1 /*
   2  * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_CodeStubs.hpp"
  29 #include "c1/c1_Compilation.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "ci/ciArrayKlass.hpp"
  35 #include "ci/ciInstance.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "gc/shared/gc_globals.hpp"
  39 #include "nativeInst_x86.hpp"
  40 #include "oops/objArrayKlass.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "utilities/powerOfTwo.hpp"
  46 #include "vmreg_x86.inline.hpp"
  47 
  48 
  49 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  50 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  51 // fast versions of NegF/NegD and AbsF/AbsD.
  52 
  53 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  54 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  55   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  56   // of 128-bits operands for SSE instructions.
  57   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  58   // Store the value to a 128-bits operand.
  59   operand[0] = lo;
  60   operand[1] = hi;
  61   return operand;
  62 }
  63 
  64 // Buffer for 128-bits masks used by SSE instructions.
  65 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  66 
  67 // Static initialization during VM startup.
  68 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  69 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  70 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  71 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  72 
  73 
  74 NEEDS_CLEANUP // remove this definitions ?
  75 const Register SYNC_header = rax;   // synchronization header
  76 const Register SHIFT_count = rcx;   // where count for shift operations must be
  77 
  78 #define __ _masm->
  79 
  80 
  81 static void select_different_registers(Register preserve,
  82                                        Register extra,
  83                                        Register &tmp1,
  84                                        Register &tmp2) {
  85   if (tmp1 == preserve) {
  86     assert_different_registers(tmp1, tmp2, extra);
  87     tmp1 = extra;
  88   } else if (tmp2 == preserve) {
  89     assert_different_registers(tmp1, tmp2, extra);
  90     tmp2 = extra;
  91   }
  92   assert_different_registers(preserve, tmp1, tmp2);
  93 }
  94 
  95 
  96 
  97 static void select_different_registers(Register preserve,
  98                                        Register extra,
  99                                        Register &tmp1,
 100                                        Register &tmp2,
 101                                        Register &tmp3) {
 102   if (tmp1 == preserve) {
 103     assert_different_registers(tmp1, tmp2, tmp3, extra);
 104     tmp1 = extra;
 105   } else if (tmp2 == preserve) {
 106     assert_different_registers(tmp1, tmp2, tmp3, extra);
 107     tmp2 = extra;
 108   } else if (tmp3 == preserve) {
 109     assert_different_registers(tmp1, tmp2, tmp3, extra);
 110     tmp3 = extra;
 111   }
 112   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 113 }
 114 
 115 
 116 
 117 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 118   if (opr->is_constant()) {
 119     LIR_Const* constant = opr->as_constant_ptr();
 120     switch (constant->type()) {
 121       case T_INT: {
 122         return true;
 123       }
 124 
 125       default:
 126         return false;
 127     }
 128   }
 129   return false;
 130 }
 131 
 132 
 133 LIR_Opr LIR_Assembler::receiverOpr() {
 134   return FrameMap::receiver_opr;
 135 }
 136 
 137 LIR_Opr LIR_Assembler::osrBufferPointer() {
 138   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 139 }
 140 
 141 //--------------fpu register translations-----------------------
 142 
 143 
 144 address LIR_Assembler::float_constant(float f) {
 145   address const_addr = __ float_constant(f);
 146   if (const_addr == nullptr) {
 147     bailout("const section overflow");
 148     return __ code()->consts()->start();
 149   } else {
 150     return const_addr;
 151   }
 152 }
 153 
 154 
 155 address LIR_Assembler::double_constant(double d) {
 156   address const_addr = __ double_constant(d);
 157   if (const_addr == nullptr) {
 158     bailout("const section overflow");
 159     return __ code()->consts()->start();
 160   } else {
 161     return const_addr;
 162   }
 163 }
 164 
 165 #ifndef _LP64
 166 void LIR_Assembler::fpop() {
 167   __ fpop();
 168 }
 169 
 170 void LIR_Assembler::fxch(int i) {
 171   __ fxch(i);
 172 }
 173 
 174 void LIR_Assembler::fld(int i) {
 175   __ fld_s(i);
 176 }
 177 
 178 void LIR_Assembler::ffree(int i) {
 179   __ ffree(i);
 180 }
 181 #endif // !_LP64
 182 
 183 void LIR_Assembler::breakpoint() {
 184   __ int3();
 185 }
 186 
 187 void LIR_Assembler::push(LIR_Opr opr) {
 188   if (opr->is_single_cpu()) {
 189     __ push_reg(opr->as_register());
 190   } else if (opr->is_double_cpu()) {
 191     NOT_LP64(__ push_reg(opr->as_register_hi()));
 192     __ push_reg(opr->as_register_lo());
 193   } else if (opr->is_stack()) {
 194     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 195   } else if (opr->is_constant()) {
 196     LIR_Const* const_opr = opr->as_constant_ptr();
 197     if (const_opr->type() == T_OBJECT) {
 198       __ push_oop(const_opr->as_jobject(), rscratch1);
 199     } else if (const_opr->type() == T_INT) {
 200       __ push_jint(const_opr->as_jint());
 201     } else {
 202       ShouldNotReachHere();
 203     }
 204 
 205   } else {
 206     ShouldNotReachHere();
 207   }
 208 }
 209 
 210 void LIR_Assembler::pop(LIR_Opr opr) {
 211   if (opr->is_single_cpu()) {
 212     __ pop_reg(opr->as_register());
 213   } else {
 214     ShouldNotReachHere();
 215   }
 216 }
 217 
 218 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 219   return addr->base()->is_illegal() && addr->index()->is_illegal();
 220 }
 221 
 222 //-------------------------------------------
 223 
 224 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 225   return as_Address(addr, rscratch1);
 226 }
 227 
 228 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 229   if (addr->base()->is_illegal()) {
 230     assert(addr->index()->is_illegal(), "must be illegal too");
 231     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 232     if (! __ reachable(laddr)) {
 233       __ movptr(tmp, laddr.addr());
 234       Address res(tmp, 0);
 235       return res;
 236     } else {
 237       return __ as_Address(laddr);
 238     }
 239   }
 240 
 241   Register base = addr->base()->as_pointer_register();
 242 
 243   if (addr->index()->is_illegal()) {
 244     return Address( base, addr->disp());
 245   } else if (addr->index()->is_cpu_register()) {
 246     Register index = addr->index()->as_pointer_register();
 247     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 248   } else if (addr->index()->is_constant()) {
 249     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 250     assert(Assembler::is_simm32(addr_offset), "must be");
 251 
 252     return Address(base, addr_offset);
 253   } else {
 254     Unimplemented();
 255     return Address();
 256   }
 257 }
 258 
 259 
 260 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 261   Address base = as_Address(addr);
 262   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 263 }
 264 
 265 
 266 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 267   return as_Address(addr);
 268 }
 269 
 270 
 271 void LIR_Assembler::osr_entry() {
 272   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 273   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 274   ValueStack* entry_state = osr_entry->state();
 275   int number_of_locks = entry_state->locks_size();
 276 
 277   // we jump here if osr happens with the interpreter
 278   // state set up to continue at the beginning of the
 279   // loop that triggered osr - in particular, we have
 280   // the following registers setup:
 281   //
 282   // rcx: osr buffer
 283   //
 284 
 285   // build frame
 286   ciMethod* m = compilation()->method();
 287   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 288 
 289   // OSR buffer is
 290   //
 291   // locals[nlocals-1..0]
 292   // monitors[0..number_of_locks]
 293   //
 294   // locals is a direct copy of the interpreter frame so in the osr buffer
 295   // so first slot in the local array is the last local from the interpreter
 296   // and last slot is local[0] (receiver) from the interpreter
 297   //
 298   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 299   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 300   // in the interpreter frame (the method lock if a sync method)
 301 
 302   // Initialize monitors in the compiled activation.
 303   //   rcx: pointer to osr buffer
 304   //
 305   // All other registers are dead at this point and the locals will be
 306   // copied into place by code emitted in the IR.
 307 
 308   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 309   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 310     int monitor_offset = BytesPerWord * method()->max_locals() +
 311       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 312     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 313     // the OSR buffer using 2 word entries: first the lock and then
 314     // the oop.
 315     for (int i = 0; i < number_of_locks; i++) {
 316       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 317 #ifdef ASSERT
 318       // verify the interpreter's monitor has a non-null object
 319       {
 320         Label L;
 321         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD);
 322         __ jcc(Assembler::notZero, L);
 323         __ stop("locked object is null");
 324         __ bind(L);
 325       }
 326 #endif
 327       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 328       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 329       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 330       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 331     }
 332   }
 333 }
 334 
 335 
 336 // inline cache check; done before the frame is built.
 337 int LIR_Assembler::check_icache() {
 338   return __ ic_check(CodeEntryAlignment);
 339 }
 340 
 341 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 342   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 343   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
 344 
 345   Label L_skip_barrier;
 346   Register klass = rscratch1;
 347   Register thread = LP64_ONLY( r15_thread ) NOT_LP64( noreg );
 348   assert(thread != noreg, "x86_32 not implemented");
 349 
 350   __ mov_metadata(klass, method->holder()->constant_encoding());
 351   __ clinit_barrier(klass, thread, &L_skip_barrier /*L_fast_path*/);
 352 
 353   __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 354 
 355   __ bind(L_skip_barrier);
 356 }
 357 
 358 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 359   jobject o = nullptr;
 360   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 361   __ movoop(reg, o);
 362   patching_epilog(patch, lir_patch_normal, reg, info);
 363 }
 364 
 365 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 366   Metadata* o = nullptr;
 367   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 368   __ mov_metadata(reg, o);
 369   patching_epilog(patch, lir_patch_normal, reg, info);
 370 }
 371 
 372 // This specifies the rsp decrement needed to build the frame
 373 int LIR_Assembler::initial_frame_size_in_bytes() const {
 374   // if rounding, must let FrameMap know!
 375 
 376   // The frame_map records size in slots (32bit word)
 377 
 378   // subtract two words to account for return address and link
 379   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 380 }
 381 
 382 
 383 int LIR_Assembler::emit_exception_handler() {
 384   // generate code for exception handler
 385   address handler_base = __ start_a_stub(exception_handler_size());
 386   if (handler_base == nullptr) {
 387     // not enough space left for the handler
 388     bailout("exception handler overflow");
 389     return -1;
 390   }
 391 
 392   int offset = code_offset();
 393 
 394   // the exception oop and pc are in rax, and rdx
 395   // no other registers need to be preserved, so invalidate them
 396   __ invalidate_registers(false, true, true, false, true, true);
 397 
 398   // check that there is really an exception
 399   __ verify_not_null_oop(rax);
 400 
 401   // search an exception handler (rax: exception oop, rdx: throwing pc)
 402   __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id)));
 403   __ should_not_reach_here();
 404   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 405   __ end_a_stub();
 406 
 407   return offset;
 408 }
 409 
 410 
 411 // Emit the code to remove the frame from the stack in the exception
 412 // unwind path.
 413 int LIR_Assembler::emit_unwind_handler() {
 414 #ifndef PRODUCT
 415   if (CommentedAssembly) {
 416     _masm->block_comment("Unwind handler");
 417   }
 418 #endif
 419 
 420   int offset = code_offset();
 421 
 422   // Fetch the exception from TLS and clear out exception related thread state
 423   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 424   NOT_LP64(__ get_thread(thread));
 425   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 426   __ movptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD);
 427   __ movptr(Address(thread, JavaThread::exception_pc_offset()), NULL_WORD);
 428 
 429   __ bind(_unwind_handler_entry);
 430   __ verify_not_null_oop(rax);
 431   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 432     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 433   }
 434 
 435   // Perform needed unlocking
 436   MonitorExitStub* stub = nullptr;
 437   if (method()->is_synchronized()) {
 438     monitor_address(0, FrameMap::rax_opr);
 439     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 440     if (LockingMode == LM_MONITOR) {
 441       __ jmp(*stub->entry());
 442     } else {
 443       __ unlock_object(rdi, rsi, rax, *stub->entry());
 444     }
 445     __ bind(*stub->continuation());
 446   }
 447 
 448   if (compilation()->env()->dtrace_method_probes()) {
 449 #ifdef _LP64
 450     __ mov(rdi, r15_thread);
 451     __ mov_metadata(rsi, method()->constant_encoding());
 452 #else
 453     __ get_thread(rax);
 454     __ movptr(Address(rsp, 0), rax);
 455     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding(), noreg);
 456 #endif
 457     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 458   }
 459 
 460   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 461     __ mov(rax, rbx);  // Restore the exception
 462   }
 463 
 464   // remove the activation and dispatch to the unwind handler
 465   __ remove_frame(initial_frame_size_in_bytes());
 466   __ jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id)));
 467 
 468   // Emit the slow path assembly
 469   if (stub != nullptr) {
 470     stub->emit_code(this);
 471   }
 472 
 473   return offset;
 474 }
 475 
 476 
 477 int LIR_Assembler::emit_deopt_handler() {
 478   // generate code for exception handler
 479   address handler_base = __ start_a_stub(deopt_handler_size());
 480   if (handler_base == nullptr) {
 481     // not enough space left for the handler
 482     bailout("deopt handler overflow");
 483     return -1;
 484   }
 485 
 486   int offset = code_offset();
 487   InternalAddress here(__ pc());
 488 
 489   __ pushptr(here.addr(), rscratch1);
 490   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 491   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 492   __ end_a_stub();
 493 
 494   return offset;
 495 }
 496 
 497 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 498   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 499   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 500     assert(result->fpu() == 0, "result must already be on TOS");
 501   }
 502 
 503   // Pop the stack before the safepoint code
 504   __ remove_frame(initial_frame_size_in_bytes());
 505 
 506   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 507     __ reserved_stack_check();
 508   }
 509 
 510   // Note: we do not need to round double result; float result has the right precision
 511   // the poll sets the condition code, but no data registers
 512 
 513 #ifdef _LP64
 514   const Register thread = r15_thread;
 515 #else
 516   const Register thread = rbx;
 517   __ get_thread(thread);
 518 #endif
 519   code_stub->set_safepoint_offset(__ offset());
 520   __ relocate(relocInfo::poll_return_type);
 521   __ safepoint_poll(*code_stub->entry(), thread, true /* at_return */, true /* in_nmethod */);
 522   __ ret(0);
 523 }
 524 
 525 
 526 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 527   guarantee(info != nullptr, "Shouldn't be null");
 528   int offset = __ offset();
 529 #ifdef _LP64
 530   const Register poll_addr = rscratch1;
 531   __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset()));
 532 #else
 533   assert(tmp->is_cpu_register(), "needed");
 534   const Register poll_addr = tmp->as_register();
 535   __ get_thread(poll_addr);
 536   __ movptr(poll_addr, Address(poll_addr, in_bytes(JavaThread::polling_page_offset())));
 537 #endif
 538   add_debug_info_for_branch(info);
 539   __ relocate(relocInfo::poll_type);
 540   address pre_pc = __ pc();
 541   __ testl(rax, Address(poll_addr, 0));
 542   address post_pc = __ pc();
 543   guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 544   return offset;
 545 }
 546 
 547 
 548 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 549   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 550 }
 551 
 552 void LIR_Assembler::swap_reg(Register a, Register b) {
 553   __ xchgptr(a, b);
 554 }
 555 
 556 
 557 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 558   assert(src->is_constant(), "should not call otherwise");
 559   assert(dest->is_register(), "should not call otherwise");
 560   LIR_Const* c = src->as_constant_ptr();
 561 
 562   switch (c->type()) {
 563     case T_INT: {
 564       assert(patch_code == lir_patch_none, "no patching handled here");
 565       __ movl(dest->as_register(), c->as_jint());
 566       break;
 567     }
 568 
 569     case T_ADDRESS: {
 570       assert(patch_code == lir_patch_none, "no patching handled here");
 571       __ movptr(dest->as_register(), c->as_jint());
 572       break;
 573     }
 574 
 575     case T_LONG: {
 576       assert(patch_code == lir_patch_none, "no patching handled here");
 577 #ifdef _LP64
 578       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 579 #else
 580       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 581       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 582 #endif // _LP64
 583       break;
 584     }
 585 
 586     case T_OBJECT: {
 587       if (patch_code != lir_patch_none) {
 588         jobject2reg_with_patching(dest->as_register(), info);
 589       } else {
 590         __ movoop(dest->as_register(), c->as_jobject());
 591       }
 592       break;
 593     }
 594 
 595     case T_METADATA: {
 596       if (patch_code != lir_patch_none) {
 597         klass2reg_with_patching(dest->as_register(), info);
 598       } else {
 599         __ mov_metadata(dest->as_register(), c->as_metadata());
 600       }
 601       break;
 602     }
 603 
 604     case T_FLOAT: {
 605       if (dest->is_single_xmm()) {
 606         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) {
 607           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 608         } else {
 609           __ movflt(dest->as_xmm_float_reg(),
 610                    InternalAddress(float_constant(c->as_jfloat())));
 611         }
 612       } else {
 613 #ifndef _LP64
 614         assert(dest->is_single_fpu(), "must be");
 615         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 616         if (c->is_zero_float()) {
 617           __ fldz();
 618         } else if (c->is_one_float()) {
 619           __ fld1();
 620         } else {
 621           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 622         }
