1 /* 2 * Copyright (c) 2014, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2015, 2025 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "compiler/disassembler.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "interpreter/bytecodeHistogram.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "interpreter/interp_masm.hpp" 34 #include "interpreter/templateInterpreterGenerator.hpp" 35 #include "interpreter/templateTable.hpp" 36 #include "oops/arrayOop.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodCounters.hpp" 39 #include "oops/methodData.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "oops/resolvedIndyEntry.hpp" 42 #include "oops/resolvedMethodEntry.hpp" 43 #include "prims/jvmtiExport.hpp" 44 #include "prims/jvmtiThreadState.hpp" 45 #include "runtime/arguments.hpp" 46 #include "runtime/deoptimization.hpp" 47 #include "runtime/frame.inline.hpp" 48 #include "runtime/jniHandles.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 #include "runtime/stubRoutines.hpp" 51 #include "runtime/synchronizer.hpp" 52 #include "runtime/timer.hpp" 53 #include "runtime/vframeArray.hpp" 54 #include "runtime/vm_version.hpp" 55 #include "utilities/debug.hpp" 56 #include "utilities/macros.hpp" 57 58 #undef __ 59 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 60 61 // Size of interpreter code. Increase if too small. Interpreter will 62 // fail with a guarantee ("not enough space for interpreter generation"); 63 // if too small. 64 // Run with +PrintInterpreter to get the VM to print out the size. 65 // Max size with JVMTI 66 int TemplateInterpreter::InterpreterCodeSize = 256*K; 67 68 #ifdef PRODUCT 69 #define BLOCK_COMMENT(str) /* nothing */ 70 #else 71 #define BLOCK_COMMENT(str) __ block_comment(str) 72 #endif 73 74 #define BIND(label) __ bind(label); BLOCK_COMMENT(#label ":") 75 76 //----------------------------------------------------------------------------- 77 78 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 79 // Slow_signature handler that respects the PPC C calling conventions. 80 // 81 // We get called by the native entry code with our output register 82 // area == 8. First we call InterpreterRuntime::get_result_handler 83 // to copy the pointer to the signature string temporarily to the 84 // first C-argument and to return the result_handler in 85 // R3_RET. Since native_entry will copy the jni-pointer to the 86 // first C-argument slot later on, it is OK to occupy this slot 87 // temporarily. Then we copy the argument list on the java 88 // expression stack into native varargs format on the native stack 89 // and load arguments into argument registers. Integer arguments in 90 // the varargs vector will be sign-extended to 8 bytes. 91 // 92 // On entry: 93 // R3_ARG1 - intptr_t* Address of java argument list in memory. 94 // R15_prev_state - BytecodeInterpreter* Address of interpreter state for 95 // this method 96 // R19_method 97 // 98 // On exit (just before return instruction): 99 // R3_RET - contains the address of the result_handler. 100 // R4_ARG2 - is not updated for static methods and contains "this" otherwise. 101 // R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double, 102 // ARGi contains this argument. Otherwise, ARGi is not updated. 103 // F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double. 104 105 const int LogSizeOfTwoInstructions = 3; 106 107 // FIXME: use Argument:: GL: Argument names different numbers! 108 const int max_fp_register_arguments = 13; 109 const int max_int_register_arguments = 6; // first 2 are reserved 110 111 const Register arg_java = R21_tmp1; 112 const Register arg_c = R22_tmp2; 113 const Register signature = R23_tmp3; // is string 114 const Register sig_byte = R24_tmp4; 115 const Register fpcnt = R25_tmp5; 116 const Register argcnt = R26_tmp6; 117 const Register intSlot = R27_tmp7; 118 const Register target_sp = R28_tmp8; 119 const FloatRegister floatSlot = F0; 120 121 address entry = __ function_entry(); 122 int save_nonvolatile_registers_size = __ save_nonvolatile_registers_size(false, false); 123 124 __ save_LR(R0); 125 __ save_nonvolatile_registers(R1_SP, -save_nonvolatile_registers_size, false, false); 126 // We use target_sp for storing arguments in the C frame. 127 __ mr(target_sp, R1_SP); 128 __ push_frame(frame::native_abi_reg_args_size + save_nonvolatile_registers_size, R11_scratch1); 129 130 __ mr(arg_java, R3_ARG1); 131 132 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method); 133 134 // Signature is in R3_RET. Signature is callee saved. 135 __ mr(signature, R3_RET); 136 137 // Get the result handler. 138 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method); 139 140 { 141 Label L; 142 // test if static 143 // _access_flags._flags must be at offset 0. 144 // TODO PPC port: requires change in shared code. 145 //assert(in_bytes(AccessFlags::flags_offset()) == 0, 146 // "MethodDesc._access_flags == MethodDesc._access_flags._flags"); 147 // _access_flags must be a 16 bit value. 148 assert(sizeof(AccessFlags) == 2, "wrong size"); 149 __ lhz(R11_scratch1/*access_flags*/, method_(access_flags)); 150 // testbit with condition register. 151 __ testbitdi(CR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT); 152 __ btrue(CR0, L); 153 // For non-static functions, pass "this" in R4_ARG2 and copy it 154 // to 2nd C-arg slot. 155 // We need to box the Java object here, so we use arg_java 156 // (address of current Java stack slot) as argument and don't 157 // dereference it as in case of ints, floats, etc. 158 __ mr(R4_ARG2, arg_java); 159 __ addi(arg_java, arg_java, -BytesPerWord); 160 __ std(R4_ARG2, _abi0(carg_2), target_sp); 161 __ bind(L); 162 } 163 164 // Will be incremented directly after loop_start. argcnt=0 165 // corresponds to 3rd C argument. 166 __ li(argcnt, -1); 167 // arg_c points to 3rd C argument 168 __ addi(arg_c, target_sp, _abi0(carg_3)); 169 // no floating-point args parsed so far 170 __ li(fpcnt, 0); 171 172 Label move_intSlot_to_ARG, move_floatSlot_to_FARG; 173 Label loop_start, loop_end; 174 Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed; 175 176 // signature points to '(' at entry 177 #ifdef ASSERT 178 __ lbz(sig_byte, 0, signature); 179 __ cmplwi(CR0, sig_byte, '('); 180 __ bne(CR0, do_dontreachhere); 181 #endif 182 183 __ bind(loop_start); 184 185 __ addi(argcnt, argcnt, 1); 186 __ lbzu(sig_byte, 1, signature); 187 188 __ cmplwi(CR0, sig_byte, ')'); // end of signature 189 __ beq(CR0, loop_end); 190 191 __ cmplwi(CR0, sig_byte, 'B'); // byte 192 __ beq(CR0, do_int); 193 194 __ cmplwi(CR0, sig_byte, 'C'); // char 195 __ beq(CR0, do_int); 196 197 __ cmplwi(CR0, sig_byte, 'D'); // double 198 __ beq(CR0, do_double); 199 200 __ cmplwi(CR0, sig_byte, 'F'); // float 201 __ beq(CR0, do_float); 202 203 __ cmplwi(CR0, sig_byte, 'I'); // int 204 __ beq(CR0, do_int); 205 206 __ cmplwi(CR0, sig_byte, 'J'); // long 207 __ beq(CR0, do_long); 208 209 __ cmplwi(CR0, sig_byte, 'S'); // short 210 __ beq(CR0, do_int); 211 212 __ cmplwi(CR0, sig_byte, 'Z'); // boolean 213 __ beq(CR0, do_int); 214 215 __ cmplwi(CR0, sig_byte, 'L'); // object 216 __ beq(CR0, do_object); 217 218 __ cmplwi(CR0, sig_byte, '['); // array 219 __ beq(CR0, do_array); 220 221 // __ cmplwi(CR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type 222 // __ beq(CR0, do_void); 223 224 __ bind(do_dontreachhere); 225 226 __ unimplemented("ShouldNotReachHere in slow_signature_handler"); 227 228 __ bind(do_array); 229 230 { 231 Label start_skip, end_skip; 232 233 __ bind(start_skip); 234 __ lbzu(sig_byte, 1, signature); 235 __ cmplwi(CR0, sig_byte, '['); 236 __ beq(CR0, start_skip); // skip further brackets 237 __ cmplwi(CR0, sig_byte, '9'); 238 __ bgt(CR0, end_skip); // no optional size 239 __ cmplwi(CR0, sig_byte, '0'); 240 __ bge(CR0, start_skip); // skip optional size 241 __ bind(end_skip); 242 243 __ cmplwi(CR0, sig_byte, 'L'); 244 __ beq(CR0, do_object); // for arrays of objects, the name of the object must be skipped 245 __ b(do_boxed); // otherwise, go directly to do_boxed 246 } 247 248 __ bind(do_object); 249 { 250 Label L; 251 __ bind(L); 252 __ lbzu(sig_byte, 1, signature); 253 __ cmplwi(CR0, sig_byte, ';'); 254 __ bne(CR0, L); 255 } 256 // Need to box the Java object here, so we use arg_java (address of 257 // current Java stack slot) as argument and don't dereference it as 258 // in case of ints, floats, etc. 259 Label do_null; 260 __ bind(do_boxed); 261 __ ld(R0,0, arg_java); 262 __ cmpdi(CR0, R0, 0); 263 __ li(intSlot,0); 264 __ beq(CR0, do_null); 265 __ mr(intSlot, arg_java); 266 __ bind(do_null); 267 __ std(intSlot, 0, arg_c); 268 __ addi(arg_java, arg_java, -BytesPerWord); 269 __ addi(arg_c, arg_c, BytesPerWord); 270 __ cmplwi(CR0, argcnt, max_int_register_arguments); 271 __ blt(CR0, move_intSlot_to_ARG); 272 __ b(loop_start); 273 274 __ bind(do_int); 275 __ lwa(intSlot, 0, arg_java); 276 __ std(intSlot, 0, arg_c); 277 __ addi(arg_java, arg_java, -BytesPerWord); 278 __ addi(arg_c, arg_c, BytesPerWord); 279 __ cmplwi(CR0, argcnt, max_int_register_arguments); 280 __ blt(CR0, move_intSlot_to_ARG); 281 __ b(loop_start); 282 283 __ bind(do_long); 284 __ ld(intSlot, -BytesPerWord, arg_java); 285 __ std(intSlot, 0, arg_c); 286 __ addi(arg_java, arg_java, - 2 * BytesPerWord); 287 __ addi(arg_c, arg_c, BytesPerWord); 288 __ cmplwi(CR0, argcnt, max_int_register_arguments); 289 __ blt(CR0, move_intSlot_to_ARG); 290 __ b(loop_start); 291 292 __ bind(do_float); 293 __ lfs(floatSlot, 0, arg_java); 294 __ stfs(floatSlot, Argument::float_on_stack_offset_in_bytes_c, arg_c); 295 __ addi(arg_java, arg_java, -BytesPerWord); 296 __ addi(arg_c, arg_c, BytesPerWord); 297 __ cmplwi(CR0, fpcnt, max_fp_register_arguments); 298 __ blt(CR0, move_floatSlot_to_FARG); 299 __ b(loop_start); 300 301 __ bind(do_double); 302 __ lfd(floatSlot, - BytesPerWord, arg_java); 303 __ stfd(floatSlot, 0, arg_c); 304 __ addi(arg_java, arg_java, - 2 * BytesPerWord); 305 __ addi(arg_c, arg_c, BytesPerWord); 306 __ cmplwi(CR0, fpcnt, max_fp_register_arguments); 307 __ blt(CR0, move_floatSlot_to_FARG); 308 __ b(loop_start); 309 310 __ bind(loop_end); 311 312 __ pop_frame(); 313 __ restore_nonvolatile_registers(R1_SP, -save_nonvolatile_registers_size, false, false); 314 __ restore_LR(R0); 315 316 __ blr(); 317 318 Label move_int_arg, move_float_arg; 319 __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions) 320 __ mr(R5_ARG3, intSlot); __ b(loop_start); 321 __ mr(R6_ARG4, intSlot); __ b(loop_start); 322 __ mr(R7_ARG5, intSlot); __ b(loop_start); 323 __ mr(R8_ARG6, intSlot); __ b(loop_start); 324 __ mr(R9_ARG7, intSlot); __ b(loop_start); 325 __ mr(R10_ARG8, intSlot); __ b(loop_start); 326 327 __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions) 328 __ fmr(F1_ARG1, floatSlot); __ b(loop_start); 329 __ fmr(F2_ARG2, floatSlot); __ b(loop_start); 330 __ fmr(F3_ARG3, floatSlot); __ b(loop_start); 331 __ fmr(F4_ARG4, floatSlot); __ b(loop_start); 332 __ fmr(F5_ARG5, floatSlot); __ b(loop_start); 333 __ fmr(F6_ARG6, floatSlot); __ b(loop_start); 334 __ fmr(F7_ARG7, floatSlot); __ b(loop_start); 335 __ fmr(F8_ARG8, floatSlot); __ b(loop_start); 336 __ fmr(F9_ARG9, floatSlot); __ b(loop_start); 337 __ fmr(F10_ARG10, floatSlot); __ b(loop_start); 338 __ fmr(F11_ARG11, floatSlot); __ b(loop_start); 339 __ fmr(F12_ARG12, floatSlot); __ b(loop_start); 340 __ fmr(F13_ARG13, floatSlot); __ b(loop_start); 341 342 __ bind(move_intSlot_to_ARG); 343 __ sldi(R0, argcnt, LogSizeOfTwoInstructions); 344 __ load_const(R11_scratch1, move_int_arg); // Label must be bound here. 345 __ add(R11_scratch1, R0, R11_scratch1); 346 __ mtctr(R11_scratch1/*branch_target*/); 347 __ bctr(); 348 __ bind(move_floatSlot_to_FARG); 349 __ sldi(R0, fpcnt, LogSizeOfTwoInstructions); 350 __ addi(fpcnt, fpcnt, 1); 351 __ load_const(R11_scratch1, move_float_arg); // Label must be bound here. 352 __ add(R11_scratch1, R0, R11_scratch1); 353 __ mtctr(R11_scratch1/*branch_target*/); 354 __ bctr(); 355 356 return entry; 357 } 358 359 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) { 360 // 361 // Registers alive 362 // R3_RET 363 // LR 364 // 365 // Registers updated 366 // R3_RET 367 // 368 369 Label done; 370 address entry = __ pc(); 371 372 switch (type) { 373 case T_BOOLEAN: 374 // convert !