1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/disassembler.hpp" 29 #include "compiler/compilerDefinitions.inline.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "gc/shared/collectedHeap.hpp" 32 #include "gc/shared/tlab_globals.hpp" 33 #include "interpreter/interpreter.hpp" 34 #include "interpreter/interpreterRuntime.hpp" 35 #include "interpreter/interp_masm.hpp" 36 #include "interpreter/templateTable.hpp" 37 #include "memory/universe.hpp" 38 #include "oops/methodData.hpp" 39 #include "oops/method.inline.hpp" 40 #include "oops/objArrayKlass.hpp" 41 #include "oops/oop.inline.hpp" 42 #include "oops/resolvedFieldEntry.hpp" 43 #include "oops/resolvedIndyEntry.hpp" 44 #include "oops/resolvedMethodEntry.hpp" 45 #include "prims/jvmtiExport.hpp" 46 #include "prims/methodHandles.hpp" 47 #include "runtime/frame.inline.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "runtime/stubRoutines.hpp" 50 #include "runtime/synchronizer.hpp" 51 #include "utilities/powerOfTwo.hpp" 52 53 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 54 55 // Address computation: local variables 56 57 static inline Address iaddress(int n) { 58 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 59 } 60 61 static inline Address laddress(int n) { 62 return iaddress(n + 1); 63 } 64 65 static inline Address faddress(int n) { 66 return iaddress(n); 67 } 68 69 static inline Address daddress(int n) { 70 return laddress(n); 71 } 72 73 static inline Address aaddress(int n) { 74 return iaddress(n); 75 } 76 77 static inline Address iaddress(Register r) { 78 return Address(rlocals, r, Address::lsl(3)); 79 } 80 81 static inline Address laddress(Register r, Register scratch, 82 InterpreterMacroAssembler* _masm) { 83 __ lea(scratch, Address(rlocals, r, Address::lsl(3))); 84 return Address(scratch, Interpreter::local_offset_in_bytes(1)); 85 } 86 87 static inline Address faddress(Register r) { 88 return iaddress(r); 89 } 90 91 static inline Address daddress(Register r, Register scratch, 92 InterpreterMacroAssembler* _masm) { 93 return laddress(r, scratch, _masm); 94 } 95 96 static inline Address aaddress(Register r) { 97 return iaddress(r); 98 } 99 100 static inline Address at_rsp() { 101 return Address(esp, 0); 102 } 103 104 // At top of Java expression stack which may be different than esp(). It 105 // isn't for category 1 objects. 106 static inline Address at_tos () { 107 return Address(esp, Interpreter::expr_offset_in_bytes(0)); 108 } 109 110 static inline Address at_tos_p1() { 111 return Address(esp, Interpreter::expr_offset_in_bytes(1)); 112 } 113 114 static inline Address at_tos_p2() { 115 return Address(esp, Interpreter::expr_offset_in_bytes(2)); 116 } 117 118 static inline Address at_tos_p3() { 119 return Address(esp, Interpreter::expr_offset_in_bytes(3)); 120 } 121 122 static inline Address at_tos_p4() { 123 return Address(esp, Interpreter::expr_offset_in_bytes(4)); 124 } 125 126 static inline Address at_tos_p5() { 127 return Address(esp, Interpreter::expr_offset_in_bytes(5)); 128 } 129 130 // Condition conversion 131 static Assembler::Condition j_not(TemplateTable::Condition cc) { 132 switch (cc) { 133 case TemplateTable::equal : return Assembler::NE; 134 case TemplateTable::not_equal : return Assembler::EQ; 135 case TemplateTable::less : return Assembler::GE; 136 case TemplateTable::less_equal : return Assembler::GT; 137 case TemplateTable::greater : return Assembler::LE; 138 case TemplateTable::greater_equal: return Assembler::LT; 139 } 140 ShouldNotReachHere(); 141 return Assembler::EQ; 142 } 143 144 145 // Miscellaneous helper routines 146 // Store an oop (or null) at the Address described by obj. 147 // If val == noreg this means store a null 148 static void do_oop_store(InterpreterMacroAssembler* _masm, 149 Address dst, 150 Register val, 151 DecoratorSet decorators) { 152 assert(val == noreg || val == r0, "parameter is just for looks"); 153 __ store_heap_oop(dst, val, r10, r11, r3, decorators); 154 } 155 156 static void do_oop_load(InterpreterMacroAssembler* _masm, 157 Address src, 158 Register dst, 159 DecoratorSet decorators) { 160 __ load_heap_oop(dst, src, r10, r11, decorators); 161 } 162 163 Address TemplateTable::at_bcp(int offset) { 164 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 165 return Address(rbcp, offset); 166 } 167 168 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 169 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 170 int byte_no) 171 { 172 if (!RewriteBytecodes) return; 173 Label L_patch_done; 174 175 switch (bc) { 176 case Bytecodes::_fast_aputfield: 177 case Bytecodes::_fast_bputfield: 178 case Bytecodes::_fast_zputfield: 179 case Bytecodes::_fast_cputfield: 180 case Bytecodes::_fast_dputfield: 181 case Bytecodes::_fast_fputfield: 182 case Bytecodes::_fast_iputfield: 183 case Bytecodes::_fast_lputfield: 184 case Bytecodes::_fast_sputfield: 185 { 186 // We skip bytecode quickening for putfield instructions when 187 // the put_code written to the constant pool cache is zero. 188 // This is required so that every execution of this instruction 189 // calls out to InterpreterRuntime::resolve_get_put to do 190 // additional, required work. 191 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 192 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 193 __ load_field_entry(temp_reg, bc_reg); 194 if (byte_no == f1_byte) { 195 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset()))); 196 } else { 197 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset()))); 198 } 199 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in() 200 __ ldarb(temp_reg, temp_reg); 201 __ movw(bc_reg, bc); 202 __ cbzw(temp_reg, L_patch_done); // don't patch 203 } 204 break; 205 default: 206 assert(byte_no == -1, "sanity"); 207 // the pair bytecodes have already done the load. 208 if (load_bc_into_bc_reg) { 209 __ movw(bc_reg, bc); 210 } 211 } 212 213 if (JvmtiExport::can_post_breakpoint()) { 214 Label L_fast_patch; 215 // if a breakpoint is present we can't rewrite the stream directly 216 __ load_unsigned_byte(temp_reg, at_bcp(0)); 217 __ cmpw(temp_reg, Bytecodes::_breakpoint); 218 __ br(Assembler::NE, L_fast_patch); 219 // Let breakpoint table handling rewrite to quicker bytecode 220 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg); 221 __ b(L_patch_done); 222 __ bind(L_fast_patch); 223 } 224 225 #ifdef ASSERT 226 Label L_okay; 227 __ load_unsigned_byte(temp_reg, at_bcp(0)); 228 __ cmpw(temp_reg, (int) Bytecodes::java_code(bc)); 229 __ br(Assembler::EQ, L_okay); 230 __ cmpw(temp_reg, bc_reg); 231 __ br(Assembler::EQ, L_okay); 232 __ stop("patching the wrong bytecode"); 233 __ bind(L_okay); 234 #endif 235 236 // patch bytecode 237 __ strb(bc_reg, at_bcp(0)); 238 __ bind(L_patch_done); 239 } 240 241 242 // Individual instructions 243 244 void TemplateTable::nop() { 245 transition(vtos, vtos); 246 // nothing to do 247 } 248 249 void TemplateTable::shouldnotreachhere() { 250 transition(vtos, vtos); 251 __ stop("shouldnotreachhere bytecode"); 252 } 253 254 void TemplateTable::aconst_null() 255 { 256 transition(vtos, atos); 257 __ mov(r0, 0); 258 } 259 260 void TemplateTable::iconst(int value) 261 { 262 transition(vtos, itos); 263 __ mov(r0, value); 264 } 265 266 void TemplateTable::lconst(int value) 267 { 268 __ mov(r0, value); 269 } 270 271 void TemplateTable::fconst(int value) 272 { 273 transition(vtos, ftos); 274 switch (value) { 275 case 0: 276 __ fmovs(v0, 0.0); 277 break; 278 case 1: 279 __ fmovs(v0, 1.0); 280 break; 281 case 2: 282 __ fmovs(v0, 2.0); 283 break; 284 default: 285 ShouldNotReachHere(); 286 break; 287 } 288 } 289 290 void TemplateTable::dconst(int value) 291 { 292 transition(vtos, dtos); 293 switch (value) { 294 case 0: 295 __ fmovd(v0, 0.0); 296 break; 297 case 1: 298 __ fmovd(v0, 1.0); 299 break; 300 case 2: 301 __ fmovd(v0, 2.0); 302 break; 303 default: 304 ShouldNotReachHere(); 305 break; 306 } 307 } 308 309 void TemplateTable::bipush() 310 { 311 transition(vtos, itos); 312 __ load_signed_byte32(r0, at_bcp(1)); 313 } 314 315 void TemplateTable::sipush() 316 { 317 transition(vtos, itos); 318 __ load_unsigned_short(r0, at_bcp(1)); 319 __ revw(r0, r0); 320 __ asrw(r0, r0, 16); 321 } 322 323 void TemplateTable::ldc(LdcType type) 324 { 325 transition(vtos, vtos); 326 Label call_ldc, notFloat, notClass, notInt, Done; 327 328 if (is_ldc_wide(type)) { 329 __ get_unsigned_2_byte_index_at_bcp(r1, 1); 330 } else { 331 __ load_unsigned_byte(r1, at_bcp(1)); 332 } 333 __ get_cpool_and_tags(r2, r0); 334 335 const int base_offset = ConstantPool::header_size() * wordSize; 336 const int tags_offset = Array<u1>::base_offset_in_bytes(); 337 338 // get type 339 __ add(r3, r1, tags_offset); 340 __ lea(r3, Address(r0, r3)); 341 __ ldarb(r3, r3); 342 343 // unresolved class - get the resolved class 344 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClass); 345 __ br(Assembler::EQ, call_ldc); 346 347 // unresolved class in error state - call into runtime to throw the error 348 // from the first resolution attempt 349 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClassInError); 350 __ br(Assembler::EQ, call_ldc); 351 352 // resolved class - need to call vm to get java mirror of the class 353 __ cmp(r3, (u1)JVM_CONSTANT_Class); 354 __ br(Assembler::NE, notClass); 355 356 __ load_resolved_klass_at_offset(r2, r1, r3, rscratch1); // kills r3=tag 357 358 __ cmp(r3, zr); // resolved_klass ?= null 359 __ br(Assembler::EQ, call_ldc); 360 361 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 362 __ ldr(r3, Address(r3, mirror_offset)); 363 __ resolve_oop_handle(r3, rscratch1, rscratch2); 364 __ push_ptr(r3); 365 366 __ b(Done); 367 368 __ bind(call_ldc); 369 __ mov(c_rarg1, is_ldc_wide(type) ? 1 : 0); 370 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); 371 __ push_ptr(r0); 372 __ verify_oop(r0); 373 __ b(Done); 374 375 __ bind(notClass); 376 __ cmp(r3, (u1)JVM_CONSTANT_Float); 377 __ br(Assembler::NE, notFloat); 378 // ftos 379 __ adds(r1, r2, r1, Assembler::LSL, 3); 380 __ ldrs(v0, Address(r1, base_offset)); 381 __ push_f(); 382 __ b(Done); 383 384 __ bind(notFloat); 385 386 __ cmp(r3, (u1)JVM_CONSTANT_Integer); 387 __ br(Assembler::NE, notInt); 388 389 // itos 390 __ adds(r1, r2, r1, Assembler::LSL, 3); 391 __ ldrw(r0, Address(r1, base_offset)); 392 __ push_i(r0); 393 __ b(Done); 394 395 __ bind(notInt); 396 condy_helper(Done); 397 398 __ bind(Done); 399 } 400 401 // Fast path for caching oop constants. 402 void TemplateTable::fast_aldc(LdcType type) 403 { 404 transition(vtos, atos); 405 406 Register result = r0; 407 Register tmp = r1; 408 Register rarg = r2; 409 410 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 411 412 Label resolved; 413 414 // We are resolved if the resolved reference cache entry contains a 415 // non-null object (String, MethodType, etc.) 416 assert_different_registers(result, tmp); 417 __ get_cache_index_at_bcp(tmp, 1, index_size); 418 __ load_resolved_reference_at_index(result, tmp); 419 __ cbnz(result, resolved); 420 421 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 422 423 // first time invocation - must resolve first 424 __ mov(rarg, (int)bytecode()); 425 __ call_VM(result, entry, rarg); 426 427 __ bind(resolved); 428 429 { // Check for the null sentinel. 430 // If we just called the VM, it already did the mapping for us, 431 // but it's harmless to retry. 432 Label notNull; 433 434 // Stash null_sentinel address to get its value later 435 __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr()); 436 __ ldr(tmp, Address(rarg)); 437 __ resolve_oop_handle(tmp, r5, rscratch2); 438 __ cmpoop(result, tmp); 439 __ br(Assembler::NE, notNull); 440 __ mov(result, 0); // null object reference 441 __ bind(notNull); 442 } 443 444 if (VerifyOops) { 445 // Safe to call with 0 result 446 __ verify_oop(result); 447 } 448 } 449 450 void TemplateTable::ldc2_w() 451 { 452 transition(vtos, vtos); 453 Label notDouble, notLong, Done; 454 __ get_unsigned_2_byte_index_at_bcp(r0, 1); 455 456 __ get_cpool_and_tags(r1, r2); 457 const int base_offset = ConstantPool::header_size() * wordSize; 458 const int tags_offset = Array<u1>::base_offset_in_bytes(); 459 460 // get type 461 __ lea(r2, Address(r2, r0, Address::lsl(0))); 462 __ load_unsigned_byte(r2, Address(r2, tags_offset)); 463 __ cmpw(r2, (int)JVM_CONSTANT_Double); 464 __ br(Assembler::NE, notDouble); 465 466 // dtos 467 __ lea (r2, Address(r1, r0, Address::lsl(3))); 468 __ ldrd(v0, Address(r2, base_offset)); 469 __ push_d(); 470 __ b(Done); 471 472 __ bind(notDouble); 473 __ cmpw(r2, (int)JVM_CONSTANT_Long); 474 __ br(Assembler::NE, notLong); 475 476 // ltos 477 __ lea(r0, Address(r1, r0, Address::lsl(3))); 478 __ ldr(r0, Address(r0, base_offset)); 479 __ push_l(); 480 __ b(Done); 481 482 __ bind(notLong); 483 condy_helper(Done); 484 485 __ bind(Done); 486 } 487 488 void TemplateTable::condy_helper(Label& Done) 489 { 490 Register obj = r0; 491 Register rarg = r1; 492 Register flags = r2; 493 Register off = r3; 494 495 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 496 497 __ mov(rarg, (int) bytecode()); 498 __ call_VM(obj, entry, rarg); 499 500 __ get_vm_result_2(flags, rthread); 501 502 // VMr = obj = base address to find primitive value to push 503 // VMr2 = flags = (tos, off) using format of CPCE::_flags 504 __ mov(off, flags); 505 __ andw(off, off, ConstantPoolCache::field_index_mask); 506 507 const Address field(obj, off); 508 509 // What sort of thing are we loading? 