1 /* 2 * Copyright (c) 2008, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/assembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "interpreter/bytecodeHistogram.hpp" 29 #include "interpreter/interp_masm.hpp" 30 #include "interpreter/interpreter.hpp" 31 #include "interpreter/interpreterRuntime.hpp" 32 #include "interpreter/templateInterpreterGenerator.hpp" 33 #include "interpreter/templateTable.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/methodData.hpp" 36 #include "oops/method.inline.hpp" 37 #include "oops/oop.inline.hpp" 38 #include "oops/resolvedIndyEntry.hpp" 39 #include "oops/resolvedMethodEntry.hpp" 40 #include "prims/jvmtiExport.hpp" 41 #include "prims/jvmtiThreadState.hpp" 42 #include "prims/methodHandles.hpp" 43 #include "runtime/arguments.hpp" 44 #include "runtime/deoptimization.hpp" 45 #include "runtime/frame.inline.hpp" 46 #include "runtime/jniHandles.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "runtime/stubRoutines.hpp" 49 #include "runtime/synchronizer.hpp" 50 #include "runtime/timer.hpp" 51 #include "runtime/vframeArray.hpp" 52 #include "utilities/align.hpp" 53 #include "utilities/debug.hpp" 54 #include "utilities/macros.hpp" 55 56 // Size of interpreter code. Increase if too small. Interpreter will 57 // fail with a guarantee ("not enough space for interpreter generation"); 58 // if too small. 59 // Run with +PrintInterpreter to get the VM to print out the size. 60 // Max size with JVMTI 61 int TemplateInterpreter::InterpreterCodeSize = 180 * 1024; 62 63 #define __ _masm-> 64 65 //------------------------------------------------------------------------------------------------------------------------ 66 67 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 68 address entry = __ pc(); 69 70 // callee-save register for saving LR, shared with generate_native_entry 71 const Register Rsaved_ret_addr = Rtmp_save0; 72 73 __ mov(Rsaved_ret_addr, LR); 74 75 __ mov(R1, Rmethod); 76 __ mov(R2, Rlocals); 77 __ mov(R3, SP); 78 79 80 // Safer to save R9 (when scratched) since callers may have been 81 // written assuming R9 survives. This is suboptimal but 82 // probably not important for this slow case call site. 83 // Note for R9 saving: slow_signature_handler may copy register 84 // arguments above the current SP (passed as R3). It is safe for 85 // call_VM to use push and pop to protect additional values on the 86 // stack if needed. 87 __ call_VM(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), true /* save R9 if needed*/); 88 __ add(SP, SP, wordSize); // Skip R0 89 __ pop(RegisterSet(R1, R3)); // Load arguments passed in registers 90 #ifdef __ABI_HARD__ 91 // Few alternatives to an always-load-FP-registers approach: 92 // - parse method signature to detect FP arguments 93 // - keep a counter/flag on a stack indicationg number of FP arguments in the method. 94 // The later has been originally implemented and tested but a conditional path could 95 // eliminate any gain imposed by avoiding 8 double word loads. 96 __ fldmiad(SP, FloatRegisterSet(D0, 8), writeback); 97 #endif // __ABI_HARD__ 98 99 __ ret(Rsaved_ret_addr); 100 101 return entry; 102 } 103 104 105 // 106 // Various method entries (that c++ and asm interpreter agree upon) 107 //------------------------------------------------------------------------------------------------------------------------ 108 // 109 // 110 111 // Abstract method entry 112 // Attempt to execute abstract method. Throw exception 113 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 114 address entry_point = __ pc(); 115 116 117 __ empty_expression_stack(); 118 119 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 120 121 DEBUG_ONLY(STOP("generate_abstract_entry");) // Should not reach here 122 return entry_point; 123 } 124 125 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 126 address entry_point = nullptr; 127 Register continuation = LR; 128 bool use_runtime_call = false; 129 switch (kind) { 130 case Interpreter::java_lang_math_abs: 131 entry_point = __ pc(); 132 #ifdef __SOFTFP__ 133 use_runtime_call = true; 134 __ ldrd(R0, Address(SP)); 135 #else // !__SOFTFP__ 136 __ ldr_double(D0, Address(SP)); 137 __ abs_double(D0, D0); 138 #endif // __SOFTFP__ 139 break; 140 case Interpreter::java_lang_math_sqrt: 141 entry_point = __ pc(); 142 #ifdef __SOFTFP__ 143 use_runtime_call = true; 144 __ ldrd(R0, Address(SP)); 145 #else // !__SOFTFP__ 146 __ ldr_double(D0, Address(SP)); 147 __ sqrt_double(D0, D0); 148 #endif // __SOFTFP__ 149 break; 150 case Interpreter::java_lang_math_sin: 151 case Interpreter::java_lang_math_cos: 152 case Interpreter::java_lang_math_tan: 153 case Interpreter::java_lang_math_log: 154 case Interpreter::java_lang_math_log10: 155 case Interpreter::java_lang_math_exp: 156 entry_point = __ pc(); 157 use_runtime_call = true; 158 #ifdef __SOFTFP__ 159 __ ldrd(R0, Address(SP)); 160 #else // !__SOFTFP__ 161 __ ldr_double(D0, Address(SP)); 162 #endif // __SOFTFP__ 163 break; 164 case Interpreter::java_lang_math_pow: 165 entry_point = __ pc(); 166 use_runtime_call = true; 167 #ifdef __SOFTFP__ 168 __ ldrd(R0, Address(SP, 2 * Interpreter::stackElementSize)); 169 __ ldrd(R2, Address(SP)); 170 #else // !__SOFTFP__ 171 __ ldr_double(D0, Address(SP, 2 * Interpreter::stackElementSize)); 172 __ ldr_double(D1, Address(SP)); 173 #endif // __SOFTFP__ 174 break; 175 case Interpreter::java_lang_math_fmaD: 176 case Interpreter::java_lang_math_fmaF: 177 case Interpreter::java_lang_math_sinh: 178 case Interpreter::java_lang_math_tanh: 179 case Interpreter::java_lang_math_cbrt: 180 // TODO: Implement intrinsic 181 break; 182 default: 183 ShouldNotReachHere(); 184 } 185 186 if (entry_point != nullptr) { 187 __ mov(SP, Rsender_sp); 188 if (use_runtime_call) { 189 __ mov(Rtmp_save0, LR); 190 continuation = Rtmp_save0; 191 generate_math_runtime_call(kind); 192 } 193 __ ret(continuation); 194 } 195 return entry_point; 196 } 197 198 void TemplateInterpreterGenerator::generate_math_runtime_call(AbstractInterpreter::MethodKind kind) { 199 address fn; 200 switch (kind) { 201 #ifdef __SOFTFP__ 202 case Interpreter::java_lang_math_abs: 203 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dabs); 204 break; 205 case Interpreter::java_lang_math_sqrt: 206 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt); 207 break; 208 #endif // __SOFTFP__ 209 case Interpreter::java_lang_math_sin: 210 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); 211 break; 212 case Interpreter::java_lang_math_cos: 213 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); 214 break; 215 case Interpreter::java_lang_math_tan: 216 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); 217 break; 218 case Interpreter::java_lang_math_log: 219 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); 220 break; 221 case Interpreter::java_lang_math_log10: 222 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); 