1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "asm/macroAssembler.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "code/compiledIC.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "code/vtableStubs.hpp" 32 #include "compiler/oopMap.hpp" 33 #include "gc/shared/barrierSetAssembler.hpp" 34 #include "interpreter/interp_masm.hpp" 35 #include "interpreter/interpreter.hpp" 36 #include "logging/log.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "nativeInst_riscv.hpp" 39 #include "oops/klass.inline.hpp" 40 #include "oops/method.inline.hpp" 41 #include "prims/methodHandles.hpp" 42 #include "runtime/continuation.hpp" 43 #include "runtime/continuationEntry.inline.hpp" 44 #include "runtime/globals.hpp" 45 #include "runtime/jniHandles.hpp" 46 #include "runtime/safepointMechanism.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "runtime/signature.hpp" 49 #include "runtime/stubRoutines.hpp" 50 #include "runtime/timerTrace.hpp" 51 #include "runtime/vframeArray.hpp" 52 #include "utilities/align.hpp" 53 #include "utilities/formatBuffer.hpp" 54 #include "vmreg_riscv.inline.hpp" 55 #ifdef COMPILER1 56 #include "c1/c1_Runtime1.hpp" 57 #endif 58 #ifdef COMPILER2 59 #include "adfiles/ad_riscv.hpp" 60 #include "opto/runtime.hpp" 61 #endif 62 #if INCLUDE_JVMCI 63 #include "jvmci/jvmciJavaClasses.hpp" 64 #endif 65 66 #define __ masm-> 67 68 #ifdef PRODUCT 69 #define BLOCK_COMMENT(str) /* nothing */ 70 #else 71 #define BLOCK_COMMENT(str) __ block_comment(str) 72 #endif 73 74 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 75 76 class RegisterSaver { 77 const bool _save_vectors; 78 public: 79 RegisterSaver(bool save_vectors) : _save_vectors(UseRVV && save_vectors) {} 80 ~RegisterSaver() {} 81 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); 82 void restore_live_registers(MacroAssembler* masm); 83 84 // Offsets into the register save area 85 // Used by deoptimization when it is managing result register 86 // values on its own 87 // gregs:28, float_register:32; except: x1(ra) & x2(sp) & gp(x3) & tp(x4) 88 // |---v0---|<---SP 89 // |---v1---|save vectors only in generate_handler_blob 90 // |-- .. --| 91 // |---v31--|----- 92 // |---f0---| 93 // |---f1---| 94 // | .. | 95 // |---f31--| 96 // |---reserved slot for stack alignment---| 97 // |---x5---| 98 // | x6 | 99 // |---.. --| 100 // |---x31--| 101 // |---fp---| 102 // |---ra---| 103 int v0_offset_in_bytes(void) { return 0; } 104 int f0_offset_in_bytes(void) { 105 int f0_offset = 0; 106 #ifdef COMPILER2 107 if (_save_vectors) { 108 f0_offset += Matcher::scalable_vector_reg_size(T_INT) * VectorRegister::number_of_registers * 109 BytesPerInt; 110 } 111 #endif 112 return f0_offset; 113 } 114 int reserved_slot_offset_in_bytes(void) { 115 return f0_offset_in_bytes() + 116 FloatRegister::max_slots_per_register * 117 FloatRegister::number_of_registers * 118 BytesPerInt; 119 } 120 121 int reg_offset_in_bytes(Register r) { 122 assert (r->encoding() > 4, "ra, sp, gp and tp not saved"); 123 return reserved_slot_offset_in_bytes() + (r->encoding() - 4 /* x1, x2, x3, x4 */) * wordSize; 124 } 125 126 int freg_offset_in_bytes(FloatRegister f) { 127 return f0_offset_in_bytes() + f->encoding() * wordSize; 128 } 129 130 int ra_offset_in_bytes(void) { 131 return reserved_slot_offset_in_bytes() + 132 (Register::number_of_registers - 3) * 133 Register::max_slots_per_register * 134 BytesPerInt; 135 } 136 }; 137 138 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { 139 int vector_size_in_bytes = 0; 140 int vector_size_in_slots = 0; 141 #ifdef COMPILER2 142 if (_save_vectors) { 143 vector_size_in_bytes += Matcher::scalable_vector_reg_size(T_BYTE); 144 vector_size_in_slots += Matcher::scalable_vector_reg_size(T_INT); 145 } 146 #endif 147 148 int frame_size_in_bytes = align_up(additional_frame_words * wordSize + ra_offset_in_bytes() + wordSize, 16); 149 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 150 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 151 // The caller will allocate additional_frame_words 152 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt; 153 // CodeBlob frame size is in words. 154 int frame_size_in_words = frame_size_in_bytes / wordSize; 155 *total_frame_words = frame_size_in_words; 156 157 // Save Integer, Float and Vector registers. 158 __ enter(); 159 __ push_CPU_state(_save_vectors, vector_size_in_bytes); 160 161 // Set an oopmap for the call site. This oopmap will map all 162 // oop-registers and debug-info registers as callee-saved. This 163 // will allow deoptimization at this safepoint to find all possible 164 // debug-info recordings, as well as let GC find all oops. 165 166 OopMapSet *oop_maps = new OopMapSet(); 167 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 168 assert_cond(oop_maps != nullptr && oop_map != nullptr); 169 170 int sp_offset_in_slots = 0; 171 int step_in_slots = 0; 172 if (_save_vectors) { 173 step_in_slots = vector_size_in_slots; 174 for (int i = 0; i < VectorRegister::number_of_registers; i++, sp_offset_in_slots += step_in_slots) { 175 VectorRegister r = as_VectorRegister(i); 176 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots), r->as_VMReg()); 177 } 178 } 179 180 step_in_slots = FloatRegister::max_slots_per_register; 181 for (int i = 0; i < FloatRegister::number_of_registers; i++, sp_offset_in_slots += step_in_slots) { 182 FloatRegister r = as_FloatRegister(i); 183 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots), r->as_VMReg()); 184 } 185 186 step_in_slots = Register::max_slots_per_register; 187 // skip the slot reserved for alignment, see MacroAssembler::push_reg; 188 // also skip x5 ~ x6 on the stack because they are caller-saved registers. 189 sp_offset_in_slots += Register::max_slots_per_register * 3; 190 // besides, we ignore x0 ~ x4 because push_CPU_state won't push them on the stack. 191 for (int i = 7; i < Register::number_of_registers; i++, sp_offset_in_slots += step_in_slots) { 192 Register r = as_Register(i); 193 if (r != xthread) { 194 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots + additional_frame_slots), r->as_VMReg()); 195 } 196 } 197 198 return oop_map; 199 } 200 201 void RegisterSaver::restore_live_registers(MacroAssembler* masm) { 202 #ifdef COMPILER2 203 __ pop_CPU_state(_save_vectors, Matcher::scalable_vector_reg_size(T_BYTE)); 204 #else 205 #if !INCLUDE_JVMCI 206 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 207 #endif 208 __ pop_CPU_state(_save_vectors); 209 #endif 210 __ leave(); 211 } 212 213 // Is vector's size (in bytes) bigger than a size saved by default? 214 // riscv does not ovlerlay the floating-point registers on vector registers like aarch64. 215 bool SharedRuntime::is_wide_vector(int size) { 216 return UseRVV; 217 } 218 219 // --------------------------------------------------------------------------- 220 // Read the array of BasicTypes from a signature, and compute where the 221 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 222 // quantities. Values less than VMRegImpl::stack0 are registers, those above 223 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 224 // as framesizes are fixed. 225 // VMRegImpl::stack0 refers to the first slot 0(sp). 226 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 227 // Register up to Register::number_of_registers) are the 64-bit 228 // integer registers. 229 230 // Note: the INPUTS in sig_bt are in units of Java argument words, 231 // which are 64-bit. The OUTPUTS are in 32-bit units. 232 233 // The Java calling convention is a "shifted" version of the C ABI. 234 // By skipping the first C ABI register we can call non-static jni 235 // methods with small numbers of arguments without having to shuffle 236 // the arguments at all. Since we control the java ABI we ought to at 237 // least get some advantage out of it. 238 239 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 240 VMRegPair *regs, 241 int total_args_passed) { 242 // Create the mapping between argument positions and 243 // registers. 244 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 245 j_rarg0, j_rarg1, j_rarg2, j_rarg3, 246 j_rarg4, j_rarg5, j_rarg6, j_rarg7 247 }; 248 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 249 j_farg0, j_farg1, j_farg2, j_farg3, 250 j_farg4, j_farg5, j_farg6, j_farg7 251 }; 252 253 uint int_args = 0; 254 uint fp_args = 0; 255 uint stk_args = 0; 256 257 for (int i = 0; i < total_args_passed; i++) { 258 switch (sig_bt[i]) { 259 case T_BOOLEAN: // fall through 260 case T_CHAR: // fall through 261 case T_BYTE: // fall through 262 case T_SHORT: // fall through 263 case T_INT: 264 if (int_args < Argument::n_int_register_parameters_j) { 265 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 266 } else { 267 stk_args = align_up(stk_args, 2); 268 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 269 stk_args += 1; 270 } 271 break; 272 case T_VOID: 273 // halves of T_LONG or T_DOUBLE 274 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 275 regs[i].set_bad(); 276 break; 277 case T_LONG: // fall through 278 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 279 case T_OBJECT: // fall through 280 case T_ARRAY: // fall through 281 case T_ADDRESS: 282 if (int_args < Argument::n_int_register_parameters_j) { 283 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 284 } else { 285 stk_args = align_up(stk_args, 2); 286 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 287 stk_args += 2; 288 } 289 break; 290 case T_FLOAT: 291 if (fp_args < Argument::n_float_register_parameters_j) { 292 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 293 } else { 294 stk_args = align_up(stk_args, 2); 295 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 296 stk_args += 1; 297 } 298 break; 299 case T_DOUBLE: 300 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 301 if (fp_args < Argument::n_float_register_parameters_j) { 302 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 303 } else { 304 stk_args = align_up(stk_args, 2); 305 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 306 stk_args += 2; 307 } 308 break; 309 default: 310 ShouldNotReachHere(); 311 } 312 } 313 314 return stk_args; 315 } 316 317 // Patch the callers callsite with entry to compiled code if it exists. 318 static void patch_callers_callsite(MacroAssembler *masm) { 319 Label L; 320 __ ld(t0, Address(xmethod, in_bytes(Method::code_offset()))); 321 __ beqz(t0, L); 322 323 __ enter(); 324 __ push_CPU_state(); 325 326 // VM needs caller's callsite 327 // VM needs target method 328 // This needs to be a long call since we will relocate this adapter to 329 // the codeBuffer and it may not reach 330 331 #ifndef PRODUCT 332 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 333 #endif 334 335 __ mv(c_rarg0, xmethod); 336 __ mv(c_rarg1, ra); 337 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)); 338 339 __ pop_CPU_state(); 340 // restore sp 341 __ leave(); 342 __ bind(L); 343 } 344 345 static void gen_c2i_adapter(MacroAssembler *masm, 346 int total_args_passed, 347 int comp_args_on_stack, 348 const BasicType *sig_bt, 349 const VMRegPair *regs, 350 Label& skip_fixup) { 351 // Before we get into the guts of the C2I adapter, see if we should be here 352 // at all. We've come from compiled code and are attempting to jump to the 353 // interpreter, which means the caller made a static call to get here 354 // (vcalls always get a compiled target if there is one). Check for a 355 // compiled target. If there is one, we need to patch the caller's call. 356 patch_callers_callsite(masm); 357 358 __ bind(skip_fixup); 359 360 int words_pushed = 0; 361 362 // Since all args are passed on the stack, total_args_passed * 363 // Interpreter::stackElementSize is the space we need. 364 365 int extraspace = total_args_passed * Interpreter::stackElementSize; 366 367 __ mv(x19_sender_sp, sp); 368 369 // stack is aligned, keep it that way 370 extraspace = align_up(extraspace, 2 * wordSize); 371 372 if (extraspace) { 373 __ sub(sp, sp, extraspace); 374 } 375 376 // Now write the args into the outgoing interpreter space 377 for (int i = 0; i < total_args_passed; i++) { 378 if (sig_bt[i] == T_VOID) { 379 assert(i > 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "missing half"); 380 continue; 381 } 382 383 // offset to start parameters 384 int st_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 385 int next_off = st_off - Interpreter::stackElementSize; 386 387 // Say 4 args: 388 // i st_off 389 // 0 32 T_LONG 390 // 1 24 T_VOID 391 // 2 16 T_OBJECT 392 // 3 8 T_BOOL 393 // - 0 return address 394 // 395 // However to make thing extra confusing. Because we can fit a Java long/double in 396 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 397 // leaves one slot empty and only stores to a single slot. In this case the 398 // slot that is occupied is the T_VOID slot. See I said it was confusing. 