1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "asm/macroAssembler.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "code/compiledIC.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "code/vtableStubs.hpp" 32 #include "compiler/oopMap.hpp" 33 #include "gc/shared/barrierSetAssembler.hpp" 34 #include "interpreter/interp_masm.hpp" 35 #include "interpreter/interpreter.hpp" 36 #include "logging/log.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "nativeInst_riscv.hpp" 39 #include "oops/klass.inline.hpp" 40 #include "oops/method.inline.hpp" 41 #include "prims/methodHandles.hpp" 42 #include "runtime/continuation.hpp" 43 #include "runtime/continuationEntry.inline.hpp" 44 #include "runtime/globals.hpp" 45 #include "runtime/jniHandles.hpp" 46 #include "runtime/safepointMechanism.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "runtime/signature.hpp" 49 #include "runtime/stubRoutines.hpp" 50 #include "runtime/timerTrace.hpp" 51 #include "runtime/vframeArray.hpp" 52 #include "utilities/align.hpp" 53 #include "utilities/formatBuffer.hpp" 54 #include "vmreg_riscv.inline.hpp" 55 #ifdef COMPILER1 56 #include "c1/c1_Runtime1.hpp" 57 #endif 58 #ifdef COMPILER2 59 #include "adfiles/ad_riscv.hpp" 60 #include "opto/runtime.hpp" 61 #endif 62 #if INCLUDE_JVMCI 63 #include "jvmci/jvmciJavaClasses.hpp" 64 #endif 65 66 #define __ masm-> 67 68 #ifdef PRODUCT 69 #define BLOCK_COMMENT(str) /* nothing */ 70 #else 71 #define BLOCK_COMMENT(str) __ block_comment(str) 72 #endif 73 74 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 75 76 class RegisterSaver { 77 const bool _save_vectors; 78 public: 79 RegisterSaver(bool save_vectors) : _save_vectors(UseRVV && save_vectors) {} 80 ~RegisterSaver() {} 81 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); 82 void restore_live_registers(MacroAssembler* masm); 83 84 // Offsets into the register save area 85 // Used by deoptimization when it is managing result register 86 // values on its own 87 // gregs:28, float_register:32; except: x1(ra) & x2(sp) & gp(x3) & tp(x4) 88 // |---v0---|<---SP 89 // |---v1---|save vectors only in generate_handler_blob 90 // |-- .. --| 91 // |---v31--|----- 92 // |---f0---| 93 // |---f1---| 94 // | .. | 95 // |---f31--| 96 // |---reserved slot for stack alignment---| 97 // |---x5---| 98 // | x6 | 99 // |---.. --| 100 // |---x31--| 101 // |---fp---| 102 // |---ra---| 103 int v0_offset_in_bytes(void) { return 0; } 104 int f0_offset_in_bytes(void) { 105 int f0_offset = 0; 106 #ifdef COMPILER2 107 if (_save_vectors) { 108 f0_offset += Matcher::scalable_vector_reg_size(T_INT) * VectorRegister::number_of_registers * 109 BytesPerInt; 110 } 111 #endif 112 return f0_offset; 113 } 114 int reserved_slot_offset_in_bytes(void) { 115 return f0_offset_in_bytes() + 116 FloatRegister::max_slots_per_register * 117 FloatRegister::number_of_registers * 118 BytesPerInt; 119 } 120 121 int reg_offset_in_bytes(Register r) { 122 assert (r->encoding() > 4, "ra, sp, gp and tp not saved"); 123 return reserved_slot_offset_in_bytes() + (r->encoding() - 4 /* x1, x2, x3, x4 */) * wordSize; 124 } 125 126 int freg_offset_in_bytes(FloatRegister f) { 127 return f0_offset_in_bytes() + f->encoding() * wordSize; 128 } 129 130 int ra_offset_in_bytes(void) { 131 return reserved_slot_offset_in_bytes() + 132 (Register::number_of_registers - 3) * 133 Register::max_slots_per_register * 134 BytesPerInt; 135 } 136 }; 137 138 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { 139 int vector_size_in_bytes = 0; 140 int vector_size_in_slots = 0; 141 #ifdef COMPILER2 142 if (_save_vectors) { 143 vector_size_in_bytes += Matcher::scalable_vector_reg_size(T_BYTE); 144 vector_size_in_slots += Matcher::scalable_vector_reg_size(T_INT); 145 } 146 #endif 147 148 int frame_size_in_bytes = align_up(additional_frame_words * wordSize + ra_offset_in_bytes() + wordSize, 16); 149 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 150 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 151 // The caller will allocate additional_frame_words 152 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt; 153 // CodeBlob frame size is in words. 154 int frame_size_in_words = frame_size_in_bytes / wordSize; 155 *total_frame_words = frame_size_in_words; 156 157 // Save Integer, Float and Vector registers. 158 __ enter(); 159 __ push_CPU_state(_save_vectors, vector_size_in_bytes); 160 161 // Set an oopmap for the call site. This oopmap will map all 162 // oop-registers and debug-info registers as callee-saved. This 163 // will allow deoptimization at this safepoint to find all possible 164 // debug-info recordings, as well as let GC find all oops. 165 166 OopMapSet *oop_maps = new OopMapSet(); 167 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 168 assert_cond(oop_maps != nullptr && oop_map != nullptr); 169 170 int sp_offset_in_slots = 0; 171 int step_in_slots = 0; 172 if (_save_vectors) { 173 step_in_slots = vector_size_in_slots; 174 for (int i = 0; i < VectorRegister::number_of_registers; i++, sp_offset_in_slots += step_in_slots) { 175 VectorRegister r = as_VectorRegister(i); 176 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots), r->as_VMReg()); 177 } 178 } 179 180 step_in_slots = FloatRegister::max_slots_per_register; 181 for (int i = 0; i < FloatRegister::number_of_registers; i++, sp_offset_in_slots += step_in_slots) { 182 FloatRegister r = as_FloatRegister(i); 183 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots), r->as_VMReg()); 184 } 185 186 step_in_slots = Register::max_slots_per_register; 187 // skip the slot reserved for alignment, see MacroAssembler::push_reg; 188 // also skip x5 ~ x6 on the stack because they are caller-saved registers. 189 sp_offset_in_slots += Register::max_slots_per_register * 3; 190 // besides, we ignore x0 ~ x4 because push_CPU_state won't push them on the stack. 191 for (int i = 7; i < Register::number_of_registers; i++, sp_offset_in_slots += step_in_slots) { 192 Register r = as_Register(i); 193 if (r != xthread) { 194 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots + additional_frame_slots), r->as_VMReg()); 195 } 196 } 197 198 return oop_map; 199 } 200 201 void RegisterSaver::restore_live_registers(MacroAssembler* masm) { 202 #ifdef COMPILER2 203 __ pop_CPU_state(_save_vectors, Matcher::scalable_vector_reg_size(T_BYTE)); 204 #else 205 #if !INCLUDE_JVMCI 206 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 207 #endif 208 __ pop_CPU_state(_save_vectors); 209 #endif 210 __ leave(); 211 } 212 213 // Is vector's size (in bytes) bigger than a size saved by default? 214 // riscv does not ovlerlay the floating-point registers on vector registers like aarch64. 215 bool SharedRuntime::is_wide_vector(int size) { 216 return UseRVV; 217 } 218 219 // --------------------------------------------------------------------------- 220 // Read the array of BasicTypes from a signature, and compute where the 221 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 222 // quantities. Values less than VMRegImpl::stack0 are registers, those above 223 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 224 // as framesizes are fixed. 225 // VMRegImpl::stack0 refers to the first slot 0(sp). 226 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 227 // Register up to Register::number_of_registers) are the 64-bit 228 // integer registers. 229 230 // Note: the INPUTS in sig_bt are in units of Java argument words, 231 // which are 64-bit. The OUTPUTS are in 32-bit units. 232 233 // The Java calling convention is a "shifted" version of the C ABI. 234 // By skipping the first C ABI register we can call non-static jni 235 // methods with small numbers of arguments without having to shuffle 236 // the arguments at all. Since we control the java ABI we ought to at 237 // least get some advantage out of it. 238 239 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 240 VMRegPair *regs, 241 int total_args_passed) { 242 // Create the mapping between argument positions and 243 // registers. 244 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 245 j_rarg0, j_rarg1, j_rarg2, j_rarg3, 246 j_rarg4, j_rarg5, j_rarg6, j_rarg7 247 }; 248 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 249 j_farg0, j_farg1, j_farg2, j_farg3, 250 j_farg4, j_farg5, j_farg6, j_farg7 251 }; 252 253 uint int_args = 0; 254 uint fp_args = 0; 255 uint stk_args = 0; 256 257 for (int i = 0; i < total_args_passed; i++) { 258 switch (sig_bt[i]) { 259 case T_BOOLEAN: // fall through 260 case T_CHAR: // fall through 261 case T_BYTE: // fall through 262 case T_SHORT: // fall through 263 case T_INT: 264 if (int_args < Argument::n_int_register_parameters_j) { 265 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 266 } else { 267 stk_args = align_up(stk_args, 2); 268 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 269 stk_args += 1; 270 } 271 break; 272 case T_VOID: 273 // halves of T_LONG or T_DOUBLE 274 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 275 regs[i].set_bad(); 276 break; 277 case T_LONG: // fall through 278 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 279 case T_OBJECT: // fall through 280 case T_ARRAY: // fall through 281 case T_ADDRESS: 282 if (int_args < Argument::n_int_register_parameters_j) { 283 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 284 } else { 285 stk_args = align_up(stk_args, 2); 286 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 287 stk_args += 2; 288 } 289 break; 290 case T_FLOAT: 291 if (fp_args < Argument::n_float_register_parameters_j) { 292 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 293 } else { 294 stk_args = align_up(stk_args, 2); 295 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 296 stk_args += 1; 297 } 298 break; 299 case T_DOUBLE: 300 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 301 if (fp_args < Argument::n_float_register_parameters_j) { 302 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 303 } else { 304 stk_args = align_up(stk_args, 2); 305 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 306 stk_args += 2; 307 } 308 break; 309 default: 310 ShouldNotReachHere(); 311 } 312 } 313 314 return stk_args; 315 } 316 317 // Patch the callers callsite with entry to compiled code if it exists. 318 static void patch_callers_callsite(MacroAssembler *masm) { 319 Label L; 320 __ ld(t0, Address(xmethod, in_bytes(Method::code_offset()))); 321 __ beqz(t0, L); 322 323 __ enter(); 324 __ push_CPU_state(); 325 326 // VM needs caller's callsite 327 // VM needs target method 328 // This needs to be a long call since we will relocate this adapter to 329 // the codeBuffer and it may not reach 330 331 #ifndef PRODUCT 332 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 333 #endif 334 335 __ mv(c_rarg0, xmethod); 336 __ mv(c_rarg1, ra); 337 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)); 338 339 __ pop_CPU_state(); 340 // restore sp 341 __ leave(); 342 __ bind(L); 343 } 344 345 static void gen_c2i_adapter(MacroAssembler *masm, 346 int total_args_passed, 347 int comp_args_on_stack, 348 const BasicType *sig_bt, 349 const VMRegPair *regs, 350 Label& skip_fixup) { 351 // Before we get into the guts of the C2I adapter, see if we should be here 352 // at all. We've come from compiled code and are attempting to jump to the 353 // interpreter, which means the caller made a static call to get here 354 // (vcalls always get a compiled target if there is one). Check for a 355 // compiled target. If there is one, we need to patch the caller's call. 356 patch_callers_callsite(masm); 357 358 __ bind(skip_fixup); 359 360 int words_pushed = 0; 361 362 // Since all args are passed on the stack, total_args_passed * 363 // Interpreter::stackElementSize is the space we need. 364 365 int extraspace = total_args_passed * Interpreter::stackElementSize; 366 367 __ mv(x19_sender_sp, sp); 368 369 // stack is aligned, keep it that way 370 extraspace = align_up(extraspace, 2 * wordSize); 371 372 if (extraspace) { 373 __ sub(sp, sp, extraspace); 374 } 375 376 // Now write the args into the outgoing interpreter space 377 for (int i = 0; i < total_args_passed; i++) { 378 if (sig_bt[i] == T_VOID) { 379 assert(i > 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "missing half"); 380 continue; 381 } 382 383 // offset to start parameters 384 int st_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 385 int next_off = st_off - Interpreter::stackElementSize; 386 387 // Say 4 args: 388 // i st_off 389 // 0 32 T_LONG 390 // 1 24 T_VOID 391 // 2 16 T_OBJECT 392 // 3 8 T_BOOL 393 // - 0 return address 394 // 395 // However to make thing extra confusing. Because we can fit a Java long/double in 396 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 397 // leaves one slot empty and only stores to a single slot. In this case the 398 // slot that is occupied is the T_VOID slot. See I said it was confusing. 