1 /*
2 * Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2016, 2024 SAP SE. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "asm/macroAssembler.inline.hpp"
27 #include "classfile/javaClasses.hpp"
28 #include "compiler/disassembler.hpp"
29 #include "gc/shared/barrierSetAssembler.hpp"
30 #include "interpreter/abstractInterpreter.hpp"
31 #include "interpreter/bytecodeHistogram.hpp"
32 #include "interpreter/interpreter.hpp"
33 #include "interpreter/interpreterRuntime.hpp"
34 #include "interpreter/interp_masm.hpp"
35 #include "interpreter/templateInterpreterGenerator.hpp"
36 #include "interpreter/templateTable.hpp"
37 #include "oops/arrayOop.hpp"
38 #include "oops/methodCounters.hpp"
39 #include "oops/methodData.hpp"
40 #include "oops/oop.inline.hpp"
41 #include "oops/resolvedIndyEntry.hpp"
42 #include "oops/resolvedMethodEntry.hpp"
43 #include "prims/jvmtiExport.hpp"
44 #include "prims/jvmtiThreadState.hpp"
45 #include "runtime/arguments.hpp"
46 #include "runtime/deoptimization.hpp"
47 #include "runtime/frame.inline.hpp"
48 #include "runtime/jniHandles.hpp"
49 #include "runtime/sharedRuntime.hpp"
50 #include "runtime/stubRoutines.hpp"
51 #include "runtime/synchronizer.hpp"
52 #include "runtime/timer.hpp"
53 #include "runtime/vframeArray.hpp"
54 #include "utilities/debug.hpp"
55 #include "utilities/macros.hpp"
56
57 // Size of interpreter code. Increase if too small. Interpreter will
58 // fail with a guarantee ("not enough space for interpreter generation");
59 // if too small.
60 // Run with +PrintInterpreter to get the VM to print out the size.
61 // Max size with JVMTI
62 int TemplateInterpreter::InterpreterCodeSize = 320*K;
63
64 #undef __
65 #ifdef PRODUCT
66 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
67 #else
68 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
69 // #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)->
70 #endif
71
72 #define BLOCK_COMMENT(str) __ block_comment(str)
73 #define BIND(label) __ bind(label); BLOCK_COMMENT(#label ":")
74
75 #define oop_tmp_offset _z_ijava_state_neg(oop_tmp)
76
77 //-----------------------------------------------------------------------------
78
79 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
80 //
81 // New slow_signature handler that respects the z/Architecture
82 // C calling conventions.
83 //
84 // We get called by the native entry code with our output register
85 // area == 8. First we call InterpreterRuntime::get_result_handler
86 // to copy the pointer to the signature string temporarily to the
87 // first C-argument and to return the result_handler in
88 // Z_RET. Since native_entry will copy the jni-pointer to the
89 // first C-argument slot later on, it's OK to occupy this slot
90 // temporarily. Then we copy the argument list on the java
91 // expression stack into native varargs format on the native stack
92 // and load arguments into argument registers. Integer arguments in
93 // the varargs vector will be sign-extended to 8 bytes.
94 //
95 // On entry:
96 // Z_ARG1 - intptr_t* Address of java argument list in memory.
97 // Z_state - zeroInterpreter* Address of interpreter state for
98 // this method
99 // Z_method
100 //
101 // On exit (just before return instruction):
102 // Z_RET contains the address of the result_handler.
103 // Z_ARG2 is not updated for static methods and contains "this" otherwise.
104 // Z_ARG3-Z_ARG5 contain the first 3 arguments of types other than float and double.
105 // Z_FARG1-Z_FARG4 contain the first 4 arguments of type float or double.
106
107 const int LogSizeOfCase = 3;
108
109 const int max_fp_register_arguments = Argument::n_float_register_parameters;
110 const int max_int_register_arguments = Argument::n_register_parameters - 2; // First 2 are reserved.
111
112 const Register arg_java = Z_tmp_2;
113 const Register arg_c = Z_tmp_3;
114 const Register signature = Z_R1_scratch; // Is a string.
115 const Register fpcnt = Z_R0_scratch;
116 const Register argcnt = Z_tmp_4;
117 const Register intSlot = Z_tmp_1;
118 const Register sig_end = Z_tmp_1; // Assumed end of signature (only used in do_object).
119 const Register target_sp = Z_tmp_1;
120 const FloatRegister floatSlot = Z_F1;
121
122 const int d_signature = _z_abi(gpr6); // Only spill space, register contents not affected.
123 const int d_fpcnt = _z_abi(gpr7); // Only spill space, register contents not affected.
124
125 unsigned int entry_offset = __ offset();
126
127 BLOCK_COMMENT("slow_signature_handler {");
128
129 // We use target_sp for storing arguments in the C frame.
130 __ save_return_pc();
131 __ push_frame_abi160(4*BytesPerWord); // Reserve space to save the tmp_[1..4] registers.
132 __ z_stmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // Save registers only after frame is pushed.
133
134 __ z_lgr(arg_java, Z_ARG1);
135
136 Register method = Z_ARG2; // Directly load into correct argument register.
137
138 __ get_method(method);
139 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), Z_thread, method);
140
141 // Move signature to callee saved register.
142 // Don't directly write to stack. Frame is used by VM call.
143 __ z_lgr(Z_tmp_1, Z_RET);
144
145 // Reload method. Register may have been altered by VM call.
146 __ get_method(method);
147
148 // Get address of result handler.
149 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), Z_thread, method);
150
151 // Save signature address to stack.
152 __ z_stg(Z_tmp_1, d_signature, Z_SP);
153
154 // Don't overwrite return value (Z_RET, Z_ARG1) in rest of the method !
155
156 {
157 Label isStatic;
158
159 // Test if static.
160 // We can test the bit directly.
161 // Path is Z_method->_access_flags._flags.
162 // We only support flag bits in the least significant byte (assert !).
163 // Therefore add 3 to address that byte within "_flags".
164 // Reload method. VM call above may have destroyed register contents
165 __ get_method(method);
166 __ testbit_ushort(method2_(method, access_flags), JVM_ACC_STATIC_BIT);
167 method = noreg; // end of life
168 __ z_btrue(isStatic);
169
170 // For non-static functions, pass "this" in Z_ARG2 and copy it to 2nd C-arg slot.
171 // Need to box the Java object here, so we use arg_java
172 // (address of current Java stack slot) as argument and
173 // don't dereference it as in case of ints, floats, etc..
174 __ z_lgr(Z_ARG2, arg_java);
175 __ add2reg(arg_java, -BytesPerWord);
176 __ bind(isStatic);
177 }
178
179 // argcnt == 0 corresponds to 3rd C argument.
180 // arg #1 (result handler) and
181 // arg #2 (this, for non-statics), unused else
182 // are reserved and pre-filled above.
183 // arg_java points to the corresponding Java argument here. It
184 // has been decremented by one argument (this) in case of non-static.
185 __ clear_reg(argcnt, true, false); // Don't set CC.
186 __ z_lg(target_sp, 0, Z_SP);
187 __ add2reg(arg_c, _z_abi(remaining_cargs), target_sp);
188 // No floating-point args parsed so far.
189 __ clear_mem(Address(Z_SP, d_fpcnt), 8);
190
191 NearLabel move_intSlot_to_ARG, move_floatSlot_to_FARG;
192 NearLabel loop_start, loop_start_restore, loop_end;
193 NearLabel do_int, do_long, do_float, do_double;
194 NearLabel do_dontreachhere, do_object, do_array, do_boxed;
195
196 #ifdef ASSERT
197 // Signature needs to point to '(' (== 0x28) at entry.
198 __ z_lg(signature, d_signature, Z_SP);
199 __ z_cli(0, signature, (int) '(');
200 __ z_brne(do_dontreachhere);
201 #endif
202
203 __ bind(loop_start_restore);
204 __ z_lg(signature, d_signature, Z_SP); // Restore signature ptr, destroyed by move_XX_to_ARG.
205
206 BIND(loop_start);
207 // Advance to next argument type token from the signature.
208 __ add2reg(signature, 1);
209
210 // Use CLI, works well on all CPU versions.
211 __ z_cli(0, signature, (int) ')');
212 __ z_bre(loop_end); // end of signature
213 __ z_cli(0, signature, (int) 'L');
214 __ z_bre(do_object); // object #9
215 __ z_cli(0, signature, (int) 'F');
216 __ z_bre(do_float); // float #7
217 __ z_cli(0, signature, (int) 'J');
218 __ z_bre(do_long); // long #6
219 __ z_cli(0, signature, (int) 'B');
220 __ z_bre(do_int); // byte #1
221 __ z_cli(0, signature, (int) 'Z');
222 __ z_bre(do_int); // boolean #2
223 __ z_cli(0, signature, (int) 'C');
224 __ z_bre(do_int); // char #3
225 __ z_cli(0, signature, (int) 'S');
226 __ z_bre(do_int); // short #4
227 __ z_cli(0, signature, (int) 'I');
228 __ z_bre(do_int); // int #5
229 __ z_cli(0, signature, (int) 'D');
230 __ z_bre(do_double); // double #8
231 __ z_cli(0, signature, (int) '[');
232 __ z_bre(do_array); // array #10
233
234 __ bind(do_dontreachhere);
235
236 __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
237
238 // Array argument
239 BIND(do_array);
240
241 {
242 Label start_skip, end_skip;
243
244 __ bind(start_skip);
245
246 // Advance to next type tag from signature.
247 __ add2reg(signature, 1);
248
249 // Use CLI, works well on all CPU versions.
250 __ z_cli(0, signature, (int) '[');
251 __ z_bre(start_skip); // Skip further brackets.
252
253 __ z_cli(0, signature, (int) '9');
254 __ z_brh(end_skip); // no optional size
255
256 __ z_cli(0, signature, (int) '0');
257 __ z_brnl(start_skip); // Skip optional size.
258
259 __ bind(end_skip);
260
261 __ z_cli(0, signature, (int) 'L');
262 __ z_brne(do_boxed); // If not array of objects: go directly to do_boxed.
263 }
264
265 // OOP argument
266 BIND(do_object);
267 // Pass by an object's type name.
268 {
269 Label L;
270
271 __ add2reg(sig_end, 4095, signature); // Assume object type name is shorter than 4k.
272 __ load_const_optimized(Z_R0, (int) ';'); // Type name terminator (must be in Z_R0!).
273 __ MacroAssembler::search_string(sig_end, signature);
274 __ z_brl(L);
275 __ z_illtrap(); // No semicolon found: internal error or object name too long.
276 __ bind(L);
277 __ z_lgr(signature, sig_end);
278 // fallthru to do_boxed
279 }
280
281 // Need to box the Java object here, so we use arg_java
282 // (address of current Java stack slot) as argument and
283 // don't dereference it as in case of ints, floats, etc..
284
285 // UNBOX argument
286 // Load reference and check for null.
287 Label do_int_Entry4Boxed;
288 __ bind(do_boxed);
289 {
290 __ load_and_test_long(intSlot, Address(arg_java));
291 __ z_bre(do_int_Entry4Boxed);
292 __ z_lgr(intSlot, arg_java);
293 __ z_bru(do_int_Entry4Boxed);
294 }
295
296 // INT argument
297
298 // (also for byte, boolean, char, short)
299 // Use lgf for load (sign-extend) and stg for store.
300 BIND(do_int);
301 __ z_lgf(intSlot, 0, arg_java);
302
303 __ bind(do_int_Entry4Boxed);
304 __ add2reg(arg_java, -BytesPerWord);
305 // If argument fits into argument register, go and handle it, otherwise continue.
306 __ compare32_and_branch(argcnt, max_int_register_arguments,
307 Assembler::bcondLow, move_intSlot_to_ARG);
308 __ z_stg(intSlot, 0, arg_c);
309 __ add2reg(arg_c, BytesPerWord);
310 __ z_bru(loop_start);
311
312 // LONG argument
313
314 BIND(do_long);
315 __ add2reg(arg_java, -2*BytesPerWord); // Decrement first to have positive displacement for lg.
316 __ z_lg(intSlot, BytesPerWord, arg_java);
317 // If argument fits into argument register, go and handle it, otherwise continue.
