1 /* 2 * Copyright (c) 2008, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "interpreter/bytecodeHistogram.hpp" 30 #include "interpreter/interp_masm.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "interpreter/templateInterpreterGenerator.hpp" 34 #include "interpreter/templateTable.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/methodData.hpp" 37 #include "oops/method.inline.hpp" 38 #include "oops/oop.inline.hpp" 39 #include "oops/resolvedIndyEntry.hpp" 40 #include "oops/resolvedMethodEntry.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/jvmtiThreadState.hpp" 43 #include "prims/methodHandles.hpp" 44 #include "runtime/arguments.hpp" 45 #include "runtime/deoptimization.hpp" 46 #include "runtime/frame.inline.hpp" 47 #include "runtime/jniHandles.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "runtime/stubRoutines.hpp" 50 #include "runtime/synchronizer.hpp" 51 #include "runtime/timer.hpp" 52 #include "runtime/vframeArray.hpp" 53 #include "utilities/align.hpp" 54 #include "utilities/debug.hpp" 55 #include "utilities/macros.hpp" 56 57 // Size of interpreter code. Increase if too small. Interpreter will 58 // fail with a guarantee ("not enough space for interpreter generation"); 59 // if too small. 60 // Run with +PrintInterpreter to get the VM to print out the size. 61 // Max size with JVMTI 62 int TemplateInterpreter::InterpreterCodeSize = 180 * 1024; 63 64 #define __ _masm-> 65 66 //------------------------------------------------------------------------------------------------------------------------ 67 68 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 69 address entry = __ pc(); 70 71 // callee-save register for saving LR, shared with generate_native_entry 72 const Register Rsaved_ret_addr = Rtmp_save0; 73 74 __ mov(Rsaved_ret_addr, LR); 75 76 __ mov(R1, Rmethod); 77 __ mov(R2, Rlocals); 78 __ mov(R3, SP); 79 80 81 // Safer to save R9 (when scratched) since callers may have been 82 // written assuming R9 survives. This is suboptimal but 83 // probably not important for this slow case call site. 84 // Note for R9 saving: slow_signature_handler may copy register 85 // arguments above the current SP (passed as R3). It is safe for 86 // call_VM to use push and pop to protect additional values on the 87 // stack if needed. 88 __ call_VM(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), true /* save R9 if needed*/); 89 __ add(SP, SP, wordSize); // Skip R0 90 __ pop(RegisterSet(R1, R3)); // Load arguments passed in registers 91 #ifdef __ABI_HARD__ 92 // Few alternatives to an always-load-FP-registers approach: 93 // - parse method signature to detect FP arguments 94 // - keep a counter/flag on a stack indicationg number of FP arguments in the method. 95 // The later has been originally implemented and tested but a conditional path could 96 // eliminate any gain imposed by avoiding 8 double word loads. 97 __ fldmiad(SP, FloatRegisterSet(D0, 8), writeback); 98 #endif // __ABI_HARD__ 99 100 __ ret(Rsaved_ret_addr); 101 102 return entry; 103 } 104 105 106 // 107 // Various method entries (that c++ and asm interpreter agree upon) 108 //------------------------------------------------------------------------------------------------------------------------ 109 // 110 // 111 112 // Abstract method entry 113 // Attempt to execute abstract method. Throw exception 114 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 115 address entry_point = __ pc(); 116 117 118 __ empty_expression_stack(); 119 120 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 121 122 DEBUG_ONLY(STOP("generate_abstract_entry");) // Should not reach here 123 return entry_point; 124 } 125 126 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 127 address entry_point = nullptr; 128 Register continuation = LR; 129 bool use_runtime_call = false; 130 switch (kind) { 131 case Interpreter::java_lang_math_abs: 132 entry_point = __ pc(); 133 #ifdef __SOFTFP__ 134 use_runtime_call = true; 135 __ ldrd(R0, Address(SP)); 136 #else // !__SOFTFP__ 137 __ ldr_double(D0, Address(SP)); 138 __ abs_double(D0, D0); 139 #endif // __SOFTFP__ 140 break; 141 case Interpreter::java_lang_math_sqrt: 142 entry_point = __ pc(); 143 #ifdef __SOFTFP__ 144 use_runtime_call = true; 145 __ ldrd(R0, Address(SP)); 146 #else // !__SOFTFP__ 147 __ ldr_double(D0, Address(SP)); 148 __ sqrt_double(D0, D0); 149 #endif // __SOFTFP__ 150 break; 151 case Interpreter::java_lang_math_sin: 152 case Interpreter::java_lang_math_cos: 153 case Interpreter::java_lang_math_tan: 154 case Interpreter::java_lang_math_log: 155 case Interpreter::java_lang_math_log10: 156 case Interpreter::java_lang_math_exp: 157 entry_point = __ pc(); 158 use_runtime_call = true; 159 #ifdef __SOFTFP__ 160 __ ldrd(R0, Address(SP)); 161 #else // !__SOFTFP__ 162 __ ldr_double(D0, Address(SP)); 163 #endif // __SOFTFP__ 164 break; 165 case Interpreter::java_lang_math_pow: 166 entry_point = __ pc(); 167 use_runtime_call = true; 168 #ifdef __SOFTFP__ 169 __ ldrd(R0, Address(SP, 2 * Interpreter::stackElementSize)); 170 __ ldrd(R2, Address(SP)); 171 #else // !__SOFTFP__ 172 __ ldr_double(D0, Address(SP, 2 * Interpreter::stackElementSize)); 173 __ ldr_double(D1, Address(SP)); 174 #endif // __SOFTFP__ 175 break; 176 case Interpreter::java_lang_math_fmaD: 177 case Interpreter::java_lang_math_fmaF: 178 case Interpreter::java_lang_math_tanh: 179 // TODO: Implement intrinsic 180 break; 181 default: 182 ShouldNotReachHere(); 183 } 184 185 if (entry_point != nullptr) { 186 __ mov(SP, Rsender_sp); 187 if (use_runtime_call) { 188 __ mov(Rtmp_save0, LR); 189 continuation = Rtmp_save0; 190 generate_math_runtime_call(kind); 191 } 192 __ ret(continuation); 193 } 194 return entry_point; 195 } 196 197 void TemplateInterpreterGenerator::generate_math_runtime_call(AbstractInterpreter::MethodKind kind) { 198 address fn; 199 switch (kind) { 200 #ifdef __SOFTFP__ 201 case Interpreter::java_lang_math_abs: 202 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dabs); 203 break; 204 case Interpreter::java_lang_math_sqrt: 205 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt); 206 break; 207 #endif // __SOFTFP__ 208 case Interpreter::java_lang_math_sin: 209 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); 210 break; 211 case Interpreter::java_lang_math_cos: 212 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); 213 break; 214 case Interpreter::java_lang_math_tan: 215 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); 216 break; 217 case Interpreter::java_lang_math_log: 218 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); 219 break; 220 case Interpreter::java_lang_math_log10: 221 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); 222 break; 223 case Interpreter::java_lang_math_exp: 224 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); 225 break; 226 case Interpreter::java_lang_math_pow: 