1 /*
   2  * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/collectedHeap.hpp"
  37 #include "gc/shared/gc_globals.hpp"
  38 #include "nativeInst_x86.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/safepointMechanism.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "utilities/powerOfTwo.hpp"
  45 #include "vmreg_x86.inline.hpp"
  46 
  47 
  48 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  49 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  50 // fast versions of NegF/NegD and AbsF/AbsD.
  51 
  52 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  53 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  54   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  55   // of 128-bits operands for SSE instructions.
  56   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  57   // Store the value to a 128-bits operand.
  58   operand[0] = lo;
  59   operand[1] = hi;
  60   return operand;
  61 }
  62 
  63 // Buffer for 128-bits masks used by SSE instructions.
  64 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  65 
  66 // Static initialization during VM startup.
  67 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  68 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  69 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  70 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  71 
  72 
  73 NEEDS_CLEANUP // remove this definitions ?
  74 const Register SYNC_header = rax;   // synchronization header
  75 const Register SHIFT_count = rcx;   // where count for shift operations must be
  76 
  77 #define __ _masm->
  78 
  79 
  80 static void select_different_registers(Register preserve,
  81                                        Register extra,
  82                                        Register &tmp1,
  83                                        Register &tmp2) {
  84   if (tmp1 == preserve) {
  85     assert_different_registers(tmp1, tmp2, extra);
  86     tmp1 = extra;
  87   } else if (tmp2 == preserve) {
  88     assert_different_registers(tmp1, tmp2, extra);
  89     tmp2 = extra;
  90   }
  91   assert_different_registers(preserve, tmp1, tmp2);
  92 }
  93 
  94 
  95 
  96 static void select_different_registers(Register preserve,
  97                                        Register extra,
  98                                        Register &tmp1,
  99                                        Register &tmp2,
 100                                        Register &tmp3) {
 101   if (tmp1 == preserve) {
 102     assert_different_registers(tmp1, tmp2, tmp3, extra);
 103     tmp1 = extra;
 104   } else if (tmp2 == preserve) {
 105     assert_different_registers(tmp1, tmp2, tmp3, extra);
 106     tmp2 = extra;
 107   } else if (tmp3 == preserve) {
 108     assert_different_registers(tmp1, tmp2, tmp3, extra);
 109     tmp3 = extra;
 110   }
 111   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 112 }
 113 
 114 
 115 
 116 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 117   if (opr->is_constant()) {
 118     LIR_Const* constant = opr->as_constant_ptr();
 119     switch (constant->type()) {
 120       case T_INT: {
 121         return true;
 122       }
 123 
 124       default:
 125         return false;
 126     }
 127   }
 128   return false;
 129 }
 130 
 131 
 132 LIR_Opr LIR_Assembler::receiverOpr() {
 133   return FrameMap::receiver_opr;
 134 }
 135 
 136 LIR_Opr LIR_Assembler::osrBufferPointer() {
 137   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 138 }
 139 
 140 //--------------fpu register translations-----------------------
 141 
 142 
 143 address LIR_Assembler::float_constant(float f) {
 144   address const_addr = __ float_constant(f);
 145   if (const_addr == nullptr) {
 146     bailout("const section overflow");
 147     return __ code()->consts()->start();
 148   } else {
 149     return const_addr;
 150   }
 151 }
 152 
 153 
 154 address LIR_Assembler::double_constant(double d) {
 155   address const_addr = __ double_constant(d);
 156   if (const_addr == nullptr) {
 157     bailout("const section overflow");
 158     return __ code()->consts()->start();
 159   } else {
 160     return const_addr;
 161   }
 162 }
 163 
 164 #ifndef _LP64
 165 void LIR_Assembler::fpop() {
 166   __ fpop();
 167 }
 168 
 169 void LIR_Assembler::fxch(int i) {
 170   __ fxch(i);
 171 }
 172 
 173 void LIR_Assembler::fld(int i) {
 174   __ fld_s(i);
 175 }
 176 
 177 void LIR_Assembler::ffree(int i) {
 178   __ ffree(i);
 179 }
 180 #endif // !_LP64
 181 
 182 void LIR_Assembler::breakpoint() {
 183   __ int3();
 184 }
 185 
 186 void LIR_Assembler::push(LIR_Opr opr) {
 187   if (opr->is_single_cpu()) {
 188     __ push_reg(opr->as_register());
 189   } else if (opr->is_double_cpu()) {
 190     NOT_LP64(__ push_reg(opr->as_register_hi()));
 191     __ push_reg(opr->as_register_lo());
 192   } else if (opr->is_stack()) {
 193     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 194   } else if (opr->is_constant()) {
 195     LIR_Const* const_opr = opr->as_constant_ptr();
 196     if (const_opr->type() == T_OBJECT) {
 197       __ push_oop(const_opr->as_jobject(), rscratch1);
 198     } else if (const_opr->type() == T_INT) {
 199       __ push_jint(const_opr->as_jint());
 200     } else {
 201       ShouldNotReachHere();
 202     }
 203 
 204   } else {
 205     ShouldNotReachHere();
 206   }
 207 }
 208 
 209 void LIR_Assembler::pop(LIR_Opr opr) {
 210   if (opr->is_single_cpu()) {
 211     __ pop_reg(opr->as_register());
 212   } else {
 213     ShouldNotReachHere();
 214   }
 215 }
 216 
 217 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 218   return addr->base()->is_illegal() && addr->index()->is_illegal();
 219 }
 220 
 221 //-------------------------------------------
 222 
 223 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 224   return as_Address(addr, rscratch1);
 225 }
 226 
 227 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 228   if (addr->base()->is_illegal()) {
 229     assert(addr->index()->is_illegal(), "must be illegal too");
 230     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 231     if (! __ reachable(laddr)) {
 232       __ movptr(tmp, laddr.addr());
 233       Address res(tmp, 0);
 234       return res;
 235     } else {
 236       return __ as_Address(laddr);
 237     }
 238   }
 239 
 240   Register base = addr->base()->as_pointer_register();
 241 
 242   if (addr->index()->is_illegal()) {
 243     return Address( base, addr->disp());
 244   } else if (addr->index()->is_cpu_register()) {
 245     Register index = addr->index()->as_pointer_register();
 246     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 247   } else if (addr->index()->is_constant()) {
 248     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 249     assert(Assembler::is_simm32(addr_offset), "must be");
 250 
 251     return Address(base, addr_offset);
 252   } else {
 253     Unimplemented();
 254     return Address();
 255   }
 256 }
 257 
 258 
 259 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 260   Address base = as_Address(addr);
 261   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 262 }
 263 
 264 
 265 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 266   return as_Address(addr);
 267 }
 268 
 269 
 270 void LIR_Assembler::osr_entry() {
 271   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 272   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 273   ValueStack* entry_state = osr_entry->state();
 274   int number_of_locks = entry_state->locks_size();
 275 
 276   // we jump here if osr happens with the interpreter
 277   // state set up to continue at the beginning of the
 278   // loop that triggered osr - in particular, we have
 279   // the following registers setup:
 280   //
 281   // rcx: osr buffer
 282   //
 283 
 284   // build frame
 285   ciMethod* m = compilation()->method();
 286   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 287 
 288   // OSR buffer is
 289   //
 290   // locals[nlocals-1..0]
 291   // monitors[0..number_of_locks]
 292   //
 293   // locals is a direct copy of the interpreter frame so in the osr buffer
 294   // so first slot in the local array is the last local from the interpreter
 295   // and last slot is local[0] (receiver) from the interpreter
 296   //
 297   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 298   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 299   // in the interpreter frame (the method lock if a sync method)
 300 
 301   // Initialize monitors in the compiled activation.
 302   //   rcx: pointer to osr buffer
 303   //
 304   // All other registers are dead at this point and the locals will be
 305   // copied into place by code emitted in the IR.
 306 
 307   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 308   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 309     int monitor_offset = BytesPerWord * method()->max_locals() +
 310       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 311     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 312     // the OSR buffer using 2 word entries: first the lock and then
 313     // the oop.
 314     for (int i = 0; i < number_of_locks; i++) {
 315       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 316 #ifdef ASSERT
 317       // verify the interpreter's monitor has a non-null object
 318       {
 319         Label L;
 320         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD);
 321         __ jcc(Assembler::notZero, L);
 322         __ stop("locked object is null");
 323         __ bind(L);
 324       }
 325 #endif
 326       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 327       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 328       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 329       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 330     }
 331   }
 332 }
 333 
 334 
 335 // inline cache check; done before the frame is built.
 336 int LIR_Assembler::check_icache() {
 337   return __ ic_check(CodeEntryAlignment);
 338 }
 339 
 340 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 341   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 342   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
 343 
 344   Label L_skip_barrier;
 345   Register klass = rscratch1;
 346   Register thread = LP64_ONLY( r15_thread ) NOT_LP64( noreg );
 347   assert(thread != noreg, "x86_32 not implemented");
 348 
 349   __ mov_metadata(klass, method->holder()->constant_encoding());
 350   __ clinit_barrier(klass, thread, &L_skip_barrier /*L_fast_path*/);
 351 
 352   __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 353 
 354   __ bind(L_skip_barrier);
 355 }
 356 
 357 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 358   jobject o = nullptr;
 359   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 360   __ movoop(reg, o);
 361   patching_epilog(patch, lir_patch_normal, reg, info);
 362 }
 363 
 364 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 365   Metadata* o = nullptr;
 366   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 367   __ mov_metadata(reg, o);
 368   patching_epilog(patch, lir_patch_normal, reg, info);
 369 }
 370 
 371 // This specifies the rsp decrement needed to build the frame
 372 int LIR_Assembler::initial_frame_size_in_bytes() const {
 373   // if rounding, must let FrameMap know!
 374 
 375   // The frame_map records size in slots (32bit word)
 376 
 377   // subtract two words to account for return address and link
 378   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 379 }
 380 
 381 
 382 int LIR_Assembler::emit_exception_handler() {
 383   // generate code for exception handler
 384   address handler_base = __ start_a_stub(exception_handler_size());
 385   if (handler_base == nullptr) {
 386     // not enough space left for the handler
 387     bailout("exception handler overflow");
 388     return -1;
 389   }
 390 
 391   int offset = code_offset();
 392 
 393   // the exception oop and pc are in rax, and rdx
 394   // no other registers need to be preserved, so invalidate them
 395   __ invalidate_registers(false, true, true, false, true, true);
 396 
 397   // check that there is really an exception
 398   __ verify_not_null_oop(rax);
 399 
 400   // search an exception handler (rax: exception oop, rdx: throwing pc)
 401   __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id)));
 402   __ should_not_reach_here();
 403   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 404   __ end_a_stub();
 405 
 406   return offset;
 407 }
 408 
 409 
 410 // Emit the code to remove the frame from the stack in the exception
 411 // unwind path.
 412 int LIR_Assembler::emit_unwind_handler() {
 413 #ifndef PRODUCT
 414   if (CommentedAssembly) {
 415     _masm->block_comment("Unwind handler");
 416   }
 417 #endif
 418 
 419   int offset = code_offset();
 420 
 421   // Fetch the exception from TLS and clear out exception related thread state
 422   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 423   NOT_LP64(__ get_thread(thread));
 424   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 425   __ movptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD);
 426   __ movptr(Address(thread, JavaThread::exception_pc_offset()), NULL_WORD);
 427 
 428   __ bind(_unwind_handler_entry);
 429   __ verify_not_null_oop(rax);
 430   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 431     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 432   }
 433 
 434   // Perform needed unlocking
 435   MonitorExitStub* stub = nullptr;
 436   if (method()->is_synchronized()) {
 437     monitor_address(0, FrameMap::rax_opr);
 438     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 439     if (LockingMode == LM_MONITOR) {
 440       __ jmp(*stub->entry());
 441     } else {
 442       __ unlock_object(rdi, rsi, rax, *stub->entry());
 443     }
 444     __ bind(*stub->continuation());
 445   }
 446 
 447   if (compilation()->env()->dtrace_method_probes()) {
 448 #ifdef _LP64
 449     __ mov(rdi, r15_thread);
 450     __ mov_metadata(rsi, method()->constant_encoding());
 451 #else
 452     __ get_thread(rax);
 453     __ movptr(Address(rsp, 0), rax);
 454     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding(), noreg);
 455 #endif
 456     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 457   }
 458 
 459   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 460     __ mov(rax, rbx);  // Restore the exception
 461   }
 462 
 463   // remove the activation and dispatch to the unwind handler
 464   __ remove_frame(initial_frame_size_in_bytes());
 465   __ jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id)));
 466 
 467   // Emit the slow path assembly
 468   if (stub != nullptr) {
 469     stub->emit_code(this);
 470   }
 471 
 472   return offset;
 473 }
 474 
 475 
 476 int LIR_Assembler::emit_deopt_handler() {
 477   // generate code for exception handler
 478   address handler_base = __ start_a_stub(deopt_handler_size());
 479   if (handler_base == nullptr) {
 480     // not enough space left for the handler
 481     bailout("deopt handler overflow");
 482     return -1;
 483   }
 484 
 485   int offset = code_offset();
 486   InternalAddress here(__ pc());
 487 
 488   __ pushptr(here.addr(), rscratch1);
 489   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 490   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 491   __ end_a_stub();
 492 
 493   return offset;
 494 }
 495 
 496 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 497   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 498   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 499     assert(result->fpu() == 0, "result must already be on TOS");
 500   }
 501 
 502   // Pop the stack before the safepoint code
 503   __ remove_frame(initial_frame_size_in_bytes());
 504 
 505   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 506     __ reserved_stack_check();
 507   }
 508 
 509   // Note: we do not need to round double result; float result has the right precision
 510   // the poll sets the condition code, but no data registers
 511 
 512 #ifdef _LP64
 513   const Register thread = r15_thread;
 514 #else
 515   const Register thread = rbx;
 516   __ get_thread(thread);
 517 #endif
 518   code_stub->set_safepoint_offset(__ offset());
 519   __ relocate(relocInfo::poll_return_type);
 520   __ safepoint_poll(*code_stub->entry(), thread, true /* at_return */, true /* in_nmethod */);
 521   __ ret(0);
 522 }
 523 
 524 
 525 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 526   guarantee(info != nullptr, "Shouldn't be null");
 527   int offset = __ offset();
 528 #ifdef _LP64
 529   const Register poll_addr = rscratch1;
 530   __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset()));
 531 #else
 532   assert(tmp->is_cpu_register(), "needed");
 533   const Register poll_addr = tmp->as_register();
 534   __ get_thread(poll_addr);
 535   __ movptr(poll_addr, Address(poll_addr, in_bytes(JavaThread::polling_page_offset())));
 536 #endif
 537   add_debug_info_for_branch(info);
 538   __ relocate(relocInfo::poll_type);
 539   address pre_pc = __ pc();
 540   __ testl(rax, Address(poll_addr, 0));
 541   address post_pc = __ pc();
 542   guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 543   return offset;
 544 }
 545 
 546 
 547 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 548   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 549 }
 550 
 551 void LIR_Assembler::swap_reg(Register a, Register b) {
 552   __ xchgptr(a, b);
 553 }
 554 
 555 
 556 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 557   assert(src->is_constant(), "should not call otherwise");
 558   assert(dest->is_register(), "should not call otherwise");
 559   LIR_Const* c = src->as_constant_ptr();
 560 
 561   switch (c->type()) {
 562     case T_INT: {
 563       assert(patch_code == lir_patch_none, "no patching handled here");
 564       __ movl(dest->as_register(), c->as_jint());
 565       break;
 566     }
 567 
 568     case T_ADDRESS: {
 569       assert(patch_code == lir_patch_none, "no patching handled here");
 570       __ movptr(dest->as_register(), c->as_jint());
 571       break;
 572     }
 573 
 574     case T_LONG: {
 575       assert(patch_code == lir_patch_none, "no patching handled here");
 576 #ifdef _LP64
 577       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 578 #else
 579       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 580       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 581 #endif // _LP64
 582       break;
 583     }
 584 
 585     case T_OBJECT: {
 586       if (patch_code != lir_patch_none) {
 587         jobject2reg_with_patching(dest->as_register(), info);
 588       } else {
 589         __ movoop(dest->as_register(), c->as_jobject());
 590       }
 591       break;
 592     }
 593 
 594     case T_METADATA: {
 595       if (patch_code != lir_patch_none) {
 596         klass2reg_with_patching(dest->as_register(), info);
 597       } else {
 598         __ mov_metadata(dest->as_register(), c->as_metadata());
 599       }
 600       break;
 601     }
 602 
 603     case T_FLOAT: {
 604       if (dest->is_single_xmm()) {
 605         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) {
 606           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 607         } else {
 608           __ movflt(dest->as_xmm_float_reg(),
 609                    InternalAddress(float_constant(c->as_jfloat())));
 610         }
 611       } else {
 612 #ifndef _LP64
 613         assert(dest->is_single_fpu(), "must be");
 614         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 615         if (c->is_zero_float()) {
 616           __ fldz();
 617         } else if (c->is_one_float()) {
 618           __ fld1();
 619         } else {
 620           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 621         }
 622 #else
 623         ShouldNotReachHere();