318 __ compare32_and_branch(argcnt, max_int_register_arguments,
319 Assembler::bcondLow, move_intSlot_to_ARG);
320 __ z_stg(intSlot, 0, arg_c);
321 __ add2reg(arg_c, BytesPerWord);
322 __ z_bru(loop_start);
323
324 // FLOAT argumen
325
326 BIND(do_float);
327 __ z_le(floatSlot, 0, arg_java);
328 __ add2reg(arg_java, -BytesPerWord);
329 assert(max_fp_register_arguments <= 255, "always true"); // safety net
330 __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments);
331 __ z_brl(move_floatSlot_to_FARG);
332 __ z_ste(floatSlot, 4, arg_c);
333 __ add2reg(arg_c, BytesPerWord);
334 __ z_bru(loop_start);
335
336 // DOUBLE argument
337
338 BIND(do_double);
339 __ add2reg(arg_java, -2*BytesPerWord); // Decrement first to have positive displacement for lg.
340 __ z_ld(floatSlot, BytesPerWord, arg_java);
341 assert(max_fp_register_arguments <= 255, "always true"); // safety net
342 __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments);
343 __ z_brl(move_floatSlot_to_FARG);
344 __ z_std(floatSlot, 0, arg_c);
345 __ add2reg(arg_c, BytesPerWord);
346 __ z_bru(loop_start);
347
348 // Method exit, all arguments processed.
349 __ bind(loop_end);
350 __ z_lmg(Z_R10, Z_R13, frame::z_abi_160_size, Z_SP); // restore registers before frame is popped.
351 __ pop_frame();
352 __ restore_return_pc();
353 __ z_br(Z_R14);
354
355 // Copy int arguments.
356
357 Label iarg_caselist; // Distance between each case has to be a power of 2
358 // (= 1 << LogSizeOfCase).
359 __ align(16);
360 BIND(iarg_caselist);
361 __ z_lgr(Z_ARG3, intSlot); // 4 bytes
362 __ z_bru(loop_start_restore); // 4 bytes
363
364 __ z_lgr(Z_ARG4, intSlot);
365 __ z_bru(loop_start_restore);
366
367 __ z_lgr(Z_ARG5, intSlot);
368 __ z_bru(loop_start_restore);
369
370 __ align(16);
371 __ bind(move_intSlot_to_ARG);
372 __ z_stg(signature, d_signature, Z_SP); // Spill since signature == Z_R1_scratch.
373 __ z_larl(Z_R1_scratch, iarg_caselist);
374 __ z_sllg(Z_R0_scratch, argcnt, LogSizeOfCase);
375 __ add2reg(argcnt, 1);
376 __ z_agr(Z_R1_scratch, Z_R0_scratch);
377 __ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
378
379 // Copy float arguments.
380
381 Label farg_caselist; // Distance between each case has to be a power of 2
382 // (= 1 << logSizeOfCase, padded with nop.
383 __ align(16);
384 BIND(farg_caselist);
385 __ z_ldr(Z_FARG1, floatSlot); // 2 bytes
386 __ z_bru(loop_start_restore); // 4 bytes
387 __ z_nop(); // 2 bytes
388
389 __ z_ldr(Z_FARG2, floatSlot);
390 __ z_bru(loop_start_restore);
391 __ z_nop();
392
393 __ z_ldr(Z_FARG3, floatSlot);
394 __ z_bru(loop_start_restore);
395 __ z_nop();
396
397 __ z_ldr(Z_FARG4, floatSlot);
398 __ z_bru(loop_start_restore);
399 __ z_nop();
400
401 __ align(16);
402 __ bind(move_floatSlot_to_FARG);
403 __ z_stg(signature, d_signature, Z_SP); // Spill since signature == Z_R1_scratch.
404 __ z_lg(Z_R0_scratch, d_fpcnt, Z_SP); // Need old value for indexing.
405 __ add2mem_64(Address(Z_SP, d_fpcnt), 1, Z_R1_scratch); // Increment index.
406 __ z_larl(Z_R1_scratch, farg_caselist);
407 __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogSizeOfCase);
408 __ z_agr(Z_R1_scratch, Z_R0_scratch);
409 __ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
410
411 BLOCK_COMMENT("} slow_signature_handler");
412
413 return __ addr_at(entry_offset);
414 }
415
416 address TemplateInterpreterGenerator::generate_result_handler_for (BasicType type) {
417 address entry = __ pc();
418
419 assert(Z_tos == Z_RET, "Result handler: must move result!");
420 assert(Z_ftos == Z_FRET, "Result handler: must move float result!");
421
422 switch (type) {
423 case T_BOOLEAN:
424 __ c2bool(Z_tos);
425 break;
426 case T_CHAR:
427 __ and_imm(Z_tos, 0xffff);
428 break;
429 case T_BYTE:
430 __ z_lbr(Z_tos, Z_tos);
431 break;
432 case T_SHORT:
433 __ z_lhr(Z_tos, Z_tos);
434 break;
435 case T_INT:
436 case T_LONG:
437 case T_VOID:
438 case T_FLOAT:
439 case T_DOUBLE:
440 break;
441 case T_OBJECT:
442 // Retrieve result from frame...
443 __ mem2reg_opt(Z_tos, Address(Z_fp, oop_tmp_offset));
444 // and verify it.
445 __ verify_oop(Z_tos);
446 break;
447 default:
448 ShouldNotReachHere();
449 }
450 __ z_br(Z_R14); // Return from result handler.
451 return entry;
452 }
453
454 // Abstract method entry.
455 // Attempt to execute abstract method. Throw exception.
456 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
457 unsigned int entry_offset = __ offset();
458
459 // Caller could be the call_stub or a compiled method (x86 version is wrong!).
460
461 BLOCK_COMMENT("abstract_entry {");
462
463 // Implement call of InterpreterRuntime::throw_AbstractMethodError.
464 __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1);
465 __ save_return_pc(); // Save Z_R14.
466 __ push_frame_abi160(0); // Without new frame the RT call could overwrite the saved Z_R14.
467
468 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
469 Z_thread, Z_method);
470
471 __ pop_frame();
472 __ restore_return_pc(); // Restore Z_R14.
473 __ reset_last_Java_frame();
474
475 // Restore caller sp for c2i case.
476 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
477
478 // branch to SharedRuntime::generate_forward_exception() which handles all possible callers,
479 // i.e. call stub, compiled method, interpreted method.
480 __ load_absolute_address(Z_tmp_1, StubRoutines::forward_exception_entry());
481 __ z_br(Z_tmp_1);
482
483 BLOCK_COMMENT("} abstract_entry");
484
485 return __ addr_at(entry_offset);
486 }
487
488 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
489 // Inputs:
490 // Z_ARG1 - receiver
491 //
492 // What we do:
493 // - Load the referent field address.
494 // - Load the value in the referent field.
495 // - Pass that value to the pre-barrier.
496 //
497 // In the case of G1 this will record the value of the
498 // referent in an SATB buffer if marking is active.
499 // This will cause concurrent marking to mark the referent
500 // field as live.
501
502 Register scratch1 = Z_tmp_2;
503 Register scratch2 = Z_tmp_3;
504 Register pre_val = Z_RET; // return value
505 // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
506 Register Rargp = Z_esp;
507
508 Label slow_path;
509 address entry = __ pc();
510
511 const int referent_offset = java_lang_ref_Reference::referent_offset();
512
513 BLOCK_COMMENT("Reference_get {");
514
515 // If the receiver is null then it is OK to jump to the slow path.
516 __ load_and_test_long(pre_val, Address(Rargp, Interpreter::stackElementSize)); // Get receiver.
517 __ z_bre(slow_path);
518
519 // Load the value of the referent field.
520 __ load_heap_oop(pre_val, Address(pre_val, referent_offset), scratch1, scratch2, ON_WEAK_OOP_REF);
521
522 // Restore caller sp for c2i case.
523 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
524 __ z_br(Z_R14);
525
526 // Branch to previously generated regular method entry.
527 __ bind(slow_path);
528
529 address meth_entry = Interpreter::entry_for_kind(Interpreter::zerolocals);
530 __ jump_to_entry(meth_entry, Z_R1);
531
532 BLOCK_COMMENT("} Reference_get");
533
534 return entry;
535 }
536
537 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
538 address entry = __ pc();
539
540 DEBUG_ONLY(__ verify_esp(Z_esp, Z_ARG5));
541
542 // Restore bcp under the assumption that the current frame is still
543 // interpreted.
544 __ restore_bcp();
545
546 // Expression stack must be empty before entering the VM if an
547 // exception happened.
548 __ empty_expression_stack();
549 // Throw exception.
550 __ call_VM(noreg,
551 CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
552 return entry;
553 }
554
555 //
556 // Args:
557 // Z_ARG2: oop of array
558 // Z_ARG3: aberrant index
559 //
560 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
561 address entry = __ pc();
562 address excp = CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException);
563
564 // Expression stack must be empty before entering the VM if an
565 // exception happened.
566 __ empty_expression_stack();
567
568 // Setup parameters.
569 // Pass register with array to create more detailed exceptions.
570 __ call_VM(noreg, excp, Z_ARG2, Z_ARG3);
571 return entry;
572 }
573
574 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
575 address entry = __ pc();
576
577 // Object is at TOS.
578 __ pop_ptr(Z_ARG2);
579
580 // Expression stack must be empty before entering the VM if an
581 // exception happened.
582 __ empty_expression_stack();
583
584 __ call_VM(Z_ARG1,
585 CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException),
586 Z_ARG2);
587
588 DEBUG_ONLY(__ should_not_reach_here();)
589
590 return entry;
591 }
592
593 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
594 assert(!pass_oop || message == nullptr, "either oop or message but not both");
595 address entry = __ pc();
596
597 BLOCK_COMMENT("exception_handler_common {");
598
599 // Expression stack must be empty before entering the VM if an
600 // exception happened.
601 __ empty_expression_stack();
602 if (name != nullptr) {
603 __ load_absolute_address(Z_ARG2, (address)name);
604 } else {
605 __ clear_reg(Z_ARG2, true, false);
606 }
607
608 if (pass_oop) {
609 __ call_VM(Z_tos,
610 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception),
611 Z_ARG2, Z_tos /*object (see TT::aastore())*/);
612 } else {
613 if (message != nullptr) {
614 __ load_absolute_address(Z_ARG3, (address)message);
615 } else {
616 __ clear_reg(Z_ARG3, true, false);
617 }
618 __ call_VM(Z_tos,
619 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
620 Z_ARG2, Z_ARG3);
621 }
622 // Throw exception.
623 __ load_absolute_address(Z_R1_scratch, Interpreter::throw_exception_entry());
624 __ z_br(Z_R1_scratch);
625
626 BLOCK_COMMENT("} exception_handler_common");
627
628 return entry;
629 }
630
631 address TemplateInterpreterGenerator::generate_return_entry_for (TosState state, int step, size_t index_size) {
632 address entry = __ pc();
633
634 BLOCK_COMMENT("return_entry {");
635
636 // Pop i2c extension or revert top-2-parent-resize done by interpreted callees.
637 Register sp_before_i2c_extension = Z_bcp;
638 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
639 __ z_lg(sp_before_i2c_extension, Address(Z_fp, _z_ijava_state_neg(top_frame_sp)));
640 __ z_slag(sp_before_i2c_extension, sp_before_i2c_extension, Interpreter::logStackElementSize);
641 __ z_agr(sp_before_i2c_extension, Z_fp);
642 __ resize_frame_absolute(sp_before_i2c_extension, Z_locals/*tmp*/, true/*load_fp*/);
643
644 // TODO(ZASM): necessary??
645 // // and null it as marker that esp is now tos until next java call
646 // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
647
648 __ restore_bcp();
649 __ restore_locals();
650 __ restore_esp();
651
652 if (state == atos) {
653 __ profile_return_type(Z_tmp_1, Z_tos, Z_tmp_2);
654 }
655
656 Register cache = Z_tmp_1;
657 Register size = Z_tmp_2;
658 Register index = Z_tmp_2;
659 if (index_size == sizeof(u4)) {
660 __ load_resolved_indy_entry(cache, index);
661 __ z_llgh(size, in_bytes(ResolvedIndyEntry::num_parameters_offset()), cache);
662 } else {
663 assert(index_size == sizeof(u2), "Can only be u2");
664 __ load_method_entry(cache, index);
665 __ load_sized_value(size, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())), sizeof(u2), false /*is_signed*/);
666 }
667 __ z_sllg(size, size, Interpreter::logStackElementSize); // Each argument size in bytes.
668 __ z_agr(Z_esp, size); // Pop arguments.
