1 /* 2 * Copyright (c) 2016, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2016, 2023 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "compiler/disassembler.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interpreter/abstractInterpreter.hpp" 32 #include "interpreter/bytecodeHistogram.hpp" 33 #include "interpreter/interpreter.hpp" 34 #include "interpreter/interpreterRuntime.hpp" 35 #include "interpreter/interp_masm.hpp" 36 #include "interpreter/templateInterpreterGenerator.hpp" 37 #include "interpreter/templateTable.hpp" 38 #include "oops/arrayOop.hpp" 39 #include "oops/methodCounters.hpp" 40 #include "oops/methodData.hpp" 41 #include "oops/oop.inline.hpp" 42 #include "oops/resolvedIndyEntry.hpp" 43 #include "oops/resolvedMethodEntry.hpp" 44 #include "prims/jvmtiExport.hpp" 45 #include "prims/jvmtiThreadState.hpp" 46 #include "runtime/arguments.hpp" 47 #include "runtime/deoptimization.hpp" 48 #include "runtime/frame.inline.hpp" 49 #include "runtime/jniHandles.hpp" 50 #include "runtime/sharedRuntime.hpp" 51 #include "runtime/stubRoutines.hpp" 52 #include "runtime/synchronizer.hpp" 53 #include "runtime/timer.hpp" 54 #include "runtime/vframeArray.hpp" 55 #include "utilities/debug.hpp" 56 #include "utilities/macros.hpp" 57 58 // Size of interpreter code. Increase if too small. Interpreter will 59 // fail with a guarantee ("not enough space for interpreter generation"); 60 // if too small. 61 // Run with +PrintInterpreter to get the VM to print out the size. 62 // Max size with JVMTI 63 int TemplateInterpreter::InterpreterCodeSize = 320*K; 64 65 #undef __ 66 #ifdef PRODUCT 67 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 68 #else 69 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 70 // #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)-> 71 #endif 72 73 #define BLOCK_COMMENT(str) __ block_comment(str) 74 #define BIND(label) __ bind(label); BLOCK_COMMENT(#label ":") 75 76 #define oop_tmp_offset _z_ijava_state_neg(oop_tmp) 77 78 //----------------------------------------------------------------------------- 79 80 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 81 // 82 // New slow_signature handler that respects the z/Architecture 83 // C calling conventions. 84 // 85 // We get called by the native entry code with our output register 86 // area == 8. First we call InterpreterRuntime::get_result_handler 87 // to copy the pointer to the signature string temporarily to the 88 // first C-argument and to return the result_handler in 89 // Z_RET. Since native_entry will copy the jni-pointer to the 90 // first C-argument slot later on, it's OK to occupy this slot 91 // temporarily. Then we copy the argument list on the java 92 // expression stack into native varargs format on the native stack 93 // and load arguments into argument registers. Integer arguments in 94 // the varargs vector will be sign-extended to 8 bytes. 95 // 96 // On entry: 97 // Z_ARG1 - intptr_t* Address of java argument list in memory. 98 // Z_state - zeroInterpreter* Address of interpreter state for 99 // this method 100 // Z_method 101 // 102 // On exit (just before return instruction): 103 // Z_RET contains the address of the result_handler. 104 // Z_ARG2 is not updated for static methods and contains "this" otherwise. 105 // Z_ARG3-Z_ARG5 contain the first 3 arguments of types other than float and double. 106 // Z_FARG1-Z_FARG4 contain the first 4 arguments of type float or double. 107 108 const int LogSizeOfCase = 3; 109 110 const int max_fp_register_arguments = Argument::n_float_register_parameters; 111 const int max_int_register_arguments = Argument::n_register_parameters - 2; // First 2 are reserved. 112 113 const Register arg_java = Z_tmp_2; 114 const Register arg_c = Z_tmp_3; 115 const Register signature = Z_R1_scratch; // Is a string. 116 const Register fpcnt = Z_R0_scratch; 117 const Register argcnt = Z_tmp_4; 118 const Register intSlot = Z_tmp_1; 119 const Register sig_end = Z_tmp_1; // Assumed end of signature (only used in do_object). 120 const Register target_sp = Z_tmp_1; 121 const FloatRegister floatSlot = Z_F1; 122 123 const int d_signature = _z_abi(gpr6); // Only spill space, register contents not affected. 124 const int d_fpcnt = _z_abi(gpr7); // Only spill space, register contents not affected. 125 126 unsigned int entry_offset = __ offset(); 127 128 BLOCK_COMMENT("slow_signature_handler {"); 129 130 // We use target_sp for storing arguments in the C frame. 131 __ save_return_pc(); 132 __ push_frame_abi160(4*BytesPerWord); // Reserve space to save the tmp_[1..4] registers. 133 __ z_stmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // Save registers only after frame is pushed. 134 135 __ z_lgr(arg_java, Z_ARG1); 136 137 Register method = Z_ARG2; // Directly load into correct argument register. 138 139 __ get_method(method); 140 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), Z_thread, method); 141 142 // Move signature to callee saved register. 143 // Don't directly write to stack. Frame is used by VM call. 144 __ z_lgr(Z_tmp_1, Z_RET); 145 146 // Reload method. Register may have been altered by VM call. 147 __ get_method(method); 148 149 // Get address of result handler. 150 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), Z_thread, method); 151 152 // Save signature address to stack. 153 __ z_stg(Z_tmp_1, d_signature, Z_SP); 154 155 // Don't overwrite return value (Z_RET, Z_ARG1) in rest of the method ! 156 157 { 158 Label isStatic; 159 160 // Test if static. 161 // We can test the bit directly. 162 // Path is Z_method->_access_flags._flags. 163 // We only support flag bits in the least significant byte (assert !). 164 // Therefore add 3 to address that byte within "_flags". 165 // Reload method. VM call above may have destroyed register contents 166 __ get_method(method); 167 __ testbit(method2_(method, access_flags), JVM_ACC_STATIC_BIT); 168 method = noreg; // end of life 169 __ z_btrue(isStatic); 170 171 // For non-static functions, pass "this" in Z_ARG2 and copy it to 2nd C-arg slot. 172 // Need to box the Java object here, so we use arg_java 173 // (address of current Java stack slot) as argument and 174 // don't dereference it as in case of ints, floats, etc.. 175 __ z_lgr(Z_ARG2, arg_java); 176 __ add2reg(arg_java, -BytesPerWord); 177 __ bind(isStatic); 178 } 179 180 // argcnt == 0 corresponds to 3rd C argument. 181 // arg #1 (result handler) and 182 // arg #2 (this, for non-statics), unused else 183 // are reserved and pre-filled above. 184 // arg_java points to the corresponding Java argument here. It 185 // has been decremented by one argument (this) in case of non-static. 186 __ clear_reg(argcnt, true, false); // Don't set CC. 187 __ z_lg(target_sp, 0, Z_SP); 188 __ add2reg(arg_c, _z_abi(remaining_cargs), target_sp); 189 // No floating-point args parsed so far. 190 __ clear_mem(Address(Z_SP, d_fpcnt), 8); 191 192 NearLabel move_intSlot_to_ARG, move_floatSlot_to_FARG; 193 NearLabel loop_start, loop_start_restore, loop_end; 194 NearLabel do_int, do_long, do_float, do_double; 195 NearLabel do_dontreachhere, do_object, do_array, do_boxed; 196 197 #ifdef ASSERT 198 // Signature needs to point to '(' (== 0x28) at entry. 199 __ z_lg(signature, d_signature, Z_SP); 200 __ z_cli(0, signature, (int) '('); 201 __ z_brne(do_dontreachhere); 202 #endif 203 204 __ bind(loop_start_restore); 205 __ z_lg(signature, d_signature, Z_SP); // Restore signature ptr, destroyed by move_XX_to_ARG. 206 207 BIND(loop_start); 208 // Advance to next argument type token from the signature. 209 __ add2reg(signature, 1); 210 211 // Use CLI, works well on all CPU versions. 212 __ z_cli(0, signature, (int) ')'); 213 __ z_bre(loop_end); // end of signature 214 __ z_cli(0, signature, (int) 'L'); 215 __ z_bre(do_object); // object #9 216 __ z_cli(0, signature, (int) 'F'); 217 __ z_bre(do_float); // float #7 218 __ z_cli(0, signature, (int) 'J'); 219 __ z_bre(do_long); // long #6 220 __ z_cli(0, signature, (int) 'B'); 221 __ z_bre(do_int); // byte #1 222 __ z_cli(0, signature, (int) 'Z'); 223 __ z_bre(do_int); // boolean #2 224 __ z_cli(0, signature, (int) 'C'); 225 __ z_bre(do_int); // char #3 226 __ z_cli(0, signature, (int) 'S'); 227 __ z_bre(do_int); // short #4 228 __ z_cli(0, signature, (int) 'I'); 229 __ z_bre(do_int); // int #5 230 __ z_cli(0, signature, (int) 'D'); 231 __ z_bre(do_double); // double #8 232 __ z_cli(0, signature, (int) '['); 233 __ z_bre(do_array); // array #10 234 235 __ bind(do_dontreachhere); 236 237 __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120); 238 239 // Array argument 240 BIND(do_array); 241 242 { 243 Label start_skip, end_skip; 244 245 __ bind(start_skip); 246 247 // Advance to next type tag from signature. 248 __ add2reg(signature, 1); 249 250 // Use CLI, works well on all CPU versions. 251 __ z_cli(0, signature, (int) '['); 252 __ z_bre(start_skip); // Skip further brackets. 253 254 __ z_cli(0, signature, (int) '9'); 255 __ z_brh(end_skip); // no optional size 256 257 __ z_cli(0, signature, (int) '0'); 258 __ z_brnl(start_skip); // Skip optional size. 259 260 __ bind(end_skip); 261 262 __ z_cli(0, signature, (int) 'L'); 263 __ z_brne(do_boxed); // If not array of objects: go directly to do_boxed. 264 } 265 266 // OOP argument 267 BIND(do_object); 268 // Pass by an object's type name. 269 { 270 Label L; 271 272 __ add2reg(sig_end, 4095, signature); // Assume object type name is shorter than 4k. 273 __ load_const_optimized(Z_R0, (int) ';'); // Type name terminator (must be in Z_R0!). 274 __ MacroAssembler::search_string(sig_end, signature); 275 __ z_brl(L); 276 __ z_illtrap(); // No semicolon found: internal error or object name too long. 277 __ bind(L); 278 __ z_lgr(signature, sig_end); 279 // fallthru to do_boxed 280 } 281 282 // Need to box the Java object here, so we use arg_java 283 // (address of current Java stack slot) as argument and 284 // don't dereference it as in case of ints, floats, etc.. 285 286 // UNBOX argument 287 // Load reference and check for null. 288 Label do_int_Entry4Boxed; 289 __ bind(do_boxed); 290 { 291 __ load_and_test_long(intSlot, Address(arg_java)); 292 __ z_bre(do_int_Entry4Boxed); 293 __ z_lgr(intSlot, arg_java); 294 __ z_bru(do_int_Entry4Boxed); 295 } 296 297 // INT argument 298 299 // (also for byte, boolean, char, short) 300 // Use lgf for load (sign-extend) and stg for store. 301 BIND(do_int); 302 __ z_lgf(intSlot, 0, arg_java); 303 304 __ bind(do_int_Entry4Boxed); 305 __ add2reg(arg_java, -BytesPerWord); 306 // If argument fits into argument register, go and handle it, otherwise continue. 307 __ compare32_and_branch(argcnt, max_int_register_arguments, 308 Assembler::bcondLow, move_intSlot_to_ARG); 309 __ z_stg(intSlot, 0, arg_c); 310 __ add2reg(arg_c, BytesPerWord); 311 __ z_bru(loop_start); 312 313 // LONG argument 314 315 BIND(do_long); 316 __ add2reg(arg_java, -2*BytesPerWord); // Decrement first to have positive displacement for lg. 317 __ z_lg(intSlot, BytesPerWord, arg_java); 318 // If argument fits into argument register, go and handle it, otherwise continue. 