399 400 VMReg r_1 = regs[i].first(); 401 VMReg r_2 = regs[i].second(); 402 if (!r_1->is_valid()) { 403 assert(!r_2->is_valid(), ""); 404 continue; 405 } 406 if (r_1->is_stack()) { 407 // memory to memory use t0 408 int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size 409 + extraspace 410 + words_pushed * wordSize); 411 if (!r_2->is_valid()) { 412 __ lwu(t0, Address(sp, ld_off)); 413 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 414 } else { 415 __ ld(t0, Address(sp, ld_off), /*temp register*/esp); 416 417 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 418 // T_DOUBLE and T_LONG use two slots in the interpreter 419 if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 420 // ld_off == LSW, ld_off+wordSize == MSW 421 // st_off == MSW, next_off == LSW 422 __ sd(t0, Address(sp, next_off), /*temp register*/esp); 423 #ifdef ASSERT 424 // Overwrite the unused slot with known junk 425 __ mv(t0, 0xdeadffffdeadaaaaul); 426 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 427 #endif /* ASSERT */ 428 } else { 429 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 430 } 431 } 432 } else if (r_1->is_Register()) { 433 Register r = r_1->as_Register(); 434 if (!r_2->is_valid()) { 435 // must be only an int (or less ) so move only 32bits to slot 436 __ sd(r, Address(sp, st_off)); 437 } else { 438 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 439 // T_DOUBLE and T_LONG use two slots in the interpreter 440 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 441 // long/double in gpr 442 #ifdef ASSERT 443 // Overwrite the unused slot with known junk 444 __ mv(t0, 0xdeadffffdeadaaabul); 445 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 446 #endif /* ASSERT */ 447 __ sd(r, Address(sp, next_off)); 448 } else { 449 __ sd(r, Address(sp, st_off)); 450 } 451 } 452 } else { 453 assert(r_1->is_FloatRegister(), ""); 454 if (!r_2->is_valid()) { 455 // only a float use just part of the slot 456 __ fsw(r_1->as_FloatRegister(), Address(sp, st_off)); 457 } else { 458 #ifdef ASSERT 459 // Overwrite the unused slot with known junk 460 __ mv(t0, 0xdeadffffdeadaaacul); 461 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 462 #endif /* ASSERT */ 463 __ fsd(r_1->as_FloatRegister(), Address(sp, next_off)); 464 } 465 } 466 } 467 468 __ mv(esp, sp); // Interp expects args on caller's expression stack 469 470 __ ld(t1, Address(xmethod, in_bytes(Method::interpreter_entry_offset()))); 471 __ jr(t1); 472 } 473 474 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 475 int total_args_passed, 476 int comp_args_on_stack, 477 const BasicType *sig_bt, 478 const VMRegPair *regs) { 479 // Note: x19_sender_sp contains the senderSP on entry. We must 480 // preserve it since we may do a i2c -> c2i transition if we lose a 481 // race where compiled code goes non-entrant while we get args 482 // ready. 483 484 // Cut-out for having no stack args. 485 int comp_words_on_stack = align_up(comp_args_on_stack * VMRegImpl::stack_slot_size, wordSize) >> LogBytesPerWord; 486 if (comp_args_on_stack != 0) { 487 __ sub(t0, sp, comp_words_on_stack * wordSize); 488 __ andi(sp, t0, -16); 489 } 490 491 // Will jump to the compiled code just as if compiled code was doing it. 492 // Pre-load the register-jump target early, to schedule it better. 493 __ ld(t1, Address(xmethod, in_bytes(Method::from_compiled_offset()))); 494 495 #if INCLUDE_JVMCI 496 if (EnableJVMCI) { 497 // check if this call should be routed towards a specific entry point 498 __ ld(t0, Address(xthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 499 Label no_alternative_target; 500 __ beqz(t0, no_alternative_target); 501 __ mv(t1, t0); 502 __ sd(zr, Address(xthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 503 __ bind(no_alternative_target); 504 } 505 #endif // INCLUDE_JVMCI 506 507 // Now generate the shuffle code. 508 for (int i = 0; i < total_args_passed; i++) { 509 if (sig_bt[i] == T_VOID) { 510 assert(i > 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "missing half"); 511 continue; 512 } 513 514 // Pick up 0, 1 or 2 words from SP+offset. 515 516 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 517 "scrambled load targets?"); 518 // Load in argument order going down. 519 int ld_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 520 // Point to interpreter value (vs. tag) 521 int next_off = ld_off - Interpreter::stackElementSize; 522 523 VMReg r_1 = regs[i].first(); 524 VMReg r_2 = regs[i].second(); 525 if (!r_1->is_valid()) { 526 assert(!r_2->is_valid(), ""); 527 continue; 528 } 529 if (r_1->is_stack()) { 530 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 531 int st_off = regs[i].first()->reg2stack() * VMRegImpl::stack_slot_size; 532 if (!r_2->is_valid()) { 533 __ lw(t0, Address(esp, ld_off)); 534 __ sd(t0, Address(sp, st_off), /*temp register*/t2); 535 } else { 536 // 537 // We are using two optoregs. This can be either T_OBJECT, 538 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 539 // two slots but only uses one for thr T_LONG or T_DOUBLE case 540 // So we must adjust where to pick up the data to match the 541 // interpreter. 542 // 543 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 544 // are accessed as negative so LSW is at LOW address 545 546 // ld_off is MSW so get LSW 547 const int offset = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ? 548 next_off : ld_off; 549 __ ld(t0, Address(esp, offset)); 550 // st_off is LSW (i.e. reg.first()) 551 __ sd(t0, Address(sp, st_off), /*temp register*/t2); 552 } 553 } else if (r_1->is_Register()) { // Register argument 554 Register r = r_1->as_Register(); 555 if (r_2->is_valid()) { 556 // 557 // We are using two VMRegs. This can be either T_OBJECT, 558 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 559 // two slots but only uses one for thr T_LONG or T_DOUBLE case 560 // So we must adjust where to pick up the data to match the 561 // interpreter. 562 563 const int offset = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ? 564 next_off : ld_off; 565 566 // this can be a misaligned move 567 __ ld(r, Address(esp, offset)); 568 } else { 569 // sign extend and use a full word? 570 __ lw(r, Address(esp, ld_off)); 571 } 572 } else { 573 if (!r_2->is_valid()) { 574 __ flw(r_1->as_FloatRegister(), Address(esp, ld_off)); 575 } else { 576 __ fld(r_1->as_FloatRegister(), Address(esp, next_off)); 577 } 578 } 579 } 580 581 __ push_cont_fastpath(xthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about 582 583 // 6243940 We might end up in handle_wrong_method if 584 // the callee is deoptimized as we race thru here. If that 585 // happens we don't want to take a safepoint because the 586 // caller frame will look interpreted and arguments are now 587 // "compiled" so it is much better to make this transition 588 // invisible to the stack walking code. Unfortunately if 589 // we try and find the callee by normal means a safepoint 590 // is possible. So we stash the desired callee in the thread 591 // and the vm will find there should this case occur. 592 593 __ sd(xmethod, Address(xthread, JavaThread::callee_target_offset())); 594 595 __ jr(t1); 596 } 597 598 // --------------------------------------------------------------- 599 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 600 int total_args_passed, 601 int comp_args_on_stack, 602 const BasicType *sig_bt, 603 const VMRegPair *regs, 604 AdapterFingerPrint* fingerprint) { 605 address i2c_entry = __ pc(); 606 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 607 608 address c2i_unverified_entry = __ pc(); 609 Label skip_fixup; 610 611 const Register receiver = j_rarg0; 612 const Register data = t0; 613 614 // ------------------------------------------------------------------------- 615 // Generate a C2I adapter. On entry we know xmethod holds the Method* during calls 616 // to the interpreter. The args start out packed in the compiled layout. They 617 // need to be unpacked into the interpreter layout. This will almost always 618 // require some stack space. We grow the current (compiled) stack, then repack 619 // the args. We finally end in a jump to the generic interpreter entry point. 620 // On exit from the interpreter, the interpreter will restore our SP (lest the 621 // compiled code, which relies solely on SP and not FP, get sick). 622 623 { 624 __ block_comment("c2i_unverified_entry {"); 625 626 __ ic_check(); 627 __ ld(xmethod, Address(data, CompiledICData::speculated_method_offset())); 628 629 __ ld(t0, Address(xmethod, in_bytes(Method::code_offset()))); 630 __ beqz(t0, skip_fixup); 631 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 632 __ block_comment("} c2i_unverified_entry"); 633 } 634 635 address c2i_entry = __ pc(); 636 637 // Class initialization barrier for static methods 638 address c2i_no_clinit_check_entry = nullptr; 639 if (VM_Version::supports_fast_class_init_checks()) { 640 Label L_skip_barrier; 641 642 { // Bypass the barrier for non-static methods 643 __ load_unsigned_short(t0, Address(xmethod, Method::access_flags_offset())); 644 __ test_bit(t1, t0, exact_log2(JVM_ACC_STATIC)); 645 __ beqz(t1, L_skip_barrier); // non-static 646 } 647 648 __ load_method_holder(t1, xmethod); 649 __ clinit_barrier(t1, t0, &L_skip_barrier); 650 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 651 652 __ bind(L_skip_barrier); 653 c2i_no_clinit_check_entry = __ pc(); 654 } 655 656 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 657 bs->c2i_entry_barrier(masm); 658 659 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 660 661 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry); 662 } 663 664 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 665 uint num_bits, 666 uint total_args_passed) { 667 assert(total_args_passed <= Argument::n_vector_register_parameters_c, "unsupported"); 668 assert(num_bits >= 64 && num_bits <= 2048 && is_power_of_2(num_bits), "unsupported"); 669 670 // check more info at https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc 671 static const VectorRegister VEC_ArgReg[Argument::n_vector_register_parameters_c] = { 672 v8, v9, v10, v11, v12, v13, v14, v15, 673 v16, v17, v18, v19, v20, v21, v22, v23 674 }; 675 676 const int next_reg_val = 3; 677 for (uint i = 0; i < total_args_passed; i++) { 678 VMReg vmreg = VEC_ArgReg[i]->as_VMReg(); 679 regs[i].set_pair(vmreg->next(next_reg_val), vmreg); 680 } 681 return 0; 682 } 683 684 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 685 VMRegPair *regs, 686 int total_args_passed) { 687 688 // We return the amount of VMRegImpl stack slots we need to reserve for all 689 // the arguments NOT counting out_preserve_stack_slots. 