669
670 __ check_and_handle_popframe(Z_thread);
671 __ check_and_handle_earlyret(Z_thread);
672
673 __ dispatch_next(state, step);
674
675 BLOCK_COMMENT("} return_entry");
676
677 return entry;
678 }
679
680 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
681 int step,
682 address continuation) {
683 address entry = __ pc();
684
685 BLOCK_COMMENT("deopt_entry {");
686
687 // TODO(ZASM): necessary? null last_sp until next java call
688 // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
689 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
690 __ restore_bcp();
691 __ restore_locals();
692 __ restore_esp();
693
694 // Handle exceptions.
695 {
696 Label L;
697 __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception));
698 __ z_bre(L);
699 __ call_VM(noreg,
700 CAST_FROM_FN_PTR(address,
701 InterpreterRuntime::throw_pending_exception));
702 __ should_not_reach_here();
703 __ bind(L);
704 }
705 if (continuation == nullptr) {
706 __ dispatch_next(state, step);
707 } else {
708 __ jump_to_entry(continuation, Z_R1_scratch);
709 }
710
711 BLOCK_COMMENT("} deopt_entry");
712
713 return entry;
714 }
715
716 address TemplateInterpreterGenerator::generate_safept_entry_for (TosState state,
717 address runtime_entry) {
718 address entry = __ pc();
719 __ push(state);
720 __ call_VM(noreg, runtime_entry);
721 __ dispatch_via(vtos, Interpreter::_normal_table.table_for (vtos));
722 return entry;
723 }
724
725 address TemplateInterpreterGenerator::generate_cont_resume_interpreter_adapter() {
726 return nullptr;
727 }
728
729
730 //
731 // Helpers for commoning out cases in the various type of method entries.
732 //
733
734 // Increment invocation count & check for overflow.
735 //
736 // Note: checking for negative value instead of overflow
737 // so we have a 'sticky' overflow test.
738 //
739 // Z_ARG2: method (see generate_fixed_frame())
740 //
741 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) {
742 Label done;
743 Register method = Z_ARG2; // Generate_fixed_frame() copies Z_method into Z_ARG2.
744 Register m_counters = Z_ARG4;
745
746 BLOCK_COMMENT("counter_incr {");
747
748 // Note: In tiered we increment either counters in method or in MDO depending
749 // if we are profiling or not.
750 int increment = InvocationCounter::count_increment;
751 if (ProfileInterpreter) {
752 NearLabel no_mdo;
753 Register mdo = m_counters;
754 // Are we profiling?
755 __ load_and_test_long(mdo, method2_(method, method_data));
756 __ branch_optimized(Assembler::bcondZero, no_mdo);
757 // Increment counter in the MDO.
758 const Address mdo_invocation_counter(mdo, MethodData::invocation_counter_offset() +
759 InvocationCounter::counter_offset());
760 const Address mask(mdo, MethodData::invoke_mask_offset());
761 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
762 Z_R1_scratch, false, Assembler::bcondZero,
763 overflow);
764 __ z_bru(done);
765 __ bind(no_mdo);
766 }
767
768 // Increment counter in MethodCounters.
769 const Address invocation_counter(m_counters,
770 MethodCounters::invocation_counter_offset() +
771 InvocationCounter::counter_offset());
772 // Get address of MethodCounters object.
773 __ get_method_counters(method, m_counters, done);
774 const Address mask(m_counters, MethodCounters::invoke_mask_offset());
775 __ increment_mask_and_jump(invocation_counter,
776 increment, mask,
777 Z_R1_scratch, false, Assembler::bcondZero,
778 overflow);
779
780 __ bind(done);
781
782 BLOCK_COMMENT("} counter_incr");
783 }
784
785 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
786 // InterpreterRuntime::frequency_counter_overflow takes two
787 // arguments, the first (thread) is passed by call_VM, the second
788 // indicates if the counter overflow occurs at a backwards branch
789 // (null bcp). We pass zero for it. The call returns the address
790 // of the verified entry point for the method or null if the
791 // compilation did not complete (either went background or bailed
792 // out).
793 __ clear_reg(Z_ARG2);
794 __ call_VM(noreg,
795 CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow),
796 Z_ARG2);
797 __ z_bru(do_continue);
798 }
799
800 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register frame_size, Register tmp1) {
801 Register tmp2 = Z_R1_scratch;
802 const int page_size = (int)os::vm_page_size();
803 NearLabel after_frame_check;
804
805 BLOCK_COMMENT("stack_overflow_check {");
806
807 assert_different_registers(frame_size, tmp1);
808
809 // Stack banging is sufficient overflow check if frame_size < page_size.
810 if (Immediate::is_uimm(page_size, 15)) {
811 __ z_chi(frame_size, page_size);
812 __ z_brl(after_frame_check);
813 } else {
814 __ load_const_optimized(tmp1, page_size);
815 __ compareU32_and_branch(frame_size, tmp1, Assembler::bcondLow, after_frame_check);
816 }
817
818 // Get the stack base, and in debug, verify it is non-zero.
819 __ z_lg(tmp1, thread_(stack_base));
820 #ifdef ASSERT
821 address reentry = nullptr;
822 NearLabel base_not_zero;
823 __ compareU64_and_branch(tmp1, (intptr_t)0L, Assembler::bcondNotEqual, base_not_zero);
824 reentry = __ stop_chain_static(reentry, "stack base is zero in generate_stack_overflow_check");
825 __ bind(base_not_zero);
826 #endif
827
828 // Get the stack size, and in debug, verify it is non-zero.
829 assert(sizeof(size_t) == sizeof(intptr_t), "wrong load size");
830 __ z_lg(tmp2, thread_(stack_size));
831 #ifdef ASSERT
832 NearLabel size_not_zero;
833 __ compareU64_and_branch(tmp2, (intptr_t)0L, Assembler::bcondNotEqual, size_not_zero);
834 reentry = __ stop_chain_static(reentry, "stack size is zero in generate_stack_overflow_check");
835 __ bind(size_not_zero);
836 #endif
837
838 // Compute the beginning of the protected zone minus the requested frame size.
839 __ z_sgr(tmp1, tmp2);
840 __ add2reg(tmp1, StackOverflow::stack_guard_zone_size());
841
842 // Add in the size of the frame (which is the same as subtracting it from the
843 // SP, which would take another register.
844 __ z_agr(tmp1, frame_size);
845
846 // The frame is greater than one page in size, so check against
847 // the bottom of the stack.
848 __ compareU64_and_branch(Z_SP, tmp1, Assembler::bcondHigh, after_frame_check);
849
850 // The stack will overflow, throw an exception.
851
852 // Restore SP to sender's sp. This is necessary if the sender's frame is an
853 // extended compiled frame (see gen_c2i_adapter()) and safer anyway in case of
854 // JSR292 adaptations.
855 __ resize_frame_absolute(Z_R10, tmp1, true/*load_fp*/);
856
857 // Note also that the restored frame is not necessarily interpreted.
858 // Use the shared runtime version of the StackOverflowError.
859 assert(SharedRuntime::throw_StackOverflowError_entry() != nullptr, "stub not yet generated");
860 AddressLiteral stub(SharedRuntime::throw_StackOverflowError_entry());
861 __ load_absolute_address(tmp1, SharedRuntime::throw_StackOverflowError_entry());
862 __ z_br(tmp1);
863
864 // If you get to here, then there is enough stack space.
865 __ bind(after_frame_check);
866
867 BLOCK_COMMENT("} stack_overflow_check");
868 }
869
870 // Allocate monitor and lock method (asm interpreter).
871 //
872 // Args:
873 // Z_locals: locals
874
875 void TemplateInterpreterGenerator::lock_method(void) {
876
877 BLOCK_COMMENT("lock_method {");
878
879 // Synchronize method.
880 const Register method = Z_tmp_2;
881 __ get_method(method);
882
883 #ifdef ASSERT
884 address reentry = nullptr;
885 {
886 Label L;
887 __ testbit_ushort(method2_(method, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
888 __ z_btrue(L);
889 reentry = __ stop_chain_static(reentry, "method doesn't need synchronization");
890 __ bind(L);
891 }
892 #endif // ASSERT
893
894 // Get synchronization object.
895 const Register object = Z_tmp_2;
896
897 {
898 Label done;
899 Label static_method;
900
901 __ testbit_ushort(method2_(method, access_flags), JVM_ACC_STATIC_BIT);
902 __ z_btrue(static_method);
903
904 // non-static method: Load receiver obj from stack.
905 __ mem2reg_opt(object, Address(Z_locals, Interpreter::local_offset_in_bytes(0)));
906 __ z_bru(done);
907
908 __ bind(static_method);
909
910 // Lock the java mirror.
911 // Load mirror from interpreter frame.
912 __ z_lg(object, _z_ijava_state_neg(mirror), Z_fp);
913
914 #ifdef ASSERT
915 {
916 NearLabel L;
917 __ compare64_and_branch(object, (intptr_t) 0, Assembler::bcondNotEqual, L);
918 reentry = __ stop_chain_static(reentry, "synchronization object is null");
919 __ bind(L);
920 }
921 #endif // ASSERT
922
923 __ bind(done);
924 }
925
926 __ add_monitor_to_stack(true, Z_ARG3, Z_ARG4, Z_ARG5); // Allocate monitor elem.
927 // Store object and lock it.
928 __ get_monitors(Z_tmp_1);
929 __ reg2mem_opt(object, Address(Z_tmp_1, BasicObjectLock::obj_offset()));
930 __ lock_object(Z_tmp_1, object);
931
932 BLOCK_COMMENT("} lock_method");
933 }
934
935 // Generate a fixed interpreter frame. This is identical setup for
936 // interpreted methods and for native methods hence the shared code.
937 //
938 // Registers alive
939 // Z_thread - JavaThread*
940 // Z_SP - old stack pointer
941 // Z_method - callee's method
942 // Z_esp - parameter list (slot 'above' last param)
943 // Z_R14 - return pc, to be stored in caller's frame
944 // Z_R10 - sender sp, note: Z_tmp_1 is Z_R10!
945 //
946 // Registers updated
947 // Z_SP - new stack pointer
948 // Z_esp - callee's operand stack pointer
949 // points to the slot above the value on top
950 // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
951 // Z_bcp - the bytecode pointer
952 // Z_fp - the frame pointer, thereby killing Z_method
953 // Z_ARG2 - copy of Z_method
954 //
955 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
956
957 // stack layout
958 //
959 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (see note below)
960 // [F1's operand stack (unused)]
961 // [F1's outgoing Java arguments] <-- Z_esp
962 // [F1's operand stack (non args)]
963 // [monitors] (optional)
964 // [IJAVA_STATE]
965 //
966 // F2 [PARENT_IJAVA_FRAME_ABI]
967 // ...
968 //
969 // 0x000
970 //
971 // Note: Z_R10, the sender sp, will be below Z_SP if F1 was extended by a c2i adapter.
972
973 //=============================================================================
974 // Allocate space for locals other than the parameters, the
975 // interpreter state, monitors, and the expression stack.
976
977 const Register local_count = Z_ARG5;
978 const Register fp = Z_tmp_2;
979 const Register const_method = Z_ARG1;
980
981 BLOCK_COMMENT("generate_fixed_frame {");
982 {
983 // local registers
984 const Register top_frame_size = Z_ARG2;
985 const Register sp_after_resize = Z_ARG3;
986 const Register max_stack = Z_ARG4;
987
988 __ z_lg(const_method, Address(Z_method, Method::const_offset()));
989 __ z_llgh(max_stack, Address(const_method, ConstMethod::size_of_parameters_offset()));
990 __ z_sllg(Z_locals /*parameter_count bytes*/, max_stack /*parameter_count*/, LogBytesPerWord);
991
992 if (native_call) {
993 // If we're calling a native method, we replace max_stack (which is
994 // zero) with space for the worst-case signature handler varargs
995 // vector, which is:
996 // max_stack = max(Argument::n_register_parameters, parameter_count+2);
997 //
998 // We add two slots to the parameter_count, one for the jni
999 // environment and one for a possible native mirror. We allocate
1000 // space for at least the number of ABI registers, even though
1001 // InterpreterRuntime::slow_signature_handler won't write more than
1002 // parameter_count+2 words when it creates the varargs vector at the
1003 // top of the stack. The generated slow signature handler will just
1004 // load trash into registers beyond the necessary number. We're
1005 // still going to cut the stack back by the ABI register parameter
1006 // count so as to get SP+16 pointing at the ABI outgoing parameter
1007 // area, so we need to allocate at least that much even though we're
1008 // going to throw it away.