319 __ compare32_and_branch(argcnt, max_int_register_arguments, 320 Assembler::bcondLow, move_intSlot_to_ARG); 321 __ z_stg(intSlot, 0, arg_c); 322 __ add2reg(arg_c, BytesPerWord); 323 __ z_bru(loop_start); 324 325 // FLOAT argumen 326 327 BIND(do_float); 328 __ z_le(floatSlot, 0, arg_java); 329 __ add2reg(arg_java, -BytesPerWord); 330 assert(max_fp_register_arguments <= 255, "always true"); // safety net 331 __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments); 332 __ z_brl(move_floatSlot_to_FARG); 333 __ z_ste(floatSlot, 4, arg_c); 334 __ add2reg(arg_c, BytesPerWord); 335 __ z_bru(loop_start); 336 337 // DOUBLE argument 338 339 BIND(do_double); 340 __ add2reg(arg_java, -2*BytesPerWord); // Decrement first to have positive displacement for lg. 341 __ z_ld(floatSlot, BytesPerWord, arg_java); 342 assert(max_fp_register_arguments <= 255, "always true"); // safety net 343 __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments); 344 __ z_brl(move_floatSlot_to_FARG); 345 __ z_std(floatSlot, 0, arg_c); 346 __ add2reg(arg_c, BytesPerWord); 347 __ z_bru(loop_start); 348 349 // Method exit, all arguments processed. 350 __ bind(loop_end); 351 __ z_lmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // restore registers before frame is popped. 352 __ pop_frame(); 353 __ restore_return_pc(); 354 __ z_br(Z_R14); 355 356 // Copy int arguments. 357 358 Label iarg_caselist; // Distance between each case has to be a power of 2 359 // (= 1 << LogSizeOfCase). 360 __ align(16); 361 BIND(iarg_caselist); 362 __ z_lgr(Z_ARG3, intSlot); // 4 bytes 363 __ z_bru(loop_start_restore); // 4 bytes 364 365 __ z_lgr(Z_ARG4, intSlot); 366 __ z_bru(loop_start_restore); 367 368 __ z_lgr(Z_ARG5, intSlot); 369 __ z_bru(loop_start_restore); 370 371 __ align(16); 372 __ bind(move_intSlot_to_ARG); 373 __ z_stg(signature, d_signature, Z_SP); // Spill since signature == Z_R1_scratch. 374 __ z_larl(Z_R1_scratch, iarg_caselist); 375 __ z_sllg(Z_R0_scratch, argcnt, LogSizeOfCase); 376 __ add2reg(argcnt, 1); 377 __ z_agr(Z_R1_scratch, Z_R0_scratch); 378 __ z_bcr(Assembler::bcondAlways, Z_R1_scratch); 379 380 // Copy float arguments. 381 382 Label farg_caselist; // Distance between each case has to be a power of 2 383 // (= 1 << logSizeOfCase, padded with nop. 384 __ align(16); 385 BIND(farg_caselist); 386 __ z_ldr(Z_FARG1, floatSlot); // 2 bytes 387 __ z_bru(loop_start_restore); // 4 bytes 388 __ z_nop(); // 2 bytes 389 390 __ z_ldr(Z_FARG2, floatSlot); 391 __ z_bru(loop_start_restore); 392 __ z_nop(); 393 394 __ z_ldr(Z_FARG3, floatSlot); 395 __ z_bru(loop_start_restore); 396 __ z_nop(); 397 398 __ z_ldr(Z_FARG4, floatSlot); 399 __ z_bru(loop_start_restore); 400 __ z_nop(); 401 402 __ align(16); 403 __ bind(move_floatSlot_to_FARG); 404 __ z_stg(signature, d_signature, Z_SP); // Spill since signature == Z_R1_scratch. 405 __ z_lg(Z_R0_scratch, d_fpcnt, Z_SP); // Need old value for indexing. 406 __ add2mem_64(Address(Z_SP, d_fpcnt), 1, Z_R1_scratch); // Increment index. 407 __ z_larl(Z_R1_scratch, farg_caselist); 408 __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogSizeOfCase); 409 __ z_agr(Z_R1_scratch, Z_R0_scratch); 410 __ z_bcr(Assembler::bcondAlways, Z_R1_scratch); 411 412 BLOCK_COMMENT("} slow_signature_handler"); 413 414 return __ addr_at(entry_offset); 415 } 416 417 address TemplateInterpreterGenerator::generate_result_handler_for (BasicType type) { 418 address entry = __ pc(); 419 420 assert(Z_tos == Z_RET, "Result handler: must move result!"); 421 assert(Z_ftos == Z_FRET, "Result handler: must move float result!"); 422 423 switch (type) { 424 case T_BOOLEAN: 425 __ c2bool(Z_tos); 426 break; 427 case T_CHAR: 428 __ and_imm(Z_tos, 0xffff); 429 break; 430 case T_BYTE: 431 __ z_lbr(Z_tos, Z_tos); 432 break; 433 case T_SHORT: 434 __ z_lhr(Z_tos, Z_tos); 435 break; 436 case T_INT: 437 case T_LONG: 438 case T_VOID: 439 case T_FLOAT: 440 case T_DOUBLE: 441 break; 442 case T_OBJECT: 443 // Retrieve result from frame... 444 __ mem2reg_opt(Z_tos, Address(Z_fp, oop_tmp_offset)); 445 // and verify it. 446 __ verify_oop(Z_tos); 447 break; 448 default: 449 ShouldNotReachHere(); 450 } 451 __ z_br(Z_R14); // Return from result handler. 452 return entry; 453 } 454 455 // Abstract method entry. 456 // Attempt to execute abstract method. Throw exception. 457 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 458 unsigned int entry_offset = __ offset(); 459 460 // Caller could be the call_stub or a compiled method (x86 version is wrong!). 461 462 BLOCK_COMMENT("abstract_entry {"); 463 464 // Implement call of InterpreterRuntime::throw_AbstractMethodError. 465 __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1); 466 __ save_return_pc(); // Save Z_R14. 467 __ push_frame_abi160(0); // Without new frame the RT call could overwrite the saved Z_R14. 468 469 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorWithMethod), 470 Z_thread, Z_method); 471 472 __ pop_frame(); 473 __ restore_return_pc(); // Restore Z_R14. 474 __ reset_last_Java_frame(); 475 476 // Restore caller sp for c2i case. 477 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 478 479 // branch to SharedRuntime::generate_forward_exception() which handles all possible callers, 480 // i.e. call stub, compiled method, interpreted method. 481 __ load_absolute_address(Z_tmp_1, StubRoutines::forward_exception_entry()); 482 __ z_br(Z_tmp_1); 483 484 BLOCK_COMMENT("} abstract_entry"); 485 486 return __ addr_at(entry_offset); 487 } 488 489 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 490 // Inputs: 491 // Z_ARG1 - receiver 492 // 493 // What we do: 494 // - Load the referent field address. 495 // - Load the value in the referent field. 496 // - Pass that value to the pre-barrier. 497 // 498 // In the case of G1 this will record the value of the 499 // referent in an SATB buffer if marking is active. 500 // This will cause concurrent marking to mark the referent 501 // field as live. 502 503 Register scratch1 = Z_tmp_2; 504 Register scratch2 = Z_tmp_3; 505 Register pre_val = Z_RET; // return value 506 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 507 Register Rargp = Z_esp; 508 509 Label slow_path; 510 address entry = __ pc(); 511 512 const int referent_offset = java_lang_ref_Reference::referent_offset(); 513 514 BLOCK_COMMENT("Reference_get {"); 515 516 // If the receiver is null then it is OK to jump to the slow path. 517 __ load_and_test_long(pre_val, Address(Rargp, Interpreter::stackElementSize)); // Get receiver. 518 __ z_bre(slow_path); 519 520 // Load the value of the referent field. 521 __ load_heap_oop(pre_val, Address(pre_val, referent_offset), scratch1, scratch2, ON_WEAK_OOP_REF); 522 523 // Restore caller sp for c2i case. 524 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 525 __ z_br(Z_R14); 526 527 // Branch to previously generated regular method entry. 528 __ bind(slow_path); 529 530 address meth_entry = Interpreter::entry_for_kind(Interpreter::zerolocals); 531 __ jump_to_entry(meth_entry, Z_R1); 532 533 BLOCK_COMMENT("} Reference_get"); 534 535 return entry; 536 } 537 538 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 539 address entry = __ pc(); 540 541 DEBUG_ONLY(__ verify_esp(Z_esp, Z_ARG5)); 542 543 // Restore bcp under the assumption that the current frame is still 544 // interpreted. 545 __ restore_bcp(); 546 547 // Expression stack must be empty before entering the VM if an 548 // exception happened. 549 __ empty_expression_stack(); 550 // Throw exception. 551 __ call_VM(noreg, 552 CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError)); 553 return entry; 554 } 555 556 // 557 // Args: 558 // Z_ARG2: oop of array 559 // Z_ARG3: aberrant index 560 // 561 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 562 address entry = __ pc(); 563 address excp = CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException); 564 565 // Expression stack must be empty before entering the VM if an 566 // exception happened. 567 __ empty_expression_stack(); 568 569 // Setup parameters. 570 // Pass register with array to create more detailed exceptions. 571 __ call_VM(noreg, excp, Z_ARG2, Z_ARG3); 572 return entry; 573 } 574 575 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 576 address entry = __ pc(); 577 578 // Object is at TOS. 579 __ pop_ptr(Z_ARG2); 580 581 // Expression stack must be empty before entering the VM if an 582 // exception happened. 583 __ empty_expression_stack(); 584 585 __ call_VM(Z_ARG1, 586 CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), 587 Z_ARG2); 588 589 DEBUG_ONLY(__ should_not_reach_here();) 590 591 return entry; 592 } 593 594 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) { 595 assert(!pass_oop || message == nullptr, "either oop or message but not both"); 596 address entry = __ pc(); 597 598 BLOCK_COMMENT("exception_handler_common {"); 599 600 // Expression stack must be empty before entering the VM if an 601 // exception happened. 602 __ empty_expression_stack(); 603 if (name != nullptr) { 604 __ load_absolute_address(Z_ARG2, (address)name); 605 } else { 606 __ clear_reg(Z_ARG2, true, false); 607 } 608 609 if (pass_oop) { 610 __ call_VM(Z_tos, 611 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), 612 Z_ARG2, Z_tos /*object (see TT::aastore())*/); 613 } else { 614 if (message != nullptr) { 615 __ load_absolute_address(Z_ARG3, (address)message); 616 } else { 617 __ clear_reg(Z_ARG3, true, false); 618 } 619 __ call_VM(Z_tos, 620 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), 621 Z_ARG2, Z_ARG3); 622 } 623 // Throw exception. 624 __ load_absolute_address(Z_R1_scratch, Interpreter::throw_exception_entry()); 625 __ z_br(Z_R1_scratch); 626 627 BLOCK_COMMENT("} exception_handler_common"); 628 629 return entry; 630 } 631 632 address TemplateInterpreterGenerator::generate_return_entry_for (TosState state, int step, size_t index_size) { 633 address entry = __ pc(); 634 635 BLOCK_COMMENT("return_entry {"); 636 637 // Pop i2c extension or revert top-2-parent-resize done by interpreted callees. 638 Register sp_before_i2c_extension = Z_bcp; 639 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. 640 __ z_lg(sp_before_i2c_extension, Address(Z_fp, _z_ijava_state_neg(top_frame_sp))); 641 __ resize_frame_absolute(sp_before_i2c_extension, Z_locals/*tmp*/, true/*load_fp*/); 642 643 // TODO(ZASM): necessary?? 644 // // and null it as marker that esp is now tos until next java call 645 // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); 646 647 __ restore_bcp(); 648 __ restore_locals(); 649 __ restore_esp(); 650 651 if (state == atos) { 652 __ profile_return_type(Z_tmp_1, Z_tos, Z_tmp_2); 653 } 654 655 Register cache = Z_tmp_1; 656 Register size = Z_tmp_2; 657 Register index = Z_tmp_2; 658 if (index_size == sizeof(u4)) { 659 __ load_resolved_indy_entry(cache, index); 660 __ z_llgh(size, in_bytes(ResolvedIndyEntry::num_parameters_offset()), cache); 661 } else { 662 assert(index_size == sizeof(u2), "Can only be u2"); 663 __ load_method_entry(cache, index); 664 __ load_sized_value(size, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())), sizeof(u2), false /*is_signed*/); 665 } 666 __ z_sllg(size, size, Interpreter::logStackElementSize); // Each argument size in bytes. 667 __ z_agr(Z_esp, size); // Pop arguments. 668 669 __ check_and_handle_popframe(Z_thread); 670 __ check_and_handle_earlyret(Z_thread); 671 672 __ dispatch_next(state, step); 673 674 BLOCK_COMMENT("} return_entry"); 675 676 return entry; 677 } 678 679 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, 680 int step, 681 address continuation) { 682 address entry = __ pc(); 683 684 BLOCK_COMMENT("deopt_entry {"); 685 686 // TODO(ZASM): necessary? null last_sp until next java call 687 // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); 688 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. 