 623 #else
 624         ShouldNotReachHere();
 625 #endif // !_LP64
 626       }
 627       break;
 628     }
 629 
 630     case T_DOUBLE: {
 631       if (dest->is_double_xmm()) {
 632         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) {
 633           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 634         } else {
 635           __ movdbl(dest->as_xmm_double_reg(),
 636                     InternalAddress(double_constant(c->as_jdouble())));
 637         }
 638       } else {
 639 #ifndef _LP64
 640         assert(dest->is_double_fpu(), "must be");
 641         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 642         if (c->is_zero_double()) {
 643           __ fldz();
 644         } else if (c->is_one_double()) {
 645           __ fld1();
 646         } else {
 647           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 648         }
 649 #else
 650         ShouldNotReachHere();
 651 #endif // !_LP64
 652       }
 653       break;
 654     }
 655 
 656     default:
 657       ShouldNotReachHere();
 658   }
 659 }
 660 
 661 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 662   assert(src->is_constant(), "should not call otherwise");
 663   assert(dest->is_stack(), "should not call otherwise");
 664   LIR_Const* c = src->as_constant_ptr();
 665 
 666   switch (c->type()) {
 667     case T_INT:  // fall through
 668     case T_FLOAT:
 669       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 670       break;
 671 
 672     case T_ADDRESS:
 673       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 674       break;
 675 
 676     case T_OBJECT:
 677       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1);
 678       break;
 679 
 680     case T_LONG:  // fall through
 681     case T_DOUBLE:
 682 #ifdef _LP64
 683       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 684                                               lo_word_offset_in_bytes),
 685                 (intptr_t)c->as_jlong_bits(),
 686                 rscratch1);
 687 #else
 688       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 689                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 690       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 691                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 692 #endif // _LP64
 693       break;
 694 
 695     default:
 696       ShouldNotReachHere();
 697   }
 698 }
 699 
 700 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 701   assert(src->is_constant(), "should not call otherwise");
 702   assert(dest->is_address(), "should not call otherwise");
 703   LIR_Const* c = src->as_constant_ptr();
 704   LIR_Address* addr = dest->as_address_ptr();
 705 
 706   int null_check_here = code_offset();
 707   switch (type) {
 708     case T_INT:    // fall through
 709     case T_FLOAT:
 710       __ movl(as_Address(addr), c->as_jint_bits());
 711       break;
 712 
 713     case T_ADDRESS:
 714       __ movptr(as_Address(addr), c->as_jint_bits());
 715       break;
 716 
 717     case T_OBJECT:  // fall through
 718     case T_ARRAY:
 719       if (c->as_jobject() == nullptr) {
 720         if (UseCompressedOops && !wide) {
 721           __ movl(as_Address(addr), NULL_WORD);
 722         } else {
 723 #ifdef _LP64
 724           __ xorptr(rscratch1, rscratch1);
 725           null_check_here = code_offset();
 726           __ movptr(as_Address(addr), rscratch1);
 727 #else
 728           __ movptr(as_Address(addr), NULL_WORD);
 729 #endif
 730         }
 731       } else {
 732         if (is_literal_address(addr)) {
 733           ShouldNotReachHere();
 734           __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1);
 735         } else {
 736 #ifdef _LP64
 737           __ movoop(rscratch1, c->as_jobject());
 738           if (UseCompressedOops && !wide) {
 739             __ encode_heap_oop(rscratch1);
 740             null_check_here = code_offset();
 741             __ movl(as_Address_lo(addr), rscratch1);
 742           } else {
 743             null_check_here = code_offset();
 744             __ movptr(as_Address_lo(addr), rscratch1);
 745           }
 746 #else
 747           __ movoop(as_Address(addr), c->as_jobject(), noreg);
 748 #endif
 749         }
 750       }
 751       break;
 752 
 753     case T_LONG:    // fall through
 754     case T_DOUBLE:
 755 #ifdef _LP64
 756       if (is_literal_address(addr)) {
 757         ShouldNotReachHere();
 758         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 759       } else {
 760         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 761         null_check_here = code_offset();
 762         __ movptr(as_Address_lo(addr), r10);
 763       }
 764 #else
 765       // Always reachable in 32bit so this doesn't produce useless move literal
 766       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 767       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 768 #endif // _LP64
 769       break;
 770 
 771     case T_BOOLEAN: // fall through
 772     case T_BYTE:
 773       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 774       break;
 775 
 776     case T_CHAR:    // fall through
 777     case T_SHORT:
 778       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 779       break;
 780 
 781     default:
 782       ShouldNotReachHere();
 783   };
 784 
 785   if (info != nullptr) {
 786     add_debug_info_for_null_check(null_check_here, info);
 787   }
 788 }
 789 
 790 
 791 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 792   assert(src->is_register(), "should not call otherwise");
 793   assert(dest->is_register(), "should not call otherwise");
 794 
 795   // move between cpu-registers
 796   if (dest->is_single_cpu()) {
 797 #ifdef _LP64
 798     if (src->type() == T_LONG) {
 799       // Can do LONG -> OBJECT
 800       move_regs(src->as_register_lo(), dest->as_register());
 801       return;
 802     }
 803 #endif
 804     assert(src->is_single_cpu(), "must match");
 805     if (src->type() == T_OBJECT) {
 806       __ verify_oop(src->as_register());
 807     }
 808     move_regs(src->as_register(), dest->as_register());
 809 
 810   } else if (dest->is_double_cpu()) {
 811 #ifdef _LP64
 812     if (is_reference_type(src->type())) {
 813       // Surprising to me but we can see move of a long to t_object
 814       __ verify_oop(src->as_register());
 815       move_regs(src->as_register(), dest->as_register_lo());
 816       return;
 817     }
 818 #endif
 819     assert(src->is_double_cpu(), "must match");
 820     Register f_lo = src->as_register_lo();
 821     Register f_hi = src->as_register_hi();
 822     Register t_lo = dest->as_register_lo();
 823     Register t_hi = dest->as_register_hi();
 824 #ifdef _LP64
 825     assert(f_hi == f_lo, "must be same");
 826     assert(t_hi == t_lo, "must be same");
 827     move_regs(f_lo, t_lo);
 828 #else
 829     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 830 
 831 
 832     if (f_lo == t_hi && f_hi == t_lo) {
 833       swap_reg(f_lo, f_hi);
 834     } else if (f_hi == t_lo) {
 835       assert(f_lo != t_hi, "overwriting register");
 836       move_regs(f_hi, t_hi);
 837       move_regs(f_lo, t_lo);
 838     } else {
 839       assert(f_hi != t_lo, "overwriting register");
 840       move_regs(f_lo, t_lo);
 841       move_regs(f_hi, t_hi);
 842     }
 843 #endif // LP64
 844 
 845 #ifndef _LP64
 846     // special moves from fpu-register to xmm-register
 847     // necessary for method results
 848   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 849     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 850     __ fld_s(Address(rsp, 0));
 851   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 852     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 853     __ fld_d(Address(rsp, 0));
 854   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 855     __ fstp_s(Address(rsp, 0));
 856     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 857   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 858     __ fstp_d(Address(rsp, 0));
 859     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 860 #endif // !_LP64
 861 
 862     // move between xmm-registers
 863   } else if (dest->is_single_xmm()) {
 864     assert(src->is_single_xmm(), "must match");
 865     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 866   } else if (dest->is_double_xmm()) {
 867     assert(src->is_double_xmm(), "must match");
 868     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 869 
 870 #ifndef _LP64
 871     // move between fpu-registers (no instruction necessary because of fpu-stack)
 872   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 873     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 874     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 875 #endif // !_LP64
 876 
 877   } else {
 878     ShouldNotReachHere();
 879   }
 880 }
 881 
 882 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 883   assert(src->is_register(), "should not call otherwise");
 884   assert(dest->is_stack(), "should not call otherwise");
 885 
 886   if (src->is_single_cpu()) {
 887     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 888     if (is_reference_type(type)) {
 889       __ verify_oop(src->as_register());
 890       __ movptr (dst, src->as_register());
 891     } else if (type == T_METADATA || type == T_ADDRESS) {
 892       __ movptr (dst, src->as_register());
 893     } else {
 894       __ movl (dst, src->as_register());
 895     }
 896 
 897   } else if (src->is_double_cpu()) {
 898     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 899     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 900     __ movptr (dstLO, src->as_register_lo());
 901     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 902 
 903   } else if (src->is_single_xmm()) {
 904     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 905     __ movflt(dst_addr, src->as_xmm_float_reg());
 906 
 907   } else if (src->is_double_xmm()) {
 908     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 909     __ movdbl(dst_addr, src->as_xmm_double_reg());
 910 
 911 #ifndef _LP64
 912   } else if (src->is_single_fpu()) {
 913     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 914     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 915     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 916     else                   __ fst_s  (dst_addr);
 917 
 918   } else if (src->is_double_fpu()) {
 919     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 920     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 921     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 922     else                   __ fst_d  (dst_addr);
 923 #endif // !_LP64
 924 
 925   } else {
 926     ShouldNotReachHere();
 927   }
 928 }
 929 
 930 
 931 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) {
 932   LIR_Address* to_addr = dest->as_address_ptr();
 933   PatchingStub* patch = nullptr;
 934   Register compressed_src = rscratch1;
 935 
 936   if (is_reference_type(type)) {
 937     __ verify_oop(src->as_register());
 938 #ifdef _LP64
 939     if (UseCompressedOops && !wide) {
 940       __ movptr(compressed_src, src->as_register());
 941       __ encode_heap_oop(compressed_src);
 942       if (patch_code != lir_patch_none) {
 943         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 944       }
 945     }
 946 #endif
 947   }
 948 
 949   if (patch_code != lir_patch_none) {
 950     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 951     Address toa = as_Address(to_addr);
 952     assert(toa.disp() != 0, "must have");
 953   }
 954 
 955   int null_check_here = code_offset();
 956   switch (type) {
 957     case T_FLOAT: {
 958 #ifdef _LP64
 959       assert(src->is_single_xmm(), "not a float");
 960       __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 961 #else
 962       if (src->is_single_xmm()) {
 963         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 964       } else {
 965         assert(src->is_single_fpu(), "must be");
 966         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 967         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 968         else                    __ fst_s (as_Address(to_addr));
 969       }
 970 #endif // _LP64
 971       break;
 972     }
 973 
 974     case T_DOUBLE: {
 975 #ifdef _LP64
 976       assert(src->is_double_xmm(), "not a double");
 977       __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 978 #else
 979       if (src->is_double_xmm()) {
 980         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 981       } else {
 982         assert(src->is_double_fpu(), "must be");
 983         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 984         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
 985         else                    __ fst_d (as_Address(to_addr));
 986       }
 987 #endif // _LP64
 988       break;
 989     }
 990 
 991     case T_ARRAY:   // fall through
 992     case T_OBJECT:  // fall through
 993       if (UseCompressedOops && !wide) {
 994         __ movl(as_Address(to_addr), compressed_src);
 995       } else {
 996         __ movptr(as_Address(to_addr), src->as_register());
 997       }
 998       break;
 999     case T_METADATA:
1000       // We get here to store a method pointer to the stack to pass to
1001       // a dtrace runtime call. This can't work on 64 bit with
1002       // compressed klass ptrs: T_METADATA can be a compressed klass
1003       // ptr or a 64 bit method pointer.
1004       LP64_ONLY(ShouldNotReachHere());
1005       __ movptr(as_Address(to_addr), src->as_register());
1006       break;
1007     case T_ADDRESS:
1008       __ movptr(as_Address(to_addr), src->as_register());
1009       break;
1010     case T_INT:
1011       __ movl(as_Address(to_addr), src->as_register());
1012       break;
1013 
1014     case T_LONG: {
1015       Register from_lo = src->as_register_lo();
1016       Register from_hi = src->as_register_hi();
1017 #ifdef _LP64
1018       __ movptr(as_Address_lo(to_addr), from_lo);
1019 #else
1020       Register base = to_addr->base()->as_register();
1021       Register index = noreg;
1022       if (to_addr->index()->is_register()) {
1023         index = to_addr->index()->as_register();
1024       }
1025       if (base == from_lo || index == from_lo) {
1026         assert(base != from_hi, "can't be");
1027         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1028         __ movl(as_Address_hi(to_addr), from_hi);
1029         if (patch != nullptr) {
1030           patching_epilog(patch, lir_patch_high, base, info);
1031           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1032           patch_code = lir_patch_low;
1033         }
1034         __ movl(as_Address_lo(to_addr), from_lo);
1035       } else {
1036         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1037         __ movl(as_Address_lo(to_addr), from_lo);
1038         if (patch != nullptr) {
1039           patching_epilog(patch, lir_patch_low, base, info);
1040           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1041           patch_code = lir_patch_high;
1042         }
1043         __ movl(as_Address_hi(to_addr), from_hi);
1044       }
1045 #endif // _LP64
1046       break;
1047     }
1048 
1049     case T_BYTE:    // fall through
1050     case T_BOOLEAN: {
1051       Register src_reg = src->as_register();
1052       Address dst_addr = as_Address(to_addr);
1053       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1054       __ movb(dst_addr, src_reg);
1055       break;
1056     }
1057 
1058     case T_CHAR:    // fall through
1059     case T_SHORT:
1060       __ movw(as_Address(to_addr), src->as_register());
1061       break;
1062 
1063     default:
1064       ShouldNotReachHere();
1065   }
1066   if (info != nullptr) {
1067     add_debug_info_for_null_check(null_check_here, info);
1068   }
1069 
1070   if (patch_code != lir_patch_none) {
1071     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1072   }
1073 }
1074 
1075 
1076 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1077   assert(src->is_stack(), "should not call otherwise");
1078   assert(dest->is_register(), "should not call otherwise");
1079 
1080   if (dest->is_single_cpu()) {
1081     if (is_reference_type(type)) {
1082       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1083       __ verify_oop(dest->as_register());
1084     } else if (type == T_METADATA || type == T_ADDRESS) {
1085       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1086     } else {
1087       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1088     }
1089 
1090   } else if (dest->is_double_cpu()) {
1091     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1092     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1093     __ movptr(dest->as_register_lo(), src_addr_LO);
1094     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1095 
1096   } else if (dest->is_single_xmm()) {
1097     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1098     __ movflt(dest->as_xmm_float_reg(), src_addr);
1099 
1100   } else if (dest->is_double_xmm()) {
1101     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1102     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1103 
1104 #ifndef _LP64
1105   } else if (dest->is_single_fpu()) {
1106     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1107     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1108     __ fld_s(src_addr);
1109 
1110   } else if (dest->is_double_fpu()) {
1111     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1112     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1113     __ fld_d(src_addr);
1114 #endif // _LP64
1115 
1116   } else {
1117     ShouldNotReachHere();
1118   }
1119 }
1120 
1121 
1122 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1123   if (src->is_single_stack()) {
1124     if (is_reference_type(type)) {
1125       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1126       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1127     } else {
1128 #ifndef _LP64
1129       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1130       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1131 #else
1132       //no pushl on 64bits
1133       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1134       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1135 #endif
1136     }
1137 
1138   } else if (src->is_double_stack()) {
1139 #ifdef _LP64
1140     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1141     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1142 #else
1143     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1144     // push and pop the part at src + wordSize, adding wordSize for the previous push
1145     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1146     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1147     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1148 #endif // _LP64
1149 
1150   } else {
1151     ShouldNotReachHere();
1152   }
1153 }
1154 
1155 
1156 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
1157   assert(src->is_address(), "should not call otherwise");
1158   assert(dest->is_register(), "should not call otherwise");
1159 
1160   LIR_Address* addr = src->as_address_ptr();
1161   Address from_addr = as_Address(addr);
1162 
1163   if (addr->base()->type() == T_OBJECT) {
1164     __ verify_oop(addr->base()->as_pointer_register());
1165   }
1166 
1167   switch (type) {
1168     case T_BOOLEAN: // fall through
1169     case T_BYTE:    // fall through
1170     case T_CHAR:    // fall through
1171     case T_SHORT:
1172       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1173         // on pre P6 processors we may get partial register stalls
1174         // so blow away the value of to_rinfo before loading a
1175         // partial word into it.  Do it here so that it precedes
1176         // the potential patch point below.
