1 /* 2 * Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2016, 2024 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "compiler/disassembler.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "interpreter/abstractInterpreter.hpp" 31 #include "interpreter/bytecodeHistogram.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "interpreter/interp_masm.hpp" 35 #include "interpreter/templateInterpreterGenerator.hpp" 36 #include "interpreter/templateTable.hpp" 37 #include "oops/arrayOop.hpp" 38 #include "oops/methodCounters.hpp" 39 #include "oops/methodData.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "oops/resolvedIndyEntry.hpp" 42 #include "oops/resolvedMethodEntry.hpp" 43 #include "prims/jvmtiExport.hpp" 44 #include "prims/jvmtiThreadState.hpp" 45 #include "runtime/arguments.hpp" 46 #include "runtime/deoptimization.hpp" 47 #include "runtime/frame.inline.hpp" 48 #include "runtime/jniHandles.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 #include "runtime/stubRoutines.hpp" 51 #include "runtime/synchronizer.hpp" 52 #include "runtime/timer.hpp" 53 #include "runtime/vframeArray.hpp" 54 #include "utilities/debug.hpp" 55 #include "utilities/macros.hpp" 56 57 // Size of interpreter code. Increase if too small. Interpreter will 58 // fail with a guarantee ("not enough space for interpreter generation"); 59 // if too small. 60 // Run with +PrintInterpreter to get the VM to print out the size. 61 // Max size with JVMTI 62 int TemplateInterpreter::InterpreterCodeSize = 320*K; 63 64 #undef __ 65 #ifdef PRODUCT 66 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 67 #else 68 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 69 // #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)-> 70 #endif 71 72 #define BLOCK_COMMENT(str) __ block_comment(str) 73 #define BIND(label) __ bind(label); BLOCK_COMMENT(#label ":") 74 75 #define oop_tmp_offset _z_ijava_state_neg(oop_tmp) 76 77 //----------------------------------------------------------------------------- 78 79 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 80 // 81 // New slow_signature handler that respects the z/Architecture 82 // C calling conventions. 83 // 84 // We get called by the native entry code with our output register 85 // area == 8. First we call InterpreterRuntime::get_result_handler 86 // to copy the pointer to the signature string temporarily to the 87 // first C-argument and to return the result_handler in 88 // Z_RET. Since native_entry will copy the jni-pointer to the 89 // first C-argument slot later on, it's OK to occupy this slot 90 // temporarily. Then we copy the argument list on the java 91 // expression stack into native varargs format on the native stack 92 // and load arguments into argument registers. Integer arguments in 93 // the varargs vector will be sign-extended to 8 bytes. 94 // 95 // On entry: 96 // Z_ARG1 - intptr_t* Address of java argument list in memory. 97 // Z_state - zeroInterpreter* Address of interpreter state for 98 // this method 99 // Z_method 100 // 101 // On exit (just before return instruction): 102 // Z_RET contains the address of the result_handler. 103 // Z_ARG2 is not updated for static methods and contains "this" otherwise. 104 // Z_ARG3-Z_ARG5 contain the first 3 arguments of types other than float and double. 105 // Z_FARG1-Z_FARG4 contain the first 4 arguments of type float or double. 106 107 const int LogSizeOfCase = 3; 108 109 const int max_fp_register_arguments = Argument::n_float_register_parameters; 110 const int max_int_register_arguments = Argument::n_register_parameters - 2; // First 2 are reserved. 111 112 const Register arg_java = Z_tmp_2; 113 const Register arg_c = Z_tmp_3; 114 const Register signature = Z_R1_scratch; // Is a string. 115 const Register fpcnt = Z_R0_scratch; 116 const Register argcnt = Z_tmp_4; 117 const Register intSlot = Z_tmp_1; 118 const Register sig_end = Z_tmp_1; // Assumed end of signature (only used in do_object). 119 const Register target_sp = Z_tmp_1; 120 const FloatRegister floatSlot = Z_F1; 121 122 const int d_signature = _z_abi(gpr6); // Only spill space, register contents not affected. 123 const int d_fpcnt = _z_abi(gpr7); // Only spill space, register contents not affected. 124 125 unsigned int entry_offset = __ offset(); 126 127 BLOCK_COMMENT("slow_signature_handler {"); 128 129 // We use target_sp for storing arguments in the C frame. 130 __ save_return_pc(); 131 __ push_frame_abi160(4*BytesPerWord); // Reserve space to save the tmp_[1..4] registers. 132 __ z_stmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // Save registers only after frame is pushed. 133 134 __ z_lgr(arg_java, Z_ARG1); 135 136 Register method = Z_ARG2; // Directly load into correct argument register. 137 138 __ get_method(method); 139 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), Z_thread, method); 140 141 // Move signature to callee saved register. 142 // Don't directly write to stack. Frame is used by VM call. 143 __ z_lgr(Z_tmp_1, Z_RET); 144 145 // Reload method. Register may have been altered by VM call. 146 __ get_method(method); 147 148 // Get address of result handler. 149 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), Z_thread, method); 150 151 // Save signature address to stack. 152 __ z_stg(Z_tmp_1, d_signature, Z_SP); 153 154 // Don't overwrite return value (Z_RET, Z_ARG1) in rest of the method ! 155 156 { 157 Label isStatic; 158 159 // Test if static. 160 // We can test the bit directly. 161 // Path is Z_method->_access_flags._flags. 162 // We only support flag bits in the least significant byte (assert !). 163 // Therefore add 3 to address that byte within "_flags". 164 // Reload method. VM call above may have destroyed register contents 165 __ get_method(method); 166 __ testbit_ushort(method2_(method, access_flags), JVM_ACC_STATIC_BIT); 167 method = noreg; // end of life 168 __ z_btrue(isStatic); 169 170 // For non-static functions, pass "this" in Z_ARG2 and copy it to 2nd C-arg slot. 171 // Need to box the Java object here, so we use arg_java 172 // (address of current Java stack slot) as argument and 173 // don't dereference it as in case of ints, floats, etc.. 174 __ z_lgr(Z_ARG2, arg_java); 175 __ add2reg(arg_java, -BytesPerWord); 176 __ bind(isStatic); 177 } 178 179 // argcnt == 0 corresponds to 3rd C argument. 180 // arg #1 (result handler) and 181 // arg #2 (this, for non-statics), unused else 182 // are reserved and pre-filled above. 183 // arg_java points to the corresponding Java argument here. It 184 // has been decremented by one argument (this) in case of non-static. 185 __ clear_reg(argcnt, true, false); // Don't set CC. 186 __ z_lg(target_sp, 0, Z_SP); 187 __ add2reg(arg_c, _z_abi(remaining_cargs), target_sp); 188 // No floating-point args parsed so far. 189 __ clear_mem(Address(Z_SP, d_fpcnt), 8); 190 191 NearLabel move_intSlot_to_ARG, move_floatSlot_to_FARG; 192 NearLabel loop_start, loop_start_restore, loop_end; 193 NearLabel do_int, do_long, do_float, do_double; 194 NearLabel do_dontreachhere, do_object, do_array, do_boxed; 195 196 #ifdef ASSERT 197 // Signature needs to point to '(' (== 0x28) at entry. 198 __ z_lg(signature, d_signature, Z_SP); 199 __ z_cli(0, signature, (int) '('); 200 __ z_brne(do_dontreachhere); 201 #endif 202 203 __ bind(loop_start_restore); 204 __ z_lg(signature, d_signature, Z_SP); // Restore signature ptr, destroyed by move_XX_to_ARG. 205 206 BIND(loop_start); 207 // Advance to next argument type token from the signature. 208 __ add2reg(signature, 1); 209 210 // Use CLI, works well on all CPU versions. 211 __ z_cli(0, signature, (int) ')'); 212 __ z_bre(loop_end); // end of signature 213 __ z_cli(0, signature, (int) 'L'); 214 __ z_bre(do_object); // object #9 215 __ z_cli(0, signature, (int) 'F'); 216 __ z_bre(do_float); // float #7 217 __ z_cli(0, signature, (int) 'J'); 218 __ z_bre(do_long); // long #6 219 __ z_cli(0, signature, (int) 'B'); 220 __ z_bre(do_int); // byte #1 221 __ z_cli(0, signature, (int) 'Z'); 222 __ z_bre(do_int); // boolean #2 223 __ z_cli(0, signature, (int) 'C'); 224 __ z_bre(do_int); // char #3 225 __ z_cli(0, signature, (int) 'S'); 226 __ z_bre(do_int); // short #4 227 __ z_cli(0, signature, (int) 'I'); 228 __ z_bre(do_int); // int #5 229 __ z_cli(0, signature, (int) 'D'); 230 __ z_bre(do_double); // double #8 231 __ z_cli(0, signature, (int) '['); 232 __ z_bre(do_array); // array #10 233 234 __ bind(do_dontreachhere); 235 236 __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120); 237 238 // Array argument 239 BIND(do_array); 240 241 { 242 Label start_skip, end_skip; 243 244 __ bind(start_skip); 245 246 // Advance to next type tag from signature. 247 __ add2reg(signature, 1); 248 249 // Use CLI, works well on all CPU versions. 250 __ z_cli(0, signature, (int) '['); 251 __ z_bre(start_skip); // Skip further brackets. 252 253 __ z_cli(0, signature, (int) '9'); 254 __ z_brh(end_skip); // no optional size 255 256 __ z_cli(0, signature, (int) '0'); 257 __ z_brnl(start_skip); // Skip optional size. 258 259 __ bind(end_skip); 260 261 __ z_cli(0, signature, (int) 'L'); 262 __ z_brne(do_boxed); // If not array of objects: go directly to do_boxed. 263 } 264 265 // OOP argument 266 BIND(do_object); 267 // Pass by an object's type name. 268 { 269 Label L; 270 271 __ add2reg(sig_end, 4095, signature); // Assume object type name is shorter than 4k. 272 __ load_const_optimized(Z_R0, (int) ';'); // Type name terminator (must be in Z_R0!). 273 __ MacroAssembler::search_string(sig_end, signature); 274 __ z_brl(L); 275 __ z_illtrap(); // No semicolon found: internal error or object name too long. 276 __ bind(L); 277 __ z_lgr(signature, sig_end); 278 // fallthru to do_boxed 279 } 280 281 // Need to box the Java object here, so we use arg_java 282 // (address of current Java stack slot) as argument and 283 // don't dereference it as in case of ints, floats, etc.. 284 285 // UNBOX argument 286 // Load reference and check for null. 287 Label do_int_Entry4Boxed; 288 __ bind(do_boxed); 289 { 290 __ load_and_test_long(intSlot, Address(arg_java)); 291 __ z_bre(do_int_Entry4Boxed); 292 __ z_lgr(intSlot, arg_java); 293 __ z_bru(do_int_Entry4Boxed); 294 } 295 296 // INT argument 297 298 // (also for byte, boolean, char, short) 299 // Use lgf for load (sign-extend) and stg for store. 300 BIND(do_int); 301 __ z_lgf(intSlot, 0, arg_java); 302 303 __ bind(do_int_Entry4Boxed); 304 __ add2reg(arg_java, -BytesPerWord); 305 // If argument fits into argument register, go and handle it, otherwise continue. 306 __ compare32_and_branch(argcnt, max_int_register_arguments, 307 Assembler::bcondLow, move_intSlot_to_ARG); 308 __ z_stg(intSlot, 0, arg_c); 309 __ add2reg(arg_c, BytesPerWord); 310 __ z_bru(loop_start); 311 312 // LONG argument 313 314 BIND(do_long); 315 __ add2reg(arg_java, -2*BytesPerWord); // Decrement first to have positive displacement for lg. 316 __ z_lg(intSlot, BytesPerWord, arg_java); 317 // If argument fits into argument register, go and handle it, otherwise continue. 318 __ compare32_and_branch(argcnt, max_int_register_arguments, 319 Assembler::bcondLow, move_intSlot_to_ARG); 320 __ z_stg(intSlot, 0, arg_c); 321 __ add2reg(arg_c, BytesPerWord); 322 __ z_bru(loop_start); 323 324 // FLOAT argumen 325 326 BIND(do_float); 327 __ z_le(floatSlot, 0, arg_java); 328 __ add2reg(arg_java, -BytesPerWord); 329 assert(max_fp_register_arguments <= 255, "always true"); // safety net 330 __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments); 331 __ z_brl(move_floatSlot_to_FARG); 332 __ z_ste(floatSlot, 4, arg_c); 333 __ add2reg(arg_c, BytesPerWord); 334 __ z_bru(loop_start); 335 336 // DOUBLE argument 337 338 BIND(do_double); 339 __ add2reg(arg_java, -2*BytesPerWord); // Decrement first to have positive displacement for lg. 340 __ z_ld(floatSlot, BytesPerWord, arg_java); 341 assert(max_fp_register_arguments <= 255, "always true"); // safety net 342 __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments); 343 __ z_brl(move_floatSlot_to_FARG); 344 __ z_std(floatSlot, 0, arg_c); 345 __ add2reg(arg_c, BytesPerWord); 346 __ z_bru(loop_start); 347 348 // Method exit, all arguments processed. 