1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "c1/c1_CodeStubs.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_MacroAssembler.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/collectedHeap.hpp" 37 #include "gc/shared/gc_globals.hpp" 38 #include "nativeInst_x86.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/safepointMechanism.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "runtime/stubRoutines.hpp" 44 #include "utilities/powerOfTwo.hpp" 45 #include "vmreg_x86.inline.hpp" 46 47 48 // These masks are used to provide 128-bit aligned bitmasks to the XMM 49 // instructions, to allow sign-masking or sign-bit flipping. They allow 50 // fast versions of NegF/NegD and AbsF/AbsD. 51 52 // Note: 'double' and 'long long' have 32-bits alignment on x86. 53 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 54 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 55 // of 128-bits operands for SSE instructions. 56 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF))); 57 // Store the value to a 128-bits operand. 58 operand[0] = lo; 59 operand[1] = hi; 60 return operand; 61 } 62 63 // Buffer for 128-bits masks used by SSE instructions. 64 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment) 65 66 // Static initialization during VM startup. 67 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF)); 68 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF)); 69 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000)); 70 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000)); 71 72 73 NEEDS_CLEANUP // remove this definitions ? 74 const Register SYNC_header = rax; // synchronization header 75 const Register SHIFT_count = rcx; // where count for shift operations must be 76 77 #define __ _masm-> 78 79 80 static void select_different_registers(Register preserve, 81 Register extra, 82 Register &tmp1, 83 Register &tmp2) { 84 if (tmp1 == preserve) { 85 assert_different_registers(tmp1, tmp2, extra); 86 tmp1 = extra; 87 } else if (tmp2 == preserve) { 88 assert_different_registers(tmp1, tmp2, extra); 89 tmp2 = extra; 90 } 91 assert_different_registers(preserve, tmp1, tmp2); 92 } 93 94 95 96 static void select_different_registers(Register preserve, 97 Register extra, 98 Register &tmp1, 99 Register &tmp2, 100 Register &tmp3) { 101 if (tmp1 == preserve) { 102 assert_different_registers(tmp1, tmp2, tmp3, extra); 103 tmp1 = extra; 104 } else if (tmp2 == preserve) { 105 assert_different_registers(tmp1, tmp2, tmp3, extra); 106 tmp2 = extra; 107 } else if (tmp3 == preserve) { 108 assert_different_registers(tmp1, tmp2, tmp3, extra); 109 tmp3 = extra; 110 } 111 assert_different_registers(preserve, tmp1, tmp2, tmp3); 112 } 113 114 115 116 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 117 if (opr->is_constant()) { 118 LIR_Const* constant = opr->as_constant_ptr(); 119 switch (constant->type()) { 120 case T_INT: { 121 return true; 122 } 123 124 default: 125 return false; 126 } 127 } 128 return false; 129 } 130 131 132 LIR_Opr LIR_Assembler::receiverOpr() { 133 return FrameMap::receiver_opr; 134 } 135 136 LIR_Opr LIR_Assembler::osrBufferPointer() { 137 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 138 } 139 140 //--------------fpu register translations----------------------- 141 142 143 address LIR_Assembler::float_constant(float f) { 144 address const_addr = __ float_constant(f); 145 if (const_addr == nullptr) { 146 bailout("const section overflow"); 147 return __ code()->consts()->start(); 148 } else { 149 return const_addr; 150 } 151 } 152 153 154 address LIR_Assembler::double_constant(double d) { 155 address const_addr = __ double_constant(d); 156 if (const_addr == nullptr) { 157 bailout("const section overflow"); 158 return __ code()->consts()->start(); 159 } else { 160 return const_addr; 161 } 162 } 163 164 void LIR_Assembler::breakpoint() { 165 __ int3(); 166 } 167 168 void LIR_Assembler::push(LIR_Opr opr) { 169 if (opr->is_single_cpu()) { 170 __ push_reg(opr->as_register()); 171 } else if (opr->is_double_cpu()) { 172 __ push_reg(opr->as_register_lo()); 173 } else if (opr->is_stack()) { 174 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix())); 175 } else if (opr->is_constant()) { 176 LIR_Const* const_opr = opr->as_constant_ptr(); 177 if (const_opr->type() == T_OBJECT) { 178 __ push_oop(const_opr->as_jobject(), rscratch1); 179 } else if (const_opr->type() == T_INT) { 180 __ push_jint(const_opr->as_jint()); 181 } else { 182 ShouldNotReachHere(); 183 } 184 185 } else { 186 ShouldNotReachHere(); 187 } 188 } 189 190 void LIR_Assembler::pop(LIR_Opr opr) { 191 if (opr->is_single_cpu()) { 192 __ pop_reg(opr->as_register()); 193 } else { 194 ShouldNotReachHere(); 195 } 196 } 197 198 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { 199 return addr->base()->is_illegal() && addr->index()->is_illegal(); 200 } 201 202 //------------------------------------------- 203 204 Address LIR_Assembler::as_Address(LIR_Address* addr) { 205 return as_Address(addr, rscratch1); 206 } 207 208 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 209 if (addr->base()->is_illegal()) { 210 assert(addr->index()->is_illegal(), "must be illegal too"); 211 AddressLiteral laddr((address)addr->disp(), relocInfo::none); 212 if (! __ reachable(laddr)) { 213 __ movptr(tmp, laddr.addr()); 214 Address res(tmp, 0); 215 return res; 216 } else { 217 return __ as_Address(laddr); 218 } 219 } 220 221 Register base = addr->base()->as_pointer_register(); 222 223 if (addr->index()->is_illegal()) { 224 return Address( base, addr->disp()); 225 } else if (addr->index()->is_cpu_register()) { 226 Register index = addr->index()->as_pointer_register(); 227 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp()); 228 } else if (addr->index()->is_constant()) { 229 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp(); 230 assert(Assembler::is_simm32(addr_offset), "must be"); 231 232 return Address(base, addr_offset); 233 } else { 234 Unimplemented(); 235 return Address(); 236 } 237 } 238 239 240 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 241 Address base = as_Address(addr); 242 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord); 243 } 244 245 246 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 247 return as_Address(addr); 248 } 249 250 251 void LIR_Assembler::osr_entry() { 252 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 253 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 254 ValueStack* entry_state = osr_entry->state(); 255 int number_of_locks = entry_state->locks_size(); 256 257 // we jump here if osr happens with the interpreter 258 // state set up to continue at the beginning of the 259 // loop that triggered osr - in particular, we have 260 // the following registers setup: 261 // 262 // rcx: osr buffer 263 // 264 265 // build frame 266 ciMethod* m = compilation()->method(); 267 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 268 269 // OSR buffer is 270 // 271 // locals[nlocals-1..0] 272 // monitors[0..number_of_locks] 273 // 274 // locals is a direct copy of the interpreter frame so in the osr buffer 275 // so first slot in the local array is the last local from the interpreter 276 // and last slot is local[0] (receiver) from the interpreter 277 // 278 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 279 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 280 // in the interpreter frame (the method lock if a sync method) 281 282 // Initialize monitors in the compiled activation. 