510 // x86 uses a shift and mask or wings it with a shift plus assert 511 // the mask is not needed. aarch64 just uses bitfield extract 512 __ ubfxw(flags, flags, ConstantPoolCache::tos_state_shift, 513 ConstantPoolCache::tos_state_bits); 514 515 switch (bytecode()) { 516 case Bytecodes::_ldc: 517 case Bytecodes::_ldc_w: 518 { 519 // tos in (itos, ftos, stos, btos, ctos, ztos) 520 Label notInt, notFloat, notShort, notByte, notChar, notBool; 521 __ cmpw(flags, itos); 522 __ br(Assembler::NE, notInt); 523 // itos 524 __ ldrw(r0, field); 525 __ push(itos); 526 __ b(Done); 527 528 __ bind(notInt); 529 __ cmpw(flags, ftos); 530 __ br(Assembler::NE, notFloat); 531 // ftos 532 __ load_float(field); 533 __ push(ftos); 534 __ b(Done); 535 536 __ bind(notFloat); 537 __ cmpw(flags, stos); 538 __ br(Assembler::NE, notShort); 539 // stos 540 __ load_signed_short(r0, field); 541 __ push(stos); 542 __ b(Done); 543 544 __ bind(notShort); 545 __ cmpw(flags, btos); 546 __ br(Assembler::NE, notByte); 547 // btos 548 __ load_signed_byte(r0, field); 549 __ push(btos); 550 __ b(Done); 551 552 __ bind(notByte); 553 __ cmpw(flags, ctos); 554 __ br(Assembler::NE, notChar); 555 // ctos 556 __ load_unsigned_short(r0, field); 557 __ push(ctos); 558 __ b(Done); 559 560 __ bind(notChar); 561 __ cmpw(flags, ztos); 562 __ br(Assembler::NE, notBool); 563 // ztos 564 __ load_signed_byte(r0, field); 565 __ push(ztos); 566 __ b(Done); 567 568 __ bind(notBool); 569 break; 570 } 571 572 case Bytecodes::_ldc2_w: 573 { 574 Label notLong, notDouble; 575 __ cmpw(flags, ltos); 576 __ br(Assembler::NE, notLong); 577 // ltos 578 __ ldr(r0, field); 579 __ push(ltos); 580 __ b(Done); 581 582 __ bind(notLong); 583 __ cmpw(flags, dtos); 584 __ br(Assembler::NE, notDouble); 585 // dtos 586 __ load_double(field); 587 __ push(dtos); 588 __ b(Done); 589 590 __ bind(notDouble); 591 break; 592 } 593 594 default: 595 ShouldNotReachHere(); 596 } 597 598 __ stop("bad ldc/condy"); 599 } 600 601 void TemplateTable::locals_index(Register reg, int offset) 602 { 603 __ ldrb(reg, at_bcp(offset)); 604 __ neg(reg, reg); 605 } 606 607 void TemplateTable::iload() { 608 iload_internal(); 609 } 610 611 void TemplateTable::nofast_iload() { 612 iload_internal(may_not_rewrite); 613 } 614 615 void TemplateTable::iload_internal(RewriteControl rc) { 616 transition(vtos, itos); 617 if (RewriteFrequentPairs && rc == may_rewrite) { 618 Label rewrite, done; 619 Register bc = r4; 620 621 // get next bytecode 622 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 623 624 // if _iload, wait to rewrite to iload2. We only want to rewrite the 625 // last two iloads in a pair. Comparing against fast_iload means that 626 // the next bytecode is neither an iload or a caload, and therefore 627 // an iload pair. 628 __ cmpw(r1, Bytecodes::_iload); 629 __ br(Assembler::EQ, done); 630 631 // if _fast_iload rewrite to _fast_iload2 632 __ cmpw(r1, Bytecodes::_fast_iload); 633 __ movw(bc, Bytecodes::_fast_iload2); 634 __ br(Assembler::EQ, rewrite); 635 636 // if _caload rewrite to _fast_icaload 637 __ cmpw(r1, Bytecodes::_caload); 638 __ movw(bc, Bytecodes::_fast_icaload); 639 __ br(Assembler::EQ, rewrite); 640 641 // else rewrite to _fast_iload 642 __ movw(bc, Bytecodes::_fast_iload); 643 644 // rewrite 645 // bc: new bytecode 646 __ bind(rewrite); 647 patch_bytecode(Bytecodes::_iload, bc, r1, false); 648 __ bind(done); 649 650 } 651 652 // do iload, get the local value into tos 653 locals_index(r1); 654 __ ldr(r0, iaddress(r1)); 655 656 } 657 658 void TemplateTable::fast_iload2() 659 { 660 transition(vtos, itos); 661 locals_index(r1); 662 __ ldr(r0, iaddress(r1)); 663 __ push(itos); 664 locals_index(r1, 3); 665 __ ldr(r0, iaddress(r1)); 666 } 667 668 void TemplateTable::fast_iload() 669 { 670 transition(vtos, itos); 671 locals_index(r1); 672 __ ldr(r0, iaddress(r1)); 673 } 674 675 void TemplateTable::lload() 676 { 677 transition(vtos, ltos); 678 __ ldrb(r1, at_bcp(1)); 679 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 680 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 681 } 682 683 void TemplateTable::fload() 684 { 685 transition(vtos, ftos); 686 locals_index(r1); 687 // n.b. we use ldrd here because this is a 64 bit slot 688 // this is comparable to the iload case 689 __ ldrd(v0, faddress(r1)); 690 } 691 692 void TemplateTable::dload() 693 { 694 transition(vtos, dtos); 695 __ ldrb(r1, at_bcp(1)); 696 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 697 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 698 } 699 700 void TemplateTable::aload() 701 { 702 transition(vtos, atos); 703 locals_index(r1); 704 __ ldr(r0, iaddress(r1)); 705 } 706 707 void TemplateTable::locals_index_wide(Register reg) { 708 __ ldrh(reg, at_bcp(2)); 709 __ rev16w(reg, reg); 710 __ neg(reg, reg); 711 } 712 713 void TemplateTable::wide_iload() { 714 transition(vtos, itos); 715 locals_index_wide(r1); 716 __ ldr(r0, iaddress(r1)); 717 } 718 719 void TemplateTable::wide_lload() 720 { 721 transition(vtos, ltos); 722 __ ldrh(r1, at_bcp(2)); 723 __ rev16w(r1, r1); 724 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 725 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 726 } 727 728 void TemplateTable::wide_fload() 729 { 730 transition(vtos, ftos); 731 locals_index_wide(r1); 732 // n.b. we use ldrd here because this is a 64 bit slot 733 // this is comparable to the iload case 734 __ ldrd(v0, faddress(r1)); 735 } 736 737 void TemplateTable::wide_dload() 738 { 739 transition(vtos, dtos); 740 __ ldrh(r1, at_bcp(2)); 741 __ rev16w(r1, r1); 742 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 743 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 744 } 745 746 void TemplateTable::wide_aload() 747 { 748 transition(vtos, atos); 749 locals_index_wide(r1); 750 __ ldr(r0, aaddress(r1)); 751 } 752 753 void TemplateTable::index_check(Register array, Register index) 754 { 755 // destroys r1, rscratch1 756 // sign extend index for use by indexed load 757 // __ movl2ptr(index, index); 758 // check index 759 Register length = rscratch1; 760 __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes())); 761 __ cmpw(index, length); 762 if (index != r1) { 763 // ??? convention: move aberrant index into r1 for exception message 764 assert(r1 != array, "different registers"); 765 __ mov(r1, index); 766 } 767 Label ok; 768 __ br(Assembler::LO, ok); 769 // ??? convention: move array into r3 for exception message 770 __ mov(r3, array); 771 __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 772 __ br(rscratch1); 773 __ bind(ok); 774 } 775 776 void TemplateTable::iaload() 777 { 778 transition(itos, itos); 779 __ mov(r1, r0); 780 __ pop_ptr(r0); 781 // r0: array 782 // r1: index 783 index_check(r0, r1); // leaves index in r1, kills rscratch1 784 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 785 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg); 786 } 787 788 void TemplateTable::laload() 789 { 790 transition(itos, ltos); 791 __ mov(r1, r0); 792 __ pop_ptr(r0); 793 // r0: array 794 // r1: index 795 index_check(r0, r1); // leaves index in r1, kills rscratch1 796 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 797 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg); 798 } 799 800 void TemplateTable::faload() 801 { 802 transition(itos, ftos); 803 __ mov(r1, r0); 804 __ pop_ptr(r0); 805 // r0: array 806 // r1: index 807 index_check(r0, r1); // leaves index in r1, kills rscratch1 808 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 809 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg); 810 } 811 812 void TemplateTable::daload() 813 { 814 transition(itos, dtos); 815 __ mov(r1, r0); 816 __ pop_ptr(r0); 817 // r0: array 818 // r1: index 819 index_check(r0, r1); // leaves index in r1, kills rscratch1 820 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 821 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg); 822 } 823 824 void TemplateTable::aaload() 825 { 826 transition(itos, atos); 827 __ mov(r1, r0); 828 __ pop_ptr(r0); 829 // r0: array 830 // r1: index 831 index_check(r0, r1); // leaves index in r1, kills rscratch1 832 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 833 do_oop_load(_masm, 834 Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), 835 r0, 836 IS_ARRAY); 837 } 838 839 void TemplateTable::baload() 840 { 841 transition(itos, itos); 842 __ mov(r1, r0); 843 __ pop_ptr(r0); 844 // r0: array 845 // r1: index 846 index_check(r0, r1); // leaves index in r1, kills rscratch1 847 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 848 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg); 849 } 850 851 void TemplateTable::caload() 852 { 853 transition(itos, itos); 854 __ mov(r1, r0); 855 __ pop_ptr(r0); 856 // r0: array 857 // r1: index 858 index_check(r0, r1); // leaves index in r1, kills rscratch1 859 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 860 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 861 } 862 863 // iload followed by caload frequent pair 864 void TemplateTable::fast_icaload() 865 { 866 transition(vtos, itos); 867 // load index out of locals 868 locals_index(r2); 869 __ ldr(r1, iaddress(r2)); 870 871 __ pop_ptr(r0); 872 873 // r0: array 874 // r1: index 875 index_check(r0, r1); // leaves index in r1, kills rscratch1 876 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 877 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 878 } 879 880 void TemplateTable::saload() 881 { 882 transition(itos, itos); 883 __ mov(r1, r0); 884 __ pop_ptr(r0); 885 // r0: array 886 // r1: index 887 index_check(r0, r1); // leaves index in r1, kills rscratch1 888 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1); 889 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 890 } 891 892 void TemplateTable::iload(int n) 893 { 894 transition(vtos, itos); 895 __ ldr(r0, iaddress(n)); 896 } 897 898 void TemplateTable::lload(int n) 899 { 900 transition(vtos, ltos); 901 __ ldr(r0, laddress(n)); 902 } 903 904 void TemplateTable::fload(int n) 905 { 906 transition(vtos, ftos); 907 __ ldrs(v0, faddress(n)); 908 } 909 910 void TemplateTable::dload(int n) 911 { 912 transition(vtos, dtos); 913 __ ldrd(v0, daddress(n)); 914 } 915 916 void TemplateTable::aload(int n) 917 { 918 transition(vtos, atos); 919 __ ldr(r0, iaddress(n)); 920 } 921 922 void TemplateTable::aload_0() { 923 aload_0_internal(); 924 } 925 926 void TemplateTable::nofast_aload_0() { 927 aload_0_internal(may_not_rewrite); 928 } 929 930 void TemplateTable::aload_0_internal(RewriteControl rc) { 931 // According to bytecode histograms, the pairs: 932 // 933 // _aload_0, _fast_igetfield 934 // _aload_0, _fast_agetfield 935 // _aload_0, _fast_fgetfield 936 // 937 // occur frequently. If RewriteFrequentPairs is set, the (slow) 938 // _aload_0 bytecode checks if the next bytecode is either 939 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 940 // rewrites the current bytecode into a pair bytecode; otherwise it 941 // rewrites the current bytecode into _fast_aload_0 that doesn't do 942 // the pair check anymore. 943 // 944 // Note: If the next bytecode is _getfield, the rewrite must be 945 // delayed, otherwise we may miss an opportunity for a pair. 946 // 947 // Also rewrite frequent pairs 948 // aload_0, aload_1 949 // aload_0, iload_1 950 // These bytecodes with a small amount of code are most profitable 951 // to rewrite 952 if (RewriteFrequentPairs && rc == may_rewrite) { 953 Label rewrite, done; 954 const Register bc = r4; 955 956 // get next bytecode 957 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 958 959 // if _getfield then wait with rewrite 960 __ cmpw(r1, Bytecodes::Bytecodes::_getfield); 961 __ br(Assembler::EQ, done); 962 963 // if _igetfield then rewrite to _fast_iaccess_0 964 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 965 __ cmpw(r1, Bytecodes::_fast_igetfield); 966 __ movw(bc, Bytecodes::_fast_iaccess_0); 967 __ br(Assembler::EQ, rewrite); 968 969 // if _agetfield then rewrite to _fast_aaccess_0 970 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 971 __ cmpw(r1, Bytecodes::_fast_agetfield); 972 __ movw(bc, Bytecodes::_fast_aaccess_0); 973 __ br(Assembler::EQ, rewrite); 974 975 // if _fgetfield then rewrite to _fast_faccess_0 976 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 977 __ cmpw(r1, Bytecodes::_fast_fgetfield); 978 __ movw(bc, Bytecodes::_fast_faccess_0); 979 __ br(Assembler::EQ, rewrite); 980 981 // else rewrite to _fast_aload0 982 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 983 __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0); 984 985 // rewrite 986 // bc: new bytecode 987 __ bind(rewrite); 988 patch_bytecode(Bytecodes::_aload_0, bc, r1, false); 989 990 __ bind(done); 991 } 992 993 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 994 aload(0); 995 } 996 997 void TemplateTable::istore() 998 { 999 transition(itos, vtos); 1000 locals_index(r1); 1001 // FIXME: We're being very pernickerty here storing a jint in a 1002 // local with strw, which costs an extra instruction over what we'd 1003 // be able to do with a simple str. We should just store the whole 1004 // word. 1005 __ lea(rscratch1, iaddress(r1)); 1006 __ strw(r0, Address(rscratch1)); 1007 } 1008 1009 void TemplateTable::lstore() 1010 { 1011 transition(ltos, vtos); 1012 locals_index(r1); 1013 __ str(r0, laddress(r1, rscratch1, _masm)); 1014 } 1015 1016 void TemplateTable::fstore() { 1017 transition(ftos, vtos); 1018 locals_index(r1); 1019 __ lea(rscratch1, iaddress(r1)); 1020 __ strs(v0, Address(rscratch1)); 1021 } 1022 1023 void TemplateTable::dstore() { 1024 transition(dtos, vtos); 1025 locals_index(r1); 1026 __ strd(v0, daddress(r1, rscratch1, _masm)); 1027 } 1028 1029 void TemplateTable::astore() 1030 { 1031 transition(vtos, vtos); 1032 __ pop_ptr(r0); 1033 locals_index(r1); 1034 __ str(r0, aaddress(r1)); 1035 } 1036 1037 void TemplateTable::wide_istore() { 1038 transition(vtos, vtos); 1039 __ pop_i(); 1040 locals_index_wide(r1); 1041 __ lea(rscratch1, iaddress(r1)); 1042 __ strw(r0, Address(rscratch1)); 1043 } 1044 1045 void TemplateTable::wide_lstore() { 1046 transition(vtos, vtos); 1047 __ pop_l(); 1048 locals_index_wide(r1); 1049 __ str(r0, laddress(r1, rscratch1, _masm)); 1050 } 1051 1052 void TemplateTable::wide_fstore() { 1053 transition(vtos, vtos); 1054 __ pop_f(); 1055 locals_index_wide(r1); 1056 __ lea(rscratch1, faddress(r1)); 1057 __ strs(v0, rscratch1); 1058 } 1059 1060 void TemplateTable::wide_dstore() { 1061 transition(vtos, vtos); 1062 __ pop_d(); 1063 locals_index_wide(r1); 1064 __ strd(v0, daddress(r1, rscratch1, _masm)); 1065 } 1066 1067 void TemplateTable::wide_astore() { 1068 transition(vtos, vtos); 1069 __ pop_ptr(r0); 1070 locals_index_wide(r1); 1071 __ str(r0, aaddress(r1)); 1072 } 1073 1074 void TemplateTable::iastore() { 1075 transition(itos, vtos); 1076 __ pop_i(r1); 1077 __ pop_ptr(r3); 1078 // r0: value 1079 // r1: index 1080 // r3: array 1081 index_check(r3, r1); // prefer index in r1 1082 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 1083 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), r0, noreg, noreg, noreg); 1084 } 1085 1086 void TemplateTable::lastore() { 1087 transition(ltos, vtos); 1088 __ pop_i(r1); 1089 __ pop_ptr(r3); 1090 // r0: value 1091 // r1: index 1092 // r3: array 1093 index_check(r3, r1); // prefer index in r1 1094 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 1095 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), r0, noreg, noreg, noreg); 1096 } 1097 1098 void TemplateTable::fastore() { 1099 transition(ftos, vtos); 1100 __ pop_i(r1); 1101 __ pop_ptr(r3); 1102 // v0: value 1103 // r1: index 1104 // r3: array 1105 index_check(r3, r1); // prefer index in r1 1106 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 1107 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg); 1108 } 1109 1110 void TemplateTable::dastore() { 1111 transition(dtos, vtos); 1112 __ pop_i(r1); 1113 __ pop_ptr(r3); 1114 // v0: value 1115 // r1: index 1116 // r3: array 1117 index_check(r3, r1); // prefer index in r1 1118 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 1119 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg); 1120 } 1121 1122 void TemplateTable::aastore() { 1123 Label is_null, ok_is_subtype, done; 1124 transition(vtos, vtos); 1125 // stack: ..., array, index, value 1126 __ ldr(r0, at_tos()); // value 1127 __ ldr(r2, at_tos_p1()); // index 1128 __ ldr(r3, at_tos_p2()); // array 1129 1130 Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop)); 1131 1132 index_check(r3, r2); // kills r1 1133 __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 1134 1135 // do array store check - check for null value first 1136 __ cbz(r0, is_null); 1137 1138 // Move subklass into r1 1139 __ load_klass(r1, r0); 1140 // Move superklass into r0 1141 __ load_klass(r0, r3); 1142 __ ldr(r0, Address(r0, 1143 ObjArrayKlass::element_klass_offset())); 1144 // Compress array + index*oopSize + 12 into a single register. Frees r2. 1145 1146 // Generate subtype check. Blows r2, r5 1147 // Superklass in r0. Subklass in r1. 