1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/compilerDefinitions.inline.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "gc/shared/collectedHeap.hpp" 31 #include "gc/shared/tlab_globals.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "interpreter/interp_masm.hpp" 35 #include "interpreter/templateTable.hpp" 36 #include "memory/universe.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/method.inline.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "oops/resolvedFieldEntry.hpp" 42 #include "oops/resolvedIndyEntry.hpp" 43 #include "oops/resolvedMethodEntry.hpp" 44 #include "prims/jvmtiExport.hpp" 45 #include "prims/methodHandles.hpp" 46 #include "runtime/frame.inline.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "runtime/stubRoutines.hpp" 49 #include "runtime/synchronizer.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 52 #define __ _masm-> 53 54 // Address computation: local variables 55 56 static inline Address iaddress(int n) { 57 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 58 } 59 60 static inline Address laddress(int n) { 61 return iaddress(n + 1); 62 } 63 64 static inline Address faddress(int n) { 65 return iaddress(n); 66 } 67 68 static inline Address daddress(int n) { 69 return laddress(n); 70 } 71 72 static inline Address aaddress(int n) { 73 return iaddress(n); 74 } 75 76 static inline Address iaddress(Register r) { 77 return Address(rlocals, r, Address::lsl(3)); 78 } 79 80 static inline Address laddress(Register r, Register scratch, 81 InterpreterMacroAssembler* _masm) { 82 __ lea(scratch, Address(rlocals, r, Address::lsl(3))); 83 return Address(scratch, Interpreter::local_offset_in_bytes(1)); 84 } 85 86 static inline Address faddress(Register r) { 87 return iaddress(r); 88 } 89 90 static inline Address daddress(Register r, Register scratch, 91 InterpreterMacroAssembler* _masm) { 92 return laddress(r, scratch, _masm); 93 } 94 95 static inline Address aaddress(Register r) { 96 return iaddress(r); 97 } 98 99 static inline Address at_rsp() { 100 return Address(esp, 0); 101 } 102 103 // At top of Java expression stack which may be different than esp(). It 104 // isn't for category 1 objects. 105 static inline Address at_tos () { 106 return Address(esp, Interpreter::expr_offset_in_bytes(0)); 107 } 108 109 static inline Address at_tos_p1() { 110 return Address(esp, Interpreter::expr_offset_in_bytes(1)); 111 } 112 113 static inline Address at_tos_p2() { 114 return Address(esp, Interpreter::expr_offset_in_bytes(2)); 115 } 116 117 static inline Address at_tos_p3() { 118 return Address(esp, Interpreter::expr_offset_in_bytes(3)); 119 } 120 121 static inline Address at_tos_p4() { 122 return Address(esp, Interpreter::expr_offset_in_bytes(4)); 123 } 124 125 static inline Address at_tos_p5() { 126 return Address(esp, Interpreter::expr_offset_in_bytes(5)); 127 } 128 129 // Condition conversion 130 static Assembler::Condition j_not(TemplateTable::Condition cc) { 131 switch (cc) { 132 case TemplateTable::equal : return Assembler::NE; 133 case TemplateTable::not_equal : return Assembler::EQ; 134 case TemplateTable::less : return Assembler::GE; 135 case TemplateTable::less_equal : return Assembler::GT; 136 case TemplateTable::greater : return Assembler::LE; 137 case TemplateTable::greater_equal: return Assembler::LT; 138 } 139 ShouldNotReachHere(); 140 return Assembler::EQ; 141 } 142 143 144 // Miscellaneous helper routines 145 // Store an oop (or null) at the Address described by obj. 146 // If val == noreg this means store a null 147 static void do_oop_store(InterpreterMacroAssembler* _masm, 148 Address dst, 149 Register val, 150 DecoratorSet decorators) { 151 assert(val == noreg || val == r0, "parameter is just for looks"); 152 __ store_heap_oop(dst, val, r10, r11, r3, decorators); 153 } 154 155 static void do_oop_load(InterpreterMacroAssembler* _masm, 156 Address src, 157 Register dst, 158 DecoratorSet decorators) { 159 __ load_heap_oop(dst, src, r10, r11, decorators); 160 } 161 162 Address TemplateTable::at_bcp(int offset) { 163 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 164 return Address(rbcp, offset); 165 } 166 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 168 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 169 int byte_no) 170 { 171 if (!RewriteBytecodes) return; 172 Label L_patch_done; 173 174 switch (bc) { 175 case Bytecodes::_fast_aputfield: 176 case Bytecodes::_fast_bputfield: 177 case Bytecodes::_fast_zputfield: 178 case Bytecodes::_fast_cputfield: 179 case Bytecodes::_fast_dputfield: 180 case Bytecodes::_fast_fputfield: 181 case Bytecodes::_fast_iputfield: 182 case Bytecodes::_fast_lputfield: 183 case Bytecodes::_fast_sputfield: 184 { 185 // We skip bytecode quickening for putfield instructions when 186 // the put_code written to the constant pool cache is zero. 187 // This is required so that every execution of this instruction 188 // calls out to InterpreterRuntime::resolve_get_put to do 189 // additional, required work. 190 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 191 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 192 __ load_field_entry(temp_reg, bc_reg); 193 if (byte_no == f1_byte) { 194 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset()))); 195 } else { 196 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset()))); 197 } 198 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in() 199 __ ldarb(temp_reg, temp_reg); 200 __ movw(bc_reg, bc); 201 __ cbzw(temp_reg, L_patch_done); // don't patch 202 } 203 break; 204 default: 205 assert(byte_no == -1, "sanity"); 206 // the pair bytecodes have already done the load. 207 if (load_bc_into_bc_reg) { 208 __ movw(bc_reg, bc); 209 } 210 } 211 212 if (JvmtiExport::can_post_breakpoint()) { 213 Label L_fast_patch; 214 // if a breakpoint is present we can't rewrite the stream directly 215 __ load_unsigned_byte(temp_reg, at_bcp(0)); 216 __ cmpw(temp_reg, Bytecodes::_breakpoint); 217 __ br(Assembler::NE, L_fast_patch); 218 // Let breakpoint table handling rewrite to quicker bytecode 219 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg); 220 __ b(L_patch_done); 221 __ bind(L_fast_patch); 222 } 223 224 #ifdef ASSERT 225 Label L_okay; 226 __ load_unsigned_byte(temp_reg, at_bcp(0)); 227 __ cmpw(temp_reg, (int) Bytecodes::java_code(bc)); 228 __ br(Assembler::EQ, L_okay); 229 __ cmpw(temp_reg, bc_reg); 230 __ br(Assembler::EQ, L_okay); 231 __ stop("patching the wrong bytecode"); 232 __ bind(L_okay); 233 #endif 234 235 // patch bytecode 236 __ strb(bc_reg, at_bcp(0)); 237 __ bind(L_patch_done); 238 } 239 240 241 // Individual instructions 242 243 void TemplateTable::nop() { 244 transition(vtos, vtos); 245 // nothing to do 246 } 247 248 void TemplateTable::shouldnotreachhere() { 249 transition(vtos, vtos); 250 __ stop("shouldnotreachhere bytecode"); 251 } 252 253 void TemplateTable::aconst_null() 254 { 255 transition(vtos, atos); 256 __ mov(r0, 0); 257 } 258 259 void TemplateTable::iconst(int value) 260 { 261 transition(vtos, itos); 262 __ mov(r0, value); 263 } 264 265 void TemplateTable::lconst(int value) 266 { 267 __ mov(r0, value); 268 } 269 270 void TemplateTable::fconst(int value) 271 { 272 transition(vtos, ftos); 273 switch (value) { 274 case 0: 275 __ fmovs(v0, 0.0); 276 break; 277 case 1: 278 __ fmovs(v0, 1.0); 279 break; 280 case 2: 281 __ fmovs(v0, 2.0); 282 break; 283 default: 284 ShouldNotReachHere(); 285 break; 286 } 287 } 288 289 void TemplateTable::dconst(int value) 290 { 291 transition(vtos, dtos); 292 switch (value) { 293 case 0: 294 __ fmovd(v0, 0.0); 295 break; 296 case 1: 297 __ fmovd(v0, 1.0); 298 break; 299 case 2: 300 __ fmovd(v0, 2.0); 301 break; 302 default: 303 ShouldNotReachHere(); 304 break; 305 } 306 } 307 308 void TemplateTable::bipush() 309 { 310 transition(vtos, itos); 311 __ load_signed_byte32(r0, at_bcp(1)); 312 } 313 314 void TemplateTable::sipush() 315 { 316 transition(vtos, itos); 317 __ load_unsigned_short(r0, at_bcp(1)); 318 __ revw(r0, r0); 319 __ asrw(r0, r0, 16); 320 } 321 322 void TemplateTable::ldc(LdcType type) 323 { 324 transition(vtos, vtos); 325 Label call_ldc, notFloat, notClass, notInt, Done; 326 327 if (is_ldc_wide(type)) { 328 __ get_unsigned_2_byte_index_at_bcp(r1, 1); 329 } else { 330 __ load_unsigned_byte(r1, at_bcp(1)); 331 } 332 __ get_cpool_and_tags(r2, r0); 333 334 const int base_offset = ConstantPool::header_size() * wordSize; 335 const int tags_offset = Array<u1>::base_offset_in_bytes(); 336 337 // get type 338 __ add(r3, r1, tags_offset); 339 __ lea(r3, Address(r0, r3)); 340 __ ldarb(r3, r3); 341 342 // unresolved class - get the resolved class 343 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClass); 344 __ br(Assembler::EQ, call_ldc); 345 346 // unresolved class in error state - call into runtime to throw the error 347 // from the first resolution attempt 348 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClassInError); 349 __ br(Assembler::EQ, call_ldc); 350 351 // resolved class - need to call vm to get java mirror of the class 352 __ cmp(r3, (u1)JVM_CONSTANT_Class); 353 __ br(Assembler::NE, notClass); 354 355 __ load_resolved_klass_at_offset(r2, r1, r3, rscratch1); // kills r3=tag 356 357 __ cmp(r3, zr); // resolved_klass ?= null 358 __ br(Assembler::EQ, call_ldc); 359 360 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 361 __ ldr(r3, Address(r3, mirror_offset)); 362 __ resolve_oop_handle(r3, rscratch1, rscratch2); 363 __ push_ptr(r3); 364 365 __ b(Done); 366 367 __ bind(call_ldc); 368 __ mov(c_rarg1, is_ldc_wide(type) ? 1 : 0); 369 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); 370 __ push_ptr(r0); 371 __ verify_oop(r0); 372 __ b(Done); 373 374 __ bind(notClass); 375 __ cmp(r3, (u1)JVM_CONSTANT_Float); 376 __ br(Assembler::NE, notFloat); 377 // ftos 378 __ adds(r1, r2, r1, Assembler::LSL, 3); 379 __ ldrs(v0, Address(r1, base_offset)); 380 __ push_f(); 381 __ b(Done); 382 383 __ bind(notFloat); 384 385 __ cmp(r3, (u1)JVM_CONSTANT_Integer); 386 __ br(Assembler::NE, notInt); 387 388 // itos 389 __ adds(r1, r2, r1, Assembler::LSL, 3); 390 __ ldrw(r0, Address(r1, base_offset)); 391 __ push_i(r0); 392 __ b(Done); 393 394 __ bind(notInt); 395 condy_helper(Done); 396 397 __ bind(Done); 398 } 399 400 // Fast path for caching oop constants. 401 void TemplateTable::fast_aldc(LdcType type) 402 { 403 transition(vtos, atos); 404 405 Register result = r0; 406 Register tmp = r1; 407 Register rarg = r2; 408 409 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 410 411 Label resolved; 412 413 // We are resolved if the resolved reference cache entry contains a 414 // non-null object (String, MethodType, etc.) 415 assert_different_registers(result, tmp); 416 __ get_cache_index_at_bcp(tmp, 1, index_size); 417 __ load_resolved_reference_at_index(result, tmp); 418 __ cbnz(result, resolved); 419 420 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 421 422 // first time invocation - must resolve first 423 __ mov(rarg, (int)bytecode()); 424 __ call_VM(result, entry, rarg); 425 426 __ bind(resolved); 427 428 { // Check for the null sentinel. 429 // If we just called the VM, it already did the mapping for us, 430 // but it's harmless to retry. 431 Label notNull; 432 433 // Stash null_sentinel address to get its value later 434 __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr()); 435 __ ldr(tmp, Address(rarg)); 436 __ resolve_oop_handle(tmp, r5, rscratch2); 437 __ cmpoop(result, tmp); 438 __ br(Assembler::NE, notNull); 439 __ mov(result, 0); // null object reference 440 __ bind(notNull); 441 } 442 443 if (VerifyOops) { 444 // Safe to call with 0 result 445 __ verify_oop(result); 446 } 447 } 448 449 void TemplateTable::ldc2_w() 450 { 451 transition(vtos, vtos); 452 Label notDouble, notLong, Done; 453 __ get_unsigned_2_byte_index_at_bcp(r0, 1); 454 455 __ get_cpool_and_tags(r1, r2); 456 const int base_offset = ConstantPool::header_size() * wordSize; 457 const int tags_offset = Array<u1>::base_offset_in_bytes(); 458 459 // get type 460 __ lea(r2, Address(r2, r0, Address::lsl(0))); 461 __ load_unsigned_byte(r2, Address(r2, tags_offset)); 462 __ cmpw(r2, (int)JVM_CONSTANT_Double); 463 __ br(Assembler::NE, notDouble); 464 465 // dtos 466 __ lea (r2, Address(r1, r0, Address::lsl(3))); 467 __ ldrd(v0, Address(r2, base_offset)); 468 __ push_d(); 469 __ b(Done); 470 471 __ bind(notDouble); 472 __ cmpw(r2, (int)JVM_CONSTANT_Long); 473 __ br(Assembler::NE, notLong); 474 475 // ltos 476 __ lea(r0, Address(r1, r0, Address::lsl(3))); 477 __ ldr(r0, Address(r0, base_offset)); 478 __ push_l(); 479 __ b(Done); 480 481 __ bind(notLong); 482 condy_helper(Done); 483 484 __ bind(Done); 485 } 486 487 void TemplateTable::condy_helper(Label& Done) 488 { 489 Register obj = r0; 490 Register rarg = r1; 491 Register flags = r2; 492 Register off = r3; 493 494 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 495 496 __ mov(rarg, (int) bytecode()); 497 __ call_VM(obj, entry, rarg); 498 499 __ get_vm_result_2(flags, rthread); 500 501 // VMr = obj = base address to find primitive value to push 502 // VMr2 = flags = (tos, off) using format of CPCE::_flags 503 __ mov(off, flags); 504 __ andw(off, off, ConstantPoolCache::field_index_mask); 505 506 const Address field(obj, off); 507 508 // What sort of thing are we loading? 