689 __ restore_bcp(); 690 __ restore_locals(); 691 __ restore_esp(); 692 693 // Handle exceptions. 694 { 695 Label L; 696 __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception)); 697 __ z_bre(L); 698 __ call_VM(noreg, 699 CAST_FROM_FN_PTR(address, 700 InterpreterRuntime::throw_pending_exception)); 701 __ should_not_reach_here(); 702 __ bind(L); 703 } 704 if (continuation == nullptr) { 705 __ dispatch_next(state, step); 706 } else { 707 __ jump_to_entry(continuation, Z_R1_scratch); 708 } 709 710 BLOCK_COMMENT("} deopt_entry"); 711 712 return entry; 713 } 714 715 address TemplateInterpreterGenerator::generate_safept_entry_for (TosState state, 716 address runtime_entry) { 717 address entry = __ pc(); 718 __ push(state); 719 __ call_VM(noreg, runtime_entry); 720 __ dispatch_via(vtos, Interpreter::_normal_table.table_for (vtos)); 721 return entry; 722 } 723 724 address TemplateInterpreterGenerator::generate_cont_resume_interpreter_adapter() { 725 return nullptr; 726 } 727 728 729 // 730 // Helpers for commoning out cases in the various type of method entries. 731 // 732 733 // Increment invocation count & check for overflow. 734 // 735 // Note: checking for negative value instead of overflow 736 // so we have a 'sticky' overflow test. 737 // 738 // Z_ARG2: method (see generate_fixed_frame()) 739 // 740 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 741 Label done; 742 Register method = Z_ARG2; // Generate_fixed_frame() copies Z_method into Z_ARG2. 743 Register m_counters = Z_ARG4; 744 745 BLOCK_COMMENT("counter_incr {"); 746 747 // Note: In tiered we increment either counters in method or in MDO depending 748 // if we are profiling or not. 749 int increment = InvocationCounter::count_increment; 750 if (ProfileInterpreter) { 751 NearLabel no_mdo; 752 Register mdo = m_counters; 753 // Are we profiling? 754 __ load_and_test_long(mdo, method2_(method, method_data)); 755 __ branch_optimized(Assembler::bcondZero, no_mdo); 756 // Increment counter in the MDO. 757 const Address mdo_invocation_counter(mdo, MethodData::invocation_counter_offset() + 758 InvocationCounter::counter_offset()); 759 const Address mask(mdo, MethodData::invoke_mask_offset()); 760 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, 761 Z_R1_scratch, false, Assembler::bcondZero, 762 overflow); 763 __ z_bru(done); 764 __ bind(no_mdo); 765 } 766 767 // Increment counter in MethodCounters. 768 const Address invocation_counter(m_counters, 769 MethodCounters::invocation_counter_offset() + 770 InvocationCounter::counter_offset()); 771 // Get address of MethodCounters object. 772 __ get_method_counters(method, m_counters, done); 773 const Address mask(m_counters, MethodCounters::invoke_mask_offset()); 774 __ increment_mask_and_jump(invocation_counter, 775 increment, mask, 776 Z_R1_scratch, false, Assembler::bcondZero, 777 overflow); 778 779 __ bind(done); 780 781 BLOCK_COMMENT("} counter_incr"); 782 } 783 784 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 785 // InterpreterRuntime::frequency_counter_overflow takes two 786 // arguments, the first (thread) is passed by call_VM, the second 787 // indicates if the counter overflow occurs at a backwards branch 788 // (null bcp). We pass zero for it. The call returns the address 789 // of the verified entry point for the method or null if the 790 // compilation did not complete (either went background or bailed 791 // out). 792 __ clear_reg(Z_ARG2); 793 __ call_VM(noreg, 794 CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), 795 Z_ARG2); 796 __ z_bru(do_continue); 797 } 798 799 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register frame_size, Register tmp1) { 800 Register tmp2 = Z_R1_scratch; 801 const int page_size = (int)os::vm_page_size(); 802 NearLabel after_frame_check; 803 804 BLOCK_COMMENT("stack_overflow_check {"); 805 806 assert_different_registers(frame_size, tmp1); 807 808 // Stack banging is sufficient overflow check if frame_size < page_size. 809 if (Immediate::is_uimm(page_size, 15)) { 810 __ z_chi(frame_size, page_size); 811 __ z_brl(after_frame_check); 812 } else { 813 __ load_const_optimized(tmp1, page_size); 814 __ compareU32_and_branch(frame_size, tmp1, Assembler::bcondLow, after_frame_check); 815 } 816 817 // Get the stack base, and in debug, verify it is non-zero. 818 __ z_lg(tmp1, thread_(stack_base)); 819 #ifdef ASSERT 820 address reentry = nullptr; 821 NearLabel base_not_zero; 822 __ compareU64_and_branch(tmp1, (intptr_t)0L, Assembler::bcondNotEqual, base_not_zero); 823 reentry = __ stop_chain_static(reentry, "stack base is zero in generate_stack_overflow_check"); 824 __ bind(base_not_zero); 825 #endif 826 827 // Get the stack size, and in debug, verify it is non-zero. 828 assert(sizeof(size_t) == sizeof(intptr_t), "wrong load size"); 829 __ z_lg(tmp2, thread_(stack_size)); 830 #ifdef ASSERT 831 NearLabel size_not_zero; 832 __ compareU64_and_branch(tmp2, (intptr_t)0L, Assembler::bcondNotEqual, size_not_zero); 833 reentry = __ stop_chain_static(reentry, "stack size is zero in generate_stack_overflow_check"); 834 __ bind(size_not_zero); 835 #endif 836 837 // Compute the beginning of the protected zone minus the requested frame size. 838 __ z_sgr(tmp1, tmp2); 839 __ add2reg(tmp1, StackOverflow::stack_guard_zone_size()); 840 841 // Add in the size of the frame (which is the same as subtracting it from the 842 // SP, which would take another register. 843 __ z_agr(tmp1, frame_size); 844 845 // The frame is greater than one page in size, so check against 846 // the bottom of the stack. 847 __ compareU64_and_branch(Z_SP, tmp1, Assembler::bcondHigh, after_frame_check); 848 849 // The stack will overflow, throw an exception. 850 851 // Restore SP to sender's sp. This is necessary if the sender's frame is an 852 // extended compiled frame (see gen_c2i_adapter()) and safer anyway in case of 853 // JSR292 adaptations. 854 __ resize_frame_absolute(Z_R10, tmp1, true/*load_fp*/); 855 856 // Note also that the restored frame is not necessarily interpreted. 857 // Use the shared runtime version of the StackOverflowError. 858 assert(SharedRuntime::throw_StackOverflowError_entry() != nullptr, "stub not yet generated"); 859 AddressLiteral stub(SharedRuntime::throw_StackOverflowError_entry()); 860 __ load_absolute_address(tmp1, SharedRuntime::throw_StackOverflowError_entry()); 861 __ z_br(tmp1); 862 863 // If you get to here, then there is enough stack space. 864 __ bind(after_frame_check); 865 866 BLOCK_COMMENT("} stack_overflow_check"); 867 } 868 869 // Allocate monitor and lock method (asm interpreter). 870 // 871 // Args: 872 // Z_locals: locals 873 874 void TemplateInterpreterGenerator::lock_method(void) { 875 876 BLOCK_COMMENT("lock_method {"); 877 878 // Synchronize method. 879 const Register method = Z_tmp_2; 880 __ get_method(method); 881 882 #ifdef ASSERT 883 address reentry = nullptr; 884 { 885 Label L; 886 __ testbit(method2_(method, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 887 __ z_btrue(L); 888 reentry = __ stop_chain_static(reentry, "method doesn't need synchronization"); 889 __ bind(L); 890 } 891 #endif // ASSERT 892 893 // Get synchronization object. 894 const Register object = Z_tmp_2; 895 896 { 897 Label done; 898 Label static_method; 899 900 __ testbit(method2_(method, access_flags), JVM_ACC_STATIC_BIT); 901 __ z_btrue(static_method); 902 903 // non-static method: Load receiver obj from stack. 904 __ mem2reg_opt(object, Address(Z_locals, Interpreter::local_offset_in_bytes(0))); 905 __ z_bru(done); 906 907 __ bind(static_method); 908 909 // Lock the java mirror. 910 // Load mirror from interpreter frame. 911 __ z_lg(object, _z_ijava_state_neg(mirror), Z_fp); 912 913 #ifdef ASSERT 914 { 915 NearLabel L; 916 __ compare64_and_branch(object, (intptr_t) 0, Assembler::bcondNotEqual, L); 917 reentry = __ stop_chain_static(reentry, "synchronization object is null"); 918 __ bind(L); 919 } 920 #endif // ASSERT 921 922 __ bind(done); 923 } 924 925 __ add_monitor_to_stack(true, Z_ARG3, Z_ARG4, Z_ARG5); // Allocate monitor elem. 926 // Store object and lock it. 927 __ get_monitors(Z_tmp_1); 928 __ reg2mem_opt(object, Address(Z_tmp_1, BasicObjectLock::obj_offset())); 929 __ lock_object(Z_tmp_1, object); 930 931 BLOCK_COMMENT("} lock_method"); 932 } 933 934 // Generate a fixed interpreter frame. This is identical setup for 935 // interpreted methods and for native methods hence the shared code. 936 // 937 // Registers alive 938 // Z_thread - JavaThread* 939 // Z_SP - old stack pointer 940 // Z_method - callee's method 941 // Z_esp - parameter list (slot 'above' last param) 942 // Z_R14 - return pc, to be stored in caller's frame 943 // Z_R10 - sender sp, note: Z_tmp_1 is Z_R10! 944 // 945 // Registers updated 946 // Z_SP - new stack pointer 947 // Z_esp - callee's operand stack pointer 948 // points to the slot above the value on top 949 // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord) 950 // Z_bcp - the bytecode pointer 951 // Z_fp - the frame pointer, thereby killing Z_method 952 // Z_ARG2 - copy of Z_method 953 // 954 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 955 956 // stack layout 957 // 958 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (see note below) 959 // [F1's operand stack (unused)] 960 // [F1's outgoing Java arguments] <-- Z_esp 961 // [F1's operand stack (non args)] 962 // [monitors] (optional) 963 // [IJAVA_STATE] 964 // 965 // F2 [PARENT_IJAVA_FRAME_ABI] 966 // ... 967 // 968 // 0x000 969 // 970 // Note: Z_R10, the sender sp, will be below Z_SP if F1 was extended by a c2i adapter. 971 972 //============================================================================= 973 // Allocate space for locals other than the parameters, the 974 // interpreter state, monitors, and the expression stack. 975 976 const Register local_count = Z_ARG5; 977 const Register fp = Z_tmp_2; 978 const Register const_method = Z_ARG1; 979 980 BLOCK_COMMENT("generate_fixed_frame {"); 981 { 982 // local registers 983 const Register top_frame_size = Z_ARG2; 984 const Register sp_after_resize = Z_ARG3; 985 const Register max_stack = Z_ARG4; 986 987 __ z_lg(const_method, Address(Z_method, Method::const_offset())); 988 __ z_llgh(max_stack, Address(const_method, ConstMethod::size_of_parameters_offset())); 989 __ z_sllg(Z_locals /*parameter_count bytes*/, max_stack /*parameter_count*/, LogBytesPerWord); 990 991 if (native_call) { 992 // If we're calling a native method, we replace max_stack (which is 993 // zero) with space for the worst-case signature handler varargs 994 // vector, which is: 995 // max_stack = max(Argument::n_register_parameters, parameter_count+2); 996 // 997 // We add two slots to the parameter_count, one for the jni 998 // environment and one for a possible native mirror. We allocate 999 // space for at least the number of ABI registers, even though 1000 // InterpreterRuntime::slow_signature_handler won't write more than 1001 // parameter_count+2 words when it creates the varargs vector at the 1002 // top of the stack. The generated slow signature handler will just 1003 // load trash into registers beyond the necessary number. We're 1004 // still going to cut the stack back by the ABI register parameter 1005 // count so as to get SP+16 pointing at the ABI outgoing parameter 1006 // area, so we need to allocate at least that much even though we're 1007 // going to throw it away. 1008 // 1009 __ add2reg(max_stack, 2); 1010 1011 NearLabel passing_args_on_stack; 1012 1013 // max_stack in bytes 1014 __ z_sllg(max_stack, max_stack, LogBytesPerWord); 1015 1016 int argument_registers_in_bytes = Argument::n_register_parameters << LogBytesPerWord; 1017 __ compare64_and_branch(max_stack, argument_registers_in_bytes, Assembler::bcondNotLow, passing_args_on_stack); 1018 1019 __ load_const_optimized(max_stack, argument_registers_in_bytes); 1020 1021 __ bind(passing_args_on_stack); 1022 } else { 1023 // !native_call 1024 // local_count = method->constMethod->max_locals(); 1025 __ z_llgh(local_count, Address(const_method, ConstMethod::size_of_locals_offset())); 1026 1027 // Calculate number of non-parameter locals (in slots): 1028 __ z_sgr(local_count, max_stack); 1029 1030 // max_stack = method->max_stack(); 1031 __ z_llgh(max_stack, Address(const_method, ConstMethod::max_stack_offset())); 1032 // max_stack in bytes 1033 __ z_sllg(max_stack, max_stack, LogBytesPerWord); 1034 } 1035 1036 // Resize (i.e. normally shrink) the top frame F1 ... 