1 /* 2 * Copyright (c) 2008, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/assembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "interpreter/bytecodeHistogram.hpp" 29 #include "interpreter/interp_masm.hpp" 30 #include "interpreter/interpreter.hpp" 31 #include "interpreter/interpreterRuntime.hpp" 32 #include "interpreter/templateInterpreterGenerator.hpp" 33 #include "interpreter/templateTable.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/methodData.hpp" 36 #include "oops/method.inline.hpp" 37 #include "oops/oop.inline.hpp" 38 #include "oops/resolvedIndyEntry.hpp" 39 #include "oops/resolvedMethodEntry.hpp" 40 #include "prims/jvmtiExport.hpp" 41 #include "prims/jvmtiThreadState.hpp" 42 #include "prims/methodHandles.hpp" 43 #include "runtime/arguments.hpp" 44 #include "runtime/deoptimization.hpp" 45 #include "runtime/frame.inline.hpp" 46 #include "runtime/jniHandles.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "runtime/stubRoutines.hpp" 49 #include "runtime/synchronizer.hpp" 50 #include "runtime/timer.hpp" 51 #include "runtime/vframeArray.hpp" 52 #include "utilities/align.hpp" 53 #include "utilities/debug.hpp" 54 #include "utilities/macros.hpp" 55 56 // Size of interpreter code. Increase if too small. Interpreter will 57 // fail with a guarantee ("not enough space for interpreter generation"); 58 // if too small. 59 // Run with +PrintInterpreter to get the VM to print out the size. 60 // Max size with JVMTI 61 int TemplateInterpreter::InterpreterCodeSize = 180 * 1024; 62 63 #define __ _masm-> 64 65 //------------------------------------------------------------------------------------------------------------------------ 66 67 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 68 address entry = __ pc(); 69 70 // callee-save register for saving LR, shared with generate_native_entry 71 const Register Rsaved_ret_addr = Rtmp_save0; 72 73 __ mov(Rsaved_ret_addr, LR); 74 75 __ mov(R1, Rmethod); 76 __ mov(R2, Rlocals); 77 __ mov(R3, SP); 78 79 80 // Safer to save R9 (when scratched) since callers may have been 81 // written assuming R9 survives. This is suboptimal but 82 // probably not important for this slow case call site. 83 // Note for R9 saving: slow_signature_handler may copy register 84 // arguments above the current SP (passed as R3). It is safe for 85 // call_VM to use push and pop to protect additional values on the 86 // stack if needed. 87 __ call_VM(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), true /* save R9 if needed*/); 88 __ add(SP, SP, wordSize); // Skip R0 89 __ pop(RegisterSet(R1, R3)); // Load arguments passed in registers 90 #ifdef __ABI_HARD__ 91 // Few alternatives to an always-load-FP-registers approach: 92 // - parse method signature to detect FP arguments 93 // - keep a counter/flag on a stack indicationg number of FP arguments in the method. 94 // The later has been originally implemented and tested but a conditional path could 95 // eliminate any gain imposed by avoiding 8 double word loads. 96 __ fldmiad(SP, FloatRegisterSet(D0, 8), writeback); 97 #endif // __ABI_HARD__ 98 99 __ ret(Rsaved_ret_addr); 100 101 return entry; 102 } 103 104 105 // 106 // Various method entries (that c++ and asm interpreter agree upon) 107 //------------------------------------------------------------------------------------------------------------------------ 108 // 109 // 110 111 // Abstract method entry 112 // Attempt to execute abstract method. Throw exception 113 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 114 address entry_point = __ pc(); 115 116 117 __ empty_expression_stack(); 118 119 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 120 121 DEBUG_ONLY(STOP("generate_abstract_entry");) // Should not reach here 122 return entry_point; 123 } 124 125 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 126 address entry_point = nullptr; 127 Register continuation = LR; 128 bool use_runtime_call = false; 129 switch (kind) { 130 case Interpreter::java_lang_math_abs: 131 entry_point = __ pc(); 132 #ifdef __SOFTFP__ 133 use_runtime_call = true; 134 __ ldrd(R0, Address(SP)); 135 #else // !__SOFTFP__ 136 __ ldr_double(D0, Address(SP)); 137 __ abs_double(D0, D0); 138 #endif // __SOFTFP__ 139 break; 140 case Interpreter::java_lang_math_sqrt: 141 entry_point = __ pc(); 142 #ifdef __SOFTFP__ 143 use_runtime_call = true; 144 __ ldrd(R0, Address(SP)); 145 #else // !__SOFTFP__ 146 __ ldr_double(D0, Address(SP)); 147 __ sqrt_double(D0, D0); 148 #endif // __SOFTFP__ 149 break; 150 case Interpreter::java_lang_math_sin: 151 case Interpreter::java_lang_math_cos: 152 case Interpreter::java_lang_math_tan: 153 case Interpreter::java_lang_math_log: 154 case Interpreter::java_lang_math_log10: 155 case Interpreter::java_lang_math_exp: 156 entry_point = __ pc(); 157 use_runtime_call = true; 158 #ifdef __SOFTFP__ 159 __ ldrd(R0, Address(SP)); 160 #else // !__SOFTFP__ 161 __ ldr_double(D0, Address(SP)); 162 #endif // __SOFTFP__ 163 break; 164 case Interpreter::java_lang_math_pow: 165 entry_point = __ pc(); 166 use_runtime_call = true; 167 #ifdef __SOFTFP__ 168 __ ldrd(R0, Address(SP, 2 * Interpreter::stackElementSize)); 169 __ ldrd(R2, Address(SP)); 170 #else // !__SOFTFP__ 171 __ ldr_double(D0, Address(SP, 2 * Interpreter::stackElementSize)); 172 __ ldr_double(D1, Address(SP)); 173 #endif // __SOFTFP__ 174 break; 175 case Interpreter::java_lang_math_fmaD: 176 case Interpreter::java_lang_math_fmaF: 177 case Interpreter::java_lang_math_tanh: 178 // TODO: Implement intrinsic 179 break; 180 default: 181 ShouldNotReachHere(); 182 } 183 184 if (entry_point != nullptr) { 185 __ mov(SP, Rsender_sp); 186 if (use_runtime_call) { 187 __ mov(Rtmp_save0, LR); 188 continuation = Rtmp_save0; 189 generate_math_runtime_call(kind); 190 } 191 __ ret(continuation); 192 } 193 return entry_point; 194 } 195 196 void TemplateInterpreterGenerator::generate_math_runtime_call(AbstractInterpreter::MethodKind kind) { 197 address fn; 198 switch (kind) { 199 #ifdef __SOFTFP__ 200 case Interpreter::java_lang_math_abs: 201 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dabs); 202 break; 203 case Interpreter::java_lang_math_sqrt: 204 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt); 205 break; 206 #endif // __SOFTFP__ 207 case Interpreter::java_lang_math_sin: 208 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); 209 break; 210 case Interpreter::java_lang_math_cos: 211 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); 212 break; 213 case Interpreter::java_lang_math_tan: 214 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); 215 break; 216 case Interpreter::java_lang_math_log: 217 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); 218 break; 219 case Interpreter::java_lang_math_log10: 220 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); 221 break; 222 case Interpreter::java_lang_math_exp: 223 