1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "c1/c1_CodeStubs.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_MacroAssembler.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/collectedHeap.hpp" 37 #include "gc/shared/gc_globals.hpp" 38 #include "nativeInst_x86.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/safepointMechanism.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "runtime/stubRoutines.hpp" 44 #include "utilities/powerOfTwo.hpp" 45 #include "vmreg_x86.inline.hpp" 46 47 48 // These masks are used to provide 128-bit aligned bitmasks to the XMM 49 // instructions, to allow sign-masking or sign-bit flipping. They allow 50 // fast versions of NegF/NegD and AbsF/AbsD. 51 52 // Note: 'double' and 'long long' have 32-bits alignment on x86. 53 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 54 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 55 // of 128-bits operands for SSE instructions. 56 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF))); 57 // Store the value to a 128-bits operand. 58 operand[0] = lo; 59 operand[1] = hi; 60 return operand; 61 } 62 63 // Buffer for 128-bits masks used by SSE instructions. 64 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment) 65 66 // Static initialization during VM startup. 67 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF)); 68 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF)); 69 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000)); 70 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000)); 71 72 73 NEEDS_CLEANUP // remove this definitions ? 74 const Register SYNC_header = rax; // synchronization header 75 const Register SHIFT_count = rcx; // where count for shift operations must be 76 77 #define __ _masm-> 78 79 80 static void select_different_registers(Register preserve, 81 Register extra, 82 Register &tmp1, 83 Register &tmp2) { 84 if (tmp1 == preserve) { 85 assert_different_registers(tmp1, tmp2, extra); 86 tmp1 = extra; 87 } else if (tmp2 == preserve) { 88 assert_different_registers(tmp1, tmp2, extra); 89 tmp2 = extra; 90 } 91 assert_different_registers(preserve, tmp1, tmp2); 92 } 93 94 95 96 static void select_different_registers(Register preserve, 97 Register extra, 98 Register &tmp1, 99 Register &tmp2, 100 Register &tmp3) { 101 if (tmp1 == preserve) { 102 assert_different_registers(tmp1, tmp2, tmp3, extra); 103 tmp1 = extra; 104 } else if (tmp2 == preserve) { 105 assert_different_registers(tmp1, tmp2, tmp3, extra); 106 tmp2 = extra; 107 } else if (tmp3 == preserve) { 108 assert_different_registers(tmp1, tmp2, tmp3, extra); 109 tmp3 = extra; 110 } 111 assert_different_registers(preserve, tmp1, tmp2, tmp3); 112 } 113 114 115 116 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 117 if (opr->is_constant()) { 118 LIR_Const* constant = opr->as_constant_ptr(); 119 switch (constant->type()) { 120 case T_INT: { 121 return true; 122 } 123 124 default: 125 return false; 126 } 127 } 128 return false; 129 } 130 131 132 LIR_Opr LIR_Assembler::receiverOpr() { 133 return FrameMap::receiver_opr; 134 } 135 136 LIR_Opr LIR_Assembler::osrBufferPointer() { 137 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 138 } 139 140 //--------------fpu register translations----------------------- 141 142 143 address LIR_Assembler::float_constant(float f) { 144 address const_addr = __ float_constant(f); 145 if (const_addr == nullptr) { 146 bailout("const section overflow"); 147 return __ code()->consts()->start(); 148 } else { 149 return const_addr; 150 } 151 } 152 153 154 address LIR_Assembler::double_constant(double d) { 155 address const_addr = __ double_constant(d); 156 if (const_addr == nullptr) { 157 bailout("const section overflow"); 158 return __ code()->consts()->start(); 159 } else { 160 return const_addr; 161 } 162 } 163 164 void LIR_Assembler::breakpoint() { 165 __ int3(); 166 } 167 168 void LIR_Assembler::push(LIR_Opr opr) { 169 if (opr->is_single_cpu()) { 170 __ push_reg(opr->as_register()); 171 } else if (opr->is_double_cpu()) { 172 __ push_reg(opr->as_register_lo()); 173 } else if (opr->is_stack()) { 174 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix())); 175 } else if (opr->is_constant()) { 176 LIR_Const* const_opr = opr->as_constant_ptr(); 177 if (const_opr->type() == T_OBJECT) { 178 __ push_oop(const_opr->as_jobject(), rscratch1); 179 } else if (const_opr->type() == T_INT) { 180 __ push_jint(const_opr->as_jint()); 181 } else { 182 ShouldNotReachHere(); 183 } 184 185 } else { 186 ShouldNotReachHere(); 187 } 188 } 189 190 void LIR_Assembler::pop(LIR_Opr opr) { 191 if (opr->is_single_cpu()) { 192 __ pop_reg(opr->as_register()); 193 } else { 194 ShouldNotReachHere(); 195 } 196 } 197 198 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { 199 return addr->base()->is_illegal() && addr->index()->is_illegal(); 200 } 201 202 //------------------------------------------- 203 204 Address LIR_Assembler::as_Address(LIR_Address* addr) { 205 return as_Address(addr, rscratch1); 206 } 207 208 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 209 if (addr->base()->is_illegal()) { 210 assert(addr->index()->is_illegal(), "must be illegal too"); 211 AddressLiteral laddr((address)addr->disp(), relocInfo::none); 212 if (! __ reachable(laddr)) { 213 __ movptr(tmp, laddr.addr()); 214 Address res(tmp, 0); 215 return res; 216 } else { 217 return __ as_Address(laddr); 218 } 219 } 220 221 Register base = addr->base()->as_pointer_register(); 222 223 if (addr->index()->is_illegal()) { 224 return Address( base, addr->disp()); 225 } else if (addr->index()->is_cpu_register()) { 226 Register index = addr->index()->as_pointer_register(); 227 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp()); 228 } else if (addr->index()->is_constant()) { 229 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp(); 230 assert(Assembler::is_simm32(addr_offset), "must be"); 231 232 return Address(base, addr_offset); 233 } else { 234 Unimplemented(); 235 return Address(); 236 } 237 } 238 239 240 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 241 Address base = as_Address(addr); 242 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord); 243 } 244 245 246 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 247 return as_Address(addr); 248 } 249 250 251 void LIR_Assembler::osr_entry() { 252 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 253 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 254 ValueStack* entry_state = osr_entry->state(); 255 int number_of_locks = entry_state->locks_size(); 256 257 // we jump here if osr happens with the interpreter 258 // state set up to continue at the beginning of the 259 // loop that triggered osr - in particular, we have 260 // the following registers setup: 261 // 262 // rcx: osr buffer 263 // 264 265 // build frame 266 ciMethod* m = compilation()->method(); 267 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 268 269 // OSR buffer is 270 // 271 // locals[nlocals-1..0] 272 // monitors[0..number_of_locks] 273 // 274 // locals is a direct copy of the interpreter frame so in the osr buffer 275 // so first slot in the local array is the last local from the interpreter 276 // and last slot is local[0] (receiver) from the interpreter 277 // 278 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 279 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 280 // in the interpreter frame (the method lock if a sync method) 281 282 // Initialize monitors in the compiled activation. 283 // rcx: pointer to osr buffer 284 // 285 // All other registers are dead at this point and the locals will be 286 // copied into place by code emitted in the IR. 287 288 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 289 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 290 int monitor_offset = BytesPerWord * method()->max_locals() + 291 (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1); 292 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 293 // the OSR buffer using 2 word entries: first the lock and then 294 // the oop. 295 for (int i = 0; i < number_of_locks; i++) { 296 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 297 #ifdef ASSERT 298 // verify the interpreter's monitor has a non-null object 299 { 300 Label L; 301 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD); 302 __ jcc(Assembler::notZero, L); 303 __ stop("locked object is null"); 304 __ bind(L); 305 } 306 #endif 307 __ movptr(rbx, Address(OSR_buf, slot_offset + 0)); 308 __ movptr(frame_map()->address_for_monitor_lock(i), rbx); 309 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 310 __ movptr(frame_map()->address_for_monitor_object(i), rbx); 311 } 312 } 313 } 314 315 316 // inline cache check; done before the frame is built. 317 int LIR_Assembler::check_icache() { 318 return __ ic_check(CodeEntryAlignment); 319 } 320 321 void LIR_Assembler::clinit_barrier(ciMethod* method) { 322 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 323 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 324 325 Label L_skip_barrier; 326 Register klass = rscratch1; 327 328 __ mov_metadata(klass, method->holder()->constant_encoding()); 329 __ clinit_barrier(klass, &L_skip_barrier /*L_fast_path*/); 330 331 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 332 333 __ bind(L_skip_barrier); 334 } 335 336 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) { 337 jobject o = nullptr; 338 PatchingStub* patch = new PatchingStub(_masm, patching_id(info)); 339 __ movoop(reg, o); 340 patching_epilog(patch, lir_patch_normal, reg, info); 341 } 342 343 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 344 Metadata* o = nullptr; 345 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id); 346 __ mov_metadata(reg, o); 347 patching_epilog(patch, lir_patch_normal, reg, info); 348 } 349 350 // This specifies the rsp decrement needed to build the frame 351 int LIR_Assembler::initial_frame_size_in_bytes() const { 352 // if rounding, must let FrameMap know! 353 354 // The frame_map records size in slots (32bit word) 355 356 // subtract two words to account for return address and link 357 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size; 358 } 359 360 361 int LIR_Assembler::emit_exception_handler() { 362 // generate code for exception handler 363 address handler_base = __ start_a_stub(exception_handler_size()); 364 if (handler_base == nullptr) { 365 // not enough space left for the handler 366 bailout("exception handler overflow"); 367 return -1; 368 } 369 370 int offset = code_offset(); 371 372 // the exception oop and pc are in rax, and rdx 373 // no other registers need to be preserved, so invalidate them 374 __ invalidate_registers(false, true, true, false, true, true); 375 376 // check that there is really an exception 377 __ verify_not_null_oop(rax); 378 379 // search an exception handler (rax: exception oop, rdx: throwing pc) 380 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id))); 381 __ should_not_reach_here(); 382 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 383 __ end_a_stub(); 384 385 return offset; 386 } 387 388 389 // Emit the code to remove the frame from the stack in the exception 390 // unwind path. 391 int LIR_Assembler::emit_unwind_handler() { 392 #ifndef PRODUCT 393 if (CommentedAssembly) { 394 _masm->block_comment("Unwind handler"); 395 } 396 #endif 397 398 int offset = code_offset(); 399 400 // Fetch the exception from TLS and clear out exception related thread state 401 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); 402 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), NULL_WORD); 403 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), NULL_WORD); 404 405 __ bind(_unwind_handler_entry); 406 __ verify_not_null_oop(rax); 407 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 408 __ mov(rbx, rax); // Preserve the exception (rbx is always callee-saved) 409 } 410 411 // Perform needed unlocking 412 MonitorExitStub* stub = nullptr; 413 if (method()->is_synchronized()) { 414 monitor_address(0, FrameMap::rax_opr); 415 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0); 416 if (LockingMode == LM_MONITOR) { 417 __ jmp(*stub->entry()); 418 } else { 419 __ unlock_object(rdi, rsi, rax, *stub->entry()); 420 } 421 __ bind(*stub->continuation()); 422 } 423 424 if (compilation()->env()->dtrace_method_probes()) { 425 __ mov(rdi, r15_thread); 426 __ mov_metadata(rsi, method()->constant_encoding()); 427 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit))); 428 } 429 430 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 431 __ mov(rax, rbx); // Restore the exception 432 } 433 434 // remove the activation and dispatch to the unwind handler 435 __ remove_frame(initial_frame_size_in_bytes()); 436 __ jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id))); 437 438 // Emit the slow path assembly 439 if (stub != nullptr) { 440 stub->emit_code(this); 