1 /* 2 * Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2016, 2024 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "compiler/disassembler.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "interpreter/abstractInterpreter.hpp" 31 #include "interpreter/bytecodeHistogram.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "interpreter/interp_masm.hpp" 35 #include "interpreter/templateInterpreterGenerator.hpp" 36 #include "interpreter/templateTable.hpp" 37 #include "oops/arrayOop.hpp" 38 #include "oops/methodCounters.hpp" 39 #include "oops/methodData.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "oops/resolvedIndyEntry.hpp" 42 #include "oops/resolvedMethodEntry.hpp" 43 #include "prims/jvmtiExport.hpp" 44 #include "prims/jvmtiThreadState.hpp" 45 #include "runtime/arguments.hpp" 46 #include "runtime/deoptimization.hpp" 47 #include "runtime/frame.inline.hpp" 48 #include "runtime/jniHandles.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 #include "runtime/stubRoutines.hpp" 51 #include "runtime/synchronizer.hpp" 52 #include "runtime/timer.hpp" 53 #include "runtime/vframeArray.hpp" 54 #include "utilities/debug.hpp" 55 #include "utilities/macros.hpp" 56 57 // Size of interpreter code. Increase if too small. Interpreter will 58 // fail with a guarantee ("not enough space for interpreter generation"); 59 // if too small. 60 // Run with +PrintInterpreter to get the VM to print out the size. 61 // Max size with JVMTI 62 int TemplateInterpreter::InterpreterCodeSize = 320*K; 63 64 #undef __ 65 #ifdef PRODUCT 66 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 67 #else 68 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 69 // #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)-> 70 #endif 71 72 #define BLOCK_COMMENT(str) __ block_comment(str) 73 #define BIND(label) __ bind(label); BLOCK_COMMENT(#label ":") 74 75 #define oop_tmp_offset _z_ijava_state_neg(oop_tmp) 76 77 //----------------------------------------------------------------------------- 78 79 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 80 // 81 // New slow_signature handler that respects the z/Architecture 82 // C calling conventions. 83 // 84 // We get called by the native entry code with our output register 85 // area == 8. First we call InterpreterRuntime::get_result_handler 86 // to copy the pointer to the signature string temporarily to the 87 // first C-argument and to return the result_handler in 88 // Z_RET. Since native_entry will copy the jni-pointer to the 89 // first C-argument slot later on, it's OK to occupy this slot 90 // temporarily. Then we copy the argument list on the java 91 // expression stack into native varargs format on the native stack 92 // and load arguments into argument registers. Integer arguments in 93 // the varargs vector will be sign-extended to 8 bytes. 94 // 95 // On entry: 96 // Z_ARG1 - intptr_t* Address of java argument list in memory. 97 // Z_state - zeroInterpreter* Address of interpreter state for 98 // this method 99 // Z_method 100 // 101 // On exit (just before return instruction): 102 // Z_RET contains the address of the result_handler. 103 // Z_ARG2 is not updated for static methods and contains "this" otherwise. 104 // Z_ARG3-Z_ARG5 contain the first 3 arguments of types other than float and double. 105 // Z_FARG1-Z_FARG4 contain the first 4 arguments of type float or double. 106 107 const int LogSizeOfCase = 3; 108 109 const int max_fp_register_arguments = Argument::n_float_register_parameters; 110 const int max_int_register_arguments = Argument::n_register_parameters - 2; // First 2 are reserved. 111 112 const Register arg_java = Z_tmp_2; 113 const Register arg_c = Z_tmp_3; 114 const Register signature = Z_R1_scratch; // Is a string. 115 const Register fpcnt = Z_R0_scratch; 116 const Register argcnt = Z_tmp_4; 117 const Register intSlot = Z_tmp_1; 118 const Register sig_end = Z_tmp_1; // Assumed end of signature (only used in do_object). 119 const Register target_sp = Z_tmp_1; 120 const FloatRegister floatSlot = Z_F1; 121 122 const int d_signature = _z_abi(gpr6); // Only spill space, register contents not affected. 123 const int d_fpcnt = _z_abi(gpr7); // Only spill space, register contents not affected. 124 125 unsigned int entry_offset = __ offset(); 126 127 BLOCK_COMMENT("slow_signature_handler {"); 128 129 // We use target_sp for storing arguments in the C frame. 130 __ save_return_pc(); 131 __ push_frame_abi160(4*BytesPerWord); // Reserve space to save the tmp_[1..4] registers. 132 __ z_stmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // Save registers only after frame is pushed. 133 134 __ z_lgr(arg_java, Z_ARG1); 135 136 Register method = Z_ARG2; // Directly load into correct argument register. 137 138 __ get_method(method); 139 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), Z_thread, method); 140 141 // Move signature to callee saved register. 142 // Don't directly write to stack. Frame is used by VM call. 143 __ z_lgr(Z_tmp_1, Z_RET); 144 145 // Reload method. Register may have been altered by VM call. 146 __ get_method(method); 147 148 // Get address of result handler. 149 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), Z_thread, method); 150 151 // Save signature address to stack. 152 __ z_stg(Z_tmp_1, d_signature, Z_SP); 153 154 // Don't overwrite return value (Z_RET, Z_ARG1) in rest of the method ! 155 156 { 157 Label isStatic; 158 159 // Test if static. 160 // We can test the bit directly. 161 // Path is Z_method->_access_flags._flags. 162 // We only support flag bits in the least significant byte (assert !). 163 // Therefore add 3 to address that byte within "_flags". 164 // Reload method. VM call above may have destroyed register contents 165 __ get_method(method); 166 __ testbit_ushort(method2_(method, access_flags), JVM_ACC_STATIC_BIT); 167 method = noreg; // end of life 168 __ z_btrue(isStatic); 169 170 // For non-static functions, pass "this" in Z_ARG2 and copy it to 2nd C-arg slot. 171 // Need to box the Java object here, so we use arg_java 172 // (address of current Java stack slot) as argument and 173 // don't dereference it as in case of ints, floats, etc.. 174 __ z_lgr(Z_ARG2, arg_java); 175 __ add2reg(arg_java, -BytesPerWord); 176 __ bind(isStatic); 177 } 178 179 // argcnt == 0 corresponds to 3rd C argument. 180 // arg #1 (result handler) and 181 // arg #2 (this, for non-statics), unused else 182 // are reserved and pre-filled above. 183 // arg_java points to the corresponding Java argument here. It 184 // has been decremented by one argument (this) in case of non-static. 185 __ clear_reg(argcnt, true, false); // Don't set CC. 186 __ z_lg(target_sp, 0, Z_SP); 187 __ add2reg(arg_c, _z_abi(remaining_cargs), target_sp); 188 // No floating-point args parsed so far. 189 __ clear_mem(Address(Z_SP, d_fpcnt), 8); 190 191 NearLabel move_intSlot_to_ARG, move_floatSlot_to_FARG; 192 NearLabel loop_start, loop_start_restore, loop_end; 193 NearLabel do_int, do_long, do_float, do_double; 194 NearLabel do_dontreachhere, do_object, do_array, do_boxed; 195 196 #ifdef ASSERT 197 // Signature needs to point to '(' (== 0x28) at entry. 198 __ z_lg(signature, d_signature, Z_SP); 199 __ z_cli(0, signature, (int) '('); 200 __ z_brne(do_dontreachhere); 201 #endif 202 203 __ bind(loop_start_restore); 204 __ z_lg(signature, d_signature, Z_SP); // Restore signature ptr, destroyed by move_XX_to_ARG. 205 206 BIND(loop_start); 207 // Advance to next argument type token from the signature. 208 __ add2reg(signature, 1); 209 210 // Use CLI, works well on all CPU versions. 211 __ z_cli(0, signature, (int) ')'); 212 __ z_bre(loop_end); // end of signature 213 __ z_cli(0, signature, (int) 'L'); 214 __ z_bre(do_object); // object #9 215 __ z_cli(0, signature, (int) 'F'); 216 __ z_bre(do_float); // float #7 217 __ z_cli(0, signature, (int) 'J'); 218 __ z_bre(do_long); // long #6 219 __ z_cli(0, signature, (int) 'B'); 220 __ z_bre(do_int); // byte #1 221 __ z_cli(0, signature, (int) 'Z'); 222 __ z_bre(do_int); // boolean #2 223 __ z_cli(0, signature, (int) 'C'); 224 __ z_bre(do_int); // char #3 225 __ z_cli(0, signature, (int) 'S'); 226 __ z_bre(do_int); // short #4 227 __ z_cli(0, signature, (int) 'I'); 228 __ z_bre(do_int); // int #5 229 __ z_cli(0, signature, (int) 'D'); 230 __ z_bre(do_double); // double #8 231 __ z_cli(0, signature, (int) '['); 232 __ z_bre(do_array); // array #10 233 234 __ bind(do_dontreachhere); 235 236 __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120); 237 238 // Array argument 239 BIND(do_array); 240 241 { 242 Label start_skip, end_skip; 243 244 __ bind(start_skip); 245 246 // Advance to next type tag from signature. 247 __ add2reg(signature, 1); 248 249 // Use CLI, works well on all CPU versions. 250 __ z_cli(0, signature, (int) '['); 251 __ z_bre(start_skip); // Skip further brackets. 252 253 __ z_cli(0, signature, (int) '9'); 254 __ z_brh(end_skip); // no optional size 255 256 __ z_cli(0, signature, (int) '0'); 257 __ z_brnl(start_skip); // Skip optional size. 258 259 __ bind(end_skip); 260 261 __ z_cli(0, signature, (int) 'L'); 262 __ z_brne(do_boxed); // If not array of objects: go directly to do_boxed. 263 } 264 265 // OOP argument 266 BIND(do_object); 267 // Pass by an object's type name. 268 { 269 Label L; 270 271 __ add2reg(sig_end, 4095, signature); // Assume object type name is shorter than 4k. 272 __ load_const_optimized(Z_R0, (int) ';'); // Type name terminator (must be in Z_R0!). 273 __ MacroAssembler::search_string(sig_end, signature); 274 __ z_brl(L); 275 __ z_illtrap(); // No semicolon found: internal error or object name too long. 276 __ bind(L); 277 __ z_lgr(signature, sig_end); 278 // fallthru to do_boxed 279 } 280 281 // Need to box the Java object here, so we use arg_java 282 // (address of current Java stack slot) as argument and 283 // don't dereference it as in case of ints, floats, etc.. 284 285 // UNBOX argument 286 // Load reference and check for null. 287 Label do_int_Entry4Boxed; 288 __ bind(do_boxed); 289 { 290 __ load_and_test_long(intSlot, Address(arg_java)); 291 __ z_bre(do_int_Entry4Boxed); 292 __ z_lgr(intSlot, arg_java); 293 __ z_bru(do_int_Entry4Boxed); 294 } 295 296 // INT argument 297 298 // (also for byte, boolean, char, short) 299 // Use lgf for load (sign-extend) and stg for store. 300 BIND(do_int); 301 __ z_lgf(intSlot, 0, arg_java); 302 303 __ bind(do_int_Entry4Boxed); 304 __ add2reg(arg_java, -BytesPerWord); 305 // If argument fits into argument register, go and handle it, otherwise continue. 306 __ compare32_and_branch(argcnt, max_int_register_arguments, 307 Assembler::bcondLow, move_intSlot_to_ARG); 308 __ z_stg(intSlot, 0, arg_c); 309 __ add2reg(arg_c, BytesPerWord); 310 __ z_bru(loop_start); 311 312 // LONG argument 313 314 BIND(do_long); 315 __ add2reg(arg_java, -2*BytesPerWord); // Decrement first to have positive displacement for lg. 316 __ z_lg(intSlot, BytesPerWord, arg_java); 317 // If argument fits into argument register, go and handle it, otherwise continue. 