1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "compiler/disassembler.hpp" 28 #include "compiler/compilerDefinitions.inline.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "gc/shared/collectedHeap.hpp" 31 #include "gc/shared/tlab_globals.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "interpreter/interp_masm.hpp" 35 #include "interpreter/templateTable.hpp" 36 #include "memory/universe.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/method.inline.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "oops/resolvedFieldEntry.hpp" 42 #include "oops/resolvedIndyEntry.hpp" 43 #include "oops/resolvedMethodEntry.hpp" 44 #include "prims/jvmtiExport.hpp" 45 #include "prims/methodHandles.hpp" 46 #include "runtime/frame.inline.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "runtime/stubRoutines.hpp" 49 #include "runtime/synchronizer.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 52 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 53 54 // Address computation: local variables 55 56 static inline Address iaddress(int n) { 57 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 58 } 59 60 static inline Address laddress(int n) { 61 return iaddress(n + 1); 62 } 63 64 static inline Address faddress(int n) { 65 return iaddress(n); 66 } 67 68 static inline Address daddress(int n) { 69 return laddress(n); 70 } 71 72 static inline Address aaddress(int n) { 73 return iaddress(n); 74 } 75 76 static inline Address iaddress(Register r) { 77 return Address(rlocals, r, Address::lsl(3)); 78 } 79 80 static inline Address laddress(Register r, Register scratch, 81 InterpreterMacroAssembler* _masm) { 82 __ lea(scratch, Address(rlocals, r, Address::lsl(3))); 83 return Address(scratch, Interpreter::local_offset_in_bytes(1)); 84 } 85 86 static inline Address faddress(Register r) { 87 return iaddress(r); 88 } 89 90 static inline Address daddress(Register r, Register scratch, 91 InterpreterMacroAssembler* _masm) { 92 return laddress(r, scratch, _masm); 93 } 94 95 static inline Address aaddress(Register r) { 96 return iaddress(r); 97 } 98 99 static inline Address at_rsp() { 100 return Address(esp, 0); 101 } 102 103 // At top of Java expression stack which may be different than esp(). It 104 // isn't for category 1 objects. 105 static inline Address at_tos () { 106 return Address(esp, Interpreter::expr_offset_in_bytes(0)); 107 } 108 109 static inline Address at_tos_p1() { 110 return Address(esp, Interpreter::expr_offset_in_bytes(1)); 111 } 112 113 static inline Address at_tos_p2() { 114 return Address(esp, Interpreter::expr_offset_in_bytes(2)); 115 } 116 117 static inline Address at_tos_p3() { 118 return Address(esp, Interpreter::expr_offset_in_bytes(3)); 119 } 120 121 static inline Address at_tos_p4() { 122 return Address(esp, Interpreter::expr_offset_in_bytes(4)); 123 } 124 125 static inline Address at_tos_p5() { 126 return Address(esp, Interpreter::expr_offset_in_bytes(5)); 127 } 128 129 // Condition conversion 130 static Assembler::Condition j_not(TemplateTable::Condition cc) { 131 switch (cc) { 132 case TemplateTable::equal : return Assembler::NE; 133 case TemplateTable::not_equal : return Assembler::EQ; 134 case TemplateTable::less : return Assembler::GE; 135 case TemplateTable::less_equal : return Assembler::GT; 136 case TemplateTable::greater : return Assembler::LE; 137 case TemplateTable::greater_equal: return Assembler::LT; 138 } 139 ShouldNotReachHere(); 140 return Assembler::EQ; 141 } 142 143 144 // Miscellaneous helper routines 145 // Store an oop (or null) at the Address described by obj. 146 // If val == noreg this means store a null 147 static void do_oop_store(InterpreterMacroAssembler* _masm, 148 Address dst, 149 Register val, 150 DecoratorSet decorators) { 151 assert(val == noreg || val == r0, "parameter is just for looks"); 152 __ store_heap_oop(dst, val, r10, r11, r3, decorators); 153 } 154 155 static void do_oop_load(InterpreterMacroAssembler* _masm, 156 Address src, 157 Register dst, 158 DecoratorSet decorators) { 159 __ load_heap_oop(dst, src, r10, r11, decorators); 160 } 161 162 Address TemplateTable::at_bcp(int offset) { 163 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 164 return Address(rbcp, offset); 165 } 166 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 168 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 169 int byte_no) 170 { 171 if (!RewriteBytecodes) return; 172 Label L_patch_done; 173 174 switch (bc) { 175 case Bytecodes::_fast_aputfield: 176 case Bytecodes::_fast_bputfield: 177 case Bytecodes::_fast_zputfield: 178 case Bytecodes::_fast_cputfield: 179 case Bytecodes::_fast_dputfield: 180 case Bytecodes::_fast_fputfield: 181 case Bytecodes::_fast_iputfield: 182 case Bytecodes::_fast_lputfield: 183 case Bytecodes::_fast_sputfield: 184 { 185 // We skip bytecode quickening for putfield instructions when 186 // the put_code written to the constant pool cache is zero. 187 // This is required so that every execution of this instruction 188 // calls out to InterpreterRuntime::resolve_get_put to do 189 // additional, required work. 190 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 191 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 192 __ load_field_entry(temp_reg, bc_reg); 193 if (byte_no == f1_byte) { 194 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset()))); 195 } else { 196 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset()))); 197 } 198 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in() 199 __ ldarb(temp_reg, temp_reg); 200 __ movw(bc_reg, bc); 201 __ cbzw(temp_reg, L_patch_done); // don't patch 202 } 203 break; 204 default: 205 assert(byte_no == -1, "sanity"); 206 // the pair bytecodes have already done the load. 207 if (load_bc_into_bc_reg) { 208 __ movw(bc_reg, bc); 209 } 210 } 211 212 if (JvmtiExport::can_post_breakpoint()) { 213 Label L_fast_patch; 214 // if a breakpoint is present we can't rewrite the stream directly 215 __ load_unsigned_byte(temp_reg, at_bcp(0)); 216 __ cmpw(temp_reg, Bytecodes::_breakpoint); 217 __ br(Assembler::NE, L_fast_patch); 218 // Let breakpoint table handling rewrite to quicker bytecode 219 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg); 220 __ b(L_patch_done); 221 __ bind(L_fast_patch); 222 } 223 224 #ifdef ASSERT 225 Label L_okay; 226 __ load_unsigned_byte(temp_reg, at_bcp(0)); 227 __ cmpw(temp_reg, (int) Bytecodes::java_code(bc)); 228 __ br(Assembler::EQ, L_okay); 229 __ cmpw(temp_reg, bc_reg); 230 __ br(Assembler::EQ, L_okay); 231 __ stop("patching the wrong bytecode"); 232 __ bind(L_okay); 233 #endif 234 235 // patch bytecode 236 __ strb(bc_reg, at_bcp(0)); 237 __ bind(L_patch_done); 238 } 239 240 241 // Individual instructions 242 243 void TemplateTable::nop() { 244 transition(vtos, vtos); 245 // nothing to do 246 } 247 248 void TemplateTable::shouldnotreachhere() { 249 transition(vtos, vtos); 250 __ stop("shouldnotreachhere bytecode"); 251 } 252 253 void TemplateTable::aconst_null() 254 { 255 transition(vtos, atos); 256 __ mov(r0, 0); 257 } 258 259 void TemplateTable::iconst(int value) 260 { 261 transition(vtos, itos); 262 __ mov(r0, value); 263 } 264 265 void TemplateTable::lconst(int value) 266 { 267 __ mov(r0, value); 268 } 269 270 void TemplateTable::fconst(int value) 271 { 272 transition(vtos, ftos); 273 switch (value) { 274 case 0: 275 __ fmovs(v0, 0.0); 276 break; 277 case 1: 278 __ fmovs(v0, 1.0); 279 break; 280 case 2: 281 __ fmovs(v0, 2.0); 282 break; 283 default: 284 ShouldNotReachHere(); 285 break; 286 } 287 } 288 289 void TemplateTable::dconst(int value) 290 { 291 transition(vtos, dtos); 292 switch (value) { 293 case 0: 294 __ fmovd(v0, 0.0); 295 break; 296 case 1: 297 __ fmovd(v0, 1.0); 298 break; 299 case 2: 300 __ fmovd(v0, 2.0); 301 break; 302 default: 303 ShouldNotReachHere(); 304 break; 305 } 306 } 307 308 void TemplateTable::bipush() 309 { 310 transition(vtos, itos); 311 __ load_signed_byte32(r0, at_bcp(1)); 312 } 313 314 void TemplateTable::sipush() 315 { 316 transition(vtos, itos); 317 __ load_unsigned_short(r0, at_bcp(1)); 318 __ revw(r0, r0); 319 __ asrw(r0, r0, 16); 320 } 321 322 void TemplateTable::ldc(LdcType type) 323 { 324 transition(vtos, vtos); 325 Label call_ldc, notFloat, notClass, notInt, Done; 326 327 if (is_ldc_wide(type)) { 328 __ get_unsigned_2_byte_index_at_bcp(r1, 1); 329 } else { 330 __ load_unsigned_byte(r1, at_bcp(1)); 331 } 332 __ get_cpool_and_tags(r2, r0); 333 334 const int base_offset = ConstantPool::header_size() * wordSize; 335 const int tags_offset = Array<u1>::base_offset_in_bytes(); 336 337 // get type 338 __ add(r3, r1, tags_offset); 339 __ lea(r3, Address(r0, r3)); 340 __ ldarb(r3, r3); 341 342 // unresolved class - get the resolved class 343 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClass); 344 __ br(Assembler::EQ, call_ldc); 345 346 // unresolved class in error state - call into runtime to throw the error 347 // from the first resolution attempt 348 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClassInError); 349 __ br(Assembler::EQ, call_ldc); 350 351 // resolved class - need to call vm to get java mirror of the class 352 __ cmp(r3, (u1)JVM_CONSTANT_Class); 353 __ br(Assembler::NE, notClass); 354 355 __ load_resolved_klass_at_offset(r2, r1, r3, rscratch1); // kills r3=tag 356 357 __ cmp(r3, zr); // resolved_klass ?= null 358 __ br(Assembler::EQ, call_ldc); 359 360 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 361 __ ldr(r3, Address(r3, mirror_offset)); 362 __ resolve_oop_handle(r3, rscratch1, rscratch2); 363 __ push_ptr(r3); 364 365 __ b(Done); 366 367 __ bind(call_ldc); 368 __ mov(c_rarg1, is_ldc_wide(type) ? 1 : 0); 369 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); 370 __ push_ptr(r0); 371 __ verify_oop(r0); 372 __ b(Done); 373 374 __ bind(notClass); 375 __ cmp(r3, (u1)JVM_CONSTANT_Float); 376 __ br(Assembler::NE, notFloat); 377 // ftos 378 __ adds(r1, r2, r1, Assembler::LSL, 3); 379 __ ldrs(v0, Address(r1, base_offset)); 380 __ push_f(); 381 __ b(Done); 382 383 __ bind(notFloat); 384 385 __ cmp(r3, (u1)JVM_CONSTANT_Integer); 386 __ br(Assembler::NE, notInt); 387 388 // itos 389 __ adds(r1, r2, r1, Assembler::LSL, 3); 390 __ ldrw(r0, Address(r1, base_offset)); 391 __ push_i(r0); 392 __ b(Done); 393 394 __ bind(notInt); 395 condy_helper(Done); 396 397 __ bind(Done); 398 } 399 400 // Fast path for caching oop constants. 401 void TemplateTable::fast_aldc(LdcType type) 402 { 403 transition(vtos, atos); 404 405 Register result = r0; 406 Register tmp = r1; 407 Register rarg = r2; 408 409 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 410 411 Label resolved; 412 413 // We are resolved if the resolved reference cache entry contains a 414 // non-null object (String, MethodType, etc.) 415 assert_different_registers(result, tmp); 416 __ get_cache_index_at_bcp(tmp, 1, index_size); 417 __ load_resolved_reference_at_index(result, tmp); 418 __ cbnz(result, resolved); 419 420 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 421 422 // first time invocation - must resolve first 423 __ mov(rarg, (int)bytecode()); 424 __ call_VM(result, entry, rarg); 425 426 __ bind(resolved); 427 428 { // Check for the null sentinel. 429 // If we just called the VM, it already did the mapping for us, 430 // but it's harmless to retry. 431 Label notNull; 432 433 // Stash null_sentinel address to get its value later 434 __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr()); 435 __ ldr(tmp, Address(rarg)); 436 __ resolve_oop_handle(tmp, r5, rscratch2); 437 __ cmpoop(result, tmp); 438 __ br(Assembler::NE, notNull); 439 __ mov(result, 0); // null object reference 440 __ bind(notNull); 441 } 442 443 if (VerifyOops) { 444 // Safe to call with 0 result 445 __ verify_oop(result); 446 } 447 } 448 449 void TemplateTable::ldc2_w() 450 { 451 transition(vtos, vtos); 452 Label notDouble, notLong, Done; 453 __ get_unsigned_2_byte_index_at_bcp(r0, 1); 454 455 __ get_cpool_and_tags(r1, r2); 456 const int base_offset = ConstantPool::header_size() * wordSize; 457 const int tags_offset = Array<u1>::base_offset_in_bytes(); 458 459 // get type 460 __ lea(r2, Address(r2, r0, Address::lsl(0))); 461 __ load_unsigned_byte(r2, Address(r2, tags_offset)); 462 __ cmpw(r2, (int)JVM_CONSTANT_Double); 463 __ br(Assembler::NE, notDouble); 464 465 // dtos 466 __ lea (r2, Address(r1, r0, Address::lsl(3))); 467 __ ldrd(v0, Address(r2, base_offset)); 468 __ push_d(); 469 __ b(Done); 470 471 __ bind(notDouble); 472 __ cmpw(r2, (int)JVM_CONSTANT_Long); 473 __ br(Assembler::NE, notLong); 474 475 // ltos 476 __ lea(r0, Address(r1, r0, Address::lsl(3))); 477 __ ldr(r0, Address(r0, base_offset)); 478 __ push_l(); 479 __ b(Done); 480 481 __ bind(notLong); 482 condy_helper(Done); 483 484 __ bind(Done); 485 } 486 487 void TemplateTable::condy_helper(Label& Done) 488 { 489 Register obj = r0; 490 Register rarg = r1; 491 Register flags = r2; 492 Register off = r3; 493 494 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 495 496 __ mov(rarg, (int) bytecode()); 497 __ call_VM(obj, entry, rarg); 498 499 __ get_vm_result_metadata(flags, rthread); 500 501 // VMr = obj = base address to find primitive value to push 502 // VMr2 = flags = (tos, off) using format of CPCE::_flags 503 __ mov(off, flags); 504 __ andw(off, off, ConstantPoolCache::field_index_mask); 505 506 const Address field(obj, off); 507 508 // What sort of thing are we loading? 