1 /*
   2  * Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016, 2024 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/barrierSetAssembler.hpp"
  30 #include "interpreter/abstractInterpreter.hpp"
  31 #include "interpreter/bytecodeHistogram.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "interpreter/interp_masm.hpp"
  35 #include "interpreter/templateInterpreterGenerator.hpp"
  36 #include "interpreter/templateTable.hpp"
  37 #include "oops/arrayOop.hpp"
  38 #include "oops/methodCounters.hpp"
  39 #include "oops/methodData.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/resolvedIndyEntry.hpp"
  42 #include "oops/resolvedMethodEntry.hpp"
  43 #include "prims/jvmtiExport.hpp"
  44 #include "prims/jvmtiThreadState.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/deoptimization.hpp"
  47 #include "runtime/frame.inline.hpp"
  48 #include "runtime/jniHandles.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/synchronizer.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "utilities/debug.hpp"
  55 #include "utilities/macros.hpp"
  56 
  57 // Size of interpreter code.  Increase if too small.  Interpreter will
  58 // fail with a guarantee ("not enough space for interpreter generation");
  59 // if too small.
  60 // Run with +PrintInterpreter to get the VM to print out the size.
  61 // Max size with JVMTI
  62 int TemplateInterpreter::InterpreterCodeSize = 320*K;
  63 
  64 #undef  __
  65 #ifdef PRODUCT
  66   #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
  67 #else
  68   #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
  69 //  #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)->
  70 #endif
  71 
  72 #define BLOCK_COMMENT(str) __ block_comment(str)
  73 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
  74 
  75 #define oop_tmp_offset     _z_ijava_state_neg(oop_tmp)
  76 
  77 //-----------------------------------------------------------------------------
  78 
  79 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  80   //
  81   // New slow_signature handler that respects the z/Architecture
  82   // C calling conventions.
  83   //
  84   // We get called by the native entry code with our output register
  85   // area == 8. First we call InterpreterRuntime::get_result_handler
  86   // to copy the pointer to the signature string temporarily to the
  87   // first C-argument and to return the result_handler in
  88   // Z_RET. Since native_entry will copy the jni-pointer to the
  89   // first C-argument slot later on, it's OK to occupy this slot
  90   // temporarily. Then we copy the argument list on the java
  91   // expression stack into native varargs format on the native stack
  92   // and load arguments into argument registers. Integer arguments in
  93   // the varargs vector will be sign-extended to 8 bytes.
  94   //
  95   // On entry:
  96   //   Z_ARG1  - intptr_t*       Address of java argument list in memory.
  97   //   Z_state - zeroInterpreter* Address of interpreter state for
  98   //                              this method
  99   //   Z_method
 100   //
 101   // On exit (just before return instruction):
 102   //   Z_RET contains the address of the result_handler.
 103   //   Z_ARG2 is not updated for static methods and contains "this" otherwise.
 104   //   Z_ARG3-Z_ARG5 contain the first 3 arguments of types other than float and double.
 105   //   Z_FARG1-Z_FARG4 contain the first 4 arguments of type float or double.
 106 
 107   const int LogSizeOfCase = 3;
 108 
 109   const int max_fp_register_arguments   = Argument::n_float_register_parameters;
 110   const int max_int_register_arguments  = Argument::n_register_parameters - 2;  // First 2 are reserved.
 111 
 112   const Register arg_java       = Z_tmp_2;
 113   const Register arg_c          = Z_tmp_3;
 114   const Register signature      = Z_R1_scratch; // Is a string.
 115   const Register fpcnt          = Z_R0_scratch;
 116   const Register argcnt         = Z_tmp_4;
 117   const Register intSlot        = Z_tmp_1;
 118   const Register sig_end        = Z_tmp_1; // Assumed end of signature (only used in do_object).
 119   const Register target_sp      = Z_tmp_1;
 120   const FloatRegister floatSlot = Z_F1;
 121 
 122   const int d_signature         = _z_abi(gpr6); // Only spill space, register contents not affected.
 123   const int d_fpcnt             = _z_abi(gpr7); // Only spill space, register contents not affected.
 124 
 125   unsigned int entry_offset = __ offset();
 126 
 127   BLOCK_COMMENT("slow_signature_handler {");
 128 
 129   // We use target_sp for storing arguments in the C frame.
 130   __ save_return_pc();
 131   __ push_frame_abi160(4*BytesPerWord);                 // Reserve space to save the tmp_[1..4] registers.
 132   __ z_stmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // Save registers only after frame is pushed.
 133 
 134   __ z_lgr(arg_java, Z_ARG1);
 135 
 136   Register   method = Z_ARG2; // Directly load into correct argument register.
 137 
 138   __ get_method(method);
 139   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), Z_thread, method);
 140 
 141   // Move signature to callee saved register.
 142   // Don't directly write to stack. Frame is used by VM call.
 143   __ z_lgr(Z_tmp_1, Z_RET);
 144 
 145   // Reload method. Register may have been altered by VM call.
 146   __ get_method(method);
 147 
 148   // Get address of result handler.
 149   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), Z_thread, method);
 150 
 151   // Save signature address to stack.
 152   __ z_stg(Z_tmp_1, d_signature, Z_SP);
 153 
 154   // Don't overwrite return value (Z_RET, Z_ARG1) in rest of the method !
 155 
 156   {
 157     Label   isStatic;
 158 
 159     // Test if static.
 160     // We can test the bit directly.
 161     // Path is Z_method->_access_flags._flags.
 162     // We only support flag bits in the least significant byte (assert !).
 163     // Therefore add 3 to address that byte within "_flags".
 164     // Reload method. VM call above may have destroyed register contents
 165     __ get_method(method);
 166     __ testbit_ushort(method2_(method, access_flags), JVM_ACC_STATIC_BIT);
 167     method = noreg;  // end of life
 168     __ z_btrue(isStatic);
 169 
 170     // For non-static functions, pass "this" in Z_ARG2 and copy it to 2nd C-arg slot.
 171     // Need to box the Java object here, so we use arg_java
 172     // (address of current Java stack slot) as argument and
 173     // don't dereference it as in case of ints, floats, etc..
 174     __ z_lgr(Z_ARG2, arg_java);
 175     __ add2reg(arg_java, -BytesPerWord);
 176     __ bind(isStatic);
 177   }
 178 
 179   // argcnt == 0 corresponds to 3rd C argument.
 180   //   arg #1 (result handler) and
 181   //   arg #2 (this, for non-statics), unused else
 182   // are reserved and pre-filled above.
 183   // arg_java points to the corresponding Java argument here. It
 184   // has been decremented by one argument (this) in case of non-static.
 185   __ clear_reg(argcnt, true, false);  // Don't set CC.
 186   __ z_lg(target_sp, 0, Z_SP);
 187   __ add2reg(arg_c, _z_abi(remaining_cargs), target_sp);
 188   // No floating-point args parsed so far.
 189   __ clear_mem(Address(Z_SP, d_fpcnt), 8);
 190 
 191   NearLabel   move_intSlot_to_ARG, move_floatSlot_to_FARG;
 192   NearLabel   loop_start, loop_start_restore, loop_end;
 193   NearLabel   do_int, do_long, do_float, do_double;
 194   NearLabel   do_dontreachhere, do_object, do_array, do_boxed;
 195 
 196 #ifdef ASSERT
 197   // Signature needs to point to '(' (== 0x28) at entry.
 198   __ z_lg(signature, d_signature, Z_SP);
 199   __ z_cli(0, signature, (int) '(');
 200   __ z_brne(do_dontreachhere);
 201 #endif
 202 
 203   __ bind(loop_start_restore);
 204   __ z_lg(signature, d_signature, Z_SP);  // Restore signature ptr, destroyed by move_XX_to_ARG.
 205 
 206   BIND(loop_start);
 207   // Advance to next argument type token from the signature.
 208   __ add2reg(signature, 1);
 209 
 210   // Use CLI, works well on all CPU versions.
 211     __ z_cli(0, signature, (int) ')');
 212     __ z_bre(loop_end);                // end of signature
 213     __ z_cli(0, signature, (int) 'L');
 214     __ z_bre(do_object);               // object     #9
 215     __ z_cli(0, signature, (int) 'F');
 216     __ z_bre(do_float);                // float      #7
 217     __ z_cli(0, signature, (int) 'J');
 218     __ z_bre(do_long);                 // long       #6
 219     __ z_cli(0, signature, (int) 'B');
 220     __ z_bre(do_int);                  // byte       #1
 221     __ z_cli(0, signature, (int) 'Z');
 222     __ z_bre(do_int);                  // boolean    #2
 223     __ z_cli(0, signature, (int) 'C');
 224     __ z_bre(do_int);                  // char       #3
 225     __ z_cli(0, signature, (int) 'S');
 226     __ z_bre(do_int);                  // short      #4
 227     __ z_cli(0, signature, (int) 'I');
 228     __ z_bre(do_int);                  // int        #5
 229     __ z_cli(0, signature, (int) 'D');
 230     __ z_bre(do_double);               // double     #8
 231     __ z_cli(0, signature, (int) '[');
 232     __ z_bre(do_array);                // array      #10
 233 
 234   __ bind(do_dontreachhere);
 235 
 236   __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
 237 
 238   // Array argument
 239   BIND(do_array);
 240 
 241   {
 242     Label   start_skip, end_skip;
 243 
 244     __ bind(start_skip);
 245 
 246     // Advance to next type tag from signature.
 247     __ add2reg(signature, 1);
 248 
 249     // Use CLI, works well on all CPU versions.
 250     __ z_cli(0, signature, (int) '[');
 251     __ z_bre(start_skip);               // Skip further brackets.
 252 
 253     __ z_cli(0, signature, (int) '9');
 254     __ z_brh(end_skip);                 // no optional size
 255 
 256     __ z_cli(0, signature, (int) '0');
 257     __ z_brnl(start_skip);              // Skip optional size.
 258 
 259     __ bind(end_skip);
 260 
 261     __ z_cli(0, signature, (int) 'L');
 262     __ z_brne(do_boxed);                // If not array of objects: go directly to do_boxed.
 263   }
 264 
 265   //  OOP argument
 266   BIND(do_object);
 267   // Pass by an object's type name.
 268   {
 269     Label   L;
 270 
 271     __ add2reg(sig_end, 4095, signature);     // Assume object type name is shorter than 4k.
 272     __ load_const_optimized(Z_R0, (int) ';'); // Type name terminator (must be in Z_R0!).
 273     __ MacroAssembler::search_string(sig_end, signature);
 274     __ z_brl(L);
 275     __ z_illtrap();  // No semicolon found: internal error or object name too long.
 276     __ bind(L);
 277     __ z_lgr(signature, sig_end);
 278     // fallthru to do_boxed
 279   }
 280 
 281   // Need to box the Java object here, so we use arg_java
 282   // (address of current Java stack slot) as argument and
 283   // don't dereference it as in case of ints, floats, etc..
 284 
 285   // UNBOX argument
 286   // Load reference and check for null.
 287   Label  do_int_Entry4Boxed;
 288   __ bind(do_boxed);
 289   {
 290     __ load_and_test_long(intSlot, Address(arg_java));
 291     __ z_bre(do_int_Entry4Boxed);
 292     __ z_lgr(intSlot, arg_java);
 293     __ z_bru(do_int_Entry4Boxed);
 294   }
 295 
 296   // INT argument
 297 
 298   // (also for byte, boolean, char, short)
 299   // Use lgf for load (sign-extend) and stg for store.
 300   BIND(do_int);
 301   __ z_lgf(intSlot, 0, arg_java);
 302 
 303   __ bind(do_int_Entry4Boxed);
 304   __ add2reg(arg_java, -BytesPerWord);
 305   // If argument fits into argument register, go and handle it, otherwise continue.
 306   __ compare32_and_branch(argcnt, max_int_register_arguments,
 307                           Assembler::bcondLow, move_intSlot_to_ARG);
 308   __ z_stg(intSlot, 0, arg_c);
 309   __ add2reg(arg_c, BytesPerWord);
 310   __ z_bru(loop_start);
 311 
 312   // LONG argument
 313 
 314   BIND(do_long);
 315   __ add2reg(arg_java, -2*BytesPerWord);  // Decrement first to have positive displacement for lg.
 316   __ z_lg(intSlot, BytesPerWord, arg_java);
 317   // If argument fits into argument register, go and handle it, otherwise continue.
