1 /* 2 * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "c1/c1_CodeStubs.hpp" 29 #include "c1/c1_Compilation.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_MacroAssembler.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "c1/c1_ValueStack.hpp" 34 #include "ci/ciArrayKlass.hpp" 35 #include "ci/ciInstance.hpp" 36 #include "compiler/oopMap.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "gc/shared/gc_globals.hpp" 39 #include "nativeInst_x86.hpp" 40 #include "oops/objArrayKlass.hpp" 41 #include "runtime/frame.inline.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "runtime/stubRoutines.hpp" 45 #include "utilities/powerOfTwo.hpp" 46 #include "vmreg_x86.inline.hpp" 47 48 49 // These masks are used to provide 128-bit aligned bitmasks to the XMM 50 // instructions, to allow sign-masking or sign-bit flipping. They allow 51 // fast versions of NegF/NegD and AbsF/AbsD. 52 53 // Note: 'double' and 'long long' have 32-bits alignment on x86. 54 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 55 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 56 // of 128-bits operands for SSE instructions. 57 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF))); 58 // Store the value to a 128-bits operand. 59 operand[0] = lo; 60 operand[1] = hi; 61 return operand; 62 } 63 64 // Buffer for 128-bits masks used by SSE instructions. 65 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment) 66 67 // Static initialization during VM startup. 68 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF)); 69 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF)); 70 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000)); 71 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000)); 72 73 74 NEEDS_CLEANUP // remove this definitions ? 75 const Register SYNC_header = rax; // synchronization header 76 const Register SHIFT_count = rcx; // where count for shift operations must be 77 78 #define __ _masm-> 79 80 81 static void select_different_registers(Register preserve, 82 Register extra, 83 Register &tmp1, 84 Register &tmp2) { 85 if (tmp1 == preserve) { 86 assert_different_registers(tmp1, tmp2, extra); 87 tmp1 = extra; 88 } else if (tmp2 == preserve) { 89 assert_different_registers(tmp1, tmp2, extra); 90 tmp2 = extra; 91 } 92 assert_different_registers(preserve, tmp1, tmp2); 93 } 94 95 96 97 static void select_different_registers(Register preserve, 98 Register extra, 99 Register &tmp1, 100 Register &tmp2, 101 Register &tmp3) { 102 if (tmp1 == preserve) { 103 assert_different_registers(tmp1, tmp2, tmp3, extra); 104 tmp1 = extra; 105 } else if (tmp2 == preserve) { 106 assert_different_registers(tmp1, tmp2, tmp3, extra); 107 tmp2 = extra; 108 } else if (tmp3 == preserve) { 109 assert_different_registers(tmp1, tmp2, tmp3, extra); 110 tmp3 = extra; 111 } 112 assert_different_registers(preserve, tmp1, tmp2, tmp3); 113 } 114 115 116 117 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 118 if (opr->is_constant()) { 119 LIR_Const* constant = opr->as_constant_ptr(); 120 switch (constant->type()) { 121 case T_INT: { 122 return true; 123 } 124 125 default: 126 return false; 127 } 128 } 129 return false; 130 } 131 132 133 LIR_Opr LIR_Assembler::receiverOpr() { 134 return FrameMap::receiver_opr; 135 } 136 137 LIR_Opr LIR_Assembler::osrBufferPointer() { 138 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 139 } 140 141 //--------------fpu register translations----------------------- 142 143 144 address LIR_Assembler::float_constant(float f) { 145 address const_addr = __ float_constant(f); 146 if (const_addr == nullptr) { 147 bailout("const section overflow"); 148 return __ code()->consts()->start(); 149 } else { 150 return const_addr; 151 } 152 } 153 154 155 address LIR_Assembler::double_constant(double d) { 156 address const_addr = __ double_constant(d); 157 if (const_addr == nullptr) { 158 bailout("const section overflow"); 159 return __ code()->consts()->start(); 160 } else { 161 return const_addr; 162 } 163 } 164 165 #ifndef _LP64 166 void LIR_Assembler::fpop() { 167 __ fpop(); 168 } 169 170 void LIR_Assembler::fxch(int i) { 171 __ fxch(i); 172 } 173 174 void LIR_Assembler::fld(int i) { 175 __ fld_s(i); 176 } 177 178 void LIR_Assembler::ffree(int i) { 179 __ ffree(i); 180 } 181 #endif // !_LP64 182 183 void LIR_Assembler::breakpoint() { 184 __ int3(); 185 } 186 187 void LIR_Assembler::push(LIR_Opr opr) { 188 if (opr->is_single_cpu()) { 189 __ push_reg(opr->as_register()); 190 } else if (opr->is_double_cpu()) { 191 NOT_LP64(__ push_reg(opr->as_register_hi())); 192 __ push_reg(opr->as_register_lo()); 193 } else if (opr->is_stack()) { 194 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix())); 195 } else if (opr->is_constant()) { 196 LIR_Const* const_opr = opr->as_constant_ptr(); 197 if (const_opr->type() == T_OBJECT) { 198 __ push_oop(const_opr->as_jobject(), rscratch1); 199 } else if (const_opr->type() == T_INT) { 200 __ push_jint(const_opr->as_jint()); 201 } else { 202 ShouldNotReachHere(); 203 } 204 205 } else { 206 ShouldNotReachHere(); 207 } 208 } 209 210 void LIR_Assembler::pop(LIR_Opr opr) { 211 if (opr->is_single_cpu()) { 212 __ pop_reg(opr->as_register()); 213 } else { 214 ShouldNotReachHere(); 215 } 216 } 217 218 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { 219 return addr->base()->is_illegal() && addr->index()->is_illegal(); 220 } 221 222 //------------------------------------------- 223 224 Address LIR_Assembler::as_Address(LIR_Address* addr) { 225 return as_Address(addr, rscratch1); 226 } 227 228 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 229 if (addr->base()->is_illegal()) { 230 assert(addr->index()->is_illegal(), "must be illegal too"); 231 AddressLiteral laddr((address)addr->disp(), relocInfo::none); 232 if (! __ reachable(laddr)) { 233 __ movptr(tmp, laddr.addr()); 234 Address res(tmp, 0); 235 return res; 236 } else { 237 return __ as_Address(laddr); 238 } 239 } 240 241 Register base = addr->base()->as_pointer_register(); 242 243 if (addr->index()->is_illegal()) { 244 return Address( base, addr->disp()); 245 } else if (addr->index()->is_cpu_register()) { 246 Register index = addr->index()->as_pointer_register(); 247 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp()); 248 } else if (addr->index()->is_constant()) { 249 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp(); 250 assert(Assembler::is_simm32(addr_offset), "must be"); 251 252 return Address(base, addr_offset); 253 } else { 254 Unimplemented(); 255 return Address(); 256 } 257 } 258 259 260 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 261 Address base = as_Address(addr); 262 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord); 263 } 264 265 266 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 267 return as_Address(addr); 268 } 269 270 271 void LIR_Assembler::osr_entry() { 272 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 273 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 274 ValueStack* entry_state = osr_entry->state(); 275 int number_of_locks = entry_state->locks_size(); 276 277 // we jump here if osr happens with the interpreter 278 // state set up to continue at the beginning of the 279 // loop that triggered osr - in particular, we have 280 // the following registers setup: 281 // 282 // rcx: osr buffer 283 // 284 285 // build frame 286 ciMethod* m = compilation()->method(); 287 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 288 289 // OSR buffer is 290 // 291 // locals[nlocals-1..0] 292 // monitors[0..number_of_locks] 293 // 294 // locals is a direct copy of the interpreter frame so in the osr buffer 295 // so first slot in the local array is the last local from the interpreter 296 // and last slot is local[0] (receiver) from the interpreter 297 // 298 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 299 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 300 // in the interpreter frame (the method lock if a sync method) 301 302 // Initialize monitors in the compiled activation. 303 // rcx: pointer to osr buffer 304 // 305 // All other registers are dead at this point and the locals will be 306 // copied into place by code emitted in the IR. 307 308 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 309 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 310 int monitor_offset = BytesPerWord * method()->max_locals() + 311 (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1); 312 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 313 // the OSR buffer using 2 word entries: first the lock and then 314 // the oop. 315 for (int i = 0; i < number_of_locks; i++) { 316 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 317 #ifdef ASSERT 318 // verify the interpreter's monitor has a non-null object 319 { 320 Label L; 321 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD); 322 __ jcc(Assembler::notZero, L); 323 __ stop("locked object is null"); 324 __ bind(L); 325 } 326 #endif 327 __ movptr(rbx, Address(OSR_buf, slot_offset + 0)); 328 __ movptr(frame_map()->address_for_monitor_lock(i), rbx); 329 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 330 __ movptr(frame_map()->address_for_monitor_object(i), rbx); 331 } 332 } 333 } 334 335 336 // inline cache check; done before the frame is built. 337 int LIR_Assembler::check_icache() { 338 return __ ic_check(CodeEntryAlignment); 339 } 340 341 void LIR_Assembler::clinit_barrier(ciMethod* method) { 342 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 343 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 344 345 Label L_skip_barrier; 346 Register klass = rscratch1; 347 Register thread = LP64_ONLY( r15_thread ) NOT_LP64( noreg ); 348 assert(thread != noreg, "x86_32 not implemented"); 349 350 __ mov_metadata(klass, method->holder()->constant_encoding()); 351 __ clinit_barrier(klass, thread, &L_skip_barrier /*L_fast_path*/); 352 353 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 354 355 __ bind(L_skip_barrier); 356 } 357 358 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) { 359 jobject o = nullptr; 360 PatchingStub* patch = new PatchingStub(_masm, patching_id(info)); 361 __ movoop(reg, o); 362 patching_epilog(patch, lir_patch_normal, reg, info); 363 } 364 365 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 366 Metadata* o = nullptr; 367 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id); 368 __ mov_metadata(reg, o); 369 patching_epilog(patch, lir_patch_normal, reg, info); 370 } 371 372 // This specifies the rsp decrement needed to build the frame 373 int LIR_Assembler::initial_frame_size_in_bytes() const { 374 // if rounding, must let FrameMap know! 375 376 // The frame_map records size in slots (32bit word) 377 378 // subtract two words to account for return address and link 379 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size; 380 } 381 382 383 int LIR_Assembler::emit_exception_handler() { 384 // generate code for exception handler 385 address handler_base = __ start_a_stub(exception_handler_size()); 386 if (handler_base == nullptr) { 387 // not enough space left for the handler 388 bailout("exception handler overflow"); 389 return -1; 390 } 391 392 int offset = code_offset(); 393 394 // the exception oop and pc are in rax, and rdx 395 // no other registers need to be preserved, so invalidate them 396 __ invalidate_registers(false, true, true, false, true, true); 397 398 // check that there is really an exception 399 __ verify_not_null_oop(rax); 400 401 // search an exception handler (rax: exception oop, rdx: throwing pc) 402 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id))); 403 __ should_not_reach_here(); 404 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 405 __ end_a_stub(); 406 407 return offset; 408 } 409 410 411 // Emit the code to remove the frame from the stack in the exception 412 // unwind path. 413 int LIR_Assembler::emit_unwind_handler() { 414 #ifndef PRODUCT 415 if (CommentedAssembly) { 416 _masm->block_comment("Unwind handler"); 417 } 418 #endif 419 420 int offset = code_offset(); 421 422 // Fetch the exception from TLS and clear out exception related thread state 423 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 424 NOT_LP64(__ get_thread(thread)); 425 __ movptr(rax, Address(thread, JavaThread::exception_oop_offset())); 426 __ movptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD); 427 __ movptr(Address(thread, JavaThread::exception_pc_offset()), NULL_WORD); 428 429 __ bind(_unwind_handler_entry); 430 __ verify_not_null_oop(rax); 431 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 432 __ mov(rbx, rax); // Preserve the exception (rbx is always callee-saved) 433 } 434 435 // Perform needed unlocking 436 MonitorExitStub* stub = nullptr; 437 if (method()->is_synchronized()) { 438 monitor_address(0, FrameMap::rax_opr); 439 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0); 440 if (LockingMode == LM_MONITOR) { 441 __ jmp(*stub->entry()); 442 } else { 443 __ unlock_object(rdi, rsi, rax, *stub->entry()); 444 } 445 __ bind(*stub->continuation()); 446 } 447 448 if (compilation()->env()->dtrace_method_probes()) { 449 #ifdef _LP64 450 __ mov(rdi, r15_thread); 451 __ mov_metadata(rsi, method()->constant_encoding()); 452 #else 453 __ get_thread(rax); 454 __ movptr(Address(rsp, 0), rax); 455 __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding(), noreg); 456 #endif 457 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit))); 458 } 459 460 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 461 __ mov(rax, rbx); // Restore the exception 462 } 463 464 // remove the activation and dispatch to the unwind handler 465 __ remove_frame(initial_frame_size_in_bytes()); 466 __ jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id))); 467 468 // Emit the slow path assembly 469 if (stub != nullptr) { 470 stub->emit_code(this); 471 } 472 473 return offset; 474 } 475 476 477 int LIR_Assembler::emit_deopt_handler() { 478 // generate code for exception handler 479 address handler_base = __ start_a_stub(deopt_handler_size()); 480 if (handler_base == nullptr) { 481 // not enough space left for the handler 482 bailout("deopt handler overflow"); 483 return -1; 484 } 485 486 int offset = code_offset(); 487 InternalAddress here(__ pc()); 488 489 __ pushptr(here.addr(), rscratch1); 490 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 491 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 492 __ end_a_stub(); 493 494 return offset; 495 } 496 497 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 498 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,"); 499 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) { 500 assert(result->fpu() == 0, "result must already be on TOS"); 501 } 502 503 // Pop the stack before the safepoint code 504 __ remove_frame(initial_frame_size_in_bytes()); 505 506 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 507 __ reserved_stack_check(); 508 } 509 510 // Note: we do not need to round double result; float result has the right precision 511 // the poll sets the condition code, but no data registers 512 513 #ifdef _LP64 514 const Register thread = r15_thread; 515 #else 516 const Register thread = rbx; 517 __ get_thread(thread); 518 #endif 519 code_stub->set_safepoint_offset(__ offset()); 520 __ relocate(relocInfo::poll_return_type); 521 __ safepoint_poll(*code_stub->entry(), thread, true /* at_return */, true /* in_nmethod */); 522 __ ret(0); 523 } 524 525 526 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 527 guarantee(info != nullptr, "Shouldn't be null"); 528 int offset = __ offset(); 529 #ifdef _LP64 530 const Register poll_addr = rscratch1; 531 __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset())); 532 #else 533 assert(tmp->is_cpu_register(), "needed"); 534 const Register poll_addr = tmp->as_register(); 535 __ get_thread(poll_addr); 536 __ movptr(poll_addr, Address(poll_addr, in_bytes(JavaThread::polling_page_offset()))); 537 #endif 538 add_debug_info_for_branch(info); 539 __ relocate(relocInfo::poll_type); 540 address pre_pc = __ pc(); 541 __ testl(rax, Address(poll_addr, 0)); 542 address post_pc = __ pc(); 543 guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length"); 544 return offset; 545 } 546 547 548 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 549 if (from_reg != to_reg) __ mov(to_reg, from_reg); 550 } 551 552 void LIR_Assembler::swap_reg(Register a, Register b) { 553 __ xchgptr(a, b); 554 } 555 556 557 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 558 assert(src->is_constant(), "should not call otherwise"); 559 assert(dest->is_register(), "should not call otherwise"); 560 LIR_Const* c = src->as_constant_ptr(); 561 562 switch (c->type()) { 563 case T_INT: { 564 assert(patch_code == lir_patch_none, "no patching handled here"); 565 __ movl(dest->as_register(), c->as_jint()); 566 break; 567 } 568 569 case T_ADDRESS: { 570 assert(patch_code == lir_patch_none, "no patching handled here"); 571 __ movptr(dest->as_register(), c->as_jint()); 572 break; 573 } 574 575 case T_LONG: { 576 assert(patch_code == lir_patch_none, "no patching handled here"); 577 #ifdef _LP64 578 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong()); 579 #else 580 __ movptr(dest->as_register_lo(), c->as_jint_lo()); 581 __ movptr(dest->as_register_hi(), c->as_jint_hi()); 582 #endif // _LP64 583 break; 584 } 585 586 case T_OBJECT: { 587 if (patch_code != lir_patch_none) { 588 jobject2reg_with_patching(dest->as_register(), info); 589 } else { 590 __ movoop(dest->as_register(), c->as_jobject()); 591 } 592 break; 593 } 594 595 case T_METADATA: { 596 if (patch_code != lir_patch_none) { 597 klass2reg_with_patching(dest->as_register(), info); 598 } else { 599 __ mov_metadata(dest->as_register(), c->as_metadata()); 600 } 601 break; 602 } 603 604 case T_FLOAT: { 605 if (dest->is_single_xmm()) { 606 if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) { 607 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg()); 608 } else { 609 __ movflt(dest->as_xmm_float_reg(), 610 InternalAddress(float_constant(c->as_jfloat()))); 611 } 612 } else { 613 #ifndef _LP64 614 assert(dest->is_single_fpu(), "must be"); 615 assert(dest->fpu_regnr() == 0, "dest must be TOS"); 616 if (c->is_zero_float()) { 617 __ fldz(); 618 } else if (c->is_one_float()) { 619 __ fld1(); 620 } else { 621 __ fld_s (InternalAddress(float_constant(c->as_jfloat()))); 622 } 623 #else 624 ShouldNotReachHere(); 625 #endif // !