690 691 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 692 c_rarg0, c_rarg1, c_rarg2, c_rarg3, 693 c_rarg4, c_rarg5, c_rarg6, c_rarg7 694 }; 695 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 696 c_farg0, c_farg1, c_farg2, c_farg3, 697 c_farg4, c_farg5, c_farg6, c_farg7 698 }; 699 700 uint int_args = 0; 701 uint fp_args = 0; 702 uint stk_args = 0; // inc by 2 each time 703 704 for (int i = 0; i < total_args_passed; i++) { 705 switch (sig_bt[i]) { 706 case T_BOOLEAN: // fall through 707 case T_CHAR: // fall through 708 case T_BYTE: // fall through 709 case T_SHORT: // fall through 710 case T_INT: 711 if (int_args < Argument::n_int_register_parameters_c) { 712 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 713 } else { 714 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 715 stk_args += 2; 716 } 717 break; 718 case T_LONG: // fall through 719 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 720 case T_OBJECT: // fall through 721 case T_ARRAY: // fall through 722 case T_ADDRESS: // fall through 723 case T_METADATA: 724 if (int_args < Argument::n_int_register_parameters_c) { 725 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 726 } else { 727 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 728 stk_args += 2; 729 } 730 break; 731 case T_FLOAT: 732 if (fp_args < Argument::n_float_register_parameters_c) { 733 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 734 } else if (int_args < Argument::n_int_register_parameters_c) { 735 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 736 } else { 737 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 738 stk_args += 2; 739 } 740 break; 741 case T_DOUBLE: 742 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 743 if (fp_args < Argument::n_float_register_parameters_c) { 744 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 745 } else if (int_args < Argument::n_int_register_parameters_c) { 746 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 747 } else { 748 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 749 stk_args += 2; 750 } 751 break; 752 case T_VOID: // Halves of longs and doubles 753 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 754 regs[i].set_bad(); 755 break; 756 default: 757 ShouldNotReachHere(); 758 } 759 } 760 761 return stk_args; 762 } 763 764 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 765 // We always ignore the frame_slots arg and just use the space just below frame pointer 766 // which by this time is free to use 767 switch (ret_type) { 768 case T_FLOAT: 769 __ fsw(f10, Address(fp, -3 * wordSize)); 770 break; 771 case T_DOUBLE: 772 __ fsd(f10, Address(fp, -3 * wordSize)); 773 break; 774 case T_VOID: break; 775 default: { 776 __ sd(x10, Address(fp, -3 * wordSize)); 777 } 778 } 779 } 780 781 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 782 // We always ignore the frame_slots arg and just use the space just below frame pointer 783 // which by this time is free to use 784 switch (ret_type) { 785 case T_FLOAT: 786 __ flw(f10, Address(fp, -3 * wordSize)); 787 break; 788 case T_DOUBLE: 789 __ fld(f10, Address(fp, -3 * wordSize)); 790 break; 791 case T_VOID: break; 792 default: { 793 __ ld(x10, Address(fp, -3 * wordSize)); 794 } 795 } 796 } 797 798 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 799 RegSet x; 800 for ( int i = first_arg ; i < arg_count ; i++ ) { 801 if (args[i].first()->is_Register()) { 802 x = x + args[i].first()->as_Register(); 803 } else if (args[i].first()->is_FloatRegister()) { 804 __ subi(sp, sp, 2 * wordSize); 805 __ fsd(args[i].first()->as_FloatRegister(), Address(sp, 0)); 806 } 807 } 808 __ push_reg(x, sp); 809 } 810 811 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 812 RegSet x; 813 for ( int i = first_arg ; i < arg_count ; i++ ) { 814 if (args[i].first()->is_Register()) { 815 x = x + args[i].first()->as_Register(); 816 } else { 817 ; 818 } 819 } 820 __ pop_reg(x, sp); 821 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 822 if (args[i].first()->is_Register()) { 823 ; 824 } else if (args[i].first()->is_FloatRegister()) { 825 __ fld(args[i].first()->as_FloatRegister(), Address(sp, 0)); 826 __ addi(sp, sp, 2 * wordSize); 827 } 828 } 829 } 830 831 static void verify_oop_args(MacroAssembler* masm, 832 const methodHandle& method, 833 const BasicType* sig_bt, 834 const VMRegPair* regs) { 835 const Register temp_reg = x9; // not part of any compiled calling seq 836 if (VerifyOops) { 837 for (int i = 0; i < method->size_of_parameters(); i++) { 838 if (sig_bt[i] == T_OBJECT || 839 sig_bt[i] == T_ARRAY) { 840 VMReg r = regs[i].first(); 841 assert(r->is_valid(), "bad oop arg"); 842 if (r->is_stack()) { 843 __ ld(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 844 __ verify_oop(temp_reg); 845 } else { 846 __ verify_oop(r->as_Register()); 847 } 848 } 849 } 850 } 851 } 852 853 // on exit, sp points to the ContinuationEntry 854 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) { 855 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, ""); 856 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, ""); 857 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, ""); 858 859 stack_slots += (int)ContinuationEntry::size() / wordSize; 860 __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata 861 862 OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize) / VMRegImpl::stack_slot_size, 0 /* arg_slots*/); 863 864 __ ld(t0, Address(xthread, JavaThread::cont_entry_offset())); 865 __ sd(t0, Address(sp, ContinuationEntry::parent_offset())); 866 __ sd(sp, Address(xthread, JavaThread::cont_entry_offset())); 867 868 return map; 869 } 870 871 // on entry c_rarg1 points to the continuation 872 // sp points to ContinuationEntry 873 // c_rarg3 -- isVirtualThread 874 static void fill_continuation_entry(MacroAssembler* masm) { 875 #ifdef ASSERT 876 __ mv(t0, ContinuationEntry::cookie_value()); 877 __ sw(t0, Address(sp, ContinuationEntry::cookie_offset())); 878 #endif 879 880 __ sd(c_rarg1, Address(sp, ContinuationEntry::cont_offset())); 881 __ sw(c_rarg3, Address(sp, ContinuationEntry::flags_offset())); 882 __ sd(zr, Address(sp, ContinuationEntry::chunk_offset())); 883 __ sw(zr, Address(sp, ContinuationEntry::argsize_offset())); 884 __ sw(zr, Address(sp, ContinuationEntry::pin_count_offset())); 885 886 __ ld(t0, Address(xthread, JavaThread::cont_fastpath_offset())); 887 __ sd(t0, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 888 __ ld(t0, Address(xthread, JavaThread::held_monitor_count_offset())); 889 __ sd(t0, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 890 891 __ sd(zr, Address(xthread, JavaThread::cont_fastpath_offset())); 892 __ sd(zr, Address(xthread, JavaThread::held_monitor_count_offset())); 893 } 894 895 // on entry, sp points to the ContinuationEntry 896 // on exit, fp points to the spilled fp + 2 * wordSize in the entry frame 897 static void continuation_enter_cleanup(MacroAssembler* masm) { 898 #ifndef PRODUCT 899 Label OK; 900 __ ld(t0, Address(xthread, JavaThread::cont_entry_offset())); 901 __ beq(sp, t0, OK); 902 __ stop("incorrect sp"); 903 __ bind(OK); 904 #endif 905 906 __ ld(t0, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 907 __ sd(t0, Address(xthread, JavaThread::cont_fastpath_offset())); 908 909 if (CheckJNICalls) { 910 // Check if this is a virtual thread continuation 911 Label L_skip_vthread_code; 912 __ lwu(t0, Address(sp, ContinuationEntry::flags_offset())); 913 __ beqz(t0, L_skip_vthread_code); 914 915 // If the held monitor count is > 0 and this vthread is terminating then 916 // it failed to release a JNI monitor. So we issue the same log message 917 // that JavaThread::exit does. 918 __ ld(t0, Address(xthread, JavaThread::jni_monitor_count_offset())); 919 __ beqz(t0, L_skip_vthread_code); 920 921 // Save return value potentially containing the exception oop in callee-saved x9 922 __ mv(x9, x10); 923 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::log_jni_monitor_still_held)); 924 // Restore potential return value 925 __ mv(x10, x9); 926 927 // For vthreads we have to explicitly zero the JNI monitor count of the carrier 928 // on termination. The held count is implicitly zeroed below when we restore from 929 // the parent held count (which has to be zero). 930 __ sd(zr, Address(xthread, JavaThread::jni_monitor_count_offset())); 931 932 __ bind(L_skip_vthread_code); 933 } 934 #ifdef ASSERT 935 else { 936 // Check if this is a virtual thread continuation 937 Label L_skip_vthread_code; 938 __ lwu(t0, Address(sp, ContinuationEntry::flags_offset())); 939 __ beqz(t0, L_skip_vthread_code); 940 941 // See comment just above. If not checking JNI calls the JNI count is only 942 // needed for assertion checking. 943 __ sd(zr, Address(xthread, JavaThread::jni_monitor_count_offset())); 944 945 __ bind(L_skip_vthread_code); 946 } 947 #endif 948 949 __ ld(t0, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 950 __ sd(t0, Address(xthread, JavaThread::held_monitor_count_offset())); 951 952 __ ld(t0, Address(sp, ContinuationEntry::parent_offset())); 953 __ sd(t0, Address(xthread, JavaThread::cont_entry_offset())); 954 __ add(fp, sp, (int)ContinuationEntry::size() + 2 * wordSize /* 2 extra words to match up with leave() */); 955 } 956 957 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread) 958 // On entry: c_rarg1 -- the continuation object 959 // c_rarg2 -- isContinue 960 // c_rarg3 -- isVirtualThread 961 static void gen_continuation_enter(MacroAssembler* masm, 962 const methodHandle& method, 963 const BasicType* sig_bt, 964 const VMRegPair* regs, 965 int& exception_offset, 966 OopMapSet*oop_maps, 967 int& frame_complete, 968 int& stack_slots, 969 int& interpreted_entry_offset, 970 int& compiled_entry_offset) { 971 // verify_oop_args(masm, method, sig_bt, regs); 972 Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); 973 974 address start = __ pc(); 975 976 Label call_thaw, exit; 977 978 // i2i entry used at interp_only_mode only 979 interpreted_entry_offset = __ pc() - start; 980 { 981 #ifdef ASSERT 982 Label is_interp_only; 983 __ lw(t0, Address(xthread, JavaThread::interp_only_mode_offset())); 984 __ bnez(t0, is_interp_only); 985 __ stop("enterSpecial interpreter entry called when not in interp_only_mode"); 986 __ bind(is_interp_only); 987 #endif 988 989 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter) 990 __ ld(c_rarg1, Address(esp, Interpreter::stackElementSize * 2)); 991 __ ld(c_rarg2, Address(esp, Interpreter::stackElementSize * 1)); 992 __ ld(c_rarg3, Address(esp, Interpreter::stackElementSize * 0)); 993 __ push_cont_fastpath(xthread); 994 995 __ enter(); 996 stack_slots = 2; // will be adjusted in setup 997 OopMap* map = continuation_enter_setup(masm, stack_slots); 998 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe, 999 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway. 1000 1001 fill_continuation_entry(masm); 1002 1003 __ bnez(c_rarg2, call_thaw); 1004 1005 // Make sure the call is patchable 1006 __ align(NativeInstruction::instruction_size); 1007 1008 const address tr_call = __ reloc_call(resolve); 1009 if (tr_call == nullptr) { 1010 fatal("CodeCache is full at gen_continuation_enter"); 1011 } 1012 1013 oop_maps->add_gc_map(__ pc() - start, map); 1014 __ post_call_nop(); 1015 1016 __ j(exit); 1017 1018 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call); 1019 if (stub == nullptr) { 1020 fatal("CodeCache is full at gen_continuation_enter"); 1021 } 1022 } 1023 1024 // compiled entry 1025 __ align(CodeEntryAlignment); 1026 compiled_entry_offset = __ pc() - start; 1027 1028 __ enter(); 1029 stack_slots = 2; // will be adjusted in setup 1030 OopMap* map = continuation_enter_setup(masm, stack_slots); 1031 frame_complete = __ pc() - start; 1032 1033 fill_continuation_entry(masm); 1034 1035 __ bnez(c_rarg2, call_thaw); 1036 1037 // Make sure the call is patchable 1038 __ align(NativeInstruction::instruction_size); 1039 1040 const address tr_call = __ reloc_call(resolve); 1041 if (tr_call == nullptr) { 1042 fatal("CodeCache is full at gen_continuation_enter"); 1043 } 1044 1045 oop_maps->add_gc_map(__ pc() - start, map); 1046 __ post_call_nop(); 1047 1048 __ j(exit); 1049 1050 __ bind(call_thaw); 1051 1052 ContinuationEntry::_thaw_call_pc_offset = __ pc() - start; 1053 __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw())); 1054 oop_maps->add_gc_map(__ pc() - start, map->deep_copy()); 1055 ContinuationEntry::_return_pc_offset = __ pc() - start; 1056 __ post_call_nop(); 1057 1058 __ bind(exit); 1059 ContinuationEntry::_cleanup_offset = __ pc() - start; 1060 continuation_enter_cleanup(masm); 1061 __ leave(); 1062 __ ret(); 1063 1064 // exception handling 1065 exception_offset = __ pc() - start; 1066 { 1067 __ mv(x9, x10); // save return value contaning the exception oop in callee-saved x9 1068 1069 continuation_enter_cleanup(masm); 1070 1071 __ ld(c_rarg1, Address(fp, -1 * wordSize)); // return address 1072 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), xthread, c_rarg1); 1073 1074 // see OptoRuntime::generate_exception_blob: x10 -- exception oop, x13 -- exception pc 1075 1076 __ mv(x11, x10); // the exception handler 1077 __ mv(x10, x9); // restore return value contaning the exception oop 1078 __ verify_oop(x10); 1079 1080 __ leave(); 1081 __ mv(x13, ra); 1082 __ jr(x11); // the exception handler 1083 } 1084 1085 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call); 1086 if (stub == nullptr) { 1087 fatal("CodeCache is full at gen_continuation_enter"); 1088 } 1089 } 1090 1091 static void gen_continuation_yield(MacroAssembler* masm, 1092 const methodHandle& method, 1093 const BasicType* sig_bt, 1094 const VMRegPair* regs, 1095 OopMapSet* oop_maps, 1096 int& frame_complete, 1097 int& stack_slots, 1098 int& compiled_entry_offset) { 1099 enum layout { 1100 fp_off, 1101 fp_off2, 1102 return_off, 1103 return_off2, 1104 framesize // inclusive of return address 1105 }; 1106 // assert(is_even(framesize/2), "sp not 16-byte aligned"); 1107 1108 stack_slots = framesize / VMRegImpl::slots_per_word; 1109 assert(stack_slots == 2, "recheck layout"); 1110 1111 address start = __ pc(); 1112 1113 compiled_entry_offset = __ pc() - start; 1114 __ enter(); 1115 1116 __ mv(c_rarg1, sp); 1117 1118 frame_complete = __ pc() - start; 1119 address the_pc = __ pc(); 1120 1121 __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup 1122 1123 __ mv(c_rarg0, xthread); 1124 __ set_last_Java_frame(sp, fp, the_pc, t0); 1125 __ call_VM_leaf(Continuation::freeze_entry(), 2); 1126 __ reset_last_Java_frame(true); 1127 1128 Label pinned; 1129 1130 __ bnez(x10, pinned); 1131 1132 // We've succeeded, set sp to the ContinuationEntry 1133 __ ld(sp, Address(xthread, JavaThread::cont_entry_offset())); 1134 continuation_enter_cleanup(masm); 1135 1136 __ bind(pinned); // pinned -- return to caller 1137 1138 // handle pending exception thrown by freeze 1139 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1140 Label ok; 1141 __ beqz(t0, ok); 1142 __ leave(); 1143 __ j(RuntimeAddress(StubRoutines::forward_exception_entry())); 1144 __ bind(ok); 1145 1146 __ leave(); 1147 __ ret(); 1148 1149 OopMap* map = new OopMap(framesize, 1); 1150 oop_maps->add_gc_map(the_pc - start, map); 1151 } 1152 1153 void SharedRuntime::continuation_enter_cleanup(MacroAssembler* masm) { 1154 ::continuation_enter_cleanup(masm); 1155 } 1156 1157 static void gen_special_dispatch(MacroAssembler* masm, 1158 const methodHandle& method, 1159 const BasicType* sig_bt, 1160 const VMRegPair* regs) { 1161 verify_oop_args(masm, method, sig_bt, regs); 1162 vmIntrinsics::ID iid = method->intrinsic_id(); 1163 1164 // Now write the args into the outgoing interpreter space 1165 bool has_receiver = false; 1166 Register receiver_reg = noreg; 1167 int member_arg_pos = -1; 1168 Register member_reg = noreg; 1169 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1170 if (ref_kind != 0) { 1171 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1172 member_reg = x9; // known to be free at this point 1173 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1174 } else if (iid == vmIntrinsics::_invokeBasic) { 1175 has_receiver = true; 1176 } else if (iid == vmIntrinsics::_linkToNative) { 1177 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument 1178 member_reg = x9; // known to be free at this point 1179 } else { 1180 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1181 } 1182 1183 if (member_reg != noreg) { 1184 // Load the member_arg into register, if necessary. 1185 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1186 VMReg r = regs[member_arg_pos].first(); 1187 if (r->is_stack()) { 1188 __ ld(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1189 } else { 1190 // no data motion is needed 1191 member_reg = r->as_Register(); 1192 } 1193 } 1194 1195 if (has_receiver) { 1196 // Make sure the receiver is loaded into a register. 1197 assert(method->size_of_parameters() > 0, "oob"); 1198 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1199 VMReg r = regs[0].first(); 1200 assert(r->is_valid(), "bad receiver arg"); 1201 if (r->is_stack()) { 1202 // Porting note: This assumes that compiled calling conventions always 1203 // pass the receiver oop in a register. If this is not true on some 1204 // platform, pick a temp and load the receiver from stack. 1205 fatal("receiver always in a register"); 1206 receiver_reg = x12; // known to be free at this point 1207 __ ld(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1208 } else { 1209 // no data motion is needed 1210 receiver_reg = r->as_Register(); 1211 } 1212 } 1213 1214 // Figure out which address we are really jumping to: 1215 MethodHandles::generate_method_handle_dispatch(masm, iid, 1216 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1217 } 1218 1219 // --------------------------------------------------------------------------- 1220 // Generate a native wrapper for a given method. The method takes arguments 1221 // in the Java compiled code convention, marshals them to the native 1222 // convention (handlizes oops, etc), transitions to native, makes the call, 1223 // returns to java state (possibly blocking), unhandlizes any result and 1224 // returns. 1225 // 1226 // Critical native functions are a shorthand for the use of 1227 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1228 // functions. The wrapper is expected to unpack the arguments before 1229 // passing them to the callee and perform checks before and after the 1230 // native call to ensure that they GCLocker 1231 // lock_critical/unlock_critical semantics are followed. Some other 1232 // parts of JNI setup are skipped like the tear down of the JNI handle 1233 // block and the check for pending exceptions it's impossible for them 1234 // to be thrown. 1235 // 1236 // They are roughly structured like this: 1237 // if (GCLocker::needs_gc()) SharedRuntime::block_for_jni_critical() 1238 // tranistion to thread_in_native 1239 // unpack array arguments and call native entry point 1240 // check for safepoint in progress 1241 // check if any thread suspend flags are set 1242 // call into JVM and possible unlock the JNI critical 1243 // if a GC was suppressed while in the critical native. 1244 // transition back to thread_in_Java 1245 // return to caller 1246 // 1247 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1248 const methodHandle& method, 1249 int compile_id, 1250 BasicType* in_sig_bt, 1251 VMRegPair* in_regs, 1252 BasicType ret_type) { 1253 if (method->is_continuation_native_intrinsic()) { 1254 int exception_offset = -1; 1255 OopMapSet* oop_maps = new OopMapSet(); 1256 int frame_complete = -1; 1257 int stack_slots = -1; 1258 int interpreted_entry_offset = -1; 1259 int vep_offset = -1; 1260 if (method->is_continuation_enter_intrinsic()) { 1261 gen_continuation_enter(masm, 1262 method, 1263 in_sig_bt, 1264 in_regs, 1265 exception_offset, 1266 oop_maps, 1267 frame_complete, 1268 stack_slots, 1269 interpreted_entry_offset, 1270 vep_offset); 1271 } else if (method->is_continuation_yield_intrinsic()) { 1272 gen_continuation_yield(masm, 1273 method, 1274 in_sig_bt, 1275 in_regs, 1276 oop_maps, 1277 frame_complete, 1278 stack_slots, 1279 vep_offset); 1280 } else { 1281 guarantee(false, "Unknown Continuation native intrinsic"); 1282 } 1283 1284 #ifdef ASSERT 1285 if (method->is_continuation_enter_intrinsic()) { 1286 assert(interpreted_entry_offset != -1, "Must be set"); 1287 assert(exception_offset != -1, "Must be set"); 1288 } else { 1289 assert(interpreted_entry_offset == -1, "Must be unset"); 1290 assert(exception_offset == -1, "Must be unset"); 1291 } 1292 assert(frame_complete != -1, "Must be set"); 1293 assert(stack_slots != -1, "Must be set"); 1294 assert(vep_offset != -1, "Must be set"); 1295 #endif 1296 1297 __ flush(); 1298 nmethod* nm = nmethod::new_native_nmethod(method, 1299 compile_id, 1300 masm->code(), 1301 vep_offset, 1302 frame_complete, 1303 stack_slots, 1304 in_ByteSize(-1), 1305 in_ByteSize(-1), 1306 oop_maps, 1307 exception_offset); 1308 if (nm == nullptr) return nm; 1309 if (method->is_continuation_enter_intrinsic()) { 1310 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset); 1311 } else if (method->is_continuation_yield_intrinsic()) { 1312 _cont_doYield_stub = nm; 1313 } else { 1314 guarantee(false, "Unknown Continuation native intrinsic"); 1315 } 1316 return nm; 1317 } 1318 1319 if (method->is_method_handle_intrinsic()) { 1320 vmIntrinsics::ID iid = method->intrinsic_id(); 1321 intptr_t start = (intptr_t)__ pc(); 1322 int vep_offset = ((intptr_t)__ pc()) - start; 1323 1324 // First instruction must be a nop as it may need to be patched on deoptimisation 1325 { 1326 Assembler::IncompressibleRegion ir(masm); // keep the nop as 4 bytes for patching. 1327 MacroAssembler::assert_alignment(__ pc()); 1328 __ nop(); // 4 bytes 1329 } 1330 gen_special_dispatch(masm, 1331 method, 1332 in_sig_bt, 1333 in_regs); 1334 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1335 __ flush(); 1336 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1337 return nmethod::new_native_nmethod(method, 1338 compile_id, 1339 masm->code(), 1340 vep_offset, 1341 frame_complete, 1342 stack_slots / VMRegImpl::slots_per_word, 1343 in_ByteSize(-1), 1344 in_ByteSize(-1), 1345 (OopMapSet*)nullptr); 1346 } 1347 address native_func = method->native_function(); 1348 assert(native_func != nullptr, "must have function"); 1349 1350 // An OopMap for lock (and class if static) 1351 OopMapSet *oop_maps = new OopMapSet(); 1352 assert_cond(oop_maps != nullptr); 1353 intptr_t start = (intptr_t)__ pc(); 1354 1355 // We have received a description of where all the java arg are located 1356 // on entry to the wrapper. We need to convert these args to where 1357 // the jni function will expect them. To figure out where they go 1358 // we convert the java signature to a C signature by inserting 1359 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1360 1361 const int total_in_args = method->size_of_parameters(); 1362 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1363 1364 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1365 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1366 1367 int argc = 0; 1368 out_sig_bt[argc++] = T_ADDRESS; 1369 if (method->is_static()) { 1370 out_sig_bt[argc++] = T_OBJECT; 1371 } 1372 1373 for (int i = 0; i < total_in_args ; i++) { 1374 out_sig_bt[argc++] = in_sig_bt[i]; 1375 } 1376 1377 // Now figure out where the args must be stored and how much stack space 1378 // they require. 1379 int out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args); 1380 1381 // Compute framesize for the wrapper. We need to handlize all oops in 1382 // incoming registers 1383 1384 // Calculate the total number of stack slots we will need. 1385 1386 // First count the abi requirement plus all of the outgoing args 1387 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1388 1389 // Now the space for the inbound oop handle area 1390 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1391 1392 int oop_handle_offset = stack_slots; 1393 stack_slots += total_save_slots; 1394 1395 // Now any space we need for handlizing a klass if static method 1396 1397 int klass_slot_offset = 0; 1398 int klass_offset = -1; 1399 int lock_slot_offset = 0; 1400 bool is_static = false; 1401 1402 if (method->is_static()) { 1403 klass_slot_offset = stack_slots; 1404 stack_slots += VMRegImpl::slots_per_word; 1405 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1406 is_static = true; 1407 } 1408 1409 // Plus a lock if needed 1410 1411 if (method->is_synchronized()) { 1412 lock_slot_offset = stack_slots; 1413 stack_slots += VMRegImpl::slots_per_word; 1414 } 1415 1416 // Now a place (+2) to save return values or temp during shuffling 1417 // + 4 for return address (which we own) and saved fp 1418 stack_slots += 6; 1419 1420 // Ok The space we have allocated will look like: 1421 // 1422 // 1423 // FP-> | | 1424 // | 2 slots (ra) | 1425 // | 2 slots (fp) | 1426 // |---------------------| 1427 // | 2 slots for moves | 1428 // |---------------------| 1429 // | lock box (if sync) | 1430 // |---------------------| <- lock_slot_offset 1431 // | klass (if static) | 1432 // |---------------------| <- klass_slot_offset 1433 // | oopHandle area | 1434 // |---------------------| <- oop_handle_offset (8 java arg registers) 1435 // | outbound memory | 1436 // | based arguments | 1437 // | | 1438 // |---------------------| 1439 // | | 1440 // SP-> | out_preserved_slots | 1441 // 1442 // 1443 1444 1445 // Now compute actual number of stack words we need rounding to make 1446 // stack properly aligned. 1447 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1448 1449 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1450 1451 // First thing make an ic check to see if we should even be here 1452 1453 // We are free to use all registers as temps without saving them and 1454 // restoring them except fp. fp is the only callee save register 1455 // as far as the interpreter and the compiler(s) are concerned. 1456 1457 const Register receiver = j_rarg0; 1458 1459 __ verify_oop(receiver); 1460 assert_different_registers(receiver, t0, t1); 1461 1462 __ ic_check(); 1463 1464 int vep_offset = ((intptr_t)__ pc()) - start; 1465 1466 // If we have to make this method not-entrant we'll overwrite its 1467 // first instruction with a jump. 1468 { 1469 Assembler::IncompressibleRegion ir(masm); // keep the nop as 4 bytes for patching. 1470 MacroAssembler::assert_alignment(__ pc()); 1471 __ nop(); // 4 bytes 1472 } 1473 1474 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 1475 Label L_skip_barrier; 1476 __ mov_metadata(t1, method->method_holder()); // InstanceKlass* 1477 __ clinit_barrier(t1, t0, &L_skip_barrier); 1478 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1479 1480 __ bind(L_skip_barrier); 1481 } 1482 1483 // Generate stack overflow check 1484 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size())); 1485 1486 // Generate a new frame for the wrapper. 