1 /* 2 * Copyright (c) 2016, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2016, 2023 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "compiler/disassembler.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interpreter/abstractInterpreter.hpp" 32 #include "interpreter/bytecodeHistogram.hpp" 33 #include "interpreter/interpreter.hpp" 34 #include "interpreter/interpreterRuntime.hpp" 35 #include "interpreter/interp_masm.hpp" 36 #include "interpreter/templateInterpreterGenerator.hpp" 37 #include "interpreter/templateTable.hpp" 38 #include "oops/arrayOop.hpp" 39 #include "oops/methodCounters.hpp" 40 #include "oops/methodData.hpp" 41 #include "oops/oop.inline.hpp" 42 #include "oops/resolvedIndyEntry.hpp" 43 #include "oops/resolvedMethodEntry.hpp" 44 #include "prims/jvmtiExport.hpp" 45 #include "prims/jvmtiThreadState.hpp" 46 #include "runtime/arguments.hpp" 47 #include "runtime/deoptimization.hpp" 48 #include "runtime/frame.inline.hpp" 49 #include "runtime/jniHandles.hpp" 50 #include "runtime/sharedRuntime.hpp" 51 #include "runtime/stubRoutines.hpp" 52 #include "runtime/synchronizer.hpp" 53 #include "runtime/timer.hpp" 54 #include "runtime/vframeArray.hpp" 55 #include "utilities/debug.hpp" 56 #include "utilities/macros.hpp" 57 58 // Size of interpreter code. Increase if too small. Interpreter will 59 // fail with a guarantee ("not enough space for interpreter generation"); 60 // if too small. 61 // Run with +PrintInterpreter to get the VM to print out the size. 62 // Max size with JVMTI 63 int TemplateInterpreter::InterpreterCodeSize = 320*K; 64 65 #undef __ 66 #ifdef PRODUCT 67 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 68 #else 69 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 70 // #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)-> 71 #endif 72 73 #define BLOCK_COMMENT(str) __ block_comment(str) 74 #define BIND(label) __ bind(label); BLOCK_COMMENT(#label ":") 75 76 #define oop_tmp_offset _z_ijava_state_neg(oop_tmp) 77 78 //----------------------------------------------------------------------------- 79 80 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 81 // 82 // New slow_signature handler that respects the z/Architecture 83 // C calling conventions. 84 // 85 // We get called by the native entry code with our output register 86 // area == 8. First we call InterpreterRuntime::get_result_handler 87 // to copy the pointer to the signature string temporarily to the 88 // first C-argument and to return the result_handler in 89 // Z_RET. Since native_entry will copy the jni-pointer to the 90 // first C-argument slot later on, it's OK to occupy this slot 91 // temporarily. Then we copy the argument list on the java 92 // expression stack into native varargs format on the native stack 93 // and load arguments into argument registers. Integer arguments in 94 // the varargs vector will be sign-extended to 8 bytes. 95 // 96 // On entry: 97 // Z_ARG1 - intptr_t* Address of java argument list in memory. 98 // Z_state - zeroInterpreter* Address of interpreter state for 99 // this method 100 // Z_method 101 // 102 // On exit (just before return instruction): 103 // Z_RET contains the address of the result_handler. 104 // Z_ARG2 is not updated for static methods and contains "this" otherwise. 105 // Z_ARG3-Z_ARG5 contain the first 3 arguments of types other than float and double. 106 // Z_FARG1-Z_FARG4 contain the first 4 arguments of type float or double. 107 108 const int LogSizeOfCase = 3; 109 110 const int max_fp_register_arguments = Argument::n_float_register_parameters; 111 const int max_int_register_arguments = Argument::n_register_parameters - 2; // First 2 are reserved. 112 113 const Register arg_java = Z_tmp_2; 114 const Register arg_c = Z_tmp_3; 115 const Register signature = Z_R1_scratch; // Is a string. 116 const Register fpcnt = Z_R0_scratch; 117 const Register argcnt = Z_tmp_4; 118 const Register intSlot = Z_tmp_1; 119 const Register sig_end = Z_tmp_1; // Assumed end of signature (only used in do_object). 120 const Register target_sp = Z_tmp_1; 121 const FloatRegister floatSlot = Z_F1; 122 123 const int d_signature = _z_abi(gpr6); // Only spill space, register contents not affected. 124 const int d_fpcnt = _z_abi(gpr7); // Only spill space, register contents not affected. 125 126 unsigned int entry_offset = __ offset(); 127 128 BLOCK_COMMENT("slow_signature_handler {"); 129 130 // We use target_sp for storing arguments in the C frame. 131 __ save_return_pc(); 132 __ push_frame_abi160(4*BytesPerWord); // Reserve space to save the tmp_[1..4] registers. 133 __ z_stmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // Save registers only after frame is pushed. 134 135 __ z_lgr(arg_java, Z_ARG1); 136 137 Register method = Z_ARG2; // Directly load into correct argument register. 138 139 __ get_method(method); 140 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), Z_thread, method); 141 142 // Move signature to callee saved register. 143 // Don't directly write to stack. Frame is used by VM call. 144 __ z_lgr(Z_tmp_1, Z_RET); 145 146 // Reload method. Register may have been altered by VM call. 147 __ get_method(method); 148 149 // Get address of result handler. 150 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), Z_thread, method); 151 152 // Save signature address to stack. 153 __ z_stg(Z_tmp_1, d_signature, Z_SP); 154 155 // Don't overwrite return value (Z_RET, Z_ARG1) in rest of the method ! 156 157 { 158 Label isStatic; 159 160 // Test if static. 161 // We can test the bit directly. 162 // Path is Z_method->_access_flags._flags. 163 // We only support flag bits in the least significant byte (assert !). 164 // Therefore add 3 to address that byte within "_flags". 165 // Reload method. VM call above may have destroyed register contents 166 __ get_method(method); 167 __ testbit(method2_(method, access_flags), JVM_ACC_STATIC_BIT); 168 method = noreg; // end of life 169 __ z_btrue(isStatic); 170 171 // For non-static functions, pass "this" in Z_ARG2 and copy it to 2nd C-arg slot. 172 // Need to box the Java object here, so we use arg_java 173 // (address of current Java stack slot) as argument and 174 // don't dereference it as in case of ints, floats, etc.. 175 __ z_lgr(Z_ARG2, arg_java); 176 __ add2reg(arg_java, -BytesPerWord); 177 __ bind(isStatic); 178 } 179 180 // argcnt == 0 corresponds to 3rd C argument. 181 // arg #1 (result handler) and 182 // arg #2 (this, for non-statics), unused else 183 // are reserved and pre-filled above. 184 // arg_java points to the corresponding Java argument here. It 185 // has been decremented by one argument (this) in case of non-static. 186 __ clear_reg(argcnt, true, false); // Don't set CC. 187 __ z_lg(target_sp, 0, Z_SP); 188 __ add2reg(arg_c, _z_abi(remaining_cargs), target_sp); 189 // No floating-point args parsed so far. 190 __ clear_mem(Address(Z_SP, d_fpcnt), 8); 191 192 NearLabel move_intSlot_to_ARG, move_floatSlot_to_FARG; 193 NearLabel loop_start, loop_start_restore, loop_end; 194 NearLabel do_int, do_long, do_float, do_double; 195 NearLabel do_dontreachhere, do_object, do_array, do_boxed; 196 197 #ifdef ASSERT 198 // Signature needs to point to '(' (== 0x28) at entry. 199 __ z_lg(signature, d_signature, Z_SP); 200 __ z_cli(0, signature, (int) '('); 201 __ z_brne(do_dontreachhere); 202 #endif 203 204 __ bind(loop_start_restore); 205 __ z_lg(signature, d_signature, Z_SP); // Restore signature ptr, destroyed by move_XX_to_ARG. 206 207 BIND(loop_start); 208 // Advance to next argument type token from the signature. 209 __ add2reg(signature, 1); 210 211 // Use CLI, works well on all CPU versions. 212 __ z_cli(0, signature, (int) ')'); 213 __ z_bre(loop_end); // end of signature 214 __ z_cli(0, signature, (int) 'L'); 215 __ z_bre(do_object); // object #9 216 __ z_cli(0, signature, (int) 'F'); 217 __ z_bre(do_float); // float #7 218 __ z_cli(0, signature, (int) 'J'); 219 __ z_bre(do_long); // long #6 220 __ z_cli(0, signature, (int) 'B'); 221 __ z_bre(do_int); // byte #1 222 __ z_cli(0, signature, (int) 'Z'); 223 __ z_bre(do_int); // boolean #2 224 __ z_cli(0, signature, (int) 'C'); 225 __ z_bre(do_int); // char #3 226 __ z_cli(0, signature, (int) 'S'); 227 __ z_bre(do_int); // short #4 228 __ z_cli(0, signature, (int) 'I'); 229 __ z_bre(do_int); // int #5 230 __ z_cli(0, signature, (int) 'D'); 231 __ z_bre(do_double); // double #8 232 __ z_cli(0, signature, (int) '['); 233 __ z_bre(do_array); // array #10 234 235 __ bind(do_dontreachhere); 236 237 __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120); 238 239 // Array argument 240 BIND(do_array); 241 242 { 243 Label start_skip, end_skip; 244 245 __ bind(start_skip); 246 247 // Advance to next type tag from signature. 248 __ add2reg(signature, 1); 249 250 // Use CLI, works well on all CPU versions. 251 __ z_cli(0, signature, (int) '['); 252 __ z_bre(start_skip); // Skip further brackets. 253 254 __ z_cli(0, signature, (int) '9'); 255 __ z_brh(end_skip); // no optional size 256 257 __ z_cli(0, signature, (int) '0'); 258 __ z_brnl(start_skip); // Skip optional size. 259 260 __ bind(end_skip); 261 262 __ z_cli(0, signature, (int) 'L'); 263 __ z_brne(do_boxed); // If not array of objects: go directly to do_boxed. 264 } 265 266 // OOP argument 267 BIND(do_object); 268 // Pass by an object's type name. 269 { 270 Label L; 271 272 __ add2reg(sig_end, 4095, signature); // Assume object type name is shorter than 4k. 273 __ load_const_optimized(Z_R0, (int) ';'); // Type name terminator (must be in Z_R0!). 274 __ MacroAssembler::search_string(sig_end, signature); 275 __ z_brl(L); 276 __ z_illtrap(); // No semicolon found: internal error or object name too long. 277 __ bind(L); 278 __ z_lgr(signature, sig_end); 279 // fallthru to do_boxed 280 } 281 282 // Need to box the Java object here, so we use arg_java 283 // (address of current Java stack slot) as argument and 284 // don't dereference it as in case of ints, floats, etc.. 285 286 // UNBOX argument 287 // Load reference and check for null. 288 Label do_int_Entry4Boxed; 289 __ bind(do_boxed); 290 { 291 __ load_and_test_long(intSlot, Address(arg_java)); 292 __ z_bre(do_int_Entry4Boxed); 293 __ z_lgr(intSlot, arg_java); 294 __ z_bru(do_int_Entry4Boxed); 295 } 296 297 // INT argument 298 299 // (also for byte, boolean, char, short) 300 // Use lgf for load (sign-extend) and stg for store. 301 BIND(do_int); 302 __ z_lgf(intSlot, 0, arg_java); 303 304 __ bind(do_int_Entry4Boxed); 305 __ add2reg(arg_java, -BytesPerWord); 306 // If argument fits into argument register, go and handle it, otherwise continue. 307 __ compare32_and_branch(argcnt, max_int_register_arguments, 308 Assembler::bcondLow, move_intSlot_to_ARG); 309 __ z_stg(intSlot, 0, arg_c); 310 __ add2reg(arg_c, BytesPerWord); 311 __ z_bru(loop_start); 312 313 // LONG argument 314 315 BIND(do_long); 316 __ add2reg(arg_java, -2*BytesPerWord); // Decrement first to have positive displacement for lg. 317 __ z_lg(intSlot, BytesPerWord, arg_java); 318 // If argument fits into argument register, go and handle it, otherwise continue. 