1 /*
2 * Copyright (c) 2014, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2015, 2025 SAP SE. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "asm/macroAssembler.inline.hpp"
27 #include "classfile/javaClasses.hpp"
28 #include "compiler/disassembler.hpp"
29 #include "gc/shared/barrierSetAssembler.hpp"
30 #include "interpreter/bytecodeHistogram.hpp"
31 #include "interpreter/interpreter.hpp"
32 #include "interpreter/interpreterRuntime.hpp"
33 #include "interpreter/interp_masm.hpp"
34 #include "interpreter/templateInterpreterGenerator.hpp"
35 #include "interpreter/templateTable.hpp"
36 #include "oops/arrayOop.hpp"
37 #include "oops/method.hpp"
38 #include "oops/methodCounters.hpp"
39 #include "oops/methodData.hpp"
40 #include "oops/oop.inline.hpp"
41 #include "oops/resolvedIndyEntry.hpp"
42 #include "oops/resolvedMethodEntry.hpp"
43 #include "prims/jvmtiExport.hpp"
44 #include "prims/jvmtiThreadState.hpp"
45 #include "runtime/arguments.hpp"
46 #include "runtime/deoptimization.hpp"
47 #include "runtime/frame.inline.hpp"
48 #include "runtime/jniHandles.hpp"
49 #include "runtime/sharedRuntime.hpp"
50 #include "runtime/stubRoutines.hpp"
51 #include "runtime/synchronizer.hpp"
52 #include "runtime/timer.hpp"
53 #include "runtime/vframeArray.hpp"
54 #include "runtime/vm_version.hpp"
55 #include "utilities/debug.hpp"
56 #include "utilities/macros.hpp"
57
58 #undef __
59 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
60
61 // Size of interpreter code. Increase if too small. Interpreter will
62 // fail with a guarantee ("not enough space for interpreter generation");
63 // if too small.
64 // Run with +PrintInterpreter to get the VM to print out the size.
65 // Max size with JVMTI
66 int TemplateInterpreter::InterpreterCodeSize = 256*K;
67
68 #ifdef PRODUCT
69 #define BLOCK_COMMENT(str) /* nothing */
70 #else
71 #define BLOCK_COMMENT(str) __ block_comment(str)
72 #endif
73
74 #define BIND(label) __ bind(label); BLOCK_COMMENT(#label ":")
75
76 //-----------------------------------------------------------------------------
77
78 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
79 // Slow_signature handler that respects the PPC C calling conventions.
80 //
81 // We get called by the native entry code with our output register
82 // area == 8. First we call InterpreterRuntime::get_result_handler
83 // to copy the pointer to the signature string temporarily to the
84 // first C-argument and to return the result_handler in
85 // R3_RET. Since native_entry will copy the jni-pointer to the
86 // first C-argument slot later on, it is OK to occupy this slot
87 // temporarily. Then we copy the argument list on the java
88 // expression stack into native varargs format on the native stack
89 // and load arguments into argument registers. Integer arguments in
90 // the varargs vector will be sign-extended to 8 bytes.
91 //
92 // On entry:
93 // R3_ARG1 - intptr_t* Address of java argument list in memory.
94 // R15_prev_state - BytecodeInterpreter* Address of interpreter state for
95 // this method
96 // R19_method
97 //
98 // On exit (just before return instruction):
99 // R3_RET - contains the address of the result_handler.
100 // R4_ARG2 - is not updated for static methods and contains "this" otherwise.
101 // R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
102 // ARGi contains this argument. Otherwise, ARGi is not updated.
103 // F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.
104
105 const int LogSizeOfTwoInstructions = 3;
106
107 // FIXME: use Argument:: GL: Argument names different numbers!
108 const int max_fp_register_arguments = 13;
109 const int max_int_register_arguments = 6; // first 2 are reserved
110
111 const Register arg_java = R21_tmp1;
112 const Register arg_c = R22_tmp2;
113 const Register signature = R23_tmp3; // is string
114 const Register sig_byte = R24_tmp4;
115 const Register fpcnt = R25_tmp5;
116 const Register argcnt = R26_tmp6;
117 const Register intSlot = R27_tmp7;
118 const Register target_sp = R28_tmp8;
119 const FloatRegister floatSlot = F0;
120
121 address entry = __ function_entry();
122 int save_nonvolatile_registers_size = __ save_nonvolatile_registers_size(false, false);
123
124 __ save_LR(R0);
125 __ save_nonvolatile_registers(R1_SP, -save_nonvolatile_registers_size, false, false);
126 // We use target_sp for storing arguments in the C frame.
127 __ mr(target_sp, R1_SP);
128 __ push_frame(frame::native_abi_reg_args_size + save_nonvolatile_registers_size, R11_scratch1);
129
130 __ mr(arg_java, R3_ARG1);
131
132 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);
133
134 // Signature is in R3_RET. Signature is callee saved.
135 __ mr(signature, R3_RET);
136
137 // Get the result handler.
138 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);
139
140 {
141 Label L;
142 // test if static
143 // _access_flags._flags must be at offset 0.
144 // TODO PPC port: requires change in shared code.
145 //assert(in_bytes(AccessFlags::flags_offset()) == 0,
146 // "MethodDesc._access_flags == MethodDesc._access_flags._flags");
147 // _access_flags must be a 16 bit value.
148 assert(sizeof(AccessFlags) == 2, "wrong size");
149 __ lhz(R11_scratch1/*access_flags*/, method_(access_flags));
150 // testbit with condition register.
151 __ testbitdi(CR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
152 __ btrue(CR0, L);
153 // For non-static functions, pass "this" in R4_ARG2 and copy it
154 // to 2nd C-arg slot.
155 // We need to box the Java object here, so we use arg_java
156 // (address of current Java stack slot) as argument and don't
157 // dereference it as in case of ints, floats, etc.
158 __ mr(R4_ARG2, arg_java);
159 __ addi(arg_java, arg_java, -BytesPerWord);
160 __ std(R4_ARG2, _abi0(carg_2), target_sp);
161 __ bind(L);
162 }
163
164 // Will be incremented directly after loop_start. argcnt=0
165 // corresponds to 3rd C argument.
166 __ li(argcnt, -1);
167 // arg_c points to 3rd C argument
168 __ addi(arg_c, target_sp, _abi0(carg_3));
169 // no floating-point args parsed so far
170 __ li(fpcnt, 0);
171
172 Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
173 Label loop_start, loop_end;
174 Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;
175
176 // signature points to '(' at entry
177 #ifdef ASSERT
178 __ lbz(sig_byte, 0, signature);
179 __ cmplwi(CR0, sig_byte, '(');
180 __ bne(CR0, do_dontreachhere);
181 #endif
182
183 __ bind(loop_start);
184
185 __ addi(argcnt, argcnt, 1);
186 __ lbzu(sig_byte, 1, signature);
187
188 __ cmplwi(CR0, sig_byte, ')'); // end of signature
189 __ beq(CR0, loop_end);
190
191 __ cmplwi(CR0, sig_byte, 'B'); // byte
192 __ beq(CR0, do_int);
193
194 __ cmplwi(CR0, sig_byte, 'C'); // char
195 __ beq(CR0, do_int);
196
197 __ cmplwi(CR0, sig_byte, 'D'); // double
198 __ beq(CR0, do_double);
199
200 __ cmplwi(CR0, sig_byte, 'F'); // float
201 __ beq(CR0, do_float);
202
203 __ cmplwi(CR0, sig_byte, 'I'); // int
204 __ beq(CR0, do_int);
205
206 __ cmplwi(CR0, sig_byte, 'J'); // long
207 __ beq(CR0, do_long);
208
209 __ cmplwi(CR0, sig_byte, 'S'); // short
210 __ beq(CR0, do_int);
211
212 __ cmplwi(CR0, sig_byte, 'Z'); // boolean
213 __ beq(CR0, do_int);
214
215 __ cmplwi(CR0, sig_byte, 'L'); // object
216 __ beq(CR0, do_object);
217
218 __ cmplwi(CR0, sig_byte, '['); // array
219 __ beq(CR0, do_array);
220
221 // __ cmplwi(CR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
222 // __ beq(CR0, do_void);
223
224 __ bind(do_dontreachhere);
225
226 __ unimplemented("ShouldNotReachHere in slow_signature_handler");
227
228 __ bind(do_array);
229
230 {
231 Label start_skip, end_skip;
232
233 __ bind(start_skip);
234 __ lbzu(sig_byte, 1, signature);
235 __ cmplwi(CR0, sig_byte, '[');
236 __ beq(CR0, start_skip); // skip further brackets
237 __ cmplwi(CR0, sig_byte, '9');
238 __ bgt(CR0, end_skip); // no optional size
239 __ cmplwi(CR0, sig_byte, '0');
240 __ bge(CR0, start_skip); // skip optional size
241 __ bind(end_skip);
242
243 __ cmplwi(CR0, sig_byte, 'L');
244 __ beq(CR0, do_object); // for arrays of objects, the name of the object must be skipped
245 __ b(do_boxed); // otherwise, go directly to do_boxed
246 }
247
248 __ bind(do_object);
249 {
250 Label L;
251 __ bind(L);
252 __ lbzu(sig_byte, 1, signature);
253 __ cmplwi(CR0, sig_byte, ';');
254 __ bne(CR0, L);
255 }
256 // Need to box the Java object here, so we use arg_java (address of
257 // current Java stack slot) as argument and don't dereference it as
258 // in case of ints, floats, etc.