318 __ compare32_and_branch(argcnt, max_int_register_arguments, 319 Assembler::bcondLow, move_intSlot_to_ARG); 320 __ z_stg(intSlot, 0, arg_c); 321 __ add2reg(arg_c, BytesPerWord); 322 __ z_bru(loop_start); 323 324 // FLOAT argumen 325 326 BIND(do_float); 327 __ z_le(floatSlot, 0, arg_java); 328 __ add2reg(arg_java, -BytesPerWord); 329 assert(max_fp_register_arguments <= 255, "always true"); // safety net 330 __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments); 331 __ z_brl(move_floatSlot_to_FARG); 332 __ z_ste(floatSlot, 4, arg_c); 333 __ add2reg(arg_c, BytesPerWord); 334 __ z_bru(loop_start); 335 336 // DOUBLE argument 337 338 BIND(do_double); 339 __ add2reg(arg_java, -2*BytesPerWord); // Decrement first to have positive displacement for lg. 340 __ z_ld(floatSlot, BytesPerWord, arg_java); 341 assert(max_fp_register_arguments <= 255, "always true"); // safety net 342 __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments); 343 __ z_brl(move_floatSlot_to_FARG); 344 __ z_std(floatSlot, 0, arg_c); 345 __ add2reg(arg_c, BytesPerWord); 346 __ z_bru(loop_start); 347 348 // Method exit, all arguments processed. 349 __ bind(loop_end); 350 __ z_lmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // restore registers before frame is popped. 351 __ pop_frame(); 352 __ restore_return_pc(); 353 __ z_br(Z_R14); 354 355 // Copy int arguments. 356 357 Label iarg_caselist; // Distance between each case has to be a power of 2 358 // (= 1 << LogSizeOfCase). 359 __ align(16); 360 BIND(iarg_caselist); 361 __ z_lgr(Z_ARG3, intSlot); // 4 bytes 362 __ z_bru(loop_start_restore); // 4 bytes 363 364 __ z_lgr(Z_ARG4, intSlot); 365 __ z_bru(loop_start_restore); 366 367 __ z_lgr(Z_ARG5, intSlot); 368 __ z_bru(loop_start_restore); 369 370 __ align(16); 371 __ bind(move_intSlot_to_ARG); 372 __ z_stg(signature, d_signature, Z_SP); // Spill since signature == Z_R1_scratch. 373 __ z_larl(Z_R1_scratch, iarg_caselist); 374 __ z_sllg(Z_R0_scratch, argcnt, LogSizeOfCase); 375 __ add2reg(argcnt, 1); 376 __ z_agr(Z_R1_scratch, Z_R0_scratch); 377 __ z_bcr(Assembler::bcondAlways, Z_R1_scratch); 378 379 // Copy float arguments. 380 381 Label farg_caselist; // Distance between each case has to be a power of 2 382 // (= 1 << logSizeOfCase, padded with nop. 383 __ align(16); 384 BIND(farg_caselist); 385 __ z_ldr(Z_FARG1, floatSlot); // 2 bytes 386 __ z_bru(loop_start_restore); // 4 bytes 387 __ z_nop(); // 2 bytes 388 389 __ z_ldr(Z_FARG2, floatSlot); 390 __ z_bru(loop_start_restore); 391 __ z_nop(); 392 393 __ z_ldr(Z_FARG3, floatSlot); 394 __ z_bru(loop_start_restore); 395 __ z_nop(); 396 397 __ z_ldr(Z_FARG4, floatSlot); 398 __ z_bru(loop_start_restore); 399 __ z_nop(); 400 401 __ align(16); 402 __ bind(move_floatSlot_to_FARG); 403 __ z_stg(signature, d_signature, Z_SP); // Spill since signature == Z_R1_scratch. 404 __ z_lg(Z_R0_scratch, d_fpcnt, Z_SP); // Need old value for indexing. 405 __ add2mem_64(Address(Z_SP, d_fpcnt), 1, Z_R1_scratch); // Increment index. 406 __ z_larl(Z_R1_scratch, farg_caselist); 407 __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogSizeOfCase); 408 __ z_agr(Z_R1_scratch, Z_R0_scratch); 409 __ z_bcr(Assembler::bcondAlways, Z_R1_scratch); 410 411 BLOCK_COMMENT("} slow_signature_handler"); 412 413 return __ addr_at(entry_offset); 414 } 415 416 address TemplateInterpreterGenerator::generate_result_handler_for (BasicType type) { 417 address entry = __ pc(); 418 419 assert(Z_tos == Z_RET, "Result handler: must move result!"); 420 assert(Z_ftos == Z_FRET, "Result handler: must move float result!"); 421 422 switch (type) { 423 case T_BOOLEAN: 424 __ c2bool(Z_tos); 425 break; 426 case T_CHAR: 427 __ and_imm(Z_tos, 0xffff); 428 break; 429 case T_BYTE: 430 __ z_lbr(Z_tos, Z_tos); 431 break; 432 case T_SHORT: 433 __ z_lhr(Z_tos, Z_tos); 434 break; 435 case T_INT: 436 case T_LONG: 437 case T_VOID: 438 case T_FLOAT: 439 case T_DOUBLE: 440 break; 441 case T_OBJECT: 442 // Retrieve result from frame... 443 __ mem2reg_opt(Z_tos, Address(Z_fp, oop_tmp_offset)); 444 // and verify it. 445 __ verify_oop(Z_tos); 446 break; 447 default: 448 ShouldNotReachHere(); 449 } 450 __ z_br(Z_R14); // Return from result handler. 451 return entry; 452 } 453 454 // Abstract method entry. 455 // Attempt to execute abstract method. Throw exception. 456 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 457 unsigned int entry_offset = __ offset(); 458 459 // Caller could be the call_stub or a compiled method (x86 version is wrong!). 460 461 BLOCK_COMMENT("abstract_entry {"); 462 463 // Implement call of InterpreterRuntime::throw_AbstractMethodError. 464 __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1); 465 __ save_return_pc(); // Save Z_R14. 466 __ push_frame_abi160(0); // Without new frame the RT call could overwrite the saved Z_R14. 467 468 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorWithMethod), 469 Z_thread, Z_method); 470 471 __ pop_frame(); 472 __ restore_return_pc(); // Restore Z_R14. 473 __ reset_last_Java_frame(); 474 475 // Restore caller sp for c2i case. 476 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 477 478 // branch to SharedRuntime::generate_forward_exception() which handles all possible callers, 479 // i.e. call stub, compiled method, interpreted method. 480 __ load_absolute_address(Z_tmp_1, StubRoutines::forward_exception_entry()); 481 __ z_br(Z_tmp_1); 482 483 BLOCK_COMMENT("} abstract_entry"); 484 485 return __ addr_at(entry_offset); 486 } 487 488 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 489 // Inputs: 490 // Z_ARG1 - receiver 491 // 492 // What we do: 493 // - Load the referent field address. 494 // - Load the value in the referent field. 495 // - Pass that value to the pre-barrier. 496 // 497 // In the case of G1 this will record the value of the 498 // referent in an SATB buffer if marking is active. 499 // This will cause concurrent marking to mark the referent 500 // field as live. 501 502 Register scratch1 = Z_tmp_2; 503 Register scratch2 = Z_tmp_3; 504 Register pre_val = Z_RET; // return value 505 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 506 Register Rargp = Z_esp; 507 508 Label slow_path; 509 address entry = __ pc(); 510 511 const int referent_offset = java_lang_ref_Reference::referent_offset(); 512 513 BLOCK_COMMENT("Reference_get {"); 514 515 // If the receiver is null then it is OK to jump to the slow path. 516 __ load_and_test_long(pre_val, Address(Rargp, Interpreter::stackElementSize)); // Get receiver. 517 __ z_bre(slow_path); 518 519 // Load the value of the referent field. 520 __ load_heap_oop(pre_val, Address(pre_val, referent_offset), scratch1, scratch2, ON_WEAK_OOP_REF); 521 522 // Restore caller sp for c2i case. 523 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 524 __ z_br(Z_R14); 525 526 // Branch to previously generated regular method entry. 527 __ bind(slow_path); 528 529 address meth_entry = Interpreter::entry_for_kind(Interpreter::zerolocals); 530 __ jump_to_entry(meth_entry, Z_R1); 531 532 BLOCK_COMMENT("} Reference_get"); 533 534 return entry; 535 } 536 537 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 538 address entry = __ pc(); 539 540 DEBUG_ONLY(__ verify_esp(Z_esp, Z_ARG5)); 541 542 // Restore bcp under the assumption that the current frame is still 543 // interpreted. 544 __ restore_bcp(); 545 546 // Expression stack must be empty before entering the VM if an 547 // exception happened. 548 __ empty_expression_stack(); 549 // Throw exception. 550 __ call_VM(noreg, 551 CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError)); 552 return entry; 553 } 554 555 // 556 // Args: 557 // Z_ARG2: oop of array 558 // Z_ARG3: aberrant index 559 // 560 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 561 address entry = __ pc(); 562 address excp = CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException); 563 564 // Expression stack must be empty before entering the VM if an 565 // exception happened. 566 __ empty_expression_stack(); 567 568 // Setup parameters. 569 // Pass register with array to create more detailed exceptions. 570 __ call_VM(noreg, excp, Z_ARG2, Z_ARG3); 571 return entry; 572 } 573 574 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 575 address entry = __ pc(); 576 577 // Object is at TOS. 578 __ pop_ptr(Z_ARG2); 579 580 // Expression stack must be empty before entering the VM if an 581 // exception happened. 582 __ empty_expression_stack(); 583 584 __ call_VM(Z_ARG1, 585 CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), 586 Z_ARG2); 587 588 DEBUG_ONLY(__ should_not_reach_here();) 589 590 return entry; 591 } 592 593 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) { 594 assert(!pass_oop || message == nullptr, "either oop or message but not both"); 595 address entry = __ pc(); 596 597 BLOCK_COMMENT("exception_handler_common {"); 598 599 // Expression stack must be empty before entering the VM if an 600 // exception happened. 601 __ empty_expression_stack(); 602 if (name != nullptr) { 603 __ load_absolute_address(Z_ARG2, (address)name); 604 } else { 605 __ clear_reg(Z_ARG2, true, false); 606 } 607 608 if (pass_oop) { 609 __ call_VM(Z_tos, 610 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), 611 Z_ARG2, Z_tos /*object (see TT::aastore())*/); 612 } else { 613 if (message != nullptr) { 614 __ load_absolute_address(Z_ARG3, (address)message); 615 } else { 616 __ clear_reg(Z_ARG3, true, false); 617 } 618 __ call_VM(Z_tos, 619 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), 620 Z_ARG2, Z_ARG3); 621 } 622 // Throw exception. 623 __ load_absolute_address(Z_R1_scratch, Interpreter::throw_exception_entry()); 624 __ z_br(Z_R1_scratch); 625 626 BLOCK_COMMENT("} exception_handler_common"); 627 628 return entry; 629 } 630 631 address TemplateInterpreterGenerator::generate_return_entry_for (TosState state, int step, size_t index_size) { 632 address entry = __ pc(); 633 634 BLOCK_COMMENT("return_entry {"); 635 636 // Pop i2c extension or revert top-2-parent-resize done by interpreted callees. 637 Register sp_before_i2c_extension = Z_bcp; 638 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. 639 __ z_lg(sp_before_i2c_extension, Address(Z_fp, _z_ijava_state_neg(top_frame_sp))); 640 __ resize_frame_absolute(sp_before_i2c_extension, Z_locals/*tmp*/, true/*load_fp*/); 641 642 // TODO(ZASM): necessary?? 643 // // and null it as marker that esp is now tos until next java call 644 // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); 645 646 __ restore_bcp(); 647 __ restore_locals(); 648 __ restore_esp(); 649 650 if (state == atos) { 651 __ profile_return_type(Z_tmp_1, Z_tos, Z_tmp_2); 652 } 653 654 Register cache = Z_tmp_1; 655 Register size = Z_tmp_2; 656 Register index = Z_tmp_2; 657 if (index_size == sizeof(u4)) { 658 __ load_resolved_indy_entry(cache, index); 659 __ z_llgh(size, in_bytes(ResolvedIndyEntry::num_parameters_offset()), cache); 660 } else { 661 assert(index_size == sizeof(u2), "Can only be u2"); 662 __ load_method_entry(cache, index); 663 __ load_sized_value(size, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())), sizeof(u2), false /*is_signed*/); 664 } 665 __ z_sllg(size, size, Interpreter::logStackElementSize); // Each argument size in bytes. 666 __ z_agr(Z_esp, size); // Pop arguments. 667 668 __ check_and_handle_popframe(Z_thread); 669 __ check_and_handle_earlyret(Z_thread); 670 671 __ dispatch_next(state, step); 672 673 BLOCK_COMMENT("} return_entry"); 674 675 return entry; 676 } 677 678 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, 679 int step, 680 address continuation) { 681 address entry = __ pc(); 682 683 BLOCK_COMMENT("deopt_entry {"); 684 685 // TODO(ZASM): necessary? null last_sp until next java call 686 // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); 687 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. 688 __ restore_bcp(); 689 __ restore_locals(); 690 __ restore_esp(); 691 692 // Handle exceptions. 