509 // x86 uses a shift and mask or wings it with a shift plus assert 510 // the mask is not needed. aarch64 just uses bitfield extract 511 __ ubfxw(flags, flags, ConstantPoolCache::tos_state_shift, 512 ConstantPoolCache::tos_state_bits); 513 514 switch (bytecode()) { 515 case Bytecodes::_ldc: 516 case Bytecodes::_ldc_w: 517 { 518 // tos in (itos, ftos, stos, btos, ctos, ztos) 519 Label notInt, notFloat, notShort, notByte, notChar, notBool; 520 __ cmpw(flags, itos); 521 __ br(Assembler::NE, notInt); 522 // itos 523 __ ldrw(r0, field); 524 __ push(itos); 525 __ b(Done); 526 527 __ bind(notInt); 528 __ cmpw(flags, ftos); 529 __ br(Assembler::NE, notFloat); 530 // ftos 531 __ load_float(field); 532 __ push(ftos); 533 __ b(Done); 534 535 __ bind(notFloat); 536 __ cmpw(flags, stos); 537 __ br(Assembler::NE, notShort); 538 // stos 539 __ load_signed_short(r0, field); 540 __ push(stos); 541 __ b(Done); 542 543 __ bind(notShort); 544 __ cmpw(flags, btos); 545 __ br(Assembler::NE, notByte); 546 // btos 547 __ load_signed_byte(r0, field); 548 __ push(btos); 549 __ b(Done); 550 551 __ bind(notByte); 552 __ cmpw(flags, ctos); 553 __ br(Assembler::NE, notChar); 554 // ctos 555 __ load_unsigned_short(r0, field); 556 __ push(ctos); 557 __ b(Done); 558 559 __ bind(notChar); 560 __ cmpw(flags, ztos); 561 __ br(Assembler::NE, notBool); 562 // ztos 563 __ load_signed_byte(r0, field); 564 __ push(ztos); 565 __ b(Done); 566 567 __ bind(notBool); 568 break; 569 } 570 571 case Bytecodes::_ldc2_w: 572 { 573 Label notLong, notDouble; 574 __ cmpw(flags, ltos); 575 __ br(Assembler::NE, notLong); 576 // ltos 577 __ ldr(r0, field); 578 __ push(ltos); 579 __ b(Done); 580 581 __ bind(notLong); 582 __ cmpw(flags, dtos); 583 __ br(Assembler::NE, notDouble); 584 // dtos 585 __ load_double(field); 586 __ push(dtos); 587 __ b(Done); 588 589 __ bind(notDouble); 590 break; 591 } 592 593 default: 594 ShouldNotReachHere(); 595 } 596 597 __ stop("bad ldc/condy"); 598 } 599 600 void TemplateTable::locals_index(Register reg, int offset) 601 { 602 __ ldrb(reg, at_bcp(offset)); 603 __ neg(reg, reg); 604 } 605 606 void TemplateTable::iload() { 607 iload_internal(); 608 } 609 610 void TemplateTable::nofast_iload() { 611 iload_internal(may_not_rewrite); 612 } 613 614 void TemplateTable::iload_internal(RewriteControl rc) { 615 transition(vtos, itos); 616 if (RewriteFrequentPairs && rc == may_rewrite) { 617 Label rewrite, done; 618 Register bc = r4; 619 620 // get next bytecode 621 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 622 623 // if _iload, wait to rewrite to iload2. We only want to rewrite the 624 // last two iloads in a pair. Comparing against fast_iload means that 625 // the next bytecode is neither an iload or a caload, and therefore 626 // an iload pair. 627 __ cmpw(r1, Bytecodes::_iload); 628 __ br(Assembler::EQ, done); 629 630 // if _fast_iload rewrite to _fast_iload2 631 __ cmpw(r1, Bytecodes::_fast_iload); 632 __ movw(bc, Bytecodes::_fast_iload2); 633 __ br(Assembler::EQ, rewrite); 634 635 // if _caload rewrite to _fast_icaload 636 __ cmpw(r1, Bytecodes::_caload); 637 __ movw(bc, Bytecodes::_fast_icaload); 638 __ br(Assembler::EQ, rewrite); 639 640 // else rewrite to _fast_iload 641 __ movw(bc, Bytecodes::_fast_iload); 642 643 // rewrite 644 // bc: new bytecode 645 __ bind(rewrite); 646 patch_bytecode(Bytecodes::_iload, bc, r1, false); 647 __ bind(done); 648 649 } 650 651 // do iload, get the local value into tos 652 locals_index(r1); 653 __ ldr(r0, iaddress(r1)); 654 655 } 656 657 void TemplateTable::fast_iload2() 658 { 659 transition(vtos, itos); 660 locals_index(r1); 661 __ ldr(r0, iaddress(r1)); 662 __ push(itos); 663 locals_index(r1, 3); 664 __ ldr(r0, iaddress(r1)); 665 } 666 667 void TemplateTable::fast_iload() 668 { 669 transition(vtos, itos); 670 locals_index(r1); 671 __ ldr(r0, iaddress(r1)); 672 } 673 674 void TemplateTable::lload() 675 { 676 transition(vtos, ltos); 677 __ ldrb(r1, at_bcp(1)); 678 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 679 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 680 } 681 682 void TemplateTable::fload() 683 { 684 transition(vtos, ftos); 685 locals_index(r1); 686 // n.b. we use ldrd here because this is a 64 bit slot 687 // this is comparable to the iload case 688 __ ldrd(v0, faddress(r1)); 689 } 690 691 void TemplateTable::dload() 692 { 693 transition(vtos, dtos); 694 __ ldrb(r1, at_bcp(1)); 695 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 696 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 697 } 698 699 void TemplateTable::aload() 700 { 701 transition(vtos, atos); 702 locals_index(r1); 703 __ ldr(r0, iaddress(r1)); 704 } 705 706 void TemplateTable::locals_index_wide(Register reg) { 707 __ ldrh(reg, at_bcp(2)); 708 __ rev16w(reg, reg); 709 __ neg(reg, reg); 710 } 711 712 void TemplateTable::wide_iload() { 713 transition(vtos, itos); 714 locals_index_wide(r1); 715 __ ldr(r0, iaddress(r1)); 716 } 717 718 void TemplateTable::wide_lload() 719 { 720 transition(vtos, ltos); 721 __ ldrh(r1, at_bcp(2)); 722 __ rev16w(r1, r1); 723 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 724 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 725 } 726 727 void TemplateTable::wide_fload() 728 { 729 transition(vtos, ftos); 730 locals_index_wide(r1); 731 // n.b. we use ldrd here because this is a 64 bit slot 732 // this is comparable to the iload case 733 __ ldrd(v0, faddress(r1)); 734 } 735 736 void TemplateTable::wide_dload() 737 { 738 transition(vtos, dtos); 739 __ ldrh(r1, at_bcp(2)); 740 __ rev16w(r1, r1); 741 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 742 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 743 } 744 745 void TemplateTable::wide_aload() 746 { 747 transition(vtos, atos); 748 locals_index_wide(r1); 749 __ ldr(r0, aaddress(r1)); 750 } 751 752 void TemplateTable::index_check(Register array, Register index) 753 { 754 // destroys r1, rscratch1 755 // sign extend index for use by indexed load 756 // __ movl2ptr(index, index); 757 // check index 758 Register length = rscratch1; 759 __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes())); 760 __ cmpw(index, length); 761 if (index != r1) { 762 // ??? convention: move aberrant index into r1 for exception message 763 assert(r1 != array, "different registers"); 764 __ mov(r1, index); 765 } 766 Label ok; 767 __ br(Assembler::LO, ok); 768 // ??? convention: move array into r3 for exception message 769 __ mov(r3, array); 770 __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 771 __ br(rscratch1); 772 __ bind(ok); 773 } 774 775 void TemplateTable::iaload() 776 { 777 transition(itos, itos); 778 __ mov(r1, r0); 779 __ pop_ptr(r0); 780 // r0: array 781 // r1: index 782 index_check(r0, r1); // leaves index in r1, kills rscratch1 783 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 784 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg); 785 } 786 787 void TemplateTable::laload() 788 { 789 transition(itos, ltos); 790 __ mov(r1, r0); 791 __ pop_ptr(r0); 792 // r0: array 793 // r1: index 794 index_check(r0, r1); // leaves index in r1, kills rscratch1 795 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 796 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg); 797 } 798 799 void TemplateTable::faload() 800 { 801 transition(itos, ftos); 802 __ mov(r1, r0); 803 __ pop_ptr(r0); 804 // r0: array 805 // r1: index 806 index_check(r0, r1); // leaves index in r1, kills rscratch1 807 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 808 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg); 809 } 810 811 void TemplateTable::daload() 812 { 813 transition(itos, dtos); 814 __ mov(r1, r0); 815 __ pop_ptr(r0); 816 // r0: array 817 // r1: index 818 index_check(r0, r1); // leaves index in r1, kills rscratch1 819 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 820 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg); 821 } 822 823 void TemplateTable::aaload() 824 { 825 transition(itos, atos); 826 __ mov(r1, r0); 827 __ pop_ptr(r0); 828 // r0: array 829 // r1: index 830 index_check(r0, r1); // leaves index in r1, kills rscratch1 831 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 832 do_oop_load(_masm, 833 Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), 834 r0, 835 IS_ARRAY); 836 } 837 838 void TemplateTable::baload() 839 { 840 transition(itos, itos); 841 __ mov(r1, r0); 842 __ pop_ptr(r0); 843 // r0: array 844 // r1: index 845 index_check(r0, r1); // leaves index in r1, kills rscratch1 846 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 847 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg); 848 } 849 850 void TemplateTable::caload() 851 { 852 transition(itos, itos); 853 __ mov(r1, r0); 854 __ pop_ptr(r0); 855 // r0: array 856 // r1: index 857 index_check(r0, r1); // leaves index in r1, kills rscratch1 858 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 859 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 860 } 861 862 // iload followed by caload frequent pair 863 void TemplateTable::fast_icaload() 864 { 865 transition(vtos, itos); 866 // load index out of locals 867 locals_index(r2); 868 __ ldr(r1, iaddress(r2)); 869 870 __ pop_ptr(r0); 871 872 // r0: array 873 // r1: index 874 index_check(r0, r1); // leaves index in r1, kills rscratch1 875 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 876 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 877 } 878 879 void TemplateTable::saload() 880 { 881 transition(itos, itos); 882 __ mov(r1, r0); 883 __ pop_ptr(r0); 884 // r0: array 885 // r1: index 886 index_check(r0, r1); // leaves index in r1, kills rscratch1 887 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1); 888 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 889 } 890 891 void TemplateTable::iload(int n) 892 { 893 transition(vtos, itos); 894 __ ldr(r0, iaddress(n)); 895 } 896 897 void TemplateTable::lload(int n) 898 { 899 transition(vtos, ltos); 900 __ ldr(r0, laddress(n)); 901 } 902 903 void TemplateTable::fload(int n) 904 { 905 transition(vtos, ftos); 906 __ ldrs(v0, faddress(n)); 907 } 908 909 void TemplateTable::dload(int n) 910 { 911 transition(vtos, dtos); 912 __ ldrd(v0, daddress(n)); 913 } 914 915 void TemplateTable::aload(int n) 916 { 917 transition(vtos, atos); 918 __ ldr(r0, iaddress(n)); 919 } 920 921 void TemplateTable::aload_0() { 922 aload_0_internal(); 923 } 924 925 void TemplateTable::nofast_aload_0() { 926 aload_0_internal(may_not_rewrite); 927 } 928 929 void TemplateTable::aload_0_internal(RewriteControl rc) { 930 // According to bytecode histograms, the pairs: 931 // 932 // _aload_0, _fast_igetfield 933 // _aload_0, _fast_agetfield 934 // _aload_0, _fast_fgetfield 935 // 936 // occur frequently. If RewriteFrequentPairs is set, the (slow) 937 // _aload_0 bytecode checks if the next bytecode is either 938 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 939 // rewrites the current bytecode into a pair bytecode; otherwise it 940 // rewrites the current bytecode into _fast_aload_0 that doesn't do 941 // the pair check anymore. 942 // 943 // Note: If the next bytecode is _getfield, the rewrite must be 944 // delayed, otherwise we may miss an opportunity for a pair. 945 // 946 // Also rewrite frequent pairs 947 // aload_0, aload_1 948 // aload_0, iload_1 949 // These bytecodes with a small amount of code are most profitable 950 // to rewrite 951 if (RewriteFrequentPairs && rc == may_rewrite) { 952 Label rewrite, done; 953 const Register bc = r4; 954 955 // get next bytecode 956 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 957 958 // if _getfield then wait with rewrite 959 __ cmpw(r1, Bytecodes::Bytecodes::_getfield); 960 __ br(Assembler::EQ, done); 961 962 // if _igetfield then rewrite to _fast_iaccess_0 963 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 964 __ cmpw(r1, Bytecodes::_fast_igetfield); 965 __ movw(bc, Bytecodes::_fast_iaccess_0); 966 __ br(Assembler::EQ, rewrite); 967 968 // if _agetfield then rewrite to _fast_aaccess_0 969 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 970 __ cmpw(r1, Bytecodes::_fast_agetfield); 971 __ movw(bc, Bytecodes::_fast_aaccess_0); 972 __ br(Assembler::EQ, rewrite); 973 974 // if _fgetfield then rewrite to _fast_faccess_0 975 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 976 __ cmpw(r1, Bytecodes::_fast_fgetfield); 977 __ movw(bc, Bytecodes::_fast_faccess_0); 978 __ br(Assembler::EQ, rewrite); 979 980 // else rewrite to _fast_aload0 981 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 982 __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0); 983 984 // rewrite 985 // bc: new bytecode 986 __ bind(rewrite); 987 patch_bytecode(Bytecodes::_aload_0, bc, r1, false); 988 989 __ bind(done); 990 } 991 992 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 993 aload(0); 994 } 995 996 void TemplateTable::istore() 997 { 998 transition(itos, vtos); 999 locals_index(r1); 1000 // FIXME: We're being very pernickerty here storing a jint in a 1001 // local with strw, which costs an extra instruction over what we'd 1002 // be able to do with a simple str. We should just store the whole 1003 // word. 1004 __ lea(rscratch1, iaddress(r1)); 1005 __ strw(r0, Address(rscratch1)); 1006 } 1007 1008 void TemplateTable::lstore() 1009 { 1010 transition(ltos, vtos); 1011 locals_index(r1); 1012 __ str(r0, laddress(r1, rscratch1, _masm)); 1013 } 1014 1015 void TemplateTable::fstore() { 1016 transition(ftos, vtos); 1017 locals_index(r1); 1018 __ lea(rscratch1, iaddress(r1)); 1019 __ strs(v0, Address(rscratch1)); 1020 } 1021 1022 void TemplateTable::dstore() { 1023 transition(dtos, vtos); 1024 locals_index(r1); 1025 __ strd(v0, daddress(r1, rscratch1, _masm)); 1026 } 1027 1028 void TemplateTable::astore() 1029 { 1030 transition(vtos, vtos); 1031 __ pop_ptr(r0); 1032 locals_index(r1); 1033 __ str(r0, aaddress(r1)); 1034 } 1035 1036 void TemplateTable::wide_istore() { 1037 transition(vtos, vtos); 1038 __ pop_i(); 1039 locals_index_wide(r1); 1040 __ lea(rscratch1, iaddress(r1)); 1041 __ strw(r0, Address(rscratch1)); 1042 } 1043 1044 void TemplateTable::wide_lstore() { 1045 transition(vtos, vtos); 1046 __ pop_l(); 1047 locals_index_wide(r1); 1048 __ str(r0, laddress(r1, rscratch1, _masm)); 1049 } 1050 1051 void TemplateTable::wide_fstore() { 1052 transition(vtos, vtos); 1053 __ pop_f(); 1054 locals_index_wide(r1); 1055 __ lea(rscratch1, faddress(r1)); 1056 __ strs(v0, rscratch1); 1057 } 1058 1059 void TemplateTable::wide_dstore() { 1060 transition(vtos, vtos); 1061 __ pop_d(); 1062 locals_index_wide(r1); 1063 __ strd(v0, daddress(r1, rscratch1, _masm)); 1064 } 1065 1066 void TemplateTable::wide_astore() { 1067 transition(vtos, vtos); 1068 __ pop_ptr(r0); 1069 locals_index_wide(r1); 1070 __ str(r0, aaddress(r1)); 1071 } 1072 1073 void TemplateTable::iastore() { 1074 transition(itos, vtos); 1075 __ pop_i(r1); 1076 __ pop_ptr(r3); 1077 // r0: value 1078 // r1: index 1079 // r3: array 1080 index_check(r3, r1); // prefer index in r1 1081 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 1082 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), r0, noreg, noreg, noreg); 1083 } 1084 1085 void TemplateTable::lastore() { 1086 transition(ltos, vtos); 1087 __ pop_i(r1); 1088 __ pop_ptr(r3); 1089 // r0: value 1090 // r1: index 1091 // r3: array 1092 index_check(r3, r1); // prefer index in r1 1093 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 1094 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), r0, noreg, noreg, noreg); 1095 } 1096 1097 void TemplateTable::fastore() { 1098 transition(ftos, vtos); 1099 __ pop_i(r1); 1100 __ pop_ptr(r3); 1101 // v0: value 1102 // r1: index 1103 // r3: array 1104 index_check(r3, r1); // prefer index in r1 1105 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 1106 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg); 1107 } 1108 1109 void TemplateTable::dastore() { 1110 transition(dtos, vtos); 1111 __ pop_i(r1); 1112 __ pop_ptr(r3); 1113 // v0: value 1114 // r1: index 1115 // r3: array 1116 index_check(r3, r1); // prefer index in r1 1117 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 1118 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg); 1119 } 1120 1121 void TemplateTable::aastore() { 1122 Label is_null, ok_is_subtype, done; 1123 transition(vtos, vtos); 1124 // stack: ..., array, index, value 1125 __ ldr(r0, at_tos()); // value 1126 __ ldr(r2, at_tos_p1()); // index 1127 __ ldr(r3, at_tos_p2()); // array 1128 1129 Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop)); 1130 1131 index_check(r3, r2); // kills r1 1132 __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 1133 1134 // do array store check - check for null value first 1135 __ cbz(r0, is_null); 1136 1137 // Move subklass into r1 1138 __ load_klass(r1, r0); 1139 // Move superklass into r0 1140 __ load_klass(r0, r3); 1141 __ ldr(r0, Address(r0, 1142 ObjArrayKlass::element_klass_offset())); 1143 // Compress array + index*oopSize + 12 into a single register. Frees r2. 1144 1145 // Generate subtype check. Blows r2, r5 1146 // Superklass in r0. Subklass in r1. 