_LP64 626 } 627 break; 628 } 629 630 case T_DOUBLE: { 631 if (dest->is_double_xmm()) { 632 if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) { 633 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg()); 634 } else { 635 __ movdbl(dest->as_xmm_double_reg(), 636 InternalAddress(double_constant(c->as_jdouble()))); 637 } 638 } else { 639 #ifndef _LP64 640 assert(dest->is_double_fpu(), "must be"); 641 assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); 642 if (c->is_zero_double()) { 643 __ fldz(); 644 } else if (c->is_one_double()) { 645 __ fld1(); 646 } else { 647 __ fld_d (InternalAddress(double_constant(c->as_jdouble()))); 648 } 649 #else 650 ShouldNotReachHere(); 651 #endif // !_LP64 652 } 653 break; 654 } 655 656 default: 657 ShouldNotReachHere(); 658 } 659 } 660 661 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 662 assert(src->is_constant(), "should not call otherwise"); 663 assert(dest->is_stack(), "should not call otherwise"); 664 LIR_Const* c = src->as_constant_ptr(); 665 666 switch (c->type()) { 667 case T_INT: // fall through 668 case T_FLOAT: 669 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 670 break; 671 672 case T_ADDRESS: 673 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 674 break; 675 676 case T_OBJECT: 677 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1); 678 break; 679 680 case T_LONG: // fall through 681 case T_DOUBLE: 682 #ifdef _LP64 683 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 684 lo_word_offset_in_bytes), 685 (intptr_t)c->as_jlong_bits(), 686 rscratch1); 687 #else 688 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 689 lo_word_offset_in_bytes), c->as_jint_lo_bits()); 690 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 691 hi_word_offset_in_bytes), c->as_jint_hi_bits()); 692 #endif // _LP64 693 break; 694 695 default: 696 ShouldNotReachHere(); 697 } 698 } 699 700 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 701 assert(src->is_constant(), "should not call otherwise"); 702 assert(dest->is_address(), "should not call otherwise"); 703 LIR_Const* c = src->as_constant_ptr(); 704 LIR_Address* addr = dest->as_address_ptr(); 705 706 int null_check_here = code_offset(); 707 switch (type) { 708 case T_INT: // fall through 709 case T_FLOAT: 710 __ movl(as_Address(addr), c->as_jint_bits()); 711 break; 712 713 case T_ADDRESS: 714 __ movptr(as_Address(addr), c->as_jint_bits()); 715 break; 716 717 case T_OBJECT: // fall through 718 case T_ARRAY: 719 if (c->as_jobject() == nullptr) { 720 if (UseCompressedOops && !wide) { 721 __ movl(as_Address(addr), NULL_WORD); 722 } else { 723 #ifdef _LP64 724 __ xorptr(rscratch1, rscratch1); 725 null_check_here = code_offset(); 726 __ movptr(as_Address(addr), rscratch1); 727 #else 728 __ movptr(as_Address(addr), NULL_WORD); 729 #endif 730 } 731 } else { 732 if (is_literal_address(addr)) { 733 ShouldNotReachHere(); 734 __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1); 735 } else { 736 #ifdef _LP64 737 __ movoop(rscratch1, c->as_jobject()); 738 if (UseCompressedOops && !wide) { 739 __ encode_heap_oop(rscratch1); 740 null_check_here = code_offset(); 741 __ movl(as_Address_lo(addr), rscratch1); 742 } else { 743 null_check_here = code_offset(); 744 __ movptr(as_Address_lo(addr), rscratch1); 745 } 746 #else 747 __ movoop(as_Address(addr), c->as_jobject(), noreg); 748 #endif 749 } 750 } 751 break; 752 753 case T_LONG: // fall through 754 case T_DOUBLE: 755 #ifdef _LP64 756 if (is_literal_address(addr)) { 757 ShouldNotReachHere(); 758 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits()); 759 } else { 760 __ movptr(r10, (intptr_t)c->as_jlong_bits()); 761 null_check_here = code_offset(); 762 __ movptr(as_Address_lo(addr), r10); 763 } 764 #else 765 // Always reachable in 32bit so this doesn't produce useless move literal 766 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits()); 767 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits()); 768 #endif // _LP64 769 break; 770 771 case T_BOOLEAN: // fall through 772 case T_BYTE: 773 __ movb(as_Address(addr), c->as_jint() & 0xFF); 774 break; 775 776 case T_CHAR: // fall through 777 case T_SHORT: 778 __ movw(as_Address(addr), c->as_jint() & 0xFFFF); 779 break; 780 781 default: 782 ShouldNotReachHere(); 783 }; 784 785 if (info != nullptr) { 786 add_debug_info_for_null_check(null_check_here, info); 787 } 788 } 789 790 791 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 792 assert(src->is_register(), "should not call otherwise"); 793 assert(dest->is_register(), "should not call otherwise"); 794 795 // move between cpu-registers 796 if (dest->is_single_cpu()) { 797 #ifdef _LP64 798 if (src->type() == T_LONG) { 799 // Can do LONG -> OBJECT 800 move_regs(src->as_register_lo(), dest->as_register()); 801 return; 802 } 803 #endif 804 assert(src->is_single_cpu(), "must match"); 805 if (src->type() == T_OBJECT) { 806 __ verify_oop(src->as_register()); 807 } 808 move_regs(src->as_register(), dest->as_register()); 809 810 } else if (dest->is_double_cpu()) { 811 #ifdef _LP64 812 if (is_reference_type(src->type())) { 813 // Surprising to me but we can see move of a long to t_object 814 __ verify_oop(src->as_register()); 815 move_regs(src->as_register(), dest->as_register_lo()); 816 return; 817 } 818 #endif 819 assert(src->is_double_cpu(), "must match"); 820 Register f_lo = src->as_register_lo(); 821 Register f_hi = src->as_register_hi(); 822 Register t_lo = dest->as_register_lo(); 823 Register t_hi = dest->as_register_hi(); 824 #ifdef _LP64 825 assert(f_hi == f_lo, "must be same"); 826 assert(t_hi == t_lo, "must be same"); 827 move_regs(f_lo, t_lo); 828 #else 829 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation"); 830 831 832 if (f_lo == t_hi && f_hi == t_lo) { 833 swap_reg(f_lo, f_hi); 834 } else if (f_hi == t_lo) { 835 assert(f_lo != t_hi, "overwriting register"); 836 move_regs(f_hi, t_hi); 837 move_regs(f_lo, t_lo); 838 } else { 839 assert(f_hi != t_lo, "overwriting register"); 840 move_regs(f_lo, t_lo); 841 move_regs(f_hi, t_hi); 842 } 843 #endif // LP64 844 845 #ifndef _LP64 846 // special moves from fpu-register to xmm-register 847 // necessary for method results 848 } else if (src->is_single_xmm() && !dest->is_single_xmm()) { 849 __ movflt(Address(rsp, 0), src->as_xmm_float_reg()); 850 __ fld_s(Address(rsp, 0)); 851 } else if (src->is_double_xmm() && !dest->is_double_xmm()) { 852 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg()); 853 __ fld_d(Address(rsp, 0)); 854 } else if (dest->is_single_xmm() && !src->is_single_xmm()) { 855 __ fstp_s(Address(rsp, 0)); 856 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0)); 857 } else if (dest->is_double_xmm() && !src->is_double_xmm()) { 858 __ fstp_d(Address(rsp, 0)); 859 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0)); 860 #endif // !_LP64 861 862 // move between xmm-registers 863 } else if (dest->is_single_xmm()) { 864 assert(src->is_single_xmm(), "must match"); 865 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg()); 866 } else if (dest->is_double_xmm()) { 867 assert(src->is_double_xmm(), "must match"); 868 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg()); 869 870 #ifndef _LP64 871 // move between fpu-registers (no instruction necessary because of fpu-stack) 872 } else if (dest->is_single_fpu() || dest->is_double_fpu()) { 873 assert(src->is_single_fpu() || src->is_double_fpu(), "must match"); 874 assert(src->fpu() == dest->fpu(), "currently should be nothing to do"); 875 #endif // !_LP64 876 877 } else { 878 ShouldNotReachHere(); 879 } 880 } 881 882 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 883 assert(src->is_register(), "should not call otherwise"); 884 assert(dest->is_stack(), "should not call otherwise"); 885 886 if (src->is_single_cpu()) { 887 Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); 888 if (is_reference_type(type)) { 889 __ verify_oop(src->as_register()); 890 __ movptr (dst, src->as_register()); 891 } else if (type == T_METADATA || type == T_ADDRESS) { 892 __ movptr (dst, src->as_register()); 893 } else { 894 __ movl (dst, src->as_register()); 895 } 896 897 } else if (src->is_double_cpu()) { 898 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes); 899 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes); 900 __ movptr (dstLO, src->as_register_lo()); 901 NOT_LP64(__ movptr (dstHI, src->as_register_hi())); 902 903 } else if (src->is_single_xmm()) { 904 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 905 __ movflt(dst_addr, src->as_xmm_float_reg()); 906 907 } else if (src->is_double_xmm()) { 908 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 909 __ movdbl(dst_addr, src->as_xmm_double_reg()); 910 911 #ifndef _LP64 912 } else if (src->is_single_fpu()) { 913 assert(src->fpu_regnr() == 0, "argument must be on TOS"); 914 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 915 if (pop_fpu_stack) __ fstp_s (dst_addr); 916 else __ fst_s (dst_addr); 917 918 } else if (src->is_double_fpu()) { 919 assert(src->fpu_regnrLo() == 0, "argument must be on TOS"); 920 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 921 if (pop_fpu_stack) __ fstp_d (dst_addr); 922 else __ fst_d (dst_addr); 923 #endif // !_LP64 924 925 } else { 926 ShouldNotReachHere(); 927 } 928 } 929 930 931 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) { 932 LIR_Address* to_addr = dest->as_address_ptr(); 933 PatchingStub* patch = nullptr; 934 Register compressed_src = rscratch1; 935 936 if (is_reference_type(type)) { 937 __ verify_oop(src->as_register()); 938 #ifdef _LP64 939 if (UseCompressedOops && !wide) { 940 __ movptr(compressed_src, src->as_register()); 941 __ encode_heap_oop(compressed_src); 942 if (patch_code != lir_patch_none) { 943 info->oop_map()->set_narrowoop(compressed_src->as_VMReg()); 944 } 945 } 946 #endif 947 } 948 949 if (patch_code != lir_patch_none) { 950 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 951 Address toa = as_Address(to_addr); 952 assert(toa.disp() != 0, "must have"); 953 } 954 955 int null_check_here = code_offset(); 956 switch (type) { 957 case T_FLOAT: { 958 #ifdef _LP64 959 assert(src->is_single_xmm(), "not a float"); 960 __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); 961 #else 962 if (src->is_single_xmm()) { 963 __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); 964 } else { 965 assert(src->is_single_fpu(), "must be"); 966 assert(src->fpu_regnr() == 0, "argument must be on TOS"); 967 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr)); 968 else __ fst_s (as_Address(to_addr)); 969 } 970 #endif // _LP64 971 break; 972 } 973 974 case T_DOUBLE: { 975 #ifdef _LP64 976 assert(src->is_double_xmm(), "not a double"); 977 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); 978 #else 979 if (src->is_double_xmm()) { 980 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); 981 } else { 982 assert(src->is_double_fpu(), "must be"); 983 assert(src->fpu_regnrLo() == 0, "argument must be on TOS"); 984 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr)); 985 else __ fst_d (as_Address(to_addr)); 986 } 987 #endif // _LP64 988 break; 989 } 990 991 case T_ARRAY: // fall through 992 case T_OBJECT: // fall through 993 if (UseCompressedOops && !wide) { 994 __ movl(as_Address(to_addr), compressed_src); 995 } else { 996 __ movptr(as_Address(to_addr), src->as_register()); 997 } 998 break; 999 case T_METADATA: 1000 // We get here to store a method pointer to the stack to pass to 1001 // a dtrace runtime call. This can't work on 64 bit with 1002 // compressed klass ptrs: T_METADATA can be a compressed klass 1003 // ptr or a 64 bit method pointer. 