283 // rcx: pointer to osr buffer 284 // 285 // All other registers are dead at this point and the locals will be 286 // copied into place by code emitted in the IR. 287 288 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 289 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 290 int monitor_offset = BytesPerWord * method()->max_locals() + 291 (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1); 292 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 293 // the OSR buffer using 2 word entries: first the lock and then 294 // the oop. 295 for (int i = 0; i < number_of_locks; i++) { 296 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 297 #ifdef ASSERT 298 // verify the interpreter's monitor has a non-null object 299 { 300 Label L; 301 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD); 302 __ jcc(Assembler::notZero, L); 303 __ stop("locked object is null"); 304 __ bind(L); 305 } 306 #endif 307 __ movptr(rbx, Address(OSR_buf, slot_offset + 0)); 308 __ movptr(frame_map()->address_for_monitor_lock(i), rbx); 309 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 310 __ movptr(frame_map()->address_for_monitor_object(i), rbx); 311 } 312 } 313 } 314 315 316 // inline cache check; done before the frame is built. 317 int LIR_Assembler::check_icache() { 318 return __ ic_check(CodeEntryAlignment); 319 } 320 321 void LIR_Assembler::clinit_barrier(ciMethod* method) { 322 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 323 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 324 325 Label L_skip_barrier; 326 Register klass = rscratch1; 327 328 __ mov_metadata(klass, method->holder()->constant_encoding()); 329 __ clinit_barrier(klass, &L_skip_barrier /*L_fast_path*/); 330 331 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 332 333 __ bind(L_skip_barrier); 334 } 335 336 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) { 337 jobject o = nullptr; 338 PatchingStub* patch = new PatchingStub(_masm, patching_id(info)); 339 __ movoop(reg, o); 340 patching_epilog(patch, lir_patch_normal, reg, info); 341 } 342 343 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 344 Metadata* o = nullptr; 345 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id); 346 __ mov_metadata(reg, o); 347 patching_epilog(patch, lir_patch_normal, reg, info); 348 } 349 350 // This specifies the rsp decrement needed to build the frame 351 int LIR_Assembler::initial_frame_size_in_bytes() const { 352 // if rounding, must let FrameMap know! 353 354 // The frame_map records size in slots (32bit word) 355 356 // subtract two words to account for return address and link 357 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size; 358 } 359 360 361 int LIR_Assembler::emit_exception_handler() { 362 // generate code for exception handler 363 address handler_base = __ start_a_stub(exception_handler_size()); 364 if (handler_base == nullptr) { 365 // not enough space left for the handler 366 bailout("exception handler overflow"); 367 return -1; 368 } 369 370 int offset = code_offset(); 371 372 // the exception oop and pc are in rax, and rdx 373 // no other registers need to be preserved, so invalidate them 374 __ invalidate_registers(false, true, true, false, true, true); 375 376 // check that there is really an exception 377 __ verify_not_null_oop(rax); 378 379 // search an exception handler (rax: exception oop, rdx: throwing pc) 380 __ call(RuntimeAddress(Runtime1::entry_for(StubId::c1_handle_exception_from_callee_id))); 381 __ should_not_reach_here(); 382 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 383 __ end_a_stub(); 384 385 return offset; 386 } 387 388 389 // Emit the code to remove the frame from the stack in the exception 390 // unwind path. 391 int LIR_Assembler::emit_unwind_handler() { 392 #ifndef PRODUCT 393 if (CommentedAssembly) { 394 _masm->block_comment("Unwind handler"); 395 } 396 #endif 397 398 int offset = code_offset(); 399 400 // Fetch the exception from TLS and clear out exception related thread state 401 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); 402 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), NULL_WORD); 403 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), NULL_WORD); 404 405 __ bind(_unwind_handler_entry); 406 __ verify_not_null_oop(rax); 407 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 408 __ mov(rbx, rax); // Preserve the exception (rbx is always callee-saved) 409 } 410 411 // Perform needed unlocking 412 MonitorExitStub* stub = nullptr; 413 if (method()->is_synchronized()) { 414 monitor_address(0, FrameMap::rax_opr); 415 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0); 416 __ unlock_object(rdi, rsi, rax, *stub->entry()); 417 __ bind(*stub->continuation()); 418 } 419 420 if (compilation()->env()->dtrace_method_probes()) { 421 __ mov(rdi, r15_thread); 422 __ mov_metadata(rsi, method()->constant_encoding()); 423 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit))); 424 } 425 426 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 427 __ mov(rax, rbx); // Restore the exception 428 } 429 430 // remove the activation and dispatch to the unwind handler 431 __ remove_frame(initial_frame_size_in_bytes()); 432 __ jump(RuntimeAddress(Runtime1::entry_for(StubId::c1_unwind_exception_id))); 433 434 // Emit the slow path assembly 435 if (stub != nullptr) { 436 stub->emit_code(this); 437 } 438 439 return offset; 440 } 441 442 443 int LIR_Assembler::emit_deopt_handler() { 444 // generate code for exception handler 445 address handler_base = __ start_a_stub(deopt_handler_size()); 446 if (handler_base == nullptr) { 447 // not enough space left for the handler 448 bailout("deopt handler overflow"); 449 return -1; 450 } 451 452 int offset = code_offset(); 453 InternalAddress here(__ pc()); 454 455 __ pushptr(here.addr(), rscratch1); 456 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 457 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 458 __ end_a_stub(); 459 460 return offset; 461 } 462 463 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 464 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,"); 465 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) { 466 assert(result->fpu() == 0, "result must already be on TOS"); 467 } 468 469 // Pop the stack before the safepoint code 470 __ remove_frame(initial_frame_size_in_bytes()); 