 1176 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit())); 1177 __ cmp(sp, rscratch1); 1178 __ br(Assembler::LS, L_done); 1179 __ mov(rscratch1, sp); 1180 __ str(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1181 1182 __ bind(L_done); 1183 } 1184 1185 // Interpreter stub for calling a native method. (asm interpreter) 1186 // This sets up a somewhat different looking stack for calling the 1187 // native method than the typical interpreter frame setup. 1188 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized, bool runtime_upcalls) { 1189 // determine code generation flags 1190 bool inc_counter = UseCompiler || CountCompiledCalls; 1191 1192 // r1: Method* 1193 // rscratch1: sender sp 1194 1195 address entry_point = __ pc(); 1196 1197 const Address constMethod (rmethod, Method::const_offset()); 1198 const Address access_flags (rmethod, Method::access_flags_offset()); 1199 const Address size_of_parameters(r2, ConstMethod:: 1200 size_of_parameters_offset()); 1201 1202 // get parameter size (always needed) 1203 __ ldr(r2, constMethod); 1204 __ load_unsigned_short(r2, size_of_parameters); 1205 1206 // Native calls don't need the stack size check since they have no 1207 // expression stack and the arguments are already on the stack and 1208 // we only add a handful of words to the stack. 1209 1210 // rmethod: Method* 1211 // r2: size of parameters 1212 // rscratch1: sender sp 1213 1214 // for natives the size of locals is zero 1215 1216 // compute beginning of parameters (rlocals) 1217 __ add(rlocals, esp, r2, ext::uxtx, 3); 1218 __ add(rlocals, rlocals, -wordSize); 1219 1220 // Pull SP back to minimum size: this avoids holes in the stack 1221 __ andr(sp, esp, -16); 1222 1223 // initialize fixed part of activation frame 1224 generate_fixed_frame(true); 1225 1226 // make sure method is native & not abstract 1227 #ifdef ASSERT 1228 __ ldrw(r0, access_flags); 1229 { 1230 Label L; 1231 __ tst(r0, JVM_ACC_NATIVE); 1232 __ br(Assembler::NE, L); 1233 __ stop("tried to execute non-native method as native"); 1234 __ bind(L); 1235 } 1236 { 1237 Label L; 1238 __ tst(r0, JVM_ACC_ABSTRACT); 1239 __ br(Assembler::EQ, L); 1240 __ stop("tried to execute abstract method in interpreter"); 1241 __ bind(L); 1242 } 1243 #endif 1244 1245 // Since at this point in the method invocation the exception 1246 // handler would try to exit the monitor of synchronized methods 1247 // which hasn't been entered yet, we set the thread local variable 1248 // _do_not_unlock_if_synchronized to true. The remove_activation 1249 // will check this flag. 1250 1251 const Address do_not_unlock_if_synchronized(rthread, 1252 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1253 __ mov(rscratch2, true); 1254 __ strb(rscratch2, do_not_unlock_if_synchronized); 1255 1256 // increment invocation count & check for overflow 1257 Label invocation_counter_overflow; 1258 if (inc_counter) { 1259 generate_counter_incr(&invocation_counter_overflow); 1260 } 1261 1262 Label continue_after_compile; 1263 __ bind(continue_after_compile); 1264 1265 bang_stack_shadow_pages(true); 1266 1267 // reset the _do_not_unlock_if_synchronized flag 1268 __ strb(zr, do_not_unlock_if_synchronized); 1269 1270 // check for synchronized methods 1271 // Must happen AFTER invocation_counter check and stack overflow check, 1272 // so method is not locked if overflows. 1273 if (synchronized) { 1274 lock_method(); 1275 } else { 1276 // no synchronization necessary 1277 #ifdef ASSERT 1278 { 1279 Label L; 1280 __ ldrw(r0, access_flags); 1281 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1282 __ br(Assembler::EQ, L); 1283 __ stop("method needs synchronization"); 1284 __ bind(L); 1285 } 1286 #endif 1287 } 1288 1289 // start execution 1290 #ifdef ASSERT 1291 { 1292 Label L; 1293 const Address monitor_block_top(rfp, 1294 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1295 __ ldr(rscratch1, monitor_block_top); 1296 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 1297 __ cmp(esp, rscratch1); 1298 __ br(Assembler::EQ, L); 1299 __ stop("broken stack frame setup in interpreter 1"); 1300 __ bind(L); 1301 } 1302 #endif 1303 1304 // jvmti support 1305 __ notify_method_entry(); 1306 1307 if (runtime_upcalls) { 1308 __ generate_runtime_upcalls_on_method_entry(); 