1 /*
2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "asm/macroAssembler.inline.hpp"
27 #include "compiler/disassembler.hpp"
28 #include "compiler/compilerDefinitions.inline.hpp"
29 #include "gc/shared/barrierSetAssembler.hpp"
30 #include "gc/shared/collectedHeap.hpp"
31 #include "gc/shared/tlab_globals.hpp"
32 #include "interpreter/interpreter.hpp"
33 #include "interpreter/interpreterRuntime.hpp"
34 #include "interpreter/interp_masm.hpp"
35 #include "interpreter/templateTable.hpp"
36 #include "memory/universe.hpp"
37 #include "oops/methodData.hpp"
38 #include "oops/method.inline.hpp"
39 #include "oops/objArrayKlass.hpp"
40 #include "oops/oop.inline.hpp"
41 #include "oops/resolvedFieldEntry.hpp"
42 #include "oops/resolvedIndyEntry.hpp"
43 #include "oops/resolvedMethodEntry.hpp"
44 #include "prims/jvmtiExport.hpp"
45 #include "prims/methodHandles.hpp"
46 #include "runtime/frame.inline.hpp"
47 #include "runtime/sharedRuntime.hpp"
48 #include "runtime/stubRoutines.hpp"
49 #include "runtime/synchronizer.hpp"
50 #include "utilities/powerOfTwo.hpp"
51
52 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
53
54 // Address computation: local variables
55
56 static inline Address iaddress(int n) {
57 return Address(rlocals, Interpreter::local_offset_in_bytes(n));
58 }
59
60 static inline Address laddress(int n) {
61 return iaddress(n + 1);
62 }
63
64 static inline Address faddress(int n) {
65 return iaddress(n);
66 }
67
68 static inline Address daddress(int n) {
69 return laddress(n);
70 }
71
72 static inline Address aaddress(int n) {
73 return iaddress(n);
74 }
75
76 static inline Address iaddress(Register r) {
77 return Address(rlocals, r, Address::lsl(3));
78 }
79
80 static inline Address laddress(Register r, Register scratch,
81 InterpreterMacroAssembler* _masm) {
82 __ lea(scratch, Address(rlocals, r, Address::lsl(3)));
83 return Address(scratch, Interpreter::local_offset_in_bytes(1));
84 }
85
86 static inline Address faddress(Register r) {
87 return iaddress(r);
88 }
89
90 static inline Address daddress(Register r, Register scratch,
91 InterpreterMacroAssembler* _masm) {
92 return laddress(r, scratch, _masm);
93 }
94
95 static inline Address aaddress(Register r) {
96 return iaddress(r);
97 }
98
99 static inline Address at_rsp() {
100 return Address(esp, 0);
101 }
102
103 // At top of Java expression stack which may be different than esp(). It
104 // isn't for category 1 objects.
105 static inline Address at_tos () {
106 return Address(esp, Interpreter::expr_offset_in_bytes(0));
107 }
108
109 static inline Address at_tos_p1() {
110 return Address(esp, Interpreter::expr_offset_in_bytes(1));
111 }
112
113 static inline Address at_tos_p2() {
114 return Address(esp, Interpreter::expr_offset_in_bytes(2));
115 }
116
117 static inline Address at_tos_p3() {
118 return Address(esp, Interpreter::expr_offset_in_bytes(3));
119 }
120
121 static inline Address at_tos_p4() {
122 return Address(esp, Interpreter::expr_offset_in_bytes(4));
123 }
124
125 static inline Address at_tos_p5() {
126 return Address(esp, Interpreter::expr_offset_in_bytes(5));
127 }
128
129 // Condition conversion
130 static Assembler::Condition j_not(TemplateTable::Condition cc) {
131 switch (cc) {
132 case TemplateTable::equal : return Assembler::NE;
133 case TemplateTable::not_equal : return Assembler::EQ;
134 case TemplateTable::less : return Assembler::GE;
135 case TemplateTable::less_equal : return Assembler::GT;
136 case TemplateTable::greater : return Assembler::LE;
137 case TemplateTable::greater_equal: return Assembler::LT;
138 }
139 ShouldNotReachHere();
140 return Assembler::EQ;
141 }
142
143
144 // Miscellaneous helper routines
145 // Store an oop (or null) at the Address described by obj.
146 // If val == noreg this means store a null
147 static void do_oop_store(InterpreterMacroAssembler* _masm,
148 Address dst,
149 Register val,
150 DecoratorSet decorators) {
151 assert(val == noreg || val == r0, "parameter is just for looks");
152 __ store_heap_oop(dst, val, r10, r11, r3, decorators);
153 }
154
155 static void do_oop_load(InterpreterMacroAssembler* _masm,
156 Address src,
157 Register dst,
158 DecoratorSet decorators) {
159 __ load_heap_oop(dst, src, r10, r11, decorators);
160 }
161
162 Address TemplateTable::at_bcp(int offset) {
163 assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
164 return Address(rbcp, offset);
165 }
166
167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
168 Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
169 int byte_no)
170 {
171 assert_different_registers(bc_reg, temp_reg);
172 if (!RewriteBytecodes) return;
173 Label L_patch_done;
174
175 switch (bc) {
176 case Bytecodes::_fast_aputfield:
177 case Bytecodes::_fast_bputfield:
178 case Bytecodes::_fast_zputfield:
179 case Bytecodes::_fast_cputfield:
180 case Bytecodes::_fast_dputfield:
181 case Bytecodes::_fast_fputfield:
182 case Bytecodes::_fast_iputfield:
183 case Bytecodes::_fast_lputfield:
184 case Bytecodes::_fast_sputfield:
185 {
186 // We skip bytecode quickening for putfield instructions when
187 // the put_code written to the constant pool cache is zero.
188 // This is required so that every execution of this instruction
189 // calls out to InterpreterRuntime::resolve_get_put to do
190 // additional, required work.
191 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
192 assert(load_bc_into_bc_reg, "we use bc_reg as temp");
193 __ load_field_entry(temp_reg, bc_reg);
194 if (byte_no == f1_byte) {
195 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));
196 } else {
197 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset())));
198 }
199 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in()
200 __ ldarb(temp_reg, temp_reg);
201 __ movw(bc_reg, bc);
202 __ cbzw(temp_reg, L_patch_done); // don't patch
203 }
204 break;
205 default:
206 assert(byte_no == -1, "sanity");
207 // the pair bytecodes have already done the load.
208 if (load_bc_into_bc_reg) {
209 __ movw(bc_reg, bc);
210 }
211 }
212
213 if (JvmtiExport::can_post_breakpoint()) {
214 Label L_fast_patch;
215 // if a breakpoint is present we can't rewrite the stream directly
216 __ load_unsigned_byte(temp_reg, at_bcp(0));
217 __ cmpw(temp_reg, Bytecodes::_breakpoint);
218 __ br(Assembler::NE, L_fast_patch);
219 // Let breakpoint table handling rewrite to quicker bytecode
220 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg);
221 __ b(L_patch_done);
222 __ bind(L_fast_patch);
223 }
224
225 #ifdef ASSERT
226 Label L_okay;
227 __ load_unsigned_byte(temp_reg, at_bcp(0));
228 __ cmpw(temp_reg, (int) Bytecodes::java_code(bc));
229 __ br(Assembler::EQ, L_okay);
230 __ cmpw(temp_reg, bc_reg);
231 __ br(Assembler::EQ, L_okay);
232 __ stop("patching the wrong bytecode");
233 __ bind(L_okay);
234 #endif
235 // Patch bytecode with release store to coordinate with ResolvedFieldEntry loads
236 // in fast bytecode codelets. load_field_entry has a memory barrier that gains
237 // the needed ordering, together with control dependency on entering the fast codelet
238 // itself.
239 __ lea(temp_reg, at_bcp(0));
240 __ stlrb(bc_reg, temp_reg);
241 __ bind(L_patch_done);
242 }
243
244
245 // Individual instructions
246
247 void TemplateTable::nop() {
248 transition(vtos, vtos);
249 // nothing to do
250 }
251
252 void TemplateTable::shouldnotreachhere() {
253 transition(vtos, vtos);
254 __ stop("shouldnotreachhere bytecode");
255 }
256
257 void TemplateTable::aconst_null()
258 {
259 transition(vtos, atos);
260 __ mov(r0, 0);
261 }
262
263 void TemplateTable::iconst(int value)
264 {
265 transition(vtos, itos);
266 __ mov(r0, value);
267 }
268
269 void TemplateTable::lconst(int value)
270 {
271 __ mov(r0, value);
272 }
273
274 void TemplateTable::fconst(int value)
275 {
276 transition(vtos, ftos);
277 switch (value) {
278 case 0:
279 __ fmovs(v0, 0.0);
280 break;
281 case 1:
282 __ fmovs(v0, 1.0);
283 break;
284 case 2:
285 __ fmovs(v0, 2.0);
286 break;
287 default:
288 ShouldNotReachHere();
289 break;
290 }
291 }
292
293 void TemplateTable::dconst(int value)
294 {
295 transition(vtos, dtos);
296 switch (value) {
297 case 0:
298 __ fmovd(v0, 0.0);
299 break;
300 case 1:
301 __ fmovd(v0, 1.0);
302 break;
303 case 2:
304 __ fmovd(v0, 2.0);
305 break;
306 default:
307 ShouldNotReachHere();
308 break;
309 }
310 }
311
312 void TemplateTable::bipush()
313 {
314 transition(vtos, itos);
315 __ load_signed_byte32(r0, at_bcp(1));
316 }
317
318 void TemplateTable::sipush()
319 {
320 transition(vtos, itos);
321 __ load_unsigned_short(r0, at_bcp(1));
322 __ revw(r0, r0);
323 __ asrw(r0, r0, 16);
324 }
325
326 void TemplateTable::ldc(LdcType type)
327 {
328 transition(vtos, vtos);
329 Label call_ldc, notFloat, notClass, notInt, Done;
330
331 if (is_ldc_wide(type)) {
332 __ get_unsigned_2_byte_index_at_bcp(r1, 1);
333 } else {
334 __ load_unsigned_byte(r1, at_bcp(1));
335 }
336 __ get_cpool_and_tags(r2, r0);
337
338 const int base_offset = ConstantPool::header_size() * wordSize;
339 const int tags_offset = Array<u1>::base_offset_in_bytes();
340
341 // get type
342 __ add(r3, r1, tags_offset);
343 __ lea(r3, Address(r0, r3));
344 __ ldarb(r3, r3);
345
346 // unresolved class - get the resolved class
347 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClass);
348 __ br(Assembler::EQ, call_ldc);
349
350 // unresolved class in error state - call into runtime to throw the error
351 // from the first resolution attempt
352 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClassInError);
353 __ br(Assembler::EQ, call_ldc);
354
355 // resolved class - need to call vm to get java mirror of the class
356 __ cmp(r3, (u1)JVM_CONSTANT_Class);
357 __ br(Assembler::NE, notClass);
358
359 __ load_resolved_klass_at_offset(r2, r1, r3, rscratch1); // kills r3=tag
360
361 __ cmp(r3, zr); // resolved_klass ?= null
362 __ br(Assembler::EQ, call_ldc);
363
364 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
365 __ ldr(r3, Address(r3, mirror_offset));
366 __ resolve_oop_handle(r3, rscratch1, rscratch2);
367 __ push_ptr(r3);
368
369 __ b(Done);
370
371 __ bind(call_ldc);
372 __ mov(c_rarg1, is_ldc_wide(type) ? 1 : 0);
373 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
374 __ push_ptr(r0);
375 __ verify_oop(r0);
376 __ b(Done);
377
378 __ bind(notClass);
379 __ cmp(r3, (u1)JVM_CONSTANT_Float);
380 __ br(Assembler::NE, notFloat);
381 // ftos
382 __ adds(r1, r2, r1, Assembler::LSL, 3);
383 __ ldrs(v0, Address(r1, base_offset));
384 __ push_f();
385 __ b(Done);
386
387 __ bind(notFloat);
388
389 __ cmp(r3, (u1)JVM_CONSTANT_Integer);
390 __ br(Assembler::NE, notInt);
391
392 // itos
393 __ adds(r1, r2, r1, Assembler::LSL, 3);
394 __ ldrw(r0, Address(r1, base_offset));
395 __ push_i(r0);
396 __ b(Done);
397
398 __ bind(notInt);
399 condy_helper(Done);
400
401 __ bind(Done);
402 }
403
404 // Fast path for caching oop constants.
405 void TemplateTable::fast_aldc(LdcType type)
406 {
407 transition(vtos, atos);
408
409 Register result = r0;
410 Register tmp = r1;
411 Register rarg = r2;
412
413 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1);
414
415 Label resolved;
416
417 // We are resolved if the resolved reference cache entry contains a
418 // non-null object (String, MethodType, etc.)
419 assert_different_registers(result, tmp);
420 __ get_cache_index_at_bcp(tmp, 1, index_size);
421 __ load_resolved_reference_at_index(result, tmp);
422 __ cbnz(result, resolved);
423
424 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
425
426 // first time invocation - must resolve first
427 __ mov(rarg, (int)bytecode());
428 __ call_VM(result, entry, rarg);
429
430 __ bind(resolved);
431
432 { // Check for the null sentinel.
433 // If we just called the VM, it already did the mapping for us,
434 // but it's harmless to retry.
435 Label notNull;
436
437 // Stash null_sentinel address to get its value later
438 __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr());
439 __ ldr(tmp, Address(rarg));
440 __ resolve_oop_handle(tmp, r5, rscratch2);
441 __ cmpoop(result, tmp);
442 __ br(Assembler::NE, notNull);
443 __ mov(result, 0); // null object reference
444 __ bind(notNull);
445 }
446
447 if (VerifyOops) {
448 // Safe to call with 0 result
449 __ verify_oop(result);
450 }
451 }
452
453 void TemplateTable::ldc2_w()
454 {
455 transition(vtos, vtos);
456 Label notDouble, notLong, Done;
457 __ get_unsigned_2_byte_index_at_bcp(r0, 1);
458
459 __ get_cpool_and_tags(r1, r2);
460 const int base_offset = ConstantPool::header_size() * wordSize;
461 const int tags_offset = Array<u1>::base_offset_in_bytes();
462
463 // get type
464 __ lea(r2, Address(r2, r0, Address::lsl(0)));
465 __ load_unsigned_byte(r2, Address(r2, tags_offset));
466 __ cmpw(r2, (int)JVM_CONSTANT_Double);
467 __ br(Assembler::NE, notDouble);
468
469 // dtos
470 __ lea (r2, Address(r1, r0, Address::lsl(3)));
471 __ ldrd(v0, Address(r2, base_offset));
472 __ push_d();
473 __ b(Done);
474
475 __ bind(notDouble);
476 __ cmpw(r2, (int)JVM_CONSTANT_Long);
477 __ br(Assembler::NE, notLong);
478
479 // ltos
480 __ lea(r0, Address(r1, r0, Address::lsl(3)));
481 __ ldr(r0, Address(r0, base_offset));
482 __ push_l();
483 __ b(Done);
484
485 __ bind(notLong);
486 condy_helper(Done);
487
488 __ bind(Done);
489 }
490
491 void TemplateTable::condy_helper(Label& Done)
492 {
493 Register obj = r0;
494 Register rarg = r1;
495 Register flags = r2;
496 Register off = r3;
497
498 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
499
500 __ mov(rarg, (int) bytecode());
501 __ call_VM(obj, entry, rarg);
502
503 __ get_vm_result_metadata(flags, rthread);
504
505 // VMr = obj = base address to find primitive value to push
506 // VMr2 = flags = (tos, off) using format of CPCE::_flags
507 __ mov(off, flags);
508 __ andw(off, off, ConstantPoolCache::field_index_mask);
509
510 const Address field(obj, off);
511
512 // What sort of thing are we loading?