1487 __ enter(); 1488 // -2 because return address is already present and so is saved fp 1489 __ sub(sp, sp, stack_size - 2 * wordSize); 1490 1491 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1492 assert_cond(bs != nullptr); 1493 bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 1494 1495 // Frame is now completed as far as size and linkage. 1496 int frame_complete = ((intptr_t)__ pc()) - start; 1497 1498 // We use x18 as the oop handle for the receiver/klass 1499 // It is callee save so it survives the call to native 1500 1501 const Register oop_handle_reg = x18; 1502 1503 // 1504 // We immediately shuffle the arguments so that any vm call we have to 1505 // make from here on out (sync slow path, jvmti, etc.) we will have 1506 // captured the oops from our caller and have a valid oopMap for 1507 // them. 1508 1509 // ----------------- 1510 // The Grand Shuffle 1511 1512 // The Java calling convention is either equal (linux) or denser (win64) than the 1513 // c calling convention. However the because of the jni_env argument the c calling 1514 // convention always has at least one more (and two for static) arguments than Java. 1515 // Therefore if we move the args from java -> c backwards then we will never have 1516 // a register->register conflict and we don't have to build a dependency graph 1517 // and figure out how to break any cycles. 1518 // 1519 1520 // Record esp-based slot for receiver on stack for non-static methods 1521 int receiver_offset = -1; 1522 1523 // This is a trick. We double the stack slots so we can claim 1524 // the oops in the caller's frame. Since we are sure to have 1525 // more args than the caller doubling is enough to make 1526 // sure we can capture all the incoming oop args from the 1527 // caller. 1528 // 1529 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1530 assert_cond(map != nullptr); 1531 1532 int float_args = 0; 1533 int int_args = 0; 1534 1535 #ifdef ASSERT 1536 bool reg_destroyed[Register::number_of_registers]; 1537 bool freg_destroyed[FloatRegister::number_of_registers]; 1538 for ( int r = 0 ; r < Register::number_of_registers ; r++ ) { 1539 reg_destroyed[r] = false; 1540 } 1541 for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) { 1542 freg_destroyed[f] = false; 1543 } 1544 1545 #endif /* ASSERT */ 1546 1547 // For JNI natives the incoming and outgoing registers are offset upwards. 1548 GrowableArray<int> arg_order(2 * total_in_args); 1549 1550 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1551 arg_order.push(i); 1552 arg_order.push(c_arg); 1553 } 1554 1555 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1556 int i = arg_order.at(ai); 1557 int c_arg = arg_order.at(ai + 1); 1558 __ block_comment(err_msg("mv %d -> %d", i, c_arg)); 1559 assert(c_arg != -1 && i != -1, "wrong order"); 1560 #ifdef ASSERT 1561 if (in_regs[i].first()->is_Register()) { 1562 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1563 } else if (in_regs[i].first()->is_FloatRegister()) { 1564 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1565 } 1566 if (out_regs[c_arg].first()->is_Register()) { 1567 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1568 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1569 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1570 } 1571 #endif /* ASSERT */ 1572 switch (in_sig_bt[i]) { 1573 case T_ARRAY: 1574 case T_OBJECT: 1575 __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1576 ((i == 0) && (!is_static)), 1577 &receiver_offset); 1578 int_args++; 1579 break; 1580 case T_VOID: 1581 break; 1582 1583 case T_FLOAT: 1584 __ float_move(in_regs[i], out_regs[c_arg]); 1585 float_args++; 1586 break; 1587 1588 case T_DOUBLE: 1589 assert( i + 1 < total_in_args && 1590 in_sig_bt[i + 1] == T_VOID && 1591 out_sig_bt[c_arg + 1] == T_VOID, "bad arg list"); 1592 __ double_move(in_regs[i], out_regs[c_arg]); 1593 float_args++; 1594 break; 1595 1596 case T_LONG : 1597 __ long_move(in_regs[i], out_regs[c_arg]); 1598 int_args++; 1599 break; 1600 1601 case T_ADDRESS: 1602 assert(false, "found T_ADDRESS in java args"); 1603 break; 1604 1605 default: 1606 __ move32_64(in_regs[i], out_regs[c_arg]); 1607 int_args++; 1608 } 1609 } 1610 1611 // point c_arg at the first arg that is already loaded in case we 1612 // need to spill before we call out 1613 int c_arg = total_c_args - total_in_args; 1614 1615 // Pre-load a static method's oop into c_rarg1. 1616 if (method->is_static()) { 1617 1618 // load oop into a register 1619 __ movoop(c_rarg1, 1620 JNIHandles::make_local(method->method_holder()->java_mirror())); 1621 1622 // Now handlize the static class mirror it's known not-null. 1623 __ sd(c_rarg1, Address(sp, klass_offset)); 1624 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1625 1626 // Now get the handle 1627 __ la(c_rarg1, Address(sp, klass_offset)); 1628 // and protect the arg if we must spill 1629 c_arg--; 1630 } 1631 1632 // Change state to native (we save the return address in the thread, since it might not 1633 // be pushed on the stack when we do a stack traversal). It is enough that the pc() 1634 // points into the right code segment. It does not have to be the correct return pc. 1635 // We use the same pc/oopMap repeatedly when we call out. 1636 1637 Label native_return; 1638 if (LockingMode != LM_LEGACY && method->is_object_wait0()) { 1639 // For convenience we use the pc we want to resume to in case of preemption on Object.wait. 1640 __ set_last_Java_frame(sp, noreg, native_return, t0); 1641 } else { 1642 intptr_t the_pc = (intptr_t) __ pc(); 1643 oop_maps->add_gc_map(the_pc - start, map); 1644 1645 __ set_last_Java_frame(sp, noreg, __ pc(), t0); 1646 } 1647 1648 Label dtrace_method_entry, dtrace_method_entry_done; 1649 if (DTraceMethodProbes) { 1650 __ j(dtrace_method_entry); 1651 __ bind(dtrace_method_entry_done); 1652 } 1653 1654 // RedefineClasses() tracing support for obsolete method entry 1655 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1656 // protect the args we've loaded 1657 save_args(masm, total_c_args, c_arg, out_regs); 1658 __ mov_metadata(c_rarg1, method()); 1659 __ call_VM_leaf( 1660 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1661 xthread, c_rarg1); 1662 restore_args(masm, total_c_args, c_arg, out_regs); 1663 } 1664 1665 // Lock a synchronized method 1666 1667 // Register definitions used by locking and unlocking 1668 1669 const Register swap_reg = x10; 1670 const Register obj_reg = x9; // Will contain the oop 1671 const Register lock_reg = x30; // Address of compiler lock object (BasicLock) 1672 const Register old_hdr = x30; // value of old header at unlock time 1673 const Register lock_tmp = x31; // Temporary used by lightweight_lock/unlock 1674 const Register tmp = ra; 1675 1676 Label slow_path_lock; 1677 Label lock_done; 1678 1679 if (method->is_synchronized()) { 1680 Label count; 1681 1682 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 1683 1684 // Get the handle (the 2nd argument) 1685 __ mv(oop_handle_reg, c_rarg1); 1686 1687 // Get address of the box 1688 1689 __ la(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1690 1691 // Load the oop from the handle 1692 __ ld(obj_reg, Address(oop_handle_reg, 0)); 1693 1694 if (LockingMode == LM_MONITOR) { 1695 __ j(slow_path_lock); 1696 } else if (LockingMode == LM_LEGACY) { 1697 // Load (object->mark() | 1) into swap_reg % x10 1698 __ ld(t0, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1699 __ ori(swap_reg, t0, 1); 1700 1701 // Save (object->mark() | 1) into BasicLock's displaced header 1702 __ sd(swap_reg, Address(lock_reg, mark_word_offset)); 1703 1704 // src -> dest if dest == x10 else x10 <- dest 1705 __ cmpxchg_obj_header(x10, lock_reg, obj_reg, lock_tmp, count, /*fallthrough*/nullptr); 1706 1707 // Test if the oopMark is an obvious stack pointer, i.e., 1708 // 1) (mark & 3) == 0, and 1709 // 2) sp <= mark < mark + os::pagesize() 1710 // These 3 tests can be done by evaluating the following 1711 // expression: ((mark - sp) & (3 - os::vm_page_size())), 1712 // assuming both stack pointer and pagesize have their 1713 // least significant 2 bits clear. 1714 // NOTE: the oopMark is in swap_reg % 10 as the result of cmpxchg 1715 1716 __ sub(swap_reg, swap_reg, sp); 1717 __ mv(t0, 3 - (int)os::vm_page_size()); 1718 __ andr(swap_reg, swap_reg, t0); 1719 1720 // Save the test result, for recursive case, the result is zero 1721 __ sd(swap_reg, Address(lock_reg, mark_word_offset)); 1722 __ bnez(swap_reg, slow_path_lock); 1723 1724 __ bind(count); 1725 __ inc_held_monitor_count(t0); 1726 } else { 1727 assert(LockingMode == LM_LIGHTWEIGHT, "must be"); 1728 __ lightweight_lock(lock_reg, obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock); 1729 } 1730 1731 // Slow path will re-enter here 1732 __ bind(lock_done); 1733 } 1734 1735 1736 // Finally just about ready to make the JNI call 1737 1738 // get JNIEnv* which is first argument to native 1739 __ la(c_rarg0, Address(xthread, in_bytes(JavaThread::jni_environment_offset()))); 1740 1741 // Now set thread in native 1742 __ la(t1, Address(xthread, JavaThread::thread_state_offset())); 1743 __ mv(t0, _thread_in_native); 1744 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore); 1745 __ sw(t0, Address(t1)); 1746 1747 // Clobbers t1 1748 __ rt_call(native_func); 1749 1750 // Verify or restore cpu control state after JNI call 1751 __ restore_cpu_control_state_after_jni(t0); 1752 1753 // Unpack native results. 1754 if (ret_type != T_OBJECT && ret_type != T_ARRAY) { 1755 __ cast_primitive_type(ret_type, x10); 1756 } 1757 1758 Label safepoint_in_progress, safepoint_in_progress_done; 1759 1760 // Switch thread to "native transition" state before reading the synchronization state. 1761 // This additional state is necessary because reading and testing the synchronization 1762 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1763 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1764 // VM thread changes sync state to synchronizing and suspends threads for GC. 1765 // Thread A is resumed to finish this native method, but doesn't block here since it 1766 // didn't see any synchronization is progress, and escapes. 1767 __ mv(t0, _thread_in_native_trans); 1768 1769 __ sw(t0, Address(xthread, JavaThread::thread_state_offset())); 1770 1771 // Force this write out before the read below 1772 if (!UseSystemMemoryBarrier) { 1773 __ membar(MacroAssembler::AnyAny); 1774 } 1775 1776 // check for safepoint operation in progress and/or pending suspend requests 1777 { 1778 // We need an acquire here to ensure that any subsequent load of the 1779 // global SafepointSynchronize::_state flag is ordered after this load 1780 // of the thread-local polling word. We don't want this poll to 1781 // return false (i.e. not safepointing) and a later poll of the global 1782 // SafepointSynchronize::_state spuriously to return true. 1783 // This is to avoid a race when we're in a native->Java transition 1784 // racing the code which wakes up from a safepoint. 