1177         __ xorptr(dest->as_register(), dest->as_register());
1178       }
1179       break;
1180    default:
1181      break;
1182   }
1183 
1184   PatchingStub* patch = nullptr;
1185   if (patch_code != lir_patch_none) {
1186     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1187     assert(from_addr.disp() != 0, "must have");
1188   }
1189   if (info != nullptr) {
1190     add_debug_info_for_null_check_here(info);
1191   }
1192 
1193   switch (type) {
1194     case T_FLOAT: {
1195       if (dest->is_single_xmm()) {
1196         __ movflt(dest->as_xmm_float_reg(), from_addr);
1197       } else {
1198 #ifndef _LP64
1199         assert(dest->is_single_fpu(), "must be");
1200         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1201         __ fld_s(from_addr);
1202 #else
1203         ShouldNotReachHere();
1204 #endif // !LP64
1205       }
1206       break;
1207     }
1208 
1209     case T_DOUBLE: {
1210       if (dest->is_double_xmm()) {
1211         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1212       } else {
1213 #ifndef _LP64
1214         assert(dest->is_double_fpu(), "must be");
1215         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1216         __ fld_d(from_addr);
1217 #else
1218         ShouldNotReachHere();
1219 #endif // !LP64
1220       }
1221       break;
1222     }
1223 
1224     case T_OBJECT:  // fall through
1225     case T_ARRAY:   // fall through
1226       if (UseCompressedOops && !wide) {
1227         __ movl(dest->as_register(), from_addr);
1228       } else {
1229         __ movptr(dest->as_register(), from_addr);
1230       }
1231       break;
1232 
1233     case T_ADDRESS:
1234       __ movptr(dest->as_register(), from_addr);
1235       break;
1236     case T_INT:
1237       __ movl(dest->as_register(), from_addr);
1238       break;
1239 
1240     case T_LONG: {
1241       Register to_lo = dest->as_register_lo();
1242       Register to_hi = dest->as_register_hi();
1243 #ifdef _LP64
1244       __ movptr(to_lo, as_Address_lo(addr));
1245 #else
1246       Register base = addr->base()->as_register();
1247       Register index = noreg;
1248       if (addr->index()->is_register()) {
1249         index = addr->index()->as_register();
1250       }
1251       if ((base == to_lo && index == to_hi) ||
1252           (base == to_hi && index == to_lo)) {
1253         // addresses with 2 registers are only formed as a result of
1254         // array access so this code will never have to deal with
1255         // patches or null checks.
1256         assert(info == nullptr && patch == nullptr, "must be");
1257         __ lea(to_hi, as_Address(addr));
1258         __ movl(to_lo, Address(to_hi, 0));
1259         __ movl(to_hi, Address(to_hi, BytesPerWord));
1260       } else if (base == to_lo || index == to_lo) {
1261         assert(base != to_hi, "can't be");
1262         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1263         __ movl(to_hi, as_Address_hi(addr));
1264         if (patch != nullptr) {
1265           patching_epilog(patch, lir_patch_high, base, info);
1266           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1267           patch_code = lir_patch_low;
1268         }
1269         __ movl(to_lo, as_Address_lo(addr));
1270       } else {
1271         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1272         __ movl(to_lo, as_Address_lo(addr));
1273         if (patch != nullptr) {
1274           patching_epilog(patch, lir_patch_low, base, info);
1275           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1276           patch_code = lir_patch_high;
1277         }
1278         __ movl(to_hi, as_Address_hi(addr));
1279       }
1280 #endif // _LP64
1281       break;
1282     }
1283 
1284     case T_BOOLEAN: // fall through
1285     case T_BYTE: {
1286       Register dest_reg = dest->as_register();
1287       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1288       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1289         __ movsbl(dest_reg, from_addr);
1290       } else {
1291         __ movb(dest_reg, from_addr);
1292         __ shll(dest_reg, 24);
1293         __ sarl(dest_reg, 24);
1294       }
1295       break;
1296     }
1297 
1298     case T_CHAR: {
1299       Register dest_reg = dest->as_register();
1300       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1301       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1302         __ movzwl(dest_reg, from_addr);
1303       } else {
1304         __ movw(dest_reg, from_addr);
1305       }
1306       break;
1307     }
1308 
1309     case T_SHORT: {
1310       Register dest_reg = dest->as_register();
1311       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1312         __ movswl(dest_reg, from_addr);
1313       } else {
1314         __ movw(dest_reg, from_addr);
1315         __ shll(dest_reg, 16);
1316         __ sarl(dest_reg, 16);
1317       }
1318       break;
1319     }
1320 
1321     default:
1322       ShouldNotReachHere();
1323   }
1324 
1325   if (patch != nullptr) {
1326     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1327   }
1328 
1329   if (is_reference_type(type)) {
1330 #ifdef _LP64
1331     if (UseCompressedOops && !wide) {
1332       __ decode_heap_oop(dest->as_register());
1333     }
1334 #endif
1335 
1336     __ verify_oop(dest->as_register());
1337   }
1338 }
1339 
1340 
1341 NEEDS_CLEANUP; // This could be static?
1342 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1343   int elem_size = type2aelembytes(type);
1344   switch (elem_size) {
1345     case 1: return Address::times_1;
1346     case 2: return Address::times_2;
1347     case 4: return Address::times_4;
1348     case 8: return Address::times_8;
1349   }
1350   ShouldNotReachHere();
1351   return Address::no_scale;
1352 }
1353 
1354 
1355 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1356   switch (op->code()) {
1357     case lir_idiv:
1358     case lir_irem:
1359       arithmetic_idiv(op->code(),
1360                       op->in_opr1(),
1361                       op->in_opr2(),
1362                       op->in_opr3(),
1363                       op->result_opr(),
1364                       op->info());
1365       break;
1366     case lir_fmad:
1367       __ fmad(op->result_opr()->as_xmm_double_reg(),
1368               op->in_opr1()->as_xmm_double_reg(),
1369               op->in_opr2()->as_xmm_double_reg(),
1370               op->in_opr3()->as_xmm_double_reg());
1371       break;
1372     case lir_fmaf:
1373       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1374               op->in_opr1()->as_xmm_float_reg(),
1375               op->in_opr2()->as_xmm_float_reg(),
1376               op->in_opr3()->as_xmm_float_reg());
1377       break;
1378     default:      ShouldNotReachHere(); break;
1379   }
1380 }
1381 
1382 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1383 #ifdef ASSERT
1384   assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
1385   if (op->block() != nullptr)  _branch_target_blocks.append(op->block());
1386   if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
1387 #endif
1388 
1389   if (op->cond() == lir_cond_always) {
1390     if (op->info() != nullptr) add_debug_info_for_branch(op->info());
1391     __ jmp (*(op->label()));
1392   } else {
1393     Assembler::Condition acond = Assembler::zero;
1394     if (op->code() == lir_cond_float_branch) {
1395       assert(op->ublock() != nullptr, "must have unordered successor");
1396       __ jcc(Assembler::parity, *(op->ublock()->label()));
1397       switch(op->cond()) {
1398         case lir_cond_equal:        acond = Assembler::equal;      break;
1399         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1400         case lir_cond_less:         acond = Assembler::below;      break;
1401         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1402         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1403         case lir_cond_greater:      acond = Assembler::above;      break;
1404         default:                         ShouldNotReachHere();
1405       }
1406     } else {
1407       switch (op->cond()) {
1408         case lir_cond_equal:        acond = Assembler::equal;       break;
1409         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1410         case lir_cond_less:         acond = Assembler::less;        break;
1411         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1412         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1413         case lir_cond_greater:      acond = Assembler::greater;     break;
1414         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1415         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1416         default:                         ShouldNotReachHere();
1417       }
1418     }
1419     __ jcc(acond,*(op->label()));
1420   }
1421 }
1422 
1423 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1424   LIR_Opr src  = op->in_opr();
1425   LIR_Opr dest = op->result_opr();
1426 
1427   switch (op->bytecode()) {
1428     case Bytecodes::_i2l:
1429 #ifdef _LP64
1430       __ movl2ptr(dest->as_register_lo(), src->as_register());
1431 #else
1432       move_regs(src->as_register(), dest->as_register_lo());
1433       move_regs(src->as_register(), dest->as_register_hi());
1434       __ sarl(dest->as_register_hi(), 31);
1435 #endif // LP64
1436       break;
1437 
1438     case Bytecodes::_l2i:
1439 #ifdef _LP64
1440       __ movl(dest->as_register(), src->as_register_lo());
1441 #else
1442       move_regs(src->as_register_lo(), dest->as_register());
1443 #endif
1444       break;
1445 
1446     case Bytecodes::_i2b:
1447       move_regs(src->as_register(), dest->as_register());
1448       __ sign_extend_byte(dest->as_register());
1449       break;
1450 
1451     case Bytecodes::_i2c:
1452       move_regs(src->as_register(), dest->as_register());
1453       __ andl(dest->as_register(), 0xFFFF);
1454       break;
1455 
1456     case Bytecodes::_i2s:
1457       move_regs(src->as_register(), dest->as_register());
1458       __ sign_extend_short(dest->as_register());
1459       break;
1460 
1461 
1462 #ifdef _LP64
1463     case Bytecodes::_f2d:
1464       __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1465       break;
1466 
1467     case Bytecodes::_d2f:
1468       __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1469       break;
1470 
1471     case Bytecodes::_i2f:
1472       __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1473       break;
1474 
1475     case Bytecodes::_i2d:
1476       __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1477       break;
1478 
1479     case Bytecodes::_l2f:
1480       __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo());
1481       break;
1482 
1483     case Bytecodes::_l2d:
1484       __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo());
1485       break;
1486 
1487     case Bytecodes::_f2i:
1488       __ convert_f2i(dest->as_register(), src->as_xmm_float_reg());
1489       break;
1490 
1491     case Bytecodes::_d2i:
1492       __ convert_d2i(dest->as_register(), src->as_xmm_double_reg());
1493       break;
1494 
1495     case Bytecodes::_f2l:
1496       __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg());
1497       break;
1498 
1499     case Bytecodes::_d2l:
1500       __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg());
1501       break;
1502 #else
1503     case Bytecodes::_f2d:
1504     case Bytecodes::_d2f:
1505       if (dest->is_single_xmm()) {
1506         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1507       } else if (dest->is_double_xmm()) {
1508         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1509       } else {
1510         assert(src->fpu() == dest->fpu(), "register must be equal");
1511         // do nothing (float result is rounded later through spilling)
1512       }
1513       break;
1514 
1515     case Bytecodes::_i2f:
1516     case Bytecodes::_i2d:
1517       if (dest->is_single_xmm()) {
1518         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1519       } else if (dest->is_double_xmm()) {
1520         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1521       } else {
1522         assert(dest->fpu() == 0, "result must be on TOS");
1523         __ movl(Address(rsp, 0), src->as_register());
1524         __ fild_s(Address(rsp, 0));
1525       }
1526       break;
1527 
1528     case Bytecodes::_l2f:
1529     case Bytecodes::_l2d:
1530       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1531       assert(dest->fpu() == 0, "result must be on TOS");
1532       __ movptr(Address(rsp, 0),          src->as_register_lo());
1533       __ movl(Address(rsp, BytesPerWord), src->as_register_hi());
1534       __ fild_d(Address(rsp, 0));
1535       // float result is rounded later through spilling
1536       break;
1537 
1538     case Bytecodes::_f2i:
1539     case Bytecodes::_d2i:
1540       if (src->is_single_xmm()) {
1541         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1542       } else if (src->is_double_xmm()) {
1543         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1544       } else {
1545         assert(src->fpu() == 0, "input must be on TOS");
1546         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_trunc()));
1547         __ fist_s(Address(rsp, 0));
1548         __ movl(dest->as_register(), Address(rsp, 0));
1549         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
1550       }
1551       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1552       assert(op->stub() != nullptr, "stub required");
1553       __ cmpl(dest->as_register(), 0x80000000);
1554       __ jcc(Assembler::equal, *op->stub()->entry());
1555       __ bind(*op->stub()->continuation());
1556       break;
1557 
1558     case Bytecodes::_f2l:
1559     case Bytecodes::_d2l:
1560       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1561       assert(src->fpu() == 0, "input must be on TOS");
1562       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1563 
1564       // instruction sequence too long to inline it here
1565       {
1566         __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::fpu2long_stub_id)));
1567       }
1568       break;
1569 #endif // _LP64
1570 
1571     default: ShouldNotReachHere();
1572   }
1573 }
1574 
1575 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1576   if (op->init_check()) {
1577     add_debug_info_for_null_check_here(op->stub()->info());
1578     // init_state needs acquire, but x86 is TSO, and so we are already good.