513 // x86 uses a shift and mask or wings it with a shift plus assert
514 // the mask is not needed. aarch64 just uses bitfield extract
515 __ ubfxw(flags, flags, ConstantPoolCache::tos_state_shift,
516 ConstantPoolCache::tos_state_bits);
517
518 switch (bytecode()) {
519 case Bytecodes::_ldc:
520 case Bytecodes::_ldc_w:
521 {
522 // tos in (itos, ftos, stos, btos, ctos, ztos)
523 Label notInt, notFloat, notShort, notByte, notChar, notBool;
524 __ cmpw(flags, itos);
525 __ br(Assembler::NE, notInt);
526 // itos
527 __ ldrw(r0, field);
528 __ push(itos);
529 __ b(Done);
530
531 __ bind(notInt);
532 __ cmpw(flags, ftos);
533 __ br(Assembler::NE, notFloat);
534 // ftos
535 __ load_float(field);
536 __ push(ftos);
537 __ b(Done);
538
539 __ bind(notFloat);
540 __ cmpw(flags, stos);
541 __ br(Assembler::NE, notShort);
542 // stos
543 __ load_signed_short(r0, field);
544 __ push(stos);
545 __ b(Done);
546
547 __ bind(notShort);
548 __ cmpw(flags, btos);
549 __ br(Assembler::NE, notByte);
550 // btos
551 __ load_signed_byte(r0, field);
552 __ push(btos);
553 __ b(Done);
554
555 __ bind(notByte);
556 __ cmpw(flags, ctos);
557 __ br(Assembler::NE, notChar);
558 // ctos
559 __ load_unsigned_short(r0, field);
560 __ push(ctos);
561 __ b(Done);
562
563 __ bind(notChar);
564 __ cmpw(flags, ztos);
565 __ br(Assembler::NE, notBool);
566 // ztos
567 __ load_signed_byte(r0, field);
568 __ push(ztos);
569 __ b(Done);
570
571 __ bind(notBool);
572 break;
573 }
574
575 case Bytecodes::_ldc2_w:
576 {
577 Label notLong, notDouble;
578 __ cmpw(flags, ltos);
579 __ br(Assembler::NE, notLong);
580 // ltos
581 __ ldr(r0, field);
582 __ push(ltos);
583 __ b(Done);
584
585 __ bind(notLong);
586 __ cmpw(flags, dtos);
587 __ br(Assembler::NE, notDouble);
588 // dtos
589 __ load_double(field);
590 __ push(dtos);
591 __ b(Done);
592
593 __ bind(notDouble);
594 break;
595 }
596
597 default:
598 ShouldNotReachHere();
599 }
600
601 __ stop("bad ldc/condy");
602 }
603
604 void TemplateTable::locals_index(Register reg, int offset)
605 {
606 __ ldrb(reg, at_bcp(offset));
607 __ neg(reg, reg);
608 }
609
610 void TemplateTable::iload() {
611 iload_internal();
612 }
613
614 void TemplateTable::nofast_iload() {
615 iload_internal(may_not_rewrite);
616 }
617
618 void TemplateTable::iload_internal(RewriteControl rc) {
619 transition(vtos, itos);
620 if (RewriteFrequentPairs && rc == may_rewrite) {
621 Label rewrite, done;
622 Register bc = r4;
623
624 // get next bytecode
625 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
626
627 // if _iload, wait to rewrite to iload2. We only want to rewrite the
628 // last two iloads in a pair. Comparing against fast_iload means that
629 // the next bytecode is neither an iload or a caload, and therefore
630 // an iload pair.
631 __ cmpw(r1, Bytecodes::_iload);
632 __ br(Assembler::EQ, done);
633
634 // if _fast_iload rewrite to _fast_iload2
635 __ cmpw(r1, Bytecodes::_fast_iload);
636 __ movw(bc, Bytecodes::_fast_iload2);
637 __ br(Assembler::EQ, rewrite);
638
639 // if _caload rewrite to _fast_icaload
640 __ cmpw(r1, Bytecodes::_caload);
641 __ movw(bc, Bytecodes::_fast_icaload);
642 __ br(Assembler::EQ, rewrite);
643
644 // else rewrite to _fast_iload
645 __ movw(bc, Bytecodes::_fast_iload);
646
647 // rewrite
648 // bc: new bytecode
649 __ bind(rewrite);
650 patch_bytecode(Bytecodes::_iload, bc, r1, false);
651 __ bind(done);
652
653 }
654
655 // do iload, get the local value into tos
656 locals_index(r1);
657 __ ldr(r0, iaddress(r1));
658
659 }
660
661 void TemplateTable::fast_iload2()
662 {
663 transition(vtos, itos);
664 locals_index(r1);
665 __ ldr(r0, iaddress(r1));
666 __ push(itos);
667 locals_index(r1, 3);
668 __ ldr(r0, iaddress(r1));
669 }
670
671 void TemplateTable::fast_iload()
672 {
673 transition(vtos, itos);
674 locals_index(r1);
675 __ ldr(r0, iaddress(r1));
676 }
677
678 void TemplateTable::lload()
679 {
680 transition(vtos, ltos);
681 __ ldrb(r1, at_bcp(1));
682 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
683 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
684 }
685
686 void TemplateTable::fload()
687 {
688 transition(vtos, ftos);
689 locals_index(r1);
690 // n.b. we use ldrd here because this is a 64 bit slot
691 // this is comparable to the iload case
692 __ ldrd(v0, faddress(r1));
693 }
694
695 void TemplateTable::dload()
696 {
697 transition(vtos, dtos);
698 __ ldrb(r1, at_bcp(1));
699 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
700 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
701 }
702
703 void TemplateTable::aload()
704 {
705 transition(vtos, atos);
706 locals_index(r1);
707 __ ldr(r0, iaddress(r1));
708 }
709
710 void TemplateTable::locals_index_wide(Register reg) {
711 __ ldrh(reg, at_bcp(2));
712 __ rev16w(reg, reg);
713 __ neg(reg, reg);
714 }
715
716 void TemplateTable::wide_iload() {
717 transition(vtos, itos);
718 locals_index_wide(r1);
719 __ ldr(r0, iaddress(r1));
720 }
721
722 void TemplateTable::wide_lload()
723 {
724 transition(vtos, ltos);
725 __ ldrh(r1, at_bcp(2));
726 __ rev16w(r1, r1);
727 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
728 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
729 }
730
731 void TemplateTable::wide_fload()
732 {
733 transition(vtos, ftos);
734 locals_index_wide(r1);
735 // n.b. we use ldrd here because this is a 64 bit slot
736 // this is comparable to the iload case
737 __ ldrd(v0, faddress(r1));
738 }
739
740 void TemplateTable::wide_dload()
741 {
742 transition(vtos, dtos);
743 __ ldrh(r1, at_bcp(2));
744 __ rev16w(r1, r1);
745 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
746 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
747 }
748
749 void TemplateTable::wide_aload()
750 {
751 transition(vtos, atos);
752 locals_index_wide(r1);
753 __ ldr(r0, aaddress(r1));
754 }
755
756 void TemplateTable::index_check(Register array, Register index)
757 {
758 // destroys r1, rscratch1
759 // sign extend index for use by indexed load
760 // __ movl2ptr(index, index);
761 // check index
762 Register length = rscratch1;
763 __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
764 __ cmpw(index, length);
765 if (index != r1) {
766 // ??? convention: move aberrant index into r1 for exception message
767 assert(r1 != array, "different registers");
768 __ mov(r1, index);
769 }
770 Label ok;
771 __ br(Assembler::LO, ok);
772 // ??? convention: move array into r3 for exception message
773 __ mov(r3, array);
774 __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
775 __ br(rscratch1);
776 __ bind(ok);
777 }
778
779 void TemplateTable::iaload()
780 {
781 transition(itos, itos);
782 __ mov(r1, r0);
783 __ pop_ptr(r0);
784 // r0: array
785 // r1: index
786 index_check(r0, r1); // leaves index in r1, kills rscratch1
787 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
788 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
789 }
790
791 void TemplateTable::laload()
792 {
793 transition(itos, ltos);
794 __ mov(r1, r0);
795 __ pop_ptr(r0);
796 // r0: array
797 // r1: index
798 index_check(r0, r1); // leaves index in r1, kills rscratch1
799 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
800 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
801 }
802
803 void TemplateTable::faload()
804 {
805 transition(itos, ftos);
806 __ mov(r1, r0);
807 __ pop_ptr(r0);
808 // r0: array
809 // r1: index
810 index_check(r0, r1); // leaves index in r1, kills rscratch1
811 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
812 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
813 }
814
815 void TemplateTable::daload()
816 {
817 transition(itos, dtos);
818 __ mov(r1, r0);
819 __ pop_ptr(r0);
820 // r0: array
821 // r1: index
822 index_check(r0, r1); // leaves index in r1, kills rscratch1
823 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
824 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
825 }
826
827 void TemplateTable::aaload()
828 {
829 transition(itos, atos);
830 __ mov(r1, r0);
831 __ pop_ptr(r0);
832 // r0: array
833 // r1: index
834 index_check(r0, r1); // leaves index in r1, kills rscratch1
835 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
836 do_oop_load(_masm,
837 Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)),
838 r0,
839 IS_ARRAY);
840 }
841
842 void TemplateTable::baload()
843 {
844 transition(itos, itos);
845 __ mov(r1, r0);
846 __ pop_ptr(r0);
847 // r0: array
848 // r1: index
849 index_check(r0, r1); // leaves index in r1, kills rscratch1
850 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
851 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
852 }
853
854 void TemplateTable::caload()
855 {
856 transition(itos, itos);
857 __ mov(r1, r0);
858 __ pop_ptr(r0);
859 // r0: array
860 // r1: index
861 index_check(r0, r1); // leaves index in r1, kills rscratch1
862 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
863 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
864 }
865
866 // iload followed by caload frequent pair
867 void TemplateTable::fast_icaload()
868 {
869 transition(vtos, itos);
870 // load index out of locals
871 locals_index(r2);
872 __ ldr(r1, iaddress(r2));
873
874 __ pop_ptr(r0);
875
876 // r0: array
877 // r1: index
878 index_check(r0, r1); // leaves index in r1, kills rscratch1
879 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
880 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
881 }
882
883 void TemplateTable::saload()
884 {
885 transition(itos, itos);
886 __ mov(r1, r0);
887 __ pop_ptr(r0);
888 // r0: array
889 // r1: index
890 index_check(r0, r1); // leaves index in r1, kills rscratch1
891 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1);
892 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
893 }
894
895 void TemplateTable::iload(int n)
896 {
897 transition(vtos, itos);
898 __ ldr(r0, iaddress(n));
899 }
900
901 void TemplateTable::lload(int n)
902 {
903 transition(vtos, ltos);
904 __ ldr(r0, laddress(n));
905 }
906
907 void TemplateTable::fload(int n)
908 {
909 transition(vtos, ftos);
910 __ ldrs(v0, faddress(n));
911 }
912
913 void TemplateTable::dload(int n)
914 {
915 transition(vtos, dtos);
916 __ ldrd(v0, daddress(n));
917 }
918
919 void TemplateTable::aload(int n)
920 {
921 transition(vtos, atos);
922 __ ldr(r0, iaddress(n));
923 }
924
925 void TemplateTable::aload_0() {
926 aload_0_internal();
927 }
928
929 void TemplateTable::nofast_aload_0() {
930 aload_0_internal(may_not_rewrite);
931 }
932
933 void TemplateTable::aload_0_internal(RewriteControl rc) {
934 // According to bytecode histograms, the pairs:
935 //
936 // _aload_0, _fast_igetfield
937 // _aload_0, _fast_agetfield
938 // _aload_0, _fast_fgetfield
939 //
940 // occur frequently. If RewriteFrequentPairs is set, the (slow)
941 // _aload_0 bytecode checks if the next bytecode is either
942 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
943 // rewrites the current bytecode into a pair bytecode; otherwise it
944 // rewrites the current bytecode into _fast_aload_0 that doesn't do
945 // the pair check anymore.
946 //
947 // Note: If the next bytecode is _getfield, the rewrite must be
948 // delayed, otherwise we may miss an opportunity for a pair.
949 //
950 // Also rewrite frequent pairs
951 // aload_0, aload_1
952 // aload_0, iload_1
953 // These bytecodes with a small amount of code are most profitable
954 // to rewrite
955 if (RewriteFrequentPairs && rc == may_rewrite) {
956 Label rewrite, done;
957 const Register bc = r4;
958
959 // get next bytecode
960 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
961
962 // if _getfield then wait with rewrite
963 __ cmpw(r1, Bytecodes::Bytecodes::_getfield);
964 __ br(Assembler::EQ, done);
965
966 // if _igetfield then rewrite to _fast_iaccess_0
967 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
968 __ cmpw(r1, Bytecodes::_fast_igetfield);
969 __ movw(bc, Bytecodes::_fast_iaccess_0);
970 __ br(Assembler::EQ, rewrite);
971
972 // if _agetfield then rewrite to _fast_aaccess_0
973 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
974 __ cmpw(r1, Bytecodes::_fast_agetfield);
975 __ movw(bc, Bytecodes::_fast_aaccess_0);
976 __ br(Assembler::EQ, rewrite);
977
978 // if _fgetfield then rewrite to _fast_faccess_0
979 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
980 __ cmpw(r1, Bytecodes::_fast_fgetfield);
981 __ movw(bc, Bytecodes::_fast_faccess_0);
982 __ br(Assembler::EQ, rewrite);
983
984 // else rewrite to _fast_aload0
985 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
986 __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0);
987
988 // rewrite
989 // bc: new bytecode
990 __ bind(rewrite);
991 patch_bytecode(Bytecodes::_aload_0, bc, r1, false);
992
993 __ bind(done);
994 }
995
996 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
997 aload(0);
998 }
999
1000 void TemplateTable::istore()
1001 {
1002 transition(itos, vtos);
1003 locals_index(r1);
1004 // FIXME: We're being very pernickerty here storing a jint in a
1005 // local with strw, which costs an extra instruction over what we'd
1006 // be able to do with a simple str. We should just store the whole
1007 // word.
1008 __ lea(rscratch1, iaddress(r1));
1009 __ strw(r0, Address(rscratch1));
1010 }
1011
1012 void TemplateTable::lstore()
1013 {
1014 transition(ltos, vtos);
1015 locals_index(r1);
1016 __ str(r0, laddress(r1, rscratch1, _masm));
1017 }
1018
1019 void TemplateTable::fstore() {
1020 transition(ftos, vtos);
1021 locals_index(r1);
1022 __ lea(rscratch1, iaddress(r1));
1023 __ strs(v0, Address(rscratch1));
1024 }
1025
1026 void TemplateTable::dstore() {
1027 transition(dtos, vtos);
1028 locals_index(r1);
1029 __ strd(v0, daddress(r1, rscratch1, _masm));
1030 }
1031
1032 void TemplateTable::astore()
1033 {
1034 transition(vtos, vtos);
1035 __ pop_ptr(r0);
1036 locals_index(r1);
1037 __ str(r0, aaddress(r1));
1038 }
1039
1040 void TemplateTable::wide_istore() {
1041 transition(vtos, vtos);
1042 __ pop_i();
1043 locals_index_wide(r1);
1044 __ lea(rscratch1, iaddress(r1));
1045 __ strw(r0, Address(rscratch1));
1046 }
1047
1048 void TemplateTable::wide_lstore() {
1049 transition(vtos, vtos);
1050 __ pop_l();
1051 locals_index_wide(r1);
1052 __ str(r0, laddress(r1, rscratch1, _masm));
1053 }
1054
1055 void TemplateTable::wide_fstore() {
1056 transition(vtos, vtos);
1057 __ pop_f();
1058 locals_index_wide(r1);
1059 __ lea(rscratch1, faddress(r1));
1060 __ strs(v0, rscratch1);
1061 }
1062
1063 void TemplateTable::wide_dstore() {
1064 transition(vtos, vtos);
1065 __ pop_d();
1066 locals_index_wide(r1);
1067 __ strd(v0, daddress(r1, rscratch1, _masm));
1068 }
1069
1070 void TemplateTable::wide_astore() {
1071 transition(vtos, vtos);
1072 __ pop_ptr(r0);
1073 locals_index_wide(r1);
1074 __ str(r0, aaddress(r1));
1075 }
1076
1077 void TemplateTable::iastore() {
1078 transition(itos, vtos);
1079 __ pop_i(r1);
1080 __ pop_ptr(r3);
1081 // r0: value
1082 // r1: index
1083 // r3: array
1084 index_check(r3, r1); // prefer index in r1
1085 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
1086 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), r0, noreg, noreg, noreg);
1087 }
1088
1089 void TemplateTable::lastore() {
1090 transition(ltos, vtos);
1091 __ pop_i(r1);
1092 __ pop_ptr(r3);
1093 // r0: value
1094 // r1: index
1095 // r3: array
1096 index_check(r3, r1); // prefer index in r1
1097 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
1098 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), r0, noreg, noreg, noreg);
1099 }
1100
1101 void TemplateTable::fastore() {
1102 transition(ftos, vtos);
1103 __ pop_i(r1);
1104 __ pop_ptr(r3);
1105 // v0: value
1106 // r1: index
1107 // r3: array
1108 index_check(r3, r1); // prefer index in r1
1109 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1110 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1111 }
1112
1113 void TemplateTable::dastore() {
1114 transition(dtos, vtos);
1115 __ pop_i(r1);
1116 __ pop_ptr(r3);
1117 // v0: value
1118 // r1: index
1119 // r3: array
1120 index_check(r3, r1); // prefer index in r1
1121 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1122 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1123 }
1124
1125 void TemplateTable::aastore() {
1126 Label is_null, ok_is_subtype, done;
1127 transition(vtos, vtos);
1128 // stack: ..., array, index, value
1129 __ ldr(r0, at_tos()); // value
1130 __ ldr(r2, at_tos_p1()); // index
1131 __ ldr(r3, at_tos_p2()); // array
1132
1133 Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1134
1135 index_check(r3, r2); // kills r1
1136 __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
1137
1138 // do array store check - check for null value first
1139 __ cbz(r0, is_null);
1140
1141 // Move subklass into r1
1142 __ load_klass(r1, r0);
1143 // Move superklass into r0
1144 __ load_klass(r0, r3);
1145 __ ldr(r0, Address(r0,
1146 ObjArrayKlass::element_klass_offset()));
1147 // Compress array + index*oopSize + 12 into a single register. Frees r2.
