1 /*
2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "asm/macroAssembler.inline.hpp"
27 #include "compiler/disassembler.hpp"
28 #include "compiler/compilerDefinitions.inline.hpp"
29 #include "gc/shared/barrierSetAssembler.hpp"
30 #include "gc/shared/collectedHeap.hpp"
31 #include "gc/shared/tlab_globals.hpp"
32 #include "interpreter/interpreter.hpp"
33 #include "interpreter/interpreterRuntime.hpp"
34 #include "interpreter/interp_masm.hpp"
35 #include "interpreter/templateTable.hpp"
36 #include "memory/universe.hpp"
37 #include "oops/methodData.hpp"
38 #include "oops/method.inline.hpp"
39 #include "oops/objArrayKlass.hpp"
40 #include "oops/oop.inline.hpp"
41 #include "oops/resolvedFieldEntry.hpp"
42 #include "oops/resolvedIndyEntry.hpp"
43 #include "oops/resolvedMethodEntry.hpp"
44 #include "prims/jvmtiExport.hpp"
45 #include "prims/methodHandles.hpp"
46 #include "runtime/frame.inline.hpp"
47 #include "runtime/sharedRuntime.hpp"
48 #include "runtime/stubRoutines.hpp"
49 #include "runtime/synchronizer.hpp"
50 #include "utilities/powerOfTwo.hpp"
51
52 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
53
54 // Address computation: local variables
55
56 static inline Address iaddress(int n) {
57 return Address(rlocals, Interpreter::local_offset_in_bytes(n));
58 }
59
60 static inline Address laddress(int n) {
61 return iaddress(n + 1);
62 }
63
64 static inline Address faddress(int n) {
65 return iaddress(n);
66 }
67
68 static inline Address daddress(int n) {
69 return laddress(n);
70 }
71
72 static inline Address aaddress(int n) {
73 return iaddress(n);
74 }
75
76 static inline Address iaddress(Register r) {
77 return Address(rlocals, r, Address::lsl(3));
78 }
79
80 static inline Address laddress(Register r, Register scratch,
81 InterpreterMacroAssembler* _masm) {
82 __ lea(scratch, Address(rlocals, r, Address::lsl(3)));
83 return Address(scratch, Interpreter::local_offset_in_bytes(1));
84 }
85
86 static inline Address faddress(Register r) {
87 return iaddress(r);
88 }
89
90 static inline Address daddress(Register r, Register scratch,
91 InterpreterMacroAssembler* _masm) {
92 return laddress(r, scratch, _masm);
93 }
94
95 static inline Address aaddress(Register r) {
96 return iaddress(r);
97 }
98
99 static inline Address at_rsp() {
100 return Address(esp, 0);
101 }
102
103 // At top of Java expression stack which may be different than esp(). It
104 // isn't for category 1 objects.
105 static inline Address at_tos () {
106 return Address(esp, Interpreter::expr_offset_in_bytes(0));
107 }
108
109 static inline Address at_tos_p1() {
110 return Address(esp, Interpreter::expr_offset_in_bytes(1));
111 }
112
113 static inline Address at_tos_p2() {
114 return Address(esp, Interpreter::expr_offset_in_bytes(2));
115 }
116
117 static inline Address at_tos_p3() {
118 return Address(esp, Interpreter::expr_offset_in_bytes(3));
119 }
120
121 static inline Address at_tos_p4() {
122 return Address(esp, Interpreter::expr_offset_in_bytes(4));
123 }
124
125 static inline Address at_tos_p5() {
126 return Address(esp, Interpreter::expr_offset_in_bytes(5));
127 }
128
129 // Condition conversion
130 static Assembler::Condition j_not(TemplateTable::Condition cc) {
131 switch (cc) {
132 case TemplateTable::equal : return Assembler::NE;
133 case TemplateTable::not_equal : return Assembler::EQ;
134 case TemplateTable::less : return Assembler::GE;
135 case TemplateTable::less_equal : return Assembler::GT;
136 case TemplateTable::greater : return Assembler::LE;
137 case TemplateTable::greater_equal: return Assembler::LT;
138 }
139 ShouldNotReachHere();
140 return Assembler::EQ;
141 }
142
143
144 // Miscellaneous helper routines
145 // Store an oop (or null) at the Address described by obj.
146 // If val == noreg this means store a null
147 static void do_oop_store(InterpreterMacroAssembler* _masm,
148 Address dst,
149 Register val,
150 DecoratorSet decorators) {
151 assert(val == noreg || val == r0, "parameter is just for looks");
152 __ store_heap_oop(dst, val, r10, r11, r3, decorators);
153 }
154
155 static void do_oop_load(InterpreterMacroAssembler* _masm,
156 Address src,
157 Register dst,
158 DecoratorSet decorators) {
159 __ load_heap_oop(dst, src, r10, r11, decorators);
160 }
161
162 Address TemplateTable::at_bcp(int offset) {
163 assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
164 return Address(rbcp, offset);
165 }
166
167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
168 Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
169 int byte_no)
170 {
171 if (!RewriteBytecodes) return;
172 Label L_patch_done;
173
174 switch (bc) {
175 case Bytecodes::_fast_aputfield:
176 case Bytecodes::_fast_bputfield:
177 case Bytecodes::_fast_zputfield:
178 case Bytecodes::_fast_cputfield:
179 case Bytecodes::_fast_dputfield:
180 case Bytecodes::_fast_fputfield:
181 case Bytecodes::_fast_iputfield:
182 case Bytecodes::_fast_lputfield:
183 case Bytecodes::_fast_sputfield:
184 {
185 // We skip bytecode quickening for putfield instructions when
186 // the put_code written to the constant pool cache is zero.
187 // This is required so that every execution of this instruction
188 // calls out to InterpreterRuntime::resolve_get_put to do
189 // additional, required work.
190 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
191 assert(load_bc_into_bc_reg, "we use bc_reg as temp");
192 __ load_field_entry(temp_reg, bc_reg);
193 if (byte_no == f1_byte) {
194 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));
195 } else {
196 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset())));
197 }
198 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in()
199 __ ldarb(temp_reg, temp_reg);
200 __ movw(bc_reg, bc);
201 __ cbzw(temp_reg, L_patch_done); // don't patch
202 }
203 break;
204 default:
205 assert(byte_no == -1, "sanity");
206 // the pair bytecodes have already done the load.
207 if (load_bc_into_bc_reg) {
208 __ movw(bc_reg, bc);
209 }
210 }
211
212 if (JvmtiExport::can_post_breakpoint()) {
213 Label L_fast_patch;
214 // if a breakpoint is present we can't rewrite the stream directly
215 __ load_unsigned_byte(temp_reg, at_bcp(0));
216 __ cmpw(temp_reg, Bytecodes::_breakpoint);
217 __ br(Assembler::NE, L_fast_patch);
218 // Let breakpoint table handling rewrite to quicker bytecode
219 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg);
220 __ b(L_patch_done);
221 __ bind(L_fast_patch);
222 }
223
224 #ifdef ASSERT
225 Label L_okay;
226 __ load_unsigned_byte(temp_reg, at_bcp(0));
227 __ cmpw(temp_reg, (int) Bytecodes::java_code(bc));
228 __ br(Assembler::EQ, L_okay);
229 __ cmpw(temp_reg, bc_reg);
230 __ br(Assembler::EQ, L_okay);
231 __ stop("patching the wrong bytecode");
232 __ bind(L_okay);
233 #endif
234
235 // patch bytecode
236 __ strb(bc_reg, at_bcp(0));
237 __ bind(L_patch_done);
238 }
239
240
241 // Individual instructions
242
243 void TemplateTable::nop() {
244 transition(vtos, vtos);
245 // nothing to do
246 }
247
248 void TemplateTable::shouldnotreachhere() {
249 transition(vtos, vtos);
250 __ stop("shouldnotreachhere bytecode");
251 }
252
253 void TemplateTable::aconst_null()
254 {
255 transition(vtos, atos);
256 __ mov(r0, 0);
257 }
258
259 void TemplateTable::iconst(int value)
260 {
261 transition(vtos, itos);
262 __ mov(r0, value);
263 }
264
265 void TemplateTable::lconst(int value)
266 {
267 __ mov(r0, value);
268 }
269
270 void TemplateTable::fconst(int value)
271 {
272 transition(vtos, ftos);
273 switch (value) {
274 case 0:
275 __ fmovs(v0, 0.0);
276 break;
277 case 1:
278 __ fmovs(v0, 1.0);
279 break;
280 case 2:
281 __ fmovs(v0, 2.0);
282 break;
283 default:
284 ShouldNotReachHere();
285 break;
286 }
287 }
288
289 void TemplateTable::dconst(int value)
290 {
291 transition(vtos, dtos);
292 switch (value) {
293 case 0:
294 __ fmovd(v0, 0.0);
295 break;
296 case 1:
297 __ fmovd(v0, 1.0);
298 break;
299 case 2:
300 __ fmovd(v0, 2.0);
301 break;
302 default:
303 ShouldNotReachHere();
304 break;
305 }
306 }
307
308 void TemplateTable::bipush()
309 {
310 transition(vtos, itos);
311 __ load_signed_byte32(r0, at_bcp(1));
312 }
313
314 void TemplateTable::sipush()
315 {
316 transition(vtos, itos);
317 __ load_unsigned_short(r0, at_bcp(1));
318 __ revw(r0, r0);
319 __ asrw(r0, r0, 16);
320 }
321
322 void TemplateTable::ldc(LdcType type)
323 {
324 transition(vtos, vtos);
325 Label call_ldc, notFloat, notClass, notInt, Done;
326
327 if (is_ldc_wide(type)) {
328 __ get_unsigned_2_byte_index_at_bcp(r1, 1);
329 } else {
330 __ load_unsigned_byte(r1, at_bcp(1));
331 }
332 __ get_cpool_and_tags(r2, r0);
333
334 const int base_offset = ConstantPool::header_size() * wordSize;
335 const int tags_offset = Array<u1>::base_offset_in_bytes();
336
337 // get type
338 __ add(r3, r1, tags_offset);
339 __ lea(r3, Address(r0, r3));
340 __ ldarb(r3, r3);
341
342 // unresolved class - get the resolved class
343 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClass);
344 __ br(Assembler::EQ, call_ldc);
345
346 // unresolved class in error state - call into runtime to throw the error
347 // from the first resolution attempt
348 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClassInError);
349 __ br(Assembler::EQ, call_ldc);
350
351 // resolved class - need to call vm to get java mirror of the class
352 __ cmp(r3, (u1)JVM_CONSTANT_Class);
353 __ br(Assembler::NE, notClass);
354
355 __ load_resolved_klass_at_offset(r2, r1, r3, rscratch1); // kills r3=tag
356
357 __ cmp(r3, zr); // resolved_klass ?= null
358 __ br(Assembler::EQ, call_ldc);
359
360 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
361 __ ldr(r3, Address(r3, mirror_offset));
362 __ resolve_oop_handle(r3, rscratch1, rscratch2);
363 __ push_ptr(r3);
364
365 __ b(Done);
366
367 __ bind(call_ldc);
368 __ mov(c_rarg1, is_ldc_wide(type) ? 1 : 0);
369 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
370 __ push_ptr(r0);
371 __ verify_oop(r0);
372 __ b(Done);
373
374 __ bind(notClass);
375 __ cmp(r3, (u1)JVM_CONSTANT_Float);
376 __ br(Assembler::NE, notFloat);
377 // ftos
378 __ adds(r1, r2, r1, Assembler::LSL, 3);
379 __ ldrs(v0, Address(r1, base_offset));
380 __ push_f();
381 __ b(Done);
382
383 __ bind(notFloat);
384
385 __ cmp(r3, (u1)JVM_CONSTANT_Integer);
386 __ br(Assembler::NE, notInt);
387
388 // itos
389 __ adds(r1, r2, r1, Assembler::LSL, 3);
390 __ ldrw(r0, Address(r1, base_offset));
391 __ push_i(r0);
392 __ b(Done);
393
394 __ bind(notInt);
395 condy_helper(Done);
396
397 __ bind(Done);
398 }
399
400 // Fast path for caching oop constants.
401 void TemplateTable::fast_aldc(LdcType type)
402 {
403 transition(vtos, atos);
404
405 Register result = r0;
406 Register tmp = r1;
407 Register rarg = r2;
408
409 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1);
410
411 Label resolved;
412
413 // We are resolved if the resolved reference cache entry contains a
414 // non-null object (String, MethodType, etc.)
415 assert_different_registers(result, tmp);
416 __ get_cache_index_at_bcp(tmp, 1, index_size);
417 __ load_resolved_reference_at_index(result, tmp);
418 __ cbnz(result, resolved);
419
420 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
421
422 // first time invocation - must resolve first
423 __ mov(rarg, (int)bytecode());
424 __ call_VM(result, entry, rarg);
425
426 __ bind(resolved);
427
428 { // Check for the null sentinel.
429 // If we just called the VM, it already did the mapping for us,
430 // but it's harmless to retry.
431 Label notNull;
432
433 // Stash null_sentinel address to get its value later
434 __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr());
435 __ ldr(tmp, Address(rarg));
436 __ resolve_oop_handle(tmp, r5, rscratch2);
437 __ cmpoop(result, tmp);
438 __ br(Assembler::NE, notNull);
439 __ mov(result, 0); // null object reference
440 __ bind(notNull);
441 }
442
443 if (VerifyOops) {
444 // Safe to call with 0 result
445 __ verify_oop(result);
446 }
447 }
448
449 void TemplateTable::ldc2_w()
450 {
451 transition(vtos, vtos);
452 Label notDouble, notLong, Done;
453 __ get_unsigned_2_byte_index_at_bcp(r0, 1);
454
455 __ get_cpool_and_tags(r1, r2);
456 const int base_offset = ConstantPool::header_size() * wordSize;
457 const int tags_offset = Array<u1>::base_offset_in_bytes();
458
459 // get type
460 __ lea(r2, Address(r2, r0, Address::lsl(0)));
461 __ load_unsigned_byte(r2, Address(r2, tags_offset));
462 __ cmpw(r2, (int)JVM_CONSTANT_Double);
463 __ br(Assembler::NE, notDouble);
464
465 // dtos
466 __ lea (r2, Address(r1, r0, Address::lsl(3)));
467 __ ldrd(v0, Address(r2, base_offset));
468 __ push_d();
469 __ b(Done);
470
471 __ bind(notDouble);
472 __ cmpw(r2, (int)JVM_CONSTANT_Long);
473 __ br(Assembler::NE, notLong);
474
475 // ltos
476 __ lea(r0, Address(r1, r0, Address::lsl(3)));
477 __ ldr(r0, Address(r0, base_offset));
478 __ push_l();
479 __ b(Done);
480
481 __ bind(notLong);
482 condy_helper(Done);
483
484 __ bind(Done);
485 }
486
487 void TemplateTable::condy_helper(Label& Done)
488 {
489 Register obj = r0;
490 Register rarg = r1;
491 Register flags = r2;
492 Register off = r3;
493
494 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
495
496 __ mov(rarg, (int) bytecode());
497 __ call_VM(obj, entry, rarg);
498
499 __ get_vm_result_metadata(flags, rthread);
500
501 // VMr = obj = base address to find primitive value to push
502 // VMr2 = flags = (tos, off) using format of CPCE::_flags
503 __ mov(off, flags);
504 __ andw(off, off, ConstantPoolCache::field_index_mask);
505
506 const Address field(obj, off);
507
508 // What sort of thing are we loading?