349 __ bind(loop_end); 350 __ z_lmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // restore registers before frame is popped. 351 __ pop_frame(); 352 __ restore_return_pc(); 353 __ z_br(Z_R14); 354 355 // Copy int arguments. 356 357 Label iarg_caselist; // Distance between each case has to be a power of 2 358 // (= 1 << LogSizeOfCase). 359 __ align(16); 360 BIND(iarg_caselist); 361 __ z_lgr(Z_ARG3, intSlot); // 4 bytes 362 __ z_bru(loop_start_restore); // 4 bytes 363 364 __ z_lgr(Z_ARG4, intSlot); 365 __ z_bru(loop_start_restore); 366 367 __ z_lgr(Z_ARG5, intSlot); 368 __ z_bru(loop_start_restore); 369 370 __ align(16); 371 __ bind(move_intSlot_to_ARG); 372 __ z_stg(signature, d_signature, Z_SP); // Spill since signature == Z_R1_scratch. 373 __ z_larl(Z_R1_scratch, iarg_caselist); 374 __ z_sllg(Z_R0_scratch, argcnt, LogSizeOfCase); 375 __ add2reg(argcnt, 1); 376 __ z_agr(Z_R1_scratch, Z_R0_scratch); 377 __ z_bcr(Assembler::bcondAlways, Z_R1_scratch); 378 379 // Copy float arguments. 380 381 Label farg_caselist; // Distance between each case has to be a power of 2 382 // (= 1 << logSizeOfCase, padded with nop. 383 __ align(16); 384 BIND(farg_caselist); 385 __ z_ldr(Z_FARG1, floatSlot); // 2 bytes 386 __ z_bru(loop_start_restore); // 4 bytes 387 __ z_nop(); // 2 bytes 388 389 __ z_ldr(Z_FARG2, floatSlot); 390 __ z_bru(loop_start_restore); 391 __ z_nop(); 392 393 __ z_ldr(Z_FARG3, floatSlot); 394 __ z_bru(loop_start_restore); 395 __ z_nop(); 396 397 __ z_ldr(Z_FARG4, floatSlot); 398 __ z_bru(loop_start_restore); 399 __ z_nop(); 400 401 __ align(16); 402 __ bind(move_floatSlot_to_FARG); 403 __ z_stg(signature, d_signature, Z_SP); // Spill since signature == Z_R1_scratch. 404 __ z_lg(Z_R0_scratch, d_fpcnt, Z_SP); // Need old value for indexing. 405 __ add2mem_64(Address(Z_SP, d_fpcnt), 1, Z_R1_scratch); // Increment index. 406 __ z_larl(Z_R1_scratch, farg_caselist); 407 __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogSizeOfCase); 408 __ z_agr(Z_R1_scratch, Z_R0_scratch); 409 __ z_bcr(Assembler::bcondAlways, Z_R1_scratch); 410 411 BLOCK_COMMENT("} slow_signature_handler"); 412 413 return __ addr_at(entry_offset); 414 } 415 416 address TemplateInterpreterGenerator::generate_result_handler_for (BasicType type) { 417 address entry = __ pc(); 418 419 assert(Z_tos == Z_RET, "Result handler: must move result!"); 420 assert(Z_ftos == Z_FRET, "Result handler: must move float result!"); 421 422 switch (type) { 423 case T_BOOLEAN: 424 __ c2bool(Z_tos); 425 break; 426 case T_CHAR: 427 __ and_imm(Z_tos, 0xffff); 428 break; 429 case T_BYTE: 430 __ z_lbr(Z_tos, Z_tos); 431 break; 432 case T_SHORT: 433 __ z_lhr(Z_tos, Z_tos); 434 break; 435 case T_INT: 436 case T_LONG: 437 case T_VOID: 438 case T_FLOAT: 439 case T_DOUBLE: 440 break; 441 case T_OBJECT: 442 // Retrieve result from frame... 443 __ mem2reg_opt(Z_tos, Address(Z_fp, oop_tmp_offset)); 444 // and verify it. 445 __ verify_oop(Z_tos); 446 break; 447 default: 448 ShouldNotReachHere(); 449 } 450 __ z_br(Z_R14); // Return from result handler. 451 return entry; 452 } 453 454 // Abstract method entry. 455 // Attempt to execute abstract method. Throw exception. 456 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 457 unsigned int entry_offset = __ offset(); 458 459 // Caller could be the call_stub or a compiled method (x86 version is wrong!). 460 461 BLOCK_COMMENT("abstract_entry {"); 462 463 // Implement call of InterpreterRuntime::throw_AbstractMethodError. 464 __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1); 465 __ save_return_pc(); // Save Z_R14. 466 __ push_frame_abi160(0); // Without new frame the RT call could overwrite the saved Z_R14. 467 468 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorWithMethod), 469 Z_thread, Z_method); 470 471 __ pop_frame(); 472 __ restore_return_pc(); // Restore Z_R14. 473 __ reset_last_Java_frame(); 474 475 // Restore caller sp for c2i case. 476 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 477 478 // branch to SharedRuntime::generate_forward_exception() which handles all possible callers, 479 // i.e. call stub, compiled method, interpreted method. 480 __ load_absolute_address(Z_tmp_1, StubRoutines::forward_exception_entry()); 481 __ z_br(Z_tmp_1); 482 483 BLOCK_COMMENT("} abstract_entry"); 484 485 return __ addr_at(entry_offset); 486 } 487 488 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 489 // Inputs: 490 // Z_ARG1 - receiver 491 // 492 // What we do: 493 // - Load the referent field address. 494 // - Load the value in the referent field. 495 // - Pass that value to the pre-barrier. 496 // 497 // In the case of G1 this will record the value of the 498 // referent in an SATB buffer if marking is active. 499 // This will cause concurrent marking to mark the referent 500 // field as live. 501 502 Register scratch1 = Z_tmp_2; 503 Register scratch2 = Z_tmp_3; 504 Register pre_val = Z_RET; // return value 505 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 506 Register Rargp = Z_esp; 507 508 Label slow_path; 509 address entry = __ pc(); 510 511 const int referent_offset = java_lang_ref_Reference::referent_offset(); 512 513 BLOCK_COMMENT("Reference_get {"); 514 515 // If the receiver is null then it is OK to jump to the slow path. 516 __ load_and_test_long(pre_val, Address(Rargp, Interpreter::stackElementSize)); // Get receiver. 517 __ z_bre(slow_path); 518 519 // Load the value of the referent field. 520 __ load_heap_oop(pre_val, Address(pre_val, referent_offset), scratch1, scratch2, ON_WEAK_OOP_REF); 521 522 // Restore caller sp for c2i case. 523 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 524 __ z_br(Z_R14); 525 526 // Branch to previously generated regular method entry. 527 __ bind(slow_path); 528 529 address meth_entry = Interpreter::entry_for_kind(Interpreter::zerolocals); 530 __ jump_to_entry(meth_entry, Z_R1); 531 532 BLOCK_COMMENT("} Reference_get"); 533 534 return entry; 535 } 536 537 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 538 address entry = __ pc(); 539 540 DEBUG_ONLY(__ verify_esp(Z_esp, Z_ARG5)); 541 542 // Restore bcp under the assumption that the current frame is still 543 // interpreted. 544 __ restore_bcp(); 545 546 // Expression stack must be empty before entering the VM if an 547 // exception happened. 548 __ empty_expression_stack(); 549 // Throw exception. 550 __ call_VM(noreg, 551 CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError)); 552 return entry; 553 } 554 555 // 556 // Args: 557 // Z_ARG2: oop of array 558 // Z_ARG3: aberrant index 559 // 560 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 561 address entry = __ pc(); 562 address excp = CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException); 563 564 // Expression stack must be empty before entering the VM if an 565 // exception happened. 566 __ empty_expression_stack(); 567 568 // Setup parameters. 569 // Pass register with array to create more detailed exceptions. 570 __ call_VM(noreg, excp, Z_ARG2, Z_ARG3); 571 return entry; 572 } 573 574 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 575 address entry = __ pc(); 576 577 // Object is at TOS. 578 __ pop_ptr(Z_ARG2); 579 580 // Expression stack must be empty before entering the VM if an 581 // exception happened. 582 __ empty_expression_stack(); 583 584 __ call_VM(Z_ARG1, 585 CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), 586 Z_ARG2); 587 588 DEBUG_ONLY(__ should_not_reach_here();) 589 590 return entry; 591 } 592 593 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) { 594 assert(!pass_oop || message == nullptr, "either oop or message but not both"); 595 address entry = __ pc(); 596 597 BLOCK_COMMENT("exception_handler_common {"); 598 599 // Expression stack must be empty before entering the VM if an 600 // exception happened. 601 __ empty_expression_stack(); 602 if (name != nullptr) { 603 __ load_absolute_address(Z_ARG2, (address)name); 604 } else { 605 __ clear_reg(Z_ARG2, true, false); 606 } 607 608 if (pass_oop) { 609 __ call_VM(Z_tos, 610 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), 611 Z_ARG2, Z_tos /*object (see TT::aastore())*/); 612 } else { 613 if (message != nullptr) { 614 __ load_absolute_address(Z_ARG3, (address)message); 615 } else { 616 __ clear_reg(Z_ARG3, true, false); 617 } 618 __ call_VM(Z_tos, 619 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), 620 Z_ARG2, Z_ARG3); 621 } 622 // Throw exception. 623 __ load_absolute_address(Z_R1_scratch, Interpreter::throw_exception_entry()); 624 __ z_br(Z_R1_scratch); 625 626 BLOCK_COMMENT("} exception_handler_common"); 627 628 return entry; 629 } 630 631 address TemplateInterpreterGenerator::generate_return_entry_for (TosState state, int step, size_t index_size) { 632 address entry = __ pc(); 633 634 BLOCK_COMMENT("return_entry {"); 635 636 // Pop i2c extension or revert top-2-parent-resize done by interpreted callees. 637 Register sp_before_i2c_extension = Z_bcp; 638 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. 639 __ z_lg(sp_before_i2c_extension, Address(Z_fp, _z_ijava_state_neg(top_frame_sp))); 640 __ z_slag(sp_before_i2c_extension, sp_before_i2c_extension, Interpreter::logStackElementSize); 641 __ z_agr(sp_before_i2c_extension, Z_fp); 642 __ resize_frame_absolute(sp_before_i2c_extension, Z_locals/*tmp*/, true/*load_fp*/); 643 644 // TODO(ZASM): necessary?? 645 // // and null it as marker that esp is now tos until next java call 646 // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); 647 648 __ restore_bcp(); 649 __ restore_locals(); 650 __ restore_esp(); 651 652 if (state == atos) { 653 __ profile_return_type(Z_tmp_1, Z_tos, Z_tmp_2); 654 } 655 656 Register cache = Z_tmp_1; 657 Register size = Z_tmp_2; 658 Register index = Z_tmp_2; 659 if (index_size == sizeof(u4)) { 660 __ load_resolved_indy_entry(cache, index); 661 __ z_llgh(size, in_bytes(ResolvedIndyEntry::num_parameters_offset()), cache); 662 } else { 663 assert(index_size == sizeof(u2), "Can only be u2"); 664 __ load_method_entry(cache, index); 665 __ load_sized_value(size, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())), sizeof(u2), false /*is_signed*/); 666 } 667 __ z_sllg(size, size, Interpreter::logStackElementSize); // Each argument size in bytes. 668 __ z_agr(Z_esp, size); // Pop arguments. 669 670 __ check_and_handle_popframe(Z_thread); 671 __ check_and_handle_earlyret(Z_thread); 672 673 __ dispatch_next(state, step); 674 675 BLOCK_COMMENT("} return_entry"); 676 677 return entry; 678 } 679 680 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, 681 int step, 682 address continuation) { 683 address entry = __ pc(); 684 685 BLOCK_COMMENT("deopt_entry {"); 686 687 // TODO(ZASM): necessary? null last_sp until next java call 688 // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); 689 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. 690 __ restore_bcp(); 691 __ restore_locals(); 692 __ restore_esp(); 693 694 // Handle exceptions. 