=0 to 1 375 __ normalize_bool(R3_RET); 376 break; 377 case T_BYTE: 378 // sign extend 8 bits 379 __ extsb(R3_RET, R3_RET); 380 break; 381 case T_CHAR: 382 // zero extend 16 bits 383 __ clrldi(R3_RET, R3_RET, 48); 384 break; 385 case T_SHORT: 386 // sign extend 16 bits 387 __ extsh(R3_RET, R3_RET); 388 break; 389 case T_INT: 390 // sign extend 32 bits 391 __ extsw(R3_RET, R3_RET); 392 break; 393 case T_LONG: 394 break; 395 case T_OBJECT: 396 // JNIHandles::resolve result. 397 __ resolve_jobject(R3_RET, R11_scratch1, R31, MacroAssembler::PRESERVATION_FRAME_LR); // kills R31 398 break; 399 case T_FLOAT: 400 break; 401 case T_DOUBLE: 402 break; 403 case T_VOID: 404 break; 405 default: ShouldNotReachHere(); 406 } 407 408 BIND(done); 409 __ blr(); 410 411 return entry; 412 } 413 414 // Abstract method entry. 415 // 416 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 417 address entry = __ pc(); 418 419 // 420 // Registers alive 421 // R16_thread - JavaThread* 422 // R19_method - callee's method (method to be invoked) 423 // R1_SP - SP prepared such that caller's outgoing args are near top 424 // LR - return address to caller 425 // 426 // Stack layout at this point: 427 // 428 // 0 [TOP_IJAVA_FRAME_ABI] <-- R1_SP 429 // alignment (optional) 430 // [outgoing Java arguments] 431 // ... 432 // PARENT [PARENT_IJAVA_FRAME_ABI] 433 // ... 434 // 435 436 // Can't use call_VM here because we have not set up a new 437 // interpreter state. Make the call to the vm and make it look like 438 // our caller set up the JavaFrameAnchor. 439 __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/); 440 441 // Push a new C frame and save LR. 442 __ save_LR(R0); 443 __ push_frame_reg_args(0, R11_scratch1); 444 445 // This is not a leaf but we have a JavaFrameAnchor now and we will 446 // check (create) exceptions afterward so this is ok. 447 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorWithMethod), 448 R16_thread, R19_method); 449 450 // Pop the C frame and restore LR. 451 __ pop_frame(); 452 __ restore_LR(R0); 453 454 // Reset JavaFrameAnchor from call_VM_leaf above. 455 __ reset_last_Java_frame(); 456 457 // We don't know our caller, so jump to the general forward exception stub, 458 // which will also pop our full frame off. Satisfy the interface of 459 // SharedRuntime::generate_forward_exception() 460 __ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0); 461 __ mtctr(R11_scratch1); 462 __ bctr(); 463 464 return entry; 465 } 466 467 // Interpreter intrinsic for WeakReference.get(). 468 // 1. Don't push a full blown frame and go on dispatching, but fetch the value 469 // into R8 and return quickly 470 // 2. If G1 is active we *must* execute this intrinsic for corrrectness: 471 // It contains a GC barrier which puts the reference into the satb buffer 472 // to indicate that someone holds a strong reference to the object the 473 // weak ref points to! 474 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 475 // Code: _aload_0, _getfield, _areturn 476 // parameter size = 1 477 // 478 // The code that gets generated by this routine is split into 2 parts: 479 // 1. the "intrinsified" code for G1 (or any SATB based GC), 480 // 2. the slow path - which is an expansion of the regular method entry. 481 // 482 // Notes: 483 // * In the G1 code we do not check whether we need to block for 484 // a safepoint. If G1 is enabled then we must execute the specialized 485 // code for Reference.get (except when the Reference object is null) 486 // so that we can log the value in the referent field with an SATB 487 // update buffer. 488 // If the code for the getfield template is modified so that the 489 // G1 pre-barrier code is executed when the current method is 490 // Reference.get() then going through the normal method entry 491 // will be fine. 492 // * The G1 code can, however, check the receiver object (the instance 493 // of java.lang.Reference) and jump to the slow path if null. If the 494 // Reference object is null then we obviously cannot fetch the referent 495 // and so we don't need to call the G1 pre-barrier. Thus we can use the 496 // regular method entry code to generate the NPE. 497 // 498 499 address entry = __ pc(); 500 501 const int referent_offset = java_lang_ref_Reference::referent_offset(); 502 503 Label slow_path; 504 505 // Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH); 506 507 // In the G1 code we don't check if we need to reach a safepoint. We 508 // continue and the thread will safepoint at the next bytecode dispatch. 509 510 // If the receiver is null then it is OK to jump to the slow path. 511 __ ld(R3_RET, Interpreter::stackElementSize, R15_esp); // get receiver 512 513 // Check if receiver == nullptr and go the slow path. 514 __ cmpdi(CR0, R3_RET, 0); 515 __ beq(CR0, slow_path); 516 517 __ load_heap_oop(R3_RET, referent_offset, R3_RET, 518 /* non-volatile temp */ R31, R11_scratch1, 519 MacroAssembler::PRESERVATION_FRAME_LR, 520 ON_WEAK_OOP_REF); 521 522 // Generate the G1 pre-barrier code to log the value of 523 // the referent field in an SATB buffer. Note with 524 // these parameters the pre-barrier does not generate 525 // the load of the previous value. 526 527 // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted). 528 __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0); 529 530 __ blr(); 531 532 __ bind(slow_path); 533 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1); 534 return entry; 535 } 536 537 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 538 address entry = __ pc(); 539 540 // Expression stack must be empty before entering the VM if an 541 // exception happened. 542 __ empty_expression_stack(); 543 // Throw exception. 544 __ call_VM(noreg, 545 CAST_FROM_FN_PTR(address, 546 InterpreterRuntime::throw_StackOverflowError)); 547 return entry; 548 } 549 550 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 551 address entry = __ pc(); 552 __ empty_expression_stack(); 553 // R4_ARG2 already contains the array. 554 // Index is in R17_tos. 555 __ mr(R5_ARG3, R17_tos); 556 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), R4_ARG2, R5_ARG3); 557 return entry; 558 } 559 560 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 561 address entry = __ pc(); 562 // Expression stack must be empty before entering the VM if an 563 // exception happened. 564 __ empty_expression_stack(); 565 566 // Load exception object. 567 // Thread will be loaded to R3_ARG1. 568 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos); 569 #ifdef ASSERT 570 // Above call must not return here since exception pending. 571 __ should_not_reach_here(); 572 #endif 573 return entry; 574 } 575 576 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) { 577 address entry = __ pc(); 578 //__ untested("generate_exception_handler_common"); 579 Register Rexception = R17_tos; 580 581 // Expression stack must be empty before entering the VM if an exception happened. 582 __ empty_expression_stack(); 583 584 __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1); 585 if (pass_oop) { 586 __ mr(R5_ARG3, Rexception); 587 __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception)); 588 } else { 589 __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1); 590 __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception)); 591 } 592 593 // Throw exception. 594 __ mr(R3_ARG1, Rexception); 595 __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2); 596 __ mtctr(R11_scratch1); 597 __ bctr(); 598 599 return entry; 600 } 601 602 // This entry is returned to when a call returns to the interpreter. 603 // When we arrive here, we expect that the callee stack frame is already popped. 604 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { 605 address entry = __ pc(); 606 607 // Move the value out of the return register back to the TOS cache of current frame. 608 switch (state) { 609 case ltos: 610 case btos: 611 case ztos: 612 case ctos: 613 case stos: 614 case atos: 615 case itos: __ mr(R17_tos, R3_RET); break; // RET -> TOS cache 616 case ftos: 617 case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET 618 case vtos: break; // Nothing to do, this was a void return. 619 default : ShouldNotReachHere(); 620 } 621 622 __ restore_interpreter_state(R11_scratch1, false /*bcp_and_mdx_only*/, true /*restore_top_frame_sp*/); 623 624 // Compiled code destroys templateTableBase, reload. 625 __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2); 626 627 if (state == atos) { 628 __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2); 629 } 630 631 const Register cache = R11_scratch1; 632 const Register size = R12_scratch2; 633 if (index_size == sizeof(u4)) { 634 __ load_resolved_indy_entry(cache, size /* tmp */); 635 __ lhz(size, in_bytes(ResolvedIndyEntry::num_parameters_offset()), cache); 636 } else { 637 assert(index_size == sizeof(u2), "Can only be u2"); 638 __ load_method_entry(cache, size /* tmp */); 639 __ lhz(size, in_bytes(ResolvedMethodEntry::num_parameters_offset()), cache); 640 } 641 __ sldi(size, size, Interpreter::logStackElementSize); 642 __ add(R15_esp, R15_esp, size); 643 644 __ check_and_handle_popframe(R11_scratch1); 645 __ check_and_handle_earlyret(R11_scratch1); 646 647 __ dispatch_next(state, step); 648 return entry; 649 } 650 651 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step, address continuation) { 652 address entry = __ pc(); 653 // If state != vtos, we're returning from a native method, which put it's result 654 // into the result register. So move the value out of the return register back 655 // to the TOS cache of current frame. 656 657 switch (state) { 658 case ltos: 659 case btos: 660 case ztos: 661 case ctos: 662 case stos: 663 case atos: 664 case itos: __ mr(R17_tos, R3_RET); break; // GR_RET -> TOS cache 665 case ftos: 666 case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET 667 case vtos: break; // Nothing to do, this was a void return. 668 default : ShouldNotReachHere(); 669 } 670 671 // Load LcpoolCache @@@ should be already set! 672 __ get_constant_pool_cache(R27_constPoolCache); 673 674 // Handle a pending exception, fall through if none. 675 __ check_and_forward_exception(R11_scratch1, R12_scratch2); 676 677 // Start executing bytecodes. 678 if (continuation == nullptr) { 679 __ dispatch_next(state, step); 680 } else { 681 __ jump_to_entry(continuation, R11_scratch1); 682 } 683 684 return entry; 685 } 686 687 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) { 688 address entry = __ pc(); 689 690 __ push(state); 691 __ push_cont_fastpath(); 692 __ call_VM(noreg, runtime_entry); 693 __ pop_cont_fastpath(); 694 __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos)); 695 696 return entry; 697 } 698 699 address TemplateInterpreterGenerator::generate_cont_resume_interpreter_adapter() { 700 if (!Continuations::enabled()) return nullptr; 701 address start = __ pc(); 702 703 __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2); 704 __ restore_interpreter_state(R11_scratch1, false, true /*restore_top_frame_sp*/); 705 __ blr(); 706 707 return start; 708 } 709 710 // Helpers for commoning out cases in the various type of method entries. 