441 } 442 443 return offset; 444 } 445 446 447 int LIR_Assembler::emit_deopt_handler() { 448 // generate code for exception handler 449 address handler_base = __ start_a_stub(deopt_handler_size()); 450 if (handler_base == nullptr) { 451 // not enough space left for the handler 452 bailout("deopt handler overflow"); 453 return -1; 454 } 455 456 int offset = code_offset(); 457 InternalAddress here(__ pc()); 458 459 __ pushptr(here.addr(), rscratch1); 460 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 461 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 462 __ end_a_stub(); 463 464 return offset; 465 } 466 467 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 468 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,"); 469 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) { 470 assert(result->fpu() == 0, "result must already be on TOS"); 471 } 472 473 // Pop the stack before the safepoint code 474 __ remove_frame(initial_frame_size_in_bytes()); 475 476 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 477 __ reserved_stack_check(); 478 } 479 480 // Note: we do not need to round double result; float result has the right precision 481 // the poll sets the condition code, but no data registers 482 483 code_stub->set_safepoint_offset(__ offset()); 484 __ relocate(relocInfo::poll_return_type); 485 __ safepoint_poll(*code_stub->entry(), true /* at_return */, true /* in_nmethod */); 486 __ ret(0); 487 } 488 489 490 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 491 guarantee(info != nullptr, "Shouldn't be null"); 492 int offset = __ offset(); 493 const Register poll_addr = rscratch1; 494 __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset())); 495 add_debug_info_for_branch(info); 496 __ relocate(relocInfo::poll_type); 497 address pre_pc = __ pc(); 498 __ testl(rax, Address(poll_addr, 0)); 499 address post_pc = __ pc(); 500 guarantee(pointer_delta(post_pc, pre_pc, 1) == 3, "must be exact length"); 501 return offset; 502 } 503 504 505 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 506 if (from_reg != to_reg) __ mov(to_reg, from_reg); 507 } 508 509 void LIR_Assembler::swap_reg(Register a, Register b) { 510 __ xchgptr(a, b); 511 } 512 513 514 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 515 assert(src->is_constant(), "should not call otherwise"); 516 assert(dest->is_register(), "should not call otherwise"); 517 LIR_Const* c = src->as_constant_ptr(); 518 519 switch (c->type()) { 520 case T_INT: { 521 assert(patch_code == lir_patch_none, "no patching handled here"); 522 __ movl(dest->as_register(), c->as_jint()); 523 break; 524 } 525 526 case T_ADDRESS: { 527 assert(patch_code == lir_patch_none, "no patching handled here"); 528 __ movptr(dest->as_register(), c->as_jint()); 529 break; 530 } 531 532 case T_LONG: { 533 assert(patch_code == lir_patch_none, "no patching handled here"); 534 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong()); 535 break; 536 } 537 538 case T_OBJECT: { 539 if (patch_code != lir_patch_none) { 540 jobject2reg_with_patching(dest->as_register(), info); 541 } else { 542 __ movoop(dest->as_register(), c->as_jobject()); 543 } 544 break; 545 } 546 547 case T_METADATA: { 548 if (patch_code != lir_patch_none) { 549 klass2reg_with_patching(dest->as_register(), info); 550 } else { 551 __ mov_metadata(dest->as_register(), c->as_metadata()); 552 } 553 break; 554 } 555 556 case T_FLOAT: { 557 if (dest->is_single_xmm()) { 558 if (UseAVX <= 2 && c->is_zero_float()) { 559 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg()); 560 } else { 561 __ movflt(dest->as_xmm_float_reg(), 562 InternalAddress(float_constant(c->as_jfloat()))); 563 } 564 } else { 565 ShouldNotReachHere(); 566 } 567 break; 568 } 569 570 case T_DOUBLE: { 571 if (dest->is_double_xmm()) { 572 if (UseAVX <= 2 && c->is_zero_double()) { 573 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg()); 574 } else { 575 __ movdbl(dest->as_xmm_double_reg(), 576 InternalAddress(double_constant(c->as_jdouble()))); 577 } 578 } else { 579 ShouldNotReachHere(); 580 } 581 break; 582 } 583 584 default: 585 ShouldNotReachHere(); 586 } 587 } 588 589 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 590 assert(src->is_constant(), "should not call otherwise"); 591 assert(dest->is_stack(), "should not call otherwise"); 592 LIR_Const* c = src->as_constant_ptr(); 593 594 switch (c->type()) { 595 case T_INT: // fall through 596 case T_FLOAT: 597 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 598 break; 599 600 case T_ADDRESS: 601 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 602 break; 603 604 case T_OBJECT: 605 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1); 606 break; 607 608 case T_LONG: // fall through 609 case T_DOUBLE: 610 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 611 lo_word_offset_in_bytes), 612 (intptr_t)c->as_jlong_bits(), 613 rscratch1); 614 break; 615 616 default: 617 ShouldNotReachHere(); 618 } 619 } 620 621 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 622 assert(src->is_constant(), "should not call otherwise"); 623 assert(dest->is_address(), "should not call otherwise"); 624 LIR_Const* c = src->as_constant_ptr(); 625 LIR_Address* addr = dest->as_address_ptr(); 626 627 int null_check_here = code_offset(); 628 switch (type) { 629 case T_INT: // fall through 630 case T_FLOAT: 631 __ movl(as_Address(addr), c->as_jint_bits()); 632 break; 633 634 case T_ADDRESS: 635 __ movptr(as_Address(addr), c->as_jint_bits()); 636 break; 637 638 case T_OBJECT: // fall through 639 case T_ARRAY: 640 if (c->as_jobject() == nullptr) { 641 if (UseCompressedOops && !wide) { 642 __ movl(as_Address(addr), NULL_WORD); 643 } else { 644 __ xorptr(rscratch1, rscratch1); 645 null_check_here = code_offset(); 646 __ movptr(as_Address(addr), rscratch1); 647 } 648 } else { 649 if (is_literal_address(addr)) { 650 ShouldNotReachHere(); 651 __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1); 652 } else { 653 __ movoop(rscratch1, c->as_jobject()); 654 if (UseCompressedOops && !wide) { 655 __ encode_heap_oop(rscratch1); 656 null_check_here = code_offset(); 657 __ movl(as_Address_lo(addr), rscratch1); 658 } else { 659 null_check_here = code_offset(); 660 __ movptr(as_Address_lo(addr), rscratch1); 661 } 662 } 663 } 664 break; 665 666 case T_LONG: // fall through 667 case T_DOUBLE: 668 if (is_literal_address(addr)) { 669 ShouldNotReachHere(); 670 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits()); 671 } else { 672 __ movptr(r10, (intptr_t)c->as_jlong_bits()); 673 null_check_here = code_offset(); 674 __ movptr(as_Address_lo(addr), r10); 675 } 676 break; 677 678 case T_BOOLEAN: // fall through 679 case T_BYTE: 680 __ movb(as_Address(addr), c->as_jint() & 0xFF); 681 break; 682 683 case T_CHAR: // fall through 684 case T_SHORT: 685 __ movw(as_Address(addr), c->as_jint() & 0xFFFF); 686 break; 687 688 default: 689 ShouldNotReachHere(); 690 }; 691 692 if (info != nullptr) { 693 add_debug_info_for_null_check(null_check_here, info); 694 } 695 } 696 697 698 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 699 assert(src->is_register(), "should not call otherwise"); 700 assert(dest->is_register(), "should not call otherwise"); 701 702 // move between cpu-registers 703 if (dest->is_single_cpu()) { 704 if (src->type() == T_LONG) { 705 // Can do LONG -> OBJECT 706 move_regs(src->as_register_lo(), dest->as_register()); 707 return; 708 } 709 assert(src->is_single_cpu(), "must match"); 710 if (src->type() == T_OBJECT) { 711 __ verify_oop(src->as_register()); 712 } 713 move_regs(src->as_register(), dest->as_register()); 714 715 } else if (dest->is_double_cpu()) { 716 if (is_reference_type(src->type())) { 717 // Surprising to me but we can see move of a long to t_object 718 __ verify_oop(src->as_register()); 719 move_regs(src->as_register(), dest->as_register_lo()); 720 return; 721 } 722 assert(src->is_double_cpu(), "must match"); 723 Register f_lo = src->as_register_lo(); 724 Register f_hi = src->as_register_hi(); 725 Register t_lo = dest->as_register_lo(); 726 Register t_hi = dest->as_register_hi(); 727 assert(f_hi == f_lo, "must be same"); 728 assert(t_hi == t_lo, "must be same"); 729 move_regs(f_lo, t_lo); 730 731 // move between xmm-registers 732 } else if (dest->is_single_xmm()) { 733 assert(src->is_single_xmm(), "must match"); 734 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg()); 735 } else if (dest->is_double_xmm()) { 736 assert(src->is_double_xmm(), "must match"); 737 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg()); 738 739 } else { 740 ShouldNotReachHere(); 741 } 742 } 743 744 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 745 assert(src->is_register(), "should not call otherwise"); 746 assert(dest->is_stack(), "should not call otherwise"); 747 748 if (src->is_single_cpu()) { 749 Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); 750 if (is_reference_type(type)) { 751 __ verify_oop(src->as_register()); 752 __ movptr (dst, src->as_register()); 753 } else if (type == T_METADATA || type == T_ADDRESS) { 754 __ movptr (dst, src->as_register()); 755 } else { 756 __ movl (dst, src->as_register()); 757 } 758 759 } else if (src->is_double_cpu()) { 760 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes); 761 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes); 762 __ movptr (dstLO, src->as_register_lo()); 763 764 } else if (src->is_single_xmm()) { 765 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 766 __ movflt(dst_addr, src->as_xmm_float_reg()); 767 768 } else if (src->is_double_xmm()) { 769 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 770 __ movdbl(dst_addr, src->as_xmm_double_reg()); 771 772 } else { 773 ShouldNotReachHere(); 774 } 775 } 776 777 778 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 779 LIR_Address* to_addr = dest->as_address_ptr(); 780 PatchingStub* patch = nullptr; 781 Register compressed_src = rscratch1; 782 783 if (is_reference_type(type)) { 784 __ verify_oop(src->as_register()); 785 if (UseCompressedOops && !wide) { 786 __ movptr(compressed_src, src->as_register()); 787 __ encode_heap_oop(compressed_src); 788 if (patch_code != lir_patch_none) { 789 info->oop_map()->set_narrowoop(compressed_src->as_VMReg()); 790 } 791 } 792 } 793 794 if (patch_code != lir_patch_none) { 795 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 796 Address toa = as_Address(to_addr); 797 assert(toa.disp() != 0, "must have"); 798 } 799 800 int null_check_here = code_offset(); 801 switch (type) { 802 case T_FLOAT: { 803 assert(src->is_single_xmm(), "not a float"); 804 __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); 805 break; 806 } 807 808 case T_DOUBLE: { 809 assert(src->is_double_xmm(), "not a double"); 810 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); 811 break; 812 } 813 814 case T_ARRAY: // fall through 815 case T_OBJECT: // fall through 816 if (UseCompressedOops && !wide) { 817 __ movl(as_Address(to_addr), compressed_src); 818 } else { 819 __ movptr(as_Address(to_addr), src->as_register()); 820 } 821 break; 822 case T_ADDRESS: 823 __ movptr(as_Address(to_addr), src->as_register()); 824 break; 825 case T_INT: 826 __ movl(as_Address(to_addr), src->as_register()); 827 break; 828 829 case T_LONG: { 830 Register from_lo = src->as_register_lo(); 831 Register from_hi = src->as_register_hi(); 832 __ movptr(as_Address_lo(to_addr), from_lo); 833 break; 834 } 835 836 case T_BYTE: // fall through 837 case T_BOOLEAN: { 838 Register src_reg = src->as_register(); 839 Address dst_addr = as_Address(to_addr); 840 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6"); 841 __ movb(dst_addr, src_reg); 842 break; 843 } 844 845 case T_CHAR: // fall through 846 case T_SHORT: 847 __ movw(as_Address(to_addr), src->as_register()); 848 break; 849 850 default: 851 ShouldNotReachHere(); 852 } 853 if (info != nullptr) { 854 add_debug_info_for_null_check(null_check_here, info); 855 } 856 857 if (patch_code != lir_patch_none) { 858 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info); 859 } 860 } 861 862 863 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 864 assert(src->is_stack(), "should not call otherwise"); 865 assert(dest->is_register(), "should not call otherwise"); 866 867 if (dest->is_single_cpu()) { 868 if (is_reference_type(type)) { 869 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 870 __ verify_oop(dest->as_register()); 871 } else if (type == T_METADATA || type == T_ADDRESS) { 872 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 873 } else { 874 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 875 } 876 877 } else if (dest->is_double_cpu()) { 878 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes); 879 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes); 880 __ movptr(dest->as_register_lo(), src_addr_LO); 881 882 } else if (dest->is_single_xmm()) { 883 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 884 __ movflt(dest->as_xmm_float_reg(), src_addr); 885 886 } else if (dest->is_double_xmm()) { 887 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 888 __ movdbl(dest->as_xmm_double_reg(), src_addr); 889 890 } else { 891 ShouldNotReachHere(); 892 } 893 } 894 895 896 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 897 if (src->is_single_stack()) { 898 if (is_reference_type(type)) { 899 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix())); 900 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix())); 901 } else { 902 //no pushl on 64bits 903 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix())); 904 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1); 905 } 906 907 } else if (src->is_double_stack()) { 908 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix())); 909 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix())); 910 911 } else { 912 ShouldNotReachHere(); 913 } 914 } 915 916 917 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 918 assert(src->is_address(), "should not call otherwise"); 919 assert(dest->is_register(), "should not call otherwise"); 920 921 LIR_Address* addr = src->as_address_ptr(); 922 Address from_addr = as_Address(addr); 923 924 if (addr->base()->type() == T_OBJECT) { 925 __ verify_oop(addr->base()->as_pointer_register()); 926 } 927 928 switch (type) { 929 case T_BOOLEAN: // fall through 930 case T_BYTE: // fall through 931 case T_CHAR: // fall through 932 case T_SHORT: 933 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) { 934 // on pre P6 processors we may get partial register stalls 935 // so blow away the value of to_rinfo before loading a 936 // partial word into it. Do it here so that it precedes 937 // the potential patch point below. 