1579     __ cmpb(Address(op->klass()->as_register(),
1580                     InstanceKlass::init_state_offset()),
1581                     InstanceKlass::fully_initialized);
1582     __ jcc(Assembler::notEqual, *op->stub()->entry());
1583   }
1584   __ allocate_object(op->obj()->as_register(),
1585                      op->tmp1()->as_register(),
1586                      op->tmp2()->as_register(),
1587                      op->header_size(),
1588                      op->object_size(),
1589                      op->klass()->as_register(),
1590                      *op->stub()->entry());
1591   __ bind(*op->stub()->continuation());
1592 }
1593 
1594 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1595   Register len =  op->len()->as_register();
1596   LP64_ONLY( __ movslq(len, len); )
1597 
1598   if (UseSlowPath ||
1599       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1600       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1601     __ jmp(*op->stub()->entry());
1602   } else {
1603     Register tmp1 = op->tmp1()->as_register();
1604     Register tmp2 = op->tmp2()->as_register();
1605     Register tmp3 = op->tmp3()->as_register();
1606     if (len == tmp1) {
1607       tmp1 = tmp3;
1608     } else if (len == tmp2) {
1609       tmp2 = tmp3;
1610     } else if (len == tmp3) {
1611       // everything is ok
1612     } else {
1613       __ mov(tmp3, len);
1614     }
1615     __ allocate_array(op->obj()->as_register(),
1616                       len,
1617                       tmp1,
1618                       tmp2,
1619                       arrayOopDesc::base_offset_in_bytes(op->type()),
1620                       array_element_size(op->type()),
1621                       op->klass()->as_register(),
1622                       *op->stub()->entry(),
1623                       op->zero_array());
1624   }
1625   __ bind(*op->stub()->continuation());
1626 }
1627 
1628 void LIR_Assembler::type_profile_helper(Register mdo,
1629                                         ciMethodData *md, ciProfileData *data,
1630                                         Register recv, Label* update_done) {
1631   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1632     Label next_test;
1633     // See if the receiver is receiver[n].
1634     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1635     __ jccb(Assembler::notEqual, next_test);
1636     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1637     __ addptr(data_addr, DataLayout::counter_increment);
1638     __ jmp(*update_done);
1639     __ bind(next_test);
1640   }
1641 
1642   // Didn't find receiver; find next empty slot and fill it in
1643   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1644     Label next_test;
1645     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1646     __ cmpptr(recv_addr, NULL_WORD);
1647     __ jccb(Assembler::notEqual, next_test);
1648     __ movptr(recv_addr, recv);
1649     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1650     __ jmp(*update_done);
1651     __ bind(next_test);
1652   }
1653 }
1654 
1655 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1656   // we always need a stub for the failure case.
1657   CodeStub* stub = op->stub();
1658   Register obj = op->object()->as_register();
1659   Register k_RInfo = op->tmp1()->as_register();
1660   Register klass_RInfo = op->tmp2()->as_register();
1661   Register dst = op->result_opr()->as_register();
1662   ciKlass* k = op->klass();
1663   Register Rtmp1 = noreg;
1664   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1665 
1666   // check if it needs to be profiled
1667   ciMethodData* md = nullptr;
1668   ciProfileData* data = nullptr;
1669 
1670   if (op->should_profile()) {
1671     ciMethod* method = op->profiled_method();
1672     assert(method != nullptr, "Should have method");
1673     int bci = op->profiled_bci();
1674     md = method->method_data_or_null();
1675     assert(md != nullptr, "Sanity");
1676     data = md->bci_to_data(bci);
1677     assert(data != nullptr,                "need data for type check");
1678     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1679   }
1680   Label* success_target = success;
1681   Label* failure_target = failure;
1682 
1683   if (obj == k_RInfo) {
1684     k_RInfo = dst;
1685   } else if (obj == klass_RInfo) {
1686     klass_RInfo = dst;
1687   }
1688   if (k->is_loaded() && !UseCompressedClassPointers) {
1689     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1690   } else {
1691     Rtmp1 = op->tmp3()->as_register();
1692     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1693   }
1694 
1695   assert_different_registers(obj, k_RInfo, klass_RInfo);
1696 
1697   __ testptr(obj, obj);
1698   if (op->should_profile()) {
1699     Label not_null;
1700     Register mdo  = klass_RInfo;
1701     __ mov_metadata(mdo, md->constant_encoding());
1702     __ jccb(Assembler::notEqual, not_null);
1703     // Object is null; update MDO and exit
1704     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1705     int header_bits = BitData::null_seen_byte_constant();
1706     __ orb(data_addr, header_bits);
1707     __ jmp(*obj_is_null);
1708     __ bind(not_null);
1709 
1710     Label update_done;
1711     Register recv = k_RInfo;
1712     __ load_klass(recv, obj, tmp_load_klass);
1713     type_profile_helper(mdo, md, data, recv, &update_done);
1714 
1715     Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1716     __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment);
1717 
1718     __ bind(update_done);
1719   } else {
1720     __ jcc(Assembler::equal, *obj_is_null);
1721   }
1722 
1723   if (!k->is_loaded()) {
1724     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1725   } else {
1726 #ifdef _LP64
1727     __ mov_metadata(k_RInfo, k->constant_encoding());
1728 #endif // _LP64
1729   }
1730   __ verify_oop(obj);
1731 
1732   if (op->fast_check()) {
1733     // get object class
1734     // not a safepoint as obj null check happens earlier
1735 #ifdef _LP64
1736     if (UseCompressedClassPointers) {
1737       __ load_klass(Rtmp1, obj, tmp_load_klass);
1738       __ cmpptr(k_RInfo, Rtmp1);
1739     } else {
1740       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1741     }
1742 #else
1743     if (k->is_loaded()) {
1744       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1745     } else {
1746       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1747     }
1748 #endif
1749     __ jcc(Assembler::notEqual, *failure_target);
1750     // successful cast, fall through to profile or jump
1751   } else {
1752     // get object class
1753     // not a safepoint as obj null check happens earlier
1754     __ load_klass(klass_RInfo, obj, tmp_load_klass);
1755     if (k->is_loaded()) {
1756       // See if we get an immediate positive hit
1757 #ifdef _LP64
1758       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1759 #else
1760       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1761 #endif // _LP64
1762       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1763         __ jcc(Assembler::notEqual, *failure_target);
1764         // successful cast, fall through to profile or jump
1765       } else {
1766         // See if we get an immediate positive hit
1767         __ jcc(Assembler::equal, *success_target);
1768         // check for self
1769 #ifdef _LP64
1770         __ cmpptr(klass_RInfo, k_RInfo);
1771 #else
1772         __ cmpklass(klass_RInfo, k->constant_encoding());
1773 #endif // _LP64
1774         __ jcc(Assembler::equal, *success_target);
1775 
1776         __ push(klass_RInfo);
1777 #ifdef _LP64
1778         __ push(k_RInfo);
1779 #else
1780         __ pushklass(k->constant_encoding(), noreg);
1781 #endif // _LP64
1782         __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1783         __ pop(klass_RInfo);
1784         __ pop(klass_RInfo);
1785         // result is a boolean
1786         __ testl(klass_RInfo, klass_RInfo);
1787         __ jcc(Assembler::equal, *failure_target);
1788         // successful cast, fall through to profile or jump
1789       }
1790     } else {
1791       // perform the fast part of the checking logic
1792       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1793       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1794       __ push(klass_RInfo);
1795       __ push(k_RInfo);
1796       __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1797       __ pop(klass_RInfo);
1798       __ pop(k_RInfo);
1799       // result is a boolean
1800       __ testl(k_RInfo, k_RInfo);
1801       __ jcc(Assembler::equal, *failure_target);
1802       // successful cast, fall through to profile or jump
1803     }
1804   }
1805   __ jmp(*success);
1806 }
1807 
1808 
1809 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1810   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1811   LIR_Code code = op->code();
1812   if (code == lir_store_check) {
1813     Register value = op->object()->as_register();
1814     Register array = op->array()->as_register();
1815     Register k_RInfo = op->tmp1()->as_register();
1816     Register klass_RInfo = op->tmp2()->as_register();
1817     Register Rtmp1 = op->tmp3()->as_register();
1818 
1819     CodeStub* stub = op->stub();
1820 
1821     // check if it needs to be profiled
1822     ciMethodData* md = nullptr;
1823     ciProfileData* data = nullptr;
1824 
1825     if (op->should_profile()) {
1826       ciMethod* method = op->profiled_method();
1827       assert(method != nullptr, "Should have method");
1828       int bci = op->profiled_bci();
1829       md = method->method_data_or_null();
1830       assert(md != nullptr, "Sanity");
1831       data = md->bci_to_data(bci);
1832       assert(data != nullptr,                "need data for type check");
1833       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1834     }
1835     Label done;
1836     Label* success_target = &done;
1837     Label* failure_target = stub->entry();
1838 
1839     __ testptr(value, value);
1840     if (op->should_profile()) {
1841       Label not_null;
1842       Register mdo  = klass_RInfo;
1843       __ mov_metadata(mdo, md->constant_encoding());
1844       __ jccb(Assembler::notEqual, not_null);
1845       // Object is null; update MDO and exit
1846       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1847       int header_bits = BitData::null_seen_byte_constant();
1848       __ orb(data_addr, header_bits);
1849       __ jmp(done);
1850       __ bind(not_null);
1851 
1852       Label update_done;
1853       Register recv = k_RInfo;
1854       __ load_klass(recv, value, tmp_load_klass);
1855       type_profile_helper(mdo, md, data, recv, &update_done);
1856 
1857       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1858       __ addptr(counter_addr, DataLayout::counter_increment);
1859       __ bind(update_done);
1860     } else {
1861       __ jcc(Assembler::equal, done);
1862     }
1863 
1864     add_debug_info_for_null_check_here(op->info_for_exception());
1865     __ load_klass(k_RInfo, array, tmp_load_klass);
1866     __ load_klass(klass_RInfo, value, tmp_load_klass);
1867 
1868     // get instance klass (it's already uncompressed)
1869     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1870     // perform the fast part of the checking logic
1871     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1872     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1873     __ push(klass_RInfo);
1874     __ push(k_RInfo);
1875     __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1876     __ pop(klass_RInfo);
1877     __ pop(k_RInfo);
1878     // result is a boolean
1879     __ testl(k_RInfo, k_RInfo);
1880     __ jcc(Assembler::equal, *failure_target);
1881     // fall through to the success case
1882 
1883     __ bind(done);
1884   } else
1885     if (code == lir_checkcast) {
1886       Register obj = op->object()->as_register();
1887       Register dst = op->result_opr()->as_register();
1888       Label success;
1889       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1890       __ bind(success);
1891       if (dst != obj) {
1892         __ mov(dst, obj);
1893       }
1894     } else
1895       if (code == lir_instanceof) {
1896         Register obj = op->object()->as_register();
1897         Register dst = op->result_opr()->as_register();
1898         Label success, failure, done;
1899         emit_typecheck_helper(op, &success, &failure, &failure);
1900         __ bind(failure);
1901         __ xorptr(dst, dst);
1902         __ jmpb(done);
1903         __ bind(success);
1904         __ movptr(dst, 1);
1905         __ bind(done);
1906       } else {
1907         ShouldNotReachHere();
1908       }
1909 
1910 }
1911 
1912 
1913 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1914   if (LP64_ONLY(false &&) op->code() == lir_cas_long) {
1915     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1916     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1917     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1918     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1919     Register addr = op->addr()->as_register();
1920     __ lock();
1921     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1922 
1923   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1924     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1925     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1926     Register newval = op->new_value()->as_register();
1927     Register cmpval = op->cmp_value()->as_register();
1928     assert(cmpval == rax, "wrong register");
1929     assert(newval != noreg, "new val must be register");
1930     assert(cmpval != newval, "cmp and new values must be in different registers");
1931     assert(cmpval != addr, "cmp and addr must be in different registers");
1932     assert(newval != addr, "new value and addr must be in different registers");
1933 
1934     if ( op->code() == lir_cas_obj) {
1935 #ifdef _LP64
1936       if (UseCompressedOops) {
1937         __ encode_heap_oop(cmpval);
1938         __ mov(rscratch1, newval);
1939         __ encode_heap_oop(rscratch1);
1940         __ lock();
1941         // cmpval (rax) is implicitly used by this instruction
1942         __ cmpxchgl(rscratch1, Address(addr, 0));
1943       } else
1944 #endif
1945       {
1946         __ lock();
1947         __ cmpxchgptr(newval, Address(addr, 0));
1948       }
1949     } else {
1950       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1951       __ lock();
1952       __ cmpxchgl(newval, Address(addr, 0));
1953     }
1954 #ifdef _LP64
1955   } else if (op->code() == lir_cas_long) {
1956     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1957     Register newval = op->new_value()->as_register_lo();
1958     Register cmpval = op->cmp_value()->as_register_lo();
1959     assert(cmpval == rax, "wrong register");
1960     assert(newval != noreg, "new val must be register");
1961     assert(cmpval != newval, "cmp and new values must be in different registers");
1962     assert(cmpval != addr, "cmp and addr must be in different registers");
1963     assert(newval != addr, "new value and addr must be in different registers");
1964     __ lock();
1965     __ cmpxchgq(newval, Address(addr, 0));
1966 #endif // _LP64
1967   } else {
1968     Unimplemented();
1969   }
1970 }
1971 
1972 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
1973                           LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
1974   assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86");
1975 
1976   Assembler::Condition acond, ncond;
1977   switch (condition) {
1978     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1979     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1980     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1981     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1982     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1983     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1984     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1985     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1986     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
1987                                 ShouldNotReachHere();
1988   }
1989 
1990   if (opr1->is_cpu_register()) {
1991     reg2reg(opr1, result);
1992   } else if (opr1->is_stack()) {
1993     stack2reg(opr1, result, result->type());
1994   } else if (opr1->is_constant()) {
1995     const2reg(opr1, result, lir_patch_none, nullptr);
1996   } else {
1997     ShouldNotReachHere();
1998   }
1999 
2000   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2001     // optimized version that does not require a branch
2002     if (opr2->is_single_cpu()) {
2003       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2004       __ cmov(ncond, result->as_register(), opr2->as_register());
2005     } else if (opr2->is_double_cpu()) {
2006       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2007       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2008       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2009       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2010     } else if (opr2->is_single_stack()) {
2011       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2012     } else if (opr2->is_double_stack()) {
2013       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2014       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2015     } else {
2016       ShouldNotReachHere();
2017     }
2018 
2019   } else {
2020     Label skip;
2021     __ jccb(acond, skip);
2022     if (opr2->is_cpu_register()) {
2023       reg2reg(opr2, result);
2024     } else if (opr2->is_stack()) {
2025       stack2reg(opr2, result, result->type());
2026     } else if (opr2->is_constant()) {
2027       const2reg(opr2, result, lir_patch_none, nullptr);
2028     } else {
2029       ShouldNotReachHere();
2030     }
2031     __ bind(skip);
2032   }
2033 }
2034 
2035 
2036 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2037   assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2038 
2039   if (left->is_single_cpu()) {
2040     assert(left == dest, "left and dest must be equal");
2041     Register lreg = left->as_register();
2042 
2043     if (right->is_single_cpu()) {
2044       // cpu register - cpu register
2045       Register rreg = right->as_register();
2046       switch (code) {
2047         case lir_add: __ addl (lreg, rreg); break;
2048         case lir_sub: __ subl (lreg, rreg); break;
2049         case lir_mul: __ imull(lreg, rreg); break;
2050         default:      ShouldNotReachHere();
2051       }
2052 
2053     } else if (right->is_stack()) {
2054       // cpu register - stack
2055       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2056       switch (code) {
2057         case lir_add: __ addl(lreg, raddr); break;
2058         case lir_sub: __ subl(lreg, raddr); break;
2059         default:      ShouldNotReachHere();
2060       }
2061 
2062     } else if (right->is_constant()) {
2063       // cpu register - constant
2064       jint c = right->as_constant_ptr()->as_jint();
2065       switch (code) {
2066         case lir_add: {
2067           __ incrementl(lreg, c);
2068           break;
2069         }
2070         case lir_sub: {
2071           __ decrementl(lreg, c);
2072           break;
2073         }
2074         default: ShouldNotReachHere();
2075       }
2076 
2077     } else {
2078       ShouldNotReachHere();
2079     }
2080 
2081   } else if (left->is_double_cpu()) {
2082     assert(left == dest, "left and dest must be equal");
2083     Register lreg_lo = left->as_register_lo();
2084     Register lreg_hi = left->as_register_hi();
2085 
2086     if (right->is_double_cpu()) {
2087       // cpu register - cpu register
2088       Register rreg_lo = right->as_register_lo();
2089       Register rreg_hi = right->as_register_hi();