1037 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 1038 // F1's operand stack (free) 1039 // ... 1040 // F1's operand stack (free) <-- Z_esp 1041 // F1's outgoing Java arg m 1042 // ... 1043 // F1's outgoing Java arg 0 1044 // ... 1045 // 1046 // ... into a parent frame (Z_R10 holds F1's SP before any modification, see also above) 1047 // 1048 // +......................+ 1049 // : : <-- Z_R10, saved below as F0's z_ijava_state.sender_sp 1050 // : : 1051 // F1 [PARENT_IJAVA_FRAME_ABI] <-- Z_SP \ 1052 // F0's non arg local | = delta 1053 // ... | 1054 // F0's non arg local <-- Z_esp / 1055 // F1's outgoing Java arg m 1056 // ... 1057 // F1's outgoing Java arg 0 1058 // ... 1059 // 1060 // then push the new top frame F0. 1061 // 1062 // F0 [TOP_IJAVA_FRAME_ABI] = frame::z_top_ijava_frame_abi_size \ 1063 // [operand stack] = max_stack | = top_frame_size 1064 // [IJAVA_STATE] = frame::z_ijava_state_size / 1065 1066 // sp_after_resize = Z_esp - delta 1067 // 1068 // delta = PARENT_IJAVA_FRAME_ABI + (locals_count - params_count) 1069 1070 __ add2reg(sp_after_resize, (Interpreter::stackElementSize) - (frame::z_parent_ijava_frame_abi_size), Z_esp); 1071 if (!native_call) { 1072 __ z_sllg(Z_R0_scratch, local_count, LogBytesPerWord); // Params have already been subtracted from local_count. 1073 __ z_slgr(sp_after_resize, Z_R0_scratch); 1074 } 1075 1076 // top_frame_size = TOP_IJAVA_FRAME_ABI + max_stack + size of interpreter state 1077 __ add2reg(top_frame_size, 1078 frame::z_top_ijava_frame_abi_size + 1079 frame::z_ijava_state_size, 1080 max_stack); 1081 1082 if (!native_call) { 1083 // Stack overflow check. 1084 // Native calls don't need the stack size check since they have no 1085 // expression stack and the arguments are already on the stack and 1086 // we only add a handful of words to the stack. 1087 Register frame_size = max_stack; // Reuse the register for max_stack. 1088 __ z_lgr(frame_size, Z_SP); 1089 __ z_sgr(frame_size, sp_after_resize); 1090 __ z_agr(frame_size, top_frame_size); 1091 generate_stack_overflow_check(frame_size, fp/*tmp1*/); 1092 } 1093 1094 // asm_assert* is a nop in product builds 1095 NOT_PRODUCT(__ z_cg(Z_R14, _z_common_abi(return_pc), Z_SP)); 1096 NOT_PRODUCT(__ asm_assert(Assembler::bcondEqual, "killed Z_R14", 0)); 1097 __ resize_frame_absolute(sp_after_resize, fp, true); 1098 __ save_return_pc(Z_R14); 1099 1100 // ... and push the new frame F0. 1101 __ push_frame(top_frame_size, fp, true /*copy_sp*/, false); 1102 } 1103 1104 //============================================================================= 1105 // Initialize the new frame F0: initialize interpreter state. 1106 1107 { 1108 // locals 1109 const Register local_addr = Z_ARG4; 1110 1111 BLOCK_COMMENT("generate_fixed_frame: initialize interpreter state {"); 1112 1113 #ifdef ASSERT 1114 // Set the magic number (using local_addr as tmp register). 1115 __ load_const_optimized(local_addr, frame::z_istate_magic_number); 1116 __ z_stg(local_addr, _z_ijava_state_neg(magic), fp); 1117 #endif 1118 1119 // Save sender SP from F1 (i.e. before it was potentially modified by an 1120 // adapter) into F0's interpreter state. We use it as well to revert 1121 // resizing the frame above. 1122 __ z_stg(Z_R10, _z_ijava_state_neg(sender_sp), fp); 1123 1124 // Load cp cache and save it at the end of this block. 1125 __ z_lg(Z_R1_scratch, Address(const_method, ConstMethod::constants_offset())); 1126 __ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstantPool::cache_offset())); 1127 1128 // z_ijava_state->method = method; 1129 __ z_stg(Z_method, _z_ijava_state_neg(method), fp); 1130 1131 // Point locals at the first argument. Method's locals are the 1132 // parameters on top of caller's expression stack. 1133 // Tos points past last Java argument. 1134 1135 __ z_agr(Z_locals, Z_esp); 1136 // z_ijava_state->locals - i*BytesPerWord points to i-th Java local (i starts at 0) 1137 // z_ijava_state->locals = Z_esp + parameter_count bytes 1138 __ z_stg(Z_locals, _z_ijava_state_neg(locals), fp); 1139 1140 // z_ijava_state->oop_temp = nullptr; 1141 __ store_const(Address(fp, oop_tmp_offset), 0); 1142 1143 // Initialize z_ijava_state->mdx. 1144 Register Rmdp = Z_bcp; 1145 // native_call: assert that mdo is null 1146 const bool check_for_mdo = !native_call DEBUG_ONLY(|| native_call); 1147 if (ProfileInterpreter && check_for_mdo) { 1148 Label get_continue; 1149 1150 __ load_and_test_long(Rmdp, method_(method_data)); 1151 __ z_brz(get_continue); 1152 DEBUG_ONLY(if (native_call) __ stop("native methods don't have a mdo")); 1153 __ add2reg(Rmdp, in_bytes(MethodData::data_offset())); 1154 __ bind(get_continue); 1155 } 1156 __ z_stg(Rmdp, _z_ijava_state_neg(mdx), fp); 1157 1158 // Initialize z_ijava_state->bcp and Z_bcp. 1159 if (native_call) { 1160 __ clear_reg(Z_bcp); // Must initialize. Will get written into frame where GC reads it. 1161 } else { 1162 __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset()), const_method); 1163 } 1164 __ z_stg(Z_bcp, _z_ijava_state_neg(bcp), fp); 1165 1166 // no monitors and empty operand stack 1167 // => z_ijava_state->monitors points to the top slot in IJAVA_STATE. 1168 // => Z_ijava_state->esp points one slot above into the operand stack. 1169 // z_ijava_state->monitors = fp - frame::z_ijava_state_size - Interpreter::stackElementSize; 1170 // z_ijava_state->esp = Z_esp = z_ijava_state->monitors; 1171 __ add2reg(Z_esp, -frame::z_ijava_state_size, fp); 1172 __ z_stg(Z_esp, _z_ijava_state_neg(monitors), fp); 1173 __ add2reg(Z_esp, -Interpreter::stackElementSize); 1174 __ z_stg(Z_esp, _z_ijava_state_neg(esp), fp); 1175 1176 // z_ijava_state->cpoolCache = Z_R1_scratch (see load above); 1177 __ z_stg(Z_R1_scratch, _z_ijava_state_neg(cpoolCache), fp); 1178 1179 // Get mirror and store it in the frame as GC root for this Method*. 1180 __ load_mirror_from_const_method(Z_R1_scratch, const_method); 1181 __ z_stg(Z_R1_scratch, _z_ijava_state_neg(mirror), fp); 1182 1183 BLOCK_COMMENT("} generate_fixed_frame: initialize interpreter state"); 1184 1185 //============================================================================= 1186 if (!native_call) { 1187 // Local_count is already num_locals_slots - num_param_slots. 1188 // Start of locals: local_addr = Z_locals - locals size + 1 slot 1189 __ z_llgh(Z_R0_scratch, Address(const_method, ConstMethod::size_of_locals_offset())); 1190 __ add2reg(local_addr, BytesPerWord, Z_locals); 1191 __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogBytesPerWord); 1192 __ z_sgr(local_addr, Z_R0_scratch); 1193 1194 __ Clear_Array(local_count, local_addr, Z_ARG2); 1195 } 1196 1197 } 1198 // Finally set the frame pointer, destroying Z_method. 1199 assert(Z_fp == Z_method, "maybe set Z_fp earlier if other register than Z_method"); 1200 // Oprofile analysis suggests to keep a copy in a register to be used by 1201 // generate_counter_incr(). 1202 __ z_lgr(Z_ARG2, Z_method); 1203 __ z_lgr(Z_fp, fp); 1204 1205 BLOCK_COMMENT("} generate_fixed_frame"); 1206 } 1207 1208 // Various method entries 1209 1210 // Math function, frame manager must set up an interpreter state, etc. 1211 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 1212 1213 // Decide what to do: Use same platform specific instructions and runtime calls as compilers. 1214 bool use_instruction = false; 1215 address runtime_entry = nullptr; 1216 int num_args = 1; 1217 bool double_precision = true; 1218 1219 // s390 specific: 1220 switch (kind) { 1221 case Interpreter::java_lang_math_sqrt: 1222 case Interpreter::java_lang_math_abs: use_instruction = true; break; 1223 case Interpreter::java_lang_math_fmaF: 1224 case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break; 1225 default: break; // Fall back to runtime call. 1226 } 1227 1228 switch (kind) { 1229 case Interpreter::java_lang_math_sin : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); break; 1230 case Interpreter::java_lang_math_cos : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); break; 1231 case Interpreter::java_lang_math_tan : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); break; 1232 case Interpreter::java_lang_math_tanh : /* run interpreted */ break; 1233 case Interpreter::java_lang_math_abs : /* run interpreted */ break; 1234 case Interpreter::java_lang_math_sqrt : /* runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt); not available */ break; 1235 case Interpreter::java_lang_math_log : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); break; 1236 case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break; 1237 case Interpreter::java_lang_math_pow : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break; 1238 case Interpreter::java_lang_math_exp : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); break; 1239 case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break; 1240 case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break; 1241 default: ShouldNotReachHere(); 1242 } 1243 1244 // Use normal entry if neither instruction nor runtime call is used. 1245 if (!use_instruction && runtime_entry == nullptr) return nullptr; 1246 1247 address entry = __ pc(); 1248 1249 if (use_instruction) { 1250 switch (kind) { 1251 case Interpreter::java_lang_math_sqrt: 1252 // Can use memory operand directly. 1253 __ z_sqdb(Z_FRET, Interpreter::stackElementSize, Z_esp); 1254 break; 1255 case Interpreter::java_lang_math_abs: 1256 // Load operand from stack. 1257 __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); 1258 __ z_lpdbr(Z_FRET); 1259 break; 1260 case Interpreter::java_lang_math_fmaF: 1261 __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); // result reg = arg3 1262 __ mem2freg_opt(Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize)); // arg1 1263 __ z_maeb(Z_FRET, Z_FARG2, Address(Z_esp, 2 * Interpreter::stackElementSize)); 1264 break; 1265 case Interpreter::java_lang_math_fmaD: 1266 __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); // result reg = arg3 1267 __ mem2freg_opt(Z_FARG2, Address(Z_esp, 5 * Interpreter::stackElementSize)); // arg1 1268 __ z_madb(Z_FRET, Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize)); 1269 break; 1270 default: ShouldNotReachHere(); 1271 } 1272 } else { 1273 // Load arguments 1274 assert(num_args <= 4, "passed in registers"); 1275 if (double_precision) { 1276 int offset = (2 * num_args - 1) * Interpreter::stackElementSize; 1277 for (int i = 0; i < num_args; ++i) { 1278 __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset)); 1279 offset -= 2 * Interpreter::stackElementSize; 1280 } 1281 } else { 1282 int offset = num_args * Interpreter::stackElementSize; 1283 for (int i = 0; i < num_args; ++i) { 1284 __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset)); 1285 offset -= Interpreter::stackElementSize; 1286 } 1287 } 1288 // Call runtime 1289 __ save_return_pc(); // Save Z_R14. 