695 { 696 Label L; 697 __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception)); 698 __ z_bre(L); 699 __ call_VM(noreg, 700 CAST_FROM_FN_PTR(address, 701 InterpreterRuntime::throw_pending_exception)); 702 __ should_not_reach_here(); 703 __ bind(L); 704 } 705 if (continuation == nullptr) { 706 __ dispatch_next(state, step); 707 } else { 708 __ jump_to_entry(continuation, Z_R1_scratch); 709 } 710 711 BLOCK_COMMENT("} deopt_entry"); 712 713 return entry; 714 } 715 716 address TemplateInterpreterGenerator::generate_safept_entry_for (TosState state, 717 address runtime_entry) { 718 address entry = __ pc(); 719 __ push(state); 720 __ call_VM(noreg, runtime_entry); 721 __ dispatch_via(vtos, Interpreter::_normal_table.table_for (vtos)); 722 return entry; 723 } 724 725 address TemplateInterpreterGenerator::generate_cont_resume_interpreter_adapter() { 726 return nullptr; 727 } 728 729 730 // 731 // Helpers for commoning out cases in the various type of method entries. 732 // 733 734 // Increment invocation count & check for overflow. 735 // 736 // Note: checking for negative value instead of overflow 737 // so we have a 'sticky' overflow test. 738 // 739 // Z_ARG2: method (see generate_fixed_frame()) 740 // 741 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 742 Label done; 743 Register method = Z_ARG2; // Generate_fixed_frame() copies Z_method into Z_ARG2. 744 Register m_counters = Z_ARG4; 745 746 BLOCK_COMMENT("counter_incr {"); 747 748 // Note: In tiered we increment either counters in method or in MDO depending 749 // if we are profiling or not. 750 int increment = InvocationCounter::count_increment; 751 if (ProfileInterpreter) { 752 NearLabel no_mdo; 753 Register mdo = m_counters; 754 // Are we profiling? 755 __ load_and_test_long(mdo, method2_(method, method_data)); 756 __ branch_optimized(Assembler::bcondZero, no_mdo); 757 // Increment counter in the MDO. 758 const Address mdo_invocation_counter(mdo, MethodData::invocation_counter_offset() + 759 InvocationCounter::counter_offset()); 760 const Address mask(mdo, MethodData::invoke_mask_offset()); 761 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, 762 Z_R1_scratch, false, Assembler::bcondZero, 763 overflow); 764 __ z_bru(done); 765 __ bind(no_mdo); 766 } 767 768 // Increment counter in MethodCounters. 769 const Address invocation_counter(m_counters, 770 MethodCounters::invocation_counter_offset() + 771 InvocationCounter::counter_offset()); 772 // Get address of MethodCounters object. 773 __ get_method_counters(method, m_counters, done); 774 const Address mask(m_counters, MethodCounters::invoke_mask_offset()); 775 __ increment_mask_and_jump(invocation_counter, 776 increment, mask, 777 Z_R1_scratch, false, Assembler::bcondZero, 778 overflow); 779 780 __ bind(done); 781 782 BLOCK_COMMENT("} counter_incr"); 783 } 784 785 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 786 // InterpreterRuntime::frequency_counter_overflow takes two 787 // arguments, the first (thread) is passed by call_VM, the second 788 // indicates if the counter overflow occurs at a backwards branch 789 // (null bcp). We pass zero for it. The call returns the address 790 // of the verified entry point for the method or null if the 791 // compilation did not complete (either went background or bailed 792 // out). 793 __ clear_reg(Z_ARG2); 794 __ call_VM(noreg, 795 CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), 796 Z_ARG2); 797 __ z_bru(do_continue); 798 } 799 800 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register frame_size, Register tmp1) { 801 Register tmp2 = Z_R1_scratch; 802 const int page_size = (int)os::vm_page_size(); 803 NearLabel after_frame_check; 804 805 BLOCK_COMMENT("stack_overflow_check {"); 806 807 assert_different_registers(frame_size, tmp1); 808 809 // Stack banging is sufficient overflow check if frame_size < page_size. 810 if (Immediate::is_uimm(page_size, 15)) { 811 __ z_chi(frame_size, page_size); 812 __ z_brl(after_frame_check); 813 } else { 814 __ load_const_optimized(tmp1, page_size); 815 __ compareU32_and_branch(frame_size, tmp1, Assembler::bcondLow, after_frame_check); 816 } 817 818 // Get the stack base, and in debug, verify it is non-zero. 819 __ z_lg(tmp1, thread_(stack_base)); 820 #ifdef ASSERT 821 address reentry = nullptr; 822 NearLabel base_not_zero; 823 __ compareU64_and_branch(tmp1, (intptr_t)0L, Assembler::bcondNotEqual, base_not_zero); 824 reentry = __ stop_chain_static(reentry, "stack base is zero in generate_stack_overflow_check"); 825 __ bind(base_not_zero); 826 #endif 827 828 // Get the stack size, and in debug, verify it is non-zero. 829 assert(sizeof(size_t) == sizeof(intptr_t), "wrong load size"); 830 __ z_lg(tmp2, thread_(stack_size)); 831 #ifdef ASSERT 832 NearLabel size_not_zero; 833 __ compareU64_and_branch(tmp2, (intptr_t)0L, Assembler::bcondNotEqual, size_not_zero); 834 reentry = __ stop_chain_static(reentry, "stack size is zero in generate_stack_overflow_check"); 835 __ bind(size_not_zero); 836 #endif 837 838 // Compute the beginning of the protected zone minus the requested frame size. 839 __ z_sgr(tmp1, tmp2); 840 __ add2reg(tmp1, StackOverflow::stack_guard_zone_size()); 841 842 // Add in the size of the frame (which is the same as subtracting it from the 843 // SP, which would take another register. 844 __ z_agr(tmp1, frame_size); 845 846 // The frame is greater than one page in size, so check against 847 // the bottom of the stack. 848 __ compareU64_and_branch(Z_SP, tmp1, Assembler::bcondHigh, after_frame_check); 849 850 // The stack will overflow, throw an exception. 851 852 // Restore SP to sender's sp. This is necessary if the sender's frame is an 853 // extended compiled frame (see gen_c2i_adapter()) and safer anyway in case of 854 // JSR292 adaptations. 855 __ resize_frame_absolute(Z_R10, tmp1, true/*load_fp*/); 856 857 // Note also that the restored frame is not necessarily interpreted. 858 // Use the shared runtime version of the StackOverflowError. 859 assert(SharedRuntime::throw_StackOverflowError_entry() != nullptr, "stub not yet generated"); 860 AddressLiteral stub(SharedRuntime::throw_StackOverflowError_entry()); 861 __ load_absolute_address(tmp1, SharedRuntime::throw_StackOverflowError_entry()); 862 __ z_br(tmp1); 863 864 // If you get to here, then there is enough stack space. 865 __ bind(after_frame_check); 866 867 BLOCK_COMMENT("} stack_overflow_check"); 868 } 869 870 // Allocate monitor and lock method (asm interpreter). 871 // 872 // Args: 873 // Z_locals: locals 874 875 void TemplateInterpreterGenerator::lock_method(void) { 876 877 BLOCK_COMMENT("lock_method {"); 878 879 // Synchronize method. 880 const Register method = Z_tmp_2; 881 __ get_method(method); 882 883 #ifdef ASSERT 884 address reentry = nullptr; 885 { 886 Label L; 887 __ testbit_ushort(method2_(method, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 888 __ z_btrue(L); 889 reentry = __ stop_chain_static(reentry, "method doesn't need synchronization"); 890 __ bind(L); 891 } 892 #endif // ASSERT 893 894 // Get synchronization object. 895 const Register object = Z_tmp_2; 896 897 { 898 Label done; 899 Label static_method; 900 901 __ testbit_ushort(method2_(method, access_flags), JVM_ACC_STATIC_BIT); 902 __ z_btrue(static_method); 903 904 // non-static method: Load receiver obj from stack. 905 __ mem2reg_opt(object, Address(Z_locals, Interpreter::local_offset_in_bytes(0))); 906 __ z_bru(done); 907 908 __ bind(static_method); 909 910 // Lock the java mirror. 911 // Load mirror from interpreter frame. 912 __ z_lg(object, _z_ijava_state_neg(mirror), Z_fp); 913 914 #ifdef ASSERT 915 { 916 NearLabel L; 917 __ compare64_and_branch(object, (intptr_t) 0, Assembler::bcondNotEqual, L); 918 reentry = __ stop_chain_static(reentry, "synchronization object is null"); 919 __ bind(L); 920 } 921 #endif // ASSERT 922 923 __ bind(done); 924 } 925 926 __ add_monitor_to_stack(true, Z_ARG3, Z_ARG4, Z_ARG5); // Allocate monitor elem. 927 // Store object and lock it. 928 __ get_monitors(Z_tmp_1); 929 __ reg2mem_opt(object, Address(Z_tmp_1, BasicObjectLock::obj_offset())); 930 __ lock_object(Z_tmp_1, object); 931 932 BLOCK_COMMENT("} lock_method"); 933 } 934 935 // Generate a fixed interpreter frame. This is identical setup for 936 // interpreted methods and for native methods hence the shared code. 937 // 938 // Registers alive 939 // Z_thread - JavaThread* 940 // Z_SP - old stack pointer 941 // Z_method - callee's method 942 // Z_esp - parameter list (slot 'above' last param) 943 // Z_R14 - return pc, to be stored in caller's frame 944 // Z_R10 - sender sp, note: Z_tmp_1 is Z_R10! 945 // 946 // Registers updated 947 // Z_SP - new stack pointer 948 // Z_esp - callee's operand stack pointer 949 // points to the slot above the value on top 950 // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord) 951 // Z_bcp - the bytecode pointer 952 // Z_fp - the frame pointer, thereby killing Z_method 953 // Z_ARG2 - copy of Z_method 954 // 955 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 956 957 // stack layout 958 // 959 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (see note below) 960 // [F1's operand stack (unused)] 961 // [F1's outgoing Java arguments] <-- Z_esp 962 // [F1's operand stack (non args)] 963 // [monitors] (optional) 964 // [IJAVA_STATE] 965 // 966 // F2 [PARENT_IJAVA_FRAME_ABI] 967 // ... 968 // 969 // 0x000 970 // 971 // Note: Z_R10, the sender sp, will be below Z_SP if F1 was extended by a c2i adapter. 972 973 //============================================================================= 974 // Allocate space for locals other than the parameters, the 975 // interpreter state, monitors, and the expression stack. 976 977 const Register local_count = Z_ARG5; 978 const Register fp = Z_tmp_2; 979 const Register const_method = Z_ARG1; 980 981 BLOCK_COMMENT("generate_fixed_frame {"); 982 { 983 // local registers 984 const Register top_frame_size = Z_ARG2; 985 const Register sp_after_resize = Z_ARG3; 986 const Register max_stack = Z_ARG4; 987 988 __ z_lg(const_method, Address(Z_method, Method::const_offset())); 989 __ z_llgh(max_stack, Address(const_method, ConstMethod::size_of_parameters_offset())); 990 __ z_sllg(Z_locals /*parameter_count bytes*/, max_stack /*parameter_count*/, LogBytesPerWord); 991 992 if (native_call) { 993 // If we're calling a native method, we replace max_stack (which is 994 // zero) with space for the worst-case signature handler varargs 995 // vector, which is: 996 // max_stack = max(Argument::n_register_parameters, parameter_count+2); 997 // 998 // We add two slots to the parameter_count, one for the jni 999 // environment and one for a possible native mirror. We allocate 1000 // space for at least the number of ABI registers, even though 1001 // InterpreterRuntime::slow_signature_handler won't write more than 1002 // parameter_count+2 words when it creates the varargs vector at the 1003 // top of the stack. The generated slow signature handler will just 1004 // load trash into registers beyond the necessary number. We're 1005 // still going to cut the stack back by the ABI register parameter 1006 // count so as to get SP+16 pointing at the ABI outgoing parameter 1007 // area, so we need to allocate at least that much even though we're 1008 // going to throw it away. 1009 // 1010 __ add2reg(max_stack, 2); 1011 1012 NearLabel passing_args_on_stack; 1013 1014 // max_stack in bytes 1015 __ z_sllg(max_stack, max_stack, LogBytesPerWord); 1016 1017 int argument_registers_in_bytes = Argument::n_register_parameters << LogBytesPerWord; 1018 __ compare64_and_branch(max_stack, argument_registers_in_bytes, Assembler::bcondNotLow, passing_args_on_stack); 1019 1020 __ load_const_optimized(max_stack, argument_registers_in_bytes); 1021 1022 __ bind(passing_args_on_stack); 1023 } else { 1024 // !native_call 1025 // local_count = method->constMethod->max_locals(); 1026 __ z_llgh(local_count, Address(const_method, ConstMethod::size_of_locals_offset())); 1027 1028 // Calculate number of non-parameter locals (in slots): 1029 __ z_sgr(local_count, max_stack); 1030 1031 // max_stack = method->max_stack(); 1032 __ z_llgh(max_stack, Address(const_method, ConstMethod::max_stack_offset())); 1033 // max_stack in bytes 1034 __ z_sllg(max_stack, max_stack, LogBytesPerWord); 1035 } 1036 1037 // Resize (i.e. normally shrink) the top frame F1 ... 