1148 __ gen_subtype_check(r1, ok_is_subtype); 1149 1150 // Come here on failure 1151 // object is at TOS 1152 __ b(Interpreter::_throw_ArrayStoreException_entry); 1153 1154 // Come here on success 1155 __ bind(ok_is_subtype); 1156 1157 // Get the value we will store 1158 __ ldr(r0, at_tos()); 1159 // Now store using the appropriate barrier 1160 do_oop_store(_masm, element_address, r0, IS_ARRAY); 1161 __ b(done); 1162 1163 // Have a null in r0, r3=array, r2=index. Store null at ary[idx] 1164 __ bind(is_null); 1165 __ profile_null_seen(r2); 1166 1167 // Store a null 1168 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1169 1170 // Pop stack arguments 1171 __ bind(done); 1172 __ add(esp, esp, 3 * Interpreter::stackElementSize); 1173 } 1174 1175 void TemplateTable::bastore() 1176 { 1177 transition(itos, vtos); 1178 __ pop_i(r1); 1179 __ pop_ptr(r3); 1180 // r0: value 1181 // r1: index 1182 // r3: array 1183 index_check(r3, r1); // prefer index in r1 1184 1185 // Need to check whether array is boolean or byte 1186 // since both types share the bastore bytecode. 1187 __ load_klass(r2, r3); 1188 __ ldrw(r2, Address(r2, Klass::layout_helper_offset())); 1189 int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit()); 1190 Label L_skip; 1191 __ tbz(r2, diffbit_index, L_skip); 1192 __ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1193 __ bind(L_skip); 1194 1195 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 1196 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(0)), r0, noreg, noreg, noreg); 1197 } 1198 1199 void TemplateTable::castore() 1200 { 1201 transition(itos, vtos); 1202 __ pop_i(r1); 1203 __ pop_ptr(r3); 1204 // r0: value 1205 // r1: index 1206 // r3: array 1207 index_check(r3, r1); // prefer index in r1 1208 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 1209 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(1)), r0, noreg, noreg, noreg); 1210 } 1211 1212 void TemplateTable::sastore() 1213 { 1214 castore(); 1215 } 1216 1217 void TemplateTable::istore(int n) 1218 { 1219 transition(itos, vtos); 1220 __ str(r0, iaddress(n)); 1221 } 1222 1223 void TemplateTable::lstore(int n) 1224 { 1225 transition(ltos, vtos); 1226 __ str(r0, laddress(n)); 1227 } 1228 1229 void TemplateTable::fstore(int n) 1230 { 1231 transition(ftos, vtos); 1232 __ strs(v0, faddress(n)); 1233 } 1234 1235 void TemplateTable::dstore(int n) 1236 { 1237 transition(dtos, vtos); 1238 __ strd(v0, daddress(n)); 1239 } 1240 1241 void TemplateTable::astore(int n) 1242 { 1243 transition(vtos, vtos); 1244 __ pop_ptr(r0); 1245 __ str(r0, iaddress(n)); 1246 } 1247 1248 void TemplateTable::pop() 1249 { 1250 transition(vtos, vtos); 1251 __ add(esp, esp, Interpreter::stackElementSize); 1252 } 1253 1254 void TemplateTable::pop2() 1255 { 1256 transition(vtos, vtos); 1257 __ add(esp, esp, 2 * Interpreter::stackElementSize); 1258 } 1259 1260 void TemplateTable::dup() 1261 { 1262 transition(vtos, vtos); 1263 __ ldr(r0, Address(esp, 0)); 1264 __ push(r0); 1265 // stack: ..., a, a 1266 } 1267 1268 void TemplateTable::dup_x1() 1269 { 1270 transition(vtos, vtos); 1271 // stack: ..., a, b 1272 __ ldr(r0, at_tos()); // load b 1273 __ ldr(r2, at_tos_p1()); // load a 1274 __ str(r0, at_tos_p1()); // store b 1275 __ str(r2, at_tos()); // store a 1276 __ push(r0); // push b 1277 // stack: ..., b, a, b 1278 } 1279 1280 void TemplateTable::dup_x2() 1281 { 1282 transition(vtos, vtos); 1283 // stack: ..., a, b, c 1284 __ ldr(r0, at_tos()); // load c 1285 __ ldr(r2, at_tos_p2()); // load a 1286 __ str(r0, at_tos_p2()); // store c in a 1287 __ push(r0); // push c 1288 // stack: ..., c, b, c, c 1289 __ ldr(r0, at_tos_p2()); // load b 1290 __ str(r2, at_tos_p2()); // store a in b 1291 // stack: ..., c, a, c, c 1292 __ str(r0, at_tos_p1()); // store b in c 1293 // stack: ..., c, a, b, c 1294 } 1295 1296 void TemplateTable::dup2() 1297 { 1298 transition(vtos, vtos); 1299 // stack: ..., a, b 1300 __ ldr(r0, at_tos_p1()); // load a 1301 __ push(r0); // push a 1302 __ ldr(r0, at_tos_p1()); // load b 1303 __ push(r0); // push b 1304 // stack: ..., a, b, a, b 1305 } 1306 1307 void TemplateTable::dup2_x1() 1308 { 1309 transition(vtos, vtos); 1310 // stack: ..., a, b, c 1311 __ ldr(r2, at_tos()); // load c 1312 __ ldr(r0, at_tos_p1()); // load b 1313 __ push(r0); // push b 1314 __ push(r2); // push c 1315 // stack: ..., a, b, c, b, c 1316 __ str(r2, at_tos_p3()); // store c in b 1317 // stack: ..., a, c, c, b, c 1318 __ ldr(r2, at_tos_p4()); // load a 1319 __ str(r2, at_tos_p2()); // store a in 2nd c 1320 // stack: ..., a, c, a, b, c 1321 __ str(r0, at_tos_p4()); // store b in a 1322 // stack: ..., b, c, a, b, c 1323 } 1324 1325 void TemplateTable::dup2_x2() 1326 { 1327 transition(vtos, vtos); 1328 // stack: ..., a, b, c, d 1329 __ ldr(r2, at_tos()); // load d 1330 __ ldr(r0, at_tos_p1()); // load c 1331 __ push(r0) ; // push c 1332 __ push(r2); // push d 1333 // stack: ..., a, b, c, d, c, d 1334 __ ldr(r0, at_tos_p4()); // load b 1335 __ str(r0, at_tos_p2()); // store b in d 1336 __ str(r2, at_tos_p4()); // store d in b 1337 // stack: ..., a, d, c, b, c, d 1338 __ ldr(r2, at_tos_p5()); // load a 1339 __ ldr(r0, at_tos_p3()); // load c 1340 __ str(r2, at_tos_p3()); // store a in c 1341 __ str(r0, at_tos_p5()); // store c in a 1342 // stack: ..., c, d, a, b, c, d 1343 } 1344 1345 void TemplateTable::swap() 1346 { 1347 transition(vtos, vtos); 1348 // stack: ..., a, b 1349 __ ldr(r2, at_tos_p1()); // load a 1350 __ ldr(r0, at_tos()); // load b 1351 __ str(r2, at_tos()); // store a in b 1352 __ str(r0, at_tos_p1()); // store b in a 1353 // stack: ..., b, a 1354 } 1355 1356 void TemplateTable::iop2(Operation op) 1357 { 1358 transition(itos, itos); 1359 // r0 <== r1 op r0 1360 __ pop_i(r1); 1361 switch (op) { 1362 case add : __ addw(r0, r1, r0); break; 1363 case sub : __ subw(r0, r1, r0); break; 1364 case mul : __ mulw(r0, r1, r0); break; 1365 case _and : __ andw(r0, r1, r0); break; 1366 case _or : __ orrw(r0, r1, r0); break; 1367 case _xor : __ eorw(r0, r1, r0); break; 1368 case shl : __ lslvw(r0, r1, r0); break; 1369 case shr : __ asrvw(r0, r1, r0); break; 1370 case ushr : __ lsrvw(r0, r1, r0);break; 1371 default : ShouldNotReachHere(); 1372 } 1373 } 1374 1375 void TemplateTable::lop2(Operation op) 1376 { 1377 transition(ltos, ltos); 1378 // r0 <== r1 op r0 1379 __ pop_l(r1); 1380 switch (op) { 1381 case add : __ add(r0, r1, r0); break; 1382 case sub : __ sub(r0, r1, r0); break; 1383 case mul : __ mul(r0, r1, r0); break; 1384 case _and : __ andr(r0, r1, r0); break; 1385 case _or : __ orr(r0, r1, r0); break; 1386 case _xor : __ eor(r0, r1, r0); break; 1387 default : ShouldNotReachHere(); 1388 } 1389 } 1390 1391 void TemplateTable::idiv() 1392 { 1393 transition(itos, itos); 1394 // explicitly check for div0 1395 Label no_div0; 1396 __ cbnzw(r0, no_div0); 1397 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1398 __ br(rscratch1); 1399 __ bind(no_div0); 1400 __ pop_i(r1); 1401 // r0 <== r1 idiv r0 1402 __ corrected_idivl(r0, r1, r0, /* want_remainder */ false); 1403 } 1404 1405 void TemplateTable::irem() 1406 { 1407 transition(itos, itos); 1408 // explicitly check for div0 1409 Label no_div0; 1410 __ cbnzw(r0, no_div0); 1411 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1412 __ br(rscratch1); 1413 __ bind(no_div0); 1414 __ pop_i(r1); 1415 // r0 <== r1 irem r0 1416 __ corrected_idivl(r0, r1, r0, /* want_remainder */ true); 1417 } 1418 1419 void TemplateTable::lmul() 1420 { 1421 transition(ltos, ltos); 1422 __ pop_l(r1); 1423 __ mul(r0, r0, r1); 1424 } 1425 1426 void TemplateTable::ldiv() 1427 { 1428 transition(ltos, ltos); 1429 // explicitly check for div0 1430 Label no_div0; 1431 __ cbnz(r0, no_div0); 1432 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1433 __ br(rscratch1); 1434 __ bind(no_div0); 1435 __ pop_l(r1); 1436 // r0 <== r1 ldiv r0 1437 __ corrected_idivq(r0, r1, r0, /* want_remainder */ false); 1438 } 1439 1440 void TemplateTable::lrem() 1441 { 1442 transition(ltos, ltos); 1443 // explicitly check for div0 1444 Label no_div0; 1445 __ cbnz(r0, no_div0); 1446 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1447 __ br(rscratch1); 1448 __ bind(no_div0); 1449 __ pop_l(r1); 1450 // r0 <== r1 lrem r0 1451 __ corrected_idivq(r0, r1, r0, /* want_remainder */ true); 1452 } 1453 1454 void TemplateTable::lshl() 1455 { 1456 transition(itos, ltos); 1457 // shift count is in r0 1458 __ pop_l(r1); 1459 __ lslv(r0, r1, r0); 1460 } 1461 1462 void TemplateTable::lshr() 1463 { 1464 transition(itos, ltos); 1465 // shift count is in r0 1466 __ pop_l(r1); 1467 __ asrv(r0, r1, r0); 1468 } 1469 1470 void TemplateTable::lushr() 1471 { 1472 transition(itos, ltos); 1473 // shift count is in r0 1474 __ pop_l(r1); 1475 __ lsrv(r0, r1, r0); 1476 } 1477 1478 void TemplateTable::fop2(Operation op) 1479 { 1480 transition(ftos, ftos); 1481 switch (op) { 1482 case add: 1483 // n.b. use ldrd because this is a 64 bit slot 1484 __ pop_f(v1); 1485 __ fadds(v0, v1, v0); 1486 break; 1487 case sub: 1488 __ pop_f(v1); 1489 __ fsubs(v0, v1, v0); 1490 break; 1491 case mul: 1492 __ pop_f(v1); 1493 __ fmuls(v0, v1, v0); 1494 break; 1495 case div: 1496 __ pop_f(v1); 1497 __ fdivs(v0, v1, v0); 1498 break; 1499 case rem: 1500 __ fmovs(v1, v0); 1501 __ pop_f(v0); 1502 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem)); 1503 break; 1504 default: 1505 ShouldNotReachHere(); 1506 break; 1507 } 1508 } 1509 1510 void TemplateTable::dop2(Operation op) 1511 { 1512 transition(dtos, dtos); 1513 switch (op) { 1514 case add: 1515 // n.b. use ldrd because this is a 64 bit slot 1516 __ pop_d(v1); 1517 __ faddd(v0, v1, v0); 1518 break; 1519 case sub: 1520 __ pop_d(v1); 1521 __ fsubd(v0, v1, v0); 1522 break; 1523 case mul: 1524 __ pop_d(v1); 1525 __ fmuld(v0, v1, v0); 1526 break; 1527 case div: 1528 __ pop_d(v1); 1529 __ fdivd(v0, v1, v0); 1530 break; 1531 case rem: 1532 __ fmovd(v1, v0); 1533 __ pop_d(v0); 1534 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem)); 1535 break; 1536 default: 1537 ShouldNotReachHere(); 1538 break; 1539 } 1540 } 1541 1542 void TemplateTable::ineg() 1543 { 1544 transition(itos, itos); 1545 __ negw(r0, r0); 1546 1547 } 1548 1549 void TemplateTable::lneg() 1550 { 1551 transition(ltos, ltos); 1552 __ neg(r0, r0); 1553 } 1554 1555 void TemplateTable::fneg() 1556 { 1557 transition(ftos, ftos); 1558 __ fnegs(v0, v0); 1559 } 1560 1561 void TemplateTable::dneg() 1562 { 1563 transition(dtos, dtos); 1564 __ fnegd(v0, v0); 1565 } 1566 1567 void TemplateTable::iinc() 1568 { 1569 transition(vtos, vtos); 1570 __ load_signed_byte(r1, at_bcp(2)); // get constant 1571 locals_index(r2); 1572 __ ldr(r0, iaddress(r2)); 1573 __ addw(r0, r0, r1); 1574 __ str(r0, iaddress(r2)); 1575 } 1576 1577 void TemplateTable::wide_iinc() 1578 { 1579 transition(vtos, vtos); 1580 // __ mov(r1, zr); 1581 __ ldrw(r1, at_bcp(2)); // get constant and index 1582 __ rev16(r1, r1); 1583 __ ubfx(r2, r1, 0, 16); 1584 __ neg(r2, r2); 1585 __ sbfx(r1, r1, 16, 16); 1586 __ ldr(r0, iaddress(r2)); 1587 __ addw(r0, r0, r1); 1588 __ str(r0, iaddress(r2)); 1589 } 1590 1591 void TemplateTable::convert() 1592 { 1593 // Checking 1594 #ifdef ASSERT 1595 { 1596 TosState tos_in = ilgl; 1597 TosState tos_out = ilgl; 1598 switch (bytecode()) { 1599 case Bytecodes::_i2l: // fall through 1600 case Bytecodes::_i2f: // fall through 1601 case Bytecodes::_i2d: // fall through 1602 case Bytecodes::_i2b: // fall through 1603 case Bytecodes::_i2c: // fall through 1604 case Bytecodes::_i2s: tos_in = itos; break; 1605 case Bytecodes::_l2i: // fall through 1606 case Bytecodes::_l2f: // fall through 1607 case Bytecodes::_l2d: tos_in = ltos; break; 1608 case Bytecodes::_f2i: // fall through 1609 case Bytecodes::_f2l: // fall through 1610 case Bytecodes::_f2d: tos_in = ftos; break; 1611 case Bytecodes::_d2i: // fall through 1612 case Bytecodes::_d2l: // fall through 1613 case Bytecodes::_d2f: tos_in = dtos; break; 1614 default : ShouldNotReachHere(); 1615 } 1616 switch (bytecode()) { 1617 case Bytecodes::_l2i: // fall through 1618 case Bytecodes::_f2i: // fall through 1619 case Bytecodes::_d2i: // fall through 1620 case Bytecodes::_i2b: // fall through 1621 case Bytecodes::_i2c: // fall through 1622 case Bytecodes::_i2s: tos_out = itos; break; 1623 case Bytecodes::_i2l: // fall through 1624 case Bytecodes::_f2l: // fall through 1625 case Bytecodes::_d2l: tos_out = ltos; break; 1626 case Bytecodes::_i2f: // fall through 1627 case Bytecodes::_l2f: // fall through 1628 case Bytecodes::_d2f: tos_out = ftos; break; 1629 case Bytecodes::_i2d: // fall through 1630 case Bytecodes::_l2d: // fall through 1631 case Bytecodes::_f2d: tos_out = dtos; break; 1632 default : ShouldNotReachHere(); 1633 } 1634 transition(tos_in, tos_out); 1635 } 1636 #endif // ASSERT 1637 // static const int64_t is_nan = 0x8000000000000000L; 1638 1639 // Conversion 1640 switch (bytecode()) { 1641 case Bytecodes::_i2l: 1642 __ sxtw(r0, r0); 1643 break; 1644 case Bytecodes::_i2f: 1645 __ scvtfws(v0, r0); 1646 break; 1647 case Bytecodes::_i2d: 1648 __ scvtfwd(v0, r0); 1649 break; 1650 case Bytecodes::_i2b: 1651 __ sxtbw(r0, r0); 1652 break; 1653 case Bytecodes::_i2c: 1654 __ uxthw(r0, r0); 1655 break; 1656 case Bytecodes::_i2s: 1657 __ sxthw(r0, r0); 1658 break; 1659 case Bytecodes::_l2i: 1660 __ uxtw(r0, r0); 1661 break; 1662 case Bytecodes::_l2f: 1663 __ scvtfs(v0, r0); 1664 break; 1665 case Bytecodes::_l2d: 1666 __ scvtfd(v0, r0); 1667 break; 1668 case Bytecodes::_f2i: 1669 { 1670 Label L_Okay; 1671 __ clear_fpsr(); 1672 __ fcvtzsw(r0, v0); 1673 __ get_fpsr(r1); 1674 __ cbzw(r1, L_Okay); 1675 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i)); 1676 __ bind(L_Okay); 1677 } 1678 break; 1679 case Bytecodes::_f2l: 1680 { 1681 Label L_Okay; 1682 __ clear_fpsr(); 1683 __ fcvtzs(r0, v0); 1684 __ get_fpsr(r1); 1685 __ cbzw(r1, L_Okay); 1686 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l)); 1687 __ bind(L_Okay); 1688 } 1689 break; 1690 case Bytecodes::_f2d: 1691 __ fcvts(v0, v0); 1692 break; 1693 case Bytecodes::_d2i: 1694 { 1695 Label L_Okay; 1696 __ clear_fpsr(); 1697 __ fcvtzdw(r0, v0); 1698 __ get_fpsr(r1); 1699 __ cbzw(r1, L_Okay); 1700 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i)); 1701 __ bind(L_Okay); 1702 } 1703 break; 1704 case Bytecodes::_d2l: 1705 { 1706 Label L_Okay; 1707 __ clear_fpsr(); 1708 __ fcvtzd(r0, v0); 1709 __ get_fpsr(r1); 1710 __ cbzw(r1, L_Okay); 1711 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l)); 1712 __ bind(L_Okay); 1713 } 1714 break; 1715 case Bytecodes::_d2f: 1716 __ fcvtd(v0, v0); 1717 break; 1718 default: 1719 ShouldNotReachHere(); 1720 } 1721 } 1722 1723 void TemplateTable::lcmp() 1724 { 1725 transition(ltos, itos); 1726 Label done; 1727 __ pop_l(r1); 1728 __ cmp(r1, r0); 1729 __ mov(r0, (uint64_t)-1L); 1730 __ br(Assembler::LT, done); 1731 // __ mov(r0, 1UL); 1732 // __ csel(r0, r0, zr, Assembler::NE); 1733 // and here is a faster way 1734 __ csinc(r0, zr, zr, Assembler::EQ); 1735 __ bind(done); 1736 } 1737 1738 void TemplateTable::float_cmp(bool is_float, int unordered_result) 1739 { 1740 Label done; 1741 if (is_float) { 1742 // XXX get rid of pop here, use ... reg, mem32 1743 __ pop_f(v1); 1744 __ fcmps(v1, v0); 1745 } else { 1746 // XXX get rid of pop here, use ... reg, mem64 1747 __ pop_d(v1); 1748 __ fcmpd(v1, v0); 1749 } 1750 if (unordered_result < 0) { 1751 // we want -1 for unordered or less than, 0 for equal and 1 for 1752 // greater than. 1753 __ mov(r0, (uint64_t)-1L); 1754 // for FP LT tests less than or unordered 1755 __ br(Assembler::LT, done); 1756 // install 0 for EQ otherwise 1 1757 __ csinc(r0, zr, zr, Assembler::EQ); 1758 } else { 1759 // we want -1 for less than, 0 for equal and 1 for unordered or 1760 // greater than. 1761 __ mov(r0, 1L); 1762 // for FP HI tests greater than or unordered 1763 __ br(Assembler::HI, done); 1764 // install 0 for EQ otherwise ~0 1765 __ csinv(r0, zr, zr, Assembler::EQ); 1766 1767 } 1768 __ bind(done); 1769 } 1770 1771 void TemplateTable::branch(bool is_jsr, bool is_wide) 1772 { 1773 __ profile_taken_branch(r0, r1); 1774 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1775 InvocationCounter::counter_offset(); 1776 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1777 InvocationCounter::counter_offset(); 1778 1779 // load branch displacement 1780 if (!is_wide) { 1781 __ ldrh(r2, at_bcp(1)); 1782 __ rev16(r2, r2); 1783 // sign extend the 16 bit value in r2 1784 __ sbfm(r2, r2, 0, 15); 1785 } else { 1786 __ ldrw(r2, at_bcp(1)); 1787 __ revw(r2, r2); 1788 // sign extend the 32 bit value in r2 1789 __ sbfm(r2, r2, 0, 31); 1790 } 1791 1792 // Handle all the JSR stuff here, then exit. 1793 // It's much shorter and cleaner than intermingling with the non-JSR 1794 // normal-branch stuff occurring below. 