509 // x86 uses a shift and mask or wings it with a shift plus assert
510 // the mask is not needed. aarch64 just uses bitfield extract
511 __ ubfxw(flags, flags, ConstantPoolCache::tos_state_shift,
512 ConstantPoolCache::tos_state_bits);
513
514 switch (bytecode()) {
515 case Bytecodes::_ldc:
516 case Bytecodes::_ldc_w:
517 {
518 // tos in (itos, ftos, stos, btos, ctos, ztos)
519 Label notInt, notFloat, notShort, notByte, notChar, notBool;
520 __ cmpw(flags, itos);
521 __ br(Assembler::NE, notInt);
522 // itos
523 __ ldrw(r0, field);
524 __ push(itos);
525 __ b(Done);
526
527 __ bind(notInt);
528 __ cmpw(flags, ftos);
529 __ br(Assembler::NE, notFloat);
530 // ftos
531 __ load_float(field);
532 __ push(ftos);
533 __ b(Done);
534
535 __ bind(notFloat);
536 __ cmpw(flags, stos);
537 __ br(Assembler::NE, notShort);
538 // stos
539 __ load_signed_short(r0, field);
540 __ push(stos);
541 __ b(Done);
542
543 __ bind(notShort);
544 __ cmpw(flags, btos);
545 __ br(Assembler::NE, notByte);
546 // btos
547 __ load_signed_byte(r0, field);
548 __ push(btos);
549 __ b(Done);
550
551 __ bind(notByte);
552 __ cmpw(flags, ctos);
553 __ br(Assembler::NE, notChar);
554 // ctos
555 __ load_unsigned_short(r0, field);
556 __ push(ctos);
557 __ b(Done);
558
559 __ bind(notChar);
560 __ cmpw(flags, ztos);
561 __ br(Assembler::NE, notBool);
562 // ztos
563 __ load_signed_byte(r0, field);
564 __ push(ztos);
565 __ b(Done);
566
567 __ bind(notBool);
568 break;
569 }
570
571 case Bytecodes::_ldc2_w:
572 {
573 Label notLong, notDouble;
574 __ cmpw(flags, ltos);
575 __ br(Assembler::NE, notLong);
576 // ltos
577 __ ldr(r0, field);
578 __ push(ltos);
579 __ b(Done);
580
581 __ bind(notLong);
582 __ cmpw(flags, dtos);
583 __ br(Assembler::NE, notDouble);
584 // dtos
585 __ load_double(field);
586 __ push(dtos);
587 __ b(Done);
588
589 __ bind(notDouble);
590 break;
591 }
592
593 default:
594 ShouldNotReachHere();
595 }
596
597 __ stop("bad ldc/condy");
598 }
599
600 void TemplateTable::locals_index(Register reg, int offset)
601 {
602 __ ldrb(reg, at_bcp(offset));
603 __ neg(reg, reg);
604 }
605
606 void TemplateTable::iload() {
607 iload_internal();
608 }
609
610 void TemplateTable::nofast_iload() {
611 iload_internal(may_not_rewrite);
612 }
613
614 void TemplateTable::iload_internal(RewriteControl rc) {
615 transition(vtos, itos);
616 if (RewriteFrequentPairs && rc == may_rewrite) {
617 Label rewrite, done;
618 Register bc = r4;
619
620 // get next bytecode
621 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
622
623 // if _iload, wait to rewrite to iload2. We only want to rewrite the
624 // last two iloads in a pair. Comparing against fast_iload means that
625 // the next bytecode is neither an iload or a caload, and therefore
626 // an iload pair.
627 __ cmpw(r1, Bytecodes::_iload);
628 __ br(Assembler::EQ, done);
629
630 // if _fast_iload rewrite to _fast_iload2
631 __ cmpw(r1, Bytecodes::_fast_iload);
632 __ movw(bc, Bytecodes::_fast_iload2);
633 __ br(Assembler::EQ, rewrite);
634
635 // if _caload rewrite to _fast_icaload
636 __ cmpw(r1, Bytecodes::_caload);
637 __ movw(bc, Bytecodes::_fast_icaload);
638 __ br(Assembler::EQ, rewrite);
639
640 // else rewrite to _fast_iload
641 __ movw(bc, Bytecodes::_fast_iload);
642
643 // rewrite
644 // bc: new bytecode
645 __ bind(rewrite);
646 patch_bytecode(Bytecodes::_iload, bc, r1, false);
647 __ bind(done);
648
649 }
650
651 // do iload, get the local value into tos
652 locals_index(r1);
653 __ ldr(r0, iaddress(r1));
654
655 }
656
657 void TemplateTable::fast_iload2()
658 {
659 transition(vtos, itos);
660 locals_index(r1);
661 __ ldr(r0, iaddress(r1));
662 __ push(itos);
663 locals_index(r1, 3);
664 __ ldr(r0, iaddress(r1));
665 }
666
667 void TemplateTable::fast_iload()
668 {
669 transition(vtos, itos);
670 locals_index(r1);
671 __ ldr(r0, iaddress(r1));
672 }
673
674 void TemplateTable::lload()
675 {
676 transition(vtos, ltos);
677 __ ldrb(r1, at_bcp(1));
678 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
679 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
680 }
681
682 void TemplateTable::fload()
683 {
684 transition(vtos, ftos);
685 locals_index(r1);
686 // n.b. we use ldrd here because this is a 64 bit slot
687 // this is comparable to the iload case
688 __ ldrd(v0, faddress(r1));
689 }
690
691 void TemplateTable::dload()
692 {
693 transition(vtos, dtos);
694 __ ldrb(r1, at_bcp(1));
695 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
696 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
697 }
698
699 void TemplateTable::aload()
700 {
701 transition(vtos, atos);
702 locals_index(r1);
703 __ ldr(r0, iaddress(r1));
704 }
705
706 void TemplateTable::locals_index_wide(Register reg) {
707 __ ldrh(reg, at_bcp(2));
708 __ rev16w(reg, reg);
709 __ neg(reg, reg);
710 }
711
712 void TemplateTable::wide_iload() {
713 transition(vtos, itos);
714 locals_index_wide(r1);
715 __ ldr(r0, iaddress(r1));
716 }
717
718 void TemplateTable::wide_lload()
719 {
720 transition(vtos, ltos);
721 __ ldrh(r1, at_bcp(2));
722 __ rev16w(r1, r1);
723 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
724 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
725 }
726
727 void TemplateTable::wide_fload()
728 {
729 transition(vtos, ftos);
730 locals_index_wide(r1);
731 // n.b. we use ldrd here because this is a 64 bit slot
732 // this is comparable to the iload case
733 __ ldrd(v0, faddress(r1));
734 }
735
736 void TemplateTable::wide_dload()
737 {
738 transition(vtos, dtos);
739 __ ldrh(r1, at_bcp(2));
740 __ rev16w(r1, r1);
741 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
742 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
743 }
744
745 void TemplateTable::wide_aload()
746 {
747 transition(vtos, atos);
748 locals_index_wide(r1);
749 __ ldr(r0, aaddress(r1));
750 }
751
752 void TemplateTable::index_check(Register array, Register index)
753 {
754 // destroys r1, rscratch1
755 // sign extend index for use by indexed load
756 // __ movl2ptr(index, index);
757 // check index
758 Register length = rscratch1;
759 __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
760 __ cmpw(index, length);
761 if (index != r1) {
762 // ??? convention: move aberrant index into r1 for exception message
763 assert(r1 != array, "different registers");
764 __ mov(r1, index);
765 }
766 Label ok;
767 __ br(Assembler::LO, ok);
768 // ??? convention: move array into r3 for exception message
769 __ mov(r3, array);
770 __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
771 __ br(rscratch1);
772 __ bind(ok);
773 }
774
775 void TemplateTable::iaload()
776 {
777 transition(itos, itos);
778 __ mov(r1, r0);
779 __ pop_ptr(r0);
780 // r0: array
781 // r1: index
782 index_check(r0, r1); // leaves index in r1, kills rscratch1
783 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
784 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
785 }
786
787 void TemplateTable::laload()
788 {
789 transition(itos, ltos);
790 __ mov(r1, r0);
791 __ pop_ptr(r0);
792 // r0: array
793 // r1: index
794 index_check(r0, r1); // leaves index in r1, kills rscratch1
795 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
796 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
797 }
798
799 void TemplateTable::faload()
800 {
801 transition(itos, ftos);
802 __ mov(r1, r0);
803 __ pop_ptr(r0);
804 // r0: array
805 // r1: index
806 index_check(r0, r1); // leaves index in r1, kills rscratch1
807 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
808 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
809 }
810
811 void TemplateTable::daload()
812 {
813 transition(itos, dtos);
814 __ mov(r1, r0);
815 __ pop_ptr(r0);
816 // r0: array
817 // r1: index
818 index_check(r0, r1); // leaves index in r1, kills rscratch1
819 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
820 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
821 }
822
823 void TemplateTable::aaload()
824 {
825 transition(itos, atos);
826 __ mov(r1, r0);
827 __ pop_ptr(r0);
828 // r0: array
829 // r1: index
830 index_check(r0, r1); // leaves index in r1, kills rscratch1
831 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
832 do_oop_load(_masm,
833 Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)),
834 r0,
835 IS_ARRAY);
836 }
837
838 void TemplateTable::baload()
839 {
840 transition(itos, itos);
841 __ mov(r1, r0);
842 __ pop_ptr(r0);
843 // r0: array
844 // r1: index
845 index_check(r0, r1); // leaves index in r1, kills rscratch1
846 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
847 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
848 }
849
850 void TemplateTable::caload()
851 {
852 transition(itos, itos);
853 __ mov(r1, r0);
854 __ pop_ptr(r0);
855 // r0: array
856 // r1: index
857 index_check(r0, r1); // leaves index in r1, kills rscratch1
858 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
859 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
860 }
861
862 // iload followed by caload frequent pair
863 void TemplateTable::fast_icaload()
864 {
865 transition(vtos, itos);
866 // load index out of locals
867 locals_index(r2);
868 __ ldr(r1, iaddress(r2));
869
870 __ pop_ptr(r0);
871
872 // r0: array
873 // r1: index
874 index_check(r0, r1); // leaves index in r1, kills rscratch1
875 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
876 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
877 }
878
879 void TemplateTable::saload()
880 {
881 transition(itos, itos);
882 __ mov(r1, r0);
883 __ pop_ptr(r0);
884 // r0: array
885 // r1: index
886 index_check(r0, r1); // leaves index in r1, kills rscratch1
887 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1);
888 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
889 }
890
891 void TemplateTable::iload(int n)
892 {
893 transition(vtos, itos);
894 __ ldr(r0, iaddress(n));
895 }
896
897 void TemplateTable::lload(int n)
898 {
899 transition(vtos, ltos);
900 __ ldr(r0, laddress(n));
901 }
902
903 void TemplateTable::fload(int n)
904 {
905 transition(vtos, ftos);
906 __ ldrs(v0, faddress(n));
907 }
908
909 void TemplateTable::dload(int n)
910 {
911 transition(vtos, dtos);
912 __ ldrd(v0, daddress(n));
913 }
914
915 void TemplateTable::aload(int n)
916 {
917 transition(vtos, atos);
918 __ ldr(r0, iaddress(n));
919 }
920
921 void TemplateTable::aload_0() {
922 aload_0_internal();
923 }
924
925 void TemplateTable::nofast_aload_0() {
926 aload_0_internal(may_not_rewrite);
927 }
928
929 void TemplateTable::aload_0_internal(RewriteControl rc) {
930 // According to bytecode histograms, the pairs:
931 //
932 // _aload_0, _fast_igetfield
933 // _aload_0, _fast_agetfield
934 // _aload_0, _fast_fgetfield
935 //
936 // occur frequently. If RewriteFrequentPairs is set, the (slow)
937 // _aload_0 bytecode checks if the next bytecode is either
938 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
939 // rewrites the current bytecode into a pair bytecode; otherwise it
940 // rewrites the current bytecode into _fast_aload_0 that doesn't do
941 // the pair check anymore.
942 //
943 // Note: If the next bytecode is _getfield, the rewrite must be
944 // delayed, otherwise we may miss an opportunity for a pair.
945 //
946 // Also rewrite frequent pairs
947 // aload_0, aload_1
948 // aload_0, iload_1
949 // These bytecodes with a small amount of code are most profitable
950 // to rewrite
951 if (RewriteFrequentPairs && rc == may_rewrite) {
952 Label rewrite, done;
953 const Register bc = r4;
954
955 // get next bytecode
956 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
957
958 // if _getfield then wait with rewrite
959 __ cmpw(r1, Bytecodes::Bytecodes::_getfield);
960 __ br(Assembler::EQ, done);
961
962 // if _igetfield then rewrite to _fast_iaccess_0
963 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
964 __ cmpw(r1, Bytecodes::_fast_igetfield);
965 __ movw(bc, Bytecodes::_fast_iaccess_0);
966 __ br(Assembler::EQ, rewrite);
967
968 // if _agetfield then rewrite to _fast_aaccess_0
969 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
970 __ cmpw(r1, Bytecodes::_fast_agetfield);
971 __ movw(bc, Bytecodes::_fast_aaccess_0);
972 __ br(Assembler::EQ, rewrite);
973
974 // if _fgetfield then rewrite to _fast_faccess_0
975 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
976 __ cmpw(r1, Bytecodes::_fast_fgetfield);
977 __ movw(bc, Bytecodes::_fast_faccess_0);
978 __ br(Assembler::EQ, rewrite);
979
980 // else rewrite to _fast_aload0
981 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
982 __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0);
983
984 // rewrite
985 // bc: new bytecode
986 __ bind(rewrite);
987 patch_bytecode(Bytecodes::_aload_0, bc, r1, false);
988
989 __ bind(done);
990 }
991
992 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
993 aload(0);
994 }
995
996 void TemplateTable::istore()
997 {
998 transition(itos, vtos);
999 locals_index(r1);
1000 // FIXME: We're being very pernickerty here storing a jint in a
1001 // local with strw, which costs an extra instruction over what we'd
1002 // be able to do with a simple str. We should just store the whole
1003 // word.
1004 __ lea(rscratch1, iaddress(r1));
1005 __ strw(r0, Address(rscratch1));
1006 }
1007
1008 void TemplateTable::lstore()
1009 {
1010 transition(ltos, vtos);
1011 locals_index(r1);
1012 __ str(r0, laddress(r1, rscratch1, _masm));
1013 }
1014
1015 void TemplateTable::fstore() {
1016 transition(ftos, vtos);
1017 locals_index(r1);
1018 __ lea(rscratch1, iaddress(r1));
1019 __ strs(v0, Address(rscratch1));
1020 }
1021
1022 void TemplateTable::dstore() {
1023 transition(dtos, vtos);
1024 locals_index(r1);
1025 __ strd(v0, daddress(r1, rscratch1, _masm));
1026 }
1027
1028 void TemplateTable::astore()
1029 {
1030 transition(vtos, vtos);
1031 __ pop_ptr(r0);
1032 locals_index(r1);
1033 __ str(r0, aaddress(r1));
1034 }
1035
1036 void TemplateTable::wide_istore() {
1037 transition(vtos, vtos);
1038 __ pop_i();
1039 locals_index_wide(r1);
1040 __ lea(rscratch1, iaddress(r1));
1041 __ strw(r0, Address(rscratch1));
1042 }
1043
1044 void TemplateTable::wide_lstore() {
1045 transition(vtos, vtos);
1046 __ pop_l();
1047 locals_index_wide(r1);
1048 __ str(r0, laddress(r1, rscratch1, _masm));
1049 }
1050
1051 void TemplateTable::wide_fstore() {
1052 transition(vtos, vtos);
1053 __ pop_f();
1054 locals_index_wide(r1);
1055 __ lea(rscratch1, faddress(r1));
1056 __ strs(v0, rscratch1);
1057 }
1058
1059 void TemplateTable::wide_dstore() {
1060 transition(vtos, vtos);
1061 __ pop_d();
1062 locals_index_wide(r1);
1063 __ strd(v0, daddress(r1, rscratch1, _masm));
1064 }
1065
1066 void TemplateTable::wide_astore() {
1067 transition(vtos, vtos);
1068 __ pop_ptr(r0);
1069 locals_index_wide(r1);
1070 __ str(r0, aaddress(r1));
1071 }
1072
1073 void TemplateTable::iastore() {
1074 transition(itos, vtos);
1075 __ pop_i(r1);
1076 __ pop_ptr(r3);
1077 // r0: value
1078 // r1: index
1079 // r3: array
1080 index_check(r3, r1); // prefer index in r1
1081 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
1082 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), r0, noreg, noreg, noreg);
1083 }
1084
1085 void TemplateTable::lastore() {
1086 transition(ltos, vtos);
1087 __ pop_i(r1);
1088 __ pop_ptr(r3);
1089 // r0: value
1090 // r1: index
1091 // r3: array
1092 index_check(r3, r1); // prefer index in r1
1093 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
1094 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), r0, noreg, noreg, noreg);
1095 }
1096
1097 void TemplateTable::fastore() {
1098 transition(ftos, vtos);
1099 __ pop_i(r1);
1100 __ pop_ptr(r3);
1101 // v0: value
1102 // r1: index
1103 // r3: array
1104 index_check(r3, r1); // prefer index in r1
1105 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1106 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1107 }
1108
1109 void TemplateTable::dastore() {
1110 transition(dtos, vtos);
1111 __ pop_i(r1);
1112 __ pop_ptr(r3);
1113 // v0: value
1114 // r1: index
1115 // r3: array
1116 index_check(r3, r1); // prefer index in r1
1117 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1118 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1119 }
1120
1121 void TemplateTable::aastore() {
1122 Label is_null, ok_is_subtype, done;
1123 transition(vtos, vtos);
1124 // stack: ..., array, index, value
1125 __ ldr(r0, at_tos()); // value
1126 __ ldr(r2, at_tos_p1()); // index
1127 __ ldr(r3, at_tos_p2()); // array
1128
1129 Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1130
1131 index_check(r3, r2); // kills r1
1132 __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
1133
1134 // do array store check - check for null value first
1135 __ cbz(r0, is_null);
1136
1137 // Move subklass into r1
1138 __ load_klass(r1, r0);
1139 // Move superklass into r0
1140 __ load_klass(r0, r3);
1141 __ ldr(r0, Address(r0,
1142 ObjArrayKlass::element_klass_offset()));
1143 // Compress array + index*oopSize + 12 into a single register. Frees r2.