1309 } 1310 1311 // work registers 1312 const Register t = r17; 1313 const Register result_handler = r19; 1314 1315 // allocate space for parameters 1316 __ ldr(t, Address(rmethod, Method::const_offset())); 1317 __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset())); 1318 1319 __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize); 1320 __ andr(sp, rscratch1, -16); 1321 __ mov(esp, rscratch1); 1322 1323 // get signature handler 1324 { 1325 Label L; 1326 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1327 __ cbnz(t, L); 1328 __ call_VM(noreg, 1329 CAST_FROM_FN_PTR(address, 1330 InterpreterRuntime::prepare_native_call), 1331 rmethod); 1332 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1333 __ bind(L); 1334 } 1335 1336 // call signature handler 1337 assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals, 1338 "adjust this code"); 1339 assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp, 1340 "adjust this code"); 1341 assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1, 1342 "adjust this code"); 1343 1344 // The generated handlers do not touch rmethod (the method). 1345 // However, large signatures cannot be cached and are generated 1346 // each time here. The slow-path generator can do a GC on return, 1347 // so we must reload it after the call. 1348 __ blr(t); 1349 __ get_method(rmethod); // slow path can do a GC, reload rmethod 1350 1351 1352 // result handler is in r0 1353 // set result handler 1354 __ mov(result_handler, r0); 1355 // Save it in the frame in case of preemption; we cannot rely on callee saved registers. 1356 __ str(r0, Address(rfp, frame::interpreter_frame_result_handler_offset * wordSize)); 1357 1358 // pass mirror handle if static call 1359 { 1360 Label L; 1361 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1362 __ tbz(t, exact_log2(JVM_ACC_STATIC), L); 1363 // get mirror 1364 __ load_mirror(t, rmethod, r10, rscratch2); 1365 // copy mirror into activation frame 1366 __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize)); 1367 // pass handle to mirror 1368 __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize); 1369 __ bind(L); 1370 } 1371 1372 // get native function entry point in r10 1373 { 1374 Label L; 1375 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1376 ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry()); 1377 __ lea(rscratch2, unsatisfied); 1378 __ ldr(rscratch2, rscratch2); 1379 __ cmp(r10, rscratch2); 1380 __ br(Assembler::NE, L); 1381 __ call_VM(noreg, 1382 CAST_FROM_FN_PTR(address, 1383 InterpreterRuntime::prepare_native_call), 1384 rmethod); 1385 __ get_method(rmethod); 1386 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1387 __ bind(L); 1388 } 1389 1390 // pass JNIEnv 1391 __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset())); 1392 1393 // It is enough that the pc() points into the right code 1394 // segment. It does not have to be the correct return pc. 1395 // For convenience we use the pc we want to resume to in 1396 // case of preemption on Object.wait. 1397 Label native_return; 1398 __ set_last_Java_frame(esp, rfp, native_return, rscratch1); 1399 1400 // change thread state 1401 #ifdef ASSERT 1402 { 1403 Label L; 1404 __ ldrw(t, Address(rthread, JavaThread::thread_state_offset())); 1405 __ cmp(t, (u1)_thread_in_Java); 1406 __ br(Assembler::EQ, L); 1407 __ stop("Wrong thread state in native stub"); 1408 __ bind(L); 1409 } 1410 #endif 1411 1412 // Change state to native 1413 __ mov(rscratch1, _thread_in_native); 1414 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1415 __ stlrw(rscratch1, rscratch2); 1416 1417 __ push_cont_fastpath(); 1418 1419 // Call the native method. 1420 __ blr(r10); 1421 1422 __ pop_cont_fastpath(); 1423 1424 __ get_method(rmethod); 1425 // result potentially in r0 or v0 1426 1427 // Restore cpu control state after JNI call 1428 __ restore_cpu_control_state_after_jni(rscratch1, rscratch2); 1429 1430 // make room for the pushes we're about to do 1431 __ sub(rscratch1, esp, 4 * wordSize); 1432 __ andr(sp, rscratch1, -16); 1433 1434 // NOTE: The order of these pushes is known to frame::interpreter_frame_result 1435 // in order to extract the result of a method call. If the order of these 1436 // pushes change or anything else is added to the stack then the code in 1437 // interpreter_frame_result must also change. 