1795 1796 if (is_jsr) { 1797 // Pre-load the next target bytecode into rscratch1 1798 __ load_unsigned_byte(rscratch1, Address(rbcp, r2)); 1799 // compute return address as bci 1800 __ ldr(rscratch2, Address(rmethod, Method::const_offset())); 1801 __ add(rscratch2, rscratch2, 1802 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3)); 1803 __ sub(r1, rbcp, rscratch2); 1804 __ push_i(r1); 1805 // Adjust the bcp by the 16-bit displacement in r2 1806 __ add(rbcp, rbcp, r2); 1807 __ dispatch_only(vtos, /*generate_poll*/true); 1808 return; 1809 } 1810 1811 // Normal (non-jsr) branch handling 1812 1813 // Adjust the bcp by the displacement in r2 1814 __ add(rbcp, rbcp, r2); 1815 1816 assert(UseLoopCounter || !UseOnStackReplacement, 1817 "on-stack-replacement requires loop counters"); 1818 Label backedge_counter_overflow; 1819 Label dispatch; 1820 if (UseLoopCounter) { 1821 // increment backedge counter for backward branches 1822 // r0: MDO 1823 // w1: MDO bumped taken-count 1824 // r2: target offset 1825 __ cmp(r2, zr); 1826 __ br(Assembler::GT, dispatch); // count only if backward branch 1827 1828 // ECN: FIXME: This code smells 1829 // check if MethodCounters exists 1830 Label has_counters; 1831 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1832 __ cbnz(rscratch1, has_counters); 1833 __ push(r0); 1834 __ push(r1); 1835 __ push(r2); 1836 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 1837 InterpreterRuntime::build_method_counters), rmethod); 1838 __ pop(r2); 1839 __ pop(r1); 1840 __ pop(r0); 1841 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1842 __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory 1843 __ bind(has_counters); 1844 1845 Label no_mdo; 1846 int increment = InvocationCounter::count_increment; 1847 if (ProfileInterpreter) { 1848 // Are we profiling? 1849 __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 1850 __ cbz(r1, no_mdo); 1851 // Increment the MDO backedge counter 1852 const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) + 1853 in_bytes(InvocationCounter::counter_offset())); 1854 const Address mask(r1, in_bytes(MethodData::backedge_mask_offset())); 1855 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1856 r0, rscratch1, false, Assembler::EQ, 1857 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1858 __ b(dispatch); 1859 } 1860 __ bind(no_mdo); 1861 // Increment backedge counter in MethodCounters* 1862 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1863 const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset())); 1864 __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask, 1865 r0, rscratch2, false, Assembler::EQ, 1866 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1867 __ bind(dispatch); 1868 } 1869 1870 // Pre-load the next target bytecode into rscratch1 1871 __ load_unsigned_byte(rscratch1, Address(rbcp, 0)); 1872 1873 // continue with the bytecode @ target 1874 // rscratch1: target bytecode 1875 // rbcp: target bcp 1876 __ dispatch_only(vtos, /*generate_poll*/true); 1877 1878 if (UseLoopCounter && UseOnStackReplacement) { 1879 // invocation counter overflow 1880 __ bind(backedge_counter_overflow); 1881 __ neg(r2, r2); 1882 __ add(r2, r2, rbcp); // branch bcp 1883 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1884 __ call_VM(noreg, 1885 CAST_FROM_FN_PTR(address, 1886 InterpreterRuntime::frequency_counter_overflow), 1887 r2); 1888 __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode 1889 1890 // r0: osr nmethod (osr ok) or null (osr not possible) 1891 // w1: target bytecode 1892 // r2: scratch 1893 __ cbz(r0, dispatch); // test result -- no osr if null 1894 // nmethod may have been invalidated (VM may block upon call_VM return) 1895 __ ldrb(r2, Address(r0, nmethod::state_offset())); 1896 if (nmethod::in_use != 0) 1897 __ sub(r2, r2, nmethod::in_use); 1898 __ cbnz(r2, dispatch); 1899 1900 // We have the address of an on stack replacement routine in r0 1901 // We need to prepare to execute the OSR method. First we must 1902 // migrate the locals and monitors off of the stack. 1903 1904 __ mov(r19, r0); // save the nmethod 1905 1906 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1907 1908 // r0 is OSR buffer, move it to expected parameter location 1909 __ mov(j_rarg0, r0); 1910 1911 // remove activation 1912 // get sender esp 1913 __ ldr(esp, 1914 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1915 // remove frame anchor 1916 __ leave(); 1917 // Ensure compiled code always sees stack at proper alignment 1918 __ andr(sp, esp, -16); 1919 1920 // and begin the OSR nmethod 1921 __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset())); 1922 __ br(rscratch1); 1923 } 1924 } 1925 1926 1927 void TemplateTable::if_0cmp(Condition cc) 1928 { 1929 transition(itos, vtos); 1930 // assume branch is more often taken than not (loops use backward branches) 1931 Label not_taken; 1932 if (cc == equal) 1933 __ cbnzw(r0, not_taken); 1934 else if (cc == not_equal) 1935 __ cbzw(r0, not_taken); 1936 else { 1937 __ andsw(zr, r0, r0); 1938 __ br(j_not(cc), not_taken); 1939 } 1940 1941 branch(false, false); 1942 __ bind(not_taken); 1943 __ profile_not_taken_branch(r0); 1944 } 1945 1946 void TemplateTable::if_icmp(Condition cc) 1947 { 1948 transition(itos, vtos); 1949 // assume branch is more often taken than not (loops use backward branches) 1950 Label not_taken; 1951 __ pop_i(r1); 1952 __ cmpw(r1, r0, Assembler::LSL); 1953 __ br(j_not(cc), not_taken); 1954 branch(false, false); 1955 __ bind(not_taken); 1956 __ profile_not_taken_branch(r0); 1957 } 1958 1959 void TemplateTable::if_nullcmp(Condition cc) 1960 { 1961 transition(atos, vtos); 1962 // assume branch is more often taken than not (loops use backward branches) 1963 Label not_taken; 1964 if (cc == equal) 1965 __ cbnz(r0, not_taken); 1966 else 1967 __ cbz(r0, not_taken); 1968 branch(false, false); 1969 __ bind(not_taken); 1970 __ profile_not_taken_branch(r0); 1971 } 1972 1973 void TemplateTable::if_acmp(Condition cc) 1974 { 1975 transition(atos, vtos); 1976 // assume branch is more often taken than not (loops use backward branches) 1977 Label not_taken; 1978 __ pop_ptr(r1); 1979 __ cmpoop(r1, r0); 1980 __ br(j_not(cc), not_taken); 1981 branch(false, false); 1982 __ bind(not_taken); 1983 __ profile_not_taken_branch(r0); 1984 } 1985 1986 void TemplateTable::ret() { 1987 transition(vtos, vtos); 1988 locals_index(r1); 1989 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 1990 __ profile_ret(r1, r2); 1991 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 1992 __ lea(rbcp, Address(rbcp, r1)); 1993 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 1994 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1995 } 1996 1997 void TemplateTable::wide_ret() { 1998 transition(vtos, vtos); 1999 locals_index_wide(r1); 2000 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 2001 __ profile_ret(r1, r2); 2002 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 2003 __ lea(rbcp, Address(rbcp, r1)); 2004 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 2005 __ dispatch_next(vtos, 0, /*generate_poll*/true); 2006 } 2007 2008 2009 void TemplateTable::tableswitch() { 2010 Label default_case, continue_execution; 2011 transition(itos, vtos); 2012 // align rbcp 2013 __ lea(r1, at_bcp(BytesPerInt)); 2014 __ andr(r1, r1, -BytesPerInt); 2015 // load lo & hi 2016 __ ldrw(r2, Address(r1, BytesPerInt)); 2017 __ ldrw(r3, Address(r1, 2 * BytesPerInt)); 2018 __ rev32(r2, r2); 2019 __ rev32(r3, r3); 2020 // check against lo & hi 2021 __ cmpw(r0, r2); 2022 __ br(Assembler::LT, default_case); 2023 __ cmpw(r0, r3); 2024 __ br(Assembler::GT, default_case); 2025 // lookup dispatch offset 2026 __ subw(r0, r0, r2); 2027 __ lea(r3, Address(r1, r0, Address::uxtw(2))); 2028 __ ldrw(r3, Address(r3, 3 * BytesPerInt)); 2029 __ profile_switch_case(r0, r1, r2); 2030 // continue execution 2031 __ bind(continue_execution); 2032 __ rev32(r3, r3); 2033 __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0))); 2034 __ add(rbcp, rbcp, r3, ext::sxtw); 2035 __ dispatch_only(vtos, /*generate_poll*/true); 2036 // handle default 2037 __ bind(default_case); 2038 __ profile_switch_default(r0); 2039 __ ldrw(r3, Address(r1, 0)); 2040 __ b(continue_execution); 2041 } 2042 2043 void TemplateTable::lookupswitch() { 2044 transition(itos, itos); 2045 __ stop("lookupswitch bytecode should have been rewritten"); 2046 } 2047 2048 void TemplateTable::fast_linearswitch() { 2049 transition(itos, vtos); 2050 Label loop_entry, loop, found, continue_execution; 2051 // bswap r0 so we can avoid bswapping the table entries 2052 __ rev32(r0, r0); 2053 // align rbcp 2054 __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2055 // this instruction (change offsets 2056 // below) 2057 __ andr(r19, r19, -BytesPerInt); 2058 // set counter 2059 __ ldrw(r1, Address(r19, BytesPerInt)); 2060 __ rev32(r1, r1); 2061 __ b(loop_entry); 2062 // table search 2063 __ bind(loop); 2064 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2065 __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt)); 2066 __ cmpw(r0, rscratch1); 2067 __ br(Assembler::EQ, found); 2068 __ bind(loop_entry); 2069 __ subs(r1, r1, 1); 2070 __ br(Assembler::PL, loop); 2071 // default case 2072 __ profile_switch_default(r0); 2073 __ ldrw(r3, Address(r19, 0)); 2074 __ b(continue_execution); 2075 // entry found -> get offset 2076 __ bind(found); 2077 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2078 __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt)); 2079 __ profile_switch_case(r1, r0, r19); 2080 // continue execution 2081 __ bind(continue_execution); 2082 __ rev32(r3, r3); 2083 __ add(rbcp, rbcp, r3, ext::sxtw); 2084 __ ldrb(rscratch1, Address(rbcp, 0)); 2085 __ dispatch_only(vtos, /*generate_poll*/true); 2086 } 2087 2088 void TemplateTable::fast_binaryswitch() { 2089 transition(itos, vtos); 2090 // Implementation using the following core algorithm: 2091 // 2092 // int binary_search(int key, LookupswitchPair* array, int n) { 2093 // // Binary search according to "Methodik des Programmierens" by 2094 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2095 // int i = 0; 2096 // int j = n; 2097 // while (i+1 < j) { 2098 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2099 // // with Q: for all i: 0 <= i < n: key < a[i] 2100 // // where a stands for the array and assuming that the (inexisting) 2101 // // element a[n] is infinitely big. 2102 // int h = (i + j) >> 1; 2103 // // i < h < j 2104 // if (key < array[h].fast_match()) { 2105 // j = h; 2106 // } else { 2107 // i = h; 2108 // } 2109 // } 2110 // // R: a[i] <= key < a[i+1] or Q 2111 // // (i.e., if key is within array, i is the correct index) 2112 // return i; 2113 // } 2114 2115 // Register allocation 2116 const Register key = r0; // already set (tosca) 2117 const Register array = r1; 2118 const Register i = r2; 2119 const Register j = r3; 2120 const Register h = rscratch1; 2121 const Register temp = rscratch2; 2122 2123 // Find array start 2124 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2125 // get rid of this 2126 // instruction (change 2127 // offsets below) 2128 __ andr(array, array, -BytesPerInt); 2129 2130 // Initialize i & j 2131 __ mov(i, 0); // i = 0; 2132 __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array); 2133 2134 // Convert j into native byteordering 2135 __ rev32(j, j); 2136 2137 // And start 2138 Label entry; 2139 __ b(entry); 2140 2141 // binary search loop 2142 { 2143 Label loop; 2144 __ bind(loop); 2145 // int h = (i + j) >> 1; 2146 __ addw(h, i, j); // h = i + j; 2147 __ lsrw(h, h, 1); // h = (i + j) >> 1; 2148 // if (key < array[h].fast_match()) { 2149 // j = h; 2150 // } else { 2151 // i = h; 2152 // } 2153 // Convert array[h].match to native byte-ordering before compare 2154 __ ldr(temp, Address(array, h, Address::lsl(3))); 2155 __ rev32(temp, temp); 2156 __ cmpw(key, temp); 2157 // j = h if (key < array[h].fast_match()) 2158 __ csel(j, h, j, Assembler::LT); 2159 // i = h if (key >= array[h].fast_match()) 2160 __ csel(i, h, i, Assembler::GE); 2161 // while (i+1 < j) 2162 __ bind(entry); 2163 __ addw(h, i, 1); // i+1 2164 __ cmpw(h, j); // i+1 < j 2165 __ br(Assembler::LT, loop); 2166 } 2167 2168 // end of binary search, result index is i (must check again!) 2169 Label default_case; 2170 // Convert array[i].match to native byte-ordering before compare 2171 __ ldr(temp, Address(array, i, Address::lsl(3))); 2172 __ rev32(temp, temp); 2173 __ cmpw(key, temp); 2174 __ br(Assembler::NE, default_case); 2175 2176 // entry found -> j = offset 2177 __ add(j, array, i, ext::uxtx, 3); 2178 __ ldrw(j, Address(j, BytesPerInt)); 2179 __ profile_switch_case(i, key, array); 2180 __ rev32(j, j); 2181 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2182 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2183 __ dispatch_only(vtos, /*generate_poll*/true); 2184 2185 // default case -> j = default offset 2186 __ bind(default_case); 2187 __ profile_switch_default(i); 2188 __ ldrw(j, Address(array, -2 * BytesPerInt)); 2189 __ rev32(j, j); 2190 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2191 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2192 __ dispatch_only(vtos, /*generate_poll*/true); 2193 } 2194 2195 2196 void TemplateTable::_return(TosState state) 2197 { 2198 transition(state, state); 2199 assert(_desc->calls_vm(), 2200 "inconsistent calls_vm information"); // call in remove_activation 2201 2202 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2203 assert(state == vtos, "only valid state"); 2204 2205 __ ldr(c_rarg1, aaddress(0)); 2206 __ load_klass(r3, c_rarg1); 2207 __ ldrb(r3, Address(r3, Klass::misc_flags_offset())); 2208 Label skip_register_finalizer; 2209 __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer); 2210 2211 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); 2212 2213 __ bind(skip_register_finalizer); 2214 } 2215 2216 // Issue a StoreStore barrier after all stores but before return 2217 // from any constructor for any class with a final field. We don't 2218 // know if this is a finalizer, so we always do so. 2219 if (_desc->bytecode() == Bytecodes::_return) 2220 __ membar(MacroAssembler::StoreStore); 2221 2222 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2223 Label no_safepoint; 2224 __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset())); 2225 __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint); 2226 __ push(state); 2227 __ push_cont_fastpath(rthread); 2228 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)); 2229 __ pop_cont_fastpath(rthread); 2230 __ pop(state); 2231 __ bind(no_safepoint); 2232 } 2233 2234 // Narrow result if state is itos but result type is smaller. 