1785 1786 __ safepoint_poll(safepoint_in_progress, true /* at_return */, true /* acquire */, false /* in_nmethod */); 1787 __ lwu(t0, Address(xthread, JavaThread::suspend_flags_offset())); 1788 __ bnez(t0, safepoint_in_progress); 1789 __ bind(safepoint_in_progress_done); 1790 } 1791 1792 // change thread state 1793 __ la(t1, Address(xthread, JavaThread::thread_state_offset())); 1794 __ mv(t0, _thread_in_Java); 1795 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore); 1796 __ sw(t0, Address(t1)); 1797 1798 if (LockingMode != LM_LEGACY && method->is_object_wait0()) { 1799 // Check preemption for Object.wait() 1800 __ ld(t1, Address(xthread, JavaThread::preempt_alternate_return_offset())); 1801 __ beqz(t1, native_return); 1802 __ sd(zr, Address(xthread, JavaThread::preempt_alternate_return_offset())); 1803 __ jr(t1); 1804 __ bind(native_return); 1805 1806 intptr_t the_pc = (intptr_t) __ pc(); 1807 oop_maps->add_gc_map(the_pc - start, map); 1808 } 1809 1810 Label reguard; 1811 Label reguard_done; 1812 __ lbu(t0, Address(xthread, JavaThread::stack_guard_state_offset())); 1813 __ mv(t1, StackOverflow::stack_guard_yellow_reserved_disabled); 1814 __ beq(t0, t1, reguard); 1815 __ bind(reguard_done); 1816 1817 // native result if any is live 1818 1819 // Unlock 1820 Label unlock_done; 1821 Label slow_path_unlock; 1822 if (method->is_synchronized()) { 1823 1824 // Get locked oop from the handle we passed to jni 1825 __ ld(obj_reg, Address(oop_handle_reg, 0)); 1826 1827 Label done, not_recursive; 1828 1829 if (LockingMode == LM_LEGACY) { 1830 // Simple recursive lock? 1831 __ ld(t0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1832 __ bnez(t0, not_recursive); 1833 __ dec_held_monitor_count(t0); 1834 __ j(done); 1835 } 1836 1837 __ bind(not_recursive); 1838 1839 // Must save x10 if if it is live now because cmpxchg must use it 1840 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1841 save_native_result(masm, ret_type, stack_slots); 1842 } 1843 1844 if (LockingMode == LM_MONITOR) { 1845 __ j(slow_path_unlock); 1846 } else if (LockingMode == LM_LEGACY) { 1847 // get address of the stack lock 1848 __ la(x10, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1849 // get old displaced header 1850 __ ld(old_hdr, Address(x10, 0)); 1851 1852 // Atomic swap old header if oop still contains the stack lock 1853 Label count; 1854 __ cmpxchg_obj_header(x10, old_hdr, obj_reg, lock_tmp, count, &slow_path_unlock); 1855 __ bind(count); 1856 __ dec_held_monitor_count(t0); 1857 } else { 1858 assert(LockingMode == LM_LIGHTWEIGHT, ""); 1859 __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock); 1860 } 1861 1862 // slow path re-enters here 1863 __ bind(unlock_done); 1864 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1865 restore_native_result(masm, ret_type, stack_slots); 1866 } 1867 1868 __ bind(done); 1869 } 1870 1871 Label dtrace_method_exit, dtrace_method_exit_done; 1872 if (DTraceMethodProbes) { 1873 __ j(dtrace_method_exit); 1874 __ bind(dtrace_method_exit_done); 1875 } 1876 1877 __ reset_last_Java_frame(false); 1878 1879 // Unbox oop result, e.g. JNIHandles::resolve result. 1880 if (is_reference_type(ret_type)) { 1881 __ resolve_jobject(x10, x11, x12); 1882 } 1883 1884 if (CheckJNICalls) { 1885 // clear_pending_jni_exception_check 1886 __ sd(zr, Address(xthread, JavaThread::pending_jni_exception_check_fn_offset())); 1887 } 1888 1889 // reset handle block 1890 __ ld(x12, Address(xthread, JavaThread::active_handles_offset())); 1891 __ sd(zr, Address(x12, JNIHandleBlock::top_offset())); 1892 1893 __ leave(); 1894 1895 // Any exception pending? 1896 Label exception_pending; 1897 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1898 __ bnez(t0, exception_pending); 1899 1900 // We're done 1901 __ ret(); 1902 1903 // Unexpected paths are out of line and go here 1904 1905 // forward the exception 1906 __ bind(exception_pending); 1907 1908 // and forward the exception 1909 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1910 1911 // Slow path locking & unlocking 1912 if (method->is_synchronized()) { 1913 1914 __ block_comment("Slow path lock {"); 1915 __ bind(slow_path_lock); 1916 1917 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 1918 // args are (oop obj, BasicLock* lock, JavaThread* thread) 1919 1920 // protect the args we've loaded 1921 save_args(masm, total_c_args, c_arg, out_regs); 1922 1923 __ mv(c_rarg0, obj_reg); 1924 __ mv(c_rarg1, lock_reg); 1925 __ mv(c_rarg2, xthread); 1926 1927 // Not a leaf but we have last_Java_frame setup as we want. 1928 // We don't want to unmount in case of contention since that would complicate preserving 1929 // the arguments that had already been marshalled into the native convention. So we force 1930 // the freeze slow path to find this native wrapper frame (see recurse_freeze_native_frame()) 1931 // and pin the vthread. Otherwise the fast path won't find it since we don't walk the stack. 1932 __ push_cont_fastpath(); 1933 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 1934 __ pop_cont_fastpath(); 1935 restore_args(masm, total_c_args, c_arg, out_regs); 1936 1937 #ifdef ASSERT 1938 { Label L; 1939 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1940 __ beqz(t0, L); 1941 __ stop("no pending exception allowed on exit from monitorenter"); 1942 __ bind(L); 1943 } 1944 #endif 1945 __ j(lock_done); 1946 1947 __ block_comment("} Slow path lock"); 1948 1949 __ block_comment("Slow path unlock {"); 1950 __ bind(slow_path_unlock); 1951 1952 if (ret_type == T_FLOAT || ret_type == T_DOUBLE) { 1953 save_native_result(masm, ret_type, stack_slots); 1954 } 1955 1956 __ mv(c_rarg2, xthread); 1957 __ la(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1958 __ mv(c_rarg0, obj_reg); 1959 1960 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 1961 // NOTE that obj_reg == x9 currently 1962 __ ld(x9, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1963 __ sd(zr, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1964 1965 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)); 1966 1967 #ifdef ASSERT 1968 { 1969 Label L; 1970 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1971 __ beqz(t0, L); 1972 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 1973 __ bind(L); 1974 } 1975 #endif /* ASSERT */ 1976 1977 __ sd(x9, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1978 1979 if (ret_type == T_FLOAT || ret_type == T_DOUBLE) { 1980 restore_native_result(masm, ret_type, stack_slots); 1981 } 1982 __ j(unlock_done); 1983 1984 __ block_comment("} Slow path unlock"); 1985 1986 } // synchronized 1987 1988 // SLOW PATH Reguard the stack if needed 1989 1990 __ bind(reguard); 1991 save_native_result(masm, ret_type, stack_slots); 1992 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 1993 restore_native_result(masm, ret_type, stack_slots); 1994 // and continue 1995 __ j(reguard_done); 1996 1997 // SLOW PATH safepoint 1998 { 1999 __ block_comment("safepoint {"); 2000 __ bind(safepoint_in_progress); 2001 2002 // Don't use call_VM as it will see a possible pending exception and forward it 2003 // and never return here preventing us from clearing _last_native_pc down below. 2004 // 2005 save_native_result(masm, ret_type, stack_slots); 2006 __ mv(c_rarg0, xthread); 2007 #ifndef PRODUCT 2008 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2009 #endif 2010 __ rt_call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)); 2011 2012 // Restore any method result value 2013 restore_native_result(masm, ret_type, stack_slots); 2014 2015 __ j(safepoint_in_progress_done); 2016 __ block_comment("} safepoint"); 2017 } 2018 2019 // SLOW PATH dtrace support 2020 if (DTraceMethodProbes) { 2021 { 2022 __ block_comment("dtrace entry {"); 2023 __ bind(dtrace_method_entry); 2024 2025 // We have all of the arguments setup at this point. We must not touch any register 2026 // argument registers at this point (what if we save/restore them there are no oop? 2027 2028 save_args(masm, total_c_args, c_arg, out_regs); 2029 __ mov_metadata(c_rarg1, method()); 2030 __ call_VM_leaf( 2031 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2032 xthread, c_rarg1); 2033 restore_args(masm, total_c_args, c_arg, out_regs); 2034 __ j(dtrace_method_entry_done); 2035 __ block_comment("} dtrace entry"); 2036 } 2037 2038 { 2039 __ block_comment("dtrace exit {"); 2040 __ bind(dtrace_method_exit); 2041 save_native_result(masm, ret_type, stack_slots); 2042 __ mov_metadata(c_rarg1, method()); 2043 __ call_VM_leaf( 2044 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2045 xthread, c_rarg1); 2046 restore_native_result(masm, ret_type, stack_slots); 2047 __ j(dtrace_method_exit_done); 2048 __ block_comment("} dtrace exit"); 2049 } 2050 } 2051 2052 __ flush(); 2053 2054 nmethod *nm = nmethod::new_native_nmethod(method, 2055 compile_id, 2056 masm->code(), 2057 vep_offset, 2058 frame_complete, 2059 stack_slots / VMRegImpl::slots_per_word, 2060 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2061 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2062 oop_maps); 2063 assert(nm != nullptr, "create native nmethod fail!"); 2064 return nm; 2065 } 2066 2067 // this function returns the adjust size (in number of words) to a c2i adapter 2068 // activation for use during deoptimization 2069 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2070 assert(callee_locals >= callee_parameters, 2071 "test and remove; got more parms than locals"); 2072 if (callee_locals < callee_parameters) { 2073 return 0; // No adjustment for negative locals 2074 } 2075 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2076 // diff is counted in stack words 2077 return align_up(diff, 2); 2078 } 2079 2080 //------------------------------generate_deopt_blob---------------------------- 2081 void SharedRuntime::generate_deopt_blob() { 2082 // Allocate space for the code 2083 ResourceMark rm; 2084 // Setup code generation tools 2085 int pad = 0; 2086 #if INCLUDE_JVMCI 2087 if (EnableJVMCI) { 2088 pad += 512; // Increase the buffer size when compiling for JVMCI 2089 } 2090 #endif 2091 const char* name = SharedRuntime::stub_name(SharedStubId::deopt_id); 2092 CodeBuffer buffer(name, 2048 + pad, 1024); 2093 MacroAssembler* masm = new MacroAssembler(&buffer); 2094 int frame_size_in_words = -1; 2095 OopMap* map = nullptr; 2096 OopMapSet *oop_maps = new OopMapSet(); 2097 assert_cond(masm != nullptr && oop_maps != nullptr); 2098 RegisterSaver reg_saver(COMPILER2_OR_JVMCI != 0); 2099 2100 // ------------- 2101 // This code enters when returning to a de-optimized nmethod. A return 2102 // address has been pushed on the stack, and return values are in 2103 // registers. 2104 // If we are doing a normal deopt then we were called from the patched 2105 // nmethod from the point we returned to the nmethod. So the return 2106 // address on the stack is wrong by NativeCall::instruction_size 2107 // We will adjust the value so it looks like we have the original return 2108 // address on the stack (like when we eagerly deoptimized). 2109 // In the case of an exception pending when deoptimizing, we enter 2110 // with a return address on the stack that points after the call we patched 2111 // into the exception handler. We have the following register state from, 2112 // e.g., the forward exception stub (see stubGenerator_riscv.cpp). 2113 // x10: exception oop 2114 // x9: exception handler 2115 // x13: throwing pc 2116 // So in this case we simply jam x13 into the useless return address and 2117 // the stack looks just like we want. 2118 // 2119 // At this point we need to de-opt. We save the argument return 2120 // registers. We call the first C routine, fetch_unroll_info(). This 2121 // routine captures the return values and returns a structure which 2122 // describes the current frame size and the sizes of all replacement frames. 2123 // The current frame is compiled code and may contain many inlined 2124 // functions, each with their own JVM state. We pop the current frame, then 2125 // push all the new frames. Then we call the C routine unpack_frames() to 2126 // populate these frames. Finally unpack_frames() returns us the new target 2127 // address. Notice that callee-save registers are BLOWN here; they have 2128 // already been captured in the vframeArray at the time the return PC was 2129 // patched. 2130 address start = __ pc(); 2131 Label cont; 2132 2133 // Prolog for non exception case! 2134 2135 // Save everything in sight. 2136 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2137 2138 // Normal deoptimization. Save exec mode for unpack_frames. 2139 __ mv(xcpool, Deoptimization::Unpack_deopt); // callee-saved 2140 __ j(cont); 2141 2142 int reexecute_offset = __ pc() - start; 2143 #if INCLUDE_JVMCI && !defined(COMPILER1) 2144 if (UseJVMCICompiler) { 2145 // JVMCI does not use this kind of deoptimization 2146 __ should_not_reach_here(); 2147 } 2148 #endif 2149 2150 // Reexecute case 2151 // return address is the pc describes what bci to do re-execute at 2152 2153 // No need to update map as each call to save_live_registers will produce identical oopmap 2154 (void) reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2155 2156 __ mv(xcpool, Deoptimization::Unpack_reexecute); // callee-saved 2157 __ j(cont); 2158 2159 #if INCLUDE_JVMCI 2160 Label after_fetch_unroll_info_call; 2161 int implicit_exception_uncommon_trap_offset = 0; 2162 int uncommon_trap_offset = 0; 2163 2164 if (EnableJVMCI) { 2165 implicit_exception_uncommon_trap_offset = __ pc() - start; 2166 2167 __ ld(ra, Address(xthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2168 __ sd(zr, Address(xthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2169 2170 uncommon_trap_offset = __ pc() - start; 2171 2172 // Save everything in sight. 