1290 __ push_frame_abi160(0); // Without new frame the RT call could overwrite the saved Z_R14. 1291 1292 __ call_VM_leaf(runtime_entry); 1293 1294 __ pop_frame(); 1295 __ restore_return_pc(); // Restore Z_R14. 1296 } 1297 1298 // Pop c2i arguments (if any) off when we return. 1299 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 1300 1301 __ z_br(Z_R14); 1302 1303 return entry; 1304 } 1305 1306 // Interpreter stub for calling a native method. (asm interpreter). 1307 // This sets up a somewhat different looking stack for calling the 1308 // native method than the typical interpreter frame setup. 1309 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { 1310 // Determine code generation flags. 1311 bool inc_counter = UseCompiler || CountCompiledCalls; 1312 1313 // Interpreter entry for ordinary Java methods. 1314 // 1315 // Registers alive 1316 // Z_SP - stack pointer 1317 // Z_thread - JavaThread* 1318 // Z_method - callee's method (method to be invoked) 1319 // Z_esp - operand (or expression) stack pointer of caller. one slot above last arg. 1320 // Z_R10 - sender sp (before modifications, e.g. by c2i adapter 1321 // and as well by generate_fixed_frame below) 1322 // Z_R14 - return address to caller (call_stub or c2i_adapter) 1323 // 1324 // Registers updated 1325 // Z_SP - stack pointer 1326 // Z_fp - callee's framepointer 1327 // Z_esp - callee's operand stack pointer 1328 // points to the slot above the value on top 1329 // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord) 1330 // Z_tos - integer result, if any 1331 // z_ftos - floating point result, if any 1332 // 1333 // Stack layout at this point: 1334 // 1335 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if 1336 // frame was extended by c2i adapter) 1337 // [outgoing Java arguments] <-- Z_esp 1338 // ... 1339 // PARENT [PARENT_IJAVA_FRAME_ABI] 1340 // ... 1341 // 1342 1343 address entry_point = __ pc(); 1344 1345 // Make sure registers are different! 1346 assert_different_registers(Z_thread, Z_method, Z_esp); 1347 1348 BLOCK_COMMENT("native_entry {"); 1349 1350 // Make sure method is native and not abstract. 1351 #ifdef ASSERT 1352 address reentry = nullptr; 1353 { Label L; 1354 __ testbit(method_(access_flags), JVM_ACC_NATIVE_BIT); 1355 __ z_btrue(L); 1356 reentry = __ stop_chain_static(reentry, "tried to execute non-native method as native"); 1357 __ bind(L); 1358 } 1359 { Label L; 1360 __ testbit(method_(access_flags), JVM_ACC_ABSTRACT_BIT); 1361 __ z_bfalse(L); 1362 reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract"); 1363 __ bind(L); 1364 } 1365 #endif // ASSERT 1366 1367 // Save the return PC into the callers frame for assertion in generate_fixed_frame. 1368 NOT_PRODUCT(__ save_return_pc(Z_R14)); 1369 1370 // Generate the code to allocate the interpreter stack frame. 1371 generate_fixed_frame(true); 1372 1373 const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset()); 1374 // Since at this point in the method invocation the exception handler 1375 // would try to exit the monitor of synchronized methods which hasn't 1376 // been entered yet, we set the thread local variable 1377 // _do_not_unlock_if_synchronized to true. If any exception was thrown by 1378 // runtime, exception handling i.e. unlock_if_synchronized_method will 1379 // check this thread local flag. 1380 __ z_mvi(do_not_unlock_if_synchronized, true); 1381 1382 // Increment invocation count and check for overflow. 1383 NearLabel invocation_counter_overflow; 1384 if (inc_counter) { 1385 generate_counter_incr(&invocation_counter_overflow); 1386 } 1387 1388 Label continue_after_compile; 1389 __ bind(continue_after_compile); 1390 1391 bang_stack_shadow_pages(true); 1392 1393 // Reset the _do_not_unlock_if_synchronized flag. 1394 __ z_mvi(do_not_unlock_if_synchronized, false); 1395 1396 // Check for synchronized methods. 1397 // This mst happen AFTER invocation_counter check and stack overflow check, 1398 // so method is not locked if overflows. 1399 if (synchronized) { 1400 lock_method(); 1401 } else { 1402 // No synchronization necessary. 1403 #ifdef ASSERT 1404 { Label L; 1405 __ get_method(Z_R1_scratch); 1406 __ testbit(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 1407 __ z_bfalse(L); 1408 reentry = __ stop_chain_static(reentry, "method needs synchronization"); 1409 __ bind(L); 1410 } 1411 #endif // ASSERT 1412 } 1413 1414 // start execution 1415 1416 // jvmti support 1417 __ notify_method_entry(); 1418 1419 //============================================================================= 1420 // Get and call the signature handler. 1421 const Register Rmethod = Z_tmp_2; 1422 const Register signature_handler_entry = Z_tmp_1; 1423 const Register Rresult_handler = Z_tmp_3; 1424 Label call_signature_handler; 1425 1426 assert_different_registers(Z_fp, Rmethod, signature_handler_entry, Rresult_handler); 1427 assert(Rresult_handler->is_nonvolatile(), "Rresult_handler must be in a non-volatile register"); 1428 1429 // Reload method. 1430 __ get_method(Rmethod); 1431 1432 // Check for signature handler. 1433 __ load_and_test_long(signature_handler_entry, method2_(Rmethod, signature_handler)); 1434 __ z_brne(call_signature_handler); 1435 1436 // Method has never been called. Either generate a specialized 1437 // handler or point to the slow one. 1438 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), 1439 Rmethod); 1440 1441 // Reload method. 1442 __ get_method(Rmethod); 1443 1444 // Reload signature handler, it must have been created/assigned in the meantime. 1445 __ z_lg(signature_handler_entry, method2_(Rmethod, signature_handler)); 1446 1447 __ bind(call_signature_handler); 1448 1449 // We have a TOP_IJAVA_FRAME here, which belongs to us. 1450 __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1/*tmp*/); 1451 1452 // Call signature handler and pass locals address in Z_ARG1. 1453 __ z_lgr(Z_ARG1, Z_locals); 1454 __ call_stub(signature_handler_entry); 1455 // Save result handler returned by signature handler. 1456 __ z_lgr(Rresult_handler, Z_RET); 1457 1458 // Reload method (the slow signature handler may block for GC). 1459 __ get_method(Rmethod); 1460 1461 // Pass mirror handle if static call. 1462 { 1463 Label method_is_not_static; 1464 __ testbit(method2_(Rmethod, access_flags), JVM_ACC_STATIC_BIT); 1465 __ z_bfalse(method_is_not_static); 1466 // Load mirror from interpreter frame. 1467 __ z_lg(Z_R1, _z_ijava_state_neg(mirror), Z_fp); 1468 // z_ijava_state.oop_temp = pool_holder->klass_part()->java_mirror(); 1469 __ z_stg(Z_R1, oop_tmp_offset, Z_fp); 1470 // Pass handle to mirror as 2nd argument to JNI method. 1471 __ add2reg(Z_ARG2, oop_tmp_offset, Z_fp); 1472 __ bind(method_is_not_static); 1473 } 1474 1475 // Pass JNIEnv address as first parameter. 1476 __ add2reg(Z_ARG1, in_bytes(JavaThread::jni_environment_offset()), Z_thread); 1477 1478 // Note: last java frame has been set above already. The pc from there 1479 // is precise enough. 1480 1481 // Get native function entry point before we change the thread state. 1482 __ z_lg(Z_R1/*native_method_entry*/, method2_(Rmethod, native_function)); 1483 1484 //============================================================================= 1485 // Transition from _thread_in_Java to _thread_in_native. As soon as 1486 // we make this change the safepoint code needs to be certain that 1487 // the last Java frame we established is good. The pc in that frame 1488 // just need to be near here not an actual return address. 1489 #ifdef ASSERT 1490 { 1491 NearLabel L; 1492 __ mem2reg_opt(Z_R14, Address(Z_thread, JavaThread::thread_state_offset()), false /*32 bits*/); 1493 __ compareU32_and_branch(Z_R14, _thread_in_Java, Assembler::bcondEqual, L); 1494 reentry = __ stop_chain_static(reentry, "Wrong thread state in native stub"); 1495 __ bind(L); 1496 } 1497 #endif 1498 1499 // Memory ordering: Z does not reorder store/load with subsequent load. That's strong enough. 1500 __ set_thread_state(_thread_in_native); 1501 1502 //============================================================================= 1503 // Call the native method. Argument registers must not have been 1504 // overwritten since "__ call_stub(signature_handler);" (except for 1505 // ARG1 and ARG2 for static methods). 1506 1507 __ call_c(Z_R1/*native_method_entry*/); 1508 1509 // NOTE: frame::interpreter_frame_result() depends on these stores. 1510 __ z_stg(Z_RET, _z_ijava_state_neg(lresult), Z_fp); 1511 __ freg2mem_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult))); 1512 const Register Rlresult = signature_handler_entry; 1513 assert(Rlresult->is_nonvolatile(), "Rlresult must be in a non-volatile register"); 1514 __ z_lgr(Rlresult, Z_RET); 1515 1516 // Z_method may no longer be valid, because of GC. 1517 1518 // Block, if necessary, before resuming in _thread_in_Java state. 1519 // In order for GC to work, don't clear the last_Java_sp until after 1520 // blocking. 1521 1522 //============================================================================= 1523 // Switch thread to "native transition" state before reading the 1524 // synchronization state. This additional state is necessary 1525 // because reading and testing the synchronization state is not 1526 // atomic w.r.t. GC, as this scenario demonstrates: Java thread A, 1527 // in _thread_in_native state, loads _not_synchronized and is 1528 // preempted. VM thread changes sync state to synchronizing and 1529 // suspends threads for GC. Thread A is resumed to finish this 1530 // native method, but doesn't block here since it didn't see any 1531 // synchronization is progress, and escapes. 1532 1533 __ set_thread_state(_thread_in_native_trans); 1534 if (!UseSystemMemoryBarrier) { 1535 __ z_fence(); 1536 } 1537 1538 // Now before we return to java we must look for a current safepoint 1539 // (a new safepoint can not start since we entered native_trans). 1540 // We must check here because a current safepoint could be modifying 1541 // the callers registers right this moment. 1542 1543 // Check for safepoint operation in progress and/or pending suspend requests. 1544 { 1545 Label Continue, do_safepoint; 1546 __ safepoint_poll(do_safepoint, Z_R1); 1547 // Check for suspend. 1548 __ load_and_test_int(Z_R0/*suspend_flags*/, thread_(suspend_flags)); 1549 __ z_bre(Continue); // 0 -> no flag set -> not suspended 1550 __ bind(do_safepoint); 1551 __ z_lgr(Z_ARG1, Z_thread); 1552 __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)); 1553 __ bind(Continue); 1554 } 1555 1556 //============================================================================= 1557 // Back in Interpreter Frame. 1558 1559 // We are in thread_in_native_trans here and back in the normal 1560 // interpreter frame. We don't have to do anything special about 1561 // safepoints and we can switch to Java mode anytime we are ready. 1562 1563 // Note: frame::interpreter_frame_result has a dependency on how the 1564 // method result is saved across the call to post_method_exit. For 1565 // native methods it assumes that the non-FPU/non-void result is 1566 // saved in z_ijava_state.lresult and a FPU result in z_ijava_state.fresult. If 1567 // this changes then the interpreter_frame_result implementation 1568 // will need to be updated too. 1569 1570 //============================================================================= 1571 // Back in Java. 1572 1573 // Memory ordering: Z does not reorder store/load with subsequent 1574 // load. That's strong enough. 