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); 224 break; 225 case Interpreter::java_lang_math_pow: 226 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 227 break; 228 default: 229 ShouldNotReachHere(); 230 fn = nullptr; // silence "maybe uninitialized" compiler warnings 231 } 232 __ call_VM_leaf(fn); 233 } 234 235 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 236 address entry = __ pc(); 237 238 // Note: There should be a minimal interpreter frame set up when stack 239 // overflow occurs since we check explicitly for it now. 240 // 241 #ifdef ASSERT 242 { Label L; 243 __ sub(Rtemp, FP, - frame::interpreter_frame_monitor_block_top_offset * wordSize); 244 __ cmp(SP, Rtemp); // Rtemp = maximal SP for current FP, 245 // (stack grows negative) 246 __ b(L, ls); // check if frame is complete 247 __ stop ("interpreter frame not set up"); 248 __ bind(L); 249 } 250 #endif // ASSERT 251 252 // Restore bcp under the assumption that the current frame is still 253 // interpreted 254 __ restore_bcp(); 255 256 // expression stack must be empty before entering the VM if an exception 257 // happened 258 __ empty_expression_stack(); 259 260 // throw exception 261 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError)); 262 263 __ should_not_reach_here(); 264 265 return entry; 266 } 267 268 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 269 address entry = __ pc(); 270 271 // index is in R4_ArrayIndexOutOfBounds_index 272 273 // expression stack must be empty before entering the VM if an exception happened 274 __ empty_expression_stack(); 275 276 // setup parameters 277 // Array expected in R1. 278 __ mov(R2, R4_ArrayIndexOutOfBounds_index); 279 280 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), R1, R2); 281 282 __ nop(); // to avoid filling CPU pipeline with invalid instructions 283 __ nop(); 284 __ should_not_reach_here(); 285 286 return entry; 287 } 288 289 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 290 address entry = __ pc(); 291 292 // object is in R2_ClassCastException_obj 293 294 // expression stack must be empty before entering the VM if an exception 295 // happened 296 __ empty_expression_stack(); 297 298 __ mov(R1, R2_ClassCastException_obj); 299 __ call_VM(noreg, 300 CAST_FROM_FN_PTR(address, 301 InterpreterRuntime::throw_ClassCastException), 302 R1); 303 304 __ should_not_reach_here(); 305 306 return entry; 307 } 308 309 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) { 310 assert(!pass_oop || message == nullptr, "either oop or message but not both"); 311 address entry = __ pc(); 312 313 InlinedString Lname(name); 314 InlinedString Lmessage(message); 315 316 if (pass_oop) { 317 // object is at TOS 318 __ pop_ptr(R2); 319 } 320 321 // expression stack must be empty before entering the VM if an exception happened 322 __ empty_expression_stack(); 323 324 // setup parameters 325 __ ldr_literal(R1, Lname); 326 327 if (pass_oop) { 328 __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), R1, R2); 329 } else { 330 if (message != nullptr) { 331 __ ldr_literal(R2, Lmessage); 332 } else { 333 __ mov(R2, 0); 334 } 335 __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), R1, R2); 336 } 337 338 // throw exception 339 __ b(Interpreter::throw_exception_entry()); 340 341 __ nop(); // to avoid filling CPU pipeline with invalid instructions 342 __ nop(); 343 __ bind_literal(Lname); 344 if (!pass_oop && (message != nullptr)) { 345 __ bind_literal(Lmessage); 346 } 347 348 return entry; 349 } 350 351 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { 352 address entry = __ pc(); 353 354 __ interp_verify_oop(R0_tos, state, __FILE__, __LINE__); 355 356 // Restore stack bottom in case i2c adjusted stack 357 __ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 358 // and null it as marker that SP is now tos until next java call 359 __ mov(Rtemp, (int)NULL_WORD); 360 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 361 362 __ restore_method(); 363 __ restore_bcp(); 364 __ restore_dispatch(); 365 __ restore_locals(); 366 367 const Register Rcache = R2_tmp; 368 const Register Rindex = R3_tmp; 369 370 if (index_size == sizeof(u4)) { 371 __ load_resolved_indy_entry(Rcache, Rindex); 372 __ ldrh(Rcache, Address(Rcache, in_bytes(ResolvedIndyEntry::num_parameters_offset()))); 373 } else { 374 // Pop N words from the stack 375 assert(index_size == sizeof(u2), "Can only be u2"); 376 __ load_method_entry(Rcache, Rindex); 377 __ ldrh(Rcache, Address(Rcache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 378 } 379 380 __ check_stack_top(); 381 __ add(Rstack_top, Rstack_top, AsmOperand(Rcache, lsl, Interpreter::logStackElementSize)); 382 383 __ convert_retval_to_tos(state); 384 385 __ check_and_handle_popframe(); 386 __ check_and_handle_earlyret(); 387 388 __ dispatch_next(state, step); 389 390 return entry; 391 } 392 393 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step, address continuation) { 394 address entry = __ pc(); 395 396 __ interp_verify_oop(R0_tos, state, __FILE__, __LINE__); 397 398 // The stack is not extended by deopt but we must null last_sp as this 399 // entry is like a "return". 400 __ mov(Rtemp, 0); 401 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 402 403 __ restore_method(); 404 __ restore_bcp(); 405 __ restore_dispatch(); 406 __ restore_locals(); 407 408 // handle exceptions 409 { Label L; 410 __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset())); 411 __ cbz(Rtemp, L); 412 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception)); 413 __ should_not_reach_here(); 414 __ bind(L); 415 } 416 417 if (continuation == nullptr) { 418 __ dispatch_next(state, step); 419 } else { 420 __ jump_to_entry(continuation); 421 } 422 423 return entry; 424 } 425 426 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) { 427 address entry = __ pc(); 428 429 switch (type) { 430 case T_CHAR : /* Nothing to do */ break; 431 case T_BYTE : /* Nothing to do */ break; 432 case T_SHORT : /* Nothing to do */ break; 433 case T_INT : /* Nothing to do */ break; 434 case T_LONG : /* Nothing to do */ break; 435 case T_VOID : /* Nothing to do */ break; 436 case T_DOUBLE : /* Nothing to do */ break; 437 case T_FLOAT : /* Nothing to do */ break; 438 case T_BOOLEAN : __ c2bool(R0); break; 439 case T_OBJECT : 440 __ ldr(R0, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize)); 441 __ verify_oop(R0); 442 break; 443 default : __ should_not_reach_here(); break; 444 } 445 446 __ ret(); 447 return entry; 448 } 449 450 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) { 451 address entry = __ pc(); 452 __ push(state); 453 __ call_VM(noreg, runtime_entry); 454 455 // load current bytecode 456 __ ldrb(R3_bytecode, Address(Rbcp)); 457 __ dispatch_only_normal(vtos); 458 return entry; 459 } 460 461 address TemplateInterpreterGenerator::generate_cont_resume_interpreter_adapter() { 462 return nullptr; 463 } 464 465 466 // Helpers for commoning out cases in the various type of method entries. 