 624 #endif // !_LP64
 625       }
 626       break;
 627     }
 628 
 629     case T_DOUBLE: {
 630       if (dest->is_double_xmm()) {
 631         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) {
 632           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 633         } else {
 634           __ movdbl(dest->as_xmm_double_reg(),
 635                     InternalAddress(double_constant(c->as_jdouble())));
 636         }
 637       } else {
 638 #ifndef _LP64
 639         assert(dest->is_double_fpu(), "must be");
 640         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 641         if (c->is_zero_double()) {
 642           __ fldz();
 643         } else if (c->is_one_double()) {
 644           __ fld1();
 645         } else {
 646           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 647         }
 648 #else
 649         ShouldNotReachHere();
 650 #endif // !_LP64
 651       }
 652       break;
 653     }
 654 
 655     default:
 656       ShouldNotReachHere();
 657   }
 658 }
 659 
 660 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 661   assert(src->is_constant(), "should not call otherwise");
 662   assert(dest->is_stack(), "should not call otherwise");
 663   LIR_Const* c = src->as_constant_ptr();
 664 
 665   switch (c->type()) {
 666     case T_INT:  // fall through
 667     case T_FLOAT:
 668       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 669       break;
 670 
 671     case T_ADDRESS:
 672       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 673       break;
 674 
 675     case T_OBJECT:
 676       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1);
 677       break;
 678 
 679     case T_LONG:  // fall through
 680     case T_DOUBLE:
 681 #ifdef _LP64
 682       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 683                                               lo_word_offset_in_bytes),
 684                 (intptr_t)c->as_jlong_bits(),
 685                 rscratch1);
 686 #else
 687       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 688                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 689       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 690                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 691 #endif // _LP64
 692       break;
 693 
 694     default:
 695       ShouldNotReachHere();
 696   }
 697 }
 698 
 699 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 700   assert(src->is_constant(), "should not call otherwise");
 701   assert(dest->is_address(), "should not call otherwise");
 702   LIR_Const* c = src->as_constant_ptr();
 703   LIR_Address* addr = dest->as_address_ptr();
 704 
 705   int null_check_here = code_offset();
 706   switch (type) {
 707     case T_INT:    // fall through
 708     case T_FLOAT:
 709       __ movl(as_Address(addr), c->as_jint_bits());
 710       break;
 711 
 712     case T_ADDRESS:
 713       __ movptr(as_Address(addr), c->as_jint_bits());
 714       break;
 715 
 716     case T_OBJECT:  // fall through
 717     case T_ARRAY:
 718       if (c->as_jobject() == nullptr) {
 719         if (UseCompressedOops && !wide) {
 720           __ movl(as_Address(addr), NULL_WORD);
 721         } else {
 722 #ifdef _LP64
 723           __ xorptr(rscratch1, rscratch1);
 724           null_check_here = code_offset();
 725           __ movptr(as_Address(addr), rscratch1);
 726 #else
 727           __ movptr(as_Address(addr), NULL_WORD);
 728 #endif
 729         }
 730       } else {
 731         if (is_literal_address(addr)) {
 732           ShouldNotReachHere();
 733           __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1);
 734         } else {
 735 #ifdef _LP64
 736           __ movoop(rscratch1, c->as_jobject());
 737           if (UseCompressedOops && !wide) {
 738             __ encode_heap_oop(rscratch1);
 739             null_check_here = code_offset();
 740             __ movl(as_Address_lo(addr), rscratch1);
 741           } else {
 742             null_check_here = code_offset();
 743             __ movptr(as_Address_lo(addr), rscratch1);
 744           }
 745 #else
 746           __ movoop(as_Address(addr), c->as_jobject(), noreg);
 747 #endif
 748         }
 749       }
 750       break;
 751 
 752     case T_LONG:    // fall through
 753     case T_DOUBLE:
 754 #ifdef _LP64
 755       if (is_literal_address(addr)) {
 756         ShouldNotReachHere();
 757         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 758       } else {
 759         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 760         null_check_here = code_offset();
 761         __ movptr(as_Address_lo(addr), r10);
 762       }
 763 #else
 764       // Always reachable in 32bit so this doesn't produce useless move literal
 765       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 766       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 767 #endif // _LP64
 768       break;
 769 
 770     case T_BOOLEAN: // fall through
 771     case T_BYTE:
 772       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 773       break;
 774 
 775     case T_CHAR:    // fall through
 776     case T_SHORT:
 777       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 778       break;
 779 
 780     default:
 781       ShouldNotReachHere();
 782   };
 783 
 784   if (info != nullptr) {
 785     add_debug_info_for_null_check(null_check_here, info);
 786   }
 787 }
 788 
 789 
 790 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 791   assert(src->is_register(), "should not call otherwise");
 792   assert(dest->is_register(), "should not call otherwise");
 793 
 794   // move between cpu-registers
 795   if (dest->is_single_cpu()) {
 796 #ifdef _LP64
 797     if (src->type() == T_LONG) {
 798       // Can do LONG -> OBJECT
 799       move_regs(src->as_register_lo(), dest->as_register());
 800       return;
 801     }
 802 #endif
 803     assert(src->is_single_cpu(), "must match");
 804     if (src->type() == T_OBJECT) {
 805       __ verify_oop(src->as_register());
 806     }
 807     move_regs(src->as_register(), dest->as_register());
 808 
 809   } else if (dest->is_double_cpu()) {
 810 #ifdef _LP64
 811     if (is_reference_type(src->type())) {
 812       // Surprising to me but we can see move of a long to t_object
 813       __ verify_oop(src->as_register());
 814       move_regs(src->as_register(), dest->as_register_lo());
 815       return;
 816     }
 817 #endif
 818     assert(src->is_double_cpu(), "must match");
 819     Register f_lo = src->as_register_lo();
 820     Register f_hi = src->as_register_hi();
 821     Register t_lo = dest->as_register_lo();
 822     Register t_hi = dest->as_register_hi();
 823 #ifdef _LP64
 824     assert(f_hi == f_lo, "must be same");
 825     assert(t_hi == t_lo, "must be same");
 826     move_regs(f_lo, t_lo);
 827 #else
 828     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 829 
 830 
 831     if (f_lo == t_hi && f_hi == t_lo) {
 832       swap_reg(f_lo, f_hi);
 833     } else if (f_hi == t_lo) {
 834       assert(f_lo != t_hi, "overwriting register");
 835       move_regs(f_hi, t_hi);
 836       move_regs(f_lo, t_lo);
 837     } else {
 838       assert(f_hi != t_lo, "overwriting register");
 839       move_regs(f_lo, t_lo);
 840       move_regs(f_hi, t_hi);
 841     }
 842 #endif // LP64
 843 
 844 #ifndef _LP64
 845     // special moves from fpu-register to xmm-register
 846     // necessary for method results
 847   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 848     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 849     __ fld_s(Address(rsp, 0));
 850   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 851     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 852     __ fld_d(Address(rsp, 0));
 853   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 854     __ fstp_s(Address(rsp, 0));
 855     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 856   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 857     __ fstp_d(Address(rsp, 0));
 858     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 859 #endif // !_LP64
 860 
 861     // move between xmm-registers
 862   } else if (dest->is_single_xmm()) {
 863     assert(src->is_single_xmm(), "must match");
 864     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 865   } else if (dest->is_double_xmm()) {
 866     assert(src->is_double_xmm(), "must match");
 867     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 868 
 869 #ifndef _LP64
 870     // move between fpu-registers (no instruction necessary because of fpu-stack)
 871   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 872     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 873     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 874 #endif // !_LP64
 875 
 876   } else {
 877     ShouldNotReachHere();
 878   }
 879 }
 880 
 881 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 882   assert(src->is_register(), "should not call otherwise");
 883   assert(dest->is_stack(), "should not call otherwise");
 884 
 885   if (src->is_single_cpu()) {
 886     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 887     if (is_reference_type(type)) {
 888       __ verify_oop(src->as_register());
 889       __ movptr (dst, src->as_register());
 890     } else if (type == T_METADATA || type == T_ADDRESS) {
 891       __ movptr (dst, src->as_register());
 892     } else {
 893       __ movl (dst, src->as_register());
 894     }
 895 
 896   } else if (src->is_double_cpu()) {
 897     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 898     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 899     __ movptr (dstLO, src->as_register_lo());
 900     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 901 
 902   } else if (src->is_single_xmm()) {
 903     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 904     __ movflt(dst_addr, src->as_xmm_float_reg());
 905 
 906   } else if (src->is_double_xmm()) {
 907     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 908     __ movdbl(dst_addr, src->as_xmm_double_reg());
 909 
 910 #ifndef _LP64
 911   } else if (src->is_single_fpu()) {
 912     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 913     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 914     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 915     else                   __ fst_s  (dst_addr);
 916 
 917   } else if (src->is_double_fpu()) {
 918     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 919     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 920     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 921     else                   __ fst_d  (dst_addr);
 922 #endif // !_LP64
 923 
 924   } else {
 925     ShouldNotReachHere();
 926   }
 927 }
 928 
 929 
 930 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) {
 931   LIR_Address* to_addr = dest->as_address_ptr();
 932   PatchingStub* patch = nullptr;
 933   Register compressed_src = rscratch1;
 934 
 935   if (is_reference_type(type)) {
 936     __ verify_oop(src->as_register());
 937 #ifdef _LP64
 938     if (UseCompressedOops && !wide) {
 939       __ movptr(compressed_src, src->as_register());
 940       __ encode_heap_oop(compressed_src);
 941       if (patch_code != lir_patch_none) {
 942         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 943       }
 944     }
 945 #endif
 946   }
 947 
 948   if (patch_code != lir_patch_none) {
 949     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 950     Address toa = as_Address(to_addr);
 951     assert(toa.disp() != 0, "must have");
 952   }
 953 
 954   int null_check_here = code_offset();
 955   switch (type) {
 956     case T_FLOAT: {
 957 #ifdef _LP64
 958       assert(src->is_single_xmm(), "not a float");
 959       __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 960 #else
 961       if (src->is_single_xmm()) {
 962         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 963       } else {
 964         assert(src->is_single_fpu(), "must be");
 965         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 966         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 967         else                    __ fst_s (as_Address(to_addr));
 968       }
 969 #endif // _LP64
 970       break;
 971     }
 972 
 973     case T_DOUBLE: {
 974 #ifdef _LP64
 975       assert(src->is_double_xmm(), "not a double");
 976       __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 977 #else
 978       if (src->is_double_xmm()) {
 979         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 980       } else {
 981         assert(src->is_double_fpu(), "must be");
 982         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 983         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
 984         else                    __ fst_d (as_Address(to_addr));
 985       }
 986 #endif // _LP64
 987       break;
 988     }
 989 
 990     case T_ARRAY:   // fall through
 991     case T_OBJECT:  // fall through
 992       if (UseCompressedOops && !wide) {
 993         __ movl(as_Address(to_addr), compressed_src);
 994       } else {
 995         __ movptr(as_Address(to_addr), src->as_register());
 996       }
 997       break;
 998     case T_METADATA:
 999       // We get here to store a method pointer to the stack to pass to
1000       // a dtrace runtime call. This can't work on 64 bit with
1001       // compressed klass ptrs: T_METADATA can be a compressed klass
1002       // ptr or a 64 bit method pointer.
1003       LP64_ONLY(ShouldNotReachHere());
1004       __ movptr(as_Address(to_addr), src->as_register());
1005       break;
1006     case T_ADDRESS:
1007       __ movptr(as_Address(to_addr), src->as_register());
1008       break;
1009     case T_INT:
1010       __ movl(as_Address(to_addr), src->as_register());
1011       break;
1012 
1013     case T_LONG: {
1014       Register from_lo = src->as_register_lo();
1015       Register from_hi = src->as_register_hi();
1016 #ifdef _LP64
1017       __ movptr(as_Address_lo(to_addr), from_lo);
1018 #else
1019       Register base = to_addr->base()->as_register();
1020       Register index = noreg;
1021       if (to_addr->index()->is_register()) {
1022         index = to_addr->index()->as_register();
1023       }
1024       if (base == from_lo || index == from_lo) {
1025         assert(base != from_hi, "can't be");
1026         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1027         __ movl(as_Address_hi(to_addr), from_hi);
1028         if (patch != nullptr) {
1029           patching_epilog(patch, lir_patch_high, base, info);
1030           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1031           patch_code = lir_patch_low;
1032         }
1033         __ movl(as_Address_lo(to_addr), from_lo);
1034       } else {
1035         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1036         __ movl(as_Address_lo(to_addr), from_lo);
1037         if (patch != nullptr) {
1038           patching_epilog(patch, lir_patch_low, base, info);
1039           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1040           patch_code = lir_patch_high;
1041         }
1042         __ movl(as_Address_hi(to_addr), from_hi);
1043       }
1044 #endif // _LP64
1045       break;
1046     }
1047 
1048     case T_BYTE:    // fall through
1049     case T_BOOLEAN: {
1050       Register src_reg = src->as_register();
1051       Address dst_addr = as_Address(to_addr);
1052       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1053       __ movb(dst_addr, src_reg);
1054       break;
1055     }
1056 
1057     case T_CHAR:    // fall through
1058     case T_SHORT:
1059       __ movw(as_Address(to_addr), src->as_register());
1060       break;
1061 
1062     default:
1063       ShouldNotReachHere();
1064   }
1065   if (info != nullptr) {
1066     add_debug_info_for_null_check(null_check_here, info);
1067   }
1068 
1069   if (patch_code != lir_patch_none) {
1070     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1071   }
1072 }
1073 
1074 
1075 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1076   assert(src->is_stack(), "should not call otherwise");
1077   assert(dest->is_register(), "should not call otherwise");
1078 
1079   if (dest->is_single_cpu()) {
1080     if (is_reference_type(type)) {
1081       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1082       __ verify_oop(dest->as_register());
1083     } else if (type == T_METADATA || type == T_ADDRESS) {
1084       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1085     } else {
1086       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1087     }
1088 
1089   } else if (dest->is_double_cpu()) {
1090     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1091     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1092     __ movptr(dest->as_register_lo(), src_addr_LO);
1093     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1094 
1095   } else if (dest->is_single_xmm()) {
1096     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1097     __ movflt(dest->as_xmm_float_reg(), src_addr);
1098 
1099   } else if (dest->is_double_xmm()) {
1100     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1101     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1102 
1103 #ifndef _LP64
1104   } else if (dest->is_single_fpu()) {
1105     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1106     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1107     __ fld_s(src_addr);
1108 
1109   } else if (dest->is_double_fpu()) {
1110     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1111     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1112     __ fld_d(src_addr);
1113 #endif // _LP64
1114 
1115   } else {
1116     ShouldNotReachHere();
1117   }
1118 }
1119 
1120 
1121 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1122   if (src->is_single_stack()) {
1123     if (is_reference_type(type)) {
1124       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1125       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1126     } else {
1127 #ifndef _LP64
1128       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1129       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1130 #else
1131       //no pushl on 64bits
1132       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1133       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1134 #endif
1135     }
1136 
1137   } else if (src->is_double_stack()) {
1138 #ifdef _LP64
1139     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1140     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1141 #else
1142     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1143     // push and pop the part at src + wordSize, adding wordSize for the previous push
1144     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1145     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1146     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1147 #endif // _LP64
1148 
1149   } else {
1150     ShouldNotReachHere();
1151   }
1152 }
1153 
1154 
1155 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
1156   assert(src->is_address(), "should not call otherwise");
1157   assert(dest->is_register(), "should not call otherwise");
1158 
1159   LIR_Address* addr = src->as_address_ptr();
1160   Address from_addr = as_Address(addr);
1161 
1162   if (addr->base()->type() == T_OBJECT) {
1163     __ verify_oop(addr->base()->as_pointer_register());
1164   }
1165 
1166   switch (type) {
1167     case T_BOOLEAN: // fall through
1168     case T_BYTE:    // fall through
1169     case T_CHAR:    // fall through
1170     case T_SHORT:
1171       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1172         // on pre P6 processors we may get partial register stalls
1173         // so blow away the value of to_rinfo before loading a
1174         // partial word into it.  Do it here so that it precedes
1175         // the potential patch point below.