227 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 228 break; 229 default: 230 ShouldNotReachHere(); 231 fn = nullptr; // silence "maybe uninitialized" compiler warnings 232 } 233 __ call_VM_leaf(fn); 234 } 235 236 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 237 address entry = __ pc(); 238 239 // Note: There should be a minimal interpreter frame set up when stack 240 // overflow occurs since we check explicitly for it now. 241 // 242 #ifdef ASSERT 243 { Label L; 244 __ sub(Rtemp, FP, - frame::interpreter_frame_monitor_block_top_offset * wordSize); 245 __ cmp(SP, Rtemp); // Rtemp = maximal SP for current FP, 246 // (stack grows negative) 247 __ b(L, ls); // check if frame is complete 248 __ stop ("interpreter frame not set up"); 249 __ bind(L); 250 } 251 #endif // ASSERT 252 253 // Restore bcp under the assumption that the current frame is still 254 // interpreted 255 __ restore_bcp(); 256 257 // expression stack must be empty before entering the VM if an exception 258 // happened 259 __ empty_expression_stack(); 260 261 // throw exception 262 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError)); 263 264 __ should_not_reach_here(); 265 266 return entry; 267 } 268 269 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 270 address entry = __ pc(); 271 272 // index is in R4_ArrayIndexOutOfBounds_index 273 274 // expression stack must be empty before entering the VM if an exception happened 275 __ empty_expression_stack(); 276 277 // setup parameters 278 // Array expected in R1. 279 __ mov(R2, R4_ArrayIndexOutOfBounds_index); 280 281 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), R1, R2); 282 283 __ nop(); // to avoid filling CPU pipeline with invalid instructions 284 __ nop(); 285 __ should_not_reach_here(); 286 287 return entry; 288 } 289 290 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 291 address entry = __ pc(); 292 293 // object is in R2_ClassCastException_obj 294 295 // expression stack must be empty before entering the VM if an exception 296 // happened 297 __ empty_expression_stack(); 298 299 __ mov(R1, R2_ClassCastException_obj); 300 __ call_VM(noreg, 301 CAST_FROM_FN_PTR(address, 302 InterpreterRuntime::throw_ClassCastException), 303 R1); 304 305 __ should_not_reach_here(); 306 307 return entry; 308 } 309 310 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) { 311 assert(!pass_oop || message == nullptr, "either oop or message but not both"); 312 address entry = __ pc(); 313 314 InlinedString Lname(name); 315 InlinedString Lmessage(message); 316 317 if (pass_oop) { 318 // object is at TOS 319 __ pop_ptr(R2); 320 } 321 322 // expression stack must be empty before entering the VM if an exception happened 323 __ empty_expression_stack(); 324 325 // setup parameters 326 __ ldr_literal(R1, Lname); 327 328 if (pass_oop) { 329 __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), R1, R2); 330 } else { 331 if (message != nullptr) { 332 __ ldr_literal(R2, Lmessage); 333 } else { 334 __ mov(R2, 0); 335 } 336 __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), R1, R2); 337 } 338 339 // throw exception 340 __ b(Interpreter::throw_exception_entry()); 341 342 __ nop(); // to avoid filling CPU pipeline with invalid instructions 343 __ nop(); 344 __ bind_literal(Lname); 345 if (!pass_oop && (message != nullptr)) { 346 __ bind_literal(Lmessage); 347 } 348 349 return entry; 350 } 351 352 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { 353 address entry = __ pc(); 354 355 __ interp_verify_oop(R0_tos, state, __FILE__, __LINE__); 356 357 // Restore stack bottom in case i2c adjusted stack 358 __ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 359 // and null it as marker that SP is now tos until next java call 360 __ mov(Rtemp, (int)NULL_WORD); 361 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 362 363 __ restore_method(); 364 __ restore_bcp(); 365 __ restore_dispatch(); 366 __ restore_locals(); 367 368 const Register Rcache = R2_tmp; 369 const Register Rindex = R3_tmp; 370 371 if (index_size == sizeof(u4)) { 372 __ load_resolved_indy_entry(Rcache, Rindex); 373 __ ldrh(Rcache, Address(Rcache, in_bytes(ResolvedIndyEntry::num_parameters_offset()))); 374 } else { 375 // Pop N words from the stack 376 assert(index_size == sizeof(u2), "Can only be u2"); 377 __ load_method_entry(Rcache, Rindex); 378 __ ldrh(Rcache, Address(Rcache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 379 } 380 381 __ check_stack_top(); 382 __ add(Rstack_top, Rstack_top, AsmOperand(Rcache, lsl, Interpreter::logStackElementSize)); 383 384 __ convert_retval_to_tos(state); 385 386 __ check_and_handle_popframe(); 387 __ check_and_handle_earlyret(); 388 389 __ dispatch_next(state, step); 390 391 return entry; 392 } 393 394 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step, address continuation) { 395 address entry = __ pc(); 396 397 __ interp_verify_oop(R0_tos, state, __FILE__, __LINE__); 398 399 // The stack is not extended by deopt but we must null last_sp as this 400 // entry is like a "return". 401 __ mov(Rtemp, 0); 402 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 403 404 __ restore_method(); 405 __ restore_bcp(); 406 __ restore_dispatch(); 407 __ restore_locals(); 408 409 // handle exceptions 410 { Label L; 411 __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset())); 412 __ cbz(Rtemp, L); 413 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception)); 414 __ should_not_reach_here(); 415 __ bind(L); 416 } 417 418 if (continuation == nullptr) { 419 __ dispatch_next(state, step); 420 } else { 421 __ jump_to_entry(continuation); 422 } 423 424 return entry; 425 } 426 427 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) { 428 address entry = __ pc(); 429 430 switch (type) { 431 case T_CHAR : /* Nothing to do */ break; 432 case T_BYTE : /* Nothing to do */ break; 433 case T_SHORT : /* Nothing to do */ break; 434 case T_INT : /* Nothing to do */ break; 435 case T_LONG : /* Nothing to do */ break; 436 case T_VOID : /* Nothing to do */ break; 437 case T_DOUBLE : /* Nothing to do */ break; 438 case T_FLOAT : /* Nothing to do */ break; 439 case T_BOOLEAN : __ c2bool(R0); break; 440 case T_OBJECT : 441 __ ldr(R0, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize)); 442 __ verify_oop(R0); 443 break; 444 default : __ should_not_reach_here(); break; 445 } 446 447 __ ret(); 448 return entry; 449 } 450 451 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) { 452 address entry = __ pc(); 453 __ push(state); 454 __ call_VM(noreg, runtime_entry); 455 456 // load current bytecode 457 __ ldrb(R3_bytecode, Address(Rbcp)); 458 __ dispatch_only_normal(vtos); 459 return entry; 460 } 461 462 463 // Helpers for commoning out cases in the various type of method entries. 464 // 465 466 // increment invocation count & check for overflow 467 // 468 // Note: checking for negative value instead of overflow 469 // so we have a 'sticky' overflow test 470 // 471 // In: Rmethod. 