1038 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 1039 // F1's operand stack (free) 1040 // ... 1041 // F1's operand stack (free) <-- Z_esp 1042 // F1's outgoing Java arg m 1043 // ... 1044 // F1's outgoing Java arg 0 1045 // ... 1046 // 1047 // ... into a parent frame (Z_R10 holds F1's SP before any modification, see also above) 1048 // 1049 // +......................+ 1050 // : : <-- Z_R10, saved below as F0's z_ijava_state.sender_sp 1051 // : : 1052 // F1 [PARENT_IJAVA_FRAME_ABI] <-- Z_SP \ 1053 // F0's non arg local | = delta 1054 // ... | 1055 // F0's non arg local <-- Z_esp / 1056 // F1's outgoing Java arg m 1057 // ... 1058 // F1's outgoing Java arg 0 1059 // ... 1060 // 1061 // then push the new top frame F0. 1062 // 1063 // F0 [TOP_IJAVA_FRAME_ABI] = frame::z_top_ijava_frame_abi_size \ 1064 // [operand stack] = max_stack | = top_frame_size 1065 // [IJAVA_STATE] = frame::z_ijava_state_size / 1066 1067 // sp_after_resize = Z_esp - delta 1068 // 1069 // delta = PARENT_IJAVA_FRAME_ABI + (locals_count - params_count) 1070 1071 __ add2reg(sp_after_resize, (Interpreter::stackElementSize) - (frame::z_parent_ijava_frame_abi_size), Z_esp); 1072 if (!native_call) { 1073 __ z_sllg(Z_R0_scratch, local_count, LogBytesPerWord); // Params have already been subtracted from local_count. 1074 __ z_slgr(sp_after_resize, Z_R0_scratch); 1075 } 1076 1077 // top_frame_size = TOP_IJAVA_FRAME_ABI + max_stack + size of interpreter state 1078 __ add2reg(top_frame_size, 1079 frame::z_top_ijava_frame_abi_size + 1080 frame::z_ijava_state_size, 1081 max_stack); 1082 1083 if (!native_call) { 1084 // Stack overflow check. 1085 // Native calls don't need the stack size check since they have no 1086 // expression stack and the arguments are already on the stack and 1087 // we only add a handful of words to the stack. 1088 Register frame_size = max_stack; // Reuse the register for max_stack. 1089 __ z_lgr(frame_size, Z_SP); 1090 __ z_sgr(frame_size, sp_after_resize); 1091 __ z_agr(frame_size, top_frame_size); 1092 generate_stack_overflow_check(frame_size, fp/*tmp1*/); 1093 } 1094 1095 // asm_assert* is a nop in product builds 1096 NOT_PRODUCT(__ z_cg(Z_R14, _z_common_abi(return_pc), Z_SP)); 1097 NOT_PRODUCT(__ asm_assert(Assembler::bcondEqual, "killed Z_R14", 0)); 1098 __ resize_frame_absolute(sp_after_resize, fp, true); 1099 __ save_return_pc(Z_R14); 1100 1101 // ... and push the new frame F0. 1102 __ push_frame(top_frame_size, fp, true /*copy_sp*/, false); 1103 } 1104 1105 //============================================================================= 1106 // Initialize the new frame F0: initialize interpreter state. 1107 1108 { 1109 // locals 1110 const Register local_addr = Z_ARG4; 1111 1112 BLOCK_COMMENT("generate_fixed_frame: initialize interpreter state {"); 1113 1114 #ifdef ASSERT 1115 // Set the magic number (using local_addr as tmp register). 1116 __ load_const_optimized(local_addr, frame::z_istate_magic_number); 1117 __ z_stg(local_addr, _z_ijava_state_neg(magic), fp); 1118 #endif 1119 1120 // Save sender SP from F1 (i.e. before it was potentially modified by an 1121 // adapter) into F0's interpreter state. We use it as well to revert 1122 // resizing the frame above. 1123 __ z_stg(Z_R10, _z_ijava_state_neg(sender_sp), fp); 1124 1125 // Load cp cache and save it at the end of this block. 1126 __ z_lg(Z_R1_scratch, Address(const_method, ConstMethod::constants_offset())); 1127 __ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstantPool::cache_offset())); 1128 1129 // z_ijava_state->method = method; 1130 __ z_stg(Z_method, _z_ijava_state_neg(method), fp); 1131 1132 // Point locals at the first argument. Method's locals are the 1133 // parameters on top of caller's expression stack. 1134 // Tos points past last Java argument. 1135 1136 __ z_agr(Z_locals, Z_esp); 1137 // z_ijava_state->locals - i*BytesPerWord points to i-th Java local (i starts at 0) 1138 // z_ijava_state->locals = Z_esp + parameter_count bytes 1139 1140 __ z_sgrk(Z_R0, Z_locals, fp); // Z_R0 = Z_locals - fp(); 1141 __ z_srlg(Z_R0, Z_R0, Interpreter::logStackElementSize); 1142 // Store relativized Z_locals, see frame::interpreter_frame_locals(). 1143 __ z_stg(Z_R0, _z_ijava_state_neg(locals), fp); 1144 1145 // z_ijava_state->oop_temp = nullptr; 1146 __ store_const(Address(fp, oop_tmp_offset), 0); 1147 1148 // Initialize z_ijava_state->mdx. 1149 Register Rmdp = Z_bcp; 1150 // native_call: assert that mdo is null 1151 const bool check_for_mdo = !native_call DEBUG_ONLY(|| native_call); 1152 if (ProfileInterpreter && check_for_mdo) { 1153 Label get_continue; 1154 1155 __ load_and_test_long(Rmdp, method_(method_data)); 1156 __ z_brz(get_continue); 1157 DEBUG_ONLY(if (native_call) __ stop("native methods don't have a mdo")); 1158 __ add2reg(Rmdp, in_bytes(MethodData::data_offset())); 1159 __ bind(get_continue); 1160 } 1161 __ z_stg(Rmdp, _z_ijava_state_neg(mdx), fp); 1162 1163 // Initialize z_ijava_state->bcp and Z_bcp. 1164 if (native_call) { 1165 __ clear_reg(Z_bcp); // Must initialize. Will get written into frame where GC reads it. 1166 } else { 1167 __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset()), const_method); 1168 } 1169 __ z_stg(Z_bcp, _z_ijava_state_neg(bcp), fp); 1170 1171 // no monitors and empty operand stack 1172 // => z_ijava_state->monitors points to the top slot in IJAVA_STATE. 1173 // => Z_ijava_state->esp points one slot above into the operand stack. 1174 // z_ijava_state->monitors = fp - frame::z_ijava_state_size - Interpreter::stackElementSize; 1175 // z_ijava_state->esp = Z_esp = z_ijava_state->monitors; 1176 __ add2reg(Z_esp, -frame::z_ijava_state_size, fp); 1177 1178 __ z_sgrk(Z_R0, Z_esp, fp); 1179 __ z_srag(Z_R0, Z_R0, Interpreter::logStackElementSize); 1180 __ z_stg(Z_R0, _z_ijava_state_neg(monitors), fp); 1181 1182 __ add2reg(Z_esp, -Interpreter::stackElementSize); 1183 1184 __ save_esp(fp); 1185 1186 // z_ijava_state->cpoolCache = Z_R1_scratch (see load above); 1187 __ z_stg(Z_R1_scratch, _z_ijava_state_neg(cpoolCache), fp); 1188 1189 // Get mirror and store it in the frame as GC root for this Method*. 1190 __ load_mirror_from_const_method(Z_R1_scratch, const_method); 1191 __ z_stg(Z_R1_scratch, _z_ijava_state_neg(mirror), fp); 1192 1193 BLOCK_COMMENT("} generate_fixed_frame: initialize interpreter state"); 1194 1195 //============================================================================= 1196 if (!native_call) { 1197 // Local_count is already num_locals_slots - num_param_slots. 1198 // Start of locals: local_addr = Z_locals - locals size + 1 slot 1199 __ z_llgh(Z_R0_scratch, Address(const_method, ConstMethod::size_of_locals_offset())); 1200 __ add2reg(local_addr, BytesPerWord, Z_locals); 1201 __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogBytesPerWord); 1202 __ z_sgr(local_addr, Z_R0_scratch); 1203 1204 __ Clear_Array(local_count, local_addr, Z_ARG2); 1205 } 1206 1207 } 1208 // Finally set the frame pointer, destroying Z_method. 1209 assert(Z_fp == Z_method, "maybe set Z_fp earlier if other register than Z_method"); 1210 // Oprofile analysis suggests to keep a copy in a register to be used by 1211 // generate_counter_incr(). 1212 __ z_lgr(Z_ARG2, Z_method); 1213 __ z_lgr(Z_fp, fp); 1214 1215 BLOCK_COMMENT("} generate_fixed_frame"); 1216 } 1217 1218 // Various method entries 1219 1220 // Math function, template interpreter must set up an interpreter state, etc. 1221 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 1222 1223 // Decide what to do: Use same platform specific instructions and runtime calls as compilers. 1224 bool use_instruction = false; 1225 address runtime_entry = nullptr; 1226 int num_args = 1; 1227 bool double_precision = true; 1228 1229 // s390 specific: 1230 switch (kind) { 1231 case Interpreter::java_lang_math_sqrt: 1232 case Interpreter::java_lang_math_abs: use_instruction = true; break; 1233 case Interpreter::java_lang_math_fmaF: 1234 case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break; 1235 default: break; // Fall back to runtime call. 1236 } 1237 1238 switch (kind) { 1239 case Interpreter::java_lang_math_sin : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); break; 1240 case Interpreter::java_lang_math_cos : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); break; 1241 case Interpreter::java_lang_math_tan : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); break; 1242 case Interpreter::java_lang_math_sinh : /* run interpreted */ break; 1243 case Interpreter::java_lang_math_tanh : /* run interpreted */ break; 1244 case Interpreter::java_lang_math_cbrt : /* run interpreted */ break; 1245 case Interpreter::java_lang_math_abs : /* run interpreted */ break; 1246 case Interpreter::java_lang_math_sqrt : /* runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt); not available */ break; 1247 case Interpreter::java_lang_math_log : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); break; 1248 case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break; 1249 case Interpreter::java_lang_math_pow : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break; 1250 case Interpreter::java_lang_math_exp : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); break; 1251 case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break; 1252 case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break; 1253 default: ShouldNotReachHere(); 1254 } 1255 1256 // Use normal entry if neither instruction nor runtime call is used. 1257 if (!use_instruction && runtime_entry == nullptr) return nullptr; 1258 1259 address entry = __ pc(); 1260 1261 if (use_instruction) { 1262 switch (kind) { 1263 case Interpreter::java_lang_math_sqrt: 1264 // Can use memory operand directly. 1265 __ z_sqdb(Z_FRET, Interpreter::stackElementSize, Z_esp); 1266 break; 1267 case Interpreter::java_lang_math_abs: 1268 // Load operand from stack. 1269 __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); 1270 __ z_lpdbr(Z_FRET); 1271 break; 1272 case Interpreter::java_lang_math_fmaF: 1273 __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); // result reg = arg3 1274 __ mem2freg_opt(Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize)); // arg1 1275 __ z_maeb(Z_FRET, Z_FARG2, Address(Z_esp, 2 * Interpreter::stackElementSize)); 1276 break; 1277 case Interpreter::java_lang_math_fmaD: 1278 __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); // result reg = arg3 1279 __ mem2freg_opt(Z_FARG2, Address(Z_esp, 5 * Interpreter::stackElementSize)); // arg1 1280 __ z_madb(Z_FRET, Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize)); 1281 break; 1282 default: ShouldNotReachHere(); 1283 } 1284 } else { 1285 // Load arguments 1286 assert(num_args <= 4, "passed in registers"); 1287 if (double_precision) { 1288 int offset = (2 * num_args - 1) * Interpreter::stackElementSize; 1289 for (int i = 0; i < num_args; ++i) { 1290 __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset)); 1291 offset -= 2 * Interpreter::stackElementSize; 1292 } 1293 } else { 1294 int offset = num_args * Interpreter::stackElementSize; 1295 for (int i = 0; i < num_args; ++i) { 1296 __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset)); 1297 offset -= Interpreter::stackElementSize; 1298 } 1299 } 1300 // Call runtime 1301 __ save_return_pc(); // Save Z_R14. 