1575 __ set_thread_state(_thread_in_Java); 1576 1577 __ reset_last_Java_frame(); 1578 1579 // We reset the JNI handle block only after unboxing the result; see below. 1580 1581 // The method register is junk from after the thread_in_native transition 1582 // until here. Also can't call_VM until the bcp has been 1583 // restored. Need bcp for throwing exception below so get it now. 1584 __ get_method(Rmethod); 1585 1586 // Restore Z_bcp to have legal interpreter frame, 1587 // i.e., bci == 0 <=> Z_bcp == code_base(). 1588 __ z_lg(Z_bcp, Address(Rmethod, Method::const_offset())); // get constMethod 1589 __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset())); // get codebase 1590 1591 if (CheckJNICalls) { 1592 // clear_pending_jni_exception_check 1593 __ clear_mem(Address(Z_thread, JavaThread::pending_jni_exception_check_fn_offset()), sizeof(oop)); 1594 } 1595 1596 // Check if the native method returns an oop, and if so, move it 1597 // from the jni handle to z_ijava_state.oop_temp. This is 1598 // necessary, because we reset the jni handle block below. 1599 // NOTE: frame::interpreter_frame_result() depends on this, too. 1600 { NearLabel no_oop_result; 1601 __ load_absolute_address(Z_R1, AbstractInterpreter::result_handler(T_OBJECT)); 1602 __ compareU64_and_branch(Z_R1, Rresult_handler, Assembler::bcondNotEqual, no_oop_result); 1603 __ resolve_jobject(Rlresult, /* tmp1 */ Rmethod, /* tmp2 */ Z_R1); 1604 __ z_stg(Rlresult, oop_tmp_offset, Z_fp); 1605 __ bind(no_oop_result); 1606 } 1607 1608 // Reset handle block. 1609 __ z_lg(Z_R1/*active_handles*/, thread_(active_handles)); 1610 __ clear_mem(Address(Z_R1, JNIHandleBlock::top_offset()), 4); 1611 1612 // Handle exceptions (exception handling will handle unlocking!). 1613 { 1614 Label L; 1615 __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception)); 1616 __ z_bre(L); 1617 __ MacroAssembler::call_VM(noreg, 1618 CAST_FROM_FN_PTR(address, 1619 InterpreterRuntime::throw_pending_exception)); 1620 __ should_not_reach_here(); 1621 __ bind(L); 1622 } 1623 1624 if (synchronized) { 1625 Register Rfirst_monitor = Z_ARG2; 1626 __ add2reg(Rfirst_monitor, -(frame::z_ijava_state_size + (int)sizeof(BasicObjectLock)), Z_fp); 1627 #ifdef ASSERT 1628 NearLabel ok; 1629 __ z_lg(Z_R1, _z_ijava_state_neg(monitors), Z_fp); 1630 __ compareU64_and_branch(Rfirst_monitor, Z_R1, Assembler::bcondEqual, ok); 1631 reentry = __ stop_chain_static(reentry, "native_entry:unlock: inconsistent z_ijava_state.monitors"); 1632 __ bind(ok); 1633 #endif 1634 __ unlock_object(Rfirst_monitor); 1635 } 1636 1637 // JVMTI support. Result has already been saved above to the frame. 1638 __ notify_method_exit(true/*native_method*/, ilgl, InterpreterMacroAssembler::NotifyJVMTI); 1639 1640 // Move native method result back into proper registers and return. 1641 __ mem2freg_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult))); 1642 __ mem2reg_opt(Z_RET, Address(Z_fp, _z_ijava_state_neg(lresult))); 1643 __ call_stub(Rresult_handler); 1644 1645 // Pop the native method's interpreter frame. 1646 __ pop_interpreter_frame(Z_R14 /*return_pc*/, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/); 1647 1648 // Return to caller. 1649 __ z_br(Z_R14); 1650 1651 if (inc_counter) { 1652 // Handle overflow of counter and compile method. 1653 __ bind(invocation_counter_overflow); 1654 generate_counter_overflow(continue_after_compile); 1655 } 1656 1657 BLOCK_COMMENT("} native_entry"); 1658 1659 return entry_point; 1660 } 1661 1662 // 1663 // Generic interpreted method entry to template interpreter. 1664 // 1665 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { 1666 address entry_point = __ pc(); 1667 1668 bool inc_counter = UseCompiler || CountCompiledCalls; 1669 1670 // Interpreter entry for ordinary Java methods. 1671 // 1672 // Registers alive 1673 // Z_SP - stack pointer 1674 // Z_thread - JavaThread* 1675 // Z_method - callee's method (method to be invoked) 1676 // Z_esp - operand (or expression) stack pointer of caller. one slot above last arg. 1677 // Z_R10 - sender sp (before modifications, e.g. by c2i adapter 1678 // and as well by generate_fixed_frame below) 1679 // Z_R14 - return address to caller (call_stub or c2i_adapter) 1680 // 1681 // Registers updated 1682 // Z_SP - stack pointer 1683 // Z_fp - callee's framepointer 1684 // Z_esp - callee's operand stack pointer 1685 // points to the slot above the value on top 1686 // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord) 1687 // Z_tos - integer result, if any 1688 // z_ftos - floating point result, if any 1689 // 1690 // 1691 // stack layout at this point: 1692 // 1693 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if 1694 // frame was extended by c2i adapter) 1695 // [outgoing Java arguments] <-- Z_esp 1696 // ... 1697 // PARENT [PARENT_IJAVA_FRAME_ABI] 1698 // ... 1699 // 1700 // stack layout before dispatching the first bytecode: 1701 // 1702 // F0 [TOP_IJAVA_FRAME_ABI] <-- Z_SP 1703 // [operand stack] <-- Z_esp 1704 // monitor (optional, can grow) 1705 // [IJAVA_STATE] 1706 // F1 [PARENT_IJAVA_FRAME_ABI] <-- Z_fp (== *Z_SP) 1707 // [F0's locals] <-- Z_locals 1708 // [F1's operand stack] 1709 // [F1's monitors] (optional) 1710 // [IJAVA_STATE] 1711 1712 // Make sure registers are different! 1713 assert_different_registers(Z_thread, Z_method, Z_esp); 1714 1715 BLOCK_COMMENT("normal_entry {"); 1716 1717 // Make sure method is not native and not abstract. 1718 // Rethink these assertions - they can be simplified and shared. 1719 #ifdef ASSERT 1720 address reentry = nullptr; 1721 { Label L; 1722 __ testbit(method_(access_flags), JVM_ACC_NATIVE_BIT); 1723 __ z_bfalse(L); 1724 reentry = __ stop_chain_static(reentry, "tried to execute native method as non-native"); 1725 __ bind(L); 1726 } 1727 { Label L; 1728 __ testbit(method_(access_flags), JVM_ACC_ABSTRACT_BIT); 1729 __ z_bfalse(L); 1730 reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract"); 1731 __ bind(L); 1732 } 1733 #endif // ASSERT 1734 1735 // Save the return PC into the callers frame for assertion in generate_fixed_frame. 1736 NOT_PRODUCT(__ save_return_pc(Z_R14)); 1737 1738 // Generate the code to allocate the interpreter stack frame. 1739 generate_fixed_frame(false); 1740 1741 const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset()); 1742 // Since at this point in the method invocation the exception handler 1743 // would try to exit the monitor of synchronized methods which hasn't 1744 // been entered yet, we set the thread local variable 1745 // _do_not_unlock_if_synchronized to true. If any exception was thrown by 1746 // runtime, exception handling i.e. unlock_if_synchronized_method will 1747 // check this thread local flag. 1748 __ z_mvi(do_not_unlock_if_synchronized, true); 1749 1750 __ profile_parameters_type(Z_tmp_2, Z_ARG3, Z_ARG4); 1751 1752 // Increment invocation counter and check for overflow. 1753 // 1754 // Note: checking for negative value instead of overflow so we have a 'sticky' 1755 // overflow test (may be of importance as soon as we have true MT/MP). 1756 NearLabel invocation_counter_overflow; 1757 NearLabel Lcontinue; 1758 if (inc_counter) { 1759 generate_counter_incr(&invocation_counter_overflow); 1760 } 1761 __ bind(Lcontinue); 1762 1763 bang_stack_shadow_pages(false); 1764 1765 // Reset the _do_not_unlock_if_synchronized flag. 1766 __ z_mvi(do_not_unlock_if_synchronized, false); 1767 1768 // Check for synchronized methods. 1769 // Must happen AFTER invocation_counter check and stack overflow check, 1770 // so method is not locked if overflows. 1771 if (synchronized) { 1772 // Allocate monitor and lock method. 1773 lock_method(); 1774 } else { 1775 #ifdef ASSERT 1776 { Label L; 1777 __ get_method(Z_R1_scratch); 1778 __ testbit(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 1779 __ z_bfalse(L); 1780 reentry = __ stop_chain_static(reentry, "method needs synchronization"); 1781 __ bind(L); 1782 } 1783 #endif // ASSERT 1784 } 1785 1786 // start execution 1787 1788 #ifdef ASSERT 1789 __ verify_esp(Z_esp, Z_R1_scratch); 1790 #endif 1791 1792 // jvmti support 1793 __ notify_method_entry(); 1794 1795 // Start executing instructions. 1796 __ dispatch_next(vtos); 1797 // Dispatch_next does not return. 1798 DEBUG_ONLY(__ should_not_reach_here()); 1799 1800 // Invocation counter overflow. 1801 if (inc_counter) { 1802 // Handle invocation counter overflow. 1803 __ bind(invocation_counter_overflow); 1804 generate_counter_overflow(Lcontinue); 1805 } 1806 1807 BLOCK_COMMENT("} normal_entry"); 1808 1809 return entry_point; 1810 } 1811 1812 1813 /** 1814 * Method entry for static native methods: 1815 * int java.util.zip.CRC32.update(int crc, int b) 1816 */ 1817 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { 1818 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1819 uint64_t entry_off = __ offset(); 1820 Label slow_path; 1821 1822 // If we need a safepoint check, generate full interpreter entry. 1823 __ safepoint_poll(slow_path, Z_R1); 1824 1825 BLOCK_COMMENT("CRC32_update {"); 1826 1827 // We don't generate local frame and don't align stack because 1828 // we not even call stub code (we generate the code inline) 1829 // and there is no safepoint on this path. 1830 1831 // Load java parameters. 1832 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 1833 const Register argP = Z_esp; 1834 const Register crc = Z_ARG1; // crc value 1835 const Register data = Z_ARG2; // address of java byte value (kernel_crc32 needs address) 1836 const Register dataLen = Z_ARG3; // source data len (1 byte). Not used because calling the single-byte emitter. 1837 const Register table = Z_ARG4; // address of crc32 table 1838 1839 // Arguments are reversed on java expression stack. 1840 __ z_la(data, 3+1*wordSize, argP); // byte value (stack address). 1841 // Being passed as an int, the single byte is at offset +3. 1842 __ z_llgf(crc, 2 * wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register. 1843 1844 StubRoutines::zarch::generate_load_crc_table_addr(_masm, table); 1845 __ kernel_crc32_singleByte(crc, data, dataLen, table, Z_R1, true); 1846 1847 // Restore caller sp for c2i case. 1848 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 1849 1850 __ z_br(Z_R14); 1851 1852 BLOCK_COMMENT("} CRC32_update"); 1853 1854 // Use a previously generated vanilla native entry as the slow path. 1855 BIND(slow_path); 1856 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1); 1857 return __ addr_at(entry_off); 1858 } 1859 1860 1861 /** 1862 * Method entry for static native methods: 1863 * int java.util.zip.CRC32.updateBytes( int crc, byte[] b, int off, int len) 1864 * int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len) 1865 */ 1866 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1867 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1868 uint64_t entry_off = __ offset(); 1869 Label slow_path; 1870 1871 // If we need a safepoint check, generate full interpreter entry. 1872 __ safepoint_poll(slow_path, Z_R1); 1873 1874 // We don't generate local frame and don't align stack because 1875 // we call stub code and there is no safepoint on this path. 1876 1877 // Load parameters. 