223 break; 224 case Interpreter::java_lang_math_exp: 225 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); 226 break; 227 case Interpreter::java_lang_math_pow: 228 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 229 break; 230 default: 231 ShouldNotReachHere(); 232 fn = nullptr; // silence "maybe uninitialized" compiler warnings 233 } 234 __ call_VM_leaf(fn); 235 } 236 237 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 238 address entry = __ pc(); 239 240 // Note: There should be a minimal interpreter frame set up when stack 241 // overflow occurs since we check explicitly for it now. 242 // 243 #ifdef ASSERT 244 { Label L; 245 __ sub(Rtemp, FP, - frame::interpreter_frame_monitor_block_top_offset * wordSize); 246 __ cmp(SP, Rtemp); // Rtemp = maximal SP for current FP, 247 // (stack grows negative) 248 __ b(L, ls); // check if frame is complete 249 __ stop ("interpreter frame not set up"); 250 __ bind(L); 251 } 252 #endif // ASSERT 253 254 // Restore bcp under the assumption that the current frame is still 255 // interpreted 256 __ restore_bcp(); 257 258 // expression stack must be empty before entering the VM if an exception 259 // happened 260 __ empty_expression_stack(); 261 262 // throw exception 263 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError)); 264 265 __ should_not_reach_here(); 266 267 return entry; 268 } 269 270 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 271 address entry = __ pc(); 272 273 // index is in R4_ArrayIndexOutOfBounds_index 274 275 // expression stack must be empty before entering the VM if an exception happened 276 __ empty_expression_stack(); 277 278 // setup parameters 279 // Array expected in R1. 280 __ mov(R2, R4_ArrayIndexOutOfBounds_index); 281 282 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), R1, R2); 283 284 __ nop(); // to avoid filling CPU pipeline with invalid instructions 285 __ nop(); 286 __ should_not_reach_here(); 287 288 return entry; 289 } 290 291 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 292 address entry = __ pc(); 293 294 // object is in R2_ClassCastException_obj 295 296 // expression stack must be empty before entering the VM if an exception 297 // happened 298 __ empty_expression_stack(); 299 300 __ mov(R1, R2_ClassCastException_obj); 301 __ call_VM(noreg, 302 CAST_FROM_FN_PTR(address, 303 InterpreterRuntime::throw_ClassCastException), 304 R1); 305 306 __ should_not_reach_here(); 307 308 return entry; 309 } 310 311 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) { 312 assert(!pass_oop || message == nullptr, "either oop or message but not both"); 313 address entry = __ pc(); 314 315 InlinedString Lname(name); 316 InlinedString Lmessage(message); 317 318 if (pass_oop) { 319 // object is at TOS 320 __ pop_ptr(R2); 321 } 322 323 // expression stack must be empty before entering the VM if an exception happened 324 __ empty_expression_stack(); 325 326 // setup parameters 327 __ ldr_literal(R1, Lname); 328 329 if (pass_oop) { 330 __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), R1, R2); 331 } else { 332 if (message != nullptr) { 333 __ ldr_literal(R2, Lmessage); 334 } else { 335 __ mov(R2, 0); 336 } 337 __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), R1, R2); 338 } 339 340 // throw exception 341 __ b(Interpreter::throw_exception_entry()); 342 343 __ nop(); // to avoid filling CPU pipeline with invalid instructions 344 __ nop(); 345 __ bind_literal(Lname); 346 if (!pass_oop && (message != nullptr)) { 347 __ bind_literal(Lmessage); 348 } 349 350 return entry; 351 } 352 353 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { 354 address entry = __ pc(); 355 356 __ interp_verify_oop(R0_tos, state, __FILE__, __LINE__); 357 358 // Restore stack bottom in case i2c adjusted stack 359 __ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 360 // and null it as marker that SP is now tos until next java call 361 __ mov(Rtemp, (int)NULL_WORD); 362 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 363 364 __ restore_method(); 365 __ restore_bcp(); 366 __ restore_dispatch(); 367 __ restore_locals(); 368 369 const Register Rcache = R2_tmp; 370 const Register Rindex = R3_tmp; 371 372 if (index_size == sizeof(u4)) { 373 __ load_resolved_indy_entry(Rcache, Rindex); 374 __ ldrh(Rcache, Address(Rcache, in_bytes(ResolvedIndyEntry::num_parameters_offset()))); 375 } else { 376 // Pop N words from the stack 377 assert(index_size == sizeof(u2), "Can only be u2"); 378 __ load_method_entry(Rcache, Rindex); 379 __ ldrh(Rcache, Address(Rcache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 380 } 381 382 __ check_stack_top(); 383 __ add(Rstack_top, Rstack_top, AsmOperand(Rcache, lsl, Interpreter::logStackElementSize)); 384 385 __ convert_retval_to_tos(state); 386 387 __ check_and_handle_popframe(); 388 __ check_and_handle_earlyret(); 389 390 __ dispatch_next(state, step); 391 392 return entry; 393 } 394 395 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step, address continuation) { 396 address entry = __ pc(); 397 398 __ interp_verify_oop(R0_tos, state, __FILE__, __LINE__); 399 400 // The stack is not extended by deopt but we must null last_sp as this 401 // entry is like a "return". 402 __ mov(Rtemp, 0); 403 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 404 405 __ restore_method(); 406 __ restore_bcp(); 407 __ restore_dispatch(); 408 __ restore_locals(); 409 410 // handle exceptions 411 { Label L; 412 __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset())); 413 __ cbz(Rtemp, L); 414 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception)); 415 __ should_not_reach_here(); 416 __ bind(L); 417 } 418 419 if (continuation == nullptr) { 420 __ dispatch_next(state, step); 421 } else { 422 __ jump_to_entry(continuation); 423 } 424 425 return entry; 426 } 427 428 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) { 429 address entry = __ pc(); 430 431 switch (type) { 432 case T_CHAR : /* Nothing to do */ break; 433 case T_BYTE : /* Nothing to do */ break; 434 case T_SHORT : /* Nothing to do */ break; 435 case T_INT : /* Nothing to do */ break; 436 case T_LONG : /* Nothing to do */ break; 437 case T_VOID : /* Nothing to do */ break; 438 case T_DOUBLE : /* Nothing to do */ break; 439 case T_FLOAT : /* Nothing to do */ break; 440 case T_BOOLEAN : __ c2bool(R0); break; 441 case T_OBJECT : 442 __ ldr(R0, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize)); 443 __ verify_oop(R0); 444 break; 445 default : __ should_not_reach_here(); break; 446 } 447 448 __ ret(); 449 return entry; 450 } 451 452 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) { 453 address entry = __ pc(); 454 __ push(state); 455 __ call_VM(noreg, runtime_entry); 456 457 // load current bytecode 458 __ ldrb(R3_bytecode, Address(Rbcp)); 459 __ dispatch_only_normal(vtos); 460 return entry; 461 } 462 463 address TemplateInterpreterGenerator::generate_cont_resume_interpreter_adapter() { 464 return nullptr; 465 } 466 467 468 // Helpers for commoning out cases in the various type of method entries. 