2173 reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2174 // fetch_unroll_info needs to call last_java_frame() 2175 Label retaddr; 2176 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2177 2178 __ lw(c_rarg1, Address(xthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2179 __ mv(t0, -1); 2180 __ sw(t0, Address(xthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2181 2182 __ mv(xcpool, Deoptimization::Unpack_reexecute); 2183 __ mv(c_rarg0, xthread); 2184 __ orrw(c_rarg2, zr, xcpool); // exec mode 2185 __ rt_call(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)); 2186 __ bind(retaddr); 2187 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 2188 2189 __ reset_last_Java_frame(false); 2190 2191 __ j(after_fetch_unroll_info_call); 2192 } // EnableJVMCI 2193 #endif // INCLUDE_JVMCI 2194 2195 int exception_offset = __ pc() - start; 2196 2197 // Prolog for exception case 2198 2199 // all registers are dead at this entry point, except for x10, and 2200 // x13 which contain the exception oop and exception pc 2201 // respectively. Set them in TLS and fall thru to the 2202 // unpack_with_exception_in_tls entry point. 2203 2204 __ sd(x13, Address(xthread, JavaThread::exception_pc_offset())); 2205 __ sd(x10, Address(xthread, JavaThread::exception_oop_offset())); 2206 2207 int exception_in_tls_offset = __ pc() - start; 2208 2209 // new implementation because exception oop is now passed in JavaThread 2210 2211 // Prolog for exception case 2212 // All registers must be preserved because they might be used by LinearScan 2213 // Exceptiop oop and throwing PC are passed in JavaThread 2214 // tos: stack at point of call to method that threw the exception (i.e. only 2215 // args are on the stack, no return address) 2216 2217 // The return address pushed by save_live_registers will be patched 2218 // later with the throwing pc. The correct value is not available 2219 // now because loading it from memory would destroy registers. 2220 2221 // NB: The SP at this point must be the SP of the method that is 2222 // being deoptimized. Deoptimization assumes that the frame created 2223 // here by save_live_registers is immediately below the method's SP. 2224 // This is a somewhat fragile mechanism. 2225 2226 // Save everything in sight. 2227 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2228 2229 // Now it is safe to overwrite any register 2230 2231 // Deopt during an exception. Save exec mode for unpack_frames. 2232 __ mv(xcpool, Deoptimization::Unpack_exception); // callee-saved 2233 2234 // load throwing pc from JavaThread and patch it as the return address 2235 // of the current frame. Then clear the field in JavaThread 2236 2237 __ ld(x13, Address(xthread, JavaThread::exception_pc_offset())); 2238 __ sd(x13, Address(fp, frame::return_addr_offset * wordSize)); 2239 __ sd(zr, Address(xthread, JavaThread::exception_pc_offset())); 2240 2241 #ifdef ASSERT 2242 // verify that there is really an exception oop in JavaThread 2243 __ ld(x10, Address(xthread, JavaThread::exception_oop_offset())); 2244 __ verify_oop(x10); 2245 2246 // verify that there is no pending exception 2247 Label no_pending_exception; 2248 __ ld(t0, Address(xthread, Thread::pending_exception_offset())); 2249 __ beqz(t0, no_pending_exception); 2250 __ stop("must not have pending exception here"); 2251 __ bind(no_pending_exception); 2252 #endif 2253 2254 __ bind(cont); 2255 2256 // Call C code. Need thread and this frame, but NOT official VM entry 2257 // crud. We cannot block on this call, no GC can happen. 2258 // 2259 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2260 2261 // fetch_unroll_info needs to call last_java_frame(). 2262 2263 Label retaddr; 2264 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2265 #ifdef ASSERT 2266 { 2267 Label L; 2268 __ ld(t0, Address(xthread, 2269 JavaThread::last_Java_fp_offset())); 2270 __ beqz(t0, L); 2271 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2272 __ bind(L); 2273 } 2274 #endif // ASSERT 2275 __ mv(c_rarg0, xthread); 2276 __ mv(c_rarg1, xcpool); 2277 __ rt_call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)); 2278 __ bind(retaddr); 2279 2280 // Need to have an oopmap that tells fetch_unroll_info where to 2281 // find any register it might need. 2282 oop_maps->add_gc_map(__ pc() - start, map); 2283 2284 __ reset_last_Java_frame(false); 2285 2286 #if INCLUDE_JVMCI 2287 if (EnableJVMCI) { 2288 __ bind(after_fetch_unroll_info_call); 2289 } 2290 #endif 2291 2292 // Load UnrollBlock* into x15 2293 __ mv(x15, x10); 2294 2295 __ lwu(xcpool, Address(x15, Deoptimization::UnrollBlock::unpack_kind_offset())); 2296 Label noException; 2297 __ mv(t0, Deoptimization::Unpack_exception); 2298 __ bne(xcpool, t0, noException); // Was exception pending? 2299 __ ld(x10, Address(xthread, JavaThread::exception_oop_offset())); 2300 __ ld(x13, Address(xthread, JavaThread::exception_pc_offset())); 2301 __ sd(zr, Address(xthread, JavaThread::exception_oop_offset())); 2302 __ sd(zr, Address(xthread, JavaThread::exception_pc_offset())); 2303 2304 __ verify_oop(x10); 2305 2306 // Overwrite the result registers with the exception results. 2307 __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2308 2309 __ bind(noException); 2310 2311 // Only register save data is on the stack. 2312 // Now restore the result registers. Everything else is either dead 2313 // or captured in the vframeArray. 2314 2315 // Restore fp result register 2316 __ fld(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10))); 2317 // Restore integer result register 2318 __ ld(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2319 2320 // Pop all of the register save area off the stack 2321 __ add(sp, sp, frame_size_in_words * wordSize); 2322 2323 // All of the register save area has been popped of the stack. Only the 2324 // return address remains. 2325 2326 // Pop all the frames we must move/replace. 2327 // 2328 // Frame picture (youngest to oldest) 2329 // 1: self-frame (no frame link) 2330 // 2: deopting frame (no frame link) 2331 // 3: caller of deopting frame (could be compiled/interpreted). 2332 // 2333 // Note: by leaving the return address of self-frame on the stack 2334 // and using the size of frame 2 to adjust the stack 2335 // when we are done the return to frame 3 will still be on the stack. 2336 2337 // Pop deoptimized frame 2338 __ lwu(x12, Address(x15, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset())); 2339 __ subi(x12, x12, 2 * wordSize); 2340 __ add(sp, sp, x12); 2341 __ ld(fp, Address(sp, 0)); 2342 __ ld(ra, Address(sp, wordSize)); 2343 __ addi(sp, sp, 2 * wordSize); 2344 // RA should now be the return address to the caller (3) 2345 2346 #ifdef ASSERT 2347 // Compilers generate code that bang the stack by as much as the 2348 // interpreter would need. So this stack banging should never 2349 // trigger a fault. Verify that it does not on non product builds. 2350 __ lwu(x9, Address(x15, Deoptimization::UnrollBlock::total_frame_sizes_offset())); 2351 __ bang_stack_size(x9, x12); 2352 #endif 2353 // Load address of array of frame pcs into x12 2354 __ ld(x12, Address(x15, Deoptimization::UnrollBlock::frame_pcs_offset())); 2355 2356 // Load address of array of frame sizes into x14 2357 __ ld(x14, Address(x15, Deoptimization::UnrollBlock::frame_sizes_offset())); 2358 2359 // Load counter into x13 2360 __ lwu(x13, Address(x15, Deoptimization::UnrollBlock::number_of_frames_offset())); 2361 2362 // Now adjust the caller's stack to make up for the extra locals 2363 // but record the original sp so that we can save it in the skeletal interpreter 2364 // frame and the stack walking of interpreter_sender will get the unextended sp 2365 // value and not the "real" sp value. 2366 2367 const Register sender_sp = x16; 2368 2369 __ mv(sender_sp, sp); 2370 __ lwu(x9, Address(x15, 2371 Deoptimization::UnrollBlock:: 2372 caller_adjustment_offset())); 2373 __ sub(sp, sp, x9); 2374 2375 // Push interpreter frames in a loop 2376 __ mv(t0, 0xDEADDEAD); // Make a recognizable pattern 2377 __ mv(t1, t0); 2378 Label loop; 2379 __ bind(loop); 2380 __ ld(x9, Address(x14, 0)); // Load frame size 2381 __ addi(x14, x14, wordSize); 2382 __ subi(x9, x9, 2 * wordSize); // We'll push pc and fp by hand 2383 __ ld(ra, Address(x12, 0)); // Load pc 2384 __ addi(x12, x12, wordSize); 2385 __ enter(); // Save old & set new fp 2386 __ sub(sp, sp, x9); // Prolog 2387 // This value is corrected by layout_activation_impl 2388 __ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 2389 __ sd(sender_sp, Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2390 __ mv(sender_sp, sp); // Pass sender_sp to next frame 2391 __ subi(x13, x13, 1); // Decrement counter 2392 __ bnez(x13, loop); 2393 2394 // Re-push self-frame 2395 __ ld(ra, Address(x12)); 2396 __ enter(); 2397 2398 // Allocate a full sized register save area. We subtract 2 because 2399 // enter() just pushed 2 words 2400 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2401 2402 // Restore frame locals after moving the frame 2403 __ fsd(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10))); 2404 __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2405 2406 // Call C code. Need thread but NOT official VM entry 2407 // crud. We cannot block on this call, no GC can happen. Call should 2408 // restore return values to their stack-slots with the new SP. 2409 // 2410 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2411 2412 // Use fp because the frames look interpreted now 2413 // Don't need the precise return PC here, just precise enough to point into this code blob. 2414 address the_pc = __ pc(); 2415 __ set_last_Java_frame(sp, fp, the_pc, t0); 2416 2417 __ mv(c_rarg0, xthread); 2418 __ mv(c_rarg1, xcpool); // second arg: exec_mode 2419 __ rt_call(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)); 2420 2421 // Set an oopmap for the call site 2422 // Use the same PC we used for the last java frame 2423 oop_maps->add_gc_map(the_pc - start, 2424 new OopMap(frame_size_in_words, 0)); 2425 2426 // Clear fp AND pc 2427 __ reset_last_Java_frame(true); 2428 2429 // Collect return values 2430 __ fld(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10))); 2431 __ ld(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2432 2433 // Pop self-frame. 2434 __ leave(); // Epilog 2435 2436 // Jump to interpreter 2437 __ ret(); 2438 2439 // Make sure all code is generated 2440 masm->flush(); 2441 2442 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2443 assert(_deopt_blob != nullptr, "create deoptimization blob fail!"); 2444 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2445 #if INCLUDE_JVMCI 2446 if (EnableJVMCI) { 2447 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 2448 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 2449 } 2450 #endif 2451 } 2452 2453 // Number of stack slots between incoming argument block and the start of 2454 // a new frame. The PROLOG must add this many slots to the stack. The 2455 // EPILOG must remove this many slots. 2456 // RISCV needs two words for RA (return address) and FP (frame pointer). 2457 uint SharedRuntime::in_preserve_stack_slots() { 2458 return 2 * VMRegImpl::slots_per_word; 2459 } 2460 2461 uint SharedRuntime::out_preserve_stack_slots() { 2462 return 0; 2463 } 2464 2465 VMReg SharedRuntime::thread_register() { 2466 return xthread->as_VMReg(); 2467 } 2468 2469 //------------------------------generate_handler_blob------ 2470 // 2471 // Generate a special Compile2Runtime blob that saves all registers, 2472 // and setup oopmap. 2473 // 2474 SafepointBlob* SharedRuntime::generate_handler_blob(SharedStubId id, address call_ptr) { 2475 assert(is_polling_page_id(id), "expected a polling page stub id"); 2476 2477 ResourceMark rm; 2478 OopMapSet *oop_maps = new OopMapSet(); 2479 assert_cond(oop_maps != nullptr); 2480 OopMap* map = nullptr; 2481 2482 // Allocate space for the code. Setup code generation tools. 2483 const char* name = SharedRuntime::stub_name(id); 2484 CodeBuffer buffer(name, 2048, 1024); 2485 MacroAssembler* masm = new MacroAssembler(&buffer); 2486 assert_cond(masm != nullptr); 2487 2488 address start = __ pc(); 2489 address call_pc = nullptr; 2490 int frame_size_in_words = -1; 2491 bool cause_return = (id == SharedStubId::polling_page_return_handler_id); 2492 RegisterSaver reg_saver(id == SharedStubId::polling_page_vectors_safepoint_handler_id /* save_vectors */); 2493 2494 // Save Integer and Float registers. 2495 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2496 2497 // The following is basically a call_VM. However, we need the precise 2498 // address of the call in order to generate an oopmap. Hence, we do all the 2499 // work ourselves. 