1878 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 1879 const Register argP = Z_esp; 1880 const Register crc = Z_ARG1; // crc value 1881 const Register data = Z_ARG2; // address of java byte array 1882 const Register dataLen = Z_ARG3; // source data len 1883 const Register table = Z_ARG4; // address of crc32 table 1884 const Register t0 = Z_R10; // work reg for kernel* emitters 1885 const Register t1 = Z_R11; // work reg for kernel* emitters 1886 const Register t2 = Z_R12; // work reg for kernel* emitters 1887 const Register t3 = Z_R13; // work reg for kernel* emitters 1888 1889 // Arguments are reversed on java expression stack. 1890 // Calculate address of start element. 1891 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct". 1892 // crc @ (SP + 5W) (32bit) 1893 // buf @ (SP + 3W) (64bit ptr to long array) 1894 // off @ (SP + 2W) (32bit) 1895 // dataLen @ (SP + 1W) (32bit) 1896 // data = buf + off 1897 BLOCK_COMMENT("CRC32_updateByteBuffer {"); 1898 __ z_llgf(crc, 5*wordSize, argP); // current crc state 1899 __ z_lg(data, 3*wordSize, argP); // start of byte buffer 1900 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. 1901 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process 1902 } else { // Used for "updateBytes update". 1903 // crc @ (SP + 4W) (32bit) 1904 // buf @ (SP + 3W) (64bit ptr to byte array) 1905 // off @ (SP + 2W) (32bit) 1906 // dataLen @ (SP + 1W) (32bit) 1907 // data = buf + off + base_offset 1908 BLOCK_COMMENT("CRC32_updateBytes {"); 1909 __ z_llgf(crc, 4*wordSize, argP); // current crc state 1910 __ z_lg(data, 3*wordSize, argP); // start of byte buffer 1911 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. 1912 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process 1913 __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1914 } 1915 1916 StubRoutines::zarch::generate_load_crc_table_addr(_masm, table); 1917 1918 __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers. 1919 __ z_stmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 to make them available as work registers. 1920 __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, true); 1921 __ z_lmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 back from stack. 1922 1923 // Restore caller sp for c2i case. 1924 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 1925 1926 __ z_br(Z_R14); 1927 1928 BLOCK_COMMENT("} CRC32_update{Bytes|ByteBuffer}"); 1929 1930 // Use a previously generated vanilla native entry as the slow path. 1931 BIND(slow_path); 1932 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1); 1933 return __ addr_at(entry_off); 1934 } 1935 1936 1937 /** 1938 * Method entry for intrinsic-candidate (non-native) methods: 1939 * int java.util.zip.CRC32C.updateBytes( int crc, byte[] b, int off, int end) 1940 * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end) 1941 * Unlike CRC32, CRC32C does not have any methods marked as native 1942 * CRC32C also uses an "end" variable instead of the length variable CRC32 uses 1943 */ 1944 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1945 assert(UseCRC32CIntrinsics, "this intrinsic is not supported"); 1946 uint64_t entry_off = __ offset(); 1947 1948 // We don't generate local frame and don't align stack because 1949 // we call stub code and there is no safepoint on this path. 1950 1951 // Load parameters. 1952 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 1953 const Register argP = Z_esp; 1954 const Register crc = Z_ARG1; // crc value 1955 const Register data = Z_ARG2; // address of java byte array 1956 const Register dataLen = Z_ARG3; // source data len 1957 const Register table = Z_ARG4; // address of crc32 table 1958 const Register t0 = Z_R10; // work reg for kernel* emitters 1959 const Register t1 = Z_R11; // work reg for kernel* emitters 1960 const Register t2 = Z_R12; // work reg for kernel* emitters 1961 const Register t3 = Z_R13; // work reg for kernel* emitters 1962 1963 // Arguments are reversed on java expression stack. 1964 // Calculate address of start element. 1965 if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateByteBuffer direct". 1966 // crc @ (SP + 5W) (32bit) 1967 // buf @ (SP + 3W) (64bit ptr to long array) 1968 // off @ (SP + 2W) (32bit) 1969 // dataLen @ (SP + 1W) (32bit) 1970 // data = buf + off 1971 BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {"); 1972 __ z_llgf(crc, 5*wordSize, argP); // current crc state 1973 __ z_lg(data, 3*wordSize, argP); // start of byte buffer 1974 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. 1975 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process, calculated as 1976 __ z_sgf(dataLen, Address(argP, 2*wordSize)); // (end_index - offset) 1977 } else { // Used for "updateBytes update". 1978 // crc @ (SP + 4W) (32bit) 1979 // buf @ (SP + 3W) (64bit ptr to byte array) 1980 // off @ (SP + 2W) (32bit) 1981 // dataLen @ (SP + 1W) (32bit) 1982 // data = buf + off + base_offset 1983 BLOCK_COMMENT("CRC32C_updateBytes {"); 1984 __ z_llgf(crc, 4*wordSize, argP); // current crc state 1985 __ z_lg(data, 3*wordSize, argP); // start of byte buffer 1986 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. 1987 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process, calculated as 1988 __ z_sgf(dataLen, Address(argP, 2*wordSize)); // (end_index - offset) 1989 __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1990 } 1991 1992 StubRoutines::zarch::generate_load_crc32c_table_addr(_masm, table); 1993 1994 __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers. 1995 __ z_stmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 to make them available as work registers. 1996 __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, false); 1997 __ z_lmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 back from stack. 1998 1999 // Restore caller sp for c2i case. 2000 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 2001 2002 __ z_br(Z_R14); 2003 2004 BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}"); 2005 return __ addr_at(entry_off); 2006 } 2007 2008 // Not supported 2009 address TemplateInterpreterGenerator::generate_currentThread() { return nullptr; } 2010 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; } 2011 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; } 2012 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; } 2013 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; } 2014 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { return nullptr; } 2015 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { return nullptr; } 2016 2017 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) { 2018 // Quick & dirty stack overflow checking: bang the stack & handle trap. 2019 // Note that we do the banging after the frame is setup, since the exception 2020 // handling code expects to find a valid interpreter frame on the stack. 2021 // Doing the banging earlier fails if the caller frame is not an interpreter 2022 // frame. 2023 // (Also, the exception throwing code expects to unlock any synchronized 2024 // method receiver, so do the banging after locking the receiver.) 2025 2026 // Bang each page in the shadow zone. We can't assume it's been done for 2027 // an interpreter frame with greater than a page of locals, so each page 2028 // needs to be checked. Only true for non-native. For native, we only bang the last page. 2029 const size_t page_size = os::vm_page_size(); 2030 const int n_shadow_pages = (int)(StackOverflow::stack_shadow_zone_size()/page_size); 2031 const int start_page_num = native_call ? n_shadow_pages : 1; 2032 for (int pages = start_page_num; pages <= n_shadow_pages; pages++) { 2033 __ bang_stack_with_offset(pages*page_size); 2034 } 2035 } 2036 2037 //----------------------------------------------------------------------------- 2038 // Exceptions 2039 2040 void TemplateInterpreterGenerator::generate_throw_exception() { 2041 2042 BLOCK_COMMENT("throw_exception {"); 2043 2044 // Entry point in previous activation (i.e., if the caller was interpreted). 2045 Interpreter::_rethrow_exception_entry = __ pc(); 2046 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Frame accessors use Z_fp. 2047 // Z_ARG1 (==Z_tos): exception 2048 // Z_ARG2 : Return address/pc that threw exception. 2049 __ restore_bcp(); // R13 points to call/send. 2050 __ restore_locals(); 2051 2052 // Fallthrough, no need to restore Z_esp. 2053 2054 // Entry point for exceptions thrown within interpreter code. 2055 Interpreter::_throw_exception_entry = __ pc(); 2056 // Expression stack is undefined here. 2057 // Z_ARG1 (==Z_tos): exception 2058 // Z_bcp: exception bcp 2059 __ verify_oop(Z_ARG1); 2060 __ z_lgr(Z_ARG2, Z_ARG1); 2061 2062 // Expression stack must be empty before entering the VM in case of 2063 // an exception. 2064 __ empty_expression_stack(); 2065 // Find exception handler address and preserve exception oop. 2066 const Register Rpreserved_exc_oop = Z_tmp_1; 2067 __ call_VM(Rpreserved_exc_oop, 2068 CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), 2069 Z_ARG2); 2070 // Z_RET: exception handler entry point 2071 // Z_bcp: bcp for exception handler 2072 __ push_ptr(Rpreserved_exc_oop); // Push exception which is now the only value on the stack. 2073 __ z_br(Z_RET); // Jump to exception handler (may be _remove_activation_entry!). 2074 2075 // If the exception is not handled in the current frame the frame is 2076 // removed and the exception is rethrown (i.e. exception 2077 // continuation is _rethrow_exception). 2078 // 2079 // Note: At this point the bci is still the bci for the instruction 2080 // which caused the exception and the expression stack is 2081 // empty. Thus, for any VM calls at this point, GC will find a legal 2082 // oop map (with empty expression stack). 2083 2084 // 2085 // JVMTI PopFrame support 2086 // 2087 2088 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 2089 __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP); 2090 __ empty_expression_stack(); 2091 // Set the popframe_processing bit in pending_popframe_condition 2092 // indicating that we are currently handling popframe, so that 2093 // call_VMs that may happen later do not trigger new popframe 2094 // handling cycles. 2095 __ load_sized_value(Z_tmp_1, Address(Z_thread, JavaThread::popframe_condition_offset()), 4, false /*signed*/); 2096 __ z_oill(Z_tmp_1, JavaThread::popframe_processing_bit); 2097 __ z_sty(Z_tmp_1, thread_(popframe_condition)); 2098 2099 { 2100 // Check to see whether we are returning to a deoptimized frame. 2101 // (The PopFrame call ensures that the caller of the popped frame is 2102 // either interpreted or compiled and deoptimizes it if compiled.) 2103 // In this case, we can't call dispatch_next() after the frame is 2104 // popped, but instead must save the incoming arguments and restore 2105 // them after deoptimization has occurred. 2106 // 2107 // Note that we don't compare the return PC against the 2108 // deoptimization blob's unpack entry because of the presence of 2109 // adapter frames in C2. 2110 NearLabel caller_not_deoptimized; 2111 __ z_lg(Z_ARG1, _z_parent_ijava_frame_abi(return_pc), Z_fp); 2112 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), Z_ARG1); 2113 __ compareU64_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, caller_not_deoptimized); 2114 2115 // Compute size of arguments for saving when returning to 2116 // deoptimized caller. 