2090       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2091       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2092       switch (code) {
2093         case lir_add:
2094           __ addptr(lreg_lo, rreg_lo);
2095           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2096           break;
2097         case lir_sub:
2098           __ subptr(lreg_lo, rreg_lo);
2099           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2100           break;
2101         case lir_mul:
2102 #ifdef _LP64
2103           __ imulq(lreg_lo, rreg_lo);
2104 #else
2105           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2106           __ imull(lreg_hi, rreg_lo);
2107           __ imull(rreg_hi, lreg_lo);
2108           __ addl (rreg_hi, lreg_hi);
2109           __ mull (rreg_lo);
2110           __ addl (lreg_hi, rreg_hi);
2111 #endif // _LP64
2112           break;
2113         default:
2114           ShouldNotReachHere();
2115       }
2116 
2117     } else if (right->is_constant()) {
2118       // cpu register - constant
2119 #ifdef _LP64
2120       jlong c = right->as_constant_ptr()->as_jlong_bits();
2121       __ movptr(r10, (intptr_t) c);
2122       switch (code) {
2123         case lir_add:
2124           __ addptr(lreg_lo, r10);
2125           break;
2126         case lir_sub:
2127           __ subptr(lreg_lo, r10);
2128           break;
2129         default:
2130           ShouldNotReachHere();
2131       }
2132 #else
2133       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2134       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2135       switch (code) {
2136         case lir_add:
2137           __ addptr(lreg_lo, c_lo);
2138           __ adcl(lreg_hi, c_hi);
2139           break;
2140         case lir_sub:
2141           __ subptr(lreg_lo, c_lo);
2142           __ sbbl(lreg_hi, c_hi);
2143           break;
2144         default:
2145           ShouldNotReachHere();
2146       }
2147 #endif // _LP64
2148 
2149     } else {
2150       ShouldNotReachHere();
2151     }
2152 
2153   } else if (left->is_single_xmm()) {
2154     assert(left == dest, "left and dest must be equal");
2155     XMMRegister lreg = left->as_xmm_float_reg();
2156 
2157     if (right->is_single_xmm()) {
2158       XMMRegister rreg = right->as_xmm_float_reg();
2159       switch (code) {
2160         case lir_add: __ addss(lreg, rreg);  break;
2161         case lir_sub: __ subss(lreg, rreg);  break;
2162         case lir_mul: __ mulss(lreg, rreg);  break;
2163         case lir_div: __ divss(lreg, rreg);  break;
2164         default: ShouldNotReachHere();
2165       }
2166     } else {
2167       Address raddr;
2168       if (right->is_single_stack()) {
2169         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2170       } else if (right->is_constant()) {
2171         // hack for now
2172         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2173       } else {
2174         ShouldNotReachHere();
2175       }
2176       switch (code) {
2177         case lir_add: __ addss(lreg, raddr);  break;
2178         case lir_sub: __ subss(lreg, raddr);  break;
2179         case lir_mul: __ mulss(lreg, raddr);  break;
2180         case lir_div: __ divss(lreg, raddr);  break;
2181         default: ShouldNotReachHere();
2182       }
2183     }
2184 
2185   } else if (left->is_double_xmm()) {
2186     assert(left == dest, "left and dest must be equal");
2187 
2188     XMMRegister lreg = left->as_xmm_double_reg();
2189     if (right->is_double_xmm()) {
2190       XMMRegister rreg = right->as_xmm_double_reg();
2191       switch (code) {
2192         case lir_add: __ addsd(lreg, rreg);  break;
2193         case lir_sub: __ subsd(lreg, rreg);  break;
2194         case lir_mul: __ mulsd(lreg, rreg);  break;
2195         case lir_div: __ divsd(lreg, rreg);  break;
2196         default: ShouldNotReachHere();
2197       }
2198     } else {
2199       Address raddr;
2200       if (right->is_double_stack()) {
2201         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2202       } else if (right->is_constant()) {
2203         // hack for now
2204         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2205       } else {
2206         ShouldNotReachHere();
2207       }
2208       switch (code) {
2209         case lir_add: __ addsd(lreg, raddr);  break;
2210         case lir_sub: __ subsd(lreg, raddr);  break;
2211         case lir_mul: __ mulsd(lreg, raddr);  break;
2212         case lir_div: __ divsd(lreg, raddr);  break;
2213         default: ShouldNotReachHere();
2214       }
2215     }
2216 
2217 #ifndef _LP64
2218   } else if (left->is_single_fpu()) {
2219     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2220 
2221     if (right->is_single_fpu()) {
2222       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2223 
2224     } else {
2225       assert(left->fpu_regnr() == 0, "left must be on TOS");
2226       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2227 
2228       Address raddr;
2229       if (right->is_single_stack()) {
2230         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2231       } else if (right->is_constant()) {
2232         address const_addr = float_constant(right->as_jfloat());
2233         assert(const_addr != nullptr, "incorrect float/double constant maintenance");
2234         // hack for now
2235         raddr = __ as_Address(InternalAddress(const_addr));
2236       } else {
2237         ShouldNotReachHere();
2238       }
2239 
2240       switch (code) {
2241         case lir_add: __ fadd_s(raddr); break;
2242         case lir_sub: __ fsub_s(raddr); break;
2243         case lir_mul: __ fmul_s(raddr); break;
2244         case lir_div: __ fdiv_s(raddr); break;
2245         default:      ShouldNotReachHere();
2246       }
2247     }
2248 
2249   } else if (left->is_double_fpu()) {
2250     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2251 
2252     if (code == lir_mul || code == lir_div) {
2253       // Double values require special handling for strictfp mul/div on x86
2254       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1()));
2255       __ fmulp(left->fpu_regnrLo() + 1);
2256     }
2257 
2258     if (right->is_double_fpu()) {
2259       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2260 
2261     } else {
2262       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2263       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2264 
2265       Address raddr;
2266       if (right->is_double_stack()) {
2267         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2268       } else if (right->is_constant()) {
2269         // hack for now
2270         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2271       } else {
2272         ShouldNotReachHere();
2273       }
2274 
2275       switch (code) {
2276         case lir_add: __ fadd_d(raddr); break;
2277         case lir_sub: __ fsub_d(raddr); break;
2278         case lir_mul: __ fmul_d(raddr); break;
2279         case lir_div: __ fdiv_d(raddr); break;
2280         default: ShouldNotReachHere();
2281       }
2282     }
2283 
2284     if (code == lir_mul || code == lir_div) {
2285       // Double values require special handling for strictfp mul/div on x86
2286       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2()));
2287       __ fmulp(dest->fpu_regnrLo() + 1);
2288     }
2289 #endif // !_LP64
2290 
2291   } else if (left->is_single_stack() || left->is_address()) {
2292     assert(left == dest, "left and dest must be equal");
2293 
2294     Address laddr;
2295     if (left->is_single_stack()) {
2296       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2297     } else if (left->is_address()) {
2298       laddr = as_Address(left->as_address_ptr());
2299     } else {
2300       ShouldNotReachHere();
2301     }
2302 
2303     if (right->is_single_cpu()) {
2304       Register rreg = right->as_register();
2305       switch (code) {
2306         case lir_add: __ addl(laddr, rreg); break;
2307         case lir_sub: __ subl(laddr, rreg); break;
2308         default:      ShouldNotReachHere();
2309       }
2310     } else if (right->is_constant()) {
2311       jint c = right->as_constant_ptr()->as_jint();
2312       switch (code) {
2313         case lir_add: {
2314           __ incrementl(laddr, c);
2315           break;
2316         }
2317         case lir_sub: {
2318           __ decrementl(laddr, c);
2319           break;
2320         }
2321         default: ShouldNotReachHere();
2322       }
2323     } else {
2324       ShouldNotReachHere();
2325     }
2326 
2327   } else {
2328     ShouldNotReachHere();
2329   }
2330 }
2331 
2332 #ifndef _LP64
2333 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2334   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2335   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2336   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2337 
2338   bool left_is_tos = (left_index == 0);
2339   bool dest_is_tos = (dest_index == 0);
2340   int non_tos_index = (left_is_tos ? right_index : left_index);
2341 
2342   switch (code) {
2343     case lir_add:
2344       if (pop_fpu_stack)       __ faddp(non_tos_index);
2345       else if (dest_is_tos)    __ fadd (non_tos_index);
2346       else                     __ fadda(non_tos_index);
2347       break;
2348 
2349     case lir_sub:
2350       if (left_is_tos) {
2351         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2352         else if (dest_is_tos)  __ fsub  (non_tos_index);
2353         else                   __ fsubra(non_tos_index);
2354       } else {
2355         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2356         else if (dest_is_tos)  __ fsubr (non_tos_index);
2357         else                   __ fsuba (non_tos_index);
2358       }
2359       break;
2360 
2361     case lir_mul:
2362       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2363       else if (dest_is_tos)    __ fmul (non_tos_index);
2364       else                     __ fmula(non_tos_index);
2365       break;
2366 
2367     case lir_div:
2368       if (left_is_tos) {
2369         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2370         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2371         else                   __ fdivra(non_tos_index);
2372       } else {
2373         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2374         else if (dest_is_tos)  __ fdivr (non_tos_index);
2375         else                   __ fdiva (non_tos_index);
2376       }
2377       break;
2378 
2379     case lir_rem:
2380       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2381       __ fremr(noreg);
2382       break;
2383 
2384     default:
2385       ShouldNotReachHere();
2386   }
2387 }
2388 #endif // _LP64
2389 
2390 
2391 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
2392   if (value->is_double_xmm()) {
2393     switch(code) {
2394       case lir_abs :
2395         {
2396 #ifdef _LP64
2397           if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
2398             assert(tmp->is_valid(), "need temporary");
2399             __ vpandn(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), value->as_xmm_double_reg(), 2);
2400           } else
2401 #endif
2402           {
2403             if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2404               __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2405             }
2406             assert(!tmp->is_valid(), "do not need temporary");
2407             __ andpd(dest->as_xmm_double_reg(),
2408                      ExternalAddress((address)double_signmask_pool),
2409                      rscratch1);
2410           }
2411         }
2412         break;
2413 
2414       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2415       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2416       default      : ShouldNotReachHere();
2417     }
2418 
2419 #ifndef _LP64
2420   } else if (value->is_double_fpu()) {
2421     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2422     switch(code) {
2423       case lir_abs   : __ fabs() ; break;
2424       case lir_sqrt  : __ fsqrt(); break;
2425       default      : ShouldNotReachHere();
2426     }
2427 #endif // !_LP64
2428   } else if (code == lir_f2hf) {
2429     __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg());
2430   } else if (code == lir_hf2f) {
2431     __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register());
2432   } else {
2433     Unimplemented();
2434   }
2435 }
2436 
2437 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2438   // assert(left->destroys_register(), "check");
2439   if (left->is_single_cpu()) {
2440     Register reg = left->as_register();
2441     if (right->is_constant()) {
2442       int val = right->as_constant_ptr()->as_jint();
2443       switch (code) {
2444         case lir_logic_and: __ andl (reg, val); break;
2445         case lir_logic_or:  __ orl  (reg, val); break;
2446         case lir_logic_xor: __ xorl (reg, val); break;
2447         default: ShouldNotReachHere();
2448       }
2449     } else if (right->is_stack()) {
2450       // added support for stack operands
2451       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2452       switch (code) {
2453         case lir_logic_and: __ andl (reg, raddr); break;
2454         case lir_logic_or:  __ orl  (reg, raddr); break;
2455         case lir_logic_xor: __ xorl (reg, raddr); break;
2456         default: ShouldNotReachHere();
2457       }
2458     } else {
2459       Register rright = right->as_register();
2460       switch (code) {
2461         case lir_logic_and: __ andptr (reg, rright); break;
2462         case lir_logic_or : __ orptr  (reg, rright); break;
2463         case lir_logic_xor: __ xorptr (reg, rright); break;
2464         default: ShouldNotReachHere();
2465       }
2466     }
2467     move_regs(reg, dst->as_register());
2468   } else {
2469     Register l_lo = left->as_register_lo();
2470     Register l_hi = left->as_register_hi();
2471     if (right->is_constant()) {
2472 #ifdef _LP64
2473       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2474       switch (code) {
2475         case lir_logic_and:
2476           __ andq(l_lo, rscratch1);
2477           break;
2478         case lir_logic_or:
2479           __ orq(l_lo, rscratch1);
2480           break;
2481         case lir_logic_xor:
2482           __ xorq(l_lo, rscratch1);
2483           break;
2484         default: ShouldNotReachHere();
2485       }
2486 #else
2487       int r_lo = right->as_constant_ptr()->as_jint_lo();
2488       int r_hi = right->as_constant_ptr()->as_jint_hi();
2489       switch (code) {
2490         case lir_logic_and:
2491           __ andl(l_lo, r_lo);
2492           __ andl(l_hi, r_hi);
2493           break;
2494         case lir_logic_or:
2495           __ orl(l_lo, r_lo);
2496           __ orl(l_hi, r_hi);
2497           break;
2498         case lir_logic_xor:
2499           __ xorl(l_lo, r_lo);
2500           __ xorl(l_hi, r_hi);
2501           break;
2502         default: ShouldNotReachHere();
2503       }
2504 #endif // _LP64
2505     } else {
2506 #ifdef _LP64
2507       Register r_lo;
2508       if (is_reference_type(right->type())) {
2509         r_lo = right->as_register();
2510       } else {
2511         r_lo = right->as_register_lo();
2512       }
2513 #else
2514       Register r_lo = right->as_register_lo();
2515       Register r_hi = right->as_register_hi();
2516       assert(l_lo != r_hi, "overwriting registers");
2517 #endif
2518       switch (code) {
2519         case lir_logic_and:
2520           __ andptr(l_lo, r_lo);
2521           NOT_LP64(__ andptr(l_hi, r_hi);)
2522           break;
2523         case lir_logic_or:
2524           __ orptr(l_lo, r_lo);
2525           NOT_LP64(__ orptr(l_hi, r_hi);)
2526           break;
2527         case lir_logic_xor:
2528           __ xorptr(l_lo, r_lo);
2529           NOT_LP64(__ xorptr(l_hi, r_hi);)
2530           break;
2531         default: ShouldNotReachHere();
2532       }
2533     }
2534 
2535     Register dst_lo = dst->as_register_lo();
2536     Register dst_hi = dst->as_register_hi();
2537 
2538 #ifdef _LP64
2539     move_regs(l_lo, dst_lo);
2540 #else
2541     if (dst_lo == l_hi) {
2542       assert(dst_hi != l_lo, "overwriting registers");
2543       move_regs(l_hi, dst_hi);
2544       move_regs(l_lo, dst_lo);
2545     } else {
2546       assert(dst_lo != l_hi, "overwriting registers");
2547       move_regs(l_lo, dst_lo);
2548       move_regs(l_hi, dst_hi);
2549     }
2550 #endif // _LP64
2551   }
2552 }
2553 
2554 
2555 // we assume that rax, and rdx can be overwritten
2556 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2557 
2558   assert(left->is_single_cpu(),   "left must be register");
2559   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2560   assert(result->is_single_cpu(), "result must be register");
2561 
2562   //  assert(left->destroys_register(), "check");
2563   //  assert(right->destroys_register(), "check");
2564 
2565   Register lreg = left->as_register();
2566   Register dreg = result->as_register();
2567 
2568   if (right->is_constant()) {
2569     jint divisor = right->as_constant_ptr()->as_jint();
2570     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2571     if (code == lir_idiv) {
2572       assert(lreg == rax, "must be rax,");
2573       assert(temp->as_register() == rdx, "tmp register must be rdx");
2574       __ cdql(); // sign extend into rdx:rax
2575       if (divisor == 2) {
2576         __ subl(lreg, rdx);
2577       } else {
2578         __ andl(rdx, divisor - 1);
2579         __ addl(lreg, rdx);
2580       }
2581       __ sarl(lreg, log2i_exact(divisor));
2582       move_regs(lreg, dreg);
2583     } else if (code == lir_irem) {
2584       Label done;
2585       __ mov(dreg, lreg);
2586       __ andl(dreg, 0x80000000 | (divisor - 1));
2587       __ jcc(Assembler::positive, done);
2588       __ decrement(dreg);
2589       __ orl(dreg, ~(divisor - 1));
2590       __ increment(dreg);
2591       __ bind(done);
2592     } else {
2593       ShouldNotReachHere();
2594     }
2595   } else {
2596     Register rreg = right->as_register();
2597     assert(lreg == rax, "left register must be rax,");
2598     assert(rreg != rdx, "right register must not be rdx");
2599     assert(temp->as_register() == rdx, "tmp register must be rdx");
2600 
2601     move_regs(lreg, rax);
2602 
2603     int idivl_offset = __ corrected_idivl(rreg);
2604     if (ImplicitDiv0Checks) {
2605       add_debug_info_for_div0(idivl_offset, info);
2606     }
2607     if (code == lir_irem) {
2608       move_regs(rdx, dreg); // result is in rdx
2609     } else {
2610       move_regs(rax, dreg);
2611     }
2612   }
2613 }
2614 
2615 
2616 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2617   if (opr1->is_single_cpu()) {
2618     Register reg1 = opr1->as_register();
2619     if (opr2->is_single_cpu()) {
2620       // cpu register - cpu register
2621       if (is_reference_type(opr1->type())) {
2622         __ cmpoop(reg1, opr2->as_register());
2623       } else {
2624         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
2625         __ cmpl(reg1, opr2->as_register());
2626       }
2627     } else if (opr2->is_stack()) {
2628       // cpu register - stack
2629       if (is_reference_type(opr1->type())) {
2630         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2631       } else {
2632         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2633       }
2634     } else if (opr2->is_constant()) {
2635       // cpu register - constant
2636       LIR_Const* c = opr2->as_constant_ptr();
2637       if (c->type() == T_INT) {
2638         jint i = c->as_jint();
2639         if (i == 0) {
2640           __ testl(reg1, reg1);
2641         } else {
2642           __ cmpl(reg1, i);
2643         }
2644       } else if (c->type() == T_METADATA) {
2645         // All we need for now is a comparison with null for equality.