 318   __ compare32_and_branch(argcnt, max_int_register_arguments,
 319                           Assembler::bcondLow, move_intSlot_to_ARG);
 320   __ z_stg(intSlot, 0, arg_c);
 321   __ add2reg(arg_c, BytesPerWord);
 322   __ z_bru(loop_start);
 323 
 324   // FLOAT argumen
 325 
 326   BIND(do_float);
 327   __ z_le(floatSlot, 0, arg_java);
 328   __ add2reg(arg_java, -BytesPerWord);
 329   assert(max_fp_register_arguments <= 255, "always true");  // safety net
 330   __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments);
 331   __ z_brl(move_floatSlot_to_FARG);
 332   __ z_ste(floatSlot, 4, arg_c);
 333   __ add2reg(arg_c, BytesPerWord);
 334   __ z_bru(loop_start);
 335 
 336   // DOUBLE argument
 337 
 338   BIND(do_double);
 339   __ add2reg(arg_java, -2*BytesPerWord);  // Decrement first to have positive displacement for lg.
 340   __ z_ld(floatSlot, BytesPerWord, arg_java);
 341   assert(max_fp_register_arguments <= 255, "always true");  // safety net
 342   __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments);
 343   __ z_brl(move_floatSlot_to_FARG);
 344   __ z_std(floatSlot, 0, arg_c);
 345   __ add2reg(arg_c, BytesPerWord);
 346   __ z_bru(loop_start);
 347 
 348   // Method exit, all arguments processed.
 349   __ bind(loop_end);
 350   __ z_lmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // restore registers before frame is popped.
 351   __ pop_frame();
 352   __ restore_return_pc();
 353   __ z_br(Z_R14);
 354 
 355   // Copy int arguments.
 356 
 357   Label  iarg_caselist;   // Distance between each case has to be a power of 2
 358                           // (= 1 << LogSizeOfCase).
 359   __ align(16);
 360   BIND(iarg_caselist);
 361   __ z_lgr(Z_ARG3, intSlot);    // 4 bytes
 362   __ z_bru(loop_start_restore); // 4 bytes
 363 
 364   __ z_lgr(Z_ARG4, intSlot);
 365   __ z_bru(loop_start_restore);
 366 
 367   __ z_lgr(Z_ARG5, intSlot);
 368   __ z_bru(loop_start_restore);
 369 
 370   __ align(16);
 371   __ bind(move_intSlot_to_ARG);
 372   __ z_stg(signature, d_signature, Z_SP);       // Spill since signature == Z_R1_scratch.
 373   __ z_larl(Z_R1_scratch, iarg_caselist);
 374   __ z_sllg(Z_R0_scratch, argcnt, LogSizeOfCase);
 375   __ add2reg(argcnt, 1);
 376   __ z_agr(Z_R1_scratch, Z_R0_scratch);
 377   __ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
 378 
 379   // Copy float arguments.
 380 
 381   Label  farg_caselist;   // Distance between each case has to be a power of 2
 382                           // (= 1 << logSizeOfCase, padded with nop.
 383   __ align(16);
 384   BIND(farg_caselist);
 385   __ z_ldr(Z_FARG1, floatSlot); // 2 bytes
 386   __ z_bru(loop_start_restore); // 4 bytes
 387   __ z_nop();                   // 2 bytes
 388 
 389   __ z_ldr(Z_FARG2, floatSlot);
 390   __ z_bru(loop_start_restore);
 391   __ z_nop();
 392 
 393   __ z_ldr(Z_FARG3, floatSlot);
 394   __ z_bru(loop_start_restore);
 395   __ z_nop();
 396 
 397   __ z_ldr(Z_FARG4, floatSlot);
 398   __ z_bru(loop_start_restore);
 399   __ z_nop();
 400 
 401   __ align(16);
 402   __ bind(move_floatSlot_to_FARG);
 403   __ z_stg(signature, d_signature, Z_SP);        // Spill since signature == Z_R1_scratch.
 404   __ z_lg(Z_R0_scratch, d_fpcnt, Z_SP);          // Need old value for indexing.
 405   __ add2mem_64(Address(Z_SP, d_fpcnt), 1, Z_R1_scratch); // Increment index.
 406   __ z_larl(Z_R1_scratch, farg_caselist);
 407   __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogSizeOfCase);
 408   __ z_agr(Z_R1_scratch, Z_R0_scratch);
 409   __ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
 410 
 411   BLOCK_COMMENT("} slow_signature_handler");
 412 
 413   return __ addr_at(entry_offset);
 414 }
 415 
 416 address TemplateInterpreterGenerator::generate_result_handler_for (BasicType type) {
 417   address entry = __ pc();
 418 
 419   assert(Z_tos == Z_RET, "Result handler: must move result!");
 420   assert(Z_ftos == Z_FRET, "Result handler: must move float result!");
 421 
 422   switch (type) {
 423     case T_BOOLEAN:
 424       __ c2bool(Z_tos);
 425       break;
 426     case T_CHAR:
 427       __ and_imm(Z_tos, 0xffff);
 428       break;
 429     case T_BYTE:
 430       __ z_lbr(Z_tos, Z_tos);
 431       break;
 432     case T_SHORT:
 433       __ z_lhr(Z_tos, Z_tos);
 434       break;
 435     case T_INT:
 436     case T_LONG:
 437     case T_VOID:
 438     case T_FLOAT:
 439     case T_DOUBLE:
 440       break;
 441     case T_OBJECT:
 442       // Retrieve result from frame...
 443       __ mem2reg_opt(Z_tos, Address(Z_fp, oop_tmp_offset));
 444       // and verify it.
 445       __ verify_oop(Z_tos);
 446       break;
 447     default:
 448       ShouldNotReachHere();
 449   }
 450   __ z_br(Z_R14);      // Return from result handler.
 451   return entry;
 452 }
 453 
 454 // Abstract method entry.
 455 // Attempt to execute abstract method. Throw exception.
 456 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 457   unsigned int entry_offset = __ offset();
 458 
 459   // Caller could be the call_stub or a compiled method (x86 version is wrong!).
 460 
 461   BLOCK_COMMENT("abstract_entry {");
 462 
 463   // Implement call of InterpreterRuntime::throw_AbstractMethodError.
 464   __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1);
 465   __ save_return_pc();       // Save Z_R14.
 466   __ push_frame_abi160(0);   // Without new frame the RT call could overwrite the saved Z_R14.
 467 
 468   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
 469                   Z_thread, Z_method);
 470 
 471   __ pop_frame();
 472   __ restore_return_pc();    // Restore Z_R14.
 473   __ reset_last_Java_frame();
 474 
 475   // Restore caller sp for c2i case.
 476   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
 477 
 478   // branch to SharedRuntime::generate_forward_exception() which handles all possible callers,
 479   // i.e. call stub, compiled method, interpreted method.
 480   __ load_absolute_address(Z_tmp_1, StubRoutines::forward_exception_entry());
 481   __ z_br(Z_tmp_1);
 482 
 483   BLOCK_COMMENT("} abstract_entry");
 484 
 485   return __ addr_at(entry_offset);
 486 }
 487 
 488 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 489   // Inputs:
 490   //  Z_ARG1 - receiver
 491   //
 492   // What we do:
 493   //  - Load the referent field address.
 494   //  - Load the value in the referent field.
 495   //  - Pass that value to the pre-barrier.
 496   //
 497   // In the case of G1 this will record the value of the
 498   // referent in an SATB buffer if marking is active.
 499   // This will cause concurrent marking to mark the referent
 500   // field as live.
 501 
 502   Register  scratch1 = Z_tmp_2;
 503   Register  scratch2 = Z_tmp_3;
 504   Register  pre_val  = Z_RET;   // return value
 505   // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
 506   Register  Rargp    = Z_esp;
 507 
 508   Label     slow_path;
 509   address   entry = __ pc();
 510 
 511   const int referent_offset = java_lang_ref_Reference::referent_offset();
 512 
 513   BLOCK_COMMENT("Reference_get {");
 514 
 515   //  If the receiver is null then it is OK to jump to the slow path.
 516   __ load_and_test_long(pre_val, Address(Rargp, Interpreter::stackElementSize)); // Get receiver.
 517   __ z_bre(slow_path);
 518 
 519   //  Load the value of the referent field.
 520   __ load_heap_oop(pre_val, Address(pre_val, referent_offset), scratch1, scratch2, ON_WEAK_OOP_REF);
 521 
 522   // Restore caller sp for c2i case.
 523   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
 524   __ z_br(Z_R14);
 525 
 526   // Branch to previously generated regular method entry.
 527   __ bind(slow_path);
 528 
 529   address meth_entry = Interpreter::entry_for_kind(Interpreter::zerolocals);
 530   __ jump_to_entry(meth_entry, Z_R1);
 531 
 532   BLOCK_COMMENT("} Reference_get");
 533 
 534   return entry;
 535 }
 536 
 537 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 538   address entry = __ pc();
 539 
 540   DEBUG_ONLY(__ verify_esp(Z_esp, Z_ARG5));
 541 
 542   // Restore bcp under the assumption that the current frame is still
 543   // interpreted.
 544   __ restore_bcp();
 545 
 546   // Expression stack must be empty before entering the VM if an
 547   // exception happened.
 548   __ empty_expression_stack();
 549   // Throw exception.
 550   __ call_VM(noreg,
 551              CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 552   return entry;
 553 }
 554 
 555 //
 556 // Args:
 557 //   Z_ARG2: oop of array
 558 //   Z_ARG3: aberrant index
 559 //
 560 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
 561   address entry = __ pc();
 562   address excp = CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException);
 563 
 564   // Expression stack must be empty before entering the VM if an
 565   // exception happened.
 566   __ empty_expression_stack();
 567 
 568   // Setup parameters.
 569   // Pass register with array to create more detailed exceptions.
 570   __ call_VM(noreg, excp, Z_ARG2, Z_ARG3);
 571   return entry;
 572 }
 573 
 574 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 575   address entry = __ pc();
 576 
 577   // Object is at TOS.
 578   __ pop_ptr(Z_ARG2);
 579 
 580   // Expression stack must be empty before entering the VM if an
 581   // exception happened.
 582   __ empty_expression_stack();
 583 
 584   __ call_VM(Z_ARG1,
 585              CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException),
 586              Z_ARG2);
 587 
 588   DEBUG_ONLY(__ should_not_reach_here();)
 589 
 590   return entry;
 591 }
 592 
 593 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 594   assert(!pass_oop || message == nullptr, "either oop or message but not both");
 595   address entry = __ pc();
 596 
 597   BLOCK_COMMENT("exception_handler_common {");
 598 
 599   // Expression stack must be empty before entering the VM if an
 600   // exception happened.
 601   __ empty_expression_stack();
 602   if (name != nullptr) {
 603     __ load_absolute_address(Z_ARG2, (address)name);
 604   } else {
 605     __ clear_reg(Z_ARG2, true, false);
 606   }
 607 
 608   if (pass_oop) {
 609     __ call_VM(Z_tos,
 610                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception),
 611                Z_ARG2, Z_tos /*object (see TT::aastore())*/);
 612   } else {
 613     if (message != nullptr) {
 614       __ load_absolute_address(Z_ARG3, (address)message);
 615     } else {
 616       __ clear_reg(Z_ARG3, true, false);
 617     }
 618     __ call_VM(Z_tos,
 619                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 620                Z_ARG2, Z_ARG3);
 621   }
 622   // Throw exception.
 623   __ load_absolute_address(Z_R1_scratch, Interpreter::throw_exception_entry());
 624   __ z_br(Z_R1_scratch);
 625 
 626   BLOCK_COMMENT("} exception_handler_common");
 627 
 628   return entry;
 629 }
 630 
 631 address TemplateInterpreterGenerator::generate_return_entry_for (TosState state, int step, size_t index_size) {
 632   address entry = __ pc();
 633 
 634   BLOCK_COMMENT("return_entry {");
 635 
 636   // Pop i2c extension or revert top-2-parent-resize done by interpreted callees.
 637   Register sp_before_i2c_extension = Z_bcp;
 638   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
 639   __ z_lg(sp_before_i2c_extension, Address(Z_fp, _z_ijava_state_neg(top_frame_sp)));
 640   __ resize_frame_absolute(sp_before_i2c_extension, Z_locals/*tmp*/, true/*load_fp*/);
 641 
 642   // TODO(ZASM): necessary??
 643   //  // and null it as marker that esp is now tos until next java call
 644   //  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 645 
 646   __ restore_bcp();
 647   __ restore_locals();
 648   __ restore_esp();
 649 
 650   if (state == atos) {
 651     __ profile_return_type(Z_tmp_1, Z_tos, Z_tmp_2);
 652   }
 653 
 654   Register cache  = Z_tmp_1;
 655   Register size   = Z_tmp_2;
 656   Register index  = Z_tmp_2;
 657   if (index_size == sizeof(u4)) {
 658     __ load_resolved_indy_entry(cache, index);
 659     __ z_llgh(size, in_bytes(ResolvedIndyEntry::num_parameters_offset()), cache);
 660   } else {
 661     assert(index_size == sizeof(u2), "Can only be u2");
 662     __ load_method_entry(cache, index);
 663     __ load_sized_value(size, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())), sizeof(u2), false /*is_signed*/);
 664   }
 665   __ z_sllg(size, size, Interpreter::logStackElementSize); // Each argument size in bytes.
