1 /* 2 * Copyright (c) 2008, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "interpreter/bytecodeHistogram.hpp" 30 #include "interpreter/interp_masm.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "interpreter/templateInterpreterGenerator.hpp" 34 #include "interpreter/templateTable.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/methodData.hpp" 37 #include "oops/method.inline.hpp" 38 #include "oops/oop.inline.hpp" 39 #include "oops/resolvedIndyEntry.hpp" 40 #include "oops/resolvedMethodEntry.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/jvmtiThreadState.hpp" 43 #include "prims/methodHandles.hpp" 44 #include "runtime/arguments.hpp" 45 #include "runtime/deoptimization.hpp" 46 #include "runtime/frame.inline.hpp" 47 #include "runtime/jniHandles.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "runtime/stubRoutines.hpp" 50 #include "runtime/synchronizer.hpp" 51 #include "runtime/timer.hpp" 52 #include "runtime/vframeArray.hpp" 53 #include "utilities/align.hpp" 54 #include "utilities/debug.hpp" 55 #include "utilities/macros.hpp" 56 57 // Size of interpreter code. Increase if too small. Interpreter will 58 // fail with a guarantee ("not enough space for interpreter generation"); 59 // if too small. 60 // Run with +PrintInterpreter to get the VM to print out the size. 61 // Max size with JVMTI 62 int TemplateInterpreter::InterpreterCodeSize = 180 * 1024; 63 64 #define __ _masm-> 65 66 //------------------------------------------------------------------------------------------------------------------------ 67 68 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 69 address entry = __ pc(); 70 71 // callee-save register for saving LR, shared with generate_native_entry 72 const Register Rsaved_ret_addr = Rtmp_save0; 73 74 __ mov(Rsaved_ret_addr, LR); 75 76 __ mov(R1, Rmethod); 77 __ mov(R2, Rlocals); 78 __ mov(R3, SP); 79 80 81 // Safer to save R9 (when scratched) since callers may have been 82 // written assuming R9 survives. This is suboptimal but 83 // probably not important for this slow case call site. 84 // Note for R9 saving: slow_signature_handler may copy register 85 // arguments above the current SP (passed as R3). It is safe for 86 // call_VM to use push and pop to protect additional values on the 87 // stack if needed. 88 __ call_VM(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), true /* save R9 if needed*/); 89 __ add(SP, SP, wordSize); // Skip R0 90 __ pop(RegisterSet(R1, R3)); // Load arguments passed in registers 91 #ifdef __ABI_HARD__ 92 // Few alternatives to an always-load-FP-registers approach: 93 // - parse method signature to detect FP arguments 94 // - keep a counter/flag on a stack indicationg number of FP arguments in the method. 95 // The later has been originally implemented and tested but a conditional path could 96 // eliminate any gain imposed by avoiding 8 double word loads. 97 __ fldmiad(SP, FloatRegisterSet(D0, 8), writeback); 98 #endif // __ABI_HARD__ 99 100 __ ret(Rsaved_ret_addr); 101 102 return entry; 103 } 104 105 106 // 107 // Various method entries (that c++ and asm interpreter agree upon) 108 //------------------------------------------------------------------------------------------------------------------------ 109 // 110 // 111 112 // Abstract method entry 113 // Attempt to execute abstract method. Throw exception 114 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 115 address entry_point = __ pc(); 116 117 118 __ empty_expression_stack(); 119 120 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 121 122 DEBUG_ONLY(STOP("generate_abstract_entry");) // Should not reach here 123 return entry_point; 124 } 125 126 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 127 address entry_point = nullptr; 128 Register continuation = LR; 129 bool use_runtime_call = false; 130 switch (kind) { 131 case Interpreter::java_lang_math_abs: 132 entry_point = __ pc(); 133 #ifdef __SOFTFP__ 134 use_runtime_call = true; 135 __ ldrd(R0, Address(SP)); 136 #else // !__SOFTFP__ 137 __ ldr_double(D0, Address(SP)); 138 __ abs_double(D0, D0); 139 #endif // __SOFTFP__ 140 break; 141 case Interpreter::java_lang_math_sqrt: 142 entry_point = __ pc(); 143 #ifdef __SOFTFP__ 144 use_runtime_call = true; 145 __ ldrd(R0, Address(SP)); 146 #else // !__SOFTFP__ 147 __ ldr_double(D0, Address(SP)); 148 __ sqrt_double(D0, D0); 149 #endif // __SOFTFP__ 150 break; 151 case Interpreter::java_lang_math_sin: 152 case Interpreter::java_lang_math_cos: 153 case Interpreter::java_lang_math_tan: 154 case Interpreter::java_lang_math_log: 155 case Interpreter::java_lang_math_log10: 156 case Interpreter::java_lang_math_exp: 157 entry_point = __ pc(); 158 use_runtime_call = true; 159 #ifdef __SOFTFP__ 160 __ ldrd(R0, Address(SP)); 161 #else // !__SOFTFP__ 162 __ ldr_double(D0, Address(SP)); 163 #endif // __SOFTFP__ 164 break; 165 case Interpreter::java_lang_math_pow: 166 entry_point = __ pc(); 167 use_runtime_call = true; 168 #ifdef __SOFTFP__ 169 __ ldrd(R0, Address(SP, 2 * Interpreter::stackElementSize)); 170 __ ldrd(R2, Address(SP)); 171 #else // !__SOFTFP__ 172 __ ldr_double(D0, Address(SP, 2 * Interpreter::stackElementSize)); 173 __ ldr_double(D1, Address(SP)); 174 #endif // __SOFTFP__ 175 break; 176 case Interpreter::java_lang_math_fmaD: 177 case Interpreter::java_lang_math_fmaF: 178 // TODO: Implement intrinsic 179 break; 180 default: 181 ShouldNotReachHere(); 182 } 183 184 if (entry_point != nullptr) { 185 __ mov(SP, Rsender_sp); 186 if (use_runtime_call) { 187 __ mov(Rtmp_save0, LR); 188 continuation = Rtmp_save0; 189 generate_math_runtime_call(kind); 190 } 191 __ ret(continuation); 192 } 193 return entry_point; 194 } 195 196 void TemplateInterpreterGenerator::generate_math_runtime_call(AbstractInterpreter::MethodKind kind) { 197 address fn; 198 switch (kind) { 199 #ifdef __SOFTFP__ 200 case Interpreter::java_lang_math_abs: 201 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dabs); 202 break; 203 case Interpreter::java_lang_math_sqrt: 204 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt); 205 break; 206 #endif // __SOFTFP__ 207 case Interpreter::java_lang_math_sin: 208 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); 209 break; 210 case Interpreter::java_lang_math_cos: 211 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); 212 break; 213 case Interpreter::java_lang_math_tan: 214 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); 215 break; 216 case Interpreter::java_lang_math_log: 217 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); 218 break; 219 case Interpreter::java_lang_math_log10: 220 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); 221 break; 222 case Interpreter::java_lang_math_exp: 223 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); 224 break; 225 case Interpreter::java_lang_math_pow: 226 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 