472 // 473 // Uses R0, R1, Rtemp. 474 // 475 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 476 Label done; 477 const Register Rcounters = Rtemp; 478 const Address invocation_counter(Rcounters, 479 MethodCounters::invocation_counter_offset() + 480 InvocationCounter::counter_offset()); 481 482 // Note: In tiered we increment either counters in MethodCounters* or 483 // in MDO depending if we're profiling or not. 484 int increment = InvocationCounter::count_increment; 485 Label no_mdo; 486 if (ProfileInterpreter) { 487 // Are we profiling? 488 __ ldr(R1_tmp, Address(Rmethod, Method::method_data_offset())); 489 __ cbz(R1_tmp, no_mdo); 490 // Increment counter in the MDO 491 const Address mdo_invocation_counter(R1_tmp, 492 in_bytes(MethodData::invocation_counter_offset()) + 493 in_bytes(InvocationCounter::counter_offset())); 494 const Address mask(R1_tmp, in_bytes(MethodData::invoke_mask_offset())); 495 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, R0_tmp, Rtemp, eq, overflow); 496 __ b(done); 497 } 498 __ bind(no_mdo); 499 __ get_method_counters(Rmethod, Rcounters, done); 500 const Address mask(Rcounters, in_bytes(MethodCounters::invoke_mask_offset())); 501 __ increment_mask_and_jump(invocation_counter, increment, mask, R0_tmp, R1_tmp, eq, overflow); 502 __ bind(done); 503 } 504 505 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 506 // InterpreterRuntime::frequency_counter_overflow takes one argument 507 // indicating if the counter overflow occurs at a backwards branch (non-null bcp). 508 // The call returns the address of the verified entry point for the method or null 509 // if the compilation did not complete (either went background or bailed out). 510 __ mov(R1, (int)false); 511 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R1); 512 513 // jump to the interpreted entry. 514 __ b(do_continue); 515 } 516 517 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) { 518 // Check if we've got enough room on the stack for 519 // - overhead; 520 // - locals; 521 // - expression stack. 522 // 523 // Registers on entry: 524 // 525 // R3 = number of additional locals 526 // Rthread 527 // Rmethod 528 // Registers used: R0, R1, R2, Rtemp. 529 530 const Register Radditional_locals = R3; 531 const Register RmaxStack = R2; 532 533 // monitor entry size 534 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 535 536 // total overhead size: entry_size + (saved registers, thru expr stack bottom). 537 // be sure to change this if you add/subtract anything to/from the overhead area 538 const int overhead_size = (frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset)*wordSize + entry_size; 539 540 // Pages reserved for VM runtime calls and subsequent Java calls. 541 const int reserved_pages = StackOverflow::stack_shadow_zone_size(); 542 543 // Thread::stack_size() includes guard pages, and they should not be touched. 544 const int guard_pages = StackOverflow::stack_guard_zone_size(); 545 546 __ ldr(R0, Address(Rthread, Thread::stack_base_offset())); 547 __ ldr(R1, Address(Rthread, Thread::stack_size_offset())); 548 __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); 549 __ ldrh(RmaxStack, Address(Rtemp, ConstMethod::max_stack_offset())); 550 __ sub_slow(Rtemp, SP, overhead_size + reserved_pages + guard_pages + Method::extra_stack_words()); 551 552 // reserve space for additional locals 553 __ sub(Rtemp, Rtemp, AsmOperand(Radditional_locals, lsl, Interpreter::logStackElementSize)); 554 555 // stack size 556 __ sub(R0, R0, R1); 557 558 // reserve space for expression stack 559 __ sub(Rtemp, Rtemp, AsmOperand(RmaxStack, lsl, Interpreter::logStackElementSize)); 560 561 __ cmp(Rtemp, R0); 562 563 __ mov(SP, Rsender_sp, ls); // restore SP 564 __ b(SharedRuntime::throw_StackOverflowError_entry(), ls); 565 } 566 567 568 // Allocate monitor and lock method (asm interpreter) 569 // 570 void TemplateInterpreterGenerator::lock_method() { 571 // synchronize method 572 573 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 574 assert ((entry_size % StackAlignmentInBytes) == 0, "should keep stack alignment"); 575 576 #ifdef ASSERT 577 { Label L; 578 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 579 __ tbnz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L); 580 __ stop("method doesn't need synchronization"); 581 __ bind(L); 582 } 583 #endif // ASSERT 584 585 // get synchronization object 586 { Label done; 587 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 588 __ tst(Rtemp, JVM_ACC_STATIC); 589 __ ldr(R0, Address(Rlocals, Interpreter::local_offset_in_bytes(0)), eq); // get receiver (assume this is frequent case) 590 __ b(done, eq); 591 __ load_mirror(R0, Rmethod, Rtemp); 592 __ bind(done); 593 } 594 595 // add space for monitor & lock 596 597 598 __ sub(Rstack_top, Rstack_top, entry_size); 599 __ check_stack_top_on_expansion(); 600 // add space for a monitor entry 601 __ str(Rstack_top, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize)); 602 // set new monitor block top 603 __ str(R0, Address(Rstack_top, BasicObjectLock::obj_offset())); 604 // store object 605 __ mov(R1, Rstack_top); // monitor entry address 606 __ lock_object(R1); 607 } 608 609 610 // 611 // Generate a fixed interpreter frame. This is identical setup for interpreted methods 612 // and for native methods hence the shared code. 613 614 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 615 // Generates the following stack layout: 616 // 617 // [ expr. stack bottom ] 618 // [ saved Rbcp ] 619 // [ current Rlocals ] 620 // [ cache ] 621 // [ mdx ] 622 // [ Method* ] 623 // [ last_sp ] 624 // [ sender_sp ] 625 // [ saved FP ] <--- FP 626 // [ saved LR ] 627 628 // initialize fixed part of activation frame 629 __ push(LR); // save return address 630 __ push(FP); // save FP 631 __ mov(FP, SP); // establish new FP 632 633 __ push(Rsender_sp); 634 635 __ mov(R0, 0); 636 __ push(R0); // leave last_sp as null 637 638 // setup Rbcp 639 if (native_call) { 640 __ mov(Rbcp, 0); // bcp = 0 for native calls 641 } else { 642 __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); // get ConstMethod* 643 __ add(Rbcp, Rtemp, ConstMethod::codes_offset()); // get codebase 644 } 645 646 __ push(Rmethod); // save Method* 647 // Get mirror and store it in the frame as GC root for this Method* 648 __ load_mirror(Rtemp, Rmethod, Rtemp); 649 __ push(Rtemp); 650 651 if (ProfileInterpreter) { 652 __ ldr(Rtemp, Address(Rmethod, Method::method_data_offset())); 653 __ tst(Rtemp, Rtemp); 654 __ add(Rtemp, Rtemp, in_bytes(MethodData::data_offset()), ne); 655 __ push(Rtemp); // set the mdp (method data pointer) 656 } else { 657 __ push(R0); 658 } 659 660 __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); 661 __ ldr(Rtemp, Address(Rtemp, ConstMethod::constants_offset())); 662 __ ldr(Rtemp, Address(Rtemp, ConstantPool::cache_offset())); 663 __ push(Rtemp); // set constant pool cache 664 __ sub(Rtemp, Rlocals, FP); 665 __ logical_shift_right(Rtemp, Rtemp, Interpreter::logStackElementSize); // Rtemp = Rlocals - fp(); 666 __ push(Rtemp); // set relativized Rlocals, see frame::interpreter_frame_locals() 667 __ push(Rbcp); // set bcp 668 __ push(R0); // reserve word for pointer to expression stack bottom 669 __ str(SP, Address(SP, 0)); // set expression stack bottom 670 } 671 672 673 // End of helpers 674 675 //------------------------------------------------------------------------------------------------------------------------ 676 // Entry points 677 // 678 // Here we generate the various kind of entries into the interpreter. 