1302 __ push_frame_abi160(0); // Without new frame the RT call could overwrite the saved Z_R14. 1303 1304 __ call_VM_leaf(runtime_entry); 1305 1306 __ pop_frame(); 1307 __ restore_return_pc(); // Restore Z_R14. 1308 } 1309 1310 // Pop c2i arguments (if any) off when we return. 1311 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 1312 1313 __ z_br(Z_R14); 1314 1315 return entry; 1316 } 1317 1318 // Interpreter stub for calling a native method. (asm interpreter). 1319 // This sets up a somewhat different looking stack for calling the 1320 // native method than the typical interpreter frame setup. 1321 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized, bool runtime_upcalls) { 1322 // Determine code generation flags. 1323 bool inc_counter = (UseCompiler || CountCompiledCalls) && !PreloadOnly; 1324 1325 // Interpreter entry for ordinary Java methods. 1326 // 1327 // Registers alive 1328 // Z_SP - stack pointer 1329 // Z_thread - JavaThread* 1330 // Z_method - callee's method (method to be invoked) 1331 // Z_esp - operand (or expression) stack pointer of caller. one slot above last arg. 1332 // Z_R10 - sender sp (before modifications, e.g. by c2i adapter 1333 // and as well by generate_fixed_frame below) 1334 // Z_R14 - return address to caller (call_stub or c2i_adapter) 1335 // 1336 // Registers updated 1337 // Z_SP - stack pointer 1338 // Z_fp - callee's framepointer 1339 // Z_esp - callee's operand stack pointer 1340 // points to the slot above the value on top 1341 // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord) 1342 // Z_tos - integer result, if any 1343 // z_ftos - floating point result, if any 1344 // 1345 // Stack layout at this point: 1346 // 1347 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if 1348 // frame was extended by c2i adapter) 1349 // [outgoing Java arguments] <-- Z_esp 1350 // ... 1351 // PARENT [PARENT_IJAVA_FRAME_ABI] 1352 // ... 1353 // 1354 1355 address entry_point = __ pc(); 1356 1357 // Make sure registers are different! 1358 assert_different_registers(Z_thread, Z_method, Z_esp); 1359 1360 BLOCK_COMMENT("native_entry {"); 1361 1362 // Make sure method is native and not abstract. 1363 #ifdef ASSERT 1364 // _access_flags must be a 16 bit value. 1365 assert(sizeof(AccessFlags) == 2, "testbit_ushort will fail"); 1366 address reentry = nullptr; 1367 { Label L; 1368 __ testbit_ushort(method_(access_flags), JVM_ACC_NATIVE_BIT); 1369 __ z_btrue(L); 1370 reentry = __ stop_chain_static(reentry, "tried to execute non-native method as native"); 1371 __ bind(L); 1372 } 1373 { Label L; 1374 __ testbit_ushort(method_(access_flags), JVM_ACC_ABSTRACT_BIT); 1375 __ z_bfalse(L); 1376 reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract"); 1377 __ bind(L); 1378 } 1379 #endif // ASSERT 1380 1381 // Save the return PC into the callers frame for assertion in generate_fixed_frame. 1382 NOT_PRODUCT(__ save_return_pc(Z_R14)); 1383 1384 // Generate the code to allocate the interpreter stack frame. 1385 generate_fixed_frame(true); 1386 1387 const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset()); 1388 // Since at this point in the method invocation the exception handler 1389 // would try to exit the monitor of synchronized methods which hasn't 1390 // been entered yet, we set the thread local variable 1391 // _do_not_unlock_if_synchronized to true. If any exception was thrown by 1392 // runtime, exception handling i.e. unlock_if_synchronized_method will 1393 // check this thread local flag. 1394 __ z_mvi(do_not_unlock_if_synchronized, true); 1395 1396 // Increment invocation count and check for overflow. 1397 NearLabel invocation_counter_overflow; 1398 if (inc_counter) { 1399 generate_counter_incr(&invocation_counter_overflow); 1400 } 1401 1402 Label continue_after_compile; 1403 __ bind(continue_after_compile); 1404 1405 bang_stack_shadow_pages(true); 1406 1407 // Reset the _do_not_unlock_if_synchronized flag. 1408 __ z_mvi(do_not_unlock_if_synchronized, false); 1409 1410 // Check for synchronized methods. 1411 // This mst happen AFTER invocation_counter check and stack overflow check, 1412 // so method is not locked if overflows. 1413 if (synchronized) { 1414 lock_method(); 1415 } else { 1416 // No synchronization necessary. 1417 #ifdef ASSERT 1418 { Label L; 1419 __ get_method(Z_R1_scratch); 1420 __ testbit_ushort(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 1421 __ z_bfalse(L); 1422 reentry = __ stop_chain_static(reentry, "method needs synchronization"); 1423 __ bind(L); 1424 } 1425 #endif // ASSERT 1426 } 1427 1428 // start execution 1429 1430 // jvmti support 1431 __ notify_method_entry(); 1432 1433 //============================================================================= 1434 // Get and call the signature handler. 1435 const Register Rmethod = Z_tmp_2; 1436 const Register signature_handler_entry = Z_tmp_1; 1437 const Register Rresult_handler = Z_tmp_3; 1438 Label call_signature_handler; 1439 1440 assert_different_registers(Z_fp, Rmethod, signature_handler_entry, Rresult_handler); 1441 assert(Rresult_handler->is_nonvolatile(), "Rresult_handler must be in a non-volatile register"); 1442 1443 // Reload method. 1444 __ get_method(Rmethod); 1445 1446 // Check for signature handler. 1447 __ load_and_test_long(signature_handler_entry, method2_(Rmethod, signature_handler)); 1448 __ z_brne(call_signature_handler); 1449 1450 // Method has never been called. Either generate a specialized 1451 // handler or point to the slow one. 1452 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), 1453 Rmethod); 1454 1455 // Reload method. 1456 __ get_method(Rmethod); 1457 1458 // Reload signature handler, it must have been created/assigned in the meantime. 1459 __ z_lg(signature_handler_entry, method2_(Rmethod, signature_handler)); 1460 1461 __ bind(call_signature_handler); 1462 1463 // We have a TOP_IJAVA_FRAME here, which belongs to us. 1464 __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1/*tmp*/); 1465 1466 // Call signature handler and pass locals address in Z_ARG1. 1467 __ z_lgr(Z_ARG1, Z_locals); 1468 __ call_stub(signature_handler_entry); 1469 // Save result handler returned by signature handler. 1470 __ z_lgr(Rresult_handler, Z_RET); 1471 1472 // Reload method (the slow signature handler may block for GC). 1473 __ get_method(Rmethod); 1474 1475 // Pass mirror handle if static call. 1476 { 1477 Label method_is_not_static; 1478 __ testbit_ushort(method2_(Rmethod, access_flags), JVM_ACC_STATIC_BIT); 1479 __ z_bfalse(method_is_not_static); 1480 // Load mirror from interpreter frame. 1481 __ z_lg(Z_R1, _z_ijava_state_neg(mirror), Z_fp); 1482 // z_ijava_state.oop_temp = pool_holder->klass_part()->java_mirror(); 1483 __ z_stg(Z_R1, oop_tmp_offset, Z_fp); 1484 // Pass handle to mirror as 2nd argument to JNI method. 1485 __ add2reg(Z_ARG2, oop_tmp_offset, Z_fp); 1486 __ bind(method_is_not_static); 1487 } 1488 1489 // Pass JNIEnv address as first parameter. 1490 __ add2reg(Z_ARG1, in_bytes(JavaThread::jni_environment_offset()), Z_thread); 1491 1492 // Note: last java frame has been set above already. The pc from there 1493 // is precise enough. 1494 1495 // Get native function entry point before we change the thread state. 1496 __ z_lg(Z_R1/*native_method_entry*/, method2_(Rmethod, native_function)); 1497 1498 //============================================================================= 1499 // Transition from _thread_in_Java to _thread_in_native. As soon as 1500 // we make this change the safepoint code needs to be certain that 1501 // the last Java frame we established is good. The pc in that frame 1502 // just need to be near here not an actual return address. 1503 #ifdef ASSERT 1504 { 1505 NearLabel L; 1506 __ mem2reg_opt(Z_R14, Address(Z_thread, JavaThread::thread_state_offset()), false /*32 bits*/); 1507 __ compareU32_and_branch(Z_R14, _thread_in_Java, Assembler::bcondEqual, L); 1508 reentry = __ stop_chain_static(reentry, "Wrong thread state in native stub"); 1509 __ bind(L); 1510 } 1511 #endif 1512 1513 // Memory ordering: Z does not reorder store/load with subsequent load. That's strong enough. 1514 __ set_thread_state(_thread_in_native); 1515 1516 //============================================================================= 1517 // Call the native method. Argument registers must not have been 1518 // overwritten since "__ call_stub(signature_handler);" (except for 1519 // ARG1 and ARG2 for static methods). 1520 1521 __ call_c(Z_R1/*native_method_entry*/); 1522 1523 // NOTE: frame::interpreter_frame_result() depends on these stores. 1524 __ z_stg(Z_RET, _z_ijava_state_neg(lresult), Z_fp); 1525 __ freg2mem_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult))); 1526 const Register Rlresult = signature_handler_entry; 1527 assert(Rlresult->is_nonvolatile(), "Rlresult must be in a non-volatile register"); 1528 __ z_lgr(Rlresult, Z_RET); 1529 1530 // Z_method may no longer be valid, because of GC. 1531 1532 // Block, if necessary, before resuming in _thread_in_Java state. 1533 // In order for GC to work, don't clear the last_Java_sp until after 1534 // blocking. 1535 1536 //============================================================================= 1537 // Switch thread to "native transition" state before reading the 1538 // synchronization state. This additional state is necessary 1539 // because reading and testing the synchronization state is not 1540 // atomic w.r.t. GC, as this scenario demonstrates: Java thread A, 1541 // in _thread_in_native state, loads _not_synchronized and is 1542 // preempted. VM thread changes sync state to synchronizing and 1543 // suspends threads for GC. Thread A is resumed to finish this 1544 // native method, but doesn't block here since it didn't see any 1545 // synchronization is progress, and escapes. 1546 1547 __ set_thread_state(_thread_in_native_trans); 1548 if (!UseSystemMemoryBarrier) { 1549 __ z_fence(); 1550 } 1551 1552 // Now before we return to java we must look for a current safepoint 1553 // (a new safepoint can not start since we entered native_trans). 1554 // We must check here because a current safepoint could be modifying 1555 // the callers registers right this moment. 1556 1557 // Check for safepoint operation in progress and/or pending suspend requests. 1558 { 1559 Label Continue, do_safepoint; 1560 __ safepoint_poll(do_safepoint, Z_R1); 1561 // Check for suspend. 1562 __ load_and_test_int(Z_R0/*suspend_flags*/, thread_(suspend_flags)); 1563 __ z_bre(Continue); // 0 -> no flag set -> not suspended 1564 __ bind(do_safepoint); 1565 __ z_lgr(Z_ARG1, Z_thread); 1566 __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)); 1567 __ bind(Continue); 1568 } 1569 1570 //============================================================================= 1571 // Back in Interpreter Frame. 1572 1573 // We are in thread_in_native_trans here and back in the normal 1574 // interpreter frame. We don't have to do anything special about 1575 // safepoints and we can switch to Java mode anytime we are ready. 