1004 LP64_ONLY(ShouldNotReachHere()); 1005 __ movptr(as_Address(to_addr), src->as_register()); 1006 break; 1007 case T_ADDRESS: 1008 __ movptr(as_Address(to_addr), src->as_register()); 1009 break; 1010 case T_INT: 1011 __ movl(as_Address(to_addr), src->as_register()); 1012 break; 1013 1014 case T_LONG: { 1015 Register from_lo = src->as_register_lo(); 1016 Register from_hi = src->as_register_hi(); 1017 #ifdef _LP64 1018 __ movptr(as_Address_lo(to_addr), from_lo); 1019 #else 1020 Register base = to_addr->base()->as_register(); 1021 Register index = noreg; 1022 if (to_addr->index()->is_register()) { 1023 index = to_addr->index()->as_register(); 1024 } 1025 if (base == from_lo || index == from_lo) { 1026 assert(base != from_hi, "can't be"); 1027 assert(index == noreg || (index != base && index != from_hi), "can't handle this"); 1028 __ movl(as_Address_hi(to_addr), from_hi); 1029 if (patch != nullptr) { 1030 patching_epilog(patch, lir_patch_high, base, info); 1031 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1032 patch_code = lir_patch_low; 1033 } 1034 __ movl(as_Address_lo(to_addr), from_lo); 1035 } else { 1036 assert(index == noreg || (index != base && index != from_lo), "can't handle this"); 1037 __ movl(as_Address_lo(to_addr), from_lo); 1038 if (patch != nullptr) { 1039 patching_epilog(patch, lir_patch_low, base, info); 1040 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1041 patch_code = lir_patch_high; 1042 } 1043 __ movl(as_Address_hi(to_addr), from_hi); 1044 } 1045 #endif // _LP64 1046 break; 1047 } 1048 1049 case T_BYTE: // fall through 1050 case T_BOOLEAN: { 1051 Register src_reg = src->as_register(); 1052 Address dst_addr = as_Address(to_addr); 1053 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6"); 1054 __ movb(dst_addr, src_reg); 1055 break; 1056 } 1057 1058 case T_CHAR: // fall through 1059 case T_SHORT: 1060 __ movw(as_Address(to_addr), src->as_register()); 1061 break; 1062 1063 default: 1064 ShouldNotReachHere(); 1065 } 1066 if (info != nullptr) { 1067 add_debug_info_for_null_check(null_check_here, info); 1068 } 1069 1070 if (patch_code != lir_patch_none) { 1071 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info); 1072 } 1073 } 1074 1075 1076 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 1077 assert(src->is_stack(), "should not call otherwise"); 1078 assert(dest->is_register(), "should not call otherwise"); 1079 1080 if (dest->is_single_cpu()) { 1081 if (is_reference_type(type)) { 1082 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 1083 __ verify_oop(dest->as_register()); 1084 } else if (type == T_METADATA || type == T_ADDRESS) { 1085 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 1086 } else { 1087 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 1088 } 1089 1090 } else if (dest->is_double_cpu()) { 1091 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes); 1092 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes); 1093 __ movptr(dest->as_register_lo(), src_addr_LO); 1094 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI)); 1095 1096 } else if (dest->is_single_xmm()) { 1097 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 1098 __ movflt(dest->as_xmm_float_reg(), src_addr); 1099 1100 } else if (dest->is_double_xmm()) { 1101 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 1102 __ movdbl(dest->as_xmm_double_reg(), src_addr); 1103 1104 #ifndef _LP64 1105 } else if (dest->is_single_fpu()) { 1106 assert(dest->fpu_regnr() == 0, "dest must be TOS"); 1107 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 1108 __ fld_s(src_addr); 1109 1110 } else if (dest->is_double_fpu()) { 1111 assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); 1112 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 1113 __ fld_d(src_addr); 1114 #endif // _LP64 1115 1116 } else { 1117 ShouldNotReachHere(); 1118 } 1119 } 1120 1121 1122 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 1123 if (src->is_single_stack()) { 1124 if (is_reference_type(type)) { 1125 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix())); 1126 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix())); 1127 } else { 1128 #ifndef _LP64 1129 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix())); 1130 __ popl (frame_map()->address_for_slot(dest->single_stack_ix())); 1131 #else 1132 //no pushl on 64bits 1133 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix())); 1134 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1); 1135 #endif 1136 } 1137 1138 } else if (src->is_double_stack()) { 1139 #ifdef _LP64 1140 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix())); 1141 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix())); 1142 #else 1143 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0)); 1144 // push and pop the part at src + wordSize, adding wordSize for the previous push 1145 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize)); 1146 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize)); 1147 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0)); 1148 #endif // _LP64 1149 1150 } else { 1151 ShouldNotReachHere(); 1152 } 1153 } 1154 1155 1156 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 1157 assert(src->is_address(), "should not call otherwise"); 1158 assert(dest->is_register(), "should not call otherwise"); 1159 1160 LIR_Address* addr = src->as_address_ptr(); 1161 Address from_addr = as_Address(addr); 1162 1163 if (addr->base()->type() == T_OBJECT) { 1164 __ verify_oop(addr->base()->as_pointer_register()); 1165 } 1166 1167 switch (type) { 1168 case T_BOOLEAN: // fall through 1169 case T_BYTE: // fall through 1170 case T_CHAR: // fall through 1171 case T_SHORT: 1172 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) { 1173 // on pre P6 processors we may get partial register stalls 1174 // so blow away the value of to_rinfo before loading a 1175 // partial word into it. Do it here so that it precedes 1176 // the potential patch point below. 1177 __ xorptr(dest->as_register(), dest->as_register()); 1178 } 1179 break; 1180 default: 1181 break; 1182 } 1183 1184 PatchingStub* patch = nullptr; 1185 if (patch_code != lir_patch_none) { 1186 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1187 assert(from_addr.disp() != 0, "must have"); 1188 } 1189 if (info != nullptr) { 1190 add_debug_info_for_null_check_here(info); 1191 } 1192 1193 switch (type) { 1194 case T_FLOAT: { 1195 if (dest->is_single_xmm()) { 1196 __ movflt(dest->as_xmm_float_reg(), from_addr); 1197 } else { 1198 #ifndef _LP64 1199 assert(dest->is_single_fpu(), "must be"); 1200 assert(dest->fpu_regnr() == 0, "dest must be TOS"); 1201 __ fld_s(from_addr); 1202 #else 1203 ShouldNotReachHere(); 1204 #endif // !LP64 1205 } 1206 break; 1207 } 1208 1209 case T_DOUBLE: { 1210 if (dest->is_double_xmm()) { 1211 __ movdbl(dest->as_xmm_double_reg(), from_addr); 1212 } else { 1213 #ifndef _LP64 1214 assert(dest->is_double_fpu(), "must be"); 1215 assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); 1216 __ fld_d(from_addr); 1217 #else 1218 ShouldNotReachHere(); 1219 #endif // !LP64 1220 } 1221 break; 1222 } 1223 1224 case T_OBJECT: // fall through 1225 case T_ARRAY: // fall through 1226 if (UseCompressedOops && !wide) { 1227 __ movl(dest->as_register(), from_addr); 1228 } else { 1229 __ movptr(dest->as_register(), from_addr); 1230 } 1231 break; 1232 1233 case T_ADDRESS: 1234 __ movptr(dest->as_register(), from_addr); 1235 break; 1236 case T_INT: 1237 __ movl(dest->as_register(), from_addr); 1238 break; 1239 1240 case T_LONG: { 1241 Register to_lo = dest->as_register_lo(); 1242 Register to_hi = dest->as_register_hi(); 1243 #ifdef _LP64 1244 __ movptr(to_lo, as_Address_lo(addr)); 1245 #else 1246 Register base = addr->base()->as_register(); 1247 Register index = noreg; 1248 if (addr->index()->is_register()) { 1249 index = addr->index()->as_register(); 1250 } 1251 if ((base == to_lo && index == to_hi) || 1252 (base == to_hi && index == to_lo)) { 1253 // addresses with 2 registers are only formed as a result of 1254 // array access so this code will never have to deal with 1255 // patches or null checks. 1256 assert(info == nullptr && patch == nullptr, "must be"); 1257 __ lea(to_hi, as_Address(addr)); 1258 __ movl(to_lo, Address(to_hi, 0)); 1259 __ movl(to_hi, Address(to_hi, BytesPerWord)); 1260 } else if (base == to_lo || index == to_lo) { 1261 assert(base != to_hi, "can't be"); 1262 assert(index == noreg || (index != base && index != to_hi), "can't handle this"); 1263 __ movl(to_hi, as_Address_hi(addr)); 1264 if (patch != nullptr) { 1265 patching_epilog(patch, lir_patch_high, base, info); 1266 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1267 patch_code = lir_patch_low; 1268 } 1269 __ movl(to_lo, as_Address_lo(addr)); 1270 } else { 1271 assert(index == noreg || (index != base && index != to_lo), "can't handle this"); 1272 __ movl(to_lo, as_Address_lo(addr)); 1273 if (patch != nullptr) { 1274 patching_epilog(patch, lir_patch_low, base, info); 1275 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1276 patch_code = lir_patch_high; 1277 } 1278 __ movl(to_hi, as_Address_hi(addr)); 1279 } 1280 #endif // _LP64 1281 break; 1282 } 1283 1284 case T_BOOLEAN: // fall through 1285 case T_BYTE: { 1286 Register dest_reg = dest->as_register(); 1287 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1288 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1289 __ movsbl(dest_reg, from_addr); 1290 } else { 1291 __ movb(dest_reg, from_addr); 1292 __ shll(dest_reg, 24); 1293 __ sarl(dest_reg, 24); 1294 } 1295 break; 1296 } 1297 1298 case T_CHAR: { 1299 Register dest_reg = dest->as_register(); 1300 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1301 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1302 __ movzwl(dest_reg, from_addr); 1303 } else { 1304 __ movw(dest_reg, from_addr); 1305 } 1306 break; 1307 } 1308 1309 case T_SHORT: { 1310 Register dest_reg = dest->as_register(); 1311 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1312 __ movswl(dest_reg, from_addr); 1313 } else { 1314 __ movw(dest_reg, from_addr); 1315 __ shll(dest_reg, 16); 1316 __ sarl(dest_reg, 16); 1317 } 1318 break; 1319 } 1320 1321 default: 1322 ShouldNotReachHere(); 1323 } 1324 1325 if (patch != nullptr) { 1326 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 1327 } 1328 1329 if (is_reference_type(type)) { 1330 #ifdef _LP64 1331 if (UseCompressedOops && !wide) { 1332 __ decode_heap_oop(dest->as_register()); 1333 } 1334 #endif 1335 1336 __ verify_oop(dest->as_register()); 1337 } 1338 } 1339 1340 1341 NEEDS_CLEANUP; // This could be static? 1342 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const { 1343 int elem_size = type2aelembytes(type); 1344 switch (elem_size) { 1345 case 1: return Address::times_1; 1346 case 2: return Address::times_2; 1347 case 4: return Address::times_4; 1348 case 8: return Address::times_8; 1349 } 1350 ShouldNotReachHere(); 1351 return Address::no_scale; 1352 } 1353 1354 1355 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1356 switch (op->code()) { 1357 case lir_idiv: 1358 case lir_irem: 1359 arithmetic_idiv(op->code(), 1360 op->in_opr1(), 1361 op->in_opr2(), 1362 op->in_opr3(), 1363 op->result_opr(), 1364 op->info()); 1365 break; 1366 case lir_fmad: 1367 __ fmad(op->result_opr()->as_xmm_double_reg(), 1368 op->in_opr1()->as_xmm_double_reg(), 1369 op->in_opr2()->as_xmm_double_reg(), 1370 op->in_opr3()->as_xmm_double_reg()); 1371 break; 1372 case lir_fmaf: 1373 __ fmaf(op->result_opr()->as_xmm_float_reg(), 1374 op->in_opr1()->as_xmm_float_reg(), 1375 op->in_opr2()->as_xmm_float_reg(), 1376 op->in_opr3()->as_xmm_float_reg()); 1377 break; 1378 default: ShouldNotReachHere(); break; 1379 } 1380 } 1381 1382 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1383 #ifdef ASSERT 1384 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1385 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1386 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1387 #endif 1388 1389 if (op->cond() == lir_cond_always) { 1390 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1391 __ jmp (*(op->label())); 1392 } else { 1393 Assembler::Condition acond = Assembler::zero; 1394 if (op->code() == lir_cond_float_branch) { 1395 assert(op->ublock() != nullptr, "must have unordered successor"); 1396 __ jcc(Assembler::parity, *(op->ublock()->label())); 1397 switch(op->cond()) { 1398 case lir_cond_equal: acond = Assembler::equal; break; 1399 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1400 case lir_cond_less: acond = Assembler::below; break; 1401 case lir_cond_lessEqual: acond = Assembler::belowEqual; break; 1402 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break; 1403 case lir_cond_greater: acond = Assembler::above; break; 1404 default: ShouldNotReachHere(); 1405 } 1406 } else { 1407 switch (op->cond()) { 1408 case lir_cond_equal: acond = Assembler::equal; break; 1409 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1410 case lir_cond_less: acond = Assembler::less; break; 1411 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 1412 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 1413 case lir_cond_greater: acond = Assembler::greater; break; 1414 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 1415 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 1416 default: ShouldNotReachHere(); 1417 } 1418 } 1419 __ jcc(acond,*(op->label())); 1420 } 1421 } 1422 1423 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1424 LIR_Opr src = op->in_opr(); 1425 LIR_Opr dest = op->result_opr(); 1426 1427 switch (op->bytecode()) { 1428 case Bytecodes::_i2l: 1429 #ifdef _LP64 1430 __ movl2ptr(dest->as_register_lo(), src->as_register()); 1431 #else 1432 move_regs(src->as_register(), dest->as_register_lo()); 1433 move_regs(src->as_register(), dest->as_register_hi()); 1434 __ sarl(dest->as_register_hi(), 31); 1435 #endif // LP64 1436 break; 1437 1438 case Bytecodes::_l2i: 1439 #ifdef _LP64 1440 __ movl(dest->as_register(), src->as_register_lo()); 1441 #else 1442 move_regs(src->as_register_lo(), dest->as_register()); 1443 #endif 1444 break; 1445 1446 case Bytecodes::_i2b: 1447 move_regs(src->as_register(), dest->as_register()); 1448 __ sign_extend_byte(dest->as_register()); 1449 break; 1450 1451 case Bytecodes::_i2c: 1452 move_regs(src->as_register(), dest->as_register()); 1453 __ andl(dest->as_register(), 0xFFFF); 1454 break; 1455 1456 case Bytecodes::_i2s: 1457 move_regs(src->as_register(), dest->as_register()); 1458 __ sign_extend_short(dest->as_register()); 1459 break; 1460 1461 1462 #ifdef _LP64 1463 case Bytecodes::_f2d: 1464 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); 1465 break; 1466 1467 case Bytecodes::_d2f: 1468 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); 1469 break; 1470 1471 case Bytecodes::_i2f: 1472 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register()); 1473 break; 1474 1475 case Bytecodes::_i2d: 1476 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register()); 1477 break; 1478 1479 case Bytecodes::_l2f: 1480 __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo()); 1481 break; 1482 1483 case Bytecodes::_l2d: 1484 __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo()); 1485 break; 1486 1487 case Bytecodes::_f2i: 1488 __ convert_f2i(dest->as_register(), src->as_xmm_float_reg()); 1489 break; 1490 1491 case Bytecodes::_d2i: 1492 __ convert_d2i(dest->as_register(), src->as_xmm_double_reg()); 1493 break; 1494 1495 case Bytecodes::_f2l: 1496 __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg()); 1497 break; 1498 1499 case Bytecodes::_d2l: 1500 __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg()); 1501 break; 1502 #else 1503 case Bytecodes::_f2d: 1504 case Bytecodes::_d2f: 1505 if (dest->is_single_xmm()) { 1506 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); 1507 } else if (dest->is_double_xmm()) { 1508 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); 1509 } else { 1510 assert(src->fpu() == dest->fpu(), "register must be equal"); 1511 // do nothing (float result is rounded later through spilling) 1512 } 1513 break; 1514 1515 case Bytecodes::_i2f: 1516 case Bytecodes::_i2d: 1517 if (dest->is_single_xmm()) { 1518 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register()); 1519 } else if (dest->is_double_xmm()) { 1520 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register()); 1521 } else { 1522 assert(dest->fpu() == 0, "result must be on TOS"); 1523 __ movl(Address(rsp, 0), src->as_register()); 1524 __ fild_s(Address(rsp, 0)); 1525 } 1526 break; 1527 1528 case Bytecodes::_l2f: 1529 case Bytecodes::_l2d: 1530 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)"); 1531 assert(dest->fpu() == 0, "result must be on TOS"); 1532 __ movptr(Address(rsp, 0), src->as_register_lo()); 1533 __ movl(Address(rsp, BytesPerWord), src->as_register_hi()); 1534 __ fild_d(Address(rsp, 0)); 1535 // float result is rounded later through spilling 1536 break; 1537 1538 case Bytecodes::_f2i: 1539 case Bytecodes::_d2i: 1540 if (src->is_single_xmm()) { 1541 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg()); 1542 } else if (src->is_double_xmm()) { 1543 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg()); 1544 } else { 1545 assert(src->fpu() == 0, "input must be on TOS"); 1546 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_trunc())); 1547 __ fist_s(Address(rsp, 0)); 1548 __ movl(dest->as_register(), Address(rsp, 0)); 1549 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std())); 1550 } 1551 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 1552 assert(op->stub() != nullptr, "stub required"); 1553 __ cmpl(dest->as_register(), 0x80000000); 1554 __ jcc(Assembler::equal, *op->stub()->entry()); 1555 __ bind(*op->stub()->continuation()); 1556 break; 1557 1558 case Bytecodes::_f2l: 1559 case Bytecodes::_d2l: 1560 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)"); 1561 assert(src->fpu() == 0, "input must be on TOS"); 1562 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers"); 1563 1564 // instruction sequence too long to inline it here 1565 { 1566 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::fpu2long_stub_id))); 1567 } 1568 break; 1569 #endif // _LP64 1570 1571 default: ShouldNotReachHere(); 1572 } 1573 } 1574 1575 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1576 if (op->init_check()) { 1577 add_debug_info_for_null_check_here(op->stub()->info()); 1578 // init_state needs acquire, but x86 is TSO, and so we are already good. 1579 __ cmpb(Address(op->klass()->as_register(), 1580 InstanceKlass::init_state_offset()), 1581 InstanceKlass::fully_initialized); 1582 __ jcc(Assembler::notEqual, *op->stub()->entry()); 1583 } 1584 __ allocate_object(op->obj()->as_register(), 1585 op->tmp1()->as_register(), 1586 op->tmp2()->as_register(), 1587 op->header_size(), 1588 op->object_size(), 1589 op->klass()->as_register(), 1590 *op->stub()->entry()); 1591 __ bind(*op->stub()->continuation()); 1592 } 1593 1594 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1595 Register len = op->len()->as_register(); 1596 LP64_ONLY( __ movslq(len, len); ) 1597 1598 if (UseSlowPath || 1599 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1600 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1601 __ jmp(*op->stub()->entry()); 1602 } else { 1603 Register tmp1 = op->tmp1()->as_register(); 1604 Register tmp2 = op->tmp2()->as_register(); 1605 Register tmp3 = op->tmp3()->as_register(); 1606 if (len == tmp1) { 1607 tmp1 = tmp3; 1608 } else if (len == tmp2) { 1609 tmp2 = tmp3; 1610 } else if (len == tmp3) { 1611 // everything is ok 1612 } else { 1613 __ mov(tmp3, len); 1614 } 1615 __ allocate_array(op->obj()->as_register(), 1616 len, 1617 tmp1, 1618 tmp2, 1619 arrayOopDesc::base_offset_in_bytes(op->type()), 1620 array_element_size(op->type()), 1621 op->klass()->as_register(), 1622 *op->stub()->entry(), 1623 op->zero_array()); 1624 } 1625 __ bind(*op->stub()->continuation()); 1626 } 1627 1628 void LIR_Assembler::type_profile_helper(Register mdo, 1629 ciMethodData *md, ciProfileData *data, 1630 Register recv, Label* update_done) { 1631 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1632 Label next_test; 1633 // See if the receiver is receiver[n]. 