227 break; 228 default: 229 ShouldNotReachHere(); 230 fn = nullptr; // silence "maybe uninitialized" compiler warnings 231 } 232 __ call_VM_leaf(fn); 233 } 234 235 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 236 address entry = __ pc(); 237 238 // Note: There should be a minimal interpreter frame set up when stack 239 // overflow occurs since we check explicitly for it now. 240 // 241 #ifdef ASSERT 242 { Label L; 243 __ sub(Rtemp, FP, - frame::interpreter_frame_monitor_block_top_offset * wordSize); 244 __ cmp(SP, Rtemp); // Rtemp = maximal SP for current FP, 245 // (stack grows negative) 246 __ b(L, ls); // check if frame is complete 247 __ stop ("interpreter frame not set up"); 248 __ bind(L); 249 } 250 #endif // ASSERT 251 252 // Restore bcp under the assumption that the current frame is still 253 // interpreted 254 __ restore_bcp(); 255 256 // expression stack must be empty before entering the VM if an exception 257 // happened 258 __ empty_expression_stack(); 259 260 // throw exception 261 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError)); 262 263 __ should_not_reach_here(); 264 265 return entry; 266 } 267 268 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 269 address entry = __ pc(); 270 271 // index is in R4_ArrayIndexOutOfBounds_index 272 273 // expression stack must be empty before entering the VM if an exception happened 274 __ empty_expression_stack(); 275 276 // setup parameters 277 // Array expected in R1. 278 __ mov(R2, R4_ArrayIndexOutOfBounds_index); 279 280 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), R1, R2); 281 282 __ nop(); // to avoid filling CPU pipeline with invalid instructions 283 __ nop(); 284 __ should_not_reach_here(); 285 286 return entry; 287 } 288 289 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 290 address entry = __ pc(); 291 292 // object is in R2_ClassCastException_obj 293 294 // expression stack must be empty before entering the VM if an exception 295 // happened 296 __ empty_expression_stack(); 297 298 __ mov(R1, R2_ClassCastException_obj); 299 __ call_VM(noreg, 300 CAST_FROM_FN_PTR(address, 301 InterpreterRuntime::throw_ClassCastException), 302 R1); 303 304 __ should_not_reach_here(); 305 306 return entry; 307 } 308 309 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) { 310 assert(!pass_oop || message == nullptr, "either oop or message but not both"); 311 address entry = __ pc(); 312 313 InlinedString Lname(name); 314 InlinedString Lmessage(message); 315 316 if (pass_oop) { 317 // object is at TOS 318 __ pop_ptr(R2); 319 } 320 321 // expression stack must be empty before entering the VM if an exception happened 322 __ empty_expression_stack(); 323 324 // setup parameters 325 __ ldr_literal(R1, Lname); 326 327 if (pass_oop) { 328 __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), R1, R2); 329 } else { 330 if (message != nullptr) { 331 __ ldr_literal(R2, Lmessage); 332 } else { 333 __ mov(R2, 0); 334 } 335 __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), R1, R2); 336 } 337 338 // throw exception 339 __ b(Interpreter::throw_exception_entry()); 340 341 __ nop(); // to avoid filling CPU pipeline with invalid instructions 342 __ nop(); 343 __ bind_literal(Lname); 344 if (!pass_oop && (message != nullptr)) { 345 __ bind_literal(Lmessage); 346 } 347 348 return entry; 349 } 350 351 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { 352 address entry = __ pc(); 353 354 __ interp_verify_oop(R0_tos, state, __FILE__, __LINE__); 355 356 // Restore stack bottom in case i2c adjusted stack 357 __ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 358 // and null it as marker that SP is now tos until next java call 359 __ mov(Rtemp, (int)NULL_WORD); 360 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 361 362 __ restore_method(); 363 __ restore_bcp(); 364 __ restore_dispatch(); 365 __ restore_locals(); 366 367 const Register Rcache = R2_tmp; 368 const Register Rindex = R3_tmp; 369 370 if (index_size == sizeof(u4)) { 371 __ load_resolved_indy_entry(Rcache, Rindex); 372 __ ldrh(Rcache, Address(Rcache, in_bytes(ResolvedIndyEntry::num_parameters_offset()))); 373 } else { 374 // Pop N words from the stack 375 assert(index_size == sizeof(u2), "Can only be u2"); 376 __ load_method_entry(Rcache, Rindex); 377 __ ldrh(Rcache, Address(Rcache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 378 } 379 380 __ check_stack_top(); 381 __ add(Rstack_top, Rstack_top, AsmOperand(Rcache, lsl, Interpreter::logStackElementSize)); 382 383 __ convert_retval_to_tos(state); 384 385 __ check_and_handle_popframe(); 386 __ check_and_handle_earlyret(); 387 388 __ dispatch_next(state, step); 389 390 return entry; 391 } 392 393 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step, address continuation) { 394 address entry = __ pc(); 395 396 __ interp_verify_oop(R0_tos, state, __FILE__, __LINE__); 397 398 // The stack is not extended by deopt but we must null last_sp as this 399 // entry is like a "return". 400 __ mov(Rtemp, 0); 401 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 402 403 __ restore_method(); 404 __ restore_bcp(); 405 __ restore_dispatch(); 406 __ restore_locals(); 407 408 // handle exceptions 409 { Label L; 410 __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset())); 411 __ cbz(Rtemp, L); 412 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception)); 413 __ should_not_reach_here(); 414 __ bind(L); 415 } 416 417 if (continuation == nullptr) { 418 __ dispatch_next(state, step); 419 } else { 420 __ jump_to_entry(continuation); 421 } 422 423 return entry; 424 } 425 426 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) { 427 address entry = __ pc(); 428 429 switch (type) { 430 case T_CHAR : /* Nothing to do */ break; 431 case T_BYTE : /* Nothing to do */ break; 432 case T_SHORT : /* Nothing to do */ break; 433 case T_INT : /* Nothing to do */ break; 434 case T_LONG : /* Nothing to do */ break; 435 case T_VOID : /* Nothing to do */ break; 436 case T_DOUBLE : /* Nothing to do */ break; 437 case T_FLOAT : /* Nothing to do */ break; 438 case T_BOOLEAN : __ c2bool(R0); break; 439 case T_OBJECT : 440 __ ldr(R0, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize)); 441 __ verify_oop(R0); 442 break; 443 default : __ should_not_reach_here(); break; 444 } 445 446 __ ret(); 447 return entry; 448 } 449 450 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) { 451 address entry = __ pc(); 452 __ push(state); 453 __ call_VM(noreg, runtime_entry); 454 455 // load current bytecode 456 __ ldrb(R3_bytecode, Address(Rbcp)); 457 __ dispatch_only_normal(vtos); 458 return entry; 459 } 460 461 462 // Helpers for commoning out cases in the various type of method entries. 463 // 464 465 // increment invocation count & check for overflow 466 // 467 // Note: checking for negative value instead of overflow 468 // so we have a 'sticky' overflow test 469 // 470 // In: Rmethod. 