259 Label do_null;
260 __ bind(do_boxed);
261 __ ld(R0,0, arg_java);
262 __ cmpdi(CR0, R0, 0);
263 __ li(intSlot,0);
264 __ beq(CR0, do_null);
265 __ mr(intSlot, arg_java);
266 __ bind(do_null);
267 __ std(intSlot, 0, arg_c);
268 __ addi(arg_java, arg_java, -BytesPerWord);
269 __ addi(arg_c, arg_c, BytesPerWord);
270 __ cmplwi(CR0, argcnt, max_int_register_arguments);
271 __ blt(CR0, move_intSlot_to_ARG);
272 __ b(loop_start);
273
274 __ bind(do_int);
275 __ lwa(intSlot, 0, arg_java);
276 __ std(intSlot, 0, arg_c);
277 __ addi(arg_java, arg_java, -BytesPerWord);
278 __ addi(arg_c, arg_c, BytesPerWord);
279 __ cmplwi(CR0, argcnt, max_int_register_arguments);
280 __ blt(CR0, move_intSlot_to_ARG);
281 __ b(loop_start);
282
283 __ bind(do_long);
284 __ ld(intSlot, -BytesPerWord, arg_java);
285 __ std(intSlot, 0, arg_c);
286 __ addi(arg_java, arg_java, - 2 * BytesPerWord);
287 __ addi(arg_c, arg_c, BytesPerWord);
288 __ cmplwi(CR0, argcnt, max_int_register_arguments);
289 __ blt(CR0, move_intSlot_to_ARG);
290 __ b(loop_start);
291
292 __ bind(do_float);
293 __ lfs(floatSlot, 0, arg_java);
294 __ stfs(floatSlot, Argument::float_on_stack_offset_in_bytes_c, arg_c);
295 __ addi(arg_java, arg_java, -BytesPerWord);
296 __ addi(arg_c, arg_c, BytesPerWord);
297 __ cmplwi(CR0, fpcnt, max_fp_register_arguments);
298 __ blt(CR0, move_floatSlot_to_FARG);
299 __ b(loop_start);
300
301 __ bind(do_double);
302 __ lfd(floatSlot, - BytesPerWord, arg_java);
303 __ stfd(floatSlot, 0, arg_c);
304 __ addi(arg_java, arg_java, - 2 * BytesPerWord);
305 __ addi(arg_c, arg_c, BytesPerWord);
306 __ cmplwi(CR0, fpcnt, max_fp_register_arguments);
307 __ blt(CR0, move_floatSlot_to_FARG);
308 __ b(loop_start);
309
310 __ bind(loop_end);
311
312 __ pop_frame();
313 __ restore_nonvolatile_registers(R1_SP, -save_nonvolatile_registers_size, false, false);
314 __ restore_LR(R0);
315
316 __ blr();
317
318 Label move_int_arg, move_float_arg;
319 __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
320 __ mr(R5_ARG3, intSlot); __ b(loop_start);
321 __ mr(R6_ARG4, intSlot); __ b(loop_start);
322 __ mr(R7_ARG5, intSlot); __ b(loop_start);
323 __ mr(R8_ARG6, intSlot); __ b(loop_start);
324 __ mr(R9_ARG7, intSlot); __ b(loop_start);
325 __ mr(R10_ARG8, intSlot); __ b(loop_start);
326
327 __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
328 __ fmr(F1_ARG1, floatSlot); __ b(loop_start);
329 __ fmr(F2_ARG2, floatSlot); __ b(loop_start);
330 __ fmr(F3_ARG3, floatSlot); __ b(loop_start);
331 __ fmr(F4_ARG4, floatSlot); __ b(loop_start);
332 __ fmr(F5_ARG5, floatSlot); __ b(loop_start);
333 __ fmr(F6_ARG6, floatSlot); __ b(loop_start);
334 __ fmr(F7_ARG7, floatSlot); __ b(loop_start);
335 __ fmr(F8_ARG8, floatSlot); __ b(loop_start);
336 __ fmr(F9_ARG9, floatSlot); __ b(loop_start);
337 __ fmr(F10_ARG10, floatSlot); __ b(loop_start);
338 __ fmr(F11_ARG11, floatSlot); __ b(loop_start);
339 __ fmr(F12_ARG12, floatSlot); __ b(loop_start);
340 __ fmr(F13_ARG13, floatSlot); __ b(loop_start);
341
342 __ bind(move_intSlot_to_ARG);
343 __ sldi(R0, argcnt, LogSizeOfTwoInstructions);
344 __ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
345 __ add(R11_scratch1, R0, R11_scratch1);
346 __ mtctr(R11_scratch1/*branch_target*/);
347 __ bctr();
348 __ bind(move_floatSlot_to_FARG);
349 __ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
350 __ addi(fpcnt, fpcnt, 1);
351 __ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
352 __ add(R11_scratch1, R0, R11_scratch1);
353 __ mtctr(R11_scratch1/*branch_target*/);
354 __ bctr();
355
356 return entry;
357 }
358
359 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
360 //
361 // Registers alive
362 // R3_RET
363 // LR
364 //
365 // Registers updated
366 // R3_RET
367 //
368
369 Label done;
370 address entry = __ pc();
371
372 switch (type) {
373 case T_BOOLEAN:
374 // convert !=0 to 1
375 __ normalize_bool(R3_RET);
376 break;
377 case T_BYTE:
378 // sign extend 8 bits
379 __ extsb(R3_RET, R3_RET);
380 break;
381 case T_CHAR:
382 // zero extend 16 bits
383 __ clrldi(R3_RET, R3_RET, 48);
384 break;
385 case T_SHORT:
386 // sign extend 16 bits
387 __ extsh(R3_RET, R3_RET);
388 break;
389 case T_INT:
390 // sign extend 32 bits
391 __ extsw(R3_RET, R3_RET);
392 break;
393 case T_LONG:
394 break;
395 case T_OBJECT:
396 // JNIHandles::resolve result.
397 __ resolve_jobject(R3_RET, R11_scratch1, R31, MacroAssembler::PRESERVATION_FRAME_LR); // kills R31
398 break;
399 case T_FLOAT:
400 break;
401 case T_DOUBLE:
402 break;
403 case T_VOID:
404 break;
405 default: ShouldNotReachHere();
406 }
407
408 BIND(done);
409 __ blr();
410
411 return entry;
412 }
413
414 // Abstract method entry.
415 //
416 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
417 address entry = __ pc();
418
419 //
420 // Registers alive
421 // R16_thread - JavaThread*
422 // R19_method - callee's method (method to be invoked)
423 // R1_SP - SP prepared such that caller's outgoing args are near top
424 // LR - return address to caller
425 //
426 // Stack layout at this point:
427 //
428 // 0 [TOP_IJAVA_FRAME_ABI] <-- R1_SP
429 // alignment (optional)
430 // [outgoing Java arguments]
431 // ...
432 // PARENT [PARENT_IJAVA_FRAME_ABI]
433 // ...
434 //
435
436 // Can't use call_VM here because we have not set up a new
437 // interpreter state. Make the call to the vm and make it look like
438 // our caller set up the JavaFrameAnchor.
439 __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
440
441 // Push a new C frame and save LR.
442 __ save_LR(R0);
443 __ push_frame_reg_args(0, R11_scratch1);
444
445 // This is not a leaf but we have a JavaFrameAnchor now and we will
446 // check (create) exceptions afterward so this is ok.
447 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
448 R16_thread, R19_method);
449
450 // Pop the C frame and restore LR.
451 __ pop_frame();
452 __ restore_LR(R0);
453
454 // Reset JavaFrameAnchor from call_VM_leaf above.
455 __ reset_last_Java_frame();
456
457 // We don't know our caller, so jump to the general forward exception stub,
458 // which will also pop our full frame off. Satisfy the interface of
459 // SharedRuntime::generate_forward_exception()
460 __ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
461 __ mtctr(R11_scratch1);
462 __ bctr();
463
464 return entry;
465 }
466
467 // Interpreter intrinsic for WeakReference.get().
468 // 1. Don't push a full blown frame and go on dispatching, but fetch the value
469 // into R8 and return quickly
470 // 2. If G1 is active we *must* execute this intrinsic for corrrectness:
471 // It contains a GC barrier which puts the reference into the satb buffer
472 // to indicate that someone holds a strong reference to the object the
473 // weak ref points to!
474 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
475 // Code: _aload_0, _getfield, _areturn
476 // parameter size = 1
477 //
478 // The code that gets generated by this routine is split into 2 parts:
479 // 1. the "intrinsified" code for G1 (or any SATB based GC),
480 // 2. the slow path - which is an expansion of the regular method entry.
481 //
482 // Notes:
483 // * In the G1 code we do not check whether we need to block for
484 // a safepoint. If G1 is enabled then we must execute the specialized
485 // code for Reference.get (except when the Reference object is null)
486 // so that we can log the value in the referent field with an SATB
487 // update buffer.
488 // If the code for the getfield template is modified so that the
489 // G1 pre-barrier code is executed when the current method is
490 // Reference.get() then going through the normal method entry
491 // will be fine.
492 // * The G1 code can, however, check the receiver object (the instance
493 // of java.lang.Reference) and jump to the slow path if null. If the
494 // Reference object is null then we obviously cannot fetch the referent
495 // and so we don't need to call the G1 pre-barrier. Thus we can use the
496 // regular method entry code to generate the NPE.
497 //
498
499 address entry = __ pc();
500
501 const int referent_offset = java_lang_ref_Reference::referent_offset();
502
503 Label slow_path;
504
505 // Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
506
507 // In the G1 code we don't check if we need to reach a safepoint. We
508 // continue and the thread will safepoint at the next bytecode dispatch.
509
510 // If the receiver is null then it is OK to jump to the slow path.
511 __ ld(R3_RET, Interpreter::stackElementSize, R15_esp); // get receiver
512
513 // Check if receiver == nullptr and go the slow path.
514 __ cmpdi(CR0, R3_RET, 0);
515 __ beq(CR0, slow_path);
516
517 __ load_heap_oop(R3_RET, referent_offset, R3_RET,
518 /* non-volatile temp */ R31, R11_scratch1,
519 MacroAssembler::PRESERVATION_FRAME_LR,
520 ON_WEAK_OOP_REF);
521
522 // Generate the G1 pre-barrier code to log the value of
523 // the referent field in an SATB buffer. Note with
524 // these parameters the pre-barrier does not generate
525 // the load of the previous value.
526
527 // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
528 __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
529
530 __ blr();
531
532 __ bind(slow_path);
533 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
534 return entry;
535 }
536
537 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
538 address entry = __ pc();
539
540 // Expression stack must be empty before entering the VM if an
541 // exception happened.
542 __ empty_expression_stack();
543 // Throw exception.
544 __ call_VM(noreg,
545 CAST_FROM_FN_PTR(address,
546 InterpreterRuntime::throw_StackOverflowError));
547 return entry;
548 }
549
550 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
551 address entry = __ pc();
552 __ empty_expression_stack();
553 // R4_ARG2 already contains the array.
554 // Index is in R17_tos.
555 __ mr(R5_ARG3, R17_tos);
556 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), R4_ARG2, R5_ARG3);
557 return entry;
558 }
559
560 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
561 address entry = __ pc();
562 // Expression stack must be empty before entering the VM if an
563 // exception happened.
564 __ empty_expression_stack();
565
566 // Load exception object.
567 // Thread will be loaded to R3_ARG1.
568 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
569 #ifdef ASSERT
570 // Above call must not return here since exception pending.
571 __ should_not_reach_here();
572 #endif
573 return entry;
574 }
575
576 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
577 address entry = __ pc();
578 //__ untested("generate_exception_handler_common");
579 Register Rexception = R17_tos;
580
581 // Expression stack must be empty before entering the VM if an exception happened.
582 __ empty_expression_stack();
583
584 __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
585 if (pass_oop) {
586 __ mr(R5_ARG3, Rexception);
587 __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception));
588 } else {
589 __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
590 __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception));
591 }
592
593 // Throw exception.
594 __ mr(R3_ARG1, Rexception);
595 __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
596 __ mtctr(R11_scratch1);
597 __ bctr();
598
599 return entry;
600 }
601
602 // This entry is returned to when a call returns to the interpreter.
603 // When we arrive here, we expect that the callee stack frame is already popped.
604 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
605 address entry = __ pc();
606
607 // Move the value out of the return register back to the TOS cache of current frame.
608 switch (state) {
609 case ltos:
610 case btos:
611 case ztos:
612 case ctos:
613 case stos:
614 case atos:
615 case itos: __ mr(R17_tos, R3_RET); break; // RET -> TOS cache
616 case ftos:
617 case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
618 case vtos: break; // Nothing to do, this was a void return.
619 default : ShouldNotReachHere();
620 }
621
622 __ restore_interpreter_state(R11_scratch1, false /*bcp_and_mdx_only*/, true /*restore_top_frame_sp*/);
623
624 // Compiled code destroys templateTableBase, reload.
625 __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
626
627 if (state == atos) {
628 __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
629 }
630
631 const Register cache = R11_scratch1;
632 const Register size = R12_scratch2;
633 if (index_size == sizeof(u4)) {
634 __ load_resolved_indy_entry(cache, size /* tmp */);
635 __ lhz(size, in_bytes(ResolvedIndyEntry::num_parameters_offset()), cache);
636 } else {
637 assert(index_size == sizeof(u2), "Can only be u2");
638 __ load_method_entry(cache, size /* tmp */);
639 __ lhz(size, in_bytes(ResolvedMethodEntry::num_parameters_offset()), cache);
640 }
641 __ sldi(size, size, Interpreter::logStackElementSize);
642 __ add(R15_esp, R15_esp, size);
643
644 __ check_and_handle_popframe(R11_scratch1);
645 __ check_and_handle_earlyret(R11_scratch1);
646
647 __ dispatch_next(state, step);
648 return entry;
649 }
650
651 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step, address continuation) {
652 address entry = __ pc();
653 // If state != vtos, we're returning from a native method, which put it's result
654 // into the result register. So move the value out of the return register back
655 // to the TOS cache of current frame.