1176         __ xorptr(dest->as_register(), dest->as_register());
1177       }
1178       break;
1179    default:
1180      break;
1181   }
1182 
1183   PatchingStub* patch = nullptr;
1184   if (patch_code != lir_patch_none) {
1185     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1186     assert(from_addr.disp() != 0, "must have");
1187   }
1188   if (info != nullptr) {
1189     add_debug_info_for_null_check_here(info);
1190   }
1191 
1192   switch (type) {
1193     case T_FLOAT: {
1194       if (dest->is_single_xmm()) {
1195         __ movflt(dest->as_xmm_float_reg(), from_addr);
1196       } else {
1197 #ifndef _LP64
1198         assert(dest->is_single_fpu(), "must be");
1199         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1200         __ fld_s(from_addr);
1201 #else
1202         ShouldNotReachHere();
1203 #endif // !LP64
1204       }
1205       break;
1206     }
1207 
1208     case T_DOUBLE: {
1209       if (dest->is_double_xmm()) {
1210         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1211       } else {
1212 #ifndef _LP64
1213         assert(dest->is_double_fpu(), "must be");
1214         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1215         __ fld_d(from_addr);
1216 #else
1217         ShouldNotReachHere();
1218 #endif // !LP64
1219       }
1220       break;
1221     }
1222 
1223     case T_OBJECT:  // fall through
1224     case T_ARRAY:   // fall through
1225       if (UseCompressedOops && !wide) {
1226         __ movl(dest->as_register(), from_addr);
1227       } else {
1228         __ movptr(dest->as_register(), from_addr);
1229       }
1230       break;
1231 
1232     case T_ADDRESS:
1233       __ movptr(dest->as_register(), from_addr);
1234       break;
1235     case T_INT:
1236       __ movl(dest->as_register(), from_addr);
1237       break;
1238 
1239     case T_LONG: {
1240       Register to_lo = dest->as_register_lo();
1241       Register to_hi = dest->as_register_hi();
1242 #ifdef _LP64
1243       __ movptr(to_lo, as_Address_lo(addr));
1244 #else
1245       Register base = addr->base()->as_register();
1246       Register index = noreg;
1247       if (addr->index()->is_register()) {
1248         index = addr->index()->as_register();
1249       }
1250       if ((base == to_lo && index == to_hi) ||
1251           (base == to_hi && index == to_lo)) {
1252         // addresses with 2 registers are only formed as a result of
1253         // array access so this code will never have to deal with
1254         // patches or null checks.
1255         assert(info == nullptr && patch == nullptr, "must be");
1256         __ lea(to_hi, as_Address(addr));
1257         __ movl(to_lo, Address(to_hi, 0));
1258         __ movl(to_hi, Address(to_hi, BytesPerWord));
1259       } else if (base == to_lo || index == to_lo) {
1260         assert(base != to_hi, "can't be");
1261         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1262         __ movl(to_hi, as_Address_hi(addr));
1263         if (patch != nullptr) {
1264           patching_epilog(patch, lir_patch_high, base, info);
1265           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1266           patch_code = lir_patch_low;
1267         }
1268         __ movl(to_lo, as_Address_lo(addr));
1269       } else {
1270         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1271         __ movl(to_lo, as_Address_lo(addr));
1272         if (patch != nullptr) {
1273           patching_epilog(patch, lir_patch_low, base, info);
1274           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1275           patch_code = lir_patch_high;
1276         }
1277         __ movl(to_hi, as_Address_hi(addr));
1278       }
1279 #endif // _LP64
1280       break;
1281     }
1282 
1283     case T_BOOLEAN: // fall through
1284     case T_BYTE: {
1285       Register dest_reg = dest->as_register();
1286       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1287       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1288         __ movsbl(dest_reg, from_addr);
1289       } else {
1290         __ movb(dest_reg, from_addr);
1291         __ shll(dest_reg, 24);
1292         __ sarl(dest_reg, 24);
1293       }
1294       break;
1295     }
1296 
1297     case T_CHAR: {
1298       Register dest_reg = dest->as_register();
1299       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1300       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1301         __ movzwl(dest_reg, from_addr);
1302       } else {
1303         __ movw(dest_reg, from_addr);
1304       }
1305       break;
1306     }
1307 
1308     case T_SHORT: {
1309       Register dest_reg = dest->as_register();
1310       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1311         __ movswl(dest_reg, from_addr);
1312       } else {
1313         __ movw(dest_reg, from_addr);
1314         __ shll(dest_reg, 16);
1315         __ sarl(dest_reg, 16);
1316       }
1317       break;
1318     }
1319 
1320     default:
1321       ShouldNotReachHere();
1322   }
1323 
1324   if (patch != nullptr) {
1325     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1326   }
1327 
1328   if (is_reference_type(type)) {
1329 #ifdef _LP64
1330     if (UseCompressedOops && !wide) {
1331       __ decode_heap_oop(dest->as_register());
1332     }
1333 #endif
1334 
1335     __ verify_oop(dest->as_register());
1336   }
1337 }
1338 
1339 
1340 NEEDS_CLEANUP; // This could be static?
1341 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1342   int elem_size = type2aelembytes(type);
1343   switch (elem_size) {
1344     case 1: return Address::times_1;
1345     case 2: return Address::times_2;
1346     case 4: return Address::times_4;
1347     case 8: return Address::times_8;
1348   }
1349   ShouldNotReachHere();
1350   return Address::no_scale;
1351 }
1352 
1353 
1354 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1355   switch (op->code()) {
1356     case lir_idiv:
1357     case lir_irem:
1358       arithmetic_idiv(op->code(),
1359                       op->in_opr1(),
1360                       op->in_opr2(),
1361                       op->in_opr3(),
1362                       op->result_opr(),
1363                       op->info());
1364       break;
1365     case lir_fmad:
1366       __ fmad(op->result_opr()->as_xmm_double_reg(),
1367               op->in_opr1()->as_xmm_double_reg(),
1368               op->in_opr2()->as_xmm_double_reg(),
1369               op->in_opr3()->as_xmm_double_reg());
1370       break;
1371     case lir_fmaf:
1372       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1373               op->in_opr1()->as_xmm_float_reg(),
1374               op->in_opr2()->as_xmm_float_reg(),
1375               op->in_opr3()->as_xmm_float_reg());
1376       break;
1377     default:      ShouldNotReachHere(); break;
1378   }
1379 }
1380 
1381 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1382 #ifdef ASSERT
1383   assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
1384   if (op->block() != nullptr)  _branch_target_blocks.append(op->block());
1385   if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
1386 #endif
1387 
1388   if (op->cond() == lir_cond_always) {
1389     if (op->info() != nullptr) add_debug_info_for_branch(op->info());
1390     __ jmp (*(op->label()));
1391   } else {
1392     Assembler::Condition acond = Assembler::zero;
1393     if (op->code() == lir_cond_float_branch) {
1394       assert(op->ublock() != nullptr, "must have unordered successor");
1395       __ jcc(Assembler::parity, *(op->ublock()->label()));
1396       switch(op->cond()) {
1397         case lir_cond_equal:        acond = Assembler::equal;      break;
1398         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1399         case lir_cond_less:         acond = Assembler::below;      break;
1400         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1401         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1402         case lir_cond_greater:      acond = Assembler::above;      break;
1403         default:                         ShouldNotReachHere();
1404       }
1405     } else {
1406       switch (op->cond()) {
1407         case lir_cond_equal:        acond = Assembler::equal;       break;
1408         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1409         case lir_cond_less:         acond = Assembler::less;        break;
1410         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1411         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1412         case lir_cond_greater:      acond = Assembler::greater;     break;
1413         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1414         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1415         default:                         ShouldNotReachHere();
1416       }
1417     }
1418     __ jcc(acond,*(op->label()));
1419   }
1420 }
1421 
1422 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1423   LIR_Opr src  = op->in_opr();
1424   LIR_Opr dest = op->result_opr();
1425 
1426   switch (op->bytecode()) {
1427     case Bytecodes::_i2l:
1428 #ifdef _LP64
1429       __ movl2ptr(dest->as_register_lo(), src->as_register());
1430 #else
1431       move_regs(src->as_register(), dest->as_register_lo());
1432       move_regs(src->as_register(), dest->as_register_hi());
1433       __ sarl(dest->as_register_hi(), 31);
1434 #endif // LP64
1435       break;
1436 
1437     case Bytecodes::_l2i:
1438 #ifdef _LP64
1439       __ movl(dest->as_register(), src->as_register_lo());
1440 #else
1441       move_regs(src->as_register_lo(), dest->as_register());
1442 #endif
1443       break;
1444 
1445     case Bytecodes::_i2b:
1446       move_regs(src->as_register(), dest->as_register());
1447       __ sign_extend_byte(dest->as_register());
1448       break;
1449 
1450     case Bytecodes::_i2c:
1451       move_regs(src->as_register(), dest->as_register());
1452       __ andl(dest->as_register(), 0xFFFF);
1453       break;
1454 
1455     case Bytecodes::_i2s:
1456       move_regs(src->as_register(), dest->as_register());
1457       __ sign_extend_short(dest->as_register());
1458       break;
1459 
1460 
1461 #ifdef _LP64
1462     case Bytecodes::_f2d:
1463       __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1464       break;
1465 
1466     case Bytecodes::_d2f:
1467       __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1468       break;
1469 
1470     case Bytecodes::_i2f:
1471       __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1472       break;
1473 
1474     case Bytecodes::_i2d:
1475       __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1476       break;
1477 
1478     case Bytecodes::_l2f:
1479       __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo());
1480       break;
1481 
1482     case Bytecodes::_l2d:
1483       __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo());
1484       break;
1485 
1486     case Bytecodes::_f2i:
1487       __ convert_f2i(dest->as_register(), src->as_xmm_float_reg());
1488       break;
1489 
1490     case Bytecodes::_d2i:
1491       __ convert_d2i(dest->as_register(), src->as_xmm_double_reg());
1492       break;
1493 
1494     case Bytecodes::_f2l:
1495       __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg());
1496       break;
1497 
1498     case Bytecodes::_d2l:
1499       __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg());
1500       break;
1501 #else
1502     case Bytecodes::_f2d:
1503     case Bytecodes::_d2f:
1504       if (dest->is_single_xmm()) {
1505         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1506       } else if (dest->is_double_xmm()) {
1507         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1508       } else {
1509         assert(src->fpu() == dest->fpu(), "register must be equal");
1510         // do nothing (float result is rounded later through spilling)
1511       }
1512       break;
1513 
1514     case Bytecodes::_i2f:
1515     case Bytecodes::_i2d:
1516       if (dest->is_single_xmm()) {
1517         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1518       } else if (dest->is_double_xmm()) {
1519         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1520       } else {
1521         assert(dest->fpu() == 0, "result must be on TOS");
1522         __ movl(Address(rsp, 0), src->as_register());
1523         __ fild_s(Address(rsp, 0));
1524       }
1525       break;
1526 
1527     case Bytecodes::_l2f:
1528     case Bytecodes::_l2d:
1529       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1530       assert(dest->fpu() == 0, "result must be on TOS");
1531       __ movptr(Address(rsp, 0),          src->as_register_lo());
1532       __ movl(Address(rsp, BytesPerWord), src->as_register_hi());
1533       __ fild_d(Address(rsp, 0));
1534       // float result is rounded later through spilling
1535       break;
1536 
1537     case Bytecodes::_f2i:
1538     case Bytecodes::_d2i:
1539       if (src->is_single_xmm()) {
1540         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1541       } else if (src->is_double_xmm()) {
1542         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1543       } else {
1544         assert(src->fpu() == 0, "input must be on TOS");
1545         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_trunc()));
1546         __ fist_s(Address(rsp, 0));
1547         __ movl(dest->as_register(), Address(rsp, 0));
1548         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
1549       }
1550       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1551       assert(op->stub() != nullptr, "stub required");
1552       __ cmpl(dest->as_register(), 0x80000000);
1553       __ jcc(Assembler::equal, *op->stub()->entry());
1554       __ bind(*op->stub()->continuation());
1555       break;
1556 
1557     case Bytecodes::_f2l:
1558     case Bytecodes::_d2l:
1559       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1560       assert(src->fpu() == 0, "input must be on TOS");
1561       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1562 
1563       // instruction sequence too long to inline it here
1564       {
1565         __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::fpu2long_stub_id)));
1566       }
1567       break;
1568 #endif // _LP64
1569 
1570     default: ShouldNotReachHere();
1571   }
1572 }
1573 
1574 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1575   if (op->init_check()) {
1576     add_debug_info_for_null_check_here(op->stub()->info());
1577     // init_state needs acquire, but x86 is TSO, and so we are already good.