471 // 472 // Uses R0, R1, Rtemp. 473 // 474 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 475 Label done; 476 const Register Rcounters = Rtemp; 477 const Address invocation_counter(Rcounters, 478 MethodCounters::invocation_counter_offset() + 479 InvocationCounter::counter_offset()); 480 481 // Note: In tiered we increment either counters in MethodCounters* or 482 // in MDO depending if we're profiling or not. 483 int increment = InvocationCounter::count_increment; 484 Label no_mdo; 485 if (ProfileInterpreter) { 486 // Are we profiling? 487 __ ldr(R1_tmp, Address(Rmethod, Method::method_data_offset())); 488 __ cbz(R1_tmp, no_mdo); 489 // Increment counter in the MDO 490 const Address mdo_invocation_counter(R1_tmp, 491 in_bytes(MethodData::invocation_counter_offset()) + 492 in_bytes(InvocationCounter::counter_offset())); 493 const Address mask(R1_tmp, in_bytes(MethodData::invoke_mask_offset())); 494 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, R0_tmp, Rtemp, eq, overflow); 495 __ b(done); 496 } 497 __ bind(no_mdo); 498 __ get_method_counters(Rmethod, Rcounters, done); 499 const Address mask(Rcounters, in_bytes(MethodCounters::invoke_mask_offset())); 500 __ increment_mask_and_jump(invocation_counter, increment, mask, R0_tmp, R1_tmp, eq, overflow); 501 __ bind(done); 502 } 503 504 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 505 // InterpreterRuntime::frequency_counter_overflow takes one argument 506 // indicating if the counter overflow occurs at a backwards branch (non-null bcp). 507 // The call returns the address of the verified entry point for the method or null 508 // if the compilation did not complete (either went background or bailed out). 509 __ mov(R1, (int)false); 510 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R1); 511 512 // jump to the interpreted entry. 513 __ b(do_continue); 514 } 515 516 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) { 517 // Check if we've got enough room on the stack for 518 // - overhead; 519 // - locals; 520 // - expression stack. 521 // 522 // Registers on entry: 523 // 524 // R3 = number of additional locals 525 // Rthread 526 // Rmethod 527 // Registers used: R0, R1, R2, Rtemp. 528 529 const Register Radditional_locals = R3; 530 const Register RmaxStack = R2; 531 532 // monitor entry size 533 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 534 535 // total overhead size: entry_size + (saved registers, thru expr stack bottom). 536 // be sure to change this if you add/subtract anything to/from the overhead area 537 const int overhead_size = (frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset)*wordSize + entry_size; 538 539 // Pages reserved for VM runtime calls and subsequent Java calls. 540 const int reserved_pages = StackOverflow::stack_shadow_zone_size(); 541 542 // Thread::stack_size() includes guard pages, and they should not be touched. 543 const int guard_pages = StackOverflow::stack_guard_zone_size(); 544 545 __ ldr(R0, Address(Rthread, Thread::stack_base_offset())); 546 __ ldr(R1, Address(Rthread, Thread::stack_size_offset())); 547 __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); 548 __ ldrh(RmaxStack, Address(Rtemp, ConstMethod::max_stack_offset())); 549 __ sub_slow(Rtemp, SP, overhead_size + reserved_pages + guard_pages + Method::extra_stack_words()); 550 551 // reserve space for additional locals 552 __ sub(Rtemp, Rtemp, AsmOperand(Radditional_locals, lsl, Interpreter::logStackElementSize)); 553 554 // stack size 555 __ sub(R0, R0, R1); 556 557 // reserve space for expression stack 558 __ sub(Rtemp, Rtemp, AsmOperand(RmaxStack, lsl, Interpreter::logStackElementSize)); 559 560 __ cmp(Rtemp, R0); 561 562 __ mov(SP, Rsender_sp, ls); // restore SP 563 __ b(SharedRuntime::throw_StackOverflowError_entry(), ls); 564 } 565 566 567 // Allocate monitor and lock method (asm interpreter) 568 // 569 void TemplateInterpreterGenerator::lock_method() { 570 // synchronize method 571 572 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 573 assert ((entry_size % StackAlignmentInBytes) == 0, "should keep stack alignment"); 574 575 #ifdef ASSERT 576 { Label L; 577 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 578 __ tbnz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L); 579 __ stop("method doesn't need synchronization"); 580 __ bind(L); 581 } 582 #endif // ASSERT 583 584 // get synchronization object 585 { Label done; 586 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 587 __ tst(Rtemp, JVM_ACC_STATIC); 588 __ ldr(R0, Address(Rlocals, Interpreter::local_offset_in_bytes(0)), eq); // get receiver (assume this is frequent case) 589 __ b(done, eq); 590 __ load_mirror(R0, Rmethod, Rtemp); 591 __ bind(done); 592 } 593 594 // add space for monitor & lock 595 596 597 __ sub(Rstack_top, Rstack_top, entry_size); 598 __ check_stack_top_on_expansion(); 599 // add space for a monitor entry 600 __ str(Rstack_top, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize)); 601 // set new monitor block top 602 __ str(R0, Address(Rstack_top, BasicObjectLock::obj_offset())); 603 // store object 604 __ mov(R1, Rstack_top); // monitor entry address 605 __ lock_object(R1); 606 } 607 608 609 // 610 // Generate a fixed interpreter frame. This is identical setup for interpreted methods 611 // and for native methods hence the shared code. 612 613 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 614 // Generates the following stack layout: 615 // 616 // [ expr. stack bottom ] 617 // [ saved Rbcp ] 618 // [ current Rlocals ] 619 // [ cache ] 620 // [ mdx ] 621 // [ Method* ] 622 // [ last_sp ] 623 // [ sender_sp ] 624 // [ saved FP ] <--- FP 625 // [ saved LR ] 626 627 // initialize fixed part of activation frame 628 __ push(LR); // save return address 629 __ push(FP); // save FP 630 __ mov(FP, SP); // establish new FP 631 632 __ push(Rsender_sp); 633 634 __ mov(R0, 0); 635 __ push(R0); // leave last_sp as null 636 637 // setup Rbcp 638 if (native_call) { 639 __ mov(Rbcp, 0); // bcp = 0 for native calls 640 } else { 641 __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); // get ConstMethod* 642 __ add(Rbcp, Rtemp, ConstMethod::codes_offset()); // get codebase 643 } 644 645 __ push(Rmethod); // save Method* 646 // Get mirror and store it in the frame as GC root for this Method* 647 __ load_mirror(Rtemp, Rmethod, Rtemp); 648 __ push(Rtemp); 649 650 if (ProfileInterpreter) { 651 __ ldr(Rtemp, Address(Rmethod, Method::method_data_offset())); 652 __ tst(Rtemp, Rtemp); 653 __ add(Rtemp, Rtemp, in_bytes(MethodData::data_offset()), ne); 654 __ push(Rtemp); // set the mdp (method data pointer) 655 } else { 656 __ push(R0); 657 } 658 659 __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); 660 __ ldr(Rtemp, Address(Rtemp, ConstMethod::constants_offset())); 661 __ ldr(Rtemp, Address(Rtemp, ConstantPool::cache_offset())); 662 __ push(Rtemp); // set constant pool cache 663 __ sub(Rtemp, Rlocals, FP); 664 __ logical_shift_right(Rtemp, Rtemp, Interpreter::logStackElementSize); // Rtemp = Rlocals - fp(); 665 __ push(Rtemp); // set relativized Rlocals, see frame::interpreter_frame_locals() 666 __ push(Rbcp); // set bcp 667 __ push(R0); // reserve word for pointer to expression stack bottom 668 __ str(SP, Address(SP, 0)); // set expression stack bottom 669 } 670 671 672 // End of helpers 673 674 //------------------------------------------------------------------------------------------------------------------------ 675 // Entry points 676 // 677 // Here we generate the various kind of entries into the interpreter. 