656
657 switch (state) {
658 case ltos:
659 case btos:
660 case ztos:
661 case ctos:
662 case stos:
663 case atos:
664 case itos: __ mr(R17_tos, R3_RET); break; // GR_RET -> TOS cache
665 case ftos:
666 case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
667 case vtos: break; // Nothing to do, this was a void return.
668 default : ShouldNotReachHere();
669 }
670
671 // Load LcpoolCache @@@ should be already set!
672 __ get_constant_pool_cache(R27_constPoolCache);
673
674 // Handle a pending exception, fall through if none.
675 __ check_and_forward_exception(R11_scratch1, R12_scratch2);
676
677 // Start executing bytecodes.
678 if (continuation == nullptr) {
679 __ dispatch_next(state, step);
680 } else {
681 __ jump_to_entry(continuation, R11_scratch1);
682 }
683
684 return entry;
685 }
686
687 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
688 address entry = __ pc();
689
690 __ push(state);
691 __ push_cont_fastpath();
692 __ call_VM(noreg, runtime_entry);
693 __ pop_cont_fastpath();
694 __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
695
696 return entry;
697 }
698
699 address TemplateInterpreterGenerator::generate_cont_resume_interpreter_adapter() {
700 if (!Continuations::enabled()) return nullptr;
701 address start = __ pc();
702
703 __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
704 __ restore_interpreter_state(R11_scratch1, false, true /*restore_top_frame_sp*/);
705 // Restore registers that are preserved across vthread preemption
706 assert(__ nonvolatile_accross_vthread_preemtion(R31) && __ nonvolatile_accross_vthread_preemtion(R24), "");
707 __ ld(R3_ARG1, _abi0(callers_sp), R1_SP); // load FP
708 __ ld(R31, _ijava_state_neg(lresult), R3_ARG1);
709 __ ld(R24, _ijava_state_neg(fresult), R3_ARG1);
710 __ blr();
711
712 return start;
713 }
714
715 // Helpers for commoning out cases in the various type of method entries.
716
717 // Increment invocation count & check for overflow.
718 //
719 // Note: checking for negative value instead of overflow
720 // so we have a 'sticky' overflow test.
721 //
722 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) {
723 // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
724 Register Rscratch1 = R11_scratch1;
725 Register Rscratch2 = R12_scratch2;
726 Register R3_counters = R3_ARG1;
727 Label done;
728
729 const int increment = InvocationCounter::count_increment;
730 Label no_mdo;
731 if (ProfileInterpreter) {
732 const Register Rmdo = R3_counters;
733 __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
734 __ cmpdi(CR0, Rmdo, 0);
735 __ beq(CR0, no_mdo);
736
737 // Increment invocation counter in the MDO.
738 const int mdo_ic_offs = in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
739 __ lwz(Rscratch2, mdo_ic_offs, Rmdo);
740 __ lwz(Rscratch1, in_bytes(MethodData::invoke_mask_offset()), Rmdo);
741 __ addi(Rscratch2, Rscratch2, increment);
742 __ stw(Rscratch2, mdo_ic_offs, Rmdo);
743 __ and_(Rscratch1, Rscratch2, Rscratch1);
744 __ bne(CR0, done);
745 __ b(*overflow);
746 }
747
748 // Increment counter in MethodCounters*.
749 const int mo_ic_offs = in_bytes(MethodCounters::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
750 __ bind(no_mdo);
751 __ get_method_counters(R19_method, R3_counters, done);
752 __ lwz(Rscratch2, mo_ic_offs, R3_counters);
753 __ lwz(Rscratch1, in_bytes(MethodCounters::invoke_mask_offset()), R3_counters);
754 __ addi(Rscratch2, Rscratch2, increment);
755 __ stw(Rscratch2, mo_ic_offs, R3_counters);
756 __ and_(Rscratch1, Rscratch2, Rscratch1);
757 __ beq(CR0, *overflow);
758
759 __ bind(done);
760 }
761
762 // Generate code to initiate compilation on invocation counter overflow.
763 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
764 // Generate code to initiate compilation on the counter overflow.
765
766 // InterpreterRuntime::frequency_counter_overflow takes one arguments,
767 // which indicates if the counter overflow occurs at a backwards branch (null bcp)
768 // We pass zero in.
769 // The call returns the address of the verified entry point for the method or null
770 // if the compilation did not complete (either went background or bailed out).
771 //
772 // Unlike the C++ interpreter above: Check exceptions!
773 // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
774 // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
775
776 __ li(R4_ARG2, 0);
777 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
778
779 // Returns verified_entry_point or null.
780 // We ignore it in any case.
781 __ b(continue_entry);
782 }
783
784 // See if we've got enough room on the stack for locals plus overhead below
785 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
786 // without going through the signal handler, i.e., reserved and yellow zones
787 // will not be made usable. The shadow zone must suffice to handle the
788 // overflow.
789 //
790 // Kills Rmem_frame_size, Rscratch1.
791 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
792 Label done;
793 assert_different_registers(Rmem_frame_size, Rscratch1);
794
795 BLOCK_COMMENT("stack_overflow_check_with_compare {");
796 __ sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
797 __ ld(Rscratch1, thread_(stack_overflow_limit));
798 __ cmpld(CR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
799 __ bgt(CR0/*is_stack_overflow*/, done);
800
801 // The stack overflows. Load target address of the runtime stub and call it.
802 assert(SharedRuntime::throw_StackOverflowError_entry() != nullptr, "generated in wrong order");
803 __ load_const_optimized(Rscratch1, (SharedRuntime::throw_StackOverflowError_entry()), R0);
804 __ mtctr(Rscratch1);
805 // Restore caller_sp (c2i adapter may exist, but no shrinking of interpreted caller frame).
806 #ifdef ASSERT
807 Label frame_not_shrunk;
808 __ cmpld(CR0, R1_SP, R21_sender_SP);
809 __ ble(CR0, frame_not_shrunk);
810 __ stop("frame shrunk");
811 __ bind(frame_not_shrunk);
812 __ ld(Rscratch1, 0, R1_SP);
813 __ ld(R0, 0, R21_sender_SP);
814 __ cmpd(CR0, R0, Rscratch1);
815 __ asm_assert_eq("backlink");
816 #endif // ASSERT
817 __ mr(R1_SP, R21_sender_SP);
818 __ bctr();
819
820 __ align(32, 12);
821 __ bind(done);
822 BLOCK_COMMENT("} stack_overflow_check_with_compare");
823 }
824
825 // Lock the current method, interpreter register window must be set up!
826 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
827 const Register Robj_to_lock = Rscratch2;
828
829 {
830 if (!flags_preloaded) {
831 __ lhz(Rflags, method_(access_flags));
832 }
833
834 #ifdef ASSERT
835 // Check if methods needs synchronization.
836 {
837 Label Lok;
838 __ testbitdi(CR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
839 __ btrue(CR0,Lok);
840 __ stop("method doesn't need synchronization");
841 __ bind(Lok);
842 }
843 #endif // ASSERT
844 }
845
846 // Get synchronization object to Rscratch2.
847 {
848 Label Lstatic;
849 Label Ldone;
850
851 __ testbitdi(CR0, R0, Rflags, JVM_ACC_STATIC_BIT);
852 __ btrue(CR0, Lstatic);
853
854 // Non-static case: load receiver obj from stack and we're done.
855 __ ld(Robj_to_lock, R18_locals);
856 __ b(Ldone);
857
858 __ bind(Lstatic); // Static case: Lock the java mirror
859 // Load mirror from interpreter frame.
860 __ ld(Robj_to_lock, _abi0(callers_sp), R1_SP);
861 __ ld(Robj_to_lock, _ijava_state_neg(mirror), Robj_to_lock);
862
863 __ bind(Ldone);
864 __ verify_oop(Robj_to_lock);
865 }
866
867 // Got the oop to lock => execute!
868 __ add_monitor_to_stack(true, Rscratch1, R0);
869
870 __ std(Robj_to_lock, in_bytes(BasicObjectLock::obj_offset()), R26_monitor);
871 __ lock_object(R26_monitor, Robj_to_lock);
872 }
873
874 // Generate a fixed interpreter frame for pure interpreter
875 // and I2N native transition frames.
876 //
877 // Before (stack grows downwards):
878 //
879 // | ... |
880 // |------------- |
881 // | java arg0 |
882 // | ... |
883 // | java argn |
884 // | | <- R15_esp
885 // | |
886 // |--------------|
887 // | abi_112 |
888 // | | <- R1_SP
889 // |==============|
890 //
891 //
892 // After:
893 //
894 // | ... |
895 // | java arg0 |<- R18_locals
896 // | ... |
897 // | java argn |
898 // |--------------|
899 // | |
900 // | java locals |
901 // | |
902 // |--------------|
903 // | abi_48 |
904 // |==============|
905 // | |
906 // | istate |
907 // | |
908 // |--------------|
909 // | monitor |<- R26_monitor
910 // |--------------|
911 // | |<- R15_esp
912 // | expression |
913 // | stack |
914 // | |
915 // |--------------|
916 // | |
917 // | abi_112 |<- R1_SP
918 // |==============|
919 //
920 // The top most frame needs an abi space of 112 bytes. This space is needed,
921 // since we call to c. The c function may spill their arguments to the caller
922 // frame. When we call to java, we don't need these spill slots. In order to save
923 // space on the stack, we resize the caller. However, java locals reside in
924 // the caller frame and the frame has to be increased. The frame_size for the
925 // current frame was calculated based on max_stack as size for the expression
926 // stack. At the call, just a part of the expression stack might be used.
927 // We don't want to waste this space and cut the frame back accordingly.
928 // The resulting amount for resizing is calculated as follows:
929 // resize = (number_of_locals - number_of_arguments) * slot_size
930 // + (R1_SP - R15_esp) + 48
931 //
932 // The size for the callee frame is calculated:
933 // framesize = 112 + max_stack + monitor + state_size
934 //
935 // maxstack: Max number of slots on the expression stack, loaded from the method.
936 // monitor: We statically reserve room for one monitor object.
937 // state_size: We save the current state of the interpreter to this area.
938 //
939 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
940 Register Rparent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
941 Rtop_frame_size = R7_ARG5,
942 Rconst_method = R8_ARG6,
943 Rconst_pool = R9_ARG7,
944 Rmirror = R10_ARG8;
945
946 assert_different_registers(Rsize_of_parameters, Rsize_of_locals, Rparent_frame_resize, Rtop_frame_size,
947 Rconst_method, Rconst_pool);
948
949 __ ld(Rconst_method, method_(const));
950 __ lhz(Rsize_of_parameters /* number of params */,
951 in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
952 if (native_call) {
953 // If we're calling a native method, we reserve space for the worst-case signature
954 // handler varargs vector, which is max(Argument::n_int_register_parameters_c, parameter_count+2).
955 // We add two slots to the parameter_count, one for the jni
956 // environment and one for a possible native mirror.