1147 __ gen_subtype_check(r1, ok_is_subtype); 1148 1149 // Come here on failure 1150 // object is at TOS 1151 __ b(Interpreter::_throw_ArrayStoreException_entry); 1152 1153 // Come here on success 1154 __ bind(ok_is_subtype); 1155 1156 // Get the value we will store 1157 __ ldr(r0, at_tos()); 1158 // Now store using the appropriate barrier 1159 // Clobbers: r10, r11, r3 1160 do_oop_store(_masm, element_address, r0, IS_ARRAY); 1161 __ b(done); 1162 1163 // Have a null in r0, r3=array, r2=index. Store null at ary[idx] 1164 __ bind(is_null); 1165 __ profile_null_seen(r2); 1166 1167 // Store a null 1168 // Clobbers: r10, r11, r3 1169 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1170 1171 // Pop stack arguments 1172 __ bind(done); 1173 __ add(esp, esp, 3 * Interpreter::stackElementSize); 1174 } 1175 1176 void TemplateTable::bastore() 1177 { 1178 transition(itos, vtos); 1179 __ pop_i(r1); 1180 __ pop_ptr(r3); 1181 // r0: value 1182 // r1: index 1183 // r3: array 1184 index_check(r3, r1); // prefer index in r1 1185 1186 // Need to check whether array is boolean or byte 1187 // since both types share the bastore bytecode. 1188 __ load_klass(r2, r3); 1189 __ ldrw(r2, Address(r2, Klass::layout_helper_offset())); 1190 int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit()); 1191 Label L_skip; 1192 __ tbz(r2, diffbit_index, L_skip); 1193 __ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1194 __ bind(L_skip); 1195 1196 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 1197 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(0)), r0, noreg, noreg, noreg); 1198 } 1199 1200 void TemplateTable::castore() 1201 { 1202 transition(itos, vtos); 1203 __ pop_i(r1); 1204 __ pop_ptr(r3); 1205 // r0: value 1206 // r1: index 1207 // r3: array 1208 index_check(r3, r1); // prefer index in r1 1209 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 1210 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(1)), r0, noreg, noreg, noreg); 1211 } 1212 1213 void TemplateTable::sastore() 1214 { 1215 castore(); 1216 } 1217 1218 void TemplateTable::istore(int n) 1219 { 1220 transition(itos, vtos); 1221 __ str(r0, iaddress(n)); 1222 } 1223 1224 void TemplateTable::lstore(int n) 1225 { 1226 transition(ltos, vtos); 1227 __ str(r0, laddress(n)); 1228 } 1229 1230 void TemplateTable::fstore(int n) 1231 { 1232 transition(ftos, vtos); 1233 __ strs(v0, faddress(n)); 1234 } 1235 1236 void TemplateTable::dstore(int n) 1237 { 1238 transition(dtos, vtos); 1239 __ strd(v0, daddress(n)); 1240 } 1241 1242 void TemplateTable::astore(int n) 1243 { 1244 transition(vtos, vtos); 1245 __ pop_ptr(r0); 1246 __ str(r0, iaddress(n)); 1247 } 1248 1249 void TemplateTable::pop() 1250 { 1251 transition(vtos, vtos); 1252 __ add(esp, esp, Interpreter::stackElementSize); 1253 } 1254 1255 void TemplateTable::pop2() 1256 { 1257 transition(vtos, vtos); 1258 __ add(esp, esp, 2 * Interpreter::stackElementSize); 1259 } 1260 1261 void TemplateTable::dup() 1262 { 1263 transition(vtos, vtos); 1264 __ ldr(r0, Address(esp, 0)); 1265 __ push(r0); 1266 // stack: ..., a, a 1267 } 1268 1269 void TemplateTable::dup_x1() 1270 { 1271 transition(vtos, vtos); 1272 // stack: ..., a, b 1273 __ ldr(r0, at_tos()); // load b 1274 __ ldr(r2, at_tos_p1()); // load a 1275 __ str(r0, at_tos_p1()); // store b 1276 __ str(r2, at_tos()); // store a 1277 __ push(r0); // push b 1278 // stack: ..., b, a, b 1279 } 1280 1281 void TemplateTable::dup_x2() 1282 { 1283 transition(vtos, vtos); 1284 // stack: ..., a, b, c 1285 __ ldr(r0, at_tos()); // load c 1286 __ ldr(r2, at_tos_p2()); // load a 1287 __ str(r0, at_tos_p2()); // store c in a 1288 __ push(r0); // push c 1289 // stack: ..., c, b, c, c 1290 __ ldr(r0, at_tos_p2()); // load b 1291 __ str(r2, at_tos_p2()); // store a in b 1292 // stack: ..., c, a, c, c 1293 __ str(r0, at_tos_p1()); // store b in c 1294 // stack: ..., c, a, b, c 1295 } 1296 1297 void TemplateTable::dup2() 1298 { 1299 transition(vtos, vtos); 1300 // stack: ..., a, b 1301 __ ldr(r0, at_tos_p1()); // load a 1302 __ push(r0); // push a 1303 __ ldr(r0, at_tos_p1()); // load b 1304 __ push(r0); // push b 1305 // stack: ..., a, b, a, b 1306 } 1307 1308 void TemplateTable::dup2_x1() 1309 { 1310 transition(vtos, vtos); 1311 // stack: ..., a, b, c 1312 __ ldr(r2, at_tos()); // load c 1313 __ ldr(r0, at_tos_p1()); // load b 1314 __ push(r0); // push b 1315 __ push(r2); // push c 1316 // stack: ..., a, b, c, b, c 1317 __ str(r2, at_tos_p3()); // store c in b 1318 // stack: ..., a, c, c, b, c 1319 __ ldr(r2, at_tos_p4()); // load a 1320 __ str(r2, at_tos_p2()); // store a in 2nd c 1321 // stack: ..., a, c, a, b, c 1322 __ str(r0, at_tos_p4()); // store b in a 1323 // stack: ..., b, c, a, b, c 1324 } 1325 1326 void TemplateTable::dup2_x2() 1327 { 1328 transition(vtos, vtos); 1329 // stack: ..., a, b, c, d 1330 __ ldr(r2, at_tos()); // load d 1331 __ ldr(r0, at_tos_p1()); // load c 1332 __ push(r0) ; // push c 1333 __ push(r2); // push d 1334 // stack: ..., a, b, c, d, c, d 1335 __ ldr(r0, at_tos_p4()); // load b 1336 __ str(r0, at_tos_p2()); // store b in d 1337 __ str(r2, at_tos_p4()); // store d in b 1338 // stack: ..., a, d, c, b, c, d 1339 __ ldr(r2, at_tos_p5()); // load a 1340 __ ldr(r0, at_tos_p3()); // load c 1341 __ str(r2, at_tos_p3()); // store a in c 1342 __ str(r0, at_tos_p5()); // store c in a 1343 // stack: ..., c, d, a, b, c, d 1344 } 1345 1346 void TemplateTable::swap() 1347 { 1348 transition(vtos, vtos); 1349 // stack: ..., a, b 1350 __ ldr(r2, at_tos_p1()); // load a 1351 __ ldr(r0, at_tos()); // load b 1352 __ str(r2, at_tos()); // store a in b 1353 __ str(r0, at_tos_p1()); // store b in a 1354 // stack: ..., b, a 1355 } 1356 1357 void TemplateTable::iop2(Operation op) 1358 { 1359 transition(itos, itos); 1360 // r0 <== r1 op r0 1361 __ pop_i(r1); 1362 switch (op) { 1363 case add : __ addw(r0, r1, r0); break; 1364 case sub : __ subw(r0, r1, r0); break; 1365 case mul : __ mulw(r0, r1, r0); break; 1366 case _and : __ andw(r0, r1, r0); break; 1367 case _or : __ orrw(r0, r1, r0); break; 1368 case _xor : __ eorw(r0, r1, r0); break; 1369 case shl : __ lslvw(r0, r1, r0); break; 1370 case shr : __ asrvw(r0, r1, r0); break; 1371 case ushr : __ lsrvw(r0, r1, r0);break; 1372 default : ShouldNotReachHere(); 1373 } 1374 } 1375 1376 void TemplateTable::lop2(Operation op) 1377 { 1378 transition(ltos, ltos); 1379 // r0 <== r1 op r0 1380 __ pop_l(r1); 1381 switch (op) { 1382 case add : __ add(r0, r1, r0); break; 1383 case sub : __ sub(r0, r1, r0); break; 1384 case mul : __ mul(r0, r1, r0); break; 1385 case _and : __ andr(r0, r1, r0); break; 1386 case _or : __ orr(r0, r1, r0); break; 1387 case _xor : __ eor(r0, r1, r0); break; 1388 default : ShouldNotReachHere(); 1389 } 1390 } 1391 1392 void TemplateTable::idiv() 1393 { 1394 transition(itos, itos); 1395 // explicitly check for div0 1396 Label no_div0; 1397 __ cbnzw(r0, no_div0); 1398 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1399 __ br(rscratch1); 1400 __ bind(no_div0); 1401 __ pop_i(r1); 1402 // r0 <== r1 idiv r0 1403 __ corrected_idivl(r0, r1, r0, /* want_remainder */ false); 1404 } 1405 1406 void TemplateTable::irem() 1407 { 1408 transition(itos, itos); 1409 // explicitly check for div0 1410 Label no_div0; 1411 __ cbnzw(r0, no_div0); 1412 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1413 __ br(rscratch1); 1414 __ bind(no_div0); 1415 __ pop_i(r1); 1416 // r0 <== r1 irem r0 1417 __ corrected_idivl(r0, r1, r0, /* want_remainder */ true); 1418 } 1419 1420 void TemplateTable::lmul() 1421 { 1422 transition(ltos, ltos); 1423 __ pop_l(r1); 1424 __ mul(r0, r0, r1); 1425 } 1426 1427 void TemplateTable::ldiv() 1428 { 1429 transition(ltos, ltos); 1430 // explicitly check for div0 1431 Label no_div0; 1432 __ cbnz(r0, no_div0); 1433 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1434 __ br(rscratch1); 1435 __ bind(no_div0); 1436 __ pop_l(r1); 1437 // r0 <== r1 ldiv r0 1438 __ corrected_idivq(r0, r1, r0, /* want_remainder */ false); 1439 } 1440 1441 void TemplateTable::lrem() 1442 { 1443 transition(ltos, ltos); 1444 // explicitly check for div0 1445 Label no_div0; 1446 __ cbnz(r0, no_div0); 1447 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1448 __ br(rscratch1); 1449 __ bind(no_div0); 1450 __ pop_l(r1); 1451 // r0 <== r1 lrem r0 1452 __ corrected_idivq(r0, r1, r0, /* want_remainder */ true); 1453 } 1454 1455 void TemplateTable::lshl() 1456 { 1457 transition(itos, ltos); 1458 // shift count is in r0 1459 __ pop_l(r1); 1460 __ lslv(r0, r1, r0); 1461 } 1462 1463 void TemplateTable::lshr() 1464 { 1465 transition(itos, ltos); 1466 // shift count is in r0 1467 __ pop_l(r1); 1468 __ asrv(r0, r1, r0); 1469 } 1470 1471 void TemplateTable::lushr() 1472 { 1473 transition(itos, ltos); 1474 // shift count is in r0 1475 __ pop_l(r1); 1476 __ lsrv(r0, r1, r0); 1477 } 1478 1479 void TemplateTable::fop2(Operation op) 1480 { 1481 transition(ftos, ftos); 1482 switch (op) { 1483 case add: 1484 // n.b. use ldrd because this is a 64 bit slot 1485 __ pop_f(v1); 1486 __ fadds(v0, v1, v0); 1487 break; 1488 case sub: 1489 __ pop_f(v1); 1490 __ fsubs(v0, v1, v0); 1491 break; 1492 case mul: 1493 __ pop_f(v1); 1494 __ fmuls(v0, v1, v0); 1495 break; 1496 case div: 1497 __ pop_f(v1); 1498 __ fdivs(v0, v1, v0); 1499 break; 1500 case rem: 1501 __ fmovs(v1, v0); 1502 __ pop_f(v0); 1503 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem)); 1504 break; 1505 default: 1506 ShouldNotReachHere(); 1507 break; 1508 } 1509 } 1510 1511 void TemplateTable::dop2(Operation op) 1512 { 1513 transition(dtos, dtos); 1514 switch (op) { 1515 case add: 1516 // n.b. use ldrd because this is a 64 bit slot 1517 __ pop_d(v1); 1518 __ faddd(v0, v1, v0); 1519 break; 1520 case sub: 1521 __ pop_d(v1); 1522 __ fsubd(v0, v1, v0); 1523 break; 1524 case mul: 1525 __ pop_d(v1); 1526 __ fmuld(v0, v1, v0); 1527 break; 1528 case div: 1529 __ pop_d(v1); 1530 __ fdivd(v0, v1, v0); 1531 break; 1532 case rem: 1533 __ fmovd(v1, v0); 1534 __ pop_d(v0); 1535 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem)); 1536 break; 1537 default: 1538 ShouldNotReachHere(); 1539 break; 1540 } 1541 } 1542 1543 void TemplateTable::ineg() 1544 { 1545 transition(itos, itos); 1546 __ negw(r0, r0); 1547 1548 } 1549 1550 void TemplateTable::lneg() 1551 { 1552 transition(ltos, ltos); 1553 __ neg(r0, r0); 1554 } 1555 1556 void TemplateTable::fneg() 1557 { 1558 transition(ftos, ftos); 1559 __ fnegs(v0, v0); 1560 } 1561 1562 void TemplateTable::dneg() 1563 { 1564 transition(dtos, dtos); 1565 __ fnegd(v0, v0); 1566 } 1567 1568 void TemplateTable::iinc() 1569 { 1570 transition(vtos, vtos); 1571 __ load_signed_byte(r1, at_bcp(2)); // get constant 1572 locals_index(r2); 1573 __ ldr(r0, iaddress(r2)); 1574 __ addw(r0, r0, r1); 1575 __ str(r0, iaddress(r2)); 1576 } 1577 1578 void TemplateTable::wide_iinc() 1579 { 1580 transition(vtos, vtos); 1581 // __ mov(r1, zr); 1582 __ ldrw(r1, at_bcp(2)); // get constant and index 1583 __ rev16(r1, r1); 1584 __ ubfx(r2, r1, 0, 16); 1585 __ neg(r2, r2); 1586 __ sbfx(r1, r1, 16, 16); 1587 __ ldr(r0, iaddress(r2)); 1588 __ addw(r0, r0, r1); 1589 __ str(r0, iaddress(r2)); 1590 } 1591 1592 void TemplateTable::convert() 1593 { 1594 // Checking 1595 #ifdef ASSERT 1596 { 1597 TosState tos_in = ilgl; 1598 TosState tos_out = ilgl; 1599 switch (bytecode()) { 1600 case Bytecodes::_i2l: // fall through 1601 case Bytecodes::_i2f: // fall through 1602 case Bytecodes::_i2d: // fall through 1603 case Bytecodes::_i2b: // fall through 1604 case Bytecodes::_i2c: // fall through 1605 case Bytecodes::_i2s: tos_in = itos; break; 1606 case Bytecodes::_l2i: // fall through 1607 case Bytecodes::_l2f: // fall through 1608 case Bytecodes::_l2d: tos_in = ltos; break; 1609 case Bytecodes::_f2i: // fall through 1610 case Bytecodes::_f2l: // fall through 1611 case Bytecodes::_f2d: tos_in = ftos; break; 1612 case Bytecodes::_d2i: // fall through 1613 case Bytecodes::_d2l: // fall through 1614 case Bytecodes::_d2f: tos_in = dtos; break; 1615 default : ShouldNotReachHere(); 1616 } 1617 switch (bytecode()) { 1618 case Bytecodes::_l2i: // fall through 1619 case Bytecodes::_f2i: // fall through 1620 case Bytecodes::_d2i: // fall through 1621 case Bytecodes::_i2b: // fall through 1622 case Bytecodes::_i2c: // fall through 1623 case Bytecodes::_i2s: tos_out = itos; break; 1624 case Bytecodes::_i2l: // fall through 1625 case Bytecodes::_f2l: // fall through 1626 case Bytecodes::_d2l: tos_out = ltos; break; 1627 case Bytecodes::_i2f: // fall through 1628 case Bytecodes::_l2f: // fall through 1629 case Bytecodes::_d2f: tos_out = ftos; break; 1630 case Bytecodes::_i2d: // fall through 1631 case Bytecodes::_l2d: // fall through 1632 case Bytecodes::_f2d: tos_out = dtos; break; 1633 default : ShouldNotReachHere(); 1634 } 1635 transition(tos_in, tos_out); 1636 } 1637 #endif // ASSERT 1638 // static const int64_t is_nan = 0x8000000000000000L; 1639 1640 // Conversion 1641 switch (bytecode()) { 1642 case Bytecodes::_i2l: 1643 __ sxtw(r0, r0); 1644 break; 1645 case Bytecodes::_i2f: 1646 __ scvtfws(v0, r0); 1647 break; 1648 case Bytecodes::_i2d: 1649 __ scvtfwd(v0, r0); 1650 break; 1651 case Bytecodes::_i2b: 1652 __ sxtbw(r0, r0); 1653 break; 1654 case Bytecodes::_i2c: 1655 __ uxthw(r0, r0); 1656 break; 1657 case Bytecodes::_i2s: 1658 __ sxthw(r0, r0); 1659 break; 1660 case Bytecodes::_l2i: 1661 __ uxtw(r0, r0); 1662 break; 1663 case Bytecodes::_l2f: 1664 __ scvtfs(v0, r0); 1665 break; 1666 case Bytecodes::_l2d: 1667 __ scvtfd(v0, r0); 1668 break; 1669 case Bytecodes::_f2i: 1670 { 1671 Label L_Okay; 1672 __ clear_fpsr(); 1673 __ fcvtzsw(r0, v0); 1674 __ get_fpsr(r1); 1675 __ cbzw(r1, L_Okay); 1676 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i)); 1677 __ bind(L_Okay); 1678 } 1679 break; 1680 case Bytecodes::_f2l: 1681 { 1682 Label L_Okay; 1683 __ clear_fpsr(); 1684 __ fcvtzs(r0, v0); 1685 __ get_fpsr(r1); 1686 __ cbzw(r1, L_Okay); 1687 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l)); 1688 __ bind(L_Okay); 1689 } 1690 break; 1691 case Bytecodes::_f2d: 1692 __ fcvts(v0, v0); 1693 break; 1694 case Bytecodes::_d2i: 1695 { 1696 Label L_Okay; 1697 __ clear_fpsr(); 1698 __ fcvtzdw(r0, v0); 1699 __ get_fpsr(r1); 1700 __ cbzw(r1, L_Okay); 1701 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i)); 1702 __ bind(L_Okay); 1703 } 1704 break; 1705 case Bytecodes::_d2l: 1706 { 1707 Label L_Okay; 1708 __ clear_fpsr(); 1709 __ fcvtzd(r0, v0); 1710 __ get_fpsr(r1); 1711 __ cbzw(r1, L_Okay); 1712 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l)); 1713 __ bind(L_Okay); 1714 } 1715 break; 1716 case Bytecodes::_d2f: 1717 __ fcvtd(v0, v0); 1718 break; 1719 default: 1720 ShouldNotReachHere(); 1721 } 1722 } 1723 1724 void TemplateTable::lcmp() 1725 { 1726 transition(ltos, itos); 1727 Label done; 1728 __ pop_l(r1); 1729 __ cmp(r1, r0); 1730 __ mov(r0, (uint64_t)-1L); 1731 __ br(Assembler::LT, done); 1732 // __ mov(r0, 1UL); 1733 // __ csel(r0, r0, zr, Assembler::NE); 1734 // and here is a faster way 1735 __ csinc(r0, zr, zr, Assembler::EQ); 1736 __ bind(done); 1737 } 1738 1739 void TemplateTable::float_cmp(bool is_float, int unordered_result) 1740 { 1741 Label done; 1742 if (is_float) { 1743 // XXX get rid of pop here, use ... reg, mem32 1744 __ pop_f(v1); 1745 __ fcmps(v1, v0); 1746 } else { 1747 // XXX get rid of pop here, use ... reg, mem64 1748 __ pop_d(v1); 1749 __ fcmpd(v1, v0); 1750 } 1751 if (unordered_result < 0) { 1752 // we want -1 for unordered or less than, 0 for equal and 1 for 1753 // greater than. 1754 __ mov(r0, (uint64_t)-1L); 1755 // for FP LT tests less than or unordered 1756 __ br(Assembler::LT, done); 1757 // install 0 for EQ otherwise 1 1758 __ csinc(r0, zr, zr, Assembler::EQ); 1759 } else { 1760 // we want -1 for less than, 0 for equal and 1 for unordered or 1761 // greater than. 1762 __ mov(r0, 1L); 1763 // for FP HI tests greater than or unordered 1764 __ br(Assembler::HI, done); 1765 // install 0 for EQ otherwise ~0 1766 __ csinv(r0, zr, zr, Assembler::EQ); 1767 1768 } 1769 __ bind(done); 1770 } 1771 1772 void TemplateTable::branch(bool is_jsr, bool is_wide) 1773 { 1774 __ profile_taken_branch(r0); 1775 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1776 InvocationCounter::counter_offset(); 1777 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1778 InvocationCounter::counter_offset(); 1779 1780 // load branch displacement 1781 if (!is_wide) { 1782 __ ldrh(r2, at_bcp(1)); 1783 __ rev16(r2, r2); 1784 // sign extend the 16 bit value in r2 1785 __ sbfm(r2, r2, 0, 15); 1786 } else { 1787 __ ldrw(r2, at_bcp(1)); 1788 __ revw(r2, r2); 1789 // sign extend the 32 bit value in r2 1790 __ sbfm(r2, r2, 0, 31); 1791 } 1792 1793 // Handle all the JSR stuff here, then exit. 1794 // It's much shorter and cleaner than intermingling with the non-JSR 1795 // normal-branch stuff occurring below. 