1009 //
1010 __ add2reg(max_stack, 2);
1011
1012 NearLabel passing_args_on_stack;
1013
1014 // max_stack in bytes
1015 __ z_sllg(max_stack, max_stack, LogBytesPerWord);
1016
1017 int argument_registers_in_bytes = Argument::n_register_parameters << LogBytesPerWord;
1018 __ compare64_and_branch(max_stack, argument_registers_in_bytes, Assembler::bcondNotLow, passing_args_on_stack);
1019
1020 __ load_const_optimized(max_stack, argument_registers_in_bytes);
1021
1022 __ bind(passing_args_on_stack);
1023 } else {
1024 // !native_call
1025 // local_count = method->constMethod->max_locals();
1026 __ z_llgh(local_count, Address(const_method, ConstMethod::size_of_locals_offset()));
1027
1028 // Calculate number of non-parameter locals (in slots):
1029 __ z_sgr(local_count, max_stack);
1030
1031 // max_stack = method->max_stack();
1032 __ z_llgh(max_stack, Address(const_method, ConstMethod::max_stack_offset()));
1033 // max_stack in bytes
1034 __ z_sllg(max_stack, max_stack, LogBytesPerWord);
1035 }
1036
1037 // Resize (i.e. normally shrink) the top frame F1 ...
1038 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10
1039 // F1's operand stack (free)
1040 // ...
1041 // F1's operand stack (free) <-- Z_esp
1042 // F1's outgoing Java arg m
1043 // ...
1044 // F1's outgoing Java arg 0
1045 // ...
1046 //
1047 // ... into a parent frame (Z_R10 holds F1's SP before any modification, see also above)
1048 //
1049 // +......................+
1050 // : : <-- Z_R10, saved below as F0's z_ijava_state.sender_sp
1051 // : :
1052 // F1 [PARENT_IJAVA_FRAME_ABI] <-- Z_SP \
1053 // F0's non arg local | = delta
1054 // ... |
1055 // F0's non arg local <-- Z_esp /
1056 // F1's outgoing Java arg m
1057 // ...
1058 // F1's outgoing Java arg 0
1059 // ...
1060 //
1061 // then push the new top frame F0.
1062 //
1063 // F0 [TOP_IJAVA_FRAME_ABI] = frame::z_top_ijava_frame_abi_size \
1064 // [operand stack] = max_stack | = top_frame_size
1065 // [IJAVA_STATE] = frame::z_ijava_state_size /
1066
1067 // sp_after_resize = Z_esp - delta
1068 //
1069 // delta = PARENT_IJAVA_FRAME_ABI + (locals_count - params_count)
1070
1071 __ add2reg(sp_after_resize, (Interpreter::stackElementSize) - (frame::z_parent_ijava_frame_abi_size), Z_esp);
1072 if (!native_call) {
1073 __ z_sllg(Z_R0_scratch, local_count, LogBytesPerWord); // Params have already been subtracted from local_count.
1074 __ z_slgr(sp_after_resize, Z_R0_scratch);
1075 }
1076
1077 // top_frame_size = TOP_IJAVA_FRAME_ABI + max_stack + size of interpreter state
1078 __ add2reg(top_frame_size,
1079 frame::z_top_ijava_frame_abi_size +
1080 frame::z_ijava_state_size,
1081 max_stack);
1082
1083 if (!native_call) {
1084 // Stack overflow check.
1085 // Native calls don't need the stack size check since they have no
1086 // expression stack and the arguments are already on the stack and
1087 // we only add a handful of words to the stack.
1088 Register frame_size = max_stack; // Reuse the register for max_stack.
1089 __ z_lgr(frame_size, Z_SP);
1090 __ z_sgr(frame_size, sp_after_resize);
1091 __ z_agr(frame_size, top_frame_size);
1092 generate_stack_overflow_check(frame_size, fp/*tmp1*/);
1093 }
1094
1095 // asm_assert* is a nop in product builds
1096 NOT_PRODUCT(__ z_cg(Z_R14, _z_common_abi(return_pc), Z_SP));
1097 NOT_PRODUCT(__ asm_assert(Assembler::bcondEqual, "killed Z_R14", 0));
1098 __ resize_frame_absolute(sp_after_resize, fp, true);
1099 __ save_return_pc(Z_R14);
1100
1101 // ... and push the new frame F0.
1102 __ push_frame(top_frame_size, fp, true /*copy_sp*/, false);
1103
1104 __ z_lcgr(top_frame_size); // negate
1105 __ z_srag(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
1106 // Store relativized top_frame_sp
1107 __ z_stg(top_frame_size, _z_ijava_state_neg(top_frame_sp), fp);
1108 }
1109
1110 //=============================================================================
1111 // Initialize the new frame F0: initialize interpreter state.
1112
1113 {
1114 // locals
1115 const Register local_addr = Z_ARG4;
1116
1117 BLOCK_COMMENT("generate_fixed_frame: initialize interpreter state {");
1118
1119 #ifdef ASSERT
1120 // Set the magic number (using local_addr as tmp register).
1121 __ load_const_optimized(local_addr, frame::z_istate_magic_number);
1122 __ z_stg(local_addr, _z_ijava_state_neg(magic), fp);
1123 #endif
1124
1125 // Save sender SP from F1 (i.e. before it was potentially modified by an
1126 // adapter) into F0's interpreter state. We use it as well to revert
1127 // resizing the frame above.
1128 __ z_stg(Z_R10, _z_ijava_state_neg(sender_sp), fp);
1129
1130 // Load cp cache and save it at the end of this block.
1131 __ z_lg(Z_R1_scratch, Address(const_method, ConstMethod::constants_offset()));
1132 __ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstantPool::cache_offset()));
1133
1134 // z_ijava_state->method = method;
1135 __ z_stg(Z_method, _z_ijava_state_neg(method), fp);
1136
1137 // Point locals at the first argument. Method's locals are the
1138 // parameters on top of caller's expression stack.
1139 // Tos points past last Java argument.
1140
1141 __ z_agr(Z_locals, Z_esp);
1142 // z_ijava_state->locals - i*BytesPerWord points to i-th Java local (i starts at 0)
1143 // z_ijava_state->locals = Z_esp + parameter_count bytes
1144
1145 __ z_sgrk(Z_R0, Z_locals, fp); // Z_R0 = Z_locals - fp();
1146 __ z_srlg(Z_R0, Z_R0, Interpreter::logStackElementSize);
1147 // Store relativized Z_locals, see frame::interpreter_frame_locals().
1148 __ z_stg(Z_R0, _z_ijava_state_neg(locals), fp);
1149
1150 // z_ijava_state->oop_temp = nullptr;
1151 __ store_const(Address(fp, oop_tmp_offset), 0);
1152
1153 // Initialize z_ijava_state->mdx.
1154 Register Rmdp = Z_bcp;
1155 // native_call: assert that mdo is null
1156 const bool check_for_mdo = !native_call DEBUG_ONLY(|| native_call);
1157 if (ProfileInterpreter && check_for_mdo) {
1158 Label get_continue;
1159
1160 __ load_and_test_long(Rmdp, method_(method_data));
1161 __ z_brz(get_continue);
1162 DEBUG_ONLY(if (native_call) __ stop("native methods don't have a mdo"));
1163 __ add2reg(Rmdp, in_bytes(MethodData::data_offset()));
1164 __ bind(get_continue);
1165 }
1166 __ z_stg(Rmdp, _z_ijava_state_neg(mdx), fp);
1167
1168 // Initialize z_ijava_state->bcp and Z_bcp.
1169 if (native_call) {
1170 __ clear_reg(Z_bcp); // Must initialize. Will get written into frame where GC reads it.
1171 } else {
1172 __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset()), const_method);
1173 }
1174 __ z_stg(Z_bcp, _z_ijava_state_neg(bcp), fp);
1175
1176 // no monitors and empty operand stack
1177 // => z_ijava_state->monitors points to the top slot in IJAVA_STATE.
1178 // => Z_ijava_state->esp points one slot above into the operand stack.
1179 // z_ijava_state->monitors = fp - frame::z_ijava_state_size - Interpreter::stackElementSize;
1180 // z_ijava_state->esp = Z_esp = z_ijava_state->monitors;
1181 __ add2reg(Z_esp, -frame::z_ijava_state_size, fp);
1182
1183 __ z_sgrk(Z_R0, Z_esp, fp);
1184 __ z_srag(Z_R0, Z_R0, Interpreter::logStackElementSize);
1185 __ z_stg(Z_R0, _z_ijava_state_neg(monitors), fp);
1186
1187 __ add2reg(Z_esp, -Interpreter::stackElementSize);
1188
1189 __ save_esp(fp);
1190
1191 // z_ijava_state->cpoolCache = Z_R1_scratch (see load above);
1192 __ z_stg(Z_R1_scratch, _z_ijava_state_neg(cpoolCache), fp);
1193
1194 // Get mirror and store it in the frame as GC root for this Method*.
1195 __ load_mirror_from_const_method(Z_R1_scratch, const_method);
1196 __ z_stg(Z_R1_scratch, _z_ijava_state_neg(mirror), fp);
1197
1198 BLOCK_COMMENT("} generate_fixed_frame: initialize interpreter state");
1199
1200 //=============================================================================
1201 if (!native_call) {
1202 // Local_count is already num_locals_slots - num_param_slots.
1203 // Start of locals: local_addr = Z_locals - locals size + 1 slot
1204 __ z_llgh(Z_R0_scratch, Address(const_method, ConstMethod::size_of_locals_offset()));
1205 __ add2reg(local_addr, BytesPerWord, Z_locals);
1206 __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogBytesPerWord);
1207 __ z_sgr(local_addr, Z_R0_scratch);
1208
1209 __ Clear_Array(local_count, local_addr, Z_ARG2);
1210 }
1211
1212 }
1213 // Finally set the frame pointer, destroying Z_method.
1214 assert(Z_fp == Z_method, "maybe set Z_fp earlier if other register than Z_method");
1215 // Oprofile analysis suggests to keep a copy in a register to be used by
1216 // generate_counter_incr().
1217 __ z_lgr(Z_ARG2, Z_method);
1218 __ z_lgr(Z_fp, fp);
1219
1220 BLOCK_COMMENT("} generate_fixed_frame");
1221 }
1222
1223 // Various method entries
1224
1225 // Math function, template interpreter must set up an interpreter state, etc.
1226 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1227
1228 // Decide what to do: Use same platform specific instructions and runtime calls as compilers.
1229 bool use_instruction = false;
1230 address runtime_entry = nullptr;
1231 int num_args = 1;
1232 bool double_precision = true;
1233
1234 // s390 specific:
1235 switch (kind) {
1236 case Interpreter::java_lang_math_sqrt:
1237 case Interpreter::java_lang_math_abs: use_instruction = true; break;
1238 case Interpreter::java_lang_math_fmaF:
1239 case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break;
1240 default: break; // Fall back to runtime call.
1241 }
1242
1243 switch (kind) {
1244 case Interpreter::java_lang_math_sin : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); break;
1245 case Interpreter::java_lang_math_cos : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); break;
1246 case Interpreter::java_lang_math_tan : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); break;
1247 case Interpreter::java_lang_math_sinh : /* run interpreted */ break;
1248 case Interpreter::java_lang_math_tanh : /* run interpreted */ break;
1249 case Interpreter::java_lang_math_cbrt : /* run interpreted */ break;
1250 case Interpreter::java_lang_math_abs : /* run interpreted */ break;
1251 case Interpreter::java_lang_math_sqrt : /* runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt); not available */ break;
1252 case Interpreter::java_lang_math_log : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); break;
1253 case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break;
1254 case Interpreter::java_lang_math_pow : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break;
1255 case Interpreter::java_lang_math_exp : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); break;
1256 case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break;
1257 case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break;
1258 default: ShouldNotReachHere();
1259 }
1260
1261 // Use normal entry if neither instruction nor runtime call is used.
1262 if (!use_instruction && runtime_entry == nullptr) return nullptr;
1263
1264 address entry = __ pc();
1265
1266 if (use_instruction) {
1267 switch (kind) {
1268 case Interpreter::java_lang_math_sqrt:
1269 // Can use memory operand directly.