957 Label skip_native_calculate_max_stack;
958 __ addi(Rtop_frame_size, Rsize_of_parameters, 2);
959 __ cmpwi(CR0, Rtop_frame_size, Argument::n_int_register_parameters_c);
960 __ bge(CR0, skip_native_calculate_max_stack);
961 __ li(Rtop_frame_size, Argument::n_int_register_parameters_c);
962 __ bind(skip_native_calculate_max_stack);
963 __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
964 __ sldi(Rtop_frame_size, Rtop_frame_size, Interpreter::logStackElementSize);
965 __ sub(Rparent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
966 assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
967 } else {
968 __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
969 __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
970 __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
971 __ lhz(Rtop_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
972 __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
973 __ sub(Rparent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
974 __ sldi(Rtop_frame_size, Rtop_frame_size, Interpreter::logStackElementSize);
975 __ add(Rparent_frame_resize, Rparent_frame_resize, R11_scratch1);
976 }
977
978 // Compute top frame size.
979 __ addi(Rtop_frame_size, Rtop_frame_size, frame::top_ijava_frame_abi_size + frame::ijava_state_size);
980
981 // Cut back area between esp and max_stack.
982 __ addi(Rparent_frame_resize, Rparent_frame_resize, frame::parent_ijava_frame_abi_size - Interpreter::stackElementSize);
983
984 __ round_to(Rtop_frame_size, frame::alignment_in_bytes);
985 __ round_to(Rparent_frame_resize, frame::alignment_in_bytes);
986 // Rparent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
987 // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
988
989 if (!native_call) {
990 // Stack overflow check.
991 // Native calls don't need the stack size check since they have no
992 // expression stack and the arguments are already on the stack and
993 // we only add a handful of words to the stack.
994 __ add(R11_scratch1, Rparent_frame_resize, Rtop_frame_size);
995 generate_stack_overflow_check(R11_scratch1, R12_scratch2);
996 }
997
998 // Set up interpreter state registers.
999
1000 __ add(R18_locals, R15_esp, Rsize_of_parameters);
1001 __ ld(Rconst_pool, in_bytes(ConstMethod::constants_offset()), Rconst_method);
1002 __ ld(R27_constPoolCache, ConstantPool::cache_offset(), Rconst_pool);
1003
1004 // Set method data pointer.
1005 if (ProfileInterpreter) {
1006 Label zero_continue;
1007 __ ld(R28_mdx, method_(method_data));
1008 __ cmpdi(CR0, R28_mdx, 0);
1009 __ beq(CR0, zero_continue);
1010 __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1011 __ bind(zero_continue);
1012 }
1013
1014 if (native_call) {
1015 __ li(R14_bcp, 0); // Must initialize.
1016 } else {
1017 __ addi(R14_bcp, Rconst_method, in_bytes(ConstMethod::codes_offset()));
1018 }
1019
1020 // Resize parent frame.
1021 __ mflr(R12_scratch2);
1022 __ neg(Rparent_frame_resize, Rparent_frame_resize);
1023 __ resize_frame(Rparent_frame_resize, R11_scratch1);
1024 __ std(R12_scratch2, _abi0(lr), R1_SP);
1025
1026 // Get mirror and store it in the frame as GC root for this Method*.
1027 __ ld(Rmirror, ConstantPool::pool_holder_offset(), Rconst_pool);
1028 __ ld(Rmirror, in_bytes(Klass::java_mirror_offset()), Rmirror);
1029 __ resolve_oop_handle(Rmirror, R11_scratch1, R12_scratch2, MacroAssembler::PRESERVATION_FRAME_LR_GP_REGS);
1030
1031 __ addi(R26_monitor, R1_SP, -frame::ijava_state_size);
1032 __ addi(R15_esp, R26_monitor, -Interpreter::stackElementSize);
1033
1034 // Store values.
1035 __ std(R19_method, _ijava_state_neg(method), R1_SP);
1036 __ std(Rmirror, _ijava_state_neg(mirror), R1_SP);
1037 __ sub(R12_scratch2, R18_locals, R1_SP);
1038 __ srdi(R12_scratch2, R12_scratch2, Interpreter::logStackElementSize);
1039 // Store relativized R18_locals, see frame::interpreter_frame_locals().
1040 __ std(R12_scratch2, _ijava_state_neg(locals), R1_SP);
1041 __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
1042
1043 // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
1044 // be found in the frame after save_interpreter_state is done. This is always true
1045 // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
1046 // because e.g. frame::interpreter_frame_bcp() will not access the correct value
1047 // (Enhanced Stack Trace).
1048 // The signal handler does not save the interpreter state into the frame.
1049
1050 // We have to initialize some of these frame slots for native calls (accessed by GC).
1051 // Also initialize them for non-native calls for better tool support (even though
1052 // you may not get the most recent version as described above).
1053 __ li(R0, 0);
1054 __ li(R12_scratch2, -(frame::ijava_state_size / wordSize));
1055 __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
1056 __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
1057 if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
1058 __ sub(R12_scratch2, R15_esp, R1_SP);
1059 __ sradi(R12_scratch2, R12_scratch2, Interpreter::logStackElementSize);
1060 __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
1061 __ std(R0, _ijava_state_neg(oop_tmp), R1_SP); // only used for native_call
1062
1063 // Store sender's SP and this frame's top SP.
1064 __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
1065 __ neg(R12_scratch2, Rtop_frame_size);
1066 __ sradi(R12_scratch2, R12_scratch2, Interpreter::logStackElementSize);
1067 // Store relativized top_frame_sp
1068 __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
1069
1070 // Push top frame.
1071 __ push_frame(Rtop_frame_size, R11_scratch1);
1072 }
1073
1074 // End of helpers
1075
1076 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1077
1078 // Decide what to do: Use same platform specific instructions and runtime calls as compilers.
1079 bool use_instruction = false;
1080 address runtime_entry = nullptr;
1081 int num_args = 1;
1082 bool double_precision = true;
1083
1084 // PPC64 specific:
1085 switch (kind) {
1086 case Interpreter::java_lang_math_sqrt: use_instruction = true; break;
1087 case Interpreter::java_lang_math_abs: use_instruction = true; break;
1088 case Interpreter::java_lang_math_fmaF:
1089 case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break;
1090 default: break; // Fall back to runtime call.
1091 }
1092
1093 switch (kind) {
1094 case Interpreter::java_lang_math_sin : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); break;
1095 case Interpreter::java_lang_math_cos : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); break;
1096 case Interpreter::java_lang_math_tan : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); break;
1097 case Interpreter::java_lang_math_sinh : /* run interpreted */ break;
1098 case Interpreter::java_lang_math_tanh : /* run interpreted */ break;
1099 case Interpreter::java_lang_math_cbrt : /* run interpreted */ break;
1100 case Interpreter::java_lang_math_abs : /* run interpreted */ break;
1101 case Interpreter::java_lang_math_sqrt : /* run interpreted */ break;
1102 case Interpreter::java_lang_math_log : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); break;
1103 case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break;
1104 case Interpreter::java_lang_math_pow : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break;
1105 case Interpreter::java_lang_math_exp : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); break;
1106 case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break;
1107 case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break;
1108 default: ShouldNotReachHere();
1109 }
1110
1111 // Use normal entry if neither instruction nor runtime call is used.
1112 if (!use_instruction && runtime_entry == nullptr) return nullptr;
1113
1114 address entry = __ pc();
1115
1116 // Load arguments
1117 assert(num_args <= 13, "passed in registers");
1118 if (double_precision) {
1119 int offset = (2 * num_args - 1) * Interpreter::stackElementSize;
1120 for (int i = 0; i < num_args; ++i) {
1121 __ lfd(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1122 offset -= 2 * Interpreter::stackElementSize;
1123 }
1124 } else {
1125 int offset = num_args * Interpreter::stackElementSize;
1126 for (int i = 0; i < num_args; ++i) {
1127 __ lfs(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1128 offset -= Interpreter::stackElementSize;
1129 }
1130 }
1131
1132 if (use_instruction) {
1133 switch (kind) {
1134 case Interpreter::java_lang_math_sqrt: __ fsqrt(F1_RET, F1); break;
1135 case Interpreter::java_lang_math_abs: __ fabs(F1_RET, F1); break;
1136 case Interpreter::java_lang_math_fmaF: __ fmadds(F1_RET, F1, F2, F3); break;
1137 case Interpreter::java_lang_math_fmaD: __ fmadd(F1_RET, F1, F2, F3); break;
1138 default: ShouldNotReachHere();
1139 }
1140 } else {
1141 // Comment: Can use tail call if the unextended frame is always C ABI compliant:
1142 //__ load_const_optimized(R12_scratch2, runtime_entry, R0);
1143 //__ call_c_and_return_to_caller(R12_scratch2);
1144
1145 // Push a new C frame and save LR.
1146 __ save_LR(R0);
1147 __ push_frame_reg_args(0, R11_scratch1);
1148
1149 __ call_VM_leaf(runtime_entry);
1150
1151 // Pop the C frame and restore LR.
1152 __ pop_frame();
1153 __ restore_LR(R0);
1154 }
1155
1156 // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
1157 __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
1158 __ blr();
1159
1160 __ flush();
1161
1162 return entry;
1163 }
1164
1165 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() {
1166 if (!VM_Version::supports_float16()) return nullptr;
1167
1168 address entry = __ pc();
1169
1170 __ lfs(F1, Interpreter::stackElementSize, R15_esp);
1171 __ f2hf(R3_RET, F1, F0);
1172
1173 // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
1174 __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
1175 __ blr();
1176
1177 __ flush();
1178
1179 return entry;
1180 }
1181
1182 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() {
1183 if (!VM_Version::supports_float16()) return nullptr;
1184
1185 address entry = __ pc();
1186
1187 // Note: Could also use:
1188 //__ li(R3, Interpreter::stackElementSize);
1189 //__ lfiwax(F1_RET, R15_esp, R3); // short stored as 32 bit integer
1190 //__ xscvhpdp(F1_RET->to_vsr(), F1_RET->to_vsr());
1191 __ lwa(R3, Interpreter::stackElementSize, R15_esp);
1192 __ hf2f(F1_RET, R3);
1193
1194 // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
1195 __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
1196 __ blr();
1197
1198 __ flush();
1199
1200 return entry;
1201 }
1202
1203 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1204 // Quick & dirty stack overflow checking: bang the stack & handle trap.
1205 // Note that we do the banging after the frame is setup, since the exception
1206 // handling code expects to find a valid interpreter frame on the stack.
1207 // Doing the banging earlier fails if the caller frame is not an interpreter
1208 // frame.
1209 // (Also, the exception throwing code expects to unlock any synchronized
1210 // method receiever, so do the banging after locking the receiver.)
1211
1212 // Bang each page in the shadow zone. We can't assume it's been done for
1213 // an interpreter frame with greater than a page of locals, so each page
1214 // needs to be checked. Only true for non-native.
1215 const size_t page_size = os::vm_page_size();
1216 const int n_shadow_pages = StackOverflow::stack_shadow_zone_size() / page_size;
1217 const int start_page = native_call ? n_shadow_pages : 1;
1218 BLOCK_COMMENT("bang_stack_shadow_pages:");
1219 for (int pages = start_page; pages <= n_shadow_pages; pages++) {
1220 __ bang_stack_with_offset(pages*page_size);
1221 }
1222 }
1223
1224 // Interpreter stub for calling a native method. (asm interpreter)
1225 // This sets up a somewhat different looking stack for calling the
1226 // native method than the typical interpreter frame setup.