1144
1145 // Generate subtype check. Blows r2, r5
1146 // Superklass in r0. Subklass in r1.
1147 __ gen_subtype_check(r1, ok_is_subtype);
1148
1149 // Come here on failure
1150 // object is at TOS
1151 __ b(Interpreter::_throw_ArrayStoreException_entry);
1152
1153 // Come here on success
1154 __ bind(ok_is_subtype);
1155
1156 // Get the value we will store
1157 __ ldr(r0, at_tos());
1158 // Now store using the appropriate barrier
1159 // Clobbers: r10, r11, r3
1160 do_oop_store(_masm, element_address, r0, IS_ARRAY);
1161 __ b(done);
1162
1163 // Have a null in r0, r3=array, r2=index. Store null at ary[idx]
1164 __ bind(is_null);
1165 __ profile_null_seen(r2);
1166
1167 // Store a null
1168 // Clobbers: r10, r11, r3
1169 do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1170
1171 // Pop stack arguments
1172 __ bind(done);
1173 __ add(esp, esp, 3 * Interpreter::stackElementSize);
1174 }
1175
1176 void TemplateTable::bastore()
1177 {
1178 transition(itos, vtos);
1179 __ pop_i(r1);
1180 __ pop_ptr(r3);
1181 // r0: value
1182 // r1: index
1183 // r3: array
1184 index_check(r3, r1); // prefer index in r1
1185
1186 // Need to check whether array is boolean or byte
1187 // since both types share the bastore bytecode.
1188 __ load_klass(r2, r3);
1189 __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));
1190 int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit());
1191 Label L_skip;
1192 __ tbz(r2, diffbit_index, L_skip);
1193 __ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1
1194 __ bind(L_skip);
1195
1196 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
1197 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(0)), r0, noreg, noreg, noreg);
1198 }
1199
1200 void TemplateTable::castore()
1201 {
1202 transition(itos, vtos);
1203 __ pop_i(r1);
1204 __ pop_ptr(r3);
1205 // r0: value
1206 // r1: index
1207 // r3: array
1208 index_check(r3, r1); // prefer index in r1
1209 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
1210 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(1)), r0, noreg, noreg, noreg);
1211 }
1212
1213 void TemplateTable::sastore()
1214 {
1215 castore();
1216 }
1217
1218 void TemplateTable::istore(int n)
1219 {
1220 transition(itos, vtos);
1221 __ str(r0, iaddress(n));
1222 }
1223
1224 void TemplateTable::lstore(int n)
1225 {
1226 transition(ltos, vtos);
1227 __ str(r0, laddress(n));
1228 }
1229
1230 void TemplateTable::fstore(int n)
1231 {
1232 transition(ftos, vtos);
1233 __ strs(v0, faddress(n));
1234 }
1235
1236 void TemplateTable::dstore(int n)
1237 {
1238 transition(dtos, vtos);
1239 __ strd(v0, daddress(n));
1240 }
1241
1242 void TemplateTable::astore(int n)
1243 {
1244 transition(vtos, vtos);
1245 __ pop_ptr(r0);
1246 __ str(r0, iaddress(n));
1247 }
1248
1249 void TemplateTable::pop()
1250 {
1251 transition(vtos, vtos);
1252 __ add(esp, esp, Interpreter::stackElementSize);
1253 }
1254
1255 void TemplateTable::pop2()
1256 {
1257 transition(vtos, vtos);
1258 __ add(esp, esp, 2 * Interpreter::stackElementSize);
1259 }
1260
1261 void TemplateTable::dup()
1262 {
1263 transition(vtos, vtos);
1264 __ ldr(r0, Address(esp, 0));
1265 __ push(r0);
1266 // stack: ..., a, a
1267 }
1268
1269 void TemplateTable::dup_x1()
1270 {
1271 transition(vtos, vtos);
1272 // stack: ..., a, b
1273 __ ldr(r0, at_tos()); // load b
1274 __ ldr(r2, at_tos_p1()); // load a
1275 __ str(r0, at_tos_p1()); // store b
1276 __ str(r2, at_tos()); // store a
1277 __ push(r0); // push b
1278 // stack: ..., b, a, b
1279 }
1280
1281 void TemplateTable::dup_x2()
1282 {
1283 transition(vtos, vtos);
1284 // stack: ..., a, b, c
1285 __ ldr(r0, at_tos()); // load c
1286 __ ldr(r2, at_tos_p2()); // load a
1287 __ str(r0, at_tos_p2()); // store c in a
1288 __ push(r0); // push c
1289 // stack: ..., c, b, c, c
1290 __ ldr(r0, at_tos_p2()); // load b
1291 __ str(r2, at_tos_p2()); // store a in b
1292 // stack: ..., c, a, c, c
1293 __ str(r0, at_tos_p1()); // store b in c
1294 // stack: ..., c, a, b, c
1295 }
1296
1297 void TemplateTable::dup2()
1298 {
1299 transition(vtos, vtos);
1300 // stack: ..., a, b
1301 __ ldr(r0, at_tos_p1()); // load a
1302 __ push(r0); // push a
1303 __ ldr(r0, at_tos_p1()); // load b
1304 __ push(r0); // push b
1305 // stack: ..., a, b, a, b
1306 }
1307
1308 void TemplateTable::dup2_x1()
1309 {
1310 transition(vtos, vtos);
1311 // stack: ..., a, b, c
1312 __ ldr(r2, at_tos()); // load c
1313 __ ldr(r0, at_tos_p1()); // load b
1314 __ push(r0); // push b
1315 __ push(r2); // push c
1316 // stack: ..., a, b, c, b, c
1317 __ str(r2, at_tos_p3()); // store c in b
1318 // stack: ..., a, c, c, b, c
1319 __ ldr(r2, at_tos_p4()); // load a
1320 __ str(r2, at_tos_p2()); // store a in 2nd c
1321 // stack: ..., a, c, a, b, c
1322 __ str(r0, at_tos_p4()); // store b in a
1323 // stack: ..., b, c, a, b, c
1324 }
1325
1326 void TemplateTable::dup2_x2()
1327 {
1328 transition(vtos, vtos);
1329 // stack: ..., a, b, c, d
1330 __ ldr(r2, at_tos()); // load d
1331 __ ldr(r0, at_tos_p1()); // load c
1332 __ push(r0) ; // push c
1333 __ push(r2); // push d
1334 // stack: ..., a, b, c, d, c, d
1335 __ ldr(r0, at_tos_p4()); // load b
1336 __ str(r0, at_tos_p2()); // store b in d
1337 __ str(r2, at_tos_p4()); // store d in b
1338 // stack: ..., a, d, c, b, c, d
1339 __ ldr(r2, at_tos_p5()); // load a
1340 __ ldr(r0, at_tos_p3()); // load c
1341 __ str(r2, at_tos_p3()); // store a in c
1342 __ str(r0, at_tos_p5()); // store c in a
1343 // stack: ..., c, d, a, b, c, d
1344 }
1345
1346 void TemplateTable::swap()
1347 {
1348 transition(vtos, vtos);
1349 // stack: ..., a, b
1350 __ ldr(r2, at_tos_p1()); // load a
1351 __ ldr(r0, at_tos()); // load b
1352 __ str(r2, at_tos()); // store a in b
1353 __ str(r0, at_tos_p1()); // store b in a
1354 // stack: ..., b, a
1355 }
1356
1357 void TemplateTable::iop2(Operation op)
1358 {
1359 transition(itos, itos);
1360 // r0 <== r1 op r0
1361 __ pop_i(r1);
1362 switch (op) {
1363 case add : __ addw(r0, r1, r0); break;
1364 case sub : __ subw(r0, r1, r0); break;
1365 case mul : __ mulw(r0, r1, r0); break;
1366 case _and : __ andw(r0, r1, r0); break;
1367 case _or : __ orrw(r0, r1, r0); break;
1368 case _xor : __ eorw(r0, r1, r0); break;
1369 case shl : __ lslvw(r0, r1, r0); break;
1370 case shr : __ asrvw(r0, r1, r0); break;
1371 case ushr : __ lsrvw(r0, r1, r0);break;
1372 default : ShouldNotReachHere();
1373 }
1374 }
1375
1376 void TemplateTable::lop2(Operation op)
1377 {
1378 transition(ltos, ltos);
1379 // r0 <== r1 op r0
1380 __ pop_l(r1);
1381 switch (op) {
1382 case add : __ add(r0, r1, r0); break;
1383 case sub : __ sub(r0, r1, r0); break;
1384 case mul : __ mul(r0, r1, r0); break;
1385 case _and : __ andr(r0, r1, r0); break;
1386 case _or : __ orr(r0, r1, r0); break;
1387 case _xor : __ eor(r0, r1, r0); break;
1388 default : ShouldNotReachHere();
1389 }
1390 }
1391
1392 void TemplateTable::idiv()
1393 {
1394 transition(itos, itos);
1395 // explicitly check for div0
1396 Label no_div0;
1397 __ cbnzw(r0, no_div0);
1398 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1399 __ br(rscratch1);
1400 __ bind(no_div0);
1401 __ pop_i(r1);
1402 // r0 <== r1 idiv r0
1403 __ corrected_idivl(r0, r1, r0, /* want_remainder */ false);
1404 }
1405
1406 void TemplateTable::irem()
1407 {
1408 transition(itos, itos);
1409 // explicitly check for div0
1410 Label no_div0;
1411 __ cbnzw(r0, no_div0);
1412 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1413 __ br(rscratch1);
1414 __ bind(no_div0);
1415 __ pop_i(r1);
1416 // r0 <== r1 irem r0
1417 __ corrected_idivl(r0, r1, r0, /* want_remainder */ true);
1418 }
1419
1420 void TemplateTable::lmul()
1421 {
1422 transition(ltos, ltos);
1423 __ pop_l(r1);
1424 __ mul(r0, r0, r1);
1425 }
1426
1427 void TemplateTable::ldiv()
1428 {
1429 transition(ltos, ltos);
1430 // explicitly check for div0
1431 Label no_div0;
1432 __ cbnz(r0, no_div0);
1433 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1434 __ br(rscratch1);
1435 __ bind(no_div0);
1436 __ pop_l(r1);
1437 // r0 <== r1 ldiv r0
1438 __ corrected_idivq(r0, r1, r0, /* want_remainder */ false);
1439 }
1440
1441 void TemplateTable::lrem()
1442 {
1443 transition(ltos, ltos);
1444 // explicitly check for div0
1445 Label no_div0;
1446 __ cbnz(r0, no_div0);
1447 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1448 __ br(rscratch1);
1449 __ bind(no_div0);
1450 __ pop_l(r1);
1451 // r0 <== r1 lrem r0
1452 __ corrected_idivq(r0, r1, r0, /* want_remainder */ true);
1453 }
1454
1455 void TemplateTable::lshl()
1456 {
1457 transition(itos, ltos);
1458 // shift count is in r0
1459 __ pop_l(r1);
1460 __ lslv(r0, r1, r0);
1461 }
1462
1463 void TemplateTable::lshr()
1464 {
1465 transition(itos, ltos);
1466 // shift count is in r0
1467 __ pop_l(r1);
1468 __ asrv(r0, r1, r0);
1469 }
1470
1471 void TemplateTable::lushr()
1472 {
1473 transition(itos, ltos);
1474 // shift count is in r0
1475 __ pop_l(r1);
1476 __ lsrv(r0, r1, r0);
1477 }
1478
1479 void TemplateTable::fop2(Operation op)
1480 {
1481 transition(ftos, ftos);
1482 switch (op) {
1483 case add:
1484 // n.b. use ldrd because this is a 64 bit slot
1485 __ pop_f(v1);
1486 __ fadds(v0, v1, v0);
1487 break;
1488 case sub:
1489 __ pop_f(v1);
1490 __ fsubs(v0, v1, v0);
1491 break;
1492 case mul:
1493 __ pop_f(v1);
1494 __ fmuls(v0, v1, v0);
1495 break;
1496 case div:
1497 __ pop_f(v1);
1498 __ fdivs(v0, v1, v0);
1499 break;
1500 case rem:
1501 __ fmovs(v1, v0);
1502 __ pop_f(v0);
1503 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1504 break;
1505 default:
1506 ShouldNotReachHere();
1507 break;
1508 }
1509 }
1510
1511 void TemplateTable::dop2(Operation op)
1512 {
1513 transition(dtos, dtos);
1514 switch (op) {
1515 case add:
1516 // n.b. use ldrd because this is a 64 bit slot
1517 __ pop_d(v1);
1518 __ faddd(v0, v1, v0);
1519 break;
1520 case sub:
1521 __ pop_d(v1);
1522 __ fsubd(v0, v1, v0);
1523 break;
1524 case mul:
1525 __ pop_d(v1);
1526 __ fmuld(v0, v1, v0);
1527 break;
1528 case div:
1529 __ pop_d(v1);
1530 __ fdivd(v0, v1, v0);
1531 break;
1532 case rem:
1533 __ fmovd(v1, v0);
1534 __ pop_d(v0);
1535 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1536 break;
1537 default:
1538 ShouldNotReachHere();
1539 break;
1540 }
1541 }
1542
1543 void TemplateTable::ineg()
1544 {
1545 transition(itos, itos);
1546 __ negw(r0, r0);
1547
1548 }
1549
1550 void TemplateTable::lneg()
1551 {
1552 transition(ltos, ltos);
1553 __ neg(r0, r0);
1554 }
1555
1556 void TemplateTable::fneg()
1557 {
1558 transition(ftos, ftos);
1559 __ fnegs(v0, v0);
1560 }
1561
1562 void TemplateTable::dneg()
1563 {
1564 transition(dtos, dtos);
1565 __ fnegd(v0, v0);
1566 }
1567
1568 void TemplateTable::iinc()
1569 {
1570 transition(vtos, vtos);
1571 __ load_signed_byte(r1, at_bcp(2)); // get constant
1572 locals_index(r2);
1573 __ ldr(r0, iaddress(r2));
1574 __ addw(r0, r0, r1);
1575 __ str(r0, iaddress(r2));
1576 }
1577
1578 void TemplateTable::wide_iinc()
1579 {
1580 transition(vtos, vtos);
1581 // __ mov(r1, zr);
1582 __ ldrw(r1, at_bcp(2)); // get constant and index
1583 __ rev16(r1, r1);
1584 __ ubfx(r2, r1, 0, 16);
1585 __ neg(r2, r2);
1586 __ sbfx(r1, r1, 16, 16);
1587 __ ldr(r0, iaddress(r2));
1588 __ addw(r0, r0, r1);
1589 __ str(r0, iaddress(r2));
1590 }
1591
1592 void TemplateTable::convert()
1593 {
1594 // Checking
1595 #ifdef ASSERT
1596 {
1597 TosState tos_in = ilgl;
1598 TosState tos_out = ilgl;
1599 switch (bytecode()) {
1600 case Bytecodes::_i2l: // fall through
1601 case Bytecodes::_i2f: // fall through
1602 case Bytecodes::_i2d: // fall through
1603 case Bytecodes::_i2b: // fall through
1604 case Bytecodes::_i2c: // fall through
1605 case Bytecodes::_i2s: tos_in = itos; break;
1606 case Bytecodes::_l2i: // fall through
1607 case Bytecodes::_l2f: // fall through
1608 case Bytecodes::_l2d: tos_in = ltos; break;
1609 case Bytecodes::_f2i: // fall through
1610 case Bytecodes::_f2l: // fall through
1611 case Bytecodes::_f2d: tos_in = ftos; break;
1612 case Bytecodes::_d2i: // fall through
1613 case Bytecodes::_d2l: // fall through
1614 case Bytecodes::_d2f: tos_in = dtos; break;
1615 default : ShouldNotReachHere();
1616 }
1617 switch (bytecode()) {
1618 case Bytecodes::_l2i: // fall through
1619 case Bytecodes::_f2i: // fall through
1620 case Bytecodes::_d2i: // fall through
1621 case Bytecodes::_i2b: // fall through
1622 case Bytecodes::_i2c: // fall through
1623 case Bytecodes::_i2s: tos_out = itos; break;
1624 case Bytecodes::_i2l: // fall through
1625 case Bytecodes::_f2l: // fall through
1626 case Bytecodes::_d2l: tos_out = ltos; break;
1627 case Bytecodes::_i2f: // fall through
1628 case Bytecodes::_l2f: // fall through
1629 case Bytecodes::_d2f: tos_out = ftos; break;
1630 case Bytecodes::_i2d: // fall through
1631 case Bytecodes::_l2d: // fall through
1632 case Bytecodes::_f2d: tos_out = dtos; break;
1633 default : ShouldNotReachHere();
1634 }
1635 transition(tos_in, tos_out);
1636 }
1637 #endif // ASSERT
1638 // static const int64_t is_nan = 0x8000000000000000L;
1639
1640 // Conversion
1641 switch (bytecode()) {
1642 case Bytecodes::_i2l:
1643 __ sxtw(r0, r0);
1644 break;
1645 case Bytecodes::_i2f:
1646 __ scvtfws(v0, r0);
1647 break;
1648 case Bytecodes::_i2d:
1649 __ scvtfwd(v0, r0);
1650 break;
1651 case Bytecodes::_i2b:
1652 __ sxtbw(r0, r0);
1653 break;
1654 case Bytecodes::_i2c:
1655 __ uxthw(r0, r0);
1656 break;
1657 case Bytecodes::_i2s:
1658 __ sxthw(r0, r0);
1659 break;
1660 case Bytecodes::_l2i:
1661 __ uxtw(r0, r0);
1662 break;
1663 case Bytecodes::_l2f:
1664 __ scvtfs(v0, r0);
1665 break;
1666 case Bytecodes::_l2d:
1667 __ scvtfd(v0, r0);
1668 break;
1669 case Bytecodes::_f2i:
1670 {
1671 Label L_Okay;
1672 __ clear_fpsr();