1578     __ cmpb(Address(op->klass()->as_register(),
1579                     InstanceKlass::init_state_offset()),
1580                     InstanceKlass::fully_initialized);
1581     __ jcc(Assembler::notEqual, *op->stub()->entry());
1582   }
1583   __ allocate_object(op->obj()->as_register(),
1584                      op->tmp1()->as_register(),
1585                      op->tmp2()->as_register(),
1586                      op->header_size(),
1587                      op->object_size(),
1588                      op->klass()->as_register(),
1589                      *op->stub()->entry());
1590   __ bind(*op->stub()->continuation());
1591 }
1592 
1593 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1594   Register len =  op->len()->as_register();
1595   LP64_ONLY( __ movslq(len, len); )
1596 
1597   if (UseSlowPath ||
1598       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1599       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1600     __ jmp(*op->stub()->entry());
1601   } else {
1602     Register tmp1 = op->tmp1()->as_register();
1603     Register tmp2 = op->tmp2()->as_register();
1604     Register tmp3 = op->tmp3()->as_register();
1605     if (len == tmp1) {
1606       tmp1 = tmp3;
1607     } else if (len == tmp2) {
1608       tmp2 = tmp3;
1609     } else if (len == tmp3) {
1610       // everything is ok
1611     } else {
1612       __ mov(tmp3, len);
1613     }
1614     __ allocate_array(op->obj()->as_register(),
1615                       len,
1616                       tmp1,
1617                       tmp2,
1618                       arrayOopDesc::base_offset_in_bytes(op->type()),
1619                       array_element_size(op->type()),
1620                       op->klass()->as_register(),
1621                       *op->stub()->entry(),
1622                       op->zero_array());
1623   }
1624   __ bind(*op->stub()->continuation());
1625 }
1626 
1627 void LIR_Assembler::type_profile_helper(Register mdo,
1628                                         ciMethodData *md, ciProfileData *data,
1629                                         Register recv, Label* update_done) {
1630   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1631     Label next_test;
1632     // See if the receiver is receiver[n].
1633     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1634     __ jccb(Assembler::notEqual, next_test);
1635     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1636     __ addptr(data_addr, DataLayout::counter_increment);
1637     __ jmp(*update_done);
1638     __ bind(next_test);
1639   }
1640 
1641   // Didn't find receiver; find next empty slot and fill it in
1642   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1643     Label next_test;
1644     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1645     __ cmpptr(recv_addr, NULL_WORD);
1646     __ jccb(Assembler::notEqual, next_test);
1647     __ movptr(recv_addr, recv);
1648     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1649     __ jmp(*update_done);
1650     __ bind(next_test);
1651   }
1652 }
1653 
1654 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1655   // we always need a stub for the failure case.
1656   CodeStub* stub = op->stub();
1657   Register obj = op->object()->as_register();
1658   Register k_RInfo = op->tmp1()->as_register();
1659   Register klass_RInfo = op->tmp2()->as_register();
1660   Register dst = op->result_opr()->as_register();
1661   ciKlass* k = op->klass();
1662   Register Rtmp1 = noreg;
1663   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1664 
1665   // check if it needs to be profiled
1666   ciMethodData* md = nullptr;
1667   ciProfileData* data = nullptr;
1668 
1669   if (op->should_profile()) {
1670     ciMethod* method = op->profiled_method();
1671     assert(method != nullptr, "Should have method");
1672     int bci = op->profiled_bci();
1673     md = method->method_data_or_null();
1674     assert(md != nullptr, "Sanity");
1675     data = md->bci_to_data(bci);
1676     assert(data != nullptr,                "need data for type check");
1677     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1678   }
1679   Label* success_target = success;
1680   Label* failure_target = failure;
1681 
1682   if (obj == k_RInfo) {
1683     k_RInfo = dst;
1684   } else if (obj == klass_RInfo) {
1685     klass_RInfo = dst;
1686   }
1687   if (k->is_loaded() && !UseCompressedClassPointers) {
1688     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1689   } else {
1690     Rtmp1 = op->tmp3()->as_register();
1691     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1692   }
1693 
1694   assert_different_registers(obj, k_RInfo, klass_RInfo);
1695 
1696   __ testptr(obj, obj);
1697   if (op->should_profile()) {
1698     Label not_null;
1699     Register mdo  = klass_RInfo;
1700     __ mov_metadata(mdo, md->constant_encoding());
1701     __ jccb(Assembler::notEqual, not_null);
1702     // Object is null; update MDO and exit
1703     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1704     int header_bits = BitData::null_seen_byte_constant();
1705     __ orb(data_addr, header_bits);
1706     __ jmp(*obj_is_null);
1707     __ bind(not_null);
1708 
1709     Label update_done;
1710     Register recv = k_RInfo;
1711     __ load_klass(recv, obj, tmp_load_klass);
1712     type_profile_helper(mdo, md, data, recv, &update_done);
1713 
1714     Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1715     __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment);
1716 
1717     __ bind(update_done);
1718   } else {
1719     __ jcc(Assembler::equal, *obj_is_null);
1720   }
1721 
1722   if (!k->is_loaded()) {
1723     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1724   } else {
1725 #ifdef _LP64
1726     __ mov_metadata(k_RInfo, k->constant_encoding());
1727 #endif // _LP64
1728   }
1729   __ verify_oop(obj);
1730 
1731   if (op->fast_check()) {
1732     // get object class
1733     // not a safepoint as obj null check happens earlier
1734 #ifdef _LP64
1735     if (UseCompressedClassPointers) {
1736       __ load_klass(Rtmp1, obj, tmp_load_klass);
1737       __ cmpptr(k_RInfo, Rtmp1);
1738     } else {
1739       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1740     }
1741 #else
1742     if (k->is_loaded()) {
1743       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1744     } else {
1745       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1746     }
1747 #endif
1748     __ jcc(Assembler::notEqual, *failure_target);
1749     // successful cast, fall through to profile or jump
1750   } else {
1751     // get object class
1752     // not a safepoint as obj null check happens earlier
1753     __ load_klass(klass_RInfo, obj, tmp_load_klass);
1754     if (k->is_loaded()) {
1755       // See if we get an immediate positive hit
1756 #ifdef _LP64
1757       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1758 #else
1759       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1760 #endif // _LP64
1761       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1762         __ jcc(Assembler::notEqual, *failure_target);
1763         // successful cast, fall through to profile or jump
1764       } else {
1765         // See if we get an immediate positive hit
1766         __ jcc(Assembler::equal, *success_target);
1767         // check for self
1768 #ifdef _LP64
1769         __ cmpptr(klass_RInfo, k_RInfo);
1770 #else
1771         __ cmpklass(klass_RInfo, k->constant_encoding());
1772 #endif // _LP64
1773         __ jcc(Assembler::equal, *success_target);
1774 
1775         __ push(klass_RInfo);
1776 #ifdef _LP64
1777         __ push(k_RInfo);
1778 #else
1779         __ pushklass(k->constant_encoding(), noreg);
1780 #endif // _LP64
1781         __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1782         __ pop(klass_RInfo);
1783         __ pop(klass_RInfo);
1784         // result is a boolean
1785         __ testl(klass_RInfo, klass_RInfo);
1786         __ jcc(Assembler::equal, *failure_target);
1787         // successful cast, fall through to profile or jump
1788       }
1789     } else {
1790       // perform the fast part of the checking logic
1791       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1792       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1793       __ push(klass_RInfo);
1794       __ push(k_RInfo);
1795       __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1796       __ pop(klass_RInfo);
1797       __ pop(k_RInfo);
1798       // result is a boolean
1799       __ testl(k_RInfo, k_RInfo);
1800       __ jcc(Assembler::equal, *failure_target);
1801       // successful cast, fall through to profile or jump
1802     }
1803   }
1804   __ jmp(*success);
1805 }
1806 
1807 
1808 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1809   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1810   LIR_Code code = op->code();
1811   if (code == lir_store_check) {
1812     Register value = op->object()->as_register();
1813     Register array = op->array()->as_register();
1814     Register k_RInfo = op->tmp1()->as_register();
1815     Register klass_RInfo = op->tmp2()->as_register();
1816     Register Rtmp1 = op->tmp3()->as_register();
1817 
1818     CodeStub* stub = op->stub();
1819 
1820     // check if it needs to be profiled
1821     ciMethodData* md = nullptr;
1822     ciProfileData* data = nullptr;
1823 
1824     if (op->should_profile()) {
1825       ciMethod* method = op->profiled_method();
1826       assert(method != nullptr, "Should have method");
1827       int bci = op->profiled_bci();
1828       md = method->method_data_or_null();
1829       assert(md != nullptr, "Sanity");
1830       data = md->bci_to_data(bci);
1831       assert(data != nullptr,                "need data for type check");
1832       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1833     }
1834     Label done;
1835     Label* success_target = &done;
1836     Label* failure_target = stub->entry();
1837 
1838     __ testptr(value, value);
1839     if (op->should_profile()) {
1840       Label not_null;
1841       Register mdo  = klass_RInfo;
1842       __ mov_metadata(mdo, md->constant_encoding());
1843       __ jccb(Assembler::notEqual, not_null);
1844       // Object is null; update MDO and exit
1845       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1846       int header_bits = BitData::null_seen_byte_constant();
1847       __ orb(data_addr, header_bits);
1848       __ jmp(done);
1849       __ bind(not_null);
1850 
1851       Label update_done;
1852       Register recv = k_RInfo;
1853       __ load_klass(recv, value, tmp_load_klass);
1854       type_profile_helper(mdo, md, data, recv, &update_done);
1855 
1856       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1857       __ addptr(counter_addr, DataLayout::counter_increment);
1858       __ bind(update_done);
1859     } else {
1860       __ jcc(Assembler::equal, done);
1861     }
1862 
1863     add_debug_info_for_null_check_here(op->info_for_exception());
1864     __ load_klass(k_RInfo, array, tmp_load_klass);
1865     __ load_klass(klass_RInfo, value, tmp_load_klass);
1866 
1867     // get instance klass (it's already uncompressed)
1868     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1869     // perform the fast part of the checking logic
1870     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1871     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1872     __ push(klass_RInfo);
1873     __ push(k_RInfo);
1874     __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1875     __ pop(klass_RInfo);
1876     __ pop(k_RInfo);
1877     // result is a boolean
1878     __ testl(k_RInfo, k_RInfo);
1879     __ jcc(Assembler::equal, *failure_target);
1880     // fall through to the success case
1881 
1882     __ bind(done);
1883   } else
1884     if (code == lir_checkcast) {
1885       Register obj = op->object()->as_register();
1886       Register dst = op->result_opr()->as_register();
1887       Label success;
1888       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1889       __ bind(success);
1890       if (dst != obj) {
1891         __ mov(dst, obj);
1892       }
1893     } else
1894       if (code == lir_instanceof) {
1895         Register obj = op->object()->as_register();
1896         Register dst = op->result_opr()->as_register();
1897         Label success, failure, done;
1898         emit_typecheck_helper(op, &success, &failure, &failure);
1899         __ bind(failure);
1900         __ xorptr(dst, dst);
1901         __ jmpb(done);
1902         __ bind(success);
1903         __ movptr(dst, 1);
1904         __ bind(done);
1905       } else {
1906         ShouldNotReachHere();
1907       }
1908 
1909 }
1910 
1911 
1912 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1913   if (LP64_ONLY(false &&) op->code() == lir_cas_long) {
1914     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1915     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1916     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1917     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1918     Register addr = op->addr()->as_register();
1919     __ lock();
1920     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1921 
1922   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1923     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1924     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1925     Register newval = op->new_value()->as_register();
1926     Register cmpval = op->cmp_value()->as_register();
1927     assert(cmpval == rax, "wrong register");
1928     assert(newval != noreg, "new val must be register");
1929     assert(cmpval != newval, "cmp and new values must be in different registers");
1930     assert(cmpval != addr, "cmp and addr must be in different registers");
1931     assert(newval != addr, "new value and addr must be in different registers");
1932 
1933     if ( op->code() == lir_cas_obj) {
1934 #ifdef _LP64
1935       if (UseCompressedOops) {
1936         __ encode_heap_oop(cmpval);
1937         __ mov(rscratch1, newval);
1938         __ encode_heap_oop(rscratch1);
1939         __ lock();
1940         // cmpval (rax) is implicitly used by this instruction
1941         __ cmpxchgl(rscratch1, Address(addr, 0));
1942       } else
1943 #endif
1944       {
1945         __ lock();
1946         __ cmpxchgptr(newval, Address(addr, 0));
1947       }
1948     } else {
1949       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1950       __ lock();
1951       __ cmpxchgl(newval, Address(addr, 0));
1952     }
1953 #ifdef _LP64
1954   } else if (op->code() == lir_cas_long) {
1955     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1956     Register newval = op->new_value()->as_register_lo();
1957     Register cmpval = op->cmp_value()->as_register_lo();
1958     assert(cmpval == rax, "wrong register");
1959     assert(newval != noreg, "new val must be register");
1960     assert(cmpval != newval, "cmp and new values must be in different registers");
1961     assert(cmpval != addr, "cmp and addr must be in different registers");
1962     assert(newval != addr, "new value and addr must be in different registers");
1963     __ lock();
1964     __ cmpxchgq(newval, Address(addr, 0));
1965 #endif // _LP64
1966   } else {
1967     Unimplemented();
1968   }
1969 }
1970 
1971 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
1972                           LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
1973   assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86");
1974 
1975   Assembler::Condition acond, ncond;
1976   switch (condition) {
1977     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1978     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1979     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1980     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1981     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1982     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1983     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1984     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1985     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
1986                                 ShouldNotReachHere();
1987   }
1988 
1989   if (opr1->is_cpu_register()) {
1990     reg2reg(opr1, result);
1991   } else if (opr1->is_stack()) {
1992     stack2reg(opr1, result, result->type());
1993   } else if (opr1->is_constant()) {
1994     const2reg(opr1, result, lir_patch_none, nullptr);
1995   } else {
1996     ShouldNotReachHere();
1997   }
1998 
1999   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2000     // optimized version that does not require a branch
2001     if (opr2->is_single_cpu()) {
2002       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2003       __ cmov(ncond, result->as_register(), opr2->as_register());
2004     } else if (opr2->is_double_cpu()) {
2005       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2006       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2007       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2008       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2009     } else if (opr2->is_single_stack()) {
2010       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2011     } else if (opr2->is_double_stack()) {
2012       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2013       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2014     } else {
2015       ShouldNotReachHere();
2016     }
2017 
2018   } else {
2019     Label skip;
2020     __ jccb(acond, skip);
2021     if (opr2->is_cpu_register()) {
2022       reg2reg(opr2, result);
2023     } else if (opr2->is_stack()) {
2024       stack2reg(opr2, result, result->type());
2025     } else if (opr2->is_constant()) {
2026       const2reg(opr2, result, lir_patch_none, nullptr);
2027     } else {
2028       ShouldNotReachHere();
2029     }
2030     __ bind(skip);
2031   }
2032 }
2033 
2034 
2035 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2036   assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2037 
2038   if (left->is_single_cpu()) {
2039     assert(left == dest, "left and dest must be equal");
2040     Register lreg = left->as_register();
2041 
2042     if (right->is_single_cpu()) {
2043       // cpu register - cpu register
2044       Register rreg = right->as_register();
2045       switch (code) {
2046         case lir_add: __ addl (lreg, rreg); break;
2047         case lir_sub: __ subl (lreg, rreg); break;
2048         case lir_mul: __ imull(lreg, rreg); break;
2049         default:      ShouldNotReachHere();
2050       }
2051 
2052     } else if (right->is_stack()) {
2053       // cpu register - stack
2054       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2055       switch (code) {
2056         case lir_add: __ addl(lreg, raddr); break;
2057         case lir_sub: __ subl(lreg, raddr); break;
2058         default:      ShouldNotReachHere();
2059       }
2060 
2061     } else if (right->is_constant()) {
2062       // cpu register - constant
2063       jint c = right->as_constant_ptr()->as_jint();
2064       switch (code) {
2065         case lir_add: {
2066           __ incrementl(lreg, c);
2067           break;
2068         }
2069         case lir_sub: {
2070           __ decrementl(lreg, c);
2071           break;
2072         }
2073         default: ShouldNotReachHere();
2074       }
2075 
2076     } else {
2077       ShouldNotReachHere();
2078     }
2079 
2080   } else if (left->is_double_cpu()) {
2081     assert(left == dest, "left and dest must be equal");
2082     Register lreg_lo = left->as_register_lo();
2083     Register lreg_hi = left->as_register_hi();
2084 
2085     if (right->is_double_cpu()) {