1227 //
1228 // On entry:
1229 // R19_method - method
1230 // R16_thread - JavaThread*
1231 // R15_esp - intptr_t* sender tos
1232 //
1233 // abstract stack (grows up)
1234 // [ IJava (caller of JNI callee) ] <-- ASP
1235 // ...
1236 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized, bool runtime_upcalls) {
1237
1238 address entry = __ pc();
1239
1240 const bool inc_counter = (UseCompiler || CountCompiledCalls) && !PreloadOnly;
1241
1242 // -----------------------------------------------------------------------------
1243 // Allocate a new frame that represents the native callee (i2n frame).
1244 // This is not a full-blown interpreter frame, but in particular, the
1245 // following registers are valid after this:
1246 // - R19_method
1247 // - R18_local (points to start of arguments to native function)
1248 //
1249 // abstract stack (grows up)
1250 // [ IJava (caller of JNI callee) ] <-- ASP
1251 // ...
1252
1253 const Register signature_handler_fd = R11_scratch1;
1254 const Register pending_exception = R0;
1255 const Register result_handler_addr = R31;
1256 const Register native_method_fd = R12_scratch2; // preferred in MacroAssembler::branch_to
1257 const Register access_flags = R24_tmp4;
1258 const Register active_handles = R11_scratch1; // R26_monitor saved to state.
1259 const Register sync_state = R12_scratch2;
1260 const Register sync_state_addr = sync_state; // Address is dead after use.
1261 const Register suspend_flags = R11_scratch1;
1262
1263 //=============================================================================
1264 // Allocate new frame and initialize interpreter state.
1265
1266 Label exception_return;
1267 Label exception_return_sync_check;
1268 Label stack_overflow_return;
1269
1270 Register size_of_parameters = R22_tmp2;
1271
1272 generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
1273
1274 //=============================================================================
1275 // Increment invocation counter. On overflow, entry to JNI method
1276 // will be compiled.
1277 Label invocation_counter_overflow, continue_after_compile;
1278 if (inc_counter) {
1279 if (synchronized) {
1280 // Since at this point in the method invocation the exception handler
1281 // would try to exit the monitor of synchronized methods which hasn't
1282 // been entered yet, we set the thread local variable
1283 // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1284 // runtime, exception handling i.e. unlock_if_synchronized_method will
1285 // check this thread local flag.
1286 // This flag has two effects, one is to force an unwind in the topmost
1287 // interpreter frame and not perform an unlock while doing so.
1288 __ li(R0, 1);
1289 __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1290 }
1291 generate_counter_incr(&invocation_counter_overflow);
1292
1293 BIND(continue_after_compile);
1294 }
1295
1296 bang_stack_shadow_pages(true);
1297
1298 if (inc_counter) {
1299 // Reset the _do_not_unlock_if_synchronized flag.
1300 if (synchronized) {
1301 __ li(R0, 0);
1302 __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1303 }
1304 }
1305
1306 // access_flags = method->access_flags();
1307 // Load access flags.
1308 assert(__ nonvolatile_accross_vthread_preemtion(access_flags),
1309 "access_flags not preserved");
1310 // Type check.
1311 assert(2 == sizeof(AccessFlags), "unexpected field size");
1312 __ lhz(access_flags, method_(access_flags));
1313
1314 // We don't want to reload R19_method and access_flags after calls
1315 // to some helper functions.
1316 assert(R19_method->is_nonvolatile(),
1317 "R19_method must be a non-volatile register");
1318
1319 // Check for synchronized methods. Must happen AFTER invocation counter
1320 // check, so method is not locked if counter overflows.
1321
1322 if (synchronized) {
1323 lock_method(access_flags, R11_scratch1, R12_scratch2, true);
1324
1325 // Update monitor in state.
1326 __ ld(R11_scratch1, 0, R1_SP);
1327 __ sub(R12_scratch2, R26_monitor, R11_scratch1);
1328 __ sradi(R12_scratch2, R12_scratch2, Interpreter::logStackElementSize);
1329 __ std(R12_scratch2, _ijava_state_neg(monitors), R11_scratch1);
1330 }
1331
1332 // jvmti/jvmpi support
1333 __ notify_method_entry();
1334
1335 //=============================================================================
1336 // Get and call the signature handler.
1337
1338 __ ld(signature_handler_fd, method_(signature_handler));
1339 Label call_signature_handler;
1340
1341 __ cmpdi(CR0, signature_handler_fd, 0);
1342 __ bne(CR0, call_signature_handler);
1343
1344 // Method has never been called. Either generate a specialized
1345 // handler or point to the slow one.
1346 //
1347 // Pass parameter 'false' to avoid exception check in call_VM.
1348 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
1349
1350 // Check for an exception while looking up the target method. If we
1351 // incurred one, bail.
1352 __ ld(pending_exception, thread_(pending_exception));
1353 __ cmpdi(CR0, pending_exception, 0);
1354 __ bne(CR0, exception_return_sync_check); // Has pending exception.
1355
1356 // Reload signature handler, it may have been created/assigned in the meanwhile.
1357 __ ld(signature_handler_fd, method_(signature_handler));
1358 __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
1359
1360 BIND(call_signature_handler);
1361
1362 // Before we call the signature handler we push a new frame to
1363 // protect the interpreter frame volatile registers when we return
1364 // from jni but before we can get back to Java.
1365
1366 // First set the frame anchor while the SP/FP registers are
1367 // convenient and the slow signature handler can use this same frame
1368 // anchor.
1369
1370 bool support_vthread_preemption = Continuations::enabled();
1371
1372 // We have a TOP_IJAVA_FRAME here, which belongs to us.
1373 Label last_java_pc;
1374 Label *resume_pc = support_vthread_preemption ? &last_java_pc : nullptr;
1375 __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R3_ARG1/*tmp*/, resume_pc);
1376
1377 // Now the interpreter frame (and its call chain) have been
1378 // invalidated and flushed. We are now protected against eager
1379 // being enabled in native code. Even if it goes eager the
1380 // registers will be reloaded as clean and we will invalidate after
1381 // the call so no spurious flush should be possible.
1382
1383 // Call signature handler and pass locals address.
1384 //
1385 // Our signature handlers copy required arguments to the C stack
1386 // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
1387 __ mr(R3_ARG1, R18_locals);
1388 #if !defined(ABI_ELFv2)
1389 __ ld(signature_handler_fd, 0, signature_handler_fd);
1390 #endif
1391
1392 __ call_stub(signature_handler_fd);
1393
1394 assert(__ nonvolatile_accross_vthread_preemtion(result_handler_addr),
1395 "result_handler_addr not preserved");
1396 // Save across call to native method.
1397 __ mr(result_handler_addr, R3_RET);
1398 __ ld(R11_scratch1, _abi0(callers_sp), R1_SP); // load FP
1399
1400 __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
1401
1402 // Set up fixed parameters and call the native method.
1403 // If the method is static, get mirror into R4_ARG2.
1404 {
1405 Label method_is_not_static;
1406 // Access_flags is non-volatile and still, no need to restore it.
1407
1408 // Restore access flags.
1409 __ testbitdi(CR0, R0, access_flags, JVM_ACC_STATIC_BIT);
1410 __ bfalse(CR0, method_is_not_static);
1411
1412 // Load mirror from interpreter frame (FP in R11_scratch1)
1413 __ ld(R21_tmp1, _ijava_state_neg(mirror), R11_scratch1);
1414 // R4_ARG2 = &state->_oop_temp;
1415 __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
1416 __ std(R21_tmp1/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
1417 BIND(method_is_not_static);
1418 }
1419
1420 // At this point, arguments have been copied off the stack into
1421 // their JNI positions. Oops are boxed in-place on the stack, with
1422 // handles copied to arguments. The result handler address is in a
1423 // register.
1424
1425 // Pass JNIEnv address as first parameter.
1426 __ addir(R3_ARG1, thread_(jni_environment));
1427
1428 // Load the native_method entry before we change the thread state.
1429 __ ld(native_method_fd, method_(native_function));
1430
1431 //=============================================================================
1432 // Transition from _thread_in_Java to _thread_in_native. As soon as
1433 // we make this change the safepoint code needs to be certain that
1434 // the last Java frame we established is good. The pc in that frame
1435 // just needs to be near here not an actual return address.
1436
1437 // We use release_store_fence to update values like the thread state, where
1438 // we don't want the current thread to continue until all our prior memory
1439 // accesses (including the new thread state) are visible to other threads.
1440 __ li(R0, _thread_in_native);
1441 __ release();
1442
1443 // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
1444 __ stw(R0, thread_(thread_state));
1445
1446 //=============================================================================
1447 // Call the native method. Argument registers must not have been
1448 // overwritten since "__ call_stub(signature_handler);" (except for
1449 // ARG1 and ARG2 for static methods).
1450
1451 if (support_vthread_preemption) {
1452 // result_handler_addr is a nonvolatile register. Its value will be preserved across
1453 // the native call but only if the call isn't preempted. To preserve its value even
1454 // in the case of preemption we save it in the lresult slot. It is restored at
1455 // resume_pc if, and only if the call was preempted. This works because only
1456 // j.l.Object::wait calls are preempted which don't return a result.
1457 __ std(result_handler_addr, _ijava_state_neg(lresult), R11_scratch1);
1458 }
1459 __ push_cont_fastpath();
1460 __ call_c(native_method_fd);
1461 __ pop_cont_fastpath();
1462
1463 __ li(R0, 0);
1464 __ ld(R11_scratch1, 0, R1_SP);
1465 __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1466 __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1467 __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
1468
1469 // Note: C++ interpreter needs the following here:
1470 // The frame_manager_lr field, which we use for setting the last
1471 // java frame, gets overwritten by the signature handler. Restore
1472 // it now.
1473 //__ get_PC_trash_LR(R11_scratch1);
1474 //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
1475
1476 // Because of GC R19_method may no longer be valid.
1477
1478 // Block, if necessary, before resuming in _thread_in_Java state.
1479 // In order for GC to work, don't clear the last_Java_sp until after
1480 // blocking.
1481
1482 //=============================================================================
1483 // Switch thread to "native transition" state before reading the
1484 // synchronization state. This additional state is necessary
1485 // because reading and testing the synchronization state is not
1486 // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
1487 // in _thread_in_native state, loads _not_synchronized and is
1488 // preempted. VM thread changes sync state to synchronizing and
1489 // suspends threads for GC. Thread A is resumed to finish this
1490 // native method, but doesn't block here since it didn't see any
1491 // synchronization in progress, and escapes.
1492
1493 // We use release_store_fence to update values like the thread state, where
1494 // we don't want the current thread to continue until all our prior memory
1495 // accesses (including the new thread state) are visible to other threads.
1496 __ li(R0/*thread_state*/, _thread_in_native_trans);
1497 __ release();
1498 __ stw(R0/*thread_state*/, thread_(thread_state));
1499 if (!UseSystemMemoryBarrier) {
1500 __ fence();
1501 }
1502
1503 // Now before we return to java we must look for a current safepoint
1504 // (a new safepoint can not start since we entered native_trans).
1505 // We must check here because a current safepoint could be modifying
1506 // the callers registers right this moment.
1507
1508 // Acquire isn't strictly necessary here because of the fence, but
1509 // sync_state is declared to be volatile, so we do it anyway
1510 // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
1511
1512 Label do_safepoint, sync_check_done;
1513 // No synchronization in progress nor yet synchronized.