1673 __ fcvtzsw(r0, v0);
1674 __ get_fpsr(r1);
1675 __ cbzw(r1, L_Okay);
1676 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i));
1677 __ bind(L_Okay);
1678 }
1679 break;
1680 case Bytecodes::_f2l:
1681 {
1682 Label L_Okay;
1683 __ clear_fpsr();
1684 __ fcvtzs(r0, v0);
1685 __ get_fpsr(r1);
1686 __ cbzw(r1, L_Okay);
1687 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1688 __ bind(L_Okay);
1689 }
1690 break;
1691 case Bytecodes::_f2d:
1692 __ fcvts(v0, v0);
1693 break;
1694 case Bytecodes::_d2i:
1695 {
1696 Label L_Okay;
1697 __ clear_fpsr();
1698 __ fcvtzdw(r0, v0);
1699 __ get_fpsr(r1);
1700 __ cbzw(r1, L_Okay);
1701 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
1702 __ bind(L_Okay);
1703 }
1704 break;
1705 case Bytecodes::_d2l:
1706 {
1707 Label L_Okay;
1708 __ clear_fpsr();
1709 __ fcvtzd(r0, v0);
1710 __ get_fpsr(r1);
1711 __ cbzw(r1, L_Okay);
1712 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1713 __ bind(L_Okay);
1714 }
1715 break;
1716 case Bytecodes::_d2f:
1717 __ fcvtd(v0, v0);
1718 break;
1719 default:
1720 ShouldNotReachHere();
1721 }
1722 }
1723
1724 void TemplateTable::lcmp()
1725 {
1726 transition(ltos, itos);
1727 Label done;
1728 __ pop_l(r1);
1729 __ cmp(r1, r0);
1730 __ mov(r0, (uint64_t)-1L);
1731 __ br(Assembler::LT, done);
1732 // __ mov(r0, 1UL);
1733 // __ csel(r0, r0, zr, Assembler::NE);
1734 // and here is a faster way
1735 __ csinc(r0, zr, zr, Assembler::EQ);
1736 __ bind(done);
1737 }
1738
1739 void TemplateTable::float_cmp(bool is_float, int unordered_result)
1740 {
1741 Label done;
1742 if (is_float) {
1743 // XXX get rid of pop here, use ... reg, mem32
1744 __ pop_f(v1);
1745 __ fcmps(v1, v0);
1746 } else {
1747 // XXX get rid of pop here, use ... reg, mem64
1748 __ pop_d(v1);
1749 __ fcmpd(v1, v0);
1750 }
1751 if (unordered_result < 0) {
1752 // we want -1 for unordered or less than, 0 for equal and 1 for
1753 // greater than.
1754 __ mov(r0, (uint64_t)-1L);
1755 // for FP LT tests less than or unordered
1756 __ br(Assembler::LT, done);
1757 // install 0 for EQ otherwise 1
1758 __ csinc(r0, zr, zr, Assembler::EQ);
1759 } else {
1760 // we want -1 for less than, 0 for equal and 1 for unordered or
1761 // greater than.
1762 __ mov(r0, 1L);
1763 // for FP HI tests greater than or unordered
1764 __ br(Assembler::HI, done);
1765 // install 0 for EQ otherwise ~0
1766 __ csinv(r0, zr, zr, Assembler::EQ);
1767
1768 }
1769 __ bind(done);
1770 }
1771
1772 void TemplateTable::branch(bool is_jsr, bool is_wide)
1773 {
1774 __ profile_taken_branch(r0);
1775 const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1776 InvocationCounter::counter_offset();
1777 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1778 InvocationCounter::counter_offset();
1779
1780 // load branch displacement
1781 if (!is_wide) {
1782 __ ldrh(r2, at_bcp(1));
1783 __ rev16(r2, r2);
1784 // sign extend the 16 bit value in r2
1785 __ sbfm(r2, r2, 0, 15);
1786 } else {
1787 __ ldrw(r2, at_bcp(1));
1788 __ revw(r2, r2);
1789 // sign extend the 32 bit value in r2
1790 __ sbfm(r2, r2, 0, 31);
1791 }
1792
1793 // Handle all the JSR stuff here, then exit.
1794 // It's much shorter and cleaner than intermingling with the non-JSR
1795 // normal-branch stuff occurring below.
1796
1797 if (is_jsr) {
1798 // Pre-load the next target bytecode into rscratch1
1799 __ load_unsigned_byte(rscratch1, Address(rbcp, r2));
1800 // compute return address as bci
1801 __ ldr(rscratch2, Address(rmethod, Method::const_offset()));
1802 __ add(rscratch2, rscratch2,
1803 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3));
1804 __ sub(r1, rbcp, rscratch2);
1805 __ push_i(r1);
1806 // Adjust the bcp by the 16-bit displacement in r2
1807 __ add(rbcp, rbcp, r2);
1808 __ dispatch_only(vtos, /*generate_poll*/true);
1809 return;
1810 }
1811
1812 // Normal (non-jsr) branch handling
1813
1814 // Adjust the bcp by the displacement in r2
1815 __ add(rbcp, rbcp, r2);
1816
1817 assert(UseLoopCounter || !UseOnStackReplacement,
1818 "on-stack-replacement requires loop counters");
1819 Label backedge_counter_overflow;
1820 Label dispatch;
1821 if (UseLoopCounter) {
1822 // increment backedge counter for backward branches
1823 // r0: MDO
1824 // r2: target offset
1825 __ cmp(r2, zr);
1826 __ br(Assembler::GT, dispatch); // count only if backward branch
1827
1828 // ECN: FIXME: This code smells
1829 // check if MethodCounters exists
1830 Label has_counters;
1831 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1832 __ cbnz(rscratch1, has_counters);
1833 __ push(r0);
1834 __ push(r2);
1835 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
1836 InterpreterRuntime::build_method_counters), rmethod);
1837 __ pop(r2);
1838 __ pop(r0);
1839 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1840 __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory
1841 __ bind(has_counters);
1842
1843 Label no_mdo;
1844 int increment = InvocationCounter::count_increment;
1845 if (ProfileInterpreter) {
1846 // Are we profiling?
1847 __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
1848 __ cbz(r1, no_mdo);
1849 // Increment the MDO backedge counter
1850 const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) +
1851 in_bytes(InvocationCounter::counter_offset()));
1852 const Address mask(r1, in_bytes(MethodData::backedge_mask_offset()));
1853 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1854 r0, rscratch1, false, Assembler::EQ,
1855 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1856 __ b(dispatch);
1857 }
1858 __ bind(no_mdo);
1859 // Increment backedge counter in MethodCounters*
1860 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1861 const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset()));
1862 __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask,
1863 r0, rscratch2, false, Assembler::EQ,
1864 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1865 __ bind(dispatch);
1866 }
1867
1868 // Pre-load the next target bytecode into rscratch1
1869 __ load_unsigned_byte(rscratch1, Address(rbcp, 0));
1870
1871 // continue with the bytecode @ target
1872 // rscratch1: target bytecode
1873 // rbcp: target bcp
1874 __ dispatch_only(vtos, /*generate_poll*/true);
1875
1876 if (UseLoopCounter && UseOnStackReplacement) {
1877 // invocation counter overflow
1878 __ bind(backedge_counter_overflow);
1879 __ neg(r2, r2);
1880 __ add(r2, r2, rbcp); // branch bcp
1881 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1882 __ call_VM(noreg,
1883 CAST_FROM_FN_PTR(address,
1884 InterpreterRuntime::frequency_counter_overflow),
1885 r2);
1886 __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode
1887
1888 // r0: osr nmethod (osr ok) or null (osr not possible)
1889 // w1: target bytecode
1890 // r2: scratch
1891 __ cbz(r0, dispatch); // test result -- no osr if null
1892 // nmethod may have been invalidated (VM may block upon call_VM return)
1893 __ ldrb(r2, Address(r0, nmethod::state_offset()));
1894 if (nmethod::in_use != 0)
1895 __ sub(r2, r2, nmethod::in_use);
1896 __ cbnz(r2, dispatch);
1897
1898 // We have the address of an on stack replacement routine in r0
1899 // We need to prepare to execute the OSR method. First we must
1900 // migrate the locals and monitors off of the stack.
1901
1902 __ mov(r19, r0); // save the nmethod
1903
1904 JFR_ONLY(__ enter_jfr_critical_section();)
1905
1906 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1907
1908 // r0 is OSR buffer, move it to expected parameter location
1909 __ mov(j_rarg0, r0);
1910
1911 // remove activation
1912 // get sender esp
1913 __ ldr(esp,
1914 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
1915 // remove frame anchor
1916 __ leave();
1917
1918 JFR_ONLY(__ leave_jfr_critical_section();)
1919
1920 // Ensure compiled code always sees stack at proper alignment
1921 __ andr(sp, esp, -16);
1922
1923 // and begin the OSR nmethod
1924 __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset()));
1925 __ br(rscratch1);
1926 }
1927 }
1928
1929
1930 void TemplateTable::if_0cmp(Condition cc)
1931 {
1932 transition(itos, vtos);
1933 // assume branch is more often taken than not (loops use backward branches)
1934 Label not_taken;
1935 if (cc == equal)
1936 __ cbnzw(r0, not_taken);
1937 else if (cc == not_equal)
1938 __ cbzw(r0, not_taken);
1939 else {
1940 __ andsw(zr, r0, r0);
1941 __ br(j_not(cc), not_taken);
1942 }
1943
1944 branch(false, false);
1945 __ bind(not_taken);
1946 __ profile_not_taken_branch(r0);
1947 }
1948
1949 void TemplateTable::if_icmp(Condition cc)
1950 {
1951 transition(itos, vtos);
1952 // assume branch is more often taken than not (loops use backward branches)
1953 Label not_taken;
1954 __ pop_i(r1);
1955 __ cmpw(r1, r0, Assembler::LSL);
1956 __ br(j_not(cc), not_taken);
1957 branch(false, false);
1958 __ bind(not_taken);
1959 __ profile_not_taken_branch(r0);
1960 }
1961
1962 void TemplateTable::if_nullcmp(Condition cc)
1963 {
1964 transition(atos, vtos);
1965 // assume branch is more often taken than not (loops use backward branches)
1966 Label not_taken;
1967 if (cc == equal)
1968 __ cbnz(r0, not_taken);
1969 else
1970 __ cbz(r0, not_taken);
1971 branch(false, false);
1972 __ bind(not_taken);
1973 __ profile_not_taken_branch(r0);
1974 }
1975
1976 void TemplateTable::if_acmp(Condition cc)
1977 {
1978 transition(atos, vtos);
1979 // assume branch is more often taken than not (loops use backward branches)
1980 Label not_taken;
1981 __ pop_ptr(r1);
1982 __ cmpoop(r1, r0);
1983 __ br(j_not(cc), not_taken);
1984 branch(false, false);
1985 __ bind(not_taken);
1986 __ profile_not_taken_branch(r0);
1987 }
1988
1989 void TemplateTable::ret() {
1990 transition(vtos, vtos);
1991 locals_index(r1);
1992 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1993 __ profile_ret(r1, r2);
1994 __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1995 __ lea(rbcp, Address(rbcp, r1));
1996 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1997 __ dispatch_next(vtos, 0, /*generate_poll*/true);
1998 }
1999
2000 void TemplateTable::wide_ret() {
2001 transition(vtos, vtos);
2002 locals_index_wide(r1);
2003 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2004 __ profile_ret(r1, r2);
2005 __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2006 __ lea(rbcp, Address(rbcp, r1));
2007 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2008 __ dispatch_next(vtos, 0, /*generate_poll*/true);
2009 }
2010
2011
2012 void TemplateTable::tableswitch() {
2013 Label default_case, continue_execution;
2014 transition(itos, vtos);
2015 // align rbcp
2016 __ lea(r1, at_bcp(BytesPerInt));
2017 __ andr(r1, r1, -BytesPerInt);
2018 // load lo & hi
2019 __ ldrw(r2, Address(r1, BytesPerInt));
2020 __ ldrw(r3, Address(r1, 2 * BytesPerInt));
2021 __ rev32(r2, r2);
2022 __ rev32(r3, r3);
2023 // check against lo & hi
2024 __ cmpw(r0, r2);
2025 __ br(Assembler::LT, default_case);
2026 __ cmpw(r0, r3);
2027 __ br(Assembler::GT, default_case);
2028 // lookup dispatch offset
2029 __ subw(r0, r0, r2);
2030 __ lea(r3, Address(r1, r0, Address::uxtw(2)));
2031 __ ldrw(r3, Address(r3, 3 * BytesPerInt));
2032 __ profile_switch_case(r0, r1, r2);
2033 // continue execution
2034 __ bind(continue_execution);
2035 __ rev32(r3, r3);
2036 __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0)));
2037 __ add(rbcp, rbcp, r3, ext::sxtw);
2038 __ dispatch_only(vtos, /*generate_poll*/true);
2039 // handle default
2040 __ bind(default_case);
2041 __ profile_switch_default(r0);
2042 __ ldrw(r3, Address(r1, 0));
2043 __ b(continue_execution);
2044 }
2045
2046 void TemplateTable::lookupswitch() {
2047 transition(itos, itos);
2048 __ stop("lookupswitch bytecode should have been rewritten");
2049 }
2050
2051 void TemplateTable::fast_linearswitch() {
2052 transition(itos, vtos);
2053 Label loop_entry, loop, found, continue_execution;
2054 // bswap r0 so we can avoid bswapping the table entries
2055 __ rev32(r0, r0);
2056 // align rbcp
2057 __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2058 // this instruction (change offsets
2059 // below)
2060 __ andr(r19, r19, -BytesPerInt);
2061 // set counter
2062 __ ldrw(r1, Address(r19, BytesPerInt));
2063 __ rev32(r1, r1);
2064 __ b(loop_entry);
2065 // table search
2066 __ bind(loop);
2067 __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2068 __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt));
2069 __ cmpw(r0, rscratch1);
2070 __ br(Assembler::EQ, found);
2071 __ bind(loop_entry);
2072 __ subs(r1, r1, 1);
2073 __ br(Assembler::PL, loop);
2074 // default case
2075 __ profile_switch_default(r0);
2076 __ ldrw(r3, Address(r19, 0));
2077 __ b(continue_execution);
2078 // entry found -> get offset
2079 __ bind(found);
2080 __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2081 __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt));
2082 __ profile_switch_case(r1, r0, r19);
2083 // continue execution
2084 __ bind(continue_execution);
2085 __ rev32(r3, r3);
2086 __ add(rbcp, rbcp, r3, ext::sxtw);
2087 __ ldrb(rscratch1, Address(rbcp, 0));
2088 __ dispatch_only(vtos, /*generate_poll*/true);
2089 }
2090
2091 void TemplateTable::fast_binaryswitch() {
2092 transition(itos, vtos);
2093 // Implementation using the following core algorithm:
2094 //
2095 // int binary_search(int key, LookupswitchPair* array, int n) {
2096 // // Binary search according to "Methodik des Programmierens" by
2097 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2098 // int i = 0;
2099 // int j = n;
2100 // while (i+1 < j) {
2101 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2102 // // with Q: for all i: 0 <= i < n: key < a[i]
2103 // // where a stands for the array and assuming that the (inexisting)
2104 // // element a[n] is infinitely big.