693 { 694 Label L; 695 __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception)); 696 __ z_bre(L); 697 __ call_VM(noreg, 698 CAST_FROM_FN_PTR(address, 699 InterpreterRuntime::throw_pending_exception)); 700 __ should_not_reach_here(); 701 __ bind(L); 702 } 703 if (continuation == nullptr) { 704 __ dispatch_next(state, step); 705 } else { 706 __ jump_to_entry(continuation, Z_R1_scratch); 707 } 708 709 BLOCK_COMMENT("} deopt_entry"); 710 711 return entry; 712 } 713 714 address TemplateInterpreterGenerator::generate_safept_entry_for (TosState state, 715 address runtime_entry) { 716 address entry = __ pc(); 717 __ push(state); 718 __ call_VM(noreg, runtime_entry); 719 __ dispatch_via(vtos, Interpreter::_normal_table.table_for (vtos)); 720 return entry; 721 } 722 723 address TemplateInterpreterGenerator::generate_cont_resume_interpreter_adapter() { 724 return nullptr; 725 } 726 727 728 // 729 // Helpers for commoning out cases in the various type of method entries. 730 // 731 732 // Increment invocation count & check for overflow. 733 // 734 // Note: checking for negative value instead of overflow 735 // so we have a 'sticky' overflow test. 736 // 737 // Z_ARG2: method (see generate_fixed_frame()) 738 // 739 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 740 Label done; 741 Register method = Z_ARG2; // Generate_fixed_frame() copies Z_method into Z_ARG2. 742 Register m_counters = Z_ARG4; 743 744 BLOCK_COMMENT("counter_incr {"); 745 746 // Note: In tiered we increment either counters in method or in MDO depending 747 // if we are profiling or not. 748 int increment = InvocationCounter::count_increment; 749 if (ProfileInterpreter) { 750 NearLabel no_mdo; 751 Register mdo = m_counters; 752 // Are we profiling? 753 __ load_and_test_long(mdo, method2_(method, method_data)); 754 __ branch_optimized(Assembler::bcondZero, no_mdo); 755 // Increment counter in the MDO. 756 const Address mdo_invocation_counter(mdo, MethodData::invocation_counter_offset() + 757 InvocationCounter::counter_offset()); 758 const Address mask(mdo, MethodData::invoke_mask_offset()); 759 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, 760 Z_R1_scratch, false, Assembler::bcondZero, 761 overflow); 762 __ z_bru(done); 763 __ bind(no_mdo); 764 } 765 766 // Increment counter in MethodCounters. 767 const Address invocation_counter(m_counters, 768 MethodCounters::invocation_counter_offset() + 769 InvocationCounter::counter_offset()); 770 // Get address of MethodCounters object. 771 __ get_method_counters(method, m_counters, done); 772 const Address mask(m_counters, MethodCounters::invoke_mask_offset()); 773 __ increment_mask_and_jump(invocation_counter, 774 increment, mask, 775 Z_R1_scratch, false, Assembler::bcondZero, 776 overflow); 777 778 __ bind(done); 779 780 BLOCK_COMMENT("} counter_incr"); 781 } 782 783 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 784 // InterpreterRuntime::frequency_counter_overflow takes two 785 // arguments, the first (thread) is passed by call_VM, the second 786 // indicates if the counter overflow occurs at a backwards branch 787 // (null bcp). We pass zero for it. The call returns the address 788 // of the verified entry point for the method or null if the 789 // compilation did not complete (either went background or bailed 790 // out). 791 __ clear_reg(Z_ARG2); 792 __ call_VM(noreg, 793 CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), 794 Z_ARG2); 795 __ z_bru(do_continue); 796 } 797 798 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register frame_size, Register tmp1) { 799 Register tmp2 = Z_R1_scratch; 800 const int page_size = (int)os::vm_page_size(); 801 NearLabel after_frame_check; 802 803 BLOCK_COMMENT("stack_overflow_check {"); 804 805 assert_different_registers(frame_size, tmp1); 806 807 // Stack banging is sufficient overflow check if frame_size < page_size. 808 if (Immediate::is_uimm(page_size, 15)) { 809 __ z_chi(frame_size, page_size); 810 __ z_brl(after_frame_check); 811 } else { 812 __ load_const_optimized(tmp1, page_size); 813 __ compareU32_and_branch(frame_size, tmp1, Assembler::bcondLow, after_frame_check); 814 } 815 816 // Get the stack base, and in debug, verify it is non-zero. 817 __ z_lg(tmp1, thread_(stack_base)); 818 #ifdef ASSERT 819 address reentry = nullptr; 820 NearLabel base_not_zero; 821 __ compareU64_and_branch(tmp1, (intptr_t)0L, Assembler::bcondNotEqual, base_not_zero); 822 reentry = __ stop_chain_static(reentry, "stack base is zero in generate_stack_overflow_check"); 823 __ bind(base_not_zero); 824 #endif 825 826 // Get the stack size, and in debug, verify it is non-zero. 827 assert(sizeof(size_t) == sizeof(intptr_t), "wrong load size"); 828 __ z_lg(tmp2, thread_(stack_size)); 829 #ifdef ASSERT 830 NearLabel size_not_zero; 831 __ compareU64_and_branch(tmp2, (intptr_t)0L, Assembler::bcondNotEqual, size_not_zero); 832 reentry = __ stop_chain_static(reentry, "stack size is zero in generate_stack_overflow_check"); 833 __ bind(size_not_zero); 834 #endif 835 836 // Compute the beginning of the protected zone minus the requested frame size. 837 __ z_sgr(tmp1, tmp2); 838 __ add2reg(tmp1, StackOverflow::stack_guard_zone_size()); 839 840 // Add in the size of the frame (which is the same as subtracting it from the 841 // SP, which would take another register. 842 __ z_agr(tmp1, frame_size); 843 844 // The frame is greater than one page in size, so check against 845 // the bottom of the stack. 846 __ compareU64_and_branch(Z_SP, tmp1, Assembler::bcondHigh, after_frame_check); 847 848 // The stack will overflow, throw an exception. 849 850 // Restore SP to sender's sp. This is necessary if the sender's frame is an 851 // extended compiled frame (see gen_c2i_adapter()) and safer anyway in case of 852 // JSR292 adaptations. 853 __ resize_frame_absolute(Z_R10, tmp1, true/*load_fp*/); 854 855 // Note also that the restored frame is not necessarily interpreted. 856 // Use the shared runtime version of the StackOverflowError. 857 assert(SharedRuntime::throw_StackOverflowError_entry() != nullptr, "stub not yet generated"); 858 AddressLiteral stub(SharedRuntime::throw_StackOverflowError_entry()); 859 __ load_absolute_address(tmp1, SharedRuntime::throw_StackOverflowError_entry()); 860 __ z_br(tmp1); 861 862 // If you get to here, then there is enough stack space. 863 __ bind(after_frame_check); 864 865 BLOCK_COMMENT("} stack_overflow_check"); 866 } 867 868 // Allocate monitor and lock method (asm interpreter). 869 // 870 // Args: 871 // Z_locals: locals 872 873 void TemplateInterpreterGenerator::lock_method(void) { 874 875 BLOCK_COMMENT("lock_method {"); 876 877 // Synchronize method. 878 const Register method = Z_tmp_2; 879 __ get_method(method); 880 881 #ifdef ASSERT 882 address reentry = nullptr; 883 { 884 Label L; 885 __ testbit_ushort(method2_(method, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 886 __ z_btrue(L); 887 reentry = __ stop_chain_static(reentry, "method doesn't need synchronization"); 888 __ bind(L); 889 } 890 #endif // ASSERT 891 892 // Get synchronization object. 893 const Register object = Z_tmp_2; 894 895 { 896 Label done; 897 Label static_method; 898 899 __ testbit_ushort(method2_(method, access_flags), JVM_ACC_STATIC_BIT); 900 __ z_btrue(static_method); 901 902 // non-static method: Load receiver obj from stack. 903 __ mem2reg_opt(object, Address(Z_locals, Interpreter::local_offset_in_bytes(0))); 904 __ z_bru(done); 905 906 __ bind(static_method); 907 908 // Lock the java mirror. 909 // Load mirror from interpreter frame. 910 __ z_lg(object, _z_ijava_state_neg(mirror), Z_fp); 911 912 #ifdef ASSERT 913 { 914 NearLabel L; 915 __ compare64_and_branch(object, (intptr_t) 0, Assembler::bcondNotEqual, L); 916 reentry = __ stop_chain_static(reentry, "synchronization object is null"); 917 __ bind(L); 918 } 919 #endif // ASSERT 920 921 __ bind(done); 922 } 923 924 __ add_monitor_to_stack(true, Z_ARG3, Z_ARG4, Z_ARG5); // Allocate monitor elem. 925 // Store object and lock it. 926 __ get_monitors(Z_tmp_1); 927 __ reg2mem_opt(object, Address(Z_tmp_1, BasicObjectLock::obj_offset())); 928 __ lock_object(Z_tmp_1, object); 929 930 BLOCK_COMMENT("} lock_method"); 931 } 932 933 // Generate a fixed interpreter frame. This is identical setup for 934 // interpreted methods and for native methods hence the shared code. 935 // 936 // Registers alive 937 // Z_thread - JavaThread* 938 // Z_SP - old stack pointer 939 // Z_method - callee's method 940 // Z_esp - parameter list (slot 'above' last param) 941 // Z_R14 - return pc, to be stored in caller's frame 942 // Z_R10 - sender sp, note: Z_tmp_1 is Z_R10! 943 // 944 // Registers updated 945 // Z_SP - new stack pointer 946 // Z_esp - callee's operand stack pointer 947 // points to the slot above the value on top 948 // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord) 949 // Z_bcp - the bytecode pointer 950 // Z_fp - the frame pointer, thereby killing Z_method 951 // Z_ARG2 - copy of Z_method 952 // 953 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 954 955 // stack layout 956 // 957 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (see note below) 958 // [F1's operand stack (unused)] 959 // [F1's outgoing Java arguments] <-- Z_esp 960 // [F1's operand stack (non args)] 961 // [monitors] (optional) 962 // [IJAVA_STATE] 963 // 964 // F2 [PARENT_IJAVA_FRAME_ABI] 965 // ... 966 // 967 // 0x000 968 // 969 // Note: Z_R10, the sender sp, will be below Z_SP if F1 was extended by a c2i adapter. 970 971 //============================================================================= 972 // Allocate space for locals other than the parameters, the 973 // interpreter state, monitors, and the expression stack. 974 975 const Register local_count = Z_ARG5; 976 const Register fp = Z_tmp_2; 977 const Register const_method = Z_ARG1; 978 979 BLOCK_COMMENT("generate_fixed_frame {"); 980 { 981 // local registers 982 const Register top_frame_size = Z_ARG2; 983 const Register sp_after_resize = Z_ARG3; 984 const Register max_stack = Z_ARG4; 985 986 __ z_lg(const_method, Address(Z_method, Method::const_offset())); 987 __ z_llgh(max_stack, Address(const_method, ConstMethod::size_of_parameters_offset())); 988 __ z_sllg(Z_locals /*parameter_count bytes*/, max_stack /*parameter_count*/, LogBytesPerWord); 989 990 if (native_call) { 991 // If we're calling a native method, we replace max_stack (which is 992 // zero) with space for the worst-case signature handler varargs 993 // vector, which is: 994 // max_stack = max(Argument::n_register_parameters, parameter_count+2); 995 // 996 // We add two slots to the parameter_count, one for the jni 997 // environment and one for a possible native mirror. We allocate 998 // space for at least the number of ABI registers, even though 999 // InterpreterRuntime::slow_signature_handler won't write more than 1000 // parameter_count+2 words when it creates the varargs vector at the 1001 // top of the stack. The generated slow signature handler will just 1002 // load trash into registers beyond the necessary number. We're 1003 // still going to cut the stack back by the ABI register parameter 1004 // count so as to get SP+16 pointing at the ABI outgoing parameter 1005 // area, so we need to allocate at least that much even though we're 1006 // going to throw it away. 1007 // 1008 __ add2reg(max_stack, 2); 1009 1010 NearLabel passing_args_on_stack; 1011 1012 // max_stack in bytes 1013 __ z_sllg(max_stack, max_stack, LogBytesPerWord); 1014 1015 int argument_registers_in_bytes = Argument::n_register_parameters << LogBytesPerWord; 1016 __ compare64_and_branch(max_stack, argument_registers_in_bytes, Assembler::bcondNotLow, passing_args_on_stack); 1017 1018 __ load_const_optimized(max_stack, argument_registers_in_bytes); 1019 1020 __ bind(passing_args_on_stack); 1021 } else { 1022 // !native_call 1023 // local_count = method->constMethod->max_locals(); 1024 __ z_llgh(local_count, Address(const_method, ConstMethod::size_of_locals_offset())); 1025 1026 // Calculate number of non-parameter locals (in slots): 1027 __ z_sgr(local_count, max_stack); 1028 1029 // max_stack = method->max_stack(); 1030 __ z_llgh(max_stack, Address(const_method, ConstMethod::max_stack_offset())); 1031 // max_stack in bytes 1032 __ z_sllg(max_stack, max_stack, LogBytesPerWord); 1033 } 1034 1035 // Resize (i.e. normally shrink) the top frame F1 ... 