509 // x86 uses a shift and mask or wings it with a shift plus assert 510 // the mask is not needed. aarch64 just uses bitfield extract 511 __ ubfxw(flags, flags, ConstantPoolCache::tos_state_shift, 512 ConstantPoolCache::tos_state_bits); 513 514 switch (bytecode()) { 515 case Bytecodes::_ldc: 516 case Bytecodes::_ldc_w: 517 { 518 // tos in (itos, ftos, stos, btos, ctos, ztos) 519 Label notInt, notFloat, notShort, notByte, notChar, notBool; 520 __ cmpw(flags, itos); 521 __ br(Assembler::NE, notInt); 522 // itos 523 __ ldrw(r0, field); 524 __ push(itos); 525 __ b(Done); 526 527 __ bind(notInt); 528 __ cmpw(flags, ftos); 529 __ br(Assembler::NE, notFloat); 530 // ftos 531 __ load_float(field); 532 __ push(ftos); 533 __ b(Done); 534 535 __ bind(notFloat); 536 __ cmpw(flags, stos); 537 __ br(Assembler::NE, notShort); 538 // stos 539 __ load_signed_short(r0, field); 540 __ push(stos); 541 __ b(Done); 542 543 __ bind(notShort); 544 __ cmpw(flags, btos); 545 __ br(Assembler::NE, notByte); 546 // btos 547 __ load_signed_byte(r0, field); 548 __ push(btos); 549 __ b(Done); 550 551 __ bind(notByte); 552 __ cmpw(flags, ctos); 553 __ br(Assembler::NE, notChar); 554 // ctos 555 __ load_unsigned_short(r0, field); 556 __ push(ctos); 557 __ b(Done); 558 559 __ bind(notChar); 560 __ cmpw(flags, ztos); 561 __ br(Assembler::NE, notBool); 562 // ztos 563 __ load_signed_byte(r0, field); 564 __ push(ztos); 565 __ b(Done); 566 567 __ bind(notBool); 568 break; 569 } 570 571 case Bytecodes::_ldc2_w: 572 { 573 Label notLong, notDouble; 574 __ cmpw(flags, ltos); 575 __ br(Assembler::NE, notLong); 576 // ltos 577 __ ldr(r0, field); 578 __ push(ltos); 579 __ b(Done); 580 581 __ bind(notLong); 582 __ cmpw(flags, dtos); 583 __ br(Assembler::NE, notDouble); 584 // dtos 585 __ load_double(field); 586 __ push(dtos); 587 __ b(Done); 588 589 __ bind(notDouble); 590 break; 591 } 592 593 default: 594 ShouldNotReachHere(); 595 } 596 597 __ stop("bad ldc/condy"); 598 } 599 600 void TemplateTable::locals_index(Register reg, int offset) 601 { 602 __ ldrb(reg, at_bcp(offset)); 603 __ neg(reg, reg); 604 } 605 606 void TemplateTable::iload() { 607 iload_internal(); 608 } 609 610 void TemplateTable::nofast_iload() { 611 iload_internal(may_not_rewrite); 612 } 613 614 void TemplateTable::iload_internal(RewriteControl rc) { 615 transition(vtos, itos); 616 if (RewriteFrequentPairs && rc == may_rewrite) { 617 Label rewrite, done; 618 Register bc = r4; 619 620 // get next bytecode 621 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 622 623 // if _iload, wait to rewrite to iload2. We only want to rewrite the 624 // last two iloads in a pair. Comparing against fast_iload means that 625 // the next bytecode is neither an iload or a caload, and therefore 626 // an iload pair. 627 __ cmpw(r1, Bytecodes::_iload); 628 __ br(Assembler::EQ, done); 629 630 // if _fast_iload rewrite to _fast_iload2 631 __ cmpw(r1, Bytecodes::_fast_iload); 632 __ movw(bc, Bytecodes::_fast_iload2); 633 __ br(Assembler::EQ, rewrite); 634 635 // if _caload rewrite to _fast_icaload 636 __ cmpw(r1, Bytecodes::_caload); 637 __ movw(bc, Bytecodes::_fast_icaload); 638 __ br(Assembler::EQ, rewrite); 639 640 // else rewrite to _fast_iload 641 __ movw(bc, Bytecodes::_fast_iload); 642 643 // rewrite 644 // bc: new bytecode 645 __ bind(rewrite); 646 patch_bytecode(Bytecodes::_iload, bc, r1, false); 647 __ bind(done); 648 649 } 650 651 // do iload, get the local value into tos 652 locals_index(r1); 653 __ ldr(r0, iaddress(r1)); 654 655 } 656 657 void TemplateTable::fast_iload2() 658 { 659 transition(vtos, itos); 660 locals_index(r1); 661 __ ldr(r0, iaddress(r1)); 662 __ push(itos); 663 locals_index(r1, 3); 664 __ ldr(r0, iaddress(r1)); 665 } 666 667 void TemplateTable::fast_iload() 668 { 669 transition(vtos, itos); 670 locals_index(r1); 671 __ ldr(r0, iaddress(r1)); 672 } 673 674 void TemplateTable::lload() 675 { 676 transition(vtos, ltos); 677 __ ldrb(r1, at_bcp(1)); 678 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 679 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 680 } 681 682 void TemplateTable::fload() 683 { 684 transition(vtos, ftos); 685 locals_index(r1); 686 // n.b. we use ldrd here because this is a 64 bit slot 687 // this is comparable to the iload case 688 __ ldrd(v0, faddress(r1)); 689 } 690 691 void TemplateTable::dload() 692 { 693 transition(vtos, dtos); 694 __ ldrb(r1, at_bcp(1)); 695 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 696 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 697 } 698 699 void TemplateTable::aload() 700 { 701 transition(vtos, atos); 702 locals_index(r1); 703 __ ldr(r0, iaddress(r1)); 704 } 705 706 void TemplateTable::locals_index_wide(Register reg) { 707 __ ldrh(reg, at_bcp(2)); 708 __ rev16w(reg, reg); 709 __ neg(reg, reg); 710 } 711 712 void TemplateTable::wide_iload() { 713 transition(vtos, itos); 714 locals_index_wide(r1); 715 __ ldr(r0, iaddress(r1)); 716 } 717 718 void TemplateTable::wide_lload() 719 { 720 transition(vtos, ltos); 721 __ ldrh(r1, at_bcp(2)); 722 __ rev16w(r1, r1); 723 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 724 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 725 } 726 727 void TemplateTable::wide_fload() 728 { 729 transition(vtos, ftos); 730 locals_index_wide(r1); 731 // n.b. we use ldrd here because this is a 64 bit slot 732 // this is comparable to the iload case 733 __ ldrd(v0, faddress(r1)); 734 } 735 736 void TemplateTable::wide_dload() 737 { 738 transition(vtos, dtos); 739 __ ldrh(r1, at_bcp(2)); 740 __ rev16w(r1, r1); 741 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 742 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 743 } 744 745 void TemplateTable::wide_aload() 746 { 747 transition(vtos, atos); 748 locals_index_wide(r1); 749 __ ldr(r0, aaddress(r1)); 750 } 751 752 void TemplateTable::index_check(Register array, Register index) 753 { 754 // destroys r1, rscratch1 755 // sign extend index for use by indexed load 756 // __ movl2ptr(index, index); 757 // check index 758 Register length = rscratch1; 759 __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes())); 760 __ cmpw(index, length); 761 if (index != r1) { 762 // ??? convention: move aberrant index into r1 for exception message 763 assert(r1 != array, "different registers"); 764 __ mov(r1, index); 765 } 766 Label ok; 767 __ br(Assembler::LO, ok); 768 // ??? convention: move array into r3 for exception message 769 __ mov(r3, array); 770 __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 771 __ br(rscratch1); 772 __ bind(ok); 773 } 774 775 void TemplateTable::iaload() 776 { 777 transition(itos, itos); 778 __ mov(r1, r0); 779 __ pop_ptr(r0); 780 // r0: array 781 // r1: index 782 index_check(r0, r1); // leaves index in r1, kills rscratch1 783 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 784 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg); 785 } 786 787 void TemplateTable::laload() 788 { 789 transition(itos, ltos); 790 __ mov(r1, r0); 791 __ pop_ptr(r0); 792 // r0: array 793 // r1: index 794 index_check(r0, r1); // leaves index in r1, kills rscratch1 795 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 796 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg); 797 } 798 799 void TemplateTable::faload() 800 { 801 transition(itos, ftos); 802 __ mov(r1, r0); 803 __ pop_ptr(r0); 804 // r0: array 805 // r1: index 806 index_check(r0, r1); // leaves index in r1, kills rscratch1 807 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 808 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg); 809 } 810 811 void TemplateTable::daload() 812 { 813 transition(itos, dtos); 814 __ mov(r1, r0); 815 __ pop_ptr(r0); 816 // r0: array 817 // r1: index 818 index_check(r0, r1); // leaves index in r1, kills rscratch1 819 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 820 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg); 821 } 822 823 void TemplateTable::aaload() 824 { 825 transition(itos, atos); 826 __ mov(r1, r0); 827 __ pop_ptr(r0); 828 // r0: array 829 // r1: index 830 index_check(r0, r1); // leaves index in r1, kills rscratch1 831 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 832 do_oop_load(_masm, 833 Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), 834 r0, 835 IS_ARRAY); 836 } 837 838 void TemplateTable::baload() 839 { 840 transition(itos, itos); 841 __ mov(r1, r0); 842 __ pop_ptr(r0); 843 // r0: array 844 // r1: index 845 index_check(r0, r1); // leaves index in r1, kills rscratch1 846 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 847 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg); 848 } 849 850 void TemplateTable::caload() 851 { 852 transition(itos, itos); 853 __ mov(r1, r0); 854 __ pop_ptr(r0); 855 // r0: array 856 // r1: index 857 index_check(r0, r1); // leaves index in r1, kills rscratch1 858 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 859 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 860 } 861 862 // iload followed by caload frequent pair 863 void TemplateTable::fast_icaload() 864 { 865 transition(vtos, itos); 866 // load index out of locals 867 locals_index(r2); 868 __ ldr(r1, iaddress(r2)); 869 870 __ pop_ptr(r0); 871 872 // r0: array 873 // r1: index 874 index_check(r0, r1); // leaves index in r1, kills rscratch1 875 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 876 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 877 } 878 879 void TemplateTable::saload() 880 { 881 transition(itos, itos); 882 __ mov(r1, r0); 883 __ pop_ptr(r0); 884 // r0: array 885 // r1: index 886 index_check(r0, r1); // leaves index in r1, kills rscratch1 887 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1); 888 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 889 } 890 891 void TemplateTable::iload(int n) 892 { 893 transition(vtos, itos); 894 __ ldr(r0, iaddress(n)); 895 } 896 897 void TemplateTable::lload(int n) 898 { 899 transition(vtos, ltos); 900 __ ldr(r0, laddress(n)); 901 } 902 903 void TemplateTable::fload(int n) 904 { 905 transition(vtos, ftos); 906 __ ldrs(v0, faddress(n)); 907 } 908 909 void TemplateTable::dload(int n) 910 { 911 transition(vtos, dtos); 912 __ ldrd(v0, daddress(n)); 913 } 914 915 void TemplateTable::aload(int n) 916 { 917 transition(vtos, atos); 918 __ ldr(r0, iaddress(n)); 919 } 920 921 void TemplateTable::aload_0() { 922 aload_0_internal(); 923 } 924 925 void TemplateTable::nofast_aload_0() { 926 aload_0_internal(may_not_rewrite); 927 } 928 929 void TemplateTable::aload_0_internal(RewriteControl rc) { 930 // According to bytecode histograms, the pairs: 931 // 932 // _aload_0, _fast_igetfield 933 // _aload_0, _fast_agetfield 934 // _aload_0, _fast_fgetfield 935 // 936 // occur frequently. If RewriteFrequentPairs is set, the (slow) 937 // _aload_0 bytecode checks if the next bytecode is either 938 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 939 // rewrites the current bytecode into a pair bytecode; otherwise it 940 // rewrites the current bytecode into _fast_aload_0 that doesn't do 941 // the pair check anymore. 942 // 943 // Note: If the next bytecode is _getfield, the rewrite must be 944 // delayed, otherwise we may miss an opportunity for a pair. 945 // 946 // Also rewrite frequent pairs 947 // aload_0, aload_1 948 // aload_0, iload_1 949 // These bytecodes with a small amount of code are most profitable 950 // to rewrite 951 if (RewriteFrequentPairs && rc == may_rewrite) { 952 Label rewrite, done; 953 const Register bc = r4; 954 955 // get next bytecode 956 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 957 958 // if _getfield then wait with rewrite 959 __ cmpw(r1, Bytecodes::Bytecodes::_getfield); 960 __ br(Assembler::EQ, done); 961 962 // if _igetfield then rewrite to _fast_iaccess_0 963 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 964 __ cmpw(r1, Bytecodes::_fast_igetfield); 965 __ movw(bc, Bytecodes::_fast_iaccess_0); 966 __ br(Assembler::EQ, rewrite); 967 968 // if _agetfield then rewrite to _fast_aaccess_0 969 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 970 __ cmpw(r1, Bytecodes::_fast_agetfield); 971 __ movw(bc, Bytecodes::_fast_aaccess_0); 972 __ br(Assembler::EQ, rewrite); 973 974 // if _fgetfield then rewrite to _fast_faccess_0 975 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 976 __ cmpw(r1, Bytecodes::_fast_fgetfield); 977 __ movw(bc, Bytecodes::_fast_faccess_0); 978 __ br(Assembler::EQ, rewrite); 979 980 // else rewrite to _fast_aload0 981 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 982 __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0); 983 984 // rewrite 985 // bc: new bytecode 986 __ bind(rewrite); 987 patch_bytecode(Bytecodes::_aload_0, bc, r1, false); 988 989 __ bind(done); 990 } 991 992 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 993 aload(0); 994 } 995 996 void TemplateTable::istore() 997 { 998 transition(itos, vtos); 999 locals_index(r1); 1000 // FIXME: We're being very pernickerty here storing a jint in a 1001 // local with strw, which costs an extra instruction over what we'd 1002 // be able to do with a simple str. We should just store the whole 1003 // word. 1004 __ lea(rscratch1, iaddress(r1)); 1005 __ strw(r0, Address(rscratch1)); 1006 } 1007 1008 void TemplateTable::lstore() 1009 { 1010 transition(ltos, vtos); 1011 locals_index(r1); 1012 __ str(r0, laddress(r1, rscratch1, _masm)); 1013 } 1014 1015 void TemplateTable::fstore() { 1016 transition(ftos, vtos); 1017 locals_index(r1); 1018 __ lea(rscratch1, iaddress(r1)); 1019 __ strs(v0, Address(rscratch1)); 1020 } 1021 1022 void TemplateTable::dstore() { 1023 transition(dtos, vtos); 1024 locals_index(r1); 1025 __ strd(v0, daddress(r1, rscratch1, _masm)); 1026 } 1027 1028 void TemplateTable::astore() 1029 { 1030 transition(vtos, vtos); 1031 __ pop_ptr(r0); 1032 locals_index(r1); 1033 __ str(r0, aaddress(r1)); 1034 } 1035 1036 void TemplateTable::wide_istore() { 1037 transition(vtos, vtos); 1038 __ pop_i(); 1039 locals_index_wide(r1); 1040 __ lea(rscratch1, iaddress(r1)); 1041 __ strw(r0, Address(rscratch1)); 1042 } 1043 1044 void TemplateTable::wide_lstore() { 1045 transition(vtos, vtos); 1046 __ pop_l(); 1047 locals_index_wide(r1); 1048 __ str(r0, laddress(r1, rscratch1, _masm)); 1049 } 1050 1051 void TemplateTable::wide_fstore() { 1052 transition(vtos, vtos); 1053 __ pop_f(); 1054 locals_index_wide(r1); 1055 __ lea(rscratch1, faddress(r1)); 1056 __ strs(v0, rscratch1); 1057 } 1058 1059 void TemplateTable::wide_dstore() { 1060 transition(vtos, vtos); 1061 __ pop_d(); 1062 locals_index_wide(r1); 1063 __ strd(v0, daddress(r1, rscratch1, _masm)); 1064 } 1065 1066 void TemplateTable::wide_astore() { 1067 transition(vtos, vtos); 1068 __ pop_ptr(r0); 1069 locals_index_wide(r1); 1070 __ str(r0, aaddress(r1)); 1071 } 1072 1073 void TemplateTable::iastore() { 1074 transition(itos, vtos); 1075 __ pop_i(r1); 1076 __ pop_ptr(r3); 1077 // r0: value 1078 // r1: index 1079 // r3: array 1080 index_check(r3, r1); // prefer index in r1 1081 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 1082 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), r0, noreg, noreg, noreg); 1083 } 1084 1085 void TemplateTable::lastore() { 1086 transition(ltos, vtos); 1087 __ pop_i(r1); 1088 __ pop_ptr(r3); 1089 // r0: value 1090 // r1: index 1091 // r3: array 1092 index_check(r3, r1); // prefer index in r1 1093 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 1094 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), r0, noreg, noreg, noreg); 1095 } 1096 1097 void TemplateTable::fastore() { 1098 transition(ftos, vtos); 1099 __ pop_i(r1); 1100 __ pop_ptr(r3); 1101 // v0: value 1102 // r1: index 1103 // r3: array 1104 index_check(r3, r1); // prefer index in r1 1105 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 1106 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg); 1107 } 1108 1109 void TemplateTable::dastore() { 1110 transition(dtos, vtos); 1111 __ pop_i(r1); 1112 __ pop_ptr(r3); 1113 // v0: value 1114 // r1: index 1115 // r3: array 1116 index_check(r3, r1); // prefer index in r1 1117 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 1118 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg); 1119 } 1120 1121 void TemplateTable::aastore() { 1122 Label is_null, ok_is_subtype, done; 1123 transition(vtos, vtos); 1124 // stack: ..., array, index, value 1125 __ ldr(r0, at_tos()); // value 1126 __ ldr(r2, at_tos_p1()); // index 1127 __ ldr(r3, at_tos_p2()); // array 1128 1129 Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop)); 1130 1131 index_check(r3, r2); // kills r1 1132 __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 1133 1134 // do array store check - check for null value first 1135 __ cbz(r0, is_null); 1136 1137 // Move subklass into r1 1138 __ load_klass(r1, r0); 1139 // Move superklass into r0 1140 __ load_klass(r0, r3); 1141 __ ldr(r0, Address(r0, 1142 ObjArrayKlass::element_klass_offset())); 1143 // Compress array + index*oopSize + 12 into a single register. Frees r2. 1144 1145 // Generate subtype check. Blows r2, r5 1146 // Superklass in r0. Subklass in r1. 