1270 __ z_sqdb(Z_FRET, Interpreter::stackElementSize, Z_esp);
1271 break;
1272 case Interpreter::java_lang_math_abs:
1273 // Load operand from stack.
1274 __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize));
1275 __ z_lpdbr(Z_FRET);
1276 break;
1277 case Interpreter::java_lang_math_fmaF:
1278 __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); // result reg = arg3
1279 __ mem2freg_opt(Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize)); // arg1
1280 __ z_maeb(Z_FRET, Z_FARG2, Address(Z_esp, 2 * Interpreter::stackElementSize));
1281 break;
1282 case Interpreter::java_lang_math_fmaD:
1283 __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); // result reg = arg3
1284 __ mem2freg_opt(Z_FARG2, Address(Z_esp, 5 * Interpreter::stackElementSize)); // arg1
1285 __ z_madb(Z_FRET, Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize));
1286 break;
1287 default: ShouldNotReachHere();
1288 }
1289 } else {
1290 // Load arguments
1291 assert(num_args <= 4, "passed in registers");
1292 if (double_precision) {
1293 int offset = (2 * num_args - 1) * Interpreter::stackElementSize;
1294 for (int i = 0; i < num_args; ++i) {
1295 __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset));
1296 offset -= 2 * Interpreter::stackElementSize;
1297 }
1298 } else {
1299 int offset = num_args * Interpreter::stackElementSize;
1300 for (int i = 0; i < num_args; ++i) {
1301 __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset));
1302 offset -= Interpreter::stackElementSize;
1303 }
1304 }
1305 // Call runtime
1306 __ save_return_pc(); // Save Z_R14.
1307 __ push_frame_abi160(0); // Without new frame the RT call could overwrite the saved Z_R14.
1308
1309 __ call_VM_leaf(runtime_entry);
1310
1311 __ pop_frame();
1312 __ restore_return_pc(); // Restore Z_R14.
1313 }
1314
1315 // Pop c2i arguments (if any) off when we return.
1316 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1317
1318 __ z_br(Z_R14);
1319
1320 return entry;
1321 }
1322
1323 // Interpreter stub for calling a native method. (asm interpreter).
1324 // This sets up a somewhat different looking stack for calling the
1325 // native method than the typical interpreter frame setup.
1326 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1327 // Determine code generation flags.
1328 bool inc_counter = UseCompiler || CountCompiledCalls;
1329
1330 // Interpreter entry for ordinary Java methods.
1331 //
1332 // Registers alive
1333 // Z_SP - stack pointer
1334 // Z_thread - JavaThread*
1335 // Z_method - callee's method (method to be invoked)
1336 // Z_esp - operand (or expression) stack pointer of caller. one slot above last arg.
1337 // Z_R10 - sender sp (before modifications, e.g. by c2i adapter
1338 // and as well by generate_fixed_frame below)
1339 // Z_R14 - return address to caller (call_stub or c2i_adapter)
1340 //
1341 // Registers updated
1342 // Z_SP - stack pointer
1343 // Z_fp - callee's framepointer
1344 // Z_esp - callee's operand stack pointer
1345 // points to the slot above the value on top
1346 // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
1347 // Z_tos - integer result, if any
1348 // z_ftos - floating point result, if any
1349 //
1350 // Stack layout at this point:
1351 //
1352 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if
1353 // frame was extended by c2i adapter)
1354 // [outgoing Java arguments] <-- Z_esp
1355 // ...
1356 // PARENT [PARENT_IJAVA_FRAME_ABI]
1357 // ...
1358 //
1359
1360 address entry_point = __ pc();
1361
1362 // Make sure registers are different!
1363 assert_different_registers(Z_thread, Z_method, Z_esp);
1364
1365 BLOCK_COMMENT("native_entry {");
1366
1367 // Make sure method is native and not abstract.
1368 #ifdef ASSERT
1369 // _access_flags must be a 16 bit value.
1370 assert(sizeof(AccessFlags) == 2, "testbit_ushort will fail");
1371 address reentry = nullptr;
1372 { Label L;
1373 __ testbit_ushort(method_(access_flags), JVM_ACC_NATIVE_BIT);
1374 __ z_btrue(L);
1375 reentry = __ stop_chain_static(reentry, "tried to execute non-native method as native");
1376 __ bind(L);
1377 }
1378 { Label L;
1379 __ testbit_ushort(method_(access_flags), JVM_ACC_ABSTRACT_BIT);
1380 __ z_bfalse(L);
1381 reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract");
1382 __ bind(L);
1383 }
1384 #endif // ASSERT
1385
1386 // Save the return PC into the callers frame for assertion in generate_fixed_frame.
1387 NOT_PRODUCT(__ save_return_pc(Z_R14));
1388
1389 // Generate the code to allocate the interpreter stack frame.
1390 generate_fixed_frame(true);
1391
1392 const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset());
1393 // Since at this point in the method invocation the exception handler
1394 // would try to exit the monitor of synchronized methods which hasn't
1395 // been entered yet, we set the thread local variable
1396 // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1397 // runtime, exception handling i.e. unlock_if_synchronized_method will
1398 // check this thread local flag.
1399 __ z_mvi(do_not_unlock_if_synchronized, true);
1400
1401 // Increment invocation count and check for overflow.
1402 NearLabel invocation_counter_overflow;
1403 if (inc_counter) {
1404 generate_counter_incr(&invocation_counter_overflow);
1405 }
1406
1407 Label continue_after_compile;
1408 __ bind(continue_after_compile);
1409
1410 bang_stack_shadow_pages(true);
1411
1412 // Reset the _do_not_unlock_if_synchronized flag.
1413 __ z_mvi(do_not_unlock_if_synchronized, false);
1414
1415 // Check for synchronized methods.
1416 // This mst happen AFTER invocation_counter check and stack overflow check,
1417 // so method is not locked if overflows.
1418 if (synchronized) {
1419 lock_method();
1420 } else {
1421 // No synchronization necessary.
1422 #ifdef ASSERT
1423 { Label L;
1424 __ get_method(Z_R1_scratch);
1425 __ testbit_ushort(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
1426 __ z_bfalse(L);
1427 reentry = __ stop_chain_static(reentry, "method needs synchronization");
1428 __ bind(L);
1429 }
1430 #endif // ASSERT
1431 }
1432
1433 // start execution
1434
1435 // jvmti support
1436 __ notify_method_entry();
1437
1438 //=============================================================================
1439 // Get and call the signature handler.
1440 const Register Rmethod = Z_tmp_2;
1441 const Register signature_handler_entry = Z_tmp_1;
1442 const Register Rresult_handler = Z_tmp_3;
1443 Label call_signature_handler;
1444
1445 assert_different_registers(Z_fp, Rmethod, signature_handler_entry, Rresult_handler);
1446 assert(Rresult_handler->is_nonvolatile(), "Rresult_handler must be in a non-volatile register");
1447
1448 // Reload method.
1449 __ get_method(Rmethod);
1450
1451 // Check for signature handler.
1452 __ load_and_test_long(signature_handler_entry, method2_(Rmethod, signature_handler));
1453 __ z_brne(call_signature_handler);
1454
1455 // Method has never been called. Either generate a specialized
1456 // handler or point to the slow one.
1457 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call),
1458 Rmethod);
1459
1460 // Reload method.
1461 __ get_method(Rmethod);
1462
1463 // Reload signature handler, it must have been created/assigned in the meantime.
1464 __ z_lg(signature_handler_entry, method2_(Rmethod, signature_handler));
1465
1466 __ bind(call_signature_handler);
1467
1468 // We have a TOP_IJAVA_FRAME here, which belongs to us.
1469 __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1/*tmp*/);
1470
1471 // Call signature handler and pass locals address in Z_ARG1.
1472 __ z_lgr(Z_ARG1, Z_locals);
1473 __ call_stub(signature_handler_entry);
1474 // Save result handler returned by signature handler.
1475 __ z_lgr(Rresult_handler, Z_RET);
1476
1477 // Reload method (the slow signature handler may block for GC).
1478 __ get_method(Rmethod);
1479
1480 // Pass mirror handle if static call.
1481 {
1482 Label method_is_not_static;
1483 __ testbit_ushort(method2_(Rmethod, access_flags), JVM_ACC_STATIC_BIT);
1484 __ z_bfalse(method_is_not_static);
1485 // Load mirror from interpreter frame.
1486 __ z_lg(Z_R1, _z_ijava_state_neg(mirror), Z_fp);
1487 // z_ijava_state.oop_temp = pool_holder->klass_part()->java_mirror();
1488 __ z_stg(Z_R1, oop_tmp_offset, Z_fp);
1489 // Pass handle to mirror as 2nd argument to JNI method.
1490 __ add2reg(Z_ARG2, oop_tmp_offset, Z_fp);
1491 __ bind(method_is_not_static);
1492 }
1493
1494 // Pass JNIEnv address as first parameter.
1495 __ add2reg(Z_ARG1, in_bytes(JavaThread::jni_environment_offset()), Z_thread);
1496
1497 // Note: last java frame has been set above already. The pc from there
1498 // is precise enough.
1499
1500 // Get native function entry point before we change the thread state.
1501 __ z_lg(Z_R1/*native_method_entry*/, method2_(Rmethod, native_function));
1502
1503 //=============================================================================
1504 // Transition from _thread_in_Java to _thread_in_native. As soon as
1505 // we make this change the safepoint code needs to be certain that
1506 // the last Java frame we established is good. The pc in that frame
1507 // just need to be near here not an actual return address.
1508 #ifdef ASSERT
1509 {
1510 NearLabel L;
1511 __ mem2reg_opt(Z_R14, Address(Z_thread, JavaThread::thread_state_offset()), false /*32 bits*/);
1512 __ compareU32_and_branch(Z_R14, _thread_in_Java, Assembler::bcondEqual, L);
1513 reentry = __ stop_chain_static(reentry, "Wrong thread state in native stub");
1514 __ bind(L);
1515 }
1516 #endif
1517
1518 // Memory ordering: Z does not reorder store/load with subsequent load. That's strong enough.
1519 __ set_thread_state(_thread_in_native);
1520
1521 //=============================================================================
1522 // Call the native method. Argument registers must not have been
1523 // overwritten since "__ call_stub(signature_handler);" (except for
1524 // ARG1 and ARG2 for static methods).
1525
1526 __ call_c(Z_R1/*native_method_entry*/);
1527
1528 // NOTE: frame::interpreter_frame_result() depends on these stores.
1529 __ z_stg(Z_RET, _z_ijava_state_neg(lresult), Z_fp);
1530 __ freg2mem_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult)));
1531 const Register Rlresult = signature_handler_entry;
1532 assert(Rlresult->is_nonvolatile(), "Rlresult must be in a non-volatile register");
1533 __ z_lgr(Rlresult, Z_RET);
1534
1535 // Z_method may no longer be valid, because of GC.
1536
1537 // Block, if necessary, before resuming in _thread_in_Java state.
1538 // In order for GC to work, don't clear the last_Java_sp until after
1539 // blocking.
1540
1541 //=============================================================================
1542 // Switch thread to "native transition" state before reading the
1543 // synchronization state. This additional state is necessary
1544 // because reading and testing the synchronization state is not
1545 // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
1546 // in _thread_in_native state, loads _not_synchronized and is
1547 // preempted. VM thread changes sync state to synchronizing and
1548 // suspends threads for GC. Thread A is resumed to finish this
1549 // native method, but doesn't block here since it didn't see any
1550 // synchronization is progress, and escapes.
1551
1552 __ set_thread_state(_thread_in_native_trans);
1553 if (!UseSystemMemoryBarrier) {
1554 __ z_fence();
1555 }
1556
1557 // Now before we return to java we must look for a current safepoint
1558 // (a new safepoint can not start since we entered native_trans).
1559 // We must check here because a current safepoint could be modifying
1560 // the callers registers right this moment.
1561
1562 // Check for safepoint operation in progress and/or pending suspend requests.
1563 {
1564 Label Continue, do_safepoint;
1565 __ safepoint_poll(do_safepoint, Z_R1);
1566 // Check for suspend.
1567 __ load_and_test_int(Z_R0/*suspend_flags*/, thread_(suspend_flags));
1568 __ z_bre(Continue); // 0 -> no flag set -> not suspended
1569 __ bind(do_safepoint);
1570 __ z_lgr(Z_ARG1, Z_thread);
1571 __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1572 __ bind(Continue);
1573 }
1574
1575 //=============================================================================
1576 // Back in Interpreter Frame.