399 400 VMReg r_1 = regs[i].first(); 401 VMReg r_2 = regs[i].second(); 402 if (!r_1->is_valid()) { 403 assert(!r_2->is_valid(), ""); 404 continue; 405 } 406 if (r_1->is_stack()) { 407 // memory to memory use t0 408 int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size 409 + extraspace 410 + words_pushed * wordSize); 411 if (!r_2->is_valid()) { 412 __ lwu(t0, Address(sp, ld_off)); 413 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 414 } else { 415 __ ld(t0, Address(sp, ld_off), /*temp register*/esp); 416 417 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 418 // T_DOUBLE and T_LONG use two slots in the interpreter 419 if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 420 // ld_off == LSW, ld_off+wordSize == MSW 421 // st_off == MSW, next_off == LSW 422 __ sd(t0, Address(sp, next_off), /*temp register*/esp); 423 #ifdef ASSERT 424 // Overwrite the unused slot with known junk 425 __ mv(t0, 0xdeadffffdeadaaaaul); 426 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 427 #endif /* ASSERT */ 428 } else { 429 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 430 } 431 } 432 } else if (r_1->is_Register()) { 433 Register r = r_1->as_Register(); 434 if (!r_2->is_valid()) { 435 // must be only an int (or less ) so move only 32bits to slot 436 __ sd(r, Address(sp, st_off)); 437 } else { 438 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 439 // T_DOUBLE and T_LONG use two slots in the interpreter 440 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 441 // long/double in gpr 442 #ifdef ASSERT 443 // Overwrite the unused slot with known junk 444 __ mv(t0, 0xdeadffffdeadaaabul); 445 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 446 #endif /* ASSERT */ 447 __ sd(r, Address(sp, next_off)); 448 } else { 449 __ sd(r, Address(sp, st_off)); 450 } 451 } 452 } else { 453 assert(r_1->is_FloatRegister(), ""); 454 if (!r_2->is_valid()) { 455 // only a float use just part of the slot 456 __ fsw(r_1->as_FloatRegister(), Address(sp, st_off)); 457 } else { 458 #ifdef ASSERT 459 // Overwrite the unused slot with known junk 460 __ mv(t0, 0xdeadffffdeadaaacul); 461 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 462 #endif /* ASSERT */ 463 __ fsd(r_1->as_FloatRegister(), Address(sp, next_off)); 464 } 465 } 466 } 467 468 __ mv(esp, sp); // Interp expects args on caller's expression stack 469 470 __ ld(t1, Address(xmethod, in_bytes(Method::interpreter_entry_offset()))); 471 __ jr(t1); 472 } 473 474 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 475 int total_args_passed, 476 int comp_args_on_stack, 477 const BasicType *sig_bt, 478 const VMRegPair *regs) { 479 // Note: x19_sender_sp contains the senderSP on entry. We must 480 // preserve it since we may do a i2c -> c2i transition if we lose a 481 // race where compiled code goes non-entrant while we get args 482 // ready. 483 484 // Cut-out for having no stack args. 485 int comp_words_on_stack = align_up(comp_args_on_stack * VMRegImpl::stack_slot_size, wordSize) >> LogBytesPerWord; 486 if (comp_args_on_stack != 0) { 487 __ sub(t0, sp, comp_words_on_stack * wordSize); 488 __ andi(sp, t0, -16); 489 } 490 491 // Will jump to the compiled code just as if compiled code was doing it. 492 // Pre-load the register-jump target early, to schedule it better. 493 __ ld(t1, Address(xmethod, in_bytes(Method::from_compiled_offset()))); 494 495 #if INCLUDE_JVMCI 496 if (EnableJVMCI) { 497 // check if this call should be routed towards a specific entry point 498 __ ld(t0, Address(xthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 499 Label no_alternative_target; 500 __ beqz(t0, no_alternative_target); 501 __ mv(t1, t0); 502 __ sd(zr, Address(xthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 503 __ bind(no_alternative_target); 504 } 505 #endif // INCLUDE_JVMCI 506 507 // Now generate the shuffle code. 508 for (int i = 0; i < total_args_passed; i++) { 509 if (sig_bt[i] == T_VOID) { 510 assert(i > 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "missing half"); 511 continue; 512 } 513 514 // Pick up 0, 1 or 2 words from SP+offset. 515 516 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 517 "scrambled load targets?"); 518 // Load in argument order going down. 519 int ld_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 520 // Point to interpreter value (vs. tag) 521 int next_off = ld_off - Interpreter::stackElementSize; 522 523 VMReg r_1 = regs[i].first(); 524 VMReg r_2 = regs[i].second(); 525 if (!r_1->is_valid()) { 526 assert(!r_2->is_valid(), ""); 527 continue; 528 } 529 if (r_1->is_stack()) { 530 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 531 int st_off = regs[i].first()->reg2stack() * VMRegImpl::stack_slot_size; 532 if (!r_2->is_valid()) { 533 __ lw(t0, Address(esp, ld_off)); 534 __ sd(t0, Address(sp, st_off), /*temp register*/t2); 535 } else { 536 // 537 // We are using two optoregs. This can be either T_OBJECT, 538 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 539 // two slots but only uses one for thr T_LONG or T_DOUBLE case 540 // So we must adjust where to pick up the data to match the 541 // interpreter. 542 // 543 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 544 // are accessed as negative so LSW is at LOW address 545 546 // ld_off is MSW so get LSW 547 const int offset = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ? 548 next_off : ld_off; 549 __ ld(t0, Address(esp, offset)); 550 // st_off is LSW (i.e. reg.first()) 551 __ sd(t0, Address(sp, st_off), /*temp register*/t2); 552 } 553 } else if (r_1->is_Register()) { // Register argument 554 Register r = r_1->as_Register(); 555 if (r_2->is_valid()) { 556 // 557 // We are using two VMRegs. This can be either T_OBJECT, 558 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 559 // two slots but only uses one for thr T_LONG or T_DOUBLE case 560 // So we must adjust where to pick up the data to match the 561 // interpreter. 562 563 const int offset = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ? 564 next_off : ld_off; 565 566 // this can be a misaligned move 567 __ ld(r, Address(esp, offset)); 568 } else { 569 // sign extend and use a full word? 570 __ lw(r, Address(esp, ld_off)); 571 } 572 } else { 573 if (!r_2->is_valid()) { 574 __ flw(r_1->as_FloatRegister(), Address(esp, ld_off)); 575 } else { 576 __ fld(r_1->as_FloatRegister(), Address(esp, next_off)); 577 } 578 } 579 } 580 581 __ push_cont_fastpath(xthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about 582 583 // 6243940 We might end up in handle_wrong_method if 584 // the callee is deoptimized as we race thru here. If that 585 // happens we don't want to take a safepoint because the 586 // caller frame will look interpreted and arguments are now 587 // "compiled" so it is much better to make this transition 588 // invisible to the stack walking code. Unfortunately if 589 // we try and find the callee by normal means a safepoint 590 // is possible. So we stash the desired callee in the thread 591 // and the vm will find there should this case occur. 592 593 __ sd(xmethod, Address(xthread, JavaThread::callee_target_offset())); 594 595 __ jr(t1); 596 } 597 598 // --------------------------------------------------------------- 599 600 void SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 601 int total_args_passed, 602 int comp_args_on_stack, 603 const BasicType *sig_bt, 604 const VMRegPair *regs, 605 AdapterHandlerEntry* handler) { 606 address i2c_entry = __ pc(); 607 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 608 609 address c2i_unverified_entry = __ pc(); 610 Label skip_fixup; 611 612 const Register receiver = j_rarg0; 613 const Register data = t0; 614 615 // ------------------------------------------------------------------------- 616 // Generate a C2I adapter. On entry we know xmethod holds the Method* during calls 617 // to the interpreter. The args start out packed in the compiled layout. They 618 // need to be unpacked into the interpreter layout. This will almost always 619 // require some stack space. We grow the current (compiled) stack, then repack 620 // the args. We finally end in a jump to the generic interpreter entry point. 621 // On exit from the interpreter, the interpreter will restore our SP (lest the 622 // compiled code, which relies solely on SP and not FP, get sick). 623 624 { 625 __ block_comment("c2i_unverified_entry {"); 626 627 __ ic_check(); 628 __ ld(xmethod, Address(data, CompiledICData::speculated_method_offset())); 629 630 __ ld(t0, Address(xmethod, in_bytes(Method::code_offset()))); 631 __ beqz(t0, skip_fixup); 632 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 633 __ block_comment("} c2i_unverified_entry"); 634 } 635 636 address c2i_entry = __ pc(); 637 638 // Class initialization barrier for static methods 639 address c2i_no_clinit_check_entry = nullptr; 640 if (VM_Version::supports_fast_class_init_checks()) { 641 Label L_skip_barrier; 642 643 { // Bypass the barrier for non-static methods 644 __ load_unsigned_short(t0, Address(xmethod, Method::access_flags_offset())); 645 __ test_bit(t1, t0, exact_log2(JVM_ACC_STATIC)); 646 __ beqz(t1, L_skip_barrier); // non-static 647 } 648 649 __ load_method_holder(t1, xmethod); 650 __ clinit_barrier(t1, t0, &L_skip_barrier); 651 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 652 653 __ bind(L_skip_barrier); 654 c2i_no_clinit_check_entry = __ pc(); 655 } 656 657 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 658 bs->c2i_entry_barrier(masm); 659 660 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 661 662 handler->set_entry_points(i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry); 663 return; 664 } 665 666 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 667 uint num_bits, 668 uint total_args_passed) { 669 assert(total_args_passed <= Argument::n_vector_register_parameters_c, "unsupported"); 670 assert(num_bits >= 64 && num_bits <= 2048 && is_power_of_2(num_bits), "unsupported"); 671 672 // check more info at https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc 673 static const VectorRegister VEC_ArgReg[Argument::n_vector_register_parameters_c] = { 674 v8, v9, v10, v11, v12, v13, v14, v15, 675 v16, v17, v18, v19, v20, v21, v22, v23 676 }; 677 678 const int next_reg_val = 3; 679 for (uint i = 0; i < total_args_passed; i++) { 680 VMReg vmreg = VEC_ArgReg[i]->as_VMReg(); 681 regs[i].set_pair(vmreg->next(next_reg_val), vmreg); 682 } 683 return 0; 684 } 685 686 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 687 VMRegPair *regs, 688 int total_args_passed) { 689 690 // We return the amount of VMRegImpl stack slots we need to reserve for all 691 // the arguments NOT counting out_preserve_stack_slots. 