679 // The two main entry type are generic bytecode methods and native call method. 680 // These both come in synchronized and non-synchronized versions but the 681 // frame layout they create is very similar. The other method entry 682 // types are really just special purpose entries that are really entry 683 // and interpretation all in one. These are for trivial methods like 684 // accessor, empty, or special math methods. 685 // 686 // When control flow reaches any of the entry types for the interpreter 687 // the following holds -> 688 // 689 // Arguments: 690 // 691 // Rmethod: Method* 692 // Rthread: thread 693 // Rsender_sp: sender sp 694 // Rparams (SP on 32-bit ARM): pointer to method parameters 695 // 696 // LR: return address 697 // 698 // Stack layout immediately at entry 699 // 700 // [ parameter n ] <--- Rparams (SP on 32-bit ARM) 701 // ... 702 // [ parameter 1 ] 703 // [ expression stack ] (caller's java expression stack) 704 705 // Assuming that we don't go to one of the trivial specialized 706 // entries the stack will look like below when we are ready to execute 707 // the first bytecode (or call the native routine). The register usage 708 // will be as the template based interpreter expects. 709 // 710 // local variables follow incoming parameters immediately; i.e. 711 // the return address is saved at the end of the locals. 712 // 713 // [ expr. stack ] <--- Rstack_top (SP on 32-bit ARM) 714 // [ monitor entry ] 715 // ... 716 // [ monitor entry ] 717 // [ expr. stack bottom ] 718 // [ saved Rbcp ] 719 // [ current Rlocals ] 720 // [ cache ] 721 // [ mdx ] 722 // [ mirror ] 723 // [ Method* ] 724 // 725 // 32-bit ARM: 726 // [ last_sp ] 727 // 728 // [ sender_sp ] 729 // [ saved FP ] <--- FP 730 // [ saved LR ] 731 // [ optional padding(*)] 732 // [ local variable m ] 733 // ... 734 // [ local variable 1 ] 735 // [ parameter n ] 736 // ... 737 // [ parameter 1 ] <--- Rlocals 738 // 739 740 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 741 // Code: _aload_0, _getfield, _areturn 742 // parameter size = 1 743 // 744 // The code that gets generated by this routine is split into 2 parts: 745 // 1. The "intrinsified" code performing an ON_WEAK_OOP_REF load, 746 // 2. The slow path - which is an expansion of the regular method entry. 747 // 748 // Notes:- 749 // * An intrinsic is always executed, where an ON_WEAK_OOP_REF load is performed. 750 // * We may jump to the slow path iff the receiver is null. If the 751 // Reference object is null then we no longer perform an ON_WEAK_OOP_REF load 752 // Thus we can use the regular method entry code to generate the NPE. 753 // 754 // Rmethod: Method* 755 // Rthread: thread 756 // Rsender_sp: sender sp, must be preserved for slow path, set SP to it on fast path 757 // Rparams: parameters 758 759 address entry = __ pc(); 760 Label slow_path; 761 const Register Rthis = R0; 762 const Register Rret_addr = Rtmp_save1; 763 assert_different_registers(Rthis, Rret_addr, Rsender_sp); 764 765 const int referent_offset = java_lang_ref_Reference::referent_offset(); 766 767 // Check if local 0 != nullptr 768 // If the receiver is null then it is OK to jump to the slow path. 769 __ ldr(Rthis, Address(Rparams)); 770 __ cbz(Rthis, slow_path); 771 772 // Preserve LR 773 __ mov(Rret_addr, LR); 774 775 // Load the value of the referent field. 776 const Address field_address(Rthis, referent_offset); 777 __ load_heap_oop(R0, field_address, Rtemp, R1_tmp, R2_tmp, ON_WEAK_OOP_REF); 778 779 // _areturn 780 __ mov(SP, Rsender_sp); 781 __ ret(Rret_addr); 782 783 // generate a vanilla interpreter entry as the slow path 784 __ bind(slow_path); 785 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals)); 786 return entry; 787 } 788 789 // Not supported 790 address TemplateInterpreterGenerator::generate_currentThread() { return nullptr; } 791 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { return nullptr; } 792 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return nullptr; } 793 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return nullptr; } 794 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; } 795 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; } 796 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; } 797 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; } 798 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { return nullptr; } 799 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { return nullptr; } 800 801 // 802 // Interpreter stub for calling a native method. (asm interpreter) 803 // This sets up a somewhat different looking stack for calling the native method 804 // than the typical interpreter frame setup. 805 // 806 807 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { 808 // determine code generation flags 809 bool inc_counter = UseCompiler || CountCompiledCalls; 810 811 // Incoming registers: 812 // 813 // Rmethod: Method* 814 // Rthread: thread 815 // Rsender_sp: sender sp 816 // Rparams: parameters 817 818 address entry_point = __ pc(); 819 820 // Register allocation 821 const Register Rsize_of_params = R6; 822 const Register Rsig_handler = Rtmp_save0; // R4 823 const Register Rnative_code = Rtmp_save1; // R5 824 const Register Rresult_handler = R6; 825 826 const Register Rsaved_result_lo = Rtmp_save0; // R4 827 const Register Rsaved_result_hi = Rtmp_save1; // R5 828 FloatRegister saved_result_fp; 829 830 831 __ ldr(Rsize_of_params, Address(Rmethod, Method::const_offset())); 832 __ ldrh(Rsize_of_params, Address(Rsize_of_params, ConstMethod::size_of_parameters_offset())); 833 834 // native calls don't need the stack size check since they have no expression stack 835 // and the arguments are already on the stack and we only add a handful of words 836 // to the stack 837 838 // compute beginning of parameters (Rlocals) 839 __ sub(Rlocals, Rparams, wordSize); 840 __ add(Rlocals, Rlocals, AsmOperand(Rsize_of_params, lsl, Interpreter::logStackElementSize)); 841 842 // reserve stack space for oop_temp 843 __ mov(R0, 0); 844 __ push(R0); 845 846 