2235 // Need to narrow in the return bytecode rather than in generate_return_entry 2236 // since compiled code callers expect the result to already be narrowed. 2237 if (state == itos) { 2238 __ narrow(r0); 2239 } 2240 2241 __ remove_activation(state); 2242 __ ret(lr); 2243 } 2244 2245 // ---------------------------------------------------------------------------- 2246 // Volatile variables demand their effects be made known to all CPU's 2247 // in order. Store buffers on most chips allow reads & writes to 2248 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2249 // without some kind of memory barrier (i.e., it's not sufficient that 2250 // the interpreter does not reorder volatile references, the hardware 2251 // also must not reorder them). 2252 // 2253 // According to the new Java Memory Model (JMM): 2254 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2255 // writes act as acquire & release, so: 2256 // (2) A read cannot let unrelated NON-volatile memory refs that 2257 // happen after the read float up to before the read. It's OK for 2258 // non-volatile memory refs that happen before the volatile read to 2259 // float down below it. 2260 // (3) Similar a volatile write cannot let unrelated NON-volatile 2261 // memory refs that happen BEFORE the write float down to after the 2262 // write. It's OK for non-volatile memory refs that happen after the 2263 // volatile write to float up before it. 2264 // 2265 // We only put in barriers around volatile refs (they are expensive), 2266 // not _between_ memory refs (that would require us to track the 2267 // flavor of the previous memory refs). Requirements (2) and (3) 2268 // require some barriers before volatile stores and after volatile 2269 // loads. These nearly cover requirement (1) but miss the 2270 // volatile-store-volatile-load case. This final case is placed after 2271 // volatile-stores although it could just as well go before 2272 // volatile-loads. 2273 2274 void TemplateTable::resolve_cache_and_index_for_method(int byte_no, 2275 Register Rcache, 2276 Register index) { 2277 const Register temp = r19; 2278 assert_different_registers(Rcache, index, temp); 2279 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2280 2281 Label resolved, clinit_barrier_slow; 2282 2283 Bytecodes::Code code = bytecode(); 2284 __ load_method_entry(Rcache, index); 2285 switch(byte_no) { 2286 case f1_byte: 2287 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode1_offset()))); 2288 break; 2289 case f2_byte: 2290 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode2_offset()))); 2291 break; 2292 } 2293 // Load-acquire the bytecode to match store-release in InterpreterRuntime 2294 __ ldarb(temp, temp); 2295 __ subs(zr, temp, (int) code); // have we resolved this bytecode? 2296 __ br(Assembler::EQ, resolved); 2297 2298 // resolve first time through 2299 // Class initialization barrier slow path lands here as well. 2300 __ bind(clinit_barrier_slow); 2301 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2302 __ mov(temp, (int) code); 2303 __ call_VM(noreg, entry, temp); 2304 2305 // Update registers with resolved info 2306 __ load_method_entry(Rcache, index); 2307 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset 2308 // so all clients ofthis method must be modified accordingly 2309 __ bind(resolved); 2310 2311 // Class initialization barrier for static methods 2312 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2313 __ ldr(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset()))); 2314 __ load_method_holder(temp, temp); 2315 __ clinit_barrier(temp, rscratch1, nullptr, &clinit_barrier_slow); 2316 } 2317 } 2318 2319 void TemplateTable::resolve_cache_and_index_for_field(int byte_no, 2320 Register Rcache, 2321 Register index) { 2322 const Register temp = r19; 2323 assert_different_registers(Rcache, index, temp); 2324 2325 Label resolved, clinit_barrier_slow; 2326 2327 Bytecodes::Code code = bytecode(); 2328 switch (code) { 2329 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2330 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2331 default: break; 2332 } 2333 2334 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2335 __ load_field_entry(Rcache, index); 2336 if (byte_no == f1_byte) { 2337 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::get_code_offset()))); 2338 } else { 2339 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::put_code_offset()))); 2340 } 2341 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in() 2342 __ ldarb(temp, temp); 2343 __ subs(zr, temp, (int) code); // have we resolved this bytecode? 2344 __ br(Assembler::EQ, resolved); 2345 2346 // resolve first time through 2347 __ bind(clinit_barrier_slow); 2348 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2349 __ mov(temp, (int) code); 2350 __ call_VM(noreg, entry, temp); 2351 2352 // Update registers with resolved info 2353 __ load_field_entry(Rcache, index); 2354 __ bind(resolved); 2355 2356 // Class initialization barrier for static fields 2357 if (VM_Version::supports_fast_class_init_checks() && 2358 (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) { 2359 __ ldr(temp, Address(Rcache, ResolvedFieldEntry::field_holder_offset())); 2360 __ clinit_barrier(temp, rscratch1, nullptr, &clinit_barrier_slow); 2361 } 2362 } 2363 2364 void TemplateTable::load_resolved_field_entry(Register obj, 2365 Register cache, 2366 Register tos_state, 2367 Register offset, 2368 Register flags, 2369 bool is_static = false) { 2370 assert_different_registers(cache, tos_state, flags, offset); 2371 2372 // Field offset 2373 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 2374 2375 // Flags 2376 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset()))); 2377 2378 // TOS state 2379 if (tos_state != noreg) { 2380 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset()))); 2381 } 2382 2383 // Klass overwrite register 2384 if (is_static) { 2385 __ ldr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset())); 2386 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2387 __ ldr(obj, Address(obj, mirror_offset)); 2388 __ resolve_oop_handle(obj, r5, rscratch2); 2389 } 2390 } 2391 2392 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache, 2393 Register method, 2394 Register flags) { 2395 2396 // setup registers 2397 const Register index = flags; 2398 assert_different_registers(method, cache, flags); 2399 2400 // determine constant pool cache field offsets 2401 resolve_cache_and_index_for_method(f1_byte, cache, index); 2402 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2403 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2404 } 2405 2406 void TemplateTable::load_resolved_method_entry_handle(Register cache, 2407 Register method, 2408 Register ref_index, 2409 Register flags) { 2410 // setup registers 2411 const Register index = ref_index; 2412 assert_different_registers(method, flags); 2413 assert_different_registers(method, cache, index); 2414 2415 // determine constant pool cache field offsets 2416 resolve_cache_and_index_for_method(f1_byte, cache, index); 2417 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2418 2419 // maybe push appendix to arguments (just before return address) 2420 Label L_no_push; 2421 __ tbz(flags, ResolvedMethodEntry::has_appendix_shift, L_no_push); 2422 // invokehandle uses an index into the resolved references array 2423 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset()))); 2424 // Push the appendix as a trailing parameter. 2425 // This must be done before we get the receiver, 2426 // since the parameter_size includes it. 2427 Register appendix = method; 2428 __ load_resolved_reference_at_index(appendix, ref_index); 2429 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2430 __ bind(L_no_push); 2431 2432 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2433 } 2434 2435 void TemplateTable::load_resolved_method_entry_interface(Register cache, 2436 Register klass, 2437 Register method_or_table_index, 2438 Register flags) { 2439 // setup registers 2440 const Register index = method_or_table_index; 2441 assert_different_registers(method_or_table_index, cache, flags); 2442 2443 // determine constant pool cache field offsets 2444 resolve_cache_and_index_for_method(f1_byte, cache, index); 2445 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2446 2447 // Invokeinterface can behave in different ways: 2448 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will 2449 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or 2450 // vtable index is placed in the register. 2451 // Otherwise, the registers will be populated with the klass and method. 2452 2453 Label NotVirtual; Label NotVFinal; Label Done; 2454 __ tbz(flags, ResolvedMethodEntry::is_forced_virtual_shift, NotVirtual); 2455 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal); 2456 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2457 __ b(Done); 2458 2459 __ bind(NotVFinal); 2460 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2461 __ b(Done); 2462 2463 __ bind(NotVirtual); 2464 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2465 __ ldr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset()))); 2466 __ bind(Done); 2467 } 2468 2469 void TemplateTable::load_resolved_method_entry_virtual(Register cache, 2470 Register method_or_table_index, 2471 Register flags) { 2472 // setup registers 2473 const Register index = flags; 2474 assert_different_registers(method_or_table_index, cache, flags); 2475 2476 // determine constant pool cache field offsets 2477 resolve_cache_and_index_for_method(f2_byte, cache, index); 2478 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2479 2480 // method_or_table_index can either be an itable index or a method depending on the virtual final flag 2481 Label NotVFinal; Label Done; 2482 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal); 2483 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2484 __ b(Done); 2485 2486 __ bind(NotVFinal); 2487 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2488 __ bind(Done); 2489 } 2490 2491 // The rmethod register is input and overwritten to be the adapter method for the 2492 // indy call. Link Register (lr) is set to the return address for the adapter and 2493 // an appendix may be pushed to the stack. Registers r0-r3 are clobbered 2494 void TemplateTable::load_invokedynamic_entry(Register method) { 2495 // setup registers 2496 const Register appendix = r0; 2497 const Register cache = r2; 2498 const Register index = r3; 2499 assert_different_registers(method, appendix, cache, index, rcpool); 2500 2501 __ save_bcp(); 2502 2503 Label resolved; 2504 2505 __ load_resolved_indy_entry(cache, index); 2506 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in() 2507 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2508 __ ldar(method, method); 2509 2510 // Compare the method to zero 2511 __ cbnz(method, resolved); 2512 2513 Bytecodes::Code code = bytecode(); 2514 2515 // Call to the interpreter runtime to resolve invokedynamic 2516 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2517 __ mov(method, code); // this is essentially Bytecodes::_invokedynamic 2518 __ call_VM(noreg, entry, method); 2519 // Update registers with resolved info 2520 __ load_resolved_indy_entry(cache, index); 2521 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in() 2522 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2523 __ ldar(method, method); 2524 2525 #ifdef ASSERT 2526 __ cbnz(method, resolved); 2527 __ stop("Should be resolved by now"); 2528 #endif // ASSERT 2529 __ bind(resolved); 2530 2531 Label L_no_push; 2532 // Check if there is an appendix 2533 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2534 __ tbz(index, ResolvedIndyEntry::has_appendix_shift, L_no_push); 2535 2536 // Get appendix 2537 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2538 // Push the appendix as a trailing parameter 2539 // since the parameter_size includes it. 2540 __ push(method); 2541 __ mov(method, index); 2542 __ load_resolved_reference_at_index(appendix, method); 2543 __ verify_oop(appendix); 2544 __ pop(method); 2545 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2546 __ bind(L_no_push); 2547 2548 // compute return type 2549 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2550 // load return address 2551 // Return address is loaded into link register(lr) and not pushed to the stack 2552 // like x86 2553 { 2554 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2555 __ mov(rscratch1, table_addr); 2556 __ ldr(lr, Address(rscratch1, index, Address::lsl(3))); 2557 } 2558 } 2559 2560 // The registers cache and index expected to be set before call. 2561 // Correct values of the cache and index registers are preserved. 2562 void TemplateTable::jvmti_post_field_access(Register cache, Register index, 2563 bool is_static, bool has_tos) { 2564 // do the JVMTI work here to avoid disturbing the register state below 2565 // We use c_rarg registers here because we want to use the register used in 2566 // the call to the VM 2567 if (JvmtiExport::can_post_field_access()) { 2568 // Check to see if a field access watch has been set before we 2569 // take the time to call into the VM. 2570 Label L1; 2571 assert_different_registers(cache, index, r0); 2572 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2573 __ ldrw(r0, Address(rscratch1)); 2574 __ cbzw(r0, L1); 2575 2576 __ load_field_entry(c_rarg2, index); 2577 2578 if (is_static) { 2579 __ mov(c_rarg1, zr); // null object reference 2580 } else { 2581 __ ldr(c_rarg1, at_tos()); // get object pointer without popping it 2582 __ verify_oop(c_rarg1); 2583 } 2584 // c_rarg1: object pointer or null 2585 // c_rarg2: cache entry pointer 2586 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2587 InterpreterRuntime::post_field_access), 2588 c_rarg1, c_rarg2); 2589 __ load_field_entry(cache, index); 2590 __ bind(L1); 2591 } 2592 } 2593 2594 void TemplateTable::pop_and_check_object(Register r) 2595 { 2596 __ pop_ptr(r); 2597 __ null_check(r); // for field access must check obj. 2598 __ verify_oop(r); 2599 } 2600 2601 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) 2602 { 2603 const Register cache = r4; 2604 const Register obj = r4; 2605 const Register index = r3; 2606 const Register tos_state = r3; 2607 const Register off = r19; 2608 const Register flags = r6; 2609 const Register bc = r4; // uses same reg as obj, so don't mix them 2610 2611 resolve_cache_and_index_for_field(byte_no, cache, index); 2612 jvmti_post_field_access(cache, index, is_static, false); 2613 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2614 2615 if (!is_static) { 2616 // obj is on the stack 2617 pop_and_check_object(obj); 2618 } 2619 2620 // 8179954: We need to make sure that the code generated for 2621 // volatile accesses forms a sequentially-consistent set of 2622 // operations when combined with STLR and LDAR. Without a leading 2623 // membar it's possible for a simple Dekker test to fail if loads 2624 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 2625 // the stores in one method and we interpret the loads in another. 