1 /*
2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "asm/macroAssembler.inline.hpp"
27 #include "classfile/javaClasses.hpp"
28 #include "compiler/disassembler.hpp"
29 #include "compiler/compiler_globals.hpp"
30 #include "gc/shared/barrierSetAssembler.hpp"
31 #include "interpreter/bytecodeHistogram.hpp"
32 #include "interpreter/interpreter.hpp"
33 #include "interpreter/interpreterRuntime.hpp"
34 #include "interpreter/interp_masm.hpp"
35 #include "interpreter/templateInterpreterGenerator.hpp"
36 #include "interpreter/templateTable.hpp"
37 #include "interpreter/bytecodeTracer.hpp"
38 #include "memory/resourceArea.hpp"
39 #include "oops/arrayOop.hpp"
40 #include "oops/method.hpp"
41 #include "oops/methodCounters.hpp"
42 #include "oops/methodData.hpp"
43 #include "oops/oop.inline.hpp"
44 #include "oops/resolvedIndyEntry.hpp"
45 #include "oops/resolvedMethodEntry.hpp"
46 #include "prims/jvmtiExport.hpp"
47 #include "prims/jvmtiThreadState.hpp"
48 #include "runtime/arguments.hpp"
49 #include "runtime/deoptimization.hpp"
50 #include "runtime/frame.inline.hpp"
51 #include "runtime/globals.hpp"
52 #include "runtime/jniHandles.hpp"
53 #include "runtime/sharedRuntime.hpp"
54 #include "runtime/stubRoutines.hpp"
55 #include "runtime/synchronizer.hpp"
56 #include "runtime/timer.hpp"
57 #include "runtime/vframeArray.hpp"
58 #include "utilities/checkedCast.hpp"
59 #include "utilities/debug.hpp"
60 #include "utilities/powerOfTwo.hpp"
61 #include <sys/types.h>
62
63 // Size of interpreter code. Increase if too small. Interpreter will
64 // fail with a guarantee ("not enough space for interpreter generation");
65 // if too small.
66 // Run with +PrintInterpreter to get the VM to print out the size.
67 // Max size with JVMTI
68 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024;
69
70 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
71
72 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
73 address entry = __ pc();
74
75 __ andr(esp, esp, -16);
76 __ mov(c_rarg3, esp);
77 // rmethod
78 // rlocals
79 // c_rarg3: first stack arg - wordSize
80
81 // adjust sp
82 __ sub(sp, c_rarg3, 18 * wordSize);
83 __ str(lr, Address(__ pre(sp, -2 * wordSize)));
84 __ call_VM(noreg,
85 CAST_FROM_FN_PTR(address,
86 InterpreterRuntime::slow_signature_handler),
87 rmethod, rlocals, c_rarg3);
88
89 // r0: result handler
90
91 // Stack layout:
92 // rsp: return address <- sp
93 // 1 garbage
94 // 8 integer args (if static first is unused)
95 // 1 float/double identifiers
96 // 8 double args
97 // stack args <- esp
98 // garbage
99 // expression stack bottom
100 // bcp (null)
101 // ...
102
103 // Restore LR
104 __ ldr(lr, Address(__ post(sp, 2 * wordSize)));
105
106 // Do FP first so we can use c_rarg3 as temp
107 __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers
108
109 for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
110 const FloatRegister r = as_FloatRegister(i);
111
112 Label d, done;
113
114 __ tbnz(c_rarg3, i, d);
115 __ ldrs(r, Address(sp, (10 + i) * wordSize));
116 __ b(done);
117 __ bind(d);
118 __ ldrd(r, Address(sp, (10 + i) * wordSize));
119 __ bind(done);
120 }
121
122 // c_rarg0 contains the result from the call of
123 // InterpreterRuntime::slow_signature_handler so we don't touch it
124 // here. It will be loaded with the JNIEnv* later.
125 __ ldr(c_rarg1, Address(sp, 1 * wordSize));
126 for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) {
127 Register rm = as_Register(i), rn = as_Register(i+1);
128 __ ldp(rm, rn, Address(sp, i * wordSize));
129 }
130
131 __ add(sp, sp, 18 * wordSize);
132 __ ret(lr);
133
134 return entry;
135 }
136
137
138 //
139 // Various method entries
140 //
141
142 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
143 // rmethod: Method*
144 // r19_sender_sp: sender sp
145 // esp: args
146
147 // These don't need a safepoint check because they aren't virtually
148 // callable. We won't enter these intrinsics from compiled code.
149 // If in the future we added an intrinsic which was virtually callable
150 // we'd have to worry about how to safepoint so that this code is used.
151
152 // mathematical functions inlined by compiler
153 // (interpreter must provide identical implementation
154 // in order to avoid monotonicity bugs when switching
155 // from interpreter to compiler in the middle of some
156 // computation)
157 //
158 // stack:
159 // [ arg ] <-- esp
160 // [ arg ]
161 // retaddr in lr
162
163 address entry_point = nullptr;
164 Register continuation = lr;
165 switch (kind) {
166 case Interpreter::java_lang_math_abs:
167 entry_point = __ pc();
168 __ ldrd(v0, Address(esp));
169 __ fabsd(v0, v0);
170 __ mov(sp, r19_sender_sp); // Restore caller's SP
171 break;
172 case Interpreter::java_lang_math_sqrt:
173 entry_point = __ pc();
174 __ ldrd(v0, Address(esp));
175 __ fsqrtd(v0, v0);
176 __ mov(sp, r19_sender_sp);
177 break;
178 case Interpreter::java_lang_math_sin :
179 case Interpreter::java_lang_math_cos :
180 case Interpreter::java_lang_math_tan :
181 case Interpreter::java_lang_math_log :
182 case Interpreter::java_lang_math_log10 :
183 case Interpreter::java_lang_math_exp :
184 entry_point = __ pc();
185 __ ldrd(v0, Address(esp));
186 __ mov(sp, r19_sender_sp);
187 __ mov(r23, lr);
188 continuation = r23; // The first free callee-saved register
189 generate_transcendental_entry(kind, 1);
190 break;
191 case Interpreter::java_lang_math_pow :
192 entry_point = __ pc();
193 __ mov(r23, lr);
194 continuation = r23;
195 __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize));
196 __ ldrd(v1, Address(esp));
197 __ mov(sp, r19_sender_sp);
198 generate_transcendental_entry(kind, 2);
199 break;
200 case Interpreter::java_lang_math_fmaD :
201 if (UseFMA) {
202 entry_point = __ pc();
203 __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize));
204 __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize));
205 __ ldrd(v2, Address(esp));
206 __ fmaddd(v0, v0, v1, v2);
207 __ mov(sp, r19_sender_sp); // Restore caller's SP
208 }
209 break;
210 case Interpreter::java_lang_math_fmaF :
211 if (UseFMA) {
212 entry_point = __ pc();
213 __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize));
214 __ ldrs(v1, Address(esp, Interpreter::stackElementSize));
215 __ ldrs(v2, Address(esp));
216 __ fmadds(v0, v0, v1, v2);
217 __ mov(sp, r19_sender_sp); // Restore caller's SP
218 }
219 break;
220 default:
221 ;
222 }
223 if (entry_point) {
224 __ br(continuation);
225 }
226
227 return entry_point;
228 }
229
230 // double trigonometrics and transcendentals
231 // static jdouble dsin(jdouble x);
232 // static jdouble dcos(jdouble x);
233 // static jdouble dtan(jdouble x);
234 // static jdouble dlog(jdouble x);
235 // static jdouble dlog10(jdouble x);
236 // static jdouble dexp(jdouble x);
237 // static jdouble dpow(jdouble x, jdouble y);
238
239 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) {
240 address fn;
241 switch (kind) {
242 case Interpreter::java_lang_math_sin :
243 if (StubRoutines::dsin() == nullptr) {
244 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
245 } else {
246 fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin());
247 }
248 break;
249 case Interpreter::java_lang_math_cos :
250 if (StubRoutines::dcos() == nullptr) {
251 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
252 } else {
253 fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos());
254 }
255 break;
256 case Interpreter::java_lang_math_tan :
257 if (StubRoutines::dtan() == nullptr) {
258 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
259 } else {
260 fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan());
261 }
262 break;
263 case Interpreter::java_lang_math_log :
264 if (StubRoutines::dlog() == nullptr) {
265 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
266 } else {
267 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog());
268 }
269 break;
270 case Interpreter::java_lang_math_log10 :
271 if (StubRoutines::dlog10() == nullptr) {
272 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
273 } else {
274 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10());
275 }
276 break;
277 case Interpreter::java_lang_math_exp :
278 if (StubRoutines::dexp() == nullptr) {
279 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
280 } else {
281 fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp());
282 }
283 break;
284 case Interpreter::java_lang_math_pow :
285 if (StubRoutines::dpow() == nullptr) {
286 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
287 } else {
288 fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow());
289 }
290 break;
291 default:
292 ShouldNotReachHere();
293 fn = nullptr; // unreachable
294 }
295 __ mov(rscratch1, fn);
296 __ blr(rscratch1);
297 }
298
299 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() {
300 assert(VM_Version::supports_float16(), "this intrinsic is not supported");
301 // r19_sender_sp: sender sp
302 // stack:
303 // [ arg ] <-- esp
304 // [ arg ]
305 // retaddr in lr
306 // result in v0
307
308 address entry_point = __ pc();
309 __ ldrw(c_rarg0, Address(esp));
310 __ flt16_to_flt(v0, c_rarg0, v1);
311 __ mov(sp, r19_sender_sp); // Restore caller's SP
312 __ br(lr);
313 return entry_point;
314 }
315
316 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() {
317 assert(VM_Version::supports_float16(), "this intrinsic is not supported");
318 // r19_sender_sp: sender sp
319 // stack:
320 // [ arg ] <-- esp
321 // [ arg ]
322 // retaddr in lr
323 // result in c_rarg0
324
325 address entry_point = __ pc();
326 __ ldrs(v0, Address(esp));
327 __ flt_to_flt16(c_rarg0, v0, v1);
328 __ mov(sp, r19_sender_sp); // Restore caller's SP
329 __ br(lr);
330 return entry_point;
331 }
332
333 // Abstract method entry
334 // Attempt to execute abstract method. Throw exception
335 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
336 // rmethod: Method*
337 // r19_sender_sp: sender SP
338
339 address entry_point = __ pc();
340
341 // abstract method entry
342
343 // pop return address, reset last_sp to null
344 __ empty_expression_stack();
345 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
346 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
347
348 // throw exception
349 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
350 InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
351 rmethod);
352 // the call_VM checks for exception, so we should never return here.