938 __ xorptr(dest->as_register(), dest->as_register()); 939 } 940 break; 941 default: 942 break; 943 } 944 945 PatchingStub* patch = nullptr; 946 if (patch_code != lir_patch_none) { 947 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 948 assert(from_addr.disp() != 0, "must have"); 949 } 950 if (info != nullptr) { 951 add_debug_info_for_null_check_here(info); 952 } 953 954 switch (type) { 955 case T_FLOAT: { 956 if (dest->is_single_xmm()) { 957 __ movflt(dest->as_xmm_float_reg(), from_addr); 958 } else { 959 ShouldNotReachHere(); 960 } 961 break; 962 } 963 964 case T_DOUBLE: { 965 if (dest->is_double_xmm()) { 966 __ movdbl(dest->as_xmm_double_reg(), from_addr); 967 } else { 968 ShouldNotReachHere(); 969 } 970 break; 971 } 972 973 case T_OBJECT: // fall through 974 case T_ARRAY: // fall through 975 if (UseCompressedOops && !wide) { 976 __ movl(dest->as_register(), from_addr); 977 } else { 978 __ movptr(dest->as_register(), from_addr); 979 } 980 break; 981 982 case T_ADDRESS: 983 __ movptr(dest->as_register(), from_addr); 984 break; 985 case T_INT: 986 __ movl(dest->as_register(), from_addr); 987 break; 988 989 case T_LONG: { 990 Register to_lo = dest->as_register_lo(); 991 Register to_hi = dest->as_register_hi(); 992 __ movptr(to_lo, as_Address_lo(addr)); 993 break; 994 } 995 996 case T_BOOLEAN: // fall through 997 case T_BYTE: { 998 Register dest_reg = dest->as_register(); 999 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1000 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1001 __ movsbl(dest_reg, from_addr); 1002 } else { 1003 __ movb(dest_reg, from_addr); 1004 __ shll(dest_reg, 24); 1005 __ sarl(dest_reg, 24); 1006 } 1007 break; 1008 } 1009 1010 case T_CHAR: { 1011 Register dest_reg = dest->as_register(); 1012 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1013 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1014 __ movzwl(dest_reg, from_addr); 1015 } else { 1016 __ movw(dest_reg, from_addr); 1017 } 1018 break; 1019 } 1020 1021 case T_SHORT: { 1022 Register dest_reg = dest->as_register(); 1023 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1024 __ movswl(dest_reg, from_addr); 1025 } else { 1026 __ movw(dest_reg, from_addr); 1027 __ shll(dest_reg, 16); 1028 __ sarl(dest_reg, 16); 1029 } 1030 break; 1031 } 1032 1033 default: 1034 ShouldNotReachHere(); 1035 } 1036 1037 if (patch != nullptr) { 1038 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 1039 } 1040 1041 if (is_reference_type(type)) { 1042 if (UseCompressedOops && !wide) { 1043 __ decode_heap_oop(dest->as_register()); 1044 } 1045 1046 __ verify_oop(dest->as_register()); 1047 } 1048 } 1049 1050 1051 NEEDS_CLEANUP; // This could be static? 1052 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const { 1053 int elem_size = type2aelembytes(type); 1054 switch (elem_size) { 1055 case 1: return Address::times_1; 1056 case 2: return Address::times_2; 1057 case 4: return Address::times_4; 1058 case 8: return Address::times_8; 1059 } 1060 ShouldNotReachHere(); 1061 return Address::no_scale; 1062 } 1063 1064 1065 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1066 switch (op->code()) { 1067 case lir_idiv: 1068 case lir_irem: 1069 arithmetic_idiv(op->code(), 1070 op->in_opr1(), 1071 op->in_opr2(), 1072 op->in_opr3(), 1073 op->result_opr(), 1074 op->info()); 1075 break; 1076 case lir_fmad: 1077 __ fmad(op->result_opr()->as_xmm_double_reg(), 1078 op->in_opr1()->as_xmm_double_reg(), 1079 op->in_opr2()->as_xmm_double_reg(), 1080 op->in_opr3()->as_xmm_double_reg()); 1081 break; 1082 case lir_fmaf: 1083 __ fmaf(op->result_opr()->as_xmm_float_reg(), 1084 op->in_opr1()->as_xmm_float_reg(), 1085 op->in_opr2()->as_xmm_float_reg(), 1086 op->in_opr3()->as_xmm_float_reg()); 1087 break; 1088 default: ShouldNotReachHere(); break; 1089 } 1090 } 1091 1092 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1093 #ifdef ASSERT 1094 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1095 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1096 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1097 #endif 1098 1099 if (op->cond() == lir_cond_always) { 1100 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1101 __ jmp (*(op->label())); 1102 } else { 1103 Assembler::Condition acond = Assembler::zero; 1104 if (op->code() == lir_cond_float_branch) { 1105 assert(op->ublock() != nullptr, "must have unordered successor"); 1106 __ jcc(Assembler::parity, *(op->ublock()->label())); 1107 switch(op->cond()) { 1108 case lir_cond_equal: acond = Assembler::equal; break; 1109 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1110 case lir_cond_less: acond = Assembler::below; break; 1111 case lir_cond_lessEqual: acond = Assembler::belowEqual; break; 1112 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break; 1113 case lir_cond_greater: acond = Assembler::above; break; 1114 default: ShouldNotReachHere(); 1115 } 1116 } else { 1117 switch (op->cond()) { 1118 case lir_cond_equal: acond = Assembler::equal; break; 1119 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1120 case lir_cond_less: acond = Assembler::less; break; 1121 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 1122 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 1123 case lir_cond_greater: acond = Assembler::greater; break; 1124 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 1125 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 1126 default: ShouldNotReachHere(); 1127 } 1128 } 1129 __ jcc(acond,*(op->label())); 1130 } 1131 } 1132 1133 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1134 LIR_Opr src = op->in_opr(); 1135 LIR_Opr dest = op->result_opr(); 1136 1137 switch (op->bytecode()) { 1138 case Bytecodes::_i2l: 1139 __ movl2ptr(dest->as_register_lo(), src->as_register()); 1140 break; 1141 1142 case Bytecodes::_l2i: 1143 __ movl(dest->as_register(), src->as_register_lo()); 1144 break; 1145 1146 case Bytecodes::_i2b: 1147 move_regs(src->as_register(), dest->as_register()); 1148 __ sign_extend_byte(dest->as_register()); 1149 break; 1150 1151 case Bytecodes::_i2c: 1152 move_regs(src->as_register(), dest->as_register()); 1153 __ andl(dest->as_register(), 0xFFFF); 1154 break; 1155 1156 case Bytecodes::_i2s: 1157 move_regs(src->as_register(), dest->as_register()); 1158 __ sign_extend_short(dest->as_register()); 1159 break; 1160 1161 case Bytecodes::_f2d: 1162 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); 1163 break; 1164 1165 case Bytecodes::_d2f: 1166 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); 1167 break; 1168 1169 case Bytecodes::_i2f: 1170 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register()); 1171 break; 1172 1173 case Bytecodes::_i2d: 1174 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register()); 1175 break; 1176 1177 case Bytecodes::_l2f: 1178 __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo()); 1179 break; 1180 1181 case Bytecodes::_l2d: 1182 __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo()); 1183 break; 1184 1185 case Bytecodes::_f2i: 1186 __ convert_f2i(dest->as_register(), src->as_xmm_float_reg()); 1187 break; 1188 1189 case Bytecodes::_d2i: 1190 __ convert_d2i(dest->as_register(), src->as_xmm_double_reg()); 1191 break; 1192 1193 case Bytecodes::_f2l: 1194 __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg()); 1195 break; 1196 1197 case Bytecodes::_d2l: 1198 __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg()); 1199 break; 1200 1201 default: ShouldNotReachHere(); 1202 } 1203 } 1204 1205 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1206 if (op->init_check()) { 1207 add_debug_info_for_null_check_here(op->stub()->info()); 1208 // init_state needs acquire, but x86 is TSO, and so we are already good. 1209 __ cmpb(Address(op->klass()->as_register(), 1210 InstanceKlass::init_state_offset()), 1211 InstanceKlass::fully_initialized); 1212 __ jcc(Assembler::notEqual, *op->stub()->entry()); 1213 } 1214 __ allocate_object(op->obj()->as_register(), 1215 op->tmp1()->as_register(), 1216 op->tmp2()->as_register(), 1217 op->header_size(), 1218 op->object_size(), 1219 op->klass()->as_register(), 1220 *op->stub()->entry()); 1221 __ bind(*op->stub()->continuation()); 1222 } 1223 1224 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1225 Register len = op->len()->as_register(); 1226 __ movslq(len, len); 1227 1228 if (UseSlowPath || 1229 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1230 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1231 __ jmp(*op->stub()->entry()); 1232 } else { 1233 Register tmp1 = op->tmp1()->as_register(); 1234 Register tmp2 = op->tmp2()->as_register(); 1235 Register tmp3 = op->tmp3()->as_register(); 1236 if (len == tmp1) { 1237 tmp1 = tmp3; 1238 } else if (len == tmp2) { 1239 tmp2 = tmp3; 1240 } else if (len == tmp3) { 1241 // everything is ok 1242 } else { 1243 __ mov(tmp3, len); 1244 } 1245 __ allocate_array(op->obj()->as_register(), 1246 len, 1247 tmp1, 1248 tmp2, 1249 arrayOopDesc::base_offset_in_bytes(op->type()), 1250 array_element_size(op->type()), 1251 op->klass()->as_register(), 1252 *op->stub()->entry(), 1253 op->zero_array()); 1254 } 1255 __ bind(*op->stub()->continuation()); 1256 } 1257 1258 void LIR_Assembler::type_profile_helper(Register mdo, 1259 ciMethodData *md, ciProfileData *data, 1260 Register recv, Label* update_done) { 1261 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1262 Label next_test; 1263 // See if the receiver is receiver[n]. 