711 712 // Increment invocation count & check for overflow. 713 // 714 // Note: checking for negative value instead of overflow 715 // so we have a 'sticky' overflow test. 716 // 717 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 718 // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not. 719 Register Rscratch1 = R11_scratch1; 720 Register Rscratch2 = R12_scratch2; 721 Register R3_counters = R3_ARG1; 722 Label done; 723 724 const int increment = InvocationCounter::count_increment; 725 Label no_mdo; 726 if (ProfileInterpreter) { 727 const Register Rmdo = R3_counters; 728 __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method); 729 __ cmpdi(CR0, Rmdo, 0); 730 __ beq(CR0, no_mdo); 731 732 // Increment invocation counter in the MDO. 733 const int mdo_ic_offs = in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset()); 734 __ lwz(Rscratch2, mdo_ic_offs, Rmdo); 735 __ lwz(Rscratch1, in_bytes(MethodData::invoke_mask_offset()), Rmdo); 736 __ addi(Rscratch2, Rscratch2, increment); 737 __ stw(Rscratch2, mdo_ic_offs, Rmdo); 738 __ and_(Rscratch1, Rscratch2, Rscratch1); 739 __ bne(CR0, done); 740 __ b(*overflow); 741 } 742 743 // Increment counter in MethodCounters*. 744 const int mo_ic_offs = in_bytes(MethodCounters::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset()); 745 __ bind(no_mdo); 746 __ get_method_counters(R19_method, R3_counters, done); 747 __ lwz(Rscratch2, mo_ic_offs, R3_counters); 748 __ lwz(Rscratch1, in_bytes(MethodCounters::invoke_mask_offset()), R3_counters); 749 __ addi(Rscratch2, Rscratch2, increment); 750 __ stw(Rscratch2, mo_ic_offs, R3_counters); 751 __ and_(Rscratch1, Rscratch2, Rscratch1); 752 __ beq(CR0, *overflow); 753 754 __ bind(done); 755 } 756 757 // Generate code to initiate compilation on invocation counter overflow. 758 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) { 759 // Generate code to initiate compilation on the counter overflow. 760 761 // InterpreterRuntime::frequency_counter_overflow takes one arguments, 762 // which indicates if the counter overflow occurs at a backwards branch (null bcp) 763 // We pass zero in. 764 // The call returns the address of the verified entry point for the method or null 765 // if the compilation did not complete (either went background or bailed out). 766 // 767 // Unlike the C++ interpreter above: Check exceptions! 768 // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed 769 // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur. 770 771 __ li(R4_ARG2, 0); 772 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true); 773 774 // Returns verified_entry_point or null. 775 // We ignore it in any case. 776 __ b(continue_entry); 777 } 778 779 // See if we've got enough room on the stack for locals plus overhead below 780 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError 781 // without going through the signal handler, i.e., reserved and yellow zones 782 // will not be made usable. The shadow zone must suffice to handle the 783 // overflow. 784 // 785 // Kills Rmem_frame_size, Rscratch1. 786 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) { 787 Label done; 788 assert_different_registers(Rmem_frame_size, Rscratch1); 789 790 BLOCK_COMMENT("stack_overflow_check_with_compare {"); 791 __ sub(Rmem_frame_size, R1_SP, Rmem_frame_size); 792 __ ld(Rscratch1, thread_(stack_overflow_limit)); 793 __ cmpld(CR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1); 794 __ bgt(CR0/*is_stack_overflow*/, done); 795 796 // The stack overflows. Load target address of the runtime stub and call it. 797 assert(SharedRuntime::throw_StackOverflowError_entry() != nullptr, "generated in wrong order"); 798 __ load_const_optimized(Rscratch1, (SharedRuntime::throw_StackOverflowError_entry()), R0); 799 __ mtctr(Rscratch1); 800 // Restore caller_sp (c2i adapter may exist, but no shrinking of interpreted caller frame). 801 #ifdef ASSERT 802 Label frame_not_shrunk; 803 __ cmpld(CR0, R1_SP, R21_sender_SP); 804 __ ble(CR0, frame_not_shrunk); 805 __ stop("frame shrunk"); 806 __ bind(frame_not_shrunk); 807 __ ld(Rscratch1, 0, R1_SP); 808 __ ld(R0, 0, R21_sender_SP); 809 __ cmpd(CR0, R0, Rscratch1); 810 __ asm_assert_eq("backlink"); 811 #endif // ASSERT 812 __ mr(R1_SP, R21_sender_SP); 813 __ bctr(); 814 815 __ align(32, 12); 816 __ bind(done); 817 BLOCK_COMMENT("} stack_overflow_check_with_compare"); 818 } 819 820 // Lock the current method, interpreter register window must be set up! 821 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) { 822 const Register Robj_to_lock = Rscratch2; 823 824 { 825 if (!flags_preloaded) { 826 __ lhz(Rflags, method_(access_flags)); 827 } 828 829 #ifdef ASSERT 830 // Check if methods needs synchronization. 831 { 832 Label Lok; 833 __ testbitdi(CR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT); 834 __ btrue(CR0,Lok); 835 __ stop("method doesn't need synchronization"); 836 __ bind(Lok); 837 } 838 #endif // ASSERT 839 } 840 841 // Get synchronization object to Rscratch2. 842 { 843 Label Lstatic; 844 Label Ldone; 845 846 __ testbitdi(CR0, R0, Rflags, JVM_ACC_STATIC_BIT); 847 __ btrue(CR0, Lstatic); 848 849 // Non-static case: load receiver obj from stack and we're done. 850 __ ld(Robj_to_lock, R18_locals); 851 __ b(Ldone); 852 853 __ bind(Lstatic); // Static case: Lock the java mirror 854 // Load mirror from interpreter frame. 855 __ ld(Robj_to_lock, _abi0(callers_sp), R1_SP); 856 __ ld(Robj_to_lock, _ijava_state_neg(mirror), Robj_to_lock); 857 858 __ bind(Ldone); 859 __ verify_oop(Robj_to_lock); 860 } 861 862 // Got the oop to lock => execute! 863 __ add_monitor_to_stack(true, Rscratch1, R0); 864 865 __ std(Robj_to_lock, in_bytes(BasicObjectLock::obj_offset()), R26_monitor); 866 __ lock_object(R26_monitor, Robj_to_lock); 867 } 868 869 // Generate a fixed interpreter frame for pure interpreter 870 // and I2N native transition frames. 871 // 872 // Before (stack grows downwards): 873 // 874 // | ... | 875 // |------------- | 876 // | java arg0 | 877 // | ... | 878 // | java argn | 879 // | | <- R15_esp 880 // | | 881 // |--------------| 882 // | abi_112 | 883 // | | <- R1_SP 884 // |==============| 885 // 886 // 887 // After: 888 // 889 // | ... | 890 // | java arg0 |<- R18_locals 891 // | ... | 892 // | java argn | 893 // |--------------| 894 // | | 895 // | java locals | 896 // | | 897 // |--------------| 898 // | abi_48 | 899 // |==============| 900 // | | 901 // | istate | 902 // | | 903 // |--------------| 904 // | monitor |<- R26_monitor 905 // |--------------| 906 // | |<- R15_esp 907 // | expression | 908 // | stack | 909 // | | 910 // |--------------| 911 // | | 912 // | abi_112 |<- R1_SP 913 // |==============| 914 // 915 // The top most frame needs an abi space of 112 bytes. This space is needed, 916 // since we call to c. The c function may spill their arguments to the caller 917 // frame. When we call to java, we don't need these spill slots. In order to save 918 // space on the stack, we resize the caller. However, java locals reside in 919 // the caller frame and the frame has to be increased. The frame_size for the 920 // current frame was calculated based on max_stack as size for the expression 921 // stack. At the call, just a part of the expression stack might be used. 922 // We don't want to waste this space and cut the frame back accordingly. 923 // The resulting amount for resizing is calculated as follows: 924 // resize = (number_of_locals - number_of_arguments) * slot_size 925 // + (R1_SP - R15_esp) + 48 926 // 927 // The size for the callee frame is calculated: 928 // framesize = 112 + max_stack + monitor + state_size 929 // 930 // maxstack: Max number of slots on the expression stack, loaded from the method. 931 // monitor: We statically reserve room for one monitor object. 932 // state_size: We save the current state of the interpreter to this area. 933 // 934 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) { 935 Register Rparent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes. 936 Rtop_frame_size = R7_ARG5, 937 Rconst_method = R8_ARG6, 938 Rconst_pool = R9_ARG7, 939 Rmirror = R10_ARG8; 940 941 assert_different_registers(Rsize_of_parameters, Rsize_of_locals, Rparent_frame_resize, Rtop_frame_size, 942 Rconst_method, Rconst_pool); 943 944 __ ld(Rconst_method, method_(const)); 945 __ lhz(Rsize_of_parameters /* number of params */, 946 in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method); 947 if (native_call) { 948 // If we're calling a native method, we reserve space for the worst-case signature 949 // handler varargs vector, which is max(Argument::n_int_register_parameters_c, parameter_count+2). 950 // We add two slots to the parameter_count, one for the jni 951 // environment and one for a possible native mirror. 952 Label skip_native_calculate_max_stack; 953 __ addi(Rtop_frame_size, Rsize_of_parameters, 2); 954 __ cmpwi(CR0, Rtop_frame_size, Argument::n_int_register_parameters_c); 955 __ bge(CR0, skip_native_calculate_max_stack); 956 __ li(Rtop_frame_size, Argument::n_int_register_parameters_c); 957 __ bind(skip_native_calculate_max_stack); 958 __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize); 959 __ sldi(Rtop_frame_size, Rtop_frame_size, Interpreter::logStackElementSize); 960 __ sub(Rparent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize! 961 assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters. 962 } else { 963 __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method); 964 __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize); 965 __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize); 966 __ lhz(Rtop_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method); 967 __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0 968 __ sub(Rparent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize! 969 __ sldi(Rtop_frame_size, Rtop_frame_size, Interpreter::logStackElementSize); 970 __ add(Rparent_frame_resize, Rparent_frame_resize, R11_scratch1); 971 } 972 973 // Compute top frame size. 974 __ addi(Rtop_frame_size, Rtop_frame_size, frame::top_ijava_frame_abi_size + frame::ijava_state_size); 975 976 // Cut back area between esp and max_stack. 977 __ addi(Rparent_frame_resize, Rparent_frame_resize, frame::parent_ijava_frame_abi_size - Interpreter::stackElementSize); 978 979 __ round_to(Rtop_frame_size, frame::alignment_in_bytes); 980 __ round_to(Rparent_frame_resize, frame::alignment_in_bytes); 981 // Rparent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size. 982 // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48. 983 984 if (!native_call) { 985 // Stack overflow check. 986 // Native calls don't need the stack size check since they have no 987 // expression stack and the arguments are already on the stack and 988 // we only add a handful of words to the stack. 989 __ add(R11_scratch1, Rparent_frame_resize, Rtop_frame_size); 990 generate_stack_overflow_check(R11_scratch1, R12_scratch2); 991 } 992 993 // Set up interpreter state registers. 994 995 __ add(R18_locals, R15_esp, Rsize_of_parameters); 996 __ ld(Rconst_pool, in_bytes(ConstMethod::constants_offset()), Rconst_method); 997 __ ld(R27_constPoolCache, ConstantPool::cache_offset(), Rconst_pool); 998 999 // Set method data pointer. 1000 if (ProfileInterpreter) { 1001 Label zero_continue; 1002 __ ld(R28_mdx, method_(method_data)); 1003 __ cmpdi(CR0, R28_mdx, 0); 1004 __ beq(CR0, zero_continue); 1005 __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset())); 1006 __ bind(zero_continue); 1007 } 1008 1009 if (native_call) { 1010 __ li(R14_bcp, 0); // Must initialize. 