 666   __ z_agr(Z_esp, size);                                   // Pop arguments.
 667 
 668   __ check_and_handle_popframe(Z_thread);
 669   __ check_and_handle_earlyret(Z_thread);
 670 
 671   __ dispatch_next(state, step);
 672 
 673   BLOCK_COMMENT("} return_entry");
 674 
 675   return entry;
 676 }
 677 
 678 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
 679                                                                int step,
 680                                                                address continuation) {
 681   address entry = __ pc();
 682 
 683   BLOCK_COMMENT("deopt_entry {");
 684 
 685   // TODO(ZASM): necessary? null last_sp until next java call
 686   // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 687   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
 688   __ restore_bcp();
 689   __ restore_locals();
 690   __ restore_esp();
 691 
 692   // Handle exceptions.
 693   {
 694     Label L;
 695     __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception));
 696     __ z_bre(L);
 697     __ call_VM(noreg,
 698                CAST_FROM_FN_PTR(address,
 699                                 InterpreterRuntime::throw_pending_exception));
 700     __ should_not_reach_here();
 701     __ bind(L);
 702   }
 703   if (continuation == nullptr) {
 704     __ dispatch_next(state, step);
 705   } else {
 706     __ jump_to_entry(continuation, Z_R1_scratch);
 707   }
 708 
 709   BLOCK_COMMENT("} deopt_entry");
 710 
 711   return entry;
 712 }
 713 
 714 address TemplateInterpreterGenerator::generate_safept_entry_for (TosState state,
 715                                                                 address runtime_entry) {
 716   address entry = __ pc();
 717   __ push(state);
 718   __ call_VM(noreg, runtime_entry);
 719   __ dispatch_via(vtos, Interpreter::_normal_table.table_for (vtos));
 720   return entry;
 721 }
 722 
 723 address TemplateInterpreterGenerator::generate_cont_resume_interpreter_adapter() {
 724   return nullptr;
 725 }
 726 
 727 
 728 //
 729 // Helpers for commoning out cases in the various type of method entries.
 730 //
 731 
 732 // Increment invocation count & check for overflow.
 733 //
 734 // Note: checking for negative value instead of overflow
 735 // so we have a 'sticky' overflow test.
 736 //
 737 // Z_ARG2: method (see generate_fixed_frame())
 738 //
 739 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) {
 740   Label done;
 741   Register method = Z_ARG2; // Generate_fixed_frame() copies Z_method into Z_ARG2.
 742   Register m_counters = Z_ARG4;
 743 
 744   BLOCK_COMMENT("counter_incr {");
 745 
 746   // Note: In tiered we increment either counters in method or in MDO depending
 747   // if we are profiling or not.
 748   int increment = InvocationCounter::count_increment;
 749   if (ProfileInterpreter) {
 750     NearLabel no_mdo;
 751     Register mdo = m_counters;
 752     // Are we profiling?
 753     __ load_and_test_long(mdo, method2_(method, method_data));
 754     __ branch_optimized(Assembler::bcondZero, no_mdo);
 755     // Increment counter in the MDO.
 756     const Address mdo_invocation_counter(mdo, MethodData::invocation_counter_offset() +
 757                                          InvocationCounter::counter_offset());
 758     const Address mask(mdo, MethodData::invoke_mask_offset());
 759     __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 760                                Z_R1_scratch, false, Assembler::bcondZero,
 761                                overflow);
 762     __ z_bru(done);
 763     __ bind(no_mdo);
 764   }
 765 
 766   // Increment counter in MethodCounters.
 767   const Address invocation_counter(m_counters,
 768                                    MethodCounters::invocation_counter_offset() +
 769                                    InvocationCounter::counter_offset());
 770   // Get address of MethodCounters object.
 771   __ get_method_counters(method, m_counters, done);
 772   const Address mask(m_counters, MethodCounters::invoke_mask_offset());
 773   __ increment_mask_and_jump(invocation_counter,
 774                              increment, mask,
 775                              Z_R1_scratch, false, Assembler::bcondZero,
 776                              overflow);
 777 
 778   __ bind(done);
 779 
 780   BLOCK_COMMENT("} counter_incr");
 781 }
 782 
 783 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
 784   // InterpreterRuntime::frequency_counter_overflow takes two
 785   // arguments, the first (thread) is passed by call_VM, the second
 786   // indicates if the counter overflow occurs at a backwards branch
 787   // (null bcp). We pass zero for it. The call returns the address
 788   // of the verified entry point for the method or null if the
 789   // compilation did not complete (either went background or bailed
 790   // out).
 791   __ clear_reg(Z_ARG2);
 792   __ call_VM(noreg,
 793              CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow),
 794              Z_ARG2);
 795   __ z_bru(do_continue);
 796 }
 797 
 798 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register frame_size, Register tmp1) {
 799   Register tmp2 = Z_R1_scratch;
 800   const int page_size = (int)os::vm_page_size();
 801   NearLabel after_frame_check;
 802 
 803   BLOCK_COMMENT("stack_overflow_check {");
 804 
 805   assert_different_registers(frame_size, tmp1);
 806 
 807   // Stack banging is sufficient overflow check if frame_size < page_size.
 808   if (Immediate::is_uimm(page_size, 15)) {
 809     __ z_chi(frame_size, page_size);
 810     __ z_brl(after_frame_check);
 811   } else {
 812     __ load_const_optimized(tmp1, page_size);
 813     __ compareU32_and_branch(frame_size, tmp1, Assembler::bcondLow, after_frame_check);
 814   }
 815 
 816   // Get the stack base, and in debug, verify it is non-zero.
 817   __ z_lg(tmp1, thread_(stack_base));
 818 #ifdef ASSERT
 819   address reentry = nullptr;
 820   NearLabel base_not_zero;
 821   __ compareU64_and_branch(tmp1, (intptr_t)0L, Assembler::bcondNotEqual, base_not_zero);
 822   reentry = __ stop_chain_static(reentry, "stack base is zero in generate_stack_overflow_check");
 823   __ bind(base_not_zero);
 824 #endif
 825 
 826   // Get the stack size, and in debug, verify it is non-zero.
 827   assert(sizeof(size_t) == sizeof(intptr_t), "wrong load size");
 828   __ z_lg(tmp2, thread_(stack_size));
 829 #ifdef ASSERT
 830   NearLabel size_not_zero;
 831   __ compareU64_and_branch(tmp2, (intptr_t)0L, Assembler::bcondNotEqual, size_not_zero);
 832   reentry = __ stop_chain_static(reentry, "stack size is zero in generate_stack_overflow_check");
 833   __ bind(size_not_zero);
 834 #endif
 835 
 836   // Compute the beginning of the protected zone minus the requested frame size.
 837   __ z_sgr(tmp1, tmp2);
 838   __ add2reg(tmp1, StackOverflow::stack_guard_zone_size());
 839 
 840   // Add in the size of the frame (which is the same as subtracting it from the
 841   // SP, which would take another register.
 842   __ z_agr(tmp1, frame_size);
 843 
 844   // The frame is greater than one page in size, so check against
 845   // the bottom of the stack.
 846   __ compareU64_and_branch(Z_SP, tmp1, Assembler::bcondHigh, after_frame_check);
 847 
 848   // The stack will overflow, throw an exception.
 849 
 850   // Restore SP to sender's sp. This is necessary if the sender's frame is an
 851   // extended compiled frame (see gen_c2i_adapter()) and safer anyway in case of
 852   // JSR292 adaptations.
 853   __ resize_frame_absolute(Z_R10, tmp1, true/*load_fp*/);
 854 
 855   // Note also that the restored frame is not necessarily interpreted.
 856   // Use the shared runtime version of the StackOverflowError.
 857   assert(SharedRuntime::throw_StackOverflowError_entry() != nullptr, "stub not yet generated");
 858   AddressLiteral stub(SharedRuntime::throw_StackOverflowError_entry());
 859   __ load_absolute_address(tmp1, SharedRuntime::throw_StackOverflowError_entry());
 860   __ z_br(tmp1);
 861 
 862   // If you get to here, then there is enough stack space.
 863   __ bind(after_frame_check);
 864 
 865   BLOCK_COMMENT("} stack_overflow_check");
 866 }
 867 
 868 // Allocate monitor and lock method (asm interpreter).
 869 //
 870 // Args:
 871 //   Z_locals: locals
 872 
 873 void TemplateInterpreterGenerator::lock_method(void) {
 874 
 875   BLOCK_COMMENT("lock_method {");
 876 
 877   // Synchronize method.
 878   const Register method = Z_tmp_2;
 879   __ get_method(method);
 880 
 881 #ifdef ASSERT
 882   address reentry = nullptr;
 883   {
 884     Label L;
 885     __ testbit_ushort(method2_(method, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
 886     __ z_btrue(L);
 887     reentry = __ stop_chain_static(reentry, "method doesn't need synchronization");
 888     __ bind(L);
 889   }
 890 #endif // ASSERT
 891 
 892   // Get synchronization object.
 893   const Register object = Z_tmp_2;
 894 
 895   {
 896     Label     done;
 897     Label     static_method;
 898 
 899     __ testbit_ushort(method2_(method, access_flags), JVM_ACC_STATIC_BIT);
 900     __ z_btrue(static_method);
 901 
 902     // non-static method: Load receiver obj from stack.
 903     __ mem2reg_opt(object, Address(Z_locals, Interpreter::local_offset_in_bytes(0)));
 904     __ z_bru(done);
 905 
 906     __ bind(static_method);
 907 
 908     // Lock the java mirror.
 909     // Load mirror from interpreter frame.
 910     __ z_lg(object, _z_ijava_state_neg(mirror), Z_fp);
 911 
 912 #ifdef ASSERT
 913     {
 914       NearLabel L;
 915       __ compare64_and_branch(object, (intptr_t) 0, Assembler::bcondNotEqual, L);
 916       reentry = __ stop_chain_static(reentry, "synchronization object is null");
 917       __ bind(L);
 918     }
 919 #endif // ASSERT
 920 
 921     __ bind(done);
 922   }
 923 
 924   __ add_monitor_to_stack(true, Z_ARG3, Z_ARG4, Z_ARG5); // Allocate monitor elem.
 925   // Store object and lock it.
 926   __ get_monitors(Z_tmp_1);
 927   __ reg2mem_opt(object, Address(Z_tmp_1, BasicObjectLock::obj_offset()));
 928   __ lock_object(Z_tmp_1, object);
 929 
 930   BLOCK_COMMENT("} lock_method");
 931 }
 932 
 933 // Generate a fixed interpreter frame. This is identical setup for
 934 // interpreted methods and for native methods hence the shared code.
 935 //
 936 // Registers alive
 937 //   Z_thread   - JavaThread*
 938 //   Z_SP       - old stack pointer
 939 //   Z_method   - callee's method
 940 //   Z_esp      - parameter list (slot 'above' last param)
 941 //   Z_R14      - return pc, to be stored in caller's frame
 942 //   Z_R10      - sender sp, note: Z_tmp_1 is Z_R10!
 943 //
 944 // Registers updated
 945 //   Z_SP       - new stack pointer
 946 //   Z_esp      - callee's operand stack pointer
 947 //                points to the slot above the value on top
 948 //   Z_locals   - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
 949 //   Z_bcp      - the bytecode pointer
 950 //   Z_fp       - the frame pointer, thereby killing Z_method
 951 //   Z_ARG2     - copy of Z_method
 952 //
 953 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 954 
 955   //  stack layout
 956   //
 957   //   F1 [TOP_IJAVA_FRAME_ABI]              <-- Z_SP, Z_R10 (see note below)
 958   //      [F1's operand stack (unused)]
 959   //      [F1's outgoing Java arguments]     <-- Z_esp
 960   //      [F1's operand stack (non args)]
 961   //      [monitors]      (optional)
 962   //      [IJAVA_STATE]
 963   //
 964   //   F2 [PARENT_IJAVA_FRAME_ABI]
 965   //      ...
 966   //
 967   //  0x000
 968   //
 969   // Note: Z_R10, the sender sp, will be below Z_SP if F1 was extended by a c2i adapter.
 970 
 971   //=============================================================================
 972   // Allocate space for locals other than the parameters, the
 973   // interpreter state, monitors, and the expression stack.