2086       // cpu register - cpu register
2087       Register rreg_lo = right->as_register_lo();
2088       Register rreg_hi = right->as_register_hi();
2089       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2090       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2091       switch (code) {
2092         case lir_add:
2093           __ addptr(lreg_lo, rreg_lo);
2094           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2095           break;
2096         case lir_sub:
2097           __ subptr(lreg_lo, rreg_lo);
2098           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2099           break;
2100         case lir_mul:
2101 #ifdef _LP64
2102           __ imulq(lreg_lo, rreg_lo);
2103 #else
2104           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2105           __ imull(lreg_hi, rreg_lo);
2106           __ imull(rreg_hi, lreg_lo);
2107           __ addl (rreg_hi, lreg_hi);
2108           __ mull (rreg_lo);
2109           __ addl (lreg_hi, rreg_hi);
2110 #endif // _LP64
2111           break;
2112         default:
2113           ShouldNotReachHere();
2114       }
2115 
2116     } else if (right->is_constant()) {
2117       // cpu register - constant
2118 #ifdef _LP64
2119       jlong c = right->as_constant_ptr()->as_jlong_bits();
2120       __ movptr(r10, (intptr_t) c);
2121       switch (code) {
2122         case lir_add:
2123           __ addptr(lreg_lo, r10);
2124           break;
2125         case lir_sub:
2126           __ subptr(lreg_lo, r10);
2127           break;
2128         default:
2129           ShouldNotReachHere();
2130       }
2131 #else
2132       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2133       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2134       switch (code) {
2135         case lir_add:
2136           __ addptr(lreg_lo, c_lo);
2137           __ adcl(lreg_hi, c_hi);
2138           break;
2139         case lir_sub:
2140           __ subptr(lreg_lo, c_lo);
2141           __ sbbl(lreg_hi, c_hi);
2142           break;
2143         default:
2144           ShouldNotReachHere();
2145       }
2146 #endif // _LP64
2147 
2148     } else {
2149       ShouldNotReachHere();
2150     }
2151 
2152   } else if (left->is_single_xmm()) {
2153     assert(left == dest, "left and dest must be equal");
2154     XMMRegister lreg = left->as_xmm_float_reg();
2155 
2156     if (right->is_single_xmm()) {
2157       XMMRegister rreg = right->as_xmm_float_reg();
2158       switch (code) {
2159         case lir_add: __ addss(lreg, rreg);  break;
2160         case lir_sub: __ subss(lreg, rreg);  break;
2161         case lir_mul: __ mulss(lreg, rreg);  break;
2162         case lir_div: __ divss(lreg, rreg);  break;
2163         default: ShouldNotReachHere();
2164       }
2165     } else {
2166       Address raddr;
2167       if (right->is_single_stack()) {
2168         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2169       } else if (right->is_constant()) {
2170         // hack for now
2171         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2172       } else {
2173         ShouldNotReachHere();
2174       }
2175       switch (code) {
2176         case lir_add: __ addss(lreg, raddr);  break;
2177         case lir_sub: __ subss(lreg, raddr);  break;
2178         case lir_mul: __ mulss(lreg, raddr);  break;
2179         case lir_div: __ divss(lreg, raddr);  break;
2180         default: ShouldNotReachHere();
2181       }
2182     }
2183 
2184   } else if (left->is_double_xmm()) {
2185     assert(left == dest, "left and dest must be equal");
2186 
2187     XMMRegister lreg = left->as_xmm_double_reg();
2188     if (right->is_double_xmm()) {
2189       XMMRegister rreg = right->as_xmm_double_reg();
2190       switch (code) {
2191         case lir_add: __ addsd(lreg, rreg);  break;
2192         case lir_sub: __ subsd(lreg, rreg);  break;
2193         case lir_mul: __ mulsd(lreg, rreg);  break;
2194         case lir_div: __ divsd(lreg, rreg);  break;
2195         default: ShouldNotReachHere();
2196       }
2197     } else {
2198       Address raddr;
2199       if (right->is_double_stack()) {
2200         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2201       } else if (right->is_constant()) {
2202         // hack for now
2203         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2204       } else {
2205         ShouldNotReachHere();
2206       }
2207       switch (code) {
2208         case lir_add: __ addsd(lreg, raddr);  break;
2209         case lir_sub: __ subsd(lreg, raddr);  break;
2210         case lir_mul: __ mulsd(lreg, raddr);  break;
2211         case lir_div: __ divsd(lreg, raddr);  break;
2212         default: ShouldNotReachHere();
2213       }
2214     }
2215 
2216 #ifndef _LP64
2217   } else if (left->is_single_fpu()) {
2218     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2219 
2220     if (right->is_single_fpu()) {
2221       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2222 
2223     } else {
2224       assert(left->fpu_regnr() == 0, "left must be on TOS");
2225       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2226 
2227       Address raddr;
2228       if (right->is_single_stack()) {
2229         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2230       } else if (right->is_constant()) {
2231         address const_addr = float_constant(right->as_jfloat());
2232         assert(const_addr != nullptr, "incorrect float/double constant maintenance");
2233         // hack for now
2234         raddr = __ as_Address(InternalAddress(const_addr));
2235       } else {
2236         ShouldNotReachHere();
2237       }
2238 
2239       switch (code) {
2240         case lir_add: __ fadd_s(raddr); break;
2241         case lir_sub: __ fsub_s(raddr); break;
2242         case lir_mul: __ fmul_s(raddr); break;
2243         case lir_div: __ fdiv_s(raddr); break;
2244         default:      ShouldNotReachHere();
2245       }
2246     }
2247 
2248   } else if (left->is_double_fpu()) {
2249     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2250 
2251     if (code == lir_mul || code == lir_div) {
2252       // Double values require special handling for strictfp mul/div on x86
2253       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1()));
2254       __ fmulp(left->fpu_regnrLo() + 1);
2255     }
2256 
2257     if (right->is_double_fpu()) {
2258       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2259 
2260     } else {
2261       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2262       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2263 
2264       Address raddr;
2265       if (right->is_double_stack()) {
2266         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2267       } else if (right->is_constant()) {
2268         // hack for now
2269         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2270       } else {
2271         ShouldNotReachHere();
2272       }
2273 
2274       switch (code) {
2275         case lir_add: __ fadd_d(raddr); break;
2276         case lir_sub: __ fsub_d(raddr); break;
2277         case lir_mul: __ fmul_d(raddr); break;
2278         case lir_div: __ fdiv_d(raddr); break;
2279         default: ShouldNotReachHere();
2280       }
2281     }
2282 
2283     if (code == lir_mul || code == lir_div) {
2284       // Double values require special handling for strictfp mul/div on x86
2285       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2()));
2286       __ fmulp(dest->fpu_regnrLo() + 1);
2287     }
2288 #endif // !_LP64
2289 
2290   } else if (left->is_single_stack() || left->is_address()) {
2291     assert(left == dest, "left and dest must be equal");
2292 
2293     Address laddr;
2294     if (left->is_single_stack()) {
2295       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2296     } else if (left->is_address()) {
2297       laddr = as_Address(left->as_address_ptr());
2298     } else {
2299       ShouldNotReachHere();
2300     }
2301 
2302     if (right->is_single_cpu()) {
2303       Register rreg = right->as_register();
2304       switch (code) {
2305         case lir_add: __ addl(laddr, rreg); break;
2306         case lir_sub: __ subl(laddr, rreg); break;
2307         default:      ShouldNotReachHere();
2308       }
2309     } else if (right->is_constant()) {
2310       jint c = right->as_constant_ptr()->as_jint();
2311       switch (code) {
2312         case lir_add: {
2313           __ incrementl(laddr, c);
2314           break;
2315         }
2316         case lir_sub: {
2317           __ decrementl(laddr, c);
2318           break;
2319         }
2320         default: ShouldNotReachHere();
2321       }
2322     } else {
2323       ShouldNotReachHere();
2324     }
2325 
2326   } else {
2327     ShouldNotReachHere();
2328   }
2329 }
2330 
2331 #ifndef _LP64
2332 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2333   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2334   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2335   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2336 
2337   bool left_is_tos = (left_index == 0);
2338   bool dest_is_tos = (dest_index == 0);
2339   int non_tos_index = (left_is_tos ? right_index : left_index);
2340 
2341   switch (code) {
2342     case lir_add:
2343       if (pop_fpu_stack)       __ faddp(non_tos_index);
2344       else if (dest_is_tos)    __ fadd (non_tos_index);
2345       else                     __ fadda(non_tos_index);
2346       break;
2347 
2348     case lir_sub:
2349       if (left_is_tos) {
2350         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2351         else if (dest_is_tos)  __ fsub  (non_tos_index);
2352         else                   __ fsubra(non_tos_index);
2353       } else {
2354         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2355         else if (dest_is_tos)  __ fsubr (non_tos_index);
2356         else                   __ fsuba (non_tos_index);
2357       }
2358       break;
2359 
2360     case lir_mul:
2361       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2362       else if (dest_is_tos)    __ fmul (non_tos_index);
2363       else                     __ fmula(non_tos_index);
2364       break;
2365 
2366     case lir_div:
2367       if (left_is_tos) {
2368         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2369         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2370         else                   __ fdivra(non_tos_index);
2371       } else {
2372         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2373         else if (dest_is_tos)  __ fdivr (non_tos_index);
2374         else                   __ fdiva (non_tos_index);
2375       }
2376       break;
2377 
2378     case lir_rem:
2379       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2380       __ fremr(noreg);
2381       break;
2382 
2383     default:
2384       ShouldNotReachHere();
2385   }
2386 }
2387 #endif // _LP64
2388 
2389 
2390 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
2391   if (value->is_double_xmm()) {
2392     switch(code) {
2393       case lir_abs :
2394         {
2395           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2396             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2397           }
2398           assert(!tmp->is_valid(), "do not need temporary");
2399           __ andpd(dest->as_xmm_double_reg(),
2400                    ExternalAddress((address)double_signmask_pool),
2401                    rscratch1);
2402         }
2403         break;
2404 
2405       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2406       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2407       default      : ShouldNotReachHere();
2408     }
2409 
2410 #ifndef _LP64
2411   } else if (value->is_double_fpu()) {
2412     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2413     switch(code) {
2414       case lir_abs   : __ fabs() ; break;
2415       case lir_sqrt  : __ fsqrt(); break;
2416       default      : ShouldNotReachHere();
2417     }
2418 #endif // !_LP64
2419   } else if (code == lir_f2hf) {
2420     __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg());
2421   } else if (code == lir_hf2f) {
2422     __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register());
2423   } else {
2424     Unimplemented();
2425   }
2426 }
2427 
2428 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2429   // assert(left->destroys_register(), "check");
2430   if (left->is_single_cpu()) {
2431     Register reg = left->as_register();
2432     if (right->is_constant()) {
2433       int val = right->as_constant_ptr()->as_jint();
2434       switch (code) {
2435         case lir_logic_and: __ andl (reg, val); break;
2436         case lir_logic_or:  __ orl  (reg, val); break;
2437         case lir_logic_xor: __ xorl (reg, val); break;
2438         default: ShouldNotReachHere();
2439       }
2440     } else if (right->is_stack()) {
2441       // added support for stack operands
2442       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2443       switch (code) {
2444         case lir_logic_and: __ andl (reg, raddr); break;
2445         case lir_logic_or:  __ orl  (reg, raddr); break;
2446         case lir_logic_xor: __ xorl (reg, raddr); break;
2447         default: ShouldNotReachHere();
2448       }
2449     } else {
2450       Register rright = right->as_register();
2451       switch (code) {
2452         case lir_logic_and: __ andptr (reg, rright); break;
2453         case lir_logic_or : __ orptr  (reg, rright); break;
2454         case lir_logic_xor: __ xorptr (reg, rright); break;
2455         default: ShouldNotReachHere();
2456       }
2457     }
2458     move_regs(reg, dst->as_register());
2459   } else {
2460     Register l_lo = left->as_register_lo();
2461     Register l_hi = left->as_register_hi();
2462     if (right->is_constant()) {
2463 #ifdef _LP64
2464       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2465       switch (code) {
2466         case lir_logic_and:
2467           __ andq(l_lo, rscratch1);
2468           break;
2469         case lir_logic_or:
2470           __ orq(l_lo, rscratch1);
2471           break;
2472         case lir_logic_xor:
2473           __ xorq(l_lo, rscratch1);
2474           break;
2475         default: ShouldNotReachHere();
2476       }
2477 #else
2478       int r_lo = right->as_constant_ptr()->as_jint_lo();
2479       int r_hi = right->as_constant_ptr()->as_jint_hi();
2480       switch (code) {
2481         case lir_logic_and:
2482           __ andl(l_lo, r_lo);
2483           __ andl(l_hi, r_hi);
2484           break;
2485         case lir_logic_or:
2486           __ orl(l_lo, r_lo);
2487           __ orl(l_hi, r_hi);
2488           break;
2489         case lir_logic_xor:
2490           __ xorl(l_lo, r_lo);
2491           __ xorl(l_hi, r_hi);
2492           break;
2493         default: ShouldNotReachHere();
2494       }
2495 #endif // _LP64
2496     } else {
2497 #ifdef _LP64
2498       Register r_lo;
2499       if (is_reference_type(right->type())) {
2500         r_lo = right->as_register();
2501       } else {
2502         r_lo = right->as_register_lo();
2503       }
2504 #else
2505       Register r_lo = right->as_register_lo();
2506       Register r_hi = right->as_register_hi();
2507       assert(l_lo != r_hi, "overwriting registers");
2508 #endif
2509       switch (code) {
2510         case lir_logic_and:
2511           __ andptr(l_lo, r_lo);
2512           NOT_LP64(__ andptr(l_hi, r_hi);)
2513           break;
2514         case lir_logic_or:
2515           __ orptr(l_lo, r_lo);
2516           NOT_LP64(__ orptr(l_hi, r_hi);)
2517           break;
2518         case lir_logic_xor:
2519           __ xorptr(l_lo, r_lo);
2520           NOT_LP64(__ xorptr(l_hi, r_hi);)
2521           break;
2522         default: ShouldNotReachHere();
2523       }
2524     }
2525 
2526     Register dst_lo = dst->as_register_lo();
2527     Register dst_hi = dst->as_register_hi();
2528 
2529 #ifdef _LP64
2530     move_regs(l_lo, dst_lo);
2531 #else
2532     if (dst_lo == l_hi) {
2533       assert(dst_hi != l_lo, "overwriting registers");
2534       move_regs(l_hi, dst_hi);
2535       move_regs(l_lo, dst_lo);
2536     } else {
2537       assert(dst_lo != l_hi, "overwriting registers");
2538       move_regs(l_lo, dst_lo);
2539       move_regs(l_hi, dst_hi);
2540     }
2541 #endif // _LP64
2542   }
2543 }
2544 
2545 
2546 // we assume that rax, and rdx can be overwritten
2547 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2548 
2549   assert(left->is_single_cpu(),   "left must be register");
2550   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2551   assert(result->is_single_cpu(), "result must be register");
2552 
2553   //  assert(left->destroys_register(), "check");
2554   //  assert(right->destroys_register(), "check");
2555 
2556   Register lreg = left->as_register();
2557   Register dreg = result->as_register();
2558 
2559   if (right->is_constant()) {
2560     jint divisor = right->as_constant_ptr()->as_jint();
2561     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2562     if (code == lir_idiv) {
2563       assert(lreg == rax, "must be rax,");
2564       assert(temp->as_register() == rdx, "tmp register must be rdx");
2565       __ cdql(); // sign extend into rdx:rax
2566       if (divisor == 2) {
2567         __ subl(lreg, rdx);
2568       } else {
2569         __ andl(rdx, divisor - 1);
2570         __ addl(lreg, rdx);
2571       }
2572       __ sarl(lreg, log2i_exact(divisor));
2573       move_regs(lreg, dreg);
2574     } else if (code == lir_irem) {
2575       Label done;
2576       __ mov(dreg, lreg);
2577       __ andl(dreg, 0x80000000 | (divisor - 1));
2578       __ jcc(Assembler::positive, done);
2579       __ decrement(dreg);
2580       __ orl(dreg, ~(divisor - 1));
2581       __ increment(dreg);
2582       __ bind(done);
2583     } else {
2584       ShouldNotReachHere();
2585     }
2586   } else {
2587     Register rreg = right->as_register();
2588     assert(lreg == rax, "left register must be rax,");
2589     assert(rreg != rdx, "right register must not be rdx");
2590     assert(temp->as_register() == rdx, "tmp register must be rdx");
2591 
2592     move_regs(lreg, rax);
2593 
2594     int idivl_offset = __ corrected_idivl(rreg);
2595     if (ImplicitDiv0Checks) {
2596       add_debug_info_for_div0(idivl_offset, info);
2597     }
2598     if (code == lir_irem) {
2599       move_regs(rdx, dreg); // result is in rdx
2600     } else {
2601       move_regs(rax, dreg);
2602     }
2603   }
2604 }
2605 
2606 
2607 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2608   if (opr1->is_single_cpu()) {
2609     Register reg1 = opr1->as_register();
2610     if (opr2->is_single_cpu()) {
2611       // cpu register - cpu register
2612       if (is_reference_type(opr1->type())) {
2613         __ cmpoop(reg1, opr2->as_register());
2614       } else {
2615         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
2616         __ cmpl(reg1, opr2->as_register());
2617       }
2618     } else if (opr2->is_stack()) {
2619       // cpu register - stack
2620       if (is_reference_type(opr1->type())) {
2621         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2622       } else {
2623         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2624       }
2625     } else if (opr2->is_constant()) {
2626       // cpu register - constant
2627       LIR_Const* c = opr2->as_constant_ptr();
2628       if (c->type() == T_INT) {
2629         jint i = c->as_jint();
2630         if (i == 0) {
2631           __ testl(reg1, reg1);
2632         } else {
2633           __ cmpl(reg1, i);
2634         }
2635       } else if (c->type() == T_METADATA) {
2636         // All we need for now is a comparison with null for equality.