467 // 468 469 // increment invocation count & check for overflow 470 // 471 // Note: checking for negative value instead of overflow 472 // so we have a 'sticky' overflow test 473 // 474 // In: Rmethod. 475 // 476 // Uses R0, R1, Rtemp. 477 // 478 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 479 Label done; 480 const Register Rcounters = Rtemp; 481 const Address invocation_counter(Rcounters, 482 MethodCounters::invocation_counter_offset() + 483 InvocationCounter::counter_offset()); 484 485 // Note: In tiered we increment either counters in MethodCounters* or 486 // in MDO depending if we're profiling or not. 487 int increment = InvocationCounter::count_increment; 488 Label no_mdo; 489 if (ProfileInterpreter) { 490 // Are we profiling? 491 __ ldr(R1_tmp, Address(Rmethod, Method::method_data_offset())); 492 __ cbz(R1_tmp, no_mdo); 493 // Increment counter in the MDO 494 const Address mdo_invocation_counter(R1_tmp, 495 in_bytes(MethodData::invocation_counter_offset()) + 496 in_bytes(InvocationCounter::counter_offset())); 497 const Address mask(R1_tmp, in_bytes(MethodData::invoke_mask_offset())); 498 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, R0_tmp, Rtemp, eq, overflow); 499 __ b(done); 500 } 501 __ bind(no_mdo); 502 __ get_method_counters(Rmethod, Rcounters, done); 503 const Address mask(Rcounters, in_bytes(MethodCounters::invoke_mask_offset())); 504 __ increment_mask_and_jump(invocation_counter, increment, mask, R0_tmp, R1_tmp, eq, overflow); 505 __ bind(done); 506 } 507 508 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 509 // InterpreterRuntime::frequency_counter_overflow takes one argument 510 // indicating if the counter overflow occurs at a backwards branch (non-null bcp). 511 // The call returns the address of the verified entry point for the method or null 512 // if the compilation did not complete (either went background or bailed out). 513 __ mov(R1, (int)false); 514 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R1); 515 516 // jump to the interpreted entry. 517 __ b(do_continue); 518 } 519 520 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) { 521 // Check if we've got enough room on the stack for 522 // - overhead; 523 // - locals; 524 // - expression stack. 525 // 526 // Registers on entry: 527 // 528 // R3 = number of additional locals 529 // Rthread 530 // Rmethod 531 // Registers used: R0, R1, R2, Rtemp. 532 533 const Register Radditional_locals = R3; 534 const Register RmaxStack = R2; 535 536 // monitor entry size 537 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 538 539 // total overhead size: entry_size + (saved registers, thru expr stack bottom). 540 // be sure to change this if you add/subtract anything to/from the overhead area 541 const int overhead_size = (frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset)*wordSize + entry_size; 542 543 // Pages reserved for VM runtime calls and subsequent Java calls. 544 const int reserved_pages = StackOverflow::stack_shadow_zone_size(); 545 546 // Thread::stack_size() includes guard pages, and they should not be touched. 547 const int guard_pages = StackOverflow::stack_guard_zone_size(); 548 549 __ ldr(R0, Address(Rthread, Thread::stack_base_offset())); 550 __ ldr(R1, Address(Rthread, Thread::stack_size_offset())); 551 __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); 552 __ ldrh(RmaxStack, Address(Rtemp, ConstMethod::max_stack_offset())); 553 __ sub_slow(Rtemp, SP, overhead_size + reserved_pages + guard_pages + Method::extra_stack_words()); 554 555 // reserve space for additional locals 556 __ sub(Rtemp, Rtemp, AsmOperand(Radditional_locals, lsl, Interpreter::logStackElementSize)); 557 558 // stack size 559 __ sub(R0, R0, R1); 560 561 // reserve space for expression stack 562 __ sub(Rtemp, Rtemp, AsmOperand(RmaxStack, lsl, Interpreter::logStackElementSize)); 563 564 __ cmp(Rtemp, R0); 565 566 __ mov(SP, Rsender_sp, ls); // restore SP 567 __ b(SharedRuntime::throw_StackOverflowError_entry(), ls); 568 } 569 570 571 // Allocate monitor and lock method (asm interpreter) 572 // 573 void TemplateInterpreterGenerator::lock_method() { 574 // synchronize method 575 576 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 577 assert ((entry_size % StackAlignmentInBytes) == 0, "should keep stack alignment"); 578 579 #ifdef ASSERT 580 { Label L; 581 __ ldrh(Rtemp, Address(Rmethod, Method::access_flags_offset())); 582 __ tbnz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L); 583 __ stop("method doesn't need synchronization"); 584 __ bind(L); 585 } 586 #endif // ASSERT 587 588 // get synchronization object 589 { Label done; 590 __ ldrh(Rtemp, Address(Rmethod, Method::access_flags_offset())); 591 __ tst(Rtemp, JVM_ACC_STATIC); 592 __ ldr(R0, Address(Rlocals, Interpreter::local_offset_in_bytes(0)), eq); // get receiver (assume this is frequent case) 593 __ b(done, eq); 594 __ load_mirror(R0, Rmethod, Rtemp); 595 __ bind(done); 596 } 597 598 // add space for monitor & lock 599 600 601 __ sub(Rstack_top, Rstack_top, entry_size); 602 __ check_stack_top_on_expansion(); 603 // add space for a monitor entry 604 __ str(Rstack_top, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize)); 605 // set new monitor block top 606 __ str(R0, Address(Rstack_top, BasicObjectLock::obj_offset())); 607 // store object 608 __ mov(R1, Rstack_top); // monitor entry address 609 __ lock_object(R1); 610 } 611 612 613 // 614 // Generate a fixed interpreter frame. This is identical setup for interpreted methods 615 // and for native methods hence the shared code. 616 617 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 618 // Generates the following stack layout: 619 // 620 // [ expr. stack bottom ] 621 // [ saved Rbcp ] 622 // [ current Rlocals ] 623 // [ cache ] 624 // [ mdx ] 625 // [ Method* ] 626 // [ last_sp ] 627 // [ sender_sp ] 628 // [ saved FP ] <--- FP 629 // [ saved LR ] 630 631 // initialize fixed part of activation frame 632 __ push(LR); // save return address 633 __ push(FP); // save FP 634 __ mov(FP, SP); // establish new FP 635 636 __ push(Rsender_sp); 637 638 __ mov(R0, 0); 639 __ push(R0); // leave last_sp as null 640 641 // setup Rbcp 642 if (native_call) { 643 __ mov(Rbcp, 0); // bcp = 0 for native calls 644 } else { 645 __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); // get ConstMethod* 646 __ add(Rbcp, Rtemp, ConstMethod::codes_offset()); // get codebase 647 } 648 649 __ push(Rmethod); // save Method* 650 // Get mirror and store it in the frame as GC root for this Method* 651 __ load_mirror(Rtemp, Rmethod, Rtemp); 652 __ push(Rtemp); 653 654 if (ProfileInterpreter) { 655 __ ldr(Rtemp, Address(Rmethod, Method::method_data_offset())); 656 __ tst(Rtemp, Rtemp); 657 __ add(Rtemp, Rtemp, in_bytes(MethodData::data_offset()), ne); 658 __ push(Rtemp); // set the mdp (method data pointer) 659 } else { 660 __ push(R0); 661 } 662 663 __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); 664 __ ldr(Rtemp, Address(Rtemp, ConstMethod::constants_offset())); 665 __ ldr(Rtemp, Address(Rtemp, ConstantPool::cache_offset())); 666 __ push(Rtemp); // set constant pool cache 667 __ sub(Rtemp, Rlocals, FP); 668 __ logical_shift_right(Rtemp, Rtemp, Interpreter::logStackElementSize); // Rtemp = Rlocals - fp(); 669 __ push(Rtemp); // set relativized Rlocals, see frame::interpreter_frame_locals() 670 __ push(Rbcp); // set bcp 671 __ push(R0); // reserve word for pointer to expression stack bottom 672 __ str(SP, Address(SP, 0)); // set expression stack bottom 673 } 674 675 676 // End of helpers 677 678 //------------------------------------------------------------------------------------------------------------------------ 679 // Entry points 680 // 681 // Here we generate the various kind of entries into the interpreter. 