353 __ should_not_reach_here();
354
355 return entry_point;
356 }
357
358 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
359 address entry = __ pc();
360
361 #ifdef ASSERT
362 {
363 Label L;
364 __ ldr(rscratch1, Address(rfp,
365 frame::interpreter_frame_monitor_block_top_offset *
366 wordSize));
367 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
368 __ mov(rscratch2, sp);
369 __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack
370 // grows negative)
371 __ br(Assembler::HS, L); // check if frame is complete
372 __ stop ("interpreter frame not set up");
373 __ bind(L);
374 }
375 #endif // ASSERT
376 // Restore bcp under the assumption that the current frame is still
377 // interpreted
378 __ restore_bcp();
379
380 // expression stack must be empty before entering the VM if an
381 // exception happened
382 __ empty_expression_stack();
383 // throw exception
384 __ call_VM(noreg,
385 CAST_FROM_FN_PTR(address,
386 InterpreterRuntime::throw_StackOverflowError));
387 return entry;
388 }
389
390 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
391 address entry = __ pc();
392 // expression stack must be empty before entering the VM if an
393 // exception happened
394 __ empty_expression_stack();
395 // setup parameters
396
397 // ??? convention: expect aberrant index in register r1
398 __ movw(c_rarg2, r1);
399 // ??? convention: expect array in register r3
400 __ mov(c_rarg1, r3);
401 __ call_VM(noreg,
402 CAST_FROM_FN_PTR(address,
403 InterpreterRuntime::
404 throw_ArrayIndexOutOfBoundsException),
405 c_rarg1, c_rarg2);
406 return entry;
407 }
408
409 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
410 address entry = __ pc();
411
412 // object is at TOS
413 __ pop(c_rarg1);
414
415 // expression stack must be empty before entering the VM if an
416 // exception happened
417 __ empty_expression_stack();
418
419 __ call_VM(noreg,
420 CAST_FROM_FN_PTR(address,
421 InterpreterRuntime::
422 throw_ClassCastException),
423 c_rarg1);
424 return entry;
425 }
426
427 address TemplateInterpreterGenerator::generate_exception_handler_common(
428 const char* name, const char* message, bool pass_oop) {
429 assert(!pass_oop || message == nullptr, "either oop or message but not both");
430 address entry = __ pc();
431 if (pass_oop) {
432 // object is at TOS
433 __ pop(c_rarg2);
434 }
435 // expression stack must be empty before entering the VM if an
436 // exception happened
437 __ empty_expression_stack();
438 // setup parameters
439 __ lea(c_rarg1, Address((address)name));
440 if (pass_oop) {
441 __ call_VM(r0, CAST_FROM_FN_PTR(address,
442 InterpreterRuntime::
443 create_klass_exception),
444 c_rarg1, c_rarg2);
445 } else {
446 // kind of lame ExternalAddress can't take null because
447 // external_word_Relocation will assert.
448 if (message != nullptr) {
449 __ lea(c_rarg2, Address((address)message));
450 } else {
451 __ mov(c_rarg2, NULL_WORD);
452 }
453 __ call_VM(r0,
454 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
455 c_rarg1, c_rarg2);
456 }
457 // throw exception
458 __ b(address(Interpreter::throw_exception_entry()));
459 return entry;
460 }
461
462 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
463 address entry = __ pc();
464
465 // Restore stack bottom in case i2c adjusted stack
466 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
467 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
468 // and null it as marker that esp is now tos until next java call
469 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
470 __ restore_bcp();
471 __ restore_locals();
472 __ restore_constant_pool_cache();
473 __ get_method(rmethod);
474
475 if (state == atos) {
476 Register obj = r0;
477 Register mdp = r1;
478 Register tmp = r2;
479 __ profile_return_type(mdp, obj, tmp);
480 }
481
482 const Register cache = r1;
483 const Register index = r2;
484
485 if (index_size == sizeof(u4)) {
486 __ load_resolved_indy_entry(cache, index);
487 __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedIndyEntry::num_parameters_offset())));
488 __ add(esp, esp, cache, Assembler::LSL, 3);
489 } else {
490 // Pop N words from the stack
491 assert(index_size == sizeof(u2), "Can only be u2");
492 __ load_method_entry(cache, index);
493 __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())));
494 __ add(esp, esp, cache, Assembler::LSL, 3);
495 }
496
497 // Restore machine SP
498 __ restore_sp_after_call();
499
500 __ check_and_handle_popframe(rthread);
501 __ check_and_handle_earlyret(rthread);
502
503 __ get_dispatch();
504 __ dispatch_next(state, step);
505
506 return entry;
507 }
508
509 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
510 int step,
511 address continuation) {
512 address entry = __ pc();
513 __ restore_bcp();
514 __ restore_locals();
515 __ restore_constant_pool_cache();
516 __ get_method(rmethod);
517 __ get_dispatch();
518
519 __ restore_sp_after_call(); // Restore SP to extended SP
520
521 // Restore expression stack pointer
522 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
523 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
524 // null last_sp until next java call
525 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
526
527 #if INCLUDE_JVMCI
528 // Check if we need to take lock at entry of synchronized method. This can
529 // only occur on method entry so emit it only for vtos with step 0.
530 if (EnableJVMCI && state == vtos && step == 0) {
531 Label L;
532 __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset()));
533 __ cbz(rscratch1, L);
534 // Clear flag.
535 __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset()));
536 // Take lock.
537 lock_method();
538 __ bind(L);
539 } else {
540 #ifdef ASSERT
541 if (EnableJVMCI) {
542 Label L;
543 __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset()));
544 __ cbz(rscratch1, L);
545 __ stop("unexpected pending monitor in deopt entry");
546 __ bind(L);
547 }
548 #endif
549 }
550 #endif
551 // handle exceptions
552 {
553 Label L;
554 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
555 __ cbz(rscratch1, L);
556 __ call_VM(noreg,
557 CAST_FROM_FN_PTR(address,
558 InterpreterRuntime::throw_pending_exception));
559 __ should_not_reach_here();
560 __ bind(L);
561 }
562
563 if (continuation == nullptr) {
564 __ dispatch_next(state, step);
565 } else {
566 __ jump_to_entry(continuation);
567 }
568 return entry;
569 }
570
571 address TemplateInterpreterGenerator::generate_result_handler_for(
572 BasicType type) {
573 address entry = __ pc();
574 switch (type) {
575 case T_BOOLEAN: __ c2bool(r0); break;
576 case T_CHAR : __ uxth(r0, r0); break;
577 case T_BYTE : __ sxtb(r0, r0); break;
578 case T_SHORT : __ sxth(r0, r0); break;
579 case T_INT : __ uxtw(r0, r0); break; // FIXME: We almost certainly don't need this
580 case T_LONG : /* nothing to do */ break;
581 case T_VOID : /* nothing to do */ break;
582 case T_FLOAT : /* nothing to do */ break;
583 case T_DOUBLE : /* nothing to do */ break;
584 case T_OBJECT :
585 // retrieve result from frame
586 __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
587 // and verify it
588 __ verify_oop(r0);
589 break;
590 default : ShouldNotReachHere();
591 }
592 __ ret(lr); // return from result handler
593 return entry;
594 }
595
596 address TemplateInterpreterGenerator::generate_safept_entry_for(
597 TosState state,
598 address runtime_entry) {
599 address entry = __ pc();
600 __ push(state);
601 __ push_cont_fastpath(rthread);
602 __ call_VM(noreg, runtime_entry);
603 __ pop_cont_fastpath(rthread);
604 __ membar(Assembler::AnyAny);
605 __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
606 return entry;
607 }
608
609 address TemplateInterpreterGenerator::generate_cont_resume_interpreter_adapter() {
610 if (!Continuations::enabled()) return nullptr;
611 address start = __ pc();
612
613 __ restore_bcp();
614 __ restore_locals();
615
616 // Restore constant pool cache
617 __ ldr(rcpool, Address(rfp, frame::interpreter_frame_cache_offset * wordSize));
618
619 // Restore Java expression stack pointer
620 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
621 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
622 // and null it as marker that esp is now tos until next java call
623 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
624
625 // Restore machine SP
626 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize));
627 __ lea(sp, Address(rfp, rscratch1, Address::lsl(LogBytesPerWord)));
628
629 // Restore method
630 __ ldr(rmethod, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
631
632 // Restore dispatch
633 uint64_t offset;
634 __ adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
635 __ add(rdispatch, rdispatch, offset);
636
637 __ ret(lr);
638
639 return start;
640 }
641
642
643 // Helpers for commoning out cases in the various type of method entries.