1148
1149 // Generate subtype check. Blows r2, r5
1150 // Superklass in r0. Subklass in r1.
1151 __ gen_subtype_check(r1, ok_is_subtype);
1152
1153 // Come here on failure
1154 // object is at TOS
1155 __ b(Interpreter::_throw_ArrayStoreException_entry);
1156
1157 // Come here on success
1158 __ bind(ok_is_subtype);
1159
1160 // Get the value we will store
1161 __ ldr(r0, at_tos());
1162 // Now store using the appropriate barrier
1163 // Clobbers: r10, r11, r3
1164 do_oop_store(_masm, element_address, r0, IS_ARRAY);
1165 __ b(done);
1166
1167 // Have a null in r0, r3=array, r2=index. Store null at ary[idx]
1168 __ bind(is_null);
1169 __ profile_null_seen(r2);
1170
1171 // Store a null
1172 // Clobbers: r10, r11, r3
1173 do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1174
1175 // Pop stack arguments
1176 __ bind(done);
1177 __ add(esp, esp, 3 * Interpreter::stackElementSize);
1178 }
1179
1180 void TemplateTable::bastore()
1181 {
1182 transition(itos, vtos);
1183 __ pop_i(r1);
1184 __ pop_ptr(r3);
1185 // r0: value
1186 // r1: index
1187 // r3: array
1188 index_check(r3, r1); // prefer index in r1
1189
1190 // Need to check whether array is boolean or byte
1191 // since both types share the bastore bytecode.
1192 __ load_klass(r2, r3);
1193 __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));
1194 int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit());
1195 Label L_skip;
1196 __ tbz(r2, diffbit_index, L_skip);
1197 __ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1
1198 __ bind(L_skip);
1199
1200 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
1201 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(0)), r0, noreg, noreg, noreg);
1202 }
1203
1204 void TemplateTable::castore()
1205 {
1206 transition(itos, vtos);
1207 __ pop_i(r1);
1208 __ pop_ptr(r3);
1209 // r0: value
1210 // r1: index
1211 // r3: array
1212 index_check(r3, r1); // prefer index in r1
1213 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
1214 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(1)), r0, noreg, noreg, noreg);
1215 }
1216
1217 void TemplateTable::sastore()
1218 {
1219 castore();
1220 }
1221
1222 void TemplateTable::istore(int n)
1223 {
1224 transition(itos, vtos);
1225 __ str(r0, iaddress(n));
1226 }
1227
1228 void TemplateTable::lstore(int n)
1229 {
1230 transition(ltos, vtos);
1231 __ str(r0, laddress(n));
1232 }
1233
1234 void TemplateTable::fstore(int n)
1235 {
1236 transition(ftos, vtos);
1237 __ strs(v0, faddress(n));
1238 }
1239
1240 void TemplateTable::dstore(int n)
1241 {
1242 transition(dtos, vtos);
1243 __ strd(v0, daddress(n));
1244 }
1245
1246 void TemplateTable::astore(int n)
1247 {
1248 transition(vtos, vtos);
1249 __ pop_ptr(r0);
1250 __ str(r0, iaddress(n));
1251 }
1252
1253 void TemplateTable::pop()
1254 {
1255 transition(vtos, vtos);
1256 __ add(esp, esp, Interpreter::stackElementSize);
1257 }
1258
1259 void TemplateTable::pop2()
1260 {
1261 transition(vtos, vtos);
1262 __ add(esp, esp, 2 * Interpreter::stackElementSize);
1263 }
1264
1265 void TemplateTable::dup()
1266 {
1267 transition(vtos, vtos);
1268 __ ldr(r0, Address(esp, 0));
1269 __ push(r0);
1270 // stack: ..., a, a
1271 }
1272
1273 void TemplateTable::dup_x1()
1274 {
1275 transition(vtos, vtos);
1276 // stack: ..., a, b
1277 __ ldr(r0, at_tos()); // load b
1278 __ ldr(r2, at_tos_p1()); // load a
1279 __ str(r0, at_tos_p1()); // store b
1280 __ str(r2, at_tos()); // store a
1281 __ push(r0); // push b
1282 // stack: ..., b, a, b
1283 }
1284
1285 void TemplateTable::dup_x2()
1286 {
1287 transition(vtos, vtos);
1288 // stack: ..., a, b, c
1289 __ ldr(r0, at_tos()); // load c
1290 __ ldr(r2, at_tos_p2()); // load a
1291 __ str(r0, at_tos_p2()); // store c in a
1292 __ push(r0); // push c
1293 // stack: ..., c, b, c, c
1294 __ ldr(r0, at_tos_p2()); // load b
1295 __ str(r2, at_tos_p2()); // store a in b
1296 // stack: ..., c, a, c, c
1297 __ str(r0, at_tos_p1()); // store b in c
1298 // stack: ..., c, a, b, c
1299 }
1300
1301 void TemplateTable::dup2()
1302 {
1303 transition(vtos, vtos);
1304 // stack: ..., a, b
1305 __ ldr(r0, at_tos_p1()); // load a
1306 __ push(r0); // push a
1307 __ ldr(r0, at_tos_p1()); // load b
1308 __ push(r0); // push b
1309 // stack: ..., a, b, a, b
1310 }
1311
1312 void TemplateTable::dup2_x1()
1313 {
1314 transition(vtos, vtos);
1315 // stack: ..., a, b, c
1316 __ ldr(r2, at_tos()); // load c
1317 __ ldr(r0, at_tos_p1()); // load b
1318 __ push(r0); // push b
1319 __ push(r2); // push c
1320 // stack: ..., a, b, c, b, c
1321 __ str(r2, at_tos_p3()); // store c in b
1322 // stack: ..., a, c, c, b, c
1323 __ ldr(r2, at_tos_p4()); // load a
1324 __ str(r2, at_tos_p2()); // store a in 2nd c
1325 // stack: ..., a, c, a, b, c
1326 __ str(r0, at_tos_p4()); // store b in a
1327 // stack: ..., b, c, a, b, c
1328 }
1329
1330 void TemplateTable::dup2_x2()
1331 {
1332 transition(vtos, vtos);
1333 // stack: ..., a, b, c, d
1334 __ ldr(r2, at_tos()); // load d
1335 __ ldr(r0, at_tos_p1()); // load c
1336 __ push(r0) ; // push c
1337 __ push(r2); // push d
1338 // stack: ..., a, b, c, d, c, d
1339 __ ldr(r0, at_tos_p4()); // load b
1340 __ str(r0, at_tos_p2()); // store b in d
1341 __ str(r2, at_tos_p4()); // store d in b
1342 // stack: ..., a, d, c, b, c, d
1343 __ ldr(r2, at_tos_p5()); // load a
1344 __ ldr(r0, at_tos_p3()); // load c
1345 __ str(r2, at_tos_p3()); // store a in c
1346 __ str(r0, at_tos_p5()); // store c in a
1347 // stack: ..., c, d, a, b, c, d
1348 }
1349
1350 void TemplateTable::swap()
1351 {
1352 transition(vtos, vtos);
1353 // stack: ..., a, b
1354 __ ldr(r2, at_tos_p1()); // load a
1355 __ ldr(r0, at_tos()); // load b
1356 __ str(r2, at_tos()); // store a in b
1357 __ str(r0, at_tos_p1()); // store b in a
1358 // stack: ..., b, a
1359 }
1360
1361 void TemplateTable::iop2(Operation op)
1362 {
1363 transition(itos, itos);
1364 // r0 <== r1 op r0
1365 __ pop_i(r1);
1366 switch (op) {
1367 case add : __ addw(r0, r1, r0); break;
1368 case sub : __ subw(r0, r1, r0); break;
1369 case mul : __ mulw(r0, r1, r0); break;
1370 case _and : __ andw(r0, r1, r0); break;
1371 case _or : __ orrw(r0, r1, r0); break;
1372 case _xor : __ eorw(r0, r1, r0); break;
1373 case shl : __ lslvw(r0, r1, r0); break;
1374 case shr : __ asrvw(r0, r1, r0); break;
1375 case ushr : __ lsrvw(r0, r1, r0);break;
1376 default : ShouldNotReachHere();
1377 }
1378 }
1379
1380 void TemplateTable::lop2(Operation op)
1381 {
1382 transition(ltos, ltos);
1383 // r0 <== r1 op r0
1384 __ pop_l(r1);
1385 switch (op) {
1386 case add : __ add(r0, r1, r0); break;
1387 case sub : __ sub(r0, r1, r0); break;
1388 case mul : __ mul(r0, r1, r0); break;
1389 case _and : __ andr(r0, r1, r0); break;
1390 case _or : __ orr(r0, r1, r0); break;
1391 case _xor : __ eor(r0, r1, r0); break;
1392 default : ShouldNotReachHere();
1393 }
1394 }
1395
1396 void TemplateTable::idiv()
1397 {
1398 transition(itos, itos);
1399 // explicitly check for div0
1400 Label no_div0;
1401 __ cbnzw(r0, no_div0);
1402 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1403 __ br(rscratch1);
1404 __ bind(no_div0);
1405 __ pop_i(r1);
1406 // r0 <== r1 idiv r0
1407 __ corrected_idivl(r0, r1, r0, /* want_remainder */ false);
1408 }
1409
1410 void TemplateTable::irem()
1411 {
1412 transition(itos, itos);
1413 // explicitly check for div0
1414 Label no_div0;
1415 __ cbnzw(r0, no_div0);
1416 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1417 __ br(rscratch1);
1418 __ bind(no_div0);
1419 __ pop_i(r1);
1420 // r0 <== r1 irem r0
1421 __ corrected_idivl(r0, r1, r0, /* want_remainder */ true);
1422 }
1423
1424 void TemplateTable::lmul()
1425 {
1426 transition(ltos, ltos);
1427 __ pop_l(r1);
1428 __ mul(r0, r0, r1);
1429 }
1430
1431 void TemplateTable::ldiv()
1432 {
1433 transition(ltos, ltos);
1434 // explicitly check for div0
1435 Label no_div0;
1436 __ cbnz(r0, no_div0);
1437 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1438 __ br(rscratch1);
1439 __ bind(no_div0);
1440 __ pop_l(r1);
1441 // r0 <== r1 ldiv r0
1442 __ corrected_idivq(r0, r1, r0, /* want_remainder */ false);
1443 }
1444
1445 void TemplateTable::lrem()
1446 {
1447 transition(ltos, ltos);
1448 // explicitly check for div0
1449 Label no_div0;
1450 __ cbnz(r0, no_div0);
1451 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1452 __ br(rscratch1);
1453 __ bind(no_div0);
1454 __ pop_l(r1);
1455 // r0 <== r1 lrem r0
1456 __ corrected_idivq(r0, r1, r0, /* want_remainder */ true);
1457 }
1458
1459 void TemplateTable::lshl()
1460 {
1461 transition(itos, ltos);
1462 // shift count is in r0
1463 __ pop_l(r1);
1464 __ lslv(r0, r1, r0);
1465 }
1466
1467 void TemplateTable::lshr()
1468 {
1469 transition(itos, ltos);
1470 // shift count is in r0
1471 __ pop_l(r1);
1472 __ asrv(r0, r1, r0);
1473 }
1474
1475 void TemplateTable::lushr()
1476 {
1477 transition(itos, ltos);
1478 // shift count is in r0
1479 __ pop_l(r1);
1480 __ lsrv(r0, r1, r0);
1481 }
1482
1483 void TemplateTable::fop2(Operation op)
1484 {
1485 transition(ftos, ftos);
1486 switch (op) {
1487 case add:
1488 // n.b. use ldrd because this is a 64 bit slot
1489 __ pop_f(v1);
1490 __ fadds(v0, v1, v0);
1491 break;
1492 case sub:
1493 __ pop_f(v1);
1494 __ fsubs(v0, v1, v0);
1495 break;
1496 case mul:
1497 __ pop_f(v1);
1498 __ fmuls(v0, v1, v0);
1499 break;
1500 case div:
1501 __ pop_f(v1);
1502 __ fdivs(v0, v1, v0);
1503 break;
1504 case rem:
1505 __ fmovs(v1, v0);
1506 __ pop_f(v0);
1507 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1508 break;
1509 default:
1510 ShouldNotReachHere();
1511 break;
1512 }
1513 }
1514
1515 void TemplateTable::dop2(Operation op)
1516 {
1517 transition(dtos, dtos);
1518 switch (op) {
1519 case add:
1520 // n.b. use ldrd because this is a 64 bit slot
1521 __ pop_d(v1);
1522 __ faddd(v0, v1, v0);
1523 break;
1524 case sub:
1525 __ pop_d(v1);
1526 __ fsubd(v0, v1, v0);
1527 break;
1528 case mul:
1529 __ pop_d(v1);
1530 __ fmuld(v0, v1, v0);
1531 break;
1532 case div:
1533 __ pop_d(v1);
1534 __ fdivd(v0, v1, v0);
1535 break;
1536 case rem:
1537 __ fmovd(v1, v0);
1538 __ pop_d(v0);
1539 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1540 break;
1541 default:
1542 ShouldNotReachHere();
1543 break;
1544 }
1545 }
1546
1547 void TemplateTable::ineg()
1548 {
1549 transition(itos, itos);
1550 __ negw(r0, r0);
1551
1552 }
1553
1554 void TemplateTable::lneg()
1555 {
1556 transition(ltos, ltos);
1557 __ neg(r0, r0);
1558 }
1559
1560 void TemplateTable::fneg()
1561 {
1562 transition(ftos, ftos);
1563 __ fnegs(v0, v0);
1564 }
1565
1566 void TemplateTable::dneg()
1567 {
1568 transition(dtos, dtos);
1569 __ fnegd(v0, v0);
1570 }
1571
1572 void TemplateTable::iinc()
1573 {
1574 transition(vtos, vtos);
1575 __ load_signed_byte(r1, at_bcp(2)); // get constant
1576 locals_index(r2);
1577 __ ldr(r0, iaddress(r2));
1578 __ addw(r0, r0, r1);
1579 __ str(r0, iaddress(r2));
1580 }
1581
1582 void TemplateTable::wide_iinc()
1583 {
1584 transition(vtos, vtos);
1585 // __ mov(r1, zr);
1586 __ ldrw(r1, at_bcp(2)); // get constant and index
1587 __ rev16(r1, r1);
1588 __ ubfx(r2, r1, 0, 16);
1589 __ neg(r2, r2);
1590 __ sbfx(r1, r1, 16, 16);
1591 __ ldr(r0, iaddress(r2));
1592 __ addw(r0, r0, r1);
1593 __ str(r0, iaddress(r2));
1594 }
1595
1596 void TemplateTable::convert()
1597 {
1598 // Checking
1599 #ifdef ASSERT
1600 {
1601 TosState tos_in = ilgl;
1602 TosState tos_out = ilgl;
1603 switch (bytecode()) {
1604 case Bytecodes::_i2l: // fall through
1605 case Bytecodes::_i2f: // fall through
1606 case Bytecodes::_i2d: // fall through
1607 case Bytecodes::_i2b: // fall through
1608 case Bytecodes::_i2c: // fall through
1609 case Bytecodes::_i2s: tos_in = itos; break;
1610 case Bytecodes::_l2i: // fall through
1611 case Bytecodes::_l2f: // fall through
1612 case Bytecodes::_l2d: tos_in = ltos; break;
1613 case Bytecodes::_f2i: // fall through
1614 case Bytecodes::_f2l: // fall through
1615 case Bytecodes::_f2d: tos_in = ftos; break;
1616 case Bytecodes::_d2i: // fall through
1617 case Bytecodes::_d2l: // fall through
1618 case Bytecodes::_d2f: tos_in = dtos; break;
1619 default : ShouldNotReachHere();
1620 }
1621 switch (bytecode()) {
1622 case Bytecodes::_l2i: // fall through
1623 case Bytecodes::_f2i: // fall through
1624 case Bytecodes::_d2i: // fall through
1625 case Bytecodes::_i2b: // fall through
1626 case Bytecodes::_i2c: // fall through
1627 case Bytecodes::_i2s: tos_out = itos; break;
1628 case Bytecodes::_i2l: // fall through
1629 case Bytecodes::_f2l: // fall through
1630 case Bytecodes::_d2l: tos_out = ltos; break;
1631 case Bytecodes::_i2f: // fall through
1632 case Bytecodes::_l2f: // fall through
1633 case Bytecodes::_d2f: tos_out = ftos; break;
1634 case Bytecodes::_i2d: // fall through
1635 case Bytecodes::_l2d: // fall through
1636 case Bytecodes::_f2d: tos_out = dtos; break;
1637 default : ShouldNotReachHere();
1638 }
1639 transition(tos_in, tos_out);
1640 }
1641 #endif // ASSERT
1642 // static const int64_t is_nan = 0x8000000000000000L;
1643
1644 // Conversion
1645 switch (bytecode()) {
1646 case Bytecodes::_i2l:
1647 __ sxtw(r0, r0);
1648 break;
1649 case Bytecodes::_i2f:
1650 __ scvtfws(v0, r0);
1651 break;
1652 case Bytecodes::_i2d:
1653 __ scvtfwd(v0, r0);
1654 break;
1655 case Bytecodes::_i2b:
1656 __ sxtbw(r0, r0);
1657 break;
1658 case Bytecodes::_i2c:
1659 __ uxthw(r0, r0);
1660 break;
1661 case Bytecodes::_i2s:
1662 __ sxthw(r0, r0);
1663 break;
1664 case Bytecodes::_l2i:
1665 __ uxtw(r0, r0);
1666 break;
1667 case Bytecodes::_l2f:
1668 __ scvtfs(v0, r0);
1669 break;
1670 case Bytecodes::_l2d:
1671 __ scvtfd(v0, r0);
1672 break;
1673 case Bytecodes::_f2i:
1674 {
1675 Label L_Okay;
1676 __ clear_fpsr();