1011 } else { 1012 __ addi(R14_bcp, Rconst_method, in_bytes(ConstMethod::codes_offset())); 1013 } 1014 1015 // Resize parent frame. 1016 __ mflr(R12_scratch2); 1017 __ neg(Rparent_frame_resize, Rparent_frame_resize); 1018 __ resize_frame(Rparent_frame_resize, R11_scratch1); 1019 __ std(R12_scratch2, _abi0(lr), R1_SP); 1020 1021 // Get mirror and store it in the frame as GC root for this Method*. 1022 __ ld(Rmirror, ConstantPool::pool_holder_offset(), Rconst_pool); 1023 __ ld(Rmirror, in_bytes(Klass::java_mirror_offset()), Rmirror); 1024 __ resolve_oop_handle(Rmirror, R11_scratch1, R12_scratch2, MacroAssembler::PRESERVATION_FRAME_LR_GP_REGS); 1025 1026 __ addi(R26_monitor, R1_SP, -frame::ijava_state_size); 1027 __ addi(R15_esp, R26_monitor, -Interpreter::stackElementSize); 1028 1029 // Store values. 1030 __ std(R19_method, _ijava_state_neg(method), R1_SP); 1031 __ std(Rmirror, _ijava_state_neg(mirror), R1_SP); 1032 __ sub(R12_scratch2, R18_locals, R1_SP); 1033 __ srdi(R12_scratch2, R12_scratch2, Interpreter::logStackElementSize); 1034 // Store relativized R18_locals, see frame::interpreter_frame_locals(). 1035 __ std(R12_scratch2, _ijava_state_neg(locals), R1_SP); 1036 __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP); 1037 1038 // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only 1039 // be found in the frame after save_interpreter_state is done. This is always true 1040 // for non-top frames. But when a signal occurs, dumping the top frame can go wrong, 1041 // because e.g. frame::interpreter_frame_bcp() will not access the correct value 1042 // (Enhanced Stack Trace). 1043 // The signal handler does not save the interpreter state into the frame. 1044 1045 // We have to initialize some of these frame slots for native calls (accessed by GC). 1046 // Also initialize them for non-native calls for better tool support (even though 1047 // you may not get the most recent version as described above). 1048 __ li(R0, 0); 1049 __ li(R12_scratch2, -(frame::ijava_state_size / wordSize)); 1050 __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP); 1051 __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP); 1052 if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); } 1053 __ sub(R12_scratch2, R15_esp, R1_SP); 1054 __ sradi(R12_scratch2, R12_scratch2, Interpreter::logStackElementSize); 1055 __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP); 1056 __ std(R0, _ijava_state_neg(oop_tmp), R1_SP); // only used for native_call 1057 1058 // Store sender's SP and this frame's top SP. 1059 __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP); 1060 __ neg(R12_scratch2, Rtop_frame_size); 1061 __ sradi(R12_scratch2, R12_scratch2, Interpreter::logStackElementSize); 1062 // Store relativized top_frame_sp 1063 __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP); 1064 1065 // Push top frame. 1066 __ push_frame(Rtop_frame_size, R11_scratch1); 1067 } 1068 1069 // End of helpers 1070 1071 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 1072 1073 // Decide what to do: Use same platform specific instructions and runtime calls as compilers. 1074 bool use_instruction = false; 1075 address runtime_entry = nullptr; 1076 int num_args = 1; 1077 bool double_precision = true; 1078 1079 // PPC64 specific: 1080 switch (kind) { 1081 case Interpreter::java_lang_math_sqrt: use_instruction = true; break; 1082 case Interpreter::java_lang_math_abs: use_instruction = true; break; 1083 case Interpreter::java_lang_math_fmaF: 1084 case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break; 1085 default: break; // Fall back to runtime call. 1086 } 1087 1088 switch (kind) { 1089 case Interpreter::java_lang_math_sin : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); break; 1090 case Interpreter::java_lang_math_cos : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); break; 1091 case Interpreter::java_lang_math_tan : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); break; 1092 case Interpreter::java_lang_math_tanh : /* run interpreted */ break; 1093 case Interpreter::java_lang_math_abs : /* run interpreted */ break; 1094 case Interpreter::java_lang_math_sqrt : /* run interpreted */ break; 1095 case Interpreter::java_lang_math_log : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); break; 1096 case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break; 1097 case Interpreter::java_lang_math_pow : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break; 1098 case Interpreter::java_lang_math_exp : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); break; 1099 case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break; 1100 case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break; 1101 default: ShouldNotReachHere(); 1102 } 1103 1104 // Use normal entry if neither instruction nor runtime call is used. 1105 if (!use_instruction && runtime_entry == nullptr) return nullptr; 1106 1107 address entry = __ pc(); 1108 1109 // Load arguments 1110 assert(num_args <= 13, "passed in registers"); 1111 if (double_precision) { 1112 int offset = (2 * num_args - 1) * Interpreter::stackElementSize; 1113 for (int i = 0; i < num_args; ++i) { 1114 __ lfd(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp); 1115 offset -= 2 * Interpreter::stackElementSize; 1116 } 1117 } else { 1118 int offset = num_args * Interpreter::stackElementSize; 1119 for (int i = 0; i < num_args; ++i) { 1120 __ lfs(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp); 1121 offset -= Interpreter::stackElementSize; 1122 } 1123 } 1124 1125 if (use_instruction) { 1126 switch (kind) { 1127 case Interpreter::java_lang_math_sqrt: __ fsqrt(F1_RET, F1); break; 1128 case Interpreter::java_lang_math_abs: __ fabs(F1_RET, F1); break; 1129 case Interpreter::java_lang_math_fmaF: __ fmadds(F1_RET, F1, F2, F3); break; 1130 case Interpreter::java_lang_math_fmaD: __ fmadd(F1_RET, F1, F2, F3); break; 1131 default: ShouldNotReachHere(); 1132 } 1133 } else { 1134 // Comment: Can use tail call if the unextended frame is always C ABI compliant: 1135 //__ load_const_optimized(R12_scratch2, runtime_entry, R0); 1136 //__ call_c_and_return_to_caller(R12_scratch2); 1137 1138 // Push a new C frame and save LR. 1139 __ save_LR(R0); 1140 __ push_frame_reg_args(0, R11_scratch1); 1141 1142 __ call_VM_leaf(runtime_entry); 1143 1144 // Pop the C frame and restore LR. 1145 __ pop_frame(); 1146 __ restore_LR(R0); 1147 } 1148 1149 // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted). 1150 __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0); 1151 __ blr(); 1152 1153 __ flush(); 1154 1155 return entry; 1156 } 1157 1158 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { 1159 if (!VM_Version::supports_float16()) return nullptr; 1160 1161 address entry = __ pc(); 1162 1163 __ lfs(F1, Interpreter::stackElementSize, R15_esp); 1164 __ f2hf(R3_RET, F1, F0); 1165 1166 // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted). 1167 __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0); 1168 __ blr(); 1169 1170 __ flush(); 1171 1172 return entry; 1173 } 1174 1175 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { 1176 if (!VM_Version::supports_float16()) return nullptr; 1177 1178 address entry = __ pc(); 1179 1180 // Note: Could also use: 1181 //__ li(R3, Interpreter::stackElementSize); 1182 //__ lfiwax(F1_RET, R15_esp, R3); // short stored as 32 bit integer 1183 //__ xscvhpdp(F1_RET->to_vsr(), F1_RET->to_vsr()); 1184 __ lwa(R3, Interpreter::stackElementSize, R15_esp); 1185 __ hf2f(F1_RET, R3); 1186 1187 // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted). 1188 __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0); 1189 __ blr(); 1190 1191 __ flush(); 1192 1193 return entry; 1194 } 1195 1196 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) { 1197 // Quick & dirty stack overflow checking: bang the stack & handle trap. 1198 // Note that we do the banging after the frame is setup, since the exception 1199 // handling code expects to find a valid interpreter frame on the stack. 1200 // Doing the banging earlier fails if the caller frame is not an interpreter 1201 // frame. 1202 // (Also, the exception throwing code expects to unlock any synchronized 1203 // method receiever, so do the banging after locking the receiver.) 1204 1205 // Bang each page in the shadow zone. We can't assume it's been done for 1206 // an interpreter frame with greater than a page of locals, so each page 1207 // needs to be checked. Only true for non-native. 1208 const size_t page_size = os::vm_page_size(); 1209 const int n_shadow_pages = StackOverflow::stack_shadow_zone_size() / page_size; 1210 const int start_page = native_call ? n_shadow_pages : 1; 1211 BLOCK_COMMENT("bang_stack_shadow_pages:"); 1212 for (int pages = start_page; pages <= n_shadow_pages; pages++) { 1213 __ bang_stack_with_offset(pages*page_size); 1214 } 1215 } 1216 1217 // Interpreter stub for calling a native method. (asm interpreter) 1218 // This sets up a somewhat different looking stack for calling the 1219 // native method than the typical interpreter frame setup. 1220 // 1221 // On entry: 1222 // R19_method - method 1223 // R16_thread - JavaThread* 1224 // R15_esp - intptr_t* sender tos 1225 // 1226 // abstract stack (grows up) 1227 // [ IJava (caller of JNI callee) ] <-- ASP 1228 // ... 1229 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { 1230 1231 address entry = __ pc(); 1232 1233 const bool inc_counter = UseCompiler || CountCompiledCalls; 1234 1235 // ----------------------------------------------------------------------------- 1236 // Allocate a new frame that represents the native callee (i2n frame). 1237 // This is not a full-blown interpreter frame, but in particular, the 1238 // following registers are valid after this: 1239 // - R19_method 1240 // - R18_local (points to start of arguments to native function) 1241 // 1242 // abstract stack (grows up) 1243 // [ IJava (caller of JNI callee) ] <-- ASP 1244 // ... 1245 1246 const Register signature_handler_fd = R11_scratch1; 1247 const Register pending_exception = R0; 1248 const Register result_handler_addr = R31; 1249 const Register native_method_fd = R12_scratch2; // preferred in MacroAssembler::branch_to 1250 const Register access_flags = R22_tmp2; 1251 const Register active_handles = R11_scratch1; // R26_monitor saved to state. 1252 const Register sync_state = R12_scratch2; 1253 const Register sync_state_addr = sync_state; // Address is dead after use. 1254 const Register suspend_flags = R11_scratch1; 1255 1256 //============================================================================= 1257 // Allocate new frame and initialize interpreter state. 1258 1259 Label exception_return; 1260 Label exception_return_sync_check; 1261 Label stack_overflow_return; 1262 1263 Register size_of_parameters = R22_tmp2; 1264 1265 generate_fixed_frame(true, size_of_parameters, noreg /* unused */); 1266 1267 //============================================================================= 1268 // Increment invocation counter. On overflow, entry to JNI method 1269 // will be compiled. 