1 /*
   2  * Copyright (c) 2008, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "interpreter/bytecodeHistogram.hpp"
  30 #include "interpreter/interp_masm.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "interpreter/templateInterpreterGenerator.hpp"
  34 #include "interpreter/templateTable.hpp"
  35 #include "oops/arrayOop.hpp"
  36 #include "oops/methodData.hpp"
  37 #include "oops/method.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "oops/resolvedIndyEntry.hpp"
  40 #include "oops/resolvedMethodEntry.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiThreadState.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/deoptimization.hpp"
  46 #include "runtime/frame.inline.hpp"
  47 #include "runtime/jniHandles.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/synchronizer.hpp"
  51 #include "runtime/timer.hpp"
  52 #include "runtime/vframeArray.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/debug.hpp"
  55 #include "utilities/macros.hpp"
  56 
  57 // Size of interpreter code.  Increase if too small.  Interpreter will
  58 // fail with a guarantee ("not enough space for interpreter generation");
  59 // if too small.
  60 // Run with +PrintInterpreter to get the VM to print out the size.
  61 // Max size with JVMTI
  62 int TemplateInterpreter::InterpreterCodeSize = 180 * 1024;
  63 
  64 #define __ _masm->
  65 
  66 //------------------------------------------------------------------------------------------------------------------------
  67 
  68 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  69   address entry = __ pc();
  70 
  71   // callee-save register for saving LR, shared with generate_native_entry
  72   const Register Rsaved_ret_addr = Rtmp_save0;
  73 
  74   __ mov(Rsaved_ret_addr, LR);
  75 
  76   __ mov(R1, Rmethod);
  77   __ mov(R2, Rlocals);
  78   __ mov(R3, SP);
  79 
  80 
  81   // Safer to save R9 (when scratched) since callers may have been
  82   // written assuming R9 survives. This is suboptimal but
  83   // probably not important for this slow case call site.
  84   // Note for R9 saving: slow_signature_handler may copy register
  85   // arguments above the current SP (passed as R3). It is safe for
  86   // call_VM to use push and pop to protect additional values on the
  87   // stack if needed.
  88   __ call_VM(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), true /* save R9 if needed*/);
  89   __ add(SP, SP, wordSize);     // Skip R0
  90   __ pop(RegisterSet(R1, R3));  // Load arguments passed in registers
  91 #ifdef __ABI_HARD__
  92   // Few alternatives to an always-load-FP-registers approach:
  93   // - parse method signature to detect FP arguments
  94   // - keep a counter/flag on a stack indicationg number of FP arguments in the method.
  95   // The later has been originally implemented and tested but a conditional path could
  96   // eliminate any gain imposed by avoiding 8 double word loads.
  97   __ fldmiad(SP, FloatRegisterSet(D0, 8), writeback);
  98 #endif // __ABI_HARD__
  99 
 100   __ ret(Rsaved_ret_addr);
 101 
 102   return entry;
 103 }
 104 
 105 
 106 //
 107 // Various method entries (that c++ and asm interpreter agree upon)
 108 //------------------------------------------------------------------------------------------------------------------------
 109 //
 110 //
 111 
 112 // Abstract method entry
 113 // Attempt to execute abstract method. Throw exception
 114 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 115   address entry_point = __ pc();
 116 
 117 
 118   __ empty_expression_stack();
 119 
 120   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
 121 
 122   DEBUG_ONLY(STOP("generate_abstract_entry");) // Should not reach here
 123   return entry_point;
 124 }
 125 
 126 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
 127   address entry_point = nullptr;
 128   Register continuation = LR;
 129   bool use_runtime_call = false;
 130   switch (kind) {
 131   case Interpreter::java_lang_math_abs:
 132     entry_point = __ pc();
 133 #ifdef __SOFTFP__
 134     use_runtime_call = true;
 135     __ ldrd(R0, Address(SP));
 136 #else // !__SOFTFP__
 137     __ ldr_double(D0, Address(SP));
 138     __ abs_double(D0, D0);
 139 #endif // __SOFTFP__
 140     break;
 141   case Interpreter::java_lang_math_sqrt:
 142     entry_point = __ pc();
 143 #ifdef __SOFTFP__
 144     use_runtime_call = true;
 145     __ ldrd(R0, Address(SP));
 146 #else // !__SOFTFP__
 147     __ ldr_double(D0, Address(SP));
 148     __ sqrt_double(D0, D0);
 149 #endif // __SOFTFP__
 150     break;
 151   case Interpreter::java_lang_math_sin:
 152   case Interpreter::java_lang_math_cos:
 153   case Interpreter::java_lang_math_tan:
 154   case Interpreter::java_lang_math_log:
 155   case Interpreter::java_lang_math_log10:
 156   case Interpreter::java_lang_math_exp:
 157     entry_point = __ pc();
 158     use_runtime_call = true;
 159 #ifdef __SOFTFP__
 160     __ ldrd(R0, Address(SP));
 161 #else // !__SOFTFP__
 162     __ ldr_double(D0, Address(SP));
 163 #endif // __SOFTFP__
 164     break;
 165   case Interpreter::java_lang_math_pow:
 166     entry_point = __ pc();
 167     use_runtime_call = true;
 168 #ifdef __SOFTFP__
 169     __ ldrd(R0, Address(SP, 2 * Interpreter::stackElementSize));
 170     __ ldrd(R2, Address(SP));
 171 #else // !__SOFTFP__
 172     __ ldr_double(D0, Address(SP, 2 * Interpreter::stackElementSize));
 173     __ ldr_double(D1, Address(SP));
 174 #endif // __SOFTFP__
 175     break;
 176   case Interpreter::java_lang_math_fmaD:
 177   case Interpreter::java_lang_math_fmaF:
 178     // TODO: Implement intrinsic
 179     break;
 180   default:
 181     ShouldNotReachHere();
 182   }
 183 
 184   if (entry_point != nullptr) {
 185     __ mov(SP, Rsender_sp);
 186     if (use_runtime_call) {
 187       __ mov(Rtmp_save0, LR);
 188       continuation = Rtmp_save0;
 189       generate_math_runtime_call(kind);
 190     }
 191     __ ret(continuation);
 192   }
 193   return entry_point;
 194 }
 195 
 196 void TemplateInterpreterGenerator::generate_math_runtime_call(AbstractInterpreter::MethodKind kind) {
 197   address fn;
 198   switch (kind) {
 199 #ifdef __SOFTFP__
 200   case Interpreter::java_lang_math_abs:
 201     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dabs);
 202     break;
 203   case Interpreter::java_lang_math_sqrt:
 204     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt);
 205     break;
 206 #endif // __SOFTFP__
 207   case Interpreter::java_lang_math_sin:
 208     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 209     break;
 210   case Interpreter::java_lang_math_cos:
 211     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 212     break;
 213   case Interpreter::java_lang_math_tan:
 214     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 215     break;
 216   case Interpreter::java_lang_math_log:
 217     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 218     break;
 219   case Interpreter::java_lang_math_log10:
 220     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 221     break;
 222   case Interpreter::java_lang_math_exp:
 223     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 224     break;
 225   case Interpreter::java_lang_math_pow:
 226     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 227     break;
 228   default:
 229     ShouldNotReachHere();
 230     fn = nullptr; // silence "maybe uninitialized" compiler warnings
 231   }
 232   __ call_VM_leaf(fn);
 233 }
 234 
 235 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 236   address entry = __ pc();
 237 
 238   // Note: There should be a minimal interpreter frame set up when stack
 239   // overflow occurs since we check explicitly for it now.