644 //
645
646
647 // increment invocation count & check for overflow
648 //
649 // Note: checking for negative value instead of overflow
650 // so we have a 'sticky' overflow test
651 //
652 // rmethod: method
653 //
654 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) {
655 Label done;
656 // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
657 int increment = InvocationCounter::count_increment;
658 Label no_mdo;
659 if (ProfileInterpreter) {
660 // Are we profiling?
661 __ ldr(r0, Address(rmethod, Method::method_data_offset()));
662 __ cbz(r0, no_mdo);
663 // Increment counter in the MDO
664 const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) +
665 in_bytes(InvocationCounter::counter_offset()));
666 const Address mask(r0, in_bytes(MethodData::invoke_mask_offset()));
667 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow);
668 __ b(done);
669 }
670 __ bind(no_mdo);
671 // Increment counter in MethodCounters
672 const Address invocation_counter(rscratch2,
673 MethodCounters::invocation_counter_offset() +
674 InvocationCounter::counter_offset());
675 __ get_method_counters(rmethod, rscratch2, done);
676 const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset()));
677 __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow);
678 __ bind(done);
679 }
680
681 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
682
683 // Asm interpreter on entry
684 // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
685 // Everything as it was on entry
686
687 // InterpreterRuntime::frequency_counter_overflow takes two
688 // arguments, the first (thread) is passed by call_VM, the second
689 // indicates if the counter overflow occurs at a backwards branch
690 // (null bcp). We pass zero for it. The call returns the address
691 // of the verified entry point for the method or null if the
692 // compilation did not complete (either went background or bailed
693 // out).
694 __ mov(c_rarg1, 0);
695 __ call_VM(noreg,
696 CAST_FROM_FN_PTR(address,
697 InterpreterRuntime::frequency_counter_overflow),
698 c_rarg1);
699
700 __ b(do_continue);
701 }
702
703 // See if we've got enough room on the stack for locals plus overhead
704 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
705 // without going through the signal handler, i.e., reserved and yellow zones
706 // will not be made usable. The shadow zone must suffice to handle the
707 // overflow.
708 // The expression stack grows down incrementally, so the normal guard
709 // page mechanism will work for that.
710 //
711 // NOTE: Since the additional locals are also always pushed (wasn't
712 // obvious in generate_method_entry) so the guard should work for them
713 // too.
714 //
715 // Args:
716 // r3: number of additional locals this frame needs (what we must check)
717 // rmethod: Method*
718 //
719 // Kills:
720 // r0
721 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
722
723 // monitor entry size: see picture of stack set
724 // (generate_method_entry) and frame_amd64.hpp
725 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
726
727 // total overhead size: entry_size + (saved rbp through expr stack
728 // bottom). be sure to change this if you add/subtract anything
729 // to/from the overhead area
730 const int overhead_size =
731 -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
732
733 const size_t page_size = os::vm_page_size();
734
735 Label after_frame_check;
736
737 // see if the frame is greater than one page in size. If so,
738 // then we need to verify there is enough stack space remaining
739 // for the additional locals.
740 //
741 // Note that we use SUBS rather than CMP here because the immediate
742 // field of this instruction may overflow. SUBS can cope with this
743 // because it is a macro that will expand to some number of MOV
744 // instructions and a register operation.
745 __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize);
746 __ br(Assembler::LS, after_frame_check);
747
748 // compute rsp as if this were going to be the last frame on
749 // the stack before the red zone
750
751 // locals + overhead, in bytes
752 __ mov(r0, overhead_size);
753 __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize); // 2 slots per parameter.
754
755 const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset());
756 __ ldr(rscratch1, stack_limit);
757
758 #ifdef ASSERT
759 Label limit_okay;
760 // Verify that thread stack limit is non-zero.
761 __ cbnz(rscratch1, limit_okay);
762 __ stop("stack overflow limit is zero");
763 __ bind(limit_okay);
764 #endif
765
766 // Add stack limit to locals.
767 __ add(r0, r0, rscratch1);
768
769 // Check against the current stack bottom.
770 __ cmp(sp, r0);
771 __ br(Assembler::HI, after_frame_check);
772
773 // Remove the incoming args, peeling the machine SP back to where it
774 // was in the caller. This is not strictly necessary, but unless we
775 // do so the stack frame may have a garbage FP; this ensures a
776 // correct call stack that we can always unwind. The ANDR should be
777 // unnecessary because the sender SP in r19 is always aligned, but
778 // it doesn't hurt.
779 __ andr(sp, r19_sender_sp, -16);
780
781 // Note: the restored frame is not necessarily interpreted.
782 // Use the shared runtime version of the StackOverflowError.
783 assert(SharedRuntime::throw_StackOverflowError_entry() != nullptr, "stub not yet generated");
784 __ far_jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry()));
785
786 // all done with frame size check
787 __ bind(after_frame_check);
788 }
789
790 // Allocate monitor and lock method (asm interpreter)
791 //
792 // Args:
793 // rmethod: Method*
794 // rlocals: locals
795 //
796 // Kills:
797 // r0
798 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
799 // rscratch1, rscratch2 (scratch regs)
800 void TemplateInterpreterGenerator::lock_method() {
801 // synchronize method
802 const Address access_flags(rmethod, Method::access_flags_offset());
803 const Address monitor_block_top(
804 rfp,
805 frame::interpreter_frame_monitor_block_top_offset * wordSize);
806 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
807
808 #ifdef ASSERT
809 {
810 Label L;
811 __ ldrh(r0, access_flags);
812 __ tst(r0, JVM_ACC_SYNCHRONIZED);
813 __ br(Assembler::NE, L);
814 __ stop("method doesn't need synchronization");
815 __ bind(L);
816 }
817 #endif // ASSERT
818
819 // get synchronization object
820 {
821 Label done;
822 __ ldrh(r0, access_flags);
823 __ tst(r0, JVM_ACC_STATIC);
824 // get receiver (assume this is frequent case)
825 __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0)));
826 __ br(Assembler::EQ, done);
827 __ load_mirror(r0, rmethod, r5, rscratch2);
828
829 #ifdef ASSERT
830 {
831 Label L;
832 __ cbnz(r0, L);
833 __ stop("synchronization object is null");
834 __ bind(L);
835 }
836 #endif // ASSERT
837
838 __ bind(done);
839 }
840
841 // add space for monitor & lock
842 __ check_extended_sp();
843 __ sub(sp, sp, entry_size); // add space for a monitor entry
844 __ sub(esp, esp, entry_size);
845 __ sub(rscratch1, sp, rfp);
846 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
847 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize));
848 __ sub(rscratch1, esp, rfp);
849 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
850 __ str(rscratch1, monitor_block_top); // set new monitor block top
851
852 // store object
853 __ str(r0, Address(esp, BasicObjectLock::obj_offset()));
854 __ mov(c_rarg1, esp); // object address
855 __ lock_object(c_rarg1);
856 }
857
858 // Generate a fixed interpreter frame. This is identical setup for
859 // interpreted methods and for native methods hence the shared code.
860 //
861 // Args:
862 // lr: return address
863 // rmethod: Method*
864 // rlocals: pointer to locals
865 // rcpool: cp cache
866 // stack_pointer: previous sp
867 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
868 // Save ConstMethod* in r5_const_method for later use to avoid loading multiple times
869 Register r5_const_method = r5;
870 __ ldr(r5_const_method, Address(rmethod, Method::const_offset()));
871
872 // initialize fixed part of activation frame
873 if (native_call) {
874 __ sub(esp, sp, 14 * wordSize);
875 __ mov(rbcp, zr);
876 __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset);
877 __ stp(rscratch1, zr, Address(__ pre(sp, -14 * wordSize)));
878 // add 2 zero-initialized slots for native calls
879 __ stp(zr, zr, Address(sp, 12 * wordSize));
880 } else {
881 __ sub(esp, sp, 12 * wordSize);
882 __ add(rbcp, r5_const_method, in_bytes(ConstMethod::codes_offset())); // get codebase
883 __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset);
884 __ stp(rscratch1, rbcp, Address(__ pre(sp, -12 * wordSize)));
885 }
886
887 if (ProfileInterpreter) {
888 Label method_data_continue;
889 __ ldr(rscratch1, Address(rmethod, Method::method_data_offset()));
890 __ cbz(rscratch1, method_data_continue);
891 __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset())));
892 __ bind(method_data_continue);
893 __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize)); // save Method* and mdp (method data pointer)
894 } else {
895 __ stp(zr, rmethod, Address(sp, 6 * wordSize)); // save Method* (no mdp)
896 }
897
898 __ protect_return_address();
899 __ stp(rfp, lr, Address(sp, 10 * wordSize));
900 __ lea(rfp, Address(sp, 10 * wordSize));
901
902 // Save ConstantPool* in r11_constants for later use to avoid loading multiple times
903 Register r11_constants = r11;
904 __ ldr(r11_constants, Address(r5_const_method, ConstMethod::constants_offset()));
905 __ ldr(rcpool, Address(r11_constants, ConstantPool::cache_offset()));
906 __ sub(rscratch1, rlocals, rfp);
907 __ lsr(rscratch1, rscratch1, Interpreter::logStackElementSize); // rscratch1 = rlocals - fp();
908 // Store relativized rlocals, see frame::interpreter_frame_locals().