682 // The two main entry type are generic bytecode methods and native call method. 683 // These both come in synchronized and non-synchronized versions but the 684 // frame layout they create is very similar. The other method entry 685 // types are really just special purpose entries that are really entry 686 // and interpretation all in one. These are for trivial methods like 687 // accessor, empty, or special math methods. 688 // 689 // When control flow reaches any of the entry types for the interpreter 690 // the following holds -> 691 // 692 // Arguments: 693 // 694 // Rmethod: Method* 695 // Rthread: thread 696 // Rsender_sp: sender sp 697 // Rparams (SP on 32-bit ARM): pointer to method parameters 698 // 699 // LR: return address 700 // 701 // Stack layout immediately at entry 702 // 703 // [ parameter n ] <--- Rparams (SP on 32-bit ARM) 704 // ... 705 // [ parameter 1 ] 706 // [ expression stack ] (caller's java expression stack) 707 708 // Assuming that we don't go to one of the trivial specialized 709 // entries the stack will look like below when we are ready to execute 710 // the first bytecode (or call the native routine). The register usage 711 // will be as the template based interpreter expects. 712 // 713 // local variables follow incoming parameters immediately; i.e. 714 // the return address is saved at the end of the locals. 715 // 716 // [ expr. stack ] <--- Rstack_top (SP on 32-bit ARM) 717 // [ monitor entry ] 718 // ... 719 // [ monitor entry ] 720 // [ expr. stack bottom ] 721 // [ saved Rbcp ] 722 // [ current Rlocals ] 723 // [ cache ] 724 // [ mdx ] 725 // [ mirror ] 726 // [ Method* ] 727 // 728 // 32-bit ARM: 729 // [ last_sp ] 730 // 731 // [ sender_sp ] 732 // [ saved FP ] <--- FP 733 // [ saved LR ] 734 // [ optional padding(*)] 735 // [ local variable m ] 736 // ... 737 // [ local variable 1 ] 738 // [ parameter n ] 739 // ... 740 // [ parameter 1 ] <--- Rlocals 741 // 742 743 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 744 // Code: _aload_0, _getfield, _areturn 745 // parameter size = 1 746 // 747 // The code that gets generated by this routine is split into 2 parts: 748 // 1. The "intrinsified" code performing an ON_WEAK_OOP_REF load, 749 // 2. The slow path - which is an expansion of the regular method entry. 750 // 751 // Notes:- 752 // * An intrinsic is always executed, where an ON_WEAK_OOP_REF load is performed. 753 // * We may jump to the slow path iff the receiver is null. If the 754 // Reference object is null then we no longer perform an ON_WEAK_OOP_REF load 755 // Thus we can use the regular method entry code to generate the NPE. 756 // 757 // Rmethod: Method* 758 // Rthread: thread 759 // Rsender_sp: sender sp, must be preserved for slow path, set SP to it on fast path 760 // Rparams: parameters 761 762 address entry = __ pc(); 763 Label slow_path; 764 const Register Rthis = R0; 765 const Register Rret_addr = Rtmp_save1; 766 assert_different_registers(Rthis, Rret_addr, Rsender_sp); 767 768 const int referent_offset = java_lang_ref_Reference::referent_offset(); 769 770 // Check if local 0 != nullptr 771 // If the receiver is null then it is OK to jump to the slow path. 772 __ ldr(Rthis, Address(Rparams)); 773 __ cbz(Rthis, slow_path); 774 775 // Preserve LR 776 __ mov(Rret_addr, LR); 777 778 // Load the value of the referent field. 779 const Address field_address(Rthis, referent_offset); 780 __ load_heap_oop(R0, field_address, Rtemp, R1_tmp, R2_tmp, ON_WEAK_OOP_REF); 781 782 // _areturn 783 __ mov(SP, Rsender_sp); 784 __ ret(Rret_addr); 785 786 // generate a vanilla interpreter entry as the slow path 787 __ bind(slow_path); 788 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals)); 789 return entry; 790 } 791 792 // Not supported 793 address TemplateInterpreterGenerator::generate_currentThread() { return nullptr; } 794 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { return nullptr; } 795 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return nullptr; } 796 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return nullptr; } 797 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; } 798 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; } 799 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; } 800 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; } 801 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { return nullptr; } 802 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { return nullptr; } 803 804 // 805 // Interpreter stub for calling a native method. (asm interpreter) 806 // This sets up a somewhat different looking stack for calling the native method 807 // than the typical interpreter frame setup. 808 // 809 810 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { 811 // determine code generation flags 812 bool inc_counter = UseCompiler || CountCompiledCalls; 813 814 // Incoming registers: 815 // 816 // Rmethod: Method* 817 // Rthread: thread 818 // Rsender_sp: sender sp 819 // Rparams: parameters 820 821 address entry_point = __ pc(); 822 823 // Register allocation 824 const Register Rsize_of_params = R6; 825 const Register Rsig_handler = Rtmp_save0; // R4 826 const Register Rnative_code = Rtmp_save1; // R5 827 const Register Rresult_handler = R6; 828 829 const Register Rsaved_result_lo = Rtmp_save0; // R4 830 const Register Rsaved_result_hi = Rtmp_save1; // R5 831 FloatRegister saved_result_fp; 832 833 834 __ ldr(Rsize_of_params, Address(Rmethod, Method::const_offset())); 835 __ ldrh(Rsize_of_params, Address(Rsize_of_params, ConstMethod::size_of_parameters_offset())); 836 837 // native calls don't need the stack size check since they have no expression stack 838 // and the arguments are already on the stack and we only add a handful of words 839 // to the stack 840 841 // compute beginning of parameters (Rlocals) 842 __ sub(Rlocals, Rparams, wordSize); 843 __ add(Rlocals, Rlocals, AsmOperand(Rsize_of_params, lsl, Interpreter::logStackElementSize)); 