generate_fixed_frame(true); // Note: R9 is now saved in the frame 847 848 // make sure method is native & not abstract 849 #ifdef ASSERT 850 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 851 { 852 Label L; 853 __ tbnz(Rtemp, JVM_ACC_NATIVE_BIT, L); 854 __ stop("tried to execute non-native method as native"); 855 __ bind(L); 856 } 857 { Label L; 858 __ tbz(Rtemp, JVM_ACC_ABSTRACT_BIT, L); 859 __ stop("tried to execute abstract method in interpreter"); 860 __ bind(L); 861 } 862 #endif 863 864 // increment invocation count & check for overflow 865 Label invocation_counter_overflow; 866 if (inc_counter) { 867 if (synchronized) { 868 // Avoid unlocking method's monitor in case of exception, as it has not 869 // been locked yet. 870 __ set_do_not_unlock_if_synchronized(true, Rtemp); 871 } 872 generate_counter_incr(&invocation_counter_overflow); 873 } 874 875 Label continue_after_compile; 876 __ bind(continue_after_compile); 877 878 if (inc_counter && synchronized) { 879 __ set_do_not_unlock_if_synchronized(false, Rtemp); 880 } 881 882 // check for synchronized methods 883 // Must happen AFTER invocation_counter check and stack overflow check, 884 // so method is not locked if overflows. 885 // 886 if (synchronized) { 887 lock_method(); 888 } else { 889 // no synchronization necessary 890 #ifdef ASSERT 891 { Label L; 892 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 893 __ tbz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L); 894 __ stop("method needs synchronization"); 895 __ bind(L); 896 } 897 #endif 898 } 899 900 // start execution 901 #ifdef ASSERT 902 { Label L; 903 __ ldr(Rtemp, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize)); 904 __ cmp(Rtemp, Rstack_top); 905 __ b(L, eq); 906 __ stop("broken stack frame setup in interpreter 3"); 907 __ bind(L); 908 } 909 #endif 910 __ check_extended_sp(Rtemp); 911 912 // jvmti/dtrace support 913 __ notify_method_entry(); 914 #if R9_IS_SCRATCHED 915 __ restore_method(); 916 #endif 917 918 { 919 Label L; 920 __ ldr(Rsig_handler, Address(Rmethod, Method::signature_handler_offset())); 921 __ cbnz(Rsig_handler, L); 922 __ mov(R1, Rmethod); 923 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R1, true); 924 __ ldr(Rsig_handler, Address(Rmethod, Method::signature_handler_offset())); 925 __ bind(L); 926 } 927 928 { 929 Label L; 930 __ ldr(Rnative_code, Address(Rmethod, Method::native_function_offset())); 931 __ cbnz(Rnative_code, L); 932 __ mov(R1, Rmethod); 933 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R1); 934 __ ldr(Rnative_code, Address(Rmethod, Method::native_function_offset())); 935 __ bind(L); 936 } 937 938 // Allocate stack space for arguments 939 940 941 // C functions need aligned stack 942 __ bic(SP, SP, StackAlignmentInBytes - 1); 943 // Multiply by BytesPerLong instead of BytesPerWord, because calling convention 944 // may require empty slots due to long alignment, e.g. func(int, jlong, int, jlong) 945 __ sub(SP, SP, AsmOperand(Rsize_of_params, lsl, LogBytesPerLong)); 946 947 #ifdef __ABI_HARD__ 948 // Allocate more stack space to accommodate all GP as well as FP registers: 949 // 4 * wordSize 950 // 8 * BytesPerLong 951 int reg_arguments = align_up((4*wordSize) + (8*BytesPerLong), StackAlignmentInBytes); 952 #else 953 // Reserve at least 4 words on the stack for loading 954 // of parameters passed on registers (R0-R3). 955 // See generate_slow_signature_handler(). 956 // It is also used for JNIEnv & class additional parameters. 957 int reg_arguments = 4 * wordSize; 958 #endif // __ABI_HARD__ 959 960 __ sub(SP, SP, reg_arguments); 961 962 963 // Note: signature handler blows R4 besides all scratch registers. 964 // See AbstractInterpreterGenerator::generate_slow_signature_handler(). 965 __ call(Rsig_handler); 966 #if R9_IS_SCRATCHED 967 __ restore_method(); 968 #endif 969 __ mov(Rresult_handler, R0); 970 971 // Pass JNIEnv and mirror for static methods 972 { 973 Label L; 974 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 975 __ add(R0, Rthread, in_bytes(JavaThread::jni_environment_offset())); 976 __ tbz(Rtemp, JVM_ACC_STATIC_BIT, L); 977 __ load_mirror(Rtemp, Rmethod, Rtemp); 978 __ add(R1, FP, frame::interpreter_frame_oop_temp_offset * wordSize); 979 __ str(Rtemp, Address(R1, 0)); 980 __ bind(L); 981 } 982 983 __ set_last_Java_frame(SP, FP, true, Rtemp); 984 985 // Changing state to _thread_in_native must be the last thing to do 986 // before the jump to native code. At this moment stack must be 987 // safepoint-safe and completely prepared for stack walking. 988 #ifdef ASSERT 989 { 990 Label L; 991 __ ldr_u32(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 992 __ cmp_32(Rtemp, _thread_in_Java); 993 __ b(L, eq); 994 __ stop("invalid thread state"); 995 __ bind(L); 996 } 997 #endif 998 999 // Force all preceding writes to be observed prior to thread state change 1000 __ membar(MacroAssembler::StoreStore, Rtemp); 1001 1002 __ mov(Rtemp, _thread_in_native); 1003 __ str(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 1004 1005 __ call(Rnative_code); 1006 #if R9_IS_SCRATCHED 1007 __ restore_method(); 1008 #endif 1009 1010 // Set FPSCR/FPCR to a known state 1011 if (AlwaysRestoreFPU) { 1012 __ restore_default_fp_mode(); 1013 } 1014 1015 // Do safepoint check 1016 __ mov(Rtemp, _thread_in_native_trans); 1017 __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 1018 1019 // Force this write out before the read below 1020 if (!UseSystemMemoryBarrier) { 1021 __ membar(MacroAssembler::StoreLoad, Rtemp); 1022 } 1023 1024 // Protect the return value in the interleaved code: save it to callee-save registers. 1025 __ mov(Rsaved_result_lo, R0); 1026 __ mov(Rsaved_result_hi, R1); 1027 #ifdef __ABI_HARD__ 1028 // preserve native FP result in a callee-saved register 1029 saved_result_fp = D8; 1030 __ fcpyd(saved_result_fp, D0); 1031 #else 1032 saved_result_fp = fnoreg; 1033 #endif // __ABI_HARD__ 1034 1035 { 1036 Label call, skip_call; 1037 __ safepoint_poll(Rtemp, call); 1038 __ ldr_u32(R3, Address(Rthread, JavaThread::suspend_flags_offset())); 1039 __ cmp(R3, 0); 1040 __ b(skip_call, eq); 1041 __ bind(call); 1042 __ mov(R0, Rthread); 1043 __ call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans), relocInfo::none); 1044 __ bind(skip_call); 1045 1046 #if R9_IS_SCRATCHED 1047 __ restore_method(); 1048 #endif 1049 } 1050 1051 // Perform Native->Java thread transition 1052 __ mov(Rtemp, _thread_in_Java); 1053 __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset())); 1054 1055 // Zero handles and last_java_sp 1056 __ reset_last_Java_frame(Rtemp); 1057 __ ldr(R3, Address(Rthread, JavaThread::active_handles_offset())); 1058 __ str_32(__ zero_register(Rtemp), Address(R3, JNIHandleBlock::top_offset())); 1059 if (CheckJNICalls) { 1060 __ str(__ zero_register(Rtemp), Address(Rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1061 } 1062 1063 // Unbox oop result, e.g. JNIHandles::resolve result if it's an oop. 1064 { 1065 Label Lnot_oop; 1066 __ mov_slow(Rtemp, AbstractInterpreter::result_handler(T_OBJECT)); 1067 __ cmp(Rtemp, Rresult_handler); 1068 __ b(Lnot_oop, ne); 1069 Register value = Rsaved_result_lo; 1070 __ resolve_jobject(value, // value 1071 Rtemp, // tmp1 1072 R1_tmp); // tmp2 1073 // Store resolved result in frame for GC visibility. 