678 // The two main entry type are generic bytecode methods and native call method. 679 // These both come in synchronized and non-synchronized versions but the 680 // frame layout they create is very similar. The other method entry 681 // types are really just special purpose entries that are really entry 682 // and interpretation all in one. These are for trivial methods like 683 // accessor, empty, or special math methods. 684 // 685 // When control flow reaches any of the entry types for the interpreter 686 // the following holds -> 687 // 688 // Arguments: 689 // 690 // Rmethod: Method* 691 // Rthread: thread 692 // Rsender_sp: sender sp 693 // Rparams (SP on 32-bit ARM): pointer to method parameters 694 // 695 // LR: return address 696 // 697 // Stack layout immediately at entry 698 // 699 // [ parameter n ] <--- Rparams (SP on 32-bit ARM) 700 // ... 701 // [ parameter 1 ] 702 // [ expression stack ] (caller's java expression stack) 703 704 // Assuming that we don't go to one of the trivial specialized 705 // entries the stack will look like below when we are ready to execute 706 // the first bytecode (or call the native routine). The register usage 707 // will be as the template based interpreter expects. 708 // 709 // local variables follow incoming parameters immediately; i.e. 710 // the return address is saved at the end of the locals. 711 // 712 // [ expr. stack ] <--- Rstack_top (SP on 32-bit ARM) 713 // [ monitor entry ] 714 // ... 715 // [ monitor entry ] 716 // [ expr. stack bottom ] 717 // [ saved Rbcp ] 718 // [ current Rlocals ] 719 // [ cache ] 720 // [ mdx ] 721 // [ mirror ] 722 // [ Method* ] 723 // 724 // 32-bit ARM: 725 // [ last_sp ] 726 // 727 // [ sender_sp ] 728 // [ saved FP ] <--- FP 729 // [ saved LR ] 730 // [ optional padding(*)] 731 // [ local variable m ] 732 // ... 733 // [ local variable 1 ] 734 // [ parameter n ] 735 // ... 736 // [ parameter 1 ] <--- Rlocals 737 // 738 739 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 740 // Code: _aload_0, _getfield, _areturn 741 // parameter size = 1 742 // 743 // The code that gets generated by this routine is split into 2 parts: 744 // 1. The "intrinsified" code performing an ON_WEAK_OOP_REF load, 745 // 2. The slow path - which is an expansion of the regular method entry. 746 // 747 // Notes:- 748 // * An intrinsic is always executed, where an ON_WEAK_OOP_REF load is performed. 749 // * We may jump to the slow path iff the receiver is null. If the 750 // Reference object is null then we no longer perform an ON_WEAK_OOP_REF load 751 // Thus we can use the regular method entry code to generate the NPE. 752 // 753 // Rmethod: Method* 754 // Rthread: thread 755 // Rsender_sp: sender sp, must be preserved for slow path, set SP to it on fast path 756 // Rparams: parameters 757 758 address entry = __ pc(); 759 Label slow_path; 760 const Register Rthis = R0; 761 const Register Rret_addr = Rtmp_save1; 762 assert_different_registers(Rthis, Rret_addr, Rsender_sp); 763 764 const int referent_offset = java_lang_ref_Reference::referent_offset(); 765 766 // Check if local 0 != nullptr 767 // If the receiver is null then it is OK to jump to the slow path. 768 __ ldr(Rthis, Address(Rparams)); 769 __ cbz(Rthis, slow_path); 770 771 // Preserve LR 772 __ mov(Rret_addr, LR); 773 774 // Load the value of the referent field. 775 const Address field_address(Rthis, referent_offset); 776 __ load_heap_oop(R0, field_address, Rtemp, R1_tmp, R2_tmp, ON_WEAK_OOP_REF); 777 778 // _areturn 779 __ mov(SP, Rsender_sp); 780 __ ret(Rret_addr); 781 782 // generate a vanilla interpreter entry as the slow path 783 __ bind(slow_path); 784 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals)); 785 return entry; 786 } 787 788 // Not supported 789 address TemplateInterpreterGenerator::generate_currentThread() { return nullptr; } 790 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { return nullptr; } 791 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return nullptr; } 792 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return nullptr; } 793 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; } 794 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; } 795 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; } 796 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; } 797 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { return nullptr; } 798 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { return nullptr; } 799 800 // 801 // Interpreter stub for calling a native method. (asm interpreter) 802 // This sets up a somewhat different looking stack for calling the native method 803 // than the typical interpreter frame setup. 804 // 805 806 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { 807 // determine code generation flags 808 bool inc_counter = UseCompiler || CountCompiledCalls; 809 810 // Incoming registers: 811 // 812 // Rmethod: Method* 813 // Rthread: thread 814 // Rsender_sp: sender sp 815 // Rparams: parameters 816 817 address entry_point = __ pc(); 818 819 // Register allocation 820 const Register Rsize_of_params = R6; 821 const Register Rsig_handler = Rtmp_save0; // R4 822 const Register Rnative_code = Rtmp_save1; // R5 823 const Register Rresult_handler = R6; 824 825 const Register Rsaved_result_lo = Rtmp_save0; // R4 826 const Register Rsaved_result_hi = Rtmp_save1; // R5 827 FloatRegister saved_result_fp; 828 829 830 __ ldr(Rsize_of_params, Address(Rmethod, Method::const_offset())); 831 __ ldrh(Rsize_of_params, Address(Rsize_of_params, ConstMethod::size_of_parameters_offset())); 832 833 // native calls don't need the stack size check since they have no expression stack 834 // and the arguments are already on the stack and we only add a handful of words 835 // to the stack 836 837 // compute beginning of parameters (Rlocals) 838 __ sub(Rlocals, Rparams, wordSize); 839 __ add(Rlocals, Rlocals, AsmOperand(Rsize_of_params, lsl, Interpreter::logStackElementSize)); 840 841 // reserve stack space for oop_temp 842 __ mov(R0, 0); 843 __ push(R0); 844 845 