319 __ compare32_and_branch(argcnt, max_int_register_arguments, 320 Assembler::bcondLow, move_intSlot_to_ARG); 321 __ z_stg(intSlot, 0, arg_c); 322 __ add2reg(arg_c, BytesPerWord); 323 __ z_bru(loop_start); 324 325 // FLOAT argumen 326 327 BIND(do_float); 328 __ z_le(floatSlot, 0, arg_java); 329 __ add2reg(arg_java, -BytesPerWord); 330 assert(max_fp_register_arguments <= 255, "always true"); // safety net 331 __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments); 332 __ z_brl(move_floatSlot_to_FARG); 333 __ z_ste(floatSlot, 4, arg_c); 334 __ add2reg(arg_c, BytesPerWord); 335 __ z_bru(loop_start); 336 337 // DOUBLE argument 338 339 BIND(do_double); 340 __ add2reg(arg_java, -2*BytesPerWord); // Decrement first to have positive displacement for lg. 341 __ z_ld(floatSlot, BytesPerWord, arg_java); 342 assert(max_fp_register_arguments <= 255, "always true"); // safety net 343 __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments); 344 __ z_brl(move_floatSlot_to_FARG); 345 __ z_std(floatSlot, 0, arg_c); 346 __ add2reg(arg_c, BytesPerWord); 347 __ z_bru(loop_start); 348 349 // Method exit, all arguments processed. 350 __ bind(loop_end); 351 __ z_lmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // restore registers before frame is popped. 352 __ pop_frame(); 353 __ restore_return_pc(); 354 __ z_br(Z_R14); 355 356 // Copy int arguments. 357 358 Label iarg_caselist; // Distance between each case has to be a power of 2 359 // (= 1 << LogSizeOfCase). 360 __ align(16); 361 BIND(iarg_caselist); 362 __ z_lgr(Z_ARG3, intSlot); // 4 bytes 363 __ z_bru(loop_start_restore); // 4 bytes 364 365 __ z_lgr(Z_ARG4, intSlot); 366 __ z_bru(loop_start_restore); 367 368 __ z_lgr(Z_ARG5, intSlot); 369 __ z_bru(loop_start_restore); 370 371 __ align(16); 372 __ bind(move_intSlot_to_ARG); 373 __ z_stg(signature, d_signature, Z_SP); // Spill since signature == Z_R1_scratch. 374 __ z_larl(Z_R1_scratch, iarg_caselist); 375 __ z_sllg(Z_R0_scratch, argcnt, LogSizeOfCase); 376 __ add2reg(argcnt, 1); 377 __ z_agr(Z_R1_scratch, Z_R0_scratch); 378 __ z_bcr(Assembler::bcondAlways, Z_R1_scratch); 379 380 // Copy float arguments. 381 382 Label farg_caselist; // Distance between each case has to be a power of 2 383 // (= 1 << logSizeOfCase, padded with nop. 384 __ align(16); 385 BIND(farg_caselist); 386 __ z_ldr(Z_FARG1, floatSlot); // 2 bytes 387 __ z_bru(loop_start_restore); // 4 bytes 388 __ z_nop(); // 2 bytes 389 390 __ z_ldr(Z_FARG2, floatSlot); 391 __ z_bru(loop_start_restore); 392 __ z_nop(); 393 394 __ z_ldr(Z_FARG3, floatSlot); 395 __ z_bru(loop_start_restore); 396 __ z_nop(); 397 398 __ z_ldr(Z_FARG4, floatSlot); 399 __ z_bru(loop_start_restore); 400 __ z_nop(); 401 402 __ align(16); 403 __ bind(move_floatSlot_to_FARG); 404 __ z_stg(signature, d_signature, Z_SP); // Spill since signature == Z_R1_scratch. 405 __ z_lg(Z_R0_scratch, d_fpcnt, Z_SP); // Need old value for indexing. 406 __ add2mem_64(Address(Z_SP, d_fpcnt), 1, Z_R1_scratch); // Increment index. 407 __ z_larl(Z_R1_scratch, farg_caselist); 408 __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogSizeOfCase); 409 __ z_agr(Z_R1_scratch, Z_R0_scratch); 410 __ z_bcr(Assembler::bcondAlways, Z_R1_scratch); 411 412 BLOCK_COMMENT("} slow_signature_handler"); 413 414 return __ addr_at(entry_offset); 415 } 416 417 address TemplateInterpreterGenerator::generate_result_handler_for (BasicType type) { 418 address entry = __ pc(); 419 420 assert(Z_tos == Z_RET, "Result handler: must move result!"); 421 assert(Z_ftos == Z_FRET, "Result handler: must move float result!"); 422 423 switch (type) { 424 case T_BOOLEAN: 425 __ c2bool(Z_tos); 426 break; 427 case T_CHAR: 428 __ and_imm(Z_tos, 0xffff); 429 break; 430 case T_BYTE: 431 __ z_lbr(Z_tos, Z_tos); 432 break; 433 case T_SHORT: 434 __ z_lhr(Z_tos, Z_tos); 435 break; 436 case T_INT: 437 case T_LONG: 438 case T_VOID: 439 case T_FLOAT: 440 case T_DOUBLE: 441 break; 442 case T_OBJECT: 443 // Retrieve result from frame... 444 __ mem2reg_opt(Z_tos, Address(Z_fp, oop_tmp_offset)); 445 // and verify it. 446 __ verify_oop(Z_tos); 447 break; 448 default: 449 ShouldNotReachHere(); 450 } 451 __ z_br(Z_R14); // Return from result handler. 452 return entry; 453 } 454 455 // Abstract method entry. 456 // Attempt to execute abstract method. Throw exception. 457 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 458 unsigned int entry_offset = __ offset(); 459 460 // Caller could be the call_stub or a compiled method (x86 version is wrong!). 461 462 BLOCK_COMMENT("abstract_entry {"); 463 464 // Implement call of InterpreterRuntime::throw_AbstractMethodError. 465 __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1); 466 __ save_return_pc(); // Save Z_R14. 467 __ push_frame_abi160(0); // Without new frame the RT call could overwrite the saved Z_R14. 468 469 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorWithMethod), 470 Z_thread, Z_method); 471 472 __ pop_frame(); 473 __ restore_return_pc(); // Restore Z_R14. 474 __ reset_last_Java_frame(); 475 476 // Restore caller sp for c2i case. 477 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 478 479 // branch to SharedRuntime::generate_forward_exception() which handles all possible callers, 480 // i.e. call stub, compiled method, interpreted method. 481 __ load_absolute_address(Z_tmp_1, StubRoutines::forward_exception_entry()); 482 __ z_br(Z_tmp_1); 483 484 BLOCK_COMMENT("} abstract_entry"); 485 486 return __ addr_at(entry_offset); 487 } 488 489 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 490 // Inputs: 491 // Z_ARG1 - receiver 492 // 493 // What we do: 494 // - Load the referent field address. 495 // - Load the value in the referent field. 496 // - Pass that value to the pre-barrier. 497 // 498 // In the case of G1 this will record the value of the 499 // referent in an SATB buffer if marking is active. 500 // This will cause concurrent marking to mark the referent 501 // field as live. 502 503 Register scratch1 = Z_tmp_2; 504 Register scratch2 = Z_tmp_3; 505 Register pre_val = Z_RET; // return value 506 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 507 Register Rargp = Z_esp; 508 509 Label slow_path; 510 address entry = __ pc(); 511 512 const int referent_offset = java_lang_ref_Reference::referent_offset(); 513 514 BLOCK_COMMENT("Reference_get {"); 515 516 // If the receiver is null then it is OK to jump to the slow path. 517 __ load_and_test_long(pre_val, Address(Rargp, Interpreter::stackElementSize)); // Get receiver. 518 __ z_bre(slow_path); 519 520 // Load the value of the referent field. 521 __ load_heap_oop(pre_val, Address(pre_val, referent_offset), scratch1, scratch2, ON_WEAK_OOP_REF); 522 523 // Restore caller sp for c2i case. 524 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 525 __ z_br(Z_R14); 526 527 // Branch to previously generated regular method entry. 528 __ bind(slow_path); 529 530 address meth_entry = Interpreter::entry_for_kind(Interpreter::zerolocals); 531 __ jump_to_entry(meth_entry, Z_R1); 532 533 BLOCK_COMMENT("} Reference_get"); 534 535 return entry; 536 } 537 538 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 539 address entry = __ pc(); 540 541 DEBUG_ONLY(__ verify_esp(Z_esp, Z_ARG5)); 542 543 // Restore bcp under the assumption that the current frame is still 544 // interpreted. 545 __ restore_bcp(); 546 547 // Expression stack must be empty before entering the VM if an 548 // exception happened. 549 __ empty_expression_stack(); 550 // Throw exception. 551 __ call_VM(noreg, 552 CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError)); 553 return entry; 554 } 555 556 // 557 // Args: 558 // Z_ARG2: oop of array 559 // Z_ARG3: aberrant index 560 // 561 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 562 address entry = __ pc(); 563 address excp = CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException); 564 565 // Expression stack must be empty before entering the VM if an 566 // exception happened. 567 __ empty_expression_stack(); 568 569 // Setup parameters. 570 // Pass register with array to create more detailed exceptions. 571 __ call_VM(noreg, excp, Z_ARG2, Z_ARG3); 572 return entry; 573 } 574 575 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 576 address entry = __ pc(); 577 578 // Object is at TOS. 579 __ pop_ptr(Z_ARG2); 580 581 // Expression stack must be empty before entering the VM if an 582 // exception happened. 583 __ empty_expression_stack(); 584 585 __ call_VM(Z_ARG1, 586 CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), 587 Z_ARG2); 588 589 DEBUG_ONLY(__ should_not_reach_here();) 590 591 return entry; 592 } 593 594 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) { 595 assert(!pass_oop || message == nullptr, "either oop or message but not both"); 596 address entry = __ pc(); 597 598 BLOCK_COMMENT("exception_handler_common {"); 599 600 // Expression stack must be empty before entering the VM if an 601 // exception happened. 602 __ empty_expression_stack(); 603 if (name != nullptr) { 604 __ load_absolute_address(Z_ARG2, (address)name); 605 } else { 606 __ clear_reg(Z_ARG2, true, false); 607 } 608 609 if (pass_oop) { 610 __ call_VM(Z_tos, 611 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), 612 Z_ARG2, Z_tos /*object (see TT::aastore())*/); 613 } else { 614 if (message != nullptr) { 615 __ load_absolute_address(Z_ARG3, (address)message); 616 } else { 617 __ clear_reg(Z_ARG3, true, false); 618 } 619 __ call_VM(Z_tos, 620 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), 621 Z_ARG2, Z_ARG3); 622 } 623 // Throw exception. 624 __ load_absolute_address(Z_R1_scratch, Interpreter::throw_exception_entry()); 625 __ z_br(Z_R1_scratch); 626 627 BLOCK_COMMENT("} exception_handler_common"); 628 629 return entry; 630 } 631 632 address TemplateInterpreterGenerator::generate_return_entry_for (TosState state, int step, size_t index_size) { 633 address entry = __ pc(); 634 635 BLOCK_COMMENT("return_entry {"); 636 637 // Pop i2c extension or revert top-2-parent-resize done by interpreted callees. 638 Register sp_before_i2c_extension = Z_bcp; 639 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. 640 __ z_lg(sp_before_i2c_extension, Address(Z_fp, _z_ijava_state_neg(top_frame_sp))); 641 __ resize_frame_absolute(sp_before_i2c_extension, Z_locals/*tmp*/, true/*load_fp*/); 642 643 // TODO(ZASM): necessary?? 644 // // and null it as marker that esp is now tos until next java call 645 // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); 646 647 __ restore_bcp(); 648 __ restore_locals(); 649 __ restore_esp(); 650 651 if (state == atos) { 652 __ profile_return_type(Z_tmp_1, Z_tos, Z_tmp_2); 653 } 654 655 Register cache = Z_tmp_1; 656 Register size = Z_tmp_2; 657 Register index = Z_tmp_2; 658 if (index_size == sizeof(u4)) { 659 __ load_resolved_indy_entry(cache, index); 660 __ z_llgh(size, in_bytes(ResolvedIndyEntry::num_parameters_offset()), cache); 661 } else { 662 assert(index_size == sizeof(u2), "Can only be u2"); 663 __ load_method_entry(cache, index); 664 __ load_sized_value(size, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())), sizeof(u2), false /*is_signed*/); 665 } 666 __ z_sllg(size, size, Interpreter::logStackElementSize); // Each argument size in bytes. 667 __ z_agr(Z_esp, size); // Pop arguments. 668 669 __ check_and_handle_popframe(Z_thread); 670 __ check_and_handle_earlyret(Z_thread); 671 672 __ dispatch_next(state, step); 673 674 BLOCK_COMMENT("} return_entry"); 675 676 return entry; 677 } 678 679 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, 680 int step, 681 address continuation) { 682 address entry = __ pc(); 683 684 BLOCK_COMMENT("deopt_entry {"); 685 686 // TODO(ZASM): necessary? null last_sp until next java call 687 // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); 688 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. 