2637         assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
2638         Metadata* m = c->as_metadata();
2639         if (m == nullptr) {
2640           __ testptr(reg1, reg1);
2641         } else {
2642           ShouldNotReachHere();
2643         }
2644       } else if (is_reference_type(c->type())) {
2645         // In 64bit oops are single register
2646         jobject o = c->as_jobject();
2647         if (o == nullptr) {
2648           __ testptr(reg1, reg1);
2649         } else {
2650           __ cmpoop(reg1, o, rscratch1);
2651         }
2652       } else {
2653         fatal("unexpected type: %s", basictype_to_str(c->type()));
2654       }
2655       // cpu register - address
2656     } else if (opr2->is_address()) {
2657       if (op->info() != nullptr) {
2658         add_debug_info_for_null_check_here(op->info());
2659       }
2660       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2661     } else {
2662       ShouldNotReachHere();
2663     }
2664 
2665   } else if(opr1->is_double_cpu()) {
2666     Register xlo = opr1->as_register_lo();
2667     Register xhi = opr1->as_register_hi();
2668     if (opr2->is_double_cpu()) {
2669 #ifdef _LP64
2670       __ cmpptr(xlo, opr2->as_register_lo());
2671 #else
2672       // cpu register - cpu register
2673       Register ylo = opr2->as_register_lo();
2674       Register yhi = opr2->as_register_hi();
2675       __ subl(xlo, ylo);
2676       __ sbbl(xhi, yhi);
2677       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2678         __ orl(xhi, xlo);
2679       }
2680 #endif // _LP64
2681     } else if (opr2->is_constant()) {
2682       // cpu register - constant 0
2683       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2684 #ifdef _LP64
2685       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2686 #else
2687       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2688       __ orl(xhi, xlo);
2689 #endif // _LP64
2690     } else {
2691       ShouldNotReachHere();
2692     }
2693 
2694   } else if (opr1->is_single_xmm()) {
2695     XMMRegister reg1 = opr1->as_xmm_float_reg();
2696     if (opr2->is_single_xmm()) {
2697       // xmm register - xmm register
2698       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2699     } else if (opr2->is_stack()) {
2700       // xmm register - stack
2701       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2702     } else if (opr2->is_constant()) {
2703       // xmm register - constant
2704       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2705     } else if (opr2->is_address()) {
2706       // xmm register - address
2707       if (op->info() != nullptr) {
2708         add_debug_info_for_null_check_here(op->info());
2709       }
2710       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2711     } else {
2712       ShouldNotReachHere();
2713     }
2714 
2715   } else if (opr1->is_double_xmm()) {
2716     XMMRegister reg1 = opr1->as_xmm_double_reg();
2717     if (opr2->is_double_xmm()) {
2718       // xmm register - xmm register
2719       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2720     } else if (opr2->is_stack()) {
2721       // xmm register - stack
2722       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2723     } else if (opr2->is_constant()) {
2724       // xmm register - constant
2725       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2726     } else if (opr2->is_address()) {
2727       // xmm register - address
2728       if (op->info() != nullptr) {
2729         add_debug_info_for_null_check_here(op->info());
2730       }
2731       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2732     } else {
2733       ShouldNotReachHere();
2734     }
2735 
2736 #ifndef _LP64
2737   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2738     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2739     assert(opr2->is_fpu_register(), "both must be registers");
2740     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2741 #endif // LP64
2742 
2743   } else if (opr1->is_address() && opr2->is_constant()) {
2744     LIR_Const* c = opr2->as_constant_ptr();
2745 #ifdef _LP64
2746     if (is_reference_type(c->type())) {
2747       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2748       __ movoop(rscratch1, c->as_jobject());
2749     }
2750 #endif // LP64
2751     if (op->info() != nullptr) {
2752       add_debug_info_for_null_check_here(op->info());
2753     }
2754     // special case: address - constant
2755     LIR_Address* addr = opr1->as_address_ptr();
2756     if (c->type() == T_INT) {
2757       __ cmpl(as_Address(addr), c->as_jint());
2758     } else if (is_reference_type(c->type())) {
2759 #ifdef _LP64
2760       // %%% Make this explode if addr isn't reachable until we figure out a
2761       // better strategy by giving noreg as the temp for as_Address
2762       __ cmpoop(rscratch1, as_Address(addr, noreg));
2763 #else
2764       __ cmpoop(as_Address(addr), c->as_jobject());
2765 #endif // _LP64
2766     } else {
2767       ShouldNotReachHere();
2768     }
2769 
2770   } else {
2771     ShouldNotReachHere();
2772   }
2773 }
2774 
2775 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2776   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2777     if (left->is_single_xmm()) {
2778       assert(right->is_single_xmm(), "must match");
2779       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2780     } else if (left->is_double_xmm()) {
2781       assert(right->is_double_xmm(), "must match");
2782       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2783 
2784     } else {
2785 #ifdef _LP64
2786       ShouldNotReachHere();
2787 #else
2788       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2789       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2790 
2791       assert(left->fpu() == 0, "left must be on TOS");
2792       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2793                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2794 #endif // LP64
2795     }
2796   } else {
2797     assert(code == lir_cmp_l2i, "check");
2798 #ifdef _LP64
2799     Label done;
2800     Register dest = dst->as_register();
2801     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2802     __ movl(dest, -1);
2803     __ jccb(Assembler::less, done);
2804     __ setb(Assembler::notZero, dest);
2805     __ movzbl(dest, dest);
2806     __ bind(done);
2807 #else
2808     __ lcmp2int(left->as_register_hi(),
2809                 left->as_register_lo(),
2810                 right->as_register_hi(),
2811                 right->as_register_lo());
2812     move_regs(left->as_register_hi(), dst->as_register());
2813 #endif // _LP64
2814   }
2815 }
2816 
2817 
2818 void LIR_Assembler::align_call(LIR_Code code) {
2819   // make sure that the displacement word of the call ends up word aligned
2820   int offset = __ offset();
2821   switch (code) {
2822   case lir_static_call:
2823   case lir_optvirtual_call:
2824   case lir_dynamic_call:
2825     offset += NativeCall::displacement_offset;
2826     break;
2827   case lir_icvirtual_call:
2828     offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size_rex;
2829     break;
2830   default: ShouldNotReachHere();
2831   }
2832   __ align(BytesPerWord, offset);
2833 }
2834 
2835 
2836 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2837   assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2838          "must be aligned");
2839   __ call(AddressLiteral(op->addr(), rtype));
2840   add_call_info(code_offset(), op->info());
2841   __ post_call_nop();
2842 }
2843 
2844 
2845 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2846   __ ic_call(op->addr());
2847   add_call_info(code_offset(), op->info());
2848   assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2849          "must be aligned");
2850   __ post_call_nop();
2851 }
2852 
2853 
2854 void LIR_Assembler::emit_static_call_stub() {
2855   address call_pc = __ pc();
2856   address stub = __ start_a_stub(call_stub_size());
2857   if (stub == nullptr) {
2858     bailout("static call stub overflow");
2859     return;
2860   }
2861 
2862   int start = __ offset();
2863 
2864   // make sure that the displacement word of the call ends up word aligned
2865   __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size_rex + NativeCall::displacement_offset);
2866   __ relocate(static_stub_Relocation::spec(call_pc));
2867   __ mov_metadata(rbx, (Metadata*)nullptr);
2868   // must be set to -1 at code generation time
2869   assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned");
2870   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2871   __ jump(RuntimeAddress(__ pc()));
2872 
2873   assert(__ offset() - start <= call_stub_size(), "stub too big");
2874   __ end_a_stub();
2875 }
2876 
2877 
2878 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2879   assert(exceptionOop->as_register() == rax, "must match");
2880   assert(exceptionPC->as_register() == rdx, "must match");
2881 
2882   // exception object is not added to oop map by LinearScan
2883   // (LinearScan assumes that no oops are in fixed registers)
2884   info->add_register_oop(exceptionOop);
2885   C1StubId unwind_id;
2886 
2887   // get current pc information
2888   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2889   int pc_for_athrow_offset = __ offset();
2890   InternalAddress pc_for_athrow(__ pc());
2891   __ lea(exceptionPC->as_register(), pc_for_athrow);
2892   add_call_info(pc_for_athrow_offset, info); // for exception handler
2893 
2894   __ verify_not_null_oop(rax);
2895   // search an exception handler (rax: exception oop, rdx: throwing pc)
2896   if (compilation()->has_fpu_code()) {
2897     unwind_id = C1StubId::handle_exception_id;
2898   } else {
2899     unwind_id = C1StubId::handle_exception_nofpu_id;
2900   }
2901   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2902 
2903   // enough room for two byte trap
2904   __ nop();
2905 }
2906 
2907 
2908 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2909   assert(exceptionOop->as_register() == rax, "must match");
2910 
2911   __ jmp(_unwind_handler_entry);
2912 }
2913 
2914 
2915 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2916 
2917   // optimized version for linear scan:
2918   // * count must be already in ECX (guaranteed by LinearScan)
2919   // * left and dest must be equal
2920   // * tmp must be unused
2921   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2922   assert(left == dest, "left and dest must be equal");
2923   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2924 
2925   if (left->is_single_cpu()) {
2926     Register value = left->as_register();
2927     assert(value != SHIFT_count, "left cannot be ECX");
2928 
2929     switch (code) {
2930       case lir_shl:  __ shll(value); break;
2931       case lir_shr:  __ sarl(value); break;
2932       case lir_ushr: __ shrl(value); break;
2933       default: ShouldNotReachHere();
2934     }
2935   } else if (left->is_double_cpu()) {
2936     Register lo = left->as_register_lo();
2937     Register hi = left->as_register_hi();
2938     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2939 #ifdef _LP64
2940     switch (code) {
2941       case lir_shl:  __ shlptr(lo);        break;
2942       case lir_shr:  __ sarptr(lo);        break;
2943       case lir_ushr: __ shrptr(lo);        break;
2944       default: ShouldNotReachHere();
2945     }
2946 #else
2947 
2948     switch (code) {
2949       case lir_shl:  __ lshl(hi, lo);        break;
2950       case lir_shr:  __ lshr(hi, lo, true);  break;
2951       case lir_ushr: __ lshr(hi, lo, false); break;
2952       default: ShouldNotReachHere();
2953     }
2954 #endif // LP64
2955   } else {
2956     ShouldNotReachHere();
2957   }
2958 }
2959 
2960 
2961 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2962   if (dest->is_single_cpu()) {
2963     // first move left into dest so that left is not destroyed by the shift
2964     Register value = dest->as_register();
2965     count = count & 0x1F; // Java spec
2966 
2967     move_regs(left->as_register(), value);
2968     switch (code) {
2969       case lir_shl:  __ shll(value, count); break;
2970       case lir_shr:  __ sarl(value, count); break;
2971       case lir_ushr: __ shrl(value, count); break;
2972       default: ShouldNotReachHere();
2973     }
2974   } else if (dest->is_double_cpu()) {
2975 #ifndef _LP64
2976     Unimplemented();
2977 #else
2978     // first move left into dest so that left is not destroyed by the shift
2979     Register value = dest->as_register_lo();
2980     count = count & 0x1F; // Java spec
2981 
2982     move_regs(left->as_register_lo(), value);
2983     switch (code) {
2984       case lir_shl:  __ shlptr(value, count); break;
2985       case lir_shr:  __ sarptr(value, count); break;
2986       case lir_ushr: __ shrptr(value, count); break;
2987       default: ShouldNotReachHere();
2988     }
2989 #endif // _LP64
2990   } else {
2991     ShouldNotReachHere();
2992   }
2993 }
2994 
2995 
2996 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2997   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2998   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2999   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3000   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3001 }
3002 
3003 
3004 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3005   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3006   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3007   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3008   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3009 }
3010 
3011 
3012 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
3013   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3014   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3015   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3016   __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1);
3017 }
3018 
3019 
3020 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) {
3021   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3022   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3023   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3024   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1);
3025 }
3026 
3027 
3028 // This code replaces a call to arraycopy; no exception may
3029 // be thrown in this code, they must be thrown in the System.arraycopy
3030 // activation frame; we could save some checks if this would not be the case
3031 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3032   ciArrayKlass* default_type = op->expected_type();
3033   Register src = op->src()->as_register();
3034   Register dst = op->dst()->as_register();
3035   Register src_pos = op->src_pos()->as_register();
3036   Register dst_pos = op->dst_pos()->as_register();
3037   Register length  = op->length()->as_register();
3038   Register tmp = op->tmp()->as_register();
3039   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3040   Register tmp2 = UseCompactObjectHeaders ? rscratch2 : noreg;
3041 
3042   CodeStub* stub = op->stub();
3043   int flags = op->flags();
3044   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
3045   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
3046 
3047   // if we don't know anything, just go through the generic arraycopy
3048   if (default_type == nullptr) {
3049     // save outgoing arguments on stack in case call to System.arraycopy is needed
3050     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3051     // for interpreter calling conventions. Now we have to do it in new style conventions.