469 // 470 471 // increment invocation count & check for overflow 472 // 473 // Note: checking for negative value instead of overflow 474 // so we have a 'sticky' overflow test 475 // 476 // In: Rmethod. 477 // 478 // Uses R0, R1, Rtemp. 479 // 480 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 481 Label done; 482 const Register Rcounters = Rtemp; 483 const Address invocation_counter(Rcounters, 484 MethodCounters::invocation_counter_offset() + 485 InvocationCounter::counter_offset()); 486 487 // Note: In tiered we increment either counters in MethodCounters* or 488 // in MDO depending if we're profiling or not. 489 int increment = InvocationCounter::count_increment; 490 Label no_mdo; 491 if (ProfileInterpreter) { 492 // Are we profiling? 493 __ ldr(R1_tmp, Address(Rmethod, Method::method_data_offset())); 494 __ cbz(R1_tmp, no_mdo); 495 // Increment counter in the MDO 496 const Address mdo_invocation_counter(R1_tmp, 497 in_bytes(MethodData::invocation_counter_offset()) + 498 in_bytes(InvocationCounter::counter_offset())); 499 const Address mask(R1_tmp, in_bytes(MethodData::invoke_mask_offset())); 500 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, R0_tmp, Rtemp, eq, overflow); 501 __ b(done); 502 } 503 __ bind(no_mdo); 504 __ get_method_counters(Rmethod, Rcounters, done); 505 const Address mask(Rcounters, in_bytes(MethodCounters::invoke_mask_offset())); 506 __ increment_mask_and_jump(invocation_counter, increment, mask, R0_tmp, R1_tmp, eq, overflow); 507 __ bind(done); 508 } 509 510 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 511 // InterpreterRuntime::frequency_counter_overflow takes one argument 512 // indicating if the counter overflow occurs at a backwards branch (non-null bcp). 513 // The call returns the address of the verified entry point for the method or null 514 // if the compilation did not complete (either went background or bailed out). 515 __ mov(R1, (int)false); 516 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R1); 517 518 // jump to the interpreted entry. 519 __ b(do_continue); 520 } 521 522 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) { 523 // Check if we've got enough room on the stack for 524 // - overhead; 525 // - locals; 526 // - expression stack. 527 // 528 // Registers on entry: 529 // 530 // R3 = number of additional locals 531 // Rthread 532 // Rmethod 533 // Registers used: R0, R1, R2, Rtemp. 534 535 const Register Radditional_locals = R3; 536 const Register RmaxStack = R2; 537 538 // monitor entry size 539 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 540 541 // total overhead size: entry_size + (saved registers, thru expr stack bottom). 542 // be sure to change this if you add/subtract anything to/from the overhead area 543 const int overhead_size = (frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset)*wordSize + entry_size; 544 545 // Pages reserved for VM runtime calls and subsequent Java calls. 546 const int reserved_pages = StackOverflow::stack_shadow_zone_size(); 547 548 // Thread::stack_size() includes guard pages, and they should not be touched. 549 const int guard_pages = StackOverflow::stack_guard_zone_size(); 550 551 __ ldr(R0, Address(Rthread, Thread::stack_base_offset())); 552 __ ldr(R1, Address(Rthread, Thread::stack_size_offset())); 553 __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); 554 __ ldrh(RmaxStack, Address(Rtemp, ConstMethod::max_stack_offset())); 555 __ sub_slow(Rtemp, SP, overhead_size + reserved_pages + guard_pages + Method::extra_stack_words()); 556 557 // reserve space for additional locals 558 __ sub(Rtemp, Rtemp, AsmOperand(Radditional_locals, lsl, Interpreter::logStackElementSize)); 559 560 // stack size 561 __ sub(R0, R0, R1); 562 563 // reserve space for expression stack 564 __ sub(Rtemp, Rtemp, AsmOperand(RmaxStack, lsl, Interpreter::logStackElementSize)); 565 566 __ cmp(Rtemp, R0); 567 568 __ mov(SP, Rsender_sp, ls); // restore SP 569 __ b(SharedRuntime::throw_StackOverflowError_entry(), ls); 570 } 571 572 573 // Allocate monitor and lock method (asm interpreter) 574 // 575 void TemplateInterpreterGenerator::lock_method() { 576 // synchronize method 577 578 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 579 assert ((entry_size % StackAlignmentInBytes) == 0, "should keep stack alignment"); 580 581 #ifdef ASSERT 582 { Label L; 583 __ ldrh(Rtemp, Address(Rmethod, Method::access_flags_offset())); 584 __ tbnz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L); 585 __ stop("method doesn't need synchronization"); 586 __ bind(L); 587 } 588 #endif // ASSERT 589 590 // get synchronization object 591 { Label done; 592 __ ldrh(Rtemp, Address(Rmethod, Method::access_flags_offset())); 593 __ tst(Rtemp, JVM_ACC_STATIC); 594 __ ldr(R0, Address(Rlocals, Interpreter::local_offset_in_bytes(0)), eq); // get receiver (assume this is frequent case) 595 __ b(done, eq); 596 __ load_mirror(R0, Rmethod, Rtemp); 597 __ bind(done); 598 } 599 600 // add space for monitor & lock 601 602 603 __ sub(Rstack_top, Rstack_top, entry_size); 604 __ check_stack_top_on_expansion(); 605 // add space for a monitor entry 606 __ str(Rstack_top, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize)); 607 // set new monitor block top 608 __ str(R0, Address(Rstack_top, BasicObjectLock::obj_offset())); 609 // store object 610 __ mov(R1, Rstack_top); // monitor entry address 611 __ lock_object(R1); 612 } 613 614 615 // 616 // Generate a fixed interpreter frame. This is identical setup for interpreted methods 617 // and for native methods hence the shared code. 618 619 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 620 // Generates the following stack layout: 621 // 622 // [ expr. stack bottom ] 623 // [ saved Rbcp ] 624 // [ current Rlocals ] 625 // [ cache ] 626 // [ mdx ] 627 // [ Method* ] 628 // [ last_sp ] 629 // [ sender_sp ] 630 // [ saved FP ] <--- FP 631 // [ saved LR ] 632 633 // initialize fixed part of activation frame 634 __ push(LR); // save return address 635 __ push(FP); // save FP 636 __ mov(FP, SP); // establish new FP 637 638 __ push(Rsender_sp); 639 640 __ mov(R0, 0); 641 __ push(R0); // leave last_sp as null 642 643 // setup Rbcp 644 if (native_call) { 645 __ mov(Rbcp, 0); // bcp = 0 for native calls 646 } else { 647 __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); // get ConstMethod* 648 __ add(Rbcp, Rtemp, ConstMethod::codes_offset()); // get codebase 649 } 650 651 __ push(Rmethod); // save Method* 652 // Get mirror and store it in the frame as GC root for this Method* 653 __ load_mirror(Rtemp, Rmethod, Rtemp); 654 __ push(Rtemp); 655 656 if (ProfileInterpreter) { 657 __ ldr(Rtemp, Address(Rmethod, Method::method_data_offset())); 