692 693 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 694 c_rarg0, c_rarg1, c_rarg2, c_rarg3, 695 c_rarg4, c_rarg5, c_rarg6, c_rarg7 696 }; 697 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 698 c_farg0, c_farg1, c_farg2, c_farg3, 699 c_farg4, c_farg5, c_farg6, c_farg7 700 }; 701 702 uint int_args = 0; 703 uint fp_args = 0; 704 uint stk_args = 0; // inc by 2 each time 705 706 for (int i = 0; i < total_args_passed; i++) { 707 switch (sig_bt[i]) { 708 case T_BOOLEAN: // fall through 709 case T_CHAR: // fall through 710 case T_BYTE: // fall through 711 case T_SHORT: // fall through 712 case T_INT: 713 if (int_args < Argument::n_int_register_parameters_c) { 714 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 715 } else { 716 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 717 stk_args += 2; 718 } 719 break; 720 case T_LONG: // fall through 721 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 722 case T_OBJECT: // fall through 723 case T_ARRAY: // fall through 724 case T_ADDRESS: // fall through 725 case T_METADATA: 726 if (int_args < Argument::n_int_register_parameters_c) { 727 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 728 } else { 729 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 730 stk_args += 2; 731 } 732 break; 733 case T_FLOAT: 734 if (fp_args < Argument::n_float_register_parameters_c) { 735 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 736 } else if (int_args < Argument::n_int_register_parameters_c) { 737 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 738 } else { 739 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 740 stk_args += 2; 741 } 742 break; 743 case T_DOUBLE: 744 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 745 if (fp_args < Argument::n_float_register_parameters_c) { 746 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 747 } else if (int_args < Argument::n_int_register_parameters_c) { 748 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 749 } else { 750 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 751 stk_args += 2; 752 } 753 break; 754 case T_VOID: // Halves of longs and doubles 755 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 756 regs[i].set_bad(); 757 break; 758 default: 759 ShouldNotReachHere(); 760 } 761 } 762 763 return stk_args; 764 } 765 766 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 767 // We always ignore the frame_slots arg and just use the space just below frame pointer 768 // which by this time is free to use 769 switch (ret_type) { 770 case T_FLOAT: 771 __ fsw(f10, Address(fp, -3 * wordSize)); 772 break; 773 case T_DOUBLE: 774 __ fsd(f10, Address(fp, -3 * wordSize)); 775 break; 776 case T_VOID: break; 777 default: { 778 __ sd(x10, Address(fp, -3 * wordSize)); 779 } 780 } 781 } 782 783 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 784 // We always ignore the frame_slots arg and just use the space just below frame pointer 785 // which by this time is free to use 786 switch (ret_type) { 787 case T_FLOAT: 788 __ flw(f10, Address(fp, -3 * wordSize)); 789 break; 790 case T_DOUBLE: 791 __ fld(f10, Address(fp, -3 * wordSize)); 792 break; 793 case T_VOID: break; 794 default: { 795 __ ld(x10, Address(fp, -3 * wordSize)); 796 } 797 } 798 } 799 800 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 801 RegSet x; 802 for ( int i = first_arg ; i < arg_count ; i++ ) { 803 if (args[i].first()->is_Register()) { 804 x = x + args[i].first()->as_Register(); 805 } else if (args[i].first()->is_FloatRegister()) { 806 __ subi(sp, sp, 2 * wordSize); 807 __ fsd(args[i].first()->as_FloatRegister(), Address(sp, 0)); 808 } 809 } 810 __ push_reg(x, sp); 811 } 812 813 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 814 RegSet x; 815 for ( int i = first_arg ; i < arg_count ; i++ ) { 816 if (args[i].first()->is_Register()) { 817 x = x + args[i].first()->as_Register(); 818 } else { 819 ; 820 } 821 } 822 __ pop_reg(x, sp); 823 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 824 if (args[i].first()->is_Register()) { 825 ; 826 } else if (args[i].first()->is_FloatRegister()) { 827 __ fld(args[i].first()->as_FloatRegister(), Address(sp, 0)); 828 __ addi(sp, sp, 2 * wordSize); 829 } 830 } 831 } 832 833 static void verify_oop_args(MacroAssembler* masm, 834 const methodHandle& method, 835 const BasicType* sig_bt, 836 const VMRegPair* regs) { 837 const Register temp_reg = x9; // not part of any compiled calling seq 838 if (VerifyOops) { 839 for (int i = 0; i < method->size_of_parameters(); i++) { 840 if (sig_bt[i] == T_OBJECT || 841 sig_bt[i] == T_ARRAY) { 842 VMReg r = regs[i].first(); 843 assert(r->is_valid(), "bad oop arg"); 844 if (r->is_stack()) { 845 __ ld(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 846 __ verify_oop(temp_reg); 847 } else { 848 __ verify_oop(r->as_Register()); 849 } 850 } 851 } 852 } 853 } 854 855 // on exit, sp points to the ContinuationEntry 856 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) { 857 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, ""); 858 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, ""); 859 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, ""); 860 861 stack_slots += (int)ContinuationEntry::size() / wordSize; 862 __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata 863 864 OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize) / VMRegImpl::stack_slot_size, 0 /* arg_slots*/); 865 866 __ ld(t0, Address(xthread, JavaThread::cont_entry_offset())); 867 __ sd(t0, Address(sp, ContinuationEntry::parent_offset())); 868 __ sd(sp, Address(xthread, JavaThread::cont_entry_offset())); 869 870 return map; 871 } 872 873 // on entry c_rarg1 points to the continuation 874 // sp points to ContinuationEntry 875 // c_rarg3 -- isVirtualThread 876 static void fill_continuation_entry(MacroAssembler* masm) { 877 #ifdef ASSERT 878 __ mv(t0, ContinuationEntry::cookie_value()); 879 __ sw(t0, Address(sp, ContinuationEntry::cookie_offset())); 880 #endif 881 882 __ sd(c_rarg1, Address(sp, ContinuationEntry::cont_offset())); 883 __ sw(c_rarg3, Address(sp, ContinuationEntry::flags_offset())); 884 __ sd(zr, Address(sp, ContinuationEntry::chunk_offset())); 885 __ sw(zr, Address(sp, ContinuationEntry::argsize_offset())); 886 __ sw(zr, Address(sp, ContinuationEntry::pin_count_offset())); 887 888 __ ld(t0, Address(xthread, JavaThread::cont_fastpath_offset())); 889 __ sd(t0, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 890 __ ld(t0, Address(xthread, JavaThread::held_monitor_count_offset())); 891 __ sd(t0, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 892 893 __ sd(zr, Address(xthread, JavaThread::cont_fastpath_offset())); 894 __ sd(zr, Address(xthread, JavaThread::held_monitor_count_offset())); 895 } 896 897 // on entry, sp points to the ContinuationEntry 898 // on exit, fp points to the spilled fp + 2 * wordSize in the entry frame 899 static void continuation_enter_cleanup(MacroAssembler* masm) { 900 #ifndef PRODUCT 901 Label OK; 902 __ ld(t0, Address(xthread, JavaThread::cont_entry_offset())); 903 __ beq(sp, t0, OK); 904 __ stop("incorrect sp"); 905 __ bind(OK); 906 #endif 907 908 __ ld(t0, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 909 __ sd(t0, Address(xthread, JavaThread::cont_fastpath_offset())); 910 911 if (CheckJNICalls) { 912 // Check if this is a virtual thread continuation 913 Label L_skip_vthread_code; 914 __ lwu(t0, Address(sp, ContinuationEntry::flags_offset())); 915 __ beqz(t0, L_skip_vthread_code); 916 917 // If the held monitor count is > 0 and this vthread is terminating then 918 // it failed to release a JNI monitor. So we issue the same log message 919 // that JavaThread::exit does. 920 __ ld(t0, Address(xthread, JavaThread::jni_monitor_count_offset())); 921 __ beqz(t0, L_skip_vthread_code); 922 923 // Save return value potentially containing the exception oop in callee-saved x9 924 __ mv(x9, x10); 925 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::log_jni_monitor_still_held)); 926 // Restore potential return value 927 __ mv(x10, x9); 928 929 // For vthreads we have to explicitly zero the JNI monitor count of the carrier 930 // on termination. The held count is implicitly zeroed below when we restore from 931 // the parent held count (which has to be zero). 932 __ sd(zr, Address(xthread, JavaThread::jni_monitor_count_offset())); 933 934 __ bind(L_skip_vthread_code); 935 } 936 #ifdef ASSERT 937 else { 938 // Check if this is a virtual thread continuation 939 Label L_skip_vthread_code; 940 __ lwu(t0, Address(sp, ContinuationEntry::flags_offset())); 941 __ beqz(t0, L_skip_vthread_code); 942 943 // See comment just above. If not checking JNI calls the JNI count is only 944 // needed for assertion checking. 945 __ sd(zr, Address(xthread, JavaThread::jni_monitor_count_offset())); 946 947 __ bind(L_skip_vthread_code); 948 } 949 #endif 950 951 __ ld(t0, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 952 __ sd(t0, Address(xthread, JavaThread::held_monitor_count_offset())); 953 954 __ ld(t0, Address(sp, ContinuationEntry::parent_offset())); 955 __ sd(t0, Address(xthread, JavaThread::cont_entry_offset())); 956 __ add(fp, sp, (int)ContinuationEntry::size() + 2 * wordSize /* 2 extra words to match up with leave() */); 957 } 958 959 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread) 960 // On entry: c_rarg1 -- the continuation object 961 // c_rarg2 -- isContinue 962 // c_rarg3 -- isVirtualThread 963 static void gen_continuation_enter(MacroAssembler* masm, 964 const methodHandle& method, 965 const BasicType* sig_bt, 966 const VMRegPair* regs, 967 int& exception_offset, 968 OopMapSet*oop_maps, 969 int& frame_complete, 970 int& stack_slots, 971 int& interpreted_entry_offset, 972 int& compiled_entry_offset) { 973 // verify_oop_args(masm, method, sig_bt, regs); 974 Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); 975 976 address start = __ pc(); 977 978 Label call_thaw, exit; 979 980 // i2i entry used at interp_only_mode only 981 interpreted_entry_offset = __ pc() - start; 982 { 983 #ifdef ASSERT 984 Label is_interp_only; 985 __ lw(t0, Address(xthread, JavaThread::interp_only_mode_offset())); 986 __ bnez(t0, is_interp_only); 987 __ stop("enterSpecial interpreter entry called when not in interp_only_mode"); 988 __ bind(is_interp_only); 989 #endif 990 991 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter) 992 __ ld(c_rarg1, Address(esp, Interpreter::stackElementSize * 2)); 993 __ ld(c_rarg2, Address(esp, Interpreter::stackElementSize * 1)); 994 __ ld(c_rarg3, Address(esp, Interpreter::stackElementSize * 0)); 995 __ push_cont_fastpath(xthread); 996 997 __ enter(); 998 stack_slots = 2; // will be adjusted in setup 999 OopMap* map = continuation_enter_setup(masm, stack_slots); 1000 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe, 1001 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway. 1002 1003 fill_continuation_entry(masm); 1004 1005 __ bnez(c_rarg2, call_thaw); 1006 1007 // Make sure the call is patchable 1008 __ align(NativeInstruction::instruction_size); 1009 1010 const address tr_call = __ reloc_call(resolve); 1011 if (tr_call == nullptr) { 1012 fatal("CodeCache is full at gen_continuation_enter"); 1013 } 1014 1015 oop_maps->add_gc_map(__ pc() - start, map); 1016 __ post_call_nop(); 1017 1018 __ j(exit); 1019 1020 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call); 1021 if (stub == nullptr) { 1022 fatal("CodeCache is full at gen_continuation_enter"); 1023 } 1024 } 1025 1026 // compiled entry 1027 __ align(CodeEntryAlignment); 1028 compiled_entry_offset = __ pc() - start; 1029 1030 __ enter(); 1031 stack_slots = 2; // will be adjusted in setup 1032 OopMap* map = continuation_enter_setup(masm, stack_slots); 1033 frame_complete = __ pc() - start; 1034 1035 fill_continuation_entry(masm); 1036 1037 __ bnez(c_rarg2, call_thaw); 1038 1039 // Make sure the call is patchable 1040 __ align(NativeInstruction::instruction_size); 1041 1042 const address tr_call = __ reloc_call(resolve); 1043 if (tr_call == nullptr) { 1044 fatal("CodeCache is full at gen_continuation_enter"); 1045 } 1046 1047 oop_maps->add_gc_map(__ pc() - start, map); 1048 __ post_call_nop(); 1049 1050 __ j(exit); 1051 1052 __ bind(call_thaw); 1053 1054 ContinuationEntry::_thaw_call_pc_offset = __ pc() - start; 1055 __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw())); 1056 oop_maps->add_gc_map(__ pc() - start, map->deep_copy()); 1057 ContinuationEntry::_return_pc_offset = __ pc() - start; 1058 __ post_call_nop(); 1059 1060 __ bind(exit); 1061 ContinuationEntry::_cleanup_offset = __ pc() - start; 1062 continuation_enter_cleanup(masm); 1063 __ leave(); 1064 __ ret(); 1065 1066 // exception handling 1067 exception_offset = __ pc() - start; 1068 { 1069 __ mv(x9, x10); // save return value contaning the exception oop in callee-saved x9 1070 1071 continuation_enter_cleanup(masm); 1072 1073 __ ld(c_rarg1, Address(fp, -1 * wordSize)); // return address 1074 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), xthread, c_rarg1); 1075 1076 // see OptoRuntime::generate_exception_blob: x10 -- exception oop, x13 -- exception pc 1077 1078 __ mv(x11, x10); // the exception handler 1079 __ mv(x10, x9); // restore return value contaning the exception oop 1080 __ verify_oop(x10); 1081 1082 __ leave(); 1083 __ mv(x13, ra); 1084 __ jr(x11); // the exception handler 1085 } 1086 1087 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call); 1088 if (stub == nullptr) { 1089 fatal("CodeCache is full at gen_continuation_enter"); 1090 } 1091 } 1092 1093 static void gen_continuation_yield(MacroAssembler* masm, 1094 const methodHandle& method, 1095 const BasicType* sig_bt, 1096 const VMRegPair* regs, 1097 OopMapSet* oop_maps, 1098 int& frame_complete, 1099 int& stack_slots, 1100 int& compiled_entry_offset) { 1101 enum layout { 1102 fp_off, 1103 fp_off2, 1104 return_off, 1105 return_off2, 1106 framesize // inclusive of return address 1107 }; 1108 // assert(is_even(framesize/2), "sp not 16-byte aligned"); 1109 1110 stack_slots = framesize / VMRegImpl::slots_per_word; 1111 assert(stack_slots == 2, "recheck layout"); 1112 1113 address start = __ pc(); 1114 1115 compiled_entry_offset = __ pc() - start; 1116 __ enter(); 1117 1118 __ mv(c_rarg1, sp); 1119 1120 frame_complete = __ pc() - start; 1121 address the_pc = __ pc(); 1122 1123 __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup 1124 1125 __ mv(c_rarg0, xthread); 1126 __ set_last_Java_frame(sp, fp, the_pc, t0); 1127 __ call_VM_leaf(Continuation::freeze_entry(), 2); 1128 __ reset_last_Java_frame(true); 1129 1130 Label pinned; 1131 1132 __ bnez(x10, pinned); 1133 1134 // We've succeeded, set sp to the ContinuationEntry 1135 __ ld(sp, Address(xthread, JavaThread::cont_entry_offset())); 1136 continuation_enter_cleanup(masm); 1137 1138 __ bind(pinned); // pinned -- return to caller 1139 1140 // handle pending exception thrown by freeze 1141 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1142 Label ok; 1143 __ beqz(t0, ok); 1144 __ leave(); 1145 __ j(RuntimeAddress(StubRoutines::forward_exception_entry())); 1146 __ bind(ok); 1147 1148 __ leave(); 1149 __ ret(); 1150 1151 OopMap* map = new OopMap(framesize, 1); 1152 oop_maps->add_gc_map(the_pc - start, map); 1153 } 1154 1155 void SharedRuntime::continuation_enter_cleanup(MacroAssembler* masm) { 1156 ::continuation_enter_cleanup(masm); 1157 } 1158 1159 static void gen_special_dispatch(MacroAssembler* masm, 1160 const methodHandle& method, 1161 const BasicType* sig_bt, 1162 const VMRegPair* regs) { 1163 verify_oop_args(masm, method, sig_bt, regs); 1164 vmIntrinsics::ID iid = method->intrinsic_id(); 1165 1166 // Now write the args into the outgoing interpreter space 1167 bool has_receiver = false; 1168 Register receiver_reg = noreg; 1169 int member_arg_pos = -1; 1170 Register member_reg = noreg; 1171 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1172 if (ref_kind != 0) { 1173 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1174 member_reg = x9; // known to be free at this point 1175 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1176 } else if (iid == vmIntrinsics::_invokeBasic) { 1177 has_receiver = true; 1178 } else if (iid == vmIntrinsics::_linkToNative) { 1179 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument 1180 member_reg = x9; // known to be free at this point 1181 } else { 1182 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1183 } 1184 1185 if (member_reg != noreg) { 1186 // Load the member_arg into register, if necessary. 1187 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1188 VMReg r = regs[member_arg_pos].first(); 1189 if (r->is_stack()) { 1190 __ ld(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1191 } else { 1192 // no data motion is needed 1193 member_reg = r->as_Register(); 1194 } 1195 } 1196 1197 if (has_receiver) { 1198 // Make sure the receiver is loaded into a register. 1199 assert(method->size_of_parameters() > 0, "oob"); 1200 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1201 VMReg r = regs[0].first(); 1202 assert(r->is_valid(), "bad receiver arg"); 1203 if (r->is_stack()) { 1204 // Porting note: This assumes that compiled calling conventions always 1205 // pass the receiver oop in a register. If this is not true on some 1206 // platform, pick a temp and load the receiver from stack. 1207 fatal("receiver always in a register"); 1208 receiver_reg = x12; // known to be free at this point 1209 __ ld(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1210 } else { 1211 // no data motion is needed 1212 receiver_reg = r->as_Register(); 1213 } 1214 } 1215 1216 // Figure out which address we are really jumping to: 1217 MethodHandles::generate_method_handle_dispatch(masm, iid, 1218 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1219 } 1220 1221 // --------------------------------------------------------------------------- 1222 // Generate a native wrapper for a given method. The method takes arguments 1223 // in the Java compiled code convention, marshals them to the native 1224 // convention (handlizes oops, etc), transitions to native, makes the call, 1225 // returns to java state (possibly blocking), unhandlizes any result and 1226 // returns. 1227 // 1228 // Critical native functions are a shorthand for the use of 1229 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1230 // functions. The wrapper is expected to unpack the arguments before 1231 // passing them to the callee and perform checks before and after the 1232 // native call to ensure that they GCLocker 1233 // lock_critical/unlock_critical semantics are followed. Some other 1234 // parts of JNI setup are skipped like the tear down of the JNI handle 1235 // block and the check for pending exceptions it's impossible for them 1236 // to be thrown. 1237 // 1238 // They are roughly structured like this: 1239 // if (GCLocker::needs_gc()) SharedRuntime::block_for_jni_critical() 1240 // tranistion to thread_in_native 1241 // unpack array arguments and call native entry point 1242 // check for safepoint in progress 1243 // check if any thread suspend flags are set 1244 // call into JVM and possible unlock the JNI critical 1245 // if a GC was suppressed while in the critical native. 1246 // transition back to thread_in_Java 1247 // return to caller 1248 // 1249 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1250 const methodHandle& method, 1251 int compile_id, 1252 BasicType* in_sig_bt, 1253 VMRegPair* in_regs, 1254 BasicType ret_type) { 1255 if (method->is_continuation_native_intrinsic()) { 1256 int exception_offset = -1; 1257 OopMapSet* oop_maps = new OopMapSet(); 1258 int frame_complete = -1; 1259 int stack_slots = -1; 1260 int interpreted_entry_offset = -1; 1261 int vep_offset = -1; 1262 if (method->is_continuation_enter_intrinsic()) { 1263 gen_continuation_enter(masm, 1264 method, 1265 in_sig_bt, 1266 in_regs, 1267 exception_offset, 1268 oop_maps, 1269 frame_complete, 1270 stack_slots, 1271 interpreted_entry_offset, 1272 vep_offset); 1273 } else if (method->is_continuation_yield_intrinsic()) { 1274 gen_continuation_yield(masm, 1275 method, 1276 in_sig_bt, 1277 in_regs, 1278 oop_maps, 1279 frame_complete, 1280 stack_slots, 1281 vep_offset); 1282 } else { 1283 guarantee(false, "Unknown Continuation native intrinsic"); 1284 } 1285 1286 #ifdef ASSERT 1287 if (method->is_continuation_enter_intrinsic()) { 1288 assert(interpreted_entry_offset != -1, "Must be set"); 1289 assert(exception_offset != -1, "Must be set"); 1290 } else { 1291 assert(interpreted_entry_offset == -1, "Must be unset"); 1292 assert(exception_offset == -1, "Must be unset"); 1293 } 1294 assert(frame_complete != -1, "Must be set"); 1295 assert(stack_slots != -1, "Must be set"); 1296 assert(vep_offset != -1, "Must be set"); 1297 #endif 1298 1299 __ flush(); 1300 nmethod* nm = nmethod::new_native_nmethod(method, 1301 compile_id, 1302 masm->code(), 1303 vep_offset, 1304 frame_complete, 1305 stack_slots, 1306 in_ByteSize(-1), 1307 in_ByteSize(-1), 1308 oop_maps, 1309 exception_offset); 1310 if (nm == nullptr) return nm; 1311 if (method->is_continuation_enter_intrinsic()) { 1312 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset); 1313 } else if (method->is_continuation_yield_intrinsic()) { 1314 _cont_doYield_stub = nm; 1315 } else { 1316 guarantee(false, "Unknown Continuation native intrinsic"); 1317 } 1318 return nm; 1319 } 1320 1321 if (method->is_method_handle_intrinsic()) { 1322 vmIntrinsics::ID iid = method->intrinsic_id(); 1323 intptr_t start = (intptr_t)__ pc(); 1324 int vep_offset = ((intptr_t)__ pc()) - start; 1325 1326 // First instruction must be a nop as it may need to be patched on deoptimisation 1327 { 1328 Assembler::IncompressibleRegion ir(masm); // keep the nop as 4 bytes for patching. 1329 MacroAssembler::assert_alignment(__ pc()); 1330 __ nop(); // 4 bytes 1331 } 1332 gen_special_dispatch(masm, 1333 method, 1334 in_sig_bt, 1335 in_regs); 1336 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1337 __ flush(); 1338 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1339 return nmethod::new_native_nmethod(method, 1340 compile_id, 1341 masm->code(), 1342 vep_offset, 1343 frame_complete, 1344 stack_slots / VMRegImpl::slots_per_word, 1345 in_ByteSize(-1), 1346 in_ByteSize(-1), 1347 (OopMapSet*)nullptr); 1348 } 1349 address native_func = method->native_function(); 1350 assert(native_func != nullptr, "must have function"); 1351 1352 // An OopMap for lock (and class if static) 1353 OopMapSet *oop_maps = new OopMapSet(); 1354 assert_cond(oop_maps != nullptr); 1355 intptr_t start = (intptr_t)__ pc(); 1356 1357 // We have received a description of where all the java arg are located 1358 // on entry to the wrapper. We need to convert these args to where 1359 // the jni function will expect them. To figure out where they go 1360 // we convert the java signature to a C signature by inserting 1361 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1362 1363 const int total_in_args = method->size_of_parameters(); 1364 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1365 1366 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1367 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1368 1369 int argc = 0; 1370 out_sig_bt[argc++] = T_ADDRESS; 1371 if (method->is_static()) { 1372 out_sig_bt[argc++] = T_OBJECT; 1373 } 1374 1375 for (int i = 0; i < total_in_args ; i++) { 1376 out_sig_bt[argc++] = in_sig_bt[i]; 1377 } 1378 1379 // Now figure out where the args must be stored and how much stack space 1380 // they require. 1381 int out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args); 1382 1383 // Compute framesize for the wrapper. We need to handlize all oops in 1384 // incoming registers 1385 1386 // Calculate the total number of stack slots we will need. 1387 1388 // First count the abi requirement plus all of the outgoing args 1389 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1390 1391 // Now the space for the inbound oop handle area 1392 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1393 1394 int oop_handle_offset = stack_slots; 1395 stack_slots += total_save_slots; 1396 1397 // Now any space we need for handlizing a klass if static method 1398 1399 int klass_slot_offset = 0; 1400 int klass_offset = -1; 1401 int lock_slot_offset = 0; 1402 bool is_static = false; 1403 1404 if (method->is_static()) { 1405 klass_slot_offset = stack_slots; 1406 stack_slots += VMRegImpl::slots_per_word; 1407 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1408 is_static = true; 1409 } 1410 1411 // Plus a lock if needed 1412 1413 if (method->is_synchronized()) { 1414 lock_slot_offset = stack_slots; 1415 stack_slots += VMRegImpl::slots_per_word; 1416 } 1417 1418 // Now a place (+2) to save return values or temp during shuffling 1419 // + 4 for return address (which we own) and saved fp 1420 stack_slots += 6; 1421 1422 // Ok The space we have allocated will look like: 1423 // 1424 // 1425 // FP-> | | 1426 // | 2 slots (ra) | 1427 // | 2 slots (fp) | 1428 // |---------------------| 1429 // | 2 slots for moves | 1430 // |---------------------| 1431 // | lock box (if sync) | 1432 // |---------------------| <- lock_slot_offset 1433 // | klass (if static) | 1434 // |---------------------| <- klass_slot_offset 1435 // | oopHandle area | 1436 // |---------------------| <- oop_handle_offset (8 java arg registers) 1437 // | outbound memory | 1438 // | based arguments | 1439 // | | 1440 // |---------------------| 1441 // | | 1442 // SP-> | out_preserved_slots | 1443 // 1444 // 1445 1446 1447 // Now compute actual number of stack words we need rounding to make 1448 // stack properly aligned. 1449 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1450 1451 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1452 1453 // First thing make an ic check to see if we should even be here 1454 1455 // We are free to use all registers as temps without saving them and 1456 // restoring them except fp. fp is the only callee save register 1457 // as far as the interpreter and the compiler(s) are concerned. 1458 1459 const Register receiver = j_rarg0; 1460 1461 __ verify_oop(receiver); 1462 assert_different_registers(receiver, t0, t1); 1463 1464 __ ic_check(); 1465 1466 int vep_offset = ((intptr_t)__ pc()) - start; 1467 1468 // If we have to make this method not-entrant we'll overwrite its 1469 // first instruction with a jump. 1470 { 1471 Assembler::IncompressibleRegion ir(masm); // keep the nop as 4 bytes for patching. 1472 MacroAssembler::assert_alignment(__ pc()); 1473 __ nop(); // 4 bytes 1474 } 1475 1476 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 1477 Label L_skip_barrier; 1478 __ mov_metadata(t1, method->method_holder()); // InstanceKlass* 1479 __ clinit_barrier(t1, t0, &L_skip_barrier); 1480 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1481 1482 __ bind(L_skip_barrier); 1483 } 1484 1485 // Generate stack overflow check 1486 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size())); 1487 1488 // Generate a new frame for the wrapper. 