471 472 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 473 __ reserved_stack_check(); 474 } 475 476 // Note: we do not need to round double result; float result has the right precision 477 // the poll sets the condition code, but no data registers 478 479 code_stub->set_safepoint_offset(__ offset()); 480 __ relocate(relocInfo::poll_return_type); 481 __ safepoint_poll(*code_stub->entry(), true /* at_return */, true /* in_nmethod */); 482 __ ret(0); 483 } 484 485 486 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 487 guarantee(info != nullptr, "Shouldn't be null"); 488 int offset = __ offset(); 489 const Register poll_addr = rscratch1; 490 __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset())); 491 add_debug_info_for_branch(info); 492 __ relocate(relocInfo::poll_type); 493 address pre_pc = __ pc(); 494 __ testl(rax, Address(poll_addr, 0)); 495 address post_pc = __ pc(); 496 guarantee(pointer_delta(post_pc, pre_pc, 1) == 3, "must be exact length"); 497 return offset; 498 } 499 500 501 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 502 if (from_reg != to_reg) __ mov(to_reg, from_reg); 503 } 504 505 void LIR_Assembler::swap_reg(Register a, Register b) { 506 __ xchgptr(a, b); 507 } 508 509 510 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 511 assert(src->is_constant(), "should not call otherwise"); 512 assert(dest->is_register(), "should not call otherwise"); 513 LIR_Const* c = src->as_constant_ptr(); 514 515 switch (c->type()) { 516 case T_INT: { 517 assert(patch_code == lir_patch_none, "no patching handled here"); 518 __ movl(dest->as_register(), c->as_jint()); 519 break; 520 } 521 522 case T_ADDRESS: { 523 assert(patch_code == lir_patch_none, "no patching handled here"); 524 __ movptr(dest->as_register(), c->as_jint()); 525 break; 526 } 527 528 case T_LONG: { 529 assert(patch_code == lir_patch_none, "no patching handled here"); 530 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong()); 531 break; 532 } 533 534 case T_OBJECT: { 535 if (patch_code != lir_patch_none) { 536 jobject2reg_with_patching(dest->as_register(), info); 537 } else { 538 __ movoop(dest->as_register(), c->as_jobject()); 539 } 540 break; 541 } 542 543 case T_METADATA: { 544 if (patch_code != lir_patch_none) { 545 klass2reg_with_patching(dest->as_register(), info); 546 } else { 547 __ mov_metadata(dest->as_register(), c->as_metadata()); 548 } 549 break; 550 } 551 552 case T_FLOAT: { 553 if (dest->is_single_xmm()) { 554 if (UseAVX <= 2 && c->is_zero_float()) { 555 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg()); 556 } else { 557 __ movflt(dest->as_xmm_float_reg(), 558 InternalAddress(float_constant(c->as_jfloat()))); 559 } 560 } else { 561 ShouldNotReachHere(); 562 } 563 break; 564 } 565 566 case T_DOUBLE: { 567 if (dest->is_double_xmm()) { 568 if (UseAVX <= 2 && c->is_zero_double()) { 569 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg()); 570 } else { 571 __ movdbl(dest->as_xmm_double_reg(), 572 InternalAddress(double_constant(c->as_jdouble()))); 573 } 574 } else { 575 ShouldNotReachHere(); 576 } 577 break; 578 } 579 580 default: 581 ShouldNotReachHere(); 582 } 583 } 584 585 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 586 assert(src->is_constant(), "should not call otherwise"); 587 assert(dest->is_stack(), "should not call otherwise"); 588 LIR_Const* c = src->as_constant_ptr(); 589 590 switch (c->type()) { 591 case T_INT: // fall through 592 case T_FLOAT: 593 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 594 break; 595 596 case T_ADDRESS: 597 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 598 break; 599 600 case T_OBJECT: 601 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1); 602 break; 603 604 case T_LONG: // fall through 605 case T_DOUBLE: 606 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 607 lo_word_offset_in_bytes), 608 (intptr_t)c->as_jlong_bits(), 609 rscratch1); 610 break; 611 612 default: 613 ShouldNotReachHere(); 614 } 615 } 616 617 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 618 assert(src->is_constant(), "should not call otherwise"); 619 assert(dest->is_address(), "should not call otherwise"); 620 LIR_Const* c = src->as_constant_ptr(); 621 LIR_Address* addr = dest->as_address_ptr(); 622 623 int null_check_here = code_offset(); 624 switch (type) { 625 case T_INT: // fall through 626 case T_FLOAT: 627 __ movl(as_Address(addr), c->as_jint_bits()); 628 break; 629 630 case T_ADDRESS: 631 __ movptr(as_Address(addr), c->as_jint_bits()); 632 break; 633 634 case T_OBJECT: // fall through 635 case T_ARRAY: 636 if (c->as_jobject() == nullptr) { 637 if (UseCompressedOops && !wide) { 638 __ movl(as_Address(addr), NULL_WORD); 639 } else { 640 __ xorptr(rscratch1, rscratch1); 641 null_check_here = code_offset(); 642 __ movptr(as_Address(addr), rscratch1); 643 } 644 } else { 645 if (is_literal_address(addr)) { 646 ShouldNotReachHere(); 647 __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1); 648 } else { 649 __ movoop(rscratch1, c->as_jobject()); 650 if (UseCompressedOops && !wide) { 651 __ encode_heap_oop(rscratch1); 652 null_check_here = code_offset(); 653 __ movl(as_Address_lo(addr), rscratch1); 654 } else { 655 null_check_here = code_offset(); 656 __ movptr(as_Address_lo(addr), rscratch1); 657 } 658 } 659 } 660 break; 661 662 case T_LONG: // fall through 663 case T_DOUBLE: 664 if (is_literal_address(addr)) { 665 ShouldNotReachHere(); 666 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits()); 667 } else { 668 __ movptr(r10, (intptr_t)c->as_jlong_bits()); 669 null_check_here = code_offset(); 670 __ movptr(as_Address_lo(addr), r10); 671 } 672 break; 673 674 case T_BOOLEAN: // fall through 675 case T_BYTE: 676 __ movb(as_Address(addr), c->as_jint() & 0xFF); 677 break; 678 679 case T_CHAR: // fall through 680 case T_SHORT: 681 __ movw(as_Address(addr), c->as_jint() & 0xFFFF); 682 break; 683 684 default: 685 ShouldNotReachHere(); 686 }; 687 688 if (info != nullptr) { 689 add_debug_info_for_null_check(null_check_here, info); 690 } 691 } 692 693 694 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 695 assert(src->is_register(), "should not call otherwise"); 696 assert(dest->is_register(), "should not call otherwise"); 697 698 // move between cpu-registers 699 if (dest->is_single_cpu()) { 700 if (src->type() == T_LONG) { 701 // Can do LONG -> OBJECT 702 move_regs(src->as_register_lo(), dest->as_register()); 703 return; 704 } 705 assert(src->is_single_cpu(), "must match"); 706 if (src->type() == T_OBJECT) { 707 __ verify_oop(src->as_register()); 708 } 709 move_regs(src->as_register(), dest->as_register()); 710 711 } else if (dest->is_double_cpu()) { 712 if (is_reference_type(src->type())) { 713 // Surprising to me but we can see move of a long to t_object 714 __ verify_oop(src->as_register()); 715 move_regs(src->as_register(), dest->as_register_lo()); 716 return; 717 } 718 assert(src->is_double_cpu(), "must