1147 __ gen_subtype_check(r1, ok_is_subtype); 1148 1149 // Come here on failure 1150 // object is at TOS 1151 __ b(Interpreter::_throw_ArrayStoreException_entry); 1152 1153 // Come here on success 1154 __ bind(ok_is_subtype); 1155 1156 // Get the value we will store 1157 __ ldr(r0, at_tos()); 1158 // Now store using the appropriate barrier 1159 do_oop_store(_masm, element_address, r0, IS_ARRAY); 1160 __ b(done); 1161 1162 // Have a null in r0, r3=array, r2=index. Store null at ary[idx] 1163 __ bind(is_null); 1164 __ profile_null_seen(r2); 1165 1166 // Store a null 1167 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1168 1169 // Pop stack arguments 1170 __ bind(done); 1171 __ add(esp, esp, 3 * Interpreter::stackElementSize); 1172 } 1173 1174 void TemplateTable::bastore() 1175 { 1176 transition(itos, vtos); 1177 __ pop_i(r1); 1178 __ pop_ptr(r3); 1179 // r0: value 1180 // r1: index 1181 // r3: array 1182 index_check(r3, r1); // prefer index in r1 1183 1184 // Need to check whether array is boolean or byte 1185 // since both types share the bastore bytecode. 1186 __ load_klass(r2, r3); 1187 __ ldrw(r2, Address(r2, Klass::layout_helper_offset())); 1188 int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit()); 1189 Label L_skip; 1190 __ tbz(r2, diffbit_index, L_skip); 1191 __ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1192 __ bind(L_skip); 1193 1194 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 1195 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(0)), r0, noreg, noreg, noreg); 1196 } 1197 1198 void TemplateTable::castore() 1199 { 1200 transition(itos, vtos); 1201 __ pop_i(r1); 1202 __ pop_ptr(r3); 1203 // r0: value 1204 // r1: index 1205 // r3: array 1206 index_check(r3, r1); // prefer index in r1 1207 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 1208 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(1)), r0, noreg, noreg, noreg); 1209 } 1210 1211 void TemplateTable::sastore() 1212 { 1213 castore(); 1214 } 1215 1216 void TemplateTable::istore(int n) 1217 { 1218 transition(itos, vtos); 1219 __ str(r0, iaddress(n)); 1220 } 1221 1222 void TemplateTable::lstore(int n) 1223 { 1224 transition(ltos, vtos); 1225 __ str(r0, laddress(n)); 1226 } 1227 1228 void TemplateTable::fstore(int n) 1229 { 1230 transition(ftos, vtos); 1231 __ strs(v0, faddress(n)); 1232 } 1233 1234 void TemplateTable::dstore(int n) 1235 { 1236 transition(dtos, vtos); 1237 __ strd(v0, daddress(n)); 1238 } 1239 1240 void TemplateTable::astore(int n) 1241 { 1242 transition(vtos, vtos); 1243 __ pop_ptr(r0); 1244 __ str(r0, iaddress(n)); 1245 } 1246 1247 void TemplateTable::pop() 1248 { 1249 transition(vtos, vtos); 1250 __ add(esp, esp, Interpreter::stackElementSize); 1251 } 1252 1253 void TemplateTable::pop2() 1254 { 1255 transition(vtos, vtos); 1256 __ add(esp, esp, 2 * Interpreter::stackElementSize); 1257 } 1258 1259 void TemplateTable::dup() 1260 { 1261 transition(vtos, vtos); 1262 __ ldr(r0, Address(esp, 0)); 1263 __ push(r0); 1264 // stack: ..., a, a 1265 } 1266 1267 void TemplateTable::dup_x1() 1268 { 1269 transition(vtos, vtos); 1270 // stack: ..., a, b 1271 __ ldr(r0, at_tos()); // load b 1272 __ ldr(r2, at_tos_p1()); // load a 1273 __ str(r0, at_tos_p1()); // store b 1274 __ str(r2, at_tos()); // store a 1275 __ push(r0); // push b 1276 // stack: ..., b, a, b 1277 } 1278 1279 void TemplateTable::dup_x2() 1280 { 1281 transition(vtos, vtos); 1282 // stack: ..., a, b, c 1283 __ ldr(r0, at_tos()); // load c 1284 __ ldr(r2, at_tos_p2()); // load a 1285 __ str(r0, at_tos_p2()); // store c in a 1286 __ push(r0); // push c 1287 // stack: ..., c, b, c, c 1288 __ ldr(r0, at_tos_p2()); // load b 1289 __ str(r2, at_tos_p2()); // store a in b 1290 // stack: ..., c, a, c, c 1291 __ str(r0, at_tos_p1()); // store b in c 1292 // stack: ..., c, a, b, c 1293 } 1294 1295 void TemplateTable::dup2() 1296 { 1297 transition(vtos, vtos); 1298 // stack: ..., a, b 1299 __ ldr(r0, at_tos_p1()); // load a 1300 __ push(r0); // push a 1301 __ ldr(r0, at_tos_p1()); // load b 1302 __ push(r0); // push b 1303 // stack: ..., a, b, a, b 1304 } 1305 1306 void TemplateTable::dup2_x1() 1307 { 1308 transition(vtos, vtos); 1309 // stack: ..., a, b, c 1310 __ ldr(r2, at_tos()); // load c 1311 __ ldr(r0, at_tos_p1()); // load b 1312 __ push(r0); // push b 1313 __ push(r2); // push c 1314 // stack: ..., a, b, c, b, c 1315 __ str(r2, at_tos_p3()); // store c in b 1316 // stack: ..., a, c, c, b, c 1317 __ ldr(r2, at_tos_p4()); // load a 1318 __ str(r2, at_tos_p2()); // store a in 2nd c 1319 // stack: ..., a, c, a, b, c 1320 __ str(r0, at_tos_p4()); // store b in a 1321 // stack: ..., b, c, a, b, c 1322 } 1323 1324 void TemplateTable::dup2_x2() 1325 { 1326 transition(vtos, vtos); 1327 // stack: ..., a, b, c, d 1328 __ ldr(r2, at_tos()); // load d 1329 __ ldr(r0, at_tos_p1()); // load c 1330 __ push(r0) ; // push c 1331 __ push(r2); // push d 1332 // stack: ..., a, b, c, d, c, d 1333 __ ldr(r0, at_tos_p4()); // load b 1334 __ str(r0, at_tos_p2()); // store b in d 1335 __ str(r2, at_tos_p4()); // store d in b 1336 // stack: ..., a, d, c, b, c, d 1337 __ ldr(r2, at_tos_p5()); // load a 1338 __ ldr(r0, at_tos_p3()); // load c 1339 __ str(r2, at_tos_p3()); // store a in c 1340 __ str(r0, at_tos_p5()); // store c in a 1341 // stack: ..., c, d, a, b, c, d 1342 } 1343 1344 void TemplateTable::swap() 1345 { 1346 transition(vtos, vtos); 1347 // stack: ..., a, b 1348 __ ldr(r2, at_tos_p1()); // load a 1349 __ ldr(r0, at_tos()); // load b 1350 __ str(r2, at_tos()); // store a in b 1351 __ str(r0, at_tos_p1()); // store b in a 1352 // stack: ..., b, a 1353 } 1354 1355 void TemplateTable::iop2(Operation op) 1356 { 1357 transition(itos, itos); 1358 // r0 <== r1 op r0 1359 __ pop_i(r1); 1360 switch (op) { 1361 case add : __ addw(r0, r1, r0); break; 1362 case sub : __ subw(r0, r1, r0); break; 1363 case mul : __ mulw(r0, r1, r0); break; 1364 case _and : __ andw(r0, r1, r0); break; 1365 case _or : __ orrw(r0, r1, r0); break; 1366 case _xor : __ eorw(r0, r1, r0); break; 1367 case shl : __ lslvw(r0, r1, r0); break; 1368 case shr : __ asrvw(r0, r1, r0); break; 1369 case ushr : __ lsrvw(r0, r1, r0);break; 1370 default : ShouldNotReachHere(); 1371 } 1372 } 1373 1374 void TemplateTable::lop2(Operation op) 1375 { 1376 transition(ltos, ltos); 1377 // r0 <== r1 op r0 1378 __ pop_l(r1); 1379 switch (op) { 1380 case add : __ add(r0, r1, r0); break; 1381 case sub : __ sub(r0, r1, r0); break; 1382 case mul : __ mul(r0, r1, r0); break; 1383 case _and : __ andr(r0, r1, r0); break; 1384 case _or : __ orr(r0, r1, r0); break; 1385 case _xor : __ eor(r0, r1, r0); break; 1386 default : ShouldNotReachHere(); 1387 } 1388 } 1389 1390 void TemplateTable::idiv() 1391 { 1392 transition(itos, itos); 1393 // explicitly check for div0 1394 Label no_div0; 1395 __ cbnzw(r0, no_div0); 1396 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1397 __ br(rscratch1); 1398 __ bind(no_div0); 1399 __ pop_i(r1); 1400 // r0 <== r1 idiv r0 1401 __ corrected_idivl(r0, r1, r0, /* want_remainder */ false); 1402 } 1403 1404 void TemplateTable::irem() 1405 { 1406 transition(itos, itos); 1407 // explicitly check for div0 1408 Label no_div0; 1409 __ cbnzw(r0, no_div0); 1410 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1411 __ br(rscratch1); 1412 __ bind(no_div0); 1413 __ pop_i(r1); 1414 // r0 <== r1 irem r0 1415 __ corrected_idivl(r0, r1, r0, /* want_remainder */ true); 1416 } 1417 1418 void TemplateTable::lmul() 1419 { 1420 transition(ltos, ltos); 1421 __ pop_l(r1); 1422 __ mul(r0, r0, r1); 1423 } 1424 1425 void TemplateTable::ldiv() 1426 { 1427 transition(ltos, ltos); 1428 // explicitly check for div0 1429 Label no_div0; 1430 __ cbnz(r0, no_div0); 1431 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1432 __ br(rscratch1); 1433 __ bind(no_div0); 1434 __ pop_l(r1); 1435 // r0 <== r1 ldiv r0 1436 __ corrected_idivq(r0, r1, r0, /* want_remainder */ false); 1437 } 1438 1439 void TemplateTable::lrem() 1440 { 1441 transition(ltos, ltos); 1442 // explicitly check for div0 1443 Label no_div0; 1444 __ cbnz(r0, no_div0); 1445 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1446 __ br(rscratch1); 1447 __ bind(no_div0); 1448 __ pop_l(r1); 1449 // r0 <== r1 lrem r0 1450 __ corrected_idivq(r0, r1, r0, /* want_remainder */ true); 1451 } 1452 1453 void TemplateTable::lshl() 1454 { 1455 transition(itos, ltos); 1456 // shift count is in r0 1457 __ pop_l(r1); 1458 __ lslv(r0, r1, r0); 1459 } 1460 1461 void TemplateTable::lshr() 1462 { 1463 transition(itos, ltos); 1464 // shift count is in r0 1465 __ pop_l(r1); 1466 __ asrv(r0, r1, r0); 1467 } 1468 1469 void TemplateTable::lushr() 1470 { 1471 transition(itos, ltos); 1472 // shift count is in r0 1473 __ pop_l(r1); 1474 __ lsrv(r0, r1, r0); 1475 } 1476 1477 void TemplateTable::fop2(Operation op) 1478 { 1479 transition(ftos, ftos); 1480 switch (op) { 1481 case add: 1482 // n.b. use ldrd because this is a 64 bit slot 1483 __ pop_f(v1); 1484 __ fadds(v0, v1, v0); 1485 break; 1486 case sub: 1487 __ pop_f(v1); 1488 __ fsubs(v0, v1, v0); 1489 break; 1490 case mul: 1491 __ pop_f(v1); 1492 __ fmuls(v0, v1, v0); 1493 break; 1494 case div: 1495 __ pop_f(v1); 1496 __ fdivs(v0, v1, v0); 1497 break; 1498 case rem: 1499 __ fmovs(v1, v0); 1500 __ pop_f(v0); 1501 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem)); 1502 break; 1503 default: 1504 ShouldNotReachHere(); 1505 break; 1506 } 1507 } 1508 1509 void TemplateTable::dop2(Operation op) 1510 { 1511 transition(dtos, dtos); 1512 switch (op) { 1513 case add: 1514 // n.b. use ldrd because this is a 64 bit slot 1515 __ pop_d(v1); 1516 __ faddd(v0, v1, v0); 1517 break; 1518 case sub: 1519 __ pop_d(v1); 1520 __ fsubd(v0, v1, v0); 1521 break; 1522 case mul: 1523 __ pop_d(v1); 1524 __ fmuld(v0, v1, v0); 1525 break; 1526 case div: 1527 __ pop_d(v1); 1528 __ fdivd(v0, v1, v0); 1529 break; 1530 case rem: 1531 __ fmovd(v1, v0); 1532 __ pop_d(v0); 1533 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem)); 1534 break; 1535 default: 1536 ShouldNotReachHere(); 1537 break; 1538 } 1539 } 1540 1541 void TemplateTable::ineg() 1542 { 1543 transition(itos, itos); 1544 __ negw(r0, r0); 1545 1546 } 1547 1548 void TemplateTable::lneg() 1549 { 1550 transition(ltos, ltos); 1551 __ neg(r0, r0); 1552 } 1553 1554 void TemplateTable::fneg() 1555 { 1556 transition(ftos, ftos); 1557 __ fnegs(v0, v0); 1558 } 1559 1560 void TemplateTable::dneg() 1561 { 1562 transition(dtos, dtos); 1563 __ fnegd(v0, v0); 1564 } 1565 1566 void TemplateTable::iinc() 1567 { 1568 transition(vtos, vtos); 1569 __ load_signed_byte(r1, at_bcp(2)); // get constant 1570 locals_index(r2); 1571 __ ldr(r0, iaddress(r2)); 1572 __ addw(r0, r0, r1); 1573 __ str(r0, iaddress(r2)); 1574 } 1575 1576 void TemplateTable::wide_iinc() 1577 { 1578 transition(vtos, vtos); 1579 // __ mov(r1, zr); 1580 __ ldrw(r1, at_bcp(2)); // get constant and index 1581 __ rev16(r1, r1); 1582 __ ubfx(r2, r1, 0, 16); 1583 __ neg(r2, r2); 1584 __ sbfx(r1, r1, 16, 16); 1585 __ ldr(r0, iaddress(r2)); 1586 __ addw(r0, r0, r1); 1587 __ str(r0, iaddress(r2)); 1588 } 1589 1590 void TemplateTable::convert() 1591 { 1592 // Checking 1593 #ifdef ASSERT 1594 { 1595 TosState tos_in = ilgl; 1596 TosState tos_out = ilgl; 1597 switch (bytecode()) { 1598 case Bytecodes::_i2l: // fall through 1599 case Bytecodes::_i2f: // fall through 1600 case Bytecodes::_i2d: // fall through 1601 case Bytecodes::_i2b: // fall through 1602 case Bytecodes::_i2c: // fall through 1603 case Bytecodes::_i2s: tos_in = itos; break; 1604 case Bytecodes::_l2i: // fall through 1605 case Bytecodes::_l2f: // fall through 1606 case Bytecodes::_l2d: tos_in = ltos; break; 1607 case Bytecodes::_f2i: // fall through 1608 case Bytecodes::_f2l: // fall through 1609 case Bytecodes::_f2d: tos_in = ftos; break; 1610 case Bytecodes::_d2i: // fall through 1611 case Bytecodes::_d2l: // fall through 1612 case Bytecodes::_d2f: tos_in = dtos; break; 1613 default : ShouldNotReachHere(); 1614 } 1615 switch (bytecode()) { 1616 case Bytecodes::_l2i: // fall through 1617 case Bytecodes::_f2i: // fall through 1618 case Bytecodes::_d2i: // fall through 1619 case Bytecodes::_i2b: // fall through 1620 case Bytecodes::_i2c: // fall through 1621 case Bytecodes::_i2s: tos_out = itos; break; 1622 case Bytecodes::_i2l: // fall through 1623 case Bytecodes::_f2l: // fall through 1624 case Bytecodes::_d2l: tos_out = ltos; break; 1625 case Bytecodes::_i2f: // fall through 1626 case Bytecodes::_l2f: // fall through 1627 case Bytecodes::_d2f: tos_out = ftos; break; 1628 case Bytecodes::_i2d: // fall through 1629 case Bytecodes::_l2d: // fall through 1630 case Bytecodes::_f2d: tos_out = dtos; break; 1631 default : ShouldNotReachHere(); 1632 } 1633 transition(tos_in, tos_out); 1634 } 1635 #endif // ASSERT 1636 // static const int64_t is_nan = 0x8000000000000000L; 1637 1638 // Conversion 1639 switch (bytecode()) { 1640 case Bytecodes::_i2l: 1641 __ sxtw(r0, r0); 1642 break; 1643 case Bytecodes::_i2f: 1644 __ scvtfws(v0, r0); 1645 break; 1646 case Bytecodes::_i2d: 1647 __ scvtfwd(v0, r0); 1648 break; 1649 case Bytecodes::_i2b: 1650 __ sxtbw(r0, r0); 1651 break; 1652 case Bytecodes::_i2c: 1653 __ uxthw(r0, r0); 1654 break; 1655 case Bytecodes::_i2s: 1656 __ sxthw(r0, r0); 1657 break; 1658 case Bytecodes::_l2i: 1659 __ uxtw(r0, r0); 1660 break; 1661 case Bytecodes::_l2f: 1662 __ scvtfs(v0, r0); 1663 break; 1664 case Bytecodes::_l2d: 1665 __ scvtfd(v0, r0); 1666 break; 1667 case Bytecodes::_f2i: 1668 { 1669 Label L_Okay; 1670 __ clear_fpsr(); 1671 __ fcvtzsw(r0, v0); 1672 __ get_fpsr(r1); 1673 __ cbzw(r1, L_Okay); 1674 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i)); 1675 __ bind(L_Okay); 1676 } 1677 break; 1678 case Bytecodes::_f2l: 1679 { 1680 Label L_Okay; 1681 __ clear_fpsr(); 1682 __ fcvtzs(r0, v0); 1683 __ get_fpsr(r1); 1684 __ cbzw(r1, L_Okay); 1685 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l)); 1686 __ bind(L_Okay); 1687 } 1688 break; 1689 case Bytecodes::_f2d: 1690 __ fcvts(v0, v0); 1691 break; 1692 case Bytecodes::_d2i: 1693 { 1694 Label L_Okay; 1695 __ clear_fpsr(); 1696 __ fcvtzdw(r0, v0); 1697 __ get_fpsr(r1); 1698 __ cbzw(r1, L_Okay); 1699 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i)); 1700 __ bind(L_Okay); 1701 } 1702 break; 1703 case Bytecodes::_d2l: 1704 { 1705 Label L_Okay; 1706 __ clear_fpsr(); 1707 __ fcvtzd(r0, v0); 1708 __ get_fpsr(r1); 1709 __ cbzw(r1, L_Okay); 1710 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l)); 1711 __ bind(L_Okay); 1712 } 1713 break; 1714 case Bytecodes::_d2f: 1715 __ fcvtd(v0, v0); 1716 break; 1717 default: 1718 ShouldNotReachHere(); 1719 } 1720 } 1721 1722 void TemplateTable::lcmp() 1723 { 1724 transition(ltos, itos); 1725 Label done; 1726 __ pop_l(r1); 1727 __ cmp(r1, r0); 1728 __ mov(r0, (uint64_t)-1L); 1729 __ br(Assembler::LT, done); 1730 // __ mov(r0, 1UL); 1731 // __ csel(r0, r0, zr, Assembler::NE); 1732 // and here is a faster way 1733 __ csinc(r0, zr, zr, Assembler::EQ); 1734 __ bind(done); 1735 } 1736 1737 void TemplateTable::float_cmp(bool is_float, int unordered_result) 1738 { 1739 Label done; 1740 if (is_float) { 1741 // XXX get rid of pop here, use ... reg, mem32 1742 __ pop_f(v1); 1743 __ fcmps(v1, v0); 1744 } else { 1745 // XXX get rid of pop here, use ... reg, mem64 1746 __ pop_d(v1); 1747 __ fcmpd(v1, v0); 1748 } 1749 if (unordered_result < 0) { 1750 // we want -1 for unordered or less than, 0 for equal and 1 for 1751 // greater than. 1752 __ mov(r0, (uint64_t)-1L); 1753 // for FP LT tests less than or unordered 1754 __ br(Assembler::LT, done); 1755 // install 0 for EQ otherwise 1 1756 __ csinc(r0, zr, zr, Assembler::EQ); 1757 } else { 1758 // we want -1 for less than, 0 for equal and 1 for unordered or 1759 // greater than. 1760 __ mov(r0, 1L); 1761 // for FP HI tests greater than or unordered 1762 __ br(Assembler::HI, done); 1763 // install 0 for EQ otherwise ~0 1764 __ csinv(r0, zr, zr, Assembler::EQ); 1765 1766 } 1767 __ bind(done); 1768 } 1769 1770 void TemplateTable::branch(bool is_jsr, bool is_wide) 1771 { 1772 __ profile_taken_branch(r0, r1); 1773 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1774 InvocationCounter::counter_offset(); 1775 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1776 InvocationCounter::counter_offset(); 1777 1778 // load branch displacement 1779 if (!is_wide) { 1780 __ ldrh(r2, at_bcp(1)); 1781 __ rev16(r2, r2); 1782 // sign extend the 16 bit value in r2 1783 __ sbfm(r2, r2, 0, 15); 1784 } else { 1785 __ ldrw(r2, at_bcp(1)); 1786 __ revw(r2, r2); 1787 // sign extend the 32 bit value in r2 1788 __ sbfm(r2, r2, 0, 31); 1789 } 1790 1791 // Handle all the JSR stuff here, then exit. 1792 // It's much shorter and cleaner than intermingling with the non-JSR 1793 // normal-branch stuff occurring below. 