658 __ tst(Rtemp, Rtemp); 659 __ add(Rtemp, Rtemp, in_bytes(MethodData::data_offset()), ne); 660 __ push(Rtemp); // set the mdp (method data pointer) 661 } else { 662 __ push(R0); 663 } 664 665 __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); 666 __ ldr(Rtemp, Address(Rtemp, ConstMethod::constants_offset())); 667 __ ldr(Rtemp, Address(Rtemp, ConstantPool::cache_offset())); 668 __ push(Rtemp); // set constant pool cache 669 __ sub(Rtemp, Rlocals, FP); 670 __ logical_shift_right(Rtemp, Rtemp, Interpreter::logStackElementSize); // Rtemp = Rlocals - fp(); 671 __ push(Rtemp); // set relativized Rlocals, see frame::interpreter_frame_locals() 672 __ push(Rbcp); // set bcp 673 __ push(R0); // reserve word for pointer to expression stack bottom 674 __ str(SP, Address(SP, 0)); // set expression stack bottom 675 } 676 677 678 // End of helpers 679 680 //------------------------------------------------------------------------------------------------------------------------ 681 // Entry points 682 // 683 // Here we generate the various kind of entries into the interpreter. 684 // The two main entry type are generic bytecode methods and native call method. 685 // These both come in synchronized and non-synchronized versions but the 686 // frame layout they create is very similar. The other method entry 687 // types are really just special purpose entries that are really entry 688 // and interpretation all in one. These are for trivial methods like 689 // accessor, empty, or special math methods. 690 // 691 // When control flow reaches any of the entry types for the interpreter 692 // the following holds -> 693 // 694 // Arguments: 695 // 696 // Rmethod: Method* 697 // Rthread: thread 698 // Rsender_sp: sender sp 699 // Rparams (SP on 32-bit ARM): pointer to method parameters 700 // 701 // LR: return address 702 // 703 // Stack layout immediately at entry 704 // 705 // [ parameter n ] <--- Rparams (SP on 32-bit ARM) 706 // ... 707 // [ parameter 1 ] 708 // [ expression stack ] (caller's java expression stack) 709 710 // Assuming that we don't go to one of the trivial specialized 711 // entries the stack will look like below when we are ready to execute 712 // the first bytecode (or call the native routine). The register usage 713 // will be as the template based interpreter expects. 714 // 715 // local variables follow incoming parameters immediately; i.e. 716 // the return address is saved at the end of the locals. 717 // 718 // [ expr. stack ] <--- Rstack_top (SP on 32-bit ARM) 719 // [ monitor entry ] 720 // ... 721 // [ monitor entry ] 722 // [ expr. stack bottom ] 723 // [ saved Rbcp ] 724 // [ current Rlocals ] 725 // [ cache ] 726 // [ mdx ] 727 // [ mirror ] 728 // [ Method* ] 729 // 730 // 32-bit ARM: 731 // [ last_sp ] 732 // 733 // [ sender_sp ] 734 // [ saved FP ] <--- FP 735 // [ saved LR ] 736 // [ optional padding(*)] 737 // [ local variable m ] 738 // ... 739 // [ local variable 1 ] 740 // [ parameter n ] 741 // ... 742 // [ parameter 1 ] <--- Rlocals 743 // 744 745 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 746 // Code: _aload_0, _getfield, _areturn 747 // parameter size = 1 748 // 749 // The code that gets generated by this routine is split into 2 parts: 750 // 1. The "intrinsified" code performing an ON_WEAK_OOP_REF load, 751 // 2. The slow path - which is an expansion of the regular method entry. 752 // 753 // Notes:- 754 // * An intrinsic is always executed, where an ON_WEAK_OOP_REF load is performed. 755 // * We may jump to the slow path iff the receiver is null. If the 756 // Reference object is null then we no longer perform an ON_WEAK_OOP_REF load 757 // Thus we can use the regular method entry code to generate the NPE. 758 // 759 // Rmethod: Method* 760 // Rthread: thread 761 // Rsender_sp: sender sp, must be preserved for slow path, set SP to it on fast path 762 // Rparams: parameters 763 764 address entry = __ pc(); 765 Label slow_path; 766 const Register Rthis = R0; 767 const Register Rret_addr = Rtmp_save1; 768 assert_different_registers(Rthis, Rret_addr, Rsender_sp); 769 770 const int referent_offset = java_lang_ref_Reference::referent_offset(); 771 772 // Check if local 0 != nullptr 773 // If the receiver is null then it is OK to jump to the slow path. 774 __ ldr(Rthis, Address(Rparams)); 775 __ cbz(Rthis, slow_path); 776 777 // Preserve LR 778 __ mov(Rret_addr, LR); 779 780 // Load the value of the referent field. 781 const Address field_address(Rthis, referent_offset); 782 __ load_heap_oop(R0, field_address, Rtemp, R1_tmp, R2_tmp, ON_WEAK_OOP_REF); 783 784 // _areturn 785 __ mov(SP, Rsender_sp); 786 __ ret(Rret_addr); 787 788 // generate a vanilla interpreter entry as the slow path 789 __ bind(slow_path); 790 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals)); 791 return entry; 792 } 793 794 // Not supported 795 address TemplateInterpreterGenerator::generate_currentThread() { return nullptr; } 796 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { return nullptr; } 797 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return nullptr; } 798 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return nullptr; } 799 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { return nullptr; } 800 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { return nullptr; } 801 802 // 803 // Interpreter stub for calling a native method. (asm interpreter) 804 // This sets up a somewhat different looking stack for calling the native method 805 // than the typical interpreter frame setup. 806 // 807 808 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { 809 // determine code generation flags 810 bool inc_counter = UseCompiler || CountCompiledCalls; 811 812 // Incoming registers: 813 // 814 // Rmethod: Method* 815 // Rthread: thread 816 // Rsender_sp: sender sp 817 // Rparams: parameters 818 819 address entry_point = __ pc(); 820 821 // Register allocation 822 const Register Rsize_of_params = R6; 823 const Register Rsig_handler = Rtmp_save0; // R4 824 const Register Rnative_code = Rtmp_save1; // R5 825 const Register Rresult_handler = R6; 826 827 const Register Rsaved_result_lo = Rtmp_save0; // R4 828 const Register Rsaved_result_hi = Rtmp_save1; // R5 829 FloatRegister saved_result_fp; 830 831 832 __ ldr(Rsize_of_params, Address(Rmethod, Method::const_offset())); 833 __ ldrh(Rsize_of_params, Address(Rsize_of_params, ConstMethod::size_of_parameters_offset())); 834 835 // native calls don't need the stack size check since they have no expression stack 836 // and the arguments are already on the stack and we only add a handful of words 837 // to the stack 838 839 // compute beginning of parameters (Rlocals) 840 __ sub(Rlocals, Rparams, wordSize); 841 __ add(Rlocals, Rlocals, AsmOperand(Rsize_of_params, lsl, Interpreter::logStackElementSize)); 842 843 // reserve stack space for oop_temp 844 __ mov(R0, 0); 845 __ push(R0); 846 847 generate_fixed_frame(true); // Note: R9 is now saved in the frame 848 849 // make sure method is native & not abstract 850 #ifdef ASSERT 851 __ ldrh(Rtemp, Address(Rmethod, Method::access_flags_offset())); 852 { 853 Label L; 854 __ tbnz(Rtemp, JVM_ACC_NATIVE_BIT, L); 855 __ stop("tried to execute non-native method as native"); 856 __ bind(L); 857 } 858 { Label L; 859 __ tbz(Rtemp, JVM_ACC_ABSTRACT_BIT, L); 860 __ stop("tried to execute abstract method in interpreter"); 861 __ bind(L); 862 } 863 #endif 864 865 // increment invocation count & check for overflow 866 Label invocation_counter_overflow; 867 if (inc_counter) { 868 if (synchronized) { 869 // Avoid unlocking method's monitor in case of exception, as it has not 870 // been locked yet. 871 __ set_do_not_unlock_if_synchronized(true, Rtemp); 872 } 873 generate_counter_incr(&invocation_counter_overflow); 874 } 875 876 Label continue_after_compile; 877 __ bind(continue_after_compile); 878 879 if (inc_counter && synchronized) { 880 __ set_do_not_unlock_if_synchronized(false, Rtemp); 881 } 882 883 // check for synchronized methods 884 // Must happen AFTER invocation_counter check and stack overflow check, 885 // so method is not locked if overflows. 886 // 887 if (synchronized) { 888 lock_method(); 889 } else { 890 // no synchronization necessary 891 #ifdef ASSERT 892 { Label L; 893 __ ldrh(Rtemp, Address(Rmethod, Method::access_flags_offset())); 894 __ tbz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L); 895 __ stop("method needs synchronization"); 896 __ bind(L); 897 } 898 #endif 899 } 900 901 // start execution 902 #ifdef ASSERT 903 { Label L; 904 __ ldr(Rtemp, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize)); 905 __ cmp(Rtemp, Rstack_top); 906 __ b(L, eq); 907 __ stop("broken stack frame setup in interpreter 3"); 908 __ bind(L); 909 } 910 #endif 911 __ check_extended_sp(Rtemp); 912 913 // jvmti/dtrace support 914 __ notify_method_entry(); 915 #if R9_IS_SCRATCHED 916 __ restore_method(); 917 #endif 918 919 { 920 Label L; 921 __ ldr(Rsig_handler, Address(Rmethod, Method::signature_handler_offset())); 922 __ cbnz(Rsig_handler, L); 923 __ mov(R1, Rmethod); 924 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R1, true); 925 __ ldr(Rsig_handler, Address(Rmethod, Method::signature_handler_offset())); 926 __ bind(L); 927 } 928 929 { 930 Label L; 931 __ ldr(Rnative_code, Address(Rmethod, Method::native_function_offset())); 932 __ cbnz(Rnative_code, L); 933 __ mov(R1, Rmethod); 934 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R1); 935 __ ldr(Rnative_code, Address(Rmethod, Method::native_function_offset())); 936 __ bind(L); 937 } 938 939 // Allocate stack space for arguments 940 941 942 // C functions need aligned stack 943 __ bic(SP, SP, StackAlignmentInBytes - 1); 944 // Multiply by BytesPerLong instead of BytesPerWord, because calling convention 945 // may require empty slots due to long alignment, e.g. func(int, jlong, int, jlong) 946 __ sub(SP, SP, AsmOperand(Rsize_of_params, lsl, LogBytesPerLong)); 947 948 #ifdef __ABI_HARD__ 949 // Allocate more stack space to accommodate all GP as well as FP registers: 950 // 4 * wordSize 951 // 8 * BytesPerLong 952 int reg_arguments = align_up((4*wordSize) + (8*BytesPerLong), StackAlignmentInBytes); 953 #else 954 // Reserve at least 4 words on the stack for loading 955 // of parameters passed on registers (R0-R3). 956 // See generate_slow_signature_handler(). 957 // It is also used for JNIEnv & class additional parameters. 958 int reg_arguments = 4 * wordSize; 959 #endif // __ABI_HARD__ 960 961 __ sub(SP, SP, reg_arguments); 962 963 964 // Note: signature handler blows R4 besides all scratch registers. 965 // See AbstractInterpreterGenerator::generate_slow_signature_handler(). 966 __ call(Rsig_handler); 967 #if R9_IS_SCRATCHED 968 __ restore_method(); 969 #endif 970 __ mov(Rresult_handler, R0); 971 972 // Pass JNIEnv and mirror for static methods 973 { 974 Label L; 975 __ ldrh(Rtemp, Address(Rmethod, Method::access_flags_offset())); 976 __ add(R0, Rthread, in_bytes(JavaThread::jni_environment_offset())); 977 __ tbz(Rtemp, JVM_ACC_STATIC_BIT, L); 978 __ load_mirror(Rtemp, Rmethod, Rtemp); 979 __ add(R1, FP, frame::interpreter_frame_oop_temp_offset * wordSize); 980 __ str(Rtemp, Address(R1, 0)); 981 __ bind(L); 982 } 983 984 __ set_last_Java_frame(SP, FP, true, Rtemp); 985 986 // Changing state to _thread_in_native must be the last thing to do 987 // before the jump to native code. At this moment stack must be 988 // safepoint-safe and completely prepared for stack walking. 989 #ifdef ASSERT 990 { 991 Label L; 992 __ ldr_u32(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 993 __ cmp_32(Rtemp, _thread_in_Java); 994 __ b(L, eq); 995 __ stop("invalid thread state"); 996 __ bind(L); 997 } 998 #endif 999 1000 // Force all preceding writes to be observed prior to thread state change 1001 __ membar(MacroAssembler::StoreStore, Rtemp); 1002 1003 __ mov(Rtemp, _thread_in_native); 1004 __ str(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 1005 1006 __ call(Rnative_code); 1007 #if R9_IS_SCRATCHED 1008 __ restore_method(); 1009 #endif 1010 1011 // Set FPSCR/FPCR to a known state 1012 if (AlwaysRestoreFPU) { 1013 __ restore_default_fp_mode(); 1014 } 1015 1016 // Do safepoint check 1017 __ mov(Rtemp, _thread_in_native_trans); 1018 __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 1019 1020 // Force this write out before the read below 1021 if (!UseSystemMemoryBarrier) { 1022 __ membar(MacroAssembler::StoreLoad, Rtemp); 1023 } 1024 1025 // Protect the return value in the interleaved code: save it to callee-save registers. 1026 __ mov(Rsaved_result_lo, R0); 1027 __ mov(Rsaved_result_hi, R1); 1028 #ifdef __ABI_HARD__ 1029 // preserve native FP result in a callee-saved register 1030 saved_result_fp = D8; 1031 __ fcpyd(saved_result_fp, D0); 1032 #else 1033 saved_result_fp = fnoreg; 1034 #endif // __ABI_HARD__ 1035 1036 { 1037 Label call, skip_call; 1038 __ safepoint_poll(Rtemp, call); 1039 __ ldr_u32(R3, Address(Rthread, JavaThread::suspend_flags_offset())); 1040 __ cmp(R3, 0); 1041 __ b(skip_call, eq); 1042 __ bind(call); 1043 __ mov(R0, Rthread); 1044 __ call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans), relocInfo::none); 1045 __ bind(skip_call); 1046 1047 #if R9_IS_SCRATCHED 1048 __ restore_method(); 1049 #endif 1050 } 1051 1052 // Perform Native->Java thread transition 1053 __ mov(Rtemp, _thread_in_Java); 1054 __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 1055 1056 // Zero handles and last_java_sp 1057 __ reset_last_Java_frame(Rtemp); 1058 __ ldr(R3, Address(Rthread, JavaThread::active_handles_offset())); 1059 __ str_32(__ zero_register(Rtemp), Address(R3, JNIHandleBlock::top_offset())); 1060 if (CheckJNICalls) { 1061 __ str(__ zero_register(Rtemp), Address(Rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1062 } 1063 1064 // Unbox oop result, e.g. JNIHandles::resolve result if it's an oop. 1065 { 1066 Label Lnot_oop; 1067 __ mov_slow(Rtemp, AbstractInterpreter::result_handler(T_OBJECT)); 1068 __ cmp(Rtemp, Rresult_handler); 1069 __ b(Lnot_oop, ne); 1070 Register value = Rsaved_result_lo; 1071 __ resolve_jobject(value, // value 1072 Rtemp, // tmp1 1073 R1_tmp); // tmp2 1074 // Store resolved result in frame for GC visibility. 