2117 __ get_method(Z_ARG2); 2118 __ z_lg(Z_ARG2, Address(Z_ARG2, Method::const_offset())); 2119 __ z_llgh(Z_ARG2, Address(Z_ARG2, ConstMethod::size_of_parameters_offset())); 2120 __ z_sllg(Z_ARG2, Z_ARG2, Interpreter::logStackElementSize); // slots 2 bytes 2121 __ restore_locals(); 2122 // Compute address of args to be saved. 2123 __ z_lgr(Z_ARG3, Z_locals); 2124 __ z_slgr(Z_ARG3, Z_ARG2); 2125 __ add2reg(Z_ARG3, wordSize); 2126 // Save these arguments. 2127 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), 2128 Z_thread, Z_ARG2, Z_ARG3); 2129 2130 __ remove_activation(vtos, Z_R14, 2131 /* throw_monitor_exception */ false, 2132 /* install_monitor_exception */ false, 2133 /* notify_jvmdi */ false); 2134 2135 // Inform deoptimization that it is responsible for restoring 2136 // these arguments. 2137 __ store_const(thread_(popframe_condition), 2138 JavaThread::popframe_force_deopt_reexecution_bit, 2139 Z_tmp_1, false); 2140 2141 // Continue in deoptimization handler. 2142 __ z_br(Z_R14); 2143 2144 __ bind(caller_not_deoptimized); 2145 } 2146 2147 // Clear the popframe condition flag. 2148 __ clear_mem(thread_(popframe_condition), sizeof(int)); 2149 2150 __ remove_activation(vtos, 2151 noreg, // Retaddr is not used. 2152 false, // throw_monitor_exception 2153 false, // install_monitor_exception 2154 false); // notify_jvmdi 2155 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. 2156 __ restore_bcp(); 2157 __ restore_locals(); 2158 __ restore_esp(); 2159 // The method data pointer was incremented already during 2160 // call profiling. We have to restore the mdp for the current bcp. 2161 if (ProfileInterpreter) { 2162 __ set_method_data_pointer_for_bcp(); 2163 } 2164 #if INCLUDE_JVMTI 2165 { 2166 Label L_done; 2167 2168 __ z_cli(0, Z_bcp, Bytecodes::_invokestatic); 2169 __ z_brc(Assembler::bcondNotEqual, L_done); 2170 2171 // The member name argument must be restored if _invokestatic is 2172 // re-executed after a PopFrame call. Detect such a case in the 2173 // InterpreterRuntime function and return the member name 2174 // argument, or null. 2175 __ z_lg(Z_ARG2, Address(Z_locals)); 2176 __ get_method(Z_ARG3); 2177 __ call_VM(Z_tmp_1, 2178 CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), 2179 Z_ARG2, Z_ARG3, Z_bcp); 2180 2181 __ z_ltgr(Z_tmp_1, Z_tmp_1); 2182 __ z_brc(Assembler::bcondEqual, L_done); 2183 2184 __ z_stg(Z_tmp_1, Address(Z_esp, wordSize)); 2185 __ bind(L_done); 2186 } 2187 #endif // INCLUDE_JVMTI 2188 __ dispatch_next(vtos); 2189 // End of PopFrame support. 2190 Interpreter::_remove_activation_entry = __ pc(); 2191 2192 // In between activations - previous activation type unknown yet 2193 // compute continuation point - the continuation point expects the 2194 // following registers set up: 2195 // 2196 // Z_ARG1 (==Z_tos): exception 2197 // Z_ARG2 : return address/pc that threw exception 2198 2199 Register return_pc = Z_tmp_1; 2200 Register handler = Z_tmp_2; 2201 assert(return_pc->is_nonvolatile(), "use non-volatile reg. to preserve exception pc"); 2202 assert(handler->is_nonvolatile(), "use non-volatile reg. to handler pc"); 2203 __ asm_assert_ijava_state_magic(return_pc/*tmp*/); // The top frame should be an interpreter frame. 2204 __ z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp); 2205 2206 // Moved removing the activation after VM call, because the new top 2207 // frame does not necessarily have the z_abi_160 required for a VM 2208 // call (e.g. if it is compiled). 2209 2210 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 2211 SharedRuntime::exception_handler_for_return_address), 2212 Z_thread, return_pc); 2213 __ z_lgr(handler, Z_RET); // Save exception handler. 2214 2215 // Preserve exception over this code sequence. 2216 __ pop_ptr(Z_ARG1); 2217 __ set_vm_result(Z_ARG1); 2218 // Remove the activation (without doing throws on illegalMonitorExceptions). 2219 __ remove_activation(vtos, noreg/*ret.pc already loaded*/, false/*throw exc*/, true/*install exc*/, false/*notify jvmti*/); 2220 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. 2221 2222 __ get_vm_result(Z_ARG1); // Restore exception. 2223 __ verify_oop(Z_ARG1); 2224 __ z_lgr(Z_ARG2, return_pc); // Restore return address. 2225 2226 #ifdef ASSERT 2227 // The return_pc in the new top frame is dead... at least that's my 2228 // current understanding. To assert this I overwrite it. 2229 // Note: for compiled frames the handler is the deopt blob 2230 // which writes Z_ARG2 into the return_pc slot. 2231 __ load_const_optimized(return_pc, 0xb00b1); 2232 __ z_stg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_SP); 2233 #endif 2234 2235 // Z_ARG1 (==Z_tos): exception 2236 // Z_ARG2 : return address/pc that threw exception 2237 2238 // Note that an "issuing PC" is actually the next PC after the call. 2239 __ z_br(handler); // Jump to exception handler of caller. 2240 2241 BLOCK_COMMENT("} throw_exception"); 2242 } 2243 2244 // 2245 // JVMTI ForceEarlyReturn support 2246 // 2247 address TemplateInterpreterGenerator::generate_earlyret_entry_for (TosState state) { 2248 address entry = __ pc(); 2249 2250 BLOCK_COMMENT("earlyret_entry {"); 2251 2252 __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP); 2253 __ restore_bcp(); 2254 __ restore_locals(); 2255 __ restore_esp(); 2256 __ empty_expression_stack(); 2257 __ load_earlyret_value(state); 2258 2259 Register RjvmtiState = Z_tmp_1; 2260 __ z_lg(RjvmtiState, thread_(jvmti_thread_state)); 2261 __ store_const(Address(RjvmtiState, JvmtiThreadState::earlyret_state_offset()), 2262 JvmtiThreadState::earlyret_inactive, 4, 4, Z_R0_scratch); 2263 2264 if (state == itos) { 2265 // Narrow result if state is itos but result type is smaller. 2266 // Need to narrow in the return bytecode rather than in generate_return_entry 2267 // since compiled code callers expect the result to already be narrowed. 2268 __ narrow(Z_tos, Z_tmp_1); /* fall through */ 2269 } 2270 __ remove_activation(state, 2271 Z_tmp_1, // retaddr 2272 false, // throw_monitor_exception 2273 false, // install_monitor_exception 2274 true); // notify_jvmdi 2275 __ z_br(Z_tmp_1); 2276 2277 BLOCK_COMMENT("} earlyret_entry"); 2278 2279 return entry; 2280 } 2281 2282 //----------------------------------------------------------------------------- 2283 // Helper for vtos entry point generation. 2284 2285 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, 2286 address& bep, 2287 address& cep, 2288 address& sep, 2289 address& aep, 2290 address& iep, 2291 address& lep, 2292 address& fep, 2293 address& dep, 2294 address& vep) { 2295 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 2296 Label L; 2297 aep = __ pc(); __ push_ptr(); __ z_bru(L); 2298 fep = __ pc(); __ push_f(); __ z_bru(L); 2299 dep = __ pc(); __ push_d(); __ z_bru(L); 2300 lep = __ pc(); __ push_l(); __ z_bru(L); 2301 bep = cep = sep = 2302 iep = __ pc(); __ push_i(); 2303 vep = __ pc(); 2304 __ bind(L); 2305 generate_and_dispatch(t); 2306 } 2307 2308 //----------------------------------------------------------------------------- 2309 2310 #ifndef PRODUCT 2311 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 2312 address entry = __ pc(); 2313 NearLabel counter_below_trace_threshold; 2314 2315 if (TraceBytecodesAt > 0) { 2316 // Skip runtime call, if the trace threshold is not yet reached. 2317 __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value); 2318 __ load_absolute_address(Z_tmp_2, (address)&TraceBytecodesAt); 2319 __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/); 2320 __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/); 2321 __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, counter_below_trace_threshold); 2322 } 2323 2324 int offset2 = state == ltos || state == dtos ? 2 : 1; 2325 2326 __ push(state); 2327 // Preserved return pointer is in Z_R14. 2328 // InterpreterRuntime::trace_bytecode() preserved and returns the value passed as second argument. 2329 __ z_lgr(Z_ARG2, Z_R14); 2330 __ z_lg(Z_ARG3, Address(Z_esp, Interpreter::expr_offset_in_bytes(0))); 2331 if (WizardMode) { 2332 __ z_lgr(Z_ARG4, Z_esp); // Trace Z_esp in WizardMode. 2333 } else { 2334 __ z_lg(Z_ARG4, Address(Z_esp, Interpreter::expr_offset_in_bytes(offset2))); 2335 } 2336 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), Z_ARG2, Z_ARG3, Z_ARG4); 2337 __ z_lgr(Z_R14, Z_RET); // Estore return address (see above). 2338 __ pop(state); 2339 2340 __ bind(counter_below_trace_threshold); 2341 __ z_br(Z_R14); // return 2342 2343 return entry; 2344 } 2345 2346 // Make feasible for old CPUs. 2347 void TemplateInterpreterGenerator::count_bytecode() { 2348 __ load_absolute_address(Z_R1_scratch, (address) &BytecodeCounter::_counter_value); 2349 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); 2350 } 2351 2352 void TemplateInterpreterGenerator::histogram_bytecode(Template * t) { 2353 __ load_absolute_address(Z_R1_scratch, (address)&BytecodeHistogram::_counters[ t->bytecode() ]); 2354 __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1); 2355 } 2356 2357 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template * t) { 2358 Address index_addr(Z_tmp_1, (intptr_t) 0); 2359 Register index = Z_tmp_2; 2360 2361 // Load previous index. 2362 __ load_absolute_address(Z_tmp_1, (address) &BytecodePairHistogram::_index); 2363 __ mem2reg_opt(index, index_addr, false); 2364 2365 // Mask with current bytecode and store as new previous index. 2366 __ z_srl(index, BytecodePairHistogram::log2_number_of_codes); 2367 __ load_const_optimized(Z_R0_scratch, 2368 (int)t->bytecode() << BytecodePairHistogram::log2_number_of_codes); 2369 __ z_or(index, Z_R0_scratch); 2370 __ reg2mem_opt(index, index_addr, false); 2371 2372 // Load counter array's address. 2373 __ z_lgfr(index, index); // Sign extend for addressing. 2374 __ z_sllg(index, index, LogBytesPerInt); // index2bytes 2375 __ load_absolute_address(Z_R1_scratch, 2376 (address) &BytecodePairHistogram::_counters); 2377 // Add index and increment counter. 2378 __ z_agr(Z_R1_scratch, index); 2379 __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1); 2380 } 2381 2382 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 2383 // Call a little run-time stub to avoid blow-up for each bytecode. 2384 // The run-time runtime saves the right registers, depending on 2385 // the tosca in-state for the given template. 2386 address entry = Interpreter::trace_code(t->tos_in()); 2387 guarantee(entry != nullptr, "entry must have been generated"); 2388 __ call_stub(entry); 2389 } 2390 2391 void TemplateInterpreterGenerator::stop_interpreter_at() { 2392 NearLabel L; 2393 2394 __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value); 2395 __ load_absolute_address(Z_tmp_2, (address)&StopInterpreterAt); 2396 __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/); 2397 __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/); 2398 __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, L); 2399 assert(Z_tmp_1->is_nonvolatile(), "must be nonvolatile to preserve Z_tos"); 2400 assert(Z_F8->is_nonvolatile(), "must be nonvolatile to preserve Z_ftos"); 2401 __ z_lgr(Z_tmp_1, Z_tos); // Save tos. 2402 __ z_lgr(Z_tmp_2, Z_bytecode); // Save Z_bytecode. 2403 __ z_ldr(Z_F8, Z_ftos); // Save ftos. 2404 // Use -XX:StopInterpreterAt=<num> to set the limit 2405 // and break at breakpoint(). 2406 __ call_VM(noreg, CAST_FROM_FN_PTR(address, breakpoint), false); 2407 __ z_lgr(Z_tos, Z_tmp_1); // Restore tos. 2408 __ z_lgr(Z_bytecode, Z_tmp_2); // Save Z_bytecode. 2409 __ z_ldr(Z_ftos, Z_F8); // Restore ftos. 2410 __ bind(L); 2411 } 2412 2413 #endif // !PRODUCT