generate_fixed_frame(true); // Note: R9 is now saved in the frame 846 847 // make sure method is native & not abstract 848 #ifdef ASSERT 849 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 850 { 851 Label L; 852 __ tbnz(Rtemp, JVM_ACC_NATIVE_BIT, L); 853 __ stop("tried to execute non-native method as native"); 854 __ bind(L); 855 } 856 { Label L; 857 __ tbz(Rtemp, JVM_ACC_ABSTRACT_BIT, L); 858 __ stop("tried to execute abstract method in interpreter"); 859 __ bind(L); 860 } 861 #endif 862 863 // increment invocation count & check for overflow 864 Label invocation_counter_overflow; 865 if (inc_counter) { 866 if (synchronized) { 867 // Avoid unlocking method's monitor in case of exception, as it has not 868 // been locked yet. 869 __ set_do_not_unlock_if_synchronized(true, Rtemp); 870 } 871 generate_counter_incr(&invocation_counter_overflow); 872 } 873 874 Label continue_after_compile; 875 __ bind(continue_after_compile); 876 877 if (inc_counter && synchronized) { 878 __ set_do_not_unlock_if_synchronized(false, Rtemp); 879 } 880 881 // check for synchronized methods 882 // Must happen AFTER invocation_counter check and stack overflow check, 883 // so method is not locked if overflows. 884 // 885 if (synchronized) { 886 lock_method(); 887 } else { 888 // no synchronization necessary 889 #ifdef ASSERT 890 { Label L; 891 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 892 __ tbz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L); 893 __ stop("method needs synchronization"); 894 __ bind(L); 895 } 896 #endif 897 } 898 899 // start execution 900 #ifdef ASSERT 901 { Label L; 902 __ ldr(Rtemp, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize)); 903 __ cmp(Rtemp, Rstack_top); 904 __ b(L, eq); 905 __ stop("broken stack frame setup in interpreter 3"); 906 __ bind(L); 907 } 908 #endif 909 __ check_extended_sp(Rtemp); 910 911 // jvmti/dtrace support 912 __ notify_method_entry(); 913 #if R9_IS_SCRATCHED 914 __ restore_method(); 915 #endif 916 917 { 918 Label L; 919 __ ldr(Rsig_handler, Address(Rmethod, Method::signature_handler_offset())); 920 __ cbnz(Rsig_handler, L); 921 __ mov(R1, Rmethod); 922 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R1, true); 923 __ ldr(Rsig_handler, Address(Rmethod, Method::signature_handler_offset())); 924 __ bind(L); 925 } 926 927 { 928 Label L; 929 __ ldr(Rnative_code, Address(Rmethod, Method::native_function_offset())); 930 __ cbnz(Rnative_code, L); 931 __ mov(R1, Rmethod); 932 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R1); 933 __ ldr(Rnative_code, Address(Rmethod, Method::native_function_offset())); 934 __ bind(L); 935 } 936 937 // Allocate stack space for arguments 938 939 940 // C functions need aligned stack 941 __ bic(SP, SP, StackAlignmentInBytes - 1); 942 // Multiply by BytesPerLong instead of BytesPerWord, because calling convention 943 // may require empty slots due to long alignment, e.g. func(int, jlong, int, jlong) 944 __ sub(SP, SP, AsmOperand(Rsize_of_params, lsl, LogBytesPerLong)); 945 946 #ifdef __ABI_HARD__ 947 // Allocate more stack space to accommodate all GP as well as FP registers: 948 // 4 * wordSize 949 // 8 * BytesPerLong 950 int reg_arguments = align_up((4*wordSize) + (8*BytesPerLong), StackAlignmentInBytes); 951 #else 952 // Reserve at least 4 words on the stack for loading 953 // of parameters passed on registers (R0-R3). 954 // See generate_slow_signature_handler(). 955 // It is also used for JNIEnv & class additional parameters. 956 int reg_arguments = 4 * wordSize; 957 #endif // __ABI_HARD__ 958 959 __ sub(SP, SP, reg_arguments); 960 961 962 // Note: signature handler blows R4 besides all scratch registers. 963 // See AbstractInterpreterGenerator::generate_slow_signature_handler(). 964 __ call(Rsig_handler); 965 #if R9_IS_SCRATCHED 966 __ restore_method(); 967 #endif 968 __ mov(Rresult_handler, R0); 969 970 // Pass JNIEnv and mirror for static methods 971 { 972 Label L; 973 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 974 __ add(R0, Rthread, in_bytes(JavaThread::jni_environment_offset())); 975 __ tbz(Rtemp, JVM_ACC_STATIC_BIT, L); 976 __ load_mirror(Rtemp, Rmethod, Rtemp); 977 __ add(R1, FP, frame::interpreter_frame_oop_temp_offset * wordSize); 978 __ str(Rtemp, Address(R1, 0)); 979 __ bind(L); 980 } 981 982 __ set_last_Java_frame(SP, FP, true, Rtemp); 983 984 // Changing state to _thread_in_native must be the last thing to do 985 // before the jump to native code. At this moment stack must be 986 // safepoint-safe and completely prepared for stack walking. 987 #ifdef ASSERT 988 { 989 Label L; 990 __ ldr_u32(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 991 __ cmp_32(Rtemp, _thread_in_Java); 992 __ b(L, eq); 993 __ stop("invalid thread state"); 994 __ bind(L); 995 } 996 #endif 997 998 // Force all preceding writes to be observed prior to thread state change 999 __ membar(MacroAssembler::StoreStore, Rtemp); 1000 1001 __ mov(Rtemp, _thread_in_native); 1002 __ str(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 1003 1004 __ call(Rnative_code); 1005 #if R9_IS_SCRATCHED 1006 __ restore_method(); 1007 #endif 1008 1009 // Set FPSCR/FPCR to a known state 1010 if (AlwaysRestoreFPU) { 1011 __ restore_default_fp_mode(); 1012 } 1013 1014 // Do safepoint check 1015 __ mov(Rtemp, _thread_in_native_trans); 1016 __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 1017 1018 // Force this write out before the read below 1019 if (!UseSystemMemoryBarrier) { 1020 __ membar(MacroAssembler::StoreLoad, Rtemp); 1021 } 1022 1023 // Protect the return value in the interleaved code: save it to callee-save registers. 1024 __ mov(Rsaved_result_lo, R0); 1025 __ mov(Rsaved_result_hi, R1); 1026 #ifdef __ABI_HARD__ 1027 // preserve native FP result in a callee-saved register 1028 saved_result_fp = D8; 1029 __ fcpyd(saved_result_fp, D0); 1030 #else 1031 saved_result_fp = fnoreg; 1032 #endif // __ABI_HARD__ 1033 1034 { 1035 Label call, skip_call; 1036 __ safepoint_poll(Rtemp, call); 1037 __ ldr_u32(R3, Address(Rthread, JavaThread::suspend_flags_offset())); 1038 __ cmp(R3, 0); 1039 __ b(skip_call, eq); 1040 __ bind(call); 1041 __ mov(R0, Rthread); 1042 __ call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans), relocInfo::none); 1043 __ bind(skip_call); 1044 1045 #if R9_IS_SCRATCHED 1046 __ restore_method(); 1047 #endif 1048 } 1049 1050 // Perform Native->Java thread transition 1051 __ mov(Rtemp, _thread_in_Java); 1052 __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 1053 1054 // Zero handles and last_java_sp 1055 __ reset_last_Java_frame(Rtemp); 1056 __ ldr(R3, Address(Rthread, JavaThread::active_handles_offset())); 1057 __ str_32(__ zero_register(Rtemp), Address(R3, JNIHandleBlock::top_offset())); 1058 if (CheckJNICalls) { 1059 __ str(__ zero_register(Rtemp), Address(Rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1060 } 1061 1062 // Unbox oop result, e.g. JNIHandles::resolve result if it's an oop. 1063 { 1064 Label Lnot_oop; 1065 __ mov_slow(Rtemp, AbstractInterpreter::result_handler(T_OBJECT)); 1066 __ cmp(Rtemp, Rresult_handler); 1067 __ b(Lnot_oop, ne); 1068 Register value = Rsaved_result_lo; 1069 __ resolve_jobject(value, // value 1070 Rtemp, // tmp1 1071 R1_tmp); // tmp2 1072 // Store resolved result in frame for GC visibility. 