1264 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1265 __ jccb(Assembler::notEqual, next_test); 1266 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1267 __ addptr(data_addr, DataLayout::counter_increment); 1268 __ jmp(*update_done); 1269 __ bind(next_test); 1270 } 1271 1272 // Didn't find receiver; find next empty slot and fill it in 1273 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1274 Label next_test; 1275 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 1276 __ cmpptr(recv_addr, NULL_WORD); 1277 __ jccb(Assembler::notEqual, next_test); 1278 __ movptr(recv_addr, recv); 1279 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment); 1280 __ jmp(*update_done); 1281 __ bind(next_test); 1282 } 1283 } 1284 1285 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1286 // we always need a stub for the failure case. 1287 CodeStub* stub = op->stub(); 1288 Register obj = op->object()->as_register(); 1289 Register k_RInfo = op->tmp1()->as_register(); 1290 Register klass_RInfo = op->tmp2()->as_register(); 1291 Register dst = op->result_opr()->as_register(); 1292 ciKlass* k = op->klass(); 1293 Register Rtmp1 = noreg; 1294 Register tmp_load_klass = rscratch1; 1295 1296 // check if it needs to be profiled 1297 ciMethodData* md = nullptr; 1298 ciProfileData* data = nullptr; 1299 1300 if (op->should_profile()) { 1301 ciMethod* method = op->profiled_method(); 1302 assert(method != nullptr, "Should have method"); 1303 int bci = op->profiled_bci(); 1304 md = method->method_data_or_null(); 1305 assert(md != nullptr, "Sanity"); 1306 data = md->bci_to_data(bci); 1307 assert(data != nullptr, "need data for type check"); 1308 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1309 } 1310 Label* success_target = success; 1311 Label* failure_target = failure; 1312 1313 if (obj == k_RInfo) { 1314 k_RInfo = dst; 1315 } else if (obj == klass_RInfo) { 1316 klass_RInfo = dst; 1317 } 1318 if (k->is_loaded() && !UseCompressedClassPointers) { 1319 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1320 } else { 1321 Rtmp1 = op->tmp3()->as_register(); 1322 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1323 } 1324 1325 assert_different_registers(obj, k_RInfo, klass_RInfo); 1326 1327 __ testptr(obj, obj); 1328 if (op->should_profile()) { 1329 Label not_null; 1330 Register mdo = klass_RInfo; 1331 __ mov_metadata(mdo, md->constant_encoding()); 1332 __ jccb(Assembler::notEqual, not_null); 1333 // Object is null; update MDO and exit 1334 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1335 int header_bits = BitData::null_seen_byte_constant(); 1336 __ orb(data_addr, header_bits); 1337 __ jmp(*obj_is_null); 1338 __ bind(not_null); 1339 1340 Label update_done; 1341 Register recv = k_RInfo; 1342 __ load_klass(recv, obj, tmp_load_klass); 1343 type_profile_helper(mdo, md, data, recv, &update_done); 1344 1345 Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1346 __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment); 1347 1348 __ bind(update_done); 1349 } else { 1350 __ jcc(Assembler::equal, *obj_is_null); 1351 } 1352 1353 if (!k->is_loaded()) { 1354 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1355 } else { 1356 __ mov_metadata(k_RInfo, k->constant_encoding()); 1357 } 1358 __ verify_oop(obj); 1359 1360 if (op->fast_check()) { 1361 // get object class 1362 // not a safepoint as obj null check happens earlier 1363 if (UseCompressedClassPointers) { 1364 __ load_klass(Rtmp1, obj, tmp_load_klass); 1365 __ cmpptr(k_RInfo, Rtmp1); 1366 } else { 1367 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1368 } 1369 __ jcc(Assembler::notEqual, *failure_target); 1370 // successful cast, fall through to profile or jump 1371 } else { 1372 // get object class 1373 // not a safepoint as obj null check happens earlier 1374 __ load_klass(klass_RInfo, obj, tmp_load_klass); 1375 if (k->is_loaded()) { 1376 // See if we get an immediate positive hit 1377 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset())); 1378 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1379 __ jcc(Assembler::notEqual, *failure_target); 1380 // successful cast, fall through to profile or jump 1381 } else { 1382 // See if we get an immediate positive hit 1383 __ jcc(Assembler::equal, *success_target); 1384 // check for self 1385 __ cmpptr(klass_RInfo, k_RInfo); 1386 __ jcc(Assembler::equal, *success_target); 1387 1388 __ push(klass_RInfo); 1389 __ push(k_RInfo); 1390 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1391 __ pop(klass_RInfo); 1392 __ pop(klass_RInfo); 1393 // result is a boolean 1394 __ testl(klass_RInfo, klass_RInfo); 1395 __ jcc(Assembler::equal, *failure_target); 1396 // successful cast, fall through to profile or jump 1397 } 1398 } else { 1399 // perform the fast part of the checking logic 1400 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1401 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1402 __ push(klass_RInfo); 1403 __ push(k_RInfo); 1404 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1405 __ pop(klass_RInfo); 1406 __ pop(k_RInfo); 1407 // result is a boolean 1408 __ testl(k_RInfo, k_RInfo); 1409 __ jcc(Assembler::equal, *failure_target); 1410 // successful cast, fall through to profile or jump 1411 } 1412 } 1413 __ jmp(*success); 1414 } 1415 1416 1417 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1418 Register tmp_load_klass = rscratch1; 1419 LIR_Code code = op->code(); 1420 if (code == lir_store_check) { 1421 Register value = op->object()->as_register(); 1422 Register array = op->array()->as_register(); 1423 Register k_RInfo = op->tmp1()->as_register(); 1424 Register klass_RInfo = op->tmp2()->as_register(); 1425 Register Rtmp1 = op->tmp3()->as_register(); 1426 1427 CodeStub* stub = op->stub(); 1428 1429 // check if it needs to be profiled 1430 ciMethodData* md = nullptr; 1431 ciProfileData* data = nullptr; 1432 1433 if (op->should_profile()) { 1434 ciMethod* method = op->profiled_method(); 1435 assert(method != nullptr, "Should have method"); 1436 int bci = op->profiled_bci(); 1437 md = method->method_data_or_null(); 1438 assert(md != nullptr, "Sanity"); 1439 data = md->bci_to_data(bci); 1440 assert(data != nullptr, "need data for type check"); 1441 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1442 } 1443 Label done; 1444 Label* success_target = &done; 1445 Label* failure_target = stub->entry(); 1446 1447 __ testptr(value, value); 1448 if (op->should_profile()) { 1449 Label not_null; 1450 Register mdo = klass_RInfo; 1451 __ mov_metadata(mdo, md->constant_encoding()); 1452 __ jccb(Assembler::notEqual, not_null); 1453 // Object is null; update MDO and exit 1454 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1455 int header_bits = BitData::null_seen_byte_constant(); 1456 __ orb(data_addr, header_bits); 1457 __ jmp(done); 1458 __ bind(not_null); 1459 1460 Label update_done; 1461 Register recv = k_RInfo; 1462 __ load_klass(recv, value, tmp_load_klass); 1463 type_profile_helper(mdo, md, data, recv, &update_done); 1464 1465 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1466 __ addptr(counter_addr, DataLayout::counter_increment); 1467 __ bind(update_done); 1468 } else { 1469 __ jcc(Assembler::equal, done); 1470 } 1471 1472 add_debug_info_for_null_check_here(op->info_for_exception()); 1473 __ load_klass(k_RInfo, array, tmp_load_klass); 1474 __ load_klass(klass_RInfo, value, tmp_load_klass); 1475 1476 // get instance klass (it's already uncompressed) 1477 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1478 // perform the fast part of the checking logic 1479 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1480 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1481 __ push(klass_RInfo); 1482 __ push(k_RInfo); 1483 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1484 __ pop(klass_RInfo); 1485 __ pop(k_RInfo); 1486 // result is a boolean 1487 __ testl(k_RInfo, k_RInfo); 1488 __ jcc(Assembler::equal, *failure_target); 1489 // fall through to the success case 1490 1491 __ bind(done); 1492 } else 1493 if (code == lir_checkcast) { 1494 Register obj = op->object()->as_register(); 1495 Register dst = op->result_opr()->as_register(); 1496 Label success; 1497 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1498 __ bind(success); 1499 if (dst != obj) { 1500 __ mov(dst, obj); 1501 } 1502 } else 1503 if (code == lir_instanceof) { 1504 Register obj = op->object()->as_register(); 1505 Register dst = op->result_opr()->as_register(); 1506 Label success, failure, done; 1507 emit_typecheck_helper(op, &success, &failure, &failure); 1508 __ bind(failure); 1509 __ xorptr(dst, dst); 1510 __ jmpb(done); 1511 __ bind(success); 1512 __ movptr(dst, 1); 1513 __ bind(done); 1514 } else { 1515 ShouldNotReachHere(); 1516 } 1517 1518 } 1519 1520 1521 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1522 if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { 1523 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1524 Register newval = op->new_value()->as_register(); 1525 Register cmpval = op->cmp_value()->as_register(); 1526 assert(cmpval == rax, "wrong register"); 1527 assert(newval != noreg, "new val must be register"); 1528 assert(cmpval != newval, "cmp and new values must be in different registers"); 1529 assert(cmpval != addr, "cmp and addr must be in different registers"); 1530 assert(newval != addr, "new value and addr must be in different registers"); 1531 1532 if (op->code() == lir_cas_obj) { 1533 if (UseCompressedOops) { 1534 __ encode_heap_oop(cmpval); 1535 __ mov(rscratch1, newval); 1536 __ encode_heap_oop(rscratch1); 1537 __ lock(); 1538 // cmpval (rax) is implicitly used by this instruction 1539 __ cmpxchgl(rscratch1, Address(addr, 0)); 1540 } else { 1541 __ lock(); 1542 __ cmpxchgptr(newval, Address(addr, 0)); 1543 } 1544 } else { 1545 assert(op->code() == lir_cas_int, "lir_cas_int expected"); 1546 __ lock(); 1547 __ cmpxchgl(newval, Address(addr, 0)); 1548 } 1549 } else if (op->code() == lir_cas_long) { 1550 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1551 Register newval = op->new_value()->as_register_lo(); 1552 Register cmpval = op->cmp_value()->as_register_lo(); 1553 assert(cmpval == rax, "wrong register"); 1554 assert(newval != noreg, "new val must be register"); 1555 assert(cmpval != newval, "cmp and new values must be in different registers"); 1556 assert(cmpval != addr, "cmp and addr must be in different registers"); 1557 assert(newval != addr, "new value and addr must be in different registers"); 1558 __ lock(); 1559 __ cmpxchgq(newval, Address(addr, 0)); 1560 } else { 1561 Unimplemented(); 1562 } 1563 } 1564 1565 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1566 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1567 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86"); 1568 1569 Assembler::Condition acond, ncond; 1570 switch (condition) { 1571 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break; 1572 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break; 1573 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break; 1574 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break; 1575 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break; 1576 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break; 1577 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break; 1578 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break; 1579 default: acond = Assembler::equal; ncond = Assembler::notEqual; 1580 ShouldNotReachHere(); 1581 } 1582 1583 if (opr1->is_cpu_register()) { 1584 reg2reg(opr1, result); 1585 } else if (opr1->is_stack()) { 1586 stack2reg(opr1, result, result->type()); 1587 } else if (opr1->is_constant()) { 1588 const2reg(opr1, result, lir_patch_none, nullptr); 1589 } else { 1590 ShouldNotReachHere(); 1591 } 1592 1593 if (VM_Version::supports_cmov() && !opr2->is_constant()) { 1594 // optimized version that does not require a branch 1595 if (opr2->is_single_cpu()) { 1596 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); 1597 __ cmov(ncond, result->as_register(), opr2->as_register()); 1598 } else if (opr2->is_double_cpu()) { 1599 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1600 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1601 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo()); 1602 } else if (opr2->is_single_stack()) { 1603 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix())); 1604 } else if (opr2->is_double_stack()) { 1605 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes)); 1606 } else { 1607 ShouldNotReachHere(); 1608 } 1609 1610 } else { 1611 Label skip; 1612 __ jccb(acond, skip); 1613 if (opr2->is_cpu_register()) { 1614 reg2reg(opr2, result); 1615 } else if (opr2->is_stack()) { 1616 stack2reg(opr2, result, result->type()); 1617 } else if (opr2->is_constant()) { 1618 const2reg(opr2, result, lir_patch_none, nullptr); 1619 } else { 1620 ShouldNotReachHere(); 1621 } 1622 __ bind(skip); 1623 } 1624 } 1625 1626 1627 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info) { 1628 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1629 1630 if (left->is_single_cpu()) { 1631 assert(left == dest, "left and dest must be equal"); 1632 Register lreg = left->as_register(); 1633 1634 if (right->is_single_cpu()) { 1635 // cpu register - cpu register 1636 Register rreg = right->as_register(); 1637 switch (code) { 1638 case lir_add: __ addl (lreg, rreg); break; 1639 case lir_sub: __ subl (lreg, rreg); break; 1640 case lir_mul: __ imull(lreg, rreg); break; 1641 default: ShouldNotReachHere(); 1642 } 1643 1644 } else if (right->is_stack()) { 1645 // cpu register - stack 1646 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1647 switch (code) { 1648 case lir_add: __ addl(lreg, raddr); break; 1649 case lir_sub: __ subl(lreg, raddr); break; 1650 default: ShouldNotReachHere(); 1651 } 1652 1653 } else if (right->is_constant()) { 1654 // cpu register - constant 1655 jint c = right->as_constant_ptr()->as_jint(); 1656 switch (code) { 1657 case lir_add: { 1658 __ incrementl(lreg, c); 1659 break; 1660 } 1661 case lir_sub: { 1662 __ decrementl(lreg, c); 1663 break; 1664 } 1665 default: ShouldNotReachHere(); 1666 } 1667 1668 } else { 1669 ShouldNotReachHere(); 1670 } 1671 1672 } else if (left->is_double_cpu()) { 1673 assert(left == dest, "left and dest must be equal"); 1674 Register lreg_lo = left->as_register_lo(); 1675 Register lreg_hi = left->as_register_hi(); 1676 1677 if (right->is_double_cpu()) { 1678 // cpu register - cpu register 1679 Register rreg_lo = right->as_register_lo(); 1680 Register