1489 __ enter(); 1490 // -2 because return address is already present and so is saved fp 1491 __ sub(sp, sp, stack_size - 2 * wordSize); 1492 1493 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1494 assert_cond(bs != nullptr); 1495 bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 1496 1497 // Frame is now completed as far as size and linkage. 1498 int frame_complete = ((intptr_t)__ pc()) - start; 1499 1500 // We use x18 as the oop handle for the receiver/klass 1501 // It is callee save so it survives the call to native 1502 1503 const Register oop_handle_reg = x18; 1504 1505 // 1506 // We immediately shuffle the arguments so that any vm call we have to 1507 // make from here on out (sync slow path, jvmti, etc.) we will have 1508 // captured the oops from our caller and have a valid oopMap for 1509 // them. 1510 1511 // ----------------- 1512 // The Grand Shuffle 1513 1514 // The Java calling convention is either equal (linux) or denser (win64) than the 1515 // c calling convention. However the because of the jni_env argument the c calling 1516 // convention always has at least one more (and two for static) arguments than Java. 1517 // Therefore if we move the args from java -> c backwards then we will never have 1518 // a register->register conflict and we don't have to build a dependency graph 1519 // and figure out how to break any cycles. 1520 // 1521 1522 // Record esp-based slot for receiver on stack for non-static methods 1523 int receiver_offset = -1; 1524 1525 // This is a trick. We double the stack slots so we can claim 1526 // the oops in the caller's frame. Since we are sure to have 1527 // more args than the caller doubling is enough to make 1528 // sure we can capture all the incoming oop args from the 1529 // caller. 1530 // 1531 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1532 assert_cond(map != nullptr); 1533 1534 int float_args = 0; 1535 int int_args = 0; 1536 1537 #ifdef ASSERT 1538 bool reg_destroyed[Register::number_of_registers]; 1539 bool freg_destroyed[FloatRegister::number_of_registers]; 1540 for ( int r = 0 ; r < Register::number_of_registers ; r++ ) { 1541 reg_destroyed[r] = false; 1542 } 1543 for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) { 1544 freg_destroyed[f] = false; 1545 } 1546 1547 #endif /* ASSERT */ 1548 1549 // For JNI natives the incoming and outgoing registers are offset upwards. 1550 GrowableArray<int> arg_order(2 * total_in_args); 1551 1552 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1553 arg_order.push(i); 1554 arg_order.push(c_arg); 1555 } 1556 1557 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1558 int i = arg_order.at(ai); 1559 int c_arg = arg_order.at(ai + 1); 1560 __ block_comment(err_msg("mv %d -> %d", i, c_arg)); 1561 assert(c_arg != -1 && i != -1, "wrong order"); 1562 #ifdef ASSERT 1563 if (in_regs[i].first()->is_Register()) { 1564 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1565 } else if (in_regs[i].first()->is_FloatRegister()) { 1566 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1567 } 1568 if (out_regs[c_arg].first()->is_Register()) { 1569 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1570 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1571 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1572 } 1573 #endif /* ASSERT */ 1574 switch (in_sig_bt[i]) { 1575 case T_ARRAY: 1576 case T_OBJECT: 1577 __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1578 ((i == 0) && (!is_static)), 1579 &receiver_offset); 1580 int_args++; 1581 break; 1582 case T_VOID: 1583 break; 1584 1585 case T_FLOAT: 1586 __ float_move(in_regs[i], out_regs[c_arg]); 1587 float_args++; 1588 break; 1589 1590 case T_DOUBLE: 1591 assert( i + 1 < total_in_args && 1592 in_sig_bt[i + 1] == T_VOID && 1593 out_sig_bt[c_arg + 1] == T_VOID, "bad arg list"); 1594 __ double_move(in_regs[i], out_regs[c_arg]); 1595 float_args++; 1596 break; 1597 1598 case T_LONG : 1599 __ long_move(in_regs[i], out_regs[c_arg]); 1600 int_args++; 1601 break; 1602 1603 case T_ADDRESS: 1604 assert(false, "found T_ADDRESS in java args"); 1605 break; 1606 1607 default: 1608 __ move32_64(in_regs[i], out_regs[c_arg]); 1609 int_args++; 1610 } 1611 } 1612 1613 // point c_arg at the first arg that is already loaded in case we 1614 // need to spill before we call out 1615 int c_arg = total_c_args - total_in_args; 1616 1617 // Pre-load a static method's oop into c_rarg1. 1618 if (method->is_static()) { 1619 1620 // load oop into a register 1621 __ movoop(c_rarg1, 1622 JNIHandles::make_local(method->method_holder()->java_mirror())); 1623 1624 // Now handlize the static class mirror it's known not-null. 1625 __ sd(c_rarg1, Address(sp, klass_offset)); 1626 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1627 1628 // Now get the handle 1629 __ la(c_rarg1, Address(sp, klass_offset)); 1630 // and protect the arg if we must spill 1631 c_arg--; 1632 } 1633 1634 // Change state to native (we save the return address in the thread, since it might not 1635 // be pushed on the stack when we do a stack traversal). It is enough that the pc() 1636 // points into the right code segment. It does not have to be the correct return pc. 1637 // We use the same pc/oopMap repeatedly when we call out. 1638 1639 Label native_return; 1640 if (LockingMode != LM_LEGACY && method->is_object_wait0()) { 1641 // For convenience we use the pc we want to resume to in case of preemption on Object.wait. 1642 __ set_last_Java_frame(sp, noreg, native_return, t0); 1643 } else { 1644 intptr_t the_pc = (intptr_t) __ pc(); 1645 oop_maps->add_gc_map(the_pc - start, map); 1646 1647 __ set_last_Java_frame(sp, noreg, __ pc(), t0); 1648 } 1649 1650 Label dtrace_method_entry, dtrace_method_entry_done; 1651 if (DTraceMethodProbes) { 1652 __ j(dtrace_method_entry); 1653 __ bind(dtrace_method_entry_done); 1654 } 1655 1656 // RedefineClasses() tracing support for obsolete method entry 1657 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1658 // protect the args we've loaded 1659 save_args(masm, total_c_args, c_arg, out_regs); 1660 __ mov_metadata(c_rarg1, method()); 1661 __ call_VM_leaf( 1662 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1663 xthread, c_rarg1); 1664 restore_args(masm, total_c_args, c_arg, out_regs); 1665 } 1666 1667 // Lock a synchronized method 1668 1669 // Register definitions used by locking and unlocking 1670 1671 const Register swap_reg = x10; 1672 const Register obj_reg = x9; // Will contain the oop 1673 const Register lock_reg = x30; // Address of compiler lock object (BasicLock) 1674 const Register old_hdr = x30; // value of old header at unlock time 1675 const Register lock_tmp = x31; // Temporary used by lightweight_lock/unlock 1676 const Register tmp = ra; 1677 1678 Label slow_path_lock; 1679 Label lock_done; 1680 1681 if (method->is_synchronized()) { 1682 Label count; 1683 1684 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 1685 1686 // Get the handle (the 2nd argument) 1687 __ mv(oop_handle_reg, c_rarg1); 1688 1689 // Get address of the box 1690 1691 __ la(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1692 1693 // Load the oop from the handle 1694 __ ld(obj_reg, Address(oop_handle_reg, 0)); 1695 1696 if (LockingMode == LM_MONITOR) { 1697 __ j(slow_path_lock); 1698 } else if (LockingMode == LM_LEGACY) { 1699 // Load (object->mark() | 1) into swap_reg % x10 1700 __ ld(t0, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1701 __ ori(swap_reg, t0, 1); 1702 1703 // Save (object->mark() | 1) into BasicLock's displaced header 1704 __ sd(swap_reg, Address(lock_reg, mark_word_offset)); 1705 1706 // src -> dest if dest == x10 else x10 <- dest 1707 __ cmpxchg_obj_header(x10, lock_reg, obj_reg, lock_tmp, count, /*fallthrough*/nullptr); 1708 1709 // Test if the oopMark is an obvious stack pointer, i.e., 1710 // 1) (mark & 3) == 0, and 1711 // 2) sp <= mark < mark + os::pagesize() 1712 // These 3 tests can be done by evaluating the following 1713 // expression: ((mark - sp) & (3 - os::vm_page_size())), 1714 // assuming both stack pointer and pagesize have their 1715 // least significant 2 bits clear. 1716 // NOTE: the oopMark is in swap_reg % 10 as the result of cmpxchg 1717 1718 __ sub(swap_reg, swap_reg, sp); 1719 __ mv(t0, 3 - (int)os::vm_page_size()); 1720 __ andr(swap_reg, swap_reg, t0); 1721 1722 // Save the test result, for recursive case, the result is zero 1723 __ sd(swap_reg, Address(lock_reg, mark_word_offset)); 1724 __ bnez(swap_reg, slow_path_lock); 1725 1726 __ bind(count); 1727 __ inc_held_monitor_count(t0); 1728 } else { 1729 assert(LockingMode == LM_LIGHTWEIGHT, "must be"); 1730 __ lightweight_lock(lock_reg, obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock); 1731 } 1732 1733 // Slow path will re-enter here 1734 __ bind(lock_done); 1735 } 1736 1737 1738 // Finally just about ready to make the JNI call 1739 1740 // get JNIEnv* which is first argument to native 1741 __ la(c_rarg0, Address(xthread, in_bytes(JavaThread::jni_environment_offset()))); 1742 1743 // Now set thread in native 1744 __ la(t1, Address(xthread, JavaThread::thread_state_offset())); 1745 __ mv(t0, _thread_in_native); 1746 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore); 1747 __ sw(t0, Address(t1)); 1748 1749 // Clobbers t1 1750 __ rt_call(native_func); 1751 1752 // Verify or restore cpu control state after JNI call 1753 __ restore_cpu_control_state_after_jni(t0); 1754 1755 // Unpack native results. 1756 if (ret_type != T_OBJECT && ret_type != T_ARRAY) { 1757 __ cast_primitive_type(ret_type, x10); 1758 } 1759 1760 Label safepoint_in_progress, safepoint_in_progress_done; 1761 1762 // Switch thread to "native transition" state before reading the synchronization state. 1763 // This additional state is necessary because reading and testing the synchronization 1764 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1765 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1766 // VM thread changes sync state to synchronizing and suspends threads for GC. 1767 // Thread A is resumed to finish this native method, but doesn't block here since it 1768 // didn't see any synchronization is progress, and escapes. 1769 __ mv(t0, _thread_in_native_trans); 1770 1771 __ sw(t0, Address(xthread, JavaThread::thread_state_offset())); 1772 1773 // Force this write out before the read below 1774 if (!UseSystemMemoryBarrier) { 1775 __ membar(MacroAssembler::AnyAny); 1776 } 1777 1778 // check for safepoint operation in progress and/or pending suspend requests 1779 { 1780 // We need an acquire here to ensure that any subsequent load of the 1781 // global SafepointSynchronize::_state flag is ordered after this load 1782 // of the thread-local polling word. We don't want this poll to 1783 // return false (i.e. not safepointing) and a later poll of the global 1784 // SafepointSynchronize::_state spuriously to return true. 1785 // This is to avoid a race when we're in a native->Java transition 1786 // racing the code which wakes up from a safepoint. 