1634 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1635 __ jccb(Assembler::notEqual, next_test); 1636 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1637 __ addptr(data_addr, DataLayout::counter_increment); 1638 __ jmp(*update_done); 1639 __ bind(next_test); 1640 } 1641 1642 // Didn't find receiver; find next empty slot and fill it in 1643 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1644 Label next_test; 1645 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 1646 __ cmpptr(recv_addr, NULL_WORD); 1647 __ jccb(Assembler::notEqual, next_test); 1648 __ movptr(recv_addr, recv); 1649 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment); 1650 __ jmp(*update_done); 1651 __ bind(next_test); 1652 } 1653 } 1654 1655 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1656 // we always need a stub for the failure case. 1657 CodeStub* stub = op->stub(); 1658 Register obj = op->object()->as_register(); 1659 Register k_RInfo = op->tmp1()->as_register(); 1660 Register klass_RInfo = op->tmp2()->as_register(); 1661 Register dst = op->result_opr()->as_register(); 1662 ciKlass* k = op->klass(); 1663 Register Rtmp1 = noreg; 1664 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1665 1666 // check if it needs to be profiled 1667 ciMethodData* md = nullptr; 1668 ciProfileData* data = nullptr; 1669 1670 if (op->should_profile()) { 1671 ciMethod* method = op->profiled_method(); 1672 assert(method != nullptr, "Should have method"); 1673 int bci = op->profiled_bci(); 1674 md = method->method_data_or_null(); 1675 assert(md != nullptr, "Sanity"); 1676 data = md->bci_to_data(bci); 1677 assert(data != nullptr, "need data for type check"); 1678 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1679 } 1680 Label* success_target = success; 1681 Label* failure_target = failure; 1682 1683 if (obj == k_RInfo) { 1684 k_RInfo = dst; 1685 } else if (obj == klass_RInfo) { 1686 klass_RInfo = dst; 1687 } 1688 if (k->is_loaded() && !UseCompressedClassPointers) { 1689 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1690 } else { 1691 Rtmp1 = op->tmp3()->as_register(); 1692 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1693 } 1694 1695 assert_different_registers(obj, k_RInfo, klass_RInfo); 1696 1697 __ testptr(obj, obj); 1698 if (op->should_profile()) { 1699 Label not_null; 1700 Register mdo = klass_RInfo; 1701 __ mov_metadata(mdo, md->constant_encoding()); 1702 __ jccb(Assembler::notEqual, not_null); 1703 // Object is null; update MDO and exit 1704 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1705 int header_bits = BitData::null_seen_byte_constant(); 1706 __ orb(data_addr, header_bits); 1707 __ jmp(*obj_is_null); 1708 __ bind(not_null); 1709 1710 Label update_done; 1711 Register recv = k_RInfo; 1712 __ load_klass(recv, obj, tmp_load_klass); 1713 type_profile_helper(mdo, md, data, recv, &update_done); 1714 1715 Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1716 __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment); 1717 1718 __ bind(update_done); 1719 } else { 1720 __ jcc(Assembler::equal, *obj_is_null); 1721 } 1722 1723 if (!k->is_loaded()) { 1724 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1725 } else { 1726 #ifdef _LP64 1727 __ mov_metadata(k_RInfo, k->constant_encoding()); 1728 #endif // _LP64 1729 } 1730 __ verify_oop(obj); 1731 1732 if (op->fast_check()) { 1733 // get object class 1734 // not a safepoint as obj null check happens earlier 1735 #ifdef _LP64 1736 if (UseCompressedClassPointers) { 1737 __ load_klass(Rtmp1, obj, tmp_load_klass); 1738 __ cmpptr(k_RInfo, Rtmp1); 1739 } else { 1740 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1741 } 1742 #else 1743 if (k->is_loaded()) { 1744 __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()); 1745 } else { 1746 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1747 } 1748 #endif 1749 __ jcc(Assembler::notEqual, *failure_target); 1750 // successful cast, fall through to profile or jump 1751 } else { 1752 // get object class 1753 // not a safepoint as obj null check happens earlier 1754 __ load_klass(klass_RInfo, obj, tmp_load_klass); 1755 if (k->is_loaded()) { 1756 // See if we get an immediate positive hit 1757 #ifdef _LP64 1758 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset())); 1759 #else 1760 __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding()); 1761 #endif // _LP64 1762 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1763 __ jcc(Assembler::notEqual, *failure_target); 1764 // successful cast, fall through to profile or jump 1765 } else { 1766 // See if we get an immediate positive hit 1767 __ jcc(Assembler::equal, *success_target); 1768 // check for self 1769 #ifdef _LP64 1770 __ cmpptr(klass_RInfo, k_RInfo); 1771 #else 1772 __ cmpklass(klass_RInfo, k->constant_encoding()); 1773 #endif // _LP64 1774 __ jcc(Assembler::equal, *success_target); 1775 1776 __ push(klass_RInfo); 1777 #ifdef _LP64 1778 __ push(k_RInfo); 1779 #else 1780 __ pushklass(k->constant_encoding(), noreg); 1781 #endif // _LP64 1782 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1783 __ pop(klass_RInfo); 1784 __ pop(klass_RInfo); 1785 // result is a boolean 1786 __ testl(klass_RInfo, klass_RInfo); 1787 __ jcc(Assembler::equal, *failure_target); 1788 // successful cast, fall through to profile or jump 1789 } 1790 } else { 1791 // perform the fast part of the checking logic 1792 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1793 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1794 __ push(klass_RInfo); 1795 __ push(k_RInfo); 1796 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1797 __ pop(klass_RInfo); 1798 __ pop(k_RInfo); 1799 // result is a boolean 1800 __ testl(k_RInfo, k_RInfo); 1801 __ jcc(Assembler::equal, *failure_target); 1802 // successful cast, fall through to profile or jump 1803 } 1804 } 1805 __ jmp(*success); 1806 } 1807 1808 1809 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1810 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1811 LIR_Code code = op->code(); 1812 if (code == lir_store_check) { 1813 Register value = op->object()->as_register(); 1814 Register array = op->array()->as_register(); 1815 Register k_RInfo = op->tmp1()->as_register(); 1816 Register klass_RInfo = op->tmp2()->as_register(); 1817 Register Rtmp1 = op->tmp3()->as_register(); 1818 1819 CodeStub* stub = op->stub(); 1820 1821 // check if it needs to be profiled 1822 ciMethodData* md = nullptr; 1823 ciProfileData* data = nullptr; 1824 1825 if (op->should_profile()) { 1826 ciMethod* method = op->profiled_method(); 1827 assert(method != nullptr, "Should have method"); 1828 int bci = op->profiled_bci(); 1829 md = method->method_data_or_null(); 1830 assert(md != nullptr, "Sanity"); 1831 data = md->bci_to_data(bci); 1832 assert(data != nullptr, "need data for type check"); 1833 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1834 } 1835 Label done; 1836 Label* success_target = &done; 1837 Label* failure_target = stub->entry(); 1838 1839 __ testptr(value, value); 1840 if (op->should_profile()) { 1841 Label not_null; 1842 Register mdo = klass_RInfo; 1843 __ mov_metadata(mdo, md->constant_encoding()); 1844 __ jccb(Assembler::notEqual, not_null); 1845 // Object is null; update MDO and exit 1846 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1847 int header_bits = BitData::null_seen_byte_constant(); 1848 __ orb(data_addr, header_bits); 1849 __ jmp(done); 1850 __ bind(not_null); 1851 1852 Label update_done; 1853 Register recv = k_RInfo; 1854 __ load_klass(recv, value, tmp_load_klass); 1855 type_profile_helper(mdo, md, data, recv, &update_done); 1856 1857 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1858 __ addptr(counter_addr, DataLayout::counter_increment); 1859 __ bind(update_done); 1860 } else { 1861 __ jcc(Assembler::equal, done); 1862 } 1863 1864 add_debug_info_for_null_check_here(op->info_for_exception()); 1865 __ load_klass(k_RInfo, array, tmp_load_klass); 1866 __ load_klass(klass_RInfo, value, tmp_load_klass); 1867 1868 // get instance klass (it's already uncompressed) 1869 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1870 // perform the fast part of the checking logic 1871 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1872 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1873 __ push(klass_RInfo); 1874 __ push(k_RInfo); 1875 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1876 __ pop(klass_RInfo); 1877 __ pop(k_RInfo); 1878 // result is a boolean 1879 __ testl(k_RInfo, k_RInfo); 1880 __ jcc(Assembler::equal, *failure_target); 1881 // fall through to the success case 1882 1883 __ bind(done); 1884 } else 1885 if (code == lir_checkcast) { 1886 Register obj = op->object()->as_register(); 1887 Register dst = op->result_opr()->as_register(); 1888 Label success; 1889 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1890 __ bind(success); 1891 if (dst != obj) { 1892 __ mov(dst, obj); 1893 } 1894 } else 1895 if (code == lir_instanceof) { 1896 Register obj = op->object()->as_register(); 1897 Register dst = op->result_opr()->as_register(); 1898 Label success, failure, done; 1899 emit_typecheck_helper(op, &success, &failure, &failure); 1900 __ bind(failure); 1901 __ xorptr(dst, dst); 1902 __ jmpb(done); 1903 __ bind(success); 1904 __ movptr(dst, 1); 1905 __ bind(done); 1906 } else { 1907 ShouldNotReachHere(); 1908 } 1909 1910 } 1911 1912 1913 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1914 if (LP64_ONLY(false &&) op->code() == lir_cas_long) { 1915 assert(op->cmp_value()->as_register_lo() == rax, "wrong register"); 1916 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register"); 1917 assert(op->new_value()->as_register_lo() == rbx, "wrong register"); 1918 assert(op->new_value()->as_register_hi() == rcx, "wrong register"); 1919 Register addr = op->addr()->as_register(); 1920 __ lock(); 1921 NOT_LP64(__ cmpxchg8(Address(addr, 0))); 1922 1923 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) { 1924 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");) 1925 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1926 Register newval = op->new_value()->as_register(); 1927 Register cmpval = op->cmp_value()->as_register(); 1928 assert(cmpval == rax, "wrong register"); 1929 assert(newval != noreg, "new val must be register"); 1930 assert(cmpval != newval, "cmp and new values must be in different registers"); 1931 assert(cmpval != addr, "cmp and addr must be in different registers"); 1932 assert(newval != addr, "new value and addr must be in different registers"); 1933 1934 if ( op->code() == lir_cas_obj) { 1935 #ifdef _LP64 1936 if (UseCompressedOops) { 1937 __ encode_heap_oop(cmpval); 1938 __ mov(rscratch1, newval); 1939 __ encode_heap_oop(rscratch1); 1940 __ lock(); 1941 // cmpval (rax) is implicitly used by this instruction 1942 __ cmpxchgl(rscratch1, Address(addr, 0)); 1943 } else 1944 #endif 1945 { 1946 __ lock(); 1947 __ cmpxchgptr(newval, Address(addr, 0)); 1948 } 1949 } else { 1950 assert(op->code() == lir_cas_int, "lir_cas_int expected"); 1951 __ lock(); 1952 __ cmpxchgl(newval, Address(addr, 0)); 1953 } 1954 #ifdef _LP64 1955 } else if (op->code() == lir_cas_long) { 1956 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1957 Register newval = op->new_value()->as_register_lo(); 1958 Register cmpval = op->cmp_value()->as_register_lo(); 1959 assert(cmpval == rax, "wrong register"); 1960 assert(newval != noreg, "new val must be register"); 1961 assert(cmpval != newval, "cmp and new values must be in different registers"); 1962 assert(cmpval != addr, "cmp and addr must be in different registers"); 1963 assert(newval != addr, "new value and addr must be in different registers"); 1964 __ lock(); 1965 __ cmpxchgq(newval, Address(addr, 0)); 1966 #endif // _LP64 1967 } else { 1968 Unimplemented(); 1969 } 1970 } 1971 1972 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1973 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1974 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86"); 1975 1976 Assembler::Condition acond, ncond; 1977 switch (condition) { 1978 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break; 1979 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break; 1980 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break; 1981 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break; 1982 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break; 1983 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break; 1984 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break; 1985 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break; 1986 default: acond = Assembler::equal; ncond = Assembler::notEqual; 1987 ShouldNotReachHere(); 1988 } 1989 1990 if (opr1->is_cpu_register()) { 1991 reg2reg(opr1, result); 1992 } else if (opr1->is_stack()) { 1993 stack2reg(opr1, result, result->type()); 1994 } else if (opr1->is_constant()) { 1995 const2reg(opr1, result, lir_patch_none, nullptr); 1996 } else { 1997 ShouldNotReachHere(); 1998 } 1999 2000 if (VM_Version::supports_cmov() && !opr2->is_constant()) { 2001 // optimized version that does not require a branch 2002 if (opr2->is_single_cpu()) { 2003 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); 2004 __ cmov(ncond, result->as_register(), opr2->as_register()); 2005 } else if (opr2->is_double_cpu()) { 2006 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 2007 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 2008 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo()); 2009 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());) 2010 } else if (opr2->is_single_stack()) { 2011 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix())); 2012 } else if (opr2->is_double_stack()) { 2013 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes)); 2014 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));) 2015 } else { 2016 ShouldNotReachHere(); 2017 } 2018 2019 } else { 2020 Label skip; 2021 __ jccb(acond, skip); 2022 if (opr2->is_cpu_register()) { 2023 reg2reg(opr2, result); 2024 } else if (opr2->is_stack()) { 2025 stack2reg(opr2, result, result->type()); 2026 } else if (opr2->is_constant()) { 2027 const2reg(opr2, result, lir_patch_none, nullptr); 2028 } else { 2029 ShouldNotReachHere(); 2030 } 2031 __ bind(skip); 2032 } 2033 } 2034 2035 2036 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { 2037 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 2038 2039 if (left->is_single_cpu()) { 2040 assert(left == dest, "left and dest must be equal"); 2041 Register lreg = left->as_register(); 2042 2043 if (right->is_single_cpu()) { 2044 // cpu register - cpu register 2045 Register rreg = right->as_register(); 2046 switch (code) { 2047 case lir_add: __ addl (lreg, rreg); break; 2048 case lir_sub: __ subl (lreg, rreg); break; 2049 case lir_mul: __ imull(lreg, rreg); break; 2050 default: ShouldNotReachHere(); 2051 } 2052 2053 } else if (right->is_stack()) { 2054 // cpu register - stack 2055 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2056 switch (code) { 2057 case lir_add: __ addl(lreg, raddr); break; 2058 case lir_sub: __ subl(lreg, raddr); break; 2059 default: ShouldNotReachHere(); 2060 } 2061 2062 } else if (right->is_constant()) { 2063 // cpu register - constant 2064 jint c = right->as_constant_ptr()->as_jint(); 2065 switch (code) { 2066 case lir_add: { 2067 __ incrementl(lreg, c); 2068 break; 2069 } 2070 case lir_sub: { 2071 __ decrementl(lreg, c); 2072 break; 2073 } 2074 default: ShouldNotReachHere(); 2075 } 2076 2077 } else { 2078 ShouldNotReachHere(); 2079 } 2080 2081 } else if (left->is_double_cpu()) { 2082 assert(left == dest, "left and dest must be equal"); 2083 Register lreg_lo = left->as_register_lo(); 2084 Register lreg_hi = left->as_register_hi(); 2085 2086 if (right->is_double_cpu()) { 2087 // cpu register - cpu register 2088 Register rreg_lo = right->as_register_lo(); 2089 Register rreg_hi = right->as_register_hi(); 2090 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi)); 2091 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo)); 2092 switch (code) { 2093 case lir_add: 2094 __ addptr(lreg_lo, rreg_lo); 2095 NOT_LP64(__ adcl(lreg_hi, rreg_hi)); 2096 break; 2097 case lir_sub: 2098 __ subptr(lreg_lo, rreg_lo); 2099 NOT_LP64(__ sbbl(lreg_hi, rreg_hi)); 2100 break; 2101 case lir_mul: 2102 #ifdef _LP64 2103 __ imulq(lreg_lo, rreg_lo); 2104 #else 2105 assert(lreg_lo == rax && lreg_hi == rdx, "must be"); 2106 __ imull(lreg_hi, rreg_lo); 2107 __ imull(rreg_hi, lreg_lo); 2108 __ addl (rreg_hi, lreg_hi); 2109 __ mull (rreg_lo); 2110 __ addl (lreg_hi, rreg_hi); 2111 #endif // _LP64 2112 break; 2113 default: 2114 ShouldNotReachHere(); 2115 } 2116 2117 } else if (right->is_constant()) { 2118 // cpu register - constant 2119 #ifdef _LP64 2120 jlong c = right->as_constant_ptr()->as_jlong_bits(); 2121 __ movptr(r10, (intptr_t) c); 2122 switch (code) { 2123 case lir_add: 2124 __ addptr(lreg_lo, r10); 2125 break; 2126 case lir_sub: 2127 __ subptr(lreg_lo, r10); 2128 break; 2129 default: 2130 ShouldNotReachHere(); 2131 } 2132 #else 2133 jint c_lo = right->as_constant_ptr()->as_jint_lo(); 2134 jint c_hi = right->as_constant_ptr()->as_jint_hi(); 2135 switch (code) { 2136 case lir_add: 2137 __ addptr(lreg_lo, c_lo); 2138 __ adcl(lreg_hi, c_hi); 2139 break; 2140 case lir_sub: 2141 __ subptr(lreg_lo, c_lo); 2142 __ sbbl(lreg_hi, c_hi); 2143 break; 2144 default: 2145 ShouldNotReachHere(); 2146 } 2147 #endif // _LP64 2148 2149 } else { 2150 ShouldNotReachHere(); 2151 } 2152 2153 } else if (left->is_single_xmm()) { 2154 assert(left == dest, "left and dest must be equal"); 2155 XMMRegister lreg = left->as_xmm_float_reg(); 2156 2157 if (right->is_single_xmm()) { 2158 XMMRegister rreg = right->as_xmm_float_reg(); 2159 switch (code) { 2160 case lir_add: __ addss(lreg, rreg); break; 2161 case lir_sub: __ subss(lreg, rreg); break; 2162 case lir_mul: __ mulss(lreg, rreg); break; 2163 case lir_div: __ divss(lreg, rreg); break; 2164 default: ShouldNotReachHere(); 2165 } 2166 } else { 2167 Address raddr; 2168 if (right->is_single_stack()) { 2169 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2170 } else if (right->is_constant()) { 2171 // hack for now 2172 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat()))); 2173 } else { 2174 ShouldNotReachHere(); 2175 } 2176 switch (code) { 2177 case lir_add: __ addss(lreg, raddr); break; 2178 case lir_sub: __ subss(lreg, raddr); break; 2179 case lir_mul: __ mulss(lreg, raddr); break; 2180 case lir_div: __ divss(lreg, raddr); break; 2181 default: ShouldNotReachHere(); 2182 } 2183 } 2184 2185 } else if (left->is_double_xmm()) { 2186 assert(left == dest, "left and dest must be equal"); 2187 2188 XMMRegister lreg = left->as_xmm_double_reg(); 2189 if (right->is_double_xmm()) { 2190 XMMRegister rreg = right->as_xmm_double_reg(); 2191 switch (code) { 2192 case lir_add: __ addsd(lreg, rreg); break; 2193 case lir_sub: __ subsd(lreg, rreg); break; 2194 case lir_mul: __ mulsd(lreg, rreg); break; 2195 case lir_div: __ divsd(lreg, rreg); break; 2196 default: ShouldNotReachHere(); 2197 } 2198 } else { 2199 Address raddr; 2200 if (right->is_double_stack()) { 2201 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 2202 } else if (right->is_constant()) { 2203 // hack for now 2204 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 2205 } else { 2206 ShouldNotReachHere(); 2207 } 2208 switch (code) { 2209 case lir_add: __ addsd(lreg, raddr); break; 2210 case lir_sub: __ subsd(lreg, raddr); break; 2211 case lir_mul: __ mulsd(lreg, raddr); break; 2212 case lir_div: __ divsd(lreg, raddr); break; 2213 default: ShouldNotReachHere(); 2214 } 2215 } 2216 2217 #ifndef _LP64 2218 } else if (left->is_single_fpu()) { 2219 assert(dest->is_single_fpu(), "fpu stack allocation required"); 2220 2221 if (right->is_single_fpu()) { 2222 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack); 2223 2224 } else { 2225 assert(left->fpu_regnr() == 0, "left must be on TOS"); 2226 assert(dest->fpu_regnr() == 0, "dest must be on TOS"); 2227 2228 Address raddr; 2229 if (right->is_single_stack()) { 2230 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2231 } else if (right->is_constant()) { 2232 address const_addr = float_constant(right->as_jfloat()); 2233 assert(const_addr != nullptr, "incorrect float/double constant maintenance"); 2234 // hack for now 2235 raddr = __ as_Address(InternalAddress(const_addr)); 2236 } else { 2237 ShouldNotReachHere(); 2238 } 2239 2240 switch (code) { 2241 case lir_add: __ fadd_s(raddr); break; 2242 case lir_sub: __ fsub_s(raddr); break; 2243 case lir_mul: __ fmul_s(raddr); break; 2244 case lir_div: __ fdiv_s(raddr); break; 2245 default: ShouldNotReachHere(); 2246 } 2247 } 2248 2249 } else if (left->is_double_fpu()) { 2250 assert(dest->is_double_fpu(), "fpu stack allocation required"); 2251 2252 if (code == lir_mul || code == lir_div) { 2253 // Double values require special handling for strictfp mul/div on x86 2254 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 2255 __ fmulp(left->fpu_regnrLo() + 1); 2256 } 2257 2258 if (right->is_double_fpu()) { 2259 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack); 2260 2261 } else { 2262 assert(left->fpu_regnrLo() == 0, "left must be on TOS"); 2263 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS"); 2264 2265 Address raddr; 2266 if (right->is_double_stack()) { 2267 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 2268 } else if (right->is_constant()) { 2269 // hack for now 2270 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 2271 } else { 2272 ShouldNotReachHere(); 2273 } 2274 2275 switch (code) { 2276 case lir_add: __ fadd_d(raddr); break; 2277 case lir_sub: __ fsub_d(raddr); break; 2278 case lir_mul: __ fmul_d(raddr); break; 2279 case lir_div: __ fdiv_d(raddr); break; 2280 default: ShouldNotReachHere(); 2281 } 2282 } 2283 2284 if (code == lir_mul || code == lir_div) { 2285 // Double values require special handling for strictfp mul/div on x86 2286 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 2287 __ fmulp(dest->fpu_regnrLo() + 1); 2288 } 2289 #endif // !_LP64 2290 2291 } else if (left->is_single_stack() || left->is_address()) { 2292 assert(left == dest, "left and dest must be equal"); 2293 2294 Address laddr; 2295 if (left->is_single_stack()) { 2296 laddr = frame_map()->address_for_slot(left->single_stack_ix()); 2297 } else if (left->is_address()) { 2298 laddr = as_Address(left->as_address_ptr()); 2299 } else { 2300 ShouldNotReachHere(); 2301 } 2302 2303 if (right->is_single_cpu()) { 2304 Register rreg = right->as_register(); 2305 switch (code) { 2306 case lir_add: __ addl(laddr, rreg); break; 2307 case lir_sub: __ subl(laddr, rreg); break; 2308 default: ShouldNotReachHere(); 2309 } 2310 } else if (right->is_constant()) { 2311 jint c = right->as_constant_ptr()->as_jint(); 2312 switch (code) { 2313 case lir_add: { 2314 __ incrementl(laddr, c); 2315 break; 2316 } 2317 case lir_sub: { 2318 __ decrementl(laddr, c); 2319 break; 2320 } 2321 default: ShouldNotReachHere(); 2322 } 2323 } else { 2324 ShouldNotReachHere(); 2325 } 2326 2327 } else { 2328 ShouldNotReachHere(); 2329 } 2330 } 2331 2332 #ifndef _LP64 2333 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { 2334 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR"); 2335 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR"); 2336 assert(left_index == 0 || right_index == 0, "either must be on top of stack"); 2337 2338 bool left_is_tos = (left_index == 0); 2339 bool dest_is_tos = (dest_index == 0); 2340 int non_tos_index = (left_is_tos ? right_index : left_index); 2341 2342 switch (code) { 2343 case lir_add: 2344 if (pop_fpu_stack) __ faddp(non_tos_index); 2345 else if (dest_is_tos) __ fadd (non_tos_index); 2346 else __ fadda(non_tos_index); 2347 break; 2348 2349 case lir_sub: 2350 if (left_is_tos) { 2351 if (pop_fpu_stack) __ fsubrp(non_tos_index); 2352 else if (dest_is_tos) __ fsub (non_tos_index); 2353 else __ fsubra(non_tos_index); 2354 } else { 2355 if (pop_fpu_stack) __ fsubp (non_tos_index); 2356 else if (dest_is_tos) __ fsubr (non_tos_index); 2357 else __ fsuba (non_tos_index); 2358 } 2359 break; 2360 2361 case lir_mul: 2362 if (pop_fpu_stack) __ fmulp(non_tos_index); 2363 else if (dest_is_tos) __ fmul (non_tos_index); 2364 else __ fmula(non_tos_index); 2365 break; 2366 2367 case lir_div: 2368 if (left_is_tos) { 2369 if (pop_fpu_stack) __ fdivrp(non_tos_index); 2370 else if (dest_is_tos) __ fdiv (non_tos_index); 2371 else __ fdivra(non_tos_index); 2372 } else { 2373 if (pop_fpu_stack) __ fdivp (non_tos_index); 2374 else if (dest_is_tos) __ fdivr (non_tos_index); 2375 else __ fdiva (non_tos_index); 2376 } 2377 break; 2378 2379 case lir_rem: 2380 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation"); 2381 __ fremr(noreg); 2382 break; 2383 2384 default: 2385 ShouldNotReachHere(); 2386 } 2387 } 2388 #endif // _LP64 2389 2390 2391 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 2392 if (value->is_double_xmm()) { 2393 switch(code) { 2394 case lir_abs : 2395 { 2396 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) { 2397 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); 2398 } 2399 assert(!tmp->is_valid(), "do not need temporary"); 2400 __ andpd(dest->as_xmm_double_reg(), 2401 ExternalAddress((address)double_signmask_pool), 2402 rscratch1); 2403 } 2404 break; 2405 2406 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break; 2407 // all other intrinsics are not available in the SSE instruction set, so FPU is used 2408 default : ShouldNotReachHere(); 2409 } 2410 2411 #ifndef _LP64 2412 } else if (value->is_double_fpu()) { 2413 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS"); 2414 switch(code) { 2415 case lir_abs : __ fabs() ; break; 2416 case lir_sqrt : __ fsqrt(); break; 2417 default : ShouldNotReachHere(); 2418 } 2419 #endif // !_LP64 2420 } else if (code == lir_f2hf) { 2421 __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg()); 2422 } else if (code == lir_hf2f) { 2423 __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register()); 2424 } else { 2425 Unimplemented(); 2426 } 2427 } 2428 2429 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 2430 // assert(left->destroys_register(), "check"); 2431 if (left->is_single_cpu()) { 2432 Register reg = left->as_register(); 2433 if (right->is_constant()) { 2434 int val = right->as_constant_ptr()->as_jint(); 2435 switch (code) { 2436 case lir_logic_and: __ andl (reg, val); break; 2437 case lir_logic_or: __ orl (reg, val); break; 2438 case lir_logic_xor: __ xorl (reg, val); break; 2439 default: ShouldNotReachHere(); 2440 } 2441 } else if (right->is_stack()) { 2442 // added support for stack operands 2443 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2444 switch (code) { 2445 case lir_logic_and: __ andl (reg, raddr); break; 2446 case lir_logic_or: __ orl (reg, raddr); break; 2447 case lir_logic_xor: __ xorl (reg, raddr); break; 2448 default: ShouldNotReachHere(); 2449 } 2450 } else { 2451 Register rright = right->as_register(); 2452 switch (code) { 2453 case lir_logic_and: __ andptr (reg, rright); break; 2454 case lir_logic_or : __ orptr (reg, rright); break; 2455 case lir_logic_xor: __ xorptr (reg, rright); break; 2456 default: ShouldNotReachHere(); 2457 } 2458 } 2459 move_regs(reg, dst->as_register()); 2460 } else { 2461 Register l_lo = left->as_register_lo(); 2462 Register l_hi = left->as_register_hi(); 2463 if (right->is_constant()) { 2464 #ifdef _LP64 2465 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong()); 2466 switch (code) { 2467 case lir_logic_and: 2468 __ andq(l_lo, rscratch1); 2469 break; 2470 case lir_logic_or: 2471 __ orq(l_lo, rscratch1); 2472 break; 2473 case lir_logic_xor: 2474 __ xorq(l_lo, rscratch1); 2475 break; 2476 default: ShouldNotReachHere(); 2477 } 2478 #else 2479 int r_lo = right->as_constant_ptr()->as_jint_lo(); 2480 int r_hi = right->as_constant_ptr()->as_jint_hi(); 2481 switch (code) { 2482 case lir_logic_and: 2483 __ andl(l_lo, r_lo); 2484 __ andl(l_hi, r_hi); 2485 break; 2486 case lir_logic_or: 2487 __ orl(l_lo, r_lo); 2488 __ orl(l_hi, r_hi); 2489 break; 2490 case lir_logic_xor: 2491 __ xorl(l_lo, r_lo); 2492 __ xorl(l_hi, r_hi); 2493 break; 2494 default: ShouldNotReachHere(); 2495 } 2496 #endif // _LP64 2497 } else { 2498 #ifdef _LP64 2499 Register r_lo; 2500 if (is_reference_type(right->type())) { 2501 r_lo = right->as_register(); 2502 } else { 2503 r_lo = right->as_register_lo(); 2504 } 2505 #else 2506 Register r_lo = right->as_register_lo(); 2507 Register r_hi = right->as_register_hi(); 2508 assert(l_lo != r_hi, "overwriting registers"); 2509 #endif 2510 switch (code) { 2511 case lir_logic_and: 2512 __ andptr(l_lo, r_lo); 2513 NOT_LP64(__ andptr(l_hi, r_hi);) 2514 break; 2515 case lir_logic_or: 2516 __ orptr(l_lo, r_lo); 2517 NOT_LP64(__ orptr(l_hi, r_hi);) 2518 break; 2519 case lir_logic_xor: 2520 __ xorptr(l_lo, r_lo); 2521 NOT_LP64(__ xorptr(l_hi, r_hi);) 2522 break; 2523 default: ShouldNotReachHere(); 2524 } 2525 } 2526 2527 Register dst_lo = dst->as_register_lo(); 2528 Register dst_hi = dst->as_register_hi(); 2529 2530 #ifdef _LP64 2531 move_regs(l_lo, dst_lo); 2532 #else 2533 if (dst_lo == l_hi) { 2534 assert(dst_hi != l_lo, "overwriting registers"); 2535 move_regs(l_hi, dst_hi); 2536 move_regs(l_lo, dst_lo); 2537 } else { 2538 assert(dst_lo != l_hi, "overwriting registers"); 2539 move_regs(l_lo, dst_lo); 2540 move_regs(l_hi, dst_hi); 2541 } 2542 #endif // _LP64 2543 } 2544 } 2545 2546 2547 // we assume that rax, and rdx can be overwritten 2548 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 2549 2550 assert(left->is_single_cpu(), "left must be register"); 2551 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 2552 assert(result->is_single_cpu(), "result must be register"); 2553 2554 // assert(left->destroys_register(), "check"); 2555 // assert(right->destroys_register(), "check"); 2556 2557 Register lreg = left->as_register(); 2558 Register dreg = result->as_register(); 2559 2560 if (right->is_constant()) { 2561 jint divisor = right->as_constant_ptr()->as_jint(); 2562 assert(divisor > 0 && is_power_of_2(divisor), "must be"); 2563 if (code == lir_idiv) { 2564 assert(lreg == rax, "must be rax,"); 2565 assert(temp->as_register() == rdx, "tmp register must be rdx"); 2566 __ cdql(); // sign extend into rdx:rax 2567 if (divisor == 2) { 2568 __ subl(lreg, rdx); 2569 } else { 2570 __ andl(rdx, divisor - 1); 2571 __ addl(lreg, rdx); 2572 } 2573 __ sarl(lreg, log2i_exact(divisor)); 2574 move_regs(lreg, dreg); 2575 } else if (code == lir_irem) { 2576 Label done; 2577 __ mov(dreg, lreg); 2578 __ andl(dreg, 0x80000000 | (divisor - 1)); 2579 __ jcc(Assembler::positive, done); 2580 __ decrement(dreg); 2581 __ orl(dreg, ~(divisor - 1)); 2582 __ increment(dreg); 2583 __ bind(done); 2584 } else { 2585 ShouldNotReachHere(); 2586 } 2587 } else { 2588 Register rreg = right->as_register(); 2589 assert(lreg == rax, "left register must be rax,"); 2590 assert(rreg != rdx, "right register must not be rdx"); 2591 assert(temp->as_register() == rdx, "tmp register must be rdx"); 2592 2593 move_regs(lreg, rax); 2594 2595 int idivl_offset = __ corrected_idivl(rreg); 2596 if (ImplicitDiv0Checks) { 2597 add_debug_info_for_div0(idivl_offset, info); 2598 } 2599 if (code == lir_irem) { 2600 move_regs(rdx, dreg); // result is in rdx 2601 } else { 2602 move_regs(rax, dreg); 2603 } 2604 } 2605 } 2606 2607 2608 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 2609 if (opr1->is_single_cpu()) { 2610 Register reg1 = opr1->as_register(); 2611 if (opr2->is_single_cpu()) { 2612 // cpu register - cpu register 2613 if (is_reference_type(opr1->type())) { 2614 __ cmpoop(reg1, opr2->as_register()); 2615 } else { 2616 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 2617 __ cmpl(reg1, opr2->as_register()); 2618 } 2619 } else if (opr2->is_stack()) { 2620 // cpu register - stack 2621 if (is_reference_type(opr1->type())) { 2622 __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2623 } else { 2624 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2625 } 2626 } else if (opr2->is_constant()) { 2627 // cpu register - constant 2628 LIR_Const* c = opr2->as_constant_ptr(); 2629 if (c->type() == T_INT) { 2630 jint i = c->as_jint(); 2631 if (i == 0) { 2632 __ testl(reg1, reg1); 2633 } else { 2634 __ cmpl(reg1, i); 2635 } 2636 } else if (c->type() == T_METADATA) { 2637 // All we need for now is a comparison with null for equality. 