1075 __ str(value, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize)); 1076 __ bind(Lnot_oop); 1077 } 1078 1079 1080 // reguard stack if StackOverflow exception happened while in native. 1081 { 1082 __ ldr_u32(Rtemp, Address(Rthread, JavaThread::stack_guard_state_offset())); 1083 __ cmp_32(Rtemp, StackOverflow::stack_guard_yellow_reserved_disabled); 1084 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), relocInfo::none, eq); 1085 #if R9_IS_SCRATCHED 1086 __ restore_method(); 1087 #endif 1088 } 1089 1090 // check pending exceptions 1091 { 1092 __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset())); 1093 __ cmp(Rtemp, 0); 1094 __ mov(Rexception_pc, PC, ne); 1095 __ b(StubRoutines::forward_exception_entry(), ne); 1096 } 1097 1098 if (synchronized) { 1099 // address of first monitor 1100 __ sub(R0, FP, - (frame::interpreter_frame_monitor_block_bottom_offset - frame::interpreter_frame_monitor_size()) * wordSize); 1101 __ unlock_object(R0); 1102 } 1103 1104 // jvmti/dtrace support 1105 // Note: This must happen _after_ handling/throwing any exceptions since 1106 // the exception handler code notifies the runtime of method exits 1107 // too. If this happens before, method entry/exit notifications are 1108 // not properly paired (was bug - gri 11/22/99). 1109 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI, true, Rsaved_result_lo, Rsaved_result_hi, saved_result_fp); 1110 1111 // Restore the result. Oop result is restored from the stack by the 1112 // result handler. 1113 __ mov(R0, Rsaved_result_lo); 1114 __ mov(R1, Rsaved_result_hi); 1115 1116 #ifdef __ABI_HARD__ 1117 // reload native FP result 1118 __ fcpyd(D0, D8); 1119 #endif // __ABI_HARD__ 1120 1121 __ blx(Rresult_handler); 1122 1123 // Restore FP/LR, sender_sp and return 1124 __ mov(Rtemp, FP); 1125 __ ldmia(FP, RegisterSet(FP) | RegisterSet(LR)); 1126 __ ldr(SP, Address(Rtemp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1127 1128 __ ret(); 1129 1130 if (inc_counter) { 1131 // Handle overflow of counter and compile method 1132 __ bind(invocation_counter_overflow); 1133 generate_counter_overflow(continue_after_compile); 1134 } 1135 1136 return entry_point; 1137 } 1138 1139 // 1140 // Generic interpreted method entry to (asm) interpreter 1141 // 1142 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { 1143 // determine code generation flags 1144 bool inc_counter = UseCompiler || CountCompiledCalls; 1145 1146 // Rmethod: Method* 1147 // Rthread: thread 1148 // Rsender_sp: sender sp (could differ from SP if we were called via c2i) 1149 // Rparams: pointer to the last parameter in the stack 1150 1151 address entry_point = __ pc(); 1152 1153 const Register RconstMethod = R3; 1154 1155 1156 __ ldr(RconstMethod, Address(Rmethod, Method::const_offset())); 1157 1158 __ ldrh(R2, Address(RconstMethod, ConstMethod::size_of_parameters_offset())); 1159 __ ldrh(R3, Address(RconstMethod, ConstMethod::size_of_locals_offset())); 1160 1161 // setup Rlocals 1162 __ sub(Rlocals, Rparams, wordSize); 1163 __ add(Rlocals, Rlocals, AsmOperand(R2, lsl, Interpreter::logStackElementSize)); 1164 1165 __ sub(R3, R3, R2); // number of additional locals 1166 1167 1168 // see if we've got enough room on the stack for locals plus overhead. 1169 generate_stack_overflow_check(); 1170 1171 // allocate space for locals 1172 // explicitly initialize locals 1173 1174 // Loop is unrolled 4 times 1175 Label loop; 1176 __ mov(R0, 0); 1177 __ bind(loop); 1178 1179 // #1 1180 __ subs(R3, R3, 1); 1181 __ push(R0, ge); 1182 1183 // #2 1184 __ subs(R3, R3, 1, ge); 1185 __ push(R0, ge); 1186 1187 // #3 1188 __ subs(R3, R3, 1, ge); 1189 __ push(R0, ge); 1190 1191 // #4 1192 __ subs(R3, R3, 1, ge); 1193 __ push(R0, ge); 1194 1195 __ b(loop, gt); 1196 1197 // initialize fixed part of activation frame 1198 generate_fixed_frame(false); 1199 1200 __ restore_dispatch(); 1201 1202 // make sure method is not native & not abstract 1203 #ifdef ASSERT 1204 __ ldrh(Rtemp, Address(Rmethod, Method::access_flags_offset())); 1205 { 1206 Label L; 1207 __ tbz(Rtemp, JVM_ACC_NATIVE_BIT, L); 1208 __ stop("tried to execute native method as non-native"); 1209 __ bind(L); 1210 } 1211 { Label L; 1212 __ tbz(Rtemp, JVM_ACC_ABSTRACT_BIT, L); 1213 __ stop("tried to execute abstract method in interpreter"); 1214 __ bind(L); 1215 } 1216 #endif 1217 1218 // increment invocation count & check for overflow 1219 Label invocation_counter_overflow; 1220 if (inc_counter) { 1221 if (synchronized) { 1222 // Avoid unlocking method's monitor in case of exception, as it has not 1223 // been locked yet. 1224 __ set_do_not_unlock_if_synchronized(true, Rtemp); 1225 } 1226 generate_counter_incr(&invocation_counter_overflow); 1227 } 1228 Label continue_after_compile; 1229 __ bind(continue_after_compile); 1230 1231 if (inc_counter && synchronized) { 1232 __ set_do_not_unlock_if_synchronized(false, Rtemp); 1233 } 1234 #if R9_IS_SCRATCHED 1235 __ restore_method(); 1236 #endif 1237 1238 // check for synchronized methods 1239 // Must happen AFTER invocation_counter check and stack overflow check, 1240 // so method is not locked if overflows. 1241 // 1242 if (synchronized) { 1243 // Allocate monitor and lock method 1244 lock_method(); 1245 } else { 1246 // no synchronization necessary 1247 #ifdef ASSERT 1248 { Label L; 1249 __ ldrh(Rtemp, Address(Rmethod, Method::access_flags_offset())); 1250 __ tbz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L); 1251 __ stop("method needs synchronization"); 1252 __ bind(L); 1253 } 1254 #endif 1255 } 1256 1257 // start execution 1258 #ifdef ASSERT 1259 { Label L; 1260 __ ldr(Rtemp, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize)); 1261 __ cmp(Rtemp, Rstack_top); 1262 __ b(L, eq); 1263 __ stop("broken stack frame setup in interpreter 4"); 1264 __ bind(L); 1265 } 1266 #endif 1267 __ check_extended_sp(Rtemp); 1268 1269 // jvmti support 1270 __ notify_method_entry(); 1271 #if R9_IS_SCRATCHED 1272 __ restore_method(); 1273 #endif 1274 1275 __ dispatch_next(vtos); 1276 1277 // invocation counter overflow 1278 if (inc_counter) { 1279 // Handle overflow of counter and compile method 1280 __ bind(invocation_counter_overflow); 1281 generate_counter_overflow(continue_after_compile); 1282 } 1283 1284 return entry_point; 1285 } 1286 1287 //------------------------------------------------------------------------------------------------------------------------ 