1787 1788 __ safepoint_poll(safepoint_in_progress, true /* at_return */, true /* acquire */, false /* in_nmethod */); 1789 __ lwu(t0, Address(xthread, JavaThread::suspend_flags_offset())); 1790 __ bnez(t0, safepoint_in_progress); 1791 __ bind(safepoint_in_progress_done); 1792 } 1793 1794 // change thread state 1795 __ la(t1, Address(xthread, JavaThread::thread_state_offset())); 1796 __ mv(t0, _thread_in_Java); 1797 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore); 1798 __ sw(t0, Address(t1)); 1799 1800 if (LockingMode != LM_LEGACY && method->is_object_wait0()) { 1801 // Check preemption for Object.wait() 1802 __ ld(t1, Address(xthread, JavaThread::preempt_alternate_return_offset())); 1803 __ beqz(t1, native_return); 1804 __ sd(zr, Address(xthread, JavaThread::preempt_alternate_return_offset())); 1805 __ jr(t1); 1806 __ bind(native_return); 1807 1808 intptr_t the_pc = (intptr_t) __ pc(); 1809 oop_maps->add_gc_map(the_pc - start, map); 1810 } 1811 1812 Label reguard; 1813 Label reguard_done; 1814 __ lbu(t0, Address(xthread, JavaThread::stack_guard_state_offset())); 1815 __ mv(t1, StackOverflow::stack_guard_yellow_reserved_disabled); 1816 __ beq(t0, t1, reguard); 1817 __ bind(reguard_done); 1818 1819 // native result if any is live 1820 1821 // Unlock 1822 Label unlock_done; 1823 Label slow_path_unlock; 1824 if (method->is_synchronized()) { 1825 1826 // Get locked oop from the handle we passed to jni 1827 __ ld(obj_reg, Address(oop_handle_reg, 0)); 1828 1829 Label done, not_recursive; 1830 1831 if (LockingMode == LM_LEGACY) { 1832 // Simple recursive lock? 1833 __ ld(t0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1834 __ bnez(t0, not_recursive); 1835 __ dec_held_monitor_count(t0); 1836 __ j(done); 1837 } 1838 1839 __ bind(not_recursive); 1840 1841 // Must save x10 if if it is live now because cmpxchg must use it 1842 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1843 save_native_result(masm, ret_type, stack_slots); 1844 } 1845 1846 if (LockingMode == LM_MONITOR) { 1847 __ j(slow_path_unlock); 1848 } else if (LockingMode == LM_LEGACY) { 1849 // get address of the stack lock 1850 __ la(x10, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1851 // get old displaced header 1852 __ ld(old_hdr, Address(x10, 0)); 1853 1854 // Atomic swap old header if oop still contains the stack lock 1855 Label count; 1856 __ cmpxchg_obj_header(x10, old_hdr, obj_reg, lock_tmp, count, &slow_path_unlock); 1857 __ bind(count); 1858 __ dec_held_monitor_count(t0); 1859 } else { 1860 assert(LockingMode == LM_LIGHTWEIGHT, ""); 1861 __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock); 1862 } 1863 1864 // slow path re-enters here 1865 __ bind(unlock_done); 1866 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1867 restore_native_result(masm, ret_type, stack_slots); 1868 } 1869 1870 __ bind(done); 1871 } 1872 1873 Label dtrace_method_exit, dtrace_method_exit_done; 1874 if (DTraceMethodProbes) { 1875 __ j(dtrace_method_exit); 1876 __ bind(dtrace_method_exit_done); 1877 } 1878 1879 __ reset_last_Java_frame(false); 1880 1881 // Unbox oop result, e.g. JNIHandles::resolve result. 1882 if (is_reference_type(ret_type)) { 1883 __ resolve_jobject(x10, x11, x12); 1884 } 1885 1886 if (CheckJNICalls) { 1887 // clear_pending_jni_exception_check 1888 __ sd(zr, Address(xthread, JavaThread::pending_jni_exception_check_fn_offset())); 1889 } 1890 1891 // reset handle block 1892 __ ld(x12, Address(xthread, JavaThread::active_handles_offset())); 1893 __ sd(zr, Address(x12, JNIHandleBlock::top_offset())); 1894 1895 __ leave(); 1896 1897 // Any exception pending? 1898 Label exception_pending; 1899 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1900 __ bnez(t0, exception_pending); 1901 1902 // We're done 1903 __ ret(); 1904 1905 // Unexpected paths are out of line and go here 1906 1907 // forward the exception 1908 __ bind(exception_pending); 1909 1910 // and forward the exception 1911 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1912 1913 // Slow path locking & unlocking 1914 if (method->is_synchronized()) { 1915 1916 __ block_comment("Slow path lock {"); 1917 __ bind(slow_path_lock); 1918 1919 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 1920 // args are (oop obj, BasicLock* lock, JavaThread* thread) 1921 1922 // protect the args we've loaded 1923 save_args(masm, total_c_args, c_arg, out_regs); 1924 1925 __ mv(c_rarg0, obj_reg); 1926 __ mv(c_rarg1, lock_reg); 1927 __ mv(c_rarg2, xthread); 1928 1929 // Not a leaf but we have last_Java_frame setup as we want. 1930 // We don't want to unmount in case of contention since that would complicate preserving 1931 // the arguments that had already been marshalled into the native convention. So we force 1932 // the freeze slow path to find this native wrapper frame (see recurse_freeze_native_frame()) 1933 // and pin the vthread. Otherwise the fast path won't find it since we don't walk the stack. 1934 __ push_cont_fastpath(); 1935 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 1936 __ pop_cont_fastpath(); 1937 restore_args(masm, total_c_args, c_arg, out_regs); 1938 1939 #ifdef ASSERT 1940 { Label L; 1941 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1942 __ beqz(t0, L); 1943 __ stop("no pending exception allowed on exit from monitorenter"); 1944 __ bind(L); 1945 } 1946 #endif 1947 __ j(lock_done); 1948 1949 __ block_comment("} Slow path lock"); 1950 1951 __ block_comment("Slow path unlock {"); 1952 __ bind(slow_path_unlock); 1953 1954 if (ret_type == T_FLOAT || ret_type == T_DOUBLE) { 1955 save_native_result(masm, ret_type, stack_slots); 1956 } 1957 1958 __ mv(c_rarg2, xthread); 1959 __ la(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1960 __ mv(c_rarg0, obj_reg); 1961 1962 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 1963 // NOTE that obj_reg == x9 currently 1964 __ ld(x9, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1965 __ sd(zr, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1966 1967 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)); 1968 1969 #ifdef ASSERT 1970 { 1971 Label L; 1972 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1973 __ beqz(t0, L); 1974 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 1975 __ bind(L); 1976 } 1977 #endif /* ASSERT */ 1978 1979 __ sd(x9, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1980 1981 if (ret_type == T_FLOAT || ret_type == T_DOUBLE) { 1982 restore_native_result(masm, ret_type, stack_slots); 1983 } 1984 __ j(unlock_done); 1985 1986 __ block_comment("} Slow path unlock"); 1987 1988 } // synchronized 1989 1990 // SLOW PATH Reguard the stack if needed 1991 1992 __ bind(reguard); 1993 save_native_result(masm, ret_type, stack_slots); 1994 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 1995 restore_native_result(masm, ret_type, stack_slots); 1996 // and continue 1997 __ j(reguard_done); 1998 1999 // SLOW PATH safepoint 2000 { 2001 __ block_comment("safepoint {"); 2002 __ bind(safepoint_in_progress); 2003 2004 // Don't use call_VM as it will see a possible pending exception and forward it 2005 // and never return here preventing us from clearing _last_native_pc down below. 2006 // 2007 save_native_result(masm, ret_type, stack_slots); 2008 __ mv(c_rarg0, xthread); 2009 #ifndef PRODUCT 2010 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2011 #endif 2012 __ rt_call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)); 2013 2014 // Restore any method result value 2015 restore_native_result(masm, ret_type, stack_slots); 2016 2017 __ j(safepoint_in_progress_done); 2018 __ block_comment("} safepoint"); 2019 } 2020 2021 // SLOW PATH dtrace support 2022 if (DTraceMethodProbes) { 2023 { 2024 __ block_comment("dtrace entry {"); 2025 __ bind(dtrace_method_entry); 2026 2027 // We have all of the arguments setup at this point. We must not touch any register 2028 // argument registers at this point (what if we save/restore them there are no oop? 2029 2030 save_args(masm, total_c_args, c_arg, out_regs); 2031 __ mov_metadata(c_rarg1, method()); 2032 __ call_VM_leaf( 2033 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2034 xthread, c_rarg1); 2035 restore_args(masm, total_c_args, c_arg, out_regs); 2036 __ j(dtrace_method_entry_done); 2037 __ block_comment("} dtrace entry"); 2038 } 2039 2040 { 2041 __ block_comment("dtrace exit {"); 2042 __ bind(dtrace_method_exit); 2043 save_native_result(masm, ret_type, stack_slots); 2044 __ mov_metadata(c_rarg1, method()); 2045 __ call_VM_leaf( 2046 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2047 xthread, c_rarg1); 2048 restore_native_result(masm, ret_type, stack_slots); 2049 __ j(dtrace_method_exit_done); 2050 __ block_comment("} dtrace exit"); 2051 } 2052 } 2053 2054 __ flush(); 2055 2056 nmethod *nm = nmethod::new_native_nmethod(method, 2057 compile_id, 2058 masm->code(), 2059 vep_offset, 2060 frame_complete, 2061 stack_slots / VMRegImpl::slots_per_word, 2062 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2063 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2064 oop_maps); 2065 assert(nm != nullptr, "create native nmethod fail!"); 2066 return nm; 2067 } 2068 2069 // this function returns the adjust size (in number of words) to a c2i adapter 2070 // activation for use during deoptimization 2071 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2072 assert(callee_locals >= callee_parameters, 2073 "test and remove; got more parms than locals"); 2074 if (callee_locals < callee_parameters) { 2075 return 0; // No adjustment for negative locals 2076 } 2077 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2078 // diff is counted in stack words 2079 return align_up(diff, 2); 2080 } 2081 2082 //------------------------------generate_deopt_blob---------------------------- 2083 void SharedRuntime::generate_deopt_blob() { 2084 // Allocate space for the code 2085 ResourceMark rm; 2086 // Setup code generation tools 2087 int pad = 0; 2088 #if INCLUDE_JVMCI 2089 if (EnableJVMCI) { 2090 pad += 512; // Increase the buffer size when compiling for JVMCI 2091 } 2092 #endif 2093 const char* name = SharedRuntime::stub_name(SharedStubId::deopt_id); 2094 CodeBuffer buffer(name, 2048 + pad, 1024); 2095 MacroAssembler* masm = new MacroAssembler(&buffer); 2096 int frame_size_in_words = -1; 2097 OopMap* map = nullptr; 2098 OopMapSet *oop_maps = new OopMapSet(); 2099 assert_cond(masm != nullptr && oop_maps != nullptr); 2100 RegisterSaver reg_saver(COMPILER2_OR_JVMCI != 0); 2101 2102 // ------------- 2103 // This code enters when returning to a de-optimized nmethod. A return 2104 // address has been pushed on the stack, and return values are in 2105 // registers. 2106 // If we are doing a normal deopt then we were called from the patched 2107 // nmethod from the point we returned to the nmethod. So the return 2108 // address on the stack is wrong by NativeCall::instruction_size 2109 // We will adjust the value so it looks like we have the original return 2110 // address on the stack (like when we eagerly deoptimized). 2111 // In the case of an exception pending when deoptimizing, we enter 2112 // with a return address on the stack that points after the call we patched 2113 // into the exception handler. We have the following register state from, 2114 // e.g., the forward exception stub (see stubGenerator_riscv.cpp). 2115 // x10: exception oop 2116 // x9: exception handler 2117 // x13: throwing pc 2118 // So in this case we simply jam x13 into the useless return address and 2119 // the stack looks just like we want. 2120 // 2121 // At this point we need to de-opt. We save the argument return 2122 // registers. We call the first C routine, fetch_unroll_info(). This 2123 // routine captures the return values and returns a structure which 2124 // describes the current frame size and the sizes of all replacement frames. 2125 // The current frame is compiled code and may contain many inlined 2126 // functions, each with their own JVM state. We pop the current frame, then 2127 // push all the new frames. Then we call the C routine unpack_frames() to 2128 // populate these frames. Finally unpack_frames() returns us the new target 2129 // address. Notice that callee-save registers are BLOWN here; they have 2130 // already been captured in the vframeArray at the time the return PC was 2131 // patched. 2132 address start = __ pc(); 2133 Label cont; 2134 2135 // Prolog for non exception case! 2136 2137 // Save everything in sight. 2138 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2139 2140 // Normal deoptimization. Save exec mode for unpack_frames. 2141 __ mv(xcpool, Deoptimization::Unpack_deopt); // callee-saved 2142 __ j(cont); 2143 2144 int reexecute_offset = __ pc() - start; 2145 #if INCLUDE_JVMCI && !defined(COMPILER1) 2146 if (UseJVMCICompiler) { 2147 // JVMCI does not use this kind of deoptimization 2148 __ should_not_reach_here(); 2149 } 2150 #endif 2151 2152 // Reexecute case 2153 // return address is the pc describes what bci to do re-execute at 2154 2155 // No need to update map as each call to save_live_registers will produce identical oopmap 2156 (void) reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2157 2158 __ mv(xcpool, Deoptimization::Unpack_reexecute); // callee-saved 2159 __ j(cont); 2160 2161 #if INCLUDE_JVMCI 2162 Label after_fetch_unroll_info_call; 2163 int implicit_exception_uncommon_trap_offset = 0; 2164 int uncommon_trap_offset = 0; 2165 2166 if (EnableJVMCI) { 2167 implicit_exception_uncommon_trap_offset = __ pc() - start; 2168 2169 __ ld(ra, Address(xthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2170 __ sd(zr, Address(xthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2171 2172 uncommon_trap_offset = __ pc() - start; 2173 2174 // Save everything in sight. 