match"); 719 Register f_lo = src->as_register_lo(); 720 Register f_hi = src->as_register_hi(); 721 Register t_lo = dest->as_register_lo(); 722 Register t_hi = dest->as_register_hi(); 723 assert(f_hi == f_lo, "must be same"); 724 assert(t_hi == t_lo, "must be same"); 725 move_regs(f_lo, t_lo); 726 727 // move between xmm-registers 728 } else if (dest->is_single_xmm()) { 729 assert(src->is_single_xmm(), "must match"); 730 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg()); 731 } else if (dest->is_double_xmm()) { 732 assert(src->is_double_xmm(), "must match"); 733 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg()); 734 735 } else { 736 ShouldNotReachHere(); 737 } 738 } 739 740 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 741 assert(src->is_register(), "should not call otherwise"); 742 assert(dest->is_stack(), "should not call otherwise"); 743 744 if (src->is_single_cpu()) { 745 Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); 746 if (is_reference_type(type)) { 747 __ verify_oop(src->as_register()); 748 __ movptr (dst, src->as_register()); 749 } else if (type == T_METADATA || type == T_ADDRESS) { 750 __ movptr (dst, src->as_register()); 751 } else { 752 __ movl (dst, src->as_register()); 753 } 754 755 } else if (src->is_double_cpu()) { 756 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes); 757 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes); 758 __ movptr (dstLO, src->as_register_lo()); 759 760 } else if (src->is_single_xmm()) { 761 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 762 __ movflt(dst_addr, src->as_xmm_float_reg()); 763 764 } else if (src->is_double_xmm()) { 765 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 766 __ movdbl(dst_addr, src->as_xmm_double_reg()); 767 768 } else { 769 ShouldNotReachHere(); 770 } 771 } 772 773 774 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 775 LIR_Address* to_addr = dest->as_address_ptr(); 776 PatchingStub* patch = nullptr; 777 Register compressed_src = rscratch1; 778 779 if (is_reference_type(type)) { 780 __ verify_oop(src->as_register()); 781 if (UseCompressedOops && !wide) { 782 __ movptr(compressed_src, src->as_register()); 783 __ encode_heap_oop(compressed_src); 784 if (patch_code != lir_patch_none) { 785 info->oop_map()->set_narrowoop(compressed_src->as_VMReg()); 786 } 787 } 788 } 789 790 if (patch_code != lir_patch_none) { 791 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 792 Address toa = as_Address(to_addr); 793 assert(toa.disp() != 0, "must have"); 794 } 795 796 int null_check_here = code_offset(); 797 switch (type) { 798 case T_FLOAT: { 799 assert(src->is_single_xmm(), "not a float"); 800 __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); 801 break; 802 } 803 804 case T_DOUBLE: { 805 assert(src->is_double_xmm(), "not a double"); 806 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); 807 break; 808 } 809 810 case T_ARRAY: // fall through 811 case T_OBJECT: // fall through 812 if (UseCompressedOops && !wide) { 813 __ movl(as_Address(to_addr), compressed_src); 814 } else { 815 __ movptr(as_Address(to_addr), src->as_register()); 816 } 817 break; 818 case T_ADDRESS: 819 __ movptr(as_Address(to_addr), src->as_register()); 820 break; 821 case T_INT: 822 __ movl(as_Address(to_addr), src->as_register()); 823 break; 824 825 case T_LONG: { 826 Register from_lo = src->as_register_lo(); 827 Register from_hi = src->as_register_hi(); 828 __ movptr(as_Address_lo(to_addr), from_lo); 829 break; 830 } 831 832 case T_BYTE: // fall through 833 case T_BOOLEAN: { 834 Register src_reg = src->as_register(); 835 Address dst_addr = as_Address(to_addr); 836 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6"); 837 __ movb(dst_addr, src_reg); 838 break; 839 } 840 841 case T_CHAR: // fall through 842 case T_SHORT: 843 __ movw(as_Address(to_addr), src->as_register()); 844 break; 845 846 default: 847 ShouldNotReachHere(); 848 } 849 if (info != nullptr) { 850 add_debug_info_for_null_check(null_check_here, info); 851 } 852 853 if (patch_code != lir_patch_none) { 854 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info); 855 } 856 } 857 858 859 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 860 assert(src->is_stack(), "should not call otherwise"); 861 assert(dest->is_register(), "should not call otherwise"); 862 863 if (dest->is_single_cpu()) { 864 if (is_reference_type(type)) { 865 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 866 __ verify_oop(dest->as_register()); 867 } else if (type == T_METADATA || type == T_ADDRESS) { 868 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 869 } else { 870 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 871 } 872 873 } else if (dest->is_double_cpu()) { 874 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes); 875 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes); 876 __ movptr(dest->as_register_lo(), src_addr_LO); 877 878 } else if (dest->is_single_xmm()) { 879 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 880 __ movflt(dest->as_xmm_float_reg(), src_addr); 881 882 } else if (dest->is_double_xmm()) { 883 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 884 __ movdbl(dest->as_xmm_double_reg(), src_addr); 885 886 } else { 887 ShouldNotReachHere(); 888 } 889 } 890 891 892 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 893 if (src->is_single_stack()) { 894 if (is_reference_type(type)) { 895 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix())); 896 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix())); 897 } else { 898 //no pushl on 64bits 899 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix())); 900 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1); 901 } 902 903 } else if (src->is_double_stack()) { 904 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix())); 905 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix())); 906 907 } else { 908 ShouldNotReachHere(); 909 } 910 } 911 912 913 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 914 assert(src->is_address(), "should not call otherwise"); 915 assert(dest->is_register(), "should not call otherwise"); 916 917 LIR_Address* addr = src->as_address_ptr(); 918 Address from_addr = as_Address(addr); 919 920 if (addr->base()->type() == T_OBJECT) { 921 __ verify_oop(addr->base()->as_pointer_register()); 922 } 923 924 switch (type) { 925 case T_BOOLEAN: // fall through 926 case T_BYTE: // fall through 927 case T_CHAR: // fall through 928 case T_SHORT: 929 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) { 930 // on pre P6 processors we may get partial register stalls 931 // so blow away the value of to_rinfo before loading a 932 // partial word into it. Do it here so that it precedes 933 // the potential patch point below. 