 974 
 975   const Register local_count  = Z_ARG5;
 976   const Register fp           = Z_tmp_2;
 977   const Register const_method = Z_ARG1;
 978 
 979   BLOCK_COMMENT("generate_fixed_frame {");
 980   {
 981   // local registers
 982   const Register top_frame_size  = Z_ARG2;
 983   const Register sp_after_resize = Z_ARG3;
 984   const Register max_stack       = Z_ARG4;
 985 
 986   __ z_lg(const_method, Address(Z_method, Method::const_offset()));
 987   __ z_llgh(max_stack, Address(const_method, ConstMethod::size_of_parameters_offset()));
 988   __ z_sllg(Z_locals /*parameter_count bytes*/, max_stack /*parameter_count*/, LogBytesPerWord);
 989 
 990   if (native_call) {
 991     // If we're calling a native method, we replace max_stack (which is
 992     // zero) with space for the worst-case signature handler varargs
 993     // vector, which is:
 994     //   max_stack = max(Argument::n_register_parameters, parameter_count+2);
 995     //
 996     // We add two slots to the parameter_count, one for the jni
 997     // environment and one for a possible native mirror. We allocate
 998     // space for at least the number of ABI registers, even though
 999     // InterpreterRuntime::slow_signature_handler won't write more than
1000     // parameter_count+2 words when it creates the varargs vector at the
1001     // top of the stack. The generated slow signature handler will just
1002     // load trash into registers beyond the necessary number. We're
1003     // still going to cut the stack back by the ABI register parameter
1004     // count so as to get SP+16 pointing at the ABI outgoing parameter
1005     // area, so we need to allocate at least that much even though we're
1006     // going to throw it away.
1007     //
1008     __ add2reg(max_stack, 2);
1009 
1010     NearLabel passing_args_on_stack;
1011 
1012     // max_stack in bytes
1013     __ z_sllg(max_stack, max_stack, LogBytesPerWord);
1014 
1015     int argument_registers_in_bytes = Argument::n_register_parameters << LogBytesPerWord;
1016     __ compare64_and_branch(max_stack, argument_registers_in_bytes, Assembler::bcondNotLow, passing_args_on_stack);
1017 
1018     __ load_const_optimized(max_stack, argument_registers_in_bytes);
1019 
1020     __ bind(passing_args_on_stack);
1021   } else {
1022     // !native_call
1023     // local_count = method->constMethod->max_locals();
1024     __ z_llgh(local_count, Address(const_method, ConstMethod::size_of_locals_offset()));
1025 
1026     // Calculate number of non-parameter locals (in slots):
1027     __ z_sgr(local_count, max_stack);
1028 
1029     // max_stack = method->max_stack();
1030     __ z_llgh(max_stack, Address(const_method, ConstMethod::max_stack_offset()));
1031     // max_stack in bytes
1032     __ z_sllg(max_stack, max_stack, LogBytesPerWord);
1033   }
1034 
1035   // Resize (i.e. normally shrink) the top frame F1 ...
1036   //   F1      [TOP_IJAVA_FRAME_ABI]          <-- Z_SP, Z_R10
1037   //           F1's operand stack (free)
1038   //           ...
1039   //           F1's operand stack (free)      <-- Z_esp
1040   //           F1's outgoing Java arg m
1041   //           ...
1042   //           F1's outgoing Java arg 0
1043   //           ...
1044   //
1045   //  ... into a parent frame (Z_R10 holds F1's SP before any modification, see also above)
1046   //
1047   //           +......................+
1048   //           :                      :        <-- Z_R10, saved below as F0's z_ijava_state.sender_sp
1049   //           :                      :
1050   //   F1      [PARENT_IJAVA_FRAME_ABI]        <-- Z_SP       \
1051   //           F0's non arg local                             | = delta
1052   //           ...                                            |
1053   //           F0's non arg local              <-- Z_esp      /
1054   //           F1's outgoing Java arg m
1055   //           ...
1056   //           F1's outgoing Java arg 0
1057   //           ...
1058   //
1059   // then push the new top frame F0.
1060   //
1061   //   F0      [TOP_IJAVA_FRAME_ABI]    = frame::z_top_ijava_frame_abi_size \
1062   //           [operand stack]          = max_stack                          | = top_frame_size
1063   //           [IJAVA_STATE]            = frame::z_ijava_state_size         /
1064 
1065   // sp_after_resize = Z_esp - delta
1066   //
1067   // delta = PARENT_IJAVA_FRAME_ABI + (locals_count - params_count)
1068 
1069   __ add2reg(sp_after_resize, (Interpreter::stackElementSize) - (frame::z_parent_ijava_frame_abi_size), Z_esp);
1070   if (!native_call) {
1071     __ z_sllg(Z_R0_scratch, local_count, LogBytesPerWord); // Params have already been subtracted from local_count.
1072     __ z_slgr(sp_after_resize, Z_R0_scratch);
1073   }
1074 
1075   // top_frame_size = TOP_IJAVA_FRAME_ABI + max_stack + size of interpreter state
1076   __ add2reg(top_frame_size,
1077              frame::z_top_ijava_frame_abi_size +
1078              frame::z_ijava_state_size,
1079              max_stack);
1080 
1081   if (!native_call) {
1082     // Stack overflow check.
1083     // Native calls don't need the stack size check since they have no
1084     // expression stack and the arguments are already on the stack and
1085     // we only add a handful of words to the stack.
1086     Register frame_size = max_stack; // Reuse the register for max_stack.
1087     __ z_lgr(frame_size, Z_SP);
1088     __ z_sgr(frame_size, sp_after_resize);
1089     __ z_agr(frame_size, top_frame_size);
1090     generate_stack_overflow_check(frame_size, fp/*tmp1*/);
1091   }
1092 
1093   // asm_assert* is a nop in product builds
1094   NOT_PRODUCT(__ z_cg(Z_R14, _z_common_abi(return_pc), Z_SP));
1095   NOT_PRODUCT(__ asm_assert(Assembler::bcondEqual, "killed Z_R14", 0));
1096   __ resize_frame_absolute(sp_after_resize, fp, true);
1097   __ save_return_pc(Z_R14);
1098 
1099   // ... and push the new frame F0.
1100   __ push_frame(top_frame_size, fp, true /*copy_sp*/, false);
1101   }
1102 
1103   //=============================================================================
1104   // Initialize the new frame F0: initialize interpreter state.
1105 
1106   {
1107   // locals
1108   const Register local_addr = Z_ARG4;
1109 
1110   BLOCK_COMMENT("generate_fixed_frame: initialize interpreter state {");
1111 
1112 #ifdef ASSERT
1113   // Set the magic number (using local_addr as tmp register).
1114   __ load_const_optimized(local_addr, frame::z_istate_magic_number);
1115   __ z_stg(local_addr, _z_ijava_state_neg(magic), fp);
1116 #endif
1117 
1118   // Save sender SP from F1 (i.e. before it was potentially modified by an
1119   // adapter) into F0's interpreter state. We use it as well to revert
1120   // resizing the frame above.
1121   __ z_stg(Z_R10, _z_ijava_state_neg(sender_sp), fp);
1122 
1123   // Load cp cache and save it at the end of this block.
1124   __ z_lg(Z_R1_scratch, Address(const_method, ConstMethod::constants_offset()));
1125   __ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstantPool::cache_offset()));
1126 
1127   // z_ijava_state->method = method;
1128   __ z_stg(Z_method, _z_ijava_state_neg(method), fp);
1129 
1130   // Point locals at the first argument. Method's locals are the
1131   // parameters on top of caller's expression stack.
1132   // Tos points past last Java argument.
1133 
1134   __ z_agr(Z_locals, Z_esp);
1135   // z_ijava_state->locals - i*BytesPerWord points to i-th Java local (i starts at 0)
1136   // z_ijava_state->locals = Z_esp + parameter_count bytes
1137   __ z_stg(Z_locals, _z_ijava_state_neg(locals), fp);
1138 
1139   // z_ijava_state->oop_temp = nullptr;
1140   __ store_const(Address(fp, oop_tmp_offset), 0);
1141 
1142   // Initialize z_ijava_state->mdx.
1143   Register Rmdp = Z_bcp;
1144   // native_call: assert that mdo is null
1145   const bool check_for_mdo = !native_call DEBUG_ONLY(|| native_call);
1146   if (ProfileInterpreter && check_for_mdo) {
1147     Label get_continue;
1148 
1149     __ load_and_test_long(Rmdp, method_(method_data));
1150     __ z_brz(get_continue);
1151     DEBUG_ONLY(if (native_call) __ stop("native methods don't have a mdo"));
1152     __ add2reg(Rmdp, in_bytes(MethodData::data_offset()));
1153     __ bind(get_continue);
1154   }
1155   __ z_stg(Rmdp, _z_ijava_state_neg(mdx), fp);
1156 
1157   // Initialize z_ijava_state->bcp and Z_bcp.
1158   if (native_call) {
1159     __ clear_reg(Z_bcp); // Must initialize. Will get written into frame where GC reads it.
1160   } else {
1161     __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset()), const_method);
1162   }
1163   __ z_stg(Z_bcp, _z_ijava_state_neg(bcp), fp);
1164 
1165   // no monitors and empty operand stack
1166   // => z_ijava_state->monitors points to the top slot in IJAVA_STATE.
1167   // => Z_ijava_state->esp points one slot above into the operand stack.
1168   // z_ijava_state->monitors = fp - frame::z_ijava_state_size - Interpreter::stackElementSize;
1169   // z_ijava_state->esp = Z_esp = z_ijava_state->monitors;
1170   __ add2reg(Z_esp, -frame::z_ijava_state_size, fp);
1171   __ z_stg(Z_esp, _z_ijava_state_neg(monitors), fp);
1172   __ add2reg(Z_esp, -Interpreter::stackElementSize);
1173   __ z_stg(Z_esp, _z_ijava_state_neg(esp), fp);
1174 
1175   // z_ijava_state->cpoolCache = Z_R1_scratch (see load above);
1176   __ z_stg(Z_R1_scratch, _z_ijava_state_neg(cpoolCache), fp);
1177 
1178   // Get mirror and store it in the frame as GC root for this Method*.
1179   __ load_mirror_from_const_method(Z_R1_scratch, const_method);
1180   __ z_stg(Z_R1_scratch, _z_ijava_state_neg(mirror), fp);
1181 
1182   BLOCK_COMMENT("} generate_fixed_frame: initialize interpreter state");
1183 
1184   //=============================================================================
1185   if (!native_call) {
1186     // Local_count is already num_locals_slots - num_param_slots.
1187     // Start of locals: local_addr = Z_locals - locals size + 1 slot
1188     __ z_llgh(Z_R0_scratch, Address(const_method, ConstMethod::size_of_locals_offset()));
1189     __ add2reg(local_addr, BytesPerWord, Z_locals);
1190     __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogBytesPerWord);
1191     __ z_sgr(local_addr, Z_R0_scratch);
1192 
1193     __ Clear_Array(local_count, local_addr, Z_ARG2);
1194   }
1195 
1196   }
1197   // Finally set the frame pointer, destroying Z_method.
1198   assert(Z_fp == Z_method, "maybe set Z_fp earlier if other register than Z_method");
1199   // Oprofile analysis suggests to keep a copy in a register to be used by
1200   // generate_counter_incr().
1201   __ z_lgr(Z_ARG2, Z_method);
1202   __ z_lgr(Z_fp, fp);
1203 
1204   BLOCK_COMMENT("} generate_fixed_frame");
1205 }
1206 
1207 // Various method entries
1208 
1209 // Math function, frame manager must set up an interpreter state, etc.
1210 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1211 
1212   // Decide what to do: Use same platform specific instructions and runtime calls as compilers.
1213   bool use_instruction = false;
1214   address runtime_entry = nullptr;
1215   int num_args = 1;
1216   bool double_precision = true;
1217 
1218   // s390 specific:
1219   switch (kind) {
1220     case Interpreter::java_lang_math_sqrt:
1221     case Interpreter::java_lang_math_abs:  use_instruction = true; break;
1222     case Interpreter::java_lang_math_fmaF:
1223     case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break;
1224     default: break; // Fall back to runtime call.
1225   }
1226 
1227   switch (kind) {
1228     case Interpreter::java_lang_math_sin  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);   break;
1229     case Interpreter::java_lang_math_cos  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);   break;
1230     case Interpreter::java_lang_math_tan  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);   break;
1231     case Interpreter::java_lang_math_tanh : /* run interpreted */ break;
1232     case Interpreter::java_lang_math_abs  : /* run interpreted */ break;
1233     case Interpreter::java_lang_math_sqrt : /* runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt); not available */ break;
1234     case Interpreter::java_lang_math_log  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);   break;
1235     case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break;
1236     case Interpreter::java_lang_math_pow  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break;
1237     case Interpreter::java_lang_math_exp  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);   break;
1238     case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break;
1239     case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break;
1240     default: ShouldNotReachHere();
1241   }
1242 
1243   // Use normal entry if neither instruction nor runtime call is used.