2175 reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2176 // fetch_unroll_info needs to call last_java_frame() 2177 Label retaddr; 2178 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2179 2180 __ lw(c_rarg1, Address(xthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2181 __ mv(t0, -1); 2182 __ sw(t0, Address(xthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2183 2184 __ mv(xcpool, Deoptimization::Unpack_reexecute); 2185 __ mv(c_rarg0, xthread); 2186 __ orrw(c_rarg2, zr, xcpool); // exec mode 2187 __ rt_call(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)); 2188 __ bind(retaddr); 2189 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 2190 2191 __ reset_last_Java_frame(false); 2192 2193 __ j(after_fetch_unroll_info_call); 2194 } // EnableJVMCI 2195 #endif // INCLUDE_JVMCI 2196 2197 int exception_offset = __ pc() - start; 2198 2199 // Prolog for exception case 2200 2201 // all registers are dead at this entry point, except for x10, and 2202 // x13 which contain the exception oop and exception pc 2203 // respectively. Set them in TLS and fall thru to the 2204 // unpack_with_exception_in_tls entry point. 2205 2206 __ sd(x13, Address(xthread, JavaThread::exception_pc_offset())); 2207 __ sd(x10, Address(xthread, JavaThread::exception_oop_offset())); 2208 2209 int exception_in_tls_offset = __ pc() - start; 2210 2211 // new implementation because exception oop is now passed in JavaThread 2212 2213 // Prolog for exception case 2214 // All registers must be preserved because they might be used by LinearScan 2215 // Exceptiop oop and throwing PC are passed in JavaThread 2216 // tos: stack at point of call to method that threw the exception (i.e. only 2217 // args are on the stack, no return address) 2218 2219 // The return address pushed by save_live_registers will be patched 2220 // later with the throwing pc. The correct value is not available 2221 // now because loading it from memory would destroy registers. 2222 2223 // NB: The SP at this point must be the SP of the method that is 2224 // being deoptimized. Deoptimization assumes that the frame created 2225 // here by save_live_registers is immediately below the method's SP. 2226 // This is a somewhat fragile mechanism. 2227 2228 // Save everything in sight. 2229 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2230 2231 // Now it is safe to overwrite any register 2232 2233 // Deopt during an exception. Save exec mode for unpack_frames. 2234 __ mv(xcpool, Deoptimization::Unpack_exception); // callee-saved 2235 2236 // load throwing pc from JavaThread and patch it as the return address 2237 // of the current frame. Then clear the field in JavaThread 2238 2239 __ ld(x13, Address(xthread, JavaThread::exception_pc_offset())); 2240 __ sd(x13, Address(fp, frame::return_addr_offset * wordSize)); 2241 __ sd(zr, Address(xthread, JavaThread::exception_pc_offset())); 2242 2243 #ifdef ASSERT 2244 // verify that there is really an exception oop in JavaThread 2245 __ ld(x10, Address(xthread, JavaThread::exception_oop_offset())); 2246 __ verify_oop(x10); 2247 2248 // verify that there is no pending exception 2249 Label no_pending_exception; 2250 __ ld(t0, Address(xthread, Thread::pending_exception_offset())); 2251 __ beqz(t0, no_pending_exception); 2252 __ stop("must not have pending exception here"); 2253 __ bind(no_pending_exception); 2254 #endif 2255 2256 __ bind(cont); 2257 2258 // Call C code. Need thread and this frame, but NOT official VM entry 2259 // crud. We cannot block on this call, no GC can happen. 2260 // 2261 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2262 2263 // fetch_unroll_info needs to call last_java_frame(). 2264 2265 Label retaddr; 2266 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2267 #ifdef ASSERT 2268 { 2269 Label L; 2270 __ ld(t0, Address(xthread, 2271 JavaThread::last_Java_fp_offset())); 2272 __ beqz(t0, L); 2273 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2274 __ bind(L); 2275 } 2276 #endif // ASSERT 2277 __ mv(c_rarg0, xthread); 2278 __ mv(c_rarg1, xcpool); 2279 __ rt_call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)); 2280 __ bind(retaddr); 2281 2282 // Need to have an oopmap that tells fetch_unroll_info where to 2283 // find any register it might need. 2284 oop_maps->add_gc_map(__ pc() - start, map); 2285 2286 __ reset_last_Java_frame(false); 2287 2288 #if INCLUDE_JVMCI 2289 if (EnableJVMCI) { 2290 __ bind(after_fetch_unroll_info_call); 2291 } 2292 #endif 2293 2294 // Load UnrollBlock* into x15 2295 __ mv(x15, x10); 2296 2297 __ lwu(xcpool, Address(x15, Deoptimization::UnrollBlock::unpack_kind_offset())); 2298 Label noException; 2299 __ mv(t0, Deoptimization::Unpack_exception); 2300 __ bne(xcpool, t0, noException); // Was exception pending? 2301 __ ld(x10, Address(xthread, JavaThread::exception_oop_offset())); 2302 __ ld(x13, Address(xthread, JavaThread::exception_pc_offset())); 2303 __ sd(zr, Address(xthread, JavaThread::exception_oop_offset())); 2304 __ sd(zr, Address(xthread, JavaThread::exception_pc_offset())); 2305 2306 __ verify_oop(x10); 2307 2308 // Overwrite the result registers with the exception results. 2309 __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2310 2311 __ bind(noException); 2312 2313 // Only register save data is on the stack. 2314 // Now restore the result registers. Everything else is either dead 2315 // or captured in the vframeArray. 2316 2317 // Restore fp result register 2318 __ fld(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10))); 2319 // Restore integer result register 2320 __ ld(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2321 2322 // Pop all of the register save area off the stack 2323 __ add(sp, sp, frame_size_in_words * wordSize); 2324 2325 // All of the register save area has been popped of the stack. Only the 2326 // return address remains. 2327 2328 // Pop all the frames we must move/replace. 2329 // 2330 // Frame picture (youngest to oldest) 2331 // 1: self-frame (no frame link) 2332 // 2: deopting frame (no frame link) 2333 // 3: caller of deopting frame (could be compiled/interpreted). 2334 // 2335 // Note: by leaving the return address of self-frame on the stack 2336 // and using the size of frame 2 to adjust the stack 2337 // when we are done the return to frame 3 will still be on the stack. 2338 2339 // Pop deoptimized frame 2340 __ lwu(x12, Address(x15, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset())); 2341 __ subi(x12, x12, 2 * wordSize); 2342 __ add(sp, sp, x12); 2343 __ ld(fp, Address(sp, 0)); 2344 __ ld(ra, Address(sp, wordSize)); 2345 __ addi(sp, sp, 2 * wordSize); 2346 // RA should now be the return address to the caller (3) 2347 2348 #ifdef ASSERT 2349 // Compilers generate code that bang the stack by as much as the 2350 // interpreter would need. So this stack banging should never 2351 // trigger a fault. Verify that it does not on non product builds. 2352 __ lwu(x9, Address(x15, Deoptimization::UnrollBlock::total_frame_sizes_offset())); 2353 __ bang_stack_size(x9, x12); 2354 #endif 2355 // Load address of array of frame pcs into x12 2356 __ ld(x12, Address(x15, Deoptimization::UnrollBlock::frame_pcs_offset())); 2357 2358 // Load address of array of frame sizes into x14 2359 __ ld(x14, Address(x15, Deoptimization::UnrollBlock::frame_sizes_offset())); 2360 2361 // Load counter into x13 2362 __ lwu(x13, Address(x15, Deoptimization::UnrollBlock::number_of_frames_offset())); 2363 2364 // Now adjust the caller's stack to make up for the extra locals 2365 // but record the original sp so that we can save it in the skeletal interpreter 2366 // frame and the stack walking of interpreter_sender will get the unextended sp 2367 // value and not the "real" sp value. 2368 2369 const Register sender_sp = x16; 2370 2371 __ mv(sender_sp, sp); 2372 __ lwu(x9, Address(x15, 2373 Deoptimization::UnrollBlock:: 2374 caller_adjustment_offset())); 2375 __ sub(sp, sp, x9); 2376 2377 // Push interpreter frames in a loop 2378 __ mv(t0, 0xDEADDEAD); // Make a recognizable pattern 2379 __ mv(t1, t0); 2380 Label loop; 2381 __ bind(loop); 2382 __ ld(x9, Address(x14, 0)); // Load frame size 2383 __ addi(x14, x14, wordSize); 2384 __ subi(x9, x9, 2 * wordSize); // We'll push pc and fp by hand 2385 __ ld(ra, Address(x12, 0)); // Load pc 2386 __ addi(x12, x12, wordSize); 2387 __ enter(); // Save old & set new fp 2388 __ sub(sp, sp, x9); // Prolog 2389 // This value is corrected by layout_activation_impl 2390 __ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 2391 __ sd(sender_sp, Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2392 __ mv(sender_sp, sp); // Pass sender_sp to next frame 2393 __ subi(x13, x13, 1); // Decrement counter 2394 __ bnez(x13, loop); 2395 2396 // Re-push self-frame 2397 __ ld(ra, Address(x12)); 2398 __ enter(); 2399 2400 // Allocate a full sized register save area. We subtract 2 because 2401 // enter() just pushed 2 words 2402 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2403 2404 // Restore frame locals after moving the frame 2405 __ fsd(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10))); 2406 __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2407 2408 // Call C code. Need thread but NOT official VM entry 2409 // crud. We cannot block on this call, no GC can happen. Call should 2410 // restore return values to their stack-slots with the new SP. 2411 // 2412 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2413 2414 // Use fp because the frames look interpreted now 2415 // Don't need the precise return PC here, just precise enough to point into this code blob. 2416 address the_pc = __ pc(); 2417 __ set_last_Java_frame(sp, fp, the_pc, t0); 2418 2419 __ mv(c_rarg0, xthread); 2420 __ mv(c_rarg1, xcpool); // second arg: exec_mode 2421 __ rt_call(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)); 2422 2423 // Set an oopmap for the call site 2424 // Use the same PC we used for the last java frame 2425 oop_maps->add_gc_map(the_pc - start, 2426 new OopMap(frame_size_in_words, 0)); 2427 2428 // Clear fp AND pc 2429 __ reset_last_Java_frame(true); 2430 2431 // Collect return values 2432 __ fld(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10))); 2433 __ ld(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2434 2435 // Pop self-frame. 2436 __ leave(); // Epilog 2437 2438 // Jump to interpreter 2439 __ ret(); 2440 2441 // Make sure all code is generated 2442 masm->flush(); 2443 2444 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2445 assert(_deopt_blob != nullptr, "create deoptimization blob fail!"); 2446 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2447 #if INCLUDE_JVMCI 2448 if (EnableJVMCI) { 2449 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 2450 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 2451 } 2452 #endif 2453 } 2454 2455 // Number of stack slots between incoming argument block and the start of 2456 // a new frame. The PROLOG must add this many slots to the stack. The 2457 // EPILOG must remove this many slots. 2458 // RISCV needs two words for RA (return address) and FP (frame pointer). 2459 uint SharedRuntime::in_preserve_stack_slots() { 2460 return 2 * VMRegImpl::slots_per_word; 2461 } 2462 2463 uint SharedRuntime::out_preserve_stack_slots() { 2464 return 0; 2465 } 2466 2467 VMReg SharedRuntime::thread_register() { 2468 return xthread->as_VMReg(); 2469 } 2470 2471 //------------------------------generate_handler_blob------ 2472 // 2473 // Generate a special Compile2Runtime blob that saves all registers, 2474 // and setup oopmap. 2475 // 2476 SafepointBlob* SharedRuntime::generate_handler_blob(SharedStubId id, address call_ptr) { 2477 assert(is_polling_page_id(id), "expected a polling page stub id"); 2478 2479 ResourceMark rm; 2480 OopMapSet *oop_maps = new OopMapSet(); 2481 assert_cond(oop_maps != nullptr); 2482 OopMap* map = nullptr; 2483 2484 // Allocate space for the code. Setup code generation tools. 2485 const char* name = SharedRuntime::stub_name(id); 2486 CodeBuffer buffer(name, 2048, 1024); 2487 MacroAssembler* masm = new MacroAssembler(&buffer); 2488 assert_cond(masm != nullptr); 2489 2490 address start = __ pc(); 2491 address call_pc = nullptr; 2492 int frame_size_in_words = -1; 2493 bool cause_return = (id == SharedStubId::polling_page_return_handler_id); 2494 RegisterSaver reg_saver(id == SharedStubId::polling_page_vectors_safepoint_handler_id /* save_vectors */); 2495 2496 // Save Integer and Float registers. 2497 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2498 2499 // The following is basically a call_VM. However, we need the precise 2500 // address of the call in order to generate an oopmap. Hence, we do all the 2501 // work ourselves. 