689 __ restore_bcp(); 690 __ restore_locals(); 691 __ restore_esp(); 692 693 // Handle exceptions. 694 { 695 Label L; 696 __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception)); 697 __ z_bre(L); 698 __ call_VM(noreg, 699 CAST_FROM_FN_PTR(address, 700 InterpreterRuntime::throw_pending_exception)); 701 __ should_not_reach_here(); 702 __ bind(L); 703 } 704 if (continuation == nullptr) { 705 __ dispatch_next(state, step); 706 } else { 707 __ jump_to_entry(continuation, Z_R1_scratch); 708 } 709 710 BLOCK_COMMENT("} deopt_entry"); 711 712 return entry; 713 } 714 715 address TemplateInterpreterGenerator::generate_safept_entry_for (TosState state, 716 address runtime_entry) { 717 address entry = __ pc(); 718 __ push(state); 719 __ call_VM(noreg, runtime_entry); 720 __ dispatch_via(vtos, Interpreter::_normal_table.table_for (vtos)); 721 return entry; 722 } 723 724 // 725 // Helpers for commoning out cases in the various type of method entries. 726 // 727 728 // Increment invocation count & check for overflow. 729 // 730 // Note: checking for negative value instead of overflow 731 // so we have a 'sticky' overflow test. 732 // 733 // Z_ARG2: method (see generate_fixed_frame()) 734 // 735 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 736 Label done; 737 Register method = Z_ARG2; // Generate_fixed_frame() copies Z_method into Z_ARG2. 738 Register m_counters = Z_ARG4; 739 740 BLOCK_COMMENT("counter_incr {"); 741 742 // Note: In tiered we increment either counters in method or in MDO depending 743 // if we are profiling or not. 744 int increment = InvocationCounter::count_increment; 745 if (ProfileInterpreter) { 746 NearLabel no_mdo; 747 Register mdo = m_counters; 748 // Are we profiling? 749 __ load_and_test_long(mdo, method2_(method, method_data)); 750 __ branch_optimized(Assembler::bcondZero, no_mdo); 751 // Increment counter in the MDO. 752 const Address mdo_invocation_counter(mdo, MethodData::invocation_counter_offset() + 753 InvocationCounter::counter_offset()); 754 const Address mask(mdo, MethodData::invoke_mask_offset()); 755 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, 756 Z_R1_scratch, false, Assembler::bcondZero, 757 overflow); 758 __ z_bru(done); 759 __ bind(no_mdo); 760 } 761 762 // Increment counter in MethodCounters. 763 const Address invocation_counter(m_counters, 764 MethodCounters::invocation_counter_offset() + 765 InvocationCounter::counter_offset()); 766 // Get address of MethodCounters object. 767 __ get_method_counters(method, m_counters, done); 768 const Address mask(m_counters, MethodCounters::invoke_mask_offset()); 769 __ increment_mask_and_jump(invocation_counter, 770 increment, mask, 771 Z_R1_scratch, false, Assembler::bcondZero, 772 overflow); 773 774 __ bind(done); 775 776 BLOCK_COMMENT("} counter_incr"); 777 } 778 779 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 780 // InterpreterRuntime::frequency_counter_overflow takes two 781 // arguments, the first (thread) is passed by call_VM, the second 782 // indicates if the counter overflow occurs at a backwards branch 783 // (null bcp). We pass zero for it. The call returns the address 784 // of the verified entry point for the method or null if the 785 // compilation did not complete (either went background or bailed 786 // out). 787 __ clear_reg(Z_ARG2); 788 __ call_VM(noreg, 789 CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), 790 Z_ARG2); 791 __ z_bru(do_continue); 792 } 793 794 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register frame_size, Register tmp1) { 795 Register tmp2 = Z_R1_scratch; 796 const int page_size = (int)os::vm_page_size(); 797 NearLabel after_frame_check; 798 799 BLOCK_COMMENT("stack_overflow_check {"); 800 801 assert_different_registers(frame_size, tmp1); 802 803 // Stack banging is sufficient overflow check if frame_size < page_size. 804 if (Immediate::is_uimm(page_size, 15)) { 805 __ z_chi(frame_size, page_size); 806 __ z_brl(after_frame_check); 807 } else { 808 __ load_const_optimized(tmp1, page_size); 809 __ compareU32_and_branch(frame_size, tmp1, Assembler::bcondLow, after_frame_check); 810 } 811 812 // Get the stack base, and in debug, verify it is non-zero. 813 __ z_lg(tmp1, thread_(stack_base)); 814 #ifdef ASSERT 815 address reentry = nullptr; 816 NearLabel base_not_zero; 817 __ compareU64_and_branch(tmp1, (intptr_t)0L, Assembler::bcondNotEqual, base_not_zero); 818 reentry = __ stop_chain_static(reentry, "stack base is zero in generate_stack_overflow_check"); 819 __ bind(base_not_zero); 820 #endif 821 822 // Get the stack size, and in debug, verify it is non-zero. 823 assert(sizeof(size_t) == sizeof(intptr_t), "wrong load size"); 824 __ z_lg(tmp2, thread_(stack_size)); 825 #ifdef ASSERT 826 NearLabel size_not_zero; 827 __ compareU64_and_branch(tmp2, (intptr_t)0L, Assembler::bcondNotEqual, size_not_zero); 828 reentry = __ stop_chain_static(reentry, "stack size is zero in generate_stack_overflow_check"); 829 __ bind(size_not_zero); 830 #endif 831 832 // Compute the beginning of the protected zone minus the requested frame size. 833 __ z_sgr(tmp1, tmp2); 834 __ add2reg(tmp1, StackOverflow::stack_guard_zone_size()); 835 836 // Add in the size of the frame (which is the same as subtracting it from the 837 // SP, which would take another register. 838 __ z_agr(tmp1, frame_size); 839 840 // The frame is greater than one page in size, so check against 841 // the bottom of the stack. 842 __ compareU64_and_branch(Z_SP, tmp1, Assembler::bcondHigh, after_frame_check); 843 844 // The stack will overflow, throw an exception. 845 846 // Restore SP to sender's sp. This is necessary if the sender's frame is an 847 // extended compiled frame (see gen_c2i_adapter()) and safer anyway in case of 848 // JSR292 adaptations. 849 __ resize_frame_absolute(Z_R10, tmp1, true/*load_fp*/); 850 851 // Note also that the restored frame is not necessarily interpreted. 852 // Use the shared runtime version of the StackOverflowError. 853 assert(SharedRuntime::throw_StackOverflowError_entry() != nullptr, "stub not yet generated"); 854 AddressLiteral stub(SharedRuntime::throw_StackOverflowError_entry()); 855 __ load_absolute_address(tmp1, SharedRuntime::throw_StackOverflowError_entry()); 856 __ z_br(tmp1); 857 858 // If you get to here, then there is enough stack space. 859 __ bind(after_frame_check); 860 861 BLOCK_COMMENT("} stack_overflow_check"); 862 } 863 864 // Allocate monitor and lock method (asm interpreter). 865 // 866 // Args: 867 // Z_locals: locals 868 869 void TemplateInterpreterGenerator::lock_method(void) { 870 871 BLOCK_COMMENT("lock_method {"); 872 873 // Synchronize method. 874 const Register method = Z_tmp_2; 875 __ get_method(method); 876 877 #ifdef ASSERT 878 address reentry = nullptr; 879 { 880 Label L; 881 __ testbit(method2_(method, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 882 __ z_btrue(L); 883 reentry = __ stop_chain_static(reentry, "method doesn't need synchronization"); 884 __ bind(L); 885 } 886 #endif // ASSERT 887 888 // Get synchronization object. 889 const Register object = Z_tmp_2; 890 891 { 892 Label done; 893 Label static_method; 894 895 __ testbit(method2_(method, access_flags), JVM_ACC_STATIC_BIT); 896 __ z_btrue(static_method); 897 898 // non-static method: Load receiver obj from stack. 899 __ mem2reg_opt(object, Address(Z_locals, Interpreter::local_offset_in_bytes(0))); 900 __ z_bru(done); 901 902 __ bind(static_method); 903 904 // Lock the java mirror. 905 // Load mirror from interpreter frame. 906 __ z_lg(object, _z_ijava_state_neg(mirror), Z_fp); 907 908 #ifdef ASSERT 909 { 910 NearLabel L; 911 __ compare64_and_branch(object, (intptr_t) 0, Assembler::bcondNotEqual, L); 912 reentry = __ stop_chain_static(reentry, "synchronization object is null"); 913 __ bind(L); 914 } 915 #endif // ASSERT 916 917 __ bind(done); 918 } 919 920 __ add_monitor_to_stack(true, Z_ARG3, Z_ARG4, Z_ARG5); // Allocate monitor elem. 921 // Store object and lock it. 922 __ get_monitors(Z_tmp_1); 923 __ reg2mem_opt(object, Address(Z_tmp_1, BasicObjectLock::obj_offset())); 924 __ lock_object(Z_tmp_1, object); 925 926 BLOCK_COMMENT("} lock_method"); 927 } 928 929 // Generate a fixed interpreter frame. This is identical setup for 930 // interpreted methods and for native methods hence the shared code. 931 // 932 // Registers alive 933 // Z_thread - JavaThread* 934 // Z_SP - old stack pointer 935 // Z_method - callee's method 936 // Z_esp - parameter list (slot 'above' last param) 937 // Z_R14 - return pc, to be stored in caller's frame 938 // Z_R10 - sender sp, note: Z_tmp_1 is Z_R10! 939 // 940 // Registers updated 941 // Z_SP - new stack pointer 942 // Z_esp - callee's operand stack pointer 943 // points to the slot above the value on top 944 // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord) 945 // Z_bcp - the bytecode pointer 946 // Z_fp - the frame pointer, thereby killing Z_method 947 // Z_ARG2 - copy of Z_method 948 // 949 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 950 951 // stack layout 952 // 953 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (see note below) 954 // [F1's operand stack (unused)] 955 // [F1's outgoing Java arguments] <-- Z_esp 956 // [F1's operand stack (non args)] 957 // [monitors] (optional) 958 // [IJAVA_STATE] 959 // 960 // F2 [PARENT_IJAVA_FRAME_ABI] 961 // ... 962 // 963 // 0x000 964 // 965 // Note: Z_R10, the sender sp, will be below Z_SP if F1 was extended by a c2i adapter. 966 967 //============================================================================= 968 // Allocate space for locals other than the parameters, the 969 // interpreter state, monitors, and the expression stack. 970 971 const Register local_count = Z_ARG5; 972 const Register fp = Z_tmp_2; 973 const Register const_method = Z_ARG1; 974 975 BLOCK_COMMENT("generate_fixed_frame {"); 976 { 977 // local registers 978 const Register top_frame_size = Z_ARG2; 979 const Register sp_after_resize = Z_ARG3; 980 const Register max_stack = Z_ARG4; 981 982 __ z_lg(const_method, Address(Z_method, Method::const_offset())); 983 __ z_llgh(max_stack, Address(const_method, ConstMethod::size_of_parameters_offset())); 984 __ z_sllg(Z_locals /*parameter_count bytes*/, max_stack /*parameter_count*/, LogBytesPerWord); 985 986 if (native_call) { 987 // If we're calling a native method, we replace max_stack (which is 988 // zero) with space for the worst-case signature handler varargs 989 // vector, which is: 990 // max_stack = max(Argument::n_register_parameters, parameter_count+2); 991 // 992 // We add two slots to the parameter_count, one for the jni 993 // environment and one for a possible native mirror. We allocate 994 // space for at least the number of ABI registers, even though 995 // InterpreterRuntime::slow_signature_handler won't write more than 996 // parameter_count+2 words when it creates the varargs vector at the 997 // top of the stack. The generated slow signature handler will just 998 // load trash into registers beyond the necessary number. We're 999 // still going to cut the stack back by the ABI register parameter 1000 // count so as to get SP+16 pointing at the ABI outgoing parameter 1001 // area, so we need to allocate at least that much even though we're 1002 // going to throw it away. 1003 // 1004 __ add2reg(max_stack, 2); 1005 1006 NearLabel passing_args_on_stack; 1007 1008 // max_stack in bytes 1009 __ z_sllg(max_stack, max_stack, LogBytesPerWord); 1010 1011 int argument_registers_in_bytes = Argument::n_register_parameters << LogBytesPerWord; 1012 __ compare64_and_branch(max_stack, argument_registers_in_bytes, Assembler::bcondNotLow, passing_args_on_stack); 1013 1014 __ load_const_optimized(max_stack, argument_registers_in_bytes); 1015 1016 __ bind(passing_args_on_stack); 1017 } else { 1018 // !native_call 1019 // local_count = method->constMethod->max_locals(); 1020 __ z_llgh(local_count, Address(const_method, ConstMethod::size_of_locals_offset())); 1021 1022 // Calculate number of non-parameter locals (in slots): 1023 __ z_sgr(local_count, max_stack); 1024 1025 // max_stack = method->max_stack(); 1026 __ z_llgh(max_stack, Address(const_method, ConstMethod::max_stack_offset())); 1027 // max_stack in bytes 1028 __ z_sllg(max_stack, max_stack, LogBytesPerWord); 1029 } 1030 1031 // Resize (i.e. normally shrink) the top frame F1 ... 