1577
1578 // We are in thread_in_native_trans here and back in the normal
1579 // interpreter frame. We don't have to do anything special about
1580 // safepoints and we can switch to Java mode anytime we are ready.
1581
1582 // Note: frame::interpreter_frame_result has a dependency on how the
1583 // method result is saved across the call to post_method_exit. For
1584 // native methods it assumes that the non-FPU/non-void result is
1585 // saved in z_ijava_state.lresult and a FPU result in z_ijava_state.fresult. If
1586 // this changes then the interpreter_frame_result implementation
1587 // will need to be updated too.
1588
1589 //=============================================================================
1590 // Back in Java.
1591
1592 // Memory ordering: Z does not reorder store/load with subsequent
1593 // load. That's strong enough.
1594 __ set_thread_state(_thread_in_Java);
1595
1596 __ reset_last_Java_frame();
1597
1598 // We reset the JNI handle block only after unboxing the result; see below.
1599
1600 // The method register is junk from after the thread_in_native transition
1601 // until here. Also can't call_VM until the bcp has been
1602 // restored. Need bcp for throwing exception below so get it now.
1603 __ get_method(Rmethod);
1604
1605 // Restore Z_bcp to have legal interpreter frame,
1606 // i.e., bci == 0 <=> Z_bcp == code_base().
1607 __ z_lg(Z_bcp, Address(Rmethod, Method::const_offset())); // get constMethod
1608 __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset())); // get codebase
1609
1610 if (CheckJNICalls) {
1611 // clear_pending_jni_exception_check
1612 __ clear_mem(Address(Z_thread, JavaThread::pending_jni_exception_check_fn_offset()), sizeof(oop));
1613 }
1614
1615 // Check if the native method returns an oop, and if so, move it
1616 // from the jni handle to z_ijava_state.oop_temp. This is
1617 // necessary, because we reset the jni handle block below.
1618 // NOTE: frame::interpreter_frame_result() depends on this, too.
1619 { NearLabel no_oop_result;
1620 __ load_absolute_address(Z_R1, AbstractInterpreter::result_handler(T_OBJECT));
1621 __ compareU64_and_branch(Z_R1, Rresult_handler, Assembler::bcondNotEqual, no_oop_result);
1622 __ resolve_jobject(Rlresult, /* tmp1 */ Rmethod, /* tmp2 */ Z_R1);
1623 __ z_stg(Rlresult, oop_tmp_offset, Z_fp);
1624 __ bind(no_oop_result);
1625 }
1626
1627 // Reset handle block.
1628 __ z_lg(Z_R1/*active_handles*/, thread_(active_handles));
1629 __ clear_mem(Address(Z_R1, JNIHandleBlock::top_offset()), 4);
1630
1631 // Handle exceptions (exception handling will handle unlocking!).
1632 {
1633 Label L;
1634 __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception));
1635 __ z_bre(L);
1636 __ MacroAssembler::call_VM(noreg,
1637 CAST_FROM_FN_PTR(address,
1638 InterpreterRuntime::throw_pending_exception));
1639 __ should_not_reach_here();
1640 __ bind(L);
1641 }
1642
1643 if (synchronized) {
1644 Register Rfirst_monitor = Z_ARG2;
1645 __ add2reg(Rfirst_monitor, -(frame::z_ijava_state_size + (int)sizeof(BasicObjectLock)), Z_fp);
1646 #ifdef ASSERT
1647 NearLabel ok;
1648 __ get_monitors(Z_R1);
1649 __ compareU64_and_branch(Rfirst_monitor, Z_R1, Assembler::bcondEqual, ok);
1650 reentry = __ stop_chain_static(reentry, "native_entry:unlock: inconsistent z_ijava_state.monitors");
1651 __ bind(ok);
1652 #endif
1653 __ unlock_object(Rfirst_monitor);
1654 }
1655
1656 // JVMTI support. Result has already been saved above to the frame.
1657 __ notify_method_exit(true/*native_method*/, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1658
1659 // Move native method result back into proper registers and return.
1660 __ mem2freg_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult)));
1661 __ mem2reg_opt(Z_RET, Address(Z_fp, _z_ijava_state_neg(lresult)));
1662 __ call_stub(Rresult_handler);
1663
1664 // Pop the native method's interpreter frame.
1665 __ pop_interpreter_frame(Z_R14 /*return_pc*/, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/);
1666
1667 // Return to caller.
1668 __ z_br(Z_R14);
1669
1670 if (inc_counter) {
1671 // Handle overflow of counter and compile method.
1672 __ bind(invocation_counter_overflow);
1673 generate_counter_overflow(continue_after_compile);
1674 }
1675
1676 BLOCK_COMMENT("} native_entry");
1677
1678 return entry_point;
1679 }
1680
1681 //
1682 // Generic interpreted method entry to template interpreter.
1683 //
1684 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1685 address entry_point = __ pc();
1686
1687 bool inc_counter = UseCompiler || CountCompiledCalls;
1688
1689 // Interpreter entry for ordinary Java methods.
1690 //
1691 // Registers alive
1692 // Z_SP - stack pointer
1693 // Z_thread - JavaThread*
1694 // Z_method - callee's method (method to be invoked)
1695 // Z_esp - operand (or expression) stack pointer of caller. one slot above last arg.
1696 // Z_R10 - sender sp (before modifications, e.g. by c2i adapter
1697 // and as well by generate_fixed_frame below)
1698 // Z_R14 - return address to caller (call_stub or c2i_adapter)
1699 //
1700 // Registers updated
1701 // Z_SP - stack pointer
1702 // Z_fp - callee's framepointer
1703 // Z_esp - callee's operand stack pointer
1704 // points to the slot above the value on top
1705 // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
1706 // Z_tos - integer result, if any
1707 // z_ftos - floating point result, if any
1708 //
1709 //
1710 // stack layout at this point:
1711 //
1712 // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if
1713 // frame was extended by c2i adapter)
1714 // [outgoing Java arguments] <-- Z_esp
1715 // ...
1716 // PARENT [PARENT_IJAVA_FRAME_ABI]
1717 // ...
1718 //
1719 // stack layout before dispatching the first bytecode:
1720 //
1721 // F0 [TOP_IJAVA_FRAME_ABI] <-- Z_SP
1722 // [operand stack] <-- Z_esp
1723 // monitor (optional, can grow)
1724 // [IJAVA_STATE]
1725 // F1 [PARENT_IJAVA_FRAME_ABI] <-- Z_fp (== *Z_SP)
1726 // [F0's locals] <-- Z_locals
1727 // [F1's operand stack]
1728 // [F1's monitors] (optional)
1729 // [IJAVA_STATE]
1730
1731 // Make sure registers are different!
1732 assert_different_registers(Z_thread, Z_method, Z_esp);
1733
1734 BLOCK_COMMENT("normal_entry {");
1735
1736 // Make sure method is not native and not abstract.
1737 // Rethink these assertions - they can be simplified and shared.
1738 #ifdef ASSERT
1739 address reentry = nullptr;
1740 { Label L;
1741 __ testbit_ushort(method_(access_flags), JVM_ACC_NATIVE_BIT);
1742 __ z_bfalse(L);
1743 reentry = __ stop_chain_static(reentry, "tried to execute native method as non-native");
1744 __ bind(L);
1745 }
1746 { Label L;
1747 __ testbit_ushort(method_(access_flags), JVM_ACC_ABSTRACT_BIT);
1748 __ z_bfalse(L);
1749 reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract");
1750 __ bind(L);
1751 }
1752 #endif // ASSERT
1753
1754 // Save the return PC into the callers frame for assertion in generate_fixed_frame.
1755 NOT_PRODUCT(__ save_return_pc(Z_R14));
1756
1757 // Generate the code to allocate the interpreter stack frame.
1758 generate_fixed_frame(false);
1759
1760 const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset());
1761 // Since at this point in the method invocation the exception handler
1762 // would try to exit the monitor of synchronized methods which hasn't
1763 // been entered yet, we set the thread local variable
1764 // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1765 // runtime, exception handling i.e. unlock_if_synchronized_method will
1766 // check this thread local flag.
1767 __ z_mvi(do_not_unlock_if_synchronized, true);
1768
1769 __ profile_parameters_type(Z_tmp_2, Z_ARG3, Z_ARG4);
1770
1771 // Increment invocation counter and check for overflow.
1772 //
1773 // Note: checking for negative value instead of overflow so we have a 'sticky'
1774 // overflow test (may be of importance as soon as we have true MT/MP).
1775 NearLabel invocation_counter_overflow;
1776 NearLabel Lcontinue;
1777 if (inc_counter) {
1778 generate_counter_incr(&invocation_counter_overflow);
1779 }
1780 __ bind(Lcontinue);
1781
1782 bang_stack_shadow_pages(false);
1783
1784 // Reset the _do_not_unlock_if_synchronized flag.
1785 __ z_mvi(do_not_unlock_if_synchronized, false);
1786
1787 // Check for synchronized methods.
1788 // Must happen AFTER invocation_counter check and stack overflow check,
1789 // so method is not locked if overflows.
1790 if (synchronized) {
1791 // Allocate monitor and lock method.
1792 lock_method();
1793 } else {
1794 #ifdef ASSERT
1795 { Label L;
1796 __ get_method(Z_R1_scratch);
1797 __ testbit_ushort(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
1798 __ z_bfalse(L);
1799 reentry = __ stop_chain_static(reentry, "method needs synchronization");
1800 __ bind(L);
1801 }
1802 #endif // ASSERT
1803 }
1804
1805 // start execution
1806
1807 #ifdef ASSERT
1808 __ verify_esp(Z_esp, Z_R1_scratch);
1809 #endif
1810
1811 // jvmti support
1812 __ notify_method_entry();
1813
1814 // Start executing instructions.
1815 __ dispatch_next(vtos);
1816 // Dispatch_next does not return.
1817 DEBUG_ONLY(__ should_not_reach_here());
1818
1819 // Invocation counter overflow.
1820 if (inc_counter) {
1821 // Handle invocation counter overflow.
1822 __ bind(invocation_counter_overflow);
1823 generate_counter_overflow(Lcontinue);
1824 }
1825
1826 BLOCK_COMMENT("} normal_entry");
1827
1828 return entry_point;
1829 }
1830
1831
1832 /**
1833 * Method entry for static native methods:
1834 * int java.util.zip.CRC32.update(int crc, int b)
1835 */
1836 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1837 assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1838 uint64_t entry_off = __ offset();
1839 Label slow_path;
1840
1841 // If we need a safepoint check, generate full interpreter entry.
1842 __ safepoint_poll(slow_path, Z_R1);
1843
1844 BLOCK_COMMENT("CRC32_update {");
1845
1846 // We don't generate local frame and don't align stack because
1847 // we not even call stub code (we generate the code inline)
1848 // and there is no safepoint on this path.
1849
1850 // Load java parameters.
1851 // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1852 const Register argP = Z_esp;
1853 const Register crc = Z_ARG1; // crc value
1854 const Register data = Z_ARG2; // address of java byte value (kernel_crc32 needs address)
1855 const Register dataLen = Z_ARG3; // source data len (1 byte). Not used because calling the single-byte emitter.
1856 const Register table = Z_ARG4; // address of crc32 table
1857
1858 // Arguments are reversed on java expression stack.
1859 __ z_la(data, 3+1*wordSize, argP); // byte value (stack address).
1860 // Being passed as an int, the single byte is at offset +3.
1861 __ z_llgf(crc, 2 * wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register.
1862
1863 StubRoutines::zarch::generate_load_crc_table_addr(_masm, table);
1864 __ kernel_crc32_singleByte(crc, data, dataLen, table, Z_R1, true);
1865
1866 // Restore caller sp for c2i case.
1867 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1868
1869 __ z_br(Z_R14);
1870
1871 BLOCK_COMMENT("} CRC32_update");
1872
1873 // Use a previously generated vanilla native entry as the slow path.
1874 BIND(slow_path);
1875 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1);
1876 return __ addr_at(entry_off);
1877 }
1878
1879
1880 /**
1881 * Method entry for static native methods:
1882 * int java.util.zip.CRC32.updateBytes( int crc, byte[] b, int off, int len)
1883 * int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
1884 */
1885 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1886 assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1887 uint64_t entry_off = __ offset();
1888 Label slow_path;
1889
1890 // If we need a safepoint check, generate full interpreter entry.