 240   //
 241 #ifdef ASSERT
 242   { Label L;
 243     __ sub(Rtemp, FP, - frame::interpreter_frame_monitor_block_top_offset * wordSize);
 244     __ cmp(SP, Rtemp);  // Rtemp = maximal SP for current FP,
 245                         //  (stack grows negative)
 246     __ b(L, ls); // check if frame is complete
 247     __ stop ("interpreter frame not set up");
 248     __ bind(L);
 249   }
 250 #endif // ASSERT
 251 
 252   // Restore bcp under the assumption that the current frame is still
 253   // interpreted
 254   __ restore_bcp();
 255 
 256   // expression stack must be empty before entering the VM if an exception
 257   // happened
 258   __ empty_expression_stack();
 259 
 260   // throw exception
 261   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 262 
 263   __ should_not_reach_here();
 264 
 265   return entry;
 266 }
 267 
 268 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
 269   address entry = __ pc();
 270 
 271   // index is in R4_ArrayIndexOutOfBounds_index
 272 
 273   // expression stack must be empty before entering the VM if an exception happened
 274   __ empty_expression_stack();
 275 
 276   // setup parameters
 277   // Array expected in R1.
 278   __ mov(R2, R4_ArrayIndexOutOfBounds_index);
 279 
 280   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), R1, R2);
 281 
 282   __ nop(); // to avoid filling CPU pipeline with invalid instructions
 283   __ nop();
 284   __ should_not_reach_here();
 285 
 286   return entry;
 287 }
 288 
 289 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 290   address entry = __ pc();
 291 
 292   // object is in R2_ClassCastException_obj
 293 
 294   // expression stack must be empty before entering the VM if an exception
 295   // happened
 296   __ empty_expression_stack();
 297 
 298   __ mov(R1, R2_ClassCastException_obj);
 299   __ call_VM(noreg,
 300              CAST_FROM_FN_PTR(address,
 301                               InterpreterRuntime::throw_ClassCastException),
 302              R1);
 303 
 304   __ should_not_reach_here();
 305 
 306   return entry;
 307 }
 308 
 309 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 310   assert(!pass_oop || message == nullptr, "either oop or message but not both");
 311   address entry = __ pc();
 312 
 313   InlinedString Lname(name);
 314   InlinedString Lmessage(message);
 315 
 316   if (pass_oop) {
 317     // object is at TOS
 318     __ pop_ptr(R2);
 319   }
 320 
 321   // expression stack must be empty before entering the VM if an exception happened
 322   __ empty_expression_stack();
 323 
 324   // setup parameters
 325   __ ldr_literal(R1, Lname);
 326 
 327   if (pass_oop) {
 328     __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), R1, R2);
 329   } else {
 330     if (message != nullptr) {
 331       __ ldr_literal(R2, Lmessage);
 332     } else {
 333       __ mov(R2, 0);
 334     }
 335     __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), R1, R2);
 336   }
 337 
 338   // throw exception
 339   __ b(Interpreter::throw_exception_entry());
 340 
 341   __ nop(); // to avoid filling CPU pipeline with invalid instructions
 342   __ nop();
 343   __ bind_literal(Lname);
 344   if (!pass_oop && (message != nullptr)) {
 345     __ bind_literal(Lmessage);
 346   }
 347 
 348   return entry;
 349 }
 350 
 351 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 352   address entry = __ pc();
 353 
 354   __ interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
 355 
 356   // Restore stack bottom in case i2c adjusted stack
 357   __ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
 358   // and null it as marker that SP is now tos until next java call
 359   __ mov(Rtemp, (int)NULL_WORD);
 360   __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
 361 
 362   __ restore_method();
 363   __ restore_bcp();
 364   __ restore_dispatch();
 365   __ restore_locals();
 366 
 367   const Register Rcache = R2_tmp;
 368   const Register Rindex = R3_tmp;
 369 
 370   if (index_size == sizeof(u4)) {
 371     __ load_resolved_indy_entry(Rcache, Rindex);
 372     __ ldrh(Rcache, Address(Rcache, in_bytes(ResolvedIndyEntry::num_parameters_offset())));
 373   } else {
 374     // Pop N words from the stack
 375     assert(index_size == sizeof(u2), "Can only be u2");
 376     __ load_method_entry(Rcache, Rindex);
 377     __ ldrh(Rcache, Address(Rcache, in_bytes(ResolvedMethodEntry::num_parameters_offset())));
 378   }
 379 
 380   __ check_stack_top();
 381   __ add(Rstack_top, Rstack_top, AsmOperand(Rcache, lsl, Interpreter::logStackElementSize));
 382 
 383   __ convert_retval_to_tos(state);
 384 
 385   __ check_and_handle_popframe();
 386   __ check_and_handle_earlyret();
 387 
 388   __ dispatch_next(state, step);
 389 
 390   return entry;
 391 }
 392 
 393 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step, address continuation) {
 394   address entry = __ pc();
 395 
 396   __ interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
 397 
 398   // The stack is not extended by deopt but we must null last_sp as this
 399   // entry is like a "return".
 400   __ mov(Rtemp, 0);
 401   __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
 402 
 403   __ restore_method();
 404   __ restore_bcp();
 405   __ restore_dispatch();
 406   __ restore_locals();
 407 
 408   // handle exceptions
 409   { Label L;
 410     __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset()));
 411     __ cbz(Rtemp, L);
 412     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 413     __ should_not_reach_here();
 414     __ bind(L);
 415   }
 416 
 417   if (continuation == nullptr) {
 418     __ dispatch_next(state, step);
 419   } else {
 420     __ jump_to_entry(continuation);
 421   }
 422 
 423   return entry;
 424 }
 425 
 426 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 427   address entry = __ pc();
 428 
 429   switch (type) {
 430   case T_CHAR    : /* Nothing to do */  break;
 431   case T_BYTE    : /* Nothing to do */  break;
 432   case T_SHORT   : /* Nothing to do */  break;
 433   case T_INT     : /* Nothing to do */  break;
 434   case T_LONG    : /* Nothing to do */  break;
 435   case T_VOID    : /* Nothing to do */  break;
 436   case T_DOUBLE  : /* Nothing to do */  break;
 437   case T_FLOAT   : /* Nothing to do */  break;
 438   case T_BOOLEAN : __ c2bool(R0);       break;
 439   case T_OBJECT  :
 440     __ ldr(R0, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize));
 441     __ verify_oop(R0);
 442     break;
 443   default        : __ should_not_reach_here(); break;
 444   }
 445 
 446   __ ret();
 447   return entry;
 448 }
 449 
 450 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 451   address entry = __ pc();
 452   __ push(state);
 453   __ call_VM(noreg, runtime_entry);
 454 
 455   // load current bytecode
 456   __ ldrb(R3_bytecode, Address(Rbcp));
 457   __ dispatch_only_normal(vtos);
 458   return entry;
 459 }
 460 
 461 
 462 // Helpers for commoning out cases in the various type of method entries.
 463 //
 464 
 465 // increment invocation count & check for overflow
 466 //
 467 // Note: checking for negative value instead of overflow
 468 //       so we have a 'sticky' overflow test
 469 //
 470 // In: Rmethod.
 471 //
 472 // Uses R0, R1, Rtemp.
 473 //
 474 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) {
 475   Label done;
 476   const Register Rcounters = Rtemp;
 477   const Address invocation_counter(Rcounters,
 478                 MethodCounters::invocation_counter_offset() +
 479                 InvocationCounter::counter_offset());
 480 
 481   // Note: In tiered we increment either counters in MethodCounters* or
 482   // in MDO depending if we're profiling or not.