2105 // int h = (i + j) >> 1;
2106 // // i < h < j
2107 // if (key < array[h].fast_match()) {
2108 // j = h;
2109 // } else {
2110 // i = h;
2111 // }
2112 // }
2113 // // R: a[i] <= key < a[i+1] or Q
2114 // // (i.e., if key is within array, i is the correct index)
2115 // return i;
2116 // }
2117
2118 // Register allocation
2119 const Register key = r0; // already set (tosca)
2120 const Register array = r1;
2121 const Register i = r2;
2122 const Register j = r3;
2123 const Register h = rscratch1;
2124 const Register temp = rscratch2;
2125
2126 // Find array start
2127 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2128 // get rid of this
2129 // instruction (change
2130 // offsets below)
2131 __ andr(array, array, -BytesPerInt);
2132
2133 // Initialize i & j
2134 __ mov(i, 0); // i = 0;
2135 __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array);
2136
2137 // Convert j into native byteordering
2138 __ rev32(j, j);
2139
2140 // And start
2141 Label entry;
2142 __ b(entry);
2143
2144 // binary search loop
2145 {
2146 Label loop;
2147 __ bind(loop);
2148 // int h = (i + j) >> 1;
2149 __ addw(h, i, j); // h = i + j;
2150 __ lsrw(h, h, 1); // h = (i + j) >> 1;
2151 // if (key < array[h].fast_match()) {
2152 // j = h;
2153 // } else {
2154 // i = h;
2155 // }
2156 // Convert array[h].match to native byte-ordering before compare
2157 __ ldr(temp, Address(array, h, Address::lsl(3)));
2158 __ rev32(temp, temp);
2159 __ cmpw(key, temp);
2160 // j = h if (key < array[h].fast_match())
2161 __ csel(j, h, j, Assembler::LT);
2162 // i = h if (key >= array[h].fast_match())
2163 __ csel(i, h, i, Assembler::GE);
2164 // while (i+1 < j)
2165 __ bind(entry);
2166 __ addw(h, i, 1); // i+1
2167 __ cmpw(h, j); // i+1 < j
2168 __ br(Assembler::LT, loop);
2169 }
2170
2171 // end of binary search, result index is i (must check again!)
2172 Label default_case;
2173 // Convert array[i].match to native byte-ordering before compare
2174 __ ldr(temp, Address(array, i, Address::lsl(3)));
2175 __ rev32(temp, temp);
2176 __ cmpw(key, temp);
2177 __ br(Assembler::NE, default_case);
2178
2179 // entry found -> j = offset
2180 __ add(j, array, i, ext::uxtx, 3);
2181 __ ldrw(j, Address(j, BytesPerInt));
2182 __ profile_switch_case(i, key, array);
2183 __ rev32(j, j);
2184 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2185 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2186 __ dispatch_only(vtos, /*generate_poll*/true);
2187
2188 // default case -> j = default offset
2189 __ bind(default_case);
2190 __ profile_switch_default(i);
2191 __ ldrw(j, Address(array, -2 * BytesPerInt));
2192 __ rev32(j, j);
2193 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2194 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2195 __ dispatch_only(vtos, /*generate_poll*/true);
2196 }
2197
2198
2199 void TemplateTable::_return(TosState state)
2200 {
2201 transition(state, state);
2202 assert(_desc->calls_vm(),
2203 "inconsistent calls_vm information"); // call in remove_activation
2204
2205 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2206 assert(state == vtos, "only valid state");
2207
2208 __ ldr(c_rarg1, aaddress(0));
2209 __ load_klass(r3, c_rarg1);
2210 __ ldrb(r3, Address(r3, Klass::misc_flags_offset()));
2211 Label skip_register_finalizer;
2212 __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer);
2213
2214 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2215
2216 __ bind(skip_register_finalizer);
2217 }
2218
2219 // Issue a StoreStore barrier after all stores but before return
2220 // from any constructor for any class with a final field. We don't
2221 // know if this is a finalizer, so we always do so.
2222 if (_desc->bytecode() == Bytecodes::_return)
2223 __ membar(MacroAssembler::StoreStore);
2224
2225 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2226 Label no_safepoint;
2227 __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset()));
2228 __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint);
2229 __ push(state);
2230 __ push_cont_fastpath(rthread);
2231 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2232 __ pop_cont_fastpath(rthread);
2233 __ pop(state);
2234 __ bind(no_safepoint);
2235 }
2236
2237 // Narrow result if state is itos but result type is smaller.
2238 // Need to narrow in the return bytecode rather than in generate_return_entry
2239 // since compiled code callers expect the result to already be narrowed.
2240 if (state == itos) {
2241 __ narrow(r0);
2242 }
2243
2244 __ remove_activation(state);
2245 __ ret(lr);
2246 }
2247
2248 // ----------------------------------------------------------------------------
2249 // Volatile variables demand their effects be made known to all CPU's
2250 // in order. Store buffers on most chips allow reads & writes to
2251 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2252 // without some kind of memory barrier (i.e., it's not sufficient that
2253 // the interpreter does not reorder volatile references, the hardware
2254 // also must not reorder them).
2255 //
2256 // According to the new Java Memory Model (JMM):
2257 // (1) All volatiles are serialized wrt to each other. ALSO reads &
2258 // writes act as acquire & release, so:
2259 // (2) A read cannot let unrelated NON-volatile memory refs that
2260 // happen after the read float up to before the read. It's OK for
2261 // non-volatile memory refs that happen before the volatile read to
2262 // float down below it.
2263 // (3) Similar a volatile write cannot let unrelated NON-volatile
2264 // memory refs that happen BEFORE the write float down to after the
2265 // write. It's OK for non-volatile memory refs that happen after the
2266 // volatile write to float up before it.
2267 //
2268 // We only put in barriers around volatile refs (they are expensive),
2269 // not _between_ memory refs (that would require us to track the
2270 // flavor of the previous memory refs). Requirements (2) and (3)
2271 // require some barriers before volatile stores and after volatile
2272 // loads. These nearly cover requirement (1) but miss the
2273 // volatile-store-volatile-load case. This final case is placed after
2274 // volatile-stores although it could just as well go before
2275 // volatile-loads.
2276
2277 void TemplateTable::resolve_cache_and_index_for_method(int byte_no,
2278 Register Rcache,
2279 Register index) {
2280 const Register temp = r19;
2281 assert_different_registers(Rcache, index, temp);
2282 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2283
2284 Label L_clinit_barrier_slow, L_done;
2285
2286 Bytecodes::Code code = bytecode();
2287 __ load_method_entry(Rcache, index);
2288 switch(byte_no) {
2289 case f1_byte:
2290 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode1_offset())));
2291 break;
2292 case f2_byte:
2293 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode2_offset())));
2294 break;
2295 }
2296 // Load-acquire the bytecode to match store-release in InterpreterRuntime
2297 __ ldarb(temp, temp);
2298 __ subs(zr, temp, (int) code); // have we resolved this bytecode?
2299
2300 // Class initialization barrier for static methods
2301 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
2302 __ br(Assembler::NE, L_clinit_barrier_slow);
2303 __ ldr(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset())));
2304 __ load_method_holder(temp, temp);
2305 __ clinit_barrier(temp, rscratch1, &L_done, /*L_slow_path*/ nullptr);
2306 __ bind(L_clinit_barrier_slow);
2307 } else {
2308 __ br(Assembler::EQ, L_done);
2309 }
2310
2311 // resolve first time through
2312 // Class initialization barrier slow path lands here as well.
2313 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2314 __ mov(temp, (int) code);
2315 __ call_VM(noreg, entry, temp);
2316
2317 // Update registers with resolved info
2318 __ load_method_entry(Rcache, index);
2319 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset
2320 // so all clients ofthis method must be modified accordingly
2321 __ bind(L_done);
2322 }
2323
2324 void TemplateTable::resolve_cache_and_index_for_field(int byte_no,
2325 Register Rcache,
2326 Register index) {
2327 const Register temp = r19;
2328 assert_different_registers(Rcache, index, temp);
2329
2330 Label L_clinit_barrier_slow, L_done;
2331
2332 Bytecodes::Code code = bytecode();
2333 switch (code) {
2334 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2335 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2336 default: break;
2337 }
2338
2339 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2340 __ load_field_entry(Rcache, index);
2341 if (byte_no == f1_byte) {
2342 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::get_code_offset())));
2343 } else {
2344 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::put_code_offset())));
2345 }
2346 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in()
2347 __ ldarb(temp, temp);
2348 __ subs(zr, temp, (int) code); // have we resolved this bytecode?
2349
2350 // Class initialization barrier for static fields
2351 if (VM_Version::supports_fast_class_init_checks() &&
2352 (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) {
2353 const Register field_holder = temp;
2354
2355 __ br(Assembler::NE, L_clinit_barrier_slow);
2356 __ ldr(field_holder, Address(Rcache, in_bytes(ResolvedFieldEntry::field_holder_offset())));
2357 __ clinit_barrier(field_holder, rscratch1, &L_done, /*L_slow_path*/ nullptr);
2358 __ bind(L_clinit_barrier_slow);
2359 } else {
2360 __ br(Assembler::EQ, L_done);
2361 }
2362
2363 // resolve first time through
2364 // Class initialization barrier slow path lands here as well.
2365 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2366 __ mov(temp, (int) code);
2367 __ call_VM(noreg, entry, temp);
2368
2369 // Update registers with resolved info
2370 __ load_field_entry(Rcache, index);
2371 __ bind(L_done);
2372 }
2373
2374 void TemplateTable::load_resolved_field_entry(Register obj,
2375 Register cache,
2376 Register tos_state,
2377 Register offset,
2378 Register flags,
2379 bool is_static = false) {
2380 assert_different_registers(cache, tos_state, flags, offset);
2381
2382 // Field offset
2383 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
2384
2385 // Flags
2386 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset())));
2387
2388 // TOS state
2389 if (tos_state != noreg) {
2390 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset())));
2391 }
2392
2393 // Klass overwrite register
2394 if (is_static) {
2395 __ ldr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2396 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2397 __ ldr(obj, Address(obj, mirror_offset));
2398 __ resolve_oop_handle(obj, r5, rscratch2);
2399 }
2400 }
2401
2402 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache,
2403 Register method,
2404 Register flags) {
2405
2406 // setup registers
2407 const Register index = flags;
2408 assert_different_registers(method, cache, flags);
2409
2410 // determine constant pool cache field offsets
2411 resolve_cache_and_index_for_method(f1_byte, cache, index);
2412 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2413 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2414 }
2415
2416 void TemplateTable::load_resolved_method_entry_handle(Register cache,
2417 Register method,
2418 Register ref_index,
2419 Register flags) {
2420 // setup registers
2421 const Register index = ref_index;
2422 assert_different_registers(method, flags);
2423 assert_different_registers(method, cache, index);
2424
2425 // determine constant pool cache field offsets
2426 resolve_cache_and_index_for_method(f1_byte, cache, index);
2427 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2428
2429 // maybe push appendix to arguments (just before return address)
2430 Label L_no_push;
2431 __ tbz(flags, ResolvedMethodEntry::has_appendix_shift, L_no_push);
2432 // invokehandle uses an index into the resolved references array
2433 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset())));
2434 // Push the appendix as a trailing parameter.
2435 // This must be done before we get the receiver,
2436 // since the parameter_size includes it.
2437 Register appendix = method;
2438 __ load_resolved_reference_at_index(appendix, ref_index);
2439 __ push(appendix); // push appendix (MethodType, CallSite, etc.)
2440 __ bind(L_no_push);
2441
2442 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2443 }
2444
2445 void TemplateTable::load_resolved_method_entry_interface(Register cache,
2446 Register klass,
2447 Register method_or_table_index,
2448 Register flags) {
2449 // setup registers
2450 const Register index = method_or_table_index;
2451 assert_different_registers(method_or_table_index, cache, flags);
2452
2453 // determine constant pool cache field offsets
2454 resolve_cache_and_index_for_method(f1_byte, cache, index);
2455 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2456
2457 // Invokeinterface can behave in different ways:
2458 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will
2459 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or
2460 // vtable index is placed in the register.
2461 // Otherwise, the registers will be populated with the klass and method.
2462
2463 Label NotVirtual; Label NotVFinal; Label Done;
2464 __ tbz(flags, ResolvedMethodEntry::is_forced_virtual_shift, NotVirtual);
2465 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal);
2466 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2467 __ b(Done);
2468
2469 __ bind(NotVFinal);
2470 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2471 __ b(Done);
2472
2473 __ bind(NotVirtual);
2474 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2475 __ ldr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset())));
2476 __ bind(Done);
2477 }
2478
2479 void TemplateTable::load_resolved_method_entry_virtual(Register cache,
2480 Register method_or_table_index,
2481 Register flags) {
2482 // setup registers
2483 const Register index = flags;
2484 assert_different_registers(method_or_table_index, cache, flags);
2485
2486 // determine constant pool cache field offsets
2487 resolve_cache_and_index_for_method(f2_byte, cache, index);
2488 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2489
2490 // method_or_table_index can either be an itable index or a method depending on the virtual final flag
2491 Label NotVFinal; Label Done;
2492 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal);
2493 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2494 __ b(Done);
2495
2496 __ bind(NotVFinal);
2497 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2498 __ bind(Done);
2499 }
2500
2501 // The rmethod register is input and overwritten to be the adapter method for the
2502 // indy call. Link Register (lr) is set to the return address for the adapter and
2503 // an appendix may be pushed to the stack. Registers r0-r3 are clobbered
2504 void TemplateTable::load_invokedynamic_entry(Register method) {
2505 // setup registers
2506 const Register appendix = r0;
2507 const Register cache = r2;
2508 const Register index = r3;
2509 assert_different_registers(method, appendix, cache, index, rcpool);
2510
2511 __ save_bcp();
2512
2513 Label resolved;
2514
2515 __ load_resolved_indy_entry(cache, index);
2516 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in()
2517 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2518 __ ldar(method, method);
2519
2520 // Compare the method to zero
2521 __ cbnz(method, resolved);
2522
2523 Bytecodes::Code code = bytecode();
2524
2525 // Call to the interpreter runtime to resolve invokedynamic
2526 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2527 __ mov(method, code); // this is essentially Bytecodes::_invokedynamic
2528 __ call_VM(noreg, entry, method);
2529 // Update registers with resolved info
2530 __ load_resolved_indy_entry(cache, index);
2531 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in()
2532 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2533 __ ldar(method, method);
2534
2535 #ifdef ASSERT
2536 __ cbnz(method, resolved);
2537 __ stop("Should be resolved by now");
2538 #endif // ASSERT
2539 __ bind(resolved);
2540
2541 Label L_no_push;
2542 // Check if there is an appendix
2543 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset())));
2544 __ tbz(index, ResolvedIndyEntry::has_appendix_shift, L_no_push);
2545
2546 // Get appendix
2547 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset())));
2548 // Push the appendix as a trailing parameter
2549 // since the parameter_size includes it.