1794 1795 if (is_jsr) { 1796 // Pre-load the next target bytecode into rscratch1 1797 __ load_unsigned_byte(rscratch1, Address(rbcp, r2)); 1798 // compute return address as bci 1799 __ ldr(rscratch2, Address(rmethod, Method::const_offset())); 1800 __ add(rscratch2, rscratch2, 1801 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3)); 1802 __ sub(r1, rbcp, rscratch2); 1803 __ push_i(r1); 1804 // Adjust the bcp by the 16-bit displacement in r2 1805 __ add(rbcp, rbcp, r2); 1806 __ dispatch_only(vtos, /*generate_poll*/true); 1807 return; 1808 } 1809 1810 // Normal (non-jsr) branch handling 1811 1812 // Adjust the bcp by the displacement in r2 1813 __ add(rbcp, rbcp, r2); 1814 1815 assert(UseLoopCounter || !UseOnStackReplacement, 1816 "on-stack-replacement requires loop counters"); 1817 Label backedge_counter_overflow; 1818 Label dispatch; 1819 if (UseLoopCounter) { 1820 // increment backedge counter for backward branches 1821 // r0: MDO 1822 // w1: MDO bumped taken-count 1823 // r2: target offset 1824 __ cmp(r2, zr); 1825 __ br(Assembler::GT, dispatch); // count only if backward branch 1826 1827 // ECN: FIXME: This code smells 1828 // check if MethodCounters exists 1829 Label has_counters; 1830 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1831 __ cbnz(rscratch1, has_counters); 1832 __ push(r0); 1833 __ push(r1); 1834 __ push(r2); 1835 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 1836 InterpreterRuntime::build_method_counters), rmethod); 1837 __ pop(r2); 1838 __ pop(r1); 1839 __ pop(r0); 1840 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1841 __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory 1842 __ bind(has_counters); 1843 1844 Label no_mdo; 1845 int increment = InvocationCounter::count_increment; 1846 if (ProfileInterpreter) { 1847 // Are we profiling? 1848 __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 1849 __ cbz(r1, no_mdo); 1850 // Increment the MDO backedge counter 1851 const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) + 1852 in_bytes(InvocationCounter::counter_offset())); 1853 const Address mask(r1, in_bytes(MethodData::backedge_mask_offset())); 1854 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1855 r0, rscratch1, false, Assembler::EQ, 1856 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1857 __ b(dispatch); 1858 } 1859 __ bind(no_mdo); 1860 // Increment backedge counter in MethodCounters* 1861 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1862 const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset())); 1863 __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask, 1864 r0, rscratch2, false, Assembler::EQ, 1865 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1866 __ bind(dispatch); 1867 } 1868 1869 // Pre-load the next target bytecode into rscratch1 1870 __ load_unsigned_byte(rscratch1, Address(rbcp, 0)); 1871 1872 // continue with the bytecode @ target 1873 // rscratch1: target bytecode 1874 // rbcp: target bcp 1875 __ dispatch_only(vtos, /*generate_poll*/true); 1876 1877 if (UseLoopCounter && UseOnStackReplacement) { 1878 // invocation counter overflow 1879 __ bind(backedge_counter_overflow); 1880 __ neg(r2, r2); 1881 __ add(r2, r2, rbcp); // branch bcp 1882 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1883 __ call_VM(noreg, 1884 CAST_FROM_FN_PTR(address, 1885 InterpreterRuntime::frequency_counter_overflow), 1886 r2); 1887 __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode 1888 1889 // r0: osr nmethod (osr ok) or null (osr not possible) 1890 // w1: target bytecode 1891 // r2: scratch 1892 __ cbz(r0, dispatch); // test result -- no osr if null 1893 // nmethod may have been invalidated (VM may block upon call_VM return) 1894 __ ldrb(r2, Address(r0, nmethod::state_offset())); 1895 if (nmethod::in_use != 0) 1896 __ sub(r2, r2, nmethod::in_use); 1897 __ cbnz(r2, dispatch); 1898 1899 // We have the address of an on stack replacement routine in r0 1900 // We need to prepare to execute the OSR method. First we must 1901 // migrate the locals and monitors off of the stack. 1902 1903 __ mov(r19, r0); // save the nmethod 1904 1905 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1906 1907 // r0 is OSR buffer, move it to expected parameter location 1908 __ mov(j_rarg0, r0); 1909 1910 // remove activation 1911 // get sender esp 1912 __ ldr(esp, 1913 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1914 // remove frame anchor 1915 __ leave(); 1916 // Ensure compiled code always sees stack at proper alignment 1917 __ andr(sp, esp, -16); 1918 1919 // and begin the OSR nmethod 1920 __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset())); 1921 __ br(rscratch1); 1922 } 1923 } 1924 1925 1926 void TemplateTable::if_0cmp(Condition cc) 1927 { 1928 transition(itos, vtos); 1929 // assume branch is more often taken than not (loops use backward branches) 1930 Label not_taken; 1931 if (cc == equal) 1932 __ cbnzw(r0, not_taken); 1933 else if (cc == not_equal) 1934 __ cbzw(r0, not_taken); 1935 else { 1936 __ andsw(zr, r0, r0); 1937 __ br(j_not(cc), not_taken); 1938 } 1939 1940 branch(false, false); 1941 __ bind(not_taken); 1942 __ profile_not_taken_branch(r0); 1943 } 1944 1945 void TemplateTable::if_icmp(Condition cc) 1946 { 1947 transition(itos, vtos); 1948 // assume branch is more often taken than not (loops use backward branches) 1949 Label not_taken; 1950 __ pop_i(r1); 1951 __ cmpw(r1, r0, Assembler::LSL); 1952 __ br(j_not(cc), not_taken); 1953 branch(false, false); 1954 __ bind(not_taken); 1955 __ profile_not_taken_branch(r0); 1956 } 1957 1958 void TemplateTable::if_nullcmp(Condition cc) 1959 { 1960 transition(atos, vtos); 1961 // assume branch is more often taken than not (loops use backward branches) 1962 Label not_taken; 1963 if (cc == equal) 1964 __ cbnz(r0, not_taken); 1965 else 1966 __ cbz(r0, not_taken); 1967 branch(false, false); 1968 __ bind(not_taken); 1969 __ profile_not_taken_branch(r0); 1970 } 1971 1972 void TemplateTable::if_acmp(Condition cc) 1973 { 1974 transition(atos, vtos); 1975 // assume branch is more often taken than not (loops use backward branches) 1976 Label not_taken; 1977 __ pop_ptr(r1); 1978 __ cmpoop(r1, r0); 1979 __ br(j_not(cc), not_taken); 1980 branch(false, false); 1981 __ bind(not_taken); 1982 __ profile_not_taken_branch(r0); 1983 } 1984 1985 void TemplateTable::ret() { 1986 transition(vtos, vtos); 1987 locals_index(r1); 1988 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 1989 __ profile_ret(r1, r2); 1990 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 1991 __ lea(rbcp, Address(rbcp, r1)); 1992 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 1993 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1994 } 1995 1996 void TemplateTable::wide_ret() { 1997 transition(vtos, vtos); 1998 locals_index_wide(r1); 1999 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 2000 __ profile_ret(r1, r2); 2001 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 2002 __ lea(rbcp, Address(rbcp, r1)); 2003 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 2004 __ dispatch_next(vtos, 0, /*generate_poll*/true); 2005 } 2006 2007 2008 void TemplateTable::tableswitch() { 2009 Label default_case, continue_execution; 2010 transition(itos, vtos); 2011 // align rbcp 2012 __ lea(r1, at_bcp(BytesPerInt)); 2013 __ andr(r1, r1, -BytesPerInt); 2014 // load lo & hi 2015 __ ldrw(r2, Address(r1, BytesPerInt)); 2016 __ ldrw(r3, Address(r1, 2 * BytesPerInt)); 2017 __ rev32(r2, r2); 2018 __ rev32(r3, r3); 2019 // check against lo & hi 2020 __ cmpw(r0, r2); 2021 __ br(Assembler::LT, default_case); 2022 __ cmpw(r0, r3); 2023 __ br(Assembler::GT, default_case); 2024 // lookup dispatch offset 2025 __ subw(r0, r0, r2); 2026 __ lea(r3, Address(r1, r0, Address::uxtw(2))); 2027 __ ldrw(r3, Address(r3, 3 * BytesPerInt)); 2028 __ profile_switch_case(r0, r1, r2); 2029 // continue execution 2030 __ bind(continue_execution); 2031 __ rev32(r3, r3); 2032 __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0))); 2033 __ add(rbcp, rbcp, r3, ext::sxtw); 2034 __ dispatch_only(vtos, /*generate_poll*/true); 2035 // handle default 2036 __ bind(default_case); 2037 __ profile_switch_default(r0); 2038 __ ldrw(r3, Address(r1, 0)); 2039 __ b(continue_execution); 2040 } 2041 2042 void TemplateTable::lookupswitch() { 2043 transition(itos, itos); 2044 __ stop("lookupswitch bytecode should have been rewritten"); 2045 } 2046 2047 void TemplateTable::fast_linearswitch() { 2048 transition(itos, vtos); 2049 Label loop_entry, loop, found, continue_execution; 2050 // bswap r0 so we can avoid bswapping the table entries 2051 __ rev32(r0, r0); 2052 // align rbcp 2053 __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2054 // this instruction (change offsets 2055 // below) 2056 __ andr(r19, r19, -BytesPerInt); 2057 // set counter 2058 __ ldrw(r1, Address(r19, BytesPerInt)); 2059 __ rev32(r1, r1); 2060 __ b(loop_entry); 2061 // table search 2062 __ bind(loop); 2063 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2064 __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt)); 2065 __ cmpw(r0, rscratch1); 2066 __ br(Assembler::EQ, found); 2067 __ bind(loop_entry); 2068 __ subs(r1, r1, 1); 2069 __ br(Assembler::PL, loop); 2070 // default case 2071 __ profile_switch_default(r0); 2072 __ ldrw(r3, Address(r19, 0)); 2073 __ b(continue_execution); 2074 // entry found -> get offset 2075 __ bind(found); 2076 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2077 __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt)); 2078 __ profile_switch_case(r1, r0, r19); 2079 // continue execution 2080 __ bind(continue_execution); 2081 __ rev32(r3, r3); 2082 __ add(rbcp, rbcp, r3, ext::sxtw); 2083 __ ldrb(rscratch1, Address(rbcp, 0)); 2084 __ dispatch_only(vtos, /*generate_poll*/true); 2085 } 2086 2087 void TemplateTable::fast_binaryswitch() { 2088 transition(itos, vtos); 2089 // Implementation using the following core algorithm: 2090 // 2091 // int binary_search(int key, LookupswitchPair* array, int n) { 2092 // // Binary search according to "Methodik des Programmierens" by 2093 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2094 // int i = 0; 2095 // int j = n; 2096 // while (i+1 < j) { 2097 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2098 // // with Q: for all i: 0 <= i < n: key < a[i] 2099 // // where a stands for the array and assuming that the (inexisting) 2100 // // element a[n] is infinitely big. 2101 // int h = (i + j) >> 1; 2102 // // i < h < j 2103 // if (key < array[h].fast_match()) { 2104 // j = h; 2105 // } else { 2106 // i = h; 2107 // } 2108 // } 2109 // // R: a[i] <= key < a[i+1] or Q 2110 // // (i.e., if key is within array, i is the correct index) 2111 // return i; 2112 // } 2113 2114 // Register allocation 2115 const Register key = r0; // already set (tosca) 2116 const Register array = r1; 2117 const Register i = r2; 2118 const Register j = r3; 2119 const Register h = rscratch1; 2120 const Register temp = rscratch2; 2121 2122 // Find array start 2123 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2124 // get rid of this 2125 // instruction (change 2126 // offsets below) 2127 __ andr(array, array, -BytesPerInt); 2128 2129 // Initialize i & j 2130 __ mov(i, 0); // i = 0; 2131 __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array); 2132 2133 // Convert j into native byteordering 2134 __ rev32(j, j); 2135 2136 // And start 2137 Label entry; 2138 __ b(entry); 2139 2140 // binary search loop 2141 { 2142 Label loop; 2143 __ bind(loop); 2144 // int h = (i + j) >> 1; 2145 __ addw(h, i, j); // h = i + j; 2146 __ lsrw(h, h, 1); // h = (i + j) >> 1; 2147 // if (key < array[h].fast_match()) { 2148 // j = h; 2149 // } else { 2150 // i = h; 2151 // } 2152 // Convert array[h].match to native byte-ordering before compare 2153 __ ldr(temp, Address(array, h, Address::lsl(3))); 2154 __ rev32(temp, temp); 2155 __ cmpw(key, temp); 2156 // j = h if (key < array[h].fast_match()) 2157 __ csel(j, h, j, Assembler::LT); 2158 // i = h if (key >= array[h].fast_match()) 2159 __ csel(i, h, i, Assembler::GE); 2160 // while (i+1 < j) 2161 __ bind(entry); 2162 __ addw(h, i, 1); // i+1 2163 __ cmpw(h, j); // i+1 < j 2164 __ br(Assembler::LT, loop); 2165 } 2166 2167 // end of binary search, result index is i (must check again!) 2168 Label default_case; 2169 // Convert array[i].match to native byte-ordering before compare 2170 __ ldr(temp, Address(array, i, Address::lsl(3))); 2171 __ rev32(temp, temp); 2172 __ cmpw(key, temp); 2173 __ br(Assembler::NE, default_case); 2174 2175 // entry found -> j = offset 2176 __ add(j, array, i, ext::uxtx, 3); 2177 __ ldrw(j, Address(j, BytesPerInt)); 2178 __ profile_switch_case(i, key, array); 2179 __ rev32(j, j); 2180 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2181 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2182 __ dispatch_only(vtos, /*generate_poll*/true); 2183 2184 // default case -> j = default offset 2185 __ bind(default_case); 2186 __ profile_switch_default(i); 2187 __ ldrw(j, Address(array, -2 * BytesPerInt)); 2188 __ rev32(j, j); 2189 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2190 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2191 __ dispatch_only(vtos, /*generate_poll*/true); 2192 } 2193 2194 2195 void TemplateTable::_return(TosState state) 2196 { 2197 transition(state, state); 2198 assert(_desc->calls_vm(), 2199 "inconsistent calls_vm information"); // call in remove_activation 2200 2201 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2202 assert(state == vtos, "only valid state"); 2203 2204 __ ldr(c_rarg1, aaddress(0)); 2205 __ load_klass(r3, c_rarg1); 2206 __ ldrb(r3, Address(r3, Klass::misc_flags_offset())); 2207 Label skip_register_finalizer; 2208 __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer); 2209 2210 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); 2211 2212 __ bind(skip_register_finalizer); 2213 } 2214 2215 // Issue a StoreStore barrier after all stores but before return 2216 // from any constructor for any class with a final field. We don't 2217 // know if this is a finalizer, so we always do so. 2218 if (_desc->bytecode() == Bytecodes::_return) 2219 __ membar(MacroAssembler::StoreStore); 2220 2221 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2222 Label no_safepoint; 2223 __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset())); 2224 __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint); 2225 __ push(state); 2226 __ push_cont_fastpath(rthread); 2227 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)); 2228 __ pop_cont_fastpath(rthread); 2229 __ pop(state); 2230 __ bind(no_safepoint); 2231 } 2232 2233 // Narrow result if state is itos but result type is smaller. 