2638 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 2639 Metadata* m = c->as_metadata(); 2640 if (m == nullptr) { 2641 __ testptr(reg1, reg1); 2642 } else { 2643 ShouldNotReachHere(); 2644 } 2645 } else if (is_reference_type(c->type())) { 2646 // In 64bit oops are single register 2647 jobject o = c->as_jobject(); 2648 if (o == nullptr) { 2649 __ testptr(reg1, reg1); 2650 } else { 2651 __ cmpoop(reg1, o, rscratch1); 2652 } 2653 } else { 2654 fatal("unexpected type: %s", basictype_to_str(c->type())); 2655 } 2656 // cpu register - address 2657 } else if (opr2->is_address()) { 2658 if (op->info() != nullptr) { 2659 add_debug_info_for_null_check_here(op->info()); 2660 } 2661 __ cmpl(reg1, as_Address(opr2->as_address_ptr())); 2662 } else { 2663 ShouldNotReachHere(); 2664 } 2665 2666 } else if(opr1->is_double_cpu()) { 2667 Register xlo = opr1->as_register_lo(); 2668 Register xhi = opr1->as_register_hi(); 2669 if (opr2->is_double_cpu()) { 2670 #ifdef _LP64 2671 __ cmpptr(xlo, opr2->as_register_lo()); 2672 #else 2673 // cpu register - cpu register 2674 Register ylo = opr2->as_register_lo(); 2675 Register yhi = opr2->as_register_hi(); 2676 __ subl(xlo, ylo); 2677 __ sbbl(xhi, yhi); 2678 if (condition == lir_cond_equal || condition == lir_cond_notEqual) { 2679 __ orl(xhi, xlo); 2680 } 2681 #endif // _LP64 2682 } else if (opr2->is_constant()) { 2683 // cpu register - constant 0 2684 assert(opr2->as_jlong() == (jlong)0, "only handles zero"); 2685 #ifdef _LP64 2686 __ cmpptr(xlo, (int32_t)opr2->as_jlong()); 2687 #else 2688 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case"); 2689 __ orl(xhi, xlo); 2690 #endif // _LP64 2691 } else { 2692 ShouldNotReachHere(); 2693 } 2694 2695 } else if (opr1->is_single_xmm()) { 2696 XMMRegister reg1 = opr1->as_xmm_float_reg(); 2697 if (opr2->is_single_xmm()) { 2698 // xmm register - xmm register 2699 __ ucomiss(reg1, opr2->as_xmm_float_reg()); 2700 } else if (opr2->is_stack()) { 2701 // xmm register - stack 2702 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2703 } else if (opr2->is_constant()) { 2704 // xmm register - constant 2705 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat()))); 2706 } else if (opr2->is_address()) { 2707 // xmm register - address 2708 if (op->info() != nullptr) { 2709 add_debug_info_for_null_check_here(op->info()); 2710 } 2711 __ ucomiss(reg1, as_Address(opr2->as_address_ptr())); 2712 } else { 2713 ShouldNotReachHere(); 2714 } 2715 2716 } else if (opr1->is_double_xmm()) { 2717 XMMRegister reg1 = opr1->as_xmm_double_reg(); 2718 if (opr2->is_double_xmm()) { 2719 // xmm register - xmm register 2720 __ ucomisd(reg1, opr2->as_xmm_double_reg()); 2721 } else if (opr2->is_stack()) { 2722 // xmm register - stack 2723 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix())); 2724 } else if (opr2->is_constant()) { 2725 // xmm register - constant 2726 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble()))); 2727 } else if (opr2->is_address()) { 2728 // xmm register - address 2729 if (op->info() != nullptr) { 2730 add_debug_info_for_null_check_here(op->info()); 2731 } 2732 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address())); 2733 } else { 2734 ShouldNotReachHere(); 2735 } 2736 2737 #ifndef _LP64 2738 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) { 2739 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)"); 2740 assert(opr2->is_fpu_register(), "both must be registers"); 2741 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1); 2742 #endif // LP64 2743 2744 } else if (opr1->is_address() && opr2->is_constant()) { 2745 LIR_Const* c = opr2->as_constant_ptr(); 2746 #ifdef _LP64 2747 if (is_reference_type(c->type())) { 2748 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse"); 2749 __ movoop(rscratch1, c->as_jobject()); 2750 } 2751 #endif // LP64 2752 if (op->info() != nullptr) { 2753 add_debug_info_for_null_check_here(op->info()); 2754 } 2755 // special case: address - constant 2756 LIR_Address* addr = opr1->as_address_ptr(); 2757 if (c->type() == T_INT) { 2758 __ cmpl(as_Address(addr), c->as_jint()); 2759 } else if (is_reference_type(c->type())) { 2760 #ifdef _LP64 2761 // %%% Make this explode if addr isn't reachable until we figure out a 2762 // better strategy by giving noreg as the temp for as_Address 2763 __ cmpoop(rscratch1, as_Address(addr, noreg)); 2764 #else 2765 __ cmpoop(as_Address(addr), c->as_jobject()); 2766 #endif // _LP64 2767 } else { 2768 ShouldNotReachHere(); 2769 } 2770 2771 } else { 2772 ShouldNotReachHere(); 2773 } 2774 } 2775 2776 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { 2777 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2778 if (left->is_single_xmm()) { 2779 assert(right->is_single_xmm(), "must match"); 2780 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2781 } else if (left->is_double_xmm()) { 2782 assert(right->is_double_xmm(), "must match"); 2783 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2784 2785 } else { 2786 #ifdef _LP64 2787 ShouldNotReachHere(); 2788 #else 2789 assert(left->is_single_fpu() || left->is_double_fpu(), "must be"); 2790 assert(right->is_single_fpu() || right->is_double_fpu(), "must match"); 2791 2792 assert(left->fpu() == 0, "left must be on TOS"); 2793 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(), 2794 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1); 2795 #endif // LP64 2796 } 2797 } else { 2798 assert(code == lir_cmp_l2i, "check"); 2799 #ifdef _LP64 2800 Label done; 2801 Register dest = dst->as_register(); 2802 __ cmpptr(left->as_register_lo(), right->as_register_lo()); 2803 __ movl(dest, -1); 2804 __ jccb(Assembler::less, done); 2805 __ setb(Assembler::notZero, dest); 2806 __ movzbl(dest, dest); 2807 __ bind(done); 2808 #else 2809 __ lcmp2int(left->as_register_hi(), 2810 left->as_register_lo(), 2811 right->as_register_hi(), 2812 right->as_register_lo()); 2813 move_regs(left->as_register_hi(), dst->as_register()); 2814 #endif // _LP64 2815 } 2816 } 2817 2818 2819 void LIR_Assembler::align_call(LIR_Code code) { 2820 // make sure that the displacement word of the call ends up word aligned 2821 int offset = __ offset(); 2822 switch (code) { 2823 case lir_static_call: 2824 case lir_optvirtual_call: 2825 case lir_dynamic_call: 2826 offset += NativeCall::displacement_offset; 2827 break; 2828 case lir_icvirtual_call: 2829 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size_rex; 2830 break; 2831 default: ShouldNotReachHere(); 2832 } 2833 __ align(BytesPerWord, offset); 2834 } 2835 2836 2837 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2838 assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0, 2839 "must be aligned"); 2840 __ call(AddressLiteral(op->addr(), rtype)); 2841 add_call_info(code_offset(), op->info()); 2842 __ post_call_nop(); 2843 } 2844 2845 2846 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2847 __ ic_call(op->addr()); 2848 add_call_info(code_offset(), op->info()); 2849 assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0, 2850 "must be aligned"); 2851 __ post_call_nop(); 2852 } 2853 2854 2855 void LIR_Assembler::emit_static_call_stub() { 2856 address call_pc = __ pc(); 2857 address stub = __ start_a_stub(call_stub_size()); 2858 if (stub == nullptr) { 2859 bailout("static call stub overflow"); 2860 return; 2861 } 2862 2863 int start = __ offset(); 2864 2865 // make sure that the displacement word of the call ends up word aligned 2866 __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size_rex + NativeCall::displacement_offset); 2867 __ relocate(static_stub_Relocation::spec(call_pc)); 2868 __ mov_metadata(rbx, (Metadata*)nullptr); 2869 // must be set to -1 at code generation time 2870 assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned"); 2871 // On 64bit this will die since it will take a movq & jmp, must be only a jmp 2872 __ jump(RuntimeAddress(__ pc())); 2873 2874 assert(__ offset() - start <= call_stub_size(), "stub too big"); 2875 __ end_a_stub(); 2876 } 2877 2878 2879 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2880 assert(exceptionOop->as_register() == rax, "must match"); 2881 assert(exceptionPC->as_register() == rdx, "must match"); 2882 2883 // exception object is not added to oop map by LinearScan 2884 // (LinearScan assumes that no oops are in fixed registers) 2885 info->add_register_oop(exceptionOop); 2886 C1StubId unwind_id; 2887 2888 // get current pc information 2889 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2890 int pc_for_athrow_offset = __ offset(); 2891 InternalAddress pc_for_athrow(__ pc()); 2892 __ lea(exceptionPC->as_register(), pc_for_athrow); 2893 add_call_info(pc_for_athrow_offset, info); // for exception handler 2894 2895 __ verify_not_null_oop(rax); 2896 // search an exception handler (rax: exception oop, rdx: throwing pc) 2897 if (compilation()->has_fpu_code()) { 2898 unwind_id = C1StubId::handle_exception_id; 2899 } else { 2900 unwind_id = C1StubId::handle_exception_nofpu_id; 2901 } 2902 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2903 2904 // enough room for two byte trap 2905 __ nop(); 2906 } 2907 2908 2909 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2910 assert(exceptionOop->as_register() == rax, "must match"); 2911 2912 __ jmp(_unwind_handler_entry); 2913 } 2914 2915 2916 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2917 2918 // optimized version for linear scan: 2919 // * count must be already in ECX (guaranteed by LinearScan) 2920 // * left and dest must be equal 2921 // * tmp must be unused 2922 assert(count->as_register() == SHIFT_count, "count must be in ECX"); 2923 assert(left == dest, "left and dest must be equal"); 2924 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2925 2926 if (left->is_single_cpu()) { 2927 Register value = left->as_register(); 2928 assert(value != SHIFT_count, "left cannot be ECX"); 2929 2930 switch (code) { 2931 case lir_shl: __ shll(value); break; 2932 case lir_shr: __ sarl(value); break; 2933 case lir_ushr: __ shrl(value); break; 2934 default: ShouldNotReachHere(); 2935 } 2936 } else if (left->is_double_cpu()) { 2937 Register lo = left->as_register_lo(); 2938 Register hi = left->as_register_hi(); 2939 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX"); 2940 #ifdef _LP64 2941 switch (code) { 2942 case lir_shl: __ shlptr(lo); break; 2943 case lir_shr: __ sarptr(lo); break; 2944 case lir_ushr: __ shrptr(lo); break; 2945 default: ShouldNotReachHere(); 2946 } 2947 #else 2948 2949 switch (code) { 2950 case lir_shl: __ lshl(hi, lo); break; 2951 case lir_shr: __ lshr(hi, lo, true); break; 2952 case lir_ushr: __ lshr(hi, lo, false); break; 2953 default: ShouldNotReachHere(); 2954 } 2955 #endif // LP64 2956 } else { 2957 ShouldNotReachHere(); 2958 } 2959 } 2960 2961 2962 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2963 if (dest->is_single_cpu()) { 2964 // first move left into dest so that left is not destroyed by the shift 2965 Register value = dest->as_register(); 2966 count = count & 0x1F; // Java spec 2967 2968 move_regs(left->as_register(), value); 2969 switch (code) { 2970 case lir_shl: __ shll(value, count); break; 2971 case lir_shr: __ sarl(value, count); break; 2972 case lir_ushr: __ shrl(value, count); break; 2973 default: ShouldNotReachHere(); 2974 } 2975 } else if (dest->is_double_cpu()) { 2976 #ifndef _LP64 2977 Unimplemented(); 2978 #else 2979 // first move left into dest so that left is not destroyed by the shift 2980 Register value = dest->as_register_lo(); 2981 count = count & 0x1F; // Java spec 2982 2983 move_regs(left->as_register_lo(), value); 2984 switch (code) { 2985 case lir_shl: __ shlptr(value, count); break; 2986 case lir_shr: __ sarptr(value, count); break; 2987 case lir_ushr: __ shrptr(value, count); break; 2988 default: ShouldNotReachHere(); 2989 } 2990 #endif // _LP64 2991 } else { 2992 ShouldNotReachHere(); 2993 } 2994 } 2995 2996 2997 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2998 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2999 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3000 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3001 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r); 3002 } 3003 3004 3005 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 3006 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3007 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3008 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3009 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c); 3010 } 3011 3012 3013 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 3014 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3015 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3016 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3017 __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1); 3018 } 3019 3020 3021 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) { 3022 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3023 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3024 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3025 __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1); 3026 } 3027 3028 3029 // This code replaces a call to arraycopy; no exception may 3030 // be thrown in this code, they must be thrown in the System.arraycopy 3031 // activation frame; we could save some checks if this would not be the case 3032 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 3033 ciArrayKlass* default_type = op->expected_type(); 3034 Register src = op->src()->as_register(); 3035 Register dst = op->dst()->as_register(); 3036 Register src_pos = op->src_pos()->as_register(); 3037 Register dst_pos = op->dst_pos()->as_register(); 3038 Register length = op->length()->as_register(); 3039 Register tmp = op->tmp()->as_register(); 3040 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3041 Register tmp2 = UseCompactObjectHeaders ? rscratch2 : noreg; 3042 3043 CodeStub* stub = op->stub(); 3044 int flags = op->flags(); 3045 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 3046 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 3047 3048 // if we don't know anything, just go through the generic arraycopy 3049 if (default_type == nullptr) { 3050 // save outgoing arguments on stack in case call to System.arraycopy is needed 3051 // HACK ALERT. This code used to push the parameters in a hardwired fashion 3052 // for interpreter calling conventions. Now we have to do it in new style conventions. 