rreg_hi = right->as_register_hi(); 1681 assert_different_registers(lreg_lo, rreg_lo); 1682 switch (code) { 1683 case lir_add: 1684 __ addptr(lreg_lo, rreg_lo); 1685 break; 1686 case lir_sub: 1687 __ subptr(lreg_lo, rreg_lo); 1688 break; 1689 case lir_mul: 1690 __ imulq(lreg_lo, rreg_lo); 1691 break; 1692 default: 1693 ShouldNotReachHere(); 1694 } 1695 1696 } else if (right->is_constant()) { 1697 // cpu register - constant 1698 jlong c = right->as_constant_ptr()->as_jlong_bits(); 1699 __ movptr(r10, (intptr_t) c); 1700 switch (code) { 1701 case lir_add: 1702 __ addptr(lreg_lo, r10); 1703 break; 1704 case lir_sub: 1705 __ subptr(lreg_lo, r10); 1706 break; 1707 default: 1708 ShouldNotReachHere(); 1709 } 1710 1711 } else { 1712 ShouldNotReachHere(); 1713 } 1714 1715 } else if (left->is_single_xmm()) { 1716 assert(left == dest, "left and dest must be equal"); 1717 XMMRegister lreg = left->as_xmm_float_reg(); 1718 1719 if (right->is_single_xmm()) { 1720 XMMRegister rreg = right->as_xmm_float_reg(); 1721 switch (code) { 1722 case lir_add: __ addss(lreg, rreg); break; 1723 case lir_sub: __ subss(lreg, rreg); break; 1724 case lir_mul: __ mulss(lreg, rreg); break; 1725 case lir_div: __ divss(lreg, rreg); break; 1726 default: ShouldNotReachHere(); 1727 } 1728 } else { 1729 Address raddr; 1730 if (right->is_single_stack()) { 1731 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1732 } else if (right->is_constant()) { 1733 // hack for now 1734 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat()))); 1735 } else { 1736 ShouldNotReachHere(); 1737 } 1738 switch (code) { 1739 case lir_add: __ addss(lreg, raddr); break; 1740 case lir_sub: __ subss(lreg, raddr); break; 1741 case lir_mul: __ mulss(lreg, raddr); break; 1742 case lir_div: __ divss(lreg, raddr); break; 1743 default: ShouldNotReachHere(); 1744 } 1745 } 1746 1747 } else if (left->is_double_xmm()) { 1748 assert(left == dest, "left and dest must be equal"); 1749 1750 XMMRegister lreg = left->as_xmm_double_reg(); 1751 if (right->is_double_xmm()) { 1752 XMMRegister rreg = right->as_xmm_double_reg(); 1753 switch (code) { 1754 case lir_add: __ addsd(lreg, rreg); break; 1755 case lir_sub: __ subsd(lreg, rreg); break; 1756 case lir_mul: __ mulsd(lreg, rreg); break; 1757 case lir_div: __ divsd(lreg, rreg); break; 1758 default: ShouldNotReachHere(); 1759 } 1760 } else { 1761 Address raddr; 1762 if (right->is_double_stack()) { 1763 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 1764 } else if (right->is_constant()) { 1765 // hack for now 1766 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 1767 } else { 1768 ShouldNotReachHere(); 1769 } 1770 switch (code) { 1771 case lir_add: __ addsd(lreg, raddr); break; 1772 case lir_sub: __ subsd(lreg, raddr); break; 1773 case lir_mul: __ mulsd(lreg, raddr); break; 1774 case lir_div: __ divsd(lreg, raddr); break; 1775 default: ShouldNotReachHere(); 1776 } 1777 } 1778 1779 } else if (left->is_single_stack() || left->is_address()) { 1780 assert(left == dest, "left and dest must be equal"); 1781 1782 Address laddr; 1783 if (left->is_single_stack()) { 1784 laddr = frame_map()->address_for_slot(left->single_stack_ix()); 1785 } else if (left->is_address()) { 1786 laddr = as_Address(left->as_address_ptr()); 1787 } else { 1788 ShouldNotReachHere(); 1789 } 1790 1791 if (right->is_single_cpu()) { 1792 Register rreg = right->as_register(); 1793 switch (code) { 1794 case lir_add: __ addl(laddr, rreg); break; 1795 case lir_sub: __ subl(laddr, rreg); break; 1796 default: ShouldNotReachHere(); 1797 } 1798 } else if (right->is_constant()) { 1799 jint c = right->as_constant_ptr()->as_jint(); 1800 switch (code) { 1801 case lir_add: { 1802 __ incrementl(laddr, c); 1803 break; 1804 } 1805 case lir_sub: { 1806 __ decrementl(laddr, c); 1807 break; 1808 } 1809 default: ShouldNotReachHere(); 1810 } 1811 } else { 1812 ShouldNotReachHere(); 1813 } 1814 1815 } else { 1816 ShouldNotReachHere(); 1817 } 1818 } 1819 1820 1821 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1822 if (value->is_double_xmm()) { 1823 switch(code) { 1824 case lir_abs : 1825 { 1826 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) { 1827 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); 1828 } 1829 assert(!tmp->is_valid(), "do not need temporary"); 1830 __ andpd(dest->as_xmm_double_reg(), 1831 ExternalAddress((address)double_signmask_pool), 1832 rscratch1); 1833 } 1834 break; 1835 1836 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break; 1837 // all other intrinsics are not available in the SSE instruction set, so FPU is used 1838 default : ShouldNotReachHere(); 1839 } 1840 1841 } else if (code == lir_f2hf) { 1842 __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg()); 1843 } else if (code == lir_hf2f) { 1844 __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register()); 1845 } else { 1846 Unimplemented(); 1847 } 1848 } 1849 1850 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1851 // assert(left->destroys_register(), "check"); 1852 if (left->is_single_cpu()) { 1853 Register reg = left->as_register(); 1854 if (right->is_constant()) { 1855 int val = right->as_constant_ptr()->as_jint(); 1856 switch (code) { 1857 case lir_logic_and: __ andl (reg, val); break; 1858 case lir_logic_or: __ orl (reg, val); break; 1859 case lir_logic_xor: __ xorl (reg, val); break; 1860 default: ShouldNotReachHere(); 1861 } 1862 } else if (right->is_stack()) { 1863 // added support for stack operands 1864 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1865 switch (code) { 1866 case lir_logic_and: __ andl (reg, raddr); break; 1867 case lir_logic_or: __ orl (reg, raddr); break; 1868 case lir_logic_xor: __ xorl (reg, raddr); break; 1869 default: ShouldNotReachHere(); 1870 } 1871 } else { 1872 Register rright = right->as_register(); 1873 switch (code) { 1874 case lir_logic_and: __ andptr (reg, rright); break; 1875 case lir_logic_or : __ orptr (reg, rright); break; 1876 case lir_logic_xor: __ xorptr (reg, rright); break; 1877 default: ShouldNotReachHere(); 1878 } 1879 } 1880 move_regs(reg, dst->as_register()); 1881 } else { 1882 Register l_lo = left->as_register_lo(); 1883 Register l_hi = left->as_register_hi(); 1884 if (right->is_constant()) { 1885 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong()); 1886 switch (code) { 1887 case lir_logic_and: 1888 __ andq(l_lo, rscratch1); 1889 break; 1890 case lir_logic_or: 1891 __ orq(l_lo, rscratch1); 1892 break; 1893 case lir_logic_xor: 1894 __ xorq(l_lo, rscratch1); 1895 break; 1896 default: ShouldNotReachHere(); 1897 } 1898 } else { 1899 Register r_lo; 1900 if (is_reference_type(right->type())) { 1901 r_lo = right->as_register(); 1902 } else { 1903 r_lo = right->as_register_lo(); 1904 } 1905 switch (code) { 1906 case lir_logic_and: 1907 __ andptr(l_lo, r_lo); 1908 break; 1909 case lir_logic_or: 1910 __ orptr(l_lo, r_lo); 1911 break; 1912 case lir_logic_xor: 1913 __ xorptr(l_lo, r_lo); 1914 break; 1915 default: ShouldNotReachHere(); 1916 } 1917 } 1918 1919 Register dst_lo = dst->as_register_lo(); 1920 Register dst_hi = dst->as_register_hi(); 1921 1922 move_regs(l_lo, dst_lo); 1923 } 1924 } 1925 1926 1927 // we assume that rax, and rdx can be overwritten 1928 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 1929 1930 assert(left->is_single_cpu(), "left must be register"); 1931 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1932 assert(result->is_single_cpu(), "result must be register"); 1933 1934 // assert(left->destroys_register(), "check"); 1935 // assert(right->destroys_register(), "check"); 1936 1937 Register lreg = left->as_register(); 1938 Register dreg = result->as_register(); 1939 1940 if (right->is_constant()) { 1941 jint divisor = right->as_constant_ptr()->as_jint(); 1942 assert(divisor > 0 && is_power_of_2(divisor), "must be"); 1943 if (code == lir_idiv) { 1944 assert(lreg == rax, "must be rax,"); 1945 assert(temp->as_register() == rdx, "tmp register must be rdx"); 1946 __ cdql(); // sign extend into rdx:rax 1947 if (divisor == 2) { 1948 __ subl(lreg, rdx); 1949 } else { 1950 __ andl(rdx, divisor - 1); 1951 __ addl(lreg, rdx); 1952 } 1953 __ sarl(lreg, log2i_exact(divisor)); 1954 move_regs(lreg, dreg); 1955 } else if (code == lir_irem) { 1956 Label done; 1957 __ mov(dreg, lreg); 1958 __ andl(dreg, 0x80000000 | (divisor - 1)); 1959 __ jcc(Assembler::positive, done); 1960 __ decrement(dreg); 1961 __ orl(dreg, ~(divisor - 1)); 1962 __ increment(dreg); 1963 __ bind(done); 1964 } else { 1965 ShouldNotReachHere(); 1966 } 1967 } else { 1968 Register rreg = right->as_register(); 1969 assert(lreg == rax, "left register must be rax,"); 1970 assert(rreg != rdx, "right register must not be rdx"); 1971 assert(temp->as_register() == rdx, "tmp register must be rdx"); 1972 1973 move_regs(lreg, rax); 1974 1975 int idivl_offset = __ corrected_idivl(rreg); 1976 if (ImplicitDiv0Checks) { 1977 add_debug_info_for_div0(idivl_offset, info); 1978 } 1979 if (code == lir_irem) { 1980 move_regs(rdx, dreg); // result is in rdx 1981 } else { 1982 move_regs(rax, dreg); 1983 } 1984 } 1985 } 1986 1987 1988 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1989 if (opr1->is_single_cpu()) { 1990 Register reg1 = opr1->as_register(); 1991 if (opr2->is_single_cpu()) { 1992 // cpu register - cpu register 1993 if (is_reference_type(opr1->type())) { 1994 __ cmpoop(reg1, opr2->as_register()); 1995 } else { 1996 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 1997 __ cmpl(reg1, opr2->as_register()); 1998 } 1999 } else if (opr2->is_stack()) { 2000 // cpu register - stack 2001 if (is_reference_type(opr1->type())) { 2002 __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2003 } else { 2004 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2005 } 2006 } else if (opr2->is_constant()) { 2007 // cpu register - constant 2008 LIR_Const* c = opr2->as_constant_ptr(); 2009 if (c->type() == T_INT) { 2010 jint i = c->as_jint(); 2011 if (i == 0) { 2012 __ testl(reg1, reg1); 2013 } else { 2014 __ cmpl(reg1, i); 2015 } 2016 } else if (c->type() == T_METADATA) { 2017 // All we need for now is a comparison with null for equality. 2018 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 2019 Metadata* m = c->as_metadata(); 2020 if (m == nullptr) { 2021 __ testptr(reg1, reg1); 2022 } else { 2023 ShouldNotReachHere(); 2024 } 2025 } else if (is_reference_type(c->type())) { 2026 // In 64bit oops are single register 2027 jobject o = c->as_jobject(); 2028 if (o == nullptr) { 2029 __ testptr(reg1, reg1); 2030 } else { 2031 __ cmpoop(reg1, o, rscratch1); 2032 } 2033 } else { 2034 fatal("unexpected type: %s", basictype_to_str(c->type())); 2035 } 2036 // cpu register - address 2037 } else if (opr2->is_address()) { 2038 if (op->info() != nullptr) { 2039 add_debug_info_for_null_check_here(op->info()); 2040 } 2041 __ cmpl(reg1, as_Address(opr2->as_address_ptr())); 2042 } else { 2043 ShouldNotReachHere(); 2044 } 2045 2046 } else if(opr1->is_double_cpu()) { 2047 Register xlo = opr1->as_register_lo(); 2048 Register xhi = opr1->as_register_hi(); 2049 if (opr2->is_double_cpu()) { 2050 __ cmpptr(xlo, opr2->as_register_lo()); 2051 } else if (opr2->is_constant()) { 2052 // cpu register - constant 0 2053 assert(opr2->as_jlong() == (jlong)0, "only handles zero"); 2054 __ cmpptr(xlo, (int32_t)opr2->as_jlong()); 2055 } else { 2056 ShouldNotReachHere(); 2057 } 2058 2059 } else if (opr1->is_single_xmm()) { 2060 XMMRegister reg1 = opr1->as_xmm_float_reg(); 2061 if (opr2->is_single_xmm()) { 2062 // xmm register - xmm register 2063 __ ucomiss(reg1, opr2->as_xmm_float_reg()); 2064 } else if (opr2->is_stack()) { 2065 // xmm register - stack 2066 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2067 } else if (opr2->is_constant()) { 2068 // xmm register - constant 2069 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat()))); 2070 } else if (opr2->is_address()) { 2071 // xmm register - address 2072 if (op->info() != nullptr) { 2073 add_debug_info_for_null_check_here(op->info()); 2074 } 2075 __ ucomiss(reg1, as_Address(opr2->as_address_ptr())); 2076 } else { 2077 ShouldNotReachHere(); 2078 } 2079 2080 } else if (opr1->is_double_xmm()) { 2081 XMMRegister reg1 = opr1->as_xmm_double_reg(); 2082 if (opr2->is_double_xmm()) { 2083 // xmm register - xmm register 2084 __ ucomisd(reg1, opr2->as_xmm_double_reg()); 2085 } else if (opr2->is_stack()) { 2086 // xmm register - stack 2087 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix())); 2088 } else if (opr2->is_constant()) { 2089 // xmm register - constant 2090 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble()))); 2091 } else if (opr2->is_address()) { 2092 // xmm register - address 2093 if (op->info() != nullptr) { 2094 add_debug_info_for_null_check_here(op->info()); 2095 } 2096 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address())); 2097 } else { 2098 ShouldNotReachHere(); 2099 } 2100 2101 } else if (opr1->is_address() && opr2->is_constant()) { 2102 LIR_Const* c = opr2->as_constant_ptr(); 2103 if (is_reference_type(c->type())) { 2104 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse"); 2105 __ movoop(rscratch1, c->as_jobject()); 2106 } 2107 if (op->info() != nullptr) { 2108 add_debug_info_for_null_check_here(op->info()); 2109 } 2110 // special case: address - constant 2111 LIR_Address* addr = opr1->as_address_ptr(); 2112 if (c->type() == T_INT) { 2113 __ cmpl(as_Address(addr), c->as_jint()); 2114 } else if (is_reference_type(c->type())) { 2115 // %%% Make this explode if addr isn't reachable until we figure out a 2116 // better strategy by giving noreg as the temp for as_Address 2117 __ cmpoop(rscratch1, as_Address(addr, noreg)); 2118 } else { 2119 ShouldNotReachHere(); 2120 } 2121 2122 } else { 2123 ShouldNotReachHere(); 2124 } 2125 } 2126 2127 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { 2128 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2129 if (left->is_single_xmm()) { 2130 assert(right->is_single_xmm(), "must match"); 2131 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2132 } else if (left->is_double_xmm()) { 2133 assert(right->is_double_xmm(), "must match"); 2134 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2135 2136 } else { 2137 ShouldNotReachHere(); 2138 } 2139 } else { 2140 assert(code == lir_cmp_l2i, "check"); 2141 Label done; 2142 Register dest = dst->as_register(); 2143 __ cmpptr(left->as_register_lo(), right->as_register_lo()); 2144 __ movl(dest, -1); 2145 __ jccb(Assembler::less, done); 2146 __ setb(Assembler::notZero, dest); 2147 __ movzbl(dest, dest); 2148 __ bind(done); 2149 } 2150 } 2151 2152 2153 void LIR_Assembler::align_call(LIR_Code code) { 2154 // make sure that the displacement word of the call ends up word aligned 2155 int offset = __ offset(); 2156 switch (code) { 2157 case lir_static_call: 2158 case lir_optvirtual_call: 2159 case lir_dynamic_call: 2160 offset += NativeCall::displacement_offset; 2161 break; 2162 case lir_icvirtual_call: 2163 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size_rex; 2164 break; 2165 default: ShouldNotReachHere(); 2166 } 2167 __ align(BytesPerWord, offset); 2168 } 2169 2170 2171 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2172 assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0, 2173 "must be aligned"); 2174 __ call(AddressLiteral(op->addr(), rtype)); 2175 add_call_info(code_offset(), op->info()); 2176 __ post_call_nop(); 2177 } 2178 2179 2180 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2181 __ ic_call(op->addr()); 2182 add_call_info(code_offset(), op->info()); 2183 assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0, 2184 "must be aligned"); 2185 __ post_call_nop(); 2186 } 2187 2188 2189 void LIR_Assembler::emit_static_call_stub() { 2190 address call_pc = __ pc(); 2191 address stub = __ start_a_stub(call_stub_size()); 2192 if (stub == nullptr) { 2193 bailout("static call stub overflow"); 2194 return; 2195 } 2196 2197 int start = __ offset(); 2198 2199 // make sure that the displacement word of the call ends up word aligned 2200 __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size_rex + NativeCall::displacement_offset); 2201 __ relocate(static_stub_Relocation::spec(call_pc)); 2202 __ mov_metadata(rbx, (Metadata*)nullptr); 2203 // must be set to -1 at code generation time 2204 assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned"); 2205 // On 64bit this will die since it will take a movq & jmp, must be only a jmp 2206 __ jump(RuntimeAddress(__ pc())); 2207 2208 assert(__ offset() - start <= call_stub_size(), "stub too big"); 2209 __ end_a_stub(); 2210 } 2211 2212 2213 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2214 assert(exceptionOop->as_register() == rax, "must match"); 2215 assert(exceptionPC->as_register() == rdx, "must match"); 2216 2217 // exception object is not added to oop map by LinearScan 2218 // (LinearScan assumes that no oops are in fixed registers) 2219 info->add_register_oop(exceptionOop); 2220 C1StubId unwind_id; 2221 2222 // get current pc information 2223 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2224 int pc_for_athrow_offset = __ offset(); 2225 InternalAddress pc_for_athrow(__ pc()); 2226 __ lea(exceptionPC->as_register(), pc_for_athrow); 2227 add_call_info(pc_for_athrow_offset, info); // for exception handler 2228 2229 __ verify_not_null_oop(rax); 2230 // search an exception handler (rax: exception oop, rdx: throwing pc) 2231 if (compilation()->has_fpu_code()) { 2232 unwind_id = C1StubId::handle_exception_id; 2233 } else { 2234 unwind_id = C1StubId::handle_exception_nofpu_id; 2235 } 2236 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2237 2238 // enough room for two byte trap 2239 __ nop(); 2240 } 2241 2242 2243 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2244 assert(exceptionOop->as_register() == rax, "must match"); 2245 2246 __ jmp(_unwind_handler_entry); 2247 } 2248 2249 2250 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2251 2252 // optimized version for linear scan: 2253 // * count must be already in ECX (guaranteed by LinearScan) 2254 // * left and dest must be equal 2255 // * tmp must be unused 2256 assert(count->as_register() == SHIFT_count, "count must be in ECX"); 2257 assert(left == dest, "left and dest must be equal"); 2258 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2259 2260 if (left->is_single_cpu()) { 2261 Register value = left->as_register(); 2262 assert(value != SHIFT_count, "left cannot be ECX"); 2263 2264 switch (code) { 2265 case lir_shl: __ shll(value); break; 2266 case lir_shr: __ sarl(value); break; 2267 case lir_ushr: __ shrl(value); break; 2268 default: ShouldNotReachHere(); 2269 } 2270 } else if (left->is_double_cpu()) { 2271 Register lo = left->as_register_lo(); 2272 Register hi = left->as_register_hi(); 2273 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX"); 2274 switch (code) { 2275 case lir_shl: __ shlptr(lo); break; 2276 case lir_shr: __ sarptr(lo); break; 2277 case lir_ushr: __ shrptr(lo); break; 2278 default: ShouldNotReachHere(); 2279 } 2280 } else { 2281 ShouldNotReachHere(); 2282 } 2283 } 2284 2285 2286 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2287 if (dest->is_single_cpu()) { 2288 // first move left into dest so that left is not destroyed by the shift 2289 Register value = dest->as_register(); 2290 count = count & 0x1F; // Java spec 2291 2292 move_regs(left->as_register(), value); 2293 switch (code) { 2294 case lir_shl: __ shll(value, count); break; 2295 case lir_shr: __ sarl(value, count); break; 2296 case lir_ushr: __ shrl(value, count); break; 2297 default: ShouldNotReachHere(); 2298 } 2299 } else if (dest->is_double_cpu()) { 2300 // first move left into dest so that left is not destroyed by the shift 2301 Register value = dest->as_register_lo(); 2302 count = count & 0x1F; // Java spec 2303 2304 move_regs(left->as_register_lo(), value); 2305 switch (code) { 2306 case lir_shl: __ shlptr(value, count); break; 2307 case lir_shr: __ sarptr(value, count); break; 2308 case lir_ushr: __ shrptr(value, count); break; 2309 default: ShouldNotReachHere(); 2310 } 2311 } else { 2312 ShouldNotReachHere(); 2313 } 2314 } 2315 2316 2317 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2318 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2319 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2320 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2321 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r); 2322 } 2323 2324 2325 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2326 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2327 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2328 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2329 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c); 2330 } 2331 2332 2333 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2334 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2335 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2336 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2337 __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1); 2338 } 2339 2340 2341 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) { 2342 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2343 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2344 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2345 __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1); 2346 } 2347 2348 2349 // This code replaces a call to arraycopy; no exception may 2350 // be thrown in this code, they must be thrown in the System.arraycopy 2351 // activation frame; we could save some checks if this would not be the case 2352 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2353 ciArrayKlass* default_type = op->expected_type(); 2354 Register src = op->src()->as_register(); 2355 Register dst = op->dst()->as_register(); 2356 Register src_pos = op->src_pos()->as_register(); 2357 Register dst_pos = op->dst_pos()->as_register(); 2358 Register length = op->length()->as_register(); 2359 Register tmp = op->tmp()->as_register(); 2360 Register tmp_load_klass = rscratch1; 2361 Register tmp2 = UseCompactObjectHeaders ? rscratch2 : noreg; 2362 2363 CodeStub* stub = op->stub(); 2364 int flags = op->flags(); 2365 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2366 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2367 2368 // if we don't know anything, just go through the generic arraycopy 2369 if (default_type == nullptr) { 2370 // save outgoing arguments on stack in case call to System.arraycopy is needed 2371 // HACK ALERT. This code used to push the parameters in a hardwired fashion 2372 // for interpreter calling conventions. Now we have to do it in new style conventions. 2373 // For the moment until C1 gets the new register allocator I just force all the 2374 // args to the right place (except the register args) and then on the back side 2375 // reload the register args properly if we go slow path. Yuck 2376 2377 // These are proper for the calling convention 2378 store_parameter(length, 2); 2379 store_parameter(dst_pos, 1); 2380 store_parameter(dst, 0); 2381 2382 // these are just temporary placements until we need to reload 2383 store_parameter(src_pos, 3); 2384 store_parameter(src, 4); 2385 2386 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2387 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2388 2389 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint 2390 // The arguments are in java calling convention so we can trivially shift them to C 2391 // convention 2392 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2393 __ mov(c_rarg0, j_rarg0); 2394 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2395 __ mov(c_rarg1, j_rarg1); 2396 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2397 __ mov(c_rarg2, j_rarg2); 2398 assert_different_registers(c_rarg3, j_rarg4); 2399 __ mov(c_rarg3, j_rarg3); 2400 #ifdef _WIN64 2401 // Allocate abi space for args but be sure to keep stack aligned 2402 __ subptr(rsp, 6*wordSize); 2403 store_parameter(j_rarg4, 4); 2404 #ifndef PRODUCT 2405 if (PrintC1Statistics) { 2406 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 2407 } 2408 #endif 2409 __ call(RuntimeAddress(copyfunc_addr)); 2410 __ addptr(rsp, 6*wordSize); 2411 #else 2412 __ mov(c_rarg4, j_rarg4); 2413 #ifndef PRODUCT 2414 if (PrintC1Statistics) { 2415 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 2416 } 2417 #endif 2418 __ call(RuntimeAddress(copyfunc_addr)); 2419 #endif // _WIN64 2420 2421 __ testl(rax, rax); 2422 __ jcc(Assembler::equal, *stub->continuation()); 2423 2424 __ mov(tmp, rax); 2425 __ xorl(tmp, -1); 2426 2427 // Reload values from the stack so they are where the stub 2428 // expects them. 2429 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 2430 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 2431 __ movptr (length, Address(rsp, 2*BytesPerWord)); 2432 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 2433 __ movptr (src, Address(rsp, 4*BytesPerWord)); 2434 2435 __ subl(length, tmp); 2436 __ addl(src_pos, tmp); 2437 __ addl(dst_pos, tmp); 2438 __ jmp(*stub->entry()); 2439 2440 __ bind(*stub->continuation()); 2441 return; 2442 } 2443 2444 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2445 2446 int elem_size = type2aelembytes(basic_type); 2447 Address::ScaleFactor scale; 2448 2449 switch (elem_size) { 2450 case 1 : 2451 scale = Address::times_1; 2452 break; 2453 case 2 : 2454 scale = Address::times_2; 2455 break; 2456 case 4 : 2457 scale = Address::times_4; 2458 break; 2459 case 8 : 2460 scale = Address::times_8; 2461 break; 2462 default: 2463 scale = Address::no_scale; 2464 ShouldNotReachHere(); 2465 } 2466 2467 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2468 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2469 