844 845 // reserve stack space for oop_temp 846 __ mov(R0, 0); 847 __ push(R0); 848 849 generate_fixed_frame(true); // Note: R9 is now saved in the frame 850 851 // make sure method is native & not abstract 852 #ifdef ASSERT 853 __ ldrh(Rtemp, Address(Rmethod, Method::access_flags_offset())); 854 { 855 Label L; 856 __ tbnz(Rtemp, JVM_ACC_NATIVE_BIT, L); 857 __ stop("tried to execute non-native method as native"); 858 __ bind(L); 859 } 860 { Label L; 861 __ tbz(Rtemp, JVM_ACC_ABSTRACT_BIT, L); 862 __ stop("tried to execute abstract method in interpreter"); 863 __ bind(L); 864 } 865 #endif 866 867 // increment invocation count & check for overflow 868 Label invocation_counter_overflow; 869 if (inc_counter) { 870 if (synchronized) { 871 // Avoid unlocking method's monitor in case of exception, as it has not 872 // been locked yet. 873 __ set_do_not_unlock_if_synchronized(true, Rtemp); 874 } 875 generate_counter_incr(&invocation_counter_overflow); 876 } 877 878 Label continue_after_compile; 879 __ bind(continue_after_compile); 880 881 if (inc_counter && synchronized) { 882 __ set_do_not_unlock_if_synchronized(false, Rtemp); 883 } 884 885 // check for synchronized methods 886 // Must happen AFTER invocation_counter check and stack overflow check, 887 // so method is not locked if overflows. 888 // 889 if (synchronized) { 890 lock_method(); 891 } else { 892 // no synchronization necessary 893 #ifdef ASSERT 894 { Label L; 895 __ ldrh(Rtemp, Address(Rmethod, Method::access_flags_offset())); 896 __ tbz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L); 897 __ stop("method needs synchronization"); 898 __ bind(L); 899 } 900 #endif 901 } 902 903 // start execution 904 #ifdef ASSERT 905 { Label L; 906 __ ldr(Rtemp, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize)); 907 __ cmp(Rtemp, Rstack_top); 908 __ b(L, eq); 909 __ stop("broken stack frame setup in interpreter 3"); 910 __ bind(L); 911 } 912 #endif 913 __ check_extended_sp(Rtemp); 914 915 // jvmti/dtrace support 916 __ notify_method_entry(); 917 #if R9_IS_SCRATCHED 918 __ restore_method(); 919 #endif 920 921 { 922 Label L; 923 __ ldr(Rsig_handler, Address(Rmethod, Method::signature_handler_offset())); 924 __ cbnz(Rsig_handler, L); 925 __ mov(R1, Rmethod); 926 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R1, true); 927 __ ldr(Rsig_handler, Address(Rmethod, Method::signature_handler_offset())); 928 __ bind(L); 929 } 930 931 { 932 Label L; 933 __ ldr(Rnative_code, Address(Rmethod, Method::native_function_offset())); 934 __ cbnz(Rnative_code, L); 935 __ mov(R1, Rmethod); 936 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R1); 937 __ ldr(Rnative_code, Address(Rmethod, Method::native_function_offset())); 938 __ bind(L); 939 } 940 941 // Allocate stack space for arguments 942 943 944 // C functions need aligned stack 945 __ bic(SP, SP, StackAlignmentInBytes - 1); 946 // Multiply by BytesPerLong instead of BytesPerWord, because calling convention 947 // may require empty slots due to long alignment, e.g. func(int, jlong, int, jlong) 948 __ sub(SP, SP, AsmOperand(Rsize_of_params, lsl, LogBytesPerLong)); 949 950 #ifdef __ABI_HARD__ 951 // Allocate more stack space to accommodate all GP as well as FP registers: 952 // 4 * wordSize 953 // 8 * BytesPerLong 954 int reg_arguments = align_up((4*wordSize) + (8*BytesPerLong), StackAlignmentInBytes); 955 #else 956 // Reserve at least 4 words on the stack for loading 957 // of parameters passed on registers (R0-R3). 958 // See generate_slow_signature_handler(). 959 // It is also used for JNIEnv & class additional parameters. 960 int reg_arguments = 4 * wordSize; 961 #endif // __ABI_HARD__ 962 963 __ sub(SP, SP, reg_arguments); 964 965 966 // Note: signature handler blows R4 besides all scratch registers. 967 // See AbstractInterpreterGenerator::generate_slow_signature_handler(). 968 __ call(Rsig_handler); 969 #if R9_IS_SCRATCHED 970 __ restore_method(); 971 #endif 972 __ mov(Rresult_handler, R0); 973 974 // Pass JNIEnv and mirror for static methods 975 { 976 Label L; 977 __ ldrh(Rtemp, Address(Rmethod, Method::access_flags_offset())); 978 __ add(R0, Rthread, in_bytes(JavaThread::jni_environment_offset())); 979 __ tbz(Rtemp, JVM_ACC_STATIC_BIT, L); 980 __ load_mirror(Rtemp, Rmethod, Rtemp); 981 __ add(R1, FP, frame::interpreter_frame_oop_temp_offset * wordSize); 982 __ str(Rtemp, Address(R1, 0)); 983 __ bind(L); 984 } 985 986 __ set_last_Java_frame(SP, FP, true, Rtemp); 987 988 // Changing state to _thread_in_native must be the last thing to do 989 // before the jump to native code. At this moment stack must be 990 // safepoint-safe and completely prepared for stack walking. 991 #ifdef ASSERT 992 { 993 Label L; 994 __ ldr_u32(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 995 __ cmp_32(Rtemp, _thread_in_Java); 996 __ b(L, eq); 997 __ stop("invalid thread state"); 998 __ bind(L); 999 } 1000 #endif 1001 1002 // Force all preceding writes to be observed prior to thread state change 1003 __ membar(MacroAssembler::StoreStore, Rtemp); 1004 1005 __ mov(Rtemp, _thread_in_native); 1006 __ str(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 1007 1008 __ call(Rnative_code); 1009 #if R9_IS_SCRATCHED 1010 __ restore_method(); 1011 #endif 1012 1013 // Set FPSCR/FPCR to a known state 1014 if (AlwaysRestoreFPU) { 1015 __ restore_default_fp_mode(); 1016 } 1017 1018 // Do safepoint check 1019 __ mov(Rtemp, _thread_in_native_trans); 1020 __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 1021 1022 // Force this write out before the read below 1023 if (!UseSystemMemoryBarrier) { 1024 __ membar(MacroAssembler::StoreLoad, Rtemp); 1025 } 1026 1027 // Protect the return value in the interleaved code: save it to callee-save registers. 1028 __ mov(Rsaved_result_lo, R0); 1029 __ mov(Rsaved_result_hi, R1); 1030 #ifdef __ABI_HARD__ 1031 // preserve native FP result in a callee-saved register 1032 saved_result_fp = D8; 1033 __ fcpyd(saved_result_fp, D0); 1034 #else 1035 saved_result_fp = fnoreg; 1036 #endif // __ABI_HARD__ 1037 1038 { 1039 Label call, skip_call; 1040 __ safepoint_poll(Rtemp, call); 1041 __ ldr_u32(R3, Address(Rthread, JavaThread::suspend_flags_offset())); 1042 __ cmp(R3, 0); 1043 __ b(skip_call, eq); 1044 __ bind(call); 1045 __ mov(R0, Rthread); 1046 __ call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans), relocInfo::none); 1047 __ bind(skip_call); 1048 1049 #if R9_IS_SCRATCHED 1050 __ restore_method(); 1051 #endif 1052 } 1053 1054 // Perform Native->Java thread transition 1055 __ mov(Rtemp, _thread_in_Java); 1056 __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 1057 1058 // Zero handles and last_java_sp 1059 __ reset_last_Java_frame(Rtemp); 1060 __ ldr(R3, Address(Rthread, JavaThread::active_handles_offset())); 1061 __ str_32(__ zero_register(Rtemp), Address(R3, JNIHandleBlock::top_offset())); 1062 if (CheckJNICalls) { 1063 __ str(__ zero_register(Rtemp), Address(Rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1064 } 1065 1066 // Unbox oop result, e.g. JNIHandles::resolve result if it's an oop. 1067 { 1068 Label Lnot_oop; 1069 __ mov_slow(Rtemp, AbstractInterpreter::result_handler(T_OBJECT)); 1070 __ cmp(Rtemp, Rresult_handler); 1071 __ b(Lnot_oop, ne); 1072 Register value = Rsaved_result_lo; 1073 __ resolve_jobject(value, // value 1074 Rtemp, // tmp1 1075 R1_tmp); // tmp2 1076 // Store resolved result in frame for GC visibility. 