3053 // For the moment until C1 gets the new register allocator I just force all the 3054 // args to the right place (except the register args) and then on the back side 3055 // reload the register args properly if we go slow path. Yuck 3056 3057 // These are proper for the calling convention 3058 store_parameter(length, 2); 3059 store_parameter(dst_pos, 1); 3060 store_parameter(dst, 0); 3061 3062 // these are just temporary placements until we need to reload 3063 store_parameter(src_pos, 3); 3064 store_parameter(src, 4); 3065 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");) 3066 3067 address copyfunc_addr = StubRoutines::generic_arraycopy(); 3068 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 3069 3070 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint 3071 #ifdef _LP64 3072 // The arguments are in java calling convention so we can trivially shift them to C 3073 // convention 3074 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 3075 __ mov(c_rarg0, j_rarg0); 3076 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 3077 __ mov(c_rarg1, j_rarg1); 3078 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 3079 __ mov(c_rarg2, j_rarg2); 3080 assert_different_registers(c_rarg3, j_rarg4); 3081 __ mov(c_rarg3, j_rarg3); 3082 #ifdef _WIN64 3083 // Allocate abi space for args but be sure to keep stack aligned 3084 __ subptr(rsp, 6*wordSize); 3085 store_parameter(j_rarg4, 4); 3086 #ifndef PRODUCT 3087 if (PrintC1Statistics) { 3088 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 3089 } 3090 #endif 3091 __ call(RuntimeAddress(copyfunc_addr)); 3092 __ addptr(rsp, 6*wordSize); 3093 #else 3094 __ mov(c_rarg4, j_rarg4); 3095 #ifndef PRODUCT 3096 if (PrintC1Statistics) { 3097 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 3098 } 3099 #endif 3100 __ call(RuntimeAddress(copyfunc_addr)); 3101 #endif // _WIN64 3102 #else 3103 __ push(length); 3104 __ push(dst_pos); 3105 __ push(dst); 3106 __ push(src_pos); 3107 __ push(src); 3108 3109 #ifndef PRODUCT 3110 if (PrintC1Statistics) { 3111 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 3112 } 3113 #endif 3114 __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack 3115 3116 #endif // _LP64 3117 3118 __ testl(rax, rax); 3119 __ jcc(Assembler::equal, *stub->continuation()); 3120 3121 __ mov(tmp, rax); 3122 __ xorl(tmp, -1); 3123 3124 // Reload values from the stack so they are where the stub 3125 // expects them. 3126 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 3127 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 3128 __ movptr (length, Address(rsp, 2*BytesPerWord)); 3129 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 3130 __ movptr (src, Address(rsp, 4*BytesPerWord)); 3131 3132 __ subl(length, tmp); 3133 __ addl(src_pos, tmp); 3134 __ addl(dst_pos, tmp); 3135 __ jmp(*stub->entry()); 3136 3137 __ bind(*stub->continuation()); 3138 return; 3139 } 3140 3141 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 3142 3143 int elem_size = type2aelembytes(basic_type); 3144 Address::ScaleFactor scale; 3145 3146 switch (elem_size) { 3147 case 1 : 3148 scale = Address::times_1; 3149 break; 3150 case 2 : 3151 scale = Address::times_2; 3152 break; 3153 case 4 : 3154 scale = Address::times_4; 3155 break; 3156 case 8 : 3157 scale = Address::times_8; 3158 break; 3159 default: 3160 scale = Address::no_scale; 3161 ShouldNotReachHere(); 3162 } 3163 3164 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 3165 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 3166 3167 // length and pos's are all sign extended at this point on 64bit 3168 3169 // test for null 3170 if (flags & LIR_OpArrayCopy::src_null_check) { 3171 __ testptr(src, src); 3172 __ jcc(Assembler::zero, *stub->entry()); 3173 } 3174 if (flags & LIR_OpArrayCopy::dst_null_check) { 3175 __ testptr(dst, dst); 3176 __ jcc(Assembler::zero, *stub->entry()); 3177 } 3178 3179 // If the compiler was not able to prove that exact type of the source or the destination 3180 // of the arraycopy is an array type, check at runtime if the source or the destination is 3181 // an instance type. 3182 if (flags & LIR_OpArrayCopy::type_check) { 3183 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 3184 __ load_klass(tmp, dst, tmp_load_klass); 3185 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 3186 __ jcc(Assembler::greaterEqual, *stub->entry()); 3187 } 3188 3189 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 3190 __ load_klass(tmp, src, tmp_load_klass); 3191 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 3192 __ jcc(Assembler::greaterEqual, *stub->entry()); 3193 } 3194 } 3195 3196 // check if negative 3197 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 3198 __ testl(src_pos, src_pos); 3199 __ jcc(Assembler::less, *stub->entry()); 3200 } 3201 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 3202 __ testl(dst_pos, dst_pos); 3203 __ jcc(Assembler::less, *stub->entry()); 3204 } 3205 3206 if (flags & LIR_OpArrayCopy::src_range_check) { 3207 __ lea(tmp, Address(src_pos, length, Address::times_1, 0)); 3208 __ cmpl(tmp, src_length_addr); 3209 __ jcc(Assembler::above, *stub->entry()); 3210 } 3211 if (flags & LIR_OpArrayCopy::dst_range_check) { 3212 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0)); 3213 __ cmpl(tmp, dst_length_addr); 3214 __ jcc(Assembler::above, *stub->entry()); 3215 } 3216 3217 if (flags & LIR_OpArrayCopy::length_positive_check) { 3218 __ testl(length, length); 3219 __ jcc(Assembler::less, *stub->entry()); 3220 } 3221 3222 #ifdef _LP64 3223 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null 3224 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null 3225 #endif 3226 3227 if (flags & LIR_OpArrayCopy::type_check) { 3228 // We don't know the array types are compatible 3229 if (basic_type != T_OBJECT) { 3230 // Simple test for basic type arrays 3231 __ cmp_klasses_from_objects(src, dst, tmp, tmp2); 3232 __ jcc(Assembler::notEqual, *stub->entry()); 3233 } else { 3234 // For object arrays, if src is a sub class of dst then we can 3235 // safely do the copy. 3236 Label cont, slow; 3237 3238 __ push(src); 3239 __ push(dst); 3240 3241 __ load_klass(src, src, tmp_load_klass); 3242 __ load_klass(dst, dst, tmp_load_klass); 3243 3244 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 3245 3246 __ push(src); 3247 __ push(dst); 3248 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 3249 __ pop(dst); 3250 __ pop(src); 3251 3252 __ testl(src, src); 3253 __ jcc(Assembler::notEqual, cont); 3254 3255 __ bind(slow); 3256 __ pop(dst); 3257 __ pop(src); 3258 3259 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 3260 if (copyfunc_addr != nullptr) { // use stub if available 3261 // src is not a sub class of dst so we have to do a 3262 // per-element check. 3263 3264 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 3265 if ((flags & mask) != mask) { 3266 // Check that at least both of them object arrays. 3267 assert(flags & mask, "one of the two should be known to be an object array"); 3268 3269 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 3270 __ load_klass(tmp, src, tmp_load_klass); 3271 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 3272 __ load_klass(tmp, dst, tmp_load_klass); 3273 } 3274 int lh_offset = in_bytes(Klass::layout_helper_offset()); 3275 Address klass_lh_addr(tmp, lh_offset); 3276 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 3277 __ cmpl(klass_lh_addr, objArray_lh); 3278 __ jcc(Assembler::notEqual, *stub->entry()); 3279 } 3280 3281 // Spill because stubs can use any register they like and it's 3282 // easier to restore just those that we care about. 3283 store_parameter(dst, 0); 3284 store_parameter(dst_pos, 1); 3285 store_parameter(length, 2); 3286 store_parameter(src_pos, 3); 3287 store_parameter(src, 4); 3288 3289 #ifndef _LP64 3290 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); 3291 __ movptr(tmp, dst_klass_addr); 3292 __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset())); 3293 __ push(tmp); 3294 __ movl(tmp, Address(tmp, Klass::super_check_offset_offset())); 3295 __ push(tmp); 3296 __ push(length); 3297 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3298 __ push(tmp); 3299 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3300 __ push(tmp); 3301 3302 __ call_VM_leaf(copyfunc_addr, 5); 3303 #else 3304 __ movl2ptr(length, length); //higher 32bits must be null 3305 3306 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3307 assert_different_registers(c_rarg0, dst, dst_pos, length); 3308 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3309 assert_different_registers(c_rarg1, dst, length); 3310 3311 __ mov(c_rarg2, length); 3312 assert_different_registers(c_rarg2, dst); 3313 3314 #ifdef _WIN64 3315 // Allocate abi space for args but be sure to keep stack aligned 3316 __ subptr(rsp, 6*wordSize); 3317 __ load_klass(c_rarg3, dst, tmp_load_klass); 3318 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset())); 3319 store_parameter(c_rarg3, 4); 3320 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset())); 3321 __ call(RuntimeAddress(copyfunc_addr)); 3322 __ addptr(rsp, 6*wordSize); 3323 #else 3324 __ load_klass(c_rarg4, dst, tmp_load_klass); 3325 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 3326 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 3327 __ call(RuntimeAddress(copyfunc_addr)); 3328 #endif 3329 3330 #endif 3331 3332 #ifndef PRODUCT 3333 if (PrintC1Statistics) { 3334 Label failed; 3335 __ testl(rax, rax); 3336 __ jcc(Assembler::notZero, failed); 3337 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1); 3338 __ bind(failed); 3339 } 3340 #endif 3341 3342 __ testl(rax, rax); 3343 __ jcc(Assembler::zero, *stub->continuation()); 3344 3345 #ifndef PRODUCT 3346 if (PrintC1Statistics) { 3347 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1); 3348 } 3349 #endif 3350 3351 __ mov(tmp, rax); 3352 3353 __ xorl(tmp, -1); 3354 3355 // Restore previously spilled arguments 3356 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 3357 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 3358 __ movptr (length, Address(rsp, 2*BytesPerWord)); 3359 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 3360 __ movptr (src, Address(rsp, 4*BytesPerWord)); 3361 3362 3363 __ subl(length, tmp); 3364 __ addl(src_pos, tmp); 3365 __ addl(dst_pos, tmp); 3366 } 3367 3368 __ jmp(*stub->entry()); 3369 3370 __ bind(cont); 3371 __ pop(dst); 3372 __ pop(src); 3373 } 3374 } 3375 3376 #ifdef ASSERT 3377 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 3378 // Sanity check the known type with the incoming class. For the 3379 // primitive case the types must match exactly with src.klass and 3380 // dst.klass each exactly matching the default type. For the 3381 // object array case, if no type check is needed then either the 3382 // dst type is exactly the expected type and the src type is a 3383 // subtype which we can't check or src is the same array as dst 3384 // but not necessarily exactly of type default_type. 3385 Label known_ok, halt; 3386 __ mov_metadata(tmp, default_type->constant_encoding()); 3387 #ifdef _LP64 3388 if (UseCompressedClassPointers) { 3389 __ encode_klass_not_null(tmp, rscratch1); 3390 } 3391 #endif 3392 3393 if (basic_type != T_OBJECT) { 3394 __ cmp_klass(tmp, dst, tmp2); 3395 __ jcc(Assembler::notEqual, halt); 3396 __ cmp_klass(tmp, src, tmp2); 3397 __ jcc(Assembler::equal, known_ok); 3398 } else { 3399 __ cmp_klass(tmp, dst, tmp2); 3400 __ jcc(Assembler::equal, known_ok); 3401 __ cmpptr(src, dst); 3402 __ jcc(Assembler::equal, known_ok); 3403 } 3404 __ bind(halt); 3405 __ stop("incorrect type information in arraycopy"); 3406 __ bind(known_ok); 3407 } 3408 #endif 3409 3410 #ifndef PRODUCT 3411 if (PrintC1Statistics) { 3412 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1); 3413 } 3414 #endif 3415 3416 #ifdef _LP64 3417 assert_different_registers(c_rarg0, dst, dst_pos, length); 3418 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3419 assert_different_registers(c_rarg1, length); 3420 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3421 __ mov(c_rarg2, length); 3422 3423 #else 3424 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3425 store_parameter(tmp, 0); 3426 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3427 store_parameter(tmp, 1); 3428 store_parameter(length, 2); 3429 #endif // _LP64 3430 3431 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 3432 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 3433 const char *name; 3434 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 3435 __ call_VM_leaf(entry, 0); 3436 3437 if (stub != nullptr) { 3438 __ bind(*stub->continuation()); 3439 } 3440 } 3441 3442 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 3443 assert(op->crc()->is_single_cpu(), "crc must be register"); 3444 assert(op->val()->is_single_cpu(), "byte value must be register"); 3445 assert(op->result_opr()->is_single_cpu(), "result must be register"); 3446 Register crc = op->crc()->as_register(); 3447 Register val = op->val()->as_register(); 3448 Register res = op->result_opr()->as_register(); 3449 3450 assert_different_registers(val, crc, res); 3451 3452 __ lea(res, ExternalAddress(StubRoutines::crc_table_addr())); 3453 __ notl(crc); // ~crc 3454 __ update_byte_crc32(crc, val, res); 3455 __ notl(crc); // ~crc 3456 __ mov(res, crc); 3457 } 3458 3459 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 3460 Register obj = op->obj_opr()->as_register(); // may not be an oop 3461 Register hdr = op->hdr_opr()->as_register(); 3462 Register lock = op->lock_opr()->as_register(); 3463 if (LockingMode == LM_MONITOR) { 3464 if (op->info() != nullptr) { 3465 add_debug_info_for_null_check_here(op->info()); 3466 __ null_check(obj); 3467 } 3468 __ jmp(*op->stub()->entry()); 3469 } else if (op->code() == lir_lock) { 3470 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 3471 Register tmp = LockingMode == LM_LIGHTWEIGHT ? op->scratch_opr()->as_register() : noreg; 3472 // add debug info for NullPointerException only if one is possible 3473 int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry()); 3474 if (op->info() != nullptr) { 3475 add_debug_info_for_null_check(null_check_offset, op->info()); 3476 } 3477 // done 3478 } else if (op->code() == lir_unlock) { 3479 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 3480 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 3481 } else { 3482 Unimplemented(); 3483 } 3484 __ bind(*op->stub()->continuation()); 3485 } 3486 3487 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 3488 Register obj = op->obj()->as_pointer_register(); 3489 Register result = op->result_opr()->as_pointer_register(); 3490 3491 CodeEmitInfo* info = op->info(); 3492 if (info != nullptr) { 3493 add_debug_info_for_null_check_here(info); 3494 } 3495 3496 __ load_klass(result, obj, rscratch1); 3497 } 3498 3499 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 3500 ciMethod* method = op->profiled_method(); 3501 int bci = op->profiled_bci(); 3502 ciMethod* callee = op->profiled_callee(); 3503 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3504 3505 // Update counter for all call types 3506 ciMethodData* md = method->method_data_or_null(); 3507 assert(md != nullptr, "Sanity"); 3508 ciProfileData* data = md->bci_to_data(bci); 3509 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 3510 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 3511 Register mdo = op->mdo()->as_register(); 3512 __ mov_metadata(mdo, md->constant_encoding()); 3513 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 3514 // Perform additional virtual call profiling for invokevirtual and 3515 // invokeinterface bytecodes 3516 if (op->should_profile_receiver_type()) { 3517 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 3518 Register recv = op->recv()->as_register(); 3519 assert_different_registers(mdo, recv); 3520 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 3521 ciKlass* known_klass = op->known_holder(); 3522 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 3523 // We know the type that will be seen at this call site; we can 3524 // statically update the MethodData* rather than needing to do 3525 // dynamic tests on the receiver type 