1036 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 1037 // F1's operand stack (free) 1038 // ... 1039 // F1's operand stack (free) <-- Z_esp 1040 // F1's outgoing Java arg m 1041 // ... 1042 // F1's outgoing Java arg 0 1043 // ... 1044 // 1045 // ... into a parent frame (Z_R10 holds F1's SP before any modification, see also above) 1046 // 1047 // +......................+ 1048 // : : <-- Z_R10, saved below as F0's z_ijava_state.sender_sp 1049 // : : 1050 // F1 [PARENT_IJAVA_FRAME_ABI] <-- Z_SP \ 1051 // F0's non arg local | = delta 1052 // ... | 1053 // F0's non arg local <-- Z_esp / 1054 // F1's outgoing Java arg m 1055 // ... 1056 // F1's outgoing Java arg 0 1057 // ... 1058 // 1059 // then push the new top frame F0. 1060 // 1061 // F0 [TOP_IJAVA_FRAME_ABI] = frame::z_top_ijava_frame_abi_size \ 1062 // [operand stack] = max_stack | = top_frame_size 1063 // [IJAVA_STATE] = frame::z_ijava_state_size / 1064 1065 // sp_after_resize = Z_esp - delta 1066 // 1067 // delta = PARENT_IJAVA_FRAME_ABI + (locals_count - params_count) 1068 1069 __ add2reg(sp_after_resize, (Interpreter::stackElementSize) - (frame::z_parent_ijava_frame_abi_size), Z_esp); 1070 if (!native_call) { 1071 __ z_sllg(Z_R0_scratch, local_count, LogBytesPerWord); // Params have already been subtracted from local_count. 1072 __ z_slgr(sp_after_resize, Z_R0_scratch); 1073 } 1074 1075 // top_frame_size = TOP_IJAVA_FRAME_ABI + max_stack + size of interpreter state 1076 __ add2reg(top_frame_size, 1077 frame::z_top_ijava_frame_abi_size + 1078 frame::z_ijava_state_size, 1079 max_stack); 1080 1081 if (!native_call) { 1082 // Stack overflow check. 1083 // Native calls don't need the stack size check since they have no 1084 // expression stack and the arguments are already on the stack and 1085 // we only add a handful of words to the stack. 1086 Register frame_size = max_stack; // Reuse the register for max_stack. 1087 __ z_lgr(frame_size, Z_SP); 1088 __ z_sgr(frame_size, sp_after_resize); 1089 __ z_agr(frame_size, top_frame_size); 1090 generate_stack_overflow_check(frame_size, fp/*tmp1*/); 1091 } 1092 1093 // asm_assert* is a nop in product builds 1094 NOT_PRODUCT(__ z_cg(Z_R14, _z_common_abi(return_pc), Z_SP)); 1095 NOT_PRODUCT(__ asm_assert(Assembler::bcondEqual, "killed Z_R14", 0)); 1096 __ resize_frame_absolute(sp_after_resize, fp, true); 1097 __ save_return_pc(Z_R14); 1098 1099 // ... and push the new frame F0. 1100 __ push_frame(top_frame_size, fp, true /*copy_sp*/, false); 1101 } 1102 1103 //============================================================================= 1104 // Initialize the new frame F0: initialize interpreter state. 1105 1106 { 1107 // locals 1108 const Register local_addr = Z_ARG4; 1109 1110 BLOCK_COMMENT("generate_fixed_frame: initialize interpreter state {"); 1111 1112 #ifdef ASSERT 1113 // Set the magic number (using local_addr as tmp register). 1114 __ load_const_optimized(local_addr, frame::z_istate_magic_number); 1115 __ z_stg(local_addr, _z_ijava_state_neg(magic), fp); 1116 #endif 1117 1118 // Save sender SP from F1 (i.e. before it was potentially modified by an 1119 // adapter) into F0's interpreter state. We use it as well to revert 1120 // resizing the frame above. 1121 __ z_stg(Z_R10, _z_ijava_state_neg(sender_sp), fp); 1122 1123 // Load cp cache and save it at the end of this block. 1124 __ z_lg(Z_R1_scratch, Address(const_method, ConstMethod::constants_offset())); 1125 __ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstantPool::cache_offset())); 1126 1127 // z_ijava_state->method = method; 1128 __ z_stg(Z_method, _z_ijava_state_neg(method), fp); 1129 1130 // Point locals at the first argument. Method's locals are the 1131 // parameters on top of caller's expression stack. 1132 // Tos points past last Java argument. 1133 1134 __ z_agr(Z_locals, Z_esp); 1135 // z_ijava_state->locals - i*BytesPerWord points to i-th Java local (i starts at 0) 1136 // z_ijava_state->locals = Z_esp + parameter_count bytes 1137 __ z_stg(Z_locals, _z_ijava_state_neg(locals), fp); 1138 1139 // z_ijava_state->oop_temp = nullptr; 1140 __ store_const(Address(fp, oop_tmp_offset), 0); 1141 1142 // Initialize z_ijava_state->mdx. 1143 Register Rmdp = Z_bcp; 1144 // native_call: assert that mdo is null 1145 const bool check_for_mdo = !native_call DEBUG_ONLY(|| native_call); 1146 if (ProfileInterpreter && check_for_mdo) { 1147 Label get_continue; 1148 1149 __ load_and_test_long(Rmdp, method_(method_data)); 1150 __ z_brz(get_continue); 1151 DEBUG_ONLY(if (native_call) __ stop("native methods don't have a mdo")); 1152 __ add2reg(Rmdp, in_bytes(MethodData::data_offset())); 1153 __ bind(get_continue); 1154 } 1155 __ z_stg(Rmdp, _z_ijava_state_neg(mdx), fp); 1156 1157 // Initialize z_ijava_state->bcp and Z_bcp. 1158 if (native_call) { 1159 __ clear_reg(Z_bcp); // Must initialize. Will get written into frame where GC reads it. 1160 } else { 1161 __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset()), const_method); 1162 } 1163 __ z_stg(Z_bcp, _z_ijava_state_neg(bcp), fp); 1164 1165 // no monitors and empty operand stack 1166 // => z_ijava_state->monitors points to the top slot in IJAVA_STATE. 1167 // => Z_ijava_state->esp points one slot above into the operand stack. 1168 // z_ijava_state->monitors = fp - frame::z_ijava_state_size - Interpreter::stackElementSize; 1169 // z_ijava_state->esp = Z_esp = z_ijava_state->monitors; 1170 __ add2reg(Z_esp, -frame::z_ijava_state_size, fp); 1171 __ z_stg(Z_esp, _z_ijava_state_neg(monitors), fp); 1172 __ add2reg(Z_esp, -Interpreter::stackElementSize); 1173 __ z_stg(Z_esp, _z_ijava_state_neg(esp), fp); 1174 1175 // z_ijava_state->cpoolCache = Z_R1_scratch (see load above); 1176 __ z_stg(Z_R1_scratch, _z_ijava_state_neg(cpoolCache), fp); 1177 1178 // Get mirror and store it in the frame as GC root for this Method*. 1179 __ load_mirror_from_const_method(Z_R1_scratch, const_method); 1180 __ z_stg(Z_R1_scratch, _z_ijava_state_neg(mirror), fp); 1181 1182 BLOCK_COMMENT("} generate_fixed_frame: initialize interpreter state"); 1183 1184 //============================================================================= 1185 if (!native_call) { 1186 // Local_count is already num_locals_slots - num_param_slots. 1187 // Start of locals: local_addr = Z_locals - locals size + 1 slot 1188 __ z_llgh(Z_R0_scratch, Address(const_method, ConstMethod::size_of_locals_offset())); 1189 __ add2reg(local_addr, BytesPerWord, Z_locals); 1190 __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogBytesPerWord); 1191 __ z_sgr(local_addr, Z_R0_scratch); 1192 1193 __ Clear_Array(local_count, local_addr, Z_ARG2); 1194 } 1195 1196 } 1197 // Finally set the frame pointer, destroying Z_method. 1198 assert(Z_fp == Z_method, "maybe set Z_fp earlier if other register than Z_method"); 1199 // Oprofile analysis suggests to keep a copy in a register to be used by 1200 // generate_counter_incr(). 1201 __ z_lgr(Z_ARG2, Z_method); 1202 __ z_lgr(Z_fp, fp); 1203 1204 BLOCK_COMMENT("} generate_fixed_frame"); 1205 } 1206 1207 // Various method entries 1208 1209 // Math function, frame manager must set up an interpreter state, etc. 1210 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 1211 1212 // Decide what to do: Use same platform specific instructions and runtime calls as compilers. 1213 bool use_instruction = false; 1214 address runtime_entry = nullptr; 1215 int num_args = 1; 1216 bool double_precision = true; 1217 1218 // s390 specific: 1219 switch (kind) { 1220 case Interpreter::java_lang_math_sqrt: 1221 case Interpreter::java_lang_math_abs: use_instruction = true; break; 1222 case Interpreter::java_lang_math_fmaF: 1223 case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break; 1224 default: break; // Fall back to runtime call. 1225 } 1226 1227 switch (kind) { 1228 case Interpreter::java_lang_math_sin : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); break; 1229 case Interpreter::java_lang_math_cos : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); break; 1230 case Interpreter::java_lang_math_tan : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); break; 1231 case Interpreter::java_lang_math_tanh : /* run interpreted */ break; 1232 case Interpreter::java_lang_math_abs : /* run interpreted */ break; 1233 case Interpreter::java_lang_math_sqrt : /* runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt); not available */ break; 1234 case Interpreter::java_lang_math_log : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); break; 1235 case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break; 1236 case Interpreter::java_lang_math_pow : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break; 1237 case Interpreter::java_lang_math_exp : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); break; 1238 case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break; 1239 case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break; 1240 default: ShouldNotReachHere(); 1241 } 1242 1243 // Use normal entry if neither instruction nor runtime call is used. 1244 if (!use_instruction && runtime_entry == nullptr) return nullptr; 1245 1246 address entry = __ pc(); 1247 1248 if (use_instruction) { 1249 switch (kind) { 1250 case Interpreter::java_lang_math_sqrt: 1251 // Can use memory operand directly. 1252 __ z_sqdb(Z_FRET, Interpreter::stackElementSize, Z_esp); 1253 break; 1254 case Interpreter::java_lang_math_abs: 1255 // Load operand from stack. 1256 __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); 1257 __ z_lpdbr(Z_FRET); 1258 break; 1259 case Interpreter::java_lang_math_fmaF: 1260 __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); // result reg = arg3 1261 __ mem2freg_opt(Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize)); // arg1 1262 __ z_maeb(Z_FRET, Z_FARG2, Address(Z_esp, 2 * Interpreter::stackElementSize)); 1263 break; 1264 case Interpreter::java_lang_math_fmaD: 1265 __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); // result reg = arg3 1266 __ mem2freg_opt(Z_FARG2, Address(Z_esp, 5 * Interpreter::stackElementSize)); // arg1 1267 __ z_madb(Z_FRET, Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize)); 1268 break; 1269 default: ShouldNotReachHere(); 1270 } 1271 } else { 1272 // Load arguments 1273 assert(num_args <= 4, "passed in registers"); 1274 if (double_precision) { 1275 int offset = (2 * num_args - 1) * Interpreter::stackElementSize; 1276 for (int i = 0; i < num_args; ++i) { 1277 __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset)); 1278 offset -= 2 * Interpreter::stackElementSize; 1279 } 1280 } else { 1281 int offset = num_args * Interpreter::stackElementSize; 1282 for (int i = 0; i < num_args; ++i) { 1283 __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset)); 1284 offset -= Interpreter::stackElementSize; 1285 } 1286 } 1287 // Call runtime 1288 __ save_return_pc(); // Save Z_R14. 