1074 __ str(value, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize)); 1075 __ bind(Lnot_oop); 1076 } 1077 1078 1079 // reguard stack if StackOverflow exception happened while in native. 1080 { 1081 __ ldr_u32(Rtemp, Address(Rthread, JavaThread::stack_guard_state_offset())); 1082 __ cmp_32(Rtemp, StackOverflow::stack_guard_yellow_reserved_disabled); 1083 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), relocInfo::none, eq); 1084 #if R9_IS_SCRATCHED 1085 __ restore_method(); 1086 #endif 1087 } 1088 1089 // check pending exceptions 1090 { 1091 __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset())); 1092 __ cmp(Rtemp, 0); 1093 __ mov(Rexception_pc, PC, ne); 1094 __ b(StubRoutines::forward_exception_entry(), ne); 1095 } 1096 1097 if (synchronized) { 1098 // address of first monitor 1099 __ sub(R0, FP, - (frame::interpreter_frame_monitor_block_bottom_offset - frame::interpreter_frame_monitor_size()) * wordSize); 1100 __ unlock_object(R0); 1101 } 1102 1103 // jvmti/dtrace support 1104 // Note: This must happen _after_ handling/throwing any exceptions since 1105 // the exception handler code notifies the runtime of method exits 1106 // too. If this happens before, method entry/exit notifications are 1107 // not properly paired (was bug - gri 11/22/99). 1108 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI, true, Rsaved_result_lo, Rsaved_result_hi, saved_result_fp); 1109 1110 // Restore the result. Oop result is restored from the stack by the 1111 // result handler. 1112 __ mov(R0, Rsaved_result_lo); 1113 __ mov(R1, Rsaved_result_hi); 1114 1115 #ifdef __ABI_HARD__ 1116 // reload native FP result 1117 __ fcpyd(D0, D8); 1118 #endif // __ABI_HARD__ 1119 1120 __ blx(Rresult_handler); 1121 1122 // Restore FP/LR, sender_sp and return 1123 __ mov(Rtemp, FP); 1124 __ ldmia(FP, RegisterSet(FP) | RegisterSet(LR)); 1125 __ ldr(SP, Address(Rtemp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1126 1127 __ ret(); 1128 1129 if (inc_counter) { 1130 // Handle overflow of counter and compile method 1131 __ bind(invocation_counter_overflow); 1132 generate_counter_overflow(continue_after_compile); 1133 } 1134 1135 return entry_point; 1136 } 1137 1138 // 1139 // Generic interpreted method entry to (asm) interpreter 1140 // 1141 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { 1142 // determine code generation flags 1143 bool inc_counter = UseCompiler || CountCompiledCalls; 1144 1145 // Rmethod: Method* 1146 // Rthread: thread 1147 // Rsender_sp: sender sp (could differ from SP if we were called via c2i) 1148 // Rparams: pointer to the last parameter in the stack 1149 1150 address entry_point = __ pc(); 1151 1152 const Register RconstMethod = R3; 1153 1154 1155 __ ldr(RconstMethod, Address(Rmethod, Method::const_offset())); 1156 1157 __ ldrh(R2, Address(RconstMethod, ConstMethod::size_of_parameters_offset())); 1158 __ ldrh(R3, Address(RconstMethod, ConstMethod::size_of_locals_offset())); 1159 1160 // setup Rlocals 1161 __ sub(Rlocals, Rparams, wordSize); 1162 __ add(Rlocals, Rlocals, AsmOperand(R2, lsl, Interpreter::logStackElementSize)); 1163 1164 __ sub(R3, R3, R2); // number of additional locals 1165 1166 1167 // see if we've got enough room on the stack for locals plus overhead. 1168 generate_stack_overflow_check(); 1169 1170 // allocate space for locals 1171 // explicitly initialize locals 1172 1173 // Loop is unrolled 4 times 1174 Label loop; 1175 __ mov(R0, 0); 1176 __ bind(loop); 1177 1178 // #1 1179 __ subs(R3, R3, 1); 1180 __ push(R0, ge); 1181 1182 // #2 1183 __ subs(R3, R3, 1, ge); 1184 __ push(R0, ge); 1185 1186 // #3 1187 __ subs(R3, R3, 1, ge); 1188 __ push(R0, ge); 1189 1190 // #4 1191 __ subs(R3, R3, 1, ge); 1192 __ push(R0, ge); 1193 1194 __ b(loop, gt); 1195 1196 // initialize fixed part of activation frame 1197 generate_fixed_frame(false); 1198 1199 __ restore_dispatch(); 1200 1201 // make sure method is not native & not abstract 1202 #ifdef ASSERT 1203 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 1204 { 1205 Label L; 1206 __ tbz(Rtemp, JVM_ACC_NATIVE_BIT, L); 1207 __ stop("tried to execute native method as non-native"); 1208 __ bind(L); 1209 } 1210 { Label L; 1211 __ tbz(Rtemp, JVM_ACC_ABSTRACT_BIT, L); 1212 __ stop("tried to execute abstract method in interpreter"); 1213 __ bind(L); 1214 } 1215 #endif 1216 1217 // increment invocation count & check for overflow 1218 Label invocation_counter_overflow; 1219 if (inc_counter) { 1220 if (synchronized) { 1221 // Avoid unlocking method's monitor in case of exception, as it has not 1222 // been locked yet. 1223 __ set_do_not_unlock_if_synchronized(true, Rtemp); 1224 } 1225 generate_counter_incr(&invocation_counter_overflow); 1226 } 1227 Label continue_after_compile; 1228 __ bind(continue_after_compile); 1229 1230 if (inc_counter && synchronized) { 1231 __ set_do_not_unlock_if_synchronized(false, Rtemp); 1232 } 1233 #if R9_IS_SCRATCHED 1234 __ restore_method(); 1235 #endif 1236 1237 // check for synchronized methods 1238 // Must happen AFTER invocation_counter check and stack overflow check, 1239 // so method is not locked if overflows. 1240 // 1241 if (synchronized) { 1242 // Allocate monitor and lock method 1243 lock_method(); 1244 } else { 1245 // no synchronization necessary 1246 #ifdef ASSERT 1247 { Label L; 1248 __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset())); 1249 __ tbz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L); 1250 __ stop("method needs synchronization"); 1251 __ bind(L); 1252 } 1253 #endif 1254 } 1255 1256 // start execution 1257 #ifdef ASSERT 1258 { Label L; 1259 __ ldr(Rtemp, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize)); 1260 __ cmp(Rtemp, Rstack_top); 1261 __ b(L, eq); 1262 __ stop("broken stack frame setup in interpreter 4"); 1263 __ bind(L); 1264 } 1265 #endif 1266 __ check_extended_sp(Rtemp); 1267 1268 // jvmti support 1269 __ notify_method_entry(); 1270 #if R9_IS_SCRATCHED 1271 __ restore_method(); 1272 #endif 1273 1274 __ dispatch_next(vtos); 1275 1276 // invocation counter overflow 1277 if (inc_counter) { 1278 // Handle overflow of counter and compile method 1279 __ bind(invocation_counter_overflow); 1280 generate_counter_overflow(continue_after_compile); 1281 } 1282 1283 return entry_point; 1284 } 1285 1286 //------------------------------------------------------------------------------------------------------------------------ 1287 // Exceptions 1288 1289 void