2234 // Need to narrow in the return bytecode rather than in generate_return_entry 2235 // since compiled code callers expect the result to already be narrowed. 2236 if (state == itos) { 2237 __ narrow(r0); 2238 } 2239 2240 __ remove_activation(state); 2241 __ ret(lr); 2242 } 2243 2244 // ---------------------------------------------------------------------------- 2245 // Volatile variables demand their effects be made known to all CPU's 2246 // in order. Store buffers on most chips allow reads & writes to 2247 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2248 // without some kind of memory barrier (i.e., it's not sufficient that 2249 // the interpreter does not reorder volatile references, the hardware 2250 // also must not reorder them). 2251 // 2252 // According to the new Java Memory Model (JMM): 2253 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2254 // writes act as acquire & release, so: 2255 // (2) A read cannot let unrelated NON-volatile memory refs that 2256 // happen after the read float up to before the read. It's OK for 2257 // non-volatile memory refs that happen before the volatile read to 2258 // float down below it. 2259 // (3) Similar a volatile write cannot let unrelated NON-volatile 2260 // memory refs that happen BEFORE the write float down to after the 2261 // write. It's OK for non-volatile memory refs that happen after the 2262 // volatile write to float up before it. 2263 // 2264 // We only put in barriers around volatile refs (they are expensive), 2265 // not _between_ memory refs (that would require us to track the 2266 // flavor of the previous memory refs). Requirements (2) and (3) 2267 // require some barriers before volatile stores and after volatile 2268 // loads. These nearly cover requirement (1) but miss the 2269 // volatile-store-volatile-load case. This final case is placed after 2270 // volatile-stores although it could just as well go before 2271 // volatile-loads. 2272 2273 void TemplateTable::resolve_cache_and_index_for_method(int byte_no, 2274 Register Rcache, 2275 Register index) { 2276 const Register temp = r19; 2277 assert_different_registers(Rcache, index, temp); 2278 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2279 2280 Label resolved, clinit_barrier_slow; 2281 2282 Bytecodes::Code code = bytecode(); 2283 __ load_method_entry(Rcache, index); 2284 switch(byte_no) { 2285 case f1_byte: 2286 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode1_offset()))); 2287 break; 2288 case f2_byte: 2289 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode2_offset()))); 2290 break; 2291 } 2292 // Load-acquire the bytecode to match store-release in InterpreterRuntime 2293 __ ldarb(temp, temp); 2294 __ subs(zr, temp, (int) code); // have we resolved this bytecode? 2295 __ br(Assembler::EQ, resolved); 2296 2297 // resolve first time through 2298 // Class initialization barrier slow path lands here as well. 2299 __ bind(clinit_barrier_slow); 2300 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2301 __ mov(temp, (int) code); 2302 __ call_VM(noreg, entry, temp); 2303 2304 // Update registers with resolved info 2305 __ load_method_entry(Rcache, index); 2306 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset 2307 // so all clients ofthis method must be modified accordingly 2308 __ bind(resolved); 2309 2310 // Class initialization barrier for static methods 2311 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2312 __ ldr(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset()))); 2313 __ load_method_holder(temp, temp); 2314 __ clinit_barrier(temp, rscratch1, nullptr, &clinit_barrier_slow); 2315 } 2316 } 2317 2318 void TemplateTable::resolve_cache_and_index_for_field(int byte_no, 2319 Register Rcache, 2320 Register index) { 2321 const Register temp = r19; 2322 assert_different_registers(Rcache, index, temp); 2323 2324 Label resolved, clinit_barrier_slow; 2325 2326 Bytecodes::Code code = bytecode(); 2327 switch (code) { 2328 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2329 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2330 default: break; 2331 } 2332 2333 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2334 __ load_field_entry(Rcache, index); 2335 if (byte_no == f1_byte) { 2336 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::get_code_offset()))); 2337 } else { 2338 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::put_code_offset()))); 2339 } 2340 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in() 2341 __ ldarb(temp, temp); 2342 __ subs(zr, temp, (int) code); // have we resolved this bytecode? 2343 __ br(Assembler::EQ, resolved); 2344 2345 // resolve first time through 2346 __ bind(clinit_barrier_slow); 2347 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2348 __ mov(temp, (int) code); 2349 __ call_VM(noreg, entry, temp); 2350 2351 // Update registers with resolved info 2352 __ load_field_entry(Rcache, index); 2353 __ bind(resolved); 2354 2355 // Class initialization barrier for static fields 2356 if (VM_Version::supports_fast_class_init_checks() && 2357 (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) { 2358 __ ldr(temp, Address(Rcache, ResolvedFieldEntry::field_holder_offset())); 2359 __ clinit_barrier(temp, rscratch1, nullptr, &clinit_barrier_slow); 2360 } 2361 } 2362 2363 void TemplateTable::load_resolved_field_entry(Register obj, 2364 Register cache, 2365 Register tos_state, 2366 Register offset, 2367 Register flags, 2368 bool is_static = false) { 2369 assert_different_registers(cache, tos_state, flags, offset); 2370 2371 // Field offset 2372 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 2373 2374 // Flags 2375 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset()))); 2376 2377 // TOS state 2378 if (tos_state != noreg) { 2379 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset()))); 2380 } 2381 2382 // Klass overwrite register 2383 if (is_static) { 2384 __ ldr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset())); 2385 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2386 __ ldr(obj, Address(obj, mirror_offset)); 2387 __ resolve_oop_handle(obj, r5, rscratch2); 2388 } 2389 } 2390 2391 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache, 2392 Register method, 2393 Register flags) { 2394 2395 // setup registers 2396 const Register index = flags; 2397 assert_different_registers(method, cache, flags); 2398 2399 // determine constant pool cache field offsets 2400 resolve_cache_and_index_for_method(f1_byte, cache, index); 2401 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2402 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2403 } 2404 2405 void TemplateTable::load_resolved_method_entry_handle(Register cache, 2406 Register method, 2407 Register ref_index, 2408 Register flags) { 2409 // setup registers 2410 const Register index = ref_index; 2411 assert_different_registers(method, flags); 2412 assert_different_registers(method, cache, index); 2413 2414 // determine constant pool cache field offsets 2415 resolve_cache_and_index_for_method(f1_byte, cache, index); 2416 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2417 2418 // maybe push appendix to arguments (just before return address) 2419 Label L_no_push; 2420 __ tbz(flags, ResolvedMethodEntry::has_appendix_shift, L_no_push); 2421 // invokehandle uses an index into the resolved references array 2422 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset()))); 2423 // Push the appendix as a trailing parameter. 2424 // This must be done before we get the receiver, 2425 // since the parameter_size includes it. 2426 Register appendix = method; 2427 __ load_resolved_reference_at_index(appendix, ref_index); 2428 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2429 __ bind(L_no_push); 2430 2431 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2432 } 2433 2434 void TemplateTable::load_resolved_method_entry_interface(Register cache, 2435 Register klass, 2436 Register method_or_table_index, 2437 Register flags) { 2438 // setup registers 2439 const Register index = method_or_table_index; 2440 assert_different_registers(method_or_table_index, cache, flags); 2441 2442 // determine constant pool cache field offsets 2443 resolve_cache_and_index_for_method(f1_byte, cache, index); 2444 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2445 2446 // Invokeinterface can behave in different ways: 2447 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will 2448 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or 2449 // vtable index is placed in the register. 2450 // Otherwise, the registers will be populated with the klass and method. 2451 2452 Label NotVirtual; Label NotVFinal; Label Done; 2453 __ tbz(flags, ResolvedMethodEntry::is_forced_virtual_shift, NotVirtual); 2454 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal); 2455 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2456 __ b(Done); 2457 2458 __ bind(NotVFinal); 2459 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2460 __ b(Done); 2461 2462 __ bind(NotVirtual); 2463 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2464 __ ldr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset()))); 2465 __ bind(Done); 2466 } 2467 2468 void TemplateTable::load_resolved_method_entry_virtual(Register cache, 2469 Register method_or_table_index, 2470 Register flags) { 2471 // setup registers 2472 const Register index = flags; 2473 assert_different_registers(method_or_table_index, cache, flags); 2474 2475 // determine constant pool cache field offsets 2476 resolve_cache_and_index_for_method(f2_byte, cache, index); 2477 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2478 2479 // method_or_table_index can either be an itable index or a method depending on the virtual final flag 2480 Label NotVFinal; Label Done; 2481 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal); 2482 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2483 __ b(Done); 2484 2485 __ bind(NotVFinal); 2486 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2487 __ bind(Done); 2488 } 2489 2490 // The rmethod register is input and overwritten to be the adapter method for the 2491 // indy call. Link Register (lr) is set to the return address for the adapter and 2492 // an appendix may be pushed to the stack. Registers r0-r3 are clobbered 2493 void TemplateTable::load_invokedynamic_entry(Register method) { 2494 // setup registers 2495 const Register appendix = r0; 2496 const Register cache = r2; 2497 const Register index = r3; 2498 assert_different_registers(method, appendix, cache, index, rcpool); 2499 2500 __ save_bcp(); 2501 2502 Label resolved; 2503 2504 __ load_resolved_indy_entry(cache, index); 2505 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in() 2506 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2507 __ ldar(method, method); 2508 2509 // Compare the method to zero 2510 __ cbnz(method, resolved); 2511 2512 Bytecodes::Code code = bytecode(); 2513 2514 // Call to the interpreter runtime to resolve invokedynamic 2515 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2516 __ mov(method, code); // this is essentially Bytecodes::_invokedynamic 2517 __ call_VM(noreg, entry, method); 2518 // Update registers with resolved info 2519 __ load_resolved_indy_entry(cache, index); 2520 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in() 2521 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2522 __ ldar(method, method); 2523 2524 #ifdef ASSERT 2525 __ cbnz(method, resolved); 2526 __ stop("Should be resolved by now"); 2527 #endif // ASSERT 2528 __ bind(resolved); 2529 2530 Label L_no_push; 2531 // Check if there is an appendix 2532 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2533 __ tbz(index, ResolvedIndyEntry::has_appendix_shift, L_no_push); 2534 2535 // Get appendix 2536 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2537 // Push the appendix as a trailing parameter 2538 // since the parameter_size includes it. 2539 __ push(method); 2540 __ mov(method, index); 2541 __ load_resolved_reference_at_index(appendix, method); 2542 __ verify_oop(appendix); 2543 __ pop(method); 2544 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2545 __ bind(L_no_push); 2546 2547 // compute return type 2548 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2549 // load return address 2550 // Return address is loaded into link register(lr) and not pushed to the stack 2551 // like x86 2552 { 2553 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2554 __ mov(rscratch1, table_addr); 2555 __ ldr(lr, Address(rscratch1, index, Address::lsl(3))); 2556 } 2557 } 2558 2559 // The registers cache and index expected to be set before call. 2560 // Correct values of the cache and index registers are preserved. 2561 void TemplateTable::jvmti_post_field_access(Register cache, Register index, 2562 bool is_static, bool has_tos) { 2563 // do the JVMTI work here to avoid disturbing the register state below 2564 // We use c_rarg registers here because we want to use the register used in 2565 // the call to the VM 2566 if (JvmtiExport::can_post_field_access()) { 2567 // Check to see if a field access watch has been set before we 2568 // take the time to call into the VM. 2569 Label L1; 2570 assert_different_registers(cache, index, r0); 2571 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2572 __ ldrw(r0, Address(rscratch1)); 2573 __ cbzw(r0, L1); 2574 2575 __ load_field_entry(c_rarg2, index); 2576 2577 if (is_static) { 2578 __ mov(c_rarg1, zr); // null object reference 2579 } else { 2580 __ ldr(c_rarg1, at_tos()); // get object pointer without popping it 2581 __ verify_oop(c_rarg1); 2582 } 2583 // c_rarg1: object pointer or null 2584 // c_rarg2: cache entry pointer 2585 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2586 InterpreterRuntime::post_field_access), 2587 c_rarg1, c_rarg2); 2588 __ load_field_entry(cache, index); 2589 __ bind(L1); 2590 } 2591 } 2592 2593 void TemplateTable::pop_and_check_object(Register r) 2594 { 2595 __ pop_ptr(r); 2596 __ null_check(r); // for field access must check obj. 2597 __ verify_oop(r); 2598 } 2599 2600 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) 2601 { 2602 const Register cache = r4; 2603 const Register obj = r4; 2604 const Register index = r3; 2605 const Register tos_state = r3; 2606 const Register off = r19; 2607 const Register flags = r6; 2608 const Register bc = r4; // uses same reg as obj, so don't mix them 2609 2610 resolve_cache_and_index_for_field(byte_no, cache, index); 2611 jvmti_post_field_access(cache, index, is_static, false); 2612 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2613 2614 if (!is_static) { 2615 // obj is on the stack 2616 pop_and_check_object(obj); 2617 } 2618 2619 // 8179954: We need to make sure that the code generated for 2620 // volatile accesses forms a sequentially-consistent set of 2621 // operations when combined with STLR and LDAR. Without a leading 2622 // membar it's possible for a simple Dekker test to fail if loads 2623 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 2624 // the stores in one method and we interpret the loads in another. 