1073 __ str(value, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize)); 1074 __ bind(Lnot_oop); 1075 } 1076 1077 1078 // reguard stack if StackOverflow exception happened while in native. 1079 { 1080 __ ldr_u32(Rtemp, Address(Rthread, JavaThread::stack_guard_state_offset())); 1081 __ cmp_32(Rtemp, StackOverflow::stack_guard_yellow_reserved_disabled); 1082 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), relocInfo::none, eq); 1083 #if R9_IS_SCRATCHED 1084 __ restore_method(); 1085 #endif 1086 } 1087 1088 // check pending exceptions 1089 { 1090 __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset())); 1091 __ cmp(Rtemp, 0); 1092 __ mov(Rexception_pc, PC, ne); 1093 __ b(StubRoutines::forward_exception_entry(), ne); 1094 } 1095 1096 if (synchronized) { 1097 // address of first monitor 1098 __ sub(R0, FP, - (frame::interpreter_frame_monitor_block_bottom_offset - frame::interpreter_frame_monitor_size()) * wordSize); 1099 __ unlock_object(R0); 1100 } 1101 1102 // jvmti/dtrace support 1103 // Note: This must happen _after_ handling/throwing any exceptions since 1104 // the exception handler code notifies the runtime of method exits 1105 // too. If this happens before, method entry/exit notifications are 1106 // not properly paired (was bug - gri 11/22/99). 1107 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI, true, Rsaved_result_lo, Rsaved_result_hi, saved_result_fp); 1108 1109 // Restore the result. Oop result is restored from the stack by the 1110 // result handler. 1111 __ mov(R0, Rsaved_result_lo); 1112 __ mov(R1, Rsaved_result_hi); 1113 1114 #ifdef __ABI_HARD__ 1115 // reload native FP result 1116 __ fcpyd(D0, D8); 1117 #endif // __ABI_HARD__ 1118 1119 __ blx(Rresult_handler); 1120 1121 // Restore FP/LR, sender_sp and return 1122 __ mov(Rtemp, FP); 1123 __ ldmia(FP, RegisterSet(FP) | RegisterSet(LR)); 1124 __ ldr(SP, Address(Rtemp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1125 1126 __ ret(); 1127 1128 if (inc_counter) { 1129 // Handle overflow of counter and compile method 1130 __ bind(invocation_counter_overflow); 1131 generate_counter_overflow(continue_after_compile); 1132 } 1133 1134 return entry_point; 1135 } 1136 1137 // 1138 // Generic interpreted method entry to (asm) interpreter 1139 // 1140 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { 1141 // determine code generation flags 1142 bool inc_counter = UseCompiler || CountCompiledCalls; 1143 1144 // Rmethod: Method* 1145 // Rthread: thread 1146 // Rsender_sp: sender sp (could differ from SP if we were called via c2i) 1147 // Rparams: pointer to the last parameter in the stack 1148 1149 address entry_point = __ pc(); 1150 1151 const Register RconstMethod = R3; 1152 1153 1154 __ ldr(RconstMethod, Address(Rmethod, Method::const_offset())); 1155 1156 __ ldrh(R2, Address(RconstMethod, ConstMethod::size_of_parameters_offset())); 1157 __ ldrh(R3, Address(RconstMethod, ConstMethod::size_of_locals_offset())); 1158 1159 // setup Rlocals 1160 __ sub(Rlocals, Rparams, wordSize); 1161 __ add(Rlocals, Rlocals, AsmOperand(R2, lsl, Interpreter::logStackElementSize)); 1162 1163 __ sub(R3, R3, R2); // number of additional locals 1164 1165 1166 // see if we've got enough room on the stack for locals plus overhead. 1167 generate_stack_overflow_check(); 1168 1169 // allocate space for locals 1170 // explicitly initialize locals 1171 1172 // Loop is unrolled 4 times 1173 Label loop; 1174 __ mov(R0, 0); 1175 __ bind(loop); 1176 1177 // #1 1178 __ subs(R3, R3, 1); 1179 __ push(R0, ge); 1180 1181 // #2 1182 __ subs(R3, R3, 1, ge); 1183 __ push(R0, ge); 1184 1185 // #3 1186 __ subs(R3, R3, 1, ge); 1187 __ push(R0, ge); 1188 1189 // #4 1190 __ subs(R3, R3, 1, ge); 1191 __ push(R0, ge); 1192 1193 __ b(loop, gt); 1194 1195 // initialize fixed part of activation frame 1196 generate_fixed_frame(false); 1197 1198 __ restore_dispatch(); 1199 1200 // make sure method is not native & not abstract 1201 #ifdef ASSERT 1202 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 1203 { 1204 Label L; 1205 __ tbz(Rtemp, JVM_ACC_NATIVE_BIT, L); 1206 __ stop("tried to execute native method as non-native"); 1207 __ bind(L); 1208 } 1209 { Label L; 1210 __ tbz(Rtemp, JVM_ACC_ABSTRACT_BIT, L); 1211 __ stop("tried to execute abstract method in interpreter"); 1212 __ bind(L); 1213 } 1214 #endif 1215 1216 // increment invocation count & check for overflow 1217 Label invocation_counter_overflow; 1218 if (inc_counter) { 1219 if (synchronized) { 1220 // Avoid unlocking method's monitor in case of exception, as it has not 1221 // been locked yet. 1222 __ set_do_not_unlock_if_synchronized(true, Rtemp); 1223 } 1224 generate_counter_incr(&invocation_counter_overflow); 1225 } 1226 Label continue_after_compile; 1227 __ bind(continue_after_compile); 1228 1229 if (inc_counter && synchronized) { 1230 __ set_do_not_unlock_if_synchronized(false, Rtemp); 1231 } 1232 #if R9_IS_SCRATCHED 1233 __ restore_method(); 1234 #endif 1235 1236 // check for synchronized methods 1237 // Must happen AFTER invocation_counter check and stack overflow check, 1238 // so method is not locked if overflows. 1239 // 1240 if (synchronized) { 1241 // Allocate monitor and lock method 1242 lock_method(); 1243 } else { 1244 // no synchronization necessary 1245 #ifdef ASSERT 1246 { Label L; 1247 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 1248 __ tbz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L); 1249 __ stop("method needs synchronization"); 1250 __ bind(L); 1251 } 1252 #endif 1253 } 1254 1255 // start execution 1256 #ifdef ASSERT 1257 { Label L; 1258 __ ldr(Rtemp, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize)); 1259 __ cmp(Rtemp, Rstack_top); 1260 __ b(L, eq); 1261 __ stop("broken stack frame setup in interpreter 4"); 1262 __ bind(L); 1263 } 1264 #endif 1265 __ check_extended_sp(Rtemp); 1266 1267 // jvmti support 1268 __ notify_method_entry(); 1269 #if R9_IS_SCRATCHED 1270 __ restore_method(); 1271 #endif 1272 1273 __ dispatch_next(vtos); 1274 1275 // invocation counter overflow 1276 if (inc_counter) { 1277 // Handle overflow of counter and compile method 1278 __ bind(invocation_counter_overflow); 1279 generate_counter_overflow(continue_after_compile); 1280 } 1281 1282 return entry_point; 1283 } 1284 1285 //------------------------------------------------------------------------------------------------------------------------ 1286 // Exceptions 1287 1288 void