909 __ stp(rscratch1, rcpool, Address(sp, 2 * wordSize));
910
911 // set sender sp
912 // leave last_sp as null
913 __ stp(zr, r19_sender_sp, Address(sp, 8 * wordSize));
914
915 // Get mirror. Resolve ConstantPool* -> InstanceKlass* -> Java mirror.
916 __ ldr(r10, Address(r11_constants, ConstantPool::pool_holder_offset()));
917 __ ldr(r10, Address(r10, in_bytes(Klass::java_mirror_offset())));
918 __ resolve_oop_handle(r10, rscratch1, rscratch2);
919 if (! native_call) {
920 __ ldrh(rscratch1, Address(r5_const_method, ConstMethod::max_stack_offset()));
921 __ add(rscratch1, rscratch1, MAX2(3, Method::extra_stack_entries()));
922 __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3);
923 __ andr(rscratch1, rscratch1, -16);
924 __ sub(rscratch2, rscratch1, rfp);
925 __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize);
926 // Store extended SP and mirror
927 __ stp(r10, rscratch2, Address(sp, 4 * wordSize));
928 // Move SP out of the way
929 __ mov(sp, rscratch1);
930 } else {
931 // Make sure there is room for the exception oop pushed in case method throws
932 // an exception (see TemplateInterpreterGenerator::generate_throw_exception())
933 __ sub(rscratch1, sp, 2 * wordSize);
934 __ sub(rscratch2, rscratch1, rfp);
935 __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize);
936 __ stp(r10, rscratch2, Address(sp, 4 * wordSize));
937 __ mov(sp, rscratch1);
938 }
939 }
940
941 // End of helpers
942
943 // Various method entries
944 //------------------------------------------------------------------------------------------------------------------------
945 //
946 //
947
948 // Method entry for java.lang.ref.Reference.get.
949 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
950 // Code: _aload_0, _getfield, _areturn
951 // parameter size = 1
952 //
953 // The code that gets generated by this routine is split into 2 parts:
954 // 1. The "intrinsified" code for G1 (or any SATB based GC),
955 // 2. The slow path - which is an expansion of the regular method entry.
956 //
957 // Notes:-
958 // * In the G1 code we do not check whether we need to block for
959 // a safepoint. If G1 is enabled then we must execute the specialized
960 // code for Reference.get (except when the Reference object is null)
961 // so that we can log the value in the referent field with an SATB
962 // update buffer.
963 // If the code for the getfield template is modified so that the
964 // G1 pre-barrier code is executed when the current method is
965 // Reference.get() then going through the normal method entry
966 // will be fine.
967 // * The G1 code can, however, check the receiver object (the instance
968 // of java.lang.Reference) and jump to the slow path if null. If the
969 // Reference object is null then we obviously cannot fetch the referent
970 // and so we don't need to call the G1 pre-barrier. Thus we can use the
971 // regular method entry code to generate the NPE.
972 //
973 // This code is based on generate_accessor_entry.
974 //
975 // rmethod: Method*
976 // r19_sender_sp: senderSP must preserve for slow path, set SP to it on fast path
977
978 // LR is live. It must be saved around calls.
979
980 address entry = __ pc();
981
982 const int referent_offset = java_lang_ref_Reference::referent_offset();
983
984 Label slow_path;
985 const Register local_0 = c_rarg0;
986 // Check if local 0 != null
987 // If the receiver is null then it is OK to jump to the slow path.
988 __ ldr(local_0, Address(esp, 0));
989 __ cbz(local_0, slow_path);
990
991 // Load the value of the referent field.
992 const Address field_address(local_0, referent_offset);
993 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
994 bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch1, /*tmp2*/ rscratch2);
995
996 // areturn
997 __ andr(sp, r19_sender_sp, -16); // done with stack
998 __ ret(lr);
999
1000 // generate a vanilla interpreter entry as the slow path
1001 __ bind(slow_path);
1002 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
1003 return entry;
1004
1005 }
1006
1007 /**
1008 * Method entry for static native methods:
1009 * int java.util.zip.CRC32.update(int crc, int b)
1010 */
1011 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1012 assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1013 address entry = __ pc();
1014
1015 // rmethod: Method*
1016 // r19_sender_sp: senderSP must preserved for slow path
1017 // esp: args
1018
1019 Label slow_path;
1020 // If we need a safepoint check, generate full interpreter entry.
1021 __ safepoint_poll(slow_path, false /* at_return */, false /* in_nmethod */);
1022
1023 // We don't generate local frame and don't align stack because
1024 // we call stub code and there is no safepoint on this path.
1025
1026 // Load parameters
1027 const Register crc = c_rarg0; // crc
1028 const Register val = c_rarg1; // source java byte value
1029 const Register tbl = c_rarg2; // scratch
1030
1031 // Arguments are reversed on java expression stack
1032 __ ldrw(val, Address(esp, 0)); // byte value
1033 __ ldrw(crc, Address(esp, wordSize)); // Initial CRC
1034
1035 uint64_t offset;
1036 __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset);
1037 __ add(tbl, tbl, offset);
1038
1039 __ mvnw(crc, crc); // ~crc
1040 __ update_byte_crc32(crc, val, tbl);
1041 __ mvnw(crc, crc); // ~crc
1042
1043 // result in c_rarg0
1044
1045 __ andr(sp, r19_sender_sp, -16);
1046 __ ret(lr);
1047
1048 // generate a vanilla native entry as the slow path
1049 __ bind(slow_path);
1050 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1051 return entry;
1052 }
1053
1054 /**
1055 * Method entry for static native methods:
1056 * int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
1057 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
1058 */
1059 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1060 assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1061 address entry = __ pc();
1062
1063 // rmethod,: Method*
1064 // r19_sender_sp: senderSP must preserved for slow path
1065
1066 Label slow_path;
1067 // If we need a safepoint check, generate full interpreter entry.
1068 __ safepoint_poll(slow_path, false /* at_return */, false /* in_nmethod */);
1069
1070 // We don't generate local frame and don't align stack because
1071 // we call stub code and there is no safepoint on this path.
1072
1073 // Load parameters
1074 const Register crc = c_rarg0; // crc
1075 const Register buf = c_rarg1; // source java byte array address
1076 const Register len = c_rarg2; // length
1077 const Register off = len; // offset (never overlaps with 'len')
1078
1079 // Arguments are reversed on java expression stack
1080 // Calculate address of start element
1081 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
1082 __ ldr(buf, Address(esp, 2*wordSize)); // long buf
1083 __ ldrw(off, Address(esp, wordSize)); // offset
1084 __ add(buf, buf, off); // + offset
1085 __ ldrw(crc, Address(esp, 4*wordSize)); // Initial CRC
1086 } else {
1087 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array
1088 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1089 __ ldrw(off, Address(esp, wordSize)); // offset
1090 __ add(buf, buf, off); // + offset
1091 __ ldrw(crc, Address(esp, 3*wordSize)); // Initial CRC
1092 }
1093 // Can now load 'len' since we're finished with 'off'
1094 __ ldrw(len, Address(esp, 0x0)); // Length
1095
1096 __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP
1097
1098 // We are frameless so we can just jump to the stub.
1099 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()));
1100
1101 // generate a vanilla native entry as the slow path
1102 __ bind(slow_path);
1103 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1104 return entry;
1105 }
1106
1107 /**
1108 * Method entry for intrinsic-candidate (non-native) methods:
1109 * int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
1110 * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
1111 * Unlike CRC32, CRC32C does not have any methods marked as native
1112 * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1113 */
1114 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1115 assert(UseCRC32CIntrinsics, "this intrinsic is not supported");
1116 address entry = __ pc();
1117
1118 // Prepare jump to stub using parameters from the stack
1119 const Register crc = c_rarg0; // initial crc
1120 const Register buf = c_rarg1; // source java byte array address
1121 const Register len = c_rarg2; // len argument to the kernel
1122
1123 const Register end = len; // index of last element to process
1124 const Register off = crc; // offset
1125
1126 __ ldrw(end, Address(esp)); // int end
1127 __ ldrw(off, Address(esp, wordSize)); // int offset
1128 __ sub(len, end, off);
1129 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf
1130 __ add(buf, buf, off); // + offset
1131 if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) {
1132 __ ldrw(crc, Address(esp, 4*wordSize)); // long crc
1133 } else {
1134 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1135 __ ldrw(crc, Address(esp, 3*wordSize)); // long crc
1136 }
1137
1138 __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP
1139
1140 // Jump to the stub.
1141 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C()));
1142
1143 return entry;
1144 }
1145
1146 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1147 // See more discussion in stackOverflow.hpp.