1677 __ fcvtzsw(r0, v0);
1678 __ get_fpsr(r1);
1679 __ cbzw(r1, L_Okay);
1680 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i));
1681 __ bind(L_Okay);
1682 }
1683 break;
1684 case Bytecodes::_f2l:
1685 {
1686 Label L_Okay;
1687 __ clear_fpsr();
1688 __ fcvtzs(r0, v0);
1689 __ get_fpsr(r1);
1690 __ cbzw(r1, L_Okay);
1691 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1692 __ bind(L_Okay);
1693 }
1694 break;
1695 case Bytecodes::_f2d:
1696 __ fcvts(v0, v0);
1697 break;
1698 case Bytecodes::_d2i:
1699 {
1700 Label L_Okay;
1701 __ clear_fpsr();
1702 __ fcvtzdw(r0, v0);
1703 __ get_fpsr(r1);
1704 __ cbzw(r1, L_Okay);
1705 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
1706 __ bind(L_Okay);
1707 }
1708 break;
1709 case Bytecodes::_d2l:
1710 {
1711 Label L_Okay;
1712 __ clear_fpsr();
1713 __ fcvtzd(r0, v0);
1714 __ get_fpsr(r1);
1715 __ cbzw(r1, L_Okay);
1716 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1717 __ bind(L_Okay);
1718 }
1719 break;
1720 case Bytecodes::_d2f:
1721 __ fcvtd(v0, v0);
1722 break;
1723 default:
1724 ShouldNotReachHere();
1725 }
1726 }
1727
1728 void TemplateTable::lcmp()
1729 {
1730 transition(ltos, itos);
1731 Label done;
1732 __ pop_l(r1);
1733 __ cmp(r1, r0);
1734 __ mov(r0, (uint64_t)-1L);
1735 __ br(Assembler::LT, done);
1736 // __ mov(r0, 1UL);
1737 // __ csel(r0, r0, zr, Assembler::NE);
1738 // and here is a faster way
1739 __ csinc(r0, zr, zr, Assembler::EQ);
1740 __ bind(done);
1741 }
1742
1743 void TemplateTable::float_cmp(bool is_float, int unordered_result)
1744 {
1745 Label done;
1746 if (is_float) {
1747 // XXX get rid of pop here, use ... reg, mem32
1748 __ pop_f(v1);
1749 __ fcmps(v1, v0);
1750 } else {
1751 // XXX get rid of pop here, use ... reg, mem64
1752 __ pop_d(v1);
1753 __ fcmpd(v1, v0);
1754 }
1755 if (unordered_result < 0) {
1756 // we want -1 for unordered or less than, 0 for equal and 1 for
1757 // greater than.
1758 __ mov(r0, (uint64_t)-1L);
1759 // for FP LT tests less than or unordered
1760 __ br(Assembler::LT, done);
1761 // install 0 for EQ otherwise 1
1762 __ csinc(r0, zr, zr, Assembler::EQ);
1763 } else {
1764 // we want -1 for less than, 0 for equal and 1 for unordered or
1765 // greater than.
1766 __ mov(r0, 1L);
1767 // for FP HI tests greater than or unordered
1768 __ br(Assembler::HI, done);
1769 // install 0 for EQ otherwise ~0
1770 __ csinv(r0, zr, zr, Assembler::EQ);
1771
1772 }
1773 __ bind(done);
1774 }
1775
1776 void TemplateTable::branch(bool is_jsr, bool is_wide)
1777 {
1778 __ profile_taken_branch(r0);
1779 const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1780 InvocationCounter::counter_offset();
1781 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1782 InvocationCounter::counter_offset();
1783
1784 // load branch displacement
1785 if (!is_wide) {
1786 __ ldrh(r2, at_bcp(1));
1787 __ rev16(r2, r2);
1788 // sign extend the 16 bit value in r2
1789 __ sbfm(r2, r2, 0, 15);
1790 } else {
1791 __ ldrw(r2, at_bcp(1));
1792 __ revw(r2, r2);
1793 // sign extend the 32 bit value in r2
1794 __ sbfm(r2, r2, 0, 31);
1795 }
1796
1797 // Handle all the JSR stuff here, then exit.
1798 // It's much shorter and cleaner than intermingling with the non-JSR
1799 // normal-branch stuff occurring below.
1800
1801 if (is_jsr) {
1802 // Pre-load the next target bytecode into rscratch1
1803 __ load_unsigned_byte(rscratch1, Address(rbcp, r2));
1804 // compute return address as bci
1805 __ ldr(rscratch2, Address(rmethod, Method::const_offset()));
1806 __ add(rscratch2, rscratch2,
1807 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3));
1808 __ sub(r1, rbcp, rscratch2);
1809 __ push_i(r1);
1810 // Adjust the bcp by the 16-bit displacement in r2
1811 __ add(rbcp, rbcp, r2);
1812 __ dispatch_only(vtos, /*generate_poll*/true);
1813 return;
1814 }
1815
1816 // Normal (non-jsr) branch handling
1817
1818 // Adjust the bcp by the displacement in r2
1819 __ add(rbcp, rbcp, r2);
1820
1821 assert(UseLoopCounter || !UseOnStackReplacement,
1822 "on-stack-replacement requires loop counters");
1823 Label backedge_counter_overflow;
1824 Label dispatch;
1825 if (UseLoopCounter) {
1826 // increment backedge counter for backward branches
1827 // r0: MDO
1828 // r2: target offset
1829 __ cmp(r2, zr);
1830 __ br(Assembler::GT, dispatch); // count only if backward branch
1831
1832 // ECN: FIXME: This code smells
1833 // check if MethodCounters exists
1834 Label has_counters;
1835 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1836 __ cbnz(rscratch1, has_counters);
1837 __ push(r0);
1838 __ push(r2);
1839 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
1840 InterpreterRuntime::build_method_counters), rmethod);
1841 __ pop(r2);
1842 __ pop(r0);
1843 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1844 __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory
1845 __ bind(has_counters);
1846
1847 Label no_mdo;
1848 int increment = InvocationCounter::count_increment;
1849 if (ProfileInterpreter) {
1850 // Are we profiling?
1851 __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
1852 __ cbz(r1, no_mdo);
1853 // Increment the MDO backedge counter
1854 const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) +
1855 in_bytes(InvocationCounter::counter_offset()));
1856 const Address mask(r1, in_bytes(MethodData::backedge_mask_offset()));
1857 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1858 r0, rscratch1, false, Assembler::EQ,
1859 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1860 __ b(dispatch);
1861 }
1862 __ bind(no_mdo);
1863 // Increment backedge counter in MethodCounters*
1864 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1865 const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset()));
1866 __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask,
1867 r0, rscratch2, false, Assembler::EQ,
1868 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1869 __ bind(dispatch);
1870 }
1871
1872 // Pre-load the next target bytecode into rscratch1
1873 __ load_unsigned_byte(rscratch1, Address(rbcp, 0));
1874
1875 // continue with the bytecode @ target
1876 // rscratch1: target bytecode
1877 // rbcp: target bcp
1878 __ dispatch_only(vtos, /*generate_poll*/true);
1879
1880 if (UseLoopCounter && UseOnStackReplacement) {
1881 // invocation counter overflow
1882 __ bind(backedge_counter_overflow);
1883 __ neg(r2, r2);
1884 __ add(r2, r2, rbcp); // branch bcp
1885 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1886 __ call_VM(noreg,
1887 CAST_FROM_FN_PTR(address,
1888 InterpreterRuntime::frequency_counter_overflow),
1889 r2);
1890 __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode
1891
1892 // r0: osr nmethod (osr ok) or null (osr not possible)
1893 // w1: target bytecode
1894 // r2: scratch
1895 __ cbz(r0, dispatch); // test result -- no osr if null
1896 // nmethod may have been invalidated (VM may block upon call_VM return)
1897 __ ldrb(r2, Address(r0, nmethod::state_offset()));
1898 if (nmethod::in_use != 0)
1899 __ sub(r2, r2, nmethod::in_use);
1900 __ cbnz(r2, dispatch);
1901
1902 // We have the address of an on stack replacement routine in r0
1903 // We need to prepare to execute the OSR method. First we must
1904 // migrate the locals and monitors off of the stack.
1905
1906 __ mov(r19, r0); // save the nmethod
1907
1908 JFR_ONLY(__ enter_jfr_critical_section();)
1909
1910 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1911
1912 // r0 is OSR buffer, move it to expected parameter location
1913 __ mov(j_rarg0, r0);
1914
1915 // remove activation
1916 // get sender esp
1917 __ ldr(esp,
1918 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
1919 // remove frame anchor
1920 __ leave();
1921
1922 JFR_ONLY(__ leave_jfr_critical_section();)
1923
1924 // Ensure compiled code always sees stack at proper alignment
1925 __ andr(sp, esp, -16);
1926
1927 // and begin the OSR nmethod
1928 __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset()));
1929 __ br(rscratch1);
1930 }
1931 }
1932
1933
1934 void TemplateTable::if_0cmp(Condition cc)
1935 {
1936 transition(itos, vtos);
1937 // assume branch is more often taken than not (loops use backward branches)
1938 Label not_taken;
1939 if (cc == equal)
1940 __ cbnzw(r0, not_taken);
1941 else if (cc == not_equal)
1942 __ cbzw(r0, not_taken);
1943 else {
1944 __ andsw(zr, r0, r0);
1945 __ br(j_not(cc), not_taken);
1946 }
1947
1948 branch(false, false);
1949 __ bind(not_taken);
1950 __ profile_not_taken_branch(r0);
1951 }
1952
1953 void TemplateTable::if_icmp(Condition cc)
1954 {
1955 transition(itos, vtos);
1956 // assume branch is more often taken than not (loops use backward branches)
1957 Label not_taken;
1958 __ pop_i(r1);
1959 __ cmpw(r1, r0, Assembler::LSL);
1960 __ br(j_not(cc), not_taken);
1961 branch(false, false);
1962 __ bind(not_taken);
1963 __ profile_not_taken_branch(r0);
1964 }
1965
1966 void TemplateTable::if_nullcmp(Condition cc)
1967 {
1968 transition(atos, vtos);
1969 // assume branch is more often taken than not (loops use backward branches)
1970 Label not_taken;
1971 if (cc == equal)
1972 __ cbnz(r0, not_taken);
1973 else
1974 __ cbz(r0, not_taken);
1975 branch(false, false);
1976 __ bind(not_taken);
1977 __ profile_not_taken_branch(r0);
1978 }
1979
1980 void TemplateTable::if_acmp(Condition cc)
1981 {
1982 transition(atos, vtos);
1983 // assume branch is more often taken than not (loops use backward branches)
1984 Label not_taken;
1985 __ pop_ptr(r1);
1986 __ cmpoop(r1, r0);
1987 __ br(j_not(cc), not_taken);
1988 branch(false, false);
1989 __ bind(not_taken);
1990 __ profile_not_taken_branch(r0);
1991 }
1992
1993 void TemplateTable::ret() {
1994 transition(vtos, vtos);
1995 locals_index(r1);
1996 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1997 __ profile_ret(r1, r2);
1998 __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1999 __ lea(rbcp, Address(rbcp, r1));
2000 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2001 __ dispatch_next(vtos, 0, /*generate_poll*/true);
2002 }
2003
2004 void TemplateTable::wide_ret() {
2005 transition(vtos, vtos);
2006 locals_index_wide(r1);
2007 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2008 __ profile_ret(r1, r2);
2009 __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2010 __ lea(rbcp, Address(rbcp, r1));
2011 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2012 __ dispatch_next(vtos, 0, /*generate_poll*/true);
2013 }
2014
2015
2016 void TemplateTable::tableswitch() {
2017 Label default_case, continue_execution;
2018 transition(itos, vtos);
2019 // align rbcp
2020 __ lea(r1, at_bcp(BytesPerInt));
2021 __ andr(r1, r1, -BytesPerInt);
2022 // load lo & hi
2023 __ ldrw(r2, Address(r1, BytesPerInt));
2024 __ ldrw(r3, Address(r1, 2 * BytesPerInt));
2025 __ rev32(r2, r2);
2026 __ rev32(r3, r3);
2027 // check against lo & hi
2028 __ cmpw(r0, r2);
2029 __ br(Assembler::LT, default_case);
2030 __ cmpw(r0, r3);
2031 __ br(Assembler::GT, default_case);
2032 // lookup dispatch offset
2033 __ subw(r0, r0, r2);
2034 __ lea(r3, Address(r1, r0, Address::uxtw(2)));
2035 __ ldrw(r3, Address(r3, 3 * BytesPerInt));
2036 __ profile_switch_case(r0, r1, r2);
2037 // continue execution
2038 __ bind(continue_execution);
2039 __ rev32(r3, r3);
2040 __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0)));
2041 __ add(rbcp, rbcp, r3, ext::sxtw);
2042 __ dispatch_only(vtos, /*generate_poll*/true);
2043 // handle default
2044 __ bind(default_case);
2045 __ profile_switch_default(r0);
2046 __ ldrw(r3, Address(r1, 0));
2047 __ b(continue_execution);
2048 }
2049
2050 void TemplateTable::lookupswitch() {
2051 transition(itos, itos);
2052 __ stop("lookupswitch bytecode should have been rewritten");
2053 }
2054
2055 void TemplateTable::fast_linearswitch() {
2056 transition(itos, vtos);
2057 Label loop_entry, loop, found, continue_execution;
2058 // bswap r0 so we can avoid bswapping the table entries
2059 __ rev32(r0, r0);
2060 // align rbcp
2061 __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2062 // this instruction (change offsets
2063 // below)
2064 __ andr(r19, r19, -BytesPerInt);
2065 // set counter
2066 __ ldrw(r1, Address(r19, BytesPerInt));
2067 __ rev32(r1, r1);
2068 __ b(loop_entry);
2069 // table search
2070 __ bind(loop);
2071 __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2072 __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt));
2073 __ cmpw(r0, rscratch1);
2074 __ br(Assembler::EQ, found);
2075 __ bind(loop_entry);
2076 __ subs(r1, r1, 1);
2077 __ br(Assembler::PL, loop);
2078 // default case
2079 __ profile_switch_default(r0);
2080 __ ldrw(r3, Address(r19, 0));
2081 __ b(continue_execution);
2082 // entry found -> get offset
2083 __ bind(found);
2084 __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2085 __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt));
2086 __ profile_switch_case(r1, r0, r19);
2087 // continue execution
2088 __ bind(continue_execution);
2089 __ rev32(r3, r3);
2090 __ add(rbcp, rbcp, r3, ext::sxtw);
2091 __ ldrb(rscratch1, Address(rbcp, 0));
2092 __ dispatch_only(vtos, /*generate_poll*/true);
2093 }
2094
2095 void TemplateTable::fast_binaryswitch() {
2096 transition(itos, vtos);
2097 // Implementation using the following core algorithm:
2098 //
2099 // int binary_search(int key, LookupswitchPair* array, int n) {
2100 // // Binary search according to "Methodik des Programmierens" by
2101 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2102 // int i = 0;
2103 // int j = n;
2104 // while (i+1 < j) {
2105 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2106 // // with Q: for all i: 0 <= i < n: key < a[i]
2107 // // where a stands for the array and assuming that the (inexisting)
2108 // // element a[n] is infinitely big.