1289 __ push_frame_abi160(0); // Without new frame the RT call could overwrite the saved Z_R14. 1290 1291 __ call_VM_leaf(runtime_entry); 1292 1293 __ pop_frame(); 1294 __ restore_return_pc(); // Restore Z_R14. 1295 } 1296 1297 // Pop c2i arguments (if any) off when we return. 1298 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 1299 1300 __ z_br(Z_R14); 1301 1302 return entry; 1303 } 1304 1305 // Interpreter stub for calling a native method. (asm interpreter). 1306 // This sets up a somewhat different looking stack for calling the 1307 // native method than the typical interpreter frame setup. 1308 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized, bool runtime_upcalls) { 1309 // Determine code generation flags. 1310 bool inc_counter = (UseCompiler || CountCompiledCalls) && !PreloadOnly; 1311 1312 // Interpreter entry for ordinary Java methods. 1313 // 1314 // Registers alive 1315 // Z_SP - stack pointer 1316 // Z_thread - JavaThread* 1317 // Z_method - callee's method (method to be invoked) 1318 // Z_esp - operand (or expression) stack pointer of caller. one slot above last arg. 1319 // Z_R10 - sender sp (before modifications, e.g. by c2i adapter 1320 // and as well by generate_fixed_frame below) 1321 // Z_R14 - return address to caller (call_stub or c2i_adapter) 1322 // 1323 // Registers updated 1324 // Z_SP - stack pointer 1325 // Z_fp - callee's framepointer 1326 // Z_esp - callee's operand stack pointer 1327 // points to the slot above the value on top 1328 // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord) 1329 // Z_tos - integer result, if any 1330 // z_ftos - floating point result, if any 1331 // 1332 // Stack layout at this point: 1333 // 1334 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if 1335 // frame was extended by c2i adapter) 1336 // [outgoing Java arguments] <-- Z_esp 1337 // ... 1338 // PARENT [PARENT_IJAVA_FRAME_ABI] 1339 // ... 1340 // 1341 1342 address entry_point = __ pc(); 1343 1344 // Make sure registers are different! 1345 assert_different_registers(Z_thread, Z_method, Z_esp); 1346 1347 BLOCK_COMMENT("native_entry {"); 1348 1349 // Make sure method is native and not abstract. 1350 #ifdef ASSERT 1351 // _access_flags must be a 16 bit value. 1352 assert(sizeof(AccessFlags) == 2, "testbit_ushort will fail"); 1353 address reentry = nullptr; 1354 { Label L; 1355 __ testbit_ushort(method_(access_flags), JVM_ACC_NATIVE_BIT); 1356 __ z_btrue(L); 1357 reentry = __ stop_chain_static(reentry, "tried to execute non-native method as native"); 1358 __ bind(L); 1359 } 1360 { Label L; 1361 __ testbit_ushort(method_(access_flags), JVM_ACC_ABSTRACT_BIT); 1362 __ z_bfalse(L); 1363 reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract"); 1364 __ bind(L); 1365 } 1366 #endif // ASSERT 1367 1368 // Save the return PC into the callers frame for assertion in generate_fixed_frame. 1369 NOT_PRODUCT(__ save_return_pc(Z_R14)); 1370 1371 // Generate the code to allocate the interpreter stack frame. 1372 generate_fixed_frame(true); 1373 1374 const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset()); 1375 // Since at this point in the method invocation the exception handler 1376 // would try to exit the monitor of synchronized methods which hasn't 1377 // been entered yet, we set the thread local variable 1378 // _do_not_unlock_if_synchronized to true. If any exception was thrown by 1379 // runtime, exception handling i.e. unlock_if_synchronized_method will 1380 // check this thread local flag. 1381 __ z_mvi(do_not_unlock_if_synchronized, true); 1382 1383 // Increment invocation count and check for overflow. 1384 NearLabel invocation_counter_overflow; 1385 if (inc_counter) { 1386 generate_counter_incr(&invocation_counter_overflow); 1387 } 1388 1389 Label continue_after_compile; 1390 __ bind(continue_after_compile); 1391 1392 bang_stack_shadow_pages(true); 1393 1394 // Reset the _do_not_unlock_if_synchronized flag. 1395 __ z_mvi(do_not_unlock_if_synchronized, false); 1396 1397 // Check for synchronized methods. 1398 // This mst happen AFTER invocation_counter check and stack overflow check, 1399 // so method is not locked if overflows. 1400 if (synchronized) { 1401 lock_method(); 1402 } else { 1403 // No synchronization necessary. 1404 #ifdef ASSERT 1405 { Label L; 1406 __ get_method(Z_R1_scratch); 1407 __ testbit_ushort(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 1408 __ z_bfalse(L); 1409 reentry = __ stop_chain_static(reentry, "method needs synchronization"); 1410 __ bind(L); 1411 } 1412 #endif // ASSERT 1413 } 1414 1415 // start execution 1416 1417 // jvmti support 1418 __ notify_method_entry(); 1419 1420 //============================================================================= 1421 // Get and call the signature handler. 1422 const Register Rmethod = Z_tmp_2; 1423 const Register signature_handler_entry = Z_tmp_1; 1424 const Register Rresult_handler = Z_tmp_3; 1425 Label call_signature_handler; 1426 1427 assert_different_registers(Z_fp, Rmethod, signature_handler_entry, Rresult_handler); 1428 assert(Rresult_handler->is_nonvolatile(), "Rresult_handler must be in a non-volatile register"); 1429 1430 // Reload method. 1431 __ get_method(Rmethod); 1432 1433 // Check for signature handler. 1434 __ load_and_test_long(signature_handler_entry, method2_(Rmethod, signature_handler)); 1435 __ z_brne(call_signature_handler); 1436 1437 // Method has never been called. Either generate a specialized 1438 // handler or point to the slow one. 1439 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), 1440 Rmethod); 1441 1442 // Reload method. 1443 __ get_method(Rmethod); 1444 1445 // Reload signature handler, it must have been created/assigned in the meantime. 1446 __ z_lg(signature_handler_entry, method2_(Rmethod, signature_handler)); 1447 1448 __ bind(call_signature_handler); 1449 1450 // We have a TOP_IJAVA_FRAME here, which belongs to us. 1451 __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1/*tmp*/); 1452 1453 // Call signature handler and pass locals address in Z_ARG1. 1454 __ z_lgr(Z_ARG1, Z_locals); 1455 __ call_stub(signature_handler_entry); 1456 // Save result handler returned by signature handler. 1457 __ z_lgr(Rresult_handler, Z_RET); 1458 1459 // Reload method (the slow signature handler may block for GC). 1460 __ get_method(Rmethod); 1461 1462 // Pass mirror handle if static call. 1463 { 1464 Label method_is_not_static; 1465 __ testbit_ushort(method2_(Rmethod, access_flags), JVM_ACC_STATIC_BIT); 1466 __ z_bfalse(method_is_not_static); 1467 // Load mirror from interpreter frame. 1468 __ z_lg(Z_R1, _z_ijava_state_neg(mirror), Z_fp); 1469 // z_ijava_state.oop_temp = pool_holder->klass_part()->java_mirror(); 1470 __ z_stg(Z_R1, oop_tmp_offset, Z_fp); 1471 // Pass handle to mirror as 2nd argument to JNI method. 1472 __ add2reg(Z_ARG2, oop_tmp_offset, Z_fp); 1473 __ bind(method_is_not_static); 1474 } 1475 1476 // Pass JNIEnv address as first parameter. 1477 __ add2reg(Z_ARG1, in_bytes(JavaThread::jni_environment_offset()), Z_thread); 1478 1479 // Note: last java frame has been set above already. The pc from there 1480 // is precise enough. 1481 1482 // Get native function entry point before we change the thread state. 1483 __ z_lg(Z_R1/*native_method_entry*/, method2_(Rmethod, native_function)); 1484 1485 //============================================================================= 1486 // Transition from _thread_in_Java to _thread_in_native. As soon as 1487 // we make this change the safepoint code needs to be certain that 1488 // the last Java frame we established is good. The pc in that frame 1489 // just need to be near here not an actual return address. 1490 #ifdef ASSERT 1491 { 1492 NearLabel L; 1493 __ mem2reg_opt(Z_R14, Address(Z_thread, JavaThread::thread_state_offset()), false /*32 bits*/); 1494 __ compareU32_and_branch(Z_R14, _thread_in_Java, Assembler::bcondEqual, L); 1495 reentry = __ stop_chain_static(reentry, "Wrong thread state in native stub"); 1496 __ bind(L); 1497 } 1498 #endif 1499 1500 // Memory ordering: Z does not reorder store/load with subsequent load. That's strong enough. 1501 __ set_thread_state(_thread_in_native); 1502 1503 //============================================================================= 1504 // Call the native method. Argument registers must not have been 1505 // overwritten since "__ call_stub(signature_handler);" (except for 1506 // ARG1 and ARG2 for static methods). 1507 1508 __ call_c(Z_R1/*native_method_entry*/); 1509 1510 // NOTE: frame::interpreter_frame_result() depends on these stores. 1511 __ z_stg(Z_RET, _z_ijava_state_neg(lresult), Z_fp); 1512 __ freg2mem_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult))); 1513 const Register Rlresult = signature_handler_entry; 1514 assert(Rlresult->is_nonvolatile(), "Rlresult must be in a non-volatile register"); 1515 __ z_lgr(Rlresult, Z_RET); 1516 1517 // Z_method may no longer be valid, because of GC. 1518 1519 // Block, if necessary, before resuming in _thread_in_Java state. 1520 // In order for GC to work, don't clear the last_Java_sp until after 1521 // blocking. 1522 1523 //============================================================================= 1524 // Switch thread to "native transition" state before reading the 1525 // synchronization state. This additional state is necessary 1526 // because reading and testing the synchronization state is not 1527 // atomic w.r.t. GC, as this scenario demonstrates: Java thread A, 1528 // in _thread_in_native state, loads _not_synchronized and is 1529 // preempted. VM thread changes sync state to synchronizing and 1530 // suspends threads for GC. Thread A is resumed to finish this 1531 // native method, but doesn't block here since it didn't see any 1532 // synchronization is progress, and escapes. 1533 1534 __ set_thread_state(_thread_in_native_trans); 1535 if (!UseSystemMemoryBarrier) { 1536 __ z_fence(); 1537 } 1538 1539 // Now before we return to java we must look for a current safepoint 1540 // (a new safepoint can not start since we entered native_trans). 1541 // We must check here because a current safepoint could be modifying 1542 // the callers registers right this moment. 1543 1544 // Check for safepoint operation in progress and/or pending suspend requests. 1545 { 1546 Label Continue, do_safepoint; 1547 __ safepoint_poll(do_safepoint, Z_R1); 1548 // Check for suspend. 1549 __ load_and_test_int(Z_R0/*suspend_flags*/, thread_(suspend_flags)); 1550 __ z_bre(Continue); // 0 -> no flag set -> not suspended 1551 __ bind(do_safepoint); 1552 __ z_lgr(Z_ARG1, Z_thread); 1553 __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)); 1554 __ bind(Continue); 1555 } 1556 1557 //============================================================================= 1558 // Back in Interpreter Frame. 1559 1560 // We are in thread_in_native_trans here and back in the normal 1561 // interpreter frame. We don't have to do anything special about 1562 // safepoints and we can switch to Java mode anytime we are ready. 1563 1564 // Note: frame::interpreter_frame_result has a dependency on how the 1565 // method result is saved across the call to post_method_exit. For 1566 // native methods it assumes that the non-FPU/non-void result is 1567 // saved in z_ijava_state.lresult and a FPU result in z_ijava_state.fresult. If 1568 // this changes then the interpreter_frame_result implementation 1569 // will need to be updated too. 1570 1571 //============================================================================= 1572 // Back in Java. 1573 1574 // Memory ordering: Z does not reorder store/load with subsequent 1575 // load. That's strong enough. 