2550 __ push(method);
2551 __ mov(method, index);
2552 __ load_resolved_reference_at_index(appendix, method);
2553 __ verify_oop(appendix);
2554 __ pop(method);
2555 __ push(appendix); // push appendix (MethodType, CallSite, etc.)
2556 __ bind(L_no_push);
2557
2558 // compute return type
2559 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset())));
2560 // load return address
2561 // Return address is loaded into link register(lr) and not pushed to the stack
2562 // like x86
2563 {
2564 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2565 __ mov(rscratch1, table_addr);
2566 __ ldr(lr, Address(rscratch1, index, Address::lsl(3)));
2567 }
2568 }
2569
2570 // The registers cache and index expected to be set before call.
2571 // Correct values of the cache and index registers are preserved.
2572 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2573 bool is_static, bool has_tos) {
2574 // do the JVMTI work here to avoid disturbing the register state below
2575 // We use c_rarg registers here because we want to use the register used in
2576 // the call to the VM
2577 if (JvmtiExport::can_post_field_access()) {
2578 // Check to see if a field access watch has been set before we
2579 // take the time to call into the VM.
2580 Label L1;
2581 assert_different_registers(cache, index, r0);
2582 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2583 __ ldrw(r0, Address(rscratch1));
2584 __ cbzw(r0, L1);
2585
2586 __ load_field_entry(c_rarg2, index);
2587
2588 if (is_static) {
2589 __ mov(c_rarg1, zr); // null object reference
2590 } else {
2591 __ ldr(c_rarg1, at_tos()); // get object pointer without popping it
2592 __ verify_oop(c_rarg1);
2593 }
2594 // c_rarg1: object pointer or null
2595 // c_rarg2: cache entry pointer
2596 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2597 InterpreterRuntime::post_field_access),
2598 c_rarg1, c_rarg2);
2599 __ load_field_entry(cache, index);
2600 __ bind(L1);
2601 }
2602 }
2603
2604 void TemplateTable::pop_and_check_object(Register r)
2605 {
2606 __ pop_ptr(r);
2607 __ null_check(r); // for field access must check obj.
2608 __ verify_oop(r);
2609 }
2610
2611 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2612 {
2613 const Register cache = r4;
2614 const Register obj = r4;
2615 const Register index = r3;
2616 const Register tos_state = r3;
2617 const Register off = r19;
2618 const Register flags = r6;
2619 const Register bc = r4; // uses same reg as obj, so don't mix them
2620
2621 resolve_cache_and_index_for_field(byte_no, cache, index);
2622 jvmti_post_field_access(cache, index, is_static, false);
2623 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2624
2625 if (!is_static) {
2626 // obj is on the stack
2627 pop_and_check_object(obj);
2628 }
2629
2630 // 8179954: We need to make sure that the code generated for
2631 // volatile accesses forms a sequentially-consistent set of
2632 // operations when combined with STLR and LDAR. Without a leading
2633 // membar it's possible for a simple Dekker test to fail if loads
2634 // use LDR;DMB but stores use STLR. This can happen if C2 compiles
2635 // the stores in one method and we interpret the loads in another.
2636 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2637 Label notVolatile;
2638 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2639 __ membar(MacroAssembler::AnyAny);
2640 __ bind(notVolatile);
2641 }
2642
2643 const Address field(obj, off);
2644
2645 Label Done, notByte, notBool, notInt, notShort, notChar,
2646 notLong, notFloat, notObj, notDouble;
2647
2648 assert(btos == 0, "change code, btos != 0");
2649 __ cbnz(tos_state, notByte);
2650
2651 // Don't rewrite getstatic, only getfield
2652 if (is_static) rc = may_not_rewrite;
2653
2654 // btos
2655 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
2656 __ push(btos);
2657 // Rewrite bytecode to be faster
2658 if (rc == may_rewrite) {
2659 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2660 }
2661 __ b(Done);
2662
2663 __ bind(notByte);
2664 __ cmp(tos_state, (u1)ztos);
2665 __ br(Assembler::NE, notBool);
2666
2667 // ztos (same code as btos)
2668 __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2669 __ push(ztos);
2670 // Rewrite bytecode to be faster
2671 if (rc == may_rewrite) {
2672 // use btos rewriting, no truncating to t/f bit is needed for getfield.
2673 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2674 }
2675 __ b(Done);
2676
2677 __ bind(notBool);
2678 __ cmp(tos_state, (u1)atos);
2679 __ br(Assembler::NE, notObj);
2680 // atos
2681 do_oop_load(_masm, field, r0, IN_HEAP);
2682 __ push(atos);
2683 if (rc == may_rewrite) {
2684 patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2685 }
2686 __ b(Done);
2687
2688 __ bind(notObj);
2689 __ cmp(tos_state, (u1)itos);
2690 __ br(Assembler::NE, notInt);
2691 // itos
2692 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2693 __ push(itos);
2694 // Rewrite bytecode to be faster
2695 if (rc == may_rewrite) {
2696 patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2697 }
2698 __ b(Done);
2699
2700 __ bind(notInt);
2701 __ cmp(tos_state, (u1)ctos);
2702 __ br(Assembler::NE, notChar);
2703 // ctos
2704 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2705 __ push(ctos);
2706 // Rewrite bytecode to be faster
2707 if (rc == may_rewrite) {
2708 patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1);
2709 }
2710 __ b(Done);
2711
2712 __ bind(notChar);
2713 __ cmp(tos_state, (u1)stos);
2714 __ br(Assembler::NE, notShort);
2715 // stos
2716 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
2717 __ push(stos);
2718 // Rewrite bytecode to be faster
2719 if (rc == may_rewrite) {
2720 patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1);
2721 }
2722 __ b(Done);
2723
2724 __ bind(notShort);
2725 __ cmp(tos_state, (u1)ltos);
2726 __ br(Assembler::NE, notLong);
2727 // ltos
2728 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
2729 __ push(ltos);
2730 // Rewrite bytecode to be faster
2731 if (rc == may_rewrite) {
2732 patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1);
2733 }
2734 __ b(Done);
2735
2736 __ bind(notLong);
2737 __ cmp(tos_state, (u1)ftos);
2738 __ br(Assembler::NE, notFloat);
2739 // ftos
2740 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2741 __ push(ftos);
2742 // Rewrite bytecode to be faster
2743 if (rc == may_rewrite) {
2744 patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1);
2745 }
2746 __ b(Done);
2747
2748 __ bind(notFloat);
2749 #ifdef ASSERT
2750 __ cmp(tos_state, (u1)dtos);
2751 __ br(Assembler::NE, notDouble);
2752 #endif
2753 // dtos
2754 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2755 __ push(dtos);
2756 // Rewrite bytecode to be faster
2757 if (rc == may_rewrite) {
2758 patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1);
2759 }
2760 #ifdef ASSERT
2761 __ b(Done);
2762
2763 __ bind(notDouble);
2764 __ stop("Bad state");
2765 #endif
2766
2767 __ bind(Done);
2768
2769 Label notVolatile;
2770 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2771 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
2772 __ bind(notVolatile);
2773 }
2774
2775
2776 void TemplateTable::getfield(int byte_no)
2777 {
2778 getfield_or_static(byte_no, false);
2779 }
2780
2781 void TemplateTable::nofast_getfield(int byte_no) {
2782 getfield_or_static(byte_no, false, may_not_rewrite);
2783 }
2784
2785 void TemplateTable::getstatic(int byte_no)
2786 {
2787 getfield_or_static(byte_no, true);
2788 }
2789
2790 // The registers cache and index expected to be set before call.
2791 // The function may destroy various registers, just not the cache and index registers.
2792 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2793 transition(vtos, vtos);
2794
2795 if (JvmtiExport::can_post_field_modification()) {
2796 // Check to see if a field modification watch has been set before
2797 // we take the time to call into the VM.
2798 Label L1;
2799 assert_different_registers(cache, index, r0);
2800 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2801 __ ldrw(r0, Address(rscratch1));
2802 __ cbz(r0, L1);
2803
2804 __ mov(c_rarg2, cache);
2805
2806 if (is_static) {
2807 // Life is simple. Null out the object pointer.
2808 __ mov(c_rarg1, zr);
2809 } else {
2810 // Life is harder. The stack holds the value on top, followed by
2811 // the object. We don't know the size of the value, though; it
2812 // could be one or two words depending on its type. As a result,
2813 // we must find the type to determine where the object is.
2814 __ load_unsigned_byte(c_rarg3, Address(c_rarg2, in_bytes(ResolvedFieldEntry::type_offset())));
2815 Label nope2, done, ok;
2816 __ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue
2817 __ cmpw(c_rarg3, ltos);
2818 __ br(Assembler::EQ, ok);
2819 __ cmpw(c_rarg3, dtos);
2820 __ br(Assembler::NE, nope2);
2821 __ bind(ok);
2822 __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2823 __ bind(nope2);
2824 }
2825 // object (tos)
2826 __ mov(c_rarg3, esp);
2827 // c_rarg1: object pointer set up above (null if static)
2828 // c_rarg2: cache entry pointer
2829 // c_rarg3: jvalue object on the stack
2830 __ call_VM(noreg,
2831 CAST_FROM_FN_PTR(address,
2832 InterpreterRuntime::post_field_modification),
2833 c_rarg1, c_rarg2, c_rarg3);
2834 __ load_field_entry(cache, index);
2835 __ bind(L1);
2836 }
2837 }
2838
2839 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2840 transition(vtos, vtos);
2841
2842 const Register cache = r2;
2843 const Register index = r3;
2844 const Register tos_state = r3;
2845 const Register obj = r2;
2846 const Register off = r19;
2847 const Register flags = r0;
2848 const Register bc = r4;
2849
2850 resolve_cache_and_index_for_field(byte_no, cache, index);
2851 jvmti_post_field_mod(cache, index, is_static);
2852 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2853
2854 Label Done;
2855 __ mov(r5, flags);
2856
2857 {
2858 Label notVolatile;
2859 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2860 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2861 __ bind(notVolatile);
2862 }
2863
2864 // field address
2865 const Address field(obj, off);
2866
2867 Label notByte, notBool, notInt, notShort, notChar,
2868 notLong, notFloat, notObj, notDouble;
2869
2870 assert(btos == 0, "change code, btos != 0");
2871 __ cbnz(tos_state, notByte);
2872
2873 // Don't rewrite putstatic, only putfield
2874 if (is_static) rc = may_not_rewrite;
2875
2876 // btos
2877 {
2878 __ pop(btos);
2879 if (!is_static) pop_and_check_object(obj);
2880 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
2881 if (rc == may_rewrite) {
2882 patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no);
2883 }
2884 __ b(Done);
2885 }
2886
2887 __ bind(notByte);
2888 __ cmp(tos_state, (u1)ztos);
2889 __ br(Assembler::NE, notBool);
2890
2891 // ztos
2892 {
2893 __ pop(ztos);
2894 if (!is_static) pop_and_check_object(obj);
2895 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
2896 if (rc == may_rewrite) {
2897 patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
2898 }
2899 __ b(Done);
2900 }
2901
2902 __ bind(notBool);
2903 __ cmp(tos_state, (u1)atos);
2904 __ br(Assembler::NE, notObj);
2905
2906 // atos
2907 {
2908 __ pop(atos);
2909 if (!is_static) pop_and_check_object(obj);
2910 // Store into the field
2911 // Clobbers: r10, r11, r3
2912 do_oop_store(_masm, field, r0, IN_HEAP);
2913 if (rc == may_rewrite) {
2914 patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
2915 }
2916 __ b(Done);
2917 }
2918
2919 __ bind(notObj);
2920 __ cmp(tos_state, (u1)itos);
2921 __ br(Assembler::NE, notInt);
2922
2923 // itos
2924 {
2925 __ pop(itos);
2926 if (!is_static) pop_and_check_object(obj);
2927 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
2928 if (rc == may_rewrite) {
2929 patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
2930 }
2931 __ b(Done);
2932 }
2933
2934 __ bind(notInt);
2935 __ cmp(tos_state, (u1)ctos);
2936 __ br(Assembler::NE, notChar);
2937
2938 // ctos
2939 {
2940 __ pop(ctos);
2941 if (!is_static) pop_and_check_object(obj);
2942 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);
2943 if (rc == may_rewrite) {
2944 patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no);
2945 }
2946 __ b(Done);
2947 }
2948
2949 __ bind(notChar);
2950 __ cmp(tos_state, (u1)stos);
2951 __ br(Assembler::NE, notShort);
2952
2953 // stos
2954 {
2955 __ pop(stos);
2956 if (!is_static) pop_and_check_object(obj);
2957 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
2958 if (rc == may_rewrite) {
2959 patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no);
2960 }
2961 __ b(Done);
2962 }
2963
2964 __ bind(notShort);
2965 __ cmp(tos_state, (u1)ltos);
2966 __ br(Assembler::NE, notLong);
2967
2968 // ltos
2969 {
2970 __ pop(ltos);
2971 if (!is_static) pop_and_check_object(obj);
2972 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
2973 if (rc == may_rewrite) {
2974 patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no);
2975 }
2976 __ b(Done);
2977 }
2978
2979 __ bind(notLong);
2980 __ cmp(tos_state, (u1)ftos);
2981 __ br(Assembler::NE, notFloat);
2982
2983 // ftos
2984 {
2985 __ pop(ftos);
2986 if (!is_static) pop_and_check_object(obj);
2987 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
2988 if (rc == may_rewrite) {
2989 patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no);
2990 }
2991 __ b(Done);
2992 }
2993
2994 __ bind(notFloat);
2995 #ifdef ASSERT
2996 __ cmp(tos_state, (u1)dtos);
2997 __ br(Assembler::NE, notDouble);
2998 #endif
2999
3000 // dtos
3001 {
3002 __ pop(dtos);
3003 if (!is_static) pop_and_check_object(obj);
3004 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3005 if (rc == may_rewrite) {
3006 patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
3007 }
3008 }
3009
3010 #ifdef ASSERT
3011 __ b(Done);
3012
3013 __ bind(notDouble);
3014 __ stop("Bad state");
3015 #endif
3016
3017 __ bind(Done);
3018
3019 {
3020 Label notVolatile;
3021 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3022 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3023 __ bind(notVolatile);
3024 }
3025 }
3026
3027 void TemplateTable::putfield(int byte_no)
3028 {
3029 putfield_or_static(byte_no, false);
3030 }
3031
3032 void TemplateTable::nofast_putfield(int byte_no) {
3033 putfield_or_static(byte_no, false, may_not_rewrite);
3034 }
3035
3036 void TemplateTable::putstatic(int byte_no) {
3037 putfield_or_static(byte_no, true);
3038 }
3039
3040 void TemplateTable::jvmti_post_fast_field_mod() {
3041 if (JvmtiExport::can_post_field_modification()) {
3042 // Check to see if a field modification watch has been set before
3043 // we take the time to call into the VM.
3044 Label L2;
3045 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3046 __ ldrw(c_rarg3, Address(rscratch1));
3047 __ cbzw(c_rarg3, L2);
3048 __ pop_ptr(r19); // copy the object pointer from tos
3049 __ verify_oop(r19);
3050 __ push_ptr(r19); // put the object pointer back on tos
3051 // Save tos values before call_VM() clobbers them. Since we have
3052 // to do it for every data type, we use the saved values as the
3053 // jvalue object.