934 __ xorptr(dest->as_register(), dest->as_register()); 935 } 936 break; 937 default: 938 break; 939 } 940 941 PatchingStub* patch = nullptr; 942 if (patch_code != lir_patch_none) { 943 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 944 assert(from_addr.disp() != 0, "must have"); 945 } 946 if (info != nullptr) { 947 add_debug_info_for_null_check_here(info); 948 } 949 950 switch (type) { 951 case T_FLOAT: { 952 if (dest->is_single_xmm()) { 953 __ movflt(dest->as_xmm_float_reg(), from_addr); 954 } else { 955 ShouldNotReachHere(); 956 } 957 break; 958 } 959 960 case T_DOUBLE: { 961 if (dest->is_double_xmm()) { 962 __ movdbl(dest->as_xmm_double_reg(), from_addr); 963 } else { 964 ShouldNotReachHere(); 965 } 966 break; 967 } 968 969 case T_OBJECT: // fall through 970 case T_ARRAY: // fall through 971 if (UseCompressedOops && !wide) { 972 __ movl(dest->as_register(), from_addr); 973 } else { 974 __ movptr(dest->as_register(), from_addr); 975 } 976 break; 977 978 case T_ADDRESS: 979 __ movptr(dest->as_register(), from_addr); 980 break; 981 case T_INT: 982 __ movl(dest->as_register(), from_addr); 983 break; 984 985 case T_LONG: { 986 Register to_lo = dest->as_register_lo(); 987 Register to_hi = dest->as_register_hi(); 988 __ movptr(to_lo, as_Address_lo(addr)); 989 break; 990 } 991 992 case T_BOOLEAN: // fall through 993 case T_BYTE: { 994 Register dest_reg = dest->as_register(); 995 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 996 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 997 __ movsbl(dest_reg, from_addr); 998 } else { 999 __ movb(dest_reg, from_addr); 1000 __ shll(dest_reg, 24); 1001 __ sarl(dest_reg, 24); 1002 } 1003 break; 1004 } 1005 1006 case T_CHAR: { 1007 Register dest_reg = dest->as_register(); 1008 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1009 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1010 __ movzwl(dest_reg, from_addr); 1011 } else { 1012 __ movw(dest_reg, from_addr); 1013 } 1014 break; 1015 } 1016 1017 case T_SHORT: { 1018 Register dest_reg = dest->as_register(); 1019 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1020 __ movswl(dest_reg, from_addr); 1021 } else { 1022 __ movw(dest_reg, from_addr); 1023 __ shll(dest_reg, 16); 1024 __ sarl(dest_reg, 16); 1025 } 1026 break; 1027 } 1028 1029 default: 1030 ShouldNotReachHere(); 1031 } 1032 1033 if (patch != nullptr) { 1034 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 1035 } 1036 1037 if (is_reference_type(type)) { 1038 if (UseCompressedOops && !wide) { 1039 __ decode_heap_oop(dest->as_register()); 1040 } 1041 1042 __ verify_oop(dest->as_register()); 1043 } 1044 } 1045 1046 1047 NEEDS_CLEANUP; // This could be static? 1048 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const { 1049 int elem_size = type2aelembytes(type); 1050 switch (elem_size) { 1051 case 1: return Address::times_1; 1052 case 2: return Address::times_2; 1053 case 4: return Address::times_4; 1054 case 8: return Address::times_8; 1055 } 1056 ShouldNotReachHere(); 1057 return Address::no_scale; 1058 } 1059 1060 1061 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1062 switch (op->code()) { 1063 case lir_idiv: 1064 case lir_irem: 1065 arithmetic_idiv(op->code(), 1066 op->in_opr1(), 1067 op->in_opr2(), 1068 op->in_opr3(), 1069 op->result_opr(), 1070 op->info()); 1071 break; 1072 case lir_fmad: 1073 __ fmad(op->result_opr()->as_xmm_double_reg(), 1074 op->in_opr1()->as_xmm_double_reg(), 1075 op->in_opr2()->as_xmm_double_reg(), 1076 op->in_opr3()->as_xmm_double_reg()); 1077 break; 1078 case lir_fmaf: 1079 __ fmaf(op->result_opr()->as_xmm_float_reg(), 1080 op->in_opr1()->as_xmm_float_reg(), 1081 op->in_opr2()->as_xmm_float_reg(), 1082 op->in_opr3()->as_xmm_float_reg()); 1083 break; 1084 default: ShouldNotReachHere(); break; 1085 } 1086 } 1087 1088 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1089 #ifdef ASSERT 1090 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1091 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1092 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1093 #endif 1094 1095 if (op->cond() == lir_cond_always) { 1096 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1097 __ jmp (*(op->label())); 1098 } else { 1099 Assembler::Condition acond = Assembler::zero; 1100 if (op->code() == lir_cond_float_branch) { 1101 assert(op->ublock() != nullptr, "must have unordered successor"); 1102 __ jcc(Assembler::parity, *(op->ublock()->label())); 1103 switch(op->cond()) { 1104 case lir_cond_equal: acond = Assembler::equal; break; 1105 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1106 case lir_cond_less: acond = Assembler::below; break; 1107 case lir_cond_lessEqual: acond = Assembler::belowEqual; break; 1108 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break; 1109 case lir_cond_greater: acond = Assembler::above; break; 1110 default: ShouldNotReachHere(); 1111 } 1112 } else { 1113 switch (op->cond()) { 1114 case lir_cond_equal: acond = Assembler::equal; break; 1115 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1116 case lir_cond_less: acond = Assembler::less; break; 1117 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 1118 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 1119 case lir_cond_greater: acond = Assembler::greater; break; 1120 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 1121 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 1122 default: ShouldNotReachHere(); 1123 } 1124 } 1125 __ jcc(acond,*(op->label())); 1126 } 1127 } 1128 1129 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1130 LIR_Opr src = op->in_opr(); 1131 LIR_Opr dest = op->result_opr(); 1132 1133 switch (op->bytecode()) { 1134 case Bytecodes::_i2l: 1135 __ movl2ptr(dest->as_register_lo(), src->as_register()); 1136 break; 1137 1138 case Bytecodes::_l2i: 1139 __ movl(dest->as_register(), src->as_register_lo()); 1140 break; 1141 1142 case Bytecodes::_i2b: 1143 move_regs(src->as_register(), dest->as_register()); 1144 __ sign_extend_byte(dest->as_register()); 1145 break; 1146 1147 case Bytecodes::_i2c: 1148 move_regs(src->as_register(), dest->as_register()); 1149 __ andl(dest->as_register(), 0xFFFF); 1150 break; 1151 1152 case Bytecodes::_i2s: 1153 move_regs(src->as_register(), dest->as_register()); 1154 __ sign_extend_short(dest->as_register()); 1155 break; 1156 1157 case Bytecodes::_f2d: 1158 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); 1159 break; 1160 1161 case Bytecodes::_d2f: 1162 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); 1163 break; 1164 1165 case Bytecodes::_i2f: 1166 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register()); 1167 break; 1168 1169 case Bytecodes::_i2d: 1170 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register()); 1171 break; 1172 1173 case Bytecodes::_l2f: 1174 __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo()); 1175 break; 1176 1177 case Bytecodes::_l2d: 1178 __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo()); 1179 break; 1180 1181 case Bytecodes::_f2i: 1182 __ convert_f2i(dest->as_register(), src->as_xmm_float_reg()); 