1796 1797 if (is_jsr) { 1798 // Pre-load the next target bytecode into rscratch1 1799 __ load_unsigned_byte(rscratch1, Address(rbcp, r2)); 1800 // compute return address as bci 1801 __ ldr(rscratch2, Address(rmethod, Method::const_offset())); 1802 __ add(rscratch2, rscratch2, 1803 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3)); 1804 __ sub(r1, rbcp, rscratch2); 1805 __ push_i(r1); 1806 // Adjust the bcp by the 16-bit displacement in r2 1807 __ add(rbcp, rbcp, r2); 1808 __ dispatch_only(vtos, /*generate_poll*/true); 1809 return; 1810 } 1811 1812 // Normal (non-jsr) branch handling 1813 1814 // Adjust the bcp by the displacement in r2 1815 __ add(rbcp, rbcp, r2); 1816 1817 assert(UseLoopCounter || !UseOnStackReplacement, 1818 "on-stack-replacement requires loop counters"); 1819 Label backedge_counter_overflow; 1820 Label dispatch; 1821 if (UseLoopCounter) { 1822 // increment backedge counter for backward branches 1823 // r0: MDO 1824 // r2: target offset 1825 __ cmp(r2, zr); 1826 __ br(Assembler::GT, dispatch); // count only if backward branch 1827 1828 // ECN: FIXME: This code smells 1829 // check if MethodCounters exists 1830 Label has_counters; 1831 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1832 __ cbnz(rscratch1, has_counters); 1833 __ push(r0); 1834 __ push(r2); 1835 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 1836 InterpreterRuntime::build_method_counters), rmethod); 1837 __ pop(r2); 1838 __ pop(r0); 1839 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1840 __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory 1841 __ bind(has_counters); 1842 1843 Label no_mdo; 1844 int increment = InvocationCounter::count_increment; 1845 if (ProfileInterpreter) { 1846 // Are we profiling? 1847 __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 1848 __ cbz(r1, no_mdo); 1849 // Increment the MDO backedge counter 1850 const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) + 1851 in_bytes(InvocationCounter::counter_offset())); 1852 const Address mask(r1, in_bytes(MethodData::backedge_mask_offset())); 1853 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1854 r0, rscratch1, false, Assembler::EQ, 1855 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1856 __ b(dispatch); 1857 } 1858 __ bind(no_mdo); 1859 // Increment backedge counter in MethodCounters* 1860 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1861 const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset())); 1862 __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask, 1863 r0, rscratch2, false, Assembler::EQ, 1864 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1865 __ bind(dispatch); 1866 } 1867 1868 // Pre-load the next target bytecode into rscratch1 1869 __ load_unsigned_byte(rscratch1, Address(rbcp, 0)); 1870 1871 // continue with the bytecode @ target 1872 // rscratch1: target bytecode 1873 // rbcp: target bcp 1874 __ dispatch_only(vtos, /*generate_poll*/true); 1875 1876 if (UseLoopCounter && UseOnStackReplacement) { 1877 // invocation counter overflow 1878 __ bind(backedge_counter_overflow); 1879 __ neg(r2, r2); 1880 __ add(r2, r2, rbcp); // branch bcp 1881 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1882 __ call_VM(noreg, 1883 CAST_FROM_FN_PTR(address, 1884 InterpreterRuntime::frequency_counter_overflow), 1885 r2); 1886 __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode 1887 1888 // r0: osr nmethod (osr ok) or null (osr not possible) 1889 // w1: target bytecode 1890 // r2: scratch 1891 __ cbz(r0, dispatch); // test result -- no osr if null 1892 // nmethod may have been invalidated (VM may block upon call_VM return) 1893 __ ldrb(r2, Address(r0, nmethod::state_offset())); 1894 if (nmethod::in_use != 0) 1895 __ sub(r2, r2, nmethod::in_use); 1896 __ cbnz(r2, dispatch); 1897 1898 // We have the address of an on stack replacement routine in r0 1899 // We need to prepare to execute the OSR method. First we must 1900 // migrate the locals and monitors off of the stack. 1901 1902 __ mov(r19, r0); // save the nmethod 1903 1904 JFR_ONLY(__ enter_jfr_critical_section();) 1905 1906 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1907 1908 // r0 is OSR buffer, move it to expected parameter location 1909 __ mov(j_rarg0, r0); 1910 1911 // remove activation 1912 // get sender esp 1913 __ ldr(esp, 1914 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1915 // remove frame anchor 1916 __ leave(); 1917 1918 JFR_ONLY(__ leave_jfr_critical_section();) 1919 1920 // Ensure compiled code always sees stack at proper alignment 1921 __ andr(sp, esp, -16); 1922 1923 // and begin the OSR nmethod 1924 __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset())); 1925 __ br(rscratch1); 1926 } 1927 } 1928 1929 1930 void TemplateTable::if_0cmp(Condition cc) 1931 { 1932 transition(itos, vtos); 1933 // assume branch is more often taken than not (loops use backward branches) 1934 Label not_taken; 1935 if (cc == equal) 1936 __ cbnzw(r0, not_taken); 1937 else if (cc == not_equal) 1938 __ cbzw(r0, not_taken); 1939 else { 1940 __ andsw(zr, r0, r0); 1941 __ br(j_not(cc), not_taken); 1942 } 1943 1944 branch(false, false); 1945 __ bind(not_taken); 1946 __ profile_not_taken_branch(r0); 1947 } 1948 1949 void TemplateTable::if_icmp(Condition cc) 1950 { 1951 transition(itos, vtos); 1952 // assume branch is more often taken than not (loops use backward branches) 1953 Label not_taken; 1954 __ pop_i(r1); 1955 __ cmpw(r1, r0, Assembler::LSL); 1956 __ br(j_not(cc), not_taken); 1957 branch(false, false); 1958 __ bind(not_taken); 1959 __ profile_not_taken_branch(r0); 1960 } 1961 1962 void TemplateTable::if_nullcmp(Condition cc) 1963 { 1964 transition(atos, vtos); 1965 // assume branch is more often taken than not (loops use backward branches) 1966 Label not_taken; 1967 if (cc == equal) 1968 __ cbnz(r0, not_taken); 1969 else 1970 __ cbz(r0, not_taken); 1971 branch(false, false); 1972 __ bind(not_taken); 1973 __ profile_not_taken_branch(r0); 1974 } 1975 1976 void TemplateTable::if_acmp(Condition cc) 1977 { 1978 transition(atos, vtos); 1979 // assume branch is more often taken than not (loops use backward branches) 1980 Label not_taken; 1981 __ pop_ptr(r1); 1982 __ cmpoop(r1, r0); 1983 __ br(j_not(cc), not_taken); 1984 branch(false, false); 1985 __ bind(not_taken); 1986 __ profile_not_taken_branch(r0); 1987 } 1988 1989 void TemplateTable::ret() { 1990 transition(vtos, vtos); 1991 locals_index(r1); 1992 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 1993 __ profile_ret(r1, r2); 1994 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 1995 __ lea(rbcp, Address(rbcp, r1)); 1996 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 1997 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1998 } 1999 2000 void TemplateTable::wide_ret() { 2001 transition(vtos, vtos); 2002 locals_index_wide(r1); 2003 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 2004 __ profile_ret(r1, r2); 2005 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 2006 __ lea(rbcp, Address(rbcp, r1)); 2007 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 2008 __ dispatch_next(vtos, 0, /*generate_poll*/true); 2009 } 2010 2011 2012 void TemplateTable::tableswitch() { 2013 Label default_case, continue_execution; 2014 transition(itos, vtos); 2015 // align rbcp 2016 __ lea(r1, at_bcp(BytesPerInt)); 2017 __ andr(r1, r1, -BytesPerInt); 2018 // load lo & hi 2019 __ ldrw(r2, Address(r1, BytesPerInt)); 2020 __ ldrw(r3, Address(r1, 2 * BytesPerInt)); 2021 __ rev32(r2, r2); 2022 __ rev32(r3, r3); 2023 // check against lo & hi 2024 __ cmpw(r0, r2); 2025 __ br(Assembler::LT, default_case); 2026 __ cmpw(r0, r3); 2027 __ br(Assembler::GT, default_case); 2028 // lookup dispatch offset 2029 __ subw(r0, r0, r2); 2030 __ lea(r3, Address(r1, r0, Address::uxtw(2))); 2031 __ ldrw(r3, Address(r3, 3 * BytesPerInt)); 2032 __ profile_switch_case(r0, r1, r2); 2033 // continue execution 2034 __ bind(continue_execution); 2035 __ rev32(r3, r3); 2036 __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0))); 2037 __ add(rbcp, rbcp, r3, ext::sxtw); 2038 __ dispatch_only(vtos, /*generate_poll*/true); 2039 // handle default 2040 __ bind(default_case); 2041 __ profile_switch_default(r0); 2042 __ ldrw(r3, Address(r1, 0)); 2043 __ b(continue_execution); 2044 } 2045 2046 void TemplateTable::lookupswitch() { 2047 transition(itos, itos); 2048 __ stop("lookupswitch bytecode should have been rewritten"); 2049 } 2050 2051 void TemplateTable::fast_linearswitch() { 2052 transition(itos, vtos); 2053 Label loop_entry, loop, found, continue_execution; 2054 // bswap r0 so we can avoid bswapping the table entries 2055 __ rev32(r0, r0); 2056 // align rbcp 2057 __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2058 // this instruction (change offsets 2059 // below) 2060 __ andr(r19, r19, -BytesPerInt); 2061 // set counter 2062 __ ldrw(r1, Address(r19, BytesPerInt)); 2063 __ rev32(r1, r1); 2064 __ b(loop_entry); 2065 // table search 2066 __ bind(loop); 2067 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2068 __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt)); 2069 __ cmpw(r0, rscratch1); 2070 __ br(Assembler::EQ, found); 2071 __ bind(loop_entry); 2072 __ subs(r1, r1, 1); 2073 __ br(Assembler::PL, loop); 2074 // default case 2075 __ profile_switch_default(r0); 2076 __ ldrw(r3, Address(r19, 0)); 2077 __ b(continue_execution); 2078 // entry found -> get offset 2079 __ bind(found); 2080 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2081 __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt)); 2082 __ profile_switch_case(r1, r0, r19); 2083 // continue execution 2084 __ bind(continue_execution); 2085 __ rev32(r3, r3); 2086 __ add(rbcp, rbcp, r3, ext::sxtw); 2087 __ ldrb(rscratch1, Address(rbcp, 0)); 2088 __ dispatch_only(vtos, /*generate_poll*/true); 2089 } 2090 2091 void TemplateTable::fast_binaryswitch() { 2092 transition(itos, vtos); 2093 // Implementation using the following core algorithm: 2094 // 2095 // int binary_search(int key, LookupswitchPair* array, int n) { 2096 // // Binary search according to "Methodik des Programmierens" by 2097 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2098 // int i = 0; 2099 // int j = n; 2100 // while (i+1 < j) { 2101 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2102 // // with Q: for all i: 0 <= i < n: key < a[i] 2103 // // where a stands for the array and assuming that the (inexisting) 2104 // // element a[n] is infinitely big. 2105 // int h = (i + j) >> 1; 2106 // // i < h < j 2107 // if (key < array[h].fast_match()) { 2108 // j = h; 2109 // } else { 2110 // i = h; 2111 // } 2112 // } 2113 // // R: a[i] <= key < a[i+1] or Q 2114 // // (i.e., if key is within array, i is the correct index) 2115 // return i; 2116 // } 2117 2118 // Register allocation 2119 const Register key = r0; // already set (tosca) 2120 const Register array = r1; 2121 const Register i = r2; 2122 const Register j = r3; 2123 const Register h = rscratch1; 2124 const Register temp = rscratch2; 2125 2126 // Find array start 2127 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2128 // get rid of this 2129 // instruction (change 2130 // offsets below) 2131 __ andr(array, array, -BytesPerInt); 2132 2133 // Initialize i & j 2134 __ mov(i, 0); // i = 0; 2135 __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array); 2136 2137 // Convert j into native byteordering 2138 __ rev32(j, j); 2139 2140 // And start 2141 Label entry; 2142 __ b(entry); 2143 2144 // binary search loop 2145 { 2146 Label loop; 2147 __ bind(loop); 2148 // int h = (i + j) >> 1; 2149 __ addw(h, i, j); // h = i + j; 2150 __ lsrw(h, h, 1); // h = (i + j) >> 1; 2151 // if (key < array[h].fast_match()) { 2152 // j = h; 2153 // } else { 2154 // i = h; 2155 // } 2156 // Convert array[h].match to native byte-ordering before compare 2157 __ ldr(temp, Address(array, h, Address::lsl(3))); 2158 __ rev32(temp, temp); 2159 __ cmpw(key, temp); 2160 // j = h if (key < array[h].fast_match()) 2161 __ csel(j, h, j, Assembler::LT); 2162 // i = h if (key >= array[h].fast_match()) 2163 __ csel(i, h, i, Assembler::GE); 2164 // while (i+1 < j) 2165 __ bind(entry); 2166 __ addw(h, i, 1); // i+1 2167 __ cmpw(h, j); // i+1 < j 2168 __ br(Assembler::LT, loop); 2169 } 2170 2171 // end of binary search, result index is i (must check again!) 2172 Label default_case; 2173 // Convert array[i].match to native byte-ordering before compare 2174 __ ldr(temp, Address(array, i, Address::lsl(3))); 2175 __ rev32(temp, temp); 2176 __ cmpw(key, temp); 2177 __ br(Assembler::NE, default_case); 2178 2179 // entry found -> j = offset 2180 __ add(j, array, i, ext::uxtx, 3); 2181 __ ldrw(j, Address(j, BytesPerInt)); 2182 __ profile_switch_case(i, key, array); 2183 __ rev32(j, j); 2184 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2185 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2186 __ dispatch_only(vtos, /*generate_poll*/true); 2187 2188 // default case -> j = default offset 2189 __ bind(default_case); 2190 __ profile_switch_default(i); 2191 __ ldrw(j, Address(array, -2 * BytesPerInt)); 2192 __ rev32(j, j); 2193 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2194 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2195 __ dispatch_only(vtos, /*generate_poll*/true); 2196 } 2197 2198 2199 void TemplateTable::_return(TosState state) 2200 { 2201 transition(state, state); 2202 assert(_desc->calls_vm(), 2203 "inconsistent calls_vm information"); // call in remove_activation 2204 2205 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2206 assert(state == vtos, "only valid state"); 2207 2208 __ ldr(c_rarg1, aaddress(0)); 2209 __ load_klass(r3, c_rarg1); 2210 __ ldrb(r3, Address(r3, Klass::misc_flags_offset())); 2211 Label skip_register_finalizer; 2212 __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer); 2213 2214 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); 2215 2216 __ bind(skip_register_finalizer); 2217 } 2218 2219 // Issue a StoreStore barrier after all stores but before return 2220 // from any constructor for any class with a final field. We don't 2221 // know if this is a finalizer, so we always do so. 2222 if (_desc->bytecode() == Bytecodes::_return) 2223 __ membar(MacroAssembler::StoreStore); 2224 2225 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2226 Label no_safepoint; 2227 __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset())); 2228 __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint); 2229 __ push(state); 2230 __ push_cont_fastpath(rthread); 2231 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)); 2232 __ pop_cont_fastpath(rthread); 2233 __ pop(state); 2234 __ bind(no_safepoint); 2235 } 2236 2237 // Narrow result if state is itos but result type is smaller. 