1270 Label invocation_counter_overflow, continue_after_compile; 1271 if (inc_counter) { 1272 if (synchronized) { 1273 // Since at this point in the method invocation the exception handler 1274 // would try to exit the monitor of synchronized methods which hasn't 1275 // been entered yet, we set the thread local variable 1276 // _do_not_unlock_if_synchronized to true. If any exception was thrown by 1277 // runtime, exception handling i.e. unlock_if_synchronized_method will 1278 // check this thread local flag. 1279 // This flag has two effects, one is to force an unwind in the topmost 1280 // interpreter frame and not perform an unlock while doing so. 1281 __ li(R0, 1); 1282 __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); 1283 } 1284 generate_counter_incr(&invocation_counter_overflow); 1285 1286 BIND(continue_after_compile); 1287 } 1288 1289 bang_stack_shadow_pages(true); 1290 1291 if (inc_counter) { 1292 // Reset the _do_not_unlock_if_synchronized flag. 1293 if (synchronized) { 1294 __ li(R0, 0); 1295 __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); 1296 } 1297 } 1298 1299 // access_flags = method->access_flags(); 1300 // Load access flags. 1301 assert(__ nonvolatile_accross_vthread_preemtion(access_flags), 1302 "access_flags not preserved"); 1303 // Type check. 1304 assert(2 == sizeof(AccessFlags), "unexpected field size"); 1305 __ lhz(access_flags, method_(access_flags)); 1306 1307 // We don't want to reload R19_method and access_flags after calls 1308 // to some helper functions. 1309 assert(R19_method->is_nonvolatile(), 1310 "R19_method must be a non-volatile register"); 1311 1312 // Check for synchronized methods. Must happen AFTER invocation counter 1313 // check, so method is not locked if counter overflows. 1314 1315 if (synchronized) { 1316 lock_method(access_flags, R11_scratch1, R12_scratch2, true); 1317 1318 // Update monitor in state. 1319 __ ld(R11_scratch1, 0, R1_SP); 1320 __ sub(R12_scratch2, R26_monitor, R11_scratch1); 1321 __ sradi(R12_scratch2, R12_scratch2, Interpreter::logStackElementSize); 1322 __ std(R12_scratch2, _ijava_state_neg(monitors), R11_scratch1); 1323 } 1324 1325 // jvmti/jvmpi support 1326 __ notify_method_entry(); 1327 1328 //============================================================================= 1329 // Get and call the signature handler. 1330 1331 __ ld(signature_handler_fd, method_(signature_handler)); 1332 Label call_signature_handler; 1333 1334 __ cmpdi(CR0, signature_handler_fd, 0); 1335 __ bne(CR0, call_signature_handler); 1336 1337 // Method has never been called. Either generate a specialized 1338 // handler or point to the slow one. 1339 // 1340 // Pass parameter 'false' to avoid exception check in call_VM. 1341 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false); 1342 1343 // Check for an exception while looking up the target method. If we 1344 // incurred one, bail. 1345 __ ld(pending_exception, thread_(pending_exception)); 1346 __ cmpdi(CR0, pending_exception, 0); 1347 __ bne(CR0, exception_return_sync_check); // Has pending exception. 1348 1349 // Reload signature handler, it may have been created/assigned in the meanwhile. 1350 __ ld(signature_handler_fd, method_(signature_handler)); 1351 __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below). 1352 1353 BIND(call_signature_handler); 1354 1355 // Before we call the signature handler we push a new frame to 1356 // protect the interpreter frame volatile registers when we return 1357 // from jni but before we can get back to Java. 1358 1359 // First set the frame anchor while the SP/FP registers are 1360 // convenient and the slow signature handler can use this same frame 1361 // anchor. 1362 1363 bool support_vthread_preemption = Continuations::enabled() && LockingMode != LM_LEGACY; 1364 1365 // We have a TOP_IJAVA_FRAME here, which belongs to us. 1366 Label last_java_pc; 1367 Label *resume_pc = support_vthread_preemption ? &last_java_pc : nullptr; 1368 __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R3_ARG1/*tmp*/, resume_pc); 1369 1370 // Now the interpreter frame (and its call chain) have been 1371 // invalidated and flushed. We are now protected against eager 1372 // being enabled in native code. Even if it goes eager the 1373 // registers will be reloaded as clean and we will invalidate after 1374 // the call so no spurious flush should be possible. 1375 1376 // Call signature handler and pass locals address. 1377 // 1378 // Our signature handlers copy required arguments to the C stack 1379 // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13. 1380 __ mr(R3_ARG1, R18_locals); 1381 #if !defined(ABI_ELFv2) 1382 __ ld(signature_handler_fd, 0, signature_handler_fd); 1383 #endif 1384 1385 __ call_stub(signature_handler_fd); 1386 1387 assert(__ nonvolatile_accross_vthread_preemtion(result_handler_addr), 1388 "result_handler_addr not preserved"); 1389 // Save across call to native method. 1390 __ mr(result_handler_addr, R3_RET); 1391 __ ld(R11_scratch1, _abi0(callers_sp), R1_SP); // load FP 1392 1393 __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror. 1394 1395 // Set up fixed parameters and call the native method. 1396 // If the method is static, get mirror into R4_ARG2. 1397 { 1398 Label method_is_not_static; 1399 // Access_flags is non-volatile and still, no need to restore it. 1400 1401 // Restore access flags. 1402 __ testbitdi(CR0, R0, access_flags, JVM_ACC_STATIC_BIT); 1403 __ bfalse(CR0, method_is_not_static); 1404 1405 // Load mirror from interpreter frame (FP in R11_scratch1) 1406 __ ld(R21_tmp1, _ijava_state_neg(mirror), R11_scratch1); 1407 // R4_ARG2 = &state->_oop_temp; 1408 __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp)); 1409 __ std(R21_tmp1/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); 1410 BIND(method_is_not_static); 1411 } 1412 1413 // At this point, arguments have been copied off the stack into 1414 // their JNI positions. Oops are boxed in-place on the stack, with 1415 // handles copied to arguments. The result handler address is in a 1416 // register. 1417 1418 // Pass JNIEnv address as first parameter. 1419 __ addir(R3_ARG1, thread_(jni_environment)); 1420 1421 // Load the native_method entry before we change the thread state. 1422 __ ld(native_method_fd, method_(native_function)); 1423 1424 //============================================================================= 1425 // Transition from _thread_in_Java to _thread_in_native. As soon as 1426 // we make this change the safepoint code needs to be certain that 1427 // the last Java frame we established is good. The pc in that frame 1428 // just needs to be near here not an actual return address. 1429 1430 // We use release_store_fence to update values like the thread state, where 1431 // we don't want the current thread to continue until all our prior memory 1432 // accesses (including the new thread state) are visible to other threads. 1433 __ li(R0, _thread_in_native); 1434 __ release(); 1435 1436 // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size"); 1437 __ stw(R0, thread_(thread_state)); 1438 1439 //============================================================================= 1440 // Call the native method. Argument registers must not have been 1441 // overwritten since "__ call_stub(signature_handler);" (except for 1442 // ARG1 and ARG2 for static methods). 1443 1444 if (support_vthread_preemption) { 1445 // result_handler_addr is a nonvolatile register. Its value will be preserved across 1446 // the native call but only if the call isn't preempted. To preserve its value even 1447 // in the case of preemption we save it in the lresult slot. It is restored at 1448 // resume_pc if, and only if the call was preempted. This works because only 1449 // j.l.Object::wait calls are preempted which don't return a result. 1450 __ std(result_handler_addr, _ijava_state_neg(lresult), R11_scratch1); 1451 } 1452 __ push_cont_fastpath(); 1453 __ call_c(native_method_fd); 1454 __ pop_cont_fastpath(); 1455 1456 __ li(R0, 0); 1457 __ ld(R11_scratch1, 0, R1_SP); 1458 __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1); 1459 __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1); 1460 __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset 1461 1462 // Note: C++ interpreter needs the following here: 1463 // The frame_manager_lr field, which we use for setting the last 1464 // java frame, gets overwritten by the signature handler. Restore 1465 // it now. 1466 //__ get_PC_trash_LR(R11_scratch1); 1467 //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP); 1468 1469 // Because of GC R19_method may no longer be valid. 1470 1471 // Block, if necessary, before resuming in _thread_in_Java state. 1472 // In order for GC to work, don't clear the last_Java_sp until after 1473 // blocking. 1474 1475 //============================================================================= 1476 // Switch thread to "native transition" state before reading the 1477 // synchronization state. This additional state is necessary 1478 // because reading and testing the synchronization state is not 1479 // atomic w.r.t. GC, as this scenario demonstrates: Java thread A, 1480 // in _thread_in_native state, loads _not_synchronized and is 1481 // preempted. VM thread changes sync state to synchronizing and 1482 // suspends threads for GC. Thread A is resumed to finish this 1483 // native method, but doesn't block here since it didn't see any 1484 // synchronization in progress, and escapes. 1485 1486 // We use release_store_fence to update values like the thread state, where 1487 // we don't want the current thread to continue until all our prior memory 1488 // accesses (including the new thread state) are visible to other threads. 1489 __ li(R0/*thread_state*/, _thread_in_native_trans); 1490 __ release(); 1491 __ stw(R0/*thread_state*/, thread_(thread_state)); 1492 if (!UseSystemMemoryBarrier) { 1493 __ fence(); 1494 } 1495 1496 // Now before we return to java we must look for a current safepoint 1497 // (a new safepoint can not start since we entered native_trans). 1498 // We must check here because a current safepoint could be modifying 1499 // the callers registers right this moment. 1500 1501 // Acquire isn't strictly necessary here because of the fence, but 1502 // sync_state is declared to be volatile, so we do it anyway 1503 // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path). 1504 1505 Label do_safepoint, sync_check_done; 1506 // No synchronization in progress nor yet synchronized. 1507 __ safepoint_poll(do_safepoint, sync_state, true /* at_return */, false /* in_nmethod */); 1508 1509 // Not suspended. 1510 // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size"); 1511 __ lwz(suspend_flags, thread_(suspend_flags)); 1512 __ cmpwi(CR1, suspend_flags, 0); 1513 __ beq(CR1, sync_check_done); 1514 1515 __ bind(do_safepoint); 1516 __ isync(); 1517 // Block. We do the call directly and leave the current 1518 // last_Java_frame setup undisturbed. We must save any possible 1519 // native result across the call. No oop is present. 1520 1521 __ mr(R3_ARG1, R16_thread); 1522 __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)); 1523 1524 __ bind(sync_check_done); 1525 1526 //============================================================================= 1527 // <<<<<< Back in Interpreter Frame >>>>> 1528 1529 // We are in thread_in_native_trans here and back in the normal 1530 // interpreter frame. We don't have to do anything special about 1531 // safepoints and we can switch to Java mode anytime we are ready. 