1244   if (!use_instruction && runtime_entry == nullptr) return nullptr;
1245 
1246   address entry = __ pc();
1247 
1248   if (use_instruction) {
1249     switch (kind) {
1250       case Interpreter::java_lang_math_sqrt:
1251         // Can use memory operand directly.
1252         __ z_sqdb(Z_FRET, Interpreter::stackElementSize, Z_esp);
1253         break;
1254       case Interpreter::java_lang_math_abs:
1255         // Load operand from stack.
1256         __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize));
1257         __ z_lpdbr(Z_FRET);
1258         break;
1259       case Interpreter::java_lang_math_fmaF:
1260         __ mem2freg_opt(Z_FRET,  Address(Z_esp,     Interpreter::stackElementSize)); // result reg = arg3
1261         __ mem2freg_opt(Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize)); // arg1
1262         __ z_maeb(Z_FRET, Z_FARG2, Address(Z_esp, 2 * Interpreter::stackElementSize));
1263         break;
1264       case Interpreter::java_lang_math_fmaD:
1265         __ mem2freg_opt(Z_FRET,  Address(Z_esp,     Interpreter::stackElementSize)); // result reg = arg3
1266         __ mem2freg_opt(Z_FARG2, Address(Z_esp, 5 * Interpreter::stackElementSize)); // arg1
1267         __ z_madb(Z_FRET, Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize));
1268         break;
1269       default: ShouldNotReachHere();
1270     }
1271   } else {
1272     // Load arguments
1273     assert(num_args <= 4, "passed in registers");
1274     if (double_precision) {
1275       int offset = (2 * num_args - 1) * Interpreter::stackElementSize;
1276       for (int i = 0; i < num_args; ++i) {
1277         __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset));
1278         offset -= 2 * Interpreter::stackElementSize;
1279       }
1280     } else {
1281       int offset = num_args * Interpreter::stackElementSize;
1282       for (int i = 0; i < num_args; ++i) {
1283         __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset));
1284         offset -= Interpreter::stackElementSize;
1285       }
1286     }
1287     // Call runtime
1288     __ save_return_pc();       // Save Z_R14.
1289     __ push_frame_abi160(0);   // Without new frame the RT call could overwrite the saved Z_R14.
1290 
1291     __ call_VM_leaf(runtime_entry);
1292 
1293     __ pop_frame();
1294     __ restore_return_pc();    // Restore Z_R14.
1295   }
1296 
1297   // Pop c2i arguments (if any) off when we return.
1298   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1299 
1300   __ z_br(Z_R14);
1301 
1302   return entry;
1303 }
1304 
1305 // Interpreter stub for calling a native method. (asm interpreter).
1306 // This sets up a somewhat different looking stack for calling the
1307 // native method than the typical interpreter frame setup.
1308 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1309   // Determine code generation flags.
1310   bool inc_counter = UseCompiler || CountCompiledCalls;
1311 
1312   // Interpreter entry for ordinary Java methods.
1313   //
1314   // Registers alive
1315   //   Z_SP          - stack pointer
1316   //   Z_thread      - JavaThread*
1317   //   Z_method      - callee's method (method to be invoked)
1318   //   Z_esp         - operand (or expression) stack pointer of caller. one slot above last arg.
1319   //   Z_R10         - sender sp (before modifications, e.g. by c2i adapter
1320   //                   and as well by generate_fixed_frame below)
1321   //   Z_R14         - return address to caller (call_stub or c2i_adapter)
1322   //
1323   // Registers updated
1324   //   Z_SP          - stack pointer
1325   //   Z_fp          - callee's framepointer
1326   //   Z_esp         - callee's operand stack pointer
1327   //                   points to the slot above the value on top
1328   //   Z_locals      - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
1329   //   Z_tos         - integer result, if any
1330   //   z_ftos        - floating point result, if any
1331   //
1332   // Stack layout at this point:
1333   //
1334   //   F1      [TOP_IJAVA_FRAME_ABI]         <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if
1335   //                                                          frame was extended by c2i adapter)
1336   //           [outgoing Java arguments]     <-- Z_esp
1337   //           ...
1338   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
1339   //           ...
1340   //
1341 
1342   address entry_point = __ pc();
1343 
1344   // Make sure registers are different!
1345   assert_different_registers(Z_thread, Z_method, Z_esp);
1346 
1347   BLOCK_COMMENT("native_entry {");
1348 
1349   // Make sure method is native and not abstract.
1350 #ifdef ASSERT
1351   // _access_flags must be a 16 bit value.
1352   assert(sizeof(AccessFlags) == 2, "testbit_ushort will fail");
1353   address reentry = nullptr;
1354   { Label L;
1355     __ testbit_ushort(method_(access_flags), JVM_ACC_NATIVE_BIT);
1356     __ z_btrue(L);
1357     reentry = __ stop_chain_static(reentry, "tried to execute non-native method as native");
1358     __ bind(L);
1359   }
1360   { Label L;
1361     __ testbit_ushort(method_(access_flags), JVM_ACC_ABSTRACT_BIT);
1362     __ z_bfalse(L);
1363     reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract");
1364     __ bind(L);
1365   }
1366 #endif // ASSERT
1367 
1368   // Save the return PC into the callers frame for assertion in generate_fixed_frame.
1369   NOT_PRODUCT(__ save_return_pc(Z_R14));
1370 
1371   // Generate the code to allocate the interpreter stack frame.
1372   generate_fixed_frame(true);
1373 
1374   const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset());
1375   // Since at this point in the method invocation the exception handler
1376   // would try to exit the monitor of synchronized methods which hasn't
1377   // been entered yet, we set the thread local variable
1378   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1379   // runtime, exception handling i.e. unlock_if_synchronized_method will
1380   // check this thread local flag.
1381   __ z_mvi(do_not_unlock_if_synchronized, true);
1382 
1383   // Increment invocation count and check for overflow.
1384   NearLabel invocation_counter_overflow;
1385   if (inc_counter) {
1386     generate_counter_incr(&invocation_counter_overflow);
1387   }
1388 
1389   Label continue_after_compile;
1390   __ bind(continue_after_compile);
1391 
1392   bang_stack_shadow_pages(true);
1393 
1394   // Reset the _do_not_unlock_if_synchronized flag.
1395   __ z_mvi(do_not_unlock_if_synchronized, false);
1396 
1397   // Check for synchronized methods.
1398   // This mst happen AFTER invocation_counter check and stack overflow check,
1399   // so method is not locked if overflows.
1400   if (synchronized) {
1401     lock_method();
1402   } else {
1403     // No synchronization necessary.
1404 #ifdef ASSERT
1405     { Label L;
1406       __ get_method(Z_R1_scratch);
1407       __ testbit_ushort(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
1408       __ z_bfalse(L);
1409       reentry = __ stop_chain_static(reentry, "method needs synchronization");
1410       __ bind(L);
1411     }
1412 #endif // ASSERT
1413   }
1414 
1415   // start execution
1416 
1417   // jvmti support
1418   __ notify_method_entry();
1419 
1420   //=============================================================================
1421   // Get and call the signature handler.
1422   const Register Rmethod                 = Z_tmp_2;
1423   const Register signature_handler_entry = Z_tmp_1;
1424   const Register Rresult_handler         = Z_tmp_3;
1425   Label call_signature_handler;
1426 
1427   assert_different_registers(Z_fp, Rmethod, signature_handler_entry, Rresult_handler);
1428   assert(Rresult_handler->is_nonvolatile(), "Rresult_handler must be in a non-volatile register");
1429 
1430   // Reload method.
1431   __ get_method(Rmethod);
1432 
1433   // Check for signature handler.
1434   __ load_and_test_long(signature_handler_entry, method2_(Rmethod, signature_handler));
1435   __ z_brne(call_signature_handler);
1436 
1437   // Method has never been called. Either generate a specialized
1438   // handler or point to the slow one.
1439   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call),
1440              Rmethod);
1441 
1442   // Reload method.
1443   __ get_method(Rmethod);
1444 
1445   // Reload signature handler, it must have been created/assigned in the meantime.
1446   __ z_lg(signature_handler_entry, method2_(Rmethod, signature_handler));
1447 
1448   __ bind(call_signature_handler);
1449 
1450   // We have a TOP_IJAVA_FRAME here, which belongs to us.
1451   __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1/*tmp*/);
1452 
1453   // Call signature handler and pass locals address in Z_ARG1.
1454   __ z_lgr(Z_ARG1, Z_locals);
1455   __ call_stub(signature_handler_entry);
1456   // Save result handler returned by signature handler.
1457   __ z_lgr(Rresult_handler, Z_RET);
1458 
1459   // Reload method (the slow signature handler may block for GC).
1460   __ get_method(Rmethod);
1461 
1462   // Pass mirror handle if static call.
1463   {
1464     Label method_is_not_static;
1465     __ testbit_ushort(method2_(Rmethod, access_flags), JVM_ACC_STATIC_BIT);
1466     __ z_bfalse(method_is_not_static);
1467     // Load mirror from interpreter frame.
1468     __ z_lg(Z_R1, _z_ijava_state_neg(mirror), Z_fp);
1469     // z_ijava_state.oop_temp = pool_holder->klass_part()->java_mirror();
1470     __ z_stg(Z_R1, oop_tmp_offset, Z_fp);
1471     // Pass handle to mirror as 2nd argument to JNI method.
1472     __ add2reg(Z_ARG2, oop_tmp_offset, Z_fp);
1473     __ bind(method_is_not_static);
1474   }
1475 
1476   // Pass JNIEnv address as first parameter.
1477   __ add2reg(Z_ARG1, in_bytes(JavaThread::jni_environment_offset()), Z_thread);
1478 
1479   // Note: last java frame has been set above already. The pc from there
1480   // is precise enough.
1481 
1482   // Get native function entry point before we change the thread state.
1483   __ z_lg(Z_R1/*native_method_entry*/, method2_(Rmethod, native_function));
1484 
1485   //=============================================================================
1486   // Transition from _thread_in_Java to _thread_in_native. As soon as
1487   // we make this change the safepoint code needs to be certain that
1488   // the last Java frame we established is good. The pc in that frame
1489   // just need to be near here not an actual return address.
1490 #ifdef ASSERT
1491   {
1492     NearLabel L;
1493     __ mem2reg_opt(Z_R14, Address(Z_thread, JavaThread::thread_state_offset()), false /*32 bits*/);
1494     __ compareU32_and_branch(Z_R14, _thread_in_Java, Assembler::bcondEqual, L);
1495     reentry = __ stop_chain_static(reentry, "Wrong thread state in native stub");
1496     __ bind(L);
1497   }
1498 #endif
1499 
1500   // Memory ordering: Z does not reorder store/load with subsequent load. That's strong enough.
1501   __ set_thread_state(_thread_in_native);
1502 
1503   //=============================================================================
1504   // Call the native method. Argument registers must not have been
1505   // overwritten since "__ call_stub(signature_handler);" (except for
1506   // ARG1 and ARG2 for static methods).
1507 
1508   __ call_c(Z_R1/*native_method_entry*/);
1509 
1510   // NOTE: frame::interpreter_frame_result() depends on these stores.
1511   __ z_stg(Z_RET, _z_ijava_state_neg(lresult), Z_fp);
1512   __ freg2mem_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult)));
1513   const Register Rlresult = signature_handler_entry;
1514   assert(Rlresult->is_nonvolatile(), "Rlresult must be in a non-volatile register");
1515   __ z_lgr(Rlresult, Z_RET);
1516 
1517   // Z_method may no longer be valid, because of GC.
1518 
1519   // Block, if necessary, before resuming in _thread_in_Java state.
1520   // In order for GC to work, don't clear the last_Java_sp until after
1521   // blocking.
1522 
1523   //=============================================================================
1524   // Switch thread to "native transition" state before reading the
1525   // synchronization state. This additional state is necessary
1526   // because reading and testing the synchronization state is not
1527   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
1528   // in _thread_in_native state, loads _not_synchronized and is
1529   // preempted. VM thread changes sync state to synchronizing and
1530   // suspends threads for GC. Thread A is resumed to finish this
1531   // native method, but doesn't block here since it didn't see any
1532   // synchronization is progress, and escapes.
1533 
1534   __ set_thread_state(_thread_in_native_trans);
1535   if (!UseSystemMemoryBarrier) {
1536     __ z_fence();
1537   }
1538 
1539   // Now before we return to java we must look for a current safepoint
1540   // (a new safepoint can not start since we entered native_trans).