1288 // Exceptions 1289 1290 void TemplateInterpreterGenerator::generate_throw_exception() { 1291 // Entry point in previous activation (i.e., if the caller was interpreted) 1292 Interpreter::_rethrow_exception_entry = __ pc(); 1293 // Rexception_obj: exception 1294 1295 // Clear interpreter_frame_last_sp. 1296 __ mov(Rtemp, 0); 1297 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1298 1299 #if R9_IS_SCRATCHED 1300 __ restore_method(); 1301 #endif 1302 __ restore_bcp(); 1303 __ restore_dispatch(); 1304 __ restore_locals(); 1305 1306 1307 // Entry point for exceptions thrown within interpreter code 1308 Interpreter::_throw_exception_entry = __ pc(); 1309 1310 // expression stack is undefined here 1311 // Rexception_obj: exception 1312 // Rbcp: exception bcp 1313 __ verify_oop(Rexception_obj); 1314 1315 // expression stack must be empty before entering the VM in case of an exception 1316 __ empty_expression_stack(); 1317 // find exception handler address and preserve exception oop 1318 __ mov(R1, Rexception_obj); 1319 __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), R1); 1320 // R0: exception handler entry point 1321 // Rexception_obj: preserved exception oop 1322 // Rbcp: bcp for exception handler 1323 __ push_ptr(Rexception_obj); // push exception which is now the only value on the stack 1324 __ jump(R0); // jump to exception handler (may be _remove_activation_entry!) 1325 1326 // If the exception is not handled in the current frame the frame is removed and 1327 // the exception is rethrown (i.e. exception continuation is _rethrow_exception). 1328 // 1329 // Note: At this point the bci is still the bxi for the instruction which caused 1330 // the exception and the expression stack is empty. Thus, for any VM calls 1331 // at this point, GC will find a legal oop map (with empty expression stack). 1332 1333 // In current activation 1334 // tos: exception 1335 // Rbcp: exception bcp 1336 1337 // 1338 // JVMTI PopFrame support 1339 // 1340 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 1341 1342 1343 __ empty_expression_stack(); 1344 1345 // Set the popframe_processing bit in _popframe_condition indicating that we are 1346 // currently handling popframe, so that call_VMs that may happen later do not trigger new 1347 // popframe handling cycles. 1348 1349 __ ldr_s32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset())); 1350 __ orr(Rtemp, Rtemp, (unsigned)JavaThread::popframe_processing_bit); 1351 __ str_32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset())); 1352 1353 { 1354 // Check to see whether we are returning to a deoptimized frame. 1355 // (The PopFrame call ensures that the caller of the popped frame is 1356 // either interpreted or compiled and deoptimizes it if compiled.) 1357 // In this case, we can't call dispatch_next() after the frame is 1358 // popped, but instead must save the incoming arguments and restore 1359 // them after deoptimization has occurred. 1360 // 1361 // Note that we don't compare the return PC against the 1362 // deoptimization blob's unpack entry because of the presence of 1363 // adapter frames in C2. 1364 Label caller_not_deoptimized; 1365 __ ldr(R0, Address(FP, frame::return_addr_offset * wordSize)); 1366 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), R0); 1367 __ cbnz_32(R0, caller_not_deoptimized); 1368 1369 // Compute size of arguments for saving when returning to deoptimized caller 1370 __ restore_method(); 1371 __ ldr(R0, Address(Rmethod, Method::const_offset())); 1372 __ ldrh(R0, Address(R0, ConstMethod::size_of_parameters_offset())); 1373 1374 __ logical_shift_left(R1, R0, Interpreter::logStackElementSize); 1375 // Save these arguments 1376 __ restore_locals(); 1377 __ sub(R2, Rlocals, R1); 1378 __ add(R2, R2, wordSize); 1379 __ mov(R0, Rthread); 1380 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R0, R1, R2); 1381 1382 __ remove_activation(vtos, LR, 1383 /* throw_monitor_exception */ false, 1384 /* install_monitor_exception */ false, 1385 /* notify_jvmdi */ false); 1386 1387 // Inform deoptimization that it is responsible for restoring these arguments 1388 __ mov(Rtemp, JavaThread::popframe_force_deopt_reexecution_bit); 1389 __ str_32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset())); 1390 1391 // Continue in deoptimization handler 1392 __ ret(); 1393 1394 __ bind(caller_not_deoptimized); 1395 } 1396 1397 __ remove_activation(vtos, R4, 1398 /* throw_monitor_exception */ false, 1399 /* install_monitor_exception */ false, 1400 /* notify_jvmdi */ false); 1401 1402 // Finish with popframe handling 1403 // A previous I2C followed by a deoptimization might have moved the 1404 // outgoing arguments further up the stack. PopFrame expects the 1405 // mutations to those outgoing arguments to be preserved and other 1406 // constraints basically require this frame to look exactly as 1407 // though it had previously invoked an interpreted activation with 1408 // no space between the top of the expression stack (current 1409 // last_sp) and the top of stack. Rather than force deopt to 1410 // maintain this kind of invariant all the time we call a small 1411 // fixup routine to move the mutated arguments onto the top of our 1412 // expression stack if necessary. 1413 __ mov(R1, SP); 1414 __ ldr(R2, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1415 // PC must point into interpreter here 1416 __ set_last_Java_frame(SP, FP, true, Rtemp); 1417 __ mov(R0, Rthread); 1418 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), R0, R1, R2); 1419 __ reset_last_Java_frame(Rtemp); 1420 1421 // Restore the last_sp and null it out 1422 __ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1423 __ mov(Rtemp, (int)NULL_WORD); 1424 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1425 1426 __ restore_bcp(); 1427 __ restore_dispatch(); 1428 __ restore_locals(); 1429 __ restore_method(); 1430 1431 // The method data pointer was incremented already during 1432 // call profiling. We have to restore the mdp for the current bcp. 1433 if (ProfileInterpreter) { 1434 __ set_method_data_pointer_for_bcp(); 1435 } 1436 1437 // Clear the popframe condition flag 1438 assert(JavaThread::popframe_inactive == 0, "adjust this code"); 1439 __ str_32(__ zero_register(Rtemp), Address(Rthread, JavaThread::popframe_condition_offset())); 1440 1441 #if INCLUDE_JVMTI 1442 { 1443 Label L_done; 1444 1445 __ ldrb(Rtemp, Address(Rbcp, 0)); 1446 __ cmp(Rtemp, Bytecodes::_invokestatic); 1447 __ b(L_done, ne); 1448 1449 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. 