1532 1533 // Note: frame::interpreter_frame_result has a dependency on how the 1534 // method result is saved across the call to post_method_exit. For 1535 // native methods it assumes that the non-FPU/non-void result is 1536 // saved in _native_lresult and a FPU result in _native_fresult. If 1537 // this changes then the interpreter_frame_result implementation 1538 // will need to be updated too. 1539 1540 // On PPC64, we have stored the result directly after the native call. 1541 1542 //============================================================================= 1543 // Back in Java 1544 1545 // We use release_store_fence to update values like the thread state, where 1546 // we don't want the current thread to continue until all our prior memory 1547 // accesses (including the new thread state) are visible to other threads. 1548 __ li(R0/*thread_state*/, _thread_in_Java); 1549 __ lwsync(); // Acquire safepoint and suspend state, release thread state. 1550 __ stw(R0/*thread_state*/, thread_(thread_state)); 1551 1552 if (support_vthread_preemption) { 1553 // Check preemption for Object.wait() 1554 Label not_preempted; 1555 __ ld(R0, in_bytes(JavaThread::preempt_alternate_return_offset()), R16_thread); 1556 __ cmpdi(CR0, R0, 0); 1557 __ beq(CR0, not_preempted); 1558 __ mtlr(R0); 1559 __ li(R0, 0); 1560 __ std(R0, in_bytes(JavaThread::preempt_alternate_return_offset()), R16_thread); 1561 __ blr(); 1562 1563 // Execution will be resumed here when the vthread becomes runnable again. 1564 __ bind(*resume_pc); 1565 __ restore_after_resume(R11_scratch1 /* fp */); 1566 // We saved the result handler before the call 1567 __ ld(result_handler_addr, _ijava_state_neg(lresult), R11_scratch1); 1568 #ifdef ASSERT 1569 // Clobber result slots. Only native methods returning void can be preemted currently. 1570 __ load_const(R3_RET, UCONST64(0xbad01001)); 1571 __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1); 1572 __ std(R3_RET, _ijava_state_neg(fresult), R11_scratch1); 1573 // reset_last_Java_frame() below asserts that a last java sp is set 1574 __ asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_sp_offset()), 1575 R16_thread, FILE_AND_LINE ": Last java sp should not be set when resuming"); 1576 __ std(R3_RET, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread); 1577 #endif 1578 __ bind(not_preempted); 1579 } 1580 1581 if (CheckJNICalls) { 1582 // clear_pending_jni_exception_check 1583 __ load_const_optimized(R0, 0L); 1584 __ st_ptr(R0, JavaThread::pending_jni_exception_check_fn_offset(), R16_thread); 1585 } 1586 1587 #if INCLUDE_JFR 1588 __ enter_jfr_critical_section(); 1589 1590 // This poll test is to uphold the invariant that a JFR sampled frame 1591 // must not return to its caller without a prior safepoint poll check. 1592 // The earlier poll check in this routine is insufficient for this purpose 1593 // because the thread has transitioned back to Java. 1594 1595 Label slow_path, fast_path; 1596 __ safepoint_poll(slow_path, R11_scratch1, true /* at_return */, false /* in_nmethod */); 1597 __ b(fast_path); 1598 __ bind(slow_path); 1599 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), R16_thread); 1600 __ align(32); 1601 __ bind(fast_path); 1602 1603 #endif // INCLUDE_JFR 1604 1605 __ reset_last_Java_frame(); 1606 1607 // Jvmdi/jvmpi support. Whether we've got an exception pending or 1608 // not, and whether unlocking throws an exception or not, we notify 1609 // on native method exit. If we do have an exception, we'll end up 1610 // in the caller's context to handle it, so if we don't do the 1611 // notify here, we'll drop it on the floor. 1612 __ notify_method_exit(true/*native method*/, 1613 ilgl /*illegal state (not used for native methods)*/, 1614 InterpreterMacroAssembler::NotifyJVMTI, 1615 false /*check_exceptions*/); 1616 1617 //============================================================================= 1618 // Handle exceptions 1619 1620 if (synchronized) { 1621 __ unlock_object(R26_monitor); // Can also unlock methods. 1622 } 1623 1624 // Reset active handles after returning from native. 1625 // thread->active_handles()->clear(); 1626 __ ld(active_handles, thread_(active_handles)); 1627 // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size"); 1628 __ li(R0, 0); 1629 __ stw(R0, in_bytes(JNIHandleBlock::top_offset()), active_handles); 1630 1631 Label exception_return_sync_check_already_unlocked; 1632 __ ld(R0/*pending_exception*/, thread_(pending_exception)); 1633 __ cmpdi(CR0, R0/*pending_exception*/, 0); 1634 __ bne(CR0, exception_return_sync_check_already_unlocked); 1635 1636 //----------------------------------------------------------------------------- 1637 // No exception pending. 1638 1639 // Move native method result back into proper registers and return. 1640 // Invoke result handler (may unbox/promote). 1641 __ ld(R11_scratch1, 0, R1_SP); 1642 __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1); 1643 __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1); 1644 __ call_stub(result_handler_addr); 1645 1646 __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R12_scratch2, R11_scratch1, R0); 1647 JFR_ONLY(__ leave_jfr_critical_section();) 1648 1649 // Must use the return pc which was loaded from the caller's frame 1650 // as the VM uses return-pc-patching for deoptimization. 1651 __ mtlr(R12_scratch2); 1652 __ blr(); 1653 1654 //----------------------------------------------------------------------------- 1655 // An exception is pending. We call into the runtime only if the 1656 // caller was not interpreted. If it was interpreted the 1657 // interpreter will do the correct thing. If it isn't interpreted 1658 // (call stub/compiled code) we will change our return and continue. 1659 1660 BIND(exception_return_sync_check); 1661 1662 if (synchronized) { 1663 __ unlock_object(R26_monitor); // Can also unlock methods. 1664 } 1665 BIND(exception_return_sync_check_already_unlocked); 1666 1667 const Register return_pc = R31; 1668 1669 __ ld(return_pc, 0, R1_SP); 1670 __ ld(return_pc, _abi0(lr), return_pc); 1671 1672 // Get the address of the exception handler. 1673 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 1674 R16_thread, 1675 return_pc /* return pc */); 1676 __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2); 1677 1678 // Load the PC of the exception handler into LR. 1679 __ mtlr(R3_RET); 1680 1681 // Load exception into R3_ARG1 and clear pending exception in thread. 1682 __ ld(R3_ARG1/*exception*/, thread_(pending_exception)); 1683 __ li(R4_ARG2, 0); 1684 __ std(R4_ARG2, thread_(pending_exception)); 1685 1686 // Load the original return pc into R4_ARG2. 1687 __ mr(R4_ARG2/*issuing_pc*/, return_pc); 1688 1689 // Return to exception handler. 1690 __ blr(); 1691 1692 //============================================================================= 1693 // Counter overflow. 1694 1695 if (inc_counter) { 1696 // Handle invocation counter overflow. 1697 __ bind(invocation_counter_overflow); 1698 1699 generate_counter_overflow(continue_after_compile); 1700 } 1701 1702 return entry; 1703 } 1704 1705 // Generic interpreted method entry to (asm) interpreter. 1706 // 1707 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { 1708 bool inc_counter = UseCompiler || CountCompiledCalls; 1709 address entry = __ pc(); 1710 // Generate the code to allocate the interpreter stack frame. 1711 Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame. 1712 Rsize_of_locals = R5_ARG3; // Written by generate_fixed_frame. 1713 1714 // Does also a stack check to assure this frame fits on the stack. 1715 generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals); 1716 1717 // -------------------------------------------------------------------------- 1718 // Zero out non-parameter locals. 1719 // Note: *Always* zero out non-parameter locals as Sparc does. It's not 1720 // worth to ask the flag, just do it. 1721 Register Rslot_addr = R6_ARG4, 1722 Rnum = R7_ARG5; 1723 Label Lno_locals, Lzero_loop; 1724 1725 // Set up the zeroing loop. 1726 __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals); 1727 __ subf(Rslot_addr, Rsize_of_parameters, R18_locals); 1728 __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize); 1729 __ beq(CR0, Lno_locals); 1730 __ li(R0, 0); 1731 __ mtctr(Rnum); 1732 1733 // The zero locals loop. 1734 __ bind(Lzero_loop); 1735 __ std(R0, 0, Rslot_addr); 1736 __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize); 1737 __ bdnz(Lzero_loop); 1738 1739 __ bind(Lno_locals); 1740 1741 // -------------------------------------------------------------------------- 1742 // Counter increment and overflow check. 1743 Label invocation_counter_overflow; 1744 Label continue_after_compile; 1745 if (inc_counter || ProfileInterpreter) { 1746 1747 Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1; 1748 if (synchronized) { 1749 // Since at this point in the method invocation the exception handler 1750 // would try to exit the monitor of synchronized methods which hasn't 1751 // been entered yet, we set the thread local variable 1752 // _do_not_unlock_if_synchronized to true. If any exception was thrown by 1753 // runtime, exception handling i.e. unlock_if_synchronized_method will 1754 // check this thread local flag. 1755 // This flag has two effects, one is to force an unwind in the topmost 1756 // interpreter frame and not perform an unlock while doing so. 1757 __ li(R0, 1); 1758 __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); 1759 } 1760 1761 // Argument and return type profiling. 1762 __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4); 1763 1764 // Increment invocation counter and check for overflow. 1765 if (inc_counter) { 1766 generate_counter_incr(&invocation_counter_overflow); 1767 } 1768 1769 __ bind(continue_after_compile); 1770 } 1771 1772 bang_stack_shadow_pages(false); 1773 1774 if (inc_counter || ProfileInterpreter) { 1775 // Reset the _do_not_unlock_if_synchronized flag. 1776 if (synchronized) { 1777 __ li(R0, 0); 1778 __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); 1779 } 1780 } 1781 1782 // -------------------------------------------------------------------------- 1783 // Locking of synchronized methods. Must happen AFTER invocation_counter 1784 // check and stack overflow check, so method is not locked if overflows. 1785 if (synchronized) { 1786 lock_method(R3_ARG1, R4_ARG2, R5_ARG3); 1787 } 1788 #ifdef ASSERT 1789 else { 1790 Label Lok; 1791 __ lhz(R0, in_bytes(Method::access_flags_offset()), R19_method); 1792 __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED); 1793 __ asm_assert_eq("method needs synchronization"); 1794 __ bind(Lok); 1795 } 1796 #endif // ASSERT 1797 1798 // -------------------------------------------------------------------------- 1799 // JVMTI support 1800 __ notify_method_entry(); 1801 1802 // -------------------------------------------------------------------------- 1803 // Start executing instructions. 1804 __ dispatch_next(vtos); 1805 1806 // -------------------------------------------------------------------------- 1807 if (inc_counter) { 1808 // Handle invocation counter overflow. 1809 __ bind(invocation_counter_overflow); 1810 generate_counter_overflow(continue_after_compile); 1811 } 1812 return entry; 1813 } 1814 1815 // CRC32 Intrinsics. 1816 // 1817 // Contract on scratch and work registers. 1818 // ======================================= 1819 // 1820 // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers. 1821 // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set. 1822 // You can't rely on these registers across calls. 1823 // 1824 // The generators for CRC32_update and for CRC32_updateBytes use the 1825 // scratch/work register set internally, passing the work registers 1826 // as arguments to the MacroAssembler emitters as required. 1827 // 1828 // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments. 