2502 2503 Label retaddr; 2504 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2505 2506 // The return address must always be correct so that frame constructor never 2507 // sees an invalid pc. 2508 2509 if (!cause_return) { 2510 // overwrite the return address pushed by save_live_registers 2511 // Additionally, x18 is a callee-saved register so we can look at 2512 // it later to determine if someone changed the return address for 2513 // us! 2514 __ ld(x18, Address(xthread, JavaThread::saved_exception_pc_offset())); 2515 __ sd(x18, Address(fp, frame::return_addr_offset * wordSize)); 2516 } 2517 2518 // Do the call 2519 __ mv(c_rarg0, xthread); 2520 __ rt_call(call_ptr); 2521 __ bind(retaddr); 2522 2523 // Set an oopmap for the call site. This oopmap will map all 2524 // oop-registers and debug-info registers as callee-saved. This 2525 // will allow deoptimization at this safepoint to find all possible 2526 // debug-info recordings, as well as let GC find all oops. 2527 2528 oop_maps->add_gc_map( __ pc() - start, map); 2529 2530 Label noException; 2531 2532 __ reset_last_Java_frame(false); 2533 2534 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2535 2536 __ ld(t0, Address(xthread, Thread::pending_exception_offset())); 2537 __ beqz(t0, noException); 2538 2539 // Exception pending 2540 2541 reg_saver.restore_live_registers(masm); 2542 2543 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2544 2545 // No exception case 2546 __ bind(noException); 2547 2548 Label no_adjust, bail; 2549 if (!cause_return) { 2550 // If our stashed return pc was modified by the runtime we avoid touching it 2551 __ ld(t0, Address(fp, frame::return_addr_offset * wordSize)); 2552 __ bne(x18, t0, no_adjust); 2553 2554 #ifdef ASSERT 2555 // Verify the correct encoding of the poll we're about to skip. 2556 // See NativeInstruction::is_lwu_to_zr() 2557 __ lwu(t0, Address(x18)); 2558 __ andi(t1, t0, 0b1111111); 2559 __ mv(t2, 0b0000011); 2560 __ bne(t1, t2, bail); // 0-6:0b0000011 2561 __ srli(t1, t0, 7); 2562 __ andi(t1, t1, 0b11111); 2563 __ bnez(t1, bail); // 7-11:0b00000 2564 __ srli(t1, t0, 12); 2565 __ andi(t1, t1, 0b111); 2566 __ mv(t2, 0b110); 2567 __ bne(t1, t2, bail); // 12-14:0b110 2568 #endif 2569 2570 // Adjust return pc forward to step over the safepoint poll instruction 2571 __ addi(x18, x18, NativeInstruction::instruction_size); 2572 __ sd(x18, Address(fp, frame::return_addr_offset * wordSize)); 2573 } 2574 2575 __ bind(no_adjust); 2576 // Normal exit, restore registers and exit. 2577 2578 reg_saver.restore_live_registers(masm); 2579 __ ret(); 2580 2581 #ifdef ASSERT 2582 __ bind(bail); 2583 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2584 #endif 2585 2586 // Make sure all code is generated 2587 masm->flush(); 2588 2589 // Fill-out other meta info 2590 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2591 } 2592 2593 // 2594 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2595 // 2596 // Generate a stub that calls into vm to find out the proper destination 2597 // of a java call. All the argument registers are live at this point 2598 // but since this is generic code we don't know what they are and the caller 2599 // must do any gc of the args. 2600 // 2601 RuntimeStub* SharedRuntime::generate_resolve_blob(SharedStubId id, address destination) { 2602 assert(StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 2603 assert(is_resolve_id(id), "expected a resolve stub id"); 2604 2605 // allocate space for the code 2606 ResourceMark rm; 2607 2608 const char* name = SharedRuntime::stub_name(id); 2609 CodeBuffer buffer(name, 1000, 512); 2610 MacroAssembler* masm = new MacroAssembler(&buffer); 2611 assert_cond(masm != nullptr); 2612 2613 int frame_size_in_words = -1; 2614 RegisterSaver reg_saver(false /* save_vectors */); 2615 2616 OopMapSet *oop_maps = new OopMapSet(); 2617 assert_cond(oop_maps != nullptr); 2618 OopMap* map = nullptr; 2619 2620 int start = __ offset(); 2621 2622 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2623 2624 int frame_complete = __ offset(); 2625 2626 { 2627 Label retaddr; 2628 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2629 2630 __ mv(c_rarg0, xthread); 2631 __ rt_call(destination); 2632 __ bind(retaddr); 2633 } 2634 2635 // Set an oopmap for the call site. 2636 // We need this not only for callee-saved registers, but also for volatile 2637 // registers that the compiler might be keeping live across a safepoint. 2638 2639 oop_maps->add_gc_map( __ offset() - start, map); 2640 2641 // x10 contains the address we are going to jump to assuming no exception got installed 2642 2643 // clear last_Java_sp 2644 __ reset_last_Java_frame(false); 2645 // check for pending exceptions 2646 Label pending; 2647 __ ld(t1, Address(xthread, Thread::pending_exception_offset())); 2648 __ bnez(t1, pending); 2649 2650 // get the returned Method* 2651 __ get_vm_result_2(xmethod, xthread); 2652 __ sd(xmethod, Address(sp, reg_saver.reg_offset_in_bytes(xmethod))); 2653 2654 // x10 is where we want to jump, overwrite t1 which is saved and temporary 2655 __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(t1))); 2656 reg_saver.restore_live_registers(masm); 2657 2658 // We are back to the original state on entry and ready to go. 2659 __ jr(t1); 2660 2661 // Pending exception after the safepoint 2662 2663 __ bind(pending); 2664 2665 reg_saver.restore_live_registers(masm); 2666 2667 // exception pending => remove activation and forward to exception handler 2668 2669 __ sd(zr, Address(xthread, JavaThread::vm_result_offset())); 2670 2671 __ ld(x10, Address(xthread, Thread::pending_exception_offset())); 2672 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2673 2674 // ------------- 2675 // make sure all code is generated 2676 masm->flush(); 2677 2678 // return the blob 2679 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 2680 } 2681 2682 // Continuation point for throwing of implicit exceptions that are 2683 // not handled in the current activation. Fabricates an exception 2684 // oop and initiates normal exception dispatching in this 2685 // frame. Since we need to preserve callee-saved values (currently 2686 // only for C2, but done for C1 as well) we need a callee-saved oop 2687 // map and therefore have to make these stubs into RuntimeStubs 2688 // rather than BufferBlobs. If the compiler needs all registers to 2689 // be preserved between the fault point and the exception handler 2690 // then it must assume responsibility for that in 2691 // AbstractCompiler::continuation_for_implicit_null_exception or 2692 // continuation_for_implicit_division_by_zero_exception. All other 2693 // implicit exceptions (e.g., NullPointerException or 2694 // AbstractMethodError on entry) are either at call sites or 2695 // otherwise assume that stack unwinding will be initiated, so 2696 // caller saved registers were assumed volatile in the compiler. 2697 2698 RuntimeStub* SharedRuntime::generate_throw_exception(SharedStubId id, address runtime_entry) { 2699 assert(is_throw_id(id), "expected a throw stub id"); 2700 2701 const char* name = SharedRuntime::stub_name(id); 2702 2703 // Information about frame layout at time of blocking runtime call. 2704 // Note that we only have to preserve callee-saved registers since 2705 // the compilers are responsible for supplying a continuation point 2706 // if they expect all registers to be preserved. 2707 // n.b. riscv asserts that frame::arg_reg_save_area_bytes == 0 2708 assert_cond(runtime_entry != nullptr); 2709 enum layout { 2710 fp_off = 0, 2711 fp_off2, 2712 return_off, 2713 return_off2, 2714 framesize // inclusive of return address 2715 }; 2716 2717 const int insts_size = 1024; 2718 const int locs_size = 64; 2719 2720 ResourceMark rm; 2721 const char* timer_msg = "SharedRuntime generate_throw_exception"; 2722 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 2723 2724 CodeBuffer code(name, insts_size, locs_size); 2725 OopMapSet* oop_maps = new OopMapSet(); 2726 MacroAssembler* masm = new MacroAssembler(&code); 2727 assert_cond(oop_maps != nullptr && masm != nullptr); 2728 2729 address start = __ pc(); 2730 2731 // This is an inlined and slightly modified version of call_VM 2732 // which has the ability to fetch the return PC out of 2733 // thread-local storage and also sets up last_Java_sp slightly 2734 // differently than the real call_VM 2735 2736 __ enter(); // Save FP and RA before call 2737 2738 assert(is_even(framesize / 2), "sp not 16-byte aligned"); 2739 2740 // ra and fp are already in place 2741 __ subi(sp, fp, (unsigned)framesize << LogBytesPerInt); // prolog 2742 2743 int frame_complete = __ pc() - start; 2744 2745 // Set up last_Java_sp and last_Java_fp 2746 address the_pc = __ pc(); 2747 __ set_last_Java_frame(sp, fp, the_pc, t0); 2748 2749 // Call runtime 2750 __ mv(c_rarg0, xthread); 2751 BLOCK_COMMENT("call runtime_entry"); 2752 __ rt_call(runtime_entry); 2753 2754 // Generate oop map 2755 OopMap* map = new OopMap(framesize, 0); 2756 assert_cond(map != nullptr); 2757 2758 oop_maps->add_gc_map(the_pc - start, map); 2759 2760 __ reset_last_Java_frame(true); 2761 2762 __ leave(); 2763 2764 // check for pending exceptions 2765 #ifdef ASSERT 2766 Label L; 2767 __ ld(t0, Address(xthread, Thread::pending_exception_offset())); 2768 __ bnez(t0, L); 2769 __ should_not_reach_here(); 2770 __ bind(L); 2771 #endif // ASSERT 2772 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2773 2774 // codeBlob framesize is in words (not VMRegImpl::slot_size) 2775 RuntimeStub* stub = 2776 RuntimeStub::new_runtime_stub(name, 2777 &code, 2778 frame_complete, 2779 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2780 oop_maps, false); 2781 assert(stub != nullptr, "create runtime stub fail!"); 2782 return stub; 2783 } 2784 2785 #if INCLUDE_JFR 2786 2787 static void jfr_prologue(address the_pc, MacroAssembler* masm, Register thread) { 2788 __ set_last_Java_frame(sp, fp, the_pc, t0); 2789 __ mv(c_rarg0, thread); 2790 } 2791 2792 static void jfr_epilogue(MacroAssembler* masm) { 2793 __ reset_last_Java_frame(true); 2794 } 2795 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint. 2796 // It returns a jobject handle to the event writer. 2797 // The handle is dereferenced and the return value is the event writer oop. 2798 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() { 2799 enum layout { 2800 fp_off, 2801 fp_off2, 2802 return_off, 2803 return_off2, 2804 framesize // inclusive of return address 2805 }; 2806 2807 int insts_size = 1024; 2808 int locs_size = 64; 2809 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id); 2810 CodeBuffer code(name, insts_size, locs_size); 2811 OopMapSet* oop_maps = new OopMapSet(); 2812 MacroAssembler* masm = new MacroAssembler(&code); 2813 2814 address start = __ pc(); 2815 __ enter(); 2816 int frame_complete = __ pc() - start; 2817 address the_pc = __ pc(); 2818 jfr_prologue(the_pc, masm, xthread); 2819 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1); 2820 2821 jfr_epilogue(masm); 2822 __ resolve_global_jobject(x10, t0, t1); 2823 __ leave(); 2824 __ ret(); 2825 2826 OopMap* map = new OopMap(framesize, 1); 2827 oop_maps->add_gc_map(the_pc - start, map); 2828 2829 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 2830 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 2831 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2832 oop_maps, false); 2833 return stub; 2834 } 2835 2836 // For c2: call to return a leased buffer. 2837 RuntimeStub* SharedRuntime::generate_jfr_return_lease() { 2838 enum layout { 2839 fp_off, 2840 fp_off2, 2841 return_off, 2842 return_off2, 2843 framesize // inclusive of return address 2844 }; 2845 2846 int insts_size = 1024; 2847 int locs_size = 64; 2848 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_return_lease_id); 2849 CodeBuffer code(name, insts_size, locs_size); 2850 OopMapSet* oop_maps = new OopMapSet(); 2851 MacroAssembler* masm = new MacroAssembler(&code); 2852 2853 address start = __ pc(); 2854 __ enter(); 2855 int frame_complete = __ pc() - start; 2856 address the_pc = __ pc(); 2857 jfr_prologue(the_pc, masm, xthread); 2858 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1); 2859 2860 jfr_epilogue(masm); 2861 __ leave(); 2862 __ ret(); 2863 2864 OopMap* map = new OopMap(framesize, 1); 2865 oop_maps->add_gc_map(the_pc - start, map); 2866 2867 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 2868 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 2869 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2870 oop_maps, false); 2871 return stub; 2872 } 2873 2874 #endif // INCLUDE_JFR