2238 // Need to narrow in the return bytecode rather than in generate_return_entry 2239 // since compiled code callers expect the result to already be narrowed. 2240 if (state == itos) { 2241 __ narrow(r0); 2242 } 2243 2244 __ remove_activation(state); 2245 __ ret(lr); 2246 } 2247 2248 // ---------------------------------------------------------------------------- 2249 // Volatile variables demand their effects be made known to all CPU's 2250 // in order. Store buffers on most chips allow reads & writes to 2251 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2252 // without some kind of memory barrier (i.e., it's not sufficient that 2253 // the interpreter does not reorder volatile references, the hardware 2254 // also must not reorder them). 2255 // 2256 // According to the new Java Memory Model (JMM): 2257 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2258 // writes act as acquire & release, so: 2259 // (2) A read cannot let unrelated NON-volatile memory refs that 2260 // happen after the read float up to before the read. It's OK for 2261 // non-volatile memory refs that happen before the volatile read to 2262 // float down below it. 2263 // (3) Similar a volatile write cannot let unrelated NON-volatile 2264 // memory refs that happen BEFORE the write float down to after the 2265 // write. It's OK for non-volatile memory refs that happen after the 2266 // volatile write to float up before it. 2267 // 2268 // We only put in barriers around volatile refs (they are expensive), 2269 // not _between_ memory refs (that would require us to track the 2270 // flavor of the previous memory refs). Requirements (2) and (3) 2271 // require some barriers before volatile stores and after volatile 2272 // loads. These nearly cover requirement (1) but miss the 2273 // volatile-store-volatile-load case. This final case is placed after 2274 // volatile-stores although it could just as well go before 2275 // volatile-loads. 2276 2277 void TemplateTable::resolve_cache_and_index_for_method(int byte_no, 2278 Register Rcache, 2279 Register index) { 2280 const Register temp = r19; 2281 assert_different_registers(Rcache, index, temp); 2282 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2283 2284 Label resolved, clinit_barrier_slow; 2285 2286 Bytecodes::Code code = bytecode(); 2287 __ load_method_entry(Rcache, index); 2288 switch(byte_no) { 2289 case f1_byte: 2290 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode1_offset()))); 2291 break; 2292 case f2_byte: 2293 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode2_offset()))); 2294 break; 2295 } 2296 // Load-acquire the bytecode to match store-release in InterpreterRuntime 2297 __ ldarb(temp, temp); 2298 __ subs(zr, temp, (int) code); // have we resolved this bytecode? 2299 __ br(Assembler::EQ, resolved); 2300 2301 // resolve first time through 2302 // Class initialization barrier slow path lands here as well. 2303 __ bind(clinit_barrier_slow); 2304 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2305 __ mov(temp, (int) code); 2306 __ call_VM(noreg, entry, temp); 2307 2308 // Update registers with resolved info 2309 __ load_method_entry(Rcache, index); 2310 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset 2311 // so all clients ofthis method must be modified accordingly 2312 __ bind(resolved); 2313 2314 // Class initialization barrier for static methods 2315 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2316 __ ldr(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset()))); 2317 __ load_method_holder(temp, temp); 2318 __ clinit_barrier(temp, rscratch1, nullptr, &clinit_barrier_slow); 2319 } 2320 } 2321 2322 void TemplateTable::resolve_cache_and_index_for_field(int byte_no, 2323 Register Rcache, 2324 Register index) { 2325 const Register temp = r19; 2326 assert_different_registers(Rcache, index, temp); 2327 2328 Label resolved, clinit_barrier_slow; 2329 2330 Bytecodes::Code code = bytecode(); 2331 switch (code) { 2332 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2333 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2334 default: break; 2335 } 2336 2337 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2338 __ load_field_entry(Rcache, index); 2339 if (byte_no == f1_byte) { 2340 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::get_code_offset()))); 2341 } else { 2342 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::put_code_offset()))); 2343 } 2344 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in() 2345 __ ldarb(temp, temp); 2346 __ subs(zr, temp, (int) code); // have we resolved this bytecode? 2347 __ br(Assembler::EQ, resolved); 2348 2349 // resolve first time through 2350 __ bind(clinit_barrier_slow); 2351 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2352 __ mov(temp, (int) code); 2353 __ call_VM(noreg, entry, temp); 2354 2355 // Update registers with resolved info 2356 __ load_field_entry(Rcache, index); 2357 __ bind(resolved); 2358 2359 // Class initialization barrier for static fields 2360 if (VM_Version::supports_fast_class_init_checks() && 2361 (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) { 2362 __ ldr(temp, Address(Rcache, ResolvedFieldEntry::field_holder_offset())); 2363 __ clinit_barrier(temp, rscratch1, nullptr, &clinit_barrier_slow); 2364 } 2365 } 2366 2367 void TemplateTable::load_resolved_field_entry(Register obj, 2368 Register cache, 2369 Register tos_state, 2370 Register offset, 2371 Register flags, 2372 bool is_static = false) { 2373 assert_different_registers(cache, tos_state, flags, offset); 2374 2375 // Field offset 2376 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 2377 2378 // Flags 2379 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset()))); 2380 2381 // TOS state 2382 if (tos_state != noreg) { 2383 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset()))); 2384 } 2385 2386 // Klass overwrite register 2387 if (is_static) { 2388 __ ldr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset())); 2389 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2390 __ ldr(obj, Address(obj, mirror_offset)); 2391 __ resolve_oop_handle(obj, r5, rscratch2); 2392 } 2393 } 2394 2395 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache, 2396 Register method, 2397 Register flags) { 2398 2399 // setup registers 2400 const Register index = flags; 2401 assert_different_registers(method, cache, flags); 2402 2403 // determine constant pool cache field offsets 2404 resolve_cache_and_index_for_method(f1_byte, cache, index); 2405 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2406 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2407 } 2408 2409 void TemplateTable::load_resolved_method_entry_handle(Register cache, 2410 Register method, 2411 Register ref_index, 2412 Register flags) { 2413 // setup registers 2414 const Register index = ref_index; 2415 assert_different_registers(method, flags); 2416 assert_different_registers(method, cache, index); 2417 2418 // determine constant pool cache field offsets 2419 resolve_cache_and_index_for_method(f1_byte, cache, index); 2420 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2421 2422 // maybe push appendix to arguments (just before return address) 2423 Label L_no_push; 2424 __ tbz(flags, ResolvedMethodEntry::has_appendix_shift, L_no_push); 2425 // invokehandle uses an index into the resolved references array 2426 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset()))); 2427 // Push the appendix as a trailing parameter. 2428 // This must be done before we get the receiver, 2429 // since the parameter_size includes it. 2430 Register appendix = method; 2431 __ load_resolved_reference_at_index(appendix, ref_index); 2432 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2433 __ bind(L_no_push); 2434 2435 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2436 } 2437 2438 void TemplateTable::load_resolved_method_entry_interface(Register cache, 2439 Register klass, 2440 Register method_or_table_index, 2441 Register flags) { 2442 // setup registers 2443 const Register index = method_or_table_index; 2444 assert_different_registers(method_or_table_index, cache, flags); 2445 2446 // determine constant pool cache field offsets 2447 resolve_cache_and_index_for_method(f1_byte, cache, index); 2448 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2449 2450 // Invokeinterface can behave in different ways: 2451 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will 2452 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or 2453 // vtable index is placed in the register. 2454 // Otherwise, the registers will be populated with the klass and method. 2455 2456 Label NotVirtual; Label NotVFinal; Label Done; 2457 __ tbz(flags, ResolvedMethodEntry::is_forced_virtual_shift, NotVirtual); 2458 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal); 2459 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2460 __ b(Done); 2461 2462 __ bind(NotVFinal); 2463 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2464 __ b(Done); 2465 2466 __ bind(NotVirtual); 2467 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2468 __ ldr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset()))); 2469 __ bind(Done); 2470 } 2471 2472 void TemplateTable::load_resolved_method_entry_virtual(Register cache, 2473 Register method_or_table_index, 2474 Register flags) { 2475 // setup registers 2476 const Register index = flags; 2477 assert_different_registers(method_or_table_index, cache, flags); 2478 2479 // determine constant pool cache field offsets 2480 resolve_cache_and_index_for_method(f2_byte, cache, index); 2481 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2482 2483 // method_or_table_index can either be an itable index or a method depending on the virtual final flag 2484 Label NotVFinal; Label Done; 2485 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal); 2486 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2487 __ b(Done); 2488 2489 __ bind(NotVFinal); 2490 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2491 __ bind(Done); 2492 } 2493 2494 // The rmethod register is input and overwritten to be the adapter method for the 2495 // indy call. Link Register (lr) is set to the return address for the adapter and 2496 // an appendix may be pushed to the stack. Registers r0-r3 are clobbered 2497 void TemplateTable::load_invokedynamic_entry(Register method) { 2498 // setup registers 2499 const Register appendix = r0; 2500 const Register cache = r2; 2501 const Register index = r3; 2502 assert_different_registers(method, appendix, cache, index, rcpool); 2503 2504 __ save_bcp(); 2505 2506 Label resolved; 2507 2508 __ load_resolved_indy_entry(cache, index); 2509 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in() 2510 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2511 __ ldar(method, method); 2512 2513 // Compare the method to zero 2514 __ cbnz(method, resolved); 2515 2516 Bytecodes::Code code = bytecode(); 2517 2518 // Call to the interpreter runtime to resolve invokedynamic 2519 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2520 __ mov(method, code); // this is essentially Bytecodes::_invokedynamic 2521 __ call_VM(noreg, entry, method); 2522 // Update registers with resolved info 2523 __ load_resolved_indy_entry(cache, index); 2524 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in() 2525 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2526 __ ldar(method, method); 2527 2528 #ifdef ASSERT 2529 __ cbnz(method, resolved); 2530 __ stop("Should be resolved by now"); 2531 #endif // ASSERT 2532 __ bind(resolved); 2533 2534 Label L_no_push; 2535 // Check if there is an appendix 2536 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2537 __ tbz(index, ResolvedIndyEntry::has_appendix_shift, L_no_push); 2538 2539 // Get appendix 2540 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2541 // Push the appendix as a trailing parameter 2542 // since the parameter_size includes it. 2543 __ push(method); 2544 __ mov(method, index); 2545 __ load_resolved_reference_at_index(appendix, method); 2546 __ verify_oop(appendix); 2547 __ pop(method); 2548 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2549 __ bind(L_no_push); 2550 2551 // compute return type 2552 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2553 // load return address 2554 // Return address is loaded into link register(lr) and not pushed to the stack 2555 // like x86 2556 { 2557 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2558 __ mov(rscratch1, table_addr); 2559 __ ldr(lr, Address(rscratch1, index, Address::lsl(3))); 2560 } 2561 } 2562 2563 // The registers cache and index expected to be set before call. 2564 // Correct values of the cache and index registers are preserved. 2565 void TemplateTable::jvmti_post_field_access(Register cache, Register index, 2566 bool is_static, bool has_tos) { 2567 // do the JVMTI work here to avoid disturbing the register state below 2568 // We use c_rarg registers here because we want to use the register used in 2569 // the call to the VM 2570 if (JvmtiExport::can_post_field_access()) { 2571 // Check to see if a field access watch has been set before we 2572 // take the time to call into the VM. 2573 Label L1; 2574 assert_different_registers(cache, index, r0); 2575 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2576 __ ldrw(r0, Address(rscratch1)); 2577 __ cbzw(r0, L1); 2578 2579 __ load_field_entry(c_rarg2, index); 2580 2581 if (is_static) { 2582 __ mov(c_rarg1, zr); // null object reference 2583 } else { 2584 __ ldr(c_rarg1, at_tos()); // get object pointer without popping it 2585 __ verify_oop(c_rarg1); 2586 } 2587 // c_rarg1: object pointer or null 2588 // c_rarg2: cache entry pointer 2589 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2590 InterpreterRuntime::post_field_access), 2591 c_rarg1, c_rarg2); 2592 __ load_field_entry(cache, index); 2593 __ bind(L1); 2594 } 2595 } 2596 2597 void TemplateTable::pop_and_check_object(Register r) 2598 { 2599 __ pop_ptr(r); 2600 __ null_check(r); // for field access must check obj. 2601 __ verify_oop(r); 2602 } 2603 2604 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) 2605 { 2606 const Register cache = r4; 2607 const Register obj = r4; 2608 const Register index = r3; 2609 const Register tos_state = r3; 2610 const Register off = r19; 2611 const Register flags = r6; 2612 const Register bc = r4; // uses same reg as obj, so don't mix them 2613 2614 resolve_cache_and_index_for_field(byte_no, cache, index); 2615 jvmti_post_field_access(cache, index, is_static, false); 2616 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2617 2618 if (!is_static) { 2619 // obj is on the stack 2620 pop_and_check_object(obj); 2621 } 2622 2623 // 8179954: We need to make sure that the code generated for 2624 // volatile accesses forms a sequentially-consistent set of 2625 // operations when combined with STLR and LDAR. Without a leading 2626 // membar it's possible for a simple Dekker test to fail if loads 2627 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 2628 // the stores in one method and we interpret the loads in another. 