1576 1577 // Note: frame::interpreter_frame_result has a dependency on how the 1578 // method result is saved across the call to post_method_exit. For 1579 // native methods it assumes that the non-FPU/non-void result is 1580 // saved in z_ijava_state.lresult and a FPU result in z_ijava_state.fresult. If 1581 // this changes then the interpreter_frame_result implementation 1582 // will need to be updated too. 1583 1584 //============================================================================= 1585 // Back in Java. 1586 1587 // Memory ordering: Z does not reorder store/load with subsequent 1588 // load. That's strong enough. 1589 __ set_thread_state(_thread_in_Java); 1590 1591 __ reset_last_Java_frame(); 1592 1593 // We reset the JNI handle block only after unboxing the result; see below. 1594 1595 // The method register is junk from after the thread_in_native transition 1596 // until here. Also can't call_VM until the bcp has been 1597 // restored. Need bcp for throwing exception below so get it now. 1598 __ get_method(Rmethod); 1599 1600 // Restore Z_bcp to have legal interpreter frame, 1601 // i.e., bci == 0 <=> Z_bcp == code_base(). 1602 __ z_lg(Z_bcp, Address(Rmethod, Method::const_offset())); // get constMethod 1603 __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset())); // get codebase 1604 1605 if (CheckJNICalls) { 1606 // clear_pending_jni_exception_check 1607 __ clear_mem(Address(Z_thread, JavaThread::pending_jni_exception_check_fn_offset()), sizeof(oop)); 1608 } 1609 1610 // Check if the native method returns an oop, and if so, move it 1611 // from the jni handle to z_ijava_state.oop_temp. This is 1612 // necessary, because we reset the jni handle block below. 1613 // NOTE: frame::interpreter_frame_result() depends on this, too. 1614 { NearLabel no_oop_result; 1615 __ load_absolute_address(Z_R1, AbstractInterpreter::result_handler(T_OBJECT)); 1616 __ compareU64_and_branch(Z_R1, Rresult_handler, Assembler::bcondNotEqual, no_oop_result); 1617 __ resolve_jobject(Rlresult, /* tmp1 */ Rmethod, /* tmp2 */ Z_R1); 1618 __ z_stg(Rlresult, oop_tmp_offset, Z_fp); 1619 __ bind(no_oop_result); 1620 } 1621 1622 // Reset handle block. 1623 __ z_lg(Z_R1/*active_handles*/, thread_(active_handles)); 1624 __ clear_mem(Address(Z_R1, JNIHandleBlock::top_offset()), 4); 1625 1626 // Handle exceptions (exception handling will handle unlocking!). 1627 { 1628 Label L; 1629 __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception)); 1630 __ z_bre(L); 1631 __ MacroAssembler::call_VM(noreg, 1632 CAST_FROM_FN_PTR(address, 1633 InterpreterRuntime::throw_pending_exception)); 1634 __ should_not_reach_here(); 1635 __ bind(L); 1636 } 1637 1638 if (synchronized) { 1639 Register Rfirst_monitor = Z_ARG2; 1640 __ add2reg(Rfirst_monitor, -(frame::z_ijava_state_size + (int)sizeof(BasicObjectLock)), Z_fp); 1641 #ifdef ASSERT 1642 NearLabel ok; 1643 __ get_monitors(Z_R1); 1644 __ compareU64_and_branch(Rfirst_monitor, Z_R1, Assembler::bcondEqual, ok); 1645 reentry = __ stop_chain_static(reentry, "native_entry:unlock: inconsistent z_ijava_state.monitors"); 1646 __ bind(ok); 1647 #endif 1648 __ unlock_object(Rfirst_monitor); 1649 } 1650 1651 // JVMTI support. Result has already been saved above to the frame. 1652 __ notify_method_exit(true/*native_method*/, ilgl, InterpreterMacroAssembler::NotifyJVMTI); 1653 1654 // Move native method result back into proper registers and return. 1655 __ mem2freg_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult))); 1656 __ mem2reg_opt(Z_RET, Address(Z_fp, _z_ijava_state_neg(lresult))); 1657 __ call_stub(Rresult_handler); 1658 1659 // Pop the native method's interpreter frame. 1660 __ pop_interpreter_frame(Z_R14 /*return_pc*/, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/); 1661 1662 // Return to caller. 1663 __ z_br(Z_R14); 1664 1665 if (inc_counter) { 1666 // Handle overflow of counter and compile method. 1667 __ bind(invocation_counter_overflow); 1668 generate_counter_overflow(continue_after_compile); 1669 } 1670 1671 BLOCK_COMMENT("} native_entry"); 1672 1673 return entry_point; 1674 } 1675 1676 // 1677 // Generic interpreted method entry to template interpreter. 1678 // 1679 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized, bool runtime_upcalls) { 1680 address entry_point = __ pc(); 1681 1682 bool inc_counter = (UseCompiler || CountCompiledCalls) && !PreloadOnly; 1683 1684 // Interpreter entry for ordinary Java methods. 1685 // 1686 // Registers alive 1687 // Z_SP - stack pointer 1688 // Z_thread - JavaThread* 1689 // Z_method - callee's method (method to be invoked) 1690 // Z_esp - operand (or expression) stack pointer of caller. one slot above last arg. 1691 // Z_R10 - sender sp (before modifications, e.g. by c2i adapter 1692 // and as well by generate_fixed_frame below) 1693 // Z_R14 - return address to caller (call_stub or c2i_adapter) 1694 // 1695 // Registers updated 1696 // Z_SP - stack pointer 1697 // Z_fp - callee's framepointer 1698 // Z_esp - callee's operand stack pointer 1699 // points to the slot above the value on top 1700 // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord) 1701 // Z_tos - integer result, if any 1702 // z_ftos - floating point result, if any 1703 // 1704 // 1705 // stack layout at this point: 1706 // 1707 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if 1708 // frame was extended by c2i adapter) 1709 // [outgoing Java arguments] <-- Z_esp 1710 // ... 1711 // PARENT [PARENT_IJAVA_FRAME_ABI] 1712 // ... 1713 // 1714 // stack layout before dispatching the first bytecode: 1715 // 1716 // F0 [TOP_IJAVA_FRAME_ABI] <-- Z_SP 1717 // [operand stack] <-- Z_esp 1718 // monitor (optional, can grow) 1719 // [IJAVA_STATE] 1720 // F1 [PARENT_IJAVA_FRAME_ABI] <-- Z_fp (== *Z_SP) 1721 // [F0's locals] <-- Z_locals 1722 // [F1's operand stack] 1723 // [F1's monitors] (optional) 1724 // [IJAVA_STATE] 1725 1726 // Make sure registers are different! 1727 assert_different_registers(Z_thread, Z_method, Z_esp); 1728 1729 BLOCK_COMMENT("normal_entry {"); 1730 1731 // Make sure method is not native and not abstract. 1732 // Rethink these assertions - they can be simplified and shared. 1733 #ifdef ASSERT 1734 address reentry = nullptr; 1735 { Label L; 1736 __ testbit_ushort(method_(access_flags), JVM_ACC_NATIVE_BIT); 1737 __ z_bfalse(L); 1738 reentry = __ stop_chain_static(reentry, "tried to execute native method as non-native"); 1739 __ bind(L); 1740 } 1741 { Label L; 1742 __ testbit_ushort(method_(access_flags), JVM_ACC_ABSTRACT_BIT); 1743 __ z_bfalse(L); 1744 reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract"); 1745 __ bind(L); 1746 } 1747 #endif // ASSERT 1748 1749 // Save the return PC into the callers frame for assertion in generate_fixed_frame. 1750 NOT_PRODUCT(__ save_return_pc(Z_R14)); 1751 1752 // Generate the code to allocate the interpreter stack frame. 1753 generate_fixed_frame(false); 1754 1755 const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset()); 1756 // Since at this point in the method invocation the exception handler 1757 // would try to exit the monitor of synchronized methods which hasn't 1758 // been entered yet, we set the thread local variable 1759 // _do_not_unlock_if_synchronized to true. If any exception was thrown by 1760 // runtime, exception handling i.e. unlock_if_synchronized_method will 1761 // check this thread local flag. 1762 __ z_mvi(do_not_unlock_if_synchronized, true); 1763 1764 __ profile_parameters_type(Z_tmp_2, Z_ARG3, Z_ARG4); 1765 1766 // Increment invocation counter and check for overflow. 1767 // 1768 // Note: checking for negative value instead of overflow so we have a 'sticky' 1769 // overflow test (may be of importance as soon as we have true MT/MP). 1770 NearLabel invocation_counter_overflow; 1771 NearLabel Lcontinue; 1772 if (inc_counter) { 1773 generate_counter_incr(&invocation_counter_overflow); 1774 } 1775 __ bind(Lcontinue); 1776 1777 bang_stack_shadow_pages(false); 1778 1779 // Reset the _do_not_unlock_if_synchronized flag. 1780 __ z_mvi(do_not_unlock_if_synchronized, false); 1781 1782 // Check for synchronized methods. 1783 // Must happen AFTER invocation_counter check and stack overflow check, 1784 // so method is not locked if overflows. 1785 if (synchronized) { 1786 // Allocate monitor and lock method. 1787 lock_method(); 1788 } else { 1789 #ifdef ASSERT 1790 { Label L; 1791 __ get_method(Z_R1_scratch); 1792 __ testbit_ushort(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 1793 __ z_bfalse(L); 1794 reentry = __ stop_chain_static(reentry, "method needs synchronization"); 1795 __ bind(L); 1796 } 1797 #endif // ASSERT 1798 } 1799 1800 // start execution 1801 1802 #ifdef ASSERT 1803 __ verify_esp(Z_esp, Z_R1_scratch); 1804 #endif 1805 1806 // jvmti support 1807 __ notify_method_entry(); 1808 1809 // Start executing instructions. 1810 __ dispatch_next(vtos); 1811 // Dispatch_next does not return. 1812 DEBUG_ONLY(__ should_not_reach_here()); 1813 1814 // Invocation counter overflow. 1815 if (inc_counter) { 1816 // Handle invocation counter overflow. 1817 __ bind(invocation_counter_overflow); 1818 generate_counter_overflow(Lcontinue); 1819 } 1820 1821 BLOCK_COMMENT("} normal_entry"); 1822 1823 return entry_point; 1824 } 1825 1826 1827 /** 1828 * Method entry for static native methods: 1829 * int java.util.zip.CRC32.update(int crc, int b) 1830 */ 1831 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { 1832 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1833 uint64_t entry_off = __ offset(); 1834 Label slow_path; 1835 1836 // If we need a safepoint check, generate full interpreter entry. 1837 __ safepoint_poll(slow_path, Z_R1); 1838 1839 BLOCK_COMMENT("CRC32_update {"); 1840 1841 // We don't generate local frame and don't align stack because 1842 // we not even call stub code (we generate the code inline) 1843 // and there is no safepoint on this path. 1844 1845 // Load java parameters. 1846 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 1847 const Register argP = Z_esp; 1848 const Register crc = Z_ARG1; // crc value 1849 const Register data = Z_ARG2; // address of java byte value (kernel_crc32 needs address) 1850 const Register dataLen = Z_ARG3; // source data len (1 byte). Not used because calling the single-byte emitter. 1851 const Register table = Z_ARG4; // address of crc32 table 1852 1853 // Arguments are reversed on java expression stack. 1854 __ z_la(data, 3+1*wordSize, argP); // byte value (stack address). 1855 // Being passed as an int, the single byte is at offset +3. 1856 __ z_llgf(crc, 2 * wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register. 1857 1858 StubRoutines::zarch::generate_load_crc_table_addr(_masm, table); 1859 __ kernel_crc32_singleByte(crc, data, dataLen, table, Z_R1, true); 1860 1861 // Restore caller sp for c2i case. 1862 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 1863 1864 __ z_br(Z_R14); 1865 1866 BLOCK_COMMENT("} CRC32_update"); 1867 1868 // Use a previously generated vanilla native entry as the slow path. 1869 BIND(slow_path); 1870 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1); 1871 return __ addr_at(entry_off); 1872 } 1873 1874 1875 /** 1876 * Method entry for static native methods: 1877 * int java.util.zip.CRC32.updateBytes( int crc, byte[] b, int off, int len) 1878 * int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len) 1879 */ 1880 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1881 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1882 uint64_t entry_off = __ offset(); 1883 Label slow_path; 1884 1885 // If we need a safepoint check, generate full interpreter entry. 1886 __ safepoint_poll(slow_path, Z_R1); 1887 1888 // We don't generate local frame and don't align stack because 1889 // we call stub code and there is no safepoint on this path. 1890 1891 // Load parameters. 