1829 // Their contents is not constant but may change according to the requirements 1830 // of the emitted code. 1831 // 1832 // All other registers from the scratch/work register set are used "internally" 1833 // and contain garbage (i.e. unpredictable values) once blr() is reached. 1834 // Basically, only R3_RET contains a defined value which is the function result. 1835 // 1836 /** 1837 * Method entry for static native methods: 1838 * int java.util.zip.CRC32.update(int crc, int b) 1839 */ 1840 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { 1841 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1842 address start = __ pc(); // Remember stub start address (is rtn value). 1843 Label slow_path; 1844 1845 // Safepoint check 1846 const Register sync_state = R11_scratch1; 1847 __ safepoint_poll(slow_path, sync_state, false /* at_return */, false /* in_nmethod */); 1848 1849 // We don't generate local frame and don't align stack because 1850 // we not even call stub code (we generate the code inline) 1851 // and there is no safepoint on this path. 1852 1853 // Load java parameters. 1854 // R15_esp is callers operand stack pointer, i.e. it points to the parameters. 1855 const Register argP = R15_esp; 1856 const Register crc = R3_ARG1; // crc value 1857 const Register data = R4_ARG2; 1858 const Register table = R5_ARG3; // address of crc32 table 1859 1860 BLOCK_COMMENT("CRC32_update {"); 1861 1862 // Arguments are reversed on java expression stack 1863 #ifdef VM_LITTLE_ENDIAN 1864 int data_offs = 0+1*wordSize; // (stack) address of byte value. Emitter expects address, not value. 1865 // Being passed as an int, the single byte is at offset +0. 1866 #else 1867 int data_offs = 3+1*wordSize; // (stack) address of byte value. Emitter expects address, not value. 1868 // Being passed from java as an int, the single byte is at offset +3. 1869 #endif 1870 __ lwz(crc, 2*wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register. 1871 __ lbz(data, data_offs, argP); // Byte from buffer, zero-extended. 1872 __ load_const_optimized(table, StubRoutines::crc_table_addr(), R0); 1873 __ kernel_crc32_singleByteReg(crc, data, table, true); 1874 1875 // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted). 1876 __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0); 1877 __ blr(); 1878 1879 // Generate a vanilla native entry as the slow path. 1880 BLOCK_COMMENT("} CRC32_update"); 1881 BIND(slow_path); 1882 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1); 1883 return start; 1884 } 1885 1886 /** 1887 * Method entry for static native methods: 1888 * int java.util.zip.CRC32.updateBytes( int crc, byte[] b, int off, int len) 1889 * int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len) 1890 */ 1891 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1892 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1893 address start = __ pc(); // Remember stub start address (is rtn value). 1894 Label slow_path; 1895 1896 // Safepoint check 1897 const Register sync_state = R11_scratch1; 1898 __ safepoint_poll(slow_path, sync_state, false /* at_return */, false /* in_nmethod */); 1899 1900 // We don't generate local frame and don't align stack because 1901 // we not even call stub code (we generate the code inline) 1902 // and there is no safepoint on this path. 1903 1904 // Load parameters. 1905 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 1906 const Register argP = R15_esp; 1907 const Register crc = R3_ARG1; // crc value 1908 const Register data = R4_ARG2; // address of java byte array 1909 const Register dataLen = R5_ARG3; // source data len 1910 const Register tmp = R11_scratch1; 1911 1912 // Arguments are reversed on java expression stack. 1913 // Calculate address of start element. 1914 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct". 1915 BLOCK_COMMENT("CRC32_updateByteBuffer {"); 1916 // crc @ (SP + 5W) (32bit) 1917 // buf @ (SP + 3W) (64bit ptr to long array) 1918 // off @ (SP + 2W) (32bit) 1919 // dataLen @ (SP + 1W) (32bit) 1920 // data = buf + off 1921 __ ld( data, 3*wordSize, argP); // start of byte buffer 1922 __ lwa( tmp, 2*wordSize, argP); // byte buffer offset 1923 __ lwa( dataLen, 1*wordSize, argP); // #bytes to process 1924 __ lwz( crc, 5*wordSize, argP); // current crc state 1925 __ add( data, data, tmp); // Add byte buffer offset. 1926 } else { // Used for "updateBytes update". 1927 BLOCK_COMMENT("CRC32_updateBytes {"); 1928 // crc @ (SP + 4W) (32bit) 1929 // buf @ (SP + 3W) (64bit ptr to byte array) 1930 // off @ (SP + 2W) (32bit) 1931 // dataLen @ (SP + 1W) (32bit) 1932 // data = buf + off + base_offset 1933 __ ld( data, 3*wordSize, argP); // start of byte buffer 1934 __ lwa( tmp, 2*wordSize, argP); // byte buffer offset 1935 __ lwa( dataLen, 1*wordSize, argP); // #bytes to process 1936 __ add( data, data, tmp); // add byte buffer offset 1937 __ lwz( crc, 4*wordSize, argP); // current crc state 1938 __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1939 } 1940 1941 __ crc32(crc, data, dataLen, R2, R6, R7, R8, R9, R10, R11, R12, false); 1942 1943 // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted). 1944 __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0); 1945 __ blr(); 1946 1947 // Generate a vanilla native entry as the slow path. 1948 BLOCK_COMMENT("} CRC32_updateBytes(Buffer)"); 1949 BIND(slow_path); 1950 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1); 1951 return start; 1952 } 1953 1954 1955 /** 1956 * Method entry for intrinsic-candidate (non-native) methods: 1957 * int java.util.zip.CRC32C.updateBytes( int crc, byte[] b, int off, int end) 1958 * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end) 1959 * Unlike CRC32, CRC32C does not have any methods marked as native 1960 * CRC32C also uses an "end" variable instead of the length variable CRC32 uses 1961 **/ 1962 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1963 assert(UseCRC32CIntrinsics, "this intrinsic is not supported"); 1964 address start = __ pc(); // Remember stub start address (is rtn value). 1965 1966 // We don't generate local frame and don't align stack because 1967 // we not even call stub code (we generate the code inline) 1968 // and there is no safepoint on this path. 1969 1970 // Load parameters. 1971 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 1972 const Register argP = R15_esp; 1973 const Register crc = R3_ARG1; // crc value 1974 const Register data = R4_ARG2; // address of java byte array 1975 const Register dataLen = R5_ARG3; // source data len 1976 const Register tmp = R11_scratch1; 1977 1978 // Arguments are reversed on java expression stack. 1979 // Calculate address of start element. 1980 if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateDirectByteBuffer". 1981 BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {"); 1982 // crc @ (SP + 5W) (32bit) 1983 // buf @ (SP + 3W) (64bit ptr to long array) 1984 // off @ (SP + 2W) (32bit) 1985 // dataLen @ (SP + 1W) (32bit) 1986 // data = buf + off 1987 __ ld( data, 3*wordSize, argP); // start of byte buffer 1988 __ lwa( tmp, 2*wordSize, argP); // byte buffer offset 1989 __ lwa( dataLen, 1*wordSize, argP); // #bytes to process 1990 __ lwz( crc, 5*wordSize, argP); // current crc state 1991 __ add( data, data, tmp); // Add byte buffer offset. 1992 __ sub( dataLen, dataLen, tmp); // (end_index - offset) 1993 } else { // Used for "updateBytes update". 1994 BLOCK_COMMENT("CRC32C_updateBytes {"); 1995 // crc @ (SP + 4W) (32bit) 1996 // buf @ (SP + 3W) (64bit ptr to byte array) 1997 // off @ (SP + 2W) (32bit) 1998 // dataLen @ (SP + 1W) (32bit) 1999 // data = buf + off + base_offset 2000 __ ld( data, 3*wordSize, argP); // start of byte buffer 2001 __ lwa( tmp, 2*wordSize, argP); // byte buffer offset 2002 __ lwa( dataLen, 1*wordSize, argP); // #bytes to process 2003 __ add( data, data, tmp); // add byte buffer offset 2004 __ sub( dataLen, dataLen, tmp); // (end_index - offset) 2005 __ lwz( crc, 4*wordSize, argP); // current crc state 2006 __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 2007 } 2008 2009 __ crc32(crc, data, dataLen, R2, R6, R7, R8, R9, R10, R11, R12, true); 2010 2011 // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted). 2012 __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0); 2013 __ blr(); 2014 2015 BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}"); 2016 return start; 2017 } 2018 2019 address TemplateInterpreterGenerator::generate_currentThread() { 2020 address entry_point = __ pc(); 2021 2022 __ ld(R3_RET, JavaThread::vthread_offset(), R16_thread); 2023 __ resolve_oop_handle(R3_RET, R11_scratch1, R12_scratch2, MacroAssembler::PRESERVATION_FRAME_LR); 2024 2025 // restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted). 2026 __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0); 2027 __ blr(); 2028 2029 return entry_point; 2030 } 2031 2032 // ============================================================================= 2033 // Exceptions 2034 2035 void TemplateInterpreterGenerator::generate_throw_exception() { 2036 Register Rexception = R17_tos, 2037 Rcontinuation = R3_RET; 2038 2039 // -------------------------------------------------------------------------- 2040 // Entry point if an method returns with a pending exception (rethrow). 2041 Interpreter::_rethrow_exception_entry = __ pc(); 2042 { 2043 __ restore_interpreter_state(R11_scratch1, false /*bcp_and_mdx_only*/, true /*restore_top_frame_sp*/); 2044 2045 // Compiled code destroys templateTableBase, reload. 2046 __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1); 2047 } 2048 2049 // Entry point if a interpreted method throws an exception (throw). 2050 Interpreter::_throw_exception_entry = __ pc(); 2051 { 2052 __ mr(Rexception, R3_RET); 2053 2054 __ verify_oop(Rexception); 2055 2056 // Expression stack must be empty before entering the VM in case of an exception. 2057 __ empty_expression_stack(); 2058 // Find exception handler address and preserve exception oop. 2059 // Call C routine to find handler and jump to it. 2060 __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception); 2061 __ mtctr(Rcontinuation); 2062 // Push exception for exception handler bytecodes. 2063 __ push_ptr(Rexception); 2064 2065 // Jump to exception handler (may be remove activation entry!). 2066 __ bctr(); 2067 } 2068 2069 // If the exception is not handled in the current frame the frame is 2070 // removed and the exception is rethrown (i.e. exception 2071 // continuation is _rethrow_exception). 2072 // 2073 // Note: At this point the bci is still the bxi for the instruction 2074 // which caused the exception and the expression stack is 2075 // empty. Thus, for any VM calls at this point, GC will find a legal 2076 // oop map (with empty expression stack). 2077 2078 // In current activation 2079 // tos: exception 2080 // bcp: exception bcp 2081 2082 // -------------------------------------------------------------------------- 2083 // JVMTI PopFrame support 2084 2085 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 2086 { 2087 // Set the popframe_processing bit in popframe_condition indicating that we are 2088 // currently handling popframe, so that call_VMs that may happen later do not 2089 // trigger new popframe handling cycles. 2090 __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); 2091 __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit); 2092 __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); 2093 2094 // Empty the expression stack, as in normal exception handling. 2095 __ empty_expression_stack(); 2096 __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false); 2097 2098 // Check to see whether we are returning to a deoptimized frame. 