1148
1149 const int shadow_zone_size = checked_cast<int>(StackOverflow::stack_shadow_zone_size());
1150 const int page_size = (int)os::vm_page_size();
1151 const int n_shadow_pages = shadow_zone_size / page_size;
1152
1153 #ifdef ASSERT
1154 Label L_good_limit;
1155 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit()));
1156 __ cbnz(rscratch1, L_good_limit);
1157 __ stop("shadow zone safe limit is not initialized");
1158 __ bind(L_good_limit);
1159
1160 Label L_good_watermark;
1161 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark()));
1162 __ cbnz(rscratch1, L_good_watermark);
1163 __ stop("shadow zone growth watermark is not initialized");
1164 __ bind(L_good_watermark);
1165 #endif
1166
1167 Label L_done;
1168
1169 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark()));
1170 __ cmp(sp, rscratch1);
1171 __ br(Assembler::HI, L_done);
1172
1173 for (int p = 1; p <= n_shadow_pages; p++) {
1174 __ sub(rscratch2, sp, p*page_size);
1175 __ str(zr, Address(rscratch2));
1176 }
1177
1178 // Record the new watermark, but only if the update is above the safe limit.
1179 // Otherwise, the next time around the check above would pass the safe limit.
1180 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit()));
1181 __ cmp(sp, rscratch1);
1182 __ br(Assembler::LS, L_done);
1183 __ mov(rscratch1, sp);
1184 __ str(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark()));
1185
1186 __ bind(L_done);
1187 }
1188
1189 // Interpreter stub for calling a native method. (asm interpreter)
1190 // This sets up a somewhat different looking stack for calling the
1191 // native method than the typical interpreter frame setup.
1192 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized, bool runtime_upcalls) {
1193 // determine code generation flags
1194 bool inc_counter = (UseCompiler || CountCompiledCalls) && !PreloadOnly;
1195
1196 // r1: Method*
1197 // rscratch1: sender sp
1198
1199 address entry_point = __ pc();
1200
1201 const Address constMethod (rmethod, Method::const_offset());
1202 const Address access_flags (rmethod, Method::access_flags_offset());
1203 const Address size_of_parameters(r2, ConstMethod::
1204 size_of_parameters_offset());
1205
1206 // get parameter size (always needed)
1207 __ ldr(r2, constMethod);
1208 __ load_unsigned_short(r2, size_of_parameters);
1209
1210 // Native calls don't need the stack size check since they have no
1211 // expression stack and the arguments are already on the stack and
1212 // we only add a handful of words to the stack.
1213
1214 // rmethod: Method*
1215 // r2: size of parameters
1216 // rscratch1: sender sp
1217
1218 // for natives the size of locals is zero
1219
1220 // compute beginning of parameters (rlocals)
1221 __ add(rlocals, esp, r2, ext::uxtx, 3);
1222 __ add(rlocals, rlocals, -wordSize);
1223
1224 // Pull SP back to minimum size: this avoids holes in the stack
1225 __ andr(sp, esp, -16);
1226
1227 // initialize fixed part of activation frame
1228 generate_fixed_frame(true);
1229
1230 // make sure method is native & not abstract
1231 #ifdef ASSERT
1232 __ ldrh(r0, access_flags);
1233 {
1234 Label L;
1235 __ tst(r0, JVM_ACC_NATIVE);
1236 __ br(Assembler::NE, L);
1237 __ stop("tried to execute non-native method as native");
1238 __ bind(L);
1239 }
1240 {
1241 Label L;
1242 __ tst(r0, JVM_ACC_ABSTRACT);
1243 __ br(Assembler::EQ, L);
1244 __ stop("tried to execute abstract method in interpreter");
1245 __ bind(L);
1246 }
1247 #endif
1248
1249 // Since at this point in the method invocation the exception
1250 // handler would try to exit the monitor of synchronized methods
1251 // which hasn't been entered yet, we set the thread local variable
1252 // _do_not_unlock_if_synchronized to true. The remove_activation
1253 // will check this flag.
1254
1255 const Address do_not_unlock_if_synchronized(rthread,
1256 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1257 __ mov(rscratch2, true);
1258 __ strb(rscratch2, do_not_unlock_if_synchronized);
1259
1260 // increment invocation count & check for overflow
1261 Label invocation_counter_overflow;
1262 if (inc_counter) {
1263 generate_counter_incr(&invocation_counter_overflow);
1264 }
1265
1266 Label continue_after_compile;
1267 __ bind(continue_after_compile);
1268
1269 bang_stack_shadow_pages(true);
1270
1271 // reset the _do_not_unlock_if_synchronized flag
1272 __ strb(zr, do_not_unlock_if_synchronized);
1273
1274 // check for synchronized methods
1275 // Must happen AFTER invocation_counter check and stack overflow check,
1276 // so method is not locked if overflows.
1277 if (synchronized) {
1278 lock_method();
1279 } else {
1280 // no synchronization necessary
1281 #ifdef ASSERT
1282 {
1283 Label L;
1284 __ ldrh(r0, access_flags);
1285 __ tst(r0, JVM_ACC_SYNCHRONIZED);
1286 __ br(Assembler::EQ, L);
1287 __ stop("method needs synchronization");
1288 __ bind(L);
1289 }
1290 #endif
1291 }
1292
1293 // start execution
1294 #ifdef ASSERT
1295 {
1296 Label L;
1297 const Address monitor_block_top(rfp,
1298 frame::interpreter_frame_monitor_block_top_offset * wordSize);
1299 __ ldr(rscratch1, monitor_block_top);
1300 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
1301 __ cmp(esp, rscratch1);
1302 __ br(Assembler::EQ, L);
1303 __ stop("broken stack frame setup in interpreter 1");
1304 __ bind(L);
1305 }
1306 #endif
1307
1308 // jvmti support
1309 __ notify_method_entry();
1310
1311 if (runtime_upcalls) {
1312 __ generate_runtime_upcalls_on_method_entry();
1313 }
1314
1315 // work registers
1316 const Register t = r17;
1317 const Register result_handler = r19;
1318
1319 // allocate space for parameters
1320 __ ldr(t, Address(rmethod, Method::const_offset()));
1321 __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
1322
1323 __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize);
1324 __ andr(sp, rscratch1, -16);
1325 __ mov(esp, rscratch1);
1326
1327 // get signature handler
1328 {
1329 Label L;
1330 __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1331 __ cbnz(t, L);
1332 __ call_VM(noreg,
1333 CAST_FROM_FN_PTR(address,
1334 InterpreterRuntime::prepare_native_call),
1335 rmethod);
1336 __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1337 __ bind(L);
1338 }
1339
1340 // call signature handler
1341 assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals,
1342 "adjust this code");
1343 assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp,
1344 "adjust this code");
1345 assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
1346 "adjust this code");
1347
1348 // The generated handlers do not touch rmethod (the method).
1349 // However, large signatures cannot be cached and are generated
1350 // each time here. The slow-path generator can do a GC on return,
1351 // so we must reload it after the call.
1352 __ blr(t);
1353 __ get_method(rmethod); // slow path can do a GC, reload rmethod
1354
1355
1356 // result handler is in r0
1357 // set result handler
1358 __ mov(result_handler, r0);
1359 // Save it in the frame in case of preemption; we cannot rely on callee saved registers.
1360 __ str(r0, Address(rfp, frame::interpreter_frame_result_handler_offset * wordSize));
1361
1362 // pass mirror handle if static call
1363 {
1364 Label L;
1365 __ ldrh(t, Address(rmethod, Method::access_flags_offset()));
1366 __ tbz(t, exact_log2(JVM_ACC_STATIC), L);
1367 // get mirror
1368 __ load_mirror(t, rmethod, r10, rscratch2);
1369 // copy mirror into activation frame
1370 __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize));
1371 // pass handle to mirror
1372 __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize);
1373 __ bind(L);
1374 }
1375
1376 // get native function entry point in r10
1377 {
1378 Label L;
1379 __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1380 ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1381 __ lea(rscratch2, unsatisfied);
1382 __ ldr(rscratch2, rscratch2);
1383 __ cmp(r10, rscratch2);
1384 __ br(Assembler::NE, L);
1385 __ call_VM(noreg,
1386 CAST_FROM_FN_PTR(address,
1387 InterpreterRuntime::prepare_native_call),
1388 rmethod);
1389 __ get_method(rmethod);
1390 __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1391 __ bind(L);
1392 }
1393
1394 // pass JNIEnv
1395 __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset()));
1396
1397 // It is enough that the pc() points into the right code
1398 // segment. It does not have to be the correct return pc.
1399 // For convenience we use the pc we want to resume to in
1400 // case of preemption on Object.wait.
1401 Label native_return;
1402 __ set_last_Java_frame(esp, rfp, native_return, rscratch1);
1403
1404 // change thread state
1405 #ifdef ASSERT
1406 {
1407 Label L;
1408 __ ldrw(t, Address(rthread, JavaThread::thread_state_offset()));
1409 __ cmp(t, (u1)_thread_in_Java);
1410 __ br(Assembler::EQ, L);
1411 __ stop("Wrong thread state in native stub");
1412 __ bind(L);
1413 }
1414 #endif
1415
1416 // Change state to native
1417 __ mov(rscratch1, _thread_in_native);
1418 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1419 __ stlrw(rscratch1, rscratch2);
1420
1421 __ push_cont_fastpath();
1422
1423 // Call the native method.