1438 __ push(dtos); 1439 __ push(ltos); 1440 1441 __ verify_sve_vector_length(); 1442 1443 // change thread state 1444 __ mov(rscratch1, _thread_in_native_trans); 1445 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1446 __ stlrw(rscratch1, rscratch2); 1447 1448 // Force this write out before the read below 1449 if (!UseSystemMemoryBarrier) { 1450 __ dmb(Assembler::ISH); 1451 } 1452 1453 // check for safepoint operation in progress and/or pending suspend requests 1454 { 1455 Label L, Continue; 1456 1457 // No need for acquire as Java threads always disarm themselves. 1458 __ safepoint_poll(L, true /* at_return */, false /* acquire */, false /* in_nmethod */); 1459 __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset())); 1460 __ cbz(rscratch2, Continue); 1461 __ bind(L); 1462 1463 // Don't use call_VM as it will see a possible pending exception 1464 // and forward it and never return here preventing us from 1465 // clearing _last_native_pc down below. So we do a runtime call by 1466 // hand. 1467 // 1468 __ mov(c_rarg0, rthread); 1469 __ lea(rscratch2, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 1470 __ blr(rscratch2); 1471 __ get_method(rmethod); 1472 __ reinit_heapbase(); 1473 __ bind(Continue); 1474 } 1475 1476 // change thread state 1477 __ mov(rscratch1, _thread_in_Java); 1478 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1479 __ stlrw(rscratch1, rscratch2); 1480 1481 if (LockingMode != LM_LEGACY) { 1482 // Check preemption for Object.wait() 1483 Label not_preempted; 1484 __ ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1485 __ cbz(rscratch1, not_preempted); 1486 __ str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1487 __ br(rscratch1); 1488 __ bind(native_return); 1489 __ restore_after_resume(true /* is_native */); 1490 // reload result_handler 1491 __ ldr(result_handler, Address(rfp, frame::interpreter_frame_result_handler_offset*wordSize)); 1492 __ bind(not_preempted); 1493 } else { 1494 // any pc will do so just use this one for LM_LEGACY to keep code together. 1495 __ bind(native_return); 1496 } 1497 1498 // reset_last_Java_frame 1499 __ reset_last_Java_frame(true); 1500 1501 if (CheckJNICalls) { 1502 // clear_pending_jni_exception_check 1503 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1504 } 1505 1506 // reset handle block 1507 __ ldr(t, Address(rthread, JavaThread::active_handles_offset())); 1508 __ str(zr, Address(t, JNIHandleBlock::top_offset())); 1509 1510 // If result is an oop unbox and store it in frame where gc will see it 1511 // and result handler will pick it up 1512 1513 { 1514 Label no_oop; 1515 __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT))); 1516 __ cmp(t, result_handler); 1517 __ br(Assembler::NE, no_oop); 1518 // Unbox oop result, e.g. JNIHandles::resolve result. 1519 __ pop(ltos); 1520 __ resolve_jobject(r0, t, rscratch2); 1521 __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 1522 // keep stack depth as expected by pushing oop which will eventually be discarded 1523 __ push(ltos); 1524 __ bind(no_oop); 1525 } 1526 1527 { 1528 Label no_reguard; 1529 __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset()))); 1530 __ ldrw(rscratch1, Address(rscratch1)); 1531 __ cmp(rscratch1, (u1)StackOverflow::stack_guard_yellow_reserved_disabled); 1532 __ br(Assembler::NE, no_reguard); 1533 1534 __ push_call_clobbered_registers(); 1535 __ mov(c_rarg0, rthread); 1536 __ lea(rscratch2, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); 1537 __ blr(rscratch2); 1538 __ pop_call_clobbered_registers(); 1539 1540 __ bind(no_reguard); 1541 } 1542 1543 // The method register is junk from after the thread_in_native transition 1544 // until here. Also can't call_VM until the bcp has been 1545 // restored. Need bcp for throwing exception below so get it now. 1546 __ get_method(rmethod); 1547 1548 // restore bcp to have legal interpreter frame, i.e., bci == 0 <=> 1549 // rbcp == code_base() 1550 __ ldr(rbcp, Address(rmethod, Method::const_offset())); // get ConstMethod* 1551 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); // get codebase 1552 // handle exceptions (exception handling will handle unlocking!) 