1892 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 1893 const Register argP = Z_esp; 1894 const Register crc = Z_ARG1; // crc value 1895 const Register data = Z_ARG2; // address of java byte array 1896 const Register dataLen = Z_ARG3; // source data len 1897 const Register table = Z_ARG4; // address of crc32 table 1898 const Register t0 = Z_R10; // work reg for kernel* emitters 1899 const Register t1 = Z_R11; // work reg for kernel* emitters 1900 const Register t2 = Z_R12; // work reg for kernel* emitters 1901 const Register t3 = Z_R13; // work reg for kernel* emitters 1902 1903 // Arguments are reversed on java expression stack. 1904 // Calculate address of start element. 1905 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct". 1906 // crc @ (SP + 5W) (32bit) 1907 // buf @ (SP + 3W) (64bit ptr to long array) 1908 // off @ (SP + 2W) (32bit) 1909 // dataLen @ (SP + 1W) (32bit) 1910 // data = buf + off 1911 BLOCK_COMMENT("CRC32_updateByteBuffer {"); 1912 __ z_llgf(crc, 5*wordSize, argP); // current crc state 1913 __ z_lg(data, 3*wordSize, argP); // start of byte buffer 1914 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. 1915 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process 1916 } else { // Used for "updateBytes update". 1917 // crc @ (SP + 4W) (32bit) 1918 // buf @ (SP + 3W) (64bit ptr to byte array) 1919 // off @ (SP + 2W) (32bit) 1920 // dataLen @ (SP + 1W) (32bit) 1921 // data = buf + off + base_offset 1922 BLOCK_COMMENT("CRC32_updateBytes {"); 1923 __ z_llgf(crc, 4*wordSize, argP); // current crc state 1924 __ z_lg(data, 3*wordSize, argP); // start of byte buffer 1925 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. 1926 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process 1927 __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1928 } 1929 1930 StubRoutines::zarch::generate_load_crc_table_addr(_masm, table); 1931 1932 __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers. 1933 __ z_stmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 to make them available as work registers. 1934 __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, true); 1935 __ z_lmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 back from stack. 1936 1937 // Restore caller sp for c2i case. 1938 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 1939 1940 __ z_br(Z_R14); 1941 1942 BLOCK_COMMENT("} CRC32_update{Bytes|ByteBuffer}"); 1943 1944 // Use a previously generated vanilla native entry as the slow path. 1945 BIND(slow_path); 1946 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1); 1947 return __ addr_at(entry_off); 1948 } 1949 1950 1951 /** 1952 * Method entry for intrinsic-candidate (non-native) methods: 1953 * int java.util.zip.CRC32C.updateBytes( int crc, byte[] b, int off, int end) 1954 * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end) 1955 * Unlike CRC32, CRC32C does not have any methods marked as native 1956 * CRC32C also uses an "end" variable instead of the length variable CRC32 uses 1957 */ 1958 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1959 assert(UseCRC32CIntrinsics, "this intrinsic is not supported"); 1960 uint64_t entry_off = __ offset(); 1961 1962 // We don't generate local frame and don't align stack because 1963 // we call stub code and there is no safepoint on this path. 1964 1965 // Load parameters. 1966 // Z_esp is callers operand stack pointer, i.e. it points to the parameters. 1967 const Register argP = Z_esp; 1968 const Register crc = Z_ARG1; // crc value 1969 const Register data = Z_ARG2; // address of java byte array 1970 const Register dataLen = Z_ARG3; // source data len 1971 const Register table = Z_ARG4; // address of crc32 table 1972 const Register t0 = Z_R10; // work reg for kernel* emitters 1973 const Register t1 = Z_R11; // work reg for kernel* emitters 1974 const Register t2 = Z_R12; // work reg for kernel* emitters 1975 const Register t3 = Z_R13; // work reg for kernel* emitters 1976 1977 // Arguments are reversed on java expression stack. 1978 // Calculate address of start element. 1979 if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateByteBuffer direct". 1980 // crc @ (SP + 5W) (32bit) 1981 // buf @ (SP + 3W) (64bit ptr to long array) 1982 // off @ (SP + 2W) (32bit) 1983 // dataLen @ (SP + 1W) (32bit) 1984 // data = buf + off 1985 BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {"); 1986 __ z_llgf(crc, 5*wordSize, argP); // current crc state 1987 __ z_lg(data, 3*wordSize, argP); // start of byte buffer 1988 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. 1989 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process, calculated as 1990 __ z_sgf(dataLen, Address(argP, 2*wordSize)); // (end_index - offset) 1991 } else { // Used for "updateBytes update". 1992 // crc @ (SP + 4W) (32bit) 1993 // buf @ (SP + 3W) (64bit ptr to byte array) 1994 // off @ (SP + 2W) (32bit) 1995 // dataLen @ (SP + 1W) (32bit) 1996 // data = buf + off + base_offset 1997 BLOCK_COMMENT("CRC32C_updateBytes {"); 1998 __ z_llgf(crc, 4*wordSize, argP); // current crc state 1999 __ z_lg(data, 3*wordSize, argP); // start of byte buffer 2000 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. 2001 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process, calculated as 2002 __ z_sgf(dataLen, Address(argP, 2*wordSize)); // (end_index - offset) 2003 __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 2004 } 2005 2006 StubRoutines::zarch::generate_load_crc32c_table_addr(_masm, table); 2007 2008 __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers. 2009 __ z_stmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 to make them available as work registers. 2010 __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, false); 2011 __ z_lmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 back from stack. 2012 2013 // Restore caller sp for c2i case. 2014 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 2015 2016 __ z_br(Z_R14); 2017 2018 BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}"); 2019 return __ addr_at(entry_off); 2020 } 2021 2022 address TemplateInterpreterGenerator::generate_currentThread() { 2023 uint64_t entry_off = __ offset(); 2024 2025 __ z_lg(Z_RET, Address(Z_thread, JavaThread::threadObj_offset())); 2026 __ resolve_oop_handle(Z_RET); 2027 2028 // Restore caller sp for c2i case. 2029 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. 2030 __ z_br(Z_R14); 2031 2032 return __ addr_at(entry_off); 2033 } 2034 2035 // Not supported 2036 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { return nullptr; } 2037 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { return nullptr; } 2038 2039 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) { 2040 // Quick & dirty stack overflow checking: bang the stack & handle trap. 2041 // Note that we do the banging after the frame is setup, since the exception 2042 // handling code expects to find a valid interpreter frame on the stack. 2043 // Doing the banging earlier fails if the caller frame is not an interpreter 2044 // frame. 2045 // (Also, the exception throwing code expects to unlock any synchronized 2046 // method receiver, so do the banging after locking the receiver.) 2047 2048 // Bang each page in the shadow zone. We can't assume it's been done for 2049 // an interpreter frame with greater than a page of locals, so each page 2050 // needs to be checked. Only true for non-native. For native, we only bang the last page. 2051 const size_t page_size = os::vm_page_size(); 2052 const int n_shadow_pages = (int)(StackOverflow::stack_shadow_zone_size()/page_size); 2053 const int start_page_num = native_call ? n_shadow_pages : 1; 2054 for (int pages = start_page_num; pages <= n_shadow_pages; pages++) { 2055 __ bang_stack_with_offset(pages*page_size); 2056 } 2057 } 2058 2059 //----------------------------------------------------------------------------- 2060 // Exceptions 2061 2062 void TemplateInterpreterGenerator::generate_throw_exception() { 2063 2064 BLOCK_COMMENT("throw_exception {"); 2065 2066 // Entry point in previous activation (i.e., if the caller was interpreted). 2067 Interpreter::_rethrow_exception_entry = __ pc(); 2068 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Frame accessors use Z_fp. 2069 // Z_ARG1 (==Z_tos): exception 2070 // Z_ARG2 : Return address/pc that threw exception. 2071 __ restore_bcp(); // R13 points to call/send. 2072 __ restore_locals(); 2073 2074 // Fallthrough, no need to restore Z_esp. 2075 2076 // Entry point for exceptions thrown within interpreter code. 2077 Interpreter::_throw_exception_entry = __ pc(); 2078 // Expression stack is undefined here. 2079 // Z_ARG1 (==Z_tos): exception 2080 // Z_bcp: exception bcp 2081 __ verify_oop(Z_ARG1); 2082 __ z_lgr(Z_ARG2, Z_ARG1); 2083 2084 // Expression stack must be empty before entering the VM in case of 2085 // an exception. 2086 __ empty_expression_stack(); 2087 // Find exception handler address and preserve exception oop. 2088 const Register Rpreserved_exc_oop = Z_tmp_1; 2089 __ call_VM(Rpreserved_exc_oop, 2090 CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), 2091 Z_ARG2); 2092 // Z_RET: exception handler entry point 2093 // Z_bcp: bcp for exception handler 2094 __ push_ptr(Rpreserved_exc_oop); // Push exception which is now the only value on the stack. 2095 __ z_br(Z_RET); // Jump to exception handler (may be _remove_activation_entry!). 2096 2097 // If the exception is not handled in the current frame the frame is 2098 // removed and the exception is rethrown (i.e. exception 2099 // continuation is _rethrow_exception). 2100 // 2101 // Note: At this point the bci is still the bci for the instruction 2102 // which caused the exception and the expression stack is 2103 // empty. Thus, for any VM calls at this point, GC will find a legal 2104 // oop map (with empty expression stack). 2105 2106 // 2107 // JVMTI PopFrame support 2108 // 2109 2110 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 2111 __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP); 2112 __ empty_expression_stack(); 2113 // Set the popframe_processing bit in pending_popframe_condition 2114 // indicating that we are currently handling popframe, so that 2115 // call_VMs that may happen later do not trigger new popframe 2116 // handling cycles. 2117 __ load_sized_value(Z_tmp_1, Address(Z_thread, JavaThread::popframe_condition_offset()), 4, false /*signed*/); 2118 __ z_oill(Z_tmp_1, JavaThread::popframe_processing_bit); 2119 __ z_sty(Z_tmp_1, thread_(popframe_condition)); 2120 2121 { 2122 // Check to see whether we are returning to a deoptimized frame. 2123 // (The PopFrame call ensures that the caller of the popped frame is 2124 // either interpreted or compiled and deoptimizes it if compiled.) 2125 // In this case, we can't call dispatch_next() after the frame is 2126 // popped, but instead must save the incoming arguments and restore 2127 // them after deoptimization has occurred. 2128 // 2129 // Note that we don't compare the return PC against the 2130 // deoptimization blob's unpack entry because of the presence of 2131 // adapter frames in C2. 2132 NearLabel caller_not_deoptimized; 2133 __ z_lg(Z_ARG1, _z_parent_ijava_frame_abi(return_pc), Z_fp); 2134 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), Z_ARG1); 2135 __ compareU64_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, caller_not_deoptimized); 2136 2137 // Compute size of arguments for saving when returning to 2138 // deoptimized caller. 