 483   int increment = InvocationCounter::count_increment;
 484   Label no_mdo;
 485   if (ProfileInterpreter) {
 486     // Are we profiling?
 487     __ ldr(R1_tmp, Address(Rmethod, Method::method_data_offset()));
 488     __ cbz(R1_tmp, no_mdo);
 489     // Increment counter in the MDO
 490     const Address mdo_invocation_counter(R1_tmp,
 491                   in_bytes(MethodData::invocation_counter_offset()) +
 492                   in_bytes(InvocationCounter::counter_offset()));
 493     const Address mask(R1_tmp, in_bytes(MethodData::invoke_mask_offset()));
 494     __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, R0_tmp, Rtemp, eq, overflow);
 495     __ b(done);
 496   }
 497   __ bind(no_mdo);
 498   __ get_method_counters(Rmethod, Rcounters, done);
 499   const Address mask(Rcounters, in_bytes(MethodCounters::invoke_mask_offset()));
 500   __ increment_mask_and_jump(invocation_counter, increment, mask, R0_tmp, R1_tmp, eq, overflow);
 501   __ bind(done);
 502 }
 503 
 504 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
 505   // InterpreterRuntime::frequency_counter_overflow takes one argument
 506   // indicating if the counter overflow occurs at a backwards branch (non-null bcp).
 507   // The call returns the address of the verified entry point for the method or null
 508   // if the compilation did not complete (either went background or bailed out).
 509   __ mov(R1, (int)false);
 510   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R1);
 511 
 512   // jump to the interpreted entry.
 513   __ b(do_continue);
 514 }
 515 
 516 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
 517   // Check if we've got enough room on the stack for
 518   //  - overhead;
 519   //  - locals;
 520   //  - expression stack.
 521   //
 522   // Registers on entry:
 523   //
 524   // R3 = number of additional locals
 525   // Rthread
 526   // Rmethod
 527   // Registers used: R0, R1, R2, Rtemp.
 528 
 529   const Register Radditional_locals = R3;
 530   const Register RmaxStack = R2;
 531 
 532   // monitor entry size
 533   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 534 
 535   // total overhead size: entry_size + (saved registers, thru expr stack bottom).
 536   // be sure to change this if you add/subtract anything to/from the overhead area
 537   const int overhead_size = (frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset)*wordSize + entry_size;
 538 
 539   // Pages reserved for VM runtime calls and subsequent Java calls.
 540   const int reserved_pages = StackOverflow::stack_shadow_zone_size();
 541 
 542   // Thread::stack_size() includes guard pages, and they should not be touched.
 543   const int guard_pages = StackOverflow::stack_guard_zone_size();
 544 
 545   __ ldr(R0, Address(Rthread, Thread::stack_base_offset()));
 546   __ ldr(R1, Address(Rthread, Thread::stack_size_offset()));
 547   __ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
 548   __ ldrh(RmaxStack, Address(Rtemp, ConstMethod::max_stack_offset()));
 549   __ sub_slow(Rtemp, SP, overhead_size + reserved_pages + guard_pages + Method::extra_stack_words());
 550 
 551   // reserve space for additional locals
 552   __ sub(Rtemp, Rtemp, AsmOperand(Radditional_locals, lsl, Interpreter::logStackElementSize));
 553 
 554   // stack size
 555   __ sub(R0, R0, R1);
 556 
 557   // reserve space for expression stack
 558   __ sub(Rtemp, Rtemp, AsmOperand(RmaxStack, lsl, Interpreter::logStackElementSize));
 559 
 560   __ cmp(Rtemp, R0);
 561 
 562   __ mov(SP, Rsender_sp, ls);  // restore SP
 563   __ b(SharedRuntime::throw_StackOverflowError_entry(), ls);
 564 }
 565 
 566 
 567 // Allocate monitor and lock method (asm interpreter)
 568 //
 569 void TemplateInterpreterGenerator::lock_method() {
 570   // synchronize method
 571 
 572   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 573   assert ((entry_size % StackAlignmentInBytes) == 0, "should keep stack alignment");
 574 
 575   #ifdef ASSERT
 576     { Label L;
 577       __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
 578       __ tbnz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L);
 579       __ stop("method doesn't need synchronization");
 580       __ bind(L);
 581     }
 582   #endif // ASSERT
 583 
 584   // get synchronization object
 585   { Label done;
 586     __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
 587     __ tst(Rtemp, JVM_ACC_STATIC);
 588     __ ldr(R0, Address(Rlocals, Interpreter::local_offset_in_bytes(0)), eq); // get receiver (assume this is frequent case)
 589     __ b(done, eq);
 590     __ load_mirror(R0, Rmethod, Rtemp);
 591     __ bind(done);
 592   }
 593 
 594   // add space for monitor & lock
 595 
 596 
 597   __ sub(Rstack_top, Rstack_top, entry_size);
 598   __ check_stack_top_on_expansion();
 599                                               // add space for a monitor entry
 600   __ str(Rstack_top, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
 601                                               // set new monitor block top
 602   __ str(R0, Address(Rstack_top, BasicObjectLock::obj_offset()));
 603                                               // store object
 604   __ mov(R1, Rstack_top);                     // monitor entry address
 605   __ lock_object(R1);
 606 }
 607 
 608 
 609 //
 610 // Generate a fixed interpreter frame. This is identical setup for interpreted methods
 611 // and for native methods hence the shared code.
 612 
 613 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 614   // Generates the following stack layout:
 615   //
 616   // [ expr. stack bottom ]
 617   // [ saved Rbcp         ]
 618   // [ current Rlocals    ]
 619   // [ cache              ]
 620   // [ mdx                ]
 621   // [ Method*            ]
 622   // [ last_sp            ]
 623   // [ sender_sp          ]
 624   // [ saved FP           ] <--- FP
 625   // [ saved LR           ]
 626 
 627   // initialize fixed part of activation frame
 628   __ push(LR);                                        // save return address
 629   __ push(FP);                                        // save FP
 630   __ mov(FP, SP);                                     // establish new FP
 631 
 632   __ push(Rsender_sp);
 633 
 634   __ mov(R0, 0);
 635   __ push(R0);                                        // leave last_sp as null
 636 
 637   // setup Rbcp
 638   if (native_call) {
 639     __ mov(Rbcp, 0);                                  // bcp = 0 for native calls
 640   } else {
 641     __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); // get ConstMethod*
 642     __ add(Rbcp, Rtemp, ConstMethod::codes_offset()); // get codebase
 643   }
 644 
 645   __ push(Rmethod);                                    // save Method*
 646   // Get mirror and store it in the frame as GC root for this Method*
 647   __ load_mirror(Rtemp, Rmethod, Rtemp);
 648   __ push(Rtemp);
 649 
 650   if (ProfileInterpreter) {
 651     __ ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
 652     __ tst(Rtemp, Rtemp);
 653     __ add(Rtemp, Rtemp, in_bytes(MethodData::data_offset()), ne);
 654     __ push(Rtemp);                                    // set the mdp (method data pointer)
 655   } else {
 656     __ push(R0);
 657   }
 658 
 659   __ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
 660   __ ldr(Rtemp, Address(Rtemp, ConstMethod::constants_offset()));
 661   __ ldr(Rtemp, Address(Rtemp, ConstantPool::cache_offset()));
 662   __ push(Rtemp);                                      // set constant pool cache
 663   __ sub(Rtemp, Rlocals, FP);
 664   __ logical_shift_right(Rtemp, Rtemp, Interpreter::logStackElementSize); // Rtemp = Rlocals - fp();
 665   __ push(Rtemp);                                      // set relativized Rlocals, see frame::interpreter_frame_locals()
 666   __ push(Rbcp);                                       // set bcp
 667   __ push(R0);                                         // reserve word for pointer to expression stack bottom
 668   __ str(SP, Address(SP, 0));                          // set expression stack bottom
 669 }
 670 
 671 
 672 // End of helpers
 673 
 674 //------------------------------------------------------------------------------------------------------------------------
 675 // Entry points
 676 //
 677 // Here we generate the various kind of entries into the interpreter.