2626 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){ 2627 Label notVolatile; 2628 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2629 __ membar(MacroAssembler::AnyAny); 2630 __ bind(notVolatile); 2631 } 2632 2633 const Address field(obj, off); 2634 2635 Label Done, notByte, notBool, notInt, notShort, notChar, 2636 notLong, notFloat, notObj, notDouble; 2637 2638 assert(btos == 0, "change code, btos != 0"); 2639 __ cbnz(tos_state, notByte); 2640 2641 // Don't rewrite getstatic, only getfield 2642 if (is_static) rc = may_not_rewrite; 2643 2644 // btos 2645 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg); 2646 __ push(btos); 2647 // Rewrite bytecode to be faster 2648 if (rc == may_rewrite) { 2649 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2650 } 2651 __ b(Done); 2652 2653 __ bind(notByte); 2654 __ cmp(tos_state, (u1)ztos); 2655 __ br(Assembler::NE, notBool); 2656 2657 // ztos (same code as btos) 2658 __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg); 2659 __ push(ztos); 2660 // Rewrite bytecode to be faster 2661 if (rc == may_rewrite) { 2662 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2663 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2664 } 2665 __ b(Done); 2666 2667 __ bind(notBool); 2668 __ cmp(tos_state, (u1)atos); 2669 __ br(Assembler::NE, notObj); 2670 // atos 2671 do_oop_load(_masm, field, r0, IN_HEAP); 2672 __ push(atos); 2673 if (rc == may_rewrite) { 2674 patch_bytecode(Bytecodes::_fast_agetfield, bc, r1); 2675 } 2676 __ b(Done); 2677 2678 __ bind(notObj); 2679 __ cmp(tos_state, (u1)itos); 2680 __ br(Assembler::NE, notInt); 2681 // itos 2682 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg); 2683 __ push(itos); 2684 // Rewrite bytecode to be faster 2685 if (rc == may_rewrite) { 2686 patch_bytecode(Bytecodes::_fast_igetfield, bc, r1); 2687 } 2688 __ b(Done); 2689 2690 __ bind(notInt); 2691 __ cmp(tos_state, (u1)ctos); 2692 __ br(Assembler::NE, notChar); 2693 // ctos 2694 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg); 2695 __ push(ctos); 2696 // Rewrite bytecode to be faster 2697 if (rc == may_rewrite) { 2698 patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1); 2699 } 2700 __ b(Done); 2701 2702 __ bind(notChar); 2703 __ cmp(tos_state, (u1)stos); 2704 __ br(Assembler::NE, notShort); 2705 // stos 2706 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg); 2707 __ push(stos); 2708 // Rewrite bytecode to be faster 2709 if (rc == may_rewrite) { 2710 patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1); 2711 } 2712 __ b(Done); 2713 2714 __ bind(notShort); 2715 __ cmp(tos_state, (u1)ltos); 2716 __ br(Assembler::NE, notLong); 2717 // ltos 2718 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg); 2719 __ push(ltos); 2720 // Rewrite bytecode to be faster 2721 if (rc == may_rewrite) { 2722 patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1); 2723 } 2724 __ b(Done); 2725 2726 __ bind(notLong); 2727 __ cmp(tos_state, (u1)ftos); 2728 __ br(Assembler::NE, notFloat); 2729 // ftos 2730 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2731 __ push(ftos); 2732 // Rewrite bytecode to be faster 2733 if (rc == may_rewrite) { 2734 patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1); 2735 } 2736 __ b(Done); 2737 2738 __ bind(notFloat); 2739 #ifdef ASSERT 2740 __ cmp(tos_state, (u1)dtos); 2741 __ br(Assembler::NE, notDouble); 2742 #endif 2743 // dtos 2744 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2745 __ push(dtos); 2746 // Rewrite bytecode to be faster 2747 if (rc == may_rewrite) { 2748 patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1); 2749 } 2750 #ifdef ASSERT 2751 __ b(Done); 2752 2753 __ bind(notDouble); 2754 __ stop("Bad state"); 2755 #endif 2756 2757 __ bind(Done); 2758 2759 Label notVolatile; 2760 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2761 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2762 __ bind(notVolatile); 2763 } 2764 2765 2766 void TemplateTable::getfield(int byte_no) 2767 { 2768 getfield_or_static(byte_no, false); 2769 } 2770 2771 void TemplateTable::nofast_getfield(int byte_no) { 2772 getfield_or_static(byte_no, false, may_not_rewrite); 2773 } 2774 2775 void TemplateTable::getstatic(int byte_no) 2776 { 2777 getfield_or_static(byte_no, true); 2778 } 2779 2780 // The registers cache and index expected to be set before call. 2781 // The function may destroy various registers, just not the cache and index registers. 2782 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2783 transition(vtos, vtos); 2784 2785 if (JvmtiExport::can_post_field_modification()) { 2786 // Check to see if a field modification watch has been set before 2787 // we take the time to call into the VM. 2788 Label L1; 2789 assert_different_registers(cache, index, r0); 2790 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2791 __ ldrw(r0, Address(rscratch1)); 2792 __ cbz(r0, L1); 2793 2794 __ mov(c_rarg2, cache); 2795 2796 if (is_static) { 2797 // Life is simple. Null out the object pointer. 2798 __ mov(c_rarg1, zr); 2799 } else { 2800 // Life is harder. The stack holds the value on top, followed by 2801 // the object. We don't know the size of the value, though; it 2802 // could be one or two words depending on its type. As a result, 2803 // we must find the type to determine where the object is. 2804 __ load_unsigned_byte(c_rarg3, Address(c_rarg2, in_bytes(ResolvedFieldEntry::type_offset()))); 2805 Label nope2, done, ok; 2806 __ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2807 __ cmpw(c_rarg3, ltos); 2808 __ br(Assembler::EQ, ok); 2809 __ cmpw(c_rarg3, dtos); 2810 __ br(Assembler::NE, nope2); 2811 __ bind(ok); 2812 __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue) 2813 __ bind(nope2); 2814 } 2815 // object (tos) 2816 __ mov(c_rarg3, esp); 2817 // c_rarg1: object pointer set up above (null if static) 2818 // c_rarg2: cache entry pointer 2819 // c_rarg3: jvalue object on the stack 2820 __ call_VM(noreg, 2821 CAST_FROM_FN_PTR(address, 2822 InterpreterRuntime::post_field_modification), 2823 c_rarg1, c_rarg2, c_rarg3); 2824 __ load_field_entry(cache, index); 2825 __ bind(L1); 2826 } 2827 } 2828 2829 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2830 transition(vtos, vtos); 2831 2832 const Register cache = r2; 2833 const Register index = r3; 2834 const Register tos_state = r3; 2835 const Register obj = r2; 2836 const Register off = r19; 2837 const Register flags = r0; 2838 const Register bc = r4; 2839 2840 resolve_cache_and_index_for_field(byte_no, cache, index); 2841 jvmti_post_field_mod(cache, index, is_static); 2842 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2843 2844 Label Done; 2845 __ mov(r5, flags); 2846 2847 { 2848 Label notVolatile; 2849 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2850 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 2851 __ bind(notVolatile); 2852 } 2853 2854 // field address 2855 const Address field(obj, off); 2856 2857 Label notByte, notBool, notInt, notShort, notChar, 2858 notLong, notFloat, notObj, notDouble; 2859 2860 assert(btos == 0, "change code, btos != 0"); 2861 __ cbnz(tos_state, notByte); 2862 2863 // Don't rewrite putstatic, only putfield 2864 if (is_static) rc = may_not_rewrite; 2865 2866 // btos 2867 { 2868 __ pop(btos); 2869 if (!is_static) pop_and_check_object(obj); 2870 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg); 2871 if (rc == may_rewrite) { 2872 patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no); 2873 } 2874 __ b(Done); 2875 } 2876 2877 __ bind(notByte); 2878 __ cmp(tos_state, (u1)ztos); 2879 __ br(Assembler::NE, notBool); 2880 2881 // ztos 2882 { 2883 __ pop(ztos); 2884 if (!is_static) pop_and_check_object(obj); 2885 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg); 2886 if (rc == may_rewrite) { 2887 patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no); 2888 } 2889 __ b(Done); 2890 } 2891 2892 __ bind(notBool); 2893 __ cmp(tos_state, (u1)atos); 2894 __ br(Assembler::NE, notObj); 2895 2896 // atos 2897 { 2898 __ pop(atos); 2899 if (!is_static) pop_and_check_object(obj); 2900 // Store into the field 2901 do_oop_store(_masm, field, r0, IN_HEAP); 2902 if (rc == may_rewrite) { 2903 patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no); 2904 } 2905 __ b(Done); 2906 } 2907 2908 __ bind(notObj); 2909 __ cmp(tos_state, (u1)itos); 2910 __ br(Assembler::NE, notInt); 2911 2912 // itos 2913 { 2914 __ pop(itos); 2915 if (!is_static) pop_and_check_object(obj); 2916 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg); 2917 if (rc == may_rewrite) { 2918 patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no); 2919 } 2920 __ b(Done); 2921 } 2922 2923 __ bind(notInt); 2924 __ cmp(tos_state, (u1)ctos); 2925 __ br(Assembler::NE, notChar); 2926 2927 // ctos 2928 { 2929 __ pop(ctos); 2930 if (!is_static) pop_and_check_object(obj); 2931 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg); 2932 if (rc == may_rewrite) { 2933 patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no); 2934 } 2935 __ b(Done); 2936 } 2937 2938 __ bind(notChar); 2939 __ cmp(tos_state, (u1)stos); 2940 __ br(Assembler::NE, notShort); 2941 2942 // stos 2943 { 2944 __ pop(stos); 2945 if (!is_static) pop_and_check_object(obj); 2946 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg); 2947 if (rc == may_rewrite) { 2948 patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no); 2949 } 2950 __ b(Done); 2951 } 2952 2953 __ bind(notShort); 2954 __ cmp(tos_state, (u1)ltos); 2955 __ br(Assembler::NE, notLong); 2956 2957 // ltos 2958 { 2959 __ pop(ltos); 2960 if (!is_static) pop_and_check_object(obj); 2961 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg); 2962 if (rc == may_rewrite) { 2963 patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no); 2964 } 2965 __ b(Done); 2966 } 2967 2968 __ bind(notLong); 2969 __ cmp(tos_state, (u1)ftos); 2970 __ br(Assembler::NE, notFloat); 2971 2972 // ftos 2973 { 2974 __ pop(ftos); 2975 if (!is_static) pop_and_check_object(obj); 2976 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 2977 if (rc == may_rewrite) { 2978 patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no); 2979 } 2980 __ b(Done); 2981 } 2982 2983 __ bind(notFloat); 2984 #ifdef ASSERT 2985 __ cmp(tos_state, (u1)dtos); 2986 __ br(Assembler::NE, notDouble); 2987 #endif 2988 2989 // dtos 2990 { 2991 __ pop(dtos); 2992 if (!is_static) pop_and_check_object(obj); 2993 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 2994 if (rc == may_rewrite) { 2995 patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no); 2996 } 2997 } 2998 2999 #ifdef ASSERT 3000 __ b(Done); 3001 3002 __ bind(notDouble); 3003 __ stop("Bad state"); 3004 #endif 3005 3006 __ bind(Done); 3007 3008 { 3009 Label notVolatile; 3010 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3011 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 3012 __ bind(notVolatile); 3013 } 3014 } 3015 3016 void TemplateTable::putfield(int byte_no) 3017 { 3018 putfield_or_static(byte_no, false); 3019 } 3020 3021 void TemplateTable::nofast_putfield(int byte_no) { 3022 putfield_or_static(byte_no, false, may_not_rewrite); 3023 } 3024 3025 void TemplateTable::putstatic(int byte_no) { 3026 putfield_or_static(byte_no, true); 3027 } 3028 3029 void TemplateTable::jvmti_post_fast_field_mod() { 3030 if (JvmtiExport::can_post_field_modification()) { 3031 // Check to see if a field modification watch has been set before 3032 // we take the time to call into the VM. 3033 Label L2; 3034 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3035 __ ldrw(c_rarg3, Address(rscratch1)); 3036 __ cbzw(c_rarg3, L2); 3037 __ pop_ptr(r19); // copy the object pointer from tos 3038 __ verify_oop(r19); 3039 __ push_ptr(r19); // put the object pointer back on tos 3040 // Save tos values before call_VM() clobbers them. Since we have 3041 // to do it for every data type, we use the saved values as the 3042 // jvalue object. 3043 switch (bytecode()) { // load values into the jvalue object 3044 case Bytecodes::_fast_aputfield: __ push_ptr(r0); break; 3045 case Bytecodes::_fast_bputfield: // fall through 3046 case Bytecodes::_fast_zputfield: // fall through 3047 case Bytecodes::_fast_sputfield: // fall through 3048 case Bytecodes::_fast_cputfield: // fall through 3049 case Bytecodes::_fast_iputfield: __ push_i(r0); break; 3050 case Bytecodes::_fast_dputfield: __ push_d(); break; 3051 case Bytecodes::_fast_fputfield: __ push_f(); break; 3052 case Bytecodes::_fast_lputfield: __ push_l(r0); break; 3053 3054 default: 3055 ShouldNotReachHere(); 3056 } 3057 __ mov(c_rarg3, esp); // points to jvalue on the stack 3058 // access constant pool cache entry 3059 __ load_field_entry(c_rarg2, r0); 3060 __ verify_oop(r19); 3061 // r19: object pointer copied above 3062 // c_rarg2: cache entry pointer 3063 // c_rarg3: jvalue object on the stack 3064 __ call_VM(noreg, 3065 CAST_FROM_FN_PTR(address, 3066 InterpreterRuntime::post_field_modification), 3067 r19, c_rarg2, c_rarg3); 3068 3069 switch (bytecode()) { // restore tos values 3070 case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break; 3071 case Bytecodes::_fast_bputfield: // fall through 3072 case Bytecodes::_fast_zputfield: // fall through 3073 case Bytecodes::_fast_sputfield: // fall through 3074 case Bytecodes::_fast_cputfield: // fall through 3075 case Bytecodes::_fast_iputfield: __ pop_i(r0); break; 3076 case Bytecodes::_fast_dputfield: __ pop_d(); break; 3077 case Bytecodes::_fast_fputfield: __ pop_f(); break; 3078 case Bytecodes::_fast_lputfield: __ pop_l(r0); break; 3079 default: break; 3080 } 3081 __ bind(L2); 3082 } 3083 } 3084 3085 void TemplateTable::fast_storefield(TosState state) 3086 { 3087 transition(state, vtos); 3088 3089 ByteSize base = ConstantPoolCache::base_offset(); 3090 3091 jvmti_post_fast_field_mod(); 3092 3093 // access constant pool cache 3094 __ load_field_entry(r2, r1); 3095 3096 // R1: field offset, R2: field holder, R3: flags 3097 load_resolved_field_entry(r2, r2, noreg, r1, r3); 3098 3099 { 3100 Label notVolatile; 3101 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3102 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 3103 __ bind(notVolatile); 3104 } 3105 3106 Label notVolatile; 3107 3108 // Get object from stack 3109 pop_and_check_object(r2); 3110 3111 // field address 3112 const Address field(r2, r1); 3113 3114 // access field 3115 switch (bytecode()) { 3116 case Bytecodes::_fast_aputfield: 3117 do_oop_store(_masm, field, r0, IN_HEAP); 3118 break; 3119 case Bytecodes::_fast_lputfield: 3120 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg); 3121 break; 3122 case Bytecodes::_fast_iputfield: 3123 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg); 3124 break; 3125 case Bytecodes::_fast_zputfield: 3126 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg); 3127 break; 3128 case Bytecodes::_fast_bputfield: 3129 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg); 3130 break; 3131 case Bytecodes::_fast_sputfield: 3132 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg); 3133 break; 3134 case Bytecodes::_fast_cputfield: 3135 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg); 3136 break; 3137 case Bytecodes::_fast_fputfield: 3138 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3139 break; 3140 case Bytecodes::_fast_dputfield: 3141 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 3142 break; 3143 default: 3144 ShouldNotReachHere(); 3145 } 3146 3147 { 3148 Label notVolatile; 3149 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3150 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 3151 __ bind(notVolatile); 3152 } 3153 } 3154 3155 3156 void TemplateTable::fast_accessfield(TosState state) 3157 { 3158 transition(atos, state); 3159 // Do the JVMTI work here to avoid disturbing the register state below 3160 if (JvmtiExport::can_post_field_access()) { 3161 // Check to see if a field access watch has been set before we 3162 // take the time to call into the VM. 3163 Label L1; 3164 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3165 __ ldrw(r2, Address(rscratch1)); 3166 __ cbzw(r2, L1); 3167 // access constant pool cache entry 3168 __ load_field_entry(c_rarg2, rscratch2); 3169 __ verify_oop(r0); 3170 __ push_ptr(r0); // save object pointer before call_VM() clobbers it 3171 __ mov(c_rarg1, r0); 3172 // c_rarg1: object pointer copied above 3173 // c_rarg2: cache entry pointer 3174 __ call_VM(noreg, 3175 CAST_FROM_FN_PTR(address, 3176 InterpreterRuntime::post_field_access), 3177 c_rarg1, c_rarg2); 3178 __ pop_ptr(r0); // restore object pointer 3179 __ bind(L1); 3180 } 3181 3182 // access constant pool cache 3183 __ load_field_entry(r2, r1); 3184 3185 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3186 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset()))); 3187 3188 // r0: object 3189 __ verify_oop(r0); 3190 __ null_check(r0); 3191 const Address field(r0, r1); 3192 3193 // 8179954: We need to make sure that the code generated for 3194 // volatile accesses forms a sequentially-consistent set of 3195 // operations when combined with STLR and LDAR. Without a leading 3196 // membar it's possible for a simple Dekker test to fail if loads 3197 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3198 // the stores in one method and we interpret the loads in another. 