1576 __ set_thread_state(_thread_in_Java); 1577 1578 __ reset_last_Java_frame(); 1579 1580 // We reset the JNI handle block only after unboxing the result; see below. 1581 1582 // The method register is junk from after the thread_in_native transition 1583 // until here. Also can't call_VM until the bcp has been 1584 // restored. Need bcp for throwing exception below so get it now. 1585 __ get_method(Rmethod); 1586 1587 // Restore Z_bcp to have legal interpreter frame, 1588 // i.e., bci == 0 <=> Z_bcp == code_base(). 1589 __ z_lg(Z_bcp, Address(Rmethod, Method::const_offset())); // get constMethod 1590 __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset())); // get codebase 1591 1592 if (CheckJNICalls) { 1593 // clear_pending_jni_exception_check 1594 __ clear_mem(Address(Z_thread, JavaThread::pending_jni_exception_check_fn_offset()), sizeof(oop)); 1595 } 1596 1597 // Check if the native method returns an oop, and if so, move it 1598 // from the jni handle to z_ijava_state.oop_temp. This is 1599 // necessary, because we reset the jni handle block below. 1600 // NOTE: frame::interpreter_frame_result() depends on this, too. 1601 { NearLabel no_oop_result; 1602 __ load_absolute_address(Z_R1, AbstractInterpreter::result_handler(T_OBJECT)); 1603 __ compareU64_and_branch(Z_R1, Rresult_handler, Assembler::bcondNotEqual, no_oop_result); 1604 __ resolve_jobject(Rlresult, /* tmp1 */ Rmethod, /* tmp2 */ Z_R1); 1605 __ z_stg(Rlresult, oop_tmp_offset, Z_fp); 1606 __ bind(no_oop_result); 1607 } 1608 1609 // Reset handle block. 1610 __ z_lg(Z_R1/*active_handles*/, thread_(active_handles)); 1611 __ clear_mem(Address(Z_R1, JNIHandleBlock::top_offset()), 4); 1612 1613 // Handle exceptions (exception handling will handle unlocking!). 1614 { 1615 Label L; 1616 __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception)); 1617 __ z_bre(L); 1618 __ MacroAssembler::call_VM(noreg, 1619 CAST_FROM_FN_PTR(address, 1620 InterpreterRuntime::throw_pending_exception)); 1621 __ should_not_reach_here(); 1622 __ bind(L); 1623 } 1624 1625 if (synchronized) { 1626 Register Rfirst_monitor = Z_ARG2; 1627 __ add2reg(Rfirst_monitor, -(frame::z_ijava_state_size + (int)sizeof(BasicObjectLock)), Z_fp); 1628 #ifdef ASSERT 1629 NearLabel ok; 1630 __ z_lg(Z_R1, _z_ijava_state_neg(monitors), Z_fp); 1631 __ compareU64_and_branch(Rfirst_monitor, Z_R1, Assembler::bcondEqual, ok); 1632 reentry = __ stop_chain_static(reentry, "native_entry:unlock: inconsistent z_ijava_state.monitors"); 1633 __ bind(ok); 1634 #endif 1635 __ unlock_object(Rfirst_monitor); 1636 } 1637 1638 // JVMTI support. Result has already been saved above to the frame. 1639 __ notify_method_exit(true/*native_method*/, ilgl, InterpreterMacroAssembler::NotifyJVMTI); 1640 1641 // Move native method result back into proper registers and return. 1642 __ mem2freg_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult))); 1643 __ mem2reg_opt(Z_RET, Address(Z_fp, _z_ijava_state_neg(lresult))); 1644 __ call_stub(Rresult_handler); 1645 1646 // Pop the native method's interpreter frame. 1647 __ pop_interpreter_frame(Z_R14 /*return_pc*/, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/); 1648 1649 // Return to caller. 1650 __ z_br(Z_R14); 1651 1652 if (inc_counter) { 1653 // Handle overflow of counter and compile method. 1654 __ bind(invocation_counter_overflow); 1655 generate_counter_overflow(continue_after_compile); 1656 } 1657 1658 BLOCK_COMMENT("} native_entry"); 1659 1660 return entry_point; 1661 } 1662 1663 // 1664 // Generic interpreted method entry to template interpreter. 1665 // 1666 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized, bool runtime_upcalls) { 1667 address entry_point = __ pc(); 1668 1669 bool inc_counter = (UseCompiler || CountCompiledCalls) && !PreloadOnly; 1670 1671 // Interpreter entry for ordinary Java methods. 1672 // 1673 // Registers alive 1674 // Z_SP - stack pointer 1675 // Z_thread - JavaThread* 1676 // Z_method - callee's method (method to be invoked) 1677 // Z_esp - operand (or expression) stack pointer of caller. one slot above last arg. 1678 // Z_R10 - sender sp (before modifications, e.g. by c2i adapter 1679 // and as well by generate_fixed_frame below) 1680 // Z_R14 - return address to caller (call_stub or c2i_adapter) 1681 // 1682 // Registers updated 1683 // Z_SP - stack pointer 1684 // Z_fp - callee's framepointer 1685 // Z_esp - callee's operand stack pointer 1686 // points to the slot above the value on top 1687 // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord) 1688 // Z_tos - integer result, if any 1689 // z_ftos - floating point result, if any 1690 // 1691 // 1692 // stack layout at this point: 1693 // 1694 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if 1695 // frame was extended by c2i adapter) 1696 // [outgoing Java arguments] <-- Z_esp 1697 // ... 1698 // PARENT [PARENT_IJAVA_FRAME_ABI] 1699 // ... 1700 // 1701 // stack layout before dispatching the first bytecode: 1702 // 1703 // F0 [TOP_IJAVA_FRAME_ABI] <-- Z_SP 1704 // [operand stack] <-- Z_esp 1705 // monitor (optional, can grow) 1706 // [IJAVA_STATE] 1707 // F1 [PARENT_IJAVA_FRAME_ABI] <-- Z_fp (== *Z_SP) 1708 // [F0's locals] <-- Z_locals 1709 // [F1's operand stack] 1710 // [F1's monitors] (optional) 1711 // [IJAVA_STATE] 1712 1713 // Make sure registers are different! 1714 assert_different_registers(Z_thread, Z_method, Z_esp); 1715 1716 BLOCK_COMMENT("normal_entry {"); 1717 1718 // Make sure method is not native and not abstract. 1719 // Rethink these assertions - they can be simplified and shared. 1720 #ifdef ASSERT 1721 address reentry = nullptr; 1722 { Label L; 1723 __ testbit_ushort(method_(access_flags), JVM_ACC_NATIVE_BIT); 1724 __ z_bfalse(L); 1725 reentry = __ stop_chain_static(reentry, "tried to execute native method as non-native"); 1726 __ bind(L); 1727 } 1728 { Label L; 1729 __ testbit_ushort(method_(access_flags), JVM_ACC_ABSTRACT_BIT); 1730 __ z_bfalse(L); 1731 reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract"); 1732 __ bind(L); 1733 } 1734 #endif // ASSERT 1735 1736 // Save the return PC into the callers frame for assertion in generate_fixed_frame. 1737 NOT_PRODUCT(__ save_return_pc(Z_R14)); 1738 1739 // Generate the code to allocate the interpreter stack frame. 1740 generate_fixed_frame(false); 1741 1742 const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset()); 1743 // Since at this point in the method invocation the exception handler 1744 // would try to exit the monitor of synchronized methods which hasn't 1745 // been entered yet, we set the thread local variable 1746 // _do_not_unlock_if_synchronized to true. If any exception was thrown by 1747 // runtime, exception handling i.e. unlock_if_synchronized_method will 1748 // check this thread local flag. 1749 __ z_mvi(do_not_unlock_if_synchronized, true); 1750 1751 __ profile_parameters_type(Z_tmp_2, Z_ARG3, Z_ARG4); 1752 1753 // Increment invocation counter and check for overflow. 1754 // 1755 // Note: checking for negative value instead of overflow so we have a 'sticky' 1756 // overflow test (may be of importance as soon as we have true MT/MP). 1757 NearLabel invocation_counter_overflow; 1758 NearLabel Lcontinue; 1759 if (inc_counter) { 1760 generate_counter_incr(&invocation_counter_overflow); 1761 } 1762 __ bind(Lcontinue); 1763 1764 bang_stack_shadow_pages(false); 1765 1766 // Reset the _do_not_unlock_if_synchronized flag. 1767 __ z_mvi(do_not_unlock_if_synchronized, false); 1768 1769 // Check for synchronized methods. 1770 // Must happen AFTER invocation_counter check and stack overflow check, 1771 // so method is not locked if overflows. 1772 if (synchronized) { 1773 // Allocate monitor and lock method. 1774 lock_method(); 1775 } else { 1776 #ifdef ASSERT 1777 { Label L; 1778 __ get_method(Z_R1_scratch); 1779 __ testbit_ushort(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 1780 __ z_bfalse(L); 1781 reentry = __ stop_chain_static(reentry, "method needs synchronization"); 1782 __ bind(L); 1783 } 1784 #endif // ASSERT 1785 } 1786 1787 // start execution 1788 1789 #ifdef ASSERT 1790 __ verify_esp(Z_esp, Z_R1_scratch); 1791 #endif 1792 1793 // jvmti support 1794 __ notify_method_entry(); 1795 1796 // Start executing instructions. 1797 __ dispatch_next(vtos); 1798 // Dispatch_next does not return. 1799 DEBUG_ONLY(__ should_not_reach_here()); 1800 1801 // Invocation counter overflow. 1802 if (inc_counter) { 1803 // Handle invocation counter overflow. 1804 __ bind(invocation_counter_overflow); 1805 generate_counter_overflow(Lcontinue); 1806 } 1807 1808 BLOCK_COMMENT("} normal_entry"); 1809 1810 return entry_point; 1811 } 1812 1813 1814 /** 1815 * Method entry for static native methods: 1816 * int java.util.zip.CRC32.update(int crc, int b) 1817 */ 1818 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { 1819 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1820 uint64_t entry_off = __ offset(); 1821 Label slow_path; 1822 1823 // If we need a safepoint check, generate full interpreter entry. 1824 __ safepoint_poll(slow_path, Z_R1); 1825 1826 BLOCK_COMMENT("CRC32_update {"); 1827 1828 // We don't generate local frame and don't align stack because 1829 // we not even call stub code (we generate the code inline) 1830 // and there is no safepoint on this path. 1831 1832 // Load java parameters. 1833 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 1834 const Register argP = Z_esp; 1835 const Register crc = Z_ARG1; // crc value 1836 const Register data = Z_ARG2; // address of java byte value (kernel_crc32 needs address) 1837 const Register dataLen = Z_ARG3; // source data len (1 byte). Not used because calling the single-byte emitter. 1838 const Register table = Z_ARG4; // address of crc32 table 1839 1840 // Arguments are reversed on java expression stack. 1841 __ z_la(data, 3+1*wordSize, argP); // byte value (stack address). 1842 // Being passed as an int, the single byte is at offset +3. 1843 __ z_llgf(crc, 2 * wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register. 1844 1845 StubRoutines::zarch::generate_load_crc_table_addr(_masm, table); 1846 __ kernel_crc32_singleByte(crc, data, dataLen, table, Z_R1, true); 1847 1848 // Restore caller sp for c2i case. 1849 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 1850 1851 __ z_br(Z_R14); 1852 1853 BLOCK_COMMENT("} CRC32_update"); 1854 1855 // Use a previously generated vanilla native entry as the slow path. 1856 BIND(slow_path); 1857 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1); 1858 return __ addr_at(entry_off); 1859 } 1860 1861 1862 /** 1863 * Method entry for static native methods: 1864 * int java.util.zip.CRC32.updateBytes( int crc, byte[] b, int off, int len) 1865 * int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len) 1866 */ 1867 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1868 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1869 uint64_t entry_off = __ offset(); 1870 Label slow_path; 1871 1872 // If we need a safepoint check, generate full interpreter entry. 1873 __ safepoint_poll(slow_path, Z_R1); 1874 1875 // We don't generate local frame and don't align stack because 1876 // we call stub code and there is no safepoint on this path. 1877 1878 // Load parameters. 