2646         assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
2647         Metadata* m = c->as_metadata();
2648         if (m == nullptr) {
2649           __ testptr(reg1, reg1);
2650         } else {
2651           ShouldNotReachHere();
2652         }
2653       } else if (is_reference_type(c->type())) {
2654         // In 64bit oops are single register
2655         jobject o = c->as_jobject();
2656         if (o == nullptr) {
2657           __ testptr(reg1, reg1);
2658         } else {
2659           __ cmpoop(reg1, o, rscratch1);
2660         }
2661       } else {
2662         fatal("unexpected type: %s", basictype_to_str(c->type()));
2663       }
2664       // cpu register - address
2665     } else if (opr2->is_address()) {
2666       if (op->info() != nullptr) {
2667         add_debug_info_for_null_check_here(op->info());
2668       }
2669       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2670     } else {
2671       ShouldNotReachHere();
2672     }
2673 
2674   } else if(opr1->is_double_cpu()) {
2675     Register xlo = opr1->as_register_lo();
2676     Register xhi = opr1->as_register_hi();
2677     if (opr2->is_double_cpu()) {
2678 #ifdef _LP64
2679       __ cmpptr(xlo, opr2->as_register_lo());
2680 #else
2681       // cpu register - cpu register
2682       Register ylo = opr2->as_register_lo();
2683       Register yhi = opr2->as_register_hi();
2684       __ subl(xlo, ylo);
2685       __ sbbl(xhi, yhi);
2686       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2687         __ orl(xhi, xlo);
2688       }
2689 #endif // _LP64
2690     } else if (opr2->is_constant()) {
2691       // cpu register - constant 0
2692       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2693 #ifdef _LP64
2694       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2695 #else
2696       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2697       __ orl(xhi, xlo);
2698 #endif // _LP64
2699     } else {
2700       ShouldNotReachHere();
2701     }
2702 
2703   } else if (opr1->is_single_xmm()) {
2704     XMMRegister reg1 = opr1->as_xmm_float_reg();
2705     if (opr2->is_single_xmm()) {
2706       // xmm register - xmm register
2707       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2708     } else if (opr2->is_stack()) {
2709       // xmm register - stack
2710       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2711     } else if (opr2->is_constant()) {
2712       // xmm register - constant
2713       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2714     } else if (opr2->is_address()) {
2715       // xmm register - address
2716       if (op->info() != nullptr) {
2717         add_debug_info_for_null_check_here(op->info());
2718       }
2719       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2720     } else {
2721       ShouldNotReachHere();
2722     }
2723 
2724   } else if (opr1->is_double_xmm()) {
2725     XMMRegister reg1 = opr1->as_xmm_double_reg();
2726     if (opr2->is_double_xmm()) {
2727       // xmm register - xmm register
2728       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2729     } else if (opr2->is_stack()) {
2730       // xmm register - stack
2731       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2732     } else if (opr2->is_constant()) {
2733       // xmm register - constant
2734       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2735     } else if (opr2->is_address()) {
2736       // xmm register - address
2737       if (op->info() != nullptr) {
2738         add_debug_info_for_null_check_here(op->info());
2739       }
2740       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2741     } else {
2742       ShouldNotReachHere();
2743     }
2744 
2745 #ifndef _LP64
2746   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2747     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2748     assert(opr2->is_fpu_register(), "both must be registers");
2749     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2750 #endif // LP64
2751 
2752   } else if (opr1->is_address() && opr2->is_constant()) {
2753     LIR_Const* c = opr2->as_constant_ptr();
2754 #ifdef _LP64
2755     if (is_reference_type(c->type())) {
2756       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2757       __ movoop(rscratch1, c->as_jobject());
2758     }
2759 #endif // LP64
2760     if (op->info() != nullptr) {
2761       add_debug_info_for_null_check_here(op->info());
2762     }
2763     // special case: address - constant
2764     LIR_Address* addr = opr1->as_address_ptr();
2765     if (c->type() == T_INT) {
2766       __ cmpl(as_Address(addr), c->as_jint());
2767     } else if (is_reference_type(c->type())) {
2768 #ifdef _LP64
2769       // %%% Make this explode if addr isn't reachable until we figure out a
2770       // better strategy by giving noreg as the temp for as_Address
2771       __ cmpoop(rscratch1, as_Address(addr, noreg));
2772 #else
2773       __ cmpoop(as_Address(addr), c->as_jobject());
2774 #endif // _LP64
2775     } else {
2776       ShouldNotReachHere();
2777     }
2778 
2779   } else {
2780     ShouldNotReachHere();
2781   }
2782 }
2783 
2784 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2785   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2786     if (left->is_single_xmm()) {
2787       assert(right->is_single_xmm(), "must match");
2788       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2789     } else if (left->is_double_xmm()) {
2790       assert(right->is_double_xmm(), "must match");
2791       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2792 
2793     } else {
2794 #ifdef _LP64
2795       ShouldNotReachHere();
2796 #else
2797       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2798       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2799 
2800       assert(left->fpu() == 0, "left must be on TOS");
2801       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2802                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2803 #endif // LP64
2804     }
2805   } else {
2806     assert(code == lir_cmp_l2i, "check");
2807 #ifdef _LP64
2808     Label done;
2809     Register dest = dst->as_register();
2810     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2811     __ movl(dest, -1);
2812     __ jccb(Assembler::less, done);
2813     __ setb(Assembler::notZero, dest);
2814     __ movzbl(dest, dest);
2815     __ bind(done);
2816 #else
2817     __ lcmp2int(left->as_register_hi(),
2818                 left->as_register_lo(),
2819                 right->as_register_hi(),
2820                 right->as_register_lo());
2821     move_regs(left->as_register_hi(), dst->as_register());
2822 #endif // _LP64
2823   }
2824 }
2825 
2826 
2827 void LIR_Assembler::align_call(LIR_Code code) {
2828   // make sure that the displacement word of the call ends up word aligned
2829   int offset = __ offset();
2830   switch (code) {
2831   case lir_static_call:
2832   case lir_optvirtual_call:
2833   case lir_dynamic_call:
2834     offset += NativeCall::displacement_offset;
2835     break;
2836   case lir_icvirtual_call:
2837     offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size_rex;
2838     break;
2839   default: ShouldNotReachHere();
2840   }
2841   __ align(BytesPerWord, offset);
2842 }
2843 
2844 
2845 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2846   assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2847          "must be aligned");
2848   __ call(AddressLiteral(op->addr(), rtype));
2849   add_call_info(code_offset(), op->info());
2850   __ post_call_nop();
2851 }
2852 
2853 
2854 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2855   __ ic_call(op->addr());
2856   add_call_info(code_offset(), op->info());
2857   assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2858          "must be aligned");
2859   __ post_call_nop();
2860 }
2861 
2862 
2863 void LIR_Assembler::emit_static_call_stub() {
2864   address call_pc = __ pc();
2865   address stub = __ start_a_stub(call_stub_size());
2866   if (stub == nullptr) {
2867     bailout("static call stub overflow");
2868     return;
2869   }
2870 
2871   int start = __ offset();
2872 
2873   // make sure that the displacement word of the call ends up word aligned
2874   __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size_rex + NativeCall::displacement_offset);
2875   __ relocate(static_stub_Relocation::spec(call_pc));
2876   __ mov_metadata(rbx, (Metadata*)nullptr);
2877   // must be set to -1 at code generation time
2878   assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned");
2879   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2880   __ jump(RuntimeAddress(__ pc()));
2881 
2882   assert(__ offset() - start <= call_stub_size(), "stub too big");
2883   __ end_a_stub();
2884 }
2885 
2886 
2887 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2888   assert(exceptionOop->as_register() == rax, "must match");
2889   assert(exceptionPC->as_register() == rdx, "must match");
2890 
2891   // exception object is not added to oop map by LinearScan
2892   // (LinearScan assumes that no oops are in fixed registers)
2893   info->add_register_oop(exceptionOop);
2894   C1StubId unwind_id;
2895 
2896   // get current pc information
2897   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2898   int pc_for_athrow_offset = __ offset();
2899   InternalAddress pc_for_athrow(__ pc());
2900   __ lea(exceptionPC->as_register(), pc_for_athrow);
2901   add_call_info(pc_for_athrow_offset, info); // for exception handler
2902 
2903   __ verify_not_null_oop(rax);
2904   // search an exception handler (rax: exception oop, rdx: throwing pc)
2905   if (compilation()->has_fpu_code()) {
2906     unwind_id = C1StubId::handle_exception_id;
2907   } else {
2908     unwind_id = C1StubId::handle_exception_nofpu_id;
2909   }
2910   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2911 
2912   // enough room for two byte trap
2913   __ nop();
2914 }
2915 
2916 
2917 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2918   assert(exceptionOop->as_register() == rax, "must match");
2919 
2920   __ jmp(_unwind_handler_entry);
2921 }
2922 
2923 
2924 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2925 
2926   // optimized version for linear scan:
2927   // * count must be already in ECX (guaranteed by LinearScan)
2928   // * left and dest must be equal
2929   // * tmp must be unused
2930   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2931   assert(left == dest, "left and dest must be equal");
2932   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2933 
2934   if (left->is_single_cpu()) {
2935     Register value = left->as_register();
2936     assert(value != SHIFT_count, "left cannot be ECX");
2937 
2938     switch (code) {
2939       case lir_shl:  __ shll(value); break;
2940       case lir_shr:  __ sarl(value); break;
2941       case lir_ushr: __ shrl(value); break;
2942       default: ShouldNotReachHere();
2943     }
2944   } else if (left->is_double_cpu()) {
2945     Register lo = left->as_register_lo();
2946     Register hi = left->as_register_hi();
2947     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2948 #ifdef _LP64
2949     switch (code) {
2950       case lir_shl:  __ shlptr(lo);        break;
2951       case lir_shr:  __ sarptr(lo);        break;
2952       case lir_ushr: __ shrptr(lo);        break;
2953       default: ShouldNotReachHere();
2954     }
2955 #else
2956 
2957     switch (code) {
2958       case lir_shl:  __ lshl(hi, lo);        break;
2959       case lir_shr:  __ lshr(hi, lo, true);  break;
2960       case lir_ushr: __ lshr(hi, lo, false); break;
2961       default: ShouldNotReachHere();
2962     }
2963 #endif // LP64
2964   } else {
2965     ShouldNotReachHere();
2966   }
2967 }
2968 
2969 
2970 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2971   if (dest->is_single_cpu()) {
2972     // first move left into dest so that left is not destroyed by the shift
2973     Register value = dest->as_register();
2974     count = count & 0x1F; // Java spec
2975 
2976     move_regs(left->as_register(), value);
2977     switch (code) {
2978       case lir_shl:  __ shll(value, count); break;
2979       case lir_shr:  __ sarl(value, count); break;
2980       case lir_ushr: __ shrl(value, count); break;
2981       default: ShouldNotReachHere();
2982     }
2983   } else if (dest->is_double_cpu()) {
2984 #ifndef _LP64
2985     Unimplemented();
2986 #else
2987     // first move left into dest so that left is not destroyed by the shift
2988     Register value = dest->as_register_lo();
2989     count = count & 0x1F; // Java spec
2990 
2991     move_regs(left->as_register_lo(), value);
2992     switch (code) {
2993       case lir_shl:  __ shlptr(value, count); break;
2994       case lir_shr:  __ sarptr(value, count); break;
2995       case lir_ushr: __ shrptr(value, count); break;
2996       default: ShouldNotReachHere();
2997     }
2998 #endif // _LP64
2999   } else {
3000     ShouldNotReachHere();
3001   }
3002 }
3003 
3004 
3005 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3006   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3007   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3008   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3009   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3010 }
3011 
3012 
3013 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3014   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3015   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3016   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3017   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3018 }
3019 
3020 
3021 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
3022   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3023   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3024   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3025   __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1);
3026 }
3027 
3028 
3029 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) {
3030   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3031   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3032   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3033   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1);
3034 }
3035 
3036 
3037 // This code replaces a call to arraycopy; no exception may
3038 // be thrown in this code, they must be thrown in the System.arraycopy
3039 // activation frame; we could save some checks if this would not be the case
3040 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3041   ciArrayKlass* default_type = op->expected_type();
3042   Register src = op->src()->as_register();
3043   Register dst = op->dst()->as_register();
3044   Register src_pos = op->src_pos()->as_register();
3045   Register dst_pos = op->dst_pos()->as_register();
3046   Register length  = op->length()->as_register();
3047   Register tmp = op->tmp()->as_register();
3048   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3049   Register tmp2 = UseCompactObjectHeaders ? rscratch2 : noreg;
3050 
3051   CodeStub* stub = op->stub();
3052   int flags = op->flags();
3053   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
3054   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
3055 
3056   // if we don't know anything, just go through the generic arraycopy
3057   if (default_type == nullptr) {
3058     // save outgoing arguments on stack in case call to System.arraycopy is needed
3059     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3060     // for interpreter calling conventions. Now we have to do it in new style conventions.
