1 /*
  2  * Copyright (c) 2002, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * Copyright (c) 2012, 2019 SAP SE. All rights reserved.
  4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  5  *
  6  * This code is free software; you can redistribute it and/or modify it
  7  * under the terms of the GNU General Public License version 2 only, as
  8  * published by the Free Software Foundation.
  9  *
 10  * This code is distributed in the hope that it will be useful, but WITHOUT
 11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 13  * version 2 for more details (a copy is included in the LICENSE file that
 14  * accompanied this code).
 15  *
 16  * You should have received a copy of the GNU General Public License version
 17  * 2 along with this work; if not, write to the Free Software Foundation,
 18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 19  *
 20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 21  * or visit www.oracle.com if you need additional information or have any
 22  * questions.
 23  *
 24  */
 25 
 26 #include "asm/macroAssembler.inline.hpp"
 27 #include "runtime/os.hpp"
 28 #include "runtime/stubRoutines.hpp"
 29 #include "runtime/vm_version.hpp"
 30 #include "utilities/byteswap.hpp"
 31 
 32 // Implementation of the platform-specific part of StubRoutines - for
 33 // a description of how to extend it, see the stubRoutines.hpp file.
 34 
 35 
 36 #define __ masm->
 37 
 38 // CRC constant compute functions
 39 static juint fold_byte(juint w, juint reverse_poly) {
 40   for (int i = 0; i < 8; i++) {
 41     int poly_if_odd = (-(w & 1)) & reverse_poly;
 42     w = (w >> 1) ^ poly_if_odd;
 43   }
 44   return w;
 45 }
 46 
 47 static juint fold_word(juint w, juint reverse_poly) {
 48   for (int i = 0; i < 32; i++) {
 49     int poly_if_odd = (-(w & 1)) & reverse_poly;
 50     w = (w >> 1) ^ poly_if_odd;
 51   }
 52   return w;
 53 }
 54 
 55 static julong numberOfLeadingZeros(julong p) {
 56   julong l = 1ull << 63;
 57   for (int i = 0; i < 64; ++i) {
 58     if (p & l) return i;
 59     l >>= 1;
 60   }
 61   return 64;
 62 }
 63 
 64 static julong compute_inverse_poly(julong long_poly) {
 65   // 2^64 / p
 66   julong mod = 0, div = 0;
 67   int d = numberOfLeadingZeros(long_poly);
 68   int s = d + 1;
 69   do {
 70     mod ^= (long_poly << s);
 71     div |= (1L << s);
 72     s = d - numberOfLeadingZeros(mod);
 73   } while (s >= 0);
 74   return div;
 75 }
 76 
 77 // Constants to fold n words as needed by macroAssembler.
 78 address StubRoutines::ppc::generate_crc_constants(juint reverse_poly) {
 79   // Layout of constant table:
 80   // >= Power8: 1 table for single byte folding + constants for fast vector implementation
 81   const int vector_size = 16 * (CRC32_UNROLL_FACTOR2 + CRC32_UNROLL_FACTOR / CRC32_UNROLL_FACTOR2);
 82 
 83   const int size = CRC32_TABLE_SIZE + vector_size;
 84   const address consts = (address)os::malloc(size, mtInternal);
 85   if (consts == nullptr) {
 86     vm_exit_out_of_memory(size, OOM_MALLOC_ERROR, "CRC constants: no enough space");
 87   }
 88   juint* ptr = (juint*)consts;
 89 
 90   // Simple table used for single byte folding
 91   for (int i = 0; i < 256; ++i) {
 92     ptr[i] = fold_byte(i, reverse_poly);
 93   }
 94 
 95   // >= Power8: vector constants
 96   juint* ptr1 = (juint*)(consts + CRC32_TABLE_SIZE);
 97   guarantee(((intptr_t)ptr1 & 0xF) == 0, "16-byte alignment needed");
 98 
 99   // Generate constants for outer loop
100   juint v0, v1, v2, v3 = 1;
101   for (int i = 0; i < CRC32_UNROLL_FACTOR2 - 1; ++i) {
102     v0 = fold_word(v3, reverse_poly);
103     v1 = fold_word(v0, reverse_poly);
104     v2 = fold_word(v1, reverse_poly);
105     v3 = fold_word(v2, reverse_poly);
106 #ifdef VM_LITTLE_ENDIAN
107     ptr1[4*i  ] = v3;
108     ptr1[4*i+1] = v2;
109     ptr1[4*i+2] = v3;
110     ptr1[4*i+3] = v2;
111 #else
112     ptr1[4*i  ] = v2;
113     ptr1[4*i+1] = v3;
114     ptr1[4*i+2] = v2;
115     ptr1[4*i+3] = v3;
116 #endif
117   }
118 
119   // Generate constants for inner loop
120   juint* ptr2 = ptr1 + 4 * (CRC32_UNROLL_FACTOR2 - 1);
121   v3 = 1; // Restart from scratch.
122   for (int i = 0; i < CRC32_UNROLL_FACTOR; ++i) {
123     v0 = fold_word(v3, reverse_poly);
124     v1 = fold_word(v0, reverse_poly);
125     v2 = fold_word(v1, reverse_poly);
126     v3 = fold_word(v2, reverse_poly);
127     if (i % CRC32_UNROLL_FACTOR2 == 0) {
128       int idx = CRC32_UNROLL_FACTOR / CRC32_UNROLL_FACTOR2 - 1 - i / CRC32_UNROLL_FACTOR2;
129       for (int j = 0; j < 4; ++j) {
130 #ifdef VM_LITTLE_ENDIAN
131         ptr2[4*idx  ] = v3;
132         ptr2[4*idx+1] = v2;
133         ptr2[4*idx+2] = v1;
134         ptr2[4*idx+3] = v0;
135 #else
136         ptr2[4*idx  ] = v0;
137         ptr2[4*idx+1] = v1;
138         ptr2[4*idx+2] = v2;
139         ptr2[4*idx+3] = v3;
140 #endif
141       }
142     }
143   }
144 
145   // Constants to reduce 64 to 32 bit as needed by macroAssembler.
146   juint* ptr3 = ptr2 + 4 * (CRC32_UNROLL_FACTOR / CRC32_UNROLL_FACTOR2);
147   julong* c = (julong*)ptr3;
148   julong long_poly = (((julong)reverse_poly) << 1) | 1;
149   julong inverse_long_poly = compute_inverse_poly(long_poly);
150 #ifdef VM_LITTLE_ENDIAN
151   c[0] = inverse_long_poly;
152   c[1] = long_poly;
153 #else
154   c[0] = long_poly;
155   c[1] = inverse_long_poly;
156 #endif
157 
158 #ifdef ASSERT
159   if (reverse_poly == REVERSE_CRC32_POLY) {
160     assert(INVERSE_REVERSE_CRC32_POLY == inverse_long_poly, "sanity");
161   } else if (reverse_poly == REVERSE_CRC32C_POLY) {
162     assert(INVERSE_REVERSE_CRC32C_POLY == inverse_long_poly, "sanity");
163   }
164 #endif
165 
166   //printf("inv poly: 0x%016llx\n", (long long unsigned int)inverse_long_poly);
167 
168   return consts;
169 }