1553 { 1554 Label L; 1555 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 1556 __ cbz(rscratch1, L); 1557 // Note: At some point we may want to unify this with the code 1558 // used in call_VM_base(); i.e., we should use the 1559 // StubRoutines::forward_exception code. For now this doesn't work 1560 // here because the rsp is not correctly set at this point. 1561 __ MacroAssembler::call_VM(noreg, 1562 CAST_FROM_FN_PTR(address, 1563 InterpreterRuntime::throw_pending_exception)); 1564 __ should_not_reach_here(); 1565 __ bind(L); 1566 } 1567 1568 // do unlocking if necessary 1569 { 1570 Label L; 1571 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1572 __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L); 1573 // the code below should be shared with interpreter macro 1574 // assembler implementation 1575 { 1576 Label unlock; 1577 // BasicObjectLock will be first in list, since this is a 1578 // synchronized method. However, need to check that the object 1579 // has not been unlocked by an explicit monitorexit bytecode. 1580 1581 // monitor expect in c_rarg1 for slow unlock path 1582 __ lea (c_rarg1, Address(rfp, // address of first monitor 1583 (intptr_t)(frame::interpreter_frame_initial_sp_offset * 1584 wordSize - sizeof(BasicObjectLock)))); 1585 1586 __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset())); 1587 __ cbnz(t, unlock); 1588 1589 // Entry already unlocked, need to throw exception 1590 __ MacroAssembler::call_VM(noreg, 1591 CAST_FROM_FN_PTR(address, 1592 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1593 __ should_not_reach_here(); 1594 1595 __ bind(unlock); 1596 __ unlock_object(c_rarg1); 1597 } 1598 __ bind(L); 1599 } 1600 1601 // jvmti support 1602 // Note: This must happen _after_ handling/throwing any exceptions since 1603 // the exception handler code notifies the runtime of method exits 1604 // too. If this happens before, method entry/exit notifications are 1605 // not properly paired (was bug - gri 11/22/99). 1606 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI); 1607 1608 // restore potential result in r0:d0, call result handler to 1609 // restore potential result in ST0 & handle result 1610 1611 __ pop(ltos); 1612 __ pop(dtos); 1613 1614 __ blr(result_handler); 1615 1616 // remove activation 1617 __ ldr(esp, Address(rfp, 1618 frame::interpreter_frame_sender_sp_offset * 1619 wordSize)); // get sender sp 1620 // remove frame anchor 1621 __ leave(); 1622 1623 // restore sender sp 1624 __ mov(sp, esp); 1625 1626 __ ret(lr); 1627 1628 if (inc_counter) { 1629 // Handle overflow of counter and compile method 1630 __ bind(invocation_counter_overflow); 1631 generate_counter_overflow(continue_after_compile); 1632 } 1633 1634 return entry_point; 1635 } 1636 1637 // 1638 // Generic interpreted method entry to (asm) interpreter 1639 // 1640 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized, bool runtime_upcalls) { 1641 // determine code generation flags 1642 bool inc_counter = UseCompiler || CountCompiledCalls; 1643 1644 // rscratch1: sender sp 1645 address entry_point = __ pc(); 1646 1647 const Address constMethod(rmethod, Method::const_offset()); 1648 const Address access_flags(rmethod, Method::access_flags_offset()); 1649 const Address size_of_parameters(r3, 1650 ConstMethod::size_of_parameters_offset()); 1651 const Address size_of_locals(r3, ConstMethod::size_of_locals_offset()); 1652 1653 // get parameter size (always needed) 1654 // need to load the const method first 1655 __ ldr(r3, constMethod); 1656 __ load_unsigned_short(r2, size_of_parameters); 1657 1658 // r2: size of parameters 1659 1660 __ load_unsigned_short(r3, size_of_locals); // get size of locals in words 1661 __ sub(r3, r3, r2); // r3 = no. of additional locals 1662 1663 // see if we've got enough room on the stack for locals plus overhead. 