1032 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 1033 // F1's operand stack (free) 1034 // ... 1035 // F1's operand stack (free) <-- Z_esp 1036 // F1's outgoing Java arg m 1037 // ... 1038 // F1's outgoing Java arg 0 1039 // ... 1040 // 1041 // ... into a parent frame (Z_R10 holds F1's SP before any modification, see also above) 1042 // 1043 // +......................+ 1044 // : : <-- Z_R10, saved below as F0's z_ijava_state.sender_sp 1045 // : : 1046 // F1 [PARENT_IJAVA_FRAME_ABI] <-- Z_SP \ 1047 // F0's non arg local | = delta 1048 // ... | 1049 // F0's non arg local <-- Z_esp / 1050 // F1's outgoing Java arg m 1051 // ... 1052 // F1's outgoing Java arg 0 1053 // ... 1054 // 1055 // then push the new top frame F0. 1056 // 1057 // F0 [TOP_IJAVA_FRAME_ABI] = frame::z_top_ijava_frame_abi_size \ 1058 // [operand stack] = max_stack | = top_frame_size 1059 // [IJAVA_STATE] = frame::z_ijava_state_size / 1060 1061 // sp_after_resize = Z_esp - delta 1062 // 1063 // delta = PARENT_IJAVA_FRAME_ABI + (locals_count - params_count) 1064 1065 __ add2reg(sp_after_resize, (Interpreter::stackElementSize) - (frame::z_parent_ijava_frame_abi_size), Z_esp); 1066 if (!native_call) { 1067 __ z_sllg(Z_R0_scratch, local_count, LogBytesPerWord); // Params have already been subtracted from local_count. 1068 __ z_slgr(sp_after_resize, Z_R0_scratch); 1069 } 1070 1071 // top_frame_size = TOP_IJAVA_FRAME_ABI + max_stack + size of interpreter state 1072 __ add2reg(top_frame_size, 1073 frame::z_top_ijava_frame_abi_size + 1074 frame::z_ijava_state_size, 1075 max_stack); 1076 1077 if (!native_call) { 1078 // Stack overflow check. 1079 // Native calls don't need the stack size check since they have no 1080 // expression stack and the arguments are already on the stack and 1081 // we only add a handful of words to the stack. 1082 Register frame_size = max_stack; // Reuse the register for max_stack. 1083 __ z_lgr(frame_size, Z_SP); 1084 __ z_sgr(frame_size, sp_after_resize); 1085 __ z_agr(frame_size, top_frame_size); 1086 generate_stack_overflow_check(frame_size, fp/*tmp1*/); 1087 } 1088 1089 // asm_assert* is a nop in product builds 1090 NOT_PRODUCT(__ z_cg(Z_R14, _z_common_abi(return_pc), Z_SP)); 1091 NOT_PRODUCT(__ asm_assert(Assembler::bcondEqual, "killed Z_R14", 0)); 1092 __ resize_frame_absolute(sp_after_resize, fp, true); 1093 __ save_return_pc(Z_R14); 1094 1095 // ... and push the new frame F0. 1096 __ push_frame(top_frame_size, fp, true /*copy_sp*/, false); 1097 } 1098 1099 //============================================================================= 1100 // Initialize the new frame F0: initialize interpreter state. 1101 1102 { 1103 // locals 1104 const Register local_addr = Z_ARG4; 1105 1106 BLOCK_COMMENT("generate_fixed_frame: initialize interpreter state {"); 1107 1108 #ifdef ASSERT 1109 // Set the magic number (using local_addr as tmp register). 1110 __ load_const_optimized(local_addr, frame::z_istate_magic_number); 1111 __ z_stg(local_addr, _z_ijava_state_neg(magic), fp); 1112 #endif 1113 1114 // Save sender SP from F1 (i.e. before it was potentially modified by an 1115 // adapter) into F0's interpreter state. We use it as well to revert 1116 // resizing the frame above. 1117 __ z_stg(Z_R10, _z_ijava_state_neg(sender_sp), fp); 1118 1119 // Load cp cache and save it at the end of this block. 1120 __ z_lg(Z_R1_scratch, Address(const_method, ConstMethod::constants_offset())); 1121 __ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstantPool::cache_offset())); 1122 1123 // z_ijava_state->method = method; 1124 __ z_stg(Z_method, _z_ijava_state_neg(method), fp); 1125 1126 // Point locals at the first argument. Method's locals are the 1127 // parameters on top of caller's expression stack. 1128 // Tos points past last Java argument. 1129 1130 __ z_agr(Z_locals, Z_esp); 1131 // z_ijava_state->locals - i*BytesPerWord points to i-th Java local (i starts at 0) 1132 // z_ijava_state->locals = Z_esp + parameter_count bytes 1133 __ z_stg(Z_locals, _z_ijava_state_neg(locals), fp); 1134 1135 // z_ijava_state->oop_temp = nullptr; 1136 __ store_const(Address(fp, oop_tmp_offset), 0); 1137 1138 // Initialize z_ijava_state->mdx. 1139 Register Rmdp = Z_bcp; 1140 // native_call: assert that mdo is null 1141 const bool check_for_mdo = !native_call DEBUG_ONLY(|| native_call); 1142 if (ProfileInterpreter && check_for_mdo) { 1143 Label get_continue; 1144 1145 __ load_and_test_long(Rmdp, method_(method_data)); 1146 __ z_brz(get_continue); 1147 DEBUG_ONLY(if (native_call) __ stop("native methods don't have a mdo")); 1148 __ add2reg(Rmdp, in_bytes(MethodData::data_offset())); 1149 __ bind(get_continue); 1150 } 1151 __ z_stg(Rmdp, _z_ijava_state_neg(mdx), fp); 1152 1153 // Initialize z_ijava_state->bcp and Z_bcp. 1154 if (native_call) { 1155 __ clear_reg(Z_bcp); // Must initialize. Will get written into frame where GC reads it. 1156 } else { 1157 __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset()), const_method); 1158 } 1159 __ z_stg(Z_bcp, _z_ijava_state_neg(bcp), fp); 1160 1161 // no monitors and empty operand stack 1162 // => z_ijava_state->monitors points to the top slot in IJAVA_STATE. 1163 // => Z_ijava_state->esp points one slot above into the operand stack. 1164 // z_ijava_state->monitors = fp - frame::z_ijava_state_size - Interpreter::stackElementSize; 1165 // z_ijava_state->esp = Z_esp = z_ijava_state->monitors; 1166 __ add2reg(Z_esp, -frame::z_ijava_state_size, fp); 1167 __ z_stg(Z_esp, _z_ijava_state_neg(monitors), fp); 1168 __ add2reg(Z_esp, -Interpreter::stackElementSize); 1169 __ z_stg(Z_esp, _z_ijava_state_neg(esp), fp); 1170 1171 // z_ijava_state->cpoolCache = Z_R1_scratch (see load above); 1172 __ z_stg(Z_R1_scratch, _z_ijava_state_neg(cpoolCache), fp); 1173 1174 // Get mirror and store it in the frame as GC root for this Method*. 1175 __ load_mirror_from_const_method(Z_R1_scratch, const_method); 1176 __ z_stg(Z_R1_scratch, _z_ijava_state_neg(mirror), fp); 1177 1178 BLOCK_COMMENT("} generate_fixed_frame: initialize interpreter state"); 1179 1180 //============================================================================= 1181 if (!native_call) { 1182 // Local_count is already num_locals_slots - num_param_slots. 1183 // Start of locals: local_addr = Z_locals - locals size + 1 slot 1184 __ z_llgh(Z_R0_scratch, Address(const_method, ConstMethod::size_of_locals_offset())); 1185 __ add2reg(local_addr, BytesPerWord, Z_locals); 1186 __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogBytesPerWord); 1187 __ z_sgr(local_addr, Z_R0_scratch); 1188 1189 __ Clear_Array(local_count, local_addr, Z_ARG2); 1190 } 1191 1192 } 1193 // Finally set the frame pointer, destroying Z_method. 1194 assert(Z_fp == Z_method, "maybe set Z_fp earlier if other register than Z_method"); 1195 // Oprofile analysis suggests to keep a copy in a register to be used by 1196 // generate_counter_incr(). 1197 __ z_lgr(Z_ARG2, Z_method); 1198 __ z_lgr(Z_fp, fp); 1199 1200 BLOCK_COMMENT("} generate_fixed_frame"); 1201 } 1202 1203 // Various method entries 1204 1205 // Math function, frame manager must set up an interpreter state, etc. 1206 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 1207 1208 // Decide what to do: Use same platform specific instructions and runtime calls as compilers. 1209 bool use_instruction = false; 1210 address runtime_entry = nullptr; 1211 int num_args = 1; 1212 bool double_precision = true; 1213 1214 // s390 specific: 1215 switch (kind) { 1216 case Interpreter::java_lang_math_sqrt: 1217 case Interpreter::java_lang_math_abs: use_instruction = true; break; 1218 case Interpreter::java_lang_math_fmaF: 1219 case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break; 1220 default: break; // Fall back to runtime call. 1221 } 1222 1223 switch (kind) { 1224 case Interpreter::java_lang_math_sin : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); break; 1225 case Interpreter::java_lang_math_cos : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); break; 1226 case Interpreter::java_lang_math_tan : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); break; 1227 case Interpreter::java_lang_math_abs : /* run interpreted */ break; 1228 case Interpreter::java_lang_math_sqrt : /* runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt); not available */ break; 1229 case Interpreter::java_lang_math_log : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); break; 1230 case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break; 1231 case Interpreter::java_lang_math_pow : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break; 1232 case Interpreter::java_lang_math_exp : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); break; 1233 case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break; 1234 case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break; 1235 default: ShouldNotReachHere(); 1236 } 1237 1238 // Use normal entry if neither instruction nor runtime call is used. 1239 if (!use_instruction && runtime_entry == nullptr) return nullptr; 1240 1241 address entry = __ pc(); 1242 1243 if (use_instruction) { 1244 switch (kind) { 1245 case Interpreter::java_lang_math_sqrt: 1246 // Can use memory operand directly. 1247 __ z_sqdb(Z_FRET, Interpreter::stackElementSize, Z_esp); 1248 break; 1249 case Interpreter::java_lang_math_abs: 1250 // Load operand from stack. 1251 __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); 1252 __ z_lpdbr(Z_FRET); 1253 break; 1254 case Interpreter::java_lang_math_fmaF: 1255 __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); // result reg = arg3 1256 __ mem2freg_opt(Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize)); // arg1 1257 __ z_maeb(Z_FRET, Z_FARG2, Address(Z_esp, 2 * Interpreter::stackElementSize)); 1258 break; 1259 case Interpreter::java_lang_math_fmaD: 1260 __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); // result reg = arg3 1261 __ mem2freg_opt(Z_FARG2, Address(Z_esp, 5 * Interpreter::stackElementSize)); // arg1 1262 __ z_madb(Z_FRET, Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize)); 1263 break; 1264 default: ShouldNotReachHere(); 1265 } 1266 } else { 1267 // Load arguments 1268 assert(num_args <= 4, "passed in registers"); 1269 if (double_precision) { 1270 int offset = (2 * num_args - 1) * Interpreter::stackElementSize; 1271 for (int i = 0; i < num_args; ++i) { 1272 __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset)); 1273 offset -= 2 * Interpreter::stackElementSize; 1274 } 1275 } else { 1276 int offset = num_args * Interpreter::stackElementSize; 1277 for (int i = 0; i < num_args; ++i) { 1278 __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset)); 1279 offset -= Interpreter::stackElementSize; 1280 } 1281 } 1282 // Call runtime 1283 __ save_return_pc(); // Save Z_R14. 