1183 break; 1184 1185 case Bytecodes::_d2i: 1186 __ convert_d2i(dest->as_register(), src->as_xmm_double_reg()); 1187 break; 1188 1189 case Bytecodes::_f2l: 1190 __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg()); 1191 break; 1192 1193 case Bytecodes::_d2l: 1194 __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg()); 1195 break; 1196 1197 default: ShouldNotReachHere(); 1198 } 1199 } 1200 1201 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1202 if (op->init_check()) { 1203 add_debug_info_for_null_check_here(op->stub()->info()); 1204 // init_state needs acquire, but x86 is TSO, and so we are already good. 1205 __ cmpb(Address(op->klass()->as_register(), 1206 InstanceKlass::init_state_offset()), 1207 InstanceKlass::fully_initialized); 1208 __ jcc(Assembler::notEqual, *op->stub()->entry()); 1209 } 1210 __ allocate_object(op->obj()->as_register(), 1211 op->tmp1()->as_register(), 1212 op->tmp2()->as_register(), 1213 op->header_size(), 1214 op->object_size(), 1215 op->klass()->as_register(), 1216 *op->stub()->entry()); 1217 __ bind(*op->stub()->continuation()); 1218 } 1219 1220 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1221 Register len = op->len()->as_register(); 1222 __ movslq(len, len); 1223 1224 if (UseSlowPath || 1225 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1226 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1227 __ jmp(*op->stub()->entry()); 1228 } else { 1229 Register tmp1 = op->tmp1()->as_register(); 1230 Register tmp2 = op->tmp2()->as_register(); 1231 Register tmp3 = op->tmp3()->as_register(); 1232 if (len == tmp1) { 1233 tmp1 = tmp3; 1234 } else if (len == tmp2) { 1235 tmp2 = tmp3; 1236 } else if (len == tmp3) { 1237 // everything is ok 1238 } else { 1239 __ mov(tmp3, len); 1240 } 1241 __ allocate_array(op->obj()->as_register(), 1242 len, 1243 tmp1, 1244 tmp2, 1245 arrayOopDesc::base_offset_in_bytes(op->type()), 1246 array_element_size(op->type()), 1247 op->klass()->as_register(), 1248 *op->stub()->entry(), 1249 op->zero_array()); 1250 } 1251 __ bind(*op->stub()->continuation()); 1252 } 1253 1254 void LIR_Assembler::type_profile_helper(Register mdo, 1255 ciMethodData *md, ciProfileData *data, 1256 Register recv, Label* update_done) { 1257 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1258 Label next_test; 1259 // See if the receiver is receiver[n]. 1260 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1261 __ jccb(Assembler::notEqual, next_test); 1262 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1263 __ addptr(data_addr, DataLayout::counter_increment); 1264 __ jmp(*update_done); 1265 __ bind(next_test); 1266 } 1267 1268 // Didn't find receiver; find next empty slot and fill it in 1269 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1270 Label next_test; 1271 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 1272 __ cmpptr(recv_addr, NULL_WORD); 1273 __ jccb(Assembler::notEqual, next_test); 1274 __ movptr(recv_addr, recv); 1275 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment); 1276 __ jmp(*update_done); 1277 __ bind(next_test); 1278 } 1279 } 1280 1281 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1282 // we always need a stub for the failure case. 1283 CodeStub* stub = op->stub(); 1284 Register obj = op->object()->as_register(); 1285 Register k_RInfo = op->tmp1()->as_register(); 1286 Register klass_RInfo = op->tmp2()->as_register(); 1287 Register dst = op->result_opr()->as_register(); 1288 ciKlass* k = op->klass(); 1289 Register Rtmp1 = noreg; 1290 Register tmp_load_klass = rscratch1; 1291 1292 // check if it needs to be profiled 1293 ciMethodData* md = nullptr; 1294 ciProfileData* data = nullptr; 1295 1296 if (op->should_profile()) { 1297 ciMethod* method = op->profiled_method(); 1298 assert(method != nullptr, "Should have method"); 1299 int bci = op->profiled_bci(); 1300 md = method->method_data_or_null(); 1301 assert(md != nullptr, "Sanity"); 1302 data = md->bci_to_data(bci); 1303 assert(data != nullptr, "need data for type check"); 1304 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1305 } 1306 Label* success_target = success; 1307 Label* failure_target = failure; 1308 1309 if (obj == k_RInfo) { 1310 k_RInfo = dst; 1311 } else if (obj == klass_RInfo) { 1312 klass_RInfo = dst; 1313 } 1314 if (k->is_loaded() && !UseCompressedClassPointers) { 1315 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1316 } else { 1317 Rtmp1 = op->tmp3()->as_register(); 1318 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1319 } 1320 1321 assert_different_registers(obj, k_RInfo, klass_RInfo); 1322 1323 __ testptr(obj, obj); 1324 if (op->should_profile()) { 1325 Label not_null; 1326 Register mdo = klass_RInfo; 1327 __ mov_metadata(mdo, md->constant_encoding()); 1328 __ jccb(Assembler::notEqual, not_null); 1329 // Object is null; update MDO and exit 1330 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1331 int header_bits = BitData::null_seen_byte_constant(); 1332 __ orb(data_addr, header_bits); 1333 __ jmp(*obj_is_null); 1334 __ bind(not_null); 1335 1336 Label update_done; 1337 Register recv = k_RInfo; 1338 __ load_klass(recv, obj, tmp_load_klass); 1339 type_profile_helper(mdo, md, data, recv, &update_done); 1340 1341 Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1342 __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment); 1343 1344 __ bind(update_done); 1345 } else { 1346 __ jcc(Assembler::equal, *obj_is_null); 1347 } 1348 1349 if (!k->is_loaded()) { 1350 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1351 } else { 1352 __ mov_metadata(k_RInfo, k->constant_encoding()); 1353 } 1354 __ verify_oop(obj); 1355 1356 if (op->fast_check()) { 1357 // get object class 1358 // not a safepoint as obj null check happens earlier 1359 if (UseCompressedClassPointers) { 1360 __ load_klass(Rtmp1, obj, tmp_load_klass); 1361 __ cmpptr(k_RInfo, Rtmp1); 1362 } else { 1363 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1364 } 1365 __ jcc(Assembler::notEqual, *failure_target); 1366 // successful cast, fall through to profile or jump 1367 } else { 1368 // get object class 1369 // not a safepoint as obj null check happens earlier 1370 __ load_klass(klass_RInfo, obj, tmp_load_klass); 1371 if (k->is_loaded()) { 1372 // See if we get an immediate positive hit 1373 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset())); 1374 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1375 __ jcc(Assembler::notEqual, *failure_target); 1376 // successful cast, fall through to profile or jump 1377 } else { 1378 // See if we get an immediate positive hit 1379 __ jcc(Assembler::equal, *success_target); 1380 // check for self 1381 __ cmpptr(klass_RInfo, k_RInfo); 1382 __ jcc(Assembler::equal, *success_target); 1383 1384 __ push_ppx(klass_RInfo); 1385 __ push_ppx(k_RInfo); 1386 __ call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1387 __ pop_ppx(klass_RInfo); 1388 __ pop_ppx(klass_RInfo); 1389 // result is a boolean 1390 __ testl(klass_RInfo, klass_RInfo); 1391 __ jcc(Assembler::equal, *failure_target); 1392 // successful cast, fall through to profile or jump 1393 } 1394 } else { 1395 // perform the fast part of the checking logic 1396 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1397 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1398 __ push_ppx(klass_RInfo); 1399 __ push_ppx(k_RInfo); 1400 __ call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1401 __ pop_ppx(klass_RInfo); 1402 __ pop_ppx(k_RInfo); 1403 // result is a boolean 1404 __ testl(k_RInfo, k_RInfo); 1405 __ jcc(Assembler::equal, *failure_target); 1406 // successful cast, fall through to profile or jump 1407 } 1408 } 1409 __ jmp(*success); 1410 } 1411 1412 1413 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1414 Register tmp_load_klass = rscratch1; 1415 LIR_Code code = op->code(); 1416 if (code == lir_store_check) { 1417 Register value = op->object()->as_register(); 1418 Register array = op->array()->as_register(); 1419 Register k_RInfo = op->tmp1()->as_register(); 1420 Register klass_RInfo = op->tmp2()->as_register(); 1421 Register Rtmp1 = op->tmp3()->as_register(); 1422 1423 CodeStub* stub = op->stub(); 1424 1425 // check if it needs to be profiled 1426 ciMethodData* md = nullptr; 1427 ciProfileData* data = nullptr; 1428 1429 if (op->should_profile()) { 1430 ciMethod* method = op->profiled_method(); 1431 assert(method != nullptr, "Should have method"); 1432 int bci = op->profiled_bci(); 1433 md = method->method_data_or_null(); 1434 assert(md != nullptr, "Sanity"); 1435 data = md->bci_to_data(bci); 1436 assert(data != nullptr, "need data for type check"); 1437 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1438 } 1439 Label done; 1440 Label* success_target = &done; 1441 Label* failure_target = stub->entry(); 1442 1443 __ testptr(value, value); 1444 if (op->should_profile()) { 1445 Label not_null; 1446 Register mdo = klass_RInfo; 1447 __ mov_metadata(mdo, md->constant_encoding()); 1448 __ jccb(Assembler::notEqual, not_null); 1449 // Object is null; update MDO and exit 1450 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1451 int header_bits = BitData::null_seen_byte_constant(); 1452 __ orb(data_addr, header_bits); 1453 __ jmp(done); 1454 __ bind(not_null); 1455 1456 Label update_done; 1457 Register recv = k_RInfo; 1458 __ load_klass(recv, value, tmp_load_klass); 1459 type_profile_helper(mdo, md, data, recv, &update_done); 1460 1461 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1462 __ addptr(counter_addr, DataLayout::counter_increment); 1463 __ bind(update_done); 1464 } else { 1465 __ jcc(Assembler::equal, done); 1466 } 1467 1468 add_debug_info_for_null_check_here(op->info_for_exception()); 1469 __ load_klass(k_RInfo, array, tmp_load_klass); 1470 __ load_klass(klass_RInfo, value, tmp_load_klass); 1471 1472 // get instance klass (it's already uncompressed) 1473 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1474 // perform the fast part of the checking logic 1475 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1476 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1477 __ push_ppx(klass_RInfo); 1478 __ push_ppx(k_RInfo); 1479 __ call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1480 __ pop_ppx(klass_RInfo); 1481 __ pop_ppx(k_RInfo); 1482 // result is a boolean 1483 __ testl(k_RInfo, k_RInfo); 1484 __ jcc(Assembler::equal, *failure_target); 1485 // fall through to the success case 1486 1487 __ bind(done); 1488 } else 1489 if (code == lir_checkcast) { 1490 Register obj = op->object()->as_register(); 1491 Register dst = op->result_opr()->as_register(); 1492 Label success; 1493 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1494 __ bind(success); 1495 if (dst != obj) { 1496 __ mov(dst, obj); 1497 } 1498 } else 1499 if (code == lir_instanceof) { 1500 Register obj = op->object()->as_register(); 1501 Register dst = op->result_opr()->as_register(); 1502 Label success, failure, done; 1503 emit_typecheck_helper(op, &success, &failure, &failure); 1504 __ bind(failure); 1505 __ xorptr(dst, dst); 1506 __ jmpb(done); 1507 __ bind(success); 1508 __ movptr(dst, 1); 1509 __ bind(done); 1510 } else { 1511 ShouldNotReachHere(); 1512 } 1513 1514 } 1515 1516 1517 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1518 if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { 1519 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1520 Register newval = op->new_value()->as_register(); 1521 Register cmpval = op->cmp_value()->as_register(); 1522 assert(cmpval == rax, "wrong register"); 1523 assert(newval != noreg, "new val must be register"); 1524 assert(cmpval != newval, "cmp and new values must be in different registers"); 1525 assert(cmpval != addr, "cmp and addr must be in different registers"); 1526 assert(newval != addr, "new value and addr must be in different registers"); 1527 1528 if (op->code() == lir_cas_obj) { 1529 if (UseCompressedOops) { 1530 __ encode_heap_oop(cmpval); 1531 __ mov(rscratch1, newval); 1532 __ encode_heap_oop(rscratch1); 1533 __ lock(); 1534 // cmpval (rax) is implicitly used by this instruction 1535 __ cmpxchgl(rscratch1, Address(addr, 0)); 1536 } else { 1537 __ lock(); 1538 __ cmpxchgptr(newval, Address(addr, 0)); 1539 } 1540 } else { 1541 assert(op->code() == lir_cas_int, "lir_cas_int expected"); 1542 __ lock(); 1543 __ cmpxchgl(newval, Address(addr, 0)); 1544 } 1545 } else if (op->code() == lir_cas_long) { 1546 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1547 Register newval = op->new_value()->as_register_lo(); 1548 Register cmpval = op->cmp_value()->as_register_lo(); 1549 assert(cmpval == rax, "wrong register"); 1550 assert(newval != noreg, "new val must be register"); 1551 assert(cmpval != newval, "cmp and new values must be in different registers"); 1552 assert(cmpval != addr, "cmp and addr must be in different registers"); 1553 assert(newval != addr, "new value and addr must be in different registers"); 1554 __ lock(); 1555 __ cmpxchgq(newval, Address(addr, 0)); 1556 } else { 1557 Unimplemented(); 1558 } 1559 } 1560 1561 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1562 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1563 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86"); 1564 1565 Assembler::Condition acond, ncond; 1566 switch (condition) { 1567 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break; 1568 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break; 1569 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break; 1570 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break; 1571 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break; 1572 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break; 1573 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break; 1574 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break; 1575 