1514 __ safepoint_poll(do_safepoint, sync_state, true /* at_return */, false /* in_nmethod */);
1515
1516 // Not suspended.
1517 // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
1518 __ lwz(suspend_flags, thread_(suspend_flags));
1519 __ cmpwi(CR1, suspend_flags, 0);
1520 __ beq(CR1, sync_check_done);
1521
1522 __ bind(do_safepoint);
1523 __ isync();
1524 // Block. We do the call directly and leave the current
1525 // last_Java_frame setup undisturbed. We must save any possible
1526 // native result across the call. No oop is present.
1527
1528 __ mr(R3_ARG1, R16_thread);
1529 __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1530
1531 __ bind(sync_check_done);
1532
1533 //=============================================================================
1534 // <<<<<< Back in Interpreter Frame >>>>>
1535
1536 // We are in thread_in_native_trans here and back in the normal
1537 // interpreter frame. We don't have to do anything special about
1538 // safepoints and we can switch to Java mode anytime we are ready.
1539
1540 // Note: frame::interpreter_frame_result has a dependency on how the
1541 // method result is saved across the call to post_method_exit. For
1542 // native methods it assumes that the non-FPU/non-void result is
1543 // saved in _native_lresult and a FPU result in _native_fresult. If
1544 // this changes then the interpreter_frame_result implementation
1545 // will need to be updated too.
1546
1547 // On PPC64, we have stored the result directly after the native call.
1548
1549 //=============================================================================
1550 // Back in Java
1551
1552 // We use release_store_fence to update values like the thread state, where
1553 // we don't want the current thread to continue until all our prior memory
1554 // accesses (including the new thread state) are visible to other threads.
1555 __ li(R0/*thread_state*/, _thread_in_Java);
1556 __ lwsync(); // Acquire safepoint and suspend state, release thread state.
1557 __ stw(R0/*thread_state*/, thread_(thread_state));
1558
1559 if (support_vthread_preemption) {
1560 // Check preemption for Object.wait()
1561 Label not_preempted;
1562 __ ld(R0, in_bytes(JavaThread::preempt_alternate_return_offset()), R16_thread);
1563 __ cmpdi(CR0, R0, 0);
1564 __ beq(CR0, not_preempted);
1565 __ mtlr(R0);
1566 __ li(R0, 0);
1567 __ std(R0, in_bytes(JavaThread::preempt_alternate_return_offset()), R16_thread);
1568 __ blr();
1569
1570 // Execution will be resumed here when the vthread becomes runnable again.
1571 __ bind(*resume_pc);
1572 __ restore_after_resume(R11_scratch1 /* fp */);
1573 // We saved the result handler before the call
1574 __ ld(result_handler_addr, _ijava_state_neg(lresult), R11_scratch1);
1575 #ifdef ASSERT
1576 // Clobber result slots. Only native methods returning void can be preemted currently.
1577 __ load_const(R3_RET, UCONST64(0xbad01001));
1578 __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1579 __ std(R3_RET, _ijava_state_neg(fresult), R11_scratch1);
1580 // reset_last_Java_frame() below asserts that a last java sp is set
1581 __ asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_sp_offset()),
1582 R16_thread, FILE_AND_LINE ": Last java sp should not be set when resuming");
1583 __ std(R3_RET, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
1584 #endif
1585 __ bind(not_preempted);
1586 }
1587
1588 if (CheckJNICalls) {
1589 // clear_pending_jni_exception_check
1590 __ load_const_optimized(R0, 0L);
1591 __ st_ptr(R0, JavaThread::pending_jni_exception_check_fn_offset(), R16_thread);
1592 }
1593
1594 #if INCLUDE_JFR
1595 __ enter_jfr_critical_section();
1596
1597 // This poll test is to uphold the invariant that a JFR sampled frame
1598 // must not return to its caller without a prior safepoint poll check.
1599 // The earlier poll check in this routine is insufficient for this purpose
1600 // because the thread has transitioned back to Java.
1601
1602 Label slow_path, fast_path;
1603 __ safepoint_poll(slow_path, R11_scratch1, true /* at_return */, false /* in_nmethod */);
1604 __ b(fast_path);
1605 __ bind(slow_path);
1606 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), R16_thread);
1607 __ align(32);
1608 __ bind(fast_path);
1609
1610 #endif // INCLUDE_JFR
1611
1612 __ reset_last_Java_frame();
1613
1614 // Jvmdi/jvmpi support. Whether we've got an exception pending or
1615 // not, and whether unlocking throws an exception or not, we notify
1616 // on native method exit. If we do have an exception, we'll end up
1617 // in the caller's context to handle it, so if we don't do the
1618 // notify here, we'll drop it on the floor.
1619 __ notify_method_exit(true/*native method*/,
1620 ilgl /*illegal state (not used for native methods)*/,
1621 InterpreterMacroAssembler::NotifyJVMTI,
1622 false /*check_exceptions*/);
1623
1624 //=============================================================================
1625 // Handle exceptions
1626
1627 if (synchronized) {
1628 __ unlock_object(R26_monitor); // Can also unlock methods.
1629 }
1630
1631 // Reset active handles after returning from native.
1632 // thread->active_handles()->clear();
1633 __ ld(active_handles, thread_(active_handles));
1634 // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
1635 __ li(R0, 0);
1636 __ stw(R0, in_bytes(JNIHandleBlock::top_offset()), active_handles);
1637
1638 Label exception_return_sync_check_already_unlocked;
1639 __ ld(R0/*pending_exception*/, thread_(pending_exception));
1640 __ cmpdi(CR0, R0/*pending_exception*/, 0);
1641 __ bne(CR0, exception_return_sync_check_already_unlocked);
1642
1643 //-----------------------------------------------------------------------------
1644 // No exception pending.
1645
1646 // Move native method result back into proper registers and return.
1647 // Invoke result handler (may unbox/promote).
1648 __ ld(R11_scratch1, 0, R1_SP);
1649 __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1650 __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1651 __ call_stub(result_handler_addr);
1652
1653 __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R12_scratch2, R11_scratch1, R0);
1654 JFR_ONLY(__ leave_jfr_critical_section();)
1655
1656 // Must use the return pc which was loaded from the caller's frame
1657 // as the VM uses return-pc-patching for deoptimization.
1658 __ mtlr(R12_scratch2);
1659 __ blr();
1660
1661 //-----------------------------------------------------------------------------
1662 // An exception is pending. We call into the runtime only if the
1663 // caller was not interpreted. If it was interpreted the
1664 // interpreter will do the correct thing. If it isn't interpreted
1665 // (call stub/compiled code) we will change our return and continue.
1666
1667 BIND(exception_return_sync_check);
1668
1669 if (synchronized) {
1670 __ unlock_object(R26_monitor); // Can also unlock methods.
1671 }
1672 BIND(exception_return_sync_check_already_unlocked);
1673
1674 const Register return_pc = R31;
1675
1676 __ ld(return_pc, 0, R1_SP);
1677 __ ld(return_pc, _abi0(lr), return_pc);
1678
1679 // Get the address of the exception handler.
1680 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1681 R16_thread,
1682 return_pc /* return pc */);
1683 __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
1684
1685 // Load the PC of the exception handler into LR.
1686 __ mtlr(R3_RET);
1687
1688 // Load exception into R3_ARG1 and clear pending exception in thread.
1689 __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
1690 __ li(R4_ARG2, 0);
1691 __ std(R4_ARG2, thread_(pending_exception));
1692
1693 // Load the original return pc into R4_ARG2.
1694 __ mr(R4_ARG2/*issuing_pc*/, return_pc);
1695
1696 // Return to exception handler.
1697 __ blr();
1698
1699 //=============================================================================
1700 // Counter overflow.
1701
1702 if (inc_counter) {
1703 // Handle invocation counter overflow.
1704 __ bind(invocation_counter_overflow);
1705
1706 generate_counter_overflow(continue_after_compile);
1707 }
1708
1709 return entry;
1710 }
1711
1712 // Generic interpreted method entry to (asm) interpreter.
1713 //
1714 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized, bool runtime_upcalls) {
1715 bool inc_counter = (UseCompiler || CountCompiledCalls) && !PreloadOnly;
1716 address entry = __ pc();
1717 // Generate the code to allocate the interpreter stack frame.
1718 Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
1719 Rsize_of_locals = R5_ARG3; // Written by generate_fixed_frame.
1720
1721 // Does also a stack check to assure this frame fits on the stack.
1722 generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
1723
1724 // --------------------------------------------------------------------------
1725 // Zero out non-parameter locals.
1726 // Note: *Always* zero out non-parameter locals as Sparc does. It's not
1727 // worth to ask the flag, just do it.
1728 Register Rslot_addr = R6_ARG4,
1729 Rnum = R7_ARG5;
1730 Label Lno_locals, Lzero_loop;
1731
1732 // Set up the zeroing loop.
1733 __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
1734 __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
1735 __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
1736 __ beq(CR0, Lno_locals);
1737 __ li(R0, 0);
1738 __ mtctr(Rnum);
1739
1740 // The zero locals loop.
1741 __ bind(Lzero_loop);
1742 __ std(R0, 0, Rslot_addr);
1743 __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
1744 __ bdnz(Lzero_loop);
1745
1746 __ bind(Lno_locals);
1747
1748 // --------------------------------------------------------------------------
1749 // Counter increment and overflow check.
1750 Label invocation_counter_overflow;
1751 Label continue_after_compile;
1752 if (inc_counter || ProfileInterpreter) {
1753
1754 Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
1755 if (synchronized) {
1756 // Since at this point in the method invocation the exception handler
1757 // would try to exit the monitor of synchronized methods which hasn't
1758 // been entered yet, we set the thread local variable
1759 // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1760 // runtime, exception handling i.e. unlock_if_synchronized_method will
1761 // check this thread local flag.
1762 // This flag has two effects, one is to force an unwind in the topmost
1763 // interpreter frame and not perform an unlock while doing so.
1764 __ li(R0, 1);
1765 __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1766 }
1767
1768 // Argument and return type profiling.
1769 __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
1770
1771 // Increment invocation counter and check for overflow.
1772 if (inc_counter) {
1773 generate_counter_incr(&invocation_counter_overflow);
1774 }
1775
1776 __ bind(continue_after_compile);
1777 }
1778
1779 bang_stack_shadow_pages(false);
1780
1781 if (inc_counter || ProfileInterpreter) {
1782 // Reset the _do_not_unlock_if_synchronized flag.
1783 if (synchronized) {
1784 __ li(R0, 0);
1785 __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1786 }
1787 }
1788
1789 // --------------------------------------------------------------------------
1790 // Locking of synchronized methods. Must happen AFTER invocation_counter
1791 // check and stack overflow check, so method is not locked if overflows.
1792 if (synchronized) {
1793 lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
1794 }
1795 #ifdef ASSERT
1796 else {
1797 Label Lok;
1798 __ lhz(R0, in_bytes(Method::access_flags_offset()), R19_method);
1799 __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
1800 __ asm_assert_eq("method needs synchronization");
1801 __ bind(Lok);
1802 }
1803 #endif // ASSERT
1804
1805 // --------------------------------------------------------------------------
1806 // JVMTI support
1807 __ notify_method_entry();
1808
1809 // --------------------------------------------------------------------------
1810 // Start executing instructions.
1811 __ dispatch_next(vtos);
1812
1813 // --------------------------------------------------------------------------
1814 if (inc_counter) {
1815 // Handle invocation counter overflow.
1816 __ bind(invocation_counter_overflow);
1817 generate_counter_overflow(continue_after_compile);
1818 }
1819 return entry;
1820 }
1821
1822 // CRC32 Intrinsics.