1891 __ safepoint_poll(slow_path, Z_R1);
1892
1893 // We don't generate local frame and don't align stack because
1894 // we call stub code and there is no safepoint on this path.
1895
1896 // Load parameters.
1897 // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1898 const Register argP = Z_esp;
1899 const Register crc = Z_ARG1; // crc value
1900 const Register data = Z_ARG2; // address of java byte array
1901 const Register dataLen = Z_ARG3; // source data len
1902 const Register table = Z_ARG4; // address of crc32 table
1903 const Register t0 = Z_R10; // work reg for kernel* emitters
1904 const Register t1 = Z_R11; // work reg for kernel* emitters
1905 const Register t2 = Z_R12; // work reg for kernel* emitters
1906 const Register t3 = Z_R13; // work reg for kernel* emitters
1907
1908 // Arguments are reversed on java expression stack.
1909 // Calculate address of start element.
1910 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1911 // crc @ (SP + 5W) (32bit)
1912 // buf @ (SP + 3W) (64bit ptr to long array)
1913 // off @ (SP + 2W) (32bit)
1914 // dataLen @ (SP + 1W) (32bit)
1915 // data = buf + off
1916 BLOCK_COMMENT("CRC32_updateByteBuffer {");
1917 __ z_llgf(crc, 5*wordSize, argP); // current crc state
1918 __ z_lg(data, 3*wordSize, argP); // start of byte buffer
1919 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset.
1920 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process
1921 } else { // Used for "updateBytes update".
1922 // crc @ (SP + 4W) (32bit)
1923 // buf @ (SP + 3W) (64bit ptr to byte array)
1924 // off @ (SP + 2W) (32bit)
1925 // dataLen @ (SP + 1W) (32bit)
1926 // data = buf + off + base_offset
1927 BLOCK_COMMENT("CRC32_updateBytes {");
1928 __ z_llgf(crc, 4*wordSize, argP); // current crc state
1929 __ z_lg(data, 3*wordSize, argP); // start of byte buffer
1930 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset.
1931 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process
1932 __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1933 }
1934
1935 StubRoutines::zarch::generate_load_crc_table_addr(_masm, table);
1936
1937 __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers.
1938 __ z_stmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 to make them available as work registers.
1939 __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, true);
1940 __ z_lmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 back from stack.
1941
1942 // Restore caller sp for c2i case.
1943 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1944
1945 __ z_br(Z_R14);
1946
1947 BLOCK_COMMENT("} CRC32_update{Bytes|ByteBuffer}");
1948
1949 // Use a previously generated vanilla native entry as the slow path.
1950 BIND(slow_path);
1951 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1);
1952 return __ addr_at(entry_off);
1953 }
1954
1955
1956 /**
1957 * Method entry for intrinsic-candidate (non-native) methods:
1958 * int java.util.zip.CRC32C.updateBytes( int crc, byte[] b, int off, int end)
1959 * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end)
1960 * Unlike CRC32, CRC32C does not have any methods marked as native
1961 * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1962 */
1963 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1964 assert(UseCRC32CIntrinsics, "this intrinsic is not supported");
1965 uint64_t entry_off = __ offset();
1966
1967 // We don't generate local frame and don't align stack because
1968 // we call stub code and there is no safepoint on this path.
1969
1970 // Load parameters.
1971 // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1972 const Register argP = Z_esp;
1973 const Register crc = Z_ARG1; // crc value
1974 const Register data = Z_ARG2; // address of java byte array
1975 const Register dataLen = Z_ARG3; // source data len
1976 const Register table = Z_ARG4; // address of crc32 table
1977 const Register t0 = Z_R10; // work reg for kernel* emitters
1978 const Register t1 = Z_R11; // work reg for kernel* emitters
1979 const Register t2 = Z_R12; // work reg for kernel* emitters
1980 const Register t3 = Z_R13; // work reg for kernel* emitters
1981
1982 // Arguments are reversed on java expression stack.
1983 // Calculate address of start element.
1984 if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateByteBuffer direct".
1985 // crc @ (SP + 5W) (32bit)
1986 // buf @ (SP + 3W) (64bit ptr to long array)
1987 // off @ (SP + 2W) (32bit)
1988 // dataLen @ (SP + 1W) (32bit)
1989 // data = buf + off
1990 BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {");
1991 __ z_llgf(crc, 5*wordSize, argP); // current crc state
1992 __ z_lg(data, 3*wordSize, argP); // start of byte buffer
1993 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset.
1994 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process, calculated as
1995 __ z_sgf(dataLen, Address(argP, 2*wordSize)); // (end_index - offset)
1996 } else { // Used for "updateBytes update".
1997 // crc @ (SP + 4W) (32bit)
1998 // buf @ (SP + 3W) (64bit ptr to byte array)
1999 // off @ (SP + 2W) (32bit)
2000 // dataLen @ (SP + 1W) (32bit)
2001 // data = buf + off + base_offset
2002 BLOCK_COMMENT("CRC32C_updateBytes {");
2003 __ z_llgf(crc, 4*wordSize, argP); // current crc state
2004 __ z_lg(data, 3*wordSize, argP); // start of byte buffer
2005 __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset.
2006 __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process, calculated as
2007 __ z_sgf(dataLen, Address(argP, 2*wordSize)); // (end_index - offset)
2008 __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
2009 }
2010
2011 StubRoutines::zarch::generate_load_crc32c_table_addr(_masm, table);
2012
2013 __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers.
2014 __ z_stmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 to make them available as work registers.
2015 __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, false);
2016 __ z_lmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 back from stack.
2017
2018 // Restore caller sp for c2i case.
2019 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
2020
2021 __ z_br(Z_R14);
2022
2023 BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}");
2024 return __ addr_at(entry_off);
2025 }
2026
2027 address TemplateInterpreterGenerator::generate_currentThread() {
2028 uint64_t entry_off = __ offset();
2029
2030 __ z_lg(Z_RET, Address(Z_thread, JavaThread::threadObj_offset()));
2031 __ resolve_oop_handle(Z_RET);
2032
2033 // Restore caller sp for c2i case.
2034 __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
2035 __ z_br(Z_R14);
2036
2037 return __ addr_at(entry_off);
2038 }
2039
2040 // Not supported
2041 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { return nullptr; }
2042 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { return nullptr; }
2043
2044 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
2045 // Quick & dirty stack overflow checking: bang the stack & handle trap.
2046 // Note that we do the banging after the frame is setup, since the exception
2047 // handling code expects to find a valid interpreter frame on the stack.
2048 // Doing the banging earlier fails if the caller frame is not an interpreter
2049 // frame.
2050 // (Also, the exception throwing code expects to unlock any synchronized
2051 // method receiver, so do the banging after locking the receiver.)
2052
2053 // Bang each page in the shadow zone. We can't assume it's been done for
2054 // an interpreter frame with greater than a page of locals, so each page
2055 // needs to be checked. Only true for non-native. For native, we only bang the last page.
2056 const size_t page_size = os::vm_page_size();
2057 const int n_shadow_pages = (int)(StackOverflow::stack_shadow_zone_size()/page_size);
2058 const int start_page_num = native_call ? n_shadow_pages : 1;
2059 for (int pages = start_page_num; pages <= n_shadow_pages; pages++) {
2060 __ bang_stack_with_offset(pages*page_size);
2061 }
2062 }
2063
2064 //-----------------------------------------------------------------------------
2065 // Exceptions
2066
2067 void TemplateInterpreterGenerator::generate_throw_exception() {
2068
2069 BLOCK_COMMENT("throw_exception {");
2070
2071 // Entry point in previous activation (i.e., if the caller was interpreted).
2072 Interpreter::_rethrow_exception_entry = __ pc();
2073 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Frame accessors use Z_fp.
2074 // Z_ARG1 (==Z_tos): exception
2075 // Z_ARG2 : Return address/pc that threw exception.
2076 {
2077 Register top_frame_sp = Z_R1_scratch; // anyway going to load it with correct value
2078 __ z_lg(top_frame_sp, Address(Z_fp, _z_ijava_state_neg(top_frame_sp)));
2079 __ z_slag(top_frame_sp, top_frame_sp, Interpreter::logStackElementSize);
2080 __ z_agr(top_frame_sp, Z_fp);
2081
2082 __ resize_frame_absolute(top_frame_sp, /* temp = */ Z_R0, /* load_fp = */ true);
2083 }
2084 __ restore_bcp(); // R13 points to call/send.
2085 __ restore_locals();
2086
2087 // Fallthrough, no need to restore Z_esp.
2088
2089 // Entry point for exceptions thrown within interpreter code.
2090 Interpreter::_throw_exception_entry = __ pc();
2091 // Expression stack is undefined here.
2092 // Z_ARG1 (==Z_tos): exception
2093 // Z_bcp: exception bcp
2094 __ verify_oop(Z_ARG1);
2095 __ z_lgr(Z_ARG2, Z_ARG1);
2096
2097 // Expression stack must be empty before entering the VM in case of
2098 // an exception.
2099 __ empty_expression_stack();
2100 // Find exception handler address and preserve exception oop.
2101 const Register Rpreserved_exc_oop = Z_tmp_1;
2102 __ call_VM(Rpreserved_exc_oop,
2103 CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception),
2104 Z_ARG2);
2105 // Z_RET: exception handler entry point
2106 // Z_bcp: bcp for exception handler
2107 __ push_ptr(Rpreserved_exc_oop); // Push exception which is now the only value on the stack.
2108 __ z_br(Z_RET); // Jump to exception handler (may be _remove_activation_entry!).
2109
2110 // If the exception is not handled in the current frame the frame is
2111 // removed and the exception is rethrown (i.e. exception
2112 // continuation is _rethrow_exception).
2113 //
2114 // Note: At this point the bci is still the bci for the instruction
2115 // which caused the exception and the expression stack is
2116 // empty. Thus, for any VM calls at this point, GC will find a legal
2117 // oop map (with empty expression stack).
2118
2119 //
2120 // JVMTI PopFrame support
2121 //
2122
2123 Interpreter::_remove_activation_preserving_args_entry = __ pc();
2124 __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP);
2125 __ empty_expression_stack();
2126 // Set the popframe_processing bit in pending_popframe_condition
2127 // indicating that we are currently handling popframe, so that
2128 // call_VMs that may happen later do not trigger new popframe
2129 // handling cycles.
2130 __ load_sized_value(Z_tmp_1, Address(Z_thread, JavaThread::popframe_condition_offset()), 4, false /*signed*/);
2131 __ z_oill(Z_tmp_1, JavaThread::popframe_processing_bit);
2132 __ z_sty(Z_tmp_1, thread_(popframe_condition));
2133
2134 {
2135 // Check to see whether we are returning to a deoptimized frame.
2136 // (The PopFrame call ensures that the caller of the popped frame is
2137 // either interpreted or compiled and deoptimizes it if compiled.)
2138 // In this case, we can't call dispatch_next() after the frame is
2139 // popped, but instead must save the incoming arguments and restore
2140 // them after deoptimization has occurred.
2141 //
2142 // Note that we don't compare the return PC against the
2143 // deoptimization blob's unpack entry because of the presence of
2144 // adapter frames in C2.
2145 NearLabel caller_not_deoptimized;
2146 __ z_lg(Z_ARG1, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2147 __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), Z_ARG1);
2148 __ compareU64_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, caller_not_deoptimized);
2149
2150 // Compute size of arguments for saving when returning to
2151 // deoptimized caller.
2152 __ get_method(Z_ARG2);
2153 __ z_lg(Z_ARG2, Address(Z_ARG2, Method::const_offset()));
2154 __ z_llgh(Z_ARG2, Address(Z_ARG2, ConstMethod::size_of_parameters_offset()));
2155 __ z_sllg(Z_ARG2, Z_ARG2, Interpreter::logStackElementSize); // slots 2 bytes
2156 __ restore_locals();
2157 // Compute address of args to be saved.
2158 __ z_lgr(Z_ARG3, Z_locals);
2159 __ z_slgr(Z_ARG3, Z_ARG2);
2160 __ add2reg(Z_ARG3, wordSize);
2161 // Save these arguments.
2162 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args),
2163 Z_thread, Z_ARG2, Z_ARG3);
2164
2165 __ remove_activation(vtos, Z_R14,
2166 /* throw_monitor_exception */ false,
2167 /* install_monitor_exception */ false,
2168 /* notify_jvmdi */ false);
2169
2170 // Inform deoptimization that it is responsible for restoring
2171 // these arguments.