1077 __ str(value, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize)); 1078 __ bind(Lnot_oop); 1079 } 1080 1081 1082 // reguard stack if StackOverflow exception happened while in native. 1083 { 1084 __ ldr_u32(Rtemp, Address(Rthread, JavaThread::stack_guard_state_offset())); 1085 __ cmp_32(Rtemp, StackOverflow::stack_guard_yellow_reserved_disabled); 1086 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), relocInfo::none, eq); 1087 #if R9_IS_SCRATCHED 1088 __ restore_method(); 1089 #endif 1090 } 1091 1092 // check pending exceptions 1093 { 1094 __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset())); 1095 __ cmp(Rtemp, 0); 1096 __ mov(Rexception_pc, PC, ne); 1097 __ b(StubRoutines::forward_exception_entry(), ne); 1098 } 1099 1100 if (synchronized) { 1101 // address of first monitor 1102 __ sub(R0, FP, - (frame::interpreter_frame_monitor_block_bottom_offset - frame::interpreter_frame_monitor_size()) * wordSize); 1103 __ unlock_object(R0); 1104 } 1105 1106 // jvmti/dtrace support 1107 // Note: This must happen _after_ handling/throwing any exceptions since 1108 // the exception handler code notifies the runtime of method exits 1109 // too. If this happens before, method entry/exit notifications are 1110 // not properly paired (was bug - gri 11/22/99). 1111 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI, true, Rsaved_result_lo, Rsaved_result_hi, saved_result_fp); 1112 1113 // Restore the result. Oop result is restored from the stack by the 1114 // result handler. 1115 __ mov(R0, Rsaved_result_lo); 1116 __ mov(R1, Rsaved_result_hi); 1117 1118 #ifdef __ABI_HARD__ 1119 // reload native FP result 1120 __ fcpyd(D0, D8); 1121 #endif // __ABI_HARD__ 1122 1123 __ blx(Rresult_handler); 1124 1125 // Restore FP/LR, sender_sp and return 1126 __ mov(Rtemp, FP); 1127 __ ldmia(FP, RegisterSet(FP) | RegisterSet(LR)); 1128 __ ldr(SP, Address(Rtemp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1129 1130 __ ret(); 1131 1132 if (inc_counter) { 1133 // Handle overflow of counter and compile method 1134 __ bind(invocation_counter_overflow); 1135 generate_counter_overflow(continue_after_compile); 1136 } 1137 1138 return entry_point; 1139 } 1140 1141 // 1142 // Generic interpreted method entry to (asm) interpreter 1143 // 1144 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { 1145 // determine code generation flags 1146 bool inc_counter = UseCompiler || CountCompiledCalls; 1147 1148 // Rmethod: Method* 1149 // Rthread: thread 1150 // Rsender_sp: sender sp (could differ from SP if we were called via c2i) 1151 // Rparams: pointer to the last parameter in the stack 1152 1153 address entry_point = __ pc(); 1154 1155 const Register RconstMethod = R3; 1156 1157 1158 __ ldr(RconstMethod, Address(Rmethod, Method::const_offset())); 1159 1160 __ ldrh(R2, Address(RconstMethod, ConstMethod::size_of_parameters_offset())); 1161 __ ldrh(R3, Address(RconstMethod, ConstMethod::size_of_locals_offset())); 1162 1163 // setup Rlocals 1164 __ sub(Rlocals, Rparams, wordSize); 1165 __ add(Rlocals, Rlocals, AsmOperand(R2, lsl, Interpreter::logStackElementSize)); 1166 1167 __ sub(R3, R3, R2); // number of additional locals 1168 1169 1170 // see if we've got enough room on the stack for locals plus overhead. 1171 generate_stack_overflow_check(); 1172 1173 // allocate space for locals 1174 // explicitly initialize locals 1175 1176 // Loop is unrolled 4 times 1177 Label loop; 1178 __ mov(R0, 0); 1179 __ bind(loop); 1180 1181 // #1 1182 __ subs(R3, R3, 1); 1183 __ push(R0, ge); 1184 1185 // #2 1186 __ subs(R3, R3, 1, ge); 1187 __ push(R0, ge); 1188 1189 // #3 1190 __ subs(R3, R3, 1, ge); 1191 __ push(R0, ge); 1192 1193 // #4 1194 __ subs(R3, R3, 1, ge); 1195 __ push(R0, ge); 1196 1197 __ b(loop, gt); 1198 1199 // initialize fixed part of activation frame 1200 generate_fixed_frame(false); 1201 1202 __ restore_dispatch(); 1203 1204 // make sure method is not native & not abstract 1205 #ifdef ASSERT 1206 __ ldrh(Rtemp, Address(Rmethod, Method::access_flags_offset())); 1207 { 1208 Label L; 1209 __ tbz(Rtemp, JVM_ACC_NATIVE_BIT, L); 1210 __ stop("tried to execute native method as non-native"); 1211 __ bind(L); 1212 } 1213 { Label L; 1214 __ tbz(Rtemp, JVM_ACC_ABSTRACT_BIT, L); 1215 __ stop("tried to execute abstract method in interpreter"); 1216 __ bind(L); 1217 } 1218 #endif 1219 1220 // increment invocation count & check for overflow 1221 Label invocation_counter_overflow; 1222 if (inc_counter) { 1223 if (synchronized) { 1224 // Avoid unlocking method's monitor in case of exception, as it has not 1225 // been locked yet. 1226 __ set_do_not_unlock_if_synchronized(true, Rtemp); 1227 } 1228 generate_counter_incr(&invocation_counter_overflow); 1229 } 1230 Label continue_after_compile; 1231 __ bind(continue_after_compile); 1232 1233 if (inc_counter && synchronized) { 1234 __ set_do_not_unlock_if_synchronized(false, Rtemp); 1235 } 1236 #if R9_IS_SCRATCHED 1237 __ restore_method(); 1238 #endif 1239 1240 // check for synchronized methods 1241 // Must happen AFTER invocation_counter check and stack overflow check, 1242 // so method is not locked if overflows. 1243 // 1244 if (synchronized) { 1245 // Allocate monitor and lock method 1246 lock_method(); 1247 } else { 1248 // no synchronization necessary 1249 #ifdef ASSERT 1250 { Label L; 1251 __ ldrh(Rtemp, Address(Rmethod, Method::access_flags_offset())); 1252 __ tbz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L); 1253 __ stop("method needs synchronization"); 1254 __ bind(L); 1255 } 1256 #endif 1257 } 1258 1259 // start execution 1260 #ifdef ASSERT 1261 { Label L; 1262 __ ldr(Rtemp, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize)); 1263 __ cmp(Rtemp, Rstack_top); 1264 __ b(L, eq); 1265 __ stop("broken stack frame setup in interpreter 4"); 1266 __ bind(L); 1267 } 1268 #endif 1269 __ check_extended_sp(Rtemp); 1270 1271 // jvmti support 1272 __ notify_method_entry(); 1273 #if R9_IS_SCRATCHED 1274 __ restore_method(); 1275 #endif 1276 1277 __ dispatch_next(vtos); 1278 1279 // invocation counter overflow 1280 if (inc_counter) { 1281 // Handle overflow of counter and compile method 1282 __ bind(invocation_counter_overflow); 1283 generate_counter_overflow(continue_after_compile); 1284 } 1285 1286 return entry_point; 1287 } 1288 1289 //------------------------------------------------------------------------------------------------------------------------ 