2629 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){ 2630 Label notVolatile; 2631 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2632 __ membar(MacroAssembler::AnyAny); 2633 __ bind(notVolatile); 2634 } 2635 2636 const Address field(obj, off); 2637 2638 Label Done, notByte, notBool, notInt, notShort, notChar, 2639 notLong, notFloat, notObj, notDouble; 2640 2641 assert(btos == 0, "change code, btos != 0"); 2642 __ cbnz(tos_state, notByte); 2643 2644 // Don't rewrite getstatic, only getfield 2645 if (is_static) rc = may_not_rewrite; 2646 2647 // btos 2648 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg); 2649 __ push(btos); 2650 // Rewrite bytecode to be faster 2651 if (rc == may_rewrite) { 2652 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2653 } 2654 __ b(Done); 2655 2656 __ bind(notByte); 2657 __ cmp(tos_state, (u1)ztos); 2658 __ br(Assembler::NE, notBool); 2659 2660 // ztos (same code as btos) 2661 __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg); 2662 __ push(ztos); 2663 // Rewrite bytecode to be faster 2664 if (rc == may_rewrite) { 2665 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2666 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2667 } 2668 __ b(Done); 2669 2670 __ bind(notBool); 2671 __ cmp(tos_state, (u1)atos); 2672 __ br(Assembler::NE, notObj); 2673 // atos 2674 do_oop_load(_masm, field, r0, IN_HEAP); 2675 __ push(atos); 2676 if (rc == may_rewrite) { 2677 patch_bytecode(Bytecodes::_fast_agetfield, bc, r1); 2678 } 2679 __ b(Done); 2680 2681 __ bind(notObj); 2682 __ cmp(tos_state, (u1)itos); 2683 __ br(Assembler::NE, notInt); 2684 // itos 2685 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg); 2686 __ push(itos); 2687 // Rewrite bytecode to be faster 2688 if (rc == may_rewrite) { 2689 patch_bytecode(Bytecodes::_fast_igetfield, bc, r1); 2690 } 2691 __ b(Done); 2692 2693 __ bind(notInt); 2694 __ cmp(tos_state, (u1)ctos); 2695 __ br(Assembler::NE, notChar); 2696 // ctos 2697 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg); 2698 __ push(ctos); 2699 // Rewrite bytecode to be faster 2700 if (rc == may_rewrite) { 2701 patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1); 2702 } 2703 __ b(Done); 2704 2705 __ bind(notChar); 2706 __ cmp(tos_state, (u1)stos); 2707 __ br(Assembler::NE, notShort); 2708 // stos 2709 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg); 2710 __ push(stos); 2711 // Rewrite bytecode to be faster 2712 if (rc == may_rewrite) { 2713 patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1); 2714 } 2715 __ b(Done); 2716 2717 __ bind(notShort); 2718 __ cmp(tos_state, (u1)ltos); 2719 __ br(Assembler::NE, notLong); 2720 // ltos 2721 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg); 2722 __ push(ltos); 2723 // Rewrite bytecode to be faster 2724 if (rc == may_rewrite) { 2725 patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1); 2726 } 2727 __ b(Done); 2728 2729 __ bind(notLong); 2730 __ cmp(tos_state, (u1)ftos); 2731 __ br(Assembler::NE, notFloat); 2732 // ftos 2733 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2734 __ push(ftos); 2735 // Rewrite bytecode to be faster 2736 if (rc == may_rewrite) { 2737 patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1); 2738 } 2739 __ b(Done); 2740 2741 __ bind(notFloat); 2742 #ifdef ASSERT 2743 __ cmp(tos_state, (u1)dtos); 2744 __ br(Assembler::NE, notDouble); 2745 #endif 2746 // dtos 2747 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2748 __ push(dtos); 2749 // Rewrite bytecode to be faster 2750 if (rc == may_rewrite) { 2751 patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1); 2752 } 2753 #ifdef ASSERT 2754 __ b(Done); 2755 2756 __ bind(notDouble); 2757 __ stop("Bad state"); 2758 #endif 2759 2760 __ bind(Done); 2761 2762 Label notVolatile; 2763 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2764 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2765 __ bind(notVolatile); 2766 } 2767 2768 2769 void TemplateTable::getfield(int byte_no) 2770 { 2771 getfield_or_static(byte_no, false); 2772 } 2773 2774 void TemplateTable::nofast_getfield(int byte_no) { 2775 getfield_or_static(byte_no, false, may_not_rewrite); 2776 } 2777 2778 void TemplateTable::getstatic(int byte_no) 2779 { 2780 getfield_or_static(byte_no, true); 2781 } 2782 2783 // The registers cache and index expected to be set before call. 2784 // The function may destroy various registers, just not the cache and index registers. 2785 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2786 transition(vtos, vtos); 2787 2788 if (JvmtiExport::can_post_field_modification()) { 2789 // Check to see if a field modification watch has been set before 2790 // we take the time to call into the VM. 2791 Label L1; 2792 assert_different_registers(cache, index, r0); 2793 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2794 __ ldrw(r0, Address(rscratch1)); 2795 __ cbz(r0, L1); 2796 2797 __ mov(c_rarg2, cache); 2798 2799 if (is_static) { 2800 // Life is simple. Null out the object pointer. 2801 __ mov(c_rarg1, zr); 2802 } else { 2803 // Life is harder. The stack holds the value on top, followed by 2804 // the object. We don't know the size of the value, though; it 2805 // could be one or two words depending on its type. As a result, 2806 // we must find the type to determine where the object is. 2807 __ load_unsigned_byte(c_rarg3, Address(c_rarg2, in_bytes(ResolvedFieldEntry::type_offset()))); 2808 Label nope2, done, ok; 2809 __ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2810 __ cmpw(c_rarg3, ltos); 2811 __ br(Assembler::EQ, ok); 2812 __ cmpw(c_rarg3, dtos); 2813 __ br(Assembler::NE, nope2); 2814 __ bind(ok); 2815 __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue) 2816 __ bind(nope2); 2817 } 2818 // object (tos) 2819 __ mov(c_rarg3, esp); 2820 // c_rarg1: object pointer set up above (null if static) 2821 // c_rarg2: cache entry pointer 2822 // c_rarg3: jvalue object on the stack 2823 __ call_VM(noreg, 2824 CAST_FROM_FN_PTR(address, 2825 InterpreterRuntime::post_field_modification), 2826 c_rarg1, c_rarg2, c_rarg3); 2827 __ load_field_entry(cache, index); 2828 __ bind(L1); 2829 } 2830 } 2831 2832 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2833 transition(vtos, vtos); 2834 2835 const Register cache = r2; 2836 const Register index = r3; 2837 const Register tos_state = r3; 2838 const Register obj = r2; 2839 const Register off = r19; 2840 const Register flags = r0; 2841 const Register bc = r4; 2842 2843 resolve_cache_and_index_for_field(byte_no, cache, index); 2844 jvmti_post_field_mod(cache, index, is_static); 2845 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2846 2847 Label Done; 2848 __ mov(r5, flags); 2849 2850 { 2851 Label notVolatile; 2852 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2853 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 2854 __ bind(notVolatile); 2855 } 2856 2857 // field address 2858 const Address field(obj, off); 2859 2860 Label notByte, notBool, notInt, notShort, notChar, 2861 notLong, notFloat, notObj, notDouble; 2862 2863 assert(btos == 0, "change code, btos != 0"); 2864 __ cbnz(tos_state, notByte); 2865 2866 // Don't rewrite putstatic, only putfield 2867 if (is_static) rc = may_not_rewrite; 2868 2869 // btos 2870 { 2871 __ pop(btos); 2872 if (!is_static) pop_and_check_object(obj); 2873 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg); 2874 if (rc == may_rewrite) { 2875 patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no); 2876 } 2877 __ b(Done); 2878 } 2879 2880 __ bind(notByte); 2881 __ cmp(tos_state, (u1)ztos); 2882 __ br(Assembler::NE, notBool); 2883 2884 // ztos 2885 { 2886 __ pop(ztos); 2887 if (!is_static) pop_and_check_object(obj); 2888 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg); 2889 if (rc == may_rewrite) { 2890 patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no); 2891 } 2892 __ b(Done); 2893 } 2894 2895 __ bind(notBool); 2896 __ cmp(tos_state, (u1)atos); 2897 __ br(Assembler::NE, notObj); 2898 2899 // atos 2900 { 2901 __ pop(atos); 2902 if (!is_static) pop_and_check_object(obj); 2903 // Store into the field 2904 // Clobbers: r10, r11, r3 2905 do_oop_store(_masm, field, r0, IN_HEAP); 2906 if (rc == may_rewrite) { 2907 patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no); 2908 } 2909 __ b(Done); 2910 } 2911 2912 __ bind(notObj); 2913 __ cmp(tos_state, (u1)itos); 2914 __ br(Assembler::NE, notInt); 2915 2916 // itos 2917 { 2918 __ pop(itos); 2919 if (!is_static) pop_and_check_object(obj); 2920 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg); 2921 if (rc == may_rewrite) { 2922 patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no); 2923 } 2924 __ b(Done); 2925 } 2926 2927 __ bind(notInt); 2928 __ cmp(tos_state, (u1)ctos); 2929 __ br(Assembler::NE, notChar); 2930 2931 // ctos 2932 { 2933 __ pop(ctos); 2934 if (!is_static) pop_and_check_object(obj); 2935 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg); 2936 if (rc == may_rewrite) { 2937 patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no); 2938 } 2939 __ b(Done); 2940 } 2941 2942 __ bind(notChar); 2943 __ cmp(tos_state, (u1)stos); 2944 __ br(Assembler::NE, notShort); 2945 2946 // stos 2947 { 2948 __ pop(stos); 2949 if (!is_static) pop_and_check_object(obj); 2950 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg); 2951 if (rc == may_rewrite) { 2952 patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no); 2953 } 2954 __ b(Done); 2955 } 2956 2957 __ bind(notShort); 2958 __ cmp(tos_state, (u1)ltos); 2959 __ br(Assembler::NE, notLong); 2960 2961 // ltos 2962 { 2963 __ pop(ltos); 2964 if (!is_static) pop_and_check_object(obj); 2965 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg); 2966 if (rc == may_rewrite) { 2967 patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no); 2968 } 2969 __ b(Done); 2970 } 2971 2972 __ bind(notLong); 2973 __ cmp(tos_state, (u1)ftos); 2974 __ br(Assembler::NE, notFloat); 2975 2976 // ftos 2977 { 2978 __ pop(ftos); 2979 if (!is_static) pop_and_check_object(obj); 2980 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 2981 if (rc == may_rewrite) { 2982 patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no); 2983 } 2984 __ b(Done); 2985 } 2986 2987 __ bind(notFloat); 2988 #ifdef ASSERT 2989 __ cmp(tos_state, (u1)dtos); 2990 __ br(Assembler::NE, notDouble); 2991 #endif 2992 2993 // dtos 2994 { 2995 __ pop(dtos); 2996 if (!is_static) pop_and_check_object(obj); 2997 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 2998 if (rc == may_rewrite) { 2999 patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no); 3000 } 3001 } 3002 3003 #ifdef ASSERT 3004 __ b(Done); 3005 3006 __ bind(notDouble); 3007 __ stop("Bad state"); 3008 #endif 3009 3010 __ bind(Done); 3011 3012 { 3013 Label notVolatile; 3014 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3015 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 3016 __ bind(notVolatile); 3017 } 3018 } 3019 3020 void TemplateTable::putfield(int byte_no) 3021 { 3022 putfield_or_static(byte_no, false); 3023 } 3024 3025 void TemplateTable::nofast_putfield(int byte_no) { 3026 putfield_or_static(byte_no, false, may_not_rewrite); 3027 } 3028 3029 void TemplateTable::putstatic(int byte_no) { 3030 putfield_or_static(byte_no, true); 3031 } 3032 3033 void TemplateTable::jvmti_post_fast_field_mod() { 3034 if (JvmtiExport::can_post_field_modification()) { 3035 // Check to see if a field modification watch has been set before 3036 // we take the time to call into the VM. 3037 Label L2; 3038 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3039 __ ldrw(c_rarg3, Address(rscratch1)); 3040 __ cbzw(c_rarg3, L2); 3041 __ pop_ptr(r19); // copy the object pointer from tos 3042 __ verify_oop(r19); 3043 __ push_ptr(r19); // put the object pointer back on tos 3044 // Save tos values before call_VM() clobbers them. Since we have 3045 // to do it for every data type, we use the saved values as the 3046 // jvalue object. 3047 switch (bytecode()) { // load values into the jvalue object 3048 case Bytecodes::_fast_aputfield: __ push_ptr(r0); break; 3049 case Bytecodes::_fast_bputfield: // fall through 3050 case Bytecodes::_fast_zputfield: // fall through 3051 case Bytecodes::_fast_sputfield: // fall through 3052 case Bytecodes::_fast_cputfield: // fall through 3053 case Bytecodes::_fast_iputfield: __ push_i(r0); break; 3054 case Bytecodes::_fast_dputfield: __ push_d(); break; 3055 case Bytecodes::_fast_fputfield: __ push_f(); break; 3056 case Bytecodes::_fast_lputfield: __ push_l(r0); break; 3057 3058 default: 3059 ShouldNotReachHere(); 3060 } 3061 __ mov(c_rarg3, esp); // points to jvalue on the stack 3062 // access constant pool cache entry 3063 __ load_field_entry(c_rarg2, r0); 3064 __ verify_oop(r19); 3065 // r19: object pointer copied above 3066 // c_rarg2: cache entry pointer 3067 // c_rarg3: jvalue object on the stack 3068 __ call_VM(noreg, 3069 CAST_FROM_FN_PTR(address, 3070 InterpreterRuntime::post_field_modification), 3071 r19, c_rarg2, c_rarg3); 3072 3073 switch (bytecode()) { // restore tos values 3074 case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break; 3075 case Bytecodes::_fast_bputfield: // fall through 3076 case Bytecodes::_fast_zputfield: // fall through 3077 case Bytecodes::_fast_sputfield: // fall through 3078 case Bytecodes::_fast_cputfield: // fall through 3079 case Bytecodes::_fast_iputfield: __ pop_i(r0); break; 3080 case Bytecodes::_fast_dputfield: __ pop_d(); break; 3081 case Bytecodes::_fast_fputfield: __ pop_f(); break; 3082 case Bytecodes::_fast_lputfield: __ pop_l(r0); break; 3083 default: break; 3084 } 3085 __ bind(L2); 3086 } 3087 } 3088 3089 void TemplateTable::fast_storefield(TosState state) 3090 { 3091 transition(state, vtos); 3092 3093 ByteSize base = ConstantPoolCache::base_offset(); 3094 3095 jvmti_post_fast_field_mod(); 3096 3097 // access constant pool cache 3098 __ load_field_entry(r2, r1); 3099 3100 // R1: field offset, R2: field holder, R5: flags 3101 load_resolved_field_entry(r2, r2, noreg, r1, r5); 3102 3103 { 3104 Label notVolatile; 3105 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3106 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 3107 __ bind(notVolatile); 3108 } 3109 3110 Label notVolatile; 3111 3112 // Get object from stack 3113 pop_and_check_object(r2); 3114 3115 // field address 3116 const Address field(r2, r1); 3117 3118 // access field 3119 switch (bytecode()) { 3120 case Bytecodes::_fast_aputfield: 3121 // Clobbers: r10, r11, r3 3122 do_oop_store(_masm, field, r0, IN_HEAP); 3123 break; 3124 case Bytecodes::_fast_lputfield: 3125 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg); 3126 break; 3127 case Bytecodes::_fast_iputfield: 3128 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg); 3129 break; 3130 case Bytecodes::_fast_zputfield: 3131 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg); 3132 break; 3133 case Bytecodes::_fast_bputfield: 3134 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg); 3135 break; 3136 case Bytecodes::_fast_sputfield: 3137 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg); 3138 break; 3139 case Bytecodes::_fast_cputfield: 3140 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg); 3141 break; 3142 case Bytecodes::_fast_fputfield: 3143 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3144 break; 3145 case Bytecodes::_fast_dputfield: 3146 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 3147 break; 3148 default: 3149 ShouldNotReachHere(); 3150 } 3151 3152 { 3153 Label notVolatile; 3154 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3155 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 3156 __ bind(notVolatile); 3157 } 3158 } 3159 3160 3161 void TemplateTable::fast_accessfield(TosState state) 3162 { 3163 transition(atos, state); 3164 // Do the JVMTI work here to avoid disturbing the register state below 3165 if (JvmtiExport::can_post_field_access()) { 3166 // Check to see if a field access watch has been set before we 3167 // take the time to call into the VM. 3168 Label L1; 3169 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3170 __ ldrw(r2, Address(rscratch1)); 3171 __ cbzw(r2, L1); 3172 // access constant pool cache entry 3173 __ load_field_entry(c_rarg2, rscratch2); 3174 __ verify_oop(r0); 3175 __ push_ptr(r0); // save object pointer before call_VM() clobbers it 3176 __ mov(c_rarg1, r0); 3177 // c_rarg1: object pointer copied above 3178 // c_rarg2: cache entry pointer 3179 __ call_VM(noreg, 3180 CAST_FROM_FN_PTR(address, 3181 InterpreterRuntime::post_field_access), 3182 c_rarg1, c_rarg2); 3183 __ pop_ptr(r0); // restore object pointer 3184 __ bind(L1); 3185 } 3186 3187 // access constant pool cache 3188 __ load_field_entry(r2, r1); 3189 3190 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3191 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset()))); 3192 3193 // r0: object 3194 __ verify_oop(r0); 3195 __ null_check(r0); 3196 const Address field(r0, r1); 3197 3198 // 8179954: We need to make sure that the code generated for 3199 // volatile accesses forms a sequentially-consistent set of 3200 // operations when combined with STLR and LDAR. Without a leading 3201 // membar it's possible for a simple Dekker test to fail if loads 3202 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3203 // the stores in one method and we interpret the loads in another. 