3054 switch (bytecode()) { // load values into the jvalue object
3055 case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3056 case Bytecodes::_fast_bputfield: // fall through
3057 case Bytecodes::_fast_zputfield: // fall through
3058 case Bytecodes::_fast_sputfield: // fall through
3059 case Bytecodes::_fast_cputfield: // fall through
3060 case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3061 case Bytecodes::_fast_dputfield: __ push_d(); break;
3062 case Bytecodes::_fast_fputfield: __ push_f(); break;
3063 case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3064
3065 default:
3066 ShouldNotReachHere();
3067 }
3068 __ mov(c_rarg3, esp); // points to jvalue on the stack
3069 // access constant pool cache entry
3070 __ load_field_entry(c_rarg2, r0);
3071 __ verify_oop(r19);
3072 // r19: object pointer copied above
3073 // c_rarg2: cache entry pointer
3074 // c_rarg3: jvalue object on the stack
3075 __ call_VM(noreg,
3076 CAST_FROM_FN_PTR(address,
3077 InterpreterRuntime::post_field_modification),
3078 r19, c_rarg2, c_rarg3);
3079
3080 switch (bytecode()) { // restore tos values
3081 case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3082 case Bytecodes::_fast_bputfield: // fall through
3083 case Bytecodes::_fast_zputfield: // fall through
3084 case Bytecodes::_fast_sputfield: // fall through
3085 case Bytecodes::_fast_cputfield: // fall through
3086 case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3087 case Bytecodes::_fast_dputfield: __ pop_d(); break;
3088 case Bytecodes::_fast_fputfield: __ pop_f(); break;
3089 case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3090 default: break;
3091 }
3092 __ bind(L2);
3093 }
3094 }
3095
3096 void TemplateTable::fast_storefield(TosState state)
3097 {
3098 transition(state, vtos);
3099
3100 ByteSize base = ConstantPoolCache::base_offset();
3101
3102 jvmti_post_fast_field_mod();
3103
3104 // access constant pool cache
3105 __ load_field_entry(r2, r1);
3106
3107 // R1: field offset, R2: field holder, R5: flags
3108 load_resolved_field_entry(r2, r2, noreg, r1, r5);
3109
3110 {
3111 Label notVolatile;
3112 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3113 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3114 __ bind(notVolatile);
3115 }
3116
3117 Label notVolatile;
3118
3119 // Get object from stack
3120 pop_and_check_object(r2);
3121
3122 // field address
3123 const Address field(r2, r1);
3124
3125 // access field
3126 switch (bytecode()) {
3127 case Bytecodes::_fast_aputfield:
3128 // Clobbers: r10, r11, r3
3129 do_oop_store(_masm, field, r0, IN_HEAP);
3130 break;
3131 case Bytecodes::_fast_lputfield:
3132 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3133 break;
3134 case Bytecodes::_fast_iputfield:
3135 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3136 break;
3137 case Bytecodes::_fast_zputfield:
3138 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3139 break;
3140 case Bytecodes::_fast_bputfield:
3141 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3142 break;
3143 case Bytecodes::_fast_sputfield:
3144 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3145 break;
3146 case Bytecodes::_fast_cputfield:
3147 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);
3148 break;
3149 case Bytecodes::_fast_fputfield:
3150 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
3151 break;
3152 case Bytecodes::_fast_dputfield:
3153 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3154 break;
3155 default:
3156 ShouldNotReachHere();
3157 }
3158
3159 {
3160 Label notVolatile;
3161 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3162 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3163 __ bind(notVolatile);
3164 }
3165 }
3166
3167
3168 void TemplateTable::fast_accessfield(TosState state)
3169 {
3170 transition(atos, state);
3171 // Do the JVMTI work here to avoid disturbing the register state below
3172 if (JvmtiExport::can_post_field_access()) {
3173 // Check to see if a field access watch has been set before we
3174 // take the time to call into the VM.
3175 Label L1;
3176 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3177 __ ldrw(r2, Address(rscratch1));
3178 __ cbzw(r2, L1);
3179 // access constant pool cache entry
3180 __ load_field_entry(c_rarg2, rscratch2);
3181 __ verify_oop(r0);
3182 __ push_ptr(r0); // save object pointer before call_VM() clobbers it
3183 __ mov(c_rarg1, r0);
3184 // c_rarg1: object pointer copied above
3185 // c_rarg2: cache entry pointer
3186 __ call_VM(noreg,
3187 CAST_FROM_FN_PTR(address,
3188 InterpreterRuntime::post_field_access),
3189 c_rarg1, c_rarg2);
3190 __ pop_ptr(r0); // restore object pointer
3191 __ bind(L1);
3192 }
3193
3194 // access constant pool cache
3195 __ load_field_entry(r2, r1);
3196
3197 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3198 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3199
3200 // r0: object
3201 __ verify_oop(r0);
3202 __ null_check(r0);
3203 const Address field(r0, r1);
3204
3205 // 8179954: We need to make sure that the code generated for
3206 // volatile accesses forms a sequentially-consistent set of
3207 // operations when combined with STLR and LDAR. Without a leading
3208 // membar it's possible for a simple Dekker test to fail if loads
3209 // use LDR;DMB but stores use STLR. This can happen if C2 compiles
3210 // the stores in one method and we interpret the loads in another.
3211 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3212 Label notVolatile;
3213 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3214 __ membar(MacroAssembler::AnyAny);
3215 __ bind(notVolatile);
3216 }
3217
3218 // access field
3219 switch (bytecode()) {
3220 case Bytecodes::_fast_agetfield:
3221 do_oop_load(_masm, field, r0, IN_HEAP);
3222 __ verify_oop(r0);
3223 break;
3224 case Bytecodes::_fast_lgetfield:
3225 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3226 break;
3227 case Bytecodes::_fast_igetfield:
3228 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3229 break;
3230 case Bytecodes::_fast_bgetfield:
3231 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3232 break;
3233 case Bytecodes::_fast_sgetfield:
3234 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3235 break;
3236 case Bytecodes::_fast_cgetfield:
3237 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3238 break;
3239 case Bytecodes::_fast_fgetfield:
3240 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3241 break;
3242 case Bytecodes::_fast_dgetfield:
3243 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg);
3244 break;
3245 default:
3246 ShouldNotReachHere();
3247 }
3248 {
3249 Label notVolatile;
3250 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3251 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3252 __ bind(notVolatile);
3253 }
3254 }
3255
3256 void TemplateTable::fast_xaccess(TosState state)
3257 {
3258 transition(vtos, state);
3259
3260 // get receiver
3261 __ ldr(r0, aaddress(0));
3262 // access constant pool cache
3263 __ load_field_entry(r2, r3, 2);
3264 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3265
3266 // 8179954: We need to make sure that the code generated for
3267 // volatile accesses forms a sequentially-consistent set of
3268 // operations when combined with STLR and LDAR. Without a leading
3269 // membar it's possible for a simple Dekker test to fail if loads
3270 // use LDR;DMB but stores use STLR. This can happen if C2 compiles
3271 // the stores in one method and we interpret the loads in another.
3272 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3273 Label notVolatile;
3274 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3275 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3276 __ membar(MacroAssembler::AnyAny);
3277 __ bind(notVolatile);
3278 }
3279
3280 // make sure exception is reported in correct bcp range (getfield is
3281 // next instruction)
3282 __ increment(rbcp);
3283 __ null_check(r0);
3284 switch (state) {
3285 case itos:
3286 __ access_load_at(T_INT, IN_HEAP, r0, Address(r0, r1, Address::lsl(0)), noreg, noreg);
3287 break;
3288 case atos:
3289 do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP);
3290 __ verify_oop(r0);
3291 break;
3292 case ftos:
3293 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(r0, r1, Address::lsl(0)), noreg, noreg);
3294 break;
3295 default:
3296 ShouldNotReachHere();
3297 }
3298
3299 {
3300 Label notVolatile;
3301 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3302 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3303 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3304 __ bind(notVolatile);
3305 }
3306
3307 __ decrement(rbcp);
3308 }
3309
3310
3311
3312 //-----------------------------------------------------------------------------
3313 // Calls
3314
3315 void TemplateTable::prepare_invoke(Register cache, Register recv) {
3316
3317 Bytecodes::Code code = bytecode();
3318 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic);
3319
3320 // save 'interpreter return address'
3321 __ save_bcp();
3322
3323 // Load TOS state for later
3324 __ load_unsigned_byte(rscratch2, Address(cache, in_bytes(ResolvedMethodEntry::type_offset())));
3325
3326 // load receiver if needed (note: no return address pushed yet)
3327 if (load_receiver) {
3328 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())));
3329 __ add(rscratch1, esp, recv, ext::uxtx, 3);
3330 __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1)));
3331 __ verify_oop(recv);
3332 }
3333
3334 // load return address
3335 {
3336 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3337 __ mov(rscratch1, table_addr);
3338 __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3)));
3339 }
3340 }
3341
3342
3343 void TemplateTable::invokevirtual_helper(Register index,
3344 Register recv,
3345 Register flags)
3346 {
3347 // Uses temporary registers r0, r3
3348 assert_different_registers(index, recv, r0, r3);
3349 // Test for an invoke of a final method
3350 Label notFinal;
3351 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, notFinal);
3352
3353 const Register method = index; // method must be rmethod
3354 assert(method == rmethod,
3355 "Method must be rmethod for interpreter calling convention");
3356
3357 // do the call - the index is actually the method to call
3358 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3359
3360 // It's final, need a null check here!
3361 __ null_check(recv);
3362
3363 // profile this call
3364 __ profile_final_call(r0);
3365 __ profile_arguments_type(r0, method, r4, true);
3366
3367 __ jump_from_interpreted(method, r0);
3368
3369 __ bind(notFinal);
3370
3371 // get receiver klass
3372 __ load_klass(r0, recv);
3373
3374 // profile this call
3375 __ profile_virtual_call(r0, rlocals, r3);
3376
3377 // get target Method & entry point
3378 __ lookup_virtual_method(r0, index, method);
3379 __ profile_arguments_type(r3, method, r4, true);
3380 // FIXME -- this looks completely redundant. is it?
3381 // __ ldr(r3, Address(method, Method::interpreter_entry_offset()));
3382 __ jump_from_interpreted(method, r3);
3383 }
3384
3385 void TemplateTable::invokevirtual(int byte_no)
3386 {
3387 transition(vtos, vtos);
3388 assert(byte_no == f2_byte, "use this argument");
3389
3390 load_resolved_method_entry_virtual(r2, // ResolvedMethodEntry*
3391 rmethod, // Method* or itable index
3392 r3); // flags
3393 prepare_invoke(r2, r2); // recv
3394
3395 // rmethod: index (actually a Method*)
3396 // r2: receiver
3397 // r3: flags
3398
3399 invokevirtual_helper(rmethod, r2, r3);
3400 }
3401
3402 void TemplateTable::invokespecial(int byte_no)
3403 {
3404 transition(vtos, vtos);
3405 assert(byte_no == f1_byte, "use this argument");
3406
3407 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry*
3408 rmethod, // Method*
3409 r3); // flags
3410 prepare_invoke(r2, r2); // get receiver also for null check
3411 __ verify_oop(r2);
3412 __ null_check(r2);
3413 // do the call
3414 __ profile_call(r0);
3415 __ profile_arguments_type(r0, rmethod, rbcp, false);
3416 __ jump_from_interpreted(rmethod, r0);
3417 }
3418
3419 void TemplateTable::invokestatic(int byte_no)
3420 {
3421 transition(vtos, vtos);
3422 assert(byte_no == f1_byte, "use this argument");
3423
3424 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry*
3425 rmethod, // Method*
3426 r3); // flags
3427 prepare_invoke(r2, r2); // get receiver also for null check
3428
3429 // do the call
3430 __ profile_call(r0);
3431 __ profile_arguments_type(r0, rmethod, r4, false);
3432 __ jump_from_interpreted(rmethod, r0);
3433 }
3434
3435 void TemplateTable::fast_invokevfinal(int byte_no)
3436 {
3437 __ call_Unimplemented();
3438 }
3439
3440 void TemplateTable::invokeinterface(int byte_no) {
3441 transition(vtos, vtos);
3442 assert(byte_no == f1_byte, "use this argument");
3443
3444 load_resolved_method_entry_interface(r2, // ResolvedMethodEntry*
3445 r0, // Klass*
3446 rmethod, // Method* or itable/vtable index
3447 r3); // flags
3448 prepare_invoke(r2, r2); // receiver
3449
3450 // r0: interface klass (from f1)
3451 // rmethod: method (from f2)
3452 // r2: receiver
3453 // r3: flags
3454
3455 // First check for Object case, then private interface method,
3456 // then regular interface method.
3457
3458 // Special case of invokeinterface called for virtual method of
3459 // java.lang.Object. See cpCache.cpp for details.
3460 Label notObjectMethod;
3461 __ tbz(r3, ResolvedMethodEntry::is_forced_virtual_shift, notObjectMethod);
3462
3463 invokevirtual_helper(rmethod, r2, r3);
3464 __ bind(notObjectMethod);
3465
3466 Label no_such_interface;
3467
3468 // Check for private method invocation - indicated by vfinal
3469 Label notVFinal;
3470 __ tbz(r3, ResolvedMethodEntry::is_vfinal_shift, notVFinal);
3471
3472 // Get receiver klass into r3
3473 __ load_klass(r3, r2);
3474
3475 Label subtype;
3476 __ check_klass_subtype(r3, r0, r4, subtype);
3477 // If we get here the typecheck failed
3478 __ b(no_such_interface);
3479 __ bind(subtype);
3480
3481 __ profile_final_call(r0);
3482 __ profile_arguments_type(r0, rmethod, r4, true);
3483 __ jump_from_interpreted(rmethod, r0);
3484
3485 __ bind(notVFinal);
3486
3487 // Get receiver klass into r3
3488 __ restore_locals();
3489 __ load_klass(r3, r2);
3490
3491 Label no_such_method;
3492
3493 // Preserve method for throw_AbstractMethodErrorVerbose.
3494 __ mov(r16, rmethod);
3495 // Receiver subtype check against REFC.
3496 // Superklass in r0. Subklass in r3. Blows rscratch2, r13
3497 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3498 r3, r0, noreg,
3499 // outputs: scan temp. reg, scan temp. reg
3500 rscratch2, r13,
3501 no_such_interface,
3502 /*return_method=*/false);
3503
3504 // profile this call
3505 __ profile_virtual_call(r3, r13, r19);
3506
3507 // Get declaring interface class from method, and itable index
3508
3509 __ load_method_holder(r0, rmethod);
3510 __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset()));
3511 __ subw(rmethod, rmethod, Method::itable_index_max);
3512 __ negw(rmethod, rmethod);
3513
3514 // Preserve recvKlass for throw_AbstractMethodErrorVerbose.
3515 __ mov(rlocals, r3);
3516 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3517 rlocals, r0, rmethod,
3518 // outputs: method, scan temp. reg
3519 rmethod, r13,
3520 no_such_interface);
3521
3522 // rmethod,: Method to call
3523 // r2: receiver
3524 // Check for abstract method error
3525 // Note: This should be done more efficiently via a throw_abstract_method_error
3526 // interpreter entry point and a conditional jump to it in case of a null
3527 // method.
3528 __ cbz(rmethod, no_such_method);
3529
3530 __ profile_arguments_type(r3, rmethod, r13, true);
3531
3532 // do the call
3533 // r2: receiver
3534 // rmethod,: Method
3535 __ jump_from_interpreted(rmethod, r3);
3536 __ should_not_reach_here();
3537
3538 // exception handling code follows...
3539 // note: must restore interpreter registers to canonical
3540 // state for exception handling to work correctly!
3541
3542 __ bind(no_such_method);
3543 // throw exception
3544 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
3545 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3546 // Pass arguments for generating a verbose error message.
3547 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16);
3548 // the call_VM checks for exception, so we should never return here.
3549 __ should_not_reach_here();
3550
3551 __ bind(no_such_interface);
3552 // throw exception
3553 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
3554 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3555 // Pass arguments for generating a verbose error message.
3556 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3557 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0);
3558 // the call_VM checks for exception, so we should never return here.
3559 __ should_not_reach_here();
3560 return;
3561 }
3562
3563 void TemplateTable::invokehandle(int byte_no) {
3564 transition(vtos, vtos);
3565 assert(byte_no == f1_byte, "use this argument");
3566
3567 load_resolved_method_entry_handle(r2, // ResolvedMethodEntry*
3568 rmethod, // Method*
3569 r0, // Resolved reference
3570 r3); // flags
3571 prepare_invoke(r2, r2);
3572
3573 __ verify_method_ptr(r2);
3574 __ verify_oop(r2);
3575 __ null_check(r2);
3576
3577 // FIXME: profile the LambdaForm also
3578
3579 // r13 is safe to use here as a scratch reg because it is about to
3580 // be clobbered by jump_from_interpreted().