2470 // length and pos's are all sign extended at this point on 64bit 2471 2472 // test for null 2473 if (flags & LIR_OpArrayCopy::src_null_check) { 2474 __ testptr(src, src); 2475 __ jcc(Assembler::zero, *stub->entry()); 2476 } 2477 if (flags & LIR_OpArrayCopy::dst_null_check) { 2478 __ testptr(dst, dst); 2479 __ jcc(Assembler::zero, *stub->entry()); 2480 } 2481 2482 // If the compiler was not able to prove that exact type of the source or the destination 2483 // of the arraycopy is an array type, check at runtime if the source or the destination is 2484 // an instance type. 2485 if (flags & LIR_OpArrayCopy::type_check) { 2486 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2487 __ load_klass(tmp, dst, tmp_load_klass); 2488 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 2489 __ jcc(Assembler::greaterEqual, *stub->entry()); 2490 } 2491 2492 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2493 __ load_klass(tmp, src, tmp_load_klass); 2494 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 2495 __ jcc(Assembler::greaterEqual, *stub->entry()); 2496 } 2497 } 2498 2499 // check if negative 2500 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2501 __ testl(src_pos, src_pos); 2502 __ jcc(Assembler::less, *stub->entry()); 2503 } 2504 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2505 __ testl(dst_pos, dst_pos); 2506 __ jcc(Assembler::less, *stub->entry()); 2507 } 2508 2509 if (flags & LIR_OpArrayCopy::src_range_check) { 2510 __ lea(tmp, Address(src_pos, length, Address::times_1, 0)); 2511 __ cmpl(tmp, src_length_addr); 2512 __ jcc(Assembler::above, *stub->entry()); 2513 } 2514 if (flags & LIR_OpArrayCopy::dst_range_check) { 2515 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0)); 2516 __ cmpl(tmp, dst_length_addr); 2517 __ jcc(Assembler::above, *stub->entry()); 2518 } 2519 2520 if (flags & LIR_OpArrayCopy::length_positive_check) { 2521 __ testl(length, length); 2522 __ jcc(Assembler::less, *stub->entry()); 2523 } 2524 2525 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null 2526 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null 2527 2528 if (flags & LIR_OpArrayCopy::type_check) { 2529 // We don't know the array types are compatible 2530 if (basic_type != T_OBJECT) { 2531 // Simple test for basic type arrays 2532 __ cmp_klasses_from_objects(src, dst, tmp, tmp2); 2533 __ jcc(Assembler::notEqual, *stub->entry()); 2534 } else { 2535 // For object arrays, if src is a sub class of dst then we can 2536 // safely do the copy. 2537 Label cont, slow; 2538 2539 __ push(src); 2540 __ push(dst); 2541 2542 __ load_klass(src, src, tmp_load_klass); 2543 __ load_klass(dst, dst, tmp_load_klass); 2544 2545 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2546 2547 __ push(src); 2548 __ push(dst); 2549 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 2550 __ pop(dst); 2551 __ pop(src); 2552 2553 __ testl(src, src); 2554 __ jcc(Assembler::notEqual, cont); 2555 2556 __ bind(slow); 2557 __ pop(dst); 2558 __ pop(src); 2559 2560 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2561 if (copyfunc_addr != nullptr) { // use stub if available 2562 // src is not a sub class of dst so we have to do a 2563 // per-element check. 2564 2565 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2566 if ((flags & mask) != mask) { 2567 // Check that at least both of them object arrays. 2568 assert(flags & mask, "one of the two should be known to be an object array"); 2569 2570 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2571 __ load_klass(tmp, src, tmp_load_klass); 2572 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2573 __ load_klass(tmp, dst, tmp_load_klass); 2574 } 2575 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2576 Address klass_lh_addr(tmp, lh_offset); 2577 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2578 __ cmpl(klass_lh_addr, objArray_lh); 2579 __ jcc(Assembler::notEqual, *stub->entry()); 2580 } 2581 2582 // Spill because stubs can use any register they like and it's 2583 // easier to restore just those that we care about. 2584 store_parameter(dst, 0); 2585 store_parameter(dst_pos, 1); 2586 store_parameter(length, 2); 2587 store_parameter(src_pos, 3); 2588 store_parameter(src, 4); 2589 2590 __ movl2ptr(length, length); //higher 32bits must be null 2591 2592 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2593 assert_different_registers(c_rarg0, dst, dst_pos, length); 2594 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2595 assert_different_registers(c_rarg1, dst, length); 2596 2597 __ mov(c_rarg2, length); 2598 assert_different_registers(c_rarg2, dst); 2599 2600 #ifdef _WIN64 2601 // Allocate abi space for args but be sure to keep stack aligned 2602 __ subptr(rsp, 6*wordSize); 2603 __ load_klass(c_rarg3, dst, tmp_load_klass); 2604 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset())); 2605 store_parameter(c_rarg3, 4); 2606 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset())); 2607 __ call(RuntimeAddress(copyfunc_addr)); 2608 __ addptr(rsp, 6*wordSize); 2609 #else 2610 __ load_klass(c_rarg4, dst, tmp_load_klass); 2611 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2612 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2613 __ call(RuntimeAddress(copyfunc_addr)); 2614 #endif 2615 2616 #ifndef PRODUCT 2617 if (PrintC1Statistics) { 2618 Label failed; 2619 __ testl(rax, rax); 2620 __ jcc(Assembler::notZero, failed); 2621 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1); 2622 __ bind(failed); 2623 } 2624 #endif 2625 2626 __ testl(rax, rax); 2627 __ jcc(Assembler::zero, *stub->continuation()); 2628 2629 #ifndef PRODUCT 2630 if (PrintC1Statistics) { 2631 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1); 2632 } 2633 #endif 2634 2635 __ mov(tmp, rax); 2636 2637 __ xorl(tmp, -1); 2638 2639 // Restore previously spilled arguments 2640 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 2641 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 2642 __ movptr (length, Address(rsp, 2*BytesPerWord)); 2643 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 2644 __ movptr (src, Address(rsp, 4*BytesPerWord)); 2645 2646 2647 __ subl(length, tmp); 2648 __ addl(src_pos, tmp); 2649 __ addl(dst_pos, tmp); 2650 } 2651 2652 __ jmp(*stub->entry()); 2653 2654 __ bind(cont); 2655 __ pop(dst); 2656 __ pop(src); 2657 } 2658 } 2659 2660 #ifdef ASSERT 2661 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2662 // Sanity check the known type with the incoming class. For the 2663 // primitive case the types must match exactly with src.klass and 2664 // dst.klass each exactly matching the default type. For the 2665 // object array case, if no type check is needed then either the 2666 // dst type is exactly the expected type and the src type is a 2667 // subtype which we can't check or src is the same array as dst 2668 // but not necessarily exactly of type default_type. 2669 Label known_ok, halt; 2670 __ mov_metadata(tmp, default_type->constant_encoding()); 2671 if (UseCompressedClassPointers) { 2672 __ encode_klass_not_null(tmp, rscratch1); 2673 } 2674 2675 if (basic_type != T_OBJECT) { 2676 __ cmp_klass(tmp, dst, tmp2); 2677 __ jcc(Assembler::notEqual, halt); 2678 __ cmp_klass(tmp, src, tmp2); 2679 __ jcc(Assembler::equal, known_ok); 2680 } else { 2681 __ cmp_klass(tmp, dst, tmp2); 2682 __ jcc(Assembler::equal, known_ok); 2683 __ cmpptr(src, dst); 2684 __ jcc(Assembler::equal, known_ok); 2685 } 2686 __ bind(halt); 2687 __ stop("incorrect type information in arraycopy"); 2688 __ bind(known_ok); 2689 } 2690 #endif 2691 2692 #ifndef PRODUCT 2693 if (PrintC1Statistics) { 2694 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1); 2695 } 2696 #endif 2697 2698 assert_different_registers(c_rarg0, dst, dst_pos, length); 2699 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2700 assert_different_registers(c_rarg1, length); 2701 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2702 __ mov(c_rarg2, length); 2703 2704 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2705 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2706 const char *name; 2707 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2708 __ call_VM_leaf(entry, 0); 2709 2710 if (stub != nullptr) { 2711 __ bind(*stub->continuation()); 2712 } 2713 } 2714 2715 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2716 assert(op->crc()->is_single_cpu(), "crc must be register"); 2717 assert(op->val()->is_single_cpu(), "byte value must be register"); 2718 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2719 Register crc = op->crc()->as_register(); 2720 Register val = op->val()->as_register(); 2721 Register res = op->result_opr()->as_register(); 2722 2723 assert_different_registers(val, crc, res); 2724 2725 __ lea(res, ExternalAddress(StubRoutines::crc_table_addr())); 2726 __ notl(crc); // ~crc 2727 __ update_byte_crc32(crc, val, res); 2728 __ notl(crc); // ~crc 2729 __ mov(res, crc); 2730 } 2731 2732 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2733 Register obj = op->obj_opr()->as_register(); // may not be an oop 2734 Register hdr = op->hdr_opr()->as_register(); 2735 Register lock = op->lock_opr()->as_register(); 2736 if (LockingMode == LM_MONITOR) { 2737 if (op->info() != nullptr) { 2738 add_debug_info_for_null_check_here(op->info()); 2739 __ null_check(obj); 2740 } 2741 __ jmp(*op->stub()->entry()); 2742 } else if (op->code() == lir_lock) { 2743 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2744 Register tmp = LockingMode == LM_LIGHTWEIGHT ? op->scratch_opr()->as_register() : noreg; 2745 // add debug info for NullPointerException only if one is possible 2746 int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry()); 2747 if (op->info() != nullptr) { 2748 add_debug_info_for_null_check(null_check_offset, op->info()); 2749 } 2750 // done 2751 } else if (op->code() == lir_unlock) { 2752 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2753 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2754 } else { 2755 Unimplemented(); 2756 } 2757 __ bind(*op->stub()->continuation()); 2758 } 2759 2760 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2761 Register obj = op->obj()->as_pointer_register(); 2762 Register result = op->result_opr()->as_pointer_register(); 2763 2764 CodeEmitInfo* info = op->info(); 2765 if (info != nullptr) { 2766 add_debug_info_for_null_check_here(info); 2767 } 2768 2769 __ load_klass(result, obj, rscratch1); 2770 } 2771 2772 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2773 ciMethod* method = op->profiled_method(); 2774 int bci = op->profiled_bci(); 2775 ciMethod* callee = op->profiled_callee(); 2776 Register tmp_load_klass = rscratch1; 2777 2778 // Update counter for all call types 2779 ciMethodData* md = method->method_data_or_null(); 2780 assert(md != nullptr, "Sanity"); 2781 ciProfileData* data = md->bci_to_data(bci); 2782 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2783 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2784 Register mdo = op->mdo()->as_register(); 2785 __ mov_metadata(mdo, md->constant_encoding()); 2786 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2787 // Perform additional virtual call profiling for invokevirtual and 2788 // invokeinterface bytecodes 2789 if (op->should_profile_receiver_type()) { 2790 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2791 Register recv = op->recv()->as_register(); 2792 assert_different_registers(mdo, recv); 2793 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2794 ciKlass* known_klass = op->known_holder(); 2795 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2796 // We know the type that will be seen at this call site; we can 2797 // statically update the MethodData* rather than needing to do 2798 // dynamic tests on the receiver type 2799 2800 // NOTE: we should probably put a lock around this search to 2801 // avoid collisions by concurrent compilations 2802 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2803 uint i; 2804 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2805 ciKlass* receiver = vc_data->receiver(i); 2806 if (known_klass->equals(receiver)) { 2807 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2808 __ addptr(data_addr, DataLayout::counter_increment); 2809 return; 2810 } 2811 } 2812 2813 // Receiver type not found in profile data; select an empty slot 2814 2815 // Note that this is less efficient than it should be because it 2816 // always does a write to the receiver part of the 2817 // VirtualCallData rather than just the first time 2818 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2819 ciKlass* receiver = vc_data->receiver(i); 2820 if (receiver == nullptr) { 2821 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 2822 __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1); 2823 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2824 __ addptr(data_addr, DataLayout::counter_increment); 2825 return; 2826 } 2827 } 2828 } else { 2829 __ load_klass(recv, recv, tmp_load_klass); 2830 Label update_done; 2831 type_profile_helper(mdo, md, data, recv, &update_done); 2832 // Receiver did not match any saved receiver and there is no empty row for it. 2833 // Increment total counter to indicate polymorphic case. 2834 __ addptr(counter_addr, DataLayout::counter_increment); 2835 2836 __ bind(update_done); 2837 } 2838 } else { 2839 // Static call 2840 __ addptr(counter_addr, DataLayout::counter_increment); 2841 } 2842 } 2843 2844 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2845 Register obj = op->obj()->as_register(); 2846 Register tmp = op->tmp()->as_pointer_register(); 2847 Register tmp_load_klass = rscratch1; 2848 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2849 ciKlass* exact_klass = op->exact_klass(); 2850 intptr_t current_klass = op->current_klass(); 2851 bool not_null = op->not_null(); 2852 bool no_conflict = op->no_conflict(); 2853 2854 Label update, next, none; 2855 2856 bool do_null = !not_null; 2857 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2858 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2859 2860 assert(do_null || do_update, "why are we here?"); 2861 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2862 2863 __ verify_oop(obj); 2864 2865 #ifdef ASSERT 2866 if (obj == tmp) { 2867 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 2868 } else { 2869 assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index()); 2870 } 2871 #endif 2872 if (do_null) { 2873 __ testptr(obj, obj); 2874 __ jccb(Assembler::notZero, update); 2875 if (!TypeEntries::was_null_seen(current_klass)) { 2876 __ testptr(mdo_addr, TypeEntries::null_seen); 2877 #ifndef ASSERT 2878 __ jccb(Assembler::notZero, next); // already set 2879 #else 2880 __ jcc(Assembler::notZero, next); // already set 2881 #endif 2882 // atomic update to prevent overwriting Klass* with 0 2883 __ lock(); 2884 __ orptr(mdo_addr, TypeEntries::null_seen); 2885 } 2886 if (do_update) { 2887 #ifndef ASSERT 2888 __ jmpb(next); 2889 } 2890 #else 2891 __ jmp(next); 2892 } 2893 } else { 2894 __ testptr(obj, obj); 2895 __ jcc(Assembler::notZero, update); 2896 __ stop("unexpected null obj"); 2897 #endif 2898 } 2899 2900 __ bind(update); 2901 2902 if (do_update) { 2903 #ifdef ASSERT 2904 if (exact_klass != nullptr) { 2905 Label ok; 2906 __ load_klass(tmp, obj, tmp_load_klass); 2907 __ push(tmp); 2908 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2909 __ cmpptr(tmp, Address(rsp, 0)); 2910 __ jcc(Assembler::equal, ok); 2911 __ stop("exact klass and actual klass differ"); 2912 __ bind(ok); 2913 __ pop(tmp); 2914 } 2915 #endif 2916 if (!no_conflict) { 2917 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2918 if (exact_klass != nullptr) { 2919 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2920 } else { 2921 __ load_klass(tmp, obj, tmp_load_klass); 2922 } 2923 __ mov(rscratch1, tmp); // save original value before XOR 2924 __ xorptr(tmp, mdo_addr); 2925 __ testptr(tmp, TypeEntries::type_klass_mask); 2926 // klass seen before, nothing to do. The unknown bit may have been 2927 // set already but no need to check. 2928 __ jccb(Assembler::zero, next); 2929 2930 __ testptr(tmp, TypeEntries::type_unknown); 2931 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 2932 2933 if (TypeEntries::is_type_none(current_klass)) { 2934 __ testptr(mdo_addr, TypeEntries::type_mask); 2935 __ jccb(Assembler::zero, none); 2936 // There is a chance that the checks above (re-reading profiling 2937 // data from memory) fail if another thread has just set the 2938 // profiling to this obj's klass 2939 __ mov(tmp, rscratch1); // get back original value before XOR 2940 __ xorptr(tmp, mdo_addr); 2941 __ testptr(tmp, TypeEntries::type_klass_mask); 2942 __ jccb(Assembler::zero, next); 2943 } 2944 } else { 2945 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2946 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2947 2948 __ testptr(mdo_addr, TypeEntries::type_unknown); 2949 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 2950 } 2951 2952 // different than before. Cannot keep accurate profile. 2953 __ orptr(mdo_addr, TypeEntries::type_unknown); 2954 2955 if (TypeEntries::is_type_none(current_klass)) { 2956 __ jmpb(next); 2957 2958 __ bind(none); 2959 // first time here. Set profile type. 2960 __ movptr(mdo_addr, tmp); 2961 #ifdef ASSERT 2962 __ andptr(tmp, TypeEntries::type_klass_mask); 2963 __ verify_klass_ptr(tmp); 2964 #endif 2965 } 2966 } else { 2967 // There's a single possible klass at this profile point 2968 assert(exact_klass != nullptr, "should be"); 2969 if (TypeEntries::is_type_none(current_klass)) { 2970 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2971 __ xorptr(tmp, mdo_addr); 2972 __ testptr(tmp, TypeEntries::type_klass_mask); 2973 #ifdef ASSERT 2974 __ jcc(Assembler::zero, next); 2975 2976 { 2977 Label ok; 2978 __ push(tmp); 2979 __ testptr(mdo_addr, TypeEntries::type_mask); 2980 __ jcc(Assembler::zero, ok); 2981 // may have been set by another thread 2982 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2983 __ xorptr(tmp, mdo_addr); 2984 __ testptr(tmp, TypeEntries::type_mask); 2985 __ jcc(Assembler::zero, ok); 2986 2987 __ stop("unexpected profiling mismatch"); 2988 __ bind(ok); 2989 __ pop(tmp); 2990 } 2991 #else 2992 __ jccb(Assembler::zero, next); 2993 #endif 2994 // first time here. Set profile type. 2995 __ movptr(mdo_addr, tmp); 2996 #ifdef ASSERT 2997 __ andptr(tmp, TypeEntries::type_klass_mask); 2998 __ verify_klass_ptr(tmp); 2999 #endif 3000 } else { 3001 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3002 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3003 3004 __ testptr(mdo_addr, TypeEntries::type_unknown); 3005 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3006 3007 __ orptr(mdo_addr, TypeEntries::type_unknown); 3008 } 3009 } 3010 } 3011 __ bind(next); 3012 } 3013 3014 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 3015 Unimplemented(); 3016 } 3017 3018 3019 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 3020 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 3021 } 3022 3023 3024 void LIR_Assembler::align_backward_branch_target() { 3025 __ align(BytesPerWord); 3026 } 3027 3028 3029 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 3030 if (left->is_single_cpu()) { 3031 __ negl(left->as_register()); 3032 move_regs(left->as_register(), dest->as_register()); 3033 3034 } else if (left->is_double_cpu()) { 3035 Register lo = left->as_register_lo(); 3036 Register dst = dest->as_register_lo(); 3037 __ movptr(dst, lo); 3038 __ negptr(dst); 3039 3040 } else if (dest->is_single_xmm()) { 3041 assert(!tmp->is_valid(), "do not need temporary"); 3042 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) { 3043 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg()); 3044 } 3045 __ xorps(dest->as_xmm_float_reg(), 3046 ExternalAddress((address)float_signflip_pool), 3047 rscratch1); 3048 } else if (dest->is_double_xmm()) { 3049 assert(!tmp->is_valid(), "do not need temporary"); 3050 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) { 3051 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg()); 3052 } 3053 __ xorpd(dest->as_xmm_double_reg(), 3054 ExternalAddress((address)double_signflip_pool), 3055 rscratch1); 3056 } else { 3057 ShouldNotReachHere(); 3058 } 3059 } 3060 3061 3062 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 3063 assert(src->is_address(), "must be an address"); 3064 assert(dest->is_register(), "must be a register"); 3065 3066 PatchingStub* patch = nullptr; 3067 if (patch_code != lir_patch_none) { 3068 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 3069 } 3070 3071 Register reg = dest->as_pointer_register(); 3072 LIR_Address* addr = src->as_address_ptr(); 3073 __ lea(reg, as_Address(addr)); 3074 3075 if (patch != nullptr) { 3076 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 3077 } 3078 } 3079 3080 3081 3082 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 3083 assert(!tmp->is_valid(), "don't need temporary"); 3084 __ call(RuntimeAddress(dest)); 3085 if (info != nullptr) { 3086 add_call_info_here(info); 3087 } 3088 __ post_call_nop(); 3089 } 3090 3091 3092 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 3093 assert(type == T_LONG, "only for volatile long fields"); 3094 3095 if (info != nullptr) { 3096 add_debug_info_for_null_check_here(info); 3097 } 3098 3099 if (src->is_double_xmm()) { 3100 if (dest->is_double_cpu()) { 3101 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg()); 3102 } else if (dest->is_double_stack()) { 3103 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg()); 3104 } else if (dest->is_address()) { 3105 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg()); 3106 } else { 3107 ShouldNotReachHere(); 3108 } 3109 3110 } else if (dest->is_double_xmm()) { 3111 if (src->is_double_stack()) { 3112 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix())); 3113 } else if (src->is_address()) { 3114 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr())); 3115 } else { 3116 ShouldNotReachHere(); 3117 } 3118 3119 } else { 3120 ShouldNotReachHere(); 3121 } 3122 } 3123 3124 #ifdef ASSERT 3125 // emit run-time assertion 3126 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 3127 assert(op->code() == lir_assert, "must be"); 3128 3129 if (op->in_opr1()->is_valid()) { 3130 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 3131 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 3132 } else { 3133 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 3134 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 3135 } 3136 3137 Label ok; 3138 if (op->condition() != lir_cond_always) { 3139 Assembler::Condition acond = Assembler::zero; 3140 switch (op->condition()) { 3141 case lir_cond_equal: acond = Assembler::equal; break; 3142 case lir_cond_notEqual: acond = Assembler::notEqual; break; 3143 case lir_cond_less: acond = Assembler::less; break; 3144 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 3145 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 3146 case lir_cond_greater: acond = Assembler::greater; break; 3147 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 3148 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 3149 default: ShouldNotReachHere(); 3150 } 3151 __ jcc(acond, ok); 3152 } 3153 if (op->halt()) { 3154 const char* str = __ code_string(op->msg()); 3155 __ stop(str); 3156 } else { 3157 breakpoint(); 3158 } 3159 __ bind(ok); 3160 } 3161 #endif 3162 3163 void LIR_Assembler::membar() { 3164 // QQQ sparc TSO uses this, 3165 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3166 } 3167 3168 void LIR_Assembler::membar_acquire() { 3169 // No x86 machines currently require load fences 3170 } 3171 3172 void LIR_Assembler::membar_release() { 3173 // No x86 machines currently require store fences 3174 } 3175 3176 void LIR_Assembler::membar_loadload() { 3177 // no-op 3178 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload)); 3179 } 3180 3181 void LIR_Assembler::membar_storestore() { 3182 // no-op 3183 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore)); 3184 } 3185 3186 void LIR_Assembler::membar_loadstore() { 3187 // no-op 3188 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore)); 3189 } 3190 3191 void LIR_Assembler::membar_storeload() { 3192 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3193 } 3194 3195 void LIR_Assembler::on_spin_wait() { 3196 __ pause (); 3197 } 3198 3199 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 3200 assert(result_reg->is_register(), "check"); 3201 __ mov(result_reg->as_register(), r15_thread); 3202 } 3203 3204 3205 void LIR_Assembler::peephole(LIR_List*) { 3206 // do nothing for now 3207 } 3208 3209 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 3210 assert(data == dest, "xchg/xadd uses only 2 operands"); 3211 3212 if (data->type() == T_INT) { 3213 if (code == lir_xadd) { 3214 __ lock(); 3215 __ xaddl(as_Address(src->as_address_ptr()), data->as_register()); 3216 } else { 3217 __ xchgl(data->as_register(), as_Address(src->as_address_ptr())); 3218 } 3219 } else if (data->is_oop()) { 3220 assert (code == lir_xchg, "xadd for oops"); 3221 Register obj = data->as_register(); 3222 if (UseCompressedOops) { 3223 __ encode_heap_oop(obj); 3224 __ xchgl(obj, as_Address(src->as_address_ptr())); 3225 __ decode_heap_oop(obj); 3226 } else { 3227 __ xchgptr(obj, as_Address(src->as_address_ptr())); 3228 } 3229 } else if (data->type() == T_LONG) { 3230 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register"); 3231 if (code == lir_xadd) { 3232 __ lock(); 3233 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo()); 3234 } else { 3235 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr())); 3236 } 3237 } else { 3238 ShouldNotReachHere(); 3239 } 3240 } 3241 3242 #undef __