3052     // For the moment until C1 gets the new register allocator I just force all the
3053     // args to the right place (except the register args) and then on the back side
3054     // reload the register args properly if we go slow path. Yuck
3055 
3056     // These are proper for the calling convention
3057     store_parameter(length, 2);
3058     store_parameter(dst_pos, 1);
3059     store_parameter(dst, 0);
3060 
3061     // these are just temporary placements until we need to reload
3062     store_parameter(src_pos, 3);
3063     store_parameter(src, 4);
3064     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3065 
3066     address copyfunc_addr = StubRoutines::generic_arraycopy();
3067     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
3068 
3069     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3070 #ifdef _LP64
3071     // The arguments are in java calling convention so we can trivially shift them to C
3072     // convention
3073     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3074     __ mov(c_rarg0, j_rarg0);
3075     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3076     __ mov(c_rarg1, j_rarg1);
3077     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3078     __ mov(c_rarg2, j_rarg2);
3079     assert_different_registers(c_rarg3, j_rarg4);
3080     __ mov(c_rarg3, j_rarg3);
3081 #ifdef _WIN64
3082     // Allocate abi space for args but be sure to keep stack aligned
3083     __ subptr(rsp, 6*wordSize);
3084     store_parameter(j_rarg4, 4);
3085 #ifndef PRODUCT
3086     if (PrintC1Statistics) {
3087       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3088     }
3089 #endif
3090     __ call(RuntimeAddress(copyfunc_addr));
3091     __ addptr(rsp, 6*wordSize);
3092 #else
3093     __ mov(c_rarg4, j_rarg4);
3094 #ifndef PRODUCT
3095     if (PrintC1Statistics) {
3096       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3097     }
3098 #endif
3099     __ call(RuntimeAddress(copyfunc_addr));
3100 #endif // _WIN64
3101 #else
3102     __ push(length);
3103     __ push(dst_pos);
3104     __ push(dst);
3105     __ push(src_pos);
3106     __ push(src);
3107 
3108 #ifndef PRODUCT
3109     if (PrintC1Statistics) {
3110       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3111     }
3112 #endif
3113     __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3114 
3115 #endif // _LP64
3116 
3117     __ testl(rax, rax);
3118     __ jcc(Assembler::equal, *stub->continuation());
3119 
3120     __ mov(tmp, rax);
3121     __ xorl(tmp, -1);
3122 
3123     // Reload values from the stack so they are where the stub
3124     // expects them.
3125     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3126     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3127     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3128     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3129     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3130 
3131     __ subl(length, tmp);
3132     __ addl(src_pos, tmp);
3133     __ addl(dst_pos, tmp);
3134     __ jmp(*stub->entry());
3135 
3136     __ bind(*stub->continuation());
3137     return;
3138   }
3139 
3140   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3141 
3142   int elem_size = type2aelembytes(basic_type);
3143   Address::ScaleFactor scale;
3144 
3145   switch (elem_size) {
3146     case 1 :
3147       scale = Address::times_1;
3148       break;
3149     case 2 :
3150       scale = Address::times_2;
3151       break;
3152     case 4 :
3153       scale = Address::times_4;
3154       break;
3155     case 8 :
3156       scale = Address::times_8;
3157       break;
3158     default:
3159       scale = Address::no_scale;
3160       ShouldNotReachHere();
3161   }
3162 
3163   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3164   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3165 
3166   // length and pos's are all sign extended at this point on 64bit
3167 
3168   // test for null
3169   if (flags & LIR_OpArrayCopy::src_null_check) {
3170     __ testptr(src, src);
3171     __ jcc(Assembler::zero, *stub->entry());
3172   }
3173   if (flags & LIR_OpArrayCopy::dst_null_check) {
3174     __ testptr(dst, dst);
3175     __ jcc(Assembler::zero, *stub->entry());
3176   }
3177 
3178   // If the compiler was not able to prove that exact type of the source or the destination
3179   // of the arraycopy is an array type, check at runtime if the source or the destination is
3180   // an instance type.
3181   if (flags & LIR_OpArrayCopy::type_check) {
3182     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3183       __ load_klass(tmp, dst, tmp_load_klass);
3184       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3185       __ jcc(Assembler::greaterEqual, *stub->entry());
3186     }
3187 
3188     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3189       __ load_klass(tmp, src, tmp_load_klass);
3190       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3191       __ jcc(Assembler::greaterEqual, *stub->entry());
3192     }
3193   }
3194 
3195   // check if negative
3196   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3197     __ testl(src_pos, src_pos);
3198     __ jcc(Assembler::less, *stub->entry());
3199   }
3200   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3201     __ testl(dst_pos, dst_pos);
3202     __ jcc(Assembler::less, *stub->entry());
3203   }
3204 
3205   if (flags & LIR_OpArrayCopy::src_range_check) {
3206     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3207     __ cmpl(tmp, src_length_addr);
3208     __ jcc(Assembler::above, *stub->entry());
3209   }
3210   if (flags & LIR_OpArrayCopy::dst_range_check) {
3211     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3212     __ cmpl(tmp, dst_length_addr);
3213     __ jcc(Assembler::above, *stub->entry());
3214   }
3215 
3216   if (flags & LIR_OpArrayCopy::length_positive_check) {
3217     __ testl(length, length);
3218     __ jcc(Assembler::less, *stub->entry());
3219   }
3220 
3221 #ifdef _LP64
3222   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3223   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3224 #endif
3225 
3226   if (flags & LIR_OpArrayCopy::type_check) {
3227     // We don't know the array types are compatible
3228     if (basic_type != T_OBJECT) {
3229       // Simple test for basic type arrays
3230       __ cmp_klasses_from_objects(src, dst, tmp, tmp2);
3231       __ jcc(Assembler::notEqual, *stub->entry());
3232     } else {
3233       // For object arrays, if src is a sub class of dst then we can
3234       // safely do the copy.
3235       Label cont, slow;
3236 
3237       __ push(src);
3238       __ push(dst);
3239 
3240       __ load_klass(src, src, tmp_load_klass);
3241       __ load_klass(dst, dst, tmp_load_klass);
3242 
3243       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr);
3244 
3245       __ push(src);
3246       __ push(dst);
3247       __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
3248       __ pop(dst);
3249       __ pop(src);
3250 
3251       __ testl(src, src);
3252       __ jcc(Assembler::notEqual, cont);
3253 
3254       __ bind(slow);
3255       __ pop(dst);
3256       __ pop(src);
3257 
3258       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3259       if (copyfunc_addr != nullptr) { // use stub if available
3260         // src is not a sub class of dst so we have to do a
3261         // per-element check.
3262 
3263         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3264         if ((flags & mask) != mask) {
3265           // Check that at least both of them object arrays.
3266           assert(flags & mask, "one of the two should be known to be an object array");
3267 
3268           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3269             __ load_klass(tmp, src, tmp_load_klass);
3270           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3271             __ load_klass(tmp, dst, tmp_load_klass);
3272           }
3273           int lh_offset = in_bytes(Klass::layout_helper_offset());
3274           Address klass_lh_addr(tmp, lh_offset);
3275           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3276           __ cmpl(klass_lh_addr, objArray_lh);
3277           __ jcc(Assembler::notEqual, *stub->entry());
3278         }
3279 
3280        // Spill because stubs can use any register they like and it's
3281        // easier to restore just those that we care about.
3282        store_parameter(dst, 0);
3283        store_parameter(dst_pos, 1);
3284        store_parameter(length, 2);
3285        store_parameter(src_pos, 3);
3286        store_parameter(src, 4);
3287 
3288 #ifndef _LP64
3289        Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3290         __ movptr(tmp, dst_klass_addr);
3291         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3292         __ push(tmp);
3293         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3294         __ push(tmp);
3295         __ push(length);
3296         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3297         __ push(tmp);
3298         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3299         __ push(tmp);
3300 
3301         __ call_VM_leaf(copyfunc_addr, 5);
3302 #else
3303         __ movl2ptr(length, length); //higher 32bits must be null
3304 
3305         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3306         assert_different_registers(c_rarg0, dst, dst_pos, length);
3307         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3308         assert_different_registers(c_rarg1, dst, length);
3309 
3310         __ mov(c_rarg2, length);
3311         assert_different_registers(c_rarg2, dst);
3312 
3313 #ifdef _WIN64
3314         // Allocate abi space for args but be sure to keep stack aligned
3315         __ subptr(rsp, 6*wordSize);
3316         __ load_klass(c_rarg3, dst, tmp_load_klass);
3317         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3318         store_parameter(c_rarg3, 4);
3319         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3320         __ call(RuntimeAddress(copyfunc_addr));
3321         __ addptr(rsp, 6*wordSize);
3322 #else
3323         __ load_klass(c_rarg4, dst, tmp_load_klass);
3324         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3325         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3326         __ call(RuntimeAddress(copyfunc_addr));
3327 #endif
3328 
3329 #endif
3330 
3331 #ifndef PRODUCT
3332         if (PrintC1Statistics) {
3333           Label failed;
3334           __ testl(rax, rax);
3335           __ jcc(Assembler::notZero, failed);
3336           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1);
3337           __ bind(failed);
3338         }
3339 #endif
3340 
3341         __ testl(rax, rax);
3342         __ jcc(Assembler::zero, *stub->continuation());
3343 
3344 #ifndef PRODUCT
3345         if (PrintC1Statistics) {
3346           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1);
3347         }
3348 #endif
3349 
3350         __ mov(tmp, rax);
3351 
3352         __ xorl(tmp, -1);
3353 
3354         // Restore previously spilled arguments
3355         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3356         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3357         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3358         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3359         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3360 
3361 
3362         __ subl(length, tmp);
3363         __ addl(src_pos, tmp);
3364         __ addl(dst_pos, tmp);
3365       }
3366 
3367       __ jmp(*stub->entry());
3368 
3369       __ bind(cont);
3370       __ pop(dst);
3371       __ pop(src);
3372     }
3373   }
3374 
3375 #ifdef ASSERT
3376   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3377     // Sanity check the known type with the incoming class.  For the
3378     // primitive case the types must match exactly with src.klass and
3379     // dst.klass each exactly matching the default type.  For the
3380     // object array case, if no type check is needed then either the
3381     // dst type is exactly the expected type and the src type is a
3382     // subtype which we can't check or src is the same array as dst
3383     // but not necessarily exactly of type default_type.
3384     Label known_ok, halt;
3385     __ mov_metadata(tmp, default_type->constant_encoding());
3386 #ifdef _LP64
3387     if (UseCompressedClassPointers) {
3388       __ encode_klass_not_null(tmp, rscratch1);
3389     }
3390 #endif
3391 
3392     if (basic_type != T_OBJECT) {
3393       __ cmp_klass(tmp, dst, tmp2);
3394       __ jcc(Assembler::notEqual, halt);
3395       __ cmp_klass(tmp, src, tmp2);
3396       __ jcc(Assembler::equal, known_ok);
3397     } else {
3398       __ cmp_klass(tmp, dst, tmp2);
3399       __ jcc(Assembler::equal, known_ok);
3400       __ cmpptr(src, dst);
3401       __ jcc(Assembler::equal, known_ok);
3402     }
3403     __ bind(halt);
3404     __ stop("incorrect type information in arraycopy");
3405     __ bind(known_ok);
3406   }
3407 #endif
3408 
3409 #ifndef PRODUCT
3410   if (PrintC1Statistics) {
3411     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1);
3412   }
3413 #endif
3414 
3415 #ifdef _LP64
3416   assert_different_registers(c_rarg0, dst, dst_pos, length);
3417   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3418   assert_different_registers(c_rarg1, length);
3419   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3420   __ mov(c_rarg2, length);
3421 
3422 #else
3423   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3424   store_parameter(tmp, 0);
3425   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3426   store_parameter(tmp, 1);
3427   store_parameter(length, 2);
3428 #endif // _LP64
3429 
3430   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3431   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3432   const char *name;
3433   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3434   __ call_VM_leaf(entry, 0);
3435 
3436   if (stub != nullptr) {
3437     __ bind(*stub->continuation());
3438   }
3439 }
3440 
3441 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3442   assert(op->crc()->is_single_cpu(),  "crc must be register");
3443   assert(op->val()->is_single_cpu(),  "byte value must be register");
3444   assert(op->result_opr()->is_single_cpu(), "result must be register");
3445   Register crc = op->crc()->as_register();
3446   Register val = op->val()->as_register();
3447   Register res = op->result_opr()->as_register();
3448 
3449   assert_different_registers(val, crc, res);
3450 
3451   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3452   __ notl(crc); // ~crc
3453   __ update_byte_crc32(crc, val, res);
3454   __ notl(crc); // ~crc
3455   __ mov(res, crc);
3456 }
3457 
3458 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3459   Register obj = op->obj_opr()->as_register();  // may not be an oop
3460   Register hdr = op->hdr_opr()->as_register();
3461   Register lock = op->lock_opr()->as_register();
3462   if (LockingMode == LM_MONITOR) {
3463     if (op->info() != nullptr) {
3464       add_debug_info_for_null_check_here(op->info());
3465       __ null_check(obj);
3466     }
3467     __ jmp(*op->stub()->entry());
3468   } else if (op->code() == lir_lock) {
3469     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3470     Register tmp = LockingMode == LM_LIGHTWEIGHT ? op->scratch_opr()->as_register() : noreg;
3471     // add debug info for NullPointerException only if one is possible
3472     int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry());
3473     if (op->info() != nullptr) {
3474       add_debug_info_for_null_check(null_check_offset, op->info());
3475     }
3476     // done
3477   } else if (op->code() == lir_unlock) {
3478     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3479     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3480   } else {
3481     Unimplemented();
3482   }
3483   __ bind(*op->stub()->continuation());
3484 }
3485 
3486 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
3487   Register obj = op->obj()->as_pointer_register();
3488   Register result = op->result_opr()->as_pointer_register();
3489 
3490   CodeEmitInfo* info = op->info();
3491   if (info != nullptr) {
3492     add_debug_info_for_null_check_here(info);
3493   }
3494 
3495   __ load_klass(result, obj, rscratch1);
3496 }
3497 
3498 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3499   ciMethod* method = op->profiled_method();
3500   int bci          = op->profiled_bci();
3501   ciMethod* callee = op->profiled_callee();
3502   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3503 
3504   // Update counter for all call types
3505   ciMethodData* md = method->method_data_or_null();
3506   assert(md != nullptr, "Sanity");
3507   ciProfileData* data = md->bci_to_data(bci);
3508   assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
3509   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3510   Register mdo  = op->mdo()->as_register();
3511   __ mov_metadata(mdo, md->constant_encoding());
3512   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3513   // Perform additional virtual call profiling for invokevirtual and
3514   // invokeinterface bytecodes
3515   if (op->should_profile_receiver_type()) {
3516     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3517     Register recv = op->recv()->as_register();
3518     assert_different_registers(mdo, recv);
3519     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3520     ciKlass* known_klass = op->known_holder();
3521     if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
3522       // We know the type that will be seen at this call site; we can
3523       // statically update the MethodData* rather than needing to do
3524       // dynamic tests on the receiver type
3525 
3526       // NOTE: we should probably put a lock around this search to
3527       // avoid collisions by concurrent compilations
3528       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3529       uint i;
3530       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3531         ciKlass* receiver = vc_data->receiver(i);
3532         if (known_klass->equals(receiver)) {
3533           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3534           __ addptr(data_addr, DataLayout::counter_increment);
3535           return;
3536         }
3537       }
3538 
3539       // Receiver type not found in profile data; select an empty slot
3540 
3541       // Note that this is less efficient than it should be because it
3542       // always does a write to the receiver part of the
3543       // VirtualCallData rather than just the first time
3544       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3545         ciKlass* receiver = vc_data->receiver(i);
3546         if (receiver == nullptr) {
3547           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3548           __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1);
3549           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3550           __ addptr(data_addr, DataLayout::counter_increment);
3551           return;
3552         }
3553       }
3554     } else {
3555       __ load_klass(recv, recv, tmp_load_klass);
3556       Label update_done;
3557       type_profile_helper(mdo, md, data, recv, &update_done);
3558       // Receiver did not match any saved receiver and there is no empty row for it.