3061     // For the moment until C1 gets the new register allocator I just force all the
3062     // args to the right place (except the register args) and then on the back side
3063     // reload the register args properly if we go slow path. Yuck
3064 
3065     // These are proper for the calling convention
3066     store_parameter(length, 2);
3067     store_parameter(dst_pos, 1);
3068     store_parameter(dst, 0);
3069 
3070     // these are just temporary placements until we need to reload
3071     store_parameter(src_pos, 3);
3072     store_parameter(src, 4);
3073     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3074 
3075     address copyfunc_addr = StubRoutines::generic_arraycopy();
3076     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
3077 
3078     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3079 #ifdef _LP64
3080     // The arguments are in java calling convention so we can trivially shift them to C
3081     // convention
3082     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3083     __ mov(c_rarg0, j_rarg0);
3084     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3085     __ mov(c_rarg1, j_rarg1);
3086     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3087     __ mov(c_rarg2, j_rarg2);
3088     assert_different_registers(c_rarg3, j_rarg4);
3089     __ mov(c_rarg3, j_rarg3);
3090 #ifdef _WIN64
3091     // Allocate abi space for args but be sure to keep stack aligned
3092     __ subptr(rsp, 6*wordSize);
3093     store_parameter(j_rarg4, 4);
3094 #ifndef PRODUCT
3095     if (PrintC1Statistics) {
3096       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3097     }
3098 #endif
3099     __ call(RuntimeAddress(copyfunc_addr));
3100     __ addptr(rsp, 6*wordSize);
3101 #else
3102     __ mov(c_rarg4, j_rarg4);
3103 #ifndef PRODUCT
3104     if (PrintC1Statistics) {
3105       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3106     }
3107 #endif
3108     __ call(RuntimeAddress(copyfunc_addr));
3109 #endif // _WIN64
3110 #else
3111     __ push(length);
3112     __ push(dst_pos);
3113     __ push(dst);
3114     __ push(src_pos);
3115     __ push(src);
3116 
3117 #ifndef PRODUCT
3118     if (PrintC1Statistics) {
3119       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3120     }
3121 #endif
3122     __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3123 
3124 #endif // _LP64
3125 
3126     __ testl(rax, rax);
3127     __ jcc(Assembler::equal, *stub->continuation());
3128 
3129     __ mov(tmp, rax);
3130     __ xorl(tmp, -1);
3131 
3132     // Reload values from the stack so they are where the stub
3133     // expects them.
3134     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3135     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3136     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3137     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3138     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3139 
3140     __ subl(length, tmp);
3141     __ addl(src_pos, tmp);
3142     __ addl(dst_pos, tmp);
3143     __ jmp(*stub->entry());
3144 
3145     __ bind(*stub->continuation());
3146     return;
3147   }
3148 
3149   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3150 
3151   int elem_size = type2aelembytes(basic_type);
3152   Address::ScaleFactor scale;
3153 
3154   switch (elem_size) {
3155     case 1 :
3156       scale = Address::times_1;
3157       break;
3158     case 2 :
3159       scale = Address::times_2;
3160       break;
3161     case 4 :
3162       scale = Address::times_4;
3163       break;
3164     case 8 :
3165       scale = Address::times_8;
3166       break;
3167     default:
3168       scale = Address::no_scale;
3169       ShouldNotReachHere();
3170   }
3171 
3172   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3173   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3174 
3175   // length and pos's are all sign extended at this point on 64bit
3176 
3177   // test for null
3178   if (flags & LIR_OpArrayCopy::src_null_check) {
3179     __ testptr(src, src);
3180     __ jcc(Assembler::zero, *stub->entry());
3181   }
3182   if (flags & LIR_OpArrayCopy::dst_null_check) {
3183     __ testptr(dst, dst);
3184     __ jcc(Assembler::zero, *stub->entry());
3185   }
3186 
3187   // If the compiler was not able to prove that exact type of the source or the destination
3188   // of the arraycopy is an array type, check at runtime if the source or the destination is
3189   // an instance type.
3190   if (flags & LIR_OpArrayCopy::type_check) {
3191     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3192       __ load_klass(tmp, dst, tmp_load_klass);
3193       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3194       __ jcc(Assembler::greaterEqual, *stub->entry());
3195     }
3196 
3197     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3198       __ load_klass(tmp, src, tmp_load_klass);
3199       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3200       __ jcc(Assembler::greaterEqual, *stub->entry());
3201     }
3202   }
3203 
3204   // check if negative
3205   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3206     __ testl(src_pos, src_pos);
3207     __ jcc(Assembler::less, *stub->entry());
3208   }
3209   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3210     __ testl(dst_pos, dst_pos);
3211     __ jcc(Assembler::less, *stub->entry());
3212   }
3213 
3214   if (flags & LIR_OpArrayCopy::src_range_check) {
3215     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3216     __ cmpl(tmp, src_length_addr);
3217     __ jcc(Assembler::above, *stub->entry());
3218   }
3219   if (flags & LIR_OpArrayCopy::dst_range_check) {
3220     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3221     __ cmpl(tmp, dst_length_addr);
3222     __ jcc(Assembler::above, *stub->entry());
3223   }
3224 
3225   if (flags & LIR_OpArrayCopy::length_positive_check) {
3226     __ testl(length, length);
3227     __ jcc(Assembler::less, *stub->entry());
3228   }
3229 
3230 #ifdef _LP64
3231   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3232   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3233 #endif
3234 
3235   if (flags & LIR_OpArrayCopy::type_check) {
3236     // We don't know the array types are compatible
3237     if (basic_type != T_OBJECT) {
3238       // Simple test for basic type arrays
3239       __ cmp_klasses_from_objects(src, dst, tmp, tmp2);
3240       __ jcc(Assembler::notEqual, *stub->entry());
3241     } else {
3242       // For object arrays, if src is a sub class of dst then we can
3243       // safely do the copy.
3244       Label cont, slow;
3245 
3246       __ push(src);
3247       __ push(dst);
3248 
3249       __ load_klass(src, src, tmp_load_klass);
3250       __ load_klass(dst, dst, tmp_load_klass);
3251 
3252       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr);
3253 
3254       __ push(src);
3255       __ push(dst);
3256       __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
3257       __ pop(dst);
3258       __ pop(src);
3259 
3260       __ testl(src, src);
3261       __ jcc(Assembler::notEqual, cont);
3262 
3263       __ bind(slow);
3264       __ pop(dst);
3265       __ pop(src);
3266 
3267       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3268       if (copyfunc_addr != nullptr) { // use stub if available
3269         // src is not a sub class of dst so we have to do a
3270         // per-element check.
3271 
3272         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3273         if ((flags & mask) != mask) {
3274           // Check that at least both of them object arrays.
3275           assert(flags & mask, "one of the two should be known to be an object array");
3276 
3277           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3278             __ load_klass(tmp, src, tmp_load_klass);
3279           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3280             __ load_klass(tmp, dst, tmp_load_klass);
3281           }
3282           int lh_offset = in_bytes(Klass::layout_helper_offset());
3283           Address klass_lh_addr(tmp, lh_offset);
3284           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3285           __ cmpl(klass_lh_addr, objArray_lh);
3286           __ jcc(Assembler::notEqual, *stub->entry());
3287         }
3288 
3289        // Spill because stubs can use any register they like and it's
3290        // easier to restore just those that we care about.
3291        store_parameter(dst, 0);
3292        store_parameter(dst_pos, 1);
3293        store_parameter(length, 2);
3294        store_parameter(src_pos, 3);
3295        store_parameter(src, 4);
3296 
3297 #ifndef _LP64
3298        Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3299         __ movptr(tmp, dst_klass_addr);
3300         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3301         __ push(tmp);
3302         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3303         __ push(tmp);
3304         __ push(length);
3305         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3306         __ push(tmp);
3307         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3308         __ push(tmp);
3309 
3310         __ call_VM_leaf(copyfunc_addr, 5);
3311 #else
3312         __ movl2ptr(length, length); //higher 32bits must be null
3313 
3314         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3315         assert_different_registers(c_rarg0, dst, dst_pos, length);
3316         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3317         assert_different_registers(c_rarg1, dst, length);
3318 
3319         __ mov(c_rarg2, length);
3320         assert_different_registers(c_rarg2, dst);
3321 
3322 #ifdef _WIN64
3323         // Allocate abi space for args but be sure to keep stack aligned
3324         __ subptr(rsp, 6*wordSize);
3325         __ load_klass(c_rarg3, dst, tmp_load_klass);
3326         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3327         store_parameter(c_rarg3, 4);
3328         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3329         __ call(RuntimeAddress(copyfunc_addr));
3330         __ addptr(rsp, 6*wordSize);
3331 #else
3332         __ load_klass(c_rarg4, dst, tmp_load_klass);
3333         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3334         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3335         __ call(RuntimeAddress(copyfunc_addr));
3336 #endif
3337 
3338 #endif
3339 
3340 #ifndef PRODUCT
3341         if (PrintC1Statistics) {
3342           Label failed;
3343           __ testl(rax, rax);
3344           __ jcc(Assembler::notZero, failed);
3345           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1);
3346           __ bind(failed);
3347         }
3348 #endif
3349 
3350         __ testl(rax, rax);
3351         __ jcc(Assembler::zero, *stub->continuation());
3352 
3353 #ifndef PRODUCT
3354         if (PrintC1Statistics) {
3355           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1);
3356         }
3357 #endif
3358 
3359         __ mov(tmp, rax);
3360 
3361         __ xorl(tmp, -1);
3362 
3363         // Restore previously spilled arguments
3364         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3365         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3366         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3367         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3368         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3369 
3370 
3371         __ subl(length, tmp);
3372         __ addl(src_pos, tmp);
3373         __ addl(dst_pos, tmp);
3374       }
3375 
3376       __ jmp(*stub->entry());
3377 
3378       __ bind(cont);
3379       __ pop(dst);
3380       __ pop(src);
3381     }
3382   }
3383 
3384 #ifdef ASSERT
3385   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3386     // Sanity check the known type with the incoming class.  For the
3387     // primitive case the types must match exactly with src.klass and
3388     // dst.klass each exactly matching the default type.  For the
3389     // object array case, if no type check is needed then either the
3390     // dst type is exactly the expected type and the src type is a
3391     // subtype which we can't check or src is the same array as dst
3392     // but not necessarily exactly of type default_type.
3393     Label known_ok, halt;
3394     __ mov_metadata(tmp, default_type->constant_encoding());
3395 #ifdef _LP64
3396     if (UseCompressedClassPointers) {
3397       __ encode_klass_not_null(tmp, rscratch1);
3398     }
3399 #endif
3400 
3401     if (basic_type != T_OBJECT) {
3402       __ cmp_klass(tmp, dst, tmp2);
3403       __ jcc(Assembler::notEqual, halt);
3404       __ cmp_klass(tmp, src, tmp2);
3405       __ jcc(Assembler::equal, known_ok);
3406     } else {
3407       __ cmp_klass(tmp, dst, tmp2);
3408       __ jcc(Assembler::equal, known_ok);
3409       __ cmpptr(src, dst);
3410       __ jcc(Assembler::equal, known_ok);
3411     }
3412     __ bind(halt);
3413     __ stop("incorrect type information in arraycopy");
3414     __ bind(known_ok);
3415   }
3416 #endif
3417 
3418 #ifndef PRODUCT
3419   if (PrintC1Statistics) {
3420     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1);
3421   }
3422 #endif
3423 
3424 #ifdef _LP64
3425   assert_different_registers(c_rarg0, dst, dst_pos, length);
3426   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3427   assert_different_registers(c_rarg1, length);
3428   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3429   __ mov(c_rarg2, length);
3430 
3431 #else
3432   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3433   store_parameter(tmp, 0);
3434   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3435   store_parameter(tmp, 1);
3436   store_parameter(length, 2);
3437 #endif // _LP64
3438 
3439   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3440   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3441   const char *name;
3442   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3443   __ call_VM_leaf(entry, 0);
3444 
3445   if (stub != nullptr) {
3446     __ bind(*stub->continuation());
3447   }
3448 }
3449 
3450 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3451   assert(op->crc()->is_single_cpu(),  "crc must be register");
3452   assert(op->val()->is_single_cpu(),  "byte value must be register");
3453   assert(op->result_opr()->is_single_cpu(), "result must be register");
3454   Register crc = op->crc()->as_register();
3455   Register val = op->val()->as_register();
3456   Register res = op->result_opr()->as_register();
3457 
3458   assert_different_registers(val, crc, res);
3459 
3460   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3461   __ notl(crc); // ~crc
3462   __ update_byte_crc32(crc, val, res);
3463   __ notl(crc); // ~crc
3464   __ mov(res, crc);
3465 }
3466 
3467 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3468   Register obj = op->obj_opr()->as_register();  // may not be an oop
3469   Register hdr = op->hdr_opr()->as_register();
3470   Register lock = op->lock_opr()->as_register();
3471   if (LockingMode == LM_MONITOR) {
3472     if (op->info() != nullptr) {
3473       add_debug_info_for_null_check_here(op->info());
3474       __ null_check(obj);
3475     }
3476     __ jmp(*op->stub()->entry());
3477   } else if (op->code() == lir_lock) {
3478     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3479     Register tmp = LockingMode == LM_LIGHTWEIGHT ? op->scratch_opr()->as_register() : noreg;
3480     // add debug info for NullPointerException only if one is possible
3481     int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry());
3482     if (op->info() != nullptr) {
3483       add_debug_info_for_null_check(null_check_offset, op->info());
3484     }
3485     // done
3486   } else if (op->code() == lir_unlock) {
3487     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3488     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3489   } else {
3490     Unimplemented();
3491   }
3492   __ bind(*op->stub()->continuation());
3493 }
3494 
3495 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
3496   Register obj = op->obj()->as_pointer_register();
3497   Register result = op->result_opr()->as_pointer_register();
3498 
3499   CodeEmitInfo* info = op->info();
3500   if (info != nullptr) {
3501     add_debug_info_for_null_check_here(info);
3502   }
3503 
3504   __ load_klass(result, obj, rscratch1);
3505 }
3506 
3507 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3508   ciMethod* method = op->profiled_method();
3509   int bci          = op->profiled_bci();
3510   ciMethod* callee = op->profiled_callee();
3511   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3512 
3513   // Update counter for all call types
3514   ciMethodData* md = method->method_data_or_null();
3515   assert(md != nullptr, "Sanity");
3516   ciProfileData* data = md->bci_to_data(bci);
3517   assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
3518   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3519   Register mdo  = op->mdo()->as_register();
3520   __ mov_metadata(mdo, md->constant_encoding());
3521   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3522   // Perform additional virtual call profiling for invokevirtual and
3523   // invokeinterface bytecodes
3524   if (op->should_profile_receiver_type()) {
3525     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3526     Register recv = op->recv()->as_register();
3527     assert_different_registers(mdo, recv);
3528     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3529     ciKlass* known_klass = op->known_holder();
3530     if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
3531       // We know the type that will be seen at this call site; we can
3532       // statically update the MethodData* rather than needing to do
3533       // dynamic tests on the receiver type
3534 
3535       // NOTE: we should probably put a lock around this search to
3536       // avoid collisions by concurrent compilations
3537       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3538       uint i;
3539       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3540         ciKlass* receiver = vc_data->receiver(i);
3541         if (known_klass->equals(receiver)) {
3542           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3543           __ addptr(data_addr, DataLayout::counter_increment);
3544           return;
3545         }
3546       }
3547 
3548       // Receiver type not found in profile data; select an empty slot
3549 
3550       // Note that this is less efficient than it should be because it
3551       // always does a write to the receiver part of the
3552       // VirtualCallData rather than just the first time
3553       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3554         ciKlass* receiver = vc_data->receiver(i);
3555         if (receiver == nullptr) {
3556           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3557           __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1);
3558           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3559           __ addptr(data_addr, DataLayout::counter_increment);
3560           return;
3561         }
3562       }
3563     } else {
3564       __ load_klass(recv, recv, tmp_load_klass);
3565       Label update_done;
3566       type_profile_helper(mdo, md, data, recv, &update_done);
3567       // Receiver did not match any saved receiver and there is no empty row for it.