1284 __ push_frame_abi160(0); // Without new frame the RT call could overwrite the saved Z_R14. 1285 1286 __ call_VM_leaf(runtime_entry); 1287 1288 __ pop_frame(); 1289 __ restore_return_pc(); // Restore Z_R14. 1290 } 1291 1292 // Pop c2i arguments (if any) off when we return. 1293 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 1294 1295 __ z_br(Z_R14); 1296 1297 return entry; 1298 } 1299 1300 // Interpreter stub for calling a native method. (asm interpreter). 1301 // This sets up a somewhat different looking stack for calling the 1302 // native method than the typical interpreter frame setup. 1303 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { 1304 // Determine code generation flags. 1305 bool inc_counter = UseCompiler || CountCompiledCalls; 1306 1307 // Interpreter entry for ordinary Java methods. 1308 // 1309 // Registers alive 1310 // Z_SP - stack pointer 1311 // Z_thread - JavaThread* 1312 // Z_method - callee's method (method to be invoked) 1313 // Z_esp - operand (or expression) stack pointer of caller. one slot above last arg. 1314 // Z_R10 - sender sp (before modifications, e.g. by c2i adapter 1315 // and as well by generate_fixed_frame below) 1316 // Z_R14 - return address to caller (call_stub or c2i_adapter) 1317 // 1318 // Registers updated 1319 // Z_SP - stack pointer 1320 // Z_fp - callee's framepointer 1321 // Z_esp - callee's operand stack pointer 1322 // points to the slot above the value on top 1323 // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord) 1324 // Z_tos - integer result, if any 1325 // z_ftos - floating point result, if any 1326 // 1327 // Stack layout at this point: 1328 // 1329 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if 1330 // frame was extended by c2i adapter) 1331 // [outgoing Java arguments] <-- Z_esp 1332 // ... 1333 // PARENT [PARENT_IJAVA_FRAME_ABI] 1334 // ... 1335 // 1336 1337 address entry_point = __ pc(); 1338 1339 // Make sure registers are different! 1340 assert_different_registers(Z_thread, Z_method, Z_esp); 1341 1342 BLOCK_COMMENT("native_entry {"); 1343 1344 // Make sure method is native and not abstract. 1345 #ifdef ASSERT 1346 address reentry = nullptr; 1347 { Label L; 1348 __ testbit(method_(access_flags), JVM_ACC_NATIVE_BIT); 1349 __ z_btrue(L); 1350 reentry = __ stop_chain_static(reentry, "tried to execute non-native method as native"); 1351 __ bind(L); 1352 } 1353 { Label L; 1354 __ testbit(method_(access_flags), JVM_ACC_ABSTRACT_BIT); 1355 __ z_bfalse(L); 1356 reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract"); 1357 __ bind(L); 1358 } 1359 #endif // ASSERT 1360 1361 // Save the return PC into the callers frame for assertion in generate_fixed_frame. 1362 NOT_PRODUCT(__ save_return_pc(Z_R14)); 1363 1364 // Generate the code to allocate the interpreter stack frame. 1365 generate_fixed_frame(true); 1366 1367 const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset()); 1368 // Since at this point in the method invocation the exception handler 1369 // would try to exit the monitor of synchronized methods which hasn't 1370 // been entered yet, we set the thread local variable 1371 // _do_not_unlock_if_synchronized to true. If any exception was thrown by 1372 // runtime, exception handling i.e. unlock_if_synchronized_method will 1373 // check this thread local flag. 1374 __ z_mvi(do_not_unlock_if_synchronized, true); 1375 1376 // Increment invocation count and check for overflow. 1377 NearLabel invocation_counter_overflow; 1378 if (inc_counter) { 1379 generate_counter_incr(&invocation_counter_overflow); 1380 } 1381 1382 Label continue_after_compile; 1383 __ bind(continue_after_compile); 1384 1385 bang_stack_shadow_pages(true); 1386 1387 // Reset the _do_not_unlock_if_synchronized flag. 1388 __ z_mvi(do_not_unlock_if_synchronized, false); 1389 1390 // Check for synchronized methods. 1391 // This mst happen AFTER invocation_counter check and stack overflow check, 1392 // so method is not locked if overflows. 1393 if (synchronized) { 1394 lock_method(); 1395 } else { 1396 // No synchronization necessary. 1397 #ifdef ASSERT 1398 { Label L; 1399 __ get_method(Z_R1_scratch); 1400 __ testbit(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 1401 __ z_bfalse(L); 1402 reentry = __ stop_chain_static(reentry, "method needs synchronization"); 1403 __ bind(L); 1404 } 1405 #endif // ASSERT 1406 } 1407 1408 // start execution 1409 1410 // jvmti support 1411 __ notify_method_entry(); 1412 1413 //============================================================================= 1414 // Get and call the signature handler. 1415 const Register Rmethod = Z_tmp_2; 1416 const Register signature_handler_entry = Z_tmp_1; 1417 const Register Rresult_handler = Z_tmp_3; 1418 Label call_signature_handler; 1419 1420 assert_different_registers(Z_fp, Rmethod, signature_handler_entry, Rresult_handler); 1421 assert(Rresult_handler->is_nonvolatile(), "Rresult_handler must be in a non-volatile register"); 1422 1423 // Reload method. 1424 __ get_method(Rmethod); 1425 1426 // Check for signature handler. 1427 __ load_and_test_long(signature_handler_entry, method2_(Rmethod, signature_handler)); 1428 __ z_brne(call_signature_handler); 1429 1430 // Method has never been called. Either generate a specialized 1431 // handler or point to the slow one. 1432 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), 1433 Rmethod); 1434 1435 // Reload method. 1436 __ get_method(Rmethod); 1437 1438 // Reload signature handler, it must have been created/assigned in the meantime. 1439 __ z_lg(signature_handler_entry, method2_(Rmethod, signature_handler)); 1440 1441 __ bind(call_signature_handler); 1442 1443 // We have a TOP_IJAVA_FRAME here, which belongs to us. 1444 __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1/*tmp*/); 1445 1446 // Call signature handler and pass locals address in Z_ARG1. 1447 __ z_lgr(Z_ARG1, Z_locals); 1448 __ call_stub(signature_handler_entry); 1449 // Save result handler returned by signature handler. 1450 __ z_lgr(Rresult_handler, Z_RET); 1451 1452 // Reload method (the slow signature handler may block for GC). 1453 __ get_method(Rmethod); 1454 1455 // Pass mirror handle if static call. 1456 { 1457 Label method_is_not_static; 1458 __ testbit(method2_(Rmethod, access_flags), JVM_ACC_STATIC_BIT); 1459 __ z_bfalse(method_is_not_static); 1460 // Load mirror from interpreter frame. 1461 __ z_lg(Z_R1, _z_ijava_state_neg(mirror), Z_fp); 1462 // z_ijava_state.oop_temp = pool_holder->klass_part()->java_mirror(); 1463 __ z_stg(Z_R1, oop_tmp_offset, Z_fp); 1464 // Pass handle to mirror as 2nd argument to JNI method. 1465 __ add2reg(Z_ARG2, oop_tmp_offset, Z_fp); 1466 __ bind(method_is_not_static); 1467 } 1468 1469 // Pass JNIEnv address as first parameter. 1470 __ add2reg(Z_ARG1, in_bytes(JavaThread::jni_environment_offset()), Z_thread); 1471 1472 // Note: last java frame has been set above already. The pc from there 1473 // is precise enough. 1474 1475 // Get native function entry point before we change the thread state. 1476 __ z_lg(Z_R1/*native_method_entry*/, method2_(Rmethod, native_function)); 1477 1478 //============================================================================= 1479 // Transition from _thread_in_Java to _thread_in_native. As soon as 1480 // we make this change the safepoint code needs to be certain that 1481 // the last Java frame we established is good. The pc in that frame 1482 // just need to be near here not an actual return address. 1483 #ifdef ASSERT 1484 { 1485 NearLabel L; 1486 __ mem2reg_opt(Z_R14, Address(Z_thread, JavaThread::thread_state_offset()), false /*32 bits*/); 1487 __ compareU32_and_branch(Z_R14, _thread_in_Java, Assembler::bcondEqual, L); 1488 reentry = __ stop_chain_static(reentry, "Wrong thread state in native stub"); 1489 __ bind(L); 1490 } 1491 #endif 1492 1493 // Memory ordering: Z does not reorder store/load with subsequent load. That's strong enough. 1494 __ set_thread_state(_thread_in_native); 1495 1496 //============================================================================= 1497 // Call the native method. Argument registers must not have been 1498 // overwritten since "__ call_stub(signature_handler);" (except for 1499 // ARG1 and ARG2 for static methods). 1500 1501 __ call_c(Z_R1/*native_method_entry*/); 1502 1503 // NOTE: frame::interpreter_frame_result() depends on these stores. 1504 __ z_stg(Z_RET, _z_ijava_state_neg(lresult), Z_fp); 1505 __ freg2mem_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult))); 1506 const Register Rlresult = signature_handler_entry; 1507 assert(Rlresult->is_nonvolatile(), "Rlresult must be in a non-volatile register"); 1508 __ z_lgr(Rlresult, Z_RET); 1509 1510 // Z_method may no longer be valid, because of GC. 1511 1512 // Block, if necessary, before resuming in _thread_in_Java state. 1513 // In order for GC to work, don't clear the last_Java_sp until after 1514 // blocking. 1515 1516 //============================================================================= 1517 // Switch thread to "native transition" state before reading the 1518 // synchronization state. This additional state is necessary 1519 // because reading and testing the synchronization state is not 1520 // atomic w.r.t. GC, as this scenario demonstrates: Java thread A, 1521 // in _thread_in_native state, loads _not_synchronized and is 1522 // preempted. VM thread changes sync state to synchronizing and 1523 // suspends threads for GC. Thread A is resumed to finish this 1524 // native method, but doesn't block here since it didn't see any 1525 // synchronization is progress, and escapes. 1526 1527 __ set_thread_state(_thread_in_native_trans); 1528 if (!UseSystemMemoryBarrier) { 1529 __ z_fence(); 1530 } 1531 1532 // Now before we return to java we must look for a current safepoint 1533 // (a new safepoint can not start since we entered native_trans). 1534 // We must check here because a current safepoint could be modifying 1535 // the callers registers right this moment. 1536 1537 // Check for safepoint operation in progress and/or pending suspend requests. 1538 { 1539 Label Continue, do_safepoint; 1540 __ safepoint_poll(do_safepoint, Z_R1); 1541 // Check for suspend. 1542 __ load_and_test_int(Z_R0/*suspend_flags*/, thread_(suspend_flags)); 1543 __ z_bre(Continue); // 0 -> no flag set -> not suspended 1544 __ bind(do_safepoint); 1545 __ z_lgr(Z_ARG1, Z_thread); 1546 __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)); 1547 __ bind(Continue); 1548 } 1549 1550 //============================================================================= 1551 // Back in Interpreter Frame. 1552 1553 // We are in thread_in_native_trans here and back in the normal 1554 // interpreter frame. We don't have to do anything special about 1555 // safepoints and we can switch to Java mode anytime we are ready. 1556 1557 // Note: frame::interpreter_frame_result has a dependency on how the 1558 // method result is saved across the call to post_method_exit. For 1559 // native methods it assumes that the non-FPU/non-void result is 1560 // saved in z_ijava_state.lresult and a FPU result in z_ijava_state.fresult. If 1561 // this changes then the interpreter_frame_result implementation 1562 // will need to be updated too. 1563 1564 //============================================================================= 1565 // Back in Java. 1566 1567 // Memory ordering: Z does not reorder store/load with subsequent 1568 // load. That's strong enough. 