2625 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){ 2626 Label notVolatile; 2627 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2628 __ membar(MacroAssembler::AnyAny); 2629 __ bind(notVolatile); 2630 } 2631 2632 const Address field(obj, off); 2633 2634 Label Done, notByte, notBool, notInt, notShort, notChar, 2635 notLong, notFloat, notObj, notDouble; 2636 2637 assert(btos == 0, "change code, btos != 0"); 2638 __ cbnz(tos_state, notByte); 2639 2640 // Don't rewrite getstatic, only getfield 2641 if (is_static) rc = may_not_rewrite; 2642 2643 // btos 2644 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg); 2645 __ push(btos); 2646 // Rewrite bytecode to be faster 2647 if (rc == may_rewrite) { 2648 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2649 } 2650 __ b(Done); 2651 2652 __ bind(notByte); 2653 __ cmp(tos_state, (u1)ztos); 2654 __ br(Assembler::NE, notBool); 2655 2656 // ztos (same code as btos) 2657 __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg); 2658 __ push(ztos); 2659 // Rewrite bytecode to be faster 2660 if (rc == may_rewrite) { 2661 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2662 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2663 } 2664 __ b(Done); 2665 2666 __ bind(notBool); 2667 __ cmp(tos_state, (u1)atos); 2668 __ br(Assembler::NE, notObj); 2669 // atos 2670 do_oop_load(_masm, field, r0, IN_HEAP); 2671 __ push(atos); 2672 if (rc == may_rewrite) { 2673 patch_bytecode(Bytecodes::_fast_agetfield, bc, r1); 2674 } 2675 __ b(Done); 2676 2677 __ bind(notObj); 2678 __ cmp(tos_state, (u1)itos); 2679 __ br(Assembler::NE, notInt); 2680 // itos 2681 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg); 2682 __ push(itos); 2683 // Rewrite bytecode to be faster 2684 if (rc == may_rewrite) { 2685 patch_bytecode(Bytecodes::_fast_igetfield, bc, r1); 2686 } 2687 __ b(Done); 2688 2689 __ bind(notInt); 2690 __ cmp(tos_state, (u1)ctos); 2691 __ br(Assembler::NE, notChar); 2692 // ctos 2693 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg); 2694 __ push(ctos); 2695 // Rewrite bytecode to be faster 2696 if (rc == may_rewrite) { 2697 patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1); 2698 } 2699 __ b(Done); 2700 2701 __ bind(notChar); 2702 __ cmp(tos_state, (u1)stos); 2703 __ br(Assembler::NE, notShort); 2704 // stos 2705 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg); 2706 __ push(stos); 2707 // Rewrite bytecode to be faster 2708 if (rc == may_rewrite) { 2709 patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1); 2710 } 2711 __ b(Done); 2712 2713 __ bind(notShort); 2714 __ cmp(tos_state, (u1)ltos); 2715 __ br(Assembler::NE, notLong); 2716 // ltos 2717 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg); 2718 __ push(ltos); 2719 // Rewrite bytecode to be faster 2720 if (rc == may_rewrite) { 2721 patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1); 2722 } 2723 __ b(Done); 2724 2725 __ bind(notLong); 2726 __ cmp(tos_state, (u1)ftos); 2727 __ br(Assembler::NE, notFloat); 2728 // ftos 2729 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2730 __ push(ftos); 2731 // Rewrite bytecode to be faster 2732 if (rc == may_rewrite) { 2733 patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1); 2734 } 2735 __ b(Done); 2736 2737 __ bind(notFloat); 2738 #ifdef ASSERT 2739 __ cmp(tos_state, (u1)dtos); 2740 __ br(Assembler::NE, notDouble); 2741 #endif 2742 // dtos 2743 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2744 __ push(dtos); 2745 // Rewrite bytecode to be faster 2746 if (rc == may_rewrite) { 2747 patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1); 2748 } 2749 #ifdef ASSERT 2750 __ b(Done); 2751 2752 __ bind(notDouble); 2753 __ stop("Bad state"); 2754 #endif 2755 2756 __ bind(Done); 2757 2758 Label notVolatile; 2759 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2760 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2761 __ bind(notVolatile); 2762 } 2763 2764 2765 void TemplateTable::getfield(int byte_no) 2766 { 2767 getfield_or_static(byte_no, false); 2768 } 2769 2770 void TemplateTable::nofast_getfield(int byte_no) { 2771 getfield_or_static(byte_no, false, may_not_rewrite); 2772 } 2773 2774 void TemplateTable::getstatic(int byte_no) 2775 { 2776 getfield_or_static(byte_no, true); 2777 } 2778 2779 // The registers cache and index expected to be set before call. 2780 // The function may destroy various registers, just not the cache and index registers. 2781 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2782 transition(vtos, vtos); 2783 2784 if (JvmtiExport::can_post_field_modification()) { 2785 // Check to see if a field modification watch has been set before 2786 // we take the time to call into the VM. 2787 Label L1; 2788 assert_different_registers(cache, index, r0); 2789 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2790 __ ldrw(r0, Address(rscratch1)); 2791 __ cbz(r0, L1); 2792 2793 __ mov(c_rarg2, cache); 2794 2795 if (is_static) { 2796 // Life is simple. Null out the object pointer. 2797 __ mov(c_rarg1, zr); 2798 } else { 2799 // Life is harder. The stack holds the value on top, followed by 2800 // the object. We don't know the size of the value, though; it 2801 // could be one or two words depending on its type. As a result, 2802 // we must find the type to determine where the object is. 2803 __ load_unsigned_byte(c_rarg3, Address(c_rarg2, in_bytes(ResolvedFieldEntry::type_offset()))); 2804 Label nope2, done, ok; 2805 __ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2806 __ cmpw(c_rarg3, ltos); 2807 __ br(Assembler::EQ, ok); 2808 __ cmpw(c_rarg3, dtos); 2809 __ br(Assembler::NE, nope2); 2810 __ bind(ok); 2811 __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue) 2812 __ bind(nope2); 2813 } 2814 // object (tos) 2815 __ mov(c_rarg3, esp); 2816 // c_rarg1: object pointer set up above (null if static) 2817 // c_rarg2: cache entry pointer 2818 // c_rarg3: jvalue object on the stack 2819 __ call_VM(noreg, 2820 CAST_FROM_FN_PTR(address, 2821 InterpreterRuntime::post_field_modification), 2822 c_rarg1, c_rarg2, c_rarg3); 2823 __ load_field_entry(cache, index); 2824 __ bind(L1); 2825 } 2826 } 2827 2828 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2829 transition(vtos, vtos); 2830 2831 const Register cache = r2; 2832 const Register index = r3; 2833 const Register tos_state = r3; 2834 const Register obj = r2; 2835 const Register off = r19; 2836 const Register flags = r0; 2837 const Register bc = r4; 2838 2839 resolve_cache_and_index_for_field(byte_no, cache, index); 2840 jvmti_post_field_mod(cache, index, is_static); 2841 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2842 2843 Label Done; 2844 __ mov(r5, flags); 2845 2846 { 2847 Label notVolatile; 2848 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2849 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 2850 __ bind(notVolatile); 2851 } 2852 2853 // field address 2854 const Address field(obj, off); 2855 2856 Label notByte, notBool, notInt, notShort, notChar, 2857 notLong, notFloat, notObj, notDouble; 2858 2859 assert(btos == 0, "change code, btos != 0"); 2860 __ cbnz(tos_state, notByte); 2861 2862 // Don't rewrite putstatic, only putfield 2863 if (is_static) rc = may_not_rewrite; 2864 2865 // btos 2866 { 2867 __ pop(btos); 2868 if (!is_static) pop_and_check_object(obj); 2869 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg); 2870 if (rc == may_rewrite) { 2871 patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no); 2872 } 2873 __ b(Done); 2874 } 2875 2876 __ bind(notByte); 2877 __ cmp(tos_state, (u1)ztos); 2878 __ br(Assembler::NE, notBool); 2879 2880 // ztos 2881 { 2882 __ pop(ztos); 2883 if (!is_static) pop_and_check_object(obj); 2884 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg); 2885 if (rc == may_rewrite) { 2886 patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no); 2887 } 2888 __ b(Done); 2889 } 2890 2891 __ bind(notBool); 2892 __ cmp(tos_state, (u1)atos); 2893 __ br(Assembler::NE, notObj); 2894 2895 // atos 2896 { 2897 __ pop(atos); 2898 if (!is_static) pop_and_check_object(obj); 2899 // Store into the field 2900 do_oop_store(_masm, field, r0, IN_HEAP); 2901 if (rc == may_rewrite) { 2902 patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no); 2903 } 2904 __ b(Done); 2905 } 2906 2907 __ bind(notObj); 2908 __ cmp(tos_state, (u1)itos); 2909 __ br(Assembler::NE, notInt); 2910 2911 // itos 2912 { 2913 __ pop(itos); 2914 if (!is_static) pop_and_check_object(obj); 2915 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg); 2916 if (rc == may_rewrite) { 2917 patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no); 2918 } 2919 __ b(Done); 2920 } 2921 2922 __ bind(notInt); 2923 __ cmp(tos_state, (u1)ctos); 2924 __ br(Assembler::NE, notChar); 2925 2926 // ctos 2927 { 2928 __ pop(ctos); 2929 if (!is_static) pop_and_check_object(obj); 2930 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg); 2931 if (rc == may_rewrite) { 2932 patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no); 2933 } 2934 __ b(Done); 2935 } 2936 2937 __ bind(notChar); 2938 __ cmp(tos_state, (u1)stos); 2939 __ br(Assembler::NE, notShort); 2940 2941 // stos 2942 { 2943 __ pop(stos); 2944 if (!is_static) pop_and_check_object(obj); 2945 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg); 2946 if (rc == may_rewrite) { 2947 patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no); 2948 } 2949 __ b(Done); 2950 } 2951 2952 __ bind(notShort); 2953 __ cmp(tos_state, (u1)ltos); 2954 __ br(Assembler::NE, notLong); 2955 2956 // ltos 2957 { 2958 __ pop(ltos); 2959 if (!is_static) pop_and_check_object(obj); 2960 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg); 2961 if (rc == may_rewrite) { 2962 patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no); 2963 } 2964 __ b(Done); 2965 } 2966 2967 __ bind(notLong); 2968 __ cmp(tos_state, (u1)ftos); 2969 __ br(Assembler::NE, notFloat); 2970 2971 // ftos 2972 { 2973 __ pop(ftos); 2974 if (!is_static) pop_and_check_object(obj); 2975 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 2976 if (rc == may_rewrite) { 2977 patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no); 2978 } 2979 __ b(Done); 2980 } 2981 2982 __ bind(notFloat); 2983 #ifdef ASSERT 2984 __ cmp(tos_state, (u1)dtos); 2985 __ br(Assembler::NE, notDouble); 2986 #endif 2987 2988 // dtos 2989 { 2990 __ pop(dtos); 2991 if (!is_static) pop_and_check_object(obj); 2992 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 2993 if (rc == may_rewrite) { 2994 patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no); 2995 } 2996 } 2997 2998 #ifdef ASSERT 2999 __ b(Done); 3000 3001 __ bind(notDouble); 3002 __ stop("Bad state"); 3003 #endif 3004 3005 __ bind(Done); 3006 3007 { 3008 Label notVolatile; 3009 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3010 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 3011 __ bind(notVolatile); 3012 } 3013 } 3014 3015 void TemplateTable::putfield(int byte_no) 3016 { 3017 putfield_or_static(byte_no, false); 3018 } 3019 3020 void TemplateTable::nofast_putfield(int byte_no) { 3021 putfield_or_static(byte_no, false, may_not_rewrite); 3022 } 3023 3024 void TemplateTable::putstatic(int byte_no) { 3025 putfield_or_static(byte_no, true); 3026 } 3027 3028 void TemplateTable::jvmti_post_fast_field_mod() { 3029 if (JvmtiExport::can_post_field_modification()) { 3030 // Check to see if a field modification watch has been set before 3031 // we take the time to call into the VM. 3032 Label L2; 3033 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3034 __ ldrw(c_rarg3, Address(rscratch1)); 3035 __ cbzw(c_rarg3, L2); 3036 __ pop_ptr(r19); // copy the object pointer from tos 3037 __ verify_oop(r19); 3038 __ push_ptr(r19); // put the object pointer back on tos 3039 // Save tos values before call_VM() clobbers them. Since we have 3040 // to do it for every data type, we use the saved values as the 3041 // jvalue object. 3042 switch (bytecode()) { // load values into the jvalue object 3043 case Bytecodes::_fast_aputfield: __ push_ptr(r0); break; 3044 case Bytecodes::_fast_bputfield: // fall through 3045 case Bytecodes::_fast_zputfield: // fall through 3046 case Bytecodes::_fast_sputfield: // fall through 3047 case Bytecodes::_fast_cputfield: // fall through 3048 case Bytecodes::_fast_iputfield: __ push_i(r0); break; 3049 case Bytecodes::_fast_dputfield: __ push_d(); break; 3050 case Bytecodes::_fast_fputfield: __ push_f(); break; 3051 case Bytecodes::_fast_lputfield: __ push_l(r0); break; 3052 3053 default: 3054 ShouldNotReachHere(); 3055 } 3056 __ mov(c_rarg3, esp); // points to jvalue on the stack 3057 // access constant pool cache entry 3058 __ load_field_entry(c_rarg2, r0); 3059 __ verify_oop(r19); 3060 // r19: object pointer copied above 3061 // c_rarg2: cache entry pointer 3062 // c_rarg3: jvalue object on the stack 3063 __ call_VM(noreg, 3064 CAST_FROM_FN_PTR(address, 3065 InterpreterRuntime::post_field_modification), 3066 r19, c_rarg2, c_rarg3); 3067 3068 switch (bytecode()) { // restore tos values 3069 case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break; 3070 case Bytecodes::_fast_bputfield: // fall through 3071 case Bytecodes::_fast_zputfield: // fall through 3072 case Bytecodes::_fast_sputfield: // fall through 3073 case Bytecodes::_fast_cputfield: // fall through 3074 case Bytecodes::_fast_iputfield: __ pop_i(r0); break; 3075 case Bytecodes::_fast_dputfield: __ pop_d(); break; 3076 case Bytecodes::_fast_fputfield: __ pop_f(); break; 3077 case Bytecodes::_fast_lputfield: __ pop_l(r0); break; 3078 default: break; 3079 } 3080 __ bind(L2); 3081 } 3082 } 3083 3084 void TemplateTable::fast_storefield(TosState state) 3085 { 3086 transition(state, vtos); 3087 3088 ByteSize base = ConstantPoolCache::base_offset(); 3089 3090 jvmti_post_fast_field_mod(); 3091 3092 // access constant pool cache 3093 __ load_field_entry(r2, r1); 3094 3095 // R1: field offset, R2: field holder, R3: flags 3096 load_resolved_field_entry(r2, r2, noreg, r1, r3); 3097 3098 { 3099 Label notVolatile; 3100 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3101 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 3102 __ bind(notVolatile); 3103 } 3104 3105 Label notVolatile; 3106 3107 // Get object from stack 3108 pop_and_check_object(r2); 3109 3110 // field address 3111 const Address field(r2, r1); 3112 3113 // access field 3114 switch (bytecode()) { 3115 case Bytecodes::_fast_aputfield: 3116 do_oop_store(_masm, field, r0, IN_HEAP); 3117 break; 3118 case Bytecodes::_fast_lputfield: 3119 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg); 3120 break; 3121 case Bytecodes::_fast_iputfield: 3122 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg); 3123 break; 3124 case Bytecodes::_fast_zputfield: 3125 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg); 3126 break; 3127 case Bytecodes::_fast_bputfield: 3128 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg); 3129 break; 3130 case Bytecodes::_fast_sputfield: 3131 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg); 3132 break; 3133 case Bytecodes::_fast_cputfield: 3134 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg); 3135 break; 3136 case Bytecodes::_fast_fputfield: 3137 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3138 break; 3139 case Bytecodes::_fast_dputfield: 3140 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 3141 break; 3142 default: 3143 ShouldNotReachHere(); 3144 } 3145 3146 { 3147 Label notVolatile; 3148 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3149 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 3150 __ bind(notVolatile); 3151 } 3152 } 3153 3154 3155 void TemplateTable::fast_accessfield(TosState state) 3156 { 3157 transition(atos, state); 3158 // Do the JVMTI work here to avoid disturbing the register state below 3159 if (JvmtiExport::can_post_field_access()) { 3160 // Check to see if a field access watch has been set before we 3161 // take the time to call into the VM. 3162 Label L1; 3163 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3164 __ ldrw(r2, Address(rscratch1)); 3165 __ cbzw(r2, L1); 3166 // access constant pool cache entry 3167 __ load_field_entry(c_rarg2, rscratch2); 3168 __ verify_oop(r0); 3169 __ push_ptr(r0); // save object pointer before call_VM() clobbers it 3170 __ mov(c_rarg1, r0); 3171 // c_rarg1: object pointer copied above 3172 // c_rarg2: cache entry pointer 3173 __ call_VM(noreg, 3174 CAST_FROM_FN_PTR(address, 3175 InterpreterRuntime::post_field_access), 3176 c_rarg1, c_rarg2); 3177 __ pop_ptr(r0); // restore object pointer 3178 __ bind(L1); 3179 } 3180 3181 // access constant pool cache 3182 __ load_field_entry(r2, r1); 3183 3184 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3185 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset()))); 3186 3187 // r0: object 3188 __ verify_oop(r0); 3189 __ null_check(r0); 3190 const Address field(r0, r1); 3191 3192 // 8179954: We need to make sure that the code generated for 3193 // volatile accesses forms a sequentially-consistent set of 3194 // operations when combined with STLR and LDAR. Without a leading 3195 // membar it's possible for a simple Dekker test to fail if loads 3196 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3197 // the stores in one method and we interpret the loads in another. 