1541   // We must check here because a current safepoint could be modifying
1542   // the callers registers right this moment.
1543 
1544   // Check for safepoint operation in progress and/or pending suspend requests.
1545   {
1546     Label Continue, do_safepoint;
1547     __ safepoint_poll(do_safepoint, Z_R1);
1548     // Check for suspend.
1549     __ load_and_test_int(Z_R0/*suspend_flags*/, thread_(suspend_flags));
1550     __ z_bre(Continue); // 0 -> no flag set -> not suspended
1551     __ bind(do_safepoint);
1552     __ z_lgr(Z_ARG1, Z_thread);
1553     __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1554     __ bind(Continue);
1555   }
1556 
1557   //=============================================================================
1558   // Back in Interpreter Frame.
1559 
1560   // We are in thread_in_native_trans here and back in the normal
1561   // interpreter frame. We don't have to do anything special about
1562   // safepoints and we can switch to Java mode anytime we are ready.
1563 
1564   // Note: frame::interpreter_frame_result has a dependency on how the
1565   // method result is saved across the call to post_method_exit. For
1566   // native methods it assumes that the non-FPU/non-void result is
1567   // saved in z_ijava_state.lresult and a FPU result in z_ijava_state.fresult. If
1568   // this changes then the interpreter_frame_result implementation
1569   // will need to be updated too.
1570 
1571   //=============================================================================
1572   // Back in Java.
1573 
1574   // Memory ordering: Z does not reorder store/load with subsequent
1575   // load. That's strong enough.
1576   __ set_thread_state(_thread_in_Java);
1577 
1578   __ reset_last_Java_frame();
1579 
1580   // We reset the JNI handle block only after unboxing the result; see below.
1581 
1582   // The method register is junk from after the thread_in_native transition
1583   // until here. Also can't call_VM until the bcp has been
1584   // restored. Need bcp for throwing exception below so get it now.
1585   __ get_method(Rmethod);
1586 
1587   // Restore Z_bcp to have legal interpreter frame,
1588   // i.e., bci == 0 <=> Z_bcp == code_base().
1589   __ z_lg(Z_bcp, Address(Rmethod, Method::const_offset())); // get constMethod
1590   __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset())); // get codebase
1591 
1592   if (CheckJNICalls) {
1593     // clear_pending_jni_exception_check
1594     __ clear_mem(Address(Z_thread, JavaThread::pending_jni_exception_check_fn_offset()), sizeof(oop));
1595   }
1596 
1597   // Check if the native method returns an oop, and if so, move it
1598   // from the jni handle to z_ijava_state.oop_temp. This is
1599   // necessary, because we reset the jni handle block below.
1600   // NOTE: frame::interpreter_frame_result() depends on this, too.
1601   { NearLabel no_oop_result;
1602   __ load_absolute_address(Z_R1, AbstractInterpreter::result_handler(T_OBJECT));
1603   __ compareU64_and_branch(Z_R1, Rresult_handler, Assembler::bcondNotEqual, no_oop_result);
1604   __ resolve_jobject(Rlresult, /* tmp1 */ Rmethod, /* tmp2 */ Z_R1);
1605   __ z_stg(Rlresult, oop_tmp_offset, Z_fp);
1606   __ bind(no_oop_result);
1607   }
1608 
1609   // Reset handle block.
1610   __ z_lg(Z_R1/*active_handles*/, thread_(active_handles));
1611   __ clear_mem(Address(Z_R1, JNIHandleBlock::top_offset()), 4);
1612 
1613   // Handle exceptions (exception handling will handle unlocking!).
1614   {
1615     Label L;
1616     __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception));
1617     __ z_bre(L);
1618     __ MacroAssembler::call_VM(noreg,
1619                                CAST_FROM_FN_PTR(address,
1620                                InterpreterRuntime::throw_pending_exception));
1621     __ should_not_reach_here();
1622     __ bind(L);
1623   }
1624 
1625   if (synchronized) {
1626     Register Rfirst_monitor = Z_ARG2;
1627     __ add2reg(Rfirst_monitor, -(frame::z_ijava_state_size + (int)sizeof(BasicObjectLock)), Z_fp);
1628 #ifdef ASSERT
1629     NearLabel ok;
1630     __ z_lg(Z_R1, _z_ijava_state_neg(monitors), Z_fp);
1631     __ compareU64_and_branch(Rfirst_monitor, Z_R1, Assembler::bcondEqual, ok);
1632     reentry = __ stop_chain_static(reentry, "native_entry:unlock: inconsistent z_ijava_state.monitors");
1633     __ bind(ok);
1634 #endif
1635     __ unlock_object(Rfirst_monitor);
1636   }
1637 
1638   // JVMTI support. Result has already been saved above to the frame.
1639   __ notify_method_exit(true/*native_method*/, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1640 
1641   // Move native method result back into proper registers and return.
1642   __ mem2freg_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult)));
1643   __ mem2reg_opt(Z_RET, Address(Z_fp, _z_ijava_state_neg(lresult)));
1644   __ call_stub(Rresult_handler);
1645 
1646   // Pop the native method's interpreter frame.
1647   __ pop_interpreter_frame(Z_R14 /*return_pc*/, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/);
1648 
1649   // Return to caller.
1650   __ z_br(Z_R14);
1651 
1652   if (inc_counter) {
1653     // Handle overflow of counter and compile method.
1654     __ bind(invocation_counter_overflow);
1655     generate_counter_overflow(continue_after_compile);
1656   }
1657 
1658   BLOCK_COMMENT("} native_entry");
1659 
1660   return entry_point;
1661 }
1662 
1663 //
1664 // Generic interpreted method entry to template interpreter.
1665 //
1666 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1667   address entry_point = __ pc();
1668 
1669   bool inc_counter = UseCompiler || CountCompiledCalls;
1670 
1671   // Interpreter entry for ordinary Java methods.
1672   //
1673   // Registers alive
1674   //   Z_SP       - stack pointer
1675   //   Z_thread   - JavaThread*
1676   //   Z_method   - callee's method (method to be invoked)
1677   //   Z_esp      - operand (or expression) stack pointer of caller. one slot above last arg.
1678   //   Z_R10      - sender sp (before modifications, e.g. by c2i adapter
1679   //                           and as well by generate_fixed_frame below)
1680   //   Z_R14      - return address to caller (call_stub or c2i_adapter)
1681   //
1682   // Registers updated
1683   //   Z_SP       - stack pointer
1684   //   Z_fp       - callee's framepointer
1685   //   Z_esp      - callee's operand stack pointer
1686   //                points to the slot above the value on top
1687   //   Z_locals   - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
1688   //   Z_tos      - integer result, if any
1689   //   z_ftos     - floating point result, if any
1690   //
1691   //
1692   // stack layout at this point:
1693   //
1694   //   F1      [TOP_IJAVA_FRAME_ABI]         <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if
1695   //                                                          frame was extended by c2i adapter)
1696   //           [outgoing Java arguments]     <-- Z_esp
1697   //           ...
1698   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
1699   //           ...
1700   //
1701   // stack layout before dispatching the first bytecode:
1702   //
1703   //   F0      [TOP_IJAVA_FRAME_ABI]         <-- Z_SP
1704   //           [operand stack]               <-- Z_esp
1705   //           monitor (optional, can grow)
1706   //           [IJAVA_STATE]
1707   //   F1      [PARENT_IJAVA_FRAME_ABI]      <-- Z_fp (== *Z_SP)
1708   //           [F0's locals]                 <-- Z_locals
1709   //           [F1's operand stack]
1710   //           [F1's monitors] (optional)
1711   //           [IJAVA_STATE]
1712 
1713   // Make sure registers are different!
1714   assert_different_registers(Z_thread, Z_method, Z_esp);
1715 
1716   BLOCK_COMMENT("normal_entry {");
1717 
1718   // Make sure method is not native and not abstract.
1719   // Rethink these assertions - they can be simplified and shared.
1720 #ifdef ASSERT
1721   address reentry = nullptr;
1722   { Label L;
1723     __ testbit_ushort(method_(access_flags), JVM_ACC_NATIVE_BIT);
1724     __ z_bfalse(L);
1725     reentry = __ stop_chain_static(reentry, "tried to execute native method as non-native");
1726     __ bind(L);
1727   }
1728   { Label L;
1729     __ testbit_ushort(method_(access_flags), JVM_ACC_ABSTRACT_BIT);
1730     __ z_bfalse(L);
1731     reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract");
1732     __ bind(L);
1733   }
1734 #endif // ASSERT
1735 
1736   // Save the return PC into the callers frame for assertion in generate_fixed_frame.
1737   NOT_PRODUCT(__ save_return_pc(Z_R14));
1738 
1739   // Generate the code to allocate the interpreter stack frame.
1740   generate_fixed_frame(false);
1741 
1742   const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset());
1743   // Since at this point in the method invocation the exception handler
1744   // would try to exit the monitor of synchronized methods which hasn't
1745   // been entered yet, we set the thread local variable
1746   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1747   // runtime, exception handling i.e. unlock_if_synchronized_method will
1748   // check this thread local flag.
1749   __ z_mvi(do_not_unlock_if_synchronized, true);
1750 
1751   __ profile_parameters_type(Z_tmp_2, Z_ARG3, Z_ARG4);
1752 
1753   // Increment invocation counter and check for overflow.
1754   //
1755   // Note: checking for negative value instead of overflow so we have a 'sticky'
1756   // overflow test (may be of importance as soon as we have true MT/MP).
1757   NearLabel invocation_counter_overflow;
1758   NearLabel Lcontinue;
1759   if (inc_counter) {
1760     generate_counter_incr(&invocation_counter_overflow);
1761   }
1762   __ bind(Lcontinue);
1763 
1764   bang_stack_shadow_pages(false);
1765 
1766   // Reset the _do_not_unlock_if_synchronized flag.
1767   __ z_mvi(do_not_unlock_if_synchronized, false);
1768 
1769   // Check for synchronized methods.
1770   // Must happen AFTER invocation_counter check and stack overflow check,
1771   // so method is not locked if overflows.
1772   if (synchronized) {
1773     // Allocate monitor and lock method.
1774     lock_method();
1775   } else {
1776 #ifdef ASSERT
1777     { Label L;
1778       __ get_method(Z_R1_scratch);
1779       __ testbit_ushort(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
1780       __ z_bfalse(L);
1781       reentry = __ stop_chain_static(reentry, "method needs synchronization");
1782       __ bind(L);
1783     }
1784 #endif // ASSERT
1785   }
1786 
1787   // start execution
1788 
1789 #ifdef ASSERT
1790   __ verify_esp(Z_esp, Z_R1_scratch);
1791 #endif
1792 
1793   // jvmti support
1794   __ notify_method_entry();
1795 
1796   // Start executing instructions.
1797   __ dispatch_next(vtos);
1798   // Dispatch_next does not return.
1799   DEBUG_ONLY(__ should_not_reach_here());
1800 
1801   // Invocation counter overflow.
1802   if (inc_counter) {
1803     // Handle invocation counter overflow.
1804     __ bind(invocation_counter_overflow);
1805     generate_counter_overflow(Lcontinue);
1806   }
1807 
1808   BLOCK_COMMENT("} normal_entry");
1809 
1810   return entry_point;
1811 }
1812 
1813 
1814 /**
1815  * Method entry for static native methods:
1816  *   int java.util.zip.CRC32.update(int crc, int b)
1817  */
1818 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1819   assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1820   uint64_t entry_off = __ offset();
1821   Label    slow_path;
1822 
1823   // If we need a safepoint check, generate full interpreter entry.
1824   __ safepoint_poll(slow_path, Z_R1);
1825 
1826   BLOCK_COMMENT("CRC32_update {");
1827 
1828   // We don't generate local frame and don't align stack because
1829   // we not even call stub code (we generate the code inline)
1830   // and there is no safepoint on this path.
1831 
1832   // Load java parameters.
1833   // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1834   const Register argP    = Z_esp;
1835   const Register crc     = Z_ARG1;  // crc value
1836   const Register data    = Z_ARG2;  // address of java byte value (kernel_crc32 needs address)
1837   const Register dataLen = Z_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
1838   const Register table   = Z_ARG4;  // address of crc32 table
1839 
1840   // Arguments are reversed on java expression stack.
1841   __ z_la(data, 3+1*wordSize, argP);  // byte value (stack address).
1842                                         // Being passed as an int, the single byte is at offset +3.
1843   __ z_llgf(crc, 2 * wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register.
1844 
1845   StubRoutines::zarch::generate_load_crc_table_addr(_masm, table);
1846   __ kernel_crc32_singleByte(crc, data, dataLen, table, Z_R1, true);
1847 
1848   // Restore caller sp for c2i case.