1450 // Detect such a case in the InterpreterRuntime function and return the member name argument, or null. 1451 1452 // get local0 1453 __ ldr(R1, Address(Rlocals, 0)); 1454 __ mov(R2, Rmethod); 1455 __ mov(R3, Rbcp); 1456 __ call_VM(R0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R1, R2, R3); 1457 1458 __ cbz(R0, L_done); 1459 1460 __ str(R0, Address(Rstack_top)); 1461 __ bind(L_done); 1462 } 1463 #endif // INCLUDE_JVMTI 1464 1465 __ dispatch_next(vtos); 1466 // end of PopFrame support 1467 1468 Interpreter::_remove_activation_entry = __ pc(); 1469 1470 // preserve exception over this code sequence 1471 __ pop_ptr(R0_tos); 1472 __ str(R0_tos, Address(Rthread, JavaThread::vm_result_oop_offset())); 1473 // remove the activation (without doing throws on illegalMonitorExceptions) 1474 __ remove_activation(vtos, Rexception_pc, false, true, false); 1475 // restore exception 1476 __ get_vm_result_oop(Rexception_obj, Rtemp); 1477 1478 // In between activations - previous activation type unknown yet 1479 // compute continuation point - the continuation point expects 1480 // the following registers set up: 1481 // 1482 // Rexception_obj: exception 1483 // Rexception_pc: return address/pc that threw exception 1484 // SP: expression stack of caller 1485 // FP: frame pointer of caller 1486 __ mov(c_rarg0, Rthread); 1487 __ mov(c_rarg1, Rexception_pc); 1488 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), c_rarg0, c_rarg1); 1489 // Note that an "issuing PC" is actually the next PC after the call 1490 1491 __ jump(R0); // jump to exception handler of caller 1492 } 1493 1494 1495 // 1496 // JVMTI ForceEarlyReturn support 1497 // 1498 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { 1499 address entry = __ pc(); 1500 1501 1502 __ restore_bcp(); 1503 __ restore_dispatch(); 1504 __ restore_locals(); 1505 1506 __ empty_expression_stack(); 1507 1508 __ load_earlyret_value(state); 1509 1510 // Clear the earlyret state 1511 __ ldr(Rtemp, Address(Rthread, JavaThread::jvmti_thread_state_offset())); 1512 1513 assert(JvmtiThreadState::earlyret_inactive == 0, "adjust this code"); 1514 __ str_32(__ zero_register(R2), Address(Rtemp, JvmtiThreadState::earlyret_state_offset())); 1515 1516 __ remove_activation(state, LR, 1517 false, /* throw_monitor_exception */ 1518 false, /* install_monitor_exception */ 1519 true); /* notify_jvmdi */ 1520 1521 // According to interpreter calling conventions, result is returned in R0/R1, 1522 // so ftos (S0) and dtos (D0) are moved to R0/R1. 1523 // This conversion should be done after remove_activation, as it uses 1524 // push(state) & pop(state) to preserve return value. 1525 __ convert_tos_to_retval(state); 1526 __ ret(); 1527 1528 return entry; 1529 } // end of ForceEarlyReturn support 1530 1531 1532 //------------------------------------------------------------------------------------------------------------------------ 1533 // Helper for vtos entry point generation 1534 1535 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) { 1536 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 1537 Label L; 1538 1539 #ifdef __SOFTFP__ 1540 dep = __ pc(); // fall through 1541 #else 1542 fep = __ pc(); __ push(ftos); __ b(L); 1543 dep = __ pc(); __ push(dtos); __ b(L); 1544 #endif // __SOFTFP__ 1545 1546 lep = __ pc(); __ push(ltos); __ b(L); 1547 1548 if (VerifyOops) { // can't share atos entry if VerifyOops 1549 aep = __ pc(); __ push(atos); __ b(L); 1550 } else { 1551 aep = __ pc(); // fall through 1552 } 1553 1554 #ifdef __SOFTFP__ 1555 fep = __ pc(); // fall through 1556 #endif // __SOFTFP__ 1557 1558 bep = cep = sep = // fall through 1559 iep = __ pc(); __ push(itos); // fall through 1560 vep = __ pc(); __ bind(L); // fall through 1561 generate_and_dispatch(t); 1562 } 1563 1564 //------------------------------------------------------------------------------------------------------------------------ 1565 1566 // Non-product code 1567 #ifndef PRODUCT 1568 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 1569 address entry = __ pc(); 1570 1571 // prepare expression stack 1572 __ push(state); // save tosca 1573 1574 // pass tosca registers as arguments 1575 __ mov(R2, R0_tos); 1576 __ mov(R3, R1_tos_hi); 1577 __ mov(R1, LR); // save return address 1578 1579 // call tracer 1580 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), R1, R2, R3); 1581 1582 __ mov(LR, R0); // restore return address 1583 __ pop(state); // restore tosca 1584 1585 // return 1586 __ ret(); 1587 1588 return entry; 1589 } 1590 1591 1592 void TemplateInterpreterGenerator::count_bytecode() { 1593 __ inc_global_counter((address) &BytecodeCounter::_counter_value, 0, Rtemp, R2_tmp, true); 1594 } 1595 1596 1597 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { 1598 __ inc_global_counter((address)&BytecodeHistogram::_counters[0], sizeof(BytecodeHistogram::_counters[0]) * t->bytecode(), Rtemp, R2_tmp, true); 1599 } 1600 1601 1602 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { 1603 const Register Rindex_addr = R2_tmp; 1604 Label Lcontinue; 1605 InlinedAddress Lcounters((address)BytecodePairHistogram::_counters); 1606 InlinedAddress Lindex((address)&BytecodePairHistogram::_index); 1607 const Register Rcounters_addr = R2_tmp; 1608 const Register Rindex = R4_tmp; 1609 1610 // calculate new index for counter: 1611 // index = (_index >> log2_number_of_codes) | (bytecode << log2_number_of_codes). 1612 // (_index >> log2_number_of_codes) is previous bytecode 1613 1614 __ ldr_literal(Rindex_addr, Lindex); 1615 __ ldr_s32(Rindex, Address(Rindex_addr)); 1616 __ mov_slow(Rtemp, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); 1617 __ orr(Rindex, Rtemp, AsmOperand(Rindex, lsr, BytecodePairHistogram::log2_number_of_codes)); 1618 __ str_32(Rindex, Address(Rindex_addr)); 1619 1620 // Rindex (R4) contains index of counter 1621 1622 __ ldr_literal(Rcounters_addr, Lcounters); 1623 __ ldr_s32(Rtemp, Address::indexed_32(Rcounters_addr, Rindex)); 1624 __ adds_32(Rtemp, Rtemp, 1); 1625 __ b(Lcontinue, mi); // avoid overflow 1626 __ str_32(Rtemp, Address::indexed_32(Rcounters_addr, Rindex)); 1627 1628 __ b(Lcontinue); 1629 1630 __ bind_literal(Lindex); 1631 __ bind_literal(Lcounters); 1632 1633 __ bind(Lcontinue); 1634 } 1635 1636 1637 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 1638 // Call a little run-time stub to avoid blow-up for each bytecode. 1639 // The run-time runtime saves the right registers, depending on 1640 // the tosca in-state for the given template. 1641 assert(Interpreter::trace_code(t->tos_in()) != nullptr, 1642 "entry must have been generated"); 1643 address trace_entry = Interpreter::trace_code(t->tos_in()); 1644 __ call(trace_entry, relocInfo::none); 1645 } 1646 1647 1648 void TemplateInterpreterGenerator::stop_interpreter_at() { 1649 Label Lcontinue; 1650 const Register stop_at = R2_tmp; 1651 1652 __ ldr_global_s32(Rtemp, (address) &BytecodeCounter::_counter_value); 1653 __ mov_slow(stop_at, StopInterpreterAt); 1654 1655 // test bytecode counter 1656 __ cmp(Rtemp, stop_at); 1657 __ b(Lcontinue, ne); 1658 1659 __ trace_state("stop_interpreter_at"); 1660 __ breakpoint(); 1661 1662 __ bind(Lcontinue); 1663 } 1664 #endif // !PRODUCT