TemplateInterpreterGenerator::generate_throw_exception() { 1290 // Entry point in previous activation (i.e., if the caller was interpreted) 1291 Interpreter::_rethrow_exception_entry = __ pc(); 1292 // Rexception_obj: exception 1293 1294 // Clear interpreter_frame_last_sp. 1295 __ mov(Rtemp, 0); 1296 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1297 1298 #if R9_IS_SCRATCHED 1299 __ restore_method(); 1300 #endif 1301 __ restore_bcp(); 1302 __ restore_dispatch(); 1303 __ restore_locals(); 1304 1305 1306 // Entry point for exceptions thrown within interpreter code 1307 Interpreter::_throw_exception_entry = __ pc(); 1308 1309 // expression stack is undefined here 1310 // Rexception_obj: exception 1311 // Rbcp: exception bcp 1312 __ verify_oop(Rexception_obj); 1313 1314 // expression stack must be empty before entering the VM in case of an exception 1315 __ empty_expression_stack(); 1316 // find exception handler address and preserve exception oop 1317 __ mov(R1, Rexception_obj); 1318 __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), R1); 1319 // R0: exception handler entry point 1320 // Rexception_obj: preserved exception oop 1321 // Rbcp: bcp for exception handler 1322 __ push_ptr(Rexception_obj); // push exception which is now the only value on the stack 1323 __ jump(R0); // jump to exception handler (may be _remove_activation_entry!) 1324 1325 // If the exception is not handled in the current frame the frame is removed and 1326 // the exception is rethrown (i.e. exception continuation is _rethrow_exception). 1327 // 1328 // Note: At this point the bci is still the bxi for the instruction which caused 1329 // the exception and the expression stack is empty. Thus, for any VM calls 1330 // at this point, GC will find a legal oop map (with empty expression stack). 1331 1332 // In current activation 1333 // tos: exception 1334 // Rbcp: exception bcp 1335 1336 // 1337 // JVMTI PopFrame support 1338 // 1339 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 1340 1341 1342 __ empty_expression_stack(); 1343 1344 // Set the popframe_processing bit in _popframe_condition indicating that we are 1345 // currently handling popframe, so that call_VMs that may happen later do not trigger new 1346 // popframe handling cycles. 1347 1348 __ ldr_s32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset())); 1349 __ orr(Rtemp, Rtemp, (unsigned)JavaThread::popframe_processing_bit); 1350 __ str_32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset())); 1351 1352 { 1353 // Check to see whether we are returning to a deoptimized frame. 1354 // (The PopFrame call ensures that the caller of the popped frame is 1355 // either interpreted or compiled and deoptimizes it if compiled.) 1356 // In this case, we can't call dispatch_next() after the frame is 1357 // popped, but instead must save the incoming arguments and restore 1358 // them after deoptimization has occurred. 1359 // 1360 // Note that we don't compare the return PC against the 1361 // deoptimization blob's unpack entry because of the presence of 1362 // adapter frames in C2. 1363 Label caller_not_deoptimized; 1364 __ ldr(R0, Address(FP, frame::return_addr_offset * wordSize)); 1365 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), R0); 1366 __ cbnz_32(R0, caller_not_deoptimized); 1367 1368 // Compute size of arguments for saving when returning to deoptimized caller 1369 __ restore_method(); 1370 __ ldr(R0, Address(Rmethod, Method::const_offset())); 1371 __ ldrh(R0, Address(R0, ConstMethod::size_of_parameters_offset())); 1372 1373 __ logical_shift_left(R1, R0, Interpreter::logStackElementSize); 1374 // Save these arguments 1375 __ restore_locals(); 1376 __ sub(R2, Rlocals, R1); 1377 __ add(R2, R2, wordSize); 1378 __ mov(R0, Rthread); 1379 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R0, R1, R2); 1380 1381 __ remove_activation(vtos, LR, 1382 /* throw_monitor_exception */ false, 1383 /* install_monitor_exception */ false, 1384 /* notify_jvmdi */ false); 1385 1386 // Inform deoptimization that it is responsible for restoring these arguments 1387 __ mov(Rtemp, JavaThread::popframe_force_deopt_reexecution_bit); 1388 __ str_32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset())); 1389 1390 // Continue in deoptimization handler 1391 __ ret(); 1392 1393 __ bind(caller_not_deoptimized); 1394 } 1395 1396 __ remove_activation(vtos, R4, 1397 /* throw_monitor_exception */ false, 1398 /* install_monitor_exception */ false, 1399 /* notify_jvmdi */ false); 1400 1401 // Finish with popframe handling 1402 // A previous I2C followed by a deoptimization might have moved the 1403 // outgoing arguments further up the stack. PopFrame expects the 1404 // mutations to those outgoing arguments to be preserved and other 1405 // constraints basically require this frame to look exactly as 1406 // though it had previously invoked an interpreted activation with 1407 // no space between the top of the expression stack (current 1408 // last_sp) and the top of stack. Rather than force deopt to 1409 // maintain this kind of invariant all the time we call a small 1410 // fixup routine to move the mutated arguments onto the top of our 1411 // expression stack if necessary. 1412 __ mov(R1, SP); 1413 __ ldr(R2, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1414 // PC must point into interpreter here 1415 __ set_last_Java_frame(SP, FP, true, Rtemp); 1416 __ mov(R0, Rthread); 1417 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), R0, R1, R2); 1418 __ reset_last_Java_frame(Rtemp); 1419 1420 // Restore the last_sp and null it out 1421 __ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1422 __ mov(Rtemp, (int)NULL_WORD); 1423 __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize)); 1424 1425 __ restore_bcp(); 1426 __ restore_dispatch(); 1427 __ restore_locals(); 1428 __ restore_method(); 1429 1430 // The method data pointer was incremented already during 1431 // call profiling. We have to restore the mdp for the current bcp. 1432 if (ProfileInterpreter) { 1433 __ set_method_data_pointer_for_bcp(); 1434 } 1435 1436 // Clear the popframe condition flag 1437 assert(JavaThread::popframe_inactive == 0, "adjust this code"); 1438 __ str_32(__ zero_register(Rtemp), Address(Rthread, JavaThread::popframe_condition_offset())); 1439 1440 #if INCLUDE_JVMTI 1441 { 1442 Label L_done; 1443 1444 __ ldrb(Rtemp, Address(Rbcp, 0)); 1445 __ cmp(Rtemp, Bytecodes::_invokestatic); 1446 __ b(L_done, ne); 1447 1448 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. 