1424 __ blr(r10);
1425
1426 __ pop_cont_fastpath();
1427
1428 __ get_method(rmethod);
1429 // result potentially in r0 or v0
1430
1431 // Restore cpu control state after JNI call
1432 __ restore_cpu_control_state_after_jni(rscratch1, rscratch2);
1433
1434 // make room for the pushes we're about to do
1435 __ sub(rscratch1, esp, 4 * wordSize);
1436 __ andr(sp, rscratch1, -16);
1437
1438 // NOTE: The order of these pushes is known to frame::interpreter_frame_result
1439 // in order to extract the result of a method call. If the order of these
1440 // pushes change or anything else is added to the stack then the code in
1441 // interpreter_frame_result must also change.
1442 __ push(dtos);
1443 __ push(ltos);
1444
1445 __ verify_sve_vector_length();
1446
1447 // change thread state
1448 __ mov(rscratch1, _thread_in_native_trans);
1449 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1450 __ stlrw(rscratch1, rscratch2);
1451
1452 // Force this write out before the read below
1453 if (!UseSystemMemoryBarrier) {
1454 __ dmb(Assembler::ISH);
1455 }
1456
1457 // check for safepoint operation in progress and/or pending suspend requests
1458 {
1459 Label L, Continue;
1460
1461 // No need for acquire as Java threads always disarm themselves.
1462 __ safepoint_poll(L, true /* at_return */, false /* in_nmethod */);
1463 __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset()));
1464 __ cbz(rscratch2, Continue);
1465 __ bind(L);
1466
1467 // Don't use call_VM as it will see a possible pending exception
1468 // and forward it and never return here preventing us from
1469 // clearing _last_native_pc down below. So we do a runtime call by
1470 // hand.
1471 //
1472 __ mov(c_rarg0, rthread);
1473 __ lea(rscratch2, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
1474 __ blr(rscratch2);
1475 __ get_method(rmethod);
1476 __ reinit_heapbase();
1477 __ bind(Continue);
1478 }
1479
1480 // change thread state
1481 __ mov(rscratch1, _thread_in_Java);
1482 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1483 __ stlrw(rscratch1, rscratch2);
1484
1485 // Check preemption for Object.wait()
1486 Label not_preempted;
1487 __ ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1488 __ cbz(rscratch1, not_preempted);
1489 __ str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1490 __ br(rscratch1);
1491 __ bind(native_return);
1492 __ restore_after_resume(true /* is_native */);
1493 // reload result_handler
1494 __ ldr(result_handler, Address(rfp, frame::interpreter_frame_result_handler_offset*wordSize));
1495 __ bind(not_preempted);
1496
1497 // reset_last_Java_frame
1498 __ reset_last_Java_frame(true);
1499
1500 if (CheckJNICalls) {
1501 // clear_pending_jni_exception_check
1502 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1503 }
1504
1505 // reset handle block
1506 __ ldr(t, Address(rthread, JavaThread::active_handles_offset()));
1507 __ str(zr, Address(t, JNIHandleBlock::top_offset()));
1508
1509 // If result is an oop unbox and store it in frame where gc will see it
1510 // and result handler will pick it up
1511
1512 {
1513 Label no_oop;
1514 __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
1515 __ cmp(t, result_handler);
1516 __ br(Assembler::NE, no_oop);
1517 // Unbox oop result, e.g. JNIHandles::resolve result.
1518 __ pop(ltos);
1519 __ resolve_jobject(r0, t, rscratch2);
1520 __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
1521 // keep stack depth as expected by pushing oop which will eventually be discarded
1522 __ push(ltos);
1523 __ bind(no_oop);
1524 }
1525
1526 {
1527 Label no_reguard;
1528 __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset())));
1529 __ ldrw(rscratch1, Address(rscratch1));
1530 __ cmp(rscratch1, (u1)StackOverflow::stack_guard_yellow_reserved_disabled);
1531 __ br(Assembler::NE, no_reguard);
1532
1533 __ push_call_clobbered_registers();
1534 __ mov(c_rarg0, rthread);
1535 __ lea(rscratch2, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1536 __ blr(rscratch2);
1537 __ pop_call_clobbered_registers();
1538
1539 __ bind(no_reguard);
1540 }
1541
1542 // The method register is junk from after the thread_in_native transition
1543 // until here. Also can't call_VM until the bcp has been
1544 // restored. Need bcp for throwing exception below so get it now.
1545 __ get_method(rmethod);
1546
1547 // restore bcp to have legal interpreter frame, i.e., bci == 0 <=>
1548 // rbcp == code_base()
1549 __ ldr(rbcp, Address(rmethod, Method::const_offset())); // get ConstMethod*
1550 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); // get codebase
1551 // handle exceptions (exception handling will handle unlocking!)
1552 {
1553 Label L;
1554 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
1555 __ cbz(rscratch1, L);
1556 // Note: At some point we may want to unify this with the code
1557 // used in call_VM_base(); i.e., we should use the
1558 // StubRoutines::forward_exception code. For now this doesn't work
1559 // here because the rsp is not correctly set at this point.
1560 __ MacroAssembler::call_VM(noreg,
1561 CAST_FROM_FN_PTR(address,
1562 InterpreterRuntime::throw_pending_exception));
1563 __ should_not_reach_here();
1564 __ bind(L);
1565 }
1566
1567 // do unlocking if necessary
1568 {
1569 Label L;
1570 __ ldrh(t, Address(rmethod, Method::access_flags_offset()));
1571 __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L);
1572 // the code below should be shared with interpreter macro
1573 // assembler implementation
1574 {
1575 Label unlock;
1576 // BasicObjectLock will be first in list, since this is a
1577 // synchronized method. However, need to check that the object
1578 // has not been unlocked by an explicit monitorexit bytecode.
1579
1580 // monitor expect in c_rarg1 for slow unlock path
1581 __ lea (c_rarg1, Address(rfp, // address of first monitor
1582 (intptr_t)(frame::interpreter_frame_initial_sp_offset *
1583 wordSize - sizeof(BasicObjectLock))));
1584
1585 __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset()));
1586 __ cbnz(t, unlock);
1587
1588 // Entry already unlocked, need to throw exception
1589 __ MacroAssembler::call_VM(noreg,
1590 CAST_FROM_FN_PTR(address,
1591 InterpreterRuntime::throw_illegal_monitor_state_exception));
1592 __ should_not_reach_here();
1593
1594 __ bind(unlock);
1595 __ unlock_object(c_rarg1);
1596 }
1597 __ bind(L);
1598 }
1599
1600 #if INCLUDE_JFR
1601 __ enter_jfr_critical_section();
1602
1603 // This poll test is to uphold the invariant that a JFR sampled frame
1604 // must not return to its caller without a prior safepoint poll check.
1605 // The earlier poll check in this routine is insufficient for this purpose
1606 // because the thread has transitioned back to Java.
1607
1608 Label slow_path;
1609 Label fast_path;
1610 __ safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */);
1611 __ br(Assembler::AL, fast_path);
1612 __ bind(slow_path);
1613 __ push(dtos);
1614 __ push(ltos);
1615 __ set_last_Java_frame(esp, rfp, __ pc(), rscratch1);
1616 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
1617 __ reset_last_Java_frame(true);
1618 __ pop(ltos);
1619 __ pop(dtos);
1620 __ bind(fast_path);
1621
1622 #endif // INCLUDE_JFR
1623
1624 // jvmti support
1625 // Note: This must happen _after_ handling/throwing any exceptions since
1626 // the exception handler code notifies the runtime of method exits
1627 // too. If this happens before, method entry/exit notifications are
1628 // not properly paired (was bug - gri 11/22/99).
1629 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1630
1631 // restore potential result in r0:d0, call result handler to
1632 // restore potential result in ST0 & handle result
1633
1634 __ pop(ltos);
1635 __ pop(dtos);
1636
1637 __ blr(result_handler);
1638
1639 // remove activation
1640 __ ldr(esp, Address(rfp,
1641 frame::interpreter_frame_sender_sp_offset *
1642 wordSize)); // get sender sp
1643 // remove frame anchor
1644 __ leave();
1645
1646 JFR_ONLY(__ leave_jfr_critical_section();)
1647
1648 // restore sender sp
1649 __ mov(sp, esp);
1650
1651 __ ret(lr);
1652
1653 if (inc_counter) {
1654 // Handle overflow of counter and compile method
1655 __ bind(invocation_counter_overflow);
1656 generate_counter_overflow(continue_after_compile);
1657 }
1658
1659 return entry_point;
1660 }
1661
1662 //
1663 // Generic interpreted method entry to (asm) interpreter
1664 //
1665 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized, bool runtime_upcalls) {
1666 // determine code generation flags
1667 bool inc_counter = (UseCompiler || CountCompiledCalls) && !PreloadOnly;
1668
1669 // rscratch1: sender sp
1670 address entry_point = __ pc();
1671
1672 const Address constMethod(rmethod, Method::const_offset());
1673 const Address access_flags(rmethod, Method::access_flags_offset());
1674 const Address size_of_parameters(r3,
1675 ConstMethod::size_of_parameters_offset());
1676 const Address size_of_locals(r3, ConstMethod::size_of_locals_offset());
1677
1678 // get parameter size (always needed)
1679 // need to load the const method first
1680 __ ldr(r3, constMethod);
1681 __ load_unsigned_short(r2, size_of_parameters);
1682
1683 // r2: size of parameters
1684
1685 __ load_unsigned_short(r3, size_of_locals); // get size of locals in words
1686 __ sub(r3, r3, r2); // r3 = no. of additional locals
1687
1688 // see if we've got enough room on the stack for locals plus overhead.