 678 // The two main entry type are generic bytecode methods and native call method.
 679 // These both come in synchronized and non-synchronized versions but the
 680 // frame layout they create is very similar. The other method entry
 681 // types are really just special purpose entries that are really entry
 682 // and interpretation all in one. These are for trivial methods like
 683 // accessor, empty, or special math methods.
 684 //
 685 // When control flow reaches any of the entry types for the interpreter
 686 // the following holds ->
 687 //
 688 // Arguments:
 689 //
 690 // Rmethod: Method*
 691 // Rthread: thread
 692 // Rsender_sp:  sender sp
 693 // Rparams (SP on 32-bit ARM): pointer to method parameters
 694 //
 695 // LR: return address
 696 //
 697 // Stack layout immediately at entry
 698 //
 699 // [ parameter n        ] <--- Rparams (SP on 32-bit ARM)
 700 //   ...
 701 // [ parameter 1        ]
 702 // [ expression stack   ] (caller's java expression stack)
 703 
 704 // Assuming that we don't go to one of the trivial specialized
 705 // entries the stack will look like below when we are ready to execute
 706 // the first bytecode (or call the native routine). The register usage
 707 // will be as the template based interpreter expects.
 708 //
 709 // local variables follow incoming parameters immediately; i.e.
 710 // the return address is saved at the end of the locals.
 711 //
 712 // [ expr. stack        ] <--- Rstack_top (SP on 32-bit ARM)
 713 // [ monitor entry      ]
 714 //   ...
 715 // [ monitor entry      ]
 716 // [ expr. stack bottom ]
 717 // [ saved Rbcp         ]
 718 // [ current Rlocals    ]
 719 // [ cache              ]
 720 // [ mdx                ]
 721 // [ mirror             ]
 722 // [ Method*            ]
 723 //
 724 // 32-bit ARM:
 725 // [ last_sp            ]
 726 //
 727 // [ sender_sp          ]
 728 // [ saved FP           ] <--- FP
 729 // [ saved LR           ]
 730 // [ optional padding(*)]
 731 // [ local variable m   ]
 732 //   ...
 733 // [ local variable 1   ]
 734 // [ parameter n        ]
 735 //   ...
 736 // [ parameter 1        ] <--- Rlocals
 737 //
 738 
 739 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 740   // Code: _aload_0, _getfield, _areturn
 741   // parameter size = 1
 742   //
 743   // The code that gets generated by this routine is split into 2 parts:
 744   //    1. The "intrinsified" code performing an ON_WEAK_OOP_REF load,
 745   //    2. The slow path - which is an expansion of the regular method entry.
 746   //
 747   // Notes:-
 748   // * An intrinsic is always executed, where an ON_WEAK_OOP_REF load is performed.
 749   // * We may jump to the slow path iff the receiver is null. If the
 750   //   Reference object is null then we no longer perform an ON_WEAK_OOP_REF load
 751   //   Thus we can use the regular method entry code to generate the NPE.
 752   //
 753   // Rmethod: Method*
 754   // Rthread: thread
 755   // Rsender_sp: sender sp, must be preserved for slow path, set SP to it on fast path
 756   // Rparams: parameters
 757 
 758   address entry = __ pc();
 759   Label slow_path;
 760   const Register Rthis = R0;
 761   const Register Rret_addr = Rtmp_save1;
 762   assert_different_registers(Rthis, Rret_addr, Rsender_sp);
 763 
 764   const int referent_offset = java_lang_ref_Reference::referent_offset();
 765 
 766   // Check if local 0 != nullptr
 767   // If the receiver is null then it is OK to jump to the slow path.
 768   __ ldr(Rthis, Address(Rparams));
 769   __ cbz(Rthis, slow_path);
 770 
 771   // Preserve LR
 772   __ mov(Rret_addr, LR);
 773 
 774   // Load the value of the referent field.
 775   const Address field_address(Rthis, referent_offset);
 776   __ load_heap_oop(R0, field_address, Rtemp, R1_tmp, R2_tmp, ON_WEAK_OOP_REF);
 777 
 778   // _areturn
 779   __ mov(SP, Rsender_sp);
 780   __ ret(Rret_addr);
 781 
 782   // generate a vanilla interpreter entry as the slow path
 783   __ bind(slow_path);
 784   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 785   return entry;
 786 }
 787 
 788 // Not supported
 789 address TemplateInterpreterGenerator::generate_currentThread() { return nullptr; }
 790 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { return nullptr; }
 791 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return nullptr; }
 792 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return nullptr; }
 793 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; }
 794 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; }
 795 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; }
 796 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; }
 797 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { return nullptr; }
 798 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { return nullptr; }
 799 
 800 //
 801 // Interpreter stub for calling a native method. (asm interpreter)
 802 // This sets up a somewhat different looking stack for calling the native method
 803 // than the typical interpreter frame setup.
 804 //
 805 
 806 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
 807   // determine code generation flags
 808   bool inc_counter  = UseCompiler || CountCompiledCalls;
 809 
 810   // Incoming registers:
 811   //
 812   // Rmethod: Method*
 813   // Rthread: thread
 814   // Rsender_sp: sender sp
 815   // Rparams: parameters
 816 
 817   address entry_point = __ pc();
 818 
 819   // Register allocation
 820   const Register Rsize_of_params = R6;
 821   const Register Rsig_handler    = Rtmp_save0;   // R4
 822   const Register Rnative_code    = Rtmp_save1;   // R5
 823   const Register Rresult_handler = R6;
 824 
 825   const Register Rsaved_result_lo = Rtmp_save0;  // R4
 826   const Register Rsaved_result_hi = Rtmp_save1;  // R5
 827   FloatRegister saved_result_fp;
 828 
 829 
 830   __ ldr(Rsize_of_params, Address(Rmethod, Method::const_offset()));
 831   __ ldrh(Rsize_of_params,  Address(Rsize_of_params, ConstMethod::size_of_parameters_offset()));
 832 
 833   // native calls don't need the stack size check since they have no expression stack
 834   // and the arguments are already on the stack and we only add a handful of words
 835   // to the stack
 836 
 837   // compute beginning of parameters (Rlocals)
 838   __ sub(Rlocals, Rparams, wordSize);
 839   __ add(Rlocals, Rlocals, AsmOperand(Rsize_of_params, lsl, Interpreter::logStackElementSize));
 840 
 841   // reserve stack space for oop_temp
 842   __ mov(R0, 0);
 843   __ push(R0);
 844 
 845   generate_fixed_frame(true); // Note: R9 is now saved in the frame
 846 
 847   // make sure method is native & not abstract
 848 #ifdef ASSERT
 849   __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
 850   {
 851     Label L;
 852     __ tbnz(Rtemp, JVM_ACC_NATIVE_BIT, L);
 853     __ stop("tried to execute non-native method as native");
 854     __ bind(L);
 855   }
 856   { Label L;
 857     __ tbz(Rtemp, JVM_ACC_ABSTRACT_BIT, L);
 858     __ stop("tried to execute abstract method in interpreter");
 859     __ bind(L);
 860   }
 861 #endif
 862 
 863   // increment invocation count & check for overflow
 864   Label invocation_counter_overflow;
 865   if (inc_counter) {
 866     if (synchronized) {
 867       // Avoid unlocking method's monitor in case of exception, as it has not
 868       // been locked yet.