3204 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) { 3205 Label notVolatile; 3206 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3207 __ membar(MacroAssembler::AnyAny); 3208 __ bind(notVolatile); 3209 } 3210 3211 // access field 3212 switch (bytecode()) { 3213 case Bytecodes::_fast_agetfield: 3214 do_oop_load(_masm, field, r0, IN_HEAP); 3215 __ verify_oop(r0); 3216 break; 3217 case Bytecodes::_fast_lgetfield: 3218 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg); 3219 break; 3220 case Bytecodes::_fast_igetfield: 3221 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg); 3222 break; 3223 case Bytecodes::_fast_bgetfield: 3224 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg); 3225 break; 3226 case Bytecodes::_fast_sgetfield: 3227 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg); 3228 break; 3229 case Bytecodes::_fast_cgetfield: 3230 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg); 3231 break; 3232 case Bytecodes::_fast_fgetfield: 3233 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3234 break; 3235 case Bytecodes::_fast_dgetfield: 3236 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3237 break; 3238 default: 3239 ShouldNotReachHere(); 3240 } 3241 { 3242 Label notVolatile; 3243 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3244 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3245 __ bind(notVolatile); 3246 } 3247 } 3248 3249 void TemplateTable::fast_xaccess(TosState state) 3250 { 3251 transition(vtos, state); 3252 3253 // get receiver 3254 __ ldr(r0, aaddress(0)); 3255 // access constant pool cache 3256 __ load_field_entry(r2, r3, 2); 3257 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3258 3259 // 8179954: We need to make sure that the code generated for 3260 // volatile accesses forms a sequentially-consistent set of 3261 // operations when combined with STLR and LDAR. Without a leading 3262 // membar it's possible for a simple Dekker test to fail if loads 3263 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3264 // the stores in one method and we interpret the loads in another. 3265 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) { 3266 Label notVolatile; 3267 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset()))); 3268 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3269 __ membar(MacroAssembler::AnyAny); 3270 __ bind(notVolatile); 3271 } 3272 3273 // make sure exception is reported in correct bcp range (getfield is 3274 // next instruction) 3275 __ increment(rbcp); 3276 __ null_check(r0); 3277 switch (state) { 3278 case itos: 3279 __ access_load_at(T_INT, IN_HEAP, r0, Address(r0, r1, Address::lsl(0)), noreg, noreg); 3280 break; 3281 case atos: 3282 do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP); 3283 __ verify_oop(r0); 3284 break; 3285 case ftos: 3286 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(r0, r1, Address::lsl(0)), noreg, noreg); 3287 break; 3288 default: 3289 ShouldNotReachHere(); 3290 } 3291 3292 { 3293 Label notVolatile; 3294 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset()))); 3295 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3296 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3297 __ bind(notVolatile); 3298 } 3299 3300 __ decrement(rbcp); 3301 } 3302 3303 3304 3305 //----------------------------------------------------------------------------- 3306 // Calls 3307 3308 void TemplateTable::prepare_invoke(Register cache, Register recv) { 3309 3310 Bytecodes::Code code = bytecode(); 3311 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic); 3312 3313 // save 'interpreter return address' 3314 __ save_bcp(); 3315 3316 // Load TOS state for later 3317 __ load_unsigned_byte(rscratch2, Address(cache, in_bytes(ResolvedMethodEntry::type_offset()))); 3318 3319 // load receiver if needed (note: no return address pushed yet) 3320 if (load_receiver) { 3321 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 3322 __ add(rscratch1, esp, recv, ext::uxtx, 3); 3323 __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1))); 3324 __ verify_oop(recv); 3325 } 3326 3327 // load return address 3328 { 3329 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3330 __ mov(rscratch1, table_addr); 3331 __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3))); 3332 } 3333 } 3334 3335 3336 void TemplateTable::invokevirtual_helper(Register index, 3337 Register recv, 3338 Register flags) 3339 { 3340 // Uses temporary registers r0, r3 3341 assert_different_registers(index, recv, r0, r3); 3342 // Test for an invoke of a final method 3343 Label notFinal; 3344 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, notFinal); 3345 3346 const Register method = index; // method must be rmethod 3347 assert(method == rmethod, 3348 "Method must be rmethod for interpreter calling convention"); 3349 3350 // do the call - the index is actually the method to call 3351 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3352 3353 // It's final, need a null check here! 3354 __ null_check(recv); 3355 3356 // profile this call 3357 __ profile_final_call(r0); 3358 __ profile_arguments_type(r0, method, r4, true); 3359 3360 __ jump_from_interpreted(method, r0); 3361 3362 __ bind(notFinal); 3363 3364 // get receiver klass 3365 __ load_klass(r0, recv); 3366 3367 // profile this call 3368 __ profile_virtual_call(r0, rlocals, r3); 3369 3370 // get target Method & entry point 3371 __ lookup_virtual_method(r0, index, method); 3372 __ profile_arguments_type(r3, method, r4, true); 3373 // FIXME -- this looks completely redundant. is it? 3374 // __ ldr(r3, Address(method, Method::interpreter_entry_offset())); 3375 __ jump_from_interpreted(method, r3); 3376 } 3377 3378 void TemplateTable::invokevirtual(int byte_no) 3379 { 3380 transition(vtos, vtos); 3381 assert(byte_no == f2_byte, "use this argument"); 3382 3383 load_resolved_method_entry_virtual(r2, // ResolvedMethodEntry* 3384 rmethod, // Method* or itable index 3385 r3); // flags 3386 prepare_invoke(r2, r2); // recv 3387 3388 // rmethod: index (actually a Method*) 3389 // r2: receiver 3390 // r3: flags 3391 3392 invokevirtual_helper(rmethod, r2, r3); 3393 } 3394 3395 void TemplateTable::invokespecial(int byte_no) 3396 { 3397 transition(vtos, vtos); 3398 assert(byte_no == f1_byte, "use this argument"); 3399 3400 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry* 3401 rmethod, // Method* 3402 r3); // flags 3403 prepare_invoke(r2, r2); // get receiver also for null check 3404 __ verify_oop(r2); 3405 __ null_check(r2); 3406 // do the call 3407 __ profile_call(r0); 3408 __ profile_arguments_type(r0, rmethod, rbcp, false); 3409 __ jump_from_interpreted(rmethod, r0); 3410 } 3411 3412 void TemplateTable::invokestatic(int byte_no) 3413 { 3414 transition(vtos, vtos); 3415 assert(byte_no == f1_byte, "use this argument"); 3416 3417 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry* 3418 rmethod, // Method* 3419 r3); // flags 3420 prepare_invoke(r2, r2); // get receiver also for null check 3421 3422 // do the call 3423 __ profile_call(r0); 3424 __ profile_arguments_type(r0, rmethod, r4, false); 3425 __ jump_from_interpreted(rmethod, r0); 3426 } 3427 3428 void TemplateTable::fast_invokevfinal(int byte_no) 3429 { 3430 __ call_Unimplemented(); 3431 } 3432 3433 void TemplateTable::invokeinterface(int byte_no) { 3434 transition(vtos, vtos); 3435 assert(byte_no == f1_byte, "use this argument"); 3436 3437 load_resolved_method_entry_interface(r2, // ResolvedMethodEntry* 3438 r0, // Klass* 3439 rmethod, // Method* or itable/vtable index 3440 r3); // flags 3441 prepare_invoke(r2, r2); // receiver 3442 3443 // r0: interface klass (from f1) 3444 // rmethod: method (from f2) 3445 // r2: receiver 3446 // r3: flags 3447 3448 // First check for Object case, then private interface method, 3449 // then regular interface method. 3450 3451 // Special case of invokeinterface called for virtual method of 3452 // java.lang.Object. See cpCache.cpp for details. 3453 Label notObjectMethod; 3454 __ tbz(r3, ResolvedMethodEntry::is_forced_virtual_shift, notObjectMethod); 3455 3456 invokevirtual_helper(rmethod, r2, r3); 3457 __ bind(notObjectMethod); 3458 3459 Label no_such_interface; 3460 3461 // Check for private method invocation - indicated by vfinal 3462 Label notVFinal; 3463 __ tbz(r3, ResolvedMethodEntry::is_vfinal_shift, notVFinal); 3464 3465 // Get receiver klass into r3 3466 __ load_klass(r3, r2); 3467 3468 Label subtype; 3469 __ check_klass_subtype(r3, r0, r4, subtype); 3470 // If we get here the typecheck failed 3471 __ b(no_such_interface); 3472 __ bind(subtype); 3473 3474 __ profile_final_call(r0); 3475 __ profile_arguments_type(r0, rmethod, r4, true); 3476 __ jump_from_interpreted(rmethod, r0); 3477 3478 __ bind(notVFinal); 3479 3480 // Get receiver klass into r3 3481 __ restore_locals(); 3482 __ load_klass(r3, r2); 3483 3484 Label no_such_method; 3485 3486 // Preserve method for throw_AbstractMethodErrorVerbose. 3487 __ mov(r16, rmethod); 3488 // Receiver subtype check against REFC. 3489 // Superklass in r0. Subklass in r3. Blows rscratch2, r13 3490 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3491 r3, r0, noreg, 3492 // outputs: scan temp. reg, scan temp. reg 3493 rscratch2, r13, 3494 no_such_interface, 3495 /*return_method=*/false); 3496 3497 // profile this call 3498 __ profile_virtual_call(r3, r13, r19); 3499 3500 // Get declaring interface class from method, and itable index 3501 3502 __ load_method_holder(r0, rmethod); 3503 __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset())); 3504 __ subw(rmethod, rmethod, Method::itable_index_max); 3505 __ negw(rmethod, rmethod); 3506 3507 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3508 __ mov(rlocals, r3); 3509 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3510 rlocals, r0, rmethod, 3511 // outputs: method, scan temp. reg 3512 rmethod, r13, 3513 no_such_interface); 3514 3515 // rmethod,: Method to call 3516 // r2: receiver 3517 // Check for abstract method error 3518 // Note: This should be done more efficiently via a throw_abstract_method_error 3519 // interpreter entry point and a conditional jump to it in case of a null 3520 // method. 3521 __ cbz(rmethod, no_such_method); 3522 3523 __ profile_arguments_type(r3, rmethod, r13, true); 3524 3525 // do the call 3526 // r2: receiver 3527 // rmethod,: Method 3528 __ jump_from_interpreted(rmethod, r3); 3529 __ should_not_reach_here(); 3530 3531 // exception handling code follows... 3532 // note: must restore interpreter registers to canonical 3533 // state for exception handling to work correctly! 3534 3535 __ bind(no_such_method); 3536 // throw exception 3537 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3538 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3539 // Pass arguments for generating a verbose error message. 3540 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16); 3541 // the call_VM checks for exception, so we should never return here. 3542 __ should_not_reach_here(); 3543 3544 __ bind(no_such_interface); 3545 // throw exception 3546 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3547 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3548 // Pass arguments for generating a verbose error message. 3549 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3550 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0); 3551 // the call_VM checks for exception, so we should never return here. 3552 __ should_not_reach_here(); 3553 return; 3554 } 3555 3556 void TemplateTable::invokehandle(int byte_no) { 3557 transition(vtos, vtos); 3558 assert(byte_no == f1_byte, "use this argument"); 3559 3560 load_resolved_method_entry_handle(r2, // ResolvedMethodEntry* 3561 rmethod, // Method* 3562 r0, // Resolved reference 3563 r3); // flags 3564 prepare_invoke(r2, r2); 3565 3566 __ verify_method_ptr(r2); 3567 __ verify_oop(r2); 3568 __ null_check(r2); 3569 3570 // FIXME: profile the LambdaForm also 3571 3572 // r13 is safe to use here as a scratch reg because it is about to 3573 // be clobbered by jump_from_interpreted(). 3574 __ profile_final_call(r13); 3575 __ profile_arguments_type(r13, rmethod, r4, true); 3576 3577 __ jump_from_interpreted(rmethod, r0); 3578 } 3579 3580 void TemplateTable::invokedynamic(int byte_no) { 3581 transition(vtos, vtos); 3582 assert(byte_no == f1_byte, "use this argument"); 3583 3584 load_invokedynamic_entry(rmethod); 3585 3586 // r0: CallSite object (from cpool->resolved_references[]) 3587 // rmethod: MH.linkToCallSite method 3588 3589 // Note: r0_callsite is already pushed 3590 3591 // %%% should make a type profile for any invokedynamic that takes a ref argument 3592 // profile this call 3593 __ profile_call(rbcp); 3594 __ profile_arguments_type(r3, rmethod, r13, false); 3595 3596 __ verify_oop(r0); 3597 3598 __ jump_from_interpreted(rmethod, r0); 3599 } 3600 3601 3602 //----------------------------------------------------------------------------- 3603 // Allocation 3604 3605 void TemplateTable::_new() { 3606 transition(vtos, atos); 3607 3608 __ get_unsigned_2_byte_index_at_bcp(r3, 1); 3609 Label slow_case; 3610 Label done; 3611 Label initialize_header; 3612 3613 __ get_cpool_and_tags(r4, r0); 3614 // Make sure the class we're about to instantiate has been resolved. 