3568       // Increment total counter to indicate polymorphic case.
3569       __ addptr(counter_addr, DataLayout::counter_increment);
3570 
3571       __ bind(update_done);
3572     }
3573   } else {
3574     // Static call
3575     __ addptr(counter_addr, DataLayout::counter_increment);
3576   }
3577 }
3578 
3579 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3580   Register obj = op->obj()->as_register();
3581   Register tmp = op->tmp()->as_pointer_register();
3582   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3583   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3584   ciKlass* exact_klass = op->exact_klass();
3585   intptr_t current_klass = op->current_klass();
3586   bool not_null = op->not_null();
3587   bool no_conflict = op->no_conflict();
3588 
3589   Label update, next, none;
3590 
3591   bool do_null = !not_null;
3592   bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3593   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3594 
3595   assert(do_null || do_update, "why are we here?");
3596   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3597 
3598   __ verify_oop(obj);
3599 
3600 #ifdef ASSERT
3601   if (obj == tmp) {
3602 #ifdef _LP64
3603     assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
3604 #else
3605     assert_different_registers(obj, mdo_addr.base(), mdo_addr.index());
3606 #endif
3607   } else {
3608 #ifdef _LP64
3609     assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index());
3610 #else
3611     assert_different_registers(obj, tmp, mdo_addr.base(), mdo_addr.index());
3612 #endif
3613   }
3614 #endif
3615   if (do_null) {
3616     __ testptr(obj, obj);
3617     __ jccb(Assembler::notZero, update);
3618     if (!TypeEntries::was_null_seen(current_klass)) {
3619       __ testptr(mdo_addr, TypeEntries::null_seen);
3620 #ifndef ASSERT
3621       __ jccb(Assembler::notZero, next); // already set
3622 #else
3623       __ jcc(Assembler::notZero, next); // already set
3624 #endif
3625       // atomic update to prevent overwriting Klass* with 0
3626       __ lock();
3627       __ orptr(mdo_addr, TypeEntries::null_seen);
3628     }
3629     if (do_update) {
3630 #ifndef ASSERT
3631       __ jmpb(next);
3632     }
3633 #else
3634       __ jmp(next);
3635     }
3636   } else {
3637     __ testptr(obj, obj);
3638     __ jcc(Assembler::notZero, update);
3639     __ stop("unexpected null obj");
3640 #endif
3641   }
3642 
3643   __ bind(update);
3644 
3645   if (do_update) {
3646 #ifdef ASSERT
3647     if (exact_klass != nullptr) {
3648       Label ok;
3649       __ load_klass(tmp, obj, tmp_load_klass);
3650       __ push(tmp);
3651       __ mov_metadata(tmp, exact_klass->constant_encoding());
3652       __ cmpptr(tmp, Address(rsp, 0));
3653       __ jcc(Assembler::equal, ok);
3654       __ stop("exact klass and actual klass differ");
3655       __ bind(ok);
3656       __ pop(tmp);
3657     }
3658 #endif
3659     if (!no_conflict) {
3660       if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
3661         if (exact_klass != nullptr) {
3662           __ mov_metadata(tmp, exact_klass->constant_encoding());
3663         } else {
3664           __ load_klass(tmp, obj, tmp_load_klass);
3665         }
3666 #ifdef _LP64
3667         __ mov(rscratch1, tmp); // save original value before XOR
3668 #endif
3669         __ xorptr(tmp, mdo_addr);
3670         __ testptr(tmp, TypeEntries::type_klass_mask);
3671         // klass seen before, nothing to do. The unknown bit may have been
3672         // set already but no need to check.
3673         __ jccb(Assembler::zero, next);
3674 
3675         __ testptr(tmp, TypeEntries::type_unknown);
3676         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3677 
3678         if (TypeEntries::is_type_none(current_klass)) {
3679           __ testptr(mdo_addr, TypeEntries::type_mask);
3680           __ jccb(Assembler::zero, none);
3681 #ifdef _LP64
3682           // There is a chance that the checks above (re-reading profiling
3683           // data from memory) fail if another thread has just set the
3684           // profiling to this obj's klass
3685           __ mov(tmp, rscratch1); // get back original value before XOR
3686           __ xorptr(tmp, mdo_addr);
3687           __ testptr(tmp, TypeEntries::type_klass_mask);
3688           __ jccb(Assembler::zero, next);
3689 #endif
3690         }
3691       } else {
3692         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3693                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3694 
3695         __ testptr(mdo_addr, TypeEntries::type_unknown);
3696         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3697       }
3698 
3699       // different than before. Cannot keep accurate profile.
3700       __ orptr(mdo_addr, TypeEntries::type_unknown);
3701 
3702       if (TypeEntries::is_type_none(current_klass)) {
3703         __ jmpb(next);
3704 
3705         __ bind(none);
3706         // first time here. Set profile type.
3707         __ movptr(mdo_addr, tmp);
3708 #ifdef ASSERT
3709         __ andptr(tmp, TypeEntries::type_klass_mask);
3710         __ verify_klass_ptr(tmp);
3711 #endif
3712       }
3713     } else {
3714       // There's a single possible klass at this profile point
3715       assert(exact_klass != nullptr, "should be");
3716       if (TypeEntries::is_type_none(current_klass)) {
3717         __ mov_metadata(tmp, exact_klass->constant_encoding());
3718         __ xorptr(tmp, mdo_addr);
3719         __ testptr(tmp, TypeEntries::type_klass_mask);
3720 #ifdef ASSERT
3721         __ jcc(Assembler::zero, next);
3722 
3723         {
3724           Label ok;
3725           __ push(tmp);
3726           __ testptr(mdo_addr, TypeEntries::type_mask);
3727           __ jcc(Assembler::zero, ok);
3728           // may have been set by another thread
3729           __ mov_metadata(tmp, exact_klass->constant_encoding());
3730           __ xorptr(tmp, mdo_addr);
3731           __ testptr(tmp, TypeEntries::type_mask);
3732           __ jcc(Assembler::zero, ok);
3733 
3734           __ stop("unexpected profiling mismatch");
3735           __ bind(ok);
3736           __ pop(tmp);
3737         }
3738 #else
3739         __ jccb(Assembler::zero, next);
3740 #endif
3741         // first time here. Set profile type.
3742         __ movptr(mdo_addr, tmp);
3743 #ifdef ASSERT
3744         __ andptr(tmp, TypeEntries::type_klass_mask);
3745         __ verify_klass_ptr(tmp);
3746 #endif
3747       } else {
3748         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3749                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3750 
3751         __ testptr(mdo_addr, TypeEntries::type_unknown);
3752         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3753 
3754         __ orptr(mdo_addr, TypeEntries::type_unknown);
3755       }
3756     }
3757   }
3758   __ bind(next);
3759 }
3760 
3761 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3762   Unimplemented();
3763 }
3764 
3765 
3766 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3767   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3768 }
3769 
3770 
3771 void LIR_Assembler::align_backward_branch_target() {
3772   __ align(BytesPerWord);
3773 }
3774 
3775 
3776 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3777   if (left->is_single_cpu()) {
3778     __ negl(left->as_register());
3779     move_regs(left->as_register(), dest->as_register());
3780 
3781   } else if (left->is_double_cpu()) {
3782     Register lo = left->as_register_lo();
3783 #ifdef _LP64
3784     Register dst = dest->as_register_lo();
3785     __ movptr(dst, lo);
3786     __ negptr(dst);
3787 #else
3788     Register hi = left->as_register_hi();
3789     __ lneg(hi, lo);
3790     if (dest->as_register_lo() == hi) {
3791       assert(dest->as_register_hi() != lo, "destroying register");
3792       move_regs(hi, dest->as_register_hi());
3793       move_regs(lo, dest->as_register_lo());
3794     } else {
3795       move_regs(lo, dest->as_register_lo());
3796       move_regs(hi, dest->as_register_hi());
3797     }
3798 #endif // _LP64
3799 
3800   } else if (dest->is_single_xmm()) {
3801 #ifdef _LP64
3802     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3803       assert(tmp->is_valid(), "need temporary");
3804       assert_different_registers(left->as_xmm_float_reg(), tmp->as_xmm_float_reg());
3805       __ vpxor(dest->as_xmm_float_reg(), tmp->as_xmm_float_reg(), left->as_xmm_float_reg(), 2);
3806     }
3807     else
3808 #endif
3809     {
3810       assert(!tmp->is_valid(), "do not need temporary");
3811       if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3812         __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3813       }
3814       __ xorps(dest->as_xmm_float_reg(),
3815                ExternalAddress((address)float_signflip_pool),
3816                rscratch1);
3817     }
3818   } else if (dest->is_double_xmm()) {
3819 #ifdef _LP64
3820     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3821       assert(tmp->is_valid(), "need temporary");
3822       assert_different_registers(left->as_xmm_double_reg(), tmp->as_xmm_double_reg());
3823       __ vpxor(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), left->as_xmm_double_reg(), 2);
3824     }
3825     else
3826 #endif
3827     {
3828       assert(!tmp->is_valid(), "do not need temporary");
3829       if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3830         __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3831       }
3832       __ xorpd(dest->as_xmm_double_reg(),
3833                ExternalAddress((address)double_signflip_pool),
3834                rscratch1);
3835     }
3836 #ifndef _LP64
3837   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3838     assert(left->fpu() == 0, "arg must be on TOS");
3839     assert(dest->fpu() == 0, "dest must be TOS");
3840     __ fchs();
3841 #endif // !_LP64
3842 
3843   } else {
3844     ShouldNotReachHere();
3845   }
3846 }
3847 
3848 
3849 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3850   assert(src->is_address(), "must be an address");
3851   assert(dest->is_register(), "must be a register");
3852 
3853   PatchingStub* patch = nullptr;
3854   if (patch_code != lir_patch_none) {
3855     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3856   }
3857 
3858   Register reg = dest->as_pointer_register();
3859   LIR_Address* addr = src->as_address_ptr();
3860   __ lea(reg, as_Address(addr));
3861 
3862   if (patch != nullptr) {
3863     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
3864   }
3865 }
3866 
3867 
3868 
3869 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3870   assert(!tmp->is_valid(), "don't need temporary");
3871   __ call(RuntimeAddress(dest));
3872   if (info != nullptr) {
3873     add_call_info_here(info);
3874   }
3875   __ post_call_nop();
3876 }
3877 
3878 
3879 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3880   assert(type == T_LONG, "only for volatile long fields");
3881 
3882   if (info != nullptr) {
3883     add_debug_info_for_null_check_here(info);
3884   }
3885 
3886   if (src->is_double_xmm()) {
3887     if (dest->is_double_cpu()) {
3888 #ifdef _LP64
3889       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3890 #else
3891       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3892       __ psrlq(src->as_xmm_double_reg(), 32);
3893       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3894 #endif // _LP64
3895     } else if (dest->is_double_stack()) {
3896       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3897     } else if (dest->is_address()) {
3898       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3899     } else {
3900       ShouldNotReachHere();
3901     }
3902 
3903   } else if (dest->is_double_xmm()) {
3904     if (src->is_double_stack()) {
3905       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3906     } else if (src->is_address()) {
3907       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3908     } else {
3909       ShouldNotReachHere();
3910     }
3911 
3912 #ifndef _LP64
3913   } else if (src->is_double_fpu()) {
3914     assert(src->fpu_regnrLo() == 0, "must be TOS");
3915     if (dest->is_double_stack()) {
3916       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3917     } else if (dest->is_address()) {
3918       __ fistp_d(as_Address(dest->as_address_ptr()));
3919     } else {
3920       ShouldNotReachHere();
3921     }
3922 
3923   } else if (dest->is_double_fpu()) {
3924     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3925     if (src->is_double_stack()) {
3926       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3927     } else if (src->is_address()) {
3928       __ fild_d(as_Address(src->as_address_ptr()));
3929     } else {
3930       ShouldNotReachHere();
3931     }
3932 #endif // !_LP64
3933 
3934   } else {
3935     ShouldNotReachHere();
3936   }
3937 }
3938 
3939 #ifdef ASSERT
3940 // emit run-time assertion
3941 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3942   assert(op->code() == lir_assert, "must be");
3943 
3944   if (op->in_opr1()->is_valid()) {
3945     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3946     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3947   } else {
3948     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3949     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3950   }
3951 
3952   Label ok;
3953   if (op->condition() != lir_cond_always) {
3954     Assembler::Condition acond = Assembler::zero;
3955     switch (op->condition()) {
3956       case lir_cond_equal:        acond = Assembler::equal;       break;
3957       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3958       case lir_cond_less:         acond = Assembler::less;        break;
3959       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3960       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3961       case lir_cond_greater:      acond = Assembler::greater;     break;
3962       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3963       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3964       default:                    ShouldNotReachHere();
3965     }
3966     __ jcc(acond, ok);
3967   }
3968   if (op->halt()) {
3969     const char* str = __ code_string(op->msg());
3970     __ stop(str);
3971   } else {
3972     breakpoint();
3973   }
3974   __ bind(ok);
3975 }
3976 #endif
3977 
3978 void LIR_Assembler::membar() {
3979   // QQQ sparc TSO uses this,
3980   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3981 }
3982 
3983 void LIR_Assembler::membar_acquire() {
3984   // No x86 machines currently require load fences
3985 }
3986 
3987 void LIR_Assembler::membar_release() {
3988   // No x86 machines currently require store fences
3989 }
3990 
3991 void LIR_Assembler::membar_loadload() {
3992   // no-op
3993   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3994 }
3995 
3996 void LIR_Assembler::membar_storestore() {
3997   // no-op
3998   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3999 }
4000 
4001 void LIR_Assembler::membar_loadstore() {
4002   // no-op
4003   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
4004 }
4005 
4006 void LIR_Assembler::membar_storeload() {
4007   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4008 }
4009 
4010 void LIR_Assembler::on_spin_wait() {
4011   __ pause ();
4012 }
4013 
4014 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
4015   assert(result_reg->is_register(), "check");
4016 #ifdef _LP64
4017   // __ get_thread(result_reg->as_register_lo());
4018   __ mov(result_reg->as_register(), r15_thread);
4019 #else
4020   __ get_thread(result_reg->as_register());
4021 #endif // _LP64
4022 }
4023 
4024 
4025 void LIR_Assembler::peephole(LIR_List*) {
4026   // do nothing for now
4027 }
4028 
4029 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
4030   assert(data == dest, "xchg/xadd uses only 2 operands");
4031 
4032   if (data->type() == T_INT) {
4033     if (code == lir_xadd) {
4034       __ lock();
4035       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
4036     } else {
4037       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4038     }
4039   } else if (data->is_oop()) {
4040     assert (code == lir_xchg, "xadd for oops");
4041     Register obj = data->as_register();
4042 #ifdef _LP64
4043     if (UseCompressedOops) {
4044       __ encode_heap_oop(obj);
4045       __ xchgl(obj, as_Address(src->as_address_ptr()));
4046       __ decode_heap_oop(obj);
4047     } else {
4048       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4049     }
4050 #else
4051     __ xchgl(obj, as_Address(src->as_address_ptr()));
4052 #endif
4053   } else if (data->type() == T_LONG) {
4054 #ifdef _LP64
4055     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4056     if (code == lir_xadd) {
4057       __ lock();
4058       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4059     } else {
4060       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4061     }
4062 #else
4063     ShouldNotReachHere();
4064 #endif
4065   } else {
4066     ShouldNotReachHere();
4067   }
4068 }
4069 
4070 #undef __