 869       __ set_do_not_unlock_if_synchronized(true, Rtemp);
 870     }
 871     generate_counter_incr(&invocation_counter_overflow);
 872   }
 873 
 874   Label continue_after_compile;
 875   __ bind(continue_after_compile);
 876 
 877   if (inc_counter && synchronized) {
 878     __ set_do_not_unlock_if_synchronized(false, Rtemp);
 879   }
 880 
 881   // check for synchronized methods
 882   // Must happen AFTER invocation_counter check and stack overflow check,
 883   // so method is not locked if overflows.
 884   //
 885   if (synchronized) {
 886     lock_method();
 887   } else {
 888     // no synchronization necessary
 889 #ifdef ASSERT
 890       { Label L;
 891         __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
 892         __ tbz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L);
 893         __ stop("method needs synchronization");
 894         __ bind(L);
 895       }
 896 #endif
 897   }
 898 
 899   // start execution
 900 #ifdef ASSERT
 901   { Label L;
 902     __ ldr(Rtemp, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
 903     __ cmp(Rtemp, Rstack_top);
 904     __ b(L, eq);
 905     __ stop("broken stack frame setup in interpreter 3");
 906     __ bind(L);
 907   }
 908 #endif
 909   __ check_extended_sp(Rtemp);
 910 
 911   // jvmti/dtrace support
 912   __ notify_method_entry();
 913 #if R9_IS_SCRATCHED
 914   __ restore_method();
 915 #endif
 916 
 917   {
 918     Label L;
 919     __ ldr(Rsig_handler, Address(Rmethod, Method::signature_handler_offset()));
 920     __ cbnz(Rsig_handler, L);
 921     __ mov(R1, Rmethod);
 922     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R1, true);
 923     __ ldr(Rsig_handler, Address(Rmethod, Method::signature_handler_offset()));
 924     __ bind(L);
 925   }
 926 
 927   {
 928     Label L;
 929     __ ldr(Rnative_code, Address(Rmethod, Method::native_function_offset()));
 930     __ cbnz(Rnative_code, L);
 931     __ mov(R1, Rmethod);
 932     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R1);
 933     __ ldr(Rnative_code, Address(Rmethod, Method::native_function_offset()));
 934     __ bind(L);
 935   }
 936 
 937   // Allocate stack space for arguments
 938 
 939 
 940   // C functions need aligned stack
 941   __ bic(SP, SP, StackAlignmentInBytes - 1);
 942   // Multiply by BytesPerLong instead of BytesPerWord, because calling convention
 943   // may require empty slots due to long alignment, e.g. func(int, jlong, int, jlong)
 944   __ sub(SP, SP, AsmOperand(Rsize_of_params, lsl, LogBytesPerLong));
 945 
 946 #ifdef __ABI_HARD__
 947   // Allocate more stack space to accommodate all GP as well as FP registers:
 948   // 4 * wordSize
 949   // 8 * BytesPerLong
 950   int reg_arguments = align_up((4*wordSize) + (8*BytesPerLong), StackAlignmentInBytes);
 951 #else
 952   // Reserve at least 4 words on the stack for loading
 953   // of parameters passed on registers (R0-R3).
 954   // See generate_slow_signature_handler().
 955   // It is also used for JNIEnv & class additional parameters.
 956   int reg_arguments = 4 * wordSize;
 957 #endif // __ABI_HARD__
 958 
 959   __ sub(SP, SP, reg_arguments);
 960 
 961 
 962   // Note: signature handler blows R4 besides all scratch registers.
 963   // See AbstractInterpreterGenerator::generate_slow_signature_handler().
 964   __ call(Rsig_handler);
 965 #if R9_IS_SCRATCHED
 966   __ restore_method();
 967 #endif
 968   __ mov(Rresult_handler, R0);
 969 
 970   // Pass JNIEnv and mirror for static methods
 971   {
 972     Label L;
 973     __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
 974     __ add(R0, Rthread, in_bytes(JavaThread::jni_environment_offset()));
 975     __ tbz(Rtemp, JVM_ACC_STATIC_BIT, L);
 976     __ load_mirror(Rtemp, Rmethod, Rtemp);
 977     __ add(R1, FP, frame::interpreter_frame_oop_temp_offset * wordSize);
 978     __ str(Rtemp, Address(R1, 0));
 979     __ bind(L);
 980   }
 981 
 982   __ set_last_Java_frame(SP, FP, true, Rtemp);
 983 
 984   // Changing state to _thread_in_native must be the last thing to do
 985   // before the jump to native code. At this moment stack must be
 986   // safepoint-safe and completely prepared for stack walking.
 987 #ifdef ASSERT
 988   {
 989     Label L;
 990     __ ldr_u32(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
 991     __ cmp_32(Rtemp, _thread_in_Java);
 992     __ b(L, eq);
 993     __ stop("invalid thread state");
 994     __ bind(L);
 995   }
 996 #endif
 997 
 998   // Force all preceding writes to be observed prior to thread state change
 999   __ membar(MacroAssembler::StoreStore, Rtemp);
1000 
1001   __ mov(Rtemp, _thread_in_native);
1002   __ str(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
1003 
1004   __ call(Rnative_code);
1005 #if R9_IS_SCRATCHED
1006   __ restore_method();
1007 #endif
1008 
1009   // Set FPSCR/FPCR to a known state
1010   if (AlwaysRestoreFPU) {
1011     __ restore_default_fp_mode();
1012   }
1013 
1014   // Do safepoint check
1015   __ mov(Rtemp, _thread_in_native_trans);
1016   __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
1017 
1018   // Force this write out before the read below
1019   if (!UseSystemMemoryBarrier) {
1020     __ membar(MacroAssembler::StoreLoad, Rtemp);
1021   }
1022 
1023   // Protect the return value in the interleaved code: save it to callee-save registers.
1024   __ mov(Rsaved_result_lo, R0);
1025   __ mov(Rsaved_result_hi, R1);
1026 #ifdef __ABI_HARD__
1027   // preserve native FP result in a callee-saved register
1028   saved_result_fp = D8;
1029   __ fcpyd(saved_result_fp, D0);
1030 #else
1031   saved_result_fp = fnoreg;
1032 #endif // __ABI_HARD__
1033 
1034   {
1035   Label call, skip_call;
1036   __ safepoint_poll(Rtemp, call);
1037   __ ldr_u32(R3, Address(Rthread, JavaThread::suspend_flags_offset()));
1038   __ cmp(R3, 0);
1039   __ b(skip_call, eq);
1040   __ bind(call);
1041   __ mov(R0, Rthread);
1042   __ call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans), relocInfo::none);
1043   __ bind(skip_call);
1044 
1045 #if R9_IS_SCRATCHED
1046   __ restore_method();
1047 #endif
1048   }
1049 
1050   // Perform Native->Java thread transition
1051   __ mov(Rtemp, _thread_in_Java);
1052   __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
1053 
1054   // Zero handles and last_java_sp
1055   __ reset_last_Java_frame(Rtemp);
1056   __ ldr(R3, Address(Rthread, JavaThread::active_handles_offset()));
1057   __ str_32(__ zero_register(Rtemp), Address(R3, JNIHandleBlock::top_offset()));
1058   if (CheckJNICalls) {
1059     __ str(__ zero_register(Rtemp), Address(Rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1060   }
1061 
1062   // Unbox oop result, e.g. JNIHandles::resolve result if it's an oop.