1879 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 1880 const Register argP = Z_esp; 1881 const Register crc = Z_ARG1; // crc value 1882 const Register data = Z_ARG2; // address of java byte array 1883 const Register dataLen = Z_ARG3; // source data len 1884 const Register table = Z_ARG4; // address of crc32 table 1885 const Register t0 = Z_R10; // work reg for kernel* emitters 1886 const Register t1 = Z_R11; // work reg for kernel* emitters 1887 const Register t2 = Z_R12; // work reg for kernel* emitters 1888 const Register t3 = Z_R13; // work reg for kernel* emitters 1889 1890 // Arguments are reversed on java expression stack. 1891 // Calculate address of start element. 1892 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct". 1893 // crc @ (SP + 5W) (32bit) 1894 // buf @ (SP + 3W) (64bit ptr to long array) 1895 // off @ (SP + 2W) (32bit) 1896 // dataLen @ (SP + 1W) (32bit) 1897 // data = buf + off 1898 BLOCK_COMMENT("CRC32_updateByteBuffer {"); 1899 __ z_llgf(crc, 5*wordSize, argP); // current crc state 1900 __ z_lg(data, 3*wordSize, argP); // start of byte buffer 1901 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. 1902 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process 1903 } else { // Used for "updateBytes update". 1904 // crc @ (SP + 4W) (32bit) 1905 // buf @ (SP + 3W) (64bit ptr to byte array) 1906 // off @ (SP + 2W) (32bit) 1907 // dataLen @ (SP + 1W) (32bit) 1908 // data = buf + off + base_offset 1909 BLOCK_COMMENT("CRC32_updateBytes {"); 1910 __ z_llgf(crc, 4*wordSize, argP); // current crc state 1911 __ z_lg(data, 3*wordSize, argP); // start of byte buffer 1912 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. 1913 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process 1914 __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1915 } 1916 1917 StubRoutines::zarch::generate_load_crc_table_addr(_masm, table); 1918 1919 __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers. 1920 __ z_stmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 to make them available as work registers. 1921 __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, true); 1922 __ z_lmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 back from stack. 1923 1924 // Restore caller sp for c2i case. 1925 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 1926 1927 __ z_br(Z_R14); 1928 1929 BLOCK_COMMENT("} CRC32_update{Bytes|ByteBuffer}"); 1930 1931 // Use a previously generated vanilla native entry as the slow path. 1932 BIND(slow_path); 1933 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1); 1934 return __ addr_at(entry_off); 1935 } 1936 1937 1938 /** 1939 * Method entry for intrinsic-candidate (non-native) methods: 1940 * int java.util.zip.CRC32C.updateBytes( int crc, byte[] b, int off, int end) 1941 * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end) 1942 * Unlike CRC32, CRC32C does not have any methods marked as native 1943 * CRC32C also uses an "end" variable instead of the length variable CRC32 uses 1944 */ 1945 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1946 assert(UseCRC32CIntrinsics, "this intrinsic is not supported"); 1947 uint64_t entry_off = __ offset(); 1948 1949 // We don't generate local frame and don't align stack because 1950 // we call stub code and there is no safepoint on this path. 1951 1952 // Load parameters. 1953 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 1954 const Register argP = Z_esp; 1955 const Register crc = Z_ARG1; // crc value 1956 const Register data = Z_ARG2; // address of java byte array 1957 const Register dataLen = Z_ARG3; // source data len 1958 const Register table = Z_ARG4; // address of crc32 table 1959 const Register t0 = Z_R10; // work reg for kernel* emitters 1960 const Register t1 = Z_R11; // work reg for kernel* emitters 1961 const Register t2 = Z_R12; // work reg for kernel* emitters 1962 const Register t3 = Z_R13; // work reg for kernel* emitters 1963 1964 // Arguments are reversed on java expression stack. 1965 // Calculate address of start element. 1966 if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateByteBuffer direct". 1967 // crc @ (SP + 5W) (32bit) 1968 // buf @ (SP + 3W) (64bit ptr to long array) 1969 // off @ (SP + 2W) (32bit) 1970 // dataLen @ (SP + 1W) (32bit) 1971 // data = buf + off 1972 BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {"); 1973 __ z_llgf(crc, 5*wordSize, argP); // current crc state 1974 __ z_lg(data, 3*wordSize, argP); // start of byte buffer 1975 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. 1976 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process, calculated as 1977 __ z_sgf(dataLen, Address(argP, 2*wordSize)); // (end_index - offset) 1978 } else { // Used for "updateBytes update". 1979 // crc @ (SP + 4W) (32bit) 1980 // buf @ (SP + 3W) (64bit ptr to byte array) 1981 // off @ (SP + 2W) (32bit) 1982 // dataLen @ (SP + 1W) (32bit) 1983 // data = buf + off + base_offset 1984 BLOCK_COMMENT("CRC32C_updateBytes {"); 1985 __ z_llgf(crc, 4*wordSize, argP); // current crc state 1986 __ z_lg(data, 3*wordSize, argP); // start of byte buffer 1987 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. 1988 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process, calculated as 1989 __ z_sgf(dataLen, Address(argP, 2*wordSize)); // (end_index - offset) 1990 __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1991 } 1992 1993 StubRoutines::zarch::generate_load_crc32c_table_addr(_masm, table); 1994 1995 __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers. 1996 __ z_stmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 to make them available as work registers. 1997 __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, false); 1998 __ z_lmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 back from stack. 1999 2000 // Restore caller sp for c2i case. 2001 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 2002 2003 __ z_br(Z_R14); 2004 2005 BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}"); 2006 return __ addr_at(entry_off); 2007 } 2008 2009 // Not supported 2010 address TemplateInterpreterGenerator::generate_currentThread() { return nullptr; } 2011 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; } 2012 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; } 2013 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; } 2014 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; } 2015 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { return nullptr; } 2016 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { return nullptr; } 2017 2018 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) { 2019 // Quick & dirty stack overflow checking: bang the stack & handle trap. 2020 // Note that we do the banging after the frame is setup, since the exception 2021 // handling code expects to find a valid interpreter frame on the stack. 2022 // Doing the banging earlier fails if the caller frame is not an interpreter 2023 // frame. 2024 // (Also, the exception throwing code expects to unlock any synchronized 2025 // method receiver, so do the banging after locking the receiver.) 2026 2027 // Bang each page in the shadow zone. We can't assume it's been done for 2028 // an interpreter frame with greater than a page of locals, so each page 2029 // needs to be checked. Only true for non-native. For native, we only bang the last page. 2030 const size_t page_size = os::vm_page_size(); 2031 const int n_shadow_pages = (int)(StackOverflow::stack_shadow_zone_size()/page_size); 2032 const int start_page_num = native_call ? n_shadow_pages : 1; 2033 for (int pages = start_page_num; pages <= n_shadow_pages; pages++) { 2034 __ bang_stack_with_offset(pages*page_size); 2035 } 2036 } 2037 2038 //----------------------------------------------------------------------------- 2039 // Exceptions 2040 2041 void TemplateInterpreterGenerator::generate_throw_exception() { 2042 2043 BLOCK_COMMENT("throw_exception {"); 2044 2045 // Entry point in previous activation (i.e., if the caller was interpreted). 2046 Interpreter::_rethrow_exception_entry = __ pc(); 2047 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Frame accessors use Z_fp. 2048 // Z_ARG1 (==Z_tos): exception 2049 // Z_ARG2 : Return address/pc that threw exception. 2050 __ restore_bcp(); // R13 points to call/send. 2051 __ restore_locals(); 2052 2053 // Fallthrough, no need to restore Z_esp. 2054 2055 // Entry point for exceptions thrown within interpreter code. 2056 Interpreter::_throw_exception_entry = __ pc(); 2057 // Expression stack is undefined here. 2058 // Z_ARG1 (==Z_tos): exception 2059 // Z_bcp: exception bcp 2060 __ verify_oop(Z_ARG1); 2061 __ z_lgr(Z_ARG2, Z_ARG1); 2062 2063 // Expression stack must be empty before entering the VM in case of 2064 // an exception. 2065 __ empty_expression_stack(); 2066 // Find exception handler address and preserve exception oop. 2067 const Register Rpreserved_exc_oop = Z_tmp_1; 2068 __ call_VM(Rpreserved_exc_oop, 2069 CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), 2070 Z_ARG2); 2071 // Z_RET: exception handler entry point 2072 // Z_bcp: bcp for exception handler 2073 __ push_ptr(Rpreserved_exc_oop); // Push exception which is now the only value on the stack. 2074 __ z_br(Z_RET); // Jump to exception handler (may be _remove_activation_entry!). 2075 2076 // If the exception is not handled in the current frame the frame is 2077 // removed and the exception is rethrown (i.e. exception 2078 // continuation is _rethrow_exception). 2079 // 2080 // Note: At this point the bci is still the bci for the instruction 2081 // which caused the exception and the expression stack is 2082 // empty. Thus, for any VM calls at this point, GC will find a legal 2083 // oop map (with empty expression stack). 2084 2085 // 2086 // JVMTI PopFrame support 2087 // 2088 2089 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 2090 __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP); 2091 __ empty_expression_stack(); 2092 // Set the popframe_processing bit in pending_popframe_condition 2093 // indicating that we are currently handling popframe, so that 2094 // call_VMs that may happen later do not trigger new popframe 2095 // handling cycles. 2096 __ load_sized_value(Z_tmp_1, Address(Z_thread, JavaThread::popframe_condition_offset()), 4, false /*signed*/); 2097 __ z_oill(Z_tmp_1, JavaThread::popframe_processing_bit); 2098 __ z_sty(Z_tmp_1, thread_(popframe_condition)); 2099 2100 { 2101 // Check to see whether we are returning to a deoptimized frame. 2102 // (The PopFrame call ensures that the caller of the popped frame is 2103 // either interpreted or compiled and deoptimizes it if compiled.) 2104 // In this case, we can't call dispatch_next() after the frame is 2105 // popped, but instead must save the incoming arguments and restore 2106 // them after deoptimization has occurred. 2107 // 2108 // Note that we don't compare the return PC against the 2109 // deoptimization blob's unpack entry because of the presence of 2110 // adapter frames in C2. 2111 NearLabel caller_not_deoptimized; 2112 __ z_lg(Z_ARG1, _z_parent_ijava_frame_abi(return_pc), Z_fp); 2113 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), Z_ARG1); 2114 __ compareU64_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, caller_not_deoptimized); 2115 2116 // Compute size of arguments for saving when returning to 2117 // deoptimized caller. 