2109 // int h = (i + j) >> 1;
2110 // // i < h < j
2111 // if (key < array[h].fast_match()) {
2112 // j = h;
2113 // } else {
2114 // i = h;
2115 // }
2116 // }
2117 // // R: a[i] <= key < a[i+1] or Q
2118 // // (i.e., if key is within array, i is the correct index)
2119 // return i;
2120 // }
2121
2122 // Register allocation
2123 const Register key = r0; // already set (tosca)
2124 const Register array = r1;
2125 const Register i = r2;
2126 const Register j = r3;
2127 const Register h = rscratch1;
2128 const Register temp = rscratch2;
2129
2130 // Find array start
2131 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2132 // get rid of this
2133 // instruction (change
2134 // offsets below)
2135 __ andr(array, array, -BytesPerInt);
2136
2137 // Initialize i & j
2138 __ mov(i, 0); // i = 0;
2139 __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array);
2140
2141 // Convert j into native byteordering
2142 __ rev32(j, j);
2143
2144 // And start
2145 Label entry;
2146 __ b(entry);
2147
2148 // binary search loop
2149 {
2150 Label loop;
2151 __ bind(loop);
2152 // int h = (i + j) >> 1;
2153 __ addw(h, i, j); // h = i + j;
2154 __ lsrw(h, h, 1); // h = (i + j) >> 1;
2155 // if (key < array[h].fast_match()) {
2156 // j = h;
2157 // } else {
2158 // i = h;
2159 // }
2160 // Convert array[h].match to native byte-ordering before compare
2161 __ ldr(temp, Address(array, h, Address::lsl(3)));
2162 __ rev32(temp, temp);
2163 __ cmpw(key, temp);
2164 // j = h if (key < array[h].fast_match())
2165 __ csel(j, h, j, Assembler::LT);
2166 // i = h if (key >= array[h].fast_match())
2167 __ csel(i, h, i, Assembler::GE);
2168 // while (i+1 < j)
2169 __ bind(entry);
2170 __ addw(h, i, 1); // i+1
2171 __ cmpw(h, j); // i+1 < j
2172 __ br(Assembler::LT, loop);
2173 }
2174
2175 // end of binary search, result index is i (must check again!)
2176 Label default_case;
2177 // Convert array[i].match to native byte-ordering before compare
2178 __ ldr(temp, Address(array, i, Address::lsl(3)));
2179 __ rev32(temp, temp);
2180 __ cmpw(key, temp);
2181 __ br(Assembler::NE, default_case);
2182
2183 // entry found -> j = offset
2184 __ add(j, array, i, ext::uxtx, 3);
2185 __ ldrw(j, Address(j, BytesPerInt));
2186 __ profile_switch_case(i, key, array);
2187 __ rev32(j, j);
2188 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2189 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2190 __ dispatch_only(vtos, /*generate_poll*/true);
2191
2192 // default case -> j = default offset
2193 __ bind(default_case);
2194 __ profile_switch_default(i);
2195 __ ldrw(j, Address(array, -2 * BytesPerInt));
2196 __ rev32(j, j);
2197 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2198 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2199 __ dispatch_only(vtos, /*generate_poll*/true);
2200 }
2201
2202
2203 void TemplateTable::_return(TosState state)
2204 {
2205 transition(state, state);
2206 assert(_desc->calls_vm(),
2207 "inconsistent calls_vm information"); // call in remove_activation
2208
2209 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2210 assert(state == vtos, "only valid state");
2211
2212 __ ldr(c_rarg1, aaddress(0));
2213 __ load_klass(r3, c_rarg1);
2214 __ ldrb(r3, Address(r3, Klass::misc_flags_offset()));
2215 Label skip_register_finalizer;
2216 __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer);
2217
2218 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2219
2220 __ bind(skip_register_finalizer);
2221 }
2222
2223 // Issue a StoreStore barrier after all stores but before return
2224 // from any constructor for any class with a final field. We don't
2225 // know if this is a finalizer, so we always do so.
2226 if (_desc->bytecode() == Bytecodes::_return)
2227 __ membar(MacroAssembler::StoreStore);
2228
2229 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2230 Label no_safepoint;
2231 __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset()));
2232 __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint);
2233 __ push(state);
2234 __ push_cont_fastpath(rthread);
2235 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2236 __ pop_cont_fastpath(rthread);
2237 __ pop(state);
2238 __ bind(no_safepoint);
2239 }
2240
2241 // Narrow result if state is itos but result type is smaller.
2242 // Need to narrow in the return bytecode rather than in generate_return_entry
2243 // since compiled code callers expect the result to already be narrowed.
2244 if (state == itos) {
2245 __ narrow(r0);
2246 }
2247
2248 __ remove_activation(state);
2249 __ ret(lr);
2250 }
2251
2252 // ----------------------------------------------------------------------------
2253 // Volatile variables demand their effects be made known to all CPU's
2254 // in order. Store buffers on most chips allow reads & writes to
2255 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2256 // without some kind of memory barrier (i.e., it's not sufficient that
2257 // the interpreter does not reorder volatile references, the hardware
2258 // also must not reorder them).
2259 //
2260 // According to the new Java Memory Model (JMM):
2261 // (1) All volatiles are serialized wrt to each other. ALSO reads &
2262 // writes act as acquire & release, so:
2263 // (2) A read cannot let unrelated NON-volatile memory refs that
2264 // happen after the read float up to before the read. It's OK for
2265 // non-volatile memory refs that happen before the volatile read to
2266 // float down below it.
2267 // (3) Similar a volatile write cannot let unrelated NON-volatile
2268 // memory refs that happen BEFORE the write float down to after the
2269 // write. It's OK for non-volatile memory refs that happen after the
2270 // volatile write to float up before it.
2271 //
2272 // We only put in barriers around volatile refs (they are expensive),
2273 // not _between_ memory refs (that would require us to track the
2274 // flavor of the previous memory refs). Requirements (2) and (3)
2275 // require some barriers before volatile stores and after volatile
2276 // loads. These nearly cover requirement (1) but miss the
2277 // volatile-store-volatile-load case. This final case is placed after
2278 // volatile-stores although it could just as well go before
2279 // volatile-loads.
2280
2281 void TemplateTable::resolve_cache_and_index_for_method(int byte_no,
2282 Register Rcache,
2283 Register index) {
2284 const Register temp = r19;
2285 assert_different_registers(Rcache, index, temp);
2286 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2287
2288 Label L_clinit_barrier_slow, L_done;
2289
2290 Bytecodes::Code code = bytecode();
2291 __ load_method_entry(Rcache, index);
2292 switch(byte_no) {
2293 case f1_byte:
2294 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode1_offset())));
2295 break;
2296 case f2_byte:
2297 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode2_offset())));
2298 break;
2299 }
2300 // Load-acquire the bytecode to match store-release in InterpreterRuntime
2301 __ ldarb(temp, temp);
2302 __ subs(zr, temp, (int) code); // have we resolved this bytecode?
2303
2304 // Class initialization barrier for static methods
2305 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
2306 __ br(Assembler::NE, L_clinit_barrier_slow);
2307 __ ldr(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset())));
2308 __ load_method_holder(temp, temp);
2309 __ clinit_barrier(temp, rscratch1, &L_done, /*L_slow_path*/ nullptr);
2310 __ bind(L_clinit_barrier_slow);
2311 } else {
2312 __ br(Assembler::EQ, L_done);
2313 }
2314
2315 // resolve first time through
2316 // Class initialization barrier slow path lands here as well.
2317 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2318 __ mov(temp, (int) code);
2319 __ call_VM_preemptable(noreg, entry, temp);
2320
2321 // Update registers with resolved info
2322 __ load_method_entry(Rcache, index);
2323 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset
2324 // so all clients ofthis method must be modified accordingly
2325 __ bind(L_done);
2326 }
2327
2328 void TemplateTable::resolve_cache_and_index_for_field(int byte_no,
2329 Register Rcache,
2330 Register index) {
2331 const Register temp = r19;
2332 assert_different_registers(Rcache, index, temp);
2333
2334 Label L_clinit_barrier_slow, L_done;
2335
2336 Bytecodes::Code code = bytecode();
2337 switch (code) {
2338 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2339 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2340 default: break;
2341 }
2342
2343 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2344 __ load_field_entry(Rcache, index);
2345 if (byte_no == f1_byte) {
2346 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::get_code_offset())));
2347 } else {
2348 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::put_code_offset())));
2349 }
2350 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in()
2351 __ ldarb(temp, temp);
2352 __ subs(zr, temp, (int) code); // have we resolved this bytecode?
2353
2354 // Class initialization barrier for static fields
2355 if (VM_Version::supports_fast_class_init_checks() &&
2356 (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) {
2357 const Register field_holder = temp;
2358
2359 __ br(Assembler::NE, L_clinit_barrier_slow);
2360 __ ldr(field_holder, Address(Rcache, in_bytes(ResolvedFieldEntry::field_holder_offset())));
2361 __ clinit_barrier(field_holder, rscratch1, &L_done, /*L_slow_path*/ nullptr);
2362 __ bind(L_clinit_barrier_slow);
2363 } else {
2364 __ br(Assembler::EQ, L_done);
2365 }
2366
2367 // resolve first time through
2368 // Class initialization barrier slow path lands here as well.
2369 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2370 __ mov(temp, (int) code);
2371 __ call_VM_preemptable(noreg, entry, temp);
2372
2373 // Update registers with resolved info
2374 __ load_field_entry(Rcache, index);
2375 __ bind(L_done);
2376 }
2377
2378 void TemplateTable::load_resolved_field_entry(Register obj,
2379 Register cache,
2380 Register tos_state,
2381 Register offset,
2382 Register flags,
2383 bool is_static = false) {
2384 assert_different_registers(cache, tos_state, flags, offset);
2385
2386 // Field offset
2387 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
2388
2389 // Flags
2390 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset())));
2391
2392 // TOS state
2393 if (tos_state != noreg) {
2394 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset())));
2395 }
2396
2397 // Klass overwrite register
2398 if (is_static) {
2399 __ ldr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2400 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2401 __ ldr(obj, Address(obj, mirror_offset));
2402 __ resolve_oop_handle(obj, r5, rscratch2);
2403 }
2404 }
2405
2406 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache,
2407 Register method,
2408 Register flags) {
2409
2410 // setup registers
2411 const Register index = flags;
2412 assert_different_registers(method, cache, flags);
2413
2414 // determine constant pool cache field offsets
2415 resolve_cache_and_index_for_method(f1_byte, cache, index);
2416 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2417 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2418 }
2419
2420 void TemplateTable::load_resolved_method_entry_handle(Register cache,
2421 Register method,
2422 Register ref_index,
2423 Register flags) {
2424 // setup registers
2425 const Register index = ref_index;
2426 assert_different_registers(method, flags);
2427 assert_different_registers(method, cache, index);
2428
2429 // determine constant pool cache field offsets
2430 resolve_cache_and_index_for_method(f1_byte, cache, index);
2431 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2432
2433 // maybe push appendix to arguments (just before return address)
2434 Label L_no_push;
2435 __ tbz(flags, ResolvedMethodEntry::has_appendix_shift, L_no_push);
2436 // invokehandle uses an index into the resolved references array
2437 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset())));
2438 // Push the appendix as a trailing parameter.
2439 // This must be done before we get the receiver,
2440 // since the parameter_size includes it.
2441 Register appendix = method;
2442 __ load_resolved_reference_at_index(appendix, ref_index);
2443 __ push(appendix); // push appendix (MethodType, CallSite, etc.)
2444 __ bind(L_no_push);
2445
2446 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2447 }
2448
2449 void TemplateTable::load_resolved_method_entry_interface(Register cache,
2450 Register klass,
2451 Register method_or_table_index,
2452 Register flags) {
2453 // setup registers
2454 const Register index = method_or_table_index;
2455 assert_different_registers(method_or_table_index, cache, flags);
2456
2457 // determine constant pool cache field offsets
2458 resolve_cache_and_index_for_method(f1_byte, cache, index);
2459 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2460
2461 // Invokeinterface can behave in different ways:
2462 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will
2463 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or
2464 // vtable index is placed in the register.
2465 // Otherwise, the registers will be populated with the klass and method.
2466
2467 Label NotVirtual; Label NotVFinal; Label Done;
2468 __ tbz(flags, ResolvedMethodEntry::is_forced_virtual_shift, NotVirtual);
2469 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal);
2470 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2471 __ b(Done);
2472
2473 __ bind(NotVFinal);
2474 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2475 __ b(Done);
2476
2477 __ bind(NotVirtual);
2478 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2479 __ ldr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset())));
2480 __ bind(Done);
2481 }
2482
2483 void TemplateTable::load_resolved_method_entry_virtual(Register cache,
2484 Register method_or_table_index,
2485 Register flags) {
2486 // setup registers
2487 const Register index = flags;
2488 assert_different_registers(method_or_table_index, cache, flags);
2489
2490 // determine constant pool cache field offsets
2491 resolve_cache_and_index_for_method(f2_byte, cache, index);
2492 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2493
2494 // method_or_table_index can either be an itable index or a method depending on the virtual final flag
2495 Label NotVFinal; Label Done;
2496 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal);
2497 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2498 __ b(Done);
2499
2500 __ bind(NotVFinal);
2501 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2502 __ bind(Done);
2503 }
2504
2505 // The rmethod register is input and overwritten to be the adapter method for the
2506 // indy call. Link Register (lr) is set to the return address for the adapter and
2507 // an appendix may be pushed to the stack. Registers r0-r3 are clobbered
2508 void TemplateTable::load_invokedynamic_entry(Register method) {
2509 // setup registers
2510 const Register appendix = r0;
2511 const Register cache = r2;
2512 const Register index = r3;
2513 assert_different_registers(method, appendix, cache, index, rcpool);
2514
2515 __ save_bcp();
2516
2517 Label resolved;
2518
2519 __ load_resolved_indy_entry(cache, index);
2520 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in()
2521 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2522 __ ldar(method, method);
2523
2524 // Compare the method to zero
2525 __ cbnz(method, resolved);
2526
2527 Bytecodes::Code code = bytecode();
2528
2529 // Call to the interpreter runtime to resolve invokedynamic
2530 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2531 __ mov(method, code); // this is essentially Bytecodes::_invokedynamic
2532 __ call_VM(noreg, entry, method);
2533 // Update registers with resolved info
2534 __ load_resolved_indy_entry(cache, index);
2535 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in()
2536 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2537 __ ldar(method, method);
2538
2539 #ifdef ASSERT
2540 __ cbnz(method, resolved);
2541 __ stop("Should be resolved by now");
2542 #endif // ASSERT
2543 __ bind(resolved);
2544
2545 Label L_no_push;
2546 // Check if there is an appendix
2547 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset())));
2548 __ tbz(index, ResolvedIndyEntry::has_appendix_shift, L_no_push);
2549
2550 // Get appendix
2551 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset())));
2552 // Push the appendix as a trailing parameter
2553 // since the parameter_size includes it.