3581 __ profile_final_call(r13);
3582 __ profile_arguments_type(r13, rmethod, r4, true);
3583
3584 __ jump_from_interpreted(rmethod, r0);
3585 }
3586
3587 void TemplateTable::invokedynamic(int byte_no) {
3588 transition(vtos, vtos);
3589 assert(byte_no == f1_byte, "use this argument");
3590
3591 load_invokedynamic_entry(rmethod);
3592
3593 // r0: CallSite object (from cpool->resolved_references[])
3594 // rmethod: MH.linkToCallSite method
3595
3596 // Note: r0_callsite is already pushed
3597
3598 // %%% should make a type profile for any invokedynamic that takes a ref argument
3599 // profile this call
3600 __ profile_call(rbcp);
3601 __ profile_arguments_type(r3, rmethod, r13, false);
3602
3603 __ verify_oop(r0);
3604
3605 __ jump_from_interpreted(rmethod, r0);
3606 }
3607
3608
3609 //-----------------------------------------------------------------------------
3610 // Allocation
3611
3612 void TemplateTable::_new() {
3613 transition(vtos, atos);
3614
3615 __ get_unsigned_2_byte_index_at_bcp(r3, 1);
3616 Label slow_case;
3617 Label done;
3618 Label initialize_header;
3619
3620 __ get_cpool_and_tags(r4, r0);
3621 // Make sure the class we're about to instantiate has been resolved.
3622 // This is done before loading InstanceKlass to be consistent with the order
3623 // how Constant Pool is updated (see ConstantPool::klass_at_put)
3624 const int tags_offset = Array<u1>::base_offset_in_bytes();
3625 __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3626 __ lea(rscratch1, Address(rscratch1, tags_offset));
3627 __ ldarb(rscratch1, rscratch1);
3628 __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3629 __ br(Assembler::NE, slow_case);
3630
3631 // get InstanceKlass
3632 __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3633
3634 // make sure klass is initialized
3635 assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3636 __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3637
3638 // get instance_size in InstanceKlass (scaled to a count of bytes)
3639 __ ldrw(r3,
3640 Address(r4,
3641 Klass::layout_helper_offset()));
3642 // test to see if it is malformed in some way
3643 __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case);
3644
3645 // Allocate the instance:
3646 // If TLAB is enabled:
3647 // Try to allocate in the TLAB.
3648 // If fails, go to the slow path.
3649 // Initialize the allocation.
3650 // Exit.
3651 //
3652 // Go to slow path.
3653
3654 if (UseTLAB) {
3655 __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case);
3656
3657 if (ZeroTLAB) {
3658 // the fields have been already cleared
3659 __ b(initialize_header);
3660 }
3661
3662 // The object is initialized before the header. If the object size is
3663 // zero, go directly to the header initialization.
3664 int header_size = oopDesc::header_size() * HeapWordSize;
3665 assert(is_aligned(header_size, BytesPerLong), "oop header size must be 8-byte-aligned");
3666 __ sub(r3, r3, header_size);
3667 __ cbz(r3, initialize_header);
3668
3669 // Initialize object fields
3670 {
3671 __ add(r2, r0, header_size);
3672 Label loop;
3673 __ bind(loop);
3674 __ str(zr, Address(__ post(r2, BytesPerLong)));
3675 __ sub(r3, r3, BytesPerLong);
3676 __ cbnz(r3, loop);
3677 }
3678
3679 // initialize object header only.
3680 __ bind(initialize_header);
3681 if (UseCompactObjectHeaders) {
3682 __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset()));
3683 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3684 } else {
3685 __ mov(rscratch1, (intptr_t)markWord::prototype().value());
3686 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3687 __ store_klass_gap(r0, zr); // zero klass gap for compressed oops
3688 __ store_klass(r0, r4); // store klass last
3689 }
3690
3691 if (DTraceAllocProbes) {
3692 // Trigger dtrace event for fastpath
3693 __ push(atos); // save the return value
3694 __ call_VM_leaf(
3695 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0);
3696 __ pop(atos); // restore the return value
3697
3698 }
3699 __ b(done);
3700 }
3701
3702 // slow case
3703 __ bind(slow_case);
3704 __ get_constant_pool(c_rarg1);
3705 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3706 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3707 __ verify_oop(r0);
3708
3709 // continue
3710 __ bind(done);
3711 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3712 __ membar(Assembler::StoreStore);
3713 }
3714
3715 void TemplateTable::newarray() {
3716 transition(itos, atos);
3717 __ load_unsigned_byte(c_rarg1, at_bcp(1));
3718 __ mov(c_rarg2, r0);
3719 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3720 c_rarg1, c_rarg2);
3721 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3722 __ membar(Assembler::StoreStore);
3723 }
3724
3725 void TemplateTable::anewarray() {
3726 transition(itos, atos);
3727 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3728 __ get_constant_pool(c_rarg1);
3729 __ mov(c_rarg3, r0);
3730 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3731 c_rarg1, c_rarg2, c_rarg3);
3732 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3733 __ membar(Assembler::StoreStore);
3734 }
3735
3736 void TemplateTable::arraylength() {
3737 transition(atos, itos);
3738 __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes()));
3739 }
3740
3741 void TemplateTable::checkcast()
3742 {
3743 transition(atos, atos);
3744 Label done, is_null, ok_is_subtype, quicked, resolved;
3745 __ cbz(r0, is_null);
3746
3747 // Get cpool & tags index
3748 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3749 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3750 // See if bytecode has already been quicked
3751 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3752 __ lea(r1, Address(rscratch1, r19));
3753 __ ldarb(r1, r1);
3754 __ cmp(r1, (u1)JVM_CONSTANT_Class);
3755 __ br(Assembler::EQ, quicked);
3756
3757 __ push(atos); // save receiver for result, and for GC
3758 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3759 __ get_vm_result_metadata(r0, rthread);
3760 __ pop(r3); // restore receiver
3761 __ b(resolved);
3762
3763 // Get superklass in r0 and subklass in r3
3764 __ bind(quicked);
3765 __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3766 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3767
3768 __ bind(resolved);
3769 __ load_klass(r19, r3);
3770
3771 // Generate subtype check. Blows r2, r5. Object in r3.
3772 // Superklass in r0. Subklass in r19.
3773 __ gen_subtype_check(r19, ok_is_subtype);
3774
3775 // Come here on failure
3776 __ push(r3);
3777 // object is at TOS
3778 __ b(Interpreter::_throw_ClassCastException_entry);
3779
3780 // Come here on success
3781 __ bind(ok_is_subtype);
3782 __ mov(r0, r3); // Restore object in r3
3783
3784 // Collect counts on whether this test sees nulls a lot or not.
3785 if (ProfileInterpreter) {
3786 __ b(done);
3787 __ bind(is_null);
3788 __ profile_null_seen(r2);
3789 } else {
3790 __ bind(is_null); // same as 'done'
3791 }
3792 __ bind(done);
3793 }
3794
3795 void TemplateTable::instanceof() {
3796 transition(atos, itos);
3797 Label done, is_null, ok_is_subtype, quicked, resolved;
3798 __ cbz(r0, is_null);
3799
3800 // Get cpool & tags index
3801 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3802 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3803 // See if bytecode has already been quicked
3804 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3805 __ lea(r1, Address(rscratch1, r19));
3806 __ ldarb(r1, r1);
3807 __ cmp(r1, (u1)JVM_CONSTANT_Class);
3808 __ br(Assembler::EQ, quicked);
3809
3810 __ push(atos); // save receiver for result, and for GC
3811 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3812 __ get_vm_result_metadata(r0, rthread);
3813 __ pop(r3); // restore receiver
3814 __ verify_oop(r3);
3815 __ load_klass(r3, r3);
3816 __ b(resolved);
3817
3818 // Get superklass in r0 and subklass in r3
3819 __ bind(quicked);
3820 __ load_klass(r3, r0);
3821 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1);
3822
3823 __ bind(resolved);
3824
3825 // Generate subtype check. Blows r2, r5
3826 // Superklass in r0. Subklass in r3.
3827 __ gen_subtype_check(r3, ok_is_subtype);
3828
3829 // Come here on failure
3830 __ mov(r0, 0);
3831 __ b(done);
3832 // Come here on success
3833 __ bind(ok_is_subtype);
3834 __ mov(r0, 1);
3835
3836 // Collect counts on whether this test sees nulls a lot or not.
3837 if (ProfileInterpreter) {
3838 __ b(done);
3839 __ bind(is_null);
3840 __ profile_null_seen(r2);
3841 } else {
3842 __ bind(is_null); // same as 'done'
3843 }
3844 __ bind(done);
3845 // r0 = 0: obj == nullptr or obj is not an instanceof the specified klass
3846 // r0 = 1: obj != nullptr and obj is an instanceof the specified klass
3847 }
3848
3849 //-----------------------------------------------------------------------------
3850 // Breakpoints
3851 void TemplateTable::_breakpoint() {
3852 // Note: We get here even if we are single stepping..
3853 // jbug inists on setting breakpoints at every bytecode
3854 // even if we are in single step mode.
3855
3856 transition(vtos, vtos);
3857
3858 // get the unpatched byte code
3859 __ get_method(c_rarg1);
3860 __ call_VM(noreg,
3861 CAST_FROM_FN_PTR(address,
3862 InterpreterRuntime::get_original_bytecode_at),
3863 c_rarg1, rbcp);
3864 __ mov(r19, r0);
3865
3866 // post the breakpoint event
3867 __ call_VM(noreg,
3868 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3869 rmethod, rbcp);
3870
3871 // complete the execution of original bytecode
3872 __ mov(rscratch1, r19);
3873 __ dispatch_only_normal(vtos);
3874 }
3875
3876 //-----------------------------------------------------------------------------
3877 // Exceptions
3878
3879 void TemplateTable::athrow() {
3880 transition(atos, vtos);
3881 __ null_check(r0);
3882 __ b(Interpreter::throw_exception_entry());
3883 }
3884
3885 //-----------------------------------------------------------------------------
3886 // Synchronization
3887 //
3888 // Note: monitorenter & exit are symmetric routines; which is reflected
3889 // in the assembly code structure as well
3890 //
3891 // Stack layout:
3892 //
3893 // [expressions ] <--- esp = expression stack top
3894 // ..
3895 // [expressions ]
3896 // [monitor entry] <--- monitor block top = expression stack bot
3897 // ..
3898 // [monitor entry]
3899 // [frame data ] <--- monitor block bot
3900 // ...
3901 // [saved rfp ] <--- rfp
3902 void TemplateTable::monitorenter()
3903 {
3904 transition(atos, vtos);
3905
3906 // check for null object
3907 __ null_check(r0);
3908
3909 const Address monitor_block_top(
3910 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3911 const Address monitor_block_bot(
3912 rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3913 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3914
3915 Label allocated;
3916
3917 // initialize entry pointer
3918 __ mov(c_rarg1, zr); // points to free slot or null
3919
3920 // find a free slot in the monitor block (result in c_rarg1)
3921 {
3922 Label entry, loop, exit;
3923 __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
3924 __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
3925 // c_rarg3 points to current entry, starting with top-most entry
3926
3927 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3928
3929 __ b(entry);
3930
3931 __ bind(loop);
3932 // check if current entry is used
3933 // if not used then remember entry in c_rarg1
3934 __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset()));
3935 __ cmp(zr, rscratch1);
3936 __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ);
3937 // check if current entry is for same object
3938 __ cmp(r0, rscratch1);
3939 // if same object then stop searching
3940 __ br(Assembler::EQ, exit);
3941 // otherwise advance to next entry
3942 __ add(c_rarg3, c_rarg3, entry_size);
3943 __ bind(entry);
3944 // check if bottom reached
3945 __ cmp(c_rarg3, c_rarg2);
3946 // if not at bottom then check this entry
3947 __ br(Assembler::NE, loop);
3948 __ bind(exit);
3949 }
3950
3951 __ cbnz(c_rarg1, allocated); // check if a slot has been found and
3952 // if found, continue with that on
3953
3954 // allocate one if there's no free slot
3955 {
3956 Label entry, loop;
3957 // 1. compute new pointers // rsp: old expression stack top
3958
3959 __ check_extended_sp();
3960 __ sub(sp, sp, entry_size); // make room for the monitor
3961 __ sub(rscratch1, sp, rfp);
3962 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
3963 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize));
3964
3965 __ ldr(c_rarg1, monitor_block_bot); // derelativize pointer
3966 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
3967 // c_rarg1 points to the old expression stack bottom
3968
3969 __ sub(esp, esp, entry_size); // move expression stack top
3970 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom
3971 __ mov(c_rarg3, esp); // set start value for copy loop
3972 __ sub(rscratch1, c_rarg1, rfp); // relativize pointer
3973 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
3974 __ str(rscratch1, monitor_block_bot); // set new monitor block bottom
3975
3976 __ b(entry);
3977 // 2. move expression stack contents
3978 __ bind(loop);
3979 __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3980 // word from old location
3981 __ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location
3982 __ add(c_rarg3, c_rarg3, wordSize); // advance to next word
3983 __ bind(entry);
3984 __ cmp(c_rarg3, c_rarg1); // check if bottom reached
3985 __ br(Assembler::NE, loop); // if not at bottom then
3986 // copy next word
3987 }
3988
3989 // call run-time routine
3990 // c_rarg1: points to monitor entry
3991 __ bind(allocated);
3992
3993 // Increment bcp to point to the next bytecode, so exception
3994 // handling for async. exceptions work correctly.
3995 // The object has already been popped from the stack, so the
3996 // expression stack looks correct.
3997 __ increment(rbcp);
3998
3999 // store object
4000 __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
4001 __ lock_object(c_rarg1);
4002
4003 // check to make sure this monitor doesn't cause stack overflow after locking
4004 __ save_bcp(); // in case of exception
4005 __ generate_stack_overflow_check(0);
4006
4007 // The bcp has already been incremented. Just need to dispatch to
4008 // next instruction.
4009 __ dispatch_next(vtos);
4010 }
4011
4012
4013 void TemplateTable::monitorexit()
4014 {
4015 transition(atos, vtos);
4016
4017 // check for null object
4018 __ null_check(r0);
4019
4020 const Address monitor_block_top(
4021 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4022 const Address monitor_block_bot(
4023 rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4024 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4025
4026 Label found;
4027
4028 // find matching slot
4029 {
4030 Label entry, loop;
4031 __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4032 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4033 // c_rarg1 points to current entry, starting with top-most entry
4034
4035 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4036 // of monitor block
4037 __ b(entry);
4038
4039 __ bind(loop);
4040 // check if current entry is for same object
4041 __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
4042 __ cmp(r0, rscratch1);
4043 // if same object then stop searching
4044 __ br(Assembler::EQ, found);
4045 // otherwise advance to next entry
4046 __ add(c_rarg1, c_rarg1, entry_size);
4047 __ bind(entry);
4048 // check if bottom reached
4049 __ cmp(c_rarg1, c_rarg2);
4050 // if not at bottom then check this entry
4051 __ br(Assembler::NE, loop);
4052 }
4053
4054 // error handling. Unlocking was not block-structured
4055 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4056 InterpreterRuntime::throw_illegal_monitor_state_exception));
4057 __ should_not_reach_here();
4058
4059 // call run-time routine
4060 __ bind(found);
4061 __ push_ptr(r0); // make sure object is on stack (contract with oopMaps)
4062 __ unlock_object(c_rarg1);
4063 __ pop_ptr(r0); // discard object
4064 }
4065
4066
4067 // Wide instructions
4068 void TemplateTable::wide()
4069 {
4070 __ load_unsigned_byte(r19, at_bcp(1));
4071 __ mov(rscratch1, (address)Interpreter::_wentry_point);
4072 __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3)));
4073 __ br(rscratch1);
4074 }
4075
4076
4077 // Multi arrays
4078 void TemplateTable::multianewarray() {
4079 transition(vtos, atos);
4080 __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions
4081 // last dim is on top of stack; we want address of first one:
4082 // first_addr = last_addr + (ndims - 1) * wordSize
4083 __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3)));
4084 __ sub(c_rarg1, c_rarg1, wordSize);
4085 call_VM(r0,
4086 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
4087 c_rarg1);
4088 __ load_unsigned_byte(r1, at_bcp(3));
4089 __ lea(esp, Address(esp, r1, Address::uxtw(3)));
4090 }