2118 __ get_method(Z_ARG2); 2119 __ z_lg(Z_ARG2, Address(Z_ARG2, Method::const_offset())); 2120 __ z_llgh(Z_ARG2, Address(Z_ARG2, ConstMethod::size_of_parameters_offset())); 2121 __ z_sllg(Z_ARG2, Z_ARG2, Interpreter::logStackElementSize); // slots 2 bytes 2122 __ restore_locals(); 2123 // Compute address of args to be saved. 2124 __ z_lgr(Z_ARG3, Z_locals); 2125 __ z_slgr(Z_ARG3, Z_ARG2); 2126 __ add2reg(Z_ARG3, wordSize); 2127 // Save these arguments. 2128 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), 2129 Z_thread, Z_ARG2, Z_ARG3); 2130 2131 __ remove_activation(vtos, Z_R14, 2132 /* throw_monitor_exception */ false, 2133 /* install_monitor_exception */ false, 2134 /* notify_jvmdi */ false); 2135 2136 // Inform deoptimization that it is responsible for restoring 2137 // these arguments. 2138 __ store_const(thread_(popframe_condition), 2139 JavaThread::popframe_force_deopt_reexecution_bit, 2140 Z_tmp_1, false); 2141 2142 // Continue in deoptimization handler. 2143 __ z_br(Z_R14); 2144 2145 __ bind(caller_not_deoptimized); 2146 } 2147 2148 // Clear the popframe condition flag. 2149 __ clear_mem(thread_(popframe_condition), sizeof(int)); 2150 2151 __ remove_activation(vtos, 2152 noreg, // Retaddr is not used. 2153 false, // throw_monitor_exception 2154 false, // install_monitor_exception 2155 false); // notify_jvmdi 2156 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. 2157 __ restore_bcp(); 2158 __ restore_locals(); 2159 __ restore_esp(); 2160 // The method data pointer was incremented already during 2161 // call profiling. We have to restore the mdp for the current bcp. 2162 if (ProfileInterpreter) { 2163 __ set_method_data_pointer_for_bcp(); 2164 } 2165 #if INCLUDE_JVMTI 2166 { 2167 Label L_done; 2168 2169 __ z_cli(0, Z_bcp, Bytecodes::_invokestatic); 2170 __ z_brc(Assembler::bcondNotEqual, L_done); 2171 2172 // The member name argument must be restored if _invokestatic is 2173 // re-executed after a PopFrame call. Detect such a case in the 2174 // InterpreterRuntime function and return the member name 2175 // argument, or null. 2176 __ z_lg(Z_ARG2, Address(Z_locals)); 2177 __ get_method(Z_ARG3); 2178 __ call_VM(Z_tmp_1, 2179 CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), 2180 Z_ARG2, Z_ARG3, Z_bcp); 2181 2182 __ z_ltgr(Z_tmp_1, Z_tmp_1); 2183 __ z_brc(Assembler::bcondEqual, L_done); 2184 2185 __ z_stg(Z_tmp_1, Address(Z_esp, wordSize)); 2186 __ bind(L_done); 2187 } 2188 #endif // INCLUDE_JVMTI 2189 __ dispatch_next(vtos); 2190 // End of PopFrame support. 2191 Interpreter::_remove_activation_entry = __ pc(); 2192 2193 // In between activations - previous activation type unknown yet 2194 // compute continuation point - the continuation point expects the 2195 // following registers set up: 2196 // 2197 // Z_ARG1 (==Z_tos): exception 2198 // Z_ARG2 : return address/pc that threw exception 2199 2200 Register return_pc = Z_tmp_1; 2201 Register handler = Z_tmp_2; 2202 assert(return_pc->is_nonvolatile(), "use non-volatile reg. to preserve exception pc"); 2203 assert(handler->is_nonvolatile(), "use non-volatile reg. to handler pc"); 2204 __ asm_assert_ijava_state_magic(return_pc/*tmp*/); // The top frame should be an interpreter frame. 2205 __ z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp); 2206 2207 // Moved removing the activation after VM call, because the new top 2208 // frame does not necessarily have the z_abi_160 required for a VM 2209 // call (e.g. if it is compiled). 2210 2211 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 2212 SharedRuntime::exception_handler_for_return_address), 2213 Z_thread, return_pc); 2214 __ z_lgr(handler, Z_RET); // Save exception handler. 2215 2216 // Preserve exception over this code sequence. 2217 __ pop_ptr(Z_ARG1); 2218 __ set_vm_result(Z_ARG1); 2219 // Remove the activation (without doing throws on illegalMonitorExceptions). 2220 __ remove_activation(vtos, noreg/*ret.pc already loaded*/, false/*throw exc*/, true/*install exc*/, false/*notify jvmti*/); 2221 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. 2222 2223 __ get_vm_result(Z_ARG1); // Restore exception. 2224 __ verify_oop(Z_ARG1); 2225 __ z_lgr(Z_ARG2, return_pc); // Restore return address. 2226 2227 #ifdef ASSERT 2228 // The return_pc in the new top frame is dead... at least that's my 2229 // current understanding. To assert this I overwrite it. 2230 // Note: for compiled frames the handler is the deopt blob 2231 // which writes Z_ARG2 into the return_pc slot. 2232 __ load_const_optimized(return_pc, 0xb00b1); 2233 __ z_stg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_SP); 2234 #endif 2235 2236 // Z_ARG1 (==Z_tos): exception 2237 // Z_ARG2 : return address/pc that threw exception 2238 2239 // Note that an "issuing PC" is actually the next PC after the call. 2240 __ z_br(handler); // Jump to exception handler of caller. 2241 2242 BLOCK_COMMENT("} throw_exception"); 2243 } 2244 2245 // 2246 // JVMTI ForceEarlyReturn support 2247 // 2248 address TemplateInterpreterGenerator::generate_earlyret_entry_for (TosState state) { 2249 address entry = __ pc(); 2250 2251 BLOCK_COMMENT("earlyret_entry {"); 2252 2253 __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP); 2254 __ restore_bcp(); 2255 __ restore_locals(); 2256 __ restore_esp(); 2257 __ empty_expression_stack(); 2258 __ load_earlyret_value(state); 2259 2260 Register RjvmtiState = Z_tmp_1; 2261 __ z_lg(RjvmtiState, thread_(jvmti_thread_state)); 2262 __ store_const(Address(RjvmtiState, JvmtiThreadState::earlyret_state_offset()), 2263 JvmtiThreadState::earlyret_inactive, 4, 4, Z_R0_scratch); 2264 2265 if (state == itos) { 2266 // Narrow result if state is itos but result type is smaller. 2267 // Need to narrow in the return bytecode rather than in generate_return_entry 2268 // since compiled code callers expect the result to already be narrowed. 2269 __ narrow(Z_tos, Z_tmp_1); /* fall through */ 2270 } 2271 __ remove_activation(state, 2272 Z_tmp_1, // retaddr 2273 false, // throw_monitor_exception 2274 false, // install_monitor_exception 2275 true); // notify_jvmdi 2276 __ z_br(Z_tmp_1); 2277 2278 BLOCK_COMMENT("} earlyret_entry"); 2279 2280 return entry; 2281 } 2282 2283 //----------------------------------------------------------------------------- 2284 // Helper for vtos entry point generation. 2285 2286 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, 2287 address& bep, 2288 address& cep, 2289 address& sep, 2290 address& aep, 2291 address& iep, 2292 address& lep, 2293 address& fep, 2294 address& dep, 2295 address& vep) { 2296 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 2297 Label L; 2298 aep = __ pc(); __ push_ptr(); __ z_bru(L); 2299 fep = __ pc(); __ push_f(); __ z_bru(L); 2300 dep = __ pc(); __ push_d(); __ z_bru(L); 2301 lep = __ pc(); __ push_l(); __ z_bru(L); 2302 bep = cep = sep = 2303 iep = __ pc(); __ push_i(); 2304 vep = __ pc(); 2305 __ bind(L); 2306 generate_and_dispatch(t); 2307 } 2308 2309 //----------------------------------------------------------------------------- 2310 2311 // Make feasible for old CPUs. 2312 void TemplateInterpreterGenerator::count_bytecode() { 2313 __ load_absolute_address(Z_R1_scratch, (address) &BytecodeCounter::_counter_value); 2314 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); 2315 } 2316 2317 void TemplateInterpreterGenerator::histogram_bytecode(Template * t) { 2318 __ load_absolute_address(Z_R1_scratch, (address)&BytecodeHistogram::_counters[ t->bytecode() ]); 2319 __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1); 2320 } 2321 2322 #ifndef PRODUCT 2323 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 2324 address entry = __ pc(); 2325 NearLabel counter_below_trace_threshold; 2326 2327 if (TraceBytecodesAt > 0) { 2328 // Skip runtime call, if the trace threshold is not yet reached. 2329 __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value); 2330 __ load_absolute_address(Z_tmp_2, (address)&TraceBytecodesAt); 2331 __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/); 2332 __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/); 2333 __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, counter_below_trace_threshold); 2334 } 2335 2336 int offset2 = state == ltos || state == dtos ? 2 : 1; 2337 2338 __ push(state); 2339 // Preserved return pointer is in Z_R14. 2340 // InterpreterRuntime::trace_bytecode() preserved and returns the value passed as second argument. 2341 __ z_lgr(Z_ARG2, Z_R14); 2342 __ z_lg(Z_ARG3, Address(Z_esp, Interpreter::expr_offset_in_bytes(0))); 2343 if (WizardMode) { 2344 __ z_lgr(Z_ARG4, Z_esp); // Trace Z_esp in WizardMode. 2345 } else { 2346 __ z_lg(Z_ARG4, Address(Z_esp, Interpreter::expr_offset_in_bytes(offset2))); 2347 } 2348 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), Z_ARG2, Z_ARG3, Z_ARG4); 2349 __ z_lgr(Z_R14, Z_RET); // Estore return address (see above). 2350 __ pop(state); 2351 2352 __ bind(counter_below_trace_threshold); 2353 __ z_br(Z_R14); // return 2354 2355 return entry; 2356 } 2357 2358 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template * t) { 2359 Address index_addr(Z_tmp_1, (intptr_t) 0); 2360 Register index = Z_tmp_2; 2361 2362 // Load previous index. 2363 __ load_absolute_address(Z_tmp_1, (address) &BytecodePairHistogram::_index); 2364 __ mem2reg_opt(index, index_addr, false); 2365 2366 // Mask with current bytecode and store as new previous index. 2367 __ z_srl(index, BytecodePairHistogram::log2_number_of_codes); 2368 __ load_const_optimized(Z_R0_scratch, 2369 (int)t->bytecode() << BytecodePairHistogram::log2_number_of_codes); 2370 __ z_or(index, Z_R0_scratch); 2371 __ reg2mem_opt(index, index_addr, false); 2372 2373 // Load counter array's address. 2374 __ z_lgfr(index, index); // Sign extend for addressing. 2375 __ z_sllg(index, index, LogBytesPerInt); // index2bytes 2376 __ load_absolute_address(Z_R1_scratch, 2377 (address) &BytecodePairHistogram::_counters); 2378 // Add index and increment counter. 2379 __ z_agr(Z_R1_scratch, index); 2380 __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1); 2381 } 2382 2383 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 2384 // Call a little run-time stub to avoid blow-up for each bytecode. 2385 // The run-time runtime saves the right registers, depending on 2386 // the tosca in-state for the given template. 2387 address entry = Interpreter::trace_code(t->tos_in()); 2388 guarantee(entry != nullptr, "entry must have been generated"); 2389 __ call_stub(entry); 2390 } 2391 2392 void TemplateInterpreterGenerator::stop_interpreter_at() { 2393 NearLabel L; 2394 2395 __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value); 2396 __ load_absolute_address(Z_tmp_2, (address)&StopInterpreterAt); 2397 __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/); 2398 __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/); 2399 __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, L); 2400 assert(Z_tmp_1->is_nonvolatile(), "must be nonvolatile to preserve Z_tos"); 2401 assert(Z_F8->is_nonvolatile(), "must be nonvolatile to preserve Z_ftos"); 2402 __ z_lgr(Z_tmp_1, Z_tos); // Save tos. 2403 __ z_lgr(Z_tmp_2, Z_bytecode); // Save Z_bytecode. 2404 __ z_ldr(Z_F8, Z_ftos); // Save ftos. 2405 // Use -XX:StopInterpreterAt=<num> to set the limit 2406 // and break at breakpoint(). 2407 __ call_VM(noreg, CAST_FROM_FN_PTR(address, breakpoint), false); 2408 __ z_lgr(Z_tos, Z_tmp_1); // Restore tos. 2409 __ z_lgr(Z_bytecode, Z_tmp_2); // Save Z_bytecode. 2410 __ z_ldr(Z_ftos, Z_F8); // Restore ftos. 2411 __ bind(L); 2412 } 2413 2414 #endif // !PRODUCT