2139 __ get_method(Z_ARG2); 2140 __ z_lg(Z_ARG2, Address(Z_ARG2, Method::const_offset())); 2141 __ z_llgh(Z_ARG2, Address(Z_ARG2, ConstMethod::size_of_parameters_offset())); 2142 __ z_sllg(Z_ARG2, Z_ARG2, Interpreter::logStackElementSize); // slots 2 bytes 2143 __ restore_locals(); 2144 // Compute address of args to be saved. 2145 __ z_lgr(Z_ARG3, Z_locals); 2146 __ z_slgr(Z_ARG3, Z_ARG2); 2147 __ add2reg(Z_ARG3, wordSize); 2148 // Save these arguments. 2149 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), 2150 Z_thread, Z_ARG2, Z_ARG3); 2151 2152 __ remove_activation(vtos, Z_R14, 2153 /* throw_monitor_exception */ false, 2154 /* install_monitor_exception */ false, 2155 /* notify_jvmdi */ false); 2156 2157 // Inform deoptimization that it is responsible for restoring 2158 // these arguments. 2159 __ store_const(thread_(popframe_condition), 2160 JavaThread::popframe_force_deopt_reexecution_bit, 2161 Z_tmp_1, false); 2162 2163 // Continue in deoptimization handler. 2164 __ z_br(Z_R14); 2165 2166 __ bind(caller_not_deoptimized); 2167 } 2168 2169 // Clear the popframe condition flag. 2170 __ clear_mem(thread_(popframe_condition), sizeof(int)); 2171 2172 __ remove_activation(vtos, 2173 noreg, // Retaddr is not used. 2174 false, // throw_monitor_exception 2175 false, // install_monitor_exception 2176 false); // notify_jvmdi 2177 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. 2178 __ restore_bcp(); 2179 __ restore_locals(); 2180 __ restore_esp(); 2181 // The method data pointer was incremented already during 2182 // call profiling. We have to restore the mdp for the current bcp. 2183 if (ProfileInterpreter) { 2184 __ set_method_data_pointer_for_bcp(); 2185 } 2186 #if INCLUDE_JVMTI 2187 { 2188 Label L_done; 2189 2190 __ z_cli(0, Z_bcp, Bytecodes::_invokestatic); 2191 __ z_brc(Assembler::bcondNotEqual, L_done); 2192 2193 // The member name argument must be restored if _invokestatic is 2194 // re-executed after a PopFrame call. Detect such a case in the 2195 // InterpreterRuntime function and return the member name 2196 // argument, or null. 2197 __ z_lg(Z_ARG2, Address(Z_locals)); 2198 __ get_method(Z_ARG3); 2199 __ call_VM(Z_tmp_1, 2200 CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), 2201 Z_ARG2, Z_ARG3, Z_bcp); 2202 2203 __ z_ltgr(Z_tmp_1, Z_tmp_1); 2204 __ z_brc(Assembler::bcondEqual, L_done); 2205 2206 __ z_stg(Z_tmp_1, Address(Z_esp, wordSize)); 2207 __ bind(L_done); 2208 } 2209 #endif // INCLUDE_JVMTI 2210 __ dispatch_next(vtos); 2211 // End of PopFrame support. 2212 Interpreter::_remove_activation_entry = __ pc(); 2213 2214 // In between activations - previous activation type unknown yet 2215 // compute continuation point - the continuation point expects the 2216 // following registers set up: 2217 // 2218 // Z_ARG1 (==Z_tos): exception 2219 // Z_ARG2 : return address/pc that threw exception 2220 2221 Register return_pc = Z_tmp_1; 2222 Register handler = Z_tmp_2; 2223 assert(return_pc->is_nonvolatile(), "use non-volatile reg. to preserve exception pc"); 2224 assert(handler->is_nonvolatile(), "use non-volatile reg. to handler pc"); 2225 __ asm_assert_ijava_state_magic(return_pc/*tmp*/); // The top frame should be an interpreter frame. 2226 __ z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp); 2227 2228 // Moved removing the activation after VM call, because the new top 2229 // frame does not necessarily have the z_abi_160 required for a VM 2230 // call (e.g. if it is compiled). 2231 2232 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 2233 SharedRuntime::exception_handler_for_return_address), 2234 Z_thread, return_pc); 2235 __ z_lgr(handler, Z_RET); // Save exception handler. 2236 2237 // Preserve exception over this code sequence. 2238 __ pop_ptr(Z_ARG1); 2239 __ set_vm_result(Z_ARG1); 2240 // Remove the activation (without doing throws on illegalMonitorExceptions). 2241 __ remove_activation(vtos, noreg/*ret.pc already loaded*/, false/*throw exc*/, true/*install exc*/, false/*notify jvmti*/); 2242 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. 2243 2244 __ get_vm_result_oop(Z_ARG1); // Restore exception. 2245 __ verify_oop(Z_ARG1); 2246 __ z_lgr(Z_ARG2, return_pc); // Restore return address. 2247 2248 #ifdef ASSERT 2249 // The return_pc in the new top frame is dead... at least that's my 2250 // current understanding. To assert this I overwrite it. 2251 // Note: for compiled frames the handler is the deopt blob 2252 // which writes Z_ARG2 into the return_pc slot. 2253 __ load_const_optimized(return_pc, 0xb00b1); 2254 __ z_stg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_SP); 2255 #endif 2256 2257 // Z_ARG1 (==Z_tos): exception 2258 // Z_ARG2 : return address/pc that threw exception 2259 2260 // Note that an "issuing PC" is actually the next PC after the call. 2261 __ z_br(handler); // Jump to exception handler of caller. 2262 2263 BLOCK_COMMENT("} throw_exception"); 2264 } 2265 2266 // 2267 // JVMTI ForceEarlyReturn support 2268 // 2269 address TemplateInterpreterGenerator::generate_earlyret_entry_for (TosState state) { 2270 address entry = __ pc(); 2271 2272 BLOCK_COMMENT("earlyret_entry {"); 2273 2274 __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP); 2275 __ restore_bcp(); 2276 __ restore_locals(); 2277 __ restore_esp(); 2278 __ empty_expression_stack(); 2279 __ load_earlyret_value(state); 2280 2281 Register RjvmtiState = Z_tmp_1; 2282 __ z_lg(RjvmtiState, thread_(jvmti_thread_state)); 2283 __ store_const(Address(RjvmtiState, JvmtiThreadState::earlyret_state_offset()), 2284 JvmtiThreadState::earlyret_inactive, 4, 4, Z_R0_scratch); 2285 2286 if (state == itos) { 2287 // Narrow result if state is itos but result type is smaller. 2288 // Need to narrow in the return bytecode rather than in generate_return_entry 2289 // since compiled code callers expect the result to already be narrowed. 2290 __ narrow(Z_tos, Z_tmp_1); /* fall through */ 2291 } 2292 __ remove_activation(state, 2293 Z_tmp_1, // retaddr 2294 false, // throw_monitor_exception 2295 false, // install_monitor_exception 2296 true); // notify_jvmdi 2297 __ z_br(Z_tmp_1); 2298 2299 BLOCK_COMMENT("} earlyret_entry"); 2300 2301 return entry; 2302 } 2303 2304 //----------------------------------------------------------------------------- 2305 // Helper for vtos entry point generation. 2306 2307 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, 2308 address& bep, 2309 address& cep, 2310 address& sep, 2311 address& aep, 2312 address& iep, 2313 address& lep, 2314 address& fep, 2315 address& dep, 2316 address& vep) { 2317 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 2318 Label L; 2319 aep = __ pc(); __ push_ptr(); __ z_bru(L); 2320 fep = __ pc(); __ push_f(); __ z_bru(L); 2321 dep = __ pc(); __ push_d(); __ z_bru(L); 2322 lep = __ pc(); __ push_l(); __ z_bru(L); 2323 bep = cep = sep = 2324 iep = __ pc(); __ push_i(); 2325 vep = __ pc(); 2326 __ bind(L); 2327 generate_and_dispatch(t); 2328 } 2329 2330 //----------------------------------------------------------------------------- 2331 2332 #ifndef PRODUCT 2333 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 2334 address entry = __ pc(); 2335 NearLabel counter_below_trace_threshold; 2336 2337 if (TraceBytecodesAt > 0) { 2338 // Skip runtime call, if the trace threshold is not yet reached. 2339 __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value); 2340 __ load_absolute_address(Z_tmp_2, (address)&TraceBytecodesAt); 2341 __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 8, false /*signed*/); 2342 __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/); 2343 __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, counter_below_trace_threshold); 2344 } 2345 2346 int offset2 = state == ltos || state == dtos ? 2 : 1; 2347 2348 __ push(state); 2349 // Preserved return pointer is in Z_R14. 2350 // InterpreterRuntime::trace_bytecode() preserved and returns the value passed as second argument. 2351 __ z_lgr(Z_ARG2, Z_R14); 2352 __ z_lg(Z_ARG3, Address(Z_esp, Interpreter::expr_offset_in_bytes(0))); 2353 if (WizardMode) { 2354 __ z_lgr(Z_ARG4, Z_esp); // Trace Z_esp in WizardMode. 2355 } else { 2356 __ z_lg(Z_ARG4, Address(Z_esp, Interpreter::expr_offset_in_bytes(offset2))); 2357 } 2358 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), Z_ARG2, Z_ARG3, Z_ARG4); 2359 __ z_lgr(Z_R14, Z_RET); // Estore return address (see above). 2360 __ pop(state); 2361 2362 __ bind(counter_below_trace_threshold); 2363 __ z_br(Z_R14); // return 2364 2365 return entry; 2366 } 2367 #endif 2368 2369 // Make feasible for old CPUs. 2370 void TemplateInterpreterGenerator::count_bytecode() { 2371 __ load_absolute_address(Z_R1_scratch, (address) &BytecodeCounter::_counter_value); 2372 __ add2mem_64(Address(Z_R1_scratch), 1, Z_R0_scratch); 2373 } 2374 2375 void TemplateInterpreterGenerator::histogram_bytecode(Template * t) { 2376 __ load_absolute_address(Z_R1_scratch, (address)&BytecodeHistogram::_counters[ t->bytecode() ]); 2377 __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1); 2378 } 2379 2380 #ifndef PRODUCT 2381 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template * t) { 2382 Address index_addr(Z_tmp_1, (intptr_t) 0); 2383 Register index = Z_tmp_2; 2384 2385 // Load previous index. 2386 __ load_absolute_address(Z_tmp_1, (address) &BytecodePairHistogram::_index); 2387 __ mem2reg_opt(index, index_addr, false); 2388 2389 // Mask with current bytecode and store as new previous index. 2390 __ z_srl(index, BytecodePairHistogram::log2_number_of_codes); 2391 __ load_const_optimized(Z_R0_scratch, 2392 (int)t->bytecode() << BytecodePairHistogram::log2_number_of_codes); 2393 __ z_or(index, Z_R0_scratch); 2394 __ reg2mem_opt(index, index_addr, false); 2395 2396 // Load counter array's address. 2397 __ z_lgfr(index, index); // Sign extend for addressing. 2398 __ z_sllg(index, index, LogBytesPerInt); // index2bytes 2399 __ load_absolute_address(Z_R1_scratch, 2400 (address) &BytecodePairHistogram::_counters); 2401 // Add index and increment counter. 2402 __ z_agr(Z_R1_scratch, index); 2403 __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1); 2404 } 2405 2406 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 2407 // Call a little run-time stub to avoid blow-up for each bytecode. 2408 // The run-time runtime saves the right registers, depending on 2409 // the tosca in-state for the given template. 2410 address entry = Interpreter::trace_code(t->tos_in()); 2411 guarantee(entry != nullptr, "entry must have been generated"); 2412 __ call_stub(entry); 2413 } 2414 2415 void TemplateInterpreterGenerator::stop_interpreter_at() { 2416 NearLabel L; 2417 2418 __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value); 2419 __ load_absolute_address(Z_tmp_2, (address)&StopInterpreterAt); 2420 __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 8, false /*signed*/); 2421 __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/); 2422 __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, L); 2423 assert(Z_tmp_1->is_nonvolatile(), "must be nonvolatile to preserve Z_tos"); 2424 assert(Z_F8->is_nonvolatile(), "must be nonvolatile to preserve Z_ftos"); 2425 __ z_lgr(Z_tmp_1, Z_tos); // Save tos. 2426 __ z_lgr(Z_tmp_2, Z_bytecode); // Save Z_bytecode. 2427 __ z_ldr(Z_F8, Z_ftos); // Save ftos. 2428 // Use -XX:StopInterpreterAt=<num> to set the limit 2429 // and break at breakpoint(). 2430 __ call_VM(noreg, CAST_FROM_FN_PTR(address, breakpoint), false); 2431 __ z_lgr(Z_tos, Z_tmp_1); // Restore tos. 2432 __ z_lgr(Z_bytecode, Z_tmp_2); // Save Z_bytecode. 2433 __ z_ldr(Z_ftos, Z_F8); // Restore ftos. 2434 __ bind(L); 2435 } 2436 2437 #endif // !PRODUCT