2500 2501 Label retaddr; 2502 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2503 2504 // The return address must always be correct so that frame constructor never 2505 // sees an invalid pc. 2506 2507 if (!cause_return) { 2508 // overwrite the return address pushed by save_live_registers 2509 // Additionally, x18 is a callee-saved register so we can look at 2510 // it later to determine if someone changed the return address for 2511 // us! 2512 __ ld(x18, Address(xthread, JavaThread::saved_exception_pc_offset())); 2513 __ sd(x18, Address(fp, frame::return_addr_offset * wordSize)); 2514 } 2515 2516 // Do the call 2517 __ mv(c_rarg0, xthread); 2518 __ rt_call(call_ptr); 2519 __ bind(retaddr); 2520 2521 // Set an oopmap for the call site. This oopmap will map all 2522 // oop-registers and debug-info registers as callee-saved. This 2523 // will allow deoptimization at this safepoint to find all possible 2524 // debug-info recordings, as well as let GC find all oops. 2525 2526 oop_maps->add_gc_map( __ pc() - start, map); 2527 2528 Label noException; 2529 2530 __ reset_last_Java_frame(false); 2531 2532 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2533 2534 __ ld(t0, Address(xthread, Thread::pending_exception_offset())); 2535 __ beqz(t0, noException); 2536 2537 // Exception pending 2538 2539 reg_saver.restore_live_registers(masm); 2540 2541 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2542 2543 // No exception case 2544 __ bind(noException); 2545 2546 Label no_adjust, bail; 2547 if (!cause_return) { 2548 // If our stashed return pc was modified by the runtime we avoid touching it 2549 __ ld(t0, Address(fp, frame::return_addr_offset * wordSize)); 2550 __ bne(x18, t0, no_adjust); 2551 2552 #ifdef ASSERT 2553 // Verify the correct encoding of the poll we're about to skip. 2554 // See NativeInstruction::is_lwu_to_zr() 2555 __ lwu(t0, Address(x18)); 2556 __ andi(t1, t0, 0b1111111); 2557 __ mv(t2, 0b0000011); 2558 __ bne(t1, t2, bail); // 0-6:0b0000011 2559 __ srli(t1, t0, 7); 2560 __ andi(t1, t1, 0b11111); 2561 __ bnez(t1, bail); // 7-11:0b00000 2562 __ srli(t1, t0, 12); 2563 __ andi(t1, t1, 0b111); 2564 __ mv(t2, 0b110); 2565 __ bne(t1, t2, bail); // 12-14:0b110 2566 #endif 2567 2568 // Adjust return pc forward to step over the safepoint poll instruction 2569 __ addi(x18, x18, NativeInstruction::instruction_size); 2570 __ sd(x18, Address(fp, frame::return_addr_offset * wordSize)); 2571 } 2572 2573 __ bind(no_adjust); 2574 // Normal exit, restore registers and exit. 2575 2576 reg_saver.restore_live_registers(masm); 2577 __ ret(); 2578 2579 #ifdef ASSERT 2580 __ bind(bail); 2581 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2582 #endif 2583 2584 // Make sure all code is generated 2585 masm->flush(); 2586 2587 // Fill-out other meta info 2588 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2589 } 2590 2591 // 2592 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2593 // 2594 // Generate a stub that calls into vm to find out the proper destination 2595 // of a java call. All the argument registers are live at this point 2596 // but since this is generic code we don't know what they are and the caller 2597 // must do any gc of the args. 2598 // 2599 RuntimeStub* SharedRuntime::generate_resolve_blob(SharedStubId id, address destination) { 2600 assert(StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 2601 assert(is_resolve_id(id), "expected a resolve stub id"); 2602 2603 // allocate space for the code 2604 ResourceMark rm; 2605 2606 const char* name = SharedRuntime::stub_name(id); 2607 CodeBuffer buffer(name, 1000, 512); 2608 MacroAssembler* masm = new MacroAssembler(&buffer); 2609 assert_cond(masm != nullptr); 2610 2611 int frame_size_in_words = -1; 2612 RegisterSaver reg_saver(false /* save_vectors */); 2613 2614 OopMapSet *oop_maps = new OopMapSet(); 2615 assert_cond(oop_maps != nullptr); 2616 OopMap* map = nullptr; 2617 2618 int start = __ offset(); 2619 2620 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2621 2622 int frame_complete = __ offset(); 2623 2624 { 2625 Label retaddr; 2626 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2627 2628 __ mv(c_rarg0, xthread); 2629 __ rt_call(destination); 2630 __ bind(retaddr); 2631 } 2632 2633 // Set an oopmap for the call site. 2634 // We need this not only for callee-saved registers, but also for volatile 2635 // registers that the compiler might be keeping live across a safepoint. 2636 2637 oop_maps->add_gc_map( __ offset() - start, map); 2638 2639 // x10 contains the address we are going to jump to assuming no exception got installed 2640 2641 // clear last_Java_sp 2642 __ reset_last_Java_frame(false); 2643 // check for pending exceptions 2644 Label pending; 2645 __ ld(t1, Address(xthread, Thread::pending_exception_offset())); 2646 __ bnez(t1, pending); 2647 2648 // get the returned Method* 2649 __ get_vm_result_2(xmethod, xthread); 2650 __ sd(xmethod, Address(sp, reg_saver.reg_offset_in_bytes(xmethod))); 2651 2652 // x10 is where we want to jump, overwrite t1 which is saved and temporary 2653 __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(t1))); 2654 reg_saver.restore_live_registers(masm); 2655 2656 // We are back to the original state on entry and ready to go. 2657 __ jr(t1); 2658 2659 // Pending exception after the safepoint 2660 2661 __ bind(pending); 2662 2663 reg_saver.restore_live_registers(masm); 2664 2665 // exception pending => remove activation and forward to exception handler 2666 2667 __ sd(zr, Address(xthread, JavaThread::vm_result_offset())); 2668 2669 __ ld(x10, Address(xthread, Thread::pending_exception_offset())); 2670 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2671 2672 // ------------- 2673 // make sure all code is generated 2674 masm->flush(); 2675 2676 // return the blob 2677 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 2678 } 2679 2680 // Continuation point for throwing of implicit exceptions that are 2681 // not handled in the current activation. Fabricates an exception 2682 // oop and initiates normal exception dispatching in this 2683 // frame. Since we need to preserve callee-saved values (currently 2684 // only for C2, but done for C1 as well) we need a callee-saved oop 2685 // map and therefore have to make these stubs into RuntimeStubs 2686 // rather than BufferBlobs. If the compiler needs all registers to 2687 // be preserved between the fault point and the exception handler 2688 // then it must assume responsibility for that in 2689 // AbstractCompiler::continuation_for_implicit_null_exception or 2690 // continuation_for_implicit_division_by_zero_exception. All other 2691 // implicit exceptions (e.g., NullPointerException or 2692 // AbstractMethodError on entry) are either at call sites or 2693 // otherwise assume that stack unwinding will be initiated, so 2694 // caller saved registers were assumed volatile in the compiler. 2695 2696 RuntimeStub* SharedRuntime::generate_throw_exception(SharedStubId id, address runtime_entry) { 2697 assert(is_throw_id(id), "expected a throw stub id"); 2698 2699 const char* name = SharedRuntime::stub_name(id); 2700 2701 // Information about frame layout at time of blocking runtime call. 2702 // Note that we only have to preserve callee-saved registers since 2703 // the compilers are responsible for supplying a continuation point 2704 // if they expect all registers to be preserved. 2705 // n.b. riscv asserts that frame::arg_reg_save_area_bytes == 0 2706 assert_cond(runtime_entry != nullptr); 2707 enum layout { 2708 fp_off = 0, 2709 fp_off2, 2710 return_off, 2711 return_off2, 2712 framesize // inclusive of return address 2713 }; 2714 2715 const int insts_size = 1024; 2716 const int locs_size = 64; 2717 2718 ResourceMark rm; 2719 const char* timer_msg = "SharedRuntime generate_throw_exception"; 2720 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 2721 2722 CodeBuffer code(name, insts_size, locs_size); 2723 OopMapSet* oop_maps = new OopMapSet(); 2724 MacroAssembler* masm = new MacroAssembler(&code); 2725 assert_cond(oop_maps != nullptr && masm != nullptr); 2726 2727 address start = __ pc(); 2728 2729 // This is an inlined and slightly modified version of call_VM 2730 // which has the ability to fetch the return PC out of 2731 // thread-local storage and also sets up last_Java_sp slightly 2732 // differently than the real call_VM 2733 2734 __ enter(); // Save FP and RA before call 2735 2736 assert(is_even(framesize / 2), "sp not 16-byte aligned"); 2737 2738 // ra and fp are already in place 2739 __ subi(sp, fp, (unsigned)framesize << LogBytesPerInt); // prolog 2740 2741 int frame_complete = __ pc() - start; 2742 2743 // Set up last_Java_sp and last_Java_fp 2744 address the_pc = __ pc(); 2745 __ set_last_Java_frame(sp, fp, the_pc, t0); 2746 2747 // Call runtime 2748 __ mv(c_rarg0, xthread); 2749 BLOCK_COMMENT("call runtime_entry"); 2750 __ rt_call(runtime_entry); 2751 2752 // Generate oop map 2753 OopMap* map = new OopMap(framesize, 0); 2754 assert_cond(map != nullptr); 2755 2756 oop_maps->add_gc_map(the_pc - start, map); 2757 2758 __ reset_last_Java_frame(true); 2759 2760 __ leave(); 2761 2762 // check for pending exceptions 2763 #ifdef ASSERT 2764 Label L; 2765 __ ld(t0, Address(xthread, Thread::pending_exception_offset())); 2766 __ bnez(t0, L); 2767 __ should_not_reach_here(); 2768 __ bind(L); 2769 #endif // ASSERT 2770 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2771 2772 // codeBlob framesize is in words (not VMRegImpl::slot_size) 2773 RuntimeStub* stub = 2774 RuntimeStub::new_runtime_stub(name, 2775 &code, 2776 frame_complete, 2777 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2778 oop_maps, false); 2779 assert(stub != nullptr, "create runtime stub fail!"); 2780 return stub; 2781 } 2782 2783 #if INCLUDE_JFR 2784 2785 static void jfr_prologue(address the_pc, MacroAssembler* masm, Register thread) { 2786 __ set_last_Java_frame(sp, fp, the_pc, t0); 2787 __ mv(c_rarg0, thread); 2788 } 2789 2790 static void jfr_epilogue(MacroAssembler* masm) { 2791 __ reset_last_Java_frame(true); 2792 } 2793 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint. 2794 // It returns a jobject handle to the event writer. 2795 // The handle is dereferenced and the return value is the event writer oop. 2796 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() { 2797 enum layout { 2798 fp_off, 2799 fp_off2, 2800 return_off, 2801 return_off2, 2802 framesize // inclusive of return address 2803 }; 2804 2805 int insts_size = 1024; 2806 int locs_size = 64; 2807 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id); 2808 CodeBuffer code(name, insts_size, locs_size); 2809 OopMapSet* oop_maps = new OopMapSet(); 2810 MacroAssembler* masm = new MacroAssembler(&code); 2811 2812 address start = __ pc(); 2813 __ enter(); 2814 int frame_complete = __ pc() - start; 2815 address the_pc = __ pc(); 2816 jfr_prologue(the_pc, masm, xthread); 2817 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1); 2818 2819 jfr_epilogue(masm); 2820 __ resolve_global_jobject(x10, t0, t1); 2821 __ leave(); 2822 __ ret(); 2823 2824 OopMap* map = new OopMap(framesize, 1); 2825 oop_maps->add_gc_map(the_pc - start, map); 2826 2827 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 2828 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 2829 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2830 oop_maps, false); 2831 return stub; 2832 } 2833 2834 // For c2: call to return a leased buffer. 2835 RuntimeStub* SharedRuntime::generate_jfr_return_lease() { 2836 enum layout { 2837 fp_off, 2838 fp_off2, 2839 return_off, 2840 return_off2, 2841 framesize // inclusive of return address 2842 }; 2843 2844 int insts_size = 1024; 2845 int locs_size = 64; 2846 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_return_lease_id); 2847 CodeBuffer code(name, insts_size, locs_size); 2848 OopMapSet* oop_maps = new OopMapSet(); 2849 MacroAssembler* masm = new MacroAssembler(&code); 2850 2851 address start = __ pc(); 2852 __ enter(); 2853 int frame_complete = __ pc() - start; 2854 address the_pc = __ pc(); 2855 jfr_prologue(the_pc, masm, xthread); 2856 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1); 2857 2858 jfr_epilogue(masm); 2859 __ leave(); 2860 __ ret(); 2861 2862 OopMap* map = new OopMap(framesize, 1); 2863 oop_maps->add_gc_map(the_pc - start, map); 2864 2865 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 2866 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 2867 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2868 oop_maps, false); 2869 return stub; 2870 } 2871 2872 #endif // INCLUDE_JFR