1063   {
1064     Label Lnot_oop;
1065     __ mov_slow(Rtemp, AbstractInterpreter::result_handler(T_OBJECT));
1066     __ cmp(Rtemp, Rresult_handler);
1067     __ b(Lnot_oop, ne);
1068     Register value = Rsaved_result_lo;
1069     __ resolve_jobject(value,   // value
1070                        Rtemp,   // tmp1
1071                        R1_tmp); // tmp2
1072     // Store resolved result in frame for GC visibility.
1073     __ str(value, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize));
1074     __ bind(Lnot_oop);
1075   }
1076 
1077 
1078   // reguard stack if StackOverflow exception happened while in native.
1079   {
1080     __ ldr_u32(Rtemp, Address(Rthread, JavaThread::stack_guard_state_offset()));
1081     __ cmp_32(Rtemp, StackOverflow::stack_guard_yellow_reserved_disabled);
1082   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), relocInfo::none, eq);
1083 #if R9_IS_SCRATCHED
1084   __ restore_method();
1085 #endif
1086   }
1087 
1088   // check pending exceptions
1089   {
1090     __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset()));
1091     __ cmp(Rtemp, 0);
1092     __ mov(Rexception_pc, PC, ne);
1093     __ b(StubRoutines::forward_exception_entry(), ne);
1094   }
1095 
1096   if (synchronized) {
1097     // address of first monitor
1098     __ sub(R0, FP, - (frame::interpreter_frame_monitor_block_bottom_offset - frame::interpreter_frame_monitor_size()) * wordSize);
1099     __ unlock_object(R0);
1100   }
1101 
1102   // jvmti/dtrace support
1103   // Note: This must happen _after_ handling/throwing any exceptions since
1104   //       the exception handler code notifies the runtime of method exits
1105   //       too. If this happens before, method entry/exit notifications are
1106   //       not properly paired (was bug - gri 11/22/99).
1107   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI, true, Rsaved_result_lo, Rsaved_result_hi, saved_result_fp);
1108 
1109   // Restore the result. Oop result is restored from the stack by the
1110   // result handler.
1111   __ mov(R0, Rsaved_result_lo);
1112   __ mov(R1, Rsaved_result_hi);
1113 
1114 #ifdef __ABI_HARD__
1115   // reload native FP result
1116   __ fcpyd(D0, D8);
1117 #endif // __ABI_HARD__
1118 
1119   __ blx(Rresult_handler);
1120 
1121   // Restore FP/LR, sender_sp and return
1122   __ mov(Rtemp, FP);
1123   __ ldmia(FP, RegisterSet(FP) | RegisterSet(LR));
1124   __ ldr(SP, Address(Rtemp, frame::interpreter_frame_sender_sp_offset * wordSize));
1125 
1126   __ ret();
1127 
1128   if (inc_counter) {
1129     // Handle overflow of counter and compile method
1130     __ bind(invocation_counter_overflow);
1131     generate_counter_overflow(continue_after_compile);
1132   }
1133 
1134   return entry_point;
1135 }
1136 
1137 //
1138 // Generic interpreted method entry to (asm) interpreter
1139 //
1140 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1141   // determine code generation flags
1142   bool inc_counter  = UseCompiler || CountCompiledCalls;
1143 
1144   // Rmethod: Method*
1145   // Rthread: thread
1146   // Rsender_sp: sender sp (could differ from SP if we were called via c2i)
1147   // Rparams: pointer to the last parameter in the stack
1148 
1149   address entry_point = __ pc();
1150 
1151   const Register RconstMethod = R3;
1152 
1153 
1154   __ ldr(RconstMethod, Address(Rmethod, Method::const_offset()));
1155 
1156   __ ldrh(R2, Address(RconstMethod, ConstMethod::size_of_parameters_offset()));
1157   __ ldrh(R3, Address(RconstMethod, ConstMethod::size_of_locals_offset()));
1158 
1159   // setup Rlocals
1160   __ sub(Rlocals, Rparams, wordSize);
1161   __ add(Rlocals, Rlocals, AsmOperand(R2, lsl, Interpreter::logStackElementSize));
1162 
1163   __ sub(R3, R3, R2); // number of additional locals
1164 
1165 
1166   // see if we've got enough room on the stack for locals plus overhead.
1167   generate_stack_overflow_check();
1168 
1169   // allocate space for locals
1170   // explicitly initialize locals
1171 
1172   // Loop is unrolled 4 times
1173   Label loop;
1174   __ mov(R0, 0);
1175   __ bind(loop);
1176 
1177   // #1
1178   __ subs(R3, R3, 1);
1179   __ push(R0, ge);
1180 
1181   // #2
1182   __ subs(R3, R3, 1, ge);
1183   __ push(R0, ge);
1184 
1185   // #3
1186   __ subs(R3, R3, 1, ge);
1187   __ push(R0, ge);
1188 
1189   // #4
1190   __ subs(R3, R3, 1, ge);
1191   __ push(R0, ge);
1192 
1193   __ b(loop, gt);
1194 
1195   // initialize fixed part of activation frame
1196   generate_fixed_frame(false);
1197 
1198   __ restore_dispatch();
1199 
1200   // make sure method is not native & not abstract
1201 #ifdef ASSERT
1202   __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
1203   {
1204     Label L;
1205     __ tbz(Rtemp, JVM_ACC_NATIVE_BIT, L);
1206     __ stop("tried to execute native method as non-native");
1207     __ bind(L);
1208   }
1209   { Label L;
1210     __ tbz(Rtemp, JVM_ACC_ABSTRACT_BIT, L);
1211     __ stop("tried to execute abstract method in interpreter");
1212     __ bind(L);
1213   }
1214 #endif
1215 
1216   // increment invocation count & check for overflow
1217   Label invocation_counter_overflow;
1218   if (inc_counter) {
1219     if (synchronized) {
1220       // Avoid unlocking method's monitor in case of exception, as it has not
1221       // been locked yet.
1222       __ set_do_not_unlock_if_synchronized(true, Rtemp);
1223     }
1224     generate_counter_incr(&invocation_counter_overflow);
1225   }
1226   Label continue_after_compile;
1227   __ bind(continue_after_compile);
1228 
1229   if (inc_counter && synchronized) {
1230     __ set_do_not_unlock_if_synchronized(false, Rtemp);
1231   }
1232 #if R9_IS_SCRATCHED
1233   __ restore_method();
1234 #endif
1235 
1236   // check for synchronized methods
1237   // Must happen AFTER invocation_counter check and stack overflow check,
1238   // so method is not locked if overflows.
1239   //
1240   if (synchronized) {
1241     // Allocate monitor and lock method
1242     lock_method();
1243   } else {
1244     // no synchronization necessary
1245 #ifdef ASSERT
1246       { Label L;
1247         __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
1248         __ tbz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L);
1249         __ stop("method needs synchronization");
1250         __ bind(L);
1251       }
1252 #endif
1253   }
1254 
1255   // start execution
1256 #ifdef ASSERT
1257   { Label L;
1258     __ ldr(Rtemp, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
1259     __ cmp(Rtemp, Rstack_top);
1260     __ b(L, eq);
1261     __ stop("broken stack frame setup in interpreter 4");
1262     __ bind(L);
1263   }
1264 #endif
1265   __ check_extended_sp(Rtemp);
1266 
1267   // jvmti support
1268   __ notify_method_entry();
1269 #if R9_IS_SCRATCHED
1270   __ restore_method();
1271 #endif
1272 
1273   __ dispatch_next(vtos);
1274 
1275   // invocation counter overflow
1276   if (inc_counter) {
1277     // Handle overflow of counter and compile method
1278     __ bind(invocation_counter_overflow);
1279     generate_counter_overflow(continue_after_compile);
1280   }
1281 
1282   return entry_point;
1283 }
1284 
1285 //------------------------------------------------------------------------------------------------------------------------
1286 // Exceptions
1287 
1288 void TemplateInterpreterGenerator::generate_throw_exception() {
1289   // Entry point in previous activation (i.e., if the caller was interpreted)
1290   Interpreter::_rethrow_exception_entry = __ pc();
1291   // Rexception_obj: exception
1292 
1293   // Clear interpreter_frame_last_sp.