3199 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) { 3200 Label notVolatile; 3201 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3202 __ membar(MacroAssembler::AnyAny); 3203 __ bind(notVolatile); 3204 } 3205 3206 // access field 3207 switch (bytecode()) { 3208 case Bytecodes::_fast_agetfield: 3209 do_oop_load(_masm, field, r0, IN_HEAP); 3210 __ verify_oop(r0); 3211 break; 3212 case Bytecodes::_fast_lgetfield: 3213 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg); 3214 break; 3215 case Bytecodes::_fast_igetfield: 3216 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg); 3217 break; 3218 case Bytecodes::_fast_bgetfield: 3219 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg); 3220 break; 3221 case Bytecodes::_fast_sgetfield: 3222 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg); 3223 break; 3224 case Bytecodes::_fast_cgetfield: 3225 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg); 3226 break; 3227 case Bytecodes::_fast_fgetfield: 3228 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3229 break; 3230 case Bytecodes::_fast_dgetfield: 3231 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3232 break; 3233 default: 3234 ShouldNotReachHere(); 3235 } 3236 { 3237 Label notVolatile; 3238 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3239 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3240 __ bind(notVolatile); 3241 } 3242 } 3243 3244 void TemplateTable::fast_xaccess(TosState state) 3245 { 3246 transition(vtos, state); 3247 3248 // get receiver 3249 __ ldr(r0, aaddress(0)); 3250 // access constant pool cache 3251 __ load_field_entry(r2, r3, 2); 3252 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3253 3254 // 8179954: We need to make sure that the code generated for 3255 // volatile accesses forms a sequentially-consistent set of 3256 // operations when combined with STLR and LDAR. Without a leading 3257 // membar it's possible for a simple Dekker test to fail if loads 3258 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3259 // the stores in one method and we interpret the loads in another. 3260 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) { 3261 Label notVolatile; 3262 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset()))); 3263 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3264 __ membar(MacroAssembler::AnyAny); 3265 __ bind(notVolatile); 3266 } 3267 3268 // make sure exception is reported in correct bcp range (getfield is 3269 // next instruction) 3270 __ increment(rbcp); 3271 __ null_check(r0); 3272 switch (state) { 3273 case itos: 3274 __ access_load_at(T_INT, IN_HEAP, r0, Address(r0, r1, Address::lsl(0)), noreg, noreg); 3275 break; 3276 case atos: 3277 do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP); 3278 __ verify_oop(r0); 3279 break; 3280 case ftos: 3281 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(r0, r1, Address::lsl(0)), noreg, noreg); 3282 break; 3283 default: 3284 ShouldNotReachHere(); 3285 } 3286 3287 { 3288 Label notVolatile; 3289 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset()))); 3290 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3291 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3292 __ bind(notVolatile); 3293 } 3294 3295 __ decrement(rbcp); 3296 } 3297 3298 3299 3300 //----------------------------------------------------------------------------- 3301 // Calls 3302 3303 void TemplateTable::prepare_invoke(Register cache, Register recv) { 3304 3305 Bytecodes::Code code = bytecode(); 3306 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic); 3307 3308 // save 'interpreter return address' 3309 __ save_bcp(); 3310 3311 // Load TOS state for later 3312 __ load_unsigned_byte(rscratch2, Address(cache, in_bytes(ResolvedMethodEntry::type_offset()))); 3313 3314 // load receiver if needed (note: no return address pushed yet) 3315 if (load_receiver) { 3316 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 3317 __ add(rscratch1, esp, recv, ext::uxtx, 3); 3318 __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1))); 3319 __ verify_oop(recv); 3320 } 3321 3322 // load return address 3323 { 3324 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3325 __ mov(rscratch1, table_addr); 3326 __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3))); 3327 } 3328 } 3329 3330 3331 void TemplateTable::invokevirtual_helper(Register index, 3332 Register recv, 3333 Register flags) 3334 { 3335 // Uses temporary registers r0, r3 3336 assert_different_registers(index, recv, r0, r3); 3337 // Test for an invoke of a final method 3338 Label notFinal; 3339 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, notFinal); 3340 3341 const Register method = index; // method must be rmethod 3342 assert(method == rmethod, 3343 "Method must be rmethod for interpreter calling convention"); 3344 3345 // do the call - the index is actually the method to call 3346 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3347 3348 // It's final, need a null check here! 3349 __ null_check(recv); 3350 3351 // profile this call 3352 __ profile_final_call(r0); 3353 __ profile_arguments_type(r0, method, r4, true); 3354 3355 __ jump_from_interpreted(method, r0); 3356 3357 __ bind(notFinal); 3358 3359 // get receiver klass 3360 __ load_klass(r0, recv); 3361 3362 // profile this call 3363 __ profile_virtual_call(r0, rlocals, r3); 3364 3365 // get target Method & entry point 3366 __ lookup_virtual_method(r0, index, method); 3367 __ profile_arguments_type(r3, method, r4, true); 3368 // FIXME -- this looks completely redundant. is it? 3369 // __ ldr(r3, Address(method, Method::interpreter_entry_offset())); 3370 __ jump_from_interpreted(method, r3); 3371 } 3372 3373 void TemplateTable::invokevirtual(int byte_no) 3374 { 3375 transition(vtos, vtos); 3376 assert(byte_no == f2_byte, "use this argument"); 3377 3378 load_resolved_method_entry_virtual(r2, // ResolvedMethodEntry* 3379 rmethod, // Method* or itable index 3380 r3); // flags 3381 prepare_invoke(r2, r2); // recv 3382 3383 // rmethod: index (actually a Method*) 3384 // r2: receiver 3385 // r3: flags 3386 3387 invokevirtual_helper(rmethod, r2, r3); 3388 } 3389 3390 void TemplateTable::invokespecial(int byte_no) 3391 { 3392 transition(vtos, vtos); 3393 assert(byte_no == f1_byte, "use this argument"); 3394 3395 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry* 3396 rmethod, // Method* 3397 r3); // flags 3398 prepare_invoke(r2, r2); // get receiver also for null check 3399 __ verify_oop(r2); 3400 __ null_check(r2); 3401 // do the call 3402 __ profile_call(r0); 3403 __ profile_arguments_type(r0, rmethod, rbcp, false); 3404 __ jump_from_interpreted(rmethod, r0); 3405 } 3406 3407 void TemplateTable::invokestatic(int byte_no) 3408 { 3409 transition(vtos, vtos); 3410 assert(byte_no == f1_byte, "use this argument"); 3411 3412 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry* 3413 rmethod, // Method* 3414 r3); // flags 3415 prepare_invoke(r2, r2); // get receiver also for null check 3416 3417 // do the call 3418 __ profile_call(r0); 3419 __ profile_arguments_type(r0, rmethod, r4, false); 3420 __ jump_from_interpreted(rmethod, r0); 3421 } 3422 3423 void TemplateTable::fast_invokevfinal(int byte_no) 3424 { 3425 __ call_Unimplemented(); 3426 } 3427 3428 void TemplateTable::invokeinterface(int byte_no) { 3429 transition(vtos, vtos); 3430 assert(byte_no == f1_byte, "use this argument"); 3431 3432 load_resolved_method_entry_interface(r2, // ResolvedMethodEntry* 3433 r0, // Klass* 3434 rmethod, // Method* or itable/vtable index 3435 r3); // flags 3436 prepare_invoke(r2, r2); // receiver 3437 3438 // r0: interface klass (from f1) 3439 // rmethod: method (from f2) 3440 // r2: receiver 3441 // r3: flags 3442 3443 // First check for Object case, then private interface method, 3444 // then regular interface method. 3445 3446 // Special case of invokeinterface called for virtual method of 3447 // java.lang.Object. See cpCache.cpp for details. 3448 Label notObjectMethod; 3449 __ tbz(r3, ResolvedMethodEntry::is_forced_virtual_shift, notObjectMethod); 3450 3451 invokevirtual_helper(rmethod, r2, r3); 3452 __ bind(notObjectMethod); 3453 3454 Label no_such_interface; 3455 3456 // Check for private method invocation - indicated by vfinal 3457 Label notVFinal; 3458 __ tbz(r3, ResolvedMethodEntry::is_vfinal_shift, notVFinal); 3459 3460 // Get receiver klass into r3 3461 __ load_klass(r3, r2); 3462 3463 Label subtype; 3464 __ check_klass_subtype(r3, r0, r4, subtype); 3465 // If we get here the typecheck failed 3466 __ b(no_such_interface); 3467 __ bind(subtype); 3468 3469 __ profile_final_call(r0); 3470 __ profile_arguments_type(r0, rmethod, r4, true); 3471 __ jump_from_interpreted(rmethod, r0); 3472 3473 __ bind(notVFinal); 3474 3475 // Get receiver klass into r3 3476 __ restore_locals(); 3477 __ load_klass(r3, r2); 3478 3479 Label no_such_method; 3480 3481 // Preserve method for throw_AbstractMethodErrorVerbose. 3482 __ mov(r16, rmethod); 3483 // Receiver subtype check against REFC. 3484 // Superklass in r0. Subklass in r3. Blows rscratch2, r13 3485 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3486 r3, r0, noreg, 3487 // outputs: scan temp. reg, scan temp. reg 3488 rscratch2, r13, 3489 no_such_interface, 3490 /*return_method=*/false); 3491 3492 // profile this call 3493 __ profile_virtual_call(r3, r13, r19); 3494 3495 // Get declaring interface class from method, and itable index 3496 3497 __ load_method_holder(r0, rmethod); 3498 __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset())); 3499 __ subw(rmethod, rmethod, Method::itable_index_max); 3500 __ negw(rmethod, rmethod); 3501 3502 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3503 __ mov(rlocals, r3); 3504 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3505 rlocals, r0, rmethod, 3506 // outputs: method, scan temp. reg 3507 rmethod, r13, 3508 no_such_interface); 3509 3510 // rmethod,: Method to call 3511 // r2: receiver 3512 // Check for abstract method error 3513 // Note: This should be done more efficiently via a throw_abstract_method_error 3514 // interpreter entry point and a conditional jump to it in case of a null 3515 // method. 3516 __ cbz(rmethod, no_such_method); 3517 3518 __ profile_arguments_type(r3, rmethod, r13, true); 3519 3520 // do the call 3521 // r2: receiver 3522 // rmethod,: Method 3523 __ jump_from_interpreted(rmethod, r3); 3524 __ should_not_reach_here(); 3525 3526 // exception handling code follows... 3527 // note: must restore interpreter registers to canonical 3528 // state for exception handling to work correctly! 3529 3530 __ bind(no_such_method); 3531 // throw exception 3532 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3533 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3534 // Pass arguments for generating a verbose error message. 3535 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16); 3536 // the call_VM checks for exception, so we should never return here. 3537 __ should_not_reach_here(); 3538 3539 __ bind(no_such_interface); 3540 // throw exception 3541 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3542 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3543 // Pass arguments for generating a verbose error message. 3544 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3545 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0); 3546 // the call_VM checks for exception, so we should never return here. 3547 __ should_not_reach_here(); 3548 return; 3549 } 3550 3551 void TemplateTable::invokehandle(int byte_no) { 3552 transition(vtos, vtos); 3553 assert(byte_no == f1_byte, "use this argument"); 3554 3555 load_resolved_method_entry_handle(r2, // ResolvedMethodEntry* 3556 rmethod, // Method* 3557 r0, // Resolved reference 3558 r3); // flags 3559 prepare_invoke(r2, r2); 3560 3561 __ verify_method_ptr(r2); 3562 __ verify_oop(r2); 3563 __ null_check(r2); 3564 3565 // FIXME: profile the LambdaForm also 3566 3567 // r13 is safe to use here as a scratch reg because it is about to 3568 // be clobbered by jump_from_interpreted(). 3569 __ profile_final_call(r13); 3570 __ profile_arguments_type(r13, rmethod, r4, true); 3571 3572 __ jump_from_interpreted(rmethod, r0); 3573 } 3574 3575 void TemplateTable::invokedynamic(int byte_no) { 3576 transition(vtos, vtos); 3577 assert(byte_no == f1_byte, "use this argument"); 3578 3579 load_invokedynamic_entry(rmethod); 3580 3581 // r0: CallSite object (from cpool->resolved_references[]) 3582 // rmethod: MH.linkToCallSite method 3583 3584 // Note: r0_callsite is already pushed 3585 3586 // %%% should make a type profile for any invokedynamic that takes a ref argument 3587 // profile this call 3588 __ profile_call(rbcp); 3589 __ profile_arguments_type(r3, rmethod, r13, false); 3590 3591 __ verify_oop(r0); 3592 3593 __ jump_from_interpreted(rmethod, r0); 3594 } 3595 3596 3597 //----------------------------------------------------------------------------- 3598 // Allocation 3599 3600 void TemplateTable::_new() { 3601 transition(vtos, atos); 3602 3603 __ get_unsigned_2_byte_index_at_bcp(r3, 1); 3604 Label slow_case; 3605 Label done; 3606 Label initialize_header; 3607 3608 __ get_cpool_and_tags(r4, r0); 3609 // Make sure the class we're about to instantiate has been resolved. 