2554 __ push(method);
2555 __ mov(method, index);
2556 __ load_resolved_reference_at_index(appendix, method);
2557 __ verify_oop(appendix);
2558 __ pop(method);
2559 __ push(appendix); // push appendix (MethodType, CallSite, etc.)
2560 __ bind(L_no_push);
2561
2562 // compute return type
2563 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset())));
2564 // load return address
2565 // Return address is loaded into link register(lr) and not pushed to the stack
2566 // like x86
2567 {
2568 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2569 __ mov(rscratch1, table_addr);
2570 __ ldr(lr, Address(rscratch1, index, Address::lsl(3)));
2571 }
2572 }
2573
2574 // The registers cache and index expected to be set before call.
2575 // Correct values of the cache and index registers are preserved.
2576 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2577 bool is_static, bool has_tos) {
2578 // do the JVMTI work here to avoid disturbing the register state below
2579 // We use c_rarg registers here because we want to use the register used in
2580 // the call to the VM
2581 if (JvmtiExport::can_post_field_access()) {
2582 // Check to see if a field access watch has been set before we
2583 // take the time to call into the VM.
2584 Label L1;
2585 assert_different_registers(cache, index, r0);
2586 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2587 __ ldrw(r0, Address(rscratch1));
2588 __ cbzw(r0, L1);
2589
2590 __ load_field_entry(c_rarg2, index);
2591
2592 if (is_static) {
2593 __ mov(c_rarg1, zr); // null object reference
2594 } else {
2595 __ ldr(c_rarg1, at_tos()); // get object pointer without popping it
2596 __ verify_oop(c_rarg1);
2597 }
2598 // c_rarg1: object pointer or null
2599 // c_rarg2: cache entry pointer
2600 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2601 InterpreterRuntime::post_field_access),
2602 c_rarg1, c_rarg2);
2603 __ load_field_entry(cache, index);
2604 __ bind(L1);
2605 }
2606 }
2607
2608 void TemplateTable::pop_and_check_object(Register r)
2609 {
2610 __ pop_ptr(r);
2611 __ null_check(r); // for field access must check obj.
2612 __ verify_oop(r);
2613 }
2614
2615 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2616 {
2617 const Register cache = r4;
2618 const Register obj = r4;
2619 const Register index = r3;
2620 const Register tos_state = r3;
2621 const Register off = r19;
2622 const Register flags = r6;
2623 const Register bc = r4; // uses same reg as obj, so don't mix them
2624
2625 resolve_cache_and_index_for_field(byte_no, cache, index);
2626 jvmti_post_field_access(cache, index, is_static, false);
2627 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2628
2629 if (!is_static) {
2630 // obj is on the stack
2631 pop_and_check_object(obj);
2632 }
2633
2634 // 8179954: We need to make sure that the code generated for
2635 // volatile accesses forms a sequentially-consistent set of
2636 // operations when combined with STLR and LDAR. Without a leading
2637 // membar it's possible for a simple Dekker test to fail if loads
2638 // use LDR;DMB but stores use STLR. This can happen if C2 compiles
2639 // the stores in one method and we interpret the loads in another.
2640 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2641 Label notVolatile;
2642 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2643 __ membar(MacroAssembler::AnyAny);
2644 __ bind(notVolatile);
2645 }
2646
2647 const Address field(obj, off);
2648
2649 Label Done, notByte, notBool, notInt, notShort, notChar,
2650 notLong, notFloat, notObj, notDouble;
2651
2652 assert(btos == 0, "change code, btos != 0");
2653 __ cbnz(tos_state, notByte);
2654
2655 // Don't rewrite getstatic, only getfield
2656 if (is_static) rc = may_not_rewrite;
2657
2658 // btos
2659 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
2660 __ push(btos);
2661 // Rewrite bytecode to be faster
2662 if (rc == may_rewrite) {
2663 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2664 }
2665 __ b(Done);
2666
2667 __ bind(notByte);
2668 __ cmp(tos_state, (u1)ztos);
2669 __ br(Assembler::NE, notBool);
2670
2671 // ztos (same code as btos)
2672 __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2673 __ push(ztos);
2674 // Rewrite bytecode to be faster
2675 if (rc == may_rewrite) {
2676 // use btos rewriting, no truncating to t/f bit is needed for getfield.
2677 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2678 }
2679 __ b(Done);
2680
2681 __ bind(notBool);
2682 __ cmp(tos_state, (u1)atos);
2683 __ br(Assembler::NE, notObj);
2684 // atos
2685 do_oop_load(_masm, field, r0, IN_HEAP);
2686 __ push(atos);
2687 if (rc == may_rewrite) {
2688 patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2689 }
2690 __ b(Done);
2691
2692 __ bind(notObj);
2693 __ cmp(tos_state, (u1)itos);
2694 __ br(Assembler::NE, notInt);
2695 // itos
2696 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2697 __ push(itos);
2698 // Rewrite bytecode to be faster
2699 if (rc == may_rewrite) {
2700 patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2701 }
2702 __ b(Done);
2703
2704 __ bind(notInt);
2705 __ cmp(tos_state, (u1)ctos);
2706 __ br(Assembler::NE, notChar);
2707 // ctos
2708 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2709 __ push(ctos);
2710 // Rewrite bytecode to be faster
2711 if (rc == may_rewrite) {
2712 patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1);
2713 }
2714 __ b(Done);
2715
2716 __ bind(notChar);
2717 __ cmp(tos_state, (u1)stos);
2718 __ br(Assembler::NE, notShort);
2719 // stos
2720 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
2721 __ push(stos);
2722 // Rewrite bytecode to be faster
2723 if (rc == may_rewrite) {
2724 patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1);
2725 }
2726 __ b(Done);
2727
2728 __ bind(notShort);
2729 __ cmp(tos_state, (u1)ltos);
2730 __ br(Assembler::NE, notLong);
2731 // ltos
2732 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
2733 __ push(ltos);
2734 // Rewrite bytecode to be faster
2735 if (rc == may_rewrite) {
2736 patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1);
2737 }
2738 __ b(Done);
2739
2740 __ bind(notLong);
2741 __ cmp(tos_state, (u1)ftos);
2742 __ br(Assembler::NE, notFloat);
2743 // ftos
2744 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2745 __ push(ftos);
2746 // Rewrite bytecode to be faster
2747 if (rc == may_rewrite) {
2748 patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1);
2749 }
2750 __ b(Done);
2751
2752 __ bind(notFloat);
2753 #ifdef ASSERT
2754 __ cmp(tos_state, (u1)dtos);
2755 __ br(Assembler::NE, notDouble);
2756 #endif
2757 // dtos
2758 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2759 __ push(dtos);
2760 // Rewrite bytecode to be faster
2761 if (rc == may_rewrite) {
2762 patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1);
2763 }
2764 #ifdef ASSERT
2765 __ b(Done);
2766
2767 __ bind(notDouble);
2768 __ stop("Bad state");
2769 #endif
2770
2771 __ bind(Done);
2772
2773 Label notVolatile;
2774 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2775 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
2776 __ bind(notVolatile);
2777 }
2778
2779
2780 void TemplateTable::getfield(int byte_no)
2781 {
2782 getfield_or_static(byte_no, false);
2783 }
2784
2785 void TemplateTable::nofast_getfield(int byte_no) {
2786 getfield_or_static(byte_no, false, may_not_rewrite);
2787 }
2788
2789 void TemplateTable::getstatic(int byte_no)
2790 {
2791 getfield_or_static(byte_no, true);
2792 }
2793
2794 // The registers cache and index expected to be set before call.
2795 // The function may destroy various registers, just not the cache and index registers.
2796 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2797 transition(vtos, vtos);
2798
2799 if (JvmtiExport::can_post_field_modification()) {
2800 // Check to see if a field modification watch has been set before
2801 // we take the time to call into the VM.
2802 Label L1;
2803 assert_different_registers(cache, index, r0);
2804 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2805 __ ldrw(r0, Address(rscratch1));
2806 __ cbz(r0, L1);
2807
2808 __ mov(c_rarg2, cache);
2809
2810 if (is_static) {
2811 // Life is simple. Null out the object pointer.
2812 __ mov(c_rarg1, zr);
2813 } else {
2814 // Life is harder. The stack holds the value on top, followed by
2815 // the object. We don't know the size of the value, though; it
2816 // could be one or two words depending on its type. As a result,
2817 // we must find the type to determine where the object is.
2818 __ load_unsigned_byte(c_rarg3, Address(c_rarg2, in_bytes(ResolvedFieldEntry::type_offset())));
2819 Label nope2, done, ok;
2820 __ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue
2821 __ cmpw(c_rarg3, ltos);
2822 __ br(Assembler::EQ, ok);
2823 __ cmpw(c_rarg3, dtos);
2824 __ br(Assembler::NE, nope2);
2825 __ bind(ok);
2826 __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2827 __ bind(nope2);
2828 }
2829 // object (tos)
2830 __ mov(c_rarg3, esp);
2831 // c_rarg1: object pointer set up above (null if static)
2832 // c_rarg2: cache entry pointer
2833 // c_rarg3: jvalue object on the stack
2834 __ call_VM(noreg,
2835 CAST_FROM_FN_PTR(address,
2836 InterpreterRuntime::post_field_modification),
2837 c_rarg1, c_rarg2, c_rarg3);
2838 __ load_field_entry(cache, index);
2839 __ bind(L1);
2840 }
2841 }
2842
2843 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2844 transition(vtos, vtos);
2845
2846 const Register cache = r2;
2847 const Register index = r3;
2848 const Register tos_state = r3;
2849 const Register obj = r2;
2850 const Register off = r19;
2851 const Register flags = r0;
2852 const Register bc = r4;
2853
2854 resolve_cache_and_index_for_field(byte_no, cache, index);
2855 jvmti_post_field_mod(cache, index, is_static);
2856 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2857
2858 Label Done;
2859 __ mov(r5, flags);
2860
2861 {
2862 Label notVolatile;
2863 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2864 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2865 __ bind(notVolatile);
2866 }
2867
2868 // field address
2869 const Address field(obj, off);
2870
2871 Label notByte, notBool, notInt, notShort, notChar,
2872 notLong, notFloat, notObj, notDouble;
2873
2874 assert(btos == 0, "change code, btos != 0");
2875 __ cbnz(tos_state, notByte);
2876
2877 // Don't rewrite putstatic, only putfield
2878 if (is_static) rc = may_not_rewrite;
2879
2880 // btos
2881 {
2882 __ pop(btos);
2883 if (!is_static) pop_and_check_object(obj);
2884 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
2885 if (rc == may_rewrite) {
2886 patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no);
2887 }
2888 __ b(Done);
2889 }
2890
2891 __ bind(notByte);
2892 __ cmp(tos_state, (u1)ztos);
2893 __ br(Assembler::NE, notBool);
2894
2895 // ztos
2896 {
2897 __ pop(ztos);
2898 if (!is_static) pop_and_check_object(obj);
2899 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
2900 if (rc == may_rewrite) {
2901 patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
2902 }
2903 __ b(Done);
2904 }
2905
2906 __ bind(notBool);
2907 __ cmp(tos_state, (u1)atos);
2908 __ br(Assembler::NE, notObj);
2909
2910 // atos
2911 {
2912 __ pop(atos);
2913 if (!is_static) pop_and_check_object(obj);
2914 // Store into the field
2915 // Clobbers: r10, r11, r3
2916 do_oop_store(_masm, field, r0, IN_HEAP);
2917 if (rc == may_rewrite) {
2918 patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
2919 }
2920 __ b(Done);
2921 }
2922
2923 __ bind(notObj);
2924 __ cmp(tos_state, (u1)itos);
2925 __ br(Assembler::NE, notInt);
2926
2927 // itos
2928 {
2929 __ pop(itos);
2930 if (!is_static) pop_and_check_object(obj);
2931 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
2932 if (rc == may_rewrite) {
2933 patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
2934 }
2935 __ b(Done);
2936 }
2937
2938 __ bind(notInt);
2939 __ cmp(tos_state, (u1)ctos);
2940 __ br(Assembler::NE, notChar);
2941
2942 // ctos
2943 {
2944 __ pop(ctos);
2945 if (!is_static) pop_and_check_object(obj);
2946 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);
2947 if (rc == may_rewrite) {
2948 patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no);
2949 }
2950 __ b(Done);
2951 }
2952
2953 __ bind(notChar);
2954 __ cmp(tos_state, (u1)stos);
2955 __ br(Assembler::NE, notShort);
2956
2957 // stos
2958 {
2959 __ pop(stos);
2960 if (!is_static) pop_and_check_object(obj);
2961 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
2962 if (rc == may_rewrite) {
2963 patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no);
2964 }
2965 __ b(Done);
2966 }
2967
2968 __ bind(notShort);
2969 __ cmp(tos_state, (u1)ltos);
2970 __ br(Assembler::NE, notLong);
2971
2972 // ltos
2973 {
2974 __ pop(ltos);
2975 if (!is_static) pop_and_check_object(obj);
2976 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
2977 if (rc == may_rewrite) {
2978 patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no);
2979 }
2980 __ b(Done);
2981 }
2982
2983 __ bind(notLong);
2984 __ cmp(tos_state, (u1)ftos);
2985 __ br(Assembler::NE, notFloat);
2986
2987 // ftos
2988 {
2989 __ pop(ftos);
2990 if (!is_static) pop_and_check_object(obj);
2991 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
2992 if (rc == may_rewrite) {
2993 patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no);
2994 }
2995 __ b(Done);
2996 }
2997
2998 __ bind(notFloat);
2999 #ifdef ASSERT
3000 __ cmp(tos_state, (u1)dtos);
3001 __ br(Assembler::NE, notDouble);
3002 #endif
3003
3004 // dtos
3005 {
3006 __ pop(dtos);
3007 if (!is_static) pop_and_check_object(obj);
3008 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3009 if (rc == may_rewrite) {
3010 patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
3011 }
3012 }
3013
3014 #ifdef ASSERT
3015 __ b(Done);
3016
3017 __ bind(notDouble);
3018 __ stop("Bad state");
3019 #endif
3020
3021 __ bind(Done);
3022
3023 {
3024 Label notVolatile;
3025 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3026 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3027 __ bind(notVolatile);
3028 }
3029 }
3030
3031 void TemplateTable::putfield(int byte_no)
3032 {
3033 putfield_or_static(byte_no, false);
3034 }
3035
3036 void TemplateTable::nofast_putfield(int byte_no) {
3037 putfield_or_static(byte_no, false, may_not_rewrite);
3038 }
3039
3040 void TemplateTable::putstatic(int byte_no) {
3041 putfield_or_static(byte_no, true);
3042 }
3043
3044 void TemplateTable::jvmti_post_fast_field_mod() {
3045 if (JvmtiExport::can_post_field_modification()) {
3046 // Check to see if a field modification watch has been set before
3047 // we take the time to call into the VM.
3048 Label L2;
3049 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3050 __ ldrw(c_rarg3, Address(rscratch1));
3051 __ cbzw(c_rarg3, L2);
3052 __ pop_ptr(r19); // copy the object pointer from tos
3053 __ verify_oop(r19);
3054 __ push_ptr(r19); // put the object pointer back on tos
3055 // Save tos values before call_VM() clobbers them. Since we have
3056 // to do it for every data type, we use the saved values as the
3057 // jvalue object.