1823 //
1824 // Contract on scratch and work registers.
1825 // =======================================
1826 //
1827 // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers.
1828 // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set.
1829 // You can't rely on these registers across calls.
1830 //
1831 // The generators for CRC32_update and for CRC32_updateBytes use the
1832 // scratch/work register set internally, passing the work registers
1833 // as arguments to the MacroAssembler emitters as required.
1834 //
1835 // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments.
1836 // Their contents is not constant but may change according to the requirements
1837 // of the emitted code.
1838 //
1839 // All other registers from the scratch/work register set are used "internally"
1840 // and contain garbage (i.e. unpredictable values) once blr() is reached.
1841 // Basically, only R3_RET contains a defined value which is the function result.
1842 //
1843 /**
1844 * Method entry for static native methods:
1845 * int java.util.zip.CRC32.update(int crc, int b)
1846 */
1847 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1848 assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1849 address start = __ pc(); // Remember stub start address (is rtn value).
1850 Label slow_path;
1851
1852 // Safepoint check
1853 const Register sync_state = R11_scratch1;
1854 __ safepoint_poll(slow_path, sync_state, false /* at_return */, false /* in_nmethod */);
1855
1856 // We don't generate local frame and don't align stack because
1857 // we not even call stub code (we generate the code inline)
1858 // and there is no safepoint on this path.
1859
1860 // Load java parameters.
1861 // R15_esp is callers operand stack pointer, i.e. it points to the parameters.
1862 const Register argP = R15_esp;
1863 const Register crc = R3_ARG1; // crc value
1864 const Register data = R4_ARG2;
1865 const Register table = R5_ARG3; // address of crc32 table
1866
1867 BLOCK_COMMENT("CRC32_update {");
1868
1869 // Arguments are reversed on java expression stack
1870 #ifdef VM_LITTLE_ENDIAN
1871 int data_offs = 0+1*wordSize; // (stack) address of byte value. Emitter expects address, not value.
1872 // Being passed as an int, the single byte is at offset +0.
1873 #else
1874 int data_offs = 3+1*wordSize; // (stack) address of byte value. Emitter expects address, not value.
1875 // Being passed from java as an int, the single byte is at offset +3.
1876 #endif
1877 __ lwz(crc, 2*wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register.
1878 __ lbz(data, data_offs, argP); // Byte from buffer, zero-extended.
1879 __ load_const_optimized(table, StubRoutines::crc_table_addr(), R0);
1880 __ kernel_crc32_singleByteReg(crc, data, table, true);
1881
1882 // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
1883 __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
1884 __ blr();
1885
1886 // Generate a vanilla native entry as the slow path.
1887 BLOCK_COMMENT("} CRC32_update");
1888 BIND(slow_path);
1889 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1890 return start;
1891 }
1892
1893 /**
1894 * Method entry for static native methods:
1895 * int java.util.zip.CRC32.updateBytes( int crc, byte[] b, int off, int len)
1896 * int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
1897 */
1898 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1899 assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1900 address start = __ pc(); // Remember stub start address (is rtn value).
1901 Label slow_path;
1902
1903 // Safepoint check
1904 const Register sync_state = R11_scratch1;
1905 __ safepoint_poll(slow_path, sync_state, false /* at_return */, false /* in_nmethod */);
1906
1907 // We don't generate local frame and don't align stack because
1908 // we not even call stub code (we generate the code inline)
1909 // and there is no safepoint on this path.
1910
1911 // Load parameters.
1912 // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1913 const Register argP = R15_esp;
1914 const Register crc = R3_ARG1; // crc value
1915 const Register data = R4_ARG2; // address of java byte array
1916 const Register dataLen = R5_ARG3; // source data len
1917 const Register tmp = R11_scratch1;
1918
1919 // Arguments are reversed on java expression stack.
1920 // Calculate address of start element.
1921 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1922 BLOCK_COMMENT("CRC32_updateByteBuffer {");
1923 // crc @ (SP + 5W) (32bit)
1924 // buf @ (SP + 3W) (64bit ptr to long array)
1925 // off @ (SP + 2W) (32bit)
1926 // dataLen @ (SP + 1W) (32bit)
1927 // data = buf + off
1928 __ ld( data, 3*wordSize, argP); // start of byte buffer
1929 __ lwa( tmp, 2*wordSize, argP); // byte buffer offset
1930 __ lwa( dataLen, 1*wordSize, argP); // #bytes to process
1931 __ lwz( crc, 5*wordSize, argP); // current crc state
1932 __ add( data, data, tmp); // Add byte buffer offset.
1933 } else { // Used for "updateBytes update".
1934 BLOCK_COMMENT("CRC32_updateBytes {");
1935 // crc @ (SP + 4W) (32bit)
1936 // buf @ (SP + 3W) (64bit ptr to byte array)
1937 // off @ (SP + 2W) (32bit)
1938 // dataLen @ (SP + 1W) (32bit)
1939 // data = buf + off + base_offset
1940 __ ld( data, 3*wordSize, argP); // start of byte buffer
1941 __ lwa( tmp, 2*wordSize, argP); // byte buffer offset
1942 __ lwa( dataLen, 1*wordSize, argP); // #bytes to process
1943 __ add( data, data, tmp); // add byte buffer offset
1944 __ lwz( crc, 4*wordSize, argP); // current crc state
1945 __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1946 }
1947
1948 __ crc32(crc, data, dataLen, R2, R6, R7, R8, R9, R10, R11, R12, false);
1949
1950 // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
1951 __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
1952 __ blr();
1953
1954 // Generate a vanilla native entry as the slow path.
1955 BLOCK_COMMENT("} CRC32_updateBytes(Buffer)");
1956 BIND(slow_path);
1957 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1958 return start;
1959 }
1960
1961
1962 /**
1963 * Method entry for intrinsic-candidate (non-native) methods:
1964 * int java.util.zip.CRC32C.updateBytes( int crc, byte[] b, int off, int end)
1965 * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end)
1966 * Unlike CRC32, CRC32C does not have any methods marked as native
1967 * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1968 **/
1969 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1970 assert(UseCRC32CIntrinsics, "this intrinsic is not supported");
1971 address start = __ pc(); // Remember stub start address (is rtn value).
1972
1973 // We don't generate local frame and don't align stack because
1974 // we not even call stub code (we generate the code inline)
1975 // and there is no safepoint on this path.
1976
1977 // Load parameters.
1978 // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1979 const Register argP = R15_esp;
1980 const Register crc = R3_ARG1; // crc value
1981 const Register data = R4_ARG2; // address of java byte array
1982 const Register dataLen = R5_ARG3; // source data len
1983 const Register tmp = R11_scratch1;
1984
1985 // Arguments are reversed on java expression stack.
1986 // Calculate address of start element.
1987 if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateDirectByteBuffer".
1988 BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {");
1989 // crc @ (SP + 5W) (32bit)
1990 // buf @ (SP + 3W) (64bit ptr to long array)
1991 // off @ (SP + 2W) (32bit)
1992 // dataLen @ (SP + 1W) (32bit)
1993 // data = buf + off
1994 __ ld( data, 3*wordSize, argP); // start of byte buffer
1995 __ lwa( tmp, 2*wordSize, argP); // byte buffer offset
1996 __ lwa( dataLen, 1*wordSize, argP); // #bytes to process
1997 __ lwz( crc, 5*wordSize, argP); // current crc state
1998 __ add( data, data, tmp); // Add byte buffer offset.
1999 __ sub( dataLen, dataLen, tmp); // (end_index - offset)
2000 } else { // Used for "updateBytes update".
2001 BLOCK_COMMENT("CRC32C_updateBytes {");
2002 // crc @ (SP + 4W) (32bit)
2003 // buf @ (SP + 3W) (64bit ptr to byte array)
2004 // off @ (SP + 2W) (32bit)
2005 // dataLen @ (SP + 1W) (32bit)
2006 // data = buf + off + base_offset
2007 __ ld( data, 3*wordSize, argP); // start of byte buffer
2008 __ lwa( tmp, 2*wordSize, argP); // byte buffer offset
2009 __ lwa( dataLen, 1*wordSize, argP); // #bytes to process
2010 __ add( data, data, tmp); // add byte buffer offset
2011 __ sub( dataLen, dataLen, tmp); // (end_index - offset)
2012 __ lwz( crc, 4*wordSize, argP); // current crc state
2013 __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
2014 }
2015
2016 __ crc32(crc, data, dataLen, R2, R6, R7, R8, R9, R10, R11, R12, true);
2017
2018 // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
2019 __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
2020 __ blr();
2021
2022 BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}");
2023 return start;
2024 }
2025
2026 address TemplateInterpreterGenerator::generate_currentThread() {
2027 address entry_point = __ pc();
2028
2029 __ ld(R3_RET, JavaThread::vthread_offset(), R16_thread);
2030 __ resolve_oop_handle(R3_RET, R11_scratch1, R12_scratch2, MacroAssembler::PRESERVATION_FRAME_LR);
2031
2032 // restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
2033 __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
2034 __ blr();
2035
2036 return entry_point;
2037 }
2038
2039 // =============================================================================
2040 // Exceptions
2041
2042 void TemplateInterpreterGenerator::generate_throw_exception() {
2043 Register Rexception = R17_tos,
2044 Rcontinuation = R3_RET;
2045
2046 // --------------------------------------------------------------------------
2047 // Entry point if an method returns with a pending exception (rethrow).
2048 Interpreter::_rethrow_exception_entry = __ pc();
2049 {
2050 __ restore_interpreter_state(R11_scratch1, false /*bcp_and_mdx_only*/, true /*restore_top_frame_sp*/);
2051
2052 // Compiled code destroys templateTableBase, reload.
2053 __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
2054 }
2055
2056 // Entry point if a interpreted method throws an exception (throw).
2057 Interpreter::_throw_exception_entry = __ pc();
2058 {
2059 __ mr(Rexception, R3_RET);
2060
2061 __ verify_oop(Rexception);
2062
2063 // Expression stack must be empty before entering the VM in case of an exception.
2064 __ empty_expression_stack();
2065 // Find exception handler address and preserve exception oop.
2066 // Call C routine to find handler and jump to it.
2067 __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
2068 __ mtctr(Rcontinuation);
2069 // Push exception for exception handler bytecodes.
2070 __ push_ptr(Rexception);
2071
2072 // Jump to exception handler (may be remove activation entry!).
2073 __ bctr();
2074 }
2075
2076 // If the exception is not handled in the current frame the frame is
2077 // removed and the exception is rethrown (i.e. exception
2078 // continuation is _rethrow_exception).
2079 //
2080 // Note: At this point the bci is still the bxi for the instruction
2081 // which caused the exception and the expression stack is
2082 // empty. Thus, for any VM calls at this point, GC will find a legal
2083 // oop map (with empty expression stack).
2084
2085 // In current activation
2086 // tos: exception
2087 // bcp: exception bcp
2088
2089 // --------------------------------------------------------------------------
2090 // JVMTI PopFrame support
2091
2092 Interpreter::_remove_activation_preserving_args_entry = __ pc();
2093 {
2094 // Set the popframe_processing bit in popframe_condition indicating that we are
2095 // currently handling popframe, so that call_VMs that may happen later do not
2096 // trigger new popframe handling cycles.
2097 __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2098 __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
2099 __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2100
2101 // Empty the expression stack, as in normal exception handling.