1569 __ set_thread_state(_thread_in_Java); 1570 1571 __ reset_last_Java_frame(); 1572 1573 // We reset the JNI handle block only after unboxing the result; see below. 1574 1575 // The method register is junk from after the thread_in_native transition 1576 // until here. Also can't call_VM until the bcp has been 1577 // restored. Need bcp for throwing exception below so get it now. 1578 __ get_method(Rmethod); 1579 1580 // Restore Z_bcp to have legal interpreter frame, 1581 // i.e., bci == 0 <=> Z_bcp == code_base(). 1582 __ z_lg(Z_bcp, Address(Rmethod, Method::const_offset())); // get constMethod 1583 __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset())); // get codebase 1584 1585 if (CheckJNICalls) { 1586 // clear_pending_jni_exception_check 1587 __ clear_mem(Address(Z_thread, JavaThread::pending_jni_exception_check_fn_offset()), sizeof(oop)); 1588 } 1589 1590 // Check if the native method returns an oop, and if so, move it 1591 // from the jni handle to z_ijava_state.oop_temp. This is 1592 // necessary, because we reset the jni handle block below. 1593 // NOTE: frame::interpreter_frame_result() depends on this, too. 1594 { NearLabel no_oop_result; 1595 __ load_absolute_address(Z_R1, AbstractInterpreter::result_handler(T_OBJECT)); 1596 __ compareU64_and_branch(Z_R1, Rresult_handler, Assembler::bcondNotEqual, no_oop_result); 1597 __ resolve_jobject(Rlresult, /* tmp1 */ Rmethod, /* tmp2 */ Z_R1); 1598 __ z_stg(Rlresult, oop_tmp_offset, Z_fp); 1599 __ bind(no_oop_result); 1600 } 1601 1602 // Reset handle block. 1603 __ z_lg(Z_R1/*active_handles*/, thread_(active_handles)); 1604 __ clear_mem(Address(Z_R1, JNIHandleBlock::top_offset()), 4); 1605 1606 // Handle exceptions (exception handling will handle unlocking!). 1607 { 1608 Label L; 1609 __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception)); 1610 __ z_bre(L); 1611 __ MacroAssembler::call_VM(noreg, 1612 CAST_FROM_FN_PTR(address, 1613 InterpreterRuntime::throw_pending_exception)); 1614 __ should_not_reach_here(); 1615 __ bind(L); 1616 } 1617 1618 if (synchronized) { 1619 Register Rfirst_monitor = Z_ARG2; 1620 __ add2reg(Rfirst_monitor, -(frame::z_ijava_state_size + (int)sizeof(BasicObjectLock)), Z_fp); 1621 #ifdef ASSERT 1622 NearLabel ok; 1623 __ z_lg(Z_R1, _z_ijava_state_neg(monitors), Z_fp); 1624 __ compareU64_and_branch(Rfirst_monitor, Z_R1, Assembler::bcondEqual, ok); 1625 reentry = __ stop_chain_static(reentry, "native_entry:unlock: inconsistent z_ijava_state.monitors"); 1626 __ bind(ok); 1627 #endif 1628 __ unlock_object(Rfirst_monitor); 1629 } 1630 1631 // JVMTI support. Result has already been saved above to the frame. 1632 __ notify_method_exit(true/*native_method*/, ilgl, InterpreterMacroAssembler::NotifyJVMTI); 1633 1634 // Move native method result back into proper registers and return. 1635 __ mem2freg_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult))); 1636 __ mem2reg_opt(Z_RET, Address(Z_fp, _z_ijava_state_neg(lresult))); 1637 __ call_stub(Rresult_handler); 1638 1639 // Pop the native method's interpreter frame. 1640 __ pop_interpreter_frame(Z_R14 /*return_pc*/, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/); 1641 1642 // Return to caller. 1643 __ z_br(Z_R14); 1644 1645 if (inc_counter) { 1646 // Handle overflow of counter and compile method. 1647 __ bind(invocation_counter_overflow); 1648 generate_counter_overflow(continue_after_compile); 1649 } 1650 1651 BLOCK_COMMENT("} native_entry"); 1652 1653 return entry_point; 1654 } 1655 1656 // 1657 // Generic interpreted method entry to template interpreter. 1658 // 1659 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { 1660 address entry_point = __ pc(); 1661 1662 bool inc_counter = UseCompiler || CountCompiledCalls; 1663 1664 // Interpreter entry for ordinary Java methods. 1665 // 1666 // Registers alive 1667 // Z_SP - stack pointer 1668 // Z_thread - JavaThread* 1669 // Z_method - callee's method (method to be invoked) 1670 // Z_esp - operand (or expression) stack pointer of caller. one slot above last arg. 1671 // Z_R10 - sender sp (before modifications, e.g. by c2i adapter 1672 // and as well by generate_fixed_frame below) 1673 // Z_R14 - return address to caller (call_stub or c2i_adapter) 1674 // 1675 // Registers updated 1676 // Z_SP - stack pointer 1677 // Z_fp - callee's framepointer 1678 // Z_esp - callee's operand stack pointer 1679 // points to the slot above the value on top 1680 // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord) 1681 // Z_tos - integer result, if any 1682 // z_ftos - floating point result, if any 1683 // 1684 // 1685 // stack layout at this point: 1686 // 1687 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if 1688 // frame was extended by c2i adapter) 1689 // [outgoing Java arguments] <-- Z_esp 1690 // ... 1691 // PARENT [PARENT_IJAVA_FRAME_ABI] 1692 // ... 1693 // 1694 // stack layout before dispatching the first bytecode: 1695 // 1696 // F0 [TOP_IJAVA_FRAME_ABI] <-- Z_SP 1697 // [operand stack] <-- Z_esp 1698 // monitor (optional, can grow) 1699 // [IJAVA_STATE] 1700 // F1 [PARENT_IJAVA_FRAME_ABI] <-- Z_fp (== *Z_SP) 1701 // [F0's locals] <-- Z_locals 1702 // [F1's operand stack] 1703 // [F1's monitors] (optional) 1704 // [IJAVA_STATE] 1705 1706 // Make sure registers are different! 1707 assert_different_registers(Z_thread, Z_method, Z_esp); 1708 1709 BLOCK_COMMENT("normal_entry {"); 1710 1711 // Make sure method is not native and not abstract. 1712 // Rethink these assertions - they can be simplified and shared. 1713 #ifdef ASSERT 1714 address reentry = nullptr; 1715 { Label L; 1716 __ testbit(method_(access_flags), JVM_ACC_NATIVE_BIT); 1717 __ z_bfalse(L); 1718 reentry = __ stop_chain_static(reentry, "tried to execute native method as non-native"); 1719 __ bind(L); 1720 } 1721 { Label L; 1722 __ testbit(method_(access_flags), JVM_ACC_ABSTRACT_BIT); 1723 __ z_bfalse(L); 1724 reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract"); 1725 __ bind(L); 1726 } 1727 #endif // ASSERT 1728 1729 // Save the return PC into the callers frame for assertion in generate_fixed_frame. 1730 NOT_PRODUCT(__ save_return_pc(Z_R14)); 1731 1732 // Generate the code to allocate the interpreter stack frame. 1733 generate_fixed_frame(false); 1734 1735 const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset()); 1736 // Since at this point in the method invocation the exception handler 1737 // would try to exit the monitor of synchronized methods which hasn't 1738 // been entered yet, we set the thread local variable 1739 // _do_not_unlock_if_synchronized to true. If any exception was thrown by 1740 // runtime, exception handling i.e. unlock_if_synchronized_method will 1741 // check this thread local flag. 1742 __ z_mvi(do_not_unlock_if_synchronized, true); 1743 1744 __ profile_parameters_type(Z_tmp_2, Z_ARG3, Z_ARG4); 1745 1746 // Increment invocation counter and check for overflow. 1747 // 1748 // Note: checking for negative value instead of overflow so we have a 'sticky' 1749 // overflow test (may be of importance as soon as we have true MT/MP). 1750 NearLabel invocation_counter_overflow; 1751 NearLabel Lcontinue; 1752 if (inc_counter) { 1753 generate_counter_incr(&invocation_counter_overflow); 1754 } 1755 __ bind(Lcontinue); 1756 1757 bang_stack_shadow_pages(false); 1758 1759 // Reset the _do_not_unlock_if_synchronized flag. 1760 __ z_mvi(do_not_unlock_if_synchronized, false); 1761 1762 // Check for synchronized methods. 1763 // Must happen AFTER invocation_counter check and stack overflow check, 1764 // so method is not locked if overflows. 1765 if (synchronized) { 1766 // Allocate monitor and lock method. 1767 lock_method(); 1768 } else { 1769 #ifdef ASSERT 1770 { Label L; 1771 __ get_method(Z_R1_scratch); 1772 __ testbit(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 1773 __ z_bfalse(L); 1774 reentry = __ stop_chain_static(reentry, "method needs synchronization"); 1775 __ bind(L); 1776 } 1777 #endif // ASSERT 1778 } 1779 1780 // start execution 1781 1782 #ifdef ASSERT 1783 __ verify_esp(Z_esp, Z_R1_scratch); 1784 #endif 1785 1786 // jvmti support 1787 __ notify_method_entry(); 1788 1789 // Start executing instructions. 1790 __ dispatch_next(vtos); 1791 // Dispatch_next does not return. 1792 DEBUG_ONLY(__ should_not_reach_here()); 1793 1794 // Invocation counter overflow. 1795 if (inc_counter) { 1796 // Handle invocation counter overflow. 1797 __ bind(invocation_counter_overflow); 1798 generate_counter_overflow(Lcontinue); 1799 } 1800 1801 BLOCK_COMMENT("} normal_entry"); 1802 1803 return entry_point; 1804 } 1805 1806 1807 /** 1808 * Method entry for static native methods: 1809 * int java.util.zip.CRC32.update(int crc, int b) 1810 */ 1811 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { 1812 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1813 uint64_t entry_off = __ offset(); 1814 Label slow_path; 1815 1816 // If we need a safepoint check, generate full interpreter entry. 1817 __ safepoint_poll(slow_path, Z_R1); 1818 1819 BLOCK_COMMENT("CRC32_update {"); 1820 1821 // We don't generate local frame and don't align stack because 1822 // we not even call stub code (we generate the code inline) 1823 // and there is no safepoint on this path. 1824 1825 // Load java parameters. 1826 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 1827 const Register argP = Z_esp; 1828 const Register crc = Z_ARG1; // crc value 1829 const Register data = Z_ARG2; // address of java byte value (kernel_crc32 needs address) 1830 const Register dataLen = Z_ARG3; // source data len (1 byte). Not used because calling the single-byte emitter. 1831 const Register table = Z_ARG4; // address of crc32 table 1832 1833 // Arguments are reversed on java expression stack. 1834 __ z_la(data, 3+1*wordSize, argP); // byte value (stack address). 1835 // Being passed as an int, the single byte is at offset +3. 1836 __ z_llgf(crc, 2 * wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register. 1837 1838 StubRoutines::zarch::generate_load_crc_table_addr(_masm, table); 1839 __ kernel_crc32_singleByte(crc, data, dataLen, table, Z_R1, true); 1840 1841 // Restore caller sp for c2i case. 1842 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 1843 1844 __ z_br(Z_R14); 1845 1846 BLOCK_COMMENT("} CRC32_update"); 1847 1848 // Use a previously generated vanilla native entry as the slow path. 1849 BIND(slow_path); 1850 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1); 1851 return __ addr_at(entry_off); 1852 } 1853 1854 1855 /** 1856 * Method entry for static native methods: 1857 * int java.util.zip.CRC32.updateBytes( int crc, byte[] b, int off, int len) 1858 * int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len) 1859 */ 1860 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1861 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1862 uint64_t entry_off = __ offset(); 1863 Label slow_path; 1864 1865 // If we need a safepoint check, generate full interpreter entry. 1866 __ safepoint_poll(slow_path, Z_R1); 1867 1868 // We don't generate local frame and don't align stack because 1869 // we call stub code and there is no safepoint on this path. 1870 1871 // Load parameters. 