TemplateInterpreterGenerator::generate_throw_exception() { 1289 // Entry point in previous activation (i.e., if the caller was interpreted) 1290 Interpreter::_rethrow_exception_entry = __ pc(); 1291 // Rexception_obj: exception 1292 1293 // Clear interpreter_frame_last_sp. 1294 __ mov(Rtemp, 0); 1295 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1296 1297 #if R9_IS_SCRATCHED 1298 __ restore_method(); 1299 #endif 1300 __ restore_bcp(); 1301 __ restore_dispatch(); 1302 __ restore_locals(); 1303 1304 1305 // Entry point for exceptions thrown within interpreter code 1306 Interpreter::_throw_exception_entry = __ pc(); 1307 1308 // expression stack is undefined here 1309 // Rexception_obj: exception 1310 // Rbcp: exception bcp 1311 __ verify_oop(Rexception_obj); 1312 1313 // expression stack must be empty before entering the VM in case of an exception 1314 __ empty_expression_stack(); 1315 // find exception handler address and preserve exception oop 1316 __ mov(R1, Rexception_obj); 1317 __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), R1); 1318 // R0: exception handler entry point 1319 // Rexception_obj: preserved exception oop 1320 // Rbcp: bcp for exception handler 1321 __ push_ptr(Rexception_obj); // push exception which is now the only value on the stack 1322 __ jump(R0); // jump to exception handler (may be _remove_activation_entry!) 1323 1324 // If the exception is not handled in the current frame the frame is removed and 1325 // the exception is rethrown (i.e. exception continuation is _rethrow_exception). 1326 // 1327 // Note: At this point the bci is still the bxi for the instruction which caused 1328 // the exception and the expression stack is empty. Thus, for any VM calls 1329 // at this point, GC will find a legal oop map (with empty expression stack). 1330 1331 // In current activation 1332 // tos: exception 1333 // Rbcp: exception bcp 1334 1335 // 1336 // JVMTI PopFrame support 1337 // 1338 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 1339 1340 1341 __ empty_expression_stack(); 1342 1343 // Set the popframe_processing bit in _popframe_condition indicating that we are 1344 // currently handling popframe, so that call_VMs that may happen later do not trigger new 1345 // popframe handling cycles. 1346 1347 __ ldr_s32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset())); 1348 __ orr(Rtemp, Rtemp, (unsigned)JavaThread::popframe_processing_bit); 1349 __ str_32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset())); 1350 1351 { 1352 // Check to see whether we are returning to a deoptimized frame. 1353 // (The PopFrame call ensures that the caller of the popped frame is 1354 // either interpreted or compiled and deoptimizes it if compiled.) 1355 // In this case, we can't call dispatch_next() after the frame is 1356 // popped, but instead must save the incoming arguments and restore 1357 // them after deoptimization has occurred. 1358 // 1359 // Note that we don't compare the return PC against the 1360 // deoptimization blob's unpack entry because of the presence of 1361 // adapter frames in C2. 1362 Label caller_not_deoptimized; 1363 __ ldr(R0, Address(FP, frame::return_addr_offset * wordSize)); 1364 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), R0); 1365 __ cbnz_32(R0, caller_not_deoptimized); 1366 1367 // Compute size of arguments for saving when returning to deoptimized caller 1368 __ restore_method(); 1369 __ ldr(R0, Address(Rmethod, Method::const_offset())); 1370 __ ldrh(R0, Address(R0, ConstMethod::size_of_parameters_offset())); 1371 1372 __ logical_shift_left(R1, R0, Interpreter::logStackElementSize); 1373 // Save these arguments 1374 __ restore_locals(); 1375 __ sub(R2, Rlocals, R1); 1376 __ add(R2, R2, wordSize); 1377 __ mov(R0, Rthread); 1378 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R0, R1, R2); 1379 1380 __ remove_activation(vtos, LR, 1381 /* throw_monitor_exception */ false, 1382 /* install_monitor_exception */ false, 1383 /* notify_jvmdi */ false); 1384 1385 // Inform deoptimization that it is responsible for restoring these arguments 1386 __ mov(Rtemp, JavaThread::popframe_force_deopt_reexecution_bit); 1387 __ str_32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset())); 1388 1389 // Continue in deoptimization handler 1390 __ ret(); 1391 1392 __ bind(caller_not_deoptimized); 1393 } 1394 1395 __ remove_activation(vtos, R4, 1396 /* throw_monitor_exception */ false, 1397 /* install_monitor_exception */ false, 1398 /* notify_jvmdi */ false); 1399 1400 // Finish with popframe handling 1401 // A previous I2C followed by a deoptimization might have moved the 1402 // outgoing arguments further up the stack. PopFrame expects the 1403 // mutations to those outgoing arguments to be preserved and other 1404 // constraints basically require this frame to look exactly as 1405 // though it had previously invoked an interpreted activation with 1406 // no space between the top of the expression stack (current 1407 // last_sp) and the top of stack. Rather than force deopt to 1408 // maintain this kind of invariant all the time we call a small 1409 // fixup routine to move the mutated arguments onto the top of our 1410 // expression stack if necessary. 1411 __ mov(R1, SP); 1412 __ ldr(R2, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1413 // PC must point into interpreter here 1414 __ set_last_Java_frame(SP, FP, true, Rtemp); 1415 __ mov(R0, Rthread); 1416 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), R0, R1, R2); 1417 __ reset_last_Java_frame(Rtemp); 1418 1419 // Restore the last_sp and null it out 1420 __ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1421 __ mov(Rtemp, (int)NULL_WORD); 1422 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1423 1424 __ restore_bcp(); 1425 __ restore_dispatch(); 1426 __ restore_locals(); 1427 __ restore_method(); 1428 1429 // The method data pointer was incremented already during 1430 // call profiling. We have to restore the mdp for the current bcp. 1431 if (ProfileInterpreter) { 1432 __ set_method_data_pointer_for_bcp(); 1433 } 1434 1435 // Clear the popframe condition flag 1436 assert(JavaThread::popframe_inactive == 0, "adjust this code"); 1437 __ str_32(__ zero_register(Rtemp), Address(Rthread, JavaThread::popframe_condition_offset())); 1438 1439 #if INCLUDE_JVMTI 1440 { 1441 Label L_done; 1442 1443 __ ldrb(Rtemp, Address(Rbcp, 0)); 1444 __ cmp(Rtemp, Bytecodes::_invokestatic); 1445 __ b(L_done, ne); 1446 1447 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. 