1849   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1850 
1851   __ z_br(Z_R14);
1852 
1853   BLOCK_COMMENT("} CRC32_update");
1854 
1855   // Use a previously generated vanilla native entry as the slow path.
1856   BIND(slow_path);
1857   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1);
1858   return __ addr_at(entry_off);
1859 }
1860 
1861 
1862 /**
1863  * Method entry for static native methods:
1864  *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
1865  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
1866  */
1867 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1868   assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1869   uint64_t entry_off = __ offset();
1870   Label    slow_path;
1871 
1872   // If we need a safepoint check, generate full interpreter entry.
1873   __ safepoint_poll(slow_path, Z_R1);
1874 
1875   // We don't generate local frame and don't align stack because
1876   // we call stub code and there is no safepoint on this path.
1877 
1878   // Load parameters.
1879   // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1880   const Register argP    = Z_esp;
1881   const Register crc     = Z_ARG1;  // crc value
1882   const Register data    = Z_ARG2;  // address of java byte array
1883   const Register dataLen = Z_ARG3;  // source data len
1884   const Register table   = Z_ARG4;  // address of crc32 table
1885   const Register t0      = Z_R10;   // work reg for kernel* emitters
1886   const Register t1      = Z_R11;   // work reg for kernel* emitters
1887   const Register t2      = Z_R12;   // work reg for kernel* emitters
1888   const Register t3      = Z_R13;   // work reg for kernel* emitters
1889 
1890   // Arguments are reversed on java expression stack.
1891   // Calculate address of start element.
1892   if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1893     // crc     @ (SP + 5W) (32bit)
1894     // buf     @ (SP + 3W) (64bit ptr to long array)
1895     // off     @ (SP + 2W) (32bit)
1896     // dataLen @ (SP + 1W) (32bit)
1897     // data = buf + off
1898     BLOCK_COMMENT("CRC32_updateByteBuffer {");
1899     __ z_llgf(crc,    5*wordSize, argP);  // current crc state
1900     __ z_lg(data,     3*wordSize, argP);  // start of byte buffer
1901     __ z_agf(data,    2*wordSize, argP);  // Add byte buffer offset.
1902     __ z_lgf(dataLen, 1*wordSize, argP);  // #bytes to process
1903   } else {                                                         // Used for "updateBytes update".
1904     // crc     @ (SP + 4W) (32bit)
1905     // buf     @ (SP + 3W) (64bit ptr to byte array)
1906     // off     @ (SP + 2W) (32bit)
1907     // dataLen @ (SP + 1W) (32bit)
1908     // data = buf + off + base_offset
1909     BLOCK_COMMENT("CRC32_updateBytes {");
1910     __ z_llgf(crc,    4*wordSize, argP);  // current crc state
1911     __ z_lg(data,     3*wordSize, argP);  // start of byte buffer
1912     __ z_agf(data,    2*wordSize, argP);  // Add byte buffer offset.
1913     __ z_lgf(dataLen, 1*wordSize, argP);  // #bytes to process
1914     __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1915   }
1916 
1917   StubRoutines::zarch::generate_load_crc_table_addr(_masm, table);
1918 
1919   __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers.
1920   __ z_stmg(t0, t3, 1*8, Z_SP);        // Spill regs 10..13 to make them available as work registers.
1921   __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, true);
1922   __ z_lmg(t0, t3, 1*8, Z_SP);         // Spill regs 10..13 back from stack.
1923 
1924   // Restore caller sp for c2i case.
1925   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1926 
1927   __ z_br(Z_R14);
1928 
1929   BLOCK_COMMENT("} CRC32_update{Bytes|ByteBuffer}");
1930 
1931   // Use a previously generated vanilla native entry as the slow path.
1932   BIND(slow_path);
1933   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1);
1934   return __ addr_at(entry_off);
1935 }
1936 
1937 
1938 /**
1939  * Method entry for intrinsic-candidate (non-native) methods:
1940  *   int java.util.zip.CRC32C.updateBytes(           int crc, byte[] b,  int off, int end)
1941  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end)
1942  * Unlike CRC32, CRC32C does not have any methods marked as native
1943  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1944  */
1945 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1946   assert(UseCRC32CIntrinsics, "this intrinsic is not supported");
1947   uint64_t entry_off = __ offset();
1948 
1949   // We don't generate local frame and don't align stack because
1950   // we call stub code and there is no safepoint on this path.
1951 
1952   // Load parameters.
1953   // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1954   const Register argP    = Z_esp;
1955   const Register crc     = Z_ARG1;  // crc value
1956   const Register data    = Z_ARG2;  // address of java byte array
1957   const Register dataLen = Z_ARG3;  // source data len
1958   const Register table   = Z_ARG4;  // address of crc32 table
1959   const Register t0      = Z_R10;   // work reg for kernel* emitters
1960   const Register t1      = Z_R11;   // work reg for kernel* emitters
1961   const Register t2      = Z_R12;   // work reg for kernel* emitters
1962   const Register t3      = Z_R13;   // work reg for kernel* emitters
1963 
1964   // Arguments are reversed on java expression stack.
1965   // Calculate address of start element.
1966   if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateByteBuffer direct".
1967     // crc     @ (SP + 5W) (32bit)
1968     // buf     @ (SP + 3W) (64bit ptr to long array)
1969     // off     @ (SP + 2W) (32bit)
1970     // dataLen @ (SP + 1W) (32bit)
1971     // data = buf + off
1972     BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {");
1973     __ z_llgf(crc,    5*wordSize, argP);  // current crc state
1974     __ z_lg(data,     3*wordSize, argP);  // start of byte buffer
1975     __ z_agf(data,    2*wordSize, argP);  // Add byte buffer offset.
1976     __ z_lgf(dataLen, 1*wordSize, argP);  // #bytes to process, calculated as
1977     __ z_sgf(dataLen, Address(argP, 2*wordSize));  // (end_index - offset)
1978   } else {                                                                // Used for "updateBytes update".
1979     // crc     @ (SP + 4W) (32bit)
1980     // buf     @ (SP + 3W) (64bit ptr to byte array)
1981     // off     @ (SP + 2W) (32bit)
1982     // dataLen @ (SP + 1W) (32bit)
1983     // data = buf + off + base_offset
1984     BLOCK_COMMENT("CRC32C_updateBytes {");
1985     __ z_llgf(crc,    4*wordSize, argP);  // current crc state
1986     __ z_lg(data,     3*wordSize, argP);  // start of byte buffer
1987     __ z_agf(data,    2*wordSize, argP);  // Add byte buffer offset.
1988     __ z_lgf(dataLen, 1*wordSize, argP);  // #bytes to process, calculated as
1989     __ z_sgf(dataLen, Address(argP, 2*wordSize));  // (end_index - offset)
1990     __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1991   }
1992 
1993   StubRoutines::zarch::generate_load_crc32c_table_addr(_masm, table);
1994 
1995   __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers.
1996   __ z_stmg(t0, t3, 1*8, Z_SP);        // Spill regs 10..13 to make them available as work registers.
1997   __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, false);
1998   __ z_lmg(t0, t3, 1*8, Z_SP);         // Spill regs 10..13 back from stack.
1999 
2000   // Restore caller sp for c2i case.
2001   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
2002 
2003   __ z_br(Z_R14);
2004 
2005   BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}");
2006   return __ addr_at(entry_off);
2007 }
2008 
2009 // Not supported
2010 address TemplateInterpreterGenerator::generate_currentThread() { return nullptr; }
2011 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; }
2012 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; }
2013 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; }
2014 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; }
2015 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { return nullptr; }
2016 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { return nullptr; }
2017 
2018 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
2019   // Quick & dirty stack overflow checking: bang the stack & handle trap.
2020   // Note that we do the banging after the frame is setup, since the exception
2021   // handling code expects to find a valid interpreter frame on the stack.
2022   // Doing the banging earlier fails if the caller frame is not an interpreter
2023   // frame.
2024   // (Also, the exception throwing code expects to unlock any synchronized
2025   // method receiver, so do the banging after locking the receiver.)
2026 
2027   // Bang each page in the shadow zone. We can't assume it's been done for
2028   // an interpreter frame with greater than a page of locals, so each page
2029   // needs to be checked. Only true for non-native. For native, we only bang the last page.
2030   const size_t page_size      = os::vm_page_size();
2031   const int n_shadow_pages = (int)(StackOverflow::stack_shadow_zone_size()/page_size);
2032   const int start_page_num = native_call ? n_shadow_pages : 1;
2033   for (int pages = start_page_num; pages <= n_shadow_pages; pages++) {
2034     __ bang_stack_with_offset(pages*page_size);
2035   }
2036 }
2037 
2038 //-----------------------------------------------------------------------------
2039 // Exceptions
2040 
2041 void TemplateInterpreterGenerator::generate_throw_exception() {
2042 
2043   BLOCK_COMMENT("throw_exception {");
2044 
2045   // Entry point in previous activation (i.e., if the caller was interpreted).
2046   Interpreter::_rethrow_exception_entry = __ pc();
2047   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Frame accessors use Z_fp.
2048   // Z_ARG1 (==Z_tos): exception
2049   // Z_ARG2          : Return address/pc that threw exception.
2050   __ restore_bcp();    // R13 points to call/send.
2051   __ restore_locals();
2052 
2053   // Fallthrough, no need to restore Z_esp.
2054 
2055   // Entry point for exceptions thrown within interpreter code.
2056   Interpreter::_throw_exception_entry = __ pc();
2057   // Expression stack is undefined here.
2058   // Z_ARG1 (==Z_tos): exception
2059   // Z_bcp: exception bcp
2060   __ verify_oop(Z_ARG1);
2061   __ z_lgr(Z_ARG2, Z_ARG1);
2062 
2063   // Expression stack must be empty before entering the VM in case of
2064   // an exception.
2065   __ empty_expression_stack();
2066   // Find exception handler address and preserve exception oop.
2067   const Register Rpreserved_exc_oop = Z_tmp_1;
2068   __ call_VM(Rpreserved_exc_oop,
2069              CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception),
2070              Z_ARG2);
2071   // Z_RET: exception handler entry point
2072   // Z_bcp: bcp for exception handler
2073   __ push_ptr(Rpreserved_exc_oop); // Push exception which is now the only value on the stack.
2074   __ z_br(Z_RET); // Jump to exception handler (may be _remove_activation_entry!).
2075 
2076   // If the exception is not handled in the current frame the frame is
2077   // removed and the exception is rethrown (i.e. exception
2078   // continuation is _rethrow_exception).
2079   //
2080   // Note: At this point the bci is still the bci for the instruction
2081   // which caused the exception and the expression stack is
2082   // empty. Thus, for any VM calls at this point, GC will find a legal
2083   // oop map (with empty expression stack).
2084 
2085   //
2086   // JVMTI PopFrame support
2087   //
2088 
2089   Interpreter::_remove_activation_preserving_args_entry = __ pc();
2090   __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP);
2091   __ empty_expression_stack();
2092   // Set the popframe_processing bit in pending_popframe_condition
2093   // indicating that we are currently handling popframe, so that
2094   // call_VMs that may happen later do not trigger new popframe
2095   // handling cycles.
2096   __ load_sized_value(Z_tmp_1, Address(Z_thread, JavaThread::popframe_condition_offset()), 4, false /*signed*/);
2097   __ z_oill(Z_tmp_1, JavaThread::popframe_processing_bit);
2098   __ z_sty(Z_tmp_1, thread_(popframe_condition));
2099 
2100   {
2101     // Check to see whether we are returning to a deoptimized frame.
2102     // (The PopFrame call ensures that the caller of the popped frame is
2103     // either interpreted or compiled and deoptimizes it if compiled.)
2104     // In this case, we can't call dispatch_next() after the frame is
2105     // popped, but instead must save the incoming arguments and restore
2106     // them after deoptimization has occurred.
2107     //
2108     // Note that we don't compare the return PC against the
2109     // deoptimization blob's unpack entry because of the presence of
2110     // adapter frames in C2.
2111     NearLabel caller_not_deoptimized;
2112     __ z_lg(Z_ARG1, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2113     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), Z_ARG1);
2114     __ compareU64_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, caller_not_deoptimized);
2115 
2116     // Compute size of arguments for saving when returning to
2117     // deoptimized caller.
2118     __ get_method(Z_ARG2);
2119     __ z_lg(Z_ARG2, Address(Z_ARG2, Method::const_offset()));
2120     __ z_llgh(Z_ARG2, Address(Z_ARG2, ConstMethod::size_of_parameters_offset()));
2121     __ z_sllg(Z_ARG2, Z_ARG2, Interpreter::logStackElementSize); // slots 2 bytes
2122     __ restore_locals();
2123     // Compute address of args to be saved.