1449 // Detect such a case in the InterpreterRuntime function and return the member name argument, or null. 1450 1451 // get local0 1452 __ ldr(R1, Address(Rlocals, 0)); 1453 __ mov(R2, Rmethod); 1454 __ mov(R3, Rbcp); 1455 __ call_VM(R0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R1, R2, R3); 1456 1457 __ cbz(R0, L_done); 1458 1459 __ str(R0, Address(Rstack_top)); 1460 __ bind(L_done); 1461 } 1462 #endif // INCLUDE_JVMTI 1463 1464 __ dispatch_next(vtos); 1465 // end of PopFrame support 1466 1467 Interpreter::_remove_activation_entry = __ pc(); 1468 1469 // preserve exception over this code sequence 1470 __ pop_ptr(R0_tos); 1471 __ str(R0_tos, Address(Rthread, JavaThread::vm_result_offset())); 1472 // remove the activation (without doing throws on illegalMonitorExceptions) 1473 __ remove_activation(vtos, Rexception_pc, false, true, false); 1474 // restore exception 1475 __ get_vm_result(Rexception_obj, Rtemp); 1476 1477 // In between activations - previous activation type unknown yet 1478 // compute continuation point - the continuation point expects 1479 // the following registers set up: 1480 // 1481 // Rexception_obj: exception 1482 // Rexception_pc: return address/pc that threw exception 1483 // SP: expression stack of caller 1484 // FP: frame pointer of caller 1485 __ mov(c_rarg0, Rthread); 1486 __ mov(c_rarg1, Rexception_pc); 1487 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), c_rarg0, c_rarg1); 1488 // Note that an "issuing PC" is actually the next PC after the call 1489 1490 __ jump(R0); // jump to exception handler of caller 1491 } 1492 1493 1494 // 1495 // JVMTI ForceEarlyReturn support 1496 // 1497 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { 1498 address entry = __ pc(); 1499 1500 1501 __ restore_bcp(); 1502 __ restore_dispatch(); 1503 __ restore_locals(); 1504 1505 __ empty_expression_stack(); 1506 1507 __ load_earlyret_value(state); 1508 1509 // Clear the earlyret state 1510 __ ldr(Rtemp, Address(Rthread, JavaThread::jvmti_thread_state_offset())); 1511 1512 assert(JvmtiThreadState::earlyret_inactive == 0, "adjust this code"); 1513 __ str_32(__ zero_register(R2), Address(Rtemp, JvmtiThreadState::earlyret_state_offset())); 1514 1515 __ remove_activation(state, LR, 1516 false, /* throw_monitor_exception */ 1517 false, /* install_monitor_exception */ 1518 true); /* notify_jvmdi */ 1519 1520 // According to interpreter calling conventions, result is returned in R0/R1, 1521 // so ftos (S0) and dtos (D0) are moved to R0/R1. 1522 // This conversion should be done after remove_activation, as it uses 1523 // push(state) & pop(state) to preserve return value. 1524 __ convert_tos_to_retval(state); 1525 __ ret(); 1526 1527 return entry; 1528 } // end of ForceEarlyReturn support 1529 1530 1531 //------------------------------------------------------------------------------------------------------------------------ 1532 // Helper for vtos entry point generation 1533 1534 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) { 1535 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 1536 Label L; 1537 1538 #ifdef __SOFTFP__ 1539 dep = __ pc(); // fall through 1540 #else 1541 fep = __ pc(); __ push(ftos); __ b(L); 1542 dep = __ pc(); __ push(dtos); __ b(L); 1543 #endif // __SOFTFP__ 1544 1545 lep = __ pc(); __ push(ltos); __ b(L); 1546 1547 if (VerifyOops) { // can't share atos entry if VerifyOops 1548 aep = __ pc(); __ push(atos); __ b(L); 1549 } else { 1550 aep = __ pc(); // fall through 1551 } 1552 1553 #ifdef __SOFTFP__ 1554 fep = __ pc(); // fall through 1555 #endif // __SOFTFP__ 1556 1557 bep = cep = sep = // fall through 1558 iep = __ pc(); __ push(itos); // fall through 1559 vep = __ pc(); __ bind(L); // fall through 1560 generate_and_dispatch(t); 1561 } 1562 1563 //------------------------------------------------------------------------------------------------------------------------ 1564 1565 // Non-product code 1566 #ifndef PRODUCT 1567 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 1568 address entry = __ pc(); 1569 1570 // prepare expression stack 1571 __ push(state); // save tosca 1572 1573 // pass tosca registers as arguments 1574 __ mov(R2, R0_tos); 1575 __ mov(R3, R1_tos_hi); 1576 __ mov(R1, LR); // save return address 1577 1578 // call tracer 1579 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), R1, R2, R3); 1580 1581 __ mov(LR, R0); // restore return address 1582 __ pop(state); // restore tosca 1583 1584 // return 1585 __ ret(); 1586 1587 return entry; 1588 } 1589 1590 1591 void TemplateInterpreterGenerator::count_bytecode() { 1592 __ inc_global_counter((address) &BytecodeCounter::_counter_value, 0, Rtemp, R2_tmp, true); 1593 } 1594 1595 1596 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { 1597 __ inc_global_counter((address)&BytecodeHistogram::_counters[0], sizeof(BytecodeHistogram::_counters[0]) * t->bytecode(), Rtemp, R2_tmp, true); 1598 } 1599 1600 1601 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { 1602 const Register Rindex_addr = R2_tmp; 1603 Label Lcontinue; 1604 InlinedAddress Lcounters((address)BytecodePairHistogram::_counters); 1605 InlinedAddress Lindex((address)&BytecodePairHistogram::_index); 1606 const Register Rcounters_addr = R2_tmp; 1607 const Register Rindex = R4_tmp; 1608 1609 // calculate new index for counter: 1610 // index = (_index >> log2_number_of_codes) | (bytecode << log2_number_of_codes). 1611 // (_index >> log2_number_of_codes) is previous bytecode 1612 1613 __ ldr_literal(Rindex_addr, Lindex); 1614 __ ldr_s32(Rindex, Address(Rindex_addr)); 1615 __ mov_slow(Rtemp, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); 1616 __ orr(Rindex, Rtemp, AsmOperand(Rindex, lsr, BytecodePairHistogram::log2_number_of_codes)); 1617 __ str_32(Rindex, Address(Rindex_addr)); 1618 1619 // Rindex (R4) contains index of counter 1620 1621 __ ldr_literal(Rcounters_addr, Lcounters); 1622 __ ldr_s32(Rtemp, Address::indexed_32(Rcounters_addr, Rindex)); 1623 __ adds_32(Rtemp, Rtemp, 1); 1624 __ b(Lcontinue, mi); // avoid overflow 1625 __ str_32(Rtemp, Address::indexed_32(Rcounters_addr, Rindex)); 1626 1627 __ b(Lcontinue); 1628 1629 __ bind_literal(Lindex); 1630 __ bind_literal(Lcounters); 1631 1632 __ bind(Lcontinue); 1633 } 1634 1635 1636 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 1637 // Call a little run-time stub to avoid blow-up for each bytecode. 1638 // The run-time runtime saves the right registers, depending on 1639 // the tosca in-state for the given template. 1640 assert(Interpreter::trace_code(t->tos_in()) != nullptr, 1641 "entry must have been generated"); 1642 address trace_entry = Interpreter::trace_code(t->tos_in()); 1643 __ call(trace_entry, relocInfo::none); 1644 } 1645 1646 1647 void TemplateInterpreterGenerator::stop_interpreter_at() { 1648 Label Lcontinue; 1649 const Register stop_at = R2_tmp; 1650 1651 __ ldr_global_s32(Rtemp, (address) &BytecodeCounter::_counter_value); 1652 __ mov_slow(stop_at, StopInterpreterAt); 1653 1654 // test bytecode counter 1655 __ cmp(Rtemp, stop_at); 1656 __ b(Lcontinue, ne); 1657 1658 __ trace_state("stop_interpreter_at"); 1659 __ breakpoint(); 1660 1661 __ bind(Lcontinue); 1662 } 1663 #endif // !PRODUCT