2099 // (The PopFrame call ensures that the caller of the popped frame is 2100 // either interpreted or compiled and deoptimizes it if compiled.) 2101 // Note that we don't compare the return PC against the 2102 // deoptimization blob's unpack entry because of the presence of 2103 // adapter frames in C2. 2104 Label Lcaller_not_deoptimized; 2105 Register return_pc = R3_ARG1; 2106 __ ld(return_pc, 0, R1_SP); 2107 __ ld(return_pc, _abi0(lr), return_pc); 2108 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc); 2109 __ cmpdi(CR0, R3_RET, 0); 2110 __ bne(CR0, Lcaller_not_deoptimized); 2111 2112 // The deoptimized case. 2113 // In this case, we can't call dispatch_next() after the frame is 2114 // popped, but instead must save the incoming arguments and restore 2115 // them after deoptimization has occurred. 2116 __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method); 2117 __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2); 2118 __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize); 2119 __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize); 2120 __ subf(R5_ARG3, R4_ARG2, R5_ARG3); 2121 // Save these arguments. 2122 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3); 2123 2124 // Inform deoptimization that it is responsible for restoring these arguments. 2125 __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit); 2126 __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); 2127 2128 // Return from the current method into the deoptimization blob. Will eventually 2129 // end up in the deopt interpreter entry, deoptimization prepared everything that 2130 // we will reexecute the call that called us. 2131 __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2); 2132 __ mtlr(return_pc); 2133 __ pop_cont_fastpath(); 2134 __ blr(); 2135 2136 // The non-deoptimized case. 2137 __ bind(Lcaller_not_deoptimized); 2138 2139 // Clear the popframe condition flag. 2140 __ li(R0, 0); 2141 __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); 2142 2143 // Get out of the current method and re-execute the call that called us. 2144 __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2); 2145 __ pop_cont_fastpath(); 2146 __ restore_interpreter_state(R11_scratch1, false /*bcp_and_mdx_only*/, true /*restore_top_frame_sp*/); 2147 if (ProfileInterpreter) { 2148 __ set_method_data_pointer_for_bcp(); 2149 __ ld(R11_scratch1, 0, R1_SP); 2150 __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1); 2151 } 2152 #if INCLUDE_JVMTI 2153 Label L_done; 2154 2155 __ lbz(R11_scratch1, 0, R14_bcp); 2156 __ cmpwi(CR0, R11_scratch1, Bytecodes::_invokestatic); 2157 __ bne(CR0, L_done); 2158 2159 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. 2160 // Detect such a case in the InterpreterRuntime function and return the member name argument, or null. 2161 __ ld(R4_ARG2, 0, R18_locals); 2162 __ call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp); 2163 2164 __ cmpdi(CR0, R4_ARG2, 0); 2165 __ beq(CR0, L_done); 2166 __ std(R4_ARG2, wordSize, R15_esp); 2167 __ bind(L_done); 2168 #endif // INCLUDE_JVMTI 2169 __ dispatch_next(vtos); 2170 } 2171 // end of JVMTI PopFrame support 2172 2173 // -------------------------------------------------------------------------- 2174 // Remove activation exception entry. 2175 // This is jumped to if an interpreted method can't handle an exception itself 2176 // (we come from the throw/rethrow exception entry above). We're going to call 2177 // into the VM to find the exception handler in the caller, pop the current 2178 // frame and return the handler we calculated. 2179 Interpreter::_remove_activation_entry = __ pc(); 2180 { 2181 __ pop_ptr(Rexception); 2182 __ verify_oop(Rexception); 2183 __ std(Rexception, in_bytes(JavaThread::vm_result_oop_offset()), R16_thread); 2184 2185 __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true); 2186 __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false); 2187 2188 __ get_vm_result_oop(Rexception); 2189 2190 // We are done with this activation frame; find out where to go next. 2191 // The continuation point will be an exception handler, which expects 2192 // the following registers set up: 2193 // 2194 // RET: exception oop 2195 // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled. 2196 2197 Register return_pc = R31; // Needs to survive the runtime call. 2198 __ ld(return_pc, 0, R1_SP); 2199 __ ld(return_pc, _abi0(lr), return_pc); 2200 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc); 2201 2202 // Remove the current activation. 2203 __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2); 2204 __ pop_cont_fastpath(); 2205 2206 __ mr(R4_ARG2, return_pc); 2207 __ mtlr(R3_RET); 2208 __ mr(R3_RET, Rexception); 2209 __ blr(); 2210 } 2211 } 2212 2213 // JVMTI ForceEarlyReturn support. 2214 // Returns "in the middle" of a method with a "fake" return value. 2215 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { 2216 2217 Register Rscratch1 = R11_scratch1, 2218 Rscratch2 = R12_scratch2; 2219 2220 address entry = __ pc(); 2221 __ empty_expression_stack(); 2222 2223 __ load_earlyret_value(state, Rscratch1); 2224 2225 __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); 2226 // Clear the earlyret state. 2227 __ li(R0, 0); 2228 __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1); 2229 2230 __ remove_activation(state, false, false); 2231 // Copied from TemplateTable::_return. 2232 // Restoration of lr done by remove_activation. 2233 switch (state) { 2234 // Narrow result if state is itos but result type is smaller. 2235 case btos: 2236 case ztos: 2237 case ctos: 2238 case stos: 2239 case itos: __ narrow(R17_tos); /* fall through */ 2240 case ltos: 2241 case atos: __ mr(R3_RET, R17_tos); break; 2242 case ftos: 2243 case dtos: __ fmr(F1_RET, F15_ftos); break; 2244 case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need 2245 // to get visible before the reference to the object gets stored anywhere. 2246 __ membar(Assembler::StoreStore); break; 2247 default : ShouldNotReachHere(); 2248 } 2249 __ blr(); 2250 2251 return entry; 2252 } // end of ForceEarlyReturn support 2253 2254 //----------------------------------------------------------------------------- 2255 // Helper for vtos entry point generation 2256 2257 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, 2258 address& bep, 2259 address& cep, 2260 address& sep, 2261 address& aep, 2262 address& iep, 2263 address& lep, 2264 address& fep, 2265 address& dep, 2266 address& vep) { 2267 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 2268 Label L; 2269 2270 aep = __ pc(); __ push_ptr(); __ b(L); 2271 fep = __ pc(); __ push_f(); __ b(L); 2272 dep = __ pc(); __ push_d(); __ b(L); 2273 lep = __ pc(); __ push_l(); __ b(L); 2274 __ align(32, 12, 24); // align L 2275 bep = cep = sep = 2276 iep = __ pc(); __ push_i(); 2277 vep = __ pc(); 2278 __ bind(L); 2279 generate_and_dispatch(t); 2280 } 2281 2282 //----------------------------------------------------------------------------- 2283 2284 // Non-product code 2285 #ifndef PRODUCT 2286 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 2287 //__ flush_bundle(); 2288 address entry = __ pc(); 2289 2290 const char *bname = nullptr; 2291 uint tsize = 0; 2292 switch(state) { 2293 case ftos: 2294 bname = "trace_code_ftos {"; 2295 tsize = 2; 2296 break; 2297 case btos: 2298 bname = "trace_code_btos {"; 2299 tsize = 2; 2300 break; 2301 case ztos: 2302 bname = "trace_code_ztos {"; 2303 tsize = 2; 2304 break; 2305 case ctos: 2306 bname = "trace_code_ctos {"; 2307 tsize = 2; 2308 break; 2309 case stos: 2310 bname = "trace_code_stos {"; 2311 tsize = 2; 2312 break; 2313 case itos: 2314 bname = "trace_code_itos {"; 2315 tsize = 2; 2316 break; 2317 case ltos: 2318 bname = "trace_code_ltos {"; 2319 tsize = 3; 2320 break; 2321 case atos: 2322 bname = "trace_code_atos {"; 2323 tsize = 2; 2324 break; 2325 case vtos: 2326 // Note: In case of vtos, the topmost of stack value could be a int or doubl 2327 // In case of a double (2 slots) we won't see the 2nd stack value. 2328 // Maybe we simply should print the topmost 3 stack slots to cope with the problem. 2329 bname = "trace_code_vtos {"; 2330 tsize = 2; 2331 2332 break; 2333 case dtos: 2334 bname = "trace_code_dtos {"; 2335 tsize = 3; 2336 break; 2337 default: 2338 ShouldNotReachHere(); 2339 } 2340 BLOCK_COMMENT(bname); 2341 2342 // Support short-cut for TraceBytecodesAt. 2343 // Don't call into the VM if we don't want to trace to speed up things. 2344 Label Lskip_vm_call; 2345 if (TraceBytecodesAt > 0) { 2346 int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true); 2347 int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true); 2348 __ ld(R11_scratch1, offs1, R11_scratch1); 2349 __ ld(R12_scratch2, offs2, R12_scratch2); 2350 __ cmpd(CR0, R12_scratch2, R11_scratch1); 2351 __ blt(CR0, Lskip_vm_call); 2352 } 2353 2354 __ push(state); 2355 // Load 2 topmost expression stack values. 2356 __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp); 2357 __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp); 2358 __ mflr(R31); 2359 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false); 2360 __ mtlr(R31); 2361 __ pop(state); 2362 2363 if (TraceBytecodesAt > 0) { 2364 __ bind(Lskip_vm_call); 2365 } 2366 __ blr(); 2367 BLOCK_COMMENT("} trace_code"); 2368 return entry; 2369 } 2370 2371 void TemplateInterpreterGenerator::count_bytecode() { 2372 int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true); 2373 __ ld(R12_scratch2, offs, R11_scratch1); 2374 __ addi(R12_scratch2, R12_scratch2, 1); 2375 __ std(R12_scratch2, offs, R11_scratch1); 2376 } 2377 2378 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { 2379 int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true); 2380 __ lwz(R12_scratch2, offs, R11_scratch1); 2381 __ addi(R12_scratch2, R12_scratch2, 1); 2382 __ stw(R12_scratch2, offs, R11_scratch1); 2383 } 2384 2385 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { 2386 const Register addr = R11_scratch1, 2387 tmp = R12_scratch2; 2388 // Get index, shift out old bytecode, bring in new bytecode, and store it. 2389 // _index = (_index >> log2_number_of_codes) | 2390 // (bytecode << log2_number_of_codes); 2391 int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true); 2392 __ lwz(tmp, offs1, addr); 2393 __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes); 2394 __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); 2395 __ stw(tmp, offs1, addr); 2396 2397 // Bump bucket contents. 2398 // _counters[_index] ++; 2399 int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true); 2400 __ sldi(tmp, tmp, LogBytesPerInt); 2401 __ add(addr, tmp, addr); 2402 __ lwz(tmp, offs2, addr); 2403 __ addi(tmp, tmp, 1); 2404 __ stw(tmp, offs2, addr); 2405 } 2406 2407 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 2408 // Call a little run-time stub to avoid blow-up for each bytecode. 2409 // The run-time runtime saves the right registers, depending on 2410 // the tosca in-state for the given template. 2411 2412 assert(Interpreter::trace_code(t->tos_in()) != nullptr, 2413 "entry must have been generated"); 2414 2415 // Note: we destroy LR here. 2416 __ bl(Interpreter::trace_code(t->tos_in())); 2417 } 2418 2419 void TemplateInterpreterGenerator::stop_interpreter_at() { 2420 Label L; 2421 int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true); 2422 int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true); 2423 __ ld(R11_scratch1, offs1, R11_scratch1); 2424 __ ld(R12_scratch2, offs2, R12_scratch2); 2425 __ cmpd(CR0, R12_scratch2, R11_scratch1); 2426 __ bne(CR0, L); 2427 __ illtrap(); 2428 __ bind(L); 2429 } 2430 2431 #endif // !PRODUCT