1872 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 1873 const Register argP = Z_esp; 1874 const Register crc = Z_ARG1; // crc value 1875 const Register data = Z_ARG2; // address of java byte array 1876 const Register dataLen = Z_ARG3; // source data len 1877 const Register table = Z_ARG4; // address of crc32 table 1878 const Register t0 = Z_R10; // work reg for kernel* emitters 1879 const Register t1 = Z_R11; // work reg for kernel* emitters 1880 const Register t2 = Z_R12; // work reg for kernel* emitters 1881 const Register t3 = Z_R13; // work reg for kernel* emitters 1882 1883 // Arguments are reversed on java expression stack. 1884 // Calculate address of start element. 1885 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct". 1886 // crc @ (SP + 5W) (32bit) 1887 // buf @ (SP + 3W) (64bit ptr to long array) 1888 // off @ (SP + 2W) (32bit) 1889 // dataLen @ (SP + 1W) (32bit) 1890 // data = buf + off 1891 BLOCK_COMMENT("CRC32_updateByteBuffer {"); 1892 __ z_llgf(crc, 5*wordSize, argP); // current crc state 1893 __ z_lg(data, 3*wordSize, argP); // start of byte buffer 1894 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. 1895 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process 1896 } else { // Used for "updateBytes update". 1897 // crc @ (SP + 4W) (32bit) 1898 // buf @ (SP + 3W) (64bit ptr to byte array) 1899 // off @ (SP + 2W) (32bit) 1900 // dataLen @ (SP + 1W) (32bit) 1901 // data = buf + off + base_offset 1902 BLOCK_COMMENT("CRC32_updateBytes {"); 1903 __ z_llgf(crc, 4*wordSize, argP); // current crc state 1904 __ z_lg(data, 3*wordSize, argP); // start of byte buffer 1905 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. 1906 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process 1907 __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1908 } 1909 1910 StubRoutines::zarch::generate_load_crc_table_addr(_masm, table); 1911 1912 __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers. 1913 __ z_stmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 to make them available as work registers. 1914 __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, true); 1915 __ z_lmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 back from stack. 1916 1917 // Restore caller sp for c2i case. 1918 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 1919 1920 __ z_br(Z_R14); 1921 1922 BLOCK_COMMENT("} CRC32_update{Bytes|ByteBuffer}"); 1923 1924 // Use a previously generated vanilla native entry as the slow path. 1925 BIND(slow_path); 1926 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1); 1927 return __ addr_at(entry_off); 1928 } 1929 1930 1931 /** 1932 * Method entry for intrinsic-candidate (non-native) methods: 1933 * int java.util.zip.CRC32C.updateBytes( int crc, byte[] b, int off, int end) 1934 * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end) 1935 * Unlike CRC32, CRC32C does not have any methods marked as native 1936 * CRC32C also uses an "end" variable instead of the length variable CRC32 uses 1937 */ 1938 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1939 assert(UseCRC32CIntrinsics, "this intrinsic is not supported"); 1940 uint64_t entry_off = __ offset(); 1941 1942 // We don't generate local frame and don't align stack because 1943 // we call stub code and there is no safepoint on this path. 1944 1945 // Load parameters. 1946 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 1947 const Register argP = Z_esp; 1948 const Register crc = Z_ARG1; // crc value 1949 const Register data = Z_ARG2; // address of java byte array 1950 const Register dataLen = Z_ARG3; // source data len 1951 const Register table = Z_ARG4; // address of crc32 table 1952 const Register t0 = Z_R10; // work reg for kernel* emitters 1953 const Register t1 = Z_R11; // work reg for kernel* emitters 1954 const Register t2 = Z_R12; // work reg for kernel* emitters 1955 const Register t3 = Z_R13; // work reg for kernel* emitters 1956 1957 // Arguments are reversed on java expression stack. 1958 // Calculate address of start element. 1959 if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateByteBuffer direct". 1960 // crc @ (SP + 5W) (32bit) 1961 // buf @ (SP + 3W) (64bit ptr to long array) 1962 // off @ (SP + 2W) (32bit) 1963 // dataLen @ (SP + 1W) (32bit) 1964 // data = buf + off 1965 BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {"); 1966 __ z_llgf(crc, 5*wordSize, argP); // current crc state 1967 __ z_lg(data, 3*wordSize, argP); // start of byte buffer 1968 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. 1969 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process, calculated as 1970 __ z_sgf(dataLen, Address(argP, 2*wordSize)); // (end_index - offset) 1971 } else { // Used for "updateBytes update". 1972 // crc @ (SP + 4W) (32bit) 1973 // buf @ (SP + 3W) (64bit ptr to byte array) 1974 // off @ (SP + 2W) (32bit) 1975 // dataLen @ (SP + 1W) (32bit) 1976 // data = buf + off + base_offset 1977 BLOCK_COMMENT("CRC32C_updateBytes {"); 1978 __ z_llgf(crc, 4*wordSize, argP); // current crc state 1979 __ z_lg(data, 3*wordSize, argP); // start of byte buffer 1980 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. 1981 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process, calculated as 1982 __ z_sgf(dataLen, Address(argP, 2*wordSize)); // (end_index - offset) 1983 __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1984 } 1985 1986 StubRoutines::zarch::generate_load_crc32c_table_addr(_masm, table); 1987 1988 __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers. 1989 __ z_stmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 to make them available as work registers. 1990 __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, false); 1991 __ z_lmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 back from stack. 1992 1993 // Restore caller sp for c2i case. 1994 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 1995 1996 __ z_br(Z_R14); 1997 1998 BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}"); 1999 return __ addr_at(entry_off); 2000 } 2001 2002 // Not supported 2003 address TemplateInterpreterGenerator::generate_currentThread() { return nullptr; } 2004 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; } 2005 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; } 2006 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; } 2007 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; } 2008 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { return nullptr; } 2009 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { return nullptr; } 2010 2011 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) { 2012 // Quick & dirty stack overflow checking: bang the stack & handle trap. 2013 // Note that we do the banging after the frame is setup, since the exception 2014 // handling code expects to find a valid interpreter frame on the stack. 2015 // Doing the banging earlier fails if the caller frame is not an interpreter 2016 // frame. 2017 // (Also, the exception throwing code expects to unlock any synchronized 2018 // method receiver, so do the banging after locking the receiver.) 2019 2020 // Bang each page in the shadow zone. We can't assume it's been done for 2021 // an interpreter frame with greater than a page of locals, so each page 2022 // needs to be checked. Only true for non-native. For native, we only bang the last page. 2023 const size_t page_size = os::vm_page_size(); 2024 const int n_shadow_pages = (int)(StackOverflow::stack_shadow_zone_size()/page_size); 2025 const int start_page_num = native_call ? n_shadow_pages : 1; 2026 for (int pages = start_page_num; pages <= n_shadow_pages; pages++) { 2027 __ bang_stack_with_offset(pages*page_size); 2028 } 2029 } 2030 2031 //----------------------------------------------------------------------------- 2032 // Exceptions 2033 2034 void TemplateInterpreterGenerator::generate_throw_exception() { 2035 2036 BLOCK_COMMENT("throw_exception {"); 2037 2038 // Entry point in previous activation (i.e., if the caller was interpreted). 2039 Interpreter::_rethrow_exception_entry = __ pc(); 2040 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Frame accessors use Z_fp. 2041 // Z_ARG1 (==Z_tos): exception 2042 // Z_ARG2 : Return address/pc that threw exception. 2043 __ restore_bcp(); // R13 points to call/send. 2044 __ restore_locals(); 2045 2046 // Fallthrough, no need to restore Z_esp. 2047 2048 // Entry point for exceptions thrown within interpreter code. 2049 Interpreter::_throw_exception_entry = __ pc(); 2050 // Expression stack is undefined here. 2051 // Z_ARG1 (==Z_tos): exception 2052 // Z_bcp: exception bcp 2053 __ verify_oop(Z_ARG1); 2054 __ z_lgr(Z_ARG2, Z_ARG1); 2055 2056 // Expression stack must be empty before entering the VM in case of 2057 // an exception. 2058 __ empty_expression_stack(); 2059 // Find exception handler address and preserve exception oop. 2060 const Register Rpreserved_exc_oop = Z_tmp_1; 2061 __ call_VM(Rpreserved_exc_oop, 2062 CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), 2063 Z_ARG2); 2064 // Z_RET: exception handler entry point 2065 // Z_bcp: bcp for exception handler 2066 __ push_ptr(Rpreserved_exc_oop); // Push exception which is now the only value on the stack. 2067 __ z_br(Z_RET); // Jump to exception handler (may be _remove_activation_entry!). 2068 2069 // If the exception is not handled in the current frame the frame is 2070 // removed and the exception is rethrown (i.e. exception 2071 // continuation is _rethrow_exception). 2072 // 2073 // Note: At this point the bci is still the bci for the instruction 2074 // which caused the exception and the expression stack is 2075 // empty. Thus, for any VM calls at this point, GC will find a legal 2076 // oop map (with empty expression stack). 2077 2078 // 2079 // JVMTI PopFrame support 2080 // 2081 2082 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 2083 __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP); 2084 __ empty_expression_stack(); 2085 // Set the popframe_processing bit in pending_popframe_condition 2086 // indicating that we are currently handling popframe, so that 2087 // call_VMs that may happen later do not trigger new popframe 2088 // handling cycles. 2089 __ load_sized_value(Z_tmp_1, Address(Z_thread, JavaThread::popframe_condition_offset()), 4, false /*signed*/); 2090 __ z_oill(Z_tmp_1, JavaThread::popframe_processing_bit); 2091 __ z_sty(Z_tmp_1, thread_(popframe_condition)); 2092 2093 { 2094 // Check to see whether we are returning to a deoptimized frame. 2095 // (The PopFrame call ensures that the caller of the popped frame is 2096 // either interpreted or compiled and deoptimizes it if compiled.) 2097 // In this case, we can't call dispatch_next() after the frame is 2098 // popped, but instead must save the incoming arguments and restore 2099 // them after deoptimization has occurred. 2100 // 2101 // Note that we don't compare the return PC against the 2102 // deoptimization blob's unpack entry because of the presence of 2103 // adapter frames in C2. 2104 NearLabel caller_not_deoptimized; 2105 __ z_lg(Z_ARG1, _z_parent_ijava_frame_abi(return_pc), Z_fp); 2106 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), Z_ARG1); 2107 __ compareU64_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, caller_not_deoptimized); 2108 2109 // Compute size of arguments for saving when returning to 2110 // deoptimized caller. 