1664 generate_stack_overflow_check(); 1665 1666 // compute beginning of parameters (rlocals) 1667 __ add(rlocals, esp, r2, ext::uxtx, 3); 1668 __ sub(rlocals, rlocals, wordSize); 1669 1670 __ mov(rscratch1, esp); 1671 1672 // r3 - # of additional locals 1673 // allocate space for locals 1674 // explicitly initialize locals 1675 // Initializing memory allocated for locals in the same direction as 1676 // the stack grows to ensure page initialization order according 1677 // to windows-aarch64 stack page growth requirement (see 1678 // https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-160#stack) 1679 { 1680 Label exit, loop; 1681 __ ands(zr, r3, r3); 1682 __ br(Assembler::LE, exit); // do nothing if r3 <= 0 1683 __ bind(loop); 1684 __ str(zr, Address(__ pre(rscratch1, -wordSize))); 1685 __ sub(r3, r3, 1); // until everything initialized 1686 __ cbnz(r3, loop); 1687 __ bind(exit); 1688 } 1689 1690 // Padding between locals and fixed part of activation frame to ensure 1691 // SP is always 16-byte aligned. 1692 __ andr(sp, rscratch1, -16); 1693 1694 // And the base dispatch table 1695 __ get_dispatch(); 1696 1697 // initialize fixed part of activation frame 1698 generate_fixed_frame(false); 1699 1700 // make sure method is not native & not abstract 1701 #ifdef ASSERT 1702 __ ldrw(r0, access_flags); 1703 { 1704 Label L; 1705 __ tst(r0, JVM_ACC_NATIVE); 1706 __ br(Assembler::EQ, L); 1707 __ stop("tried to execute native method as non-native"); 1708 __ bind(L); 1709 } 1710 { 1711 Label L; 1712 __ tst(r0, JVM_ACC_ABSTRACT); 1713 __ br(Assembler::EQ, L); 1714 __ stop("tried to execute abstract method in interpreter"); 1715 __ bind(L); 1716 } 1717 #endif 1718 1719 // Since at this point in the method invocation the exception 1720 // handler would try to exit the monitor of synchronized methods 1721 // which hasn't been entered yet, we set the thread local variable 1722 // _do_not_unlock_if_synchronized to true. The remove_activation 1723 // will check this flag. 1724 1725 const Address do_not_unlock_if_synchronized(rthread, 1726 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1727 __ mov(rscratch2, true); 1728 __ strb(rscratch2, do_not_unlock_if_synchronized); 1729 1730 Register mdp = r3; 1731 __ profile_parameters_type(mdp, r1, r2); 1732 1733 // increment invocation count & check for overflow 1734 Label invocation_counter_overflow; 1735 if (inc_counter) { 1736 generate_counter_incr(&invocation_counter_overflow); 1737 } 1738 1739 Label continue_after_compile; 1740 __ bind(continue_after_compile); 1741 1742 bang_stack_shadow_pages(false); 1743 1744 // reset the _do_not_unlock_if_synchronized flag 1745 __ strb(zr, do_not_unlock_if_synchronized); 1746 1747 // check for synchronized methods 1748 // Must happen AFTER invocation_counter check and stack overflow check, 1749 // so method is not locked if overflows. 1750 if (synchronized) { 1751 // Allocate monitor and lock method 1752 lock_method(); 1753 } else { 1754 // no synchronization necessary 1755 #ifdef ASSERT 1756 { 1757 Label L; 1758 __ ldrw(r0, access_flags); 1759 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1760 __ br(Assembler::EQ, L); 1761 __ stop("method needs synchronization"); 1762 __ bind(L); 1763 } 1764 #endif 1765 } 1766 1767 // start execution 1768 #ifdef ASSERT 1769 { 1770 Label L; 1771 const Address monitor_block_top (rfp, 1772 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1773 __ ldr(rscratch1, monitor_block_top); 1774 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 1775 __ cmp(esp, rscratch1); 1776 __ br(Assembler::EQ, L); 1777 __ stop("broken stack frame setup in interpreter 2"); 1778 __ bind(L); 1779 } 1780 #endif 1781 1782 // jvmti support 1783 __ notify_method_entry(); 1784 1785 // runtime upcalls 1786 if (runtime_upcalls) { 1787 __ generate_runtime_upcalls_on_method_entry(); 1788 } 1789 1790 __ dispatch_next(vtos); 1791 1792 // invocation counter overflow 1793 if (inc_counter) { 1794 // Handle overflow of counter and compile method 1795 __ bind(invocation_counter_overflow); 1796 generate_counter_overflow(continue_after_compile); 1797 } 1798 1799 return entry_point; 1800 } 1801 1802 // Method entry for java.lang.Thread.currentThread 1803 address TemplateInterpreterGenerator::generate_currentThread() { 1804 address entry_point = __ pc(); 1805 1806 __ ldr(r0, Address(rthread, JavaThread::vthread_offset())); 1807 __ resolve_oop_handle(r0, rscratch1, rscratch2); 1808 __ ret(lr); 1809 1810 return entry_point; 1811 } 1812 1813 // Not supported 1814 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; } 1815 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; } 1816 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; } 1817 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; } 1818 1819 //----------------------------------------------------------------------------- 1820 // Exceptions 1821 1822 void TemplateInterpreterGenerator::generate_throw_exception() { 1823 // Entry point in previous activation (i.e., if the caller was 1824 // interpreted) 1825 Interpreter::_rethrow_exception_entry = __ pc(); 1826 // Restore sp to interpreter_frame_last_sp even though we are going 1827 // to empty the expression stack for the exception processing. 