1689 generate_stack_overflow_check();
1690
1691 // compute beginning of parameters (rlocals)
1692 __ add(rlocals, esp, r2, ext::uxtx, 3);
1693 __ sub(rlocals, rlocals, wordSize);
1694
1695 __ mov(rscratch1, esp);
1696
1697 // r3 - # of additional locals
1698 // allocate space for locals
1699 // explicitly initialize locals
1700 // Initializing memory allocated for locals in the same direction as
1701 // the stack grows to ensure page initialization order according
1702 // to windows-aarch64 stack page growth requirement (see
1703 // https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-160#stack)
1704 {
1705 Label exit, loop;
1706 __ ands(zr, r3, r3);
1707 __ br(Assembler::LE, exit); // do nothing if r3 <= 0
1708 __ bind(loop);
1709 __ str(zr, Address(__ pre(rscratch1, -wordSize)));
1710 __ sub(r3, r3, 1); // until everything initialized
1711 __ cbnz(r3, loop);
1712 __ bind(exit);
1713 }
1714
1715 // Padding between locals and fixed part of activation frame to ensure
1716 // SP is always 16-byte aligned.
1717 __ andr(sp, rscratch1, -16);
1718
1719 // And the base dispatch table
1720 __ get_dispatch();
1721
1722 // initialize fixed part of activation frame
1723 generate_fixed_frame(false);
1724
1725 // make sure method is not native & not abstract
1726 #ifdef ASSERT
1727 __ ldrh(r0, access_flags);
1728 {
1729 Label L;
1730 __ tst(r0, JVM_ACC_NATIVE);
1731 __ br(Assembler::EQ, L);
1732 __ stop("tried to execute native method as non-native");
1733 __ bind(L);
1734 }
1735 {
1736 Label L;
1737 __ tst(r0, JVM_ACC_ABSTRACT);
1738 __ br(Assembler::EQ, L);
1739 __ stop("tried to execute abstract method in interpreter");
1740 __ bind(L);
1741 }
1742 #endif
1743
1744 // Since at this point in the method invocation the exception
1745 // handler would try to exit the monitor of synchronized methods
1746 // which hasn't been entered yet, we set the thread local variable
1747 // _do_not_unlock_if_synchronized to true. The remove_activation
1748 // will check this flag.
1749
1750 const Address do_not_unlock_if_synchronized(rthread,
1751 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1752 __ mov(rscratch2, true);
1753 __ strb(rscratch2, do_not_unlock_if_synchronized);
1754
1755 Register mdp = r3;
1756 __ profile_parameters_type(mdp, r1, r2);
1757
1758 // increment invocation count & check for overflow
1759 Label invocation_counter_overflow;
1760 if (inc_counter) {
1761 generate_counter_incr(&invocation_counter_overflow);
1762 }
1763
1764 Label continue_after_compile;
1765 __ bind(continue_after_compile);
1766
1767 bang_stack_shadow_pages(false);
1768
1769 // reset the _do_not_unlock_if_synchronized flag
1770 __ strb(zr, do_not_unlock_if_synchronized);
1771
1772 // check for synchronized methods
1773 // Must happen AFTER invocation_counter check and stack overflow check,
1774 // so method is not locked if overflows.
1775 if (synchronized) {
1776 // Allocate monitor and lock method
1777 lock_method();
1778 } else {
1779 // no synchronization necessary
1780 #ifdef ASSERT
1781 {
1782 Label L;
1783 __ ldrh(r0, access_flags);
1784 __ tst(r0, JVM_ACC_SYNCHRONIZED);
1785 __ br(Assembler::EQ, L);
1786 __ stop("method needs synchronization");
1787 __ bind(L);
1788 }
1789 #endif
1790 }
1791
1792 // start execution
1793 #ifdef ASSERT
1794 {
1795 Label L;
1796 const Address monitor_block_top (rfp,
1797 frame::interpreter_frame_monitor_block_top_offset * wordSize);
1798 __ ldr(rscratch1, monitor_block_top);
1799 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
1800 __ cmp(esp, rscratch1);
1801 __ br(Assembler::EQ, L);
1802 __ stop("broken stack frame setup in interpreter 2");
1803 __ bind(L);
1804 }
1805 #endif
1806
1807 // jvmti support
1808 __ notify_method_entry();
1809
1810 // runtime upcalls
1811 if (runtime_upcalls) {
1812 __ generate_runtime_upcalls_on_method_entry();
1813 }
1814
1815 __ dispatch_next(vtos);
1816
1817 // invocation counter overflow
1818 if (inc_counter) {
1819 // Handle overflow of counter and compile method
1820 __ bind(invocation_counter_overflow);
1821 generate_counter_overflow(continue_after_compile);
1822 }
1823
1824 return entry_point;
1825 }
1826
1827 // Method entry for java.lang.Thread.currentThread
1828 address TemplateInterpreterGenerator::generate_currentThread() {
1829 address entry_point = __ pc();
1830
1831 __ ldr(r0, Address(rthread, JavaThread::vthread_offset()));
1832 __ resolve_oop_handle(r0, rscratch1, rscratch2);
1833 __ ret(lr);
1834
1835 return entry_point;
1836 }
1837
1838 //-----------------------------------------------------------------------------
1839 // Exceptions
1840
1841 void TemplateInterpreterGenerator::generate_throw_exception() {
1842 // Entry point in previous activation (i.e., if the caller was
1843 // interpreted)
1844 Interpreter::_rethrow_exception_entry = __ pc();
1845 // Restore sp to interpreter_frame_last_sp even though we are going
1846 // to empty the expression stack for the exception processing.
1847 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1848 // r0: exception
1849 // r3: return address/pc that threw exception
1850 __ restore_bcp(); // rbcp points to call/send
1851 __ restore_locals();
1852 __ restore_constant_pool_cache();
1853 __ reinit_heapbase(); // restore rheapbase as heapbase.
1854 __ get_dispatch();
1855
1856 // Entry point for exceptions thrown within interpreter code
1857 Interpreter::_throw_exception_entry = __ pc();
1858 // If we came here via a NullPointerException on the receiver of a
1859 // method, rmethod may be corrupt.
1860 __ get_method(rmethod);
1861 // expression stack is undefined here
1862 // r0: exception
1863 // rbcp: exception bcp
1864 __ verify_oop(r0);
1865 __ mov(c_rarg1, r0);
1866
1867 // expression stack must be empty before entering the VM in case of
1868 // an exception
1869 __ empty_expression_stack();
1870 // find exception handler address and preserve exception oop
1871 __ call_VM(r3,
1872 CAST_FROM_FN_PTR(address,
1873 InterpreterRuntime::exception_handler_for_exception),
1874 c_rarg1);
1875
1876 // Restore machine SP
1877 __ restore_sp_after_call();
1878
1879 // r0: exception handler entry point
1880 // r3: preserved exception oop
1881 // rbcp: bcp for exception handler
1882 __ push_ptr(r3); // push exception which is now the only value on the stack
1883 __ br(r0); // jump to exception handler (may be _remove_activation_entry!)
1884
1885 // If the exception is not handled in the current frame the frame is
1886 // removed and the exception is rethrown (i.e. exception
1887 // continuation is _rethrow_exception).
1888 //
1889 // Note: At this point the bci is still the bxi for the instruction
1890 // which caused the exception and the expression stack is
1891 // empty. Thus, for any VM calls at this point, GC will find a legal
1892 // oop map (with empty expression stack).
1893
1894 //
1895 // JVMTI PopFrame support
1896 //
1897
1898 Interpreter::_remove_activation_preserving_args_entry = __ pc();
1899 __ empty_expression_stack();
1900 __ restore_bcp(); // We could have returned from deoptimizing this frame, so restore rbcp.
1901 // Set the popframe_processing bit in pending_popframe_condition
1902 // indicating that we are currently handling popframe, so that
1903 // call_VMs that may happen later do not trigger new popframe
1904 // handling cycles.
1905 __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1906 __ orr(r3, r3, JavaThread::popframe_processing_bit);
1907 __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1908
1909 {
1910 // Check to see whether we are returning to a deoptimized frame.
1911 // (The PopFrame call ensures that the caller of the popped frame is
1912 // either interpreted or compiled and deoptimizes it if compiled.)
1913 // In this case, we can't call dispatch_next() after the frame is
1914 // popped, but instead must save the incoming arguments and restore
1915 // them after deoptimization has occurred.
1916 //
1917 // Note that we don't compare the return PC against the
1918 // deoptimization blob's unpack entry because of the presence of
1919 // adapter frames in C2.
1920 Label caller_not_deoptimized;
1921 __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize));
1922 // This is a return address, so requires authenticating for PAC.