2124     __ z_lgr(Z_ARG3, Z_locals);
2125     __ z_slgr(Z_ARG3, Z_ARG2);
2126     __ add2reg(Z_ARG3, wordSize);
2127     // Save these arguments.
2128     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args),
2129                     Z_thread, Z_ARG2, Z_ARG3);
2130 
2131     __ remove_activation(vtos, Z_R14,
2132                          /* throw_monitor_exception */ false,
2133                          /* install_monitor_exception */ false,
2134                          /* notify_jvmdi */ false);
2135 
2136     // Inform deoptimization that it is responsible for restoring
2137     // these arguments.
2138     __ store_const(thread_(popframe_condition),
2139                    JavaThread::popframe_force_deopt_reexecution_bit,
2140                    Z_tmp_1, false);
2141 
2142     // Continue in deoptimization handler.
2143     __ z_br(Z_R14);
2144 
2145     __ bind(caller_not_deoptimized);
2146   }
2147 
2148   // Clear the popframe condition flag.
2149   __ clear_mem(thread_(popframe_condition), sizeof(int));
2150 
2151   __ remove_activation(vtos,
2152                        noreg,  // Retaddr is not used.
2153                        false,  // throw_monitor_exception
2154                        false,  // install_monitor_exception
2155                        false); // notify_jvmdi
2156   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
2157   __ restore_bcp();
2158   __ restore_locals();
2159   __ restore_esp();
2160   // The method data pointer was incremented already during
2161   // call profiling. We have to restore the mdp for the current bcp.
2162   if (ProfileInterpreter) {
2163     __ set_method_data_pointer_for_bcp();
2164   }
2165 #if INCLUDE_JVMTI
2166   {
2167     Label L_done;
2168 
2169     __ z_cli(0, Z_bcp, Bytecodes::_invokestatic);
2170     __ z_brc(Assembler::bcondNotEqual, L_done);
2171 
2172     // The member name argument must be restored if _invokestatic is
2173     // re-executed after a PopFrame call.  Detect such a case in the
2174     // InterpreterRuntime function and return the member name
2175     // argument, or null.
2176     __ z_lg(Z_ARG2, Address(Z_locals));
2177     __ get_method(Z_ARG3);
2178     __ call_VM(Z_tmp_1,
2179                CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null),
2180                Z_ARG2, Z_ARG3, Z_bcp);
2181 
2182     __ z_ltgr(Z_tmp_1, Z_tmp_1);
2183     __ z_brc(Assembler::bcondEqual, L_done);
2184 
2185     __ z_stg(Z_tmp_1, Address(Z_esp, wordSize));
2186     __ bind(L_done);
2187   }
2188 #endif // INCLUDE_JVMTI
2189   __ dispatch_next(vtos);
2190   // End of PopFrame support.
2191   Interpreter::_remove_activation_entry = __ pc();
2192 
2193   // In between activations - previous activation type unknown yet
2194   // compute continuation point - the continuation point expects the
2195   // following registers set up:
2196   //
2197   // Z_ARG1 (==Z_tos): exception
2198   // Z_ARG2          : return address/pc that threw exception
2199 
2200   Register return_pc = Z_tmp_1;
2201   Register handler   = Z_tmp_2;
2202    assert(return_pc->is_nonvolatile(), "use non-volatile reg. to preserve exception pc");
2203    assert(handler->is_nonvolatile(),   "use non-volatile reg. to handler pc");
2204   __ asm_assert_ijava_state_magic(return_pc/*tmp*/); // The top frame should be an interpreter frame.
2205   __ z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2206 
2207   // Moved removing the activation after VM call, because the new top
2208   // frame does not necessarily have the z_abi_160 required for a VM
2209   // call (e.g. if it is compiled).
2210 
2211   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
2212                                          SharedRuntime::exception_handler_for_return_address),
2213                         Z_thread, return_pc);
2214   __ z_lgr(handler, Z_RET); // Save exception handler.
2215 
2216   // Preserve exception over this code sequence.
2217   __ pop_ptr(Z_ARG1);
2218   __ set_vm_result(Z_ARG1);
2219   // Remove the activation (without doing throws on illegalMonitorExceptions).
2220   __ remove_activation(vtos, noreg/*ret.pc already loaded*/, false/*throw exc*/, true/*install exc*/, false/*notify jvmti*/);
2221   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
2222 
2223   __ get_vm_result(Z_ARG1);     // Restore exception.
2224   __ verify_oop(Z_ARG1);
2225   __ z_lgr(Z_ARG2, return_pc);  // Restore return address.
2226 
2227 #ifdef ASSERT
2228   // The return_pc in the new top frame is dead... at least that's my
2229   // current understanding. To assert this I overwrite it.
2230   // Note: for compiled frames the handler is the deopt blob
2231   // which writes Z_ARG2 into the return_pc slot.
2232   __ load_const_optimized(return_pc, 0xb00b1);
2233   __ z_stg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_SP);
2234 #endif
2235 
2236   // Z_ARG1 (==Z_tos): exception
2237   // Z_ARG2          : return address/pc that threw exception
2238 
2239   // Note that an "issuing PC" is actually the next PC after the call.
2240   __ z_br(handler);         // Jump to exception handler of caller.
2241 
2242   BLOCK_COMMENT("} throw_exception");
2243 }
2244 
2245 //
2246 // JVMTI ForceEarlyReturn support
2247 //
2248 address TemplateInterpreterGenerator::generate_earlyret_entry_for (TosState state) {
2249   address entry = __ pc();
2250 
2251   BLOCK_COMMENT("earlyret_entry {");
2252 
2253   __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP);
2254   __ restore_bcp();
2255   __ restore_locals();
2256   __ restore_esp();
2257   __ empty_expression_stack();
2258   __ load_earlyret_value(state);
2259 
2260   Register RjvmtiState = Z_tmp_1;
2261   __ z_lg(RjvmtiState, thread_(jvmti_thread_state));
2262   __ store_const(Address(RjvmtiState, JvmtiThreadState::earlyret_state_offset()),
2263                  JvmtiThreadState::earlyret_inactive, 4, 4, Z_R0_scratch);
2264 
2265   if (state == itos) {
2266     // Narrow result if state is itos but result type is smaller.
2267     // Need to narrow in the return bytecode rather than in generate_return_entry
2268     // since compiled code callers expect the result to already be narrowed.
2269     __ narrow(Z_tos, Z_tmp_1); /* fall through */
2270   }
2271   __ remove_activation(state,
2272                        Z_tmp_1, // retaddr
2273                        false,   // throw_monitor_exception
2274                        false,   // install_monitor_exception
2275                        true);   // notify_jvmdi
2276   __ z_br(Z_tmp_1);
2277 
2278   BLOCK_COMMENT("} earlyret_entry");
2279 
2280   return entry;
2281 }
2282 
2283 //-----------------------------------------------------------------------------
2284 // Helper for vtos entry point generation.
2285 
2286 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2287                                                          address& bep,
2288                                                          address& cep,
2289                                                          address& sep,
2290                                                          address& aep,
2291                                                          address& iep,
2292                                                          address& lep,
2293                                                          address& fep,
2294                                                          address& dep,
2295                                                          address& vep) {
2296   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2297   Label L;
2298   aep = __ pc(); __ push_ptr(); __ z_bru(L);
2299   fep = __ pc(); __ push_f();   __ z_bru(L);
2300   dep = __ pc(); __ push_d();   __ z_bru(L);
2301   lep = __ pc(); __ push_l();   __ z_bru(L);
2302   bep = cep = sep =
2303   iep = __ pc(); __ push_i();
2304   vep = __ pc();
2305   __ bind(L);
2306   generate_and_dispatch(t);
2307 }
2308 
2309 //-----------------------------------------------------------------------------
2310 
2311 #ifndef PRODUCT
2312 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2313   address entry = __ pc();
2314   NearLabel counter_below_trace_threshold;
2315 
2316   if (TraceBytecodesAt > 0) {
2317     // Skip runtime call, if the trace threshold is not yet reached.
2318     __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value);
2319     __ load_absolute_address(Z_tmp_2, (address)&TraceBytecodesAt);
2320     __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/);
2321     __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/);
2322     __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, counter_below_trace_threshold);
2323   }
2324 
2325   int offset2 = state == ltos || state == dtos ? 2 : 1;
2326 
2327   __ push(state);
2328   // Preserved return pointer is in Z_R14.
2329   // InterpreterRuntime::trace_bytecode() preserved and returns the value passed as second argument.
2330   __ z_lgr(Z_ARG2, Z_R14);
2331   __ z_lg(Z_ARG3, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)));
2332   if (WizardMode) {
2333     __ z_lgr(Z_ARG4, Z_esp); // Trace Z_esp in WizardMode.
2334   } else {
2335     __ z_lg(Z_ARG4, Address(Z_esp, Interpreter::expr_offset_in_bytes(offset2)));
2336   }
2337   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), Z_ARG2, Z_ARG3, Z_ARG4);
2338   __ z_lgr(Z_R14, Z_RET); // Estore return address (see above).
2339   __ pop(state);
2340 
2341   __ bind(counter_below_trace_threshold);
2342   __ z_br(Z_R14); // return
2343 
2344   return entry;
2345 }
2346 
2347 // Make feasible for old CPUs.
2348 void TemplateInterpreterGenerator::count_bytecode() {
2349   __ load_absolute_address(Z_R1_scratch, (address) &BytecodeCounter::_counter_value);
2350   __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2351 }
2352 
2353 void TemplateInterpreterGenerator::histogram_bytecode(Template * t) {
2354   __ load_absolute_address(Z_R1_scratch, (address)&BytecodeHistogram::_counters[ t->bytecode() ]);
2355   __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1);
2356 }
2357 
2358 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template * t) {
2359   Address  index_addr(Z_tmp_1, (intptr_t) 0);
2360   Register index = Z_tmp_2;
2361 
2362   // Load previous index.
2363   __ load_absolute_address(Z_tmp_1, (address) &BytecodePairHistogram::_index);
2364   __ mem2reg_opt(index, index_addr, false);
2365 
2366   // Mask with current bytecode and store as new previous index.
2367   __ z_srl(index, BytecodePairHistogram::log2_number_of_codes);
2368   __ load_const_optimized(Z_R0_scratch,
2369                           (int)t->bytecode() << BytecodePairHistogram::log2_number_of_codes);
2370   __ z_or(index, Z_R0_scratch);
2371   __ reg2mem_opt(index, index_addr, false);
2372 
2373   // Load counter array's address.
2374   __ z_lgfr(index, index);   // Sign extend for addressing.
2375   __ z_sllg(index, index, LogBytesPerInt);  // index2bytes
2376   __ load_absolute_address(Z_R1_scratch,
2377                            (address) &BytecodePairHistogram::_counters);
2378   // Add index and increment counter.
2379   __ z_agr(Z_R1_scratch, index);
2380   __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1);
2381 }
2382 
2383 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2384   // Call a little run-time stub to avoid blow-up for each bytecode.
2385   // The run-time runtime saves the right registers, depending on
2386   // the tosca in-state for the given template.
2387   address entry = Interpreter::trace_code(t->tos_in());
2388   guarantee(entry != nullptr, "entry must have been generated");
2389   __ call_stub(entry);
2390 }
2391 
2392 void TemplateInterpreterGenerator::stop_interpreter_at() {
2393   NearLabel L;
2394 
2395   __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value);
2396   __ load_absolute_address(Z_tmp_2, (address)&StopInterpreterAt);
2397   __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/);
2398   __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/);
2399   __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, L);
2400   assert(Z_tmp_1->is_nonvolatile(), "must be nonvolatile to preserve Z_tos");
2401   assert(Z_F8->is_nonvolatile(), "must be nonvolatile to preserve Z_ftos");
2402   __ z_lgr(Z_tmp_1, Z_tos);      // Save tos.
2403   __ z_lgr(Z_tmp_2, Z_bytecode); // Save Z_bytecode.
2404   __ z_ldr(Z_F8, Z_ftos);        // Save ftos.
2405   // Use -XX:StopInterpreterAt=<num> to set the limit
2406   // and break at breakpoint().
2407   __ call_VM(noreg, CAST_FROM_FN_PTR(address, breakpoint), false);
2408   __ z_lgr(Z_tos, Z_tmp_1);      // Restore tos.
2409   __ z_lgr(Z_bytecode, Z_tmp_2); // Save Z_bytecode.
2410   __ z_ldr(Z_ftos, Z_F8);        // Restore ftos.
2411   __ bind(L);
2412 }
2413 
2414 #endif // !PRODUCT