1290 // Exceptions 1291 1292 void TemplateInterpreterGenerator::generate_throw_exception() { 1293 // Entry point in previous activation (i.e., if the caller was interpreted) 1294 Interpreter::_rethrow_exception_entry = __ pc(); 1295 // Rexception_obj: exception 1296 1297 // Clear interpreter_frame_last_sp. 1298 __ mov(Rtemp, 0); 1299 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1300 1301 #if R9_IS_SCRATCHED 1302 __ restore_method(); 1303 #endif 1304 __ restore_bcp(); 1305 __ restore_dispatch(); 1306 __ restore_locals(); 1307 1308 1309 // Entry point for exceptions thrown within interpreter code 1310 Interpreter::_throw_exception_entry = __ pc(); 1311 1312 // expression stack is undefined here 1313 // Rexception_obj: exception 1314 // Rbcp: exception bcp 1315 __ verify_oop(Rexception_obj); 1316 1317 // expression stack must be empty before entering the VM in case of an exception 1318 __ empty_expression_stack(); 1319 // find exception handler address and preserve exception oop 1320 __ mov(R1, Rexception_obj); 1321 __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), R1); 1322 // R0: exception handler entry point 1323 // Rexception_obj: preserved exception oop 1324 // Rbcp: bcp for exception handler 1325 __ push_ptr(Rexception_obj); // push exception which is now the only value on the stack 1326 __ jump(R0); // jump to exception handler (may be _remove_activation_entry!) 1327 1328 // If the exception is not handled in the current frame the frame is removed and 1329 // the exception is rethrown (i.e. exception continuation is _rethrow_exception). 1330 // 1331 // Note: At this point the bci is still the bxi for the instruction which caused 1332 // the exception and the expression stack is empty. Thus, for any VM calls 1333 // at this point, GC will find a legal oop map (with empty expression stack). 1334 1335 // In current activation 1336 // tos: exception 1337 // Rbcp: exception bcp 1338 1339 // 1340 // JVMTI PopFrame support 1341 // 1342 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 1343 1344 1345 __ empty_expression_stack(); 1346 1347 // Set the popframe_processing bit in _popframe_condition indicating that we are 1348 // currently handling popframe, so that call_VMs that may happen later do not trigger new 1349 // popframe handling cycles. 1350 1351 __ ldr_s32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset())); 1352 __ orr(Rtemp, Rtemp, (unsigned)JavaThread::popframe_processing_bit); 1353 __ str_32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset())); 1354 1355 { 1356 // Check to see whether we are returning to a deoptimized frame. 1357 // (The PopFrame call ensures that the caller of the popped frame is 1358 // either interpreted or compiled and deoptimizes it if compiled.) 1359 // In this case, we can't call dispatch_next() after the frame is 1360 // popped, but instead must save the incoming arguments and restore 1361 // them after deoptimization has occurred. 1362 // 1363 // Note that we don't compare the return PC against the 1364 // deoptimization blob's unpack entry because of the presence of 1365 // adapter frames in C2. 1366 Label caller_not_deoptimized; 1367 __ ldr(R0, Address(FP, frame::return_addr_offset * wordSize)); 1368 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), R0); 1369 __ cbnz_32(R0, caller_not_deoptimized); 1370 1371 // Compute size of arguments for saving when returning to deoptimized caller 1372 __ restore_method(); 1373 __ ldr(R0, Address(Rmethod, Method::const_offset())); 1374 __ ldrh(R0, Address(R0, ConstMethod::size_of_parameters_offset())); 1375 1376 __ logical_shift_left(R1, R0, Interpreter::logStackElementSize); 1377 // Save these arguments 1378 __ restore_locals(); 1379 __ sub(R2, Rlocals, R1); 1380 __ add(R2, R2, wordSize); 1381 __ mov(R0, Rthread); 1382 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R0, R1, R2); 1383 1384 __ remove_activation(vtos, LR, 1385 /* throw_monitor_exception */ false, 1386 /* install_monitor_exception */ false, 1387 /* notify_jvmdi */ false); 1388 1389 // Inform deoptimization that it is responsible for restoring these arguments 1390 __ mov(Rtemp, JavaThread::popframe_force_deopt_reexecution_bit); 1391 __ str_32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset())); 1392 1393 // Continue in deoptimization handler 1394 __ ret(); 1395 1396 __ bind(caller_not_deoptimized); 1397 } 1398 1399 __ remove_activation(vtos, R4, 1400 /* throw_monitor_exception */ false, 1401 /* install_monitor_exception */ false, 1402 /* notify_jvmdi */ false); 1403 1404 // Finish with popframe handling 1405 // A previous I2C followed by a deoptimization might have moved the 1406 // outgoing arguments further up the stack. PopFrame expects the 1407 // mutations to those outgoing arguments to be preserved and other 1408 // constraints basically require this frame to look exactly as 1409 // though it had previously invoked an interpreted activation with 1410 // no space between the top of the expression stack (current 1411 // last_sp) and the top of stack. Rather than force deopt to 1412 // maintain this kind of invariant all the time we call a small 1413 // fixup routine to move the mutated arguments onto the top of our 1414 // expression stack if necessary. 1415 __ mov(R1, SP); 1416 __ ldr(R2, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1417 // PC must point into interpreter here 1418 __ set_last_Java_frame(SP, FP, true, Rtemp); 1419 __ mov(R0, Rthread); 1420 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), R0, R1, R2); 1421 __ reset_last_Java_frame(Rtemp); 1422 1423 // Restore the last_sp and null it out 1424 __ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1425 __ mov(Rtemp, (int)NULL_WORD); 1426 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1427 1428 __ restore_bcp(); 1429 __ restore_dispatch(); 1430 __ restore_locals(); 1431 __ restore_method(); 1432 1433 // The method data pointer was incremented already during 1434 // call profiling. We have to restore the mdp for the current bcp. 1435 if (ProfileInterpreter) { 1436 __ set_method_data_pointer_for_bcp(); 1437 } 1438 1439 // Clear the popframe condition flag 1440 assert(JavaThread::popframe_inactive == 0, "adjust this code"); 1441 __ str_32(__ zero_register(Rtemp), Address(Rthread, JavaThread::popframe_condition_offset())); 1442 1443 #if INCLUDE_JVMTI 1444 { 1445 Label L_done; 1446 1447 __ ldrb(Rtemp, Address(Rbcp, 0)); 1448 __ cmp(Rtemp, Bytecodes::_invokestatic); 1449 __ b(L_done, ne); 1450 1451 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. 