3058 switch (bytecode()) { // load values into the jvalue object
3059 case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3060 case Bytecodes::_fast_bputfield: // fall through
3061 case Bytecodes::_fast_zputfield: // fall through
3062 case Bytecodes::_fast_sputfield: // fall through
3063 case Bytecodes::_fast_cputfield: // fall through
3064 case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3065 case Bytecodes::_fast_dputfield: __ push_d(); break;
3066 case Bytecodes::_fast_fputfield: __ push_f(); break;
3067 case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3068
3069 default:
3070 ShouldNotReachHere();
3071 }
3072 __ mov(c_rarg3, esp); // points to jvalue on the stack
3073 // access constant pool cache entry
3074 __ load_field_entry(c_rarg2, r0);
3075 __ verify_oop(r19);
3076 // r19: object pointer copied above
3077 // c_rarg2: cache entry pointer
3078 // c_rarg3: jvalue object on the stack
3079 __ call_VM(noreg,
3080 CAST_FROM_FN_PTR(address,
3081 InterpreterRuntime::post_field_modification),
3082 r19, c_rarg2, c_rarg3);
3083
3084 switch (bytecode()) { // restore tos values
3085 case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3086 case Bytecodes::_fast_bputfield: // fall through
3087 case Bytecodes::_fast_zputfield: // fall through
3088 case Bytecodes::_fast_sputfield: // fall through
3089 case Bytecodes::_fast_cputfield: // fall through
3090 case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3091 case Bytecodes::_fast_dputfield: __ pop_d(); break;
3092 case Bytecodes::_fast_fputfield: __ pop_f(); break;
3093 case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3094 default: break;
3095 }
3096 __ bind(L2);
3097 }
3098 }
3099
3100 void TemplateTable::fast_storefield(TosState state)
3101 {
3102 transition(state, vtos);
3103
3104 ByteSize base = ConstantPoolCache::base_offset();
3105
3106 jvmti_post_fast_field_mod();
3107
3108 // access constant pool cache
3109 __ load_field_entry(r2, r1);
3110
3111 // R1: field offset, R2: field holder, R5: flags
3112 load_resolved_field_entry(r2, r2, noreg, r1, r5);
3113 __ verify_field_offset(r1);
3114
3115 {
3116 Label notVolatile;
3117 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3118 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3119 __ bind(notVolatile);
3120 }
3121
3122 Label notVolatile;
3123
3124 // Get object from stack
3125 pop_and_check_object(r2);
3126
3127 // field address
3128 const Address field(r2, r1);
3129
3130 // access field
3131 switch (bytecode()) {
3132 case Bytecodes::_fast_aputfield:
3133 // Clobbers: r10, r11, r3
3134 do_oop_store(_masm, field, r0, IN_HEAP);
3135 break;
3136 case Bytecodes::_fast_lputfield:
3137 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3138 break;
3139 case Bytecodes::_fast_iputfield:
3140 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3141 break;
3142 case Bytecodes::_fast_zputfield:
3143 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3144 break;
3145 case Bytecodes::_fast_bputfield:
3146 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3147 break;
3148 case Bytecodes::_fast_sputfield:
3149 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3150 break;
3151 case Bytecodes::_fast_cputfield:
3152 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);
3153 break;
3154 case Bytecodes::_fast_fputfield:
3155 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
3156 break;
3157 case Bytecodes::_fast_dputfield:
3158 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3159 break;
3160 default:
3161 ShouldNotReachHere();
3162 }
3163
3164 {
3165 Label notVolatile;
3166 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3167 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3168 __ bind(notVolatile);
3169 }
3170 }
3171
3172
3173 void TemplateTable::fast_accessfield(TosState state)
3174 {
3175 transition(atos, state);
3176 // Do the JVMTI work here to avoid disturbing the register state below
3177 if (JvmtiExport::can_post_field_access()) {
3178 // Check to see if a field access watch has been set before we
3179 // take the time to call into the VM.
3180 Label L1;
3181 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3182 __ ldrw(r2, Address(rscratch1));
3183 __ cbzw(r2, L1);
3184 // access constant pool cache entry
3185 __ load_field_entry(c_rarg2, rscratch2);
3186 __ verify_oop(r0);
3187 __ push_ptr(r0); // save object pointer before call_VM() clobbers it
3188 __ mov(c_rarg1, r0);
3189 // c_rarg1: object pointer copied above
3190 // c_rarg2: cache entry pointer
3191 __ call_VM(noreg,
3192 CAST_FROM_FN_PTR(address,
3193 InterpreterRuntime::post_field_access),
3194 c_rarg1, c_rarg2);
3195 __ pop_ptr(r0); // restore object pointer
3196 __ bind(L1);
3197 }
3198
3199 // access constant pool cache
3200 __ load_field_entry(r2, r1);
3201
3202 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3203 __ verify_field_offset(r1);
3204
3205 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3206
3207 // r0: object
3208 __ verify_oop(r0);
3209 __ null_check(r0);
3210 const Address field(r0, r1);
3211
3212 // 8179954: We need to make sure that the code generated for
3213 // volatile accesses forms a sequentially-consistent set of
3214 // operations when combined with STLR and LDAR. Without a leading
3215 // membar it's possible for a simple Dekker test to fail if loads
3216 // use LDR;DMB but stores use STLR. This can happen if C2 compiles
3217 // the stores in one method and we interpret the loads in another.
3218 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3219 Label notVolatile;
3220 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3221 __ membar(MacroAssembler::AnyAny);
3222 __ bind(notVolatile);
3223 }
3224
3225 // access field
3226 switch (bytecode()) {
3227 case Bytecodes::_fast_agetfield:
3228 do_oop_load(_masm, field, r0, IN_HEAP);
3229 __ verify_oop(r0);
3230 break;
3231 case Bytecodes::_fast_lgetfield:
3232 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3233 break;
3234 case Bytecodes::_fast_igetfield:
3235 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3236 break;
3237 case Bytecodes::_fast_bgetfield:
3238 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3239 break;
3240 case Bytecodes::_fast_sgetfield:
3241 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3242 break;
3243 case Bytecodes::_fast_cgetfield:
3244 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3245 break;
3246 case Bytecodes::_fast_fgetfield:
3247 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3248 break;
3249 case Bytecodes::_fast_dgetfield:
3250 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg);
3251 break;
3252 default:
3253 ShouldNotReachHere();
3254 }
3255 {
3256 Label notVolatile;
3257 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3258 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3259 __ bind(notVolatile);
3260 }
3261 }
3262
3263 void TemplateTable::fast_xaccess(TosState state)
3264 {
3265 transition(vtos, state);
3266
3267 // get receiver
3268 __ ldr(r0, aaddress(0));
3269 // access constant pool cache
3270 __ load_field_entry(r2, r3, 2);
3271
3272 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3273 __ verify_field_offset(r1);
3274
3275 // 8179954: We need to make sure that the code generated for
3276 // volatile accesses forms a sequentially-consistent set of
3277 // operations when combined with STLR and LDAR. Without a leading
3278 // membar it's possible for a simple Dekker test to fail if loads
3279 // use LDR;DMB but stores use STLR. This can happen if C2 compiles
3280 // the stores in one method and we interpret the loads in another.
3281 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3282 Label notVolatile;
3283 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3284 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3285 __ membar(MacroAssembler::AnyAny);
3286 __ bind(notVolatile);
3287 }
3288
3289 // make sure exception is reported in correct bcp range (getfield is
3290 // next instruction)
3291 __ increment(rbcp);
3292 __ null_check(r0);
3293 switch (state) {
3294 case itos:
3295 __ access_load_at(T_INT, IN_HEAP, r0, Address(r0, r1, Address::lsl(0)), noreg, noreg);
3296 break;
3297 case atos:
3298 do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP);
3299 __ verify_oop(r0);
3300 break;
3301 case ftos:
3302 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(r0, r1, Address::lsl(0)), noreg, noreg);
3303 break;
3304 default:
3305 ShouldNotReachHere();
3306 }
3307
3308 {
3309 Label notVolatile;
3310 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3311 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3312 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3313 __ bind(notVolatile);
3314 }
3315
3316 __ decrement(rbcp);
3317 }
3318
3319
3320
3321 //-----------------------------------------------------------------------------
3322 // Calls
3323
3324 void TemplateTable::prepare_invoke(Register cache, Register recv) {
3325
3326 Bytecodes::Code code = bytecode();
3327 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic);
3328
3329 // save 'interpreter return address'
3330 __ save_bcp();
3331
3332 // Load TOS state for later
3333 __ load_unsigned_byte(rscratch2, Address(cache, in_bytes(ResolvedMethodEntry::type_offset())));
3334
3335 // load receiver if needed (note: no return address pushed yet)
3336 if (load_receiver) {
3337 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())));
3338 __ add(rscratch1, esp, recv, ext::uxtx, 3);
3339 __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1)));
3340 __ verify_oop(recv);
3341 }
3342
3343 // load return address
3344 {
3345 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3346 __ mov(rscratch1, table_addr);
3347 __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3)));
3348 }
3349 }
3350
3351
3352 void TemplateTable::invokevirtual_helper(Register index,
3353 Register recv,
3354 Register flags)
3355 {
3356 // Uses temporary registers r0, r3
3357 assert_different_registers(index, recv, r0, r3);
3358 // Test for an invoke of a final method
3359 Label notFinal;
3360 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, notFinal);
3361
3362 const Register method = index; // method must be rmethod
3363 assert(method == rmethod,
3364 "Method must be rmethod for interpreter calling convention");
3365
3366 // do the call - the index is actually the method to call
3367 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3368
3369 // It's final, need a null check here!
3370 __ null_check(recv);
3371
3372 // profile this call
3373 __ profile_final_call(r0);
3374 __ profile_arguments_type(r0, method, r4, true);
3375
3376 __ jump_from_interpreted(method, r0);
3377
3378 __ bind(notFinal);
3379
3380 // get receiver klass
3381 __ load_klass(r0, recv);
3382
3383 // profile this call
3384 __ profile_virtual_call(r0, rlocals, r3);
3385
3386 // get target Method & entry point
3387 __ lookup_virtual_method(r0, index, method);
3388 __ profile_arguments_type(r3, method, r4, true);
3389 // FIXME -- this looks completely redundant. is it?
3390 // __ ldr(r3, Address(method, Method::interpreter_entry_offset()));
3391 __ jump_from_interpreted(method, r3);
3392 }
3393
3394 void TemplateTable::invokevirtual(int byte_no)
3395 {
3396 transition(vtos, vtos);
3397 assert(byte_no == f2_byte, "use this argument");
3398
3399 load_resolved_method_entry_virtual(r2, // ResolvedMethodEntry*
3400 rmethod, // Method* or itable index
3401 r3); // flags
3402 prepare_invoke(r2, r2); // recv
3403
3404 // rmethod: index (actually a Method*)
3405 // r2: receiver
3406 // r3: flags
3407
3408 invokevirtual_helper(rmethod, r2, r3);
3409 }
3410
3411 void TemplateTable::invokespecial(int byte_no)
3412 {
3413 transition(vtos, vtos);
3414 assert(byte_no == f1_byte, "use this argument");
3415
3416 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry*
3417 rmethod, // Method*
3418 r3); // flags
3419 prepare_invoke(r2, r2); // get receiver also for null check
3420 __ verify_oop(r2);
3421 __ null_check(r2);
3422 // do the call
3423 __ profile_call(r0);
3424 __ profile_arguments_type(r0, rmethod, rbcp, false);
3425 __ jump_from_interpreted(rmethod, r0);
3426 }
3427
3428 void TemplateTable::invokestatic(int byte_no)
3429 {
3430 transition(vtos, vtos);
3431 assert(byte_no == f1_byte, "use this argument");
3432
3433 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry*
3434 rmethod, // Method*
3435 r3); // flags
3436 prepare_invoke(r2, r2); // get receiver also for null check
3437
3438 // do the call
3439 __ profile_call(r0);
3440 __ profile_arguments_type(r0, rmethod, r4, false);
3441 __ jump_from_interpreted(rmethod, r0);
3442 }
3443
3444 void TemplateTable::fast_invokevfinal(int byte_no)
3445 {
3446 __ call_Unimplemented();
3447 }
3448
3449 void TemplateTable::invokeinterface(int byte_no) {
3450 transition(vtos, vtos);
3451 assert(byte_no == f1_byte, "use this argument");
3452
3453 load_resolved_method_entry_interface(r2, // ResolvedMethodEntry*
3454 r0, // Klass*
3455 rmethod, // Method* or itable/vtable index
3456 r3); // flags
3457 prepare_invoke(r2, r2); // receiver
3458
3459 // r0: interface klass (from f1)
3460 // rmethod: method (from f2)
3461 // r2: receiver
3462 // r3: flags
3463
3464 // First check for Object case, then private interface method,
3465 // then regular interface method.
3466
3467 // Special case of invokeinterface called for virtual method of
3468 // java.lang.Object. See cpCache.cpp for details.
3469 Label notObjectMethod;
3470 __ tbz(r3, ResolvedMethodEntry::is_forced_virtual_shift, notObjectMethod);
3471
3472 invokevirtual_helper(rmethod, r2, r3);
3473 __ bind(notObjectMethod);
3474
3475 Label no_such_interface;
3476
3477 // Check for private method invocation - indicated by vfinal
3478 Label notVFinal;
3479 __ tbz(r3, ResolvedMethodEntry::is_vfinal_shift, notVFinal);
3480
3481 // Get receiver klass into r3
3482 __ load_klass(r3, r2);
3483
3484 Label subtype;
3485 __ check_klass_subtype(r3, r0, r4, subtype);
3486 // If we get here the typecheck failed
3487 __ b(no_such_interface);
3488 __ bind(subtype);
3489
3490 __ profile_final_call(r0);
3491 __ profile_arguments_type(r0, rmethod, r4, true);
3492 __ jump_from_interpreted(rmethod, r0);
3493
3494 __ bind(notVFinal);
3495
3496 // Get receiver klass into r3
3497 __ restore_locals();
3498 __ load_klass(r3, r2);
3499
3500 Label no_such_method;
3501
3502 // Preserve method for throw_AbstractMethodErrorVerbose.
3503 __ mov(r16, rmethod);
3504 // Receiver subtype check against REFC.
3505 // Superklass in r0. Subklass in r3. Blows rscratch2, r13
3506 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3507 r3, r0, noreg,
3508 // outputs: scan temp. reg, scan temp. reg
3509 rscratch2, r13,
3510 no_such_interface,
3511 /*return_method=*/false);
3512
3513 // profile this call
3514 __ profile_virtual_call(r3, r13, r19);
3515
3516 // Get declaring interface class from method, and itable index
3517
3518 __ load_method_holder(r0, rmethod);
3519 __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset()));
3520 __ subw(rmethod, rmethod, Method::itable_index_max);
3521 __ negw(rmethod, rmethod);
3522
3523 // Preserve recvKlass for throw_AbstractMethodErrorVerbose.
3524 __ mov(rlocals, r3);
3525 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3526 rlocals, r0, rmethod,
3527 // outputs: method, scan temp. reg
3528 rmethod, r13,
3529 no_such_interface);
3530
3531 // rmethod,: Method to call
3532 // r2: receiver
3533 // Check for abstract method error
3534 // Note: This should be done more efficiently via a throw_abstract_method_error
3535 // interpreter entry point and a conditional jump to it in case of a null
3536 // method.
3537 __ cbz(rmethod, no_such_method);
3538
3539 __ profile_arguments_type(r3, rmethod, r13, true);
3540
3541 // do the call
3542 // r2: receiver
3543 // rmethod,: Method
3544 __ jump_from_interpreted(rmethod, r3);
3545 __ should_not_reach_here();
3546
3547 // exception handling code follows...
3548 // note: must restore interpreter registers to canonical
3549 // state for exception handling to work correctly!
3550
3551 __ bind(no_such_method);
3552 // throw exception
3553 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
3554 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3555 // Pass arguments for generating a verbose error message.
3556 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16);
3557 // the call_VM checks for exception, so we should never return here.
3558 __ should_not_reach_here();
3559
3560 __ bind(no_such_interface);
3561 // throw exception
3562 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
3563 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3564 // Pass arguments for generating a verbose error message.
3565 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3566 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0);
3567 // the call_VM checks for exception, so we should never return here.
3568 __ should_not_reach_here();
3569 return;
3570 }
3571
3572 void TemplateTable::invokehandle(int byte_no) {
3573 transition(vtos, vtos);
3574 assert(byte_no == f1_byte, "use this argument");
3575
3576 load_resolved_method_entry_handle(r2, // ResolvedMethodEntry*
3577 rmethod, // Method*
3578 r0, // Resolved reference
3579 r3); // flags
3580 prepare_invoke(r2, r2);
3581
3582 __ verify_method_ptr(r2);
3583 __ verify_oop(r2);
3584 __ null_check(r2);
3585
3586 // FIXME: profile the LambdaForm also
3587
3588 // r13 is safe to use here as a scratch reg because it is about to
3589 // be clobbered by jump_from_interpreted().