2172 __ store_const(thread_(popframe_condition),
2173 JavaThread::popframe_force_deopt_reexecution_bit,
2174 Z_tmp_1, false);
2175
2176 // Continue in deoptimization handler.
2177 __ z_br(Z_R14);
2178
2179 __ bind(caller_not_deoptimized);
2180 }
2181
2182 // Clear the popframe condition flag.
2183 __ clear_mem(thread_(popframe_condition), sizeof(int));
2184
2185 __ remove_activation(vtos,
2186 noreg, // Retaddr is not used.
2187 false, // throw_monitor_exception
2188 false, // install_monitor_exception
2189 false); // notify_jvmdi
2190 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
2191 {
2192 Register top_frame_sp = Z_R1_scratch;
2193 __ z_lg(top_frame_sp, Address(Z_fp, _z_ijava_state_neg(top_frame_sp)));
2194 __ z_slag(top_frame_sp, top_frame_sp, Interpreter::logStackElementSize);
2195 __ z_agr(top_frame_sp, Z_fp);
2196
2197 __ resize_frame_absolute(top_frame_sp, /* temp = */ Z_R0, /* load_fp = */ true);
2198 }
2199 __ restore_bcp();
2200 __ restore_locals();
2201 __ restore_esp();
2202 // The method data pointer was incremented already during
2203 // call profiling. We have to restore the mdp for the current bcp.
2204 if (ProfileInterpreter) {
2205 __ set_method_data_pointer_for_bcp();
2206 }
2207 #if INCLUDE_JVMTI
2208 {
2209 Label L_done;
2210
2211 __ z_cli(0, Z_bcp, Bytecodes::_invokestatic);
2212 __ z_brc(Assembler::bcondNotEqual, L_done);
2213
2214 // The member name argument must be restored if _invokestatic is
2215 // re-executed after a PopFrame call. Detect such a case in the
2216 // InterpreterRuntime function and return the member name
2217 // argument, or null.
2218 __ z_lg(Z_ARG2, Address(Z_locals));
2219 __ get_method(Z_ARG3);
2220 __ call_VM(Z_tmp_1,
2221 CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null),
2222 Z_ARG2, Z_ARG3, Z_bcp);
2223
2224 __ z_ltgr(Z_tmp_1, Z_tmp_1);
2225 __ z_brc(Assembler::bcondEqual, L_done);
2226
2227 __ z_stg(Z_tmp_1, Address(Z_esp, wordSize));
2228 __ bind(L_done);
2229 }
2230 #endif // INCLUDE_JVMTI
2231 __ dispatch_next(vtos);
2232 // End of PopFrame support.
2233 Interpreter::_remove_activation_entry = __ pc();
2234
2235 // In between activations - previous activation type unknown yet
2236 // compute continuation point - the continuation point expects the
2237 // following registers set up:
2238 //
2239 // Z_ARG1 (==Z_tos): exception
2240 // Z_ARG2 : return address/pc that threw exception
2241
2242 Register return_pc = Z_tmp_1;
2243 Register handler = Z_tmp_2;
2244 assert(return_pc->is_nonvolatile(), "use non-volatile reg. to preserve exception pc");
2245 assert(handler->is_nonvolatile(), "use non-volatile reg. to handler pc");
2246 __ asm_assert_ijava_state_magic(return_pc/*tmp*/); // The top frame should be an interpreter frame.
2247 __ z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2248
2249 // Moved removing the activation after VM call, because the new top
2250 // frame does not necessarily have the z_abi_160 required for a VM
2251 // call (e.g. if it is compiled).
2252
2253 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
2254 SharedRuntime::exception_handler_for_return_address),
2255 Z_thread, return_pc);
2256 __ z_lgr(handler, Z_RET); // Save exception handler.
2257
2258 // Preserve exception over this code sequence.
2259 __ pop_ptr(Z_ARG1);
2260 __ set_vm_result(Z_ARG1);
2261 // Remove the activation (without doing throws on illegalMonitorExceptions).
2262 __ remove_activation(vtos, noreg/*ret.pc already loaded*/, false/*throw exc*/, true/*install exc*/, false/*notify jvmti*/);
2263 __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
2264
2265 __ get_vm_result_oop(Z_ARG1); // Restore exception.
2266 __ verify_oop(Z_ARG1);
2267 __ z_lgr(Z_ARG2, return_pc); // Restore return address.
2268
2269 #ifdef ASSERT
2270 // The return_pc in the new top frame is dead... at least that's my
2271 // current understanding. To assert this I overwrite it.
2272 // Note: for compiled frames the handler is the deopt blob
2273 // which writes Z_ARG2 into the return_pc slot.
2274 __ load_const_optimized(return_pc, 0xb00b1);
2275 __ z_stg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_SP);
2276 #endif
2277
2278 // Z_ARG1 (==Z_tos): exception
2279 // Z_ARG2 : return address/pc that threw exception
2280
2281 // Note that an "issuing PC" is actually the next PC after the call.
2282 __ z_br(handler); // Jump to exception handler of caller.
2283
2284 BLOCK_COMMENT("} throw_exception");
2285 }
2286
2287 //
2288 // JVMTI ForceEarlyReturn support
2289 //
2290 address TemplateInterpreterGenerator::generate_earlyret_entry_for (TosState state) {
2291 address entry = __ pc();
2292
2293 BLOCK_COMMENT("earlyret_entry {");
2294
2295 __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP);
2296 __ restore_bcp();
2297 __ restore_locals();
2298 __ restore_esp();
2299 __ empty_expression_stack();
2300 __ load_earlyret_value(state);
2301
2302 Register RjvmtiState = Z_tmp_1;
2303 __ z_lg(RjvmtiState, thread_(jvmti_thread_state));
2304 __ store_const(Address(RjvmtiState, JvmtiThreadState::earlyret_state_offset()),
2305 JvmtiThreadState::earlyret_inactive, 4, 4, Z_R0_scratch);
2306
2307 if (state == itos) {
2308 // Narrow result if state is itos but result type is smaller.
2309 // Need to narrow in the return bytecode rather than in generate_return_entry
2310 // since compiled code callers expect the result to already be narrowed.
2311 __ narrow(Z_tos, Z_tmp_1); /* fall through */
2312 }
2313 __ remove_activation(state,
2314 Z_tmp_1, // retaddr
2315 false, // throw_monitor_exception
2316 false, // install_monitor_exception
2317 true); // notify_jvmdi
2318 __ z_br(Z_tmp_1);
2319
2320 BLOCK_COMMENT("} earlyret_entry");
2321
2322 return entry;
2323 }
2324
2325 //-----------------------------------------------------------------------------
2326 // Helper for vtos entry point generation.
2327
2328 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2329 address& bep,
2330 address& cep,
2331 address& sep,
2332 address& aep,
2333 address& iep,
2334 address& lep,
2335 address& fep,
2336 address& dep,
2337 address& vep) {
2338 assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2339 Label L;
2340 aep = __ pc(); __ push_ptr(); __ z_bru(L);
2341 fep = __ pc(); __ push_f(); __ z_bru(L);
2342 dep = __ pc(); __ push_d(); __ z_bru(L);
2343 lep = __ pc(); __ push_l(); __ z_bru(L);
2344 bep = cep = sep =
2345 iep = __ pc(); __ push_i();
2346 vep = __ pc();
2347 __ bind(L);
2348 generate_and_dispatch(t);
2349 }
2350
2351 //-----------------------------------------------------------------------------
2352
2353 #ifndef PRODUCT
2354 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2355 address entry = __ pc();
2356 NearLabel counter_below_trace_threshold;
2357
2358 if (TraceBytecodesAt > 0) {
2359 // Skip runtime call, if the trace threshold is not yet reached.
2360 __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value);
2361 __ load_absolute_address(Z_tmp_2, (address)&TraceBytecodesAt);
2362 __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 8, false /*signed*/);
2363 __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/);
2364 __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, counter_below_trace_threshold);
2365 }
2366
2367 int offset2 = state == ltos || state == dtos ? 2 : 1;
2368
2369 __ push(state);
2370 // Preserved return pointer is in Z_R14.
2371 // InterpreterRuntime::trace_bytecode() preserved and returns the value passed as second argument.
2372 __ z_lgr(Z_ARG2, Z_R14);
2373 __ z_lg(Z_ARG3, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)));
2374 if (WizardMode) {
2375 __ z_lgr(Z_ARG4, Z_esp); // Trace Z_esp in WizardMode.
2376 } else {
2377 __ z_lg(Z_ARG4, Address(Z_esp, Interpreter::expr_offset_in_bytes(offset2)));
2378 }
2379 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), Z_ARG2, Z_ARG3, Z_ARG4);
2380 __ z_lgr(Z_R14, Z_RET); // Estore return address (see above).
2381 __ pop(state);
2382
2383 __ bind(counter_below_trace_threshold);
2384 __ z_br(Z_R14); // return
2385
2386 return entry;
2387 }
2388
2389 // Make feasible for old CPUs.
2390 void TemplateInterpreterGenerator::count_bytecode() {
2391 __ load_absolute_address(Z_R1_scratch, (address) &BytecodeCounter::_counter_value);
2392 __ add2mem_64(Address(Z_R1_scratch), 1, Z_R0_scratch);
2393 }
2394
2395 void TemplateInterpreterGenerator::histogram_bytecode(Template * t) {
2396 __ load_absolute_address(Z_R1_scratch, (address)&BytecodeHistogram::_counters[ t->bytecode() ]);
2397 __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1);
2398 }
2399
2400 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template * t) {
2401 Address index_addr(Z_tmp_1, (intptr_t) 0);
2402 Register index = Z_tmp_2;
2403
2404 // Load previous index.
2405 __ load_absolute_address(Z_tmp_1, (address) &BytecodePairHistogram::_index);
2406 __ mem2reg_opt(index, index_addr, false);
2407
2408 // Mask with current bytecode and store as new previous index.
2409 __ z_srl(index, BytecodePairHistogram::log2_number_of_codes);
2410 __ load_const_optimized(Z_R0_scratch,
2411 (int)t->bytecode() << BytecodePairHistogram::log2_number_of_codes);
2412 __ z_or(index, Z_R0_scratch);
2413 __ reg2mem_opt(index, index_addr, false);
2414
2415 // Load counter array's address.
2416 __ z_lgfr(index, index); // Sign extend for addressing.
2417 __ z_sllg(index, index, LogBytesPerInt); // index2bytes
2418 __ load_absolute_address(Z_R1_scratch,
2419 (address) &BytecodePairHistogram::_counters);
2420 // Add index and increment counter.
2421 __ z_agr(Z_R1_scratch, index);
2422 __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1);
2423 }
2424
2425 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2426 // Call a little run-time stub to avoid blow-up for each bytecode.
2427 // The run-time runtime saves the right registers, depending on
2428 // the tosca in-state for the given template.
2429 address entry = Interpreter::trace_code(t->tos_in());
2430 guarantee(entry != nullptr, "entry must have been generated");
2431 __ call_stub(entry);
2432 }
2433
2434 void TemplateInterpreterGenerator::stop_interpreter_at() {
2435 NearLabel L;
2436
2437 __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value);
2438 __ load_absolute_address(Z_tmp_2, (address)&StopInterpreterAt);
2439 __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 8, false /*signed*/);
2440 __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/);
2441 __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, L);
2442 assert(Z_tmp_1->is_nonvolatile(), "must be nonvolatile to preserve Z_tos");
2443 assert(Z_F8->is_nonvolatile(), "must be nonvolatile to preserve Z_ftos");
2444 __ z_lgr(Z_tmp_1, Z_tos); // Save tos.
2445 __ z_lgr(Z_tmp_2, Z_bytecode); // Save Z_bytecode.
2446 __ z_ldr(Z_F8, Z_ftos); // Save ftos.
2447 // Use -XX:StopInterpreterAt=<num> to set the limit
2448 // and break at breakpoint().
2449 __ call_VM(noreg, CAST_FROM_FN_PTR(address, breakpoint), false);
2450 __ z_lgr(Z_tos, Z_tmp_1); // Restore tos.
2451 __ z_lgr(Z_bytecode, Z_tmp_2); // Save Z_bytecode.
2452 __ z_ldr(Z_ftos, Z_F8); // Restore ftos.
2453 __ bind(L);
2454 }
2455
2456 #endif // !PRODUCT
--- EOF ---