1923 __ authenticate_return_address(c_rarg1);
1924 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1925 InterpreterRuntime::interpreter_contains), c_rarg1);
1926 __ cbnz(r0, caller_not_deoptimized);
1927
1928 // Compute size of arguments for saving when returning to
1929 // deoptimized caller
1930 __ get_method(r0);
1931 __ ldr(r0, Address(r0, Method::const_offset()));
1932 __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod::
1933 size_of_parameters_offset())));
1934 __ lsl(r0, r0, Interpreter::logStackElementSize);
1935 __ restore_locals(); // XXX do we need this?
1936 __ sub(rlocals, rlocals, r0);
1937 __ add(rlocals, rlocals, wordSize);
1938 // Save these arguments
1939 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1940 Deoptimization::
1941 popframe_preserve_args),
1942 rthread, r0, rlocals);
1943
1944 __ remove_activation(vtos,
1945 /* throw_monitor_exception */ false,
1946 /* install_monitor_exception */ false,
1947 /* notify_jvmdi */ false);
1948
1949 // Inform deoptimization that it is responsible for restoring
1950 // these arguments
1951 __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit);
1952 __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
1953
1954 // Continue in deoptimization handler
1955 __ ret(lr);
1956
1957 __ bind(caller_not_deoptimized);
1958 }
1959
1960 __ remove_activation(vtos,
1961 /* throw_monitor_exception */ false,
1962 /* install_monitor_exception */ false,
1963 /* notify_jvmdi */ false);
1964
1965 // Restore the last_sp and null it out
1966 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1967 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
1968 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1969
1970 __ restore_bcp();
1971 __ restore_locals();
1972 __ restore_constant_pool_cache();
1973 __ get_method(rmethod);
1974 __ get_dispatch();
1975
1976 // The method data pointer was incremented already during
1977 // call profiling. We have to restore the mdp for the current bcp.
1978 if (ProfileInterpreter) {
1979 __ set_method_data_pointer_for_bcp();
1980 }
1981
1982 // Clear the popframe condition flag
1983 __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset()));
1984 assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive");
1985
1986 #if INCLUDE_JVMTI
1987 {
1988 Label L_done;
1989
1990 __ ldrb(rscratch1, Address(rbcp, 0));
1991 __ cmpw(rscratch1, Bytecodes::_invokestatic);
1992 __ br(Assembler::NE, L_done);
1993
1994 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1995 // Detect such a case in the InterpreterRuntime function and return the member name argument, or null.
1996
1997 __ ldr(c_rarg0, Address(rlocals, 0));
1998 __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp);
1999
2000 __ cbz(r0, L_done);
2001
2002 __ str(r0, Address(esp, 0));
2003 __ bind(L_done);
2004 }
2005 #endif // INCLUDE_JVMTI
2006
2007 // Restore machine SP
2008 __ restore_sp_after_call();
2009
2010 __ dispatch_next(vtos);
2011 // end of PopFrame support
2012
2013 Interpreter::_remove_activation_entry = __ pc();
2014
2015 // preserve exception over this code sequence
2016 __ pop_ptr(r0);
2017 __ str(r0, Address(rthread, JavaThread::vm_result_oop_offset()));
2018 // remove the activation (without doing throws on illegalMonitorExceptions)
2019 __ remove_activation(vtos, false, true, false);
2020 // restore exception
2021 __ get_vm_result_oop(r0, rthread);
2022
2023 // In between activations - previous activation type unknown yet
2024 // compute continuation point - the continuation point expects the
2025 // following registers set up:
2026 //
2027 // r0: exception
2028 // lr: return address/pc that threw exception
2029 // esp: expression stack of caller
2030 // rfp: fp of caller
2031 __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize))); // save exception & return address
2032 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
2033 SharedRuntime::exception_handler_for_return_address),
2034 rthread, lr);
2035 __ mov(r1, r0); // save exception handler
2036 __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize))); // restore exception & return address
2037 // We might be returning to a deopt handler that expects r3 to
2038 // contain the exception pc
2039 __ mov(r3, lr);
2040 // Note that an "issuing PC" is actually the next PC after the call
2041 __ br(r1); // jump to exception
2042 // handler of caller
2043 }
2044
2045
2046 //
2047 // JVMTI ForceEarlyReturn support
2048 //
2049 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
2050 address entry = __ pc();
2051
2052 __ restore_bcp();
2053 __ restore_locals();
2054 __ empty_expression_stack();
2055 __ load_earlyret_value(state);
2056
2057 __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
2058 Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset());
2059
2060 // Clear the earlyret state
2061 assert(JvmtiThreadState::earlyret_inactive == 0, "should be");
2062 __ str(zr, cond_addr);
2063
2064 __ remove_activation(state,
2065 false, /* throw_monitor_exception */
2066 false, /* install_monitor_exception */
2067 true); /* notify_jvmdi */
2068 __ ret(lr);
2069
2070 return entry;
2071 } // end of ForceEarlyReturn support
2072
2073
2074
2075 //-----------------------------------------------------------------------------
2076 // Helper for vtos entry point generation
2077
2078 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2079 address& bep,
2080 address& cep,
2081 address& sep,
2082 address& aep,
2083 address& iep,
2084 address& lep,
2085 address& fep,
2086 address& dep,
2087 address& vep) {
2088 assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2089 Label L;
2090 aep = __ pc(); // atos entry point
2091 __ push_ptr();
2092 __ b(L);
2093 fep = __ pc(); // ftos entry point
2094 __ push_f();
2095 __ b(L);
2096 dep = __ pc(); // dtos entry point
2097 __ push_d();
2098 __ b(L);
2099 lep = __ pc(); // ltos entry point
2100 __ push_l();
2101 __ b(L);
2102 bep = cep = sep = iep = __ pc(); // [bcsi]tos entry point
2103 __ push_i();
2104 vep = __ pc(); // vtos entry point
2105 __ bind(L);
2106 generate_and_dispatch(t);
2107 }
2108
2109 //-----------------------------------------------------------------------------
2110
2111 // Non-product code
2112 #ifndef PRODUCT
2113 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2114 address entry = __ pc();
2115
2116 __ protect_return_address();
2117 __ push(lr);
2118 __ push(state);
2119 __ push(RegSet::range(r0, r15), sp);
2120 __ mov(c_rarg2, r0); // Pass itos
2121 __ call_VM(noreg,
2122 CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode),
2123 c_rarg1, c_rarg2, c_rarg3);
2124 __ pop(RegSet::range(r0, r15), sp);
2125 __ pop(state);
2126 __ pop(lr);
2127 __ authenticate_return_address();
2128 __ ret(lr); // return from result handler
2129
2130 return entry;
2131 }
2132 #endif // PRODUCT
2133
2134 void TemplateInterpreterGenerator::count_bytecode() {
2135 if (CountBytecodesPerThread) {
2136 Address bc_counter_addr(rthread, Thread::bc_counter_offset());
2137 __ ldr(r10, bc_counter_addr);
2138 __ add(r10, r10, 1);
2139 __ str(r10, bc_counter_addr);
2140 }
2141 if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) {
2142 __ mov(r10, (address) &BytecodeCounter::_counter_value);
2143 __ atomic_add(noreg, 1, r10);
2144 }
2145 }
2146
2147 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2148 __ mov(r10, (address) &BytecodeHistogram::_counters[t->bytecode()]);
2149 __ atomic_addw(noreg, 1, r10);
2150 }
2151
2152 #ifndef PRODUCT
2153 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2154 // Calculate new index for counter:
2155 // _index = (_index >> log2_number_of_codes) |
2156 // (bytecode << log2_number_of_codes);
2157 Register index_addr = rscratch1;
2158 Register index = rscratch2;
2159 __ mov(index_addr, (address) &BytecodePairHistogram::_index);
2160 __ ldrw(index, index_addr);
2161 __ mov(r10,
2162 ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
2163 __ orrw(index, r10, index, Assembler::LSR,
2164 BytecodePairHistogram::log2_number_of_codes);
2165 __ strw(index, index_addr);
2166
2167 // Bump bucket contents:
2168 // _counters[_index] ++;
2169 Register counter_addr = rscratch1;
2170 __ mov(r10, (address) &BytecodePairHistogram::_counters);
2171 __ lea(counter_addr, Address(r10, index, Address::lsl(LogBytesPerInt)));
2172 __ atomic_addw(noreg, 1, counter_addr);
2173 }
2174
2175 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2176 // Call a little run-time stub to avoid blow-up for each bytecode.
2177 // The run-time runtime saves the right registers, depending on
2178 // the tosca in-state for the given template.
2179
2180 assert(Interpreter::trace_code(t->tos_in()) != nullptr,
2181 "entry must have been generated");
2182 __ bl(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
2183 __ reinit_heapbase();
2184 }
2185
2186
2187 void TemplateInterpreterGenerator::stop_interpreter_at() {
2188 Label L;
2189 __ push(rscratch1);
2190 __ mov(rscratch1, (address) &BytecodeCounter::_counter_value);
2191 __ ldr(rscratch1, Address(rscratch1));
2192 __ mov(rscratch2, StopInterpreterAt);
2193 __ cmp(rscratch1, rscratch2);
2194 __ br(Assembler::NE, L);
2195 __ brk(0);
2196 __ bind(L);
2197 __ pop(rscratch1);
2198 }
2199
2200 #endif // !PRODUCT