1294   __ mov(Rtemp, 0);
1295   __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
1296 
1297 #if R9_IS_SCRATCHED
1298   __ restore_method();
1299 #endif
1300   __ restore_bcp();
1301   __ restore_dispatch();
1302   __ restore_locals();
1303 
1304 
1305   // Entry point for exceptions thrown within interpreter code
1306   Interpreter::_throw_exception_entry = __ pc();
1307 
1308   // expression stack is undefined here
1309   // Rexception_obj: exception
1310   // Rbcp: exception bcp
1311   __ verify_oop(Rexception_obj);
1312 
1313   // expression stack must be empty before entering the VM in case of an exception
1314   __ empty_expression_stack();
1315   // find exception handler address and preserve exception oop
1316   __ mov(R1, Rexception_obj);
1317   __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), R1);
1318   // R0: exception handler entry point
1319   // Rexception_obj: preserved exception oop
1320   // Rbcp: bcp for exception handler
1321   __ push_ptr(Rexception_obj);                    // push exception which is now the only value on the stack
1322   __ jump(R0);                                    // jump to exception handler (may be _remove_activation_entry!)
1323 
1324   // If the exception is not handled in the current frame the frame is removed and
1325   // the exception is rethrown (i.e. exception continuation is _rethrow_exception).
1326   //
1327   // Note: At this point the bci is still the bxi for the instruction which caused
1328   //       the exception and the expression stack is empty. Thus, for any VM calls
1329   //       at this point, GC will find a legal oop map (with empty expression stack).
1330 
1331   // In current activation
1332   // tos: exception
1333   // Rbcp: exception bcp
1334 
1335   //
1336   // JVMTI PopFrame support
1337   //
1338    Interpreter::_remove_activation_preserving_args_entry = __ pc();
1339 
1340 
1341   __ empty_expression_stack();
1342 
1343   // Set the popframe_processing bit in _popframe_condition indicating that we are
1344   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1345   // popframe handling cycles.
1346 
1347   __ ldr_s32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset()));
1348   __ orr(Rtemp, Rtemp, (unsigned)JavaThread::popframe_processing_bit);
1349   __ str_32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset()));
1350 
1351   {
1352     // Check to see whether we are returning to a deoptimized frame.
1353     // (The PopFrame call ensures that the caller of the popped frame is
1354     // either interpreted or compiled and deoptimizes it if compiled.)
1355     // In this case, we can't call dispatch_next() after the frame is
1356     // popped, but instead must save the incoming arguments and restore
1357     // them after deoptimization has occurred.
1358     //
1359     // Note that we don't compare the return PC against the
1360     // deoptimization blob's unpack entry because of the presence of
1361     // adapter frames in C2.
1362     Label caller_not_deoptimized;
1363     __ ldr(R0, Address(FP, frame::return_addr_offset * wordSize));
1364     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), R0);
1365     __ cbnz_32(R0, caller_not_deoptimized);
1366 
1367     // Compute size of arguments for saving when returning to deoptimized caller
1368     __ restore_method();
1369     __ ldr(R0, Address(Rmethod, Method::const_offset()));
1370     __ ldrh(R0, Address(R0, ConstMethod::size_of_parameters_offset()));
1371 
1372     __ logical_shift_left(R1, R0, Interpreter::logStackElementSize);
1373     // Save these arguments
1374     __ restore_locals();
1375     __ sub(R2, Rlocals, R1);
1376     __ add(R2, R2, wordSize);
1377     __ mov(R0, Rthread);
1378     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R0, R1, R2);
1379 
1380     __ remove_activation(vtos, LR,
1381                          /* throw_monitor_exception */ false,
1382                          /* install_monitor_exception */ false,
1383                          /* notify_jvmdi */ false);
1384 
1385     // Inform deoptimization that it is responsible for restoring these arguments
1386     __ mov(Rtemp, JavaThread::popframe_force_deopt_reexecution_bit);
1387     __ str_32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset()));
1388 
1389     // Continue in deoptimization handler
1390     __ ret();
1391 
1392     __ bind(caller_not_deoptimized);
1393   }
1394 
1395   __ remove_activation(vtos, R4,
1396                        /* throw_monitor_exception */ false,
1397                        /* install_monitor_exception */ false,
1398                        /* notify_jvmdi */ false);
1399 
1400   // Finish with popframe handling
1401   // A previous I2C followed by a deoptimization might have moved the
1402   // outgoing arguments further up the stack. PopFrame expects the
1403   // mutations to those outgoing arguments to be preserved and other
1404   // constraints basically require this frame to look exactly as
1405   // though it had previously invoked an interpreted activation with
1406   // no space between the top of the expression stack (current
1407   // last_sp) and the top of stack. Rather than force deopt to
1408   // maintain this kind of invariant all the time we call a small
1409   // fixup routine to move the mutated arguments onto the top of our
1410   // expression stack if necessary.
1411   __ mov(R1, SP);
1412   __ ldr(R2, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
1413   // PC must point into interpreter here
1414   __ set_last_Java_frame(SP, FP, true, Rtemp);
1415   __ mov(R0, Rthread);
1416   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), R0, R1, R2);
1417   __ reset_last_Java_frame(Rtemp);
1418 
1419   // Restore the last_sp and null it out
1420   __ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
1421   __ mov(Rtemp, (int)NULL_WORD);
1422   __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
1423 
1424   __ restore_bcp();
1425   __ restore_dispatch();
1426   __ restore_locals();
1427   __ restore_method();
1428 
1429   // The method data pointer was incremented already during
1430   // call profiling. We have to restore the mdp for the current bcp.
1431   if (ProfileInterpreter) {
1432     __ set_method_data_pointer_for_bcp();
1433   }
1434 
1435   // Clear the popframe condition flag
1436   assert(JavaThread::popframe_inactive == 0, "adjust this code");
1437   __ str_32(__ zero_register(Rtemp), Address(Rthread, JavaThread::popframe_condition_offset()));
1438 
1439 #if INCLUDE_JVMTI
1440   {
1441     Label L_done;
1442 
1443     __ ldrb(Rtemp, Address(Rbcp, 0));
1444     __ cmp(Rtemp, Bytecodes::_invokestatic);
1445     __ b(L_done, ne);
1446 
1447     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1448     // Detect such a case in the InterpreterRuntime function and return the member name argument, or null.