3610 // This is done before loading InstanceKlass to be consistent with the order 3611 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3612 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3613 __ lea(rscratch1, Address(r0, r3, Address::lsl(0))); 3614 __ lea(rscratch1, Address(rscratch1, tags_offset)); 3615 __ ldarb(rscratch1, rscratch1); 3616 __ cmp(rscratch1, (u1)JVM_CONSTANT_Class); 3617 __ br(Assembler::NE, slow_case); 3618 3619 // get InstanceKlass 3620 __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1); 3621 3622 // make sure klass is initialized 3623 assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks"); 3624 __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case); 3625 3626 // get instance_size in InstanceKlass (scaled to a count of bytes) 3627 __ ldrw(r3, 3628 Address(r4, 3629 Klass::layout_helper_offset())); 3630 // test to see if it is malformed in some way 3631 __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case); 3632 3633 // Allocate the instance: 3634 // If TLAB is enabled: 3635 // Try to allocate in the TLAB. 3636 // If fails, go to the slow path. 3637 // Initialize the allocation. 3638 // Exit. 3639 // 3640 // Go to slow path. 3641 3642 if (UseTLAB) { 3643 __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case); 3644 3645 if (ZeroTLAB) { 3646 // the fields have been already cleared 3647 __ b(initialize_header); 3648 } 3649 3650 // The object is initialized before the header. If the object size is 3651 // zero, go directly to the header initialization. 3652 int header_size = oopDesc::header_size() * HeapWordSize; 3653 assert(is_aligned(header_size, BytesPerLong), "oop header size must be 8-byte-aligned"); 3654 __ sub(r3, r3, header_size); 3655 __ cbz(r3, initialize_header); 3656 3657 // Initialize object fields 3658 { 3659 __ add(r2, r0, header_size); 3660 Label loop; 3661 __ bind(loop); 3662 __ str(zr, Address(__ post(r2, BytesPerLong))); 3663 __ sub(r3, r3, BytesPerLong); 3664 __ cbnz(r3, loop); 3665 } 3666 3667 // initialize object header only. 3668 __ bind(initialize_header); 3669 if (UseCompactObjectHeaders) { 3670 __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset())); 3671 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); 3672 } else { 3673 __ mov(rscratch1, (intptr_t)markWord::prototype().value()); 3674 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); 3675 __ store_klass_gap(r0, zr); // zero klass gap for compressed oops 3676 __ store_klass(r0, r4); // store klass last 3677 } 3678 3679 if (DTraceAllocProbes) { 3680 // Trigger dtrace event for fastpath 3681 __ push(atos); // save the return value 3682 __ call_VM_leaf( 3683 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0); 3684 __ pop(atos); // restore the return value 3685 3686 } 3687 __ b(done); 3688 } 3689 3690 // slow case 3691 __ bind(slow_case); 3692 __ get_constant_pool(c_rarg1); 3693 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3694 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3695 __ verify_oop(r0); 3696 3697 // continue 3698 __ bind(done); 3699 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3700 __ membar(Assembler::StoreStore); 3701 } 3702 3703 void TemplateTable::newarray() { 3704 transition(itos, atos); 3705 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3706 __ mov(c_rarg2, r0); 3707 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3708 c_rarg1, c_rarg2); 3709 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3710 __ membar(Assembler::StoreStore); 3711 } 3712 3713 void TemplateTable::anewarray() { 3714 transition(itos, atos); 3715 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3716 __ get_constant_pool(c_rarg1); 3717 __ mov(c_rarg3, r0); 3718 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3719 c_rarg1, c_rarg2, c_rarg3); 3720 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3721 __ membar(Assembler::StoreStore); 3722 } 3723 3724 void TemplateTable::arraylength() { 3725 transition(atos, itos); 3726 __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes())); 3727 } 3728 3729 void TemplateTable::checkcast() 3730 { 3731 transition(atos, atos); 3732 Label done, is_null, ok_is_subtype, quicked, resolved; 3733 __ cbz(r0, is_null); 3734 3735 // Get cpool & tags index 3736 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3737 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3738 // See if bytecode has already been quicked 3739 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3740 __ lea(r1, Address(rscratch1, r19)); 3741 __ ldarb(r1, r1); 3742 __ cmp(r1, (u1)JVM_CONSTANT_Class); 3743 __ br(Assembler::EQ, quicked); 3744 3745 __ push(atos); // save receiver for result, and for GC 3746 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3747 // vm_result_2 has metadata result 3748 __ get_vm_result_2(r0, rthread); 3749 __ pop(r3); // restore receiver 3750 __ b(resolved); 3751 3752 // Get superklass in r0 and subklass in r3 3753 __ bind(quicked); 3754 __ mov(r3, r0); // Save object in r3; r0 needed for subtype check 3755 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass 3756 3757 __ bind(resolved); 3758 __ load_klass(r19, r3); 3759 3760 // Generate subtype check. Blows r2, r5. Object in r3. 3761 // Superklass in r0. Subklass in r19. 3762 __ gen_subtype_check(r19, ok_is_subtype); 3763 3764 // Come here on failure 3765 __ push(r3); 3766 // object is at TOS 3767 __ b(Interpreter::_throw_ClassCastException_entry); 3768 3769 // Come here on success 3770 __ bind(ok_is_subtype); 3771 __ mov(r0, r3); // Restore object in r3 3772 3773 // Collect counts on whether this test sees nulls a lot or not. 3774 if (ProfileInterpreter) { 3775 __ b(done); 3776 __ bind(is_null); 3777 __ profile_null_seen(r2); 3778 } else { 3779 __ bind(is_null); // same as 'done' 3780 } 3781 __ bind(done); 3782 } 3783 3784 void TemplateTable::instanceof() { 3785 transition(atos, itos); 3786 Label done, is_null, ok_is_subtype, quicked, resolved; 3787 __ cbz(r0, is_null); 3788 3789 // Get cpool & tags index 3790 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3791 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3792 // See if bytecode has already been quicked 3793 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3794 __ lea(r1, Address(rscratch1, r19)); 3795 __ ldarb(r1, r1); 3796 __ cmp(r1, (u1)JVM_CONSTANT_Class); 3797 __ br(Assembler::EQ, quicked); 3798 3799 __ push(atos); // save receiver for result, and for GC 3800 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3801 // vm_result_2 has metadata result 3802 __ get_vm_result_2(r0, rthread); 3803 __ pop(r3); // restore receiver 3804 __ verify_oop(r3); 3805 __ load_klass(r3, r3); 3806 __ b(resolved); 3807 3808 // Get superklass in r0 and subklass in r3 3809 __ bind(quicked); 3810 __ load_klass(r3, r0); 3811 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); 3812 3813 __ bind(resolved); 3814 3815 // Generate subtype check. Blows r2, r5 3816 // Superklass in r0. Subklass in r3. 3817 __ gen_subtype_check(r3, ok_is_subtype); 3818 3819 // Come here on failure 3820 __ mov(r0, 0); 3821 __ b(done); 3822 // Come here on success 3823 __ bind(ok_is_subtype); 3824 __ mov(r0, 1); 3825 3826 // Collect counts on whether this test sees nulls a lot or not. 3827 if (ProfileInterpreter) { 3828 __ b(done); 3829 __ bind(is_null); 3830 __ profile_null_seen(r2); 3831 } else { 3832 __ bind(is_null); // same as 'done' 3833 } 3834 __ bind(done); 3835 // r0 = 0: obj == nullptr or obj is not an instanceof the specified klass 3836 // r0 = 1: obj != nullptr and obj is an instanceof the specified klass 3837 } 3838 3839 //----------------------------------------------------------------------------- 3840 // Breakpoints 3841 void TemplateTable::_breakpoint() { 3842 // Note: We get here even if we are single stepping.. 3843 // jbug inists on setting breakpoints at every bytecode 3844 // even if we are in single step mode. 3845 3846 transition(vtos, vtos); 3847 3848 // get the unpatched byte code 3849 __ get_method(c_rarg1); 3850 __ call_VM(noreg, 3851 CAST_FROM_FN_PTR(address, 3852 InterpreterRuntime::get_original_bytecode_at), 3853 c_rarg1, rbcp); 3854 __ mov(r19, r0); 3855 3856 // post the breakpoint event 3857 __ call_VM(noreg, 3858 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3859 rmethod, rbcp); 3860 3861 // complete the execution of original bytecode 3862 __ mov(rscratch1, r19); 3863 __ dispatch_only_normal(vtos); 3864 } 3865 3866 //----------------------------------------------------------------------------- 3867 // Exceptions 3868 3869 void TemplateTable::athrow() { 3870 transition(atos, vtos); 3871 __ null_check(r0); 3872 __ b(Interpreter::throw_exception_entry()); 3873 } 3874 3875 //----------------------------------------------------------------------------- 3876 // Synchronization 3877 // 3878 // Note: monitorenter & exit are symmetric routines; which is reflected 3879 // in the assembly code structure as well 3880 // 3881 // Stack layout: 3882 // 3883 // [expressions ] <--- esp = expression stack top 3884 // .. 3885 // [expressions ] 3886 // [monitor entry] <--- monitor block top = expression stack bot 3887 // .. 3888 // [monitor entry] 3889 // [frame data ] <--- monitor block bot 3890 // ... 3891 // [saved rfp ] <--- rfp 3892 void TemplateTable::monitorenter() 3893 { 3894 transition(atos, vtos); 3895 3896 // check for null object 3897 __ null_check(r0); 3898 3899 const Address monitor_block_top( 3900 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3901 const Address monitor_block_bot( 3902 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 3903 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3904 3905 Label allocated; 3906 3907 // initialize entry pointer 3908 __ mov(c_rarg1, zr); // points to free slot or null 3909 3910 // find a free slot in the monitor block (result in c_rarg1) 3911 { 3912 Label entry, loop, exit; 3913 __ ldr(c_rarg3, monitor_block_top); // derelativize pointer 3914 __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize))); 3915 // c_rarg3 points to current entry, starting with top-most entry 3916 3917 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3918 3919 __ b(entry); 3920 3921 __ bind(loop); 3922 // check if current entry is used 3923 // if not used then remember entry in c_rarg1 3924 __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset())); 3925 __ cmp(zr, rscratch1); 3926 __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ); 3927 // check if current entry is for same object 3928 __ cmp(r0, rscratch1); 3929 // if same object then stop searching 3930 __ br(Assembler::EQ, exit); 3931 // otherwise advance to next entry 3932 __ add(c_rarg3, c_rarg3, entry_size); 3933 __ bind(entry); 3934 // check if bottom reached 3935 __ cmp(c_rarg3, c_rarg2); 3936 // if not at bottom then check this entry 3937 __ br(Assembler::NE, loop); 3938 __ bind(exit); 3939 } 3940 3941 __ cbnz(c_rarg1, allocated); // check if a slot has been found and 3942 // if found, continue with that on 3943 3944 // allocate one if there's no free slot 3945 { 3946 Label entry, loop; 3947 // 1. compute new pointers // rsp: old expression stack top 3948 3949 __ check_extended_sp(); 3950 __ sub(sp, sp, entry_size); // make room for the monitor 3951 __ sub(rscratch1, sp, rfp); 3952 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 3953 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 3954 3955 __ ldr(c_rarg1, monitor_block_bot); // derelativize pointer 3956 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 3957 // c_rarg1 points to the old expression stack bottom 3958 3959 __ sub(esp, esp, entry_size); // move expression stack top 3960 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom 3961 __ mov(c_rarg3, esp); // set start value for copy loop 3962 __ sub(rscratch1, c_rarg1, rfp); // relativize pointer 3963 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 3964 __ str(rscratch1, monitor_block_bot); // set new monitor block bottom 3965 3966 __ b(entry); 3967 // 2. move expression stack contents 3968 __ bind(loop); 3969 __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack 3970 // word from old location 3971 __ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location 3972 __ add(c_rarg3, c_rarg3, wordSize); // advance to next word 3973 __ bind(entry); 3974 __ cmp(c_rarg3, c_rarg1); // check if bottom reached 3975 __ br(Assembler::NE, loop); // if not at bottom then 3976 // copy next word 3977 } 3978 3979 // call run-time routine 3980 // c_rarg1: points to monitor entry 3981 __ bind(allocated); 3982 3983 // Increment bcp to point to the next bytecode, so exception 3984 // handling for async. exceptions work correctly. 3985 // The object has already been popped from the stack, so the 3986 // expression stack looks correct. 3987 __ increment(rbcp); 3988 3989 // store object 3990 __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 3991 __ lock_object(c_rarg1); 3992 3993 // check to make sure this monitor doesn't cause stack overflow after locking 3994 __ save_bcp(); // in case of exception 3995 __ generate_stack_overflow_check(0); 3996 3997 // The bcp has already been incremented. Just need to dispatch to 3998 // next instruction. 3999 __ dispatch_next(vtos); 4000 } 4001 4002 4003 void TemplateTable::monitorexit() 4004 { 4005 transition(atos, vtos); 4006 4007 // check for null object 4008 __ null_check(r0); 4009 4010 const Address monitor_block_top( 4011 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4012 const Address monitor_block_bot( 4013 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 4014 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 4015 4016 Label found; 4017 4018 // find matching slot 4019 { 4020 Label entry, loop; 4021 __ ldr(c_rarg1, monitor_block_top); // derelativize pointer 4022 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 4023 // c_rarg1 points to current entry, starting with top-most entry 4024 4025 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 4026 // of monitor block 4027 __ b(entry); 4028 4029 __ bind(loop); 4030 // check if current entry is for same object 4031 __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 4032 __ cmp(r0, rscratch1); 4033 // if same object then stop searching 4034 __ br(Assembler::EQ, found); 4035 // otherwise advance to next entry 4036 __ add(c_rarg1, c_rarg1, entry_size); 4037 __ bind(entry); 4038 // check if bottom reached 4039 __ cmp(c_rarg1, c_rarg2); 4040 // if not at bottom then check this entry 4041 __ br(Assembler::NE, loop); 4042 } 4043 4044 // error handling. Unlocking was not block-structured 4045 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4046 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4047 __ should_not_reach_here(); 4048 4049 // call run-time routine 4050 __ bind(found); 4051 __ push_ptr(r0); // make sure object is on stack (contract with oopMaps) 4052 __ unlock_object(c_rarg1); 4053 __ pop_ptr(r0); // discard object 4054 } 4055 4056 4057 // Wide instructions 4058 void TemplateTable::wide() 4059 { 4060 __ load_unsigned_byte(r19, at_bcp(1)); 4061 __ mov(rscratch1, (address)Interpreter::_wentry_point); 4062 __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3))); 4063 __ br(rscratch1); 4064 } 4065 4066 4067 // Multi arrays 4068 void TemplateTable::multianewarray() { 4069 transition(vtos, atos); 4070 __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions 4071 // last dim is on top of stack; we want address of first one: 4072 // first_addr = last_addr + (ndims - 1) * wordSize 4073 __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3))); 4074 __ sub(c_rarg1, c_rarg1, wordSize); 4075 call_VM(r0, 4076 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), 4077 c_rarg1); 4078 __ load_unsigned_byte(r1, at_bcp(3)); 4079 __ lea(esp, Address(esp, r1, Address::uxtw(3))); 4080 }