3526 3527 // NOTE: we should probably put a lock around this search to 3528 // avoid collisions by concurrent compilations 3529 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 3530 uint i; 3531 for (i = 0; i < VirtualCallData::row_limit(); i++) { 3532 ciKlass* receiver = vc_data->receiver(i); 3533 if (known_klass->equals(receiver)) { 3534 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 3535 __ addptr(data_addr, DataLayout::counter_increment); 3536 return; 3537 } 3538 } 3539 3540 // Receiver type not found in profile data; select an empty slot 3541 3542 // Note that this is less efficient than it should be because it 3543 // always does a write to the receiver part of the 3544 // VirtualCallData rather than just the first time 3545 for (i = 0; i < VirtualCallData::row_limit(); i++) { 3546 ciKlass* receiver = vc_data->receiver(i); 3547 if (receiver == nullptr) { 3548 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 3549 __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1); 3550 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 3551 __ addptr(data_addr, DataLayout::counter_increment); 3552 return; 3553 } 3554 } 3555 } else { 3556 __ load_klass(recv, recv, tmp_load_klass); 3557 Label update_done; 3558 type_profile_helper(mdo, md, data, recv, &update_done); 3559 // Receiver did not match any saved receiver and there is no empty row for it. 3560 // Increment total counter to indicate polymorphic case. 3561 __ addptr(counter_addr, DataLayout::counter_increment); 3562 3563 __ bind(update_done); 3564 } 3565 } else { 3566 // Static call 3567 __ addptr(counter_addr, DataLayout::counter_increment); 3568 } 3569 } 3570 3571 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 3572 Register obj = op->obj()->as_register(); 3573 Register tmp = op->tmp()->as_pointer_register(); 3574 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3575 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 3576 ciKlass* exact_klass = op->exact_klass(); 3577 intptr_t current_klass = op->current_klass(); 3578 bool not_null = op->not_null(); 3579 bool no_conflict = op->no_conflict(); 3580 3581 Label update, next, none; 3582 3583 bool do_null = !not_null; 3584 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 3585 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 3586 3587 assert(do_null || do_update, "why are we here?"); 3588 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 3589 3590 __ verify_oop(obj); 3591 3592 #ifdef ASSERT 3593 if (obj == tmp) { 3594 #ifdef _LP64 3595 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 3596 #else 3597 assert_different_registers(obj, mdo_addr.base(), mdo_addr.index()); 3598 #endif 3599 } else { 3600 #ifdef _LP64 3601 assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index()); 3602 #else 3603 assert_different_registers(obj, tmp, mdo_addr.base(), mdo_addr.index()); 3604 #endif 3605 } 3606 #endif 3607 if (do_null) { 3608 __ testptr(obj, obj); 3609 __ jccb(Assembler::notZero, update); 3610 if (!TypeEntries::was_null_seen(current_klass)) { 3611 __ testptr(mdo_addr, TypeEntries::null_seen); 3612 #ifndef ASSERT 3613 __ jccb(Assembler::notZero, next); // already set 3614 #else 3615 __ jcc(Assembler::notZero, next); // already set 3616 #endif 3617 // atomic update to prevent overwriting Klass* with 0 3618 __ lock(); 3619 __ orptr(mdo_addr, TypeEntries::null_seen); 3620 } 3621 if (do_update) { 3622 #ifndef ASSERT 3623 __ jmpb(next); 3624 } 3625 #else 3626 __ jmp(next); 3627 } 3628 } else { 3629 __ testptr(obj, obj); 3630 __ jcc(Assembler::notZero, update); 3631 __ stop("unexpected null obj"); 3632 #endif 3633 } 3634 3635 __ bind(update); 3636 3637 if (do_update) { 3638 #ifdef ASSERT 3639 if (exact_klass != nullptr) { 3640 Label ok; 3641 __ load_klass(tmp, obj, tmp_load_klass); 3642 __ push(tmp); 3643 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3644 __ cmpptr(tmp, Address(rsp, 0)); 3645 __ jcc(Assembler::equal, ok); 3646 __ stop("exact klass and actual klass differ"); 3647 __ bind(ok); 3648 __ pop(tmp); 3649 } 3650 #endif 3651 if (!no_conflict) { 3652 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 3653 if (exact_klass != nullptr) { 3654 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3655 } else { 3656 __ load_klass(tmp, obj, tmp_load_klass); 3657 } 3658 #ifdef _LP64 3659 __ mov(rscratch1, tmp); // save original value before XOR 3660 #endif 3661 __ xorptr(tmp, mdo_addr); 3662 __ testptr(tmp, TypeEntries::type_klass_mask); 3663 // klass seen before, nothing to do. The unknown bit may have been 3664 // set already but no need to check. 3665 __ jccb(Assembler::zero, next); 3666 3667 __ testptr(tmp, TypeEntries::type_unknown); 3668 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3669 3670 if (TypeEntries::is_type_none(current_klass)) { 3671 __ testptr(mdo_addr, TypeEntries::type_mask); 3672 __ jccb(Assembler::zero, none); 3673 #ifdef _LP64 3674 // There is a chance that the checks above (re-reading profiling 3675 // data from memory) fail if another thread has just set the 3676 // profiling to this obj's klass 3677 __ mov(tmp, rscratch1); // get back original value before XOR 3678 __ xorptr(tmp, mdo_addr); 3679 __ testptr(tmp, TypeEntries::type_klass_mask); 3680 __ jccb(Assembler::zero, next); 3681 #endif 3682 } 3683 } else { 3684 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3685 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 3686 3687 __ testptr(mdo_addr, TypeEntries::type_unknown); 3688 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3689 } 3690 3691 // different than before. Cannot keep accurate profile. 3692 __ orptr(mdo_addr, TypeEntries::type_unknown); 3693 3694 if (TypeEntries::is_type_none(current_klass)) { 3695 __ jmpb(next); 3696 3697 __ bind(none); 3698 // first time here. Set profile type. 3699 __ movptr(mdo_addr, tmp); 3700 #ifdef ASSERT 3701 __ andptr(tmp, TypeEntries::type_klass_mask); 3702 __ verify_klass_ptr(tmp); 3703 #endif 3704 } 3705 } else { 3706 // There's a single possible klass at this profile point 3707 assert(exact_klass != nullptr, "should be"); 3708 if (TypeEntries::is_type_none(current_klass)) { 3709 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3710 __ xorptr(tmp, mdo_addr); 3711 __ testptr(tmp, TypeEntries::type_klass_mask); 3712 #ifdef ASSERT 3713 __ jcc(Assembler::zero, next); 3714 3715 { 3716 Label ok; 3717 __ push(tmp); 3718 __ testptr(mdo_addr, TypeEntries::type_mask); 3719 __ jcc(Assembler::zero, ok); 3720 // may have been set by another thread 3721 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3722 __ xorptr(tmp, mdo_addr); 3723 __ testptr(tmp, TypeEntries::type_mask); 3724 __ jcc(Assembler::zero, ok); 3725 3726 __ stop("unexpected profiling mismatch"); 3727 __ bind(ok); 3728 __ pop(tmp); 3729 } 3730 #else 3731 __ jccb(Assembler::zero, next); 3732 #endif 3733 // first time here. Set profile type. 3734 __ movptr(mdo_addr, tmp); 3735 #ifdef ASSERT 3736 __ andptr(tmp, TypeEntries::type_klass_mask); 3737 __ verify_klass_ptr(tmp); 3738 #endif 3739 } else { 3740 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3741 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3742 3743 __ testptr(mdo_addr, TypeEntries::type_unknown); 3744 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3745 3746 __ orptr(mdo_addr, TypeEntries::type_unknown); 3747 } 3748 } 3749 } 3750 __ bind(next); 3751 } 3752 3753 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 3754 Unimplemented(); 3755 } 3756 3757 3758 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 3759 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 3760 } 3761 3762 3763 void LIR_Assembler::align_backward_branch_target() { 3764 __ align(BytesPerWord); 3765 } 3766 3767 3768 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 3769 if (left->is_single_cpu()) { 3770 __ negl(left->as_register()); 3771 move_regs(left->as_register(), dest->as_register()); 3772 3773 } else if (left->is_double_cpu()) { 3774 Register lo = left->as_register_lo(); 3775 #ifdef _LP64 3776 Register dst = dest->as_register_lo(); 3777 __ movptr(dst, lo); 3778 __ negptr(dst); 3779 #else 3780 Register hi = left->as_register_hi(); 3781 __ lneg(hi, lo); 3782 if (dest->as_register_lo() == hi) { 3783 assert(dest->as_register_hi() != lo, "destroying register"); 3784 move_regs(hi, dest->as_register_hi()); 3785 move_regs(lo, dest->as_register_lo()); 3786 } else { 3787 move_regs(lo, dest->as_register_lo()); 3788 move_regs(hi, dest->as_register_hi()); 3789 } 3790 #endif // _LP64 3791 3792 } else if (dest->is_single_xmm()) { 3793 assert(!tmp->is_valid(), "do not need temporary"); 3794 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) { 3795 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg()); 3796 } 3797 __ xorps(dest->as_xmm_float_reg(), 3798 ExternalAddress((address)float_signflip_pool), 3799 rscratch1); 3800 } else if (dest->is_double_xmm()) { 3801 assert(!tmp->is_valid(), "do not need temporary"); 3802 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) { 3803 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg()); 3804 } 3805 __ xorpd(dest->as_xmm_double_reg(), 3806 ExternalAddress((address)double_signflip_pool), 3807 rscratch1); 3808 #ifndef _LP64 3809 } else if (left->is_single_fpu() || left->is_double_fpu()) { 3810 assert(left->fpu() == 0, "arg must be on TOS"); 3811 assert(dest->fpu() == 0, "dest must be TOS"); 3812 __ fchs(); 3813 #endif // !_LP64 3814 3815 } else { 3816 ShouldNotReachHere(); 3817 } 3818 } 3819 3820 3821 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 3822 assert(src->is_address(), "must be an address"); 3823 assert(dest->is_register(), "must be a register"); 3824 3825 PatchingStub* patch = nullptr; 3826 if (patch_code != lir_patch_none) { 3827 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 3828 } 3829 3830 Register reg = dest->as_pointer_register(); 3831 LIR_Address* addr = src->as_address_ptr(); 3832 __ lea(reg, as_Address(addr)); 3833 3834 if (patch != nullptr) { 3835 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 3836 } 3837 } 3838 3839 3840 3841 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 3842 assert(!tmp->is_valid(), "don't need temporary"); 3843 __ call(RuntimeAddress(dest)); 3844 if (info != nullptr) { 3845 add_call_info_here(info); 3846 } 3847 __ post_call_nop(); 3848 } 3849 3850 3851 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 3852 assert(type == T_LONG, "only for volatile long fields"); 3853 3854 if (info != nullptr) { 3855 add_debug_info_for_null_check_here(info); 3856 } 3857 3858 if (src->is_double_xmm()) { 3859 if (dest->is_double_cpu()) { 3860 #ifdef _LP64 3861 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg()); 3862 #else 3863 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg()); 3864 __ psrlq(src->as_xmm_double_reg(), 32); 3865 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg()); 3866 #endif // _LP64 3867 } else if (dest->is_double_stack()) { 3868 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg()); 3869 } else if (dest->is_address()) { 3870 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg()); 3871 } else { 3872 ShouldNotReachHere(); 3873 } 3874 3875 } else if (dest->is_double_xmm()) { 3876 if (src->is_double_stack()) { 3877 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix())); 3878 } else if (src->is_address()) { 3879 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr())); 3880 } else { 3881 ShouldNotReachHere(); 3882 } 3883 3884 #ifndef _LP64 3885 } else if (src->is_double_fpu()) { 3886 assert(src->fpu_regnrLo() == 0, "must be TOS"); 3887 if (dest->is_double_stack()) { 3888 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix())); 3889 } else if (dest->is_address()) { 3890 __ fistp_d(as_Address(dest->as_address_ptr())); 3891 } else { 3892 ShouldNotReachHere(); 3893 } 3894 3895 } else if (dest->is_double_fpu()) { 3896 assert(dest->fpu_regnrLo() == 0, "must be TOS"); 3897 if (src->is_double_stack()) { 3898 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix())); 3899 } else if (src->is_address()) { 3900 __ fild_d(as_Address(src->as_address_ptr())); 3901 } else { 3902 ShouldNotReachHere(); 3903 } 3904 #endif // !_LP64 3905 3906 } else { 3907 ShouldNotReachHere(); 3908 } 3909 } 3910 3911 #ifdef ASSERT 3912 // emit run-time assertion 3913 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 3914 assert(op->code() == lir_assert, "must be"); 3915 3916 if (op->in_opr1()->is_valid()) { 3917 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 3918 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 3919 } else { 3920 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 3921 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 3922 } 3923 3924 Label ok; 3925 if (op->condition() != lir_cond_always) { 3926 Assembler::Condition acond = Assembler::zero; 3927 switch (op->condition()) { 3928 case lir_cond_equal: acond = Assembler::equal; break; 3929 case lir_cond_notEqual: acond = Assembler::notEqual; break; 3930 case lir_cond_less: acond = Assembler::less; break; 3931 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 3932 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 3933 case lir_cond_greater: acond = Assembler::greater; break; 3934 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 3935 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 3936 default: ShouldNotReachHere(); 3937 } 3938 __ jcc(acond, ok); 3939 } 3940 if (op->halt()) { 3941 const char* str = __ code_string(op->msg()); 3942 __ stop(str); 3943 } else { 3944 breakpoint(); 3945 } 3946 __ bind(ok); 3947 } 3948 #endif 3949 3950 void LIR_Assembler::membar() { 3951 // QQQ sparc TSO uses this, 3952 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3953 } 3954 3955 void LIR_Assembler::membar_acquire() { 3956 // No x86 machines currently require load fences 3957 } 3958 3959 void LIR_Assembler::membar_release() { 3960 // No x86 machines currently require store fences 3961 } 3962 3963 void LIR_Assembler::membar_loadload() { 3964 // no-op 3965 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload)); 3966 } 3967 3968 void LIR_Assembler::membar_storestore() { 3969 // no-op 3970 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore)); 3971 } 3972 3973 void LIR_Assembler::membar_loadstore() { 3974 // no-op 3975 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore)); 3976 } 3977 3978 void LIR_Assembler::membar_storeload() { 3979 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3980 } 3981 3982 void LIR_Assembler::on_spin_wait() { 3983 __ pause (); 3984 } 3985 3986 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 3987 assert(result_reg->is_register(), "check"); 3988 #ifdef _LP64 3989 // __ get_thread(result_reg->as_register_lo()); 3990 __ mov(result_reg->as_register(), r15_thread); 3991 #else 3992 __ get_thread(result_reg->as_register()); 3993 #endif // _LP64 3994 } 3995 3996 3997 void LIR_Assembler::peephole(LIR_List*) { 3998 // do nothing for now 3999 } 4000 4001 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 4002 assert(data == dest, "xchg/xadd uses only 2 operands"); 4003 4004 if (data->type() == T_INT) { 4005 if (code == lir_xadd) { 4006 __ lock(); 4007 __ xaddl(as_Address(src->as_address_ptr()), data->as_register()); 4008 } else { 4009 __ xchgl(data->as_register(), as_Address(src->as_address_ptr())); 4010 } 4011 } else if (data->is_oop()) { 4012 assert (code == lir_xchg, "xadd for oops"); 4013 Register obj = data->as_register(); 4014 #ifdef _LP64 4015 if (UseCompressedOops) { 4016 __ encode_heap_oop(obj); 4017 __ xchgl(obj, as_Address(src->as_address_ptr())); 4018 __ decode_heap_oop(obj); 4019 } else { 4020 __ xchgptr(obj, as_Address(src->as_address_ptr())); 4021 } 4022 #else 4023 __ xchgl(obj, as_Address(src->as_address_ptr())); 4024 #endif 4025 } else if (data->type() == T_LONG) { 4026 #ifdef _LP64 4027 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register"); 4028 if (code == lir_xadd) { 4029 __ lock(); 4030 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo()); 4031 } else { 4032 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr())); 4033 } 4034 #else 4035 ShouldNotReachHere(); 4036 #endif 4037 } else { 4038 ShouldNotReachHere(); 4039 } 4040 } 4041 4042 #undef __