1448 // Detect such a case in the InterpreterRuntime function and return the member name argument, or null. 1449 1450 // get local0 1451 __ ldr(R1, Address(Rlocals, 0)); 1452 __ mov(R2, Rmethod); 1453 __ mov(R3, Rbcp); 1454 __ call_VM(R0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R1, R2, R3); 1455 1456 __ cbz(R0, L_done); 1457 1458 __ str(R0, Address(Rstack_top)); 1459 __ bind(L_done); 1460 } 1461 #endif // INCLUDE_JVMTI 1462 1463 __ dispatch_next(vtos); 1464 // end of PopFrame support 1465 1466 Interpreter::_remove_activation_entry = __ pc(); 1467 1468 // preserve exception over this code sequence 1469 __ pop_ptr(R0_tos); 1470 __ str(R0_tos, Address(Rthread, JavaThread::vm_result_offset())); 1471 // remove the activation (without doing throws on illegalMonitorExceptions) 1472 __ remove_activation(vtos, Rexception_pc, false, true, false); 1473 // restore exception 1474 __ get_vm_result(Rexception_obj, Rtemp); 1475 1476 // In between activations - previous activation type unknown yet 1477 // compute continuation point - the continuation point expects 1478 // the following registers set up: 1479 // 1480 // Rexception_obj: exception 1481 // Rexception_pc: return address/pc that threw exception 1482 // SP: expression stack of caller 1483 // FP: frame pointer of caller 1484 __ mov(c_rarg0, Rthread); 1485 __ mov(c_rarg1, Rexception_pc); 1486 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), c_rarg0, c_rarg1); 1487 // Note that an "issuing PC" is actually the next PC after the call 1488 1489 __ jump(R0); // jump to exception handler of caller 1490 } 1491 1492 1493 // 1494 // JVMTI ForceEarlyReturn support 1495 // 1496 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { 1497 address entry = __ pc(); 1498 1499 1500 __ restore_bcp(); 1501 __ restore_dispatch(); 1502 __ restore_locals(); 1503 1504 __ empty_expression_stack(); 1505 1506 __ load_earlyret_value(state); 1507 1508 // Clear the earlyret state 1509 __ ldr(Rtemp, Address(Rthread, JavaThread::jvmti_thread_state_offset())); 1510 1511 assert(JvmtiThreadState::earlyret_inactive == 0, "adjust this code"); 1512 __ str_32(__ zero_register(R2), Address(Rtemp, JvmtiThreadState::earlyret_state_offset())); 1513 1514 __ remove_activation(state, LR, 1515 false, /* throw_monitor_exception */ 1516 false, /* install_monitor_exception */ 1517 true); /* notify_jvmdi */ 1518 1519 // According to interpreter calling conventions, result is returned in R0/R1, 1520 // so ftos (S0) and dtos (D0) are moved to R0/R1. 1521 // This conversion should be done after remove_activation, as it uses 1522 // push(state) & pop(state) to preserve return value. 1523 __ convert_tos_to_retval(state); 1524 __ ret(); 1525 1526 return entry; 1527 } // end of ForceEarlyReturn support 1528 1529 1530 //------------------------------------------------------------------------------------------------------------------------ 1531 // Helper for vtos entry point generation 1532 1533 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) { 1534 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 1535 Label L; 1536 1537 #ifdef __SOFTFP__ 1538 dep = __ pc(); // fall through 1539 #else 1540 fep = __ pc(); __ push(ftos); __ b(L); 1541 dep = __ pc(); __ push(dtos); __ b(L); 1542 #endif // __SOFTFP__ 1543 1544 lep = __ pc(); __ push(ltos); __ b(L); 1545 1546 if (VerifyOops) { // can't share atos entry if VerifyOops 1547 aep = __ pc(); __ push(atos); __ b(L); 1548 } else { 1549 aep = __ pc(); // fall through 1550 } 1551 1552 #ifdef __SOFTFP__ 1553 fep = __ pc(); // fall through 1554 #endif // __SOFTFP__ 1555 1556 bep = cep = sep = // fall through 1557 iep = __ pc(); __ push(itos); // fall through 1558 vep = __ pc(); __ bind(L); // fall through 1559 generate_and_dispatch(t); 1560 } 1561 1562 //------------------------------------------------------------------------------------------------------------------------ 1563 1564 // Non-product code 1565 #ifndef PRODUCT 1566 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 1567 address entry = __ pc(); 1568 1569 // prepare expression stack 1570 __ push(state); // save tosca 1571 1572 // pass tosca registers as arguments 1573 __ mov(R2, R0_tos); 1574 __ mov(R3, R1_tos_hi); 1575 __ mov(R1, LR); // save return address 1576 1577 // call tracer 1578 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), R1, R2, R3); 1579 1580 __ mov(LR, R0); // restore return address 1581 __ pop(state); // restore tosca 1582 1583 // return 1584 __ ret(); 1585 1586 return entry; 1587 } 1588 1589 1590 void TemplateInterpreterGenerator::count_bytecode() { 1591 __ inc_global_counter((address) &BytecodeCounter::_counter_value, 0, Rtemp, R2_tmp, true); 1592 } 1593 1594 1595 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { 1596 __ inc_global_counter((address)&BytecodeHistogram::_counters[0], sizeof(BytecodeHistogram::_counters[0]) * t->bytecode(), Rtemp, R2_tmp, true); 1597 } 1598 1599 1600 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { 1601 const Register Rindex_addr = R2_tmp; 1602 Label Lcontinue; 1603 InlinedAddress Lcounters((address)BytecodePairHistogram::_counters); 1604 InlinedAddress Lindex((address)&BytecodePairHistogram::_index); 1605 const Register Rcounters_addr = R2_tmp; 1606 const Register Rindex = R4_tmp; 1607 1608 // calculate new index for counter: 1609 // index = (_index >> log2_number_of_codes) | (bytecode << log2_number_of_codes). 1610 // (_index >> log2_number_of_codes) is previous bytecode 1611 1612 __ ldr_literal(Rindex_addr, Lindex); 1613 __ ldr_s32(Rindex, Address(Rindex_addr)); 1614 __ mov_slow(Rtemp, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); 1615 __ orr(Rindex, Rtemp, AsmOperand(Rindex, lsr, BytecodePairHistogram::log2_number_of_codes)); 1616 __ str_32(Rindex, Address(Rindex_addr)); 1617 1618 // Rindex (R4) contains index of counter 1619 1620 __ ldr_literal(Rcounters_addr, Lcounters); 1621 __ ldr_s32(Rtemp, Address::indexed_32(Rcounters_addr, Rindex)); 1622 __ adds_32(Rtemp, Rtemp, 1); 1623 __ b(Lcontinue, mi); // avoid overflow 1624 __ str_32(Rtemp, Address::indexed_32(Rcounters_addr, Rindex)); 1625 1626 __ b(Lcontinue); 1627 1628 __ bind_literal(Lindex); 1629 __ bind_literal(Lcounters); 1630 1631 __ bind(Lcontinue); 1632 } 1633 1634 1635 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 1636 // Call a little run-time stub to avoid blow-up for each bytecode. 1637 // The run-time runtime saves the right registers, depending on 1638 // the tosca in-state for the given template. 1639 assert(Interpreter::trace_code(t->tos_in()) != nullptr, 1640 "entry must have been generated"); 1641 address trace_entry = Interpreter::trace_code(t->tos_in()); 1642 __ call(trace_entry, relocInfo::none); 1643 } 1644 1645 1646 void TemplateInterpreterGenerator::stop_interpreter_at() { 1647 Label Lcontinue; 1648 const Register stop_at = R2_tmp; 1649 1650 __ ldr_global_s32(Rtemp, (address) &BytecodeCounter::_counter_value); 1651 __ mov_slow(stop_at, StopInterpreterAt); 1652 1653 // test bytecode counter 1654 __ cmp(Rtemp, stop_at); 1655 __ b(Lcontinue, ne); 1656 1657 __ trace_state("stop_interpreter_at"); 1658 __ breakpoint(); 1659 1660 __ bind(Lcontinue); 1661 } 1662 #endif // !PRODUCT