3198 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) { 3199 Label notVolatile; 3200 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3201 __ membar(MacroAssembler::AnyAny); 3202 __ bind(notVolatile); 3203 } 3204 3205 // access field 3206 switch (bytecode()) { 3207 case Bytecodes::_fast_agetfield: 3208 do_oop_load(_masm, field, r0, IN_HEAP); 3209 __ verify_oop(r0); 3210 break; 3211 case Bytecodes::_fast_lgetfield: 3212 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg); 3213 break; 3214 case Bytecodes::_fast_igetfield: 3215 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg); 3216 break; 3217 case Bytecodes::_fast_bgetfield: 3218 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg); 3219 break; 3220 case Bytecodes::_fast_sgetfield: 3221 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg); 3222 break; 3223 case Bytecodes::_fast_cgetfield: 3224 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg); 3225 break; 3226 case Bytecodes::_fast_fgetfield: 3227 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3228 break; 3229 case Bytecodes::_fast_dgetfield: 3230 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3231 break; 3232 default: 3233 ShouldNotReachHere(); 3234 } 3235 { 3236 Label notVolatile; 3237 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3238 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3239 __ bind(notVolatile); 3240 } 3241 } 3242 3243 void TemplateTable::fast_xaccess(TosState state) 3244 { 3245 transition(vtos, state); 3246 3247 // get receiver 3248 __ ldr(r0, aaddress(0)); 3249 // access constant pool cache 3250 __ load_field_entry(r2, r3, 2); 3251 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3252 3253 // 8179954: We need to make sure that the code generated for 3254 // volatile accesses forms a sequentially-consistent set of 3255 // operations when combined with STLR and LDAR. Without a leading 3256 // membar it's possible for a simple Dekker test to fail if loads 3257 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3258 // the stores in one method and we interpret the loads in another. 3259 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) { 3260 Label notVolatile; 3261 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset()))); 3262 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3263 __ membar(MacroAssembler::AnyAny); 3264 __ bind(notVolatile); 3265 } 3266 3267 // make sure exception is reported in correct bcp range (getfield is 3268 // next instruction) 3269 __ increment(rbcp); 3270 __ null_check(r0); 3271 switch (state) { 3272 case itos: 3273 __ access_load_at(T_INT, IN_HEAP, r0, Address(r0, r1, Address::lsl(0)), noreg, noreg); 3274 break; 3275 case atos: 3276 do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP); 3277 __ verify_oop(r0); 3278 break; 3279 case ftos: 3280 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(r0, r1, Address::lsl(0)), noreg, noreg); 3281 break; 3282 default: 3283 ShouldNotReachHere(); 3284 } 3285 3286 { 3287 Label notVolatile; 3288 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset()))); 3289 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3290 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3291 __ bind(notVolatile); 3292 } 3293 3294 __ decrement(rbcp); 3295 } 3296 3297 3298 3299 //----------------------------------------------------------------------------- 3300 // Calls 3301 3302 void TemplateTable::prepare_invoke(Register cache, Register recv) { 3303 3304 Bytecodes::Code code = bytecode(); 3305 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic); 3306 3307 // save 'interpreter return address' 3308 __ save_bcp(); 3309 3310 // Load TOS state for later 3311 __ load_unsigned_byte(rscratch2, Address(cache, in_bytes(ResolvedMethodEntry::type_offset()))); 3312 3313 // load receiver if needed (note: no return address pushed yet) 3314 if (load_receiver) { 3315 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 3316 __ add(rscratch1, esp, recv, ext::uxtx, 3); 3317 __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1))); 3318 __ verify_oop(recv); 3319 } 3320 3321 // load return address 3322 { 3323 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3324 __ mov(rscratch1, table_addr); 3325 __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3))); 3326 } 3327 } 3328 3329 3330 void TemplateTable::invokevirtual_helper(Register index, 3331 Register recv, 3332 Register flags) 3333 { 3334 // Uses temporary registers r0, r3 3335 assert_different_registers(index, recv, r0, r3); 3336 // Test for an invoke of a final method 3337 Label notFinal; 3338 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, notFinal); 3339 3340 const Register method = index; // method must be rmethod 3341 assert(method == rmethod, 3342 "Method must be rmethod for interpreter calling convention"); 3343 3344 // do the call - the index is actually the method to call 3345 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3346 3347 // It's final, need a null check here! 3348 __ null_check(recv); 3349 3350 // profile this call 3351 __ profile_final_call(r0); 3352 __ profile_arguments_type(r0, method, r4, true); 3353 3354 __ jump_from_interpreted(method, r0); 3355 3356 __ bind(notFinal); 3357 3358 // get receiver klass 3359 __ load_klass(r0, recv); 3360 3361 // profile this call 3362 __ profile_virtual_call(r0, rlocals, r3); 3363 3364 // get target Method & entry point 3365 __ lookup_virtual_method(r0, index, method); 3366 __ profile_arguments_type(r3, method, r4, true); 3367 // FIXME -- this looks completely redundant. is it? 3368 // __ ldr(r3, Address(method, Method::interpreter_entry_offset())); 3369 __ jump_from_interpreted(method, r3); 3370 } 3371 3372 void TemplateTable::invokevirtual(int byte_no) 3373 { 3374 transition(vtos, vtos); 3375 assert(byte_no == f2_byte, "use this argument"); 3376 3377 load_resolved_method_entry_virtual(r2, // ResolvedMethodEntry* 3378 rmethod, // Method* or itable index 3379 r3); // flags 3380 prepare_invoke(r2, r2); // recv 3381 3382 // rmethod: index (actually a Method*) 3383 // r2: receiver 3384 // r3: flags 3385 3386 invokevirtual_helper(rmethod, r2, r3); 3387 } 3388 3389 void TemplateTable::invokespecial(int byte_no) 3390 { 3391 transition(vtos, vtos); 3392 assert(byte_no == f1_byte, "use this argument"); 3393 3394 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry* 3395 rmethod, // Method* 3396 r3); // flags 3397 prepare_invoke(r2, r2); // get receiver also for null check 3398 __ verify_oop(r2); 3399 __ null_check(r2); 3400 // do the call 3401 __ profile_call(r0); 3402 __ profile_arguments_type(r0, rmethod, rbcp, false); 3403 __ jump_from_interpreted(rmethod, r0); 3404 } 3405 3406 void TemplateTable::invokestatic(int byte_no) 3407 { 3408 transition(vtos, vtos); 3409 assert(byte_no == f1_byte, "use this argument"); 3410 3411 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry* 3412 rmethod, // Method* 3413 r3); // flags 3414 prepare_invoke(r2, r2); // get receiver also for null check 3415 3416 // do the call 3417 __ profile_call(r0); 3418 __ profile_arguments_type(r0, rmethod, r4, false); 3419 __ jump_from_interpreted(rmethod, r0); 3420 } 3421 3422 void TemplateTable::fast_invokevfinal(int byte_no) 3423 { 3424 __ call_Unimplemented(); 3425 } 3426 3427 void TemplateTable::invokeinterface(int byte_no) { 3428 transition(vtos, vtos); 3429 assert(byte_no == f1_byte, "use this argument"); 3430 3431 load_resolved_method_entry_interface(r2, // ResolvedMethodEntry* 3432 r0, // Klass* 3433 rmethod, // Method* or itable/vtable index 3434 r3); // flags 3435 prepare_invoke(r2, r2); // receiver 3436 3437 // r0: interface klass (from f1) 3438 // rmethod: method (from f2) 3439 // r2: receiver 3440 // r3: flags 3441 3442 // First check for Object case, then private interface method, 3443 // then regular interface method. 3444 3445 // Special case of invokeinterface called for virtual method of 3446 // java.lang.Object. See cpCache.cpp for details. 3447 Label notObjectMethod; 3448 __ tbz(r3, ResolvedMethodEntry::is_forced_virtual_shift, notObjectMethod); 3449 3450 invokevirtual_helper(rmethod, r2, r3); 3451 __ bind(notObjectMethod); 3452 3453 Label no_such_interface; 3454 3455 // Check for private method invocation - indicated by vfinal 3456 Label notVFinal; 3457 __ tbz(r3, ResolvedMethodEntry::is_vfinal_shift, notVFinal); 3458 3459 // Get receiver klass into r3 3460 __ load_klass(r3, r2); 3461 3462 Label subtype; 3463 __ check_klass_subtype(r3, r0, r4, subtype); 3464 // If we get here the typecheck failed 3465 __ b(no_such_interface); 3466 __ bind(subtype); 3467 3468 __ profile_final_call(r0); 3469 __ profile_arguments_type(r0, rmethod, r4, true); 3470 __ jump_from_interpreted(rmethod, r0); 3471 3472 __ bind(notVFinal); 3473 3474 // Get receiver klass into r3 3475 __ restore_locals(); 3476 __ load_klass(r3, r2); 3477 3478 Label no_such_method; 3479 3480 // Preserve method for throw_AbstractMethodErrorVerbose. 3481 __ mov(r16, rmethod); 3482 // Receiver subtype check against REFC. 3483 // Superklass in r0. Subklass in r3. Blows rscratch2, r13 3484 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3485 r3, r0, noreg, 3486 // outputs: scan temp. reg, scan temp. reg 3487 rscratch2, r13, 3488 no_such_interface, 3489 /*return_method=*/false); 3490 3491 // profile this call 3492 __ profile_virtual_call(r3, r13, r19); 3493 3494 // Get declaring interface class from method, and itable index 3495 3496 __ load_method_holder(r0, rmethod); 3497 __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset())); 3498 __ subw(rmethod, rmethod, Method::itable_index_max); 3499 __ negw(rmethod, rmethod); 3500 3501 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3502 __ mov(rlocals, r3); 3503 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3504 rlocals, r0, rmethod, 3505 // outputs: method, scan temp. reg 3506 rmethod, r13, 3507 no_such_interface); 3508 3509 // rmethod,: Method to call 3510 // r2: receiver 3511 // Check for abstract method error 3512 // Note: This should be done more efficiently via a throw_abstract_method_error 3513 // interpreter entry point and a conditional jump to it in case of a null 3514 // method. 3515 __ cbz(rmethod, no_such_method); 3516 3517 __ profile_arguments_type(r3, rmethod, r13, true); 3518 3519 // do the call 3520 // r2: receiver 3521 // rmethod,: Method 3522 __ jump_from_interpreted(rmethod, r3); 3523 __ should_not_reach_here(); 3524 3525 // exception handling code follows... 3526 // note: must restore interpreter registers to canonical 3527 // state for exception handling to work correctly! 3528 3529 __ bind(no_such_method); 3530 // throw exception 3531 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3532 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3533 // Pass arguments for generating a verbose error message. 3534 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16); 3535 // the call_VM checks for exception, so we should never return here. 3536 __ should_not_reach_here(); 3537 3538 __ bind(no_such_interface); 3539 // throw exception 3540 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3541 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3542 // Pass arguments for generating a verbose error message. 3543 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3544 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0); 3545 // the call_VM checks for exception, so we should never return here. 3546 __ should_not_reach_here(); 3547 return; 3548 } 3549 3550 void TemplateTable::invokehandle(int byte_no) { 3551 transition(vtos, vtos); 3552 assert(byte_no == f1_byte, "use this argument"); 3553 3554 load_resolved_method_entry_handle(r2, // ResolvedMethodEntry* 3555 rmethod, // Method* 3556 r0, // Resolved reference 3557 r3); // flags 3558 prepare_invoke(r2, r2); 3559 3560 __ verify_method_ptr(r2); 3561 __ verify_oop(r2); 3562 __ null_check(r2); 3563 3564 // FIXME: profile the LambdaForm also 3565 3566 // r13 is safe to use here as a scratch reg because it is about to 3567 // be clobbered by jump_from_interpreted(). 3568 __ profile_final_call(r13); 3569 __ profile_arguments_type(r13, rmethod, r4, true); 3570 3571 __ jump_from_interpreted(rmethod, r0); 3572 } 3573 3574 void TemplateTable::invokedynamic(int byte_no) { 3575 transition(vtos, vtos); 3576 assert(byte_no == f1_byte, "use this argument"); 3577 3578 load_invokedynamic_entry(rmethod); 3579 3580 // r0: CallSite object (from cpool->resolved_references[]) 3581 // rmethod: MH.linkToCallSite method 3582 3583 // Note: r0_callsite is already pushed 3584 3585 // %%% should make a type profile for any invokedynamic that takes a ref argument 3586 // profile this call 3587 __ profile_call(rbcp); 3588 __ profile_arguments_type(r3, rmethod, r13, false); 3589 3590 __ verify_oop(r0); 3591 3592 __ jump_from_interpreted(rmethod, r0); 3593 } 3594 3595 3596 //----------------------------------------------------------------------------- 3597 // Allocation 3598 3599 void TemplateTable::_new() { 3600 transition(vtos, atos); 3601 3602 __ get_unsigned_2_byte_index_at_bcp(r3, 1); 3603 Label slow_case; 3604 Label done; 3605 Label initialize_header; 3606 3607 __ get_cpool_and_tags(r4, r0); 3608 // Make sure the class we're about to instantiate has been resolved. 