1452 // Detect such a case in the InterpreterRuntime function and return the member name argument, or null. 1453 1454 // get local0 1455 __ ldr(R1, Address(Rlocals, 0)); 1456 __ mov(R2, Rmethod); 1457 __ mov(R3, Rbcp); 1458 __ call_VM(R0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R1, R2, R3); 1459 1460 __ cbz(R0, L_done); 1461 1462 __ str(R0, Address(Rstack_top)); 1463 __ bind(L_done); 1464 } 1465 #endif // INCLUDE_JVMTI 1466 1467 __ dispatch_next(vtos); 1468 // end of PopFrame support 1469 1470 Interpreter::_remove_activation_entry = __ pc(); 1471 1472 // preserve exception over this code sequence 1473 __ pop_ptr(R0_tos); 1474 __ str(R0_tos, Address(Rthread, JavaThread::vm_result_offset())); 1475 // remove the activation (without doing throws on illegalMonitorExceptions) 1476 __ remove_activation(vtos, Rexception_pc, false, true, false); 1477 // restore exception 1478 __ get_vm_result(Rexception_obj, Rtemp); 1479 1480 // In between activations - previous activation type unknown yet 1481 // compute continuation point - the continuation point expects 1482 // the following registers set up: 1483 // 1484 // Rexception_obj: exception 1485 // Rexception_pc: return address/pc that threw exception 1486 // SP: expression stack of caller 1487 // FP: frame pointer of caller 1488 __ mov(c_rarg0, Rthread); 1489 __ mov(c_rarg1, Rexception_pc); 1490 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), c_rarg0, c_rarg1); 1491 // Note that an "issuing PC" is actually the next PC after the call 1492 1493 __ jump(R0); // jump to exception handler of caller 1494 } 1495 1496 1497 // 1498 // JVMTI ForceEarlyReturn support 1499 // 1500 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { 1501 address entry = __ pc(); 1502 1503 1504 __ restore_bcp(); 1505 __ restore_dispatch(); 1506 __ restore_locals(); 1507 1508 __ empty_expression_stack(); 1509 1510 __ load_earlyret_value(state); 1511 1512 // Clear the earlyret state 1513 __ ldr(Rtemp, Address(Rthread, JavaThread::jvmti_thread_state_offset())); 1514 1515 assert(JvmtiThreadState::earlyret_inactive == 0, "adjust this code"); 1516 __ str_32(__ zero_register(R2), Address(Rtemp, JvmtiThreadState::earlyret_state_offset())); 1517 1518 __ remove_activation(state, LR, 1519 false, /* throw_monitor_exception */ 1520 false, /* install_monitor_exception */ 1521 true); /* notify_jvmdi */ 1522 1523 // According to interpreter calling conventions, result is returned in R0/R1, 1524 // so ftos (S0) and dtos (D0) are moved to R0/R1. 1525 // This conversion should be done after remove_activation, as it uses 1526 // push(state) & pop(state) to preserve return value. 1527 __ convert_tos_to_retval(state); 1528 __ ret(); 1529 1530 return entry; 1531 } // end of ForceEarlyReturn support 1532 1533 1534 //------------------------------------------------------------------------------------------------------------------------ 1535 // Helper for vtos entry point generation 1536 1537 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) { 1538 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 1539 Label L; 1540 1541 #ifdef __SOFTFP__ 1542 dep = __ pc(); // fall through 1543 #else 1544 fep = __ pc(); __ push(ftos); __ b(L); 1545 dep = __ pc(); __ push(dtos); __ b(L); 1546 #endif // __SOFTFP__ 1547 1548 lep = __ pc(); __ push(ltos); __ b(L); 1549 1550 if (VerifyOops) { // can't share atos entry if VerifyOops 1551 aep = __ pc(); __ push(atos); __ b(L); 1552 } else { 1553 aep = __ pc(); // fall through 1554 } 1555 1556 #ifdef __SOFTFP__ 1557 fep = __ pc(); // fall through 1558 #endif // __SOFTFP__ 1559 1560 bep = cep = sep = // fall through 1561 iep = __ pc(); __ push(itos); // fall through 1562 vep = __ pc(); __ bind(L); // fall through 1563 generate_and_dispatch(t); 1564 } 1565 1566 //------------------------------------------------------------------------------------------------------------------------ 1567 1568 // Non-product code 1569 #ifndef PRODUCT 1570 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 1571 address entry = __ pc(); 1572 1573 // prepare expression stack 1574 __ push(state); // save tosca 1575 1576 // pass tosca registers as arguments 1577 __ mov(R2, R0_tos); 1578 __ mov(R3, R1_tos_hi); 1579 __ mov(R1, LR); // save return address 1580 1581 // call tracer 1582 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), R1, R2, R3); 1583 1584 __ mov(LR, R0); // restore return address 1585 __ pop(state); // restore tosca 1586 1587 // return 1588 __ ret(); 1589 1590 return entry; 1591 } 1592 1593 1594 void TemplateInterpreterGenerator::count_bytecode() { 1595 __ inc_global_counter((address) &BytecodeCounter::_counter_value, 0, Rtemp, R2_tmp, true); 1596 } 1597 1598 1599 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { 1600 __ inc_global_counter((address)&BytecodeHistogram::_counters[0], sizeof(BytecodeHistogram::_counters[0]) * t->bytecode(), Rtemp, R2_tmp, true); 1601 } 1602 1603 1604 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { 1605 const Register Rindex_addr = R2_tmp; 1606 Label Lcontinue; 1607 InlinedAddress Lcounters((address)BytecodePairHistogram::_counters); 1608 InlinedAddress Lindex((address)&BytecodePairHistogram::_index); 1609 const Register Rcounters_addr = R2_tmp; 1610 const Register Rindex = R4_tmp; 1611 1612 // calculate new index for counter: 1613 // index = (_index >> log2_number_of_codes) | (bytecode << log2_number_of_codes). 1614 // (_index >> log2_number_of_codes) is previous bytecode 1615 1616 __ ldr_literal(Rindex_addr, Lindex); 1617 __ ldr_s32(Rindex, Address(Rindex_addr)); 1618 __ mov_slow(Rtemp, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); 1619 __ orr(Rindex, Rtemp, AsmOperand(Rindex, lsr, BytecodePairHistogram::log2_number_of_codes)); 1620 __ str_32(Rindex, Address(Rindex_addr)); 1621 1622 // Rindex (R4) contains index of counter 1623 1624 __ ldr_literal(Rcounters_addr, Lcounters); 1625 __ ldr_s32(Rtemp, Address::indexed_32(Rcounters_addr, Rindex)); 1626 __ adds_32(Rtemp, Rtemp, 1); 1627 __ b(Lcontinue, mi); // avoid overflow 1628 __ str_32(Rtemp, Address::indexed_32(Rcounters_addr, Rindex)); 1629 1630 __ b(Lcontinue); 1631 1632 __ bind_literal(Lindex); 1633 __ bind_literal(Lcounters); 1634 1635 __ bind(Lcontinue); 1636 } 1637 1638 1639 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 1640 // Call a little run-time stub to avoid blow-up for each bytecode. 1641 // The run-time runtime saves the right registers, depending on 1642 // the tosca in-state for the given template. 1643 assert(Interpreter::trace_code(t->tos_in()) != nullptr, 1644 "entry must have been generated"); 1645 address trace_entry = Interpreter::trace_code(t->tos_in()); 1646 __ call(trace_entry, relocInfo::none); 1647 } 1648 1649 1650 void TemplateInterpreterGenerator::stop_interpreter_at() { 1651 Label Lcontinue; 1652 const Register stop_at = R2_tmp; 1653 1654 __ ldr_global_s32(Rtemp, (address) &BytecodeCounter::_counter_value); 1655 __ mov_slow(stop_at, StopInterpreterAt); 1656 1657 // test bytecode counter 1658 __ cmp(Rtemp, stop_at); 1659 __ b(Lcontinue, ne); 1660 1661 __ trace_state("stop_interpreter_at"); 1662 __ breakpoint(); 1663 1664 __ bind(Lcontinue); 1665 } 1666 #endif // !PRODUCT