3615 // This is done before loading InstanceKlass to be consistent with the order 3616 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3617 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3618 __ lea(rscratch1, Address(r0, r3, Address::lsl(0))); 3619 __ lea(rscratch1, Address(rscratch1, tags_offset)); 3620 __ ldarb(rscratch1, rscratch1); 3621 __ cmp(rscratch1, (u1)JVM_CONSTANT_Class); 3622 __ br(Assembler::NE, slow_case); 3623 3624 // get InstanceKlass 3625 __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1); 3626 3627 // make sure klass is initialized 3628 assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks"); 3629 __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case); 3630 3631 // get instance_size in InstanceKlass (scaled to a count of bytes) 3632 __ ldrw(r3, 3633 Address(r4, 3634 Klass::layout_helper_offset())); 3635 // test to see if it is malformed in some way 3636 __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case); 3637 3638 // Allocate the instance: 3639 // If TLAB is enabled: 3640 // Try to allocate in the TLAB. 3641 // If fails, go to the slow path. 3642 // Initialize the allocation. 3643 // Exit. 3644 // 3645 // Go to slow path. 3646 3647 if (UseTLAB) { 3648 __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case); 3649 3650 if (ZeroTLAB) { 3651 // the fields have been already cleared 3652 __ b(initialize_header); 3653 } 3654 3655 // The object is initialized before the header. If the object size is 3656 // zero, go directly to the header initialization. 3657 int header_size = oopDesc::header_size() * HeapWordSize; 3658 assert(is_aligned(header_size, BytesPerLong), "oop header size must be 8-byte-aligned"); 3659 __ sub(r3, r3, header_size); 3660 __ cbz(r3, initialize_header); 3661 3662 // Initialize object fields 3663 { 3664 __ add(r2, r0, header_size); 3665 Label loop; 3666 __ bind(loop); 3667 __ str(zr, Address(__ post(r2, BytesPerLong))); 3668 __ sub(r3, r3, BytesPerLong); 3669 __ cbnz(r3, loop); 3670 } 3671 3672 // initialize object header only. 3673 __ bind(initialize_header); 3674 if (UseCompactObjectHeaders) { 3675 __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset())); 3676 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); 3677 } else { 3678 __ mov(rscratch1, (intptr_t)markWord::prototype().value()); 3679 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); 3680 __ store_klass_gap(r0, zr); // zero klass gap for compressed oops 3681 __ store_klass(r0, r4); // store klass last 3682 } 3683 3684 if (DTraceAllocProbes) { 3685 // Trigger dtrace event for fastpath 3686 __ push(atos); // save the return value 3687 __ call_VM_leaf( 3688 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0); 3689 __ pop(atos); // restore the return value 3690 3691 } 3692 __ b(done); 3693 } 3694 3695 // slow case 3696 __ bind(slow_case); 3697 __ get_constant_pool(c_rarg1); 3698 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3699 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3700 __ verify_oop(r0); 3701 3702 // continue 3703 __ bind(done); 3704 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3705 __ membar(Assembler::StoreStore); 3706 } 3707 3708 void TemplateTable::newarray() { 3709 transition(itos, atos); 3710 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3711 __ mov(c_rarg2, r0); 3712 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3713 c_rarg1, c_rarg2); 3714 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3715 __ membar(Assembler::StoreStore); 3716 } 3717 3718 void TemplateTable::anewarray() { 3719 transition(itos, atos); 3720 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3721 __ get_constant_pool(c_rarg1); 3722 __ mov(c_rarg3, r0); 3723 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3724 c_rarg1, c_rarg2, c_rarg3); 3725 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3726 __ membar(Assembler::StoreStore); 3727 } 3728 3729 void TemplateTable::arraylength() { 3730 transition(atos, itos); 3731 __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes())); 3732 } 3733 3734 void TemplateTable::checkcast() 3735 { 3736 transition(atos, atos); 3737 Label done, is_null, ok_is_subtype, quicked, resolved; 3738 __ cbz(r0, is_null); 3739 3740 // Get cpool & tags index 3741 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3742 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3743 // See if bytecode has already been quicked 3744 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3745 __ lea(r1, Address(rscratch1, r19)); 3746 __ ldarb(r1, r1); 3747 __ cmp(r1, (u1)JVM_CONSTANT_Class); 3748 __ br(Assembler::EQ, quicked); 3749 3750 __ push(atos); // save receiver for result, and for GC 3751 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3752 __ get_vm_result_metadata(r0, rthread); 3753 __ pop(r3); // restore receiver 3754 __ b(resolved); 3755 3756 // Get superklass in r0 and subklass in r3 3757 __ bind(quicked); 3758 __ mov(r3, r0); // Save object in r3; r0 needed for subtype check 3759 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass 3760 3761 __ bind(resolved); 3762 __ load_klass(r19, r3); 3763 3764 // Generate subtype check. Blows r2, r5. Object in r3. 3765 // Superklass in r0. Subklass in r19. 3766 __ gen_subtype_check(r19, ok_is_subtype); 3767 3768 // Come here on failure 3769 __ push(r3); 3770 // object is at TOS 3771 __ b(Interpreter::_throw_ClassCastException_entry); 3772 3773 // Come here on success 3774 __ bind(ok_is_subtype); 3775 __ mov(r0, r3); // Restore object in r3 3776 3777 // Collect counts on whether this test sees nulls a lot or not. 3778 if (ProfileInterpreter) { 3779 __ b(done); 3780 __ bind(is_null); 3781 __ profile_null_seen(r2); 3782 } else { 3783 __ bind(is_null); // same as 'done' 3784 } 3785 __ bind(done); 3786 } 3787 3788 void TemplateTable::instanceof() { 3789 transition(atos, itos); 3790 Label done, is_null, ok_is_subtype, quicked, resolved; 3791 __ cbz(r0, is_null); 3792 3793 // Get cpool & tags index 3794 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3795 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3796 // See if bytecode has already been quicked 3797 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3798 __ lea(r1, Address(rscratch1, r19)); 3799 __ ldarb(r1, r1); 3800 __ cmp(r1, (u1)JVM_CONSTANT_Class); 3801 __ br(Assembler::EQ, quicked); 3802 3803 __ push(atos); // save receiver for result, and for GC 3804 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3805 __ get_vm_result_metadata(r0, rthread); 3806 __ pop(r3); // restore receiver 3807 __ verify_oop(r3); 3808 __ load_klass(r3, r3); 3809 __ b(resolved); 3810 3811 // Get superklass in r0 and subklass in r3 3812 __ bind(quicked); 3813 __ load_klass(r3, r0); 3814 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); 3815 3816 __ bind(resolved); 3817 3818 // Generate subtype check. Blows r2, r5 3819 // Superklass in r0. Subklass in r3. 3820 __ gen_subtype_check(r3, ok_is_subtype); 3821 3822 // Come here on failure 3823 __ mov(r0, 0); 3824 __ b(done); 3825 // Come here on success 3826 __ bind(ok_is_subtype); 3827 __ mov(r0, 1); 3828 3829 // Collect counts on whether this test sees nulls a lot or not. 3830 if (ProfileInterpreter) { 3831 __ b(done); 3832 __ bind(is_null); 3833 __ profile_null_seen(r2); 3834 } else { 3835 __ bind(is_null); // same as 'done' 3836 } 3837 __ bind(done); 3838 // r0 = 0: obj == nullptr or obj is not an instanceof the specified klass 3839 // r0 = 1: obj != nullptr and obj is an instanceof the specified klass 3840 } 3841 3842 //----------------------------------------------------------------------------- 3843 // Breakpoints 3844 void TemplateTable::_breakpoint() { 3845 // Note: We get here even if we are single stepping.. 3846 // jbug inists on setting breakpoints at every bytecode 3847 // even if we are in single step mode. 3848 3849 transition(vtos, vtos); 3850 3851 // get the unpatched byte code 3852 __ get_method(c_rarg1); 3853 __ call_VM(noreg, 3854 CAST_FROM_FN_PTR(address, 3855 InterpreterRuntime::get_original_bytecode_at), 3856 c_rarg1, rbcp); 3857 __ mov(r19, r0); 3858 3859 // post the breakpoint event 3860 __ call_VM(noreg, 3861 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3862 rmethod, rbcp); 3863 3864 // complete the execution of original bytecode 3865 __ mov(rscratch1, r19); 3866 __ dispatch_only_normal(vtos); 3867 } 3868 3869 //----------------------------------------------------------------------------- 3870 // Exceptions 3871 3872 void TemplateTable::athrow() { 3873 transition(atos, vtos); 3874 __ null_check(r0); 3875 __ b(Interpreter::throw_exception_entry()); 3876 } 3877 3878 //----------------------------------------------------------------------------- 3879 // Synchronization 3880 // 3881 // Note: monitorenter & exit are symmetric routines; which is reflected 3882 // in the assembly code structure as well 3883 // 3884 // Stack layout: 3885 // 3886 // [expressions ] <--- esp = expression stack top 3887 // .. 3888 // [expressions ] 3889 // [monitor entry] <--- monitor block top = expression stack bot 3890 // .. 3891 // [monitor entry] 3892 // [frame data ] <--- monitor block bot 3893 // ... 3894 // [saved rfp ] <--- rfp 3895 void TemplateTable::monitorenter() 3896 { 3897 transition(atos, vtos); 3898 3899 // check for null object 3900 __ null_check(r0); 3901 3902 const Address monitor_block_top( 3903 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3904 const Address monitor_block_bot( 3905 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 3906 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3907 3908 Label allocated; 3909 3910 // initialize entry pointer 3911 __ mov(c_rarg1, zr); // points to free slot or null 3912 3913 // find a free slot in the monitor block (result in c_rarg1) 3914 { 3915 Label entry, loop, exit; 3916 __ ldr(c_rarg3, monitor_block_top); // derelativize pointer 3917 __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize))); 3918 // c_rarg3 points to current entry, starting with top-most entry 3919 3920 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3921 3922 __ b(entry); 3923 3924 __ bind(loop); 3925 // check if current entry is used 3926 // if not used then remember entry in c_rarg1 3927 __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset())); 3928 __ cmp(zr, rscratch1); 3929 __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ); 3930 // check if current entry is for same object 3931 __ cmp(r0, rscratch1); 3932 // if same object then stop searching 3933 __ br(Assembler::EQ, exit); 3934 // otherwise advance to next entry 3935 __ add(c_rarg3, c_rarg3, entry_size); 3936 __ bind(entry); 3937 // check if bottom reached 3938 __ cmp(c_rarg3, c_rarg2); 3939 // if not at bottom then check this entry 3940 __ br(Assembler::NE, loop); 3941 __ bind(exit); 3942 } 3943 3944 __ cbnz(c_rarg1, allocated); // check if a slot has been found and 3945 // if found, continue with that on 3946 3947 // allocate one if there's no free slot 3948 { 3949 Label entry, loop; 3950 // 1. compute new pointers // rsp: old expression stack top 3951 3952 __ check_extended_sp(); 3953 __ sub(sp, sp, entry_size); // make room for the monitor 3954 __ sub(rscratch1, sp, rfp); 3955 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 3956 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 3957 3958 __ ldr(c_rarg1, monitor_block_bot); // derelativize pointer 3959 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 3960 // c_rarg1 points to the old expression stack bottom 3961 3962 __ sub(esp, esp, entry_size); // move expression stack top 3963 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom 3964 __ mov(c_rarg3, esp); // set start value for copy loop 3965 __ sub(rscratch1, c_rarg1, rfp); // relativize pointer 3966 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 3967 __ str(rscratch1, monitor_block_bot); // set new monitor block bottom 3968 3969 __ b(entry); 3970 // 2. move expression stack contents 3971 __ bind(loop); 3972 __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack 3973 // word from old location 3974 __ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location 3975 __ add(c_rarg3, c_rarg3, wordSize); // advance to next word 3976 __ bind(entry); 3977 __ cmp(c_rarg3, c_rarg1); // check if bottom reached 3978 __ br(Assembler::NE, loop); // if not at bottom then 3979 // copy next word 3980 } 3981 3982 // call run-time routine 3983 // c_rarg1: points to monitor entry 3984 __ bind(allocated); 3985 3986 // Increment bcp to point to the next bytecode, so exception 3987 // handling for async. exceptions work correctly. 3988 // The object has already been popped from the stack, so the 3989 // expression stack looks correct. 3990 __ increment(rbcp); 3991 3992 // store object 3993 __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 3994 __ lock_object(c_rarg1); 3995 3996 // check to make sure this monitor doesn't cause stack overflow after locking 3997 __ save_bcp(); // in case of exception 3998 __ generate_stack_overflow_check(0); 3999 4000 // The bcp has already been incremented. Just need to dispatch to 4001 // next instruction. 4002 __ dispatch_next(vtos); 4003 } 4004 4005 4006 void TemplateTable::monitorexit() 4007 { 4008 transition(atos, vtos); 4009 4010 // check for null object 4011 __ null_check(r0); 4012 4013 const Address monitor_block_top( 4014 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4015 const Address monitor_block_bot( 4016 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 4017 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 4018 4019 Label found; 4020 4021 // find matching slot 4022 { 4023 Label entry, loop; 4024 __ ldr(c_rarg1, monitor_block_top); // derelativize pointer 4025 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 4026 // c_rarg1 points to current entry, starting with top-most entry 4027 4028 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 4029 // of monitor block 4030 __ b(entry); 4031 4032 __ bind(loop); 4033 // check if current entry is for same object 4034 __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 4035 __ cmp(r0, rscratch1); 4036 // if same object then stop searching 4037 __ br(Assembler::EQ, found); 4038 // otherwise advance to next entry 4039 __ add(c_rarg1, c_rarg1, entry_size); 4040 __ bind(entry); 4041 // check if bottom reached 4042 __ cmp(c_rarg1, c_rarg2); 4043 // if not at bottom then check this entry 4044 __ br(Assembler::NE, loop); 4045 } 4046 4047 // error handling. Unlocking was not block-structured 4048 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4049 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4050 __ should_not_reach_here(); 4051 4052 // call run-time routine 4053 __ bind(found); 4054 __ push_ptr(r0); // make sure object is on stack (contract with oopMaps) 4055 __ unlock_object(c_rarg1); 4056 __ pop_ptr(r0); // discard object 4057 } 4058 4059 4060 // Wide instructions 4061 void TemplateTable::wide() 4062 { 4063 __ load_unsigned_byte(r19, at_bcp(1)); 4064 __ mov(rscratch1, (address)Interpreter::_wentry_point); 4065 __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3))); 4066 __ br(rscratch1); 4067 } 4068 4069 4070 // Multi arrays 4071 void TemplateTable::multianewarray() { 4072 transition(vtos, atos); 4073 __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions 4074 // last dim is on top of stack; we want address of first one: 4075 // first_addr = last_addr + (ndims - 1) * wordSize 4076 __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3))); 4077 __ sub(c_rarg1, c_rarg1, wordSize); 4078 call_VM(r0, 4079 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), 4080 c_rarg1); 4081 __ load_unsigned_byte(r1, at_bcp(3)); 4082 __ lea(esp, Address(esp, r1, Address::uxtw(3))); 4083 }