3559       // Increment total counter to indicate polymorphic case.
3560       __ addptr(counter_addr, DataLayout::counter_increment);
3561 
3562       __ bind(update_done);
3563     }
3564   } else {
3565     // Static call
3566     __ addptr(counter_addr, DataLayout::counter_increment);
3567   }
3568 }
3569 
3570 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3571   Register obj = op->obj()->as_register();
3572   Register tmp = op->tmp()->as_pointer_register();
3573   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3574   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3575   ciKlass* exact_klass = op->exact_klass();
3576   intptr_t current_klass = op->current_klass();
3577   bool not_null = op->not_null();
3578   bool no_conflict = op->no_conflict();
3579 
3580   Label update, next, none;
3581 
3582   bool do_null = !not_null;
3583   bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3584   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3585 
3586   assert(do_null || do_update, "why are we here?");
3587   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3588 
3589   __ verify_oop(obj);
3590 
3591 #ifdef ASSERT
3592   if (obj == tmp) {
3593 #ifdef _LP64
3594     assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
3595 #else
3596     assert_different_registers(obj, mdo_addr.base(), mdo_addr.index());
3597 #endif
3598   } else {
3599 #ifdef _LP64
3600     assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index());
3601 #else
3602     assert_different_registers(obj, tmp, mdo_addr.base(), mdo_addr.index());
3603 #endif
3604   }
3605 #endif
3606   if (do_null) {
3607     __ testptr(obj, obj);
3608     __ jccb(Assembler::notZero, update);
3609     if (!TypeEntries::was_null_seen(current_klass)) {
3610       __ testptr(mdo_addr, TypeEntries::null_seen);
3611 #ifndef ASSERT
3612       __ jccb(Assembler::notZero, next); // already set
3613 #else
3614       __ jcc(Assembler::notZero, next); // already set
3615 #endif
3616       // atomic update to prevent overwriting Klass* with 0
3617       __ lock();
3618       __ orptr(mdo_addr, TypeEntries::null_seen);
3619     }
3620     if (do_update) {
3621 #ifndef ASSERT
3622       __ jmpb(next);
3623     }
3624 #else
3625       __ jmp(next);
3626     }
3627   } else {
3628     __ testptr(obj, obj);
3629     __ jcc(Assembler::notZero, update);
3630     __ stop("unexpected null obj");
3631 #endif
3632   }
3633 
3634   __ bind(update);
3635 
3636   if (do_update) {
3637 #ifdef ASSERT
3638     if (exact_klass != nullptr) {
3639       Label ok;
3640       __ load_klass(tmp, obj, tmp_load_klass);
3641       __ push(tmp);
3642       __ mov_metadata(tmp, exact_klass->constant_encoding());
3643       __ cmpptr(tmp, Address(rsp, 0));
3644       __ jcc(Assembler::equal, ok);
3645       __ stop("exact klass and actual klass differ");
3646       __ bind(ok);
3647       __ pop(tmp);
3648     }
3649 #endif
3650     if (!no_conflict) {
3651       if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
3652         if (exact_klass != nullptr) {
3653           __ mov_metadata(tmp, exact_klass->constant_encoding());
3654         } else {
3655           __ load_klass(tmp, obj, tmp_load_klass);
3656         }
3657 #ifdef _LP64
3658         __ mov(rscratch1, tmp); // save original value before XOR
3659 #endif
3660         __ xorptr(tmp, mdo_addr);
3661         __ testptr(tmp, TypeEntries::type_klass_mask);
3662         // klass seen before, nothing to do. The unknown bit may have been
3663         // set already but no need to check.
3664         __ jccb(Assembler::zero, next);
3665 
3666         __ testptr(tmp, TypeEntries::type_unknown);
3667         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3668 
3669         if (TypeEntries::is_type_none(current_klass)) {
3670           __ testptr(mdo_addr, TypeEntries::type_mask);
3671           __ jccb(Assembler::zero, none);
3672 #ifdef _LP64
3673           // There is a chance that the checks above (re-reading profiling
3674           // data from memory) fail if another thread has just set the
3675           // profiling to this obj's klass
3676           __ mov(tmp, rscratch1); // get back original value before XOR
3677           __ xorptr(tmp, mdo_addr);
3678           __ testptr(tmp, TypeEntries::type_klass_mask);
3679           __ jccb(Assembler::zero, next);
3680 #endif
3681         }
3682       } else {
3683         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3684                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3685 
3686         __ testptr(mdo_addr, TypeEntries::type_unknown);
3687         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3688       }
3689 
3690       // different than before. Cannot keep accurate profile.
3691       __ orptr(mdo_addr, TypeEntries::type_unknown);
3692 
3693       if (TypeEntries::is_type_none(current_klass)) {
3694         __ jmpb(next);
3695 
3696         __ bind(none);
3697         // first time here. Set profile type.
3698         __ movptr(mdo_addr, tmp);
3699 #ifdef ASSERT
3700         __ andptr(tmp, TypeEntries::type_klass_mask);
3701         __ verify_klass_ptr(tmp);
3702 #endif
3703       }
3704     } else {
3705       // There's a single possible klass at this profile point
3706       assert(exact_klass != nullptr, "should be");
3707       if (TypeEntries::is_type_none(current_klass)) {
3708         __ mov_metadata(tmp, exact_klass->constant_encoding());
3709         __ xorptr(tmp, mdo_addr);
3710         __ testptr(tmp, TypeEntries::type_klass_mask);
3711 #ifdef ASSERT
3712         __ jcc(Assembler::zero, next);
3713 
3714         {
3715           Label ok;
3716           __ push(tmp);
3717           __ testptr(mdo_addr, TypeEntries::type_mask);
3718           __ jcc(Assembler::zero, ok);
3719           // may have been set by another thread
3720           __ mov_metadata(tmp, exact_klass->constant_encoding());
3721           __ xorptr(tmp, mdo_addr);
3722           __ testptr(tmp, TypeEntries::type_mask);
3723           __ jcc(Assembler::zero, ok);
3724 
3725           __ stop("unexpected profiling mismatch");
3726           __ bind(ok);
3727           __ pop(tmp);
3728         }
3729 #else
3730         __ jccb(Assembler::zero, next);
3731 #endif
3732         // first time here. Set profile type.
3733         __ movptr(mdo_addr, tmp);
3734 #ifdef ASSERT
3735         __ andptr(tmp, TypeEntries::type_klass_mask);
3736         __ verify_klass_ptr(tmp);
3737 #endif
3738       } else {
3739         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3740                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3741 
3742         __ testptr(mdo_addr, TypeEntries::type_unknown);
3743         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3744 
3745         __ orptr(mdo_addr, TypeEntries::type_unknown);
3746       }
3747     }
3748   }
3749   __ bind(next);
3750 }
3751 
3752 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3753   Unimplemented();
3754 }
3755 
3756 
3757 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3758   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3759 }
3760 
3761 
3762 void LIR_Assembler::align_backward_branch_target() {
3763   __ align(BytesPerWord);
3764 }
3765 
3766 
3767 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3768   if (left->is_single_cpu()) {
3769     __ negl(left->as_register());
3770     move_regs(left->as_register(), dest->as_register());
3771 
3772   } else if (left->is_double_cpu()) {
3773     Register lo = left->as_register_lo();
3774 #ifdef _LP64
3775     Register dst = dest->as_register_lo();
3776     __ movptr(dst, lo);
3777     __ negptr(dst);
3778 #else
3779     Register hi = left->as_register_hi();
3780     __ lneg(hi, lo);
3781     if (dest->as_register_lo() == hi) {
3782       assert(dest->as_register_hi() != lo, "destroying register");
3783       move_regs(hi, dest->as_register_hi());
3784       move_regs(lo, dest->as_register_lo());
3785     } else {
3786       move_regs(lo, dest->as_register_lo());
3787       move_regs(hi, dest->as_register_hi());
3788     }
3789 #endif // _LP64
3790 
3791   } else if (dest->is_single_xmm()) {
3792     assert(!tmp->is_valid(), "do not need temporary");
3793     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3794       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3795     }
3796     __ xorps(dest->as_xmm_float_reg(),
3797              ExternalAddress((address)float_signflip_pool),
3798              rscratch1);
3799   } else if (dest->is_double_xmm()) {
3800     assert(!tmp->is_valid(), "do not need temporary");
3801     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3802       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3803     }
3804     __ xorpd(dest->as_xmm_double_reg(),
3805              ExternalAddress((address)double_signflip_pool),
3806              rscratch1);
3807 #ifndef _LP64
3808   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3809     assert(left->fpu() == 0, "arg must be on TOS");
3810     assert(dest->fpu() == 0, "dest must be TOS");
3811     __ fchs();
3812 #endif // !_LP64
3813 
3814   } else {
3815     ShouldNotReachHere();
3816   }
3817 }
3818 
3819 
3820 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3821   assert(src->is_address(), "must be an address");
3822   assert(dest->is_register(), "must be a register");
3823 
3824   PatchingStub* patch = nullptr;
3825   if (patch_code != lir_patch_none) {
3826     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3827   }
3828 
3829   Register reg = dest->as_pointer_register();
3830   LIR_Address* addr = src->as_address_ptr();
3831   __ lea(reg, as_Address(addr));
3832 
3833   if (patch != nullptr) {
3834     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
3835   }
3836 }
3837 
3838 
3839 
3840 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3841   assert(!tmp->is_valid(), "don't need temporary");
3842   __ call(RuntimeAddress(dest));
3843   if (info != nullptr) {
3844     add_call_info_here(info);
3845   }
3846   __ post_call_nop();
3847 }
3848 
3849 
3850 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3851   assert(type == T_LONG, "only for volatile long fields");
3852 
3853   if (info != nullptr) {
3854     add_debug_info_for_null_check_here(info);
3855   }
3856 
3857   if (src->is_double_xmm()) {
3858     if (dest->is_double_cpu()) {
3859 #ifdef _LP64
3860       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3861 #else
3862       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3863       __ psrlq(src->as_xmm_double_reg(), 32);
3864       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3865 #endif // _LP64
3866     } else if (dest->is_double_stack()) {
3867       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3868     } else if (dest->is_address()) {
3869       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3870     } else {
3871       ShouldNotReachHere();
3872     }
3873 
3874   } else if (dest->is_double_xmm()) {
3875     if (src->is_double_stack()) {
3876       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3877     } else if (src->is_address()) {
3878       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3879     } else {
3880       ShouldNotReachHere();
3881     }
3882 
3883 #ifndef _LP64
3884   } else if (src->is_double_fpu()) {
3885     assert(src->fpu_regnrLo() == 0, "must be TOS");
3886     if (dest->is_double_stack()) {
3887       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3888     } else if (dest->is_address()) {
3889       __ fistp_d(as_Address(dest->as_address_ptr()));
3890     } else {
3891       ShouldNotReachHere();
3892     }
3893 
3894   } else if (dest->is_double_fpu()) {
3895     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3896     if (src->is_double_stack()) {
3897       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3898     } else if (src->is_address()) {
3899       __ fild_d(as_Address(src->as_address_ptr()));
3900     } else {
3901       ShouldNotReachHere();
3902     }
3903 #endif // !_LP64
3904 
3905   } else {
3906     ShouldNotReachHere();
3907   }
3908 }
3909 
3910 #ifdef ASSERT
3911 // emit run-time assertion
3912 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3913   assert(op->code() == lir_assert, "must be");
3914 
3915   if (op->in_opr1()->is_valid()) {
3916     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3917     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3918   } else {
3919     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3920     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3921   }
3922 
3923   Label ok;
3924   if (op->condition() != lir_cond_always) {
3925     Assembler::Condition acond = Assembler::zero;
3926     switch (op->condition()) {
3927       case lir_cond_equal:        acond = Assembler::equal;       break;
3928       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3929       case lir_cond_less:         acond = Assembler::less;        break;
3930       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3931       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3932       case lir_cond_greater:      acond = Assembler::greater;     break;
3933       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3934       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3935       default:                    ShouldNotReachHere();
3936     }
3937     __ jcc(acond, ok);
3938   }
3939   if (op->halt()) {
3940     const char* str = __ code_string(op->msg());
3941     __ stop(str);
3942   } else {
3943     breakpoint();
3944   }
3945   __ bind(ok);
3946 }
3947 #endif
3948 
3949 void LIR_Assembler::membar() {
3950   // QQQ sparc TSO uses this,
3951   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3952 }
3953 
3954 void LIR_Assembler::membar_acquire() {
3955   // No x86 machines currently require load fences
3956 }
3957 
3958 void LIR_Assembler::membar_release() {
3959   // No x86 machines currently require store fences
3960 }
3961 
3962 void LIR_Assembler::membar_loadload() {
3963   // no-op
3964   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3965 }
3966 
3967 void LIR_Assembler::membar_storestore() {
3968   // no-op
3969   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3970 }
3971 
3972 void LIR_Assembler::membar_loadstore() {
3973   // no-op
3974   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3975 }
3976 
3977 void LIR_Assembler::membar_storeload() {
3978   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3979 }
3980 
3981 void LIR_Assembler::on_spin_wait() {
3982   __ pause ();
3983 }
3984 
3985 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3986   assert(result_reg->is_register(), "check");
3987 #ifdef _LP64
3988   // __ get_thread(result_reg->as_register_lo());
3989   __ mov(result_reg->as_register(), r15_thread);
3990 #else
3991   __ get_thread(result_reg->as_register());
3992 #endif // _LP64
3993 }
3994 
3995 
3996 void LIR_Assembler::peephole(LIR_List*) {
3997   // do nothing for now
3998 }
3999 
4000 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
4001   assert(data == dest, "xchg/xadd uses only 2 operands");
4002 
4003   if (data->type() == T_INT) {
4004     if (code == lir_xadd) {
4005       __ lock();
4006       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
4007     } else {
4008       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4009     }
4010   } else if (data->is_oop()) {
4011     assert (code == lir_xchg, "xadd for oops");
4012     Register obj = data->as_register();
4013 #ifdef _LP64
4014     if (UseCompressedOops) {
4015       __ encode_heap_oop(obj);
4016       __ xchgl(obj, as_Address(src->as_address_ptr()));
4017       __ decode_heap_oop(obj);
4018     } else {
4019       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4020     }
4021 #else
4022     __ xchgl(obj, as_Address(src->as_address_ptr()));
4023 #endif
4024   } else if (data->type() == T_LONG) {
4025 #ifdef _LP64
4026     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4027     if (code == lir_xadd) {
4028       __ lock();
4029       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4030     } else {
4031       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4032     }
4033 #else
4034     ShouldNotReachHere();
4035 #endif
4036   } else {
4037     ShouldNotReachHere();
4038   }
4039 }
4040 
4041 #undef __