3590 __ profile_final_call(r13);
3591 __ profile_arguments_type(r13, rmethod, r4, true);
3592
3593 __ jump_from_interpreted(rmethod, r0);
3594 }
3595
3596 void TemplateTable::invokedynamic(int byte_no) {
3597 transition(vtos, vtos);
3598 assert(byte_no == f1_byte, "use this argument");
3599
3600 load_invokedynamic_entry(rmethod);
3601
3602 // r0: CallSite object (from cpool->resolved_references[])
3603 // rmethod: MH.linkToCallSite method
3604
3605 // Note: r0_callsite is already pushed
3606
3607 // %%% should make a type profile for any invokedynamic that takes a ref argument
3608 // profile this call
3609 __ profile_call(rbcp);
3610 __ profile_arguments_type(r3, rmethod, r13, false);
3611
3612 __ verify_oop(r0);
3613
3614 __ jump_from_interpreted(rmethod, r0);
3615 }
3616
3617
3618 //-----------------------------------------------------------------------------
3619 // Allocation
3620
3621 void TemplateTable::_new() {
3622 transition(vtos, atos);
3623
3624 __ get_unsigned_2_byte_index_at_bcp(r3, 1);
3625 Label slow_case;
3626 Label done;
3627 Label initialize_header;
3628
3629 __ get_cpool_and_tags(r4, r0);
3630 // Make sure the class we're about to instantiate has been resolved.
3631 // This is done before loading InstanceKlass to be consistent with the order
3632 // how Constant Pool is updated (see ConstantPool::klass_at_put)
3633 const int tags_offset = Array<u1>::base_offset_in_bytes();
3634 __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3635 __ lea(rscratch1, Address(rscratch1, tags_offset));
3636 __ ldarb(rscratch1, rscratch1);
3637 __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3638 __ br(Assembler::NE, slow_case);
3639
3640 // get InstanceKlass
3641 __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3642
3643 // make sure klass is initialized
3644 assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3645 __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3646
3647 // get instance_size in InstanceKlass (scaled to a count of bytes)
3648 __ ldrw(r3,
3649 Address(r4,
3650 Klass::layout_helper_offset()));
3651 // test to see if it is malformed in some way
3652 __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case);
3653
3654 // Allocate the instance:
3655 // If TLAB is enabled:
3656 // Try to allocate in the TLAB.
3657 // If fails, go to the slow path.
3658 // Initialize the allocation.
3659 // Exit.
3660 //
3661 // Go to slow path.
3662
3663 if (UseTLAB) {
3664 __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case);
3665
3666 if (ZeroTLAB) {
3667 // the fields have been already cleared
3668 __ b(initialize_header);
3669 }
3670
3671 // The object is initialized before the header. If the object size is
3672 // zero, go directly to the header initialization.
3673 int header_size = oopDesc::header_size() * HeapWordSize;
3674 assert(is_aligned(header_size, BytesPerLong), "oop header size must be 8-byte-aligned");
3675 __ sub(r3, r3, header_size);
3676 __ cbz(r3, initialize_header);
3677
3678 // Initialize object fields
3679 {
3680 __ add(r2, r0, header_size);
3681 Label loop;
3682 __ bind(loop);
3683 __ str(zr, Address(__ post(r2, BytesPerLong)));
3684 __ sub(r3, r3, BytesPerLong);
3685 __ cbnz(r3, loop);
3686 }
3687
3688 // initialize object header only.
3689 __ bind(initialize_header);
3690 if (UseCompactObjectHeaders) {
3691 __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset()));
3692 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3693 } else {
3694 __ mov(rscratch1, (intptr_t)markWord::prototype().value());
3695 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3696 __ store_klass_gap(r0, zr); // zero klass gap for compressed oops
3697 __ store_klass(r0, r4); // store klass last
3698 }
3699
3700 if (DTraceAllocProbes) {
3701 // Trigger dtrace event for fastpath
3702 __ push(atos); // save the return value
3703 __ call_VM_leaf(
3704 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0);
3705 __ pop(atos); // restore the return value
3706
3707 }
3708 __ b(done);
3709 }
3710
3711 // slow case
3712 __ bind(slow_case);
3713 __ get_constant_pool(c_rarg1);
3714 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3715 __ call_VM_preemptable(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3716 __ verify_oop(r0);
3717
3718 // continue
3719 __ bind(done);
3720 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3721 __ membar(Assembler::StoreStore);
3722 }
3723
3724 void TemplateTable::newarray() {
3725 transition(itos, atos);
3726 __ load_unsigned_byte(c_rarg1, at_bcp(1));
3727 __ mov(c_rarg2, r0);
3728 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3729 c_rarg1, c_rarg2);
3730 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3731 __ membar(Assembler::StoreStore);
3732 }
3733
3734 void TemplateTable::anewarray() {
3735 transition(itos, atos);
3736 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3737 __ get_constant_pool(c_rarg1);
3738 __ mov(c_rarg3, r0);
3739 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3740 c_rarg1, c_rarg2, c_rarg3);
3741 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3742 __ membar(Assembler::StoreStore);
3743 }
3744
3745 void TemplateTable::arraylength() {
3746 transition(atos, itos);
3747 __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes()));
3748 }
3749
3750 void TemplateTable::checkcast()
3751 {
3752 transition(atos, atos);
3753 Label done, is_null, ok_is_subtype, quicked, resolved;
3754 __ cbz(r0, is_null);
3755
3756 // Get cpool & tags index
3757 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3758 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3759 // See if bytecode has already been quicked
3760 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3761 __ lea(r1, Address(rscratch1, r19));
3762 __ ldarb(r1, r1);
3763 __ cmp(r1, (u1)JVM_CONSTANT_Class);
3764 __ br(Assembler::EQ, quicked);
3765
3766 __ push(atos); // save receiver for result, and for GC
3767 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3768 __ get_vm_result_metadata(r0, rthread);
3769 __ pop(r3); // restore receiver
3770 __ b(resolved);
3771
3772 // Get superklass in r0 and subklass in r3
3773 __ bind(quicked);
3774 __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3775 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3776
3777 __ bind(resolved);
3778 __ load_klass(r19, r3);
3779
3780 // Generate subtype check. Blows r2, r5. Object in r3.
3781 // Superklass in r0. Subklass in r19.
3782 __ gen_subtype_check(r19, ok_is_subtype);
3783
3784 // Come here on failure
3785 __ push(r3);
3786 // object is at TOS
3787 __ b(Interpreter::_throw_ClassCastException_entry);
3788
3789 // Come here on success
3790 __ bind(ok_is_subtype);
3791 __ mov(r0, r3); // Restore object in r3
3792
3793 // Collect counts on whether this test sees nulls a lot or not.
3794 if (ProfileInterpreter) {
3795 __ b(done);
3796 __ bind(is_null);
3797 __ profile_null_seen(r2);
3798 } else {
3799 __ bind(is_null); // same as 'done'
3800 }
3801 __ bind(done);
3802 }
3803
3804 void TemplateTable::instanceof() {
3805 transition(atos, itos);
3806 Label done, is_null, ok_is_subtype, quicked, resolved;
3807 __ cbz(r0, is_null);
3808
3809 // Get cpool & tags index
3810 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3811 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3812 // See if bytecode has already been quicked
3813 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3814 __ lea(r1, Address(rscratch1, r19));
3815 __ ldarb(r1, r1);
3816 __ cmp(r1, (u1)JVM_CONSTANT_Class);
3817 __ br(Assembler::EQ, quicked);
3818
3819 __ push(atos); // save receiver for result, and for GC
3820 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3821 __ get_vm_result_metadata(r0, rthread);
3822 __ pop(r3); // restore receiver
3823 __ verify_oop(r3);
3824 __ load_klass(r3, r3);
3825 __ b(resolved);
3826
3827 // Get superklass in r0 and subklass in r3
3828 __ bind(quicked);
3829 __ load_klass(r3, r0);
3830 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1);
3831
3832 __ bind(resolved);
3833
3834 // Generate subtype check. Blows r2, r5
3835 // Superklass in r0. Subklass in r3.
3836 __ gen_subtype_check(r3, ok_is_subtype);
3837
3838 // Come here on failure
3839 __ mov(r0, 0);
3840 __ b(done);
3841 // Come here on success
3842 __ bind(ok_is_subtype);
3843 __ mov(r0, 1);
3844
3845 // Collect counts on whether this test sees nulls a lot or not.
3846 if (ProfileInterpreter) {
3847 __ b(done);
3848 __ bind(is_null);
3849 __ profile_null_seen(r2);
3850 } else {
3851 __ bind(is_null); // same as 'done'
3852 }
3853 __ bind(done);
3854 // r0 = 0: obj == nullptr or obj is not an instanceof the specified klass
3855 // r0 = 1: obj != nullptr and obj is an instanceof the specified klass
3856 }
3857
3858 //-----------------------------------------------------------------------------
3859 // Breakpoints
3860 void TemplateTable::_breakpoint() {
3861 // Note: We get here even if we are single stepping..
3862 // jbug inists on setting breakpoints at every bytecode
3863 // even if we are in single step mode.
3864
3865 transition(vtos, vtos);
3866
3867 // get the unpatched byte code
3868 __ get_method(c_rarg1);
3869 __ call_VM(noreg,
3870 CAST_FROM_FN_PTR(address,
3871 InterpreterRuntime::get_original_bytecode_at),
3872 c_rarg1, rbcp);
3873 __ mov(r19, r0);
3874
3875 // post the breakpoint event
3876 __ call_VM(noreg,
3877 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3878 rmethod, rbcp);
3879
3880 // complete the execution of original bytecode
3881 __ mov(rscratch1, r19);
3882 __ dispatch_only_normal(vtos);
3883 }
3884
3885 //-----------------------------------------------------------------------------
3886 // Exceptions
3887
3888 void TemplateTable::athrow() {
3889 transition(atos, vtos);
3890 __ null_check(r0);
3891 __ b(Interpreter::throw_exception_entry());
3892 }
3893
3894 //-----------------------------------------------------------------------------
3895 // Synchronization
3896 //
3897 // Note: monitorenter & exit are symmetric routines; which is reflected
3898 // in the assembly code structure as well
3899 //
3900 // Stack layout:
3901 //
3902 // [expressions ] <--- esp = expression stack top
3903 // ..
3904 // [expressions ]
3905 // [monitor entry] <--- monitor block top = expression stack bot
3906 // ..
3907 // [monitor entry]
3908 // [frame data ] <--- monitor block bot
3909 // ...
3910 // [saved rfp ] <--- rfp
3911 void TemplateTable::monitorenter()
3912 {
3913 transition(atos, vtos);
3914
3915 // check for null object
3916 __ null_check(r0);
3917
3918 const Address monitor_block_top(
3919 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3920 const Address monitor_block_bot(
3921 rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3922 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3923
3924 Label allocated;
3925
3926 // initialize entry pointer
3927 __ mov(c_rarg1, zr); // points to free slot or null
3928
3929 // find a free slot in the monitor block (result in c_rarg1)
3930 {
3931 Label entry, loop, exit;
3932 __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
3933 __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
3934 // c_rarg3 points to current entry, starting with top-most entry
3935
3936 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3937
3938 __ b(entry);
3939
3940 __ bind(loop);
3941 // check if current entry is used
3942 // if not used then remember entry in c_rarg1
3943 __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset()));
3944 __ cmp(zr, rscratch1);
3945 __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ);
3946 // check if current entry is for same object
3947 __ cmp(r0, rscratch1);
3948 // if same object then stop searching
3949 __ br(Assembler::EQ, exit);
3950 // otherwise advance to next entry
3951 __ add(c_rarg3, c_rarg3, entry_size);
3952 __ bind(entry);
3953 // check if bottom reached
3954 __ cmp(c_rarg3, c_rarg2);
3955 // if not at bottom then check this entry
3956 __ br(Assembler::NE, loop);
3957 __ bind(exit);
3958 }
3959
3960 __ cbnz(c_rarg1, allocated); // check if a slot has been found and
3961 // if found, continue with that on
3962
3963 // allocate one if there's no free slot
3964 {
3965 Label entry, loop;
3966 // 1. compute new pointers // rsp: old expression stack top
3967
3968 __ check_extended_sp();
3969 __ sub(sp, sp, entry_size); // make room for the monitor
3970 __ sub(rscratch1, sp, rfp);
3971 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
3972 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize));
3973
3974 __ ldr(c_rarg1, monitor_block_bot); // derelativize pointer
3975 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
3976 // c_rarg1 points to the old expression stack bottom
3977
3978 __ sub(esp, esp, entry_size); // move expression stack top
3979 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom
3980 __ mov(c_rarg3, esp); // set start value for copy loop
3981 __ sub(rscratch1, c_rarg1, rfp); // relativize pointer
3982 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
3983 __ str(rscratch1, monitor_block_bot); // set new monitor block bottom
3984
3985 __ b(entry);
3986 // 2. move expression stack contents
3987 __ bind(loop);
3988 __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3989 // word from old location
3990 __ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location
3991 __ add(c_rarg3, c_rarg3, wordSize); // advance to next word
3992 __ bind(entry);
3993 __ cmp(c_rarg3, c_rarg1); // check if bottom reached
3994 __ br(Assembler::NE, loop); // if not at bottom then
3995 // copy next word
3996 }
3997
3998 // call run-time routine
3999 // c_rarg1: points to monitor entry
4000 __ bind(allocated);
4001
4002 // Increment bcp to point to the next bytecode, so exception
4003 // handling for async. exceptions work correctly.
4004 // The object has already been popped from the stack, so the
4005 // expression stack looks correct.
4006 __ increment(rbcp);
4007
4008 // store object
4009 __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
4010 __ lock_object(c_rarg1);
4011
4012 // check to make sure this monitor doesn't cause stack overflow after locking
4013 __ save_bcp(); // in case of exception
4014 __ generate_stack_overflow_check(0);
4015
4016 // The bcp has already been incremented. Just need to dispatch to
4017 // next instruction.
4018 __ dispatch_next(vtos);
4019 }
4020
4021
4022 void TemplateTable::monitorexit()
4023 {
4024 transition(atos, vtos);
4025
4026 // check for null object
4027 __ null_check(r0);
4028
4029 const Address monitor_block_top(
4030 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4031 const Address monitor_block_bot(
4032 rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4033 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4034
4035 Label found;
4036
4037 // find matching slot
4038 {
4039 Label entry, loop;
4040 __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4041 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4042 // c_rarg1 points to current entry, starting with top-most entry
4043
4044 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4045 // of monitor block
4046 __ b(entry);
4047
4048 __ bind(loop);
4049 // check if current entry is for same object
4050 __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
4051 __ cmp(r0, rscratch1);
4052 // if same object then stop searching
4053 __ br(Assembler::EQ, found);
4054 // otherwise advance to next entry
4055 __ add(c_rarg1, c_rarg1, entry_size);
4056 __ bind(entry);
4057 // check if bottom reached
4058 __ cmp(c_rarg1, c_rarg2);
4059 // if not at bottom then check this entry
4060 __ br(Assembler::NE, loop);
4061 }
4062
4063 // error handling. Unlocking was not block-structured
4064 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4065 InterpreterRuntime::throw_illegal_monitor_state_exception));
4066 __ should_not_reach_here();
4067
4068 // call run-time routine
4069 __ bind(found);
4070 __ push_ptr(r0); // make sure object is on stack (contract with oopMaps)
4071 __ unlock_object(c_rarg1);
4072 __ pop_ptr(r0); // discard object
4073 }
4074
4075
4076 // Wide instructions
4077 void TemplateTable::wide()
4078 {
4079 __ load_unsigned_byte(r19, at_bcp(1));
4080 __ mov(rscratch1, (address)Interpreter::_wentry_point);
4081 __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3)));
4082 __ br(rscratch1);
4083 }
4084
4085
4086 // Multi arrays
4087 void TemplateTable::multianewarray() {
4088 transition(vtos, atos);
4089 __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions
4090 // last dim is on top of stack; we want address of first one:
4091 // first_addr = last_addr + (ndims - 1) * wordSize
4092 __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3)));
4093 __ sub(c_rarg1, c_rarg1, wordSize);
4094 call_VM(r0,
4095 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
4096 c_rarg1);
4097 __ load_unsigned_byte(r1, at_bcp(3));
4098 __ lea(esp, Address(esp, r1, Address::uxtw(3)));
4099 }
--- EOF ---