2111 __ get_method(Z_ARG2); 2112 __ z_lg(Z_ARG2, Address(Z_ARG2, Method::const_offset())); 2113 __ z_llgh(Z_ARG2, Address(Z_ARG2, ConstMethod::size_of_parameters_offset())); 2114 __ z_sllg(Z_ARG2, Z_ARG2, Interpreter::logStackElementSize); // slots 2 bytes 2115 __ restore_locals(); 2116 // Compute address of args to be saved. 2117 __ z_lgr(Z_ARG3, Z_locals); 2118 __ z_slgr(Z_ARG3, Z_ARG2); 2119 __ add2reg(Z_ARG3, wordSize); 2120 // Save these arguments. 2121 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), 2122 Z_thread, Z_ARG2, Z_ARG3); 2123 2124 __ remove_activation(vtos, Z_R14, 2125 /* throw_monitor_exception */ false, 2126 /* install_monitor_exception */ false, 2127 /* notify_jvmdi */ false); 2128 2129 // Inform deoptimization that it is responsible for restoring 2130 // these arguments. 2131 __ store_const(thread_(popframe_condition), 2132 JavaThread::popframe_force_deopt_reexecution_bit, 2133 Z_tmp_1, false); 2134 2135 // Continue in deoptimization handler. 2136 __ z_br(Z_R14); 2137 2138 __ bind(caller_not_deoptimized); 2139 } 2140 2141 // Clear the popframe condition flag. 2142 __ clear_mem(thread_(popframe_condition), sizeof(int)); 2143 2144 __ remove_activation(vtos, 2145 noreg, // Retaddr is not used. 2146 false, // throw_monitor_exception 2147 false, // install_monitor_exception 2148 false); // notify_jvmdi 2149 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. 2150 __ restore_bcp(); 2151 __ restore_locals(); 2152 __ restore_esp(); 2153 // The method data pointer was incremented already during 2154 // call profiling. We have to restore the mdp for the current bcp. 2155 if (ProfileInterpreter) { 2156 __ set_method_data_pointer_for_bcp(); 2157 } 2158 #if INCLUDE_JVMTI 2159 { 2160 Label L_done; 2161 2162 __ z_cli(0, Z_bcp, Bytecodes::_invokestatic); 2163 __ z_brc(Assembler::bcondNotEqual, L_done); 2164 2165 // The member name argument must be restored if _invokestatic is 2166 // re-executed after a PopFrame call. Detect such a case in the 2167 // InterpreterRuntime function and return the member name 2168 // argument, or null. 2169 __ z_lg(Z_ARG2, Address(Z_locals)); 2170 __ get_method(Z_ARG3); 2171 __ call_VM(Z_tmp_1, 2172 CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), 2173 Z_ARG2, Z_ARG3, Z_bcp); 2174 2175 __ z_ltgr(Z_tmp_1, Z_tmp_1); 2176 __ z_brc(Assembler::bcondEqual, L_done); 2177 2178 __ z_stg(Z_tmp_1, Address(Z_esp, wordSize)); 2179 __ bind(L_done); 2180 } 2181 #endif // INCLUDE_JVMTI 2182 __ dispatch_next(vtos); 2183 // End of PopFrame support. 2184 Interpreter::_remove_activation_entry = __ pc(); 2185 2186 // In between activations - previous activation type unknown yet 2187 // compute continuation point - the continuation point expects the 2188 // following registers set up: 2189 // 2190 // Z_ARG1 (==Z_tos): exception 2191 // Z_ARG2 : return address/pc that threw exception 2192 2193 Register return_pc = Z_tmp_1; 2194 Register handler = Z_tmp_2; 2195 assert(return_pc->is_nonvolatile(), "use non-volatile reg. to preserve exception pc"); 2196 assert(handler->is_nonvolatile(), "use non-volatile reg. to handler pc"); 2197 __ asm_assert_ijava_state_magic(return_pc/*tmp*/); // The top frame should be an interpreter frame. 2198 __ z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp); 2199 2200 // Moved removing the activation after VM call, because the new top 2201 // frame does not necessarily have the z_abi_160 required for a VM 2202 // call (e.g. if it is compiled). 2203 2204 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 2205 SharedRuntime::exception_handler_for_return_address), 2206 Z_thread, return_pc); 2207 __ z_lgr(handler, Z_RET); // Save exception handler. 2208 2209 // Preserve exception over this code sequence. 2210 __ pop_ptr(Z_ARG1); 2211 __ set_vm_result(Z_ARG1); 2212 // Remove the activation (without doing throws on illegalMonitorExceptions). 2213 __ remove_activation(vtos, noreg/*ret.pc already loaded*/, false/*throw exc*/, true/*install exc*/, false/*notify jvmti*/); 2214 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. 2215 2216 __ get_vm_result(Z_ARG1); // Restore exception. 2217 __ verify_oop(Z_ARG1); 2218 __ z_lgr(Z_ARG2, return_pc); // Restore return address. 2219 2220 #ifdef ASSERT 2221 // The return_pc in the new top frame is dead... at least that's my 2222 // current understanding. To assert this I overwrite it. 2223 // Note: for compiled frames the handler is the deopt blob 2224 // which writes Z_ARG2 into the return_pc slot. 2225 __ load_const_optimized(return_pc, 0xb00b1); 2226 __ z_stg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_SP); 2227 #endif 2228 2229 // Z_ARG1 (==Z_tos): exception 2230 // Z_ARG2 : return address/pc that threw exception 2231 2232 // Note that an "issuing PC" is actually the next PC after the call. 2233 __ z_br(handler); // Jump to exception handler of caller. 2234 2235 BLOCK_COMMENT("} throw_exception"); 2236 } 2237 2238 // 2239 // JVMTI ForceEarlyReturn support 2240 // 2241 address TemplateInterpreterGenerator::generate_earlyret_entry_for (TosState state) { 2242 address entry = __ pc(); 2243 2244 BLOCK_COMMENT("earlyret_entry {"); 2245 2246 __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP); 2247 __ restore_bcp(); 2248 __ restore_locals(); 2249 __ restore_esp(); 2250 __ empty_expression_stack(); 2251 __ load_earlyret_value(state); 2252 2253 Register RjvmtiState = Z_tmp_1; 2254 __ z_lg(RjvmtiState, thread_(jvmti_thread_state)); 2255 __ store_const(Address(RjvmtiState, JvmtiThreadState::earlyret_state_offset()), 2256 JvmtiThreadState::earlyret_inactive, 4, 4, Z_R0_scratch); 2257 2258 if (state == itos) { 2259 // Narrow result if state is itos but result type is smaller. 2260 // Need to narrow in the return bytecode rather than in generate_return_entry 2261 // since compiled code callers expect the result to already be narrowed. 2262 __ narrow(Z_tos, Z_tmp_1); /* fall through */ 2263 } 2264 __ remove_activation(state, 2265 Z_tmp_1, // retaddr 2266 false, // throw_monitor_exception 2267 false, // install_monitor_exception 2268 true); // notify_jvmdi 2269 __ z_br(Z_tmp_1); 2270 2271 BLOCK_COMMENT("} earlyret_entry"); 2272 2273 return entry; 2274 } 2275 2276 //----------------------------------------------------------------------------- 2277 // Helper for vtos entry point generation. 2278 2279 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, 2280 address& bep, 2281 address& cep, 2282 address& sep, 2283 address& aep, 2284 address& iep, 2285 address& lep, 2286 address& fep, 2287 address& dep, 2288 address& vep) { 2289 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 2290 Label L; 2291 aep = __ pc(); __ push_ptr(); __ z_bru(L); 2292 fep = __ pc(); __ push_f(); __ z_bru(L); 2293 dep = __ pc(); __ push_d(); __ z_bru(L); 2294 lep = __ pc(); __ push_l(); __ z_bru(L); 2295 bep = cep = sep = 2296 iep = __ pc(); __ push_i(); 2297 vep = __ pc(); 2298 __ bind(L); 2299 generate_and_dispatch(t); 2300 } 2301 2302 //----------------------------------------------------------------------------- 2303 2304 // Make feasible for old CPUs. 2305 void TemplateInterpreterGenerator::count_bytecode() { 2306 __ load_absolute_address(Z_R1_scratch, (address) &BytecodeCounter::_counter_value); 2307 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); 2308 } 2309 2310 void TemplateInterpreterGenerator::histogram_bytecode(Template * t) { 2311 __ load_absolute_address(Z_R1_scratch, (address)&BytecodeHistogram::_counters[ t->bytecode() ]); 2312 __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1); 2313 } 2314 2315 #ifndef PRODUCT 2316 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 2317 address entry = __ pc(); 2318 NearLabel counter_below_trace_threshold; 2319 2320 if (TraceBytecodesAt > 0) { 2321 // Skip runtime call, if the trace threshold is not yet reached. 2322 __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value); 2323 __ load_absolute_address(Z_tmp_2, (address)&TraceBytecodesAt); 2324 __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/); 2325 __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/); 2326 __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, counter_below_trace_threshold); 2327 } 2328 2329 int offset2 = state == ltos || state == dtos ? 2 : 1; 2330 2331 __ push(state); 2332 // Preserved return pointer is in Z_R14. 2333 // InterpreterRuntime::trace_bytecode() preserved and returns the value passed as second argument. 2334 __ z_lgr(Z_ARG2, Z_R14); 2335 __ z_lg(Z_ARG3, Address(Z_esp, Interpreter::expr_offset_in_bytes(0))); 2336 if (WizardMode) { 2337 __ z_lgr(Z_ARG4, Z_esp); // Trace Z_esp in WizardMode. 2338 } else { 2339 __ z_lg(Z_ARG4, Address(Z_esp, Interpreter::expr_offset_in_bytes(offset2))); 2340 } 2341 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), Z_ARG2, Z_ARG3, Z_ARG4); 2342 __ z_lgr(Z_R14, Z_RET); // Estore return address (see above). 2343 __ pop(state); 2344 2345 __ bind(counter_below_trace_threshold); 2346 __ z_br(Z_R14); // return 2347 2348 return entry; 2349 } 2350 2351 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template * t) { 2352 Address index_addr(Z_tmp_1, (intptr_t) 0); 2353 Register index = Z_tmp_2; 2354 2355 // Load previous index. 2356 __ load_absolute_address(Z_tmp_1, (address) &BytecodePairHistogram::_index); 2357 __ mem2reg_opt(index, index_addr, false); 2358 2359 // Mask with current bytecode and store as new previous index. 2360 __ z_srl(index, BytecodePairHistogram::log2_number_of_codes); 2361 __ load_const_optimized(Z_R0_scratch, 2362 (int)t->bytecode() << BytecodePairHistogram::log2_number_of_codes); 2363 __ z_or(index, Z_R0_scratch); 2364 __ reg2mem_opt(index, index_addr, false); 2365 2366 // Load counter array's address. 2367 __ z_lgfr(index, index); // Sign extend for addressing. 2368 __ z_sllg(index, index, LogBytesPerInt); // index2bytes 2369 __ load_absolute_address(Z_R1_scratch, 2370 (address) &BytecodePairHistogram::_counters); 2371 // Add index and increment counter. 2372 __ z_agr(Z_R1_scratch, index); 2373 __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1); 2374 } 2375 2376 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 2377 // Call a little run-time stub to avoid blow-up for each bytecode. 2378 // The run-time runtime saves the right registers, depending on 2379 // the tosca in-state for the given template. 2380 address entry = Interpreter::trace_code(t->tos_in()); 2381 guarantee(entry != nullptr, "entry must have been generated"); 2382 __ call_stub(entry); 2383 } 2384 2385 void TemplateInterpreterGenerator::stop_interpreter_at() { 2386 NearLabel L; 2387 2388 __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value); 2389 __ load_absolute_address(Z_tmp_2, (address)&StopInterpreterAt); 2390 __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/); 2391 __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/); 2392 __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, L); 2393 assert(Z_tmp_1->is_nonvolatile(), "must be nonvolatile to preserve Z_tos"); 2394 assert(Z_F8->is_nonvolatile(), "must be nonvolatile to preserve Z_ftos"); 2395 __ z_lgr(Z_tmp_1, Z_tos); // Save tos. 2396 __ z_lgr(Z_tmp_2, Z_bytecode); // Save Z_bytecode. 2397 __ z_ldr(Z_F8, Z_ftos); // Save ftos. 2398 // Use -XX:StopInterpreterAt=<num> to set the limit 2399 // and break at breakpoint(). 2400 __ call_VM(noreg, CAST_FROM_FN_PTR(address, breakpoint), false); 2401 __ z_lgr(Z_tos, Z_tmp_1); // Restore tos. 2402 __ z_lgr(Z_bytecode, Z_tmp_2); // Save Z_bytecode. 2403 __ z_ldr(Z_ftos, Z_F8); // Restore ftos. 2404 __ bind(L); 2405 } 2406 2407 #endif // !PRODUCT