3609 // This is done before loading InstanceKlass to be consistent with the order 3610 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3611 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3612 __ lea(rscratch1, Address(r0, r3, Address::lsl(0))); 3613 __ lea(rscratch1, Address(rscratch1, tags_offset)); 3614 __ ldarb(rscratch1, rscratch1); 3615 __ cmp(rscratch1, (u1)JVM_CONSTANT_Class); 3616 __ br(Assembler::NE, slow_case); 3617 3618 // get InstanceKlass 3619 __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1); 3620 3621 // make sure klass is initialized 3622 assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks"); 3623 __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case); 3624 3625 // get instance_size in InstanceKlass (scaled to a count of bytes) 3626 __ ldrw(r3, 3627 Address(r4, 3628 Klass::layout_helper_offset())); 3629 // test to see if it is malformed in some way 3630 __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case); 3631 3632 // Allocate the instance: 3633 // If TLAB is enabled: 3634 // Try to allocate in the TLAB. 3635 // If fails, go to the slow path. 3636 // Initialize the allocation. 3637 // Exit. 3638 // 3639 // Go to slow path. 3640 3641 if (UseTLAB) { 3642 __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case); 3643 3644 if (ZeroTLAB) { 3645 // the fields have been already cleared 3646 __ b(initialize_header); 3647 } 3648 3649 // The object is initialized before the header. If the object size is 3650 // zero, go directly to the header initialization. 3651 __ sub(r3, r3, sizeof(oopDesc)); 3652 __ cbz(r3, initialize_header); 3653 3654 // Initialize object fields 3655 { 3656 __ add(r2, r0, sizeof(oopDesc)); 3657 Label loop; 3658 __ bind(loop); 3659 __ str(zr, Address(__ post(r2, BytesPerLong))); 3660 __ sub(r3, r3, BytesPerLong); 3661 __ cbnz(r3, loop); 3662 } 3663 3664 // initialize object header only. 3665 __ bind(initialize_header); 3666 __ mov(rscratch1, (intptr_t)markWord::prototype().value()); 3667 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); 3668 __ store_klass_gap(r0, zr); // zero klass gap for compressed oops 3669 __ store_klass(r0, r4); // store klass last 3670 3671 if (DTraceAllocProbes) { 3672 // Trigger dtrace event for fastpath 3673 __ push(atos); // save the return value 3674 __ call_VM_leaf( 3675 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0); 3676 __ pop(atos); // restore the return value 3677 3678 } 3679 __ b(done); 3680 } 3681 3682 // slow case 3683 __ bind(slow_case); 3684 __ get_constant_pool(c_rarg1); 3685 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3686 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3687 __ verify_oop(r0); 3688 3689 // continue 3690 __ bind(done); 3691 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3692 __ membar(Assembler::StoreStore); 3693 } 3694 3695 void TemplateTable::newarray() { 3696 transition(itos, atos); 3697 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3698 __ mov(c_rarg2, r0); 3699 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3700 c_rarg1, c_rarg2); 3701 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3702 __ membar(Assembler::StoreStore); 3703 } 3704 3705 void TemplateTable::anewarray() { 3706 transition(itos, atos); 3707 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3708 __ get_constant_pool(c_rarg1); 3709 __ mov(c_rarg3, r0); 3710 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3711 c_rarg1, c_rarg2, c_rarg3); 3712 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3713 __ membar(Assembler::StoreStore); 3714 } 3715 3716 void TemplateTable::arraylength() { 3717 transition(atos, itos); 3718 __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes())); 3719 } 3720 3721 void TemplateTable::checkcast() 3722 { 3723 transition(atos, atos); 3724 Label done, is_null, ok_is_subtype, quicked, resolved; 3725 __ cbz(r0, is_null); 3726 3727 // Get cpool & tags index 3728 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3729 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3730 // See if bytecode has already been quicked 3731 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3732 __ lea(r1, Address(rscratch1, r19)); 3733 __ ldarb(r1, r1); 3734 __ cmp(r1, (u1)JVM_CONSTANT_Class); 3735 __ br(Assembler::EQ, quicked); 3736 3737 __ push(atos); // save receiver for result, and for GC 3738 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3739 // vm_result_2 has metadata result 3740 __ get_vm_result_2(r0, rthread); 3741 __ pop(r3); // restore receiver 3742 __ b(resolved); 3743 3744 // Get superklass in r0 and subklass in r3 3745 __ bind(quicked); 3746 __ mov(r3, r0); // Save object in r3; r0 needed for subtype check 3747 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass 3748 3749 __ bind(resolved); 3750 __ load_klass(r19, r3); 3751 3752 // Generate subtype check. Blows r2, r5. Object in r3. 3753 // Superklass in r0. Subklass in r19. 3754 __ gen_subtype_check(r19, ok_is_subtype); 3755 3756 // Come here on failure 3757 __ push(r3); 3758 // object is at TOS 3759 __ b(Interpreter::_throw_ClassCastException_entry); 3760 3761 // Come here on success 3762 __ bind(ok_is_subtype); 3763 __ mov(r0, r3); // Restore object in r3 3764 3765 // Collect counts on whether this test sees nulls a lot or not. 3766 if (ProfileInterpreter) { 3767 __ b(done); 3768 __ bind(is_null); 3769 __ profile_null_seen(r2); 3770 } else { 3771 __ bind(is_null); // same as 'done' 3772 } 3773 __ bind(done); 3774 } 3775 3776 void TemplateTable::instanceof() { 3777 transition(atos, itos); 3778 Label done, is_null, ok_is_subtype, quicked, resolved; 3779 __ cbz(r0, is_null); 3780 3781 // Get cpool & tags index 3782 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3783 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3784 // See if bytecode has already been quicked 3785 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3786 __ lea(r1, Address(rscratch1, r19)); 3787 __ ldarb(r1, r1); 3788 __ cmp(r1, (u1)JVM_CONSTANT_Class); 3789 __ br(Assembler::EQ, quicked); 3790 3791 __ push(atos); // save receiver for result, and for GC 3792 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3793 // vm_result_2 has metadata result 3794 __ get_vm_result_2(r0, rthread); 3795 __ pop(r3); // restore receiver 3796 __ verify_oop(r3); 3797 __ load_klass(r3, r3); 3798 __ b(resolved); 3799 3800 // Get superklass in r0 and subklass in r3 3801 __ bind(quicked); 3802 __ load_klass(r3, r0); 3803 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); 3804 3805 __ bind(resolved); 3806 3807 // Generate subtype check. Blows r2, r5 3808 // Superklass in r0. Subklass in r3. 3809 __ gen_subtype_check(r3, ok_is_subtype); 3810 3811 // Come here on failure 3812 __ mov(r0, 0); 3813 __ b(done); 3814 // Come here on success 3815 __ bind(ok_is_subtype); 3816 __ mov(r0, 1); 3817 3818 // Collect counts on whether this test sees nulls a lot or not. 3819 if (ProfileInterpreter) { 3820 __ b(done); 3821 __ bind(is_null); 3822 __ profile_null_seen(r2); 3823 } else { 3824 __ bind(is_null); // same as 'done' 3825 } 3826 __ bind(done); 3827 // r0 = 0: obj == nullptr or obj is not an instanceof the specified klass 3828 // r0 = 1: obj != nullptr and obj is an instanceof the specified klass 3829 } 3830 3831 //----------------------------------------------------------------------------- 3832 // Breakpoints 3833 void TemplateTable::_breakpoint() { 3834 // Note: We get here even if we are single stepping.. 3835 // jbug inists on setting breakpoints at every bytecode 3836 // even if we are in single step mode. 3837 3838 transition(vtos, vtos); 3839 3840 // get the unpatched byte code 3841 __ get_method(c_rarg1); 3842 __ call_VM(noreg, 3843 CAST_FROM_FN_PTR(address, 3844 InterpreterRuntime::get_original_bytecode_at), 3845 c_rarg1, rbcp); 3846 __ mov(r19, r0); 3847 3848 // post the breakpoint event 3849 __ call_VM(noreg, 3850 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3851 rmethod, rbcp); 3852 3853 // complete the execution of original bytecode 3854 __ mov(rscratch1, r19); 3855 __ dispatch_only_normal(vtos); 3856 } 3857 3858 //----------------------------------------------------------------------------- 3859 // Exceptions 3860 3861 void TemplateTable::athrow() { 3862 transition(atos, vtos); 3863 __ null_check(r0); 3864 __ b(Interpreter::throw_exception_entry()); 3865 } 3866 3867 //----------------------------------------------------------------------------- 3868 // Synchronization 3869 // 3870 // Note: monitorenter & exit are symmetric routines; which is reflected 3871 // in the assembly code structure as well 3872 // 3873 // Stack layout: 3874 // 3875 // [expressions ] <--- esp = expression stack top 3876 // .. 3877 // [expressions ] 3878 // [monitor entry] <--- monitor block top = expression stack bot 3879 // .. 3880 // [monitor entry] 3881 // [frame data ] <--- monitor block bot 3882 // ... 3883 // [saved rfp ] <--- rfp 3884 void TemplateTable::monitorenter() 3885 { 3886 transition(atos, vtos); 3887 3888 // check for null object 3889 __ null_check(r0); 3890 3891 const Address monitor_block_top( 3892 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3893 const Address monitor_block_bot( 3894 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 3895 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3896 3897 Label allocated; 3898 3899 // initialize entry pointer 3900 __ mov(c_rarg1, zr); // points to free slot or null 3901 3902 // find a free slot in the monitor block (result in c_rarg1) 3903 { 3904 Label entry, loop, exit; 3905 __ ldr(c_rarg3, monitor_block_top); // derelativize pointer 3906 __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize))); 3907 // c_rarg3 points to current entry, starting with top-most entry 3908 3909 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3910 3911 __ b(entry); 3912 3913 __ bind(loop); 3914 // check if current entry is used 3915 // if not used then remember entry in c_rarg1 3916 __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset())); 3917 __ cmp(zr, rscratch1); 3918 __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ); 3919 // check if current entry is for same object 3920 __ cmp(r0, rscratch1); 3921 // if same object then stop searching 3922 __ br(Assembler::EQ, exit); 3923 // otherwise advance to next entry 3924 __ add(c_rarg3, c_rarg3, entry_size); 3925 __ bind(entry); 3926 // check if bottom reached 3927 __ cmp(c_rarg3, c_rarg2); 3928 // if not at bottom then check this entry 3929 __ br(Assembler::NE, loop); 3930 __ bind(exit); 3931 } 3932 3933 __ cbnz(c_rarg1, allocated); // check if a slot has been found and 3934 // if found, continue with that on 3935 3936 // allocate one if there's no free slot 3937 { 3938 Label entry, loop; 3939 // 1. compute new pointers // rsp: old expression stack top 3940 3941 __ check_extended_sp(); 3942 __ sub(sp, sp, entry_size); // make room for the monitor 3943 __ sub(rscratch1, sp, rfp); 3944 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 3945 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 3946 3947 __ ldr(c_rarg1, monitor_block_bot); // derelativize pointer 3948 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 3949 // c_rarg1 points to the old expression stack bottom 3950 3951 __ sub(esp, esp, entry_size); // move expression stack top 3952 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom 3953 __ mov(c_rarg3, esp); // set start value for copy loop 3954 __ sub(rscratch1, c_rarg1, rfp); // relativize pointer 3955 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 3956 __ str(rscratch1, monitor_block_bot); // set new monitor block bottom 3957 3958 __ b(entry); 3959 // 2. move expression stack contents 3960 __ bind(loop); 3961 __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack 3962 // word from old location 3963 __ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location 3964 __ add(c_rarg3, c_rarg3, wordSize); // advance to next word 3965 __ bind(entry); 3966 __ cmp(c_rarg3, c_rarg1); // check if bottom reached 3967 __ br(Assembler::NE, loop); // if not at bottom then 3968 // copy next word 3969 } 3970 3971 // call run-time routine 3972 // c_rarg1: points to monitor entry 3973 __ bind(allocated); 3974 3975 // Increment bcp to point to the next bytecode, so exception 3976 // handling for async. exceptions work correctly. 3977 // The object has already been popped from the stack, so the 3978 // expression stack looks correct. 3979 __ increment(rbcp); 3980 3981 // store object 3982 __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 3983 __ lock_object(c_rarg1); 3984 3985 // check to make sure this monitor doesn't cause stack overflow after locking 3986 __ save_bcp(); // in case of exception 3987 __ generate_stack_overflow_check(0); 3988 3989 // The bcp has already been incremented. Just need to dispatch to 3990 // next instruction. 3991 __ dispatch_next(vtos); 3992 } 3993 3994 3995 void TemplateTable::monitorexit() 3996 { 3997 transition(atos, vtos); 3998 3999 // check for null object 4000 __ null_check(r0); 4001 4002 const Address monitor_block_top( 4003 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4004 const Address monitor_block_bot( 4005 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 4006 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 4007 4008 Label found; 4009 4010 // find matching slot 4011 { 4012 Label entry, loop; 4013 __ ldr(c_rarg1, monitor_block_top); // derelativize pointer 4014 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 4015 // c_rarg1 points to current entry, starting with top-most entry 4016 4017 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 4018 // of monitor block 4019 __ b(entry); 4020 4021 __ bind(loop); 4022 // check if current entry is for same object 4023 __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 4024 __ cmp(r0, rscratch1); 4025 // if same object then stop searching 4026 __ br(Assembler::EQ, found); 4027 // otherwise advance to next entry 4028 __ add(c_rarg1, c_rarg1, entry_size); 4029 __ bind(entry); 4030 // check if bottom reached 4031 __ cmp(c_rarg1, c_rarg2); 4032 // if not at bottom then check this entry 4033 __ br(Assembler::NE, loop); 4034 } 4035 4036 // error handling. Unlocking was not block-structured 4037 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4038 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4039 __ should_not_reach_here(); 4040 4041 // call run-time routine 4042 __ bind(found); 4043 __ push_ptr(r0); // make sure object is on stack (contract with oopMaps) 4044 __ unlock_object(c_rarg1); 4045 __ pop_ptr(r0); // discard object 4046 } 4047 4048 4049 // Wide instructions 4050 void TemplateTable::wide() 4051 { 4052 __ load_unsigned_byte(r19, at_bcp(1)); 4053 __ mov(rscratch1, (address)Interpreter::_wentry_point); 4054 __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3))); 4055 __ br(rscratch1); 4056 } 4057 4058 4059 // Multi arrays 4060 void TemplateTable::multianewarray() { 4061 transition(vtos, atos); 4062 __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions 4063 // last dim is on top of stack; we want address of first one: 4064 // first_addr = last_addr + (ndims - 1) * wordSize 4065 __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3))); 4066 __ sub(c_rarg1, c_rarg1, wordSize); 4067 call_VM(r0, 4068 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), 4069 c_rarg1); 4070 __ load_unsigned_byte(r1, at_bcp(3)); 4071 __ lea(esp, Address(esp, r1, Address::uxtw(3))); 4072 }