2102 __ empty_expression_stack();
2103 __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
2104
2105 // Check to see whether we are returning to a deoptimized frame.
2106 // (The PopFrame call ensures that the caller of the popped frame is
2107 // either interpreted or compiled and deoptimizes it if compiled.)
2108 // Note that we don't compare the return PC against the
2109 // deoptimization blob's unpack entry because of the presence of
2110 // adapter frames in C2.
2111 Label Lcaller_not_deoptimized;
2112 Register return_pc = R3_ARG1;
2113 __ ld(return_pc, 0, R1_SP);
2114 __ ld(return_pc, _abi0(lr), return_pc);
2115 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
2116 __ cmpdi(CR0, R3_RET, 0);
2117 __ bne(CR0, Lcaller_not_deoptimized);
2118
2119 // The deoptimized case.
2120 // In this case, we can't call dispatch_next() after the frame is
2121 // popped, but instead must save the incoming arguments and restore
2122 // them after deoptimization has occurred.
2123 __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
2124 __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
2125 __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
2126 __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
2127 __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
2128 // Save these arguments.
2129 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
2130
2131 // Inform deoptimization that it is responsible for restoring these arguments.
2132 __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
2133 __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2134
2135 // Return from the current method into the deoptimization blob. Will eventually
2136 // end up in the deopt interpreter entry, deoptimization prepared everything that
2137 // we will reexecute the call that called us.
2138 __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
2139 __ mtlr(return_pc);
2140 __ pop_cont_fastpath();
2141 __ blr();
2142
2143 // The non-deoptimized case.
2144 __ bind(Lcaller_not_deoptimized);
2145
2146 // Clear the popframe condition flag.
2147 __ li(R0, 0);
2148 __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2149
2150 // Get out of the current method and re-execute the call that called us.
2151 __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2152 __ pop_cont_fastpath();
2153 __ restore_interpreter_state(R11_scratch1, false /*bcp_and_mdx_only*/, true /*restore_top_frame_sp*/);
2154 if (ProfileInterpreter) {
2155 __ set_method_data_pointer_for_bcp();
2156 __ ld(R11_scratch1, 0, R1_SP);
2157 __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
2158 }
2159 #if INCLUDE_JVMTI
2160 Label L_done;
2161
2162 __ lbz(R11_scratch1, 0, R14_bcp);
2163 __ cmpwi(CR0, R11_scratch1, Bytecodes::_invokestatic);
2164 __ bne(CR0, L_done);
2165
2166 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
2167 // Detect such a case in the InterpreterRuntime function and return the member name argument, or null.
2168 __ ld(R4_ARG2, 0, R18_locals);
2169 __ call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp);
2170
2171 __ cmpdi(CR0, R4_ARG2, 0);
2172 __ beq(CR0, L_done);
2173 __ std(R4_ARG2, wordSize, R15_esp);
2174 __ bind(L_done);
2175 #endif // INCLUDE_JVMTI
2176 __ dispatch_next(vtos);
2177 }
2178 // end of JVMTI PopFrame support
2179
2180 // --------------------------------------------------------------------------
2181 // Remove activation exception entry.
2182 // This is jumped to if an interpreted method can't handle an exception itself
2183 // (we come from the throw/rethrow exception entry above). We're going to call
2184 // into the VM to find the exception handler in the caller, pop the current
2185 // frame and return the handler we calculated.
2186 Interpreter::_remove_activation_entry = __ pc();
2187 {
2188 __ pop_ptr(Rexception);
2189 __ verify_oop(Rexception);
2190 __ std(Rexception, in_bytes(JavaThread::vm_result_oop_offset()), R16_thread);
2191
2192 __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
2193 __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
2194
2195 __ get_vm_result_oop(Rexception);
2196
2197 // We are done with this activation frame; find out where to go next.
2198 // The continuation point will be an exception handler, which expects
2199 // the following registers set up:
2200 //
2201 // RET: exception oop
2202 // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
2203
2204 Register return_pc = R31; // Needs to survive the runtime call.
2205 __ ld(return_pc, 0, R1_SP);
2206 __ ld(return_pc, _abi0(lr), return_pc);
2207 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
2208
2209 // Remove the current activation.
2210 __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2211 __ pop_cont_fastpath();
2212
2213 __ mr(R4_ARG2, return_pc);
2214 __ mtlr(R3_RET);
2215 __ mr(R3_RET, Rexception);
2216 __ blr();
2217 }
2218 }
2219
2220 // JVMTI ForceEarlyReturn support.
2221 // Returns "in the middle" of a method with a "fake" return value.
2222 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
2223
2224 Register Rscratch1 = R11_scratch1,
2225 Rscratch2 = R12_scratch2;
2226
2227 address entry = __ pc();
2228 __ empty_expression_stack();
2229
2230 __ load_earlyret_value(state, Rscratch1);
2231
2232 __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
2233 // Clear the earlyret state.
2234 __ li(R0, 0);
2235 __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
2236
2237 __ remove_activation(state, false, false);
2238 // Copied from TemplateTable::_return.
2239 // Restoration of lr done by remove_activation.
2240 switch (state) {
2241 // Narrow result if state is itos but result type is smaller.
2242 case btos:
2243 case ztos:
2244 case ctos:
2245 case stos:
2246 case itos: __ narrow(R17_tos); /* fall through */
2247 case ltos:
2248 case atos: __ mr(R3_RET, R17_tos); break;
2249 case ftos:
2250 case dtos: __ fmr(F1_RET, F15_ftos); break;
2251 case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2252 // to get visible before the reference to the object gets stored anywhere.
2253 __ membar(Assembler::StoreStore); break;
2254 default : ShouldNotReachHere();
2255 }
2256 __ blr();
2257
2258 return entry;
2259 } // end of ForceEarlyReturn support
2260
2261 //-----------------------------------------------------------------------------
2262 // Helper for vtos entry point generation
2263
2264 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2265 address& bep,
2266 address& cep,
2267 address& sep,
2268 address& aep,
2269 address& iep,
2270 address& lep,
2271 address& fep,
2272 address& dep,
2273 address& vep) {
2274 assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2275 Label L;
2276
2277 aep = __ pc(); __ push_ptr(); __ b(L);
2278 fep = __ pc(); __ push_f(); __ b(L);
2279 dep = __ pc(); __ push_d(); __ b(L);
2280 lep = __ pc(); __ push_l(); __ b(L);
2281 __ align(32, 12, 24); // align L
2282 bep = cep = sep =
2283 iep = __ pc(); __ push_i();
2284 vep = __ pc();
2285 __ bind(L);
2286 generate_and_dispatch(t);
2287 }
2288
2289 //-----------------------------------------------------------------------------
2290
2291 // Non-product code
2292 #ifndef PRODUCT
2293 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2294 //__ flush_bundle();
2295 address entry = __ pc();
2296
2297 const char *bname = nullptr;
2298 uint tsize = 0;
2299 switch(state) {
2300 case ftos:
2301 bname = "trace_code_ftos {";
2302 tsize = 2;
2303 break;
2304 case btos:
2305 bname = "trace_code_btos {";
2306 tsize = 2;
2307 break;
2308 case ztos:
2309 bname = "trace_code_ztos {";
2310 tsize = 2;
2311 break;
2312 case ctos:
2313 bname = "trace_code_ctos {";
2314 tsize = 2;
2315 break;
2316 case stos:
2317 bname = "trace_code_stos {";
2318 tsize = 2;
2319 break;
2320 case itos:
2321 bname = "trace_code_itos {";
2322 tsize = 2;
2323 break;
2324 case ltos:
2325 bname = "trace_code_ltos {";
2326 tsize = 3;
2327 break;
2328 case atos:
2329 bname = "trace_code_atos {";
2330 tsize = 2;
2331 break;
2332 case vtos:
2333 // Note: In case of vtos, the topmost of stack value could be a int or doubl
2334 // In case of a double (2 slots) we won't see the 2nd stack value.
2335 // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
2336 bname = "trace_code_vtos {";
2337 tsize = 2;
2338
2339 break;
2340 case dtos:
2341 bname = "trace_code_dtos {";
2342 tsize = 3;
2343 break;
2344 default:
2345 ShouldNotReachHere();
2346 }
2347 BLOCK_COMMENT(bname);
2348
2349 // Support short-cut for TraceBytecodesAt.
2350 // Don't call into the VM if we don't want to trace to speed up things.
2351 Label Lskip_vm_call;
2352 if (TraceBytecodesAt > 0) {
2353 int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
2354 int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2355 __ ld(R11_scratch1, offs1, R11_scratch1);
2356 __ ld(R12_scratch2, offs2, R12_scratch2);
2357 __ cmpd(CR0, R12_scratch2, R11_scratch1);
2358 __ blt(CR0, Lskip_vm_call);
2359 }
2360
2361 __ push(state);
2362 // Load 2 topmost expression stack values.
2363 __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
2364 __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
2365 __ mflr(R31);
2366 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
2367 __ mtlr(R31);
2368 __ pop(state);
2369
2370 if (TraceBytecodesAt > 0) {
2371 __ bind(Lskip_vm_call);
2372 }
2373 __ blr();
2374 BLOCK_COMMENT("} trace_code");
2375 return entry;
2376 }
2377 #endif //PRODUCT
2378
2379 void TemplateInterpreterGenerator::count_bytecode() {
2380 int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
2381 __ ld(R12_scratch2, offs, R11_scratch1);
2382 __ addi(R12_scratch2, R12_scratch2, 1);
2383 __ std(R12_scratch2, offs, R11_scratch1);
2384 }
2385
2386 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2387 int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
2388 __ lwz(R12_scratch2, offs, R11_scratch1);
2389 __ addi(R12_scratch2, R12_scratch2, 1);
2390 __ stw(R12_scratch2, offs, R11_scratch1);
2391 }
2392
2393 #ifndef PRODUCT
2394 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2395 const Register addr = R11_scratch1,
2396 tmp = R12_scratch2;
2397 // Get index, shift out old bytecode, bring in new bytecode, and store it.
2398 // _index = (_index >> log2_number_of_codes) |
2399 // (bytecode << log2_number_of_codes);
2400 int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
2401 __ lwz(tmp, offs1, addr);
2402 __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
2403 __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
2404 __ stw(tmp, offs1, addr);
2405
2406 // Bump bucket contents.
2407 // _counters[_index] ++;
2408 int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
2409 __ sldi(tmp, tmp, LogBytesPerInt);
2410 __ add(addr, tmp, addr);
2411 __ lwz(tmp, offs2, addr);
2412 __ addi(tmp, tmp, 1);
2413 __ stw(tmp, offs2, addr);
2414 }
2415
2416 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2417 // Call a little run-time stub to avoid blow-up for each bytecode.
2418 // The run-time runtime saves the right registers, depending on
2419 // the tosca in-state for the given template.
2420
2421 assert(Interpreter::trace_code(t->tos_in()) != nullptr,
2422 "entry must have been generated");
2423
2424 // Note: we destroy LR here.
2425 __ bl(Interpreter::trace_code(t->tos_in()));
2426 }
2427
2428 void TemplateInterpreterGenerator::stop_interpreter_at() {
2429 Label L;
2430 int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
2431 int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2432 __ ld(R11_scratch1, offs1, R11_scratch1);
2433 __ ld(R12_scratch2, offs2, R12_scratch2);
2434 __ cmpd(CR0, R12_scratch2, R11_scratch1);
2435 __ bne(CR0, L);
2436 __ illtrap();
2437 __ bind(L);
2438 }
2439
2440 #endif // !PRODUCT