1449 
1450     // get local0
1451     __ ldr(R1, Address(Rlocals, 0));
1452     __ mov(R2, Rmethod);
1453     __ mov(R3, Rbcp);
1454     __ call_VM(R0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R1, R2, R3);
1455 
1456     __ cbz(R0, L_done);
1457 
1458     __ str(R0, Address(Rstack_top));
1459     __ bind(L_done);
1460   }
1461 #endif // INCLUDE_JVMTI
1462 
1463   __ dispatch_next(vtos);
1464   // end of PopFrame support
1465 
1466   Interpreter::_remove_activation_entry = __ pc();
1467 
1468   // preserve exception over this code sequence
1469   __ pop_ptr(R0_tos);
1470   __ str(R0_tos, Address(Rthread, JavaThread::vm_result_offset()));
1471   // remove the activation (without doing throws on illegalMonitorExceptions)
1472   __ remove_activation(vtos, Rexception_pc, false, true, false);
1473   // restore exception
1474   __ get_vm_result(Rexception_obj, Rtemp);
1475 
1476   // In between activations - previous activation type unknown yet
1477   // compute continuation point - the continuation point expects
1478   // the following registers set up:
1479   //
1480   // Rexception_obj: exception
1481   // Rexception_pc: return address/pc that threw exception
1482   // SP: expression stack of caller
1483   // FP: frame pointer of caller
1484   __ mov(c_rarg0, Rthread);
1485   __ mov(c_rarg1, Rexception_pc);
1486   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), c_rarg0, c_rarg1);
1487   // Note that an "issuing PC" is actually the next PC after the call
1488 
1489   __ jump(R0);                             // jump to exception handler of caller
1490 }
1491 
1492 
1493 //
1494 // JVMTI ForceEarlyReturn support
1495 //
1496 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1497   address entry = __ pc();
1498 
1499 
1500   __ restore_bcp();
1501   __ restore_dispatch();
1502   __ restore_locals();
1503 
1504   __ empty_expression_stack();
1505 
1506   __ load_earlyret_value(state);
1507 
1508   // Clear the earlyret state
1509   __ ldr(Rtemp, Address(Rthread, JavaThread::jvmti_thread_state_offset()));
1510 
1511   assert(JvmtiThreadState::earlyret_inactive == 0, "adjust this code");
1512   __ str_32(__ zero_register(R2), Address(Rtemp, JvmtiThreadState::earlyret_state_offset()));
1513 
1514   __ remove_activation(state, LR,
1515                        false, /* throw_monitor_exception */
1516                        false, /* install_monitor_exception */
1517                        true); /* notify_jvmdi */
1518 
1519   // According to interpreter calling conventions, result is returned in R0/R1,
1520   // so ftos (S0) and dtos (D0) are moved to R0/R1.
1521   // This conversion should be done after remove_activation, as it uses
1522   // push(state) & pop(state) to preserve return value.
1523   __ convert_tos_to_retval(state);
1524   __ ret();
1525 
1526   return entry;
1527 } // end of ForceEarlyReturn support
1528 
1529 
1530 //------------------------------------------------------------------------------------------------------------------------
1531 // Helper for vtos entry point generation
1532 
1533 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1534   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1535   Label L;
1536 
1537 #ifdef __SOFTFP__
1538   dep = __ pc();                // fall through
1539 #else
1540   fep = __ pc(); __ push(ftos); __ b(L);
1541   dep = __ pc(); __ push(dtos); __ b(L);
1542 #endif // __SOFTFP__
1543 
1544   lep = __ pc(); __ push(ltos); __ b(L);
1545 
1546   if (VerifyOops) {  // can't share atos entry if VerifyOops
1547     aep = __ pc(); __ push(atos); __ b(L);
1548   } else {
1549     aep = __ pc();              // fall through
1550   }
1551 
1552 #ifdef __SOFTFP__
1553   fep = __ pc();                // fall through
1554 #endif // __SOFTFP__
1555 
1556   bep = cep = sep =             // fall through
1557   iep = __ pc(); __ push(itos); // fall through
1558   vep = __ pc(); __ bind(L);    // fall through
1559   generate_and_dispatch(t);
1560 }
1561 
1562 //------------------------------------------------------------------------------------------------------------------------
1563 
1564 // Non-product code
1565 #ifndef PRODUCT
1566 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1567   address entry = __ pc();
1568 
1569   // prepare expression stack
1570   __ push(state);       // save tosca
1571 
1572   // pass tosca registers as arguments
1573   __ mov(R2, R0_tos);
1574   __ mov(R3, R1_tos_hi);
1575   __ mov(R1, LR);       // save return address
1576 
1577   // call tracer
1578   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), R1, R2, R3);
1579 
1580   __ mov(LR, R0);       // restore return address
1581   __ pop(state);        // restore tosca
1582 
1583   // return
1584   __ ret();
1585 
1586   return entry;
1587 }
1588 
1589 
1590 void TemplateInterpreterGenerator::count_bytecode() {
1591   __ inc_global_counter((address) &BytecodeCounter::_counter_value, 0, Rtemp, R2_tmp, true);
1592 }
1593 
1594 
1595 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1596   __ inc_global_counter((address)&BytecodeHistogram::_counters[0], sizeof(BytecodeHistogram::_counters[0]) * t->bytecode(), Rtemp, R2_tmp, true);
1597 }
1598 
1599 
1600 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1601   const Register Rindex_addr = R2_tmp;
1602   Label Lcontinue;
1603   InlinedAddress Lcounters((address)BytecodePairHistogram::_counters);
1604   InlinedAddress Lindex((address)&BytecodePairHistogram::_index);
1605   const Register Rcounters_addr = R2_tmp;
1606   const Register Rindex = R4_tmp;
1607 
1608   // calculate new index for counter:
1609   // index = (_index >> log2_number_of_codes) | (bytecode << log2_number_of_codes).
1610   // (_index >> log2_number_of_codes) is previous bytecode
1611 
1612   __ ldr_literal(Rindex_addr, Lindex);
1613   __ ldr_s32(Rindex, Address(Rindex_addr));
1614   __ mov_slow(Rtemp, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
1615   __ orr(Rindex, Rtemp, AsmOperand(Rindex, lsr, BytecodePairHistogram::log2_number_of_codes));
1616   __ str_32(Rindex, Address(Rindex_addr));
1617 
1618   // Rindex (R4) contains index of counter
1619 
1620   __ ldr_literal(Rcounters_addr, Lcounters);
1621   __ ldr_s32(Rtemp, Address::indexed_32(Rcounters_addr, Rindex));
1622   __ adds_32(Rtemp, Rtemp, 1);
1623   __ b(Lcontinue, mi);                           // avoid overflow
1624   __ str_32(Rtemp, Address::indexed_32(Rcounters_addr, Rindex));
1625 
1626   __ b(Lcontinue);
1627 
1628   __ bind_literal(Lindex);
1629   __ bind_literal(Lcounters);
1630 
1631   __ bind(Lcontinue);
1632 }
1633 
1634 
1635 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
1636   // Call a little run-time stub to avoid blow-up for each bytecode.
1637   // The run-time runtime saves the right registers, depending on
1638   // the tosca in-state for the given template.
1639   assert(Interpreter::trace_code(t->tos_in()) != nullptr,
1640          "entry must have been generated");
1641   address trace_entry = Interpreter::trace_code(t->tos_in());
1642   __ call(trace_entry, relocInfo::none);
1643 }
1644 
1645 
1646 void TemplateInterpreterGenerator::stop_interpreter_at() {
1647   Label Lcontinue;
1648   const Register stop_at = R2_tmp;
1649 
1650   __ ldr_global_s32(Rtemp, (address) &BytecodeCounter::_counter_value);
1651   __ mov_slow(stop_at, StopInterpreterAt);
1652 
1653   // test bytecode counter
1654   __ cmp(Rtemp, stop_at);
1655   __ b(Lcontinue, ne);
1656 
1657   __ trace_state("stop_interpreter_at");
1658   __ breakpoint();
1659 
1660   __ bind(Lcontinue);
1661 }
1662 #endif // !PRODUCT