1828 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1829 // r0: exception 1830 // r3: return address/pc that threw exception 1831 __ restore_bcp(); // rbcp points to call/send 1832 __ restore_locals(); 1833 __ restore_constant_pool_cache(); 1834 __ reinit_heapbase(); // restore rheapbase as heapbase. 1835 __ get_dispatch(); 1836 1837 // Entry point for exceptions thrown within interpreter code 1838 Interpreter::_throw_exception_entry = __ pc(); 1839 // If we came here via a NullPointerException on the receiver of a 1840 // method, rmethod may be corrupt. 1841 __ get_method(rmethod); 1842 // expression stack is undefined here 1843 // r0: exception 1844 // rbcp: exception bcp 1845 __ verify_oop(r0); 1846 __ mov(c_rarg1, r0); 1847 1848 // expression stack must be empty before entering the VM in case of 1849 // an exception 1850 __ empty_expression_stack(); 1851 // find exception handler address and preserve exception oop 1852 __ call_VM(r3, 1853 CAST_FROM_FN_PTR(address, 1854 InterpreterRuntime::exception_handler_for_exception), 1855 c_rarg1); 1856 1857 // Restore machine SP 1858 __ restore_sp_after_call(); 1859 1860 // r0: exception handler entry point 1861 // r3: preserved exception oop 1862 // rbcp: bcp for exception handler 1863 __ push_ptr(r3); // push exception which is now the only value on the stack 1864 __ br(r0); // jump to exception handler (may be _remove_activation_entry!) 1865 1866 // If the exception is not handled in the current frame the frame is 1867 // removed and the exception is rethrown (i.e. exception 1868 // continuation is _rethrow_exception). 1869 // 1870 // Note: At this point the bci is still the bxi for the instruction 1871 // which caused the exception and the expression stack is 1872 // empty. Thus, for any VM calls at this point, GC will find a legal 1873 // oop map (with empty expression stack). 1874 1875 // 1876 // JVMTI PopFrame support 1877 // 1878 1879 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 1880 __ empty_expression_stack(); 1881 // Set the popframe_processing bit in pending_popframe_condition 1882 // indicating that we are currently handling popframe, so that 1883 // call_VMs that may happen later do not trigger new popframe 1884 // handling cycles. 1885 __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1886 __ orr(r3, r3, JavaThread::popframe_processing_bit); 1887 __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1888 1889 { 1890 // Check to see whether we are returning to a deoptimized frame. 1891 // (The PopFrame call ensures that the caller of the popped frame is 1892 // either interpreted or compiled and deoptimizes it if compiled.) 1893 // In this case, we can't call dispatch_next() after the frame is 1894 // popped, but instead must save the incoming arguments and restore 1895 // them after deoptimization has occurred. 1896 // 1897 // Note that we don't compare the return PC against the 1898 // deoptimization blob's unpack entry because of the presence of 1899 // adapter frames in C2. 1900 Label caller_not_deoptimized; 1901 __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize)); 1902 // This is a return address, so requires authenticating for PAC. 1903 __ authenticate_return_address(c_rarg1); 1904 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1905 InterpreterRuntime::interpreter_contains), c_rarg1); 1906 __ cbnz(r0, caller_not_deoptimized); 1907 1908 // Compute size of arguments for saving when returning to 1909 // deoptimized caller 1910 __ get_method(r0); 1911 __ ldr(r0, Address(r0, Method::const_offset())); 1912 __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod:: 1913 size_of_parameters_offset()))); 1914 __ lsl(r0, r0, Interpreter::logStackElementSize); 1915 __ restore_locals(); // XXX do we need this? 1916 __ sub(rlocals, rlocals, r0); 1917 __ add(rlocals, rlocals, wordSize); 1918 // Save these arguments 1919 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1920 Deoptimization:: 1921 popframe_preserve_args), 1922 rthread, r0, rlocals); 1923 1924 __ remove_activation(vtos, 1925 /* throw_monitor_exception */ false, 1926 /* install_monitor_exception */ false, 1927 /* notify_jvmdi */ false); 1928 1929 // Inform deoptimization that it is responsible for restoring 1930 // these arguments 1931 __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit); 1932 __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 1933 1934 // Continue in deoptimization handler 1935 __ ret(lr); 1936 1937 __ bind(caller_not_deoptimized); 1938 } 1939 1940 __ remove_activation(vtos, 1941 /* throw_monitor_exception */ false, 1942 /* install_monitor_exception */ false, 1943 /* notify_jvmdi */ false); 1944 1945 // Restore the last_sp and null it out 1946 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1947 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 1948 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1949 1950 __ restore_bcp(); 1951 __ restore_locals(); 1952 __ restore_constant_pool_cache(); 1953 __ get_method(rmethod); 1954 __ get_dispatch(); 1955 1956 // The method data pointer was incremented already during 1957 // call profiling. We have to restore the mdp for the current bcp. 1958 if (ProfileInterpreter) { 1959 __ set_method_data_pointer_for_bcp(); 1960 } 1961 1962 // Clear the popframe condition flag 1963 __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset())); 1964 assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive"); 1965 1966 #if INCLUDE_JVMTI 1967 { 1968 Label L_done; 1969 1970 __ ldrb(rscratch1, Address(rbcp, 0)); 1971 __ cmpw(rscratch1, Bytecodes::_invokestatic); 1972 __ br(Assembler::NE, L_done); 1973 1974 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. 1975 // Detect such a case in the InterpreterRuntime function and return the member name argument, or null. 1976 1977 __ ldr(c_rarg0, Address(rlocals, 0)); 1978 __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp); 1979 1980 __ cbz(r0, L_done); 1981 1982 __ str(r0, Address(esp, 0)); 1983 __ bind(L_done); 1984 } 1985 #endif // INCLUDE_JVMTI 1986 1987 // Restore machine SP 1988 __ restore_sp_after_call(); 1989 1990 __ dispatch_next(vtos); 1991 // end of PopFrame support 1992 1993 Interpreter::_remove_activation_entry = __ pc(); 1994 1995 // preserve exception over this code sequence 1996 __ pop_ptr(r0); 1997 __ str(r0, Address(rthread, JavaThread::vm_result_offset())); 1998 // remove the activation (without doing throws on illegalMonitorExceptions) 1999 __ remove_activation(vtos, false, true, false); 2000 // restore exception 2001 __ get_vm_result(r0, rthread); 2002 2003 // In between activations - previous activation type unknown yet 2004 // compute continuation point - the continuation point expects the 2005 // following registers set up: 2006 // 2007 // r0: exception 2008 // lr: return address/pc that threw exception 2009 // esp: expression stack of caller 2010 // rfp: fp of caller 2011 __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize))); // save exception & return address 2012 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 2013 SharedRuntime::exception_handler_for_return_address), 2014 rthread, lr); 2015 __ mov(r1, r0); // save exception handler 2016 __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize))); // restore exception & return address 2017 // We might be returning to a deopt handler that expects r3 to 2018 // contain the exception pc 2019 __ mov(r3, lr); 2020 // Note that an "issuing PC" is actually the next PC after the call 2021 __ br(r1); // jump to exception 2022 // handler of caller 2023 } 2024 2025 2026 // 2027 // JVMTI ForceEarlyReturn support 2028 // 2029 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { 2030 address entry = __ pc(); 2031 2032 __ restore_bcp(); 2033 __ restore_locals(); 2034 __ empty_expression_stack(); 2035 __ load_earlyret_value(state); 2036 2037 __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 2038 Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset()); 2039 2040 // Clear the earlyret state 2041 assert(JvmtiThreadState::earlyret_inactive == 0, "should be"); 2042 __ str(zr, cond_addr); 2043 2044 __ remove_activation(state, 2045 false, /* throw_monitor_exception */ 2046 false, /* install_monitor_exception */ 2047 true); /* notify_jvmdi */ 2048 __ ret(lr); 2049 2050 return entry; 2051 } // end of ForceEarlyReturn support 2052 2053 2054 2055 //----------------------------------------------------------------------------- 2056 // Helper for vtos entry point generation 2057 2058 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, 2059 address& bep, 2060 address& cep, 2061 address& sep, 2062 address& aep, 2063 address& iep, 2064 address& lep, 2065 address& fep, 2066 address& dep, 2067 address& vep) { 2068 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 2069 Label L; 2070 aep = __ pc(); // atos entry point 2071 __ push_ptr(); 2072 __ b(L); 2073 fep = __ pc(); // ftos entry point 2074 __ push_f(); 2075 __ b(L); 2076 dep = __ pc(); // dtos entry point 2077 __ push_d(); 2078 __ b(L); 2079 lep = __ pc(); // ltos entry point 2080 __ push_l(); 2081 __ b(L); 2082 bep = cep = sep = iep = __ pc(); // [bcsi]tos entry point 2083 __ push_i(); 2084 vep = __ pc(); // vtos entry point 2085 __ bind(L); 2086 generate_and_dispatch(t); 2087 } 2088 2089 //----------------------------------------------------------------------------- 2090 2091 void TemplateInterpreterGenerator::count_bytecode() { 2092 if (CountBytecodesPerThread) { 2093 Address bc_counter_addr(rthread, Thread::bc_counter_offset()); 2094 __ ldr(r10, bc_counter_addr); 2095 __ add(r10, r10, 1); 2096 __ str(r10, bc_counter_addr); 2097 } 2098 if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) { 2099 __ mov(r10, (address) &BytecodeCounter::_counter_value); 2100 __ atomic_add(noreg, 1, r10); 2101 } 2102 } 2103 2104 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { 2105 __ mov(r10, (address) &BytecodeHistogram::_counters[t->bytecode()]); 2106 __ atomic_addw(noreg, 1, r10); 2107 } 2108 2109 // Non-product code 2110 #ifndef PRODUCT 2111 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 2112 address entry = __ pc(); 2113 2114 __ protect_return_address(); 2115 __ push(lr); 2116 __ push(state); 2117 __ push(RegSet::range(r0, r15), sp); 2118 __ mov(c_rarg2, r0); // Pass itos 2119 __ call_VM(noreg, 2120 CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), 2121 c_rarg1, c_rarg2, c_rarg3); 2122 __ pop(RegSet::range(r0, r15), sp); 2123 __ pop(state); 2124 __ pop(lr); 2125 __ authenticate_return_address(); 2126 __ ret(lr); // return from result handler 2127 2128 return entry; 2129 } 2130 2131 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { 2132 // Calculate new index for counter: 2133 // _index = (_index >> log2_number_of_codes) | 2134 // (bytecode << log2_number_of_codes); 2135 Register index_addr = rscratch1; 2136 Register index = rscratch2; 2137 __ mov(index_addr, (address) &BytecodePairHistogram::_index); 2138 __ ldrw(index, index_addr); 2139 __ mov(r10, 2140 ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); 2141 __ orrw(index, r10, index, Assembler::LSR, 2142 BytecodePairHistogram::log2_number_of_codes); 2143 __ strw(index, index_addr); 2144 2145 // Bump bucket contents: 2146 // _counters[_index] ++; 2147 Register counter_addr = rscratch1; 2148 __ mov(r10, (address) &BytecodePairHistogram::_counters); 2149 __ lea(counter_addr, Address(r10, index, Address::lsl(LogBytesPerInt))); 2150 __ atomic_addw(noreg, 1, counter_addr); 2151 } 2152 2153 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 2154 // Call a little run-time stub to avoid blow-up for each bytecode. 2155 // The run-time runtime saves the right registers, depending on 2156 // the tosca in-state for the given template. 2157 2158 assert(Interpreter::trace_code(t->tos_in()) != nullptr, 2159 "entry must have been generated"); 2160 __ bl(RuntimeAddress(Interpreter::trace_code(t->tos_in()))); 2161 __ reinit_heapbase(); 2162 } 2163 2164 2165 void TemplateInterpreterGenerator::stop_interpreter_at() { 2166 Label L; 2167 __ push(rscratch1); 2168 __ mov(rscratch1, (address) &BytecodeCounter::_counter_value); 2169 __ ldr(rscratch1, Address(rscratch1)); 2170 __ mov(rscratch2, StopInterpreterAt); 2171 __ cmpw(rscratch1, rscratch2); 2172 __ br(Assembler::NE, L); 2173 __ brk(0); 2174 __ bind(L); 2175 __ pop(rscratch1); 2176 } 2177 2178 #endif // !PRODUCT