default: acond = Assembler::equal; ncond = Assembler::notEqual; 1576 ShouldNotReachHere(); 1577 } 1578 1579 if (opr1->is_cpu_register()) { 1580 reg2reg(opr1, result); 1581 } else if (opr1->is_stack()) { 1582 stack2reg(opr1, result, result->type()); 1583 } else if (opr1->is_constant()) { 1584 const2reg(opr1, result, lir_patch_none, nullptr); 1585 } else { 1586 ShouldNotReachHere(); 1587 } 1588 1589 if (VM_Version::supports_cmov() && !opr2->is_constant()) { 1590 // optimized version that does not require a branch 1591 if (opr2->is_single_cpu()) { 1592 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); 1593 __ cmov(ncond, result->as_register(), opr2->as_register()); 1594 } else if (opr2->is_double_cpu()) { 1595 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1596 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1597 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo()); 1598 } else if (opr2->is_single_stack()) { 1599 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix())); 1600 } else if (opr2->is_double_stack()) { 1601 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes)); 1602 } else { 1603 ShouldNotReachHere(); 1604 } 1605 1606 } else { 1607 Label skip; 1608 __ jccb(acond, skip); 1609 if (opr2->is_cpu_register()) { 1610 reg2reg(opr2, result); 1611 } else if (opr2->is_stack()) { 1612 stack2reg(opr2, result, result->type()); 1613 } else if (opr2->is_constant()) { 1614 const2reg(opr2, result, lir_patch_none, nullptr); 1615 } else { 1616 ShouldNotReachHere(); 1617 } 1618 __ bind(skip); 1619 } 1620 } 1621 1622 1623 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info) { 1624 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1625 1626 if (left->is_single_cpu()) { 1627 assert(left == dest, "left and dest must be equal"); 1628 Register lreg = left->as_register(); 1629 1630 if (right->is_single_cpu()) { 1631 // cpu register - cpu register 1632 Register rreg = right->as_register(); 1633 switch (code) { 1634 case lir_add: __ addl (lreg, rreg); break; 1635 case lir_sub: __ subl (lreg, rreg); break; 1636 case lir_mul: __ imull(lreg, rreg); break; 1637 default: ShouldNotReachHere(); 1638 } 1639 1640 } else if (right->is_stack()) { 1641 // cpu register - stack 1642 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1643 switch (code) { 1644 case lir_add: __ addl(lreg, raddr); break; 1645 case lir_sub: __ subl(lreg, raddr); break; 1646 default: ShouldNotReachHere(); 1647 } 1648 1649 } else if (right->is_constant()) { 1650 // cpu register - constant 1651 jint c = right->as_constant_ptr()->as_jint(); 1652 switch (code) { 1653 case lir_add: { 1654 __ incrementl(lreg, c); 1655 break; 1656 } 1657 case lir_sub: { 1658 __ decrementl(lreg, c); 1659 break; 1660 } 1661 default: ShouldNotReachHere(); 1662 } 1663 1664 } else { 1665 ShouldNotReachHere(); 1666 } 1667 1668 } else if (left->is_double_cpu()) { 1669 assert(left == dest, "left and dest must be equal"); 1670 Register lreg_lo = left->as_register_lo(); 1671 Register lreg_hi = left->as_register_hi(); 1672 1673 if (right->is_double_cpu()) { 1674 // cpu register - cpu register 1675 Register rreg_lo = right->as_register_lo(); 1676 Register rreg_hi = right->as_register_hi(); 1677 assert_different_registers(lreg_lo, rreg_lo); 1678 switch (code) { 1679 case lir_add: 1680 __ addptr(lreg_lo, rreg_lo); 1681 break; 1682 case lir_sub: 1683 __ subptr(lreg_lo, rreg_lo); 1684 break; 1685 case lir_mul: 1686 __ imulq(lreg_lo, rreg_lo); 1687 break; 1688 default: 1689 ShouldNotReachHere(); 1690 } 1691 1692 } else if (right->is_constant()) { 1693 // cpu register - constant 1694 jlong c = right->as_constant_ptr()->as_jlong_bits(); 1695 __ movptr(r10, (intptr_t) c); 1696 switch (code) { 1697 case lir_add: 1698 __ addptr(lreg_lo, r10); 1699 break; 1700 case lir_sub: 1701 __ subptr(lreg_lo, r10); 1702 break; 1703 default: 1704 ShouldNotReachHere(); 1705 } 1706 1707 } else { 1708 ShouldNotReachHere(); 1709 } 1710 1711 } else if (left->is_single_xmm()) { 1712 assert(left == dest, "left and dest must be equal"); 1713 XMMRegister lreg = left->as_xmm_float_reg(); 1714 1715 if (right->is_single_xmm()) { 1716 XMMRegister rreg = right->as_xmm_float_reg(); 1717 switch (code) { 1718 case lir_add: __ addss(lreg, rreg); break; 1719 case lir_sub: __ subss(lreg, rreg); break; 1720 case lir_mul: __ mulss(lreg, rreg); break; 1721 case lir_div: __ divss(lreg, rreg); break; 1722 default: ShouldNotReachHere(); 1723 } 1724 } else { 1725 Address raddr; 1726 if (right->is_single_stack()) { 1727 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1728 } else if (right->is_constant()) { 1729 // hack for now 1730 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat()))); 1731 } else { 1732 ShouldNotReachHere(); 1733 } 1734 switch (code) { 1735 case lir_add: __ addss(lreg, raddr); break; 1736 case lir_sub: __ subss(lreg, raddr); break; 1737 case lir_mul: __ mulss(lreg, raddr); break; 1738 case lir_div: __ divss(lreg, raddr); break; 1739 default: ShouldNotReachHere(); 1740 } 1741 } 1742 1743 } else if (left->is_double_xmm()) { 1744 assert(left == dest, "left and dest must be equal"); 1745 1746 XMMRegister lreg = left->as_xmm_double_reg(); 1747 if (right->is_double_xmm()) { 1748 XMMRegister rreg = right->as_xmm_double_reg(); 1749 switch (code) { 1750 case lir_add: __ addsd(lreg, rreg); break; 1751 case lir_sub: __ subsd(lreg, rreg); break; 1752 case lir_mul: __ mulsd(lreg, rreg); break; 1753 case lir_div: __ divsd(lreg, rreg); break; 1754 default: ShouldNotReachHere(); 1755 } 1756 } else { 1757 Address raddr; 1758 if (right->is_double_stack()) { 1759 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 1760 } else if (right->is_constant()) { 1761 // hack for now 1762 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 1763 } else { 1764 ShouldNotReachHere(); 1765 } 1766 switch (code) { 1767 case lir_add: __ addsd(lreg, raddr); break; 1768 case lir_sub: __ subsd(lreg, raddr); break; 1769 case lir_mul: __ mulsd(lreg, raddr); break; 1770 case lir_div: __ divsd(lreg, raddr); break; 1771 default: ShouldNotReachHere(); 1772 } 1773 } 1774 1775 } else if (left->is_single_stack() || left->is_address()) { 1776 assert(left == dest, "left and dest must be equal"); 1777 1778 Address laddr; 1779 if (left->is_single_stack()) { 1780 laddr = frame_map()->address_for_slot(left->single_stack_ix()); 1781 } else if (left->is_address()) { 1782 laddr = as_Address(left->as_address_ptr()); 1783 } else { 1784 ShouldNotReachHere(); 1785 } 1786 1787 if (right->is_single_cpu()) { 1788 Register rreg = right->as_register(); 1789 switch (code) { 1790 case lir_add: __ addl(laddr, rreg); break; 1791 case lir_sub: __ subl(laddr, rreg); break; 1792 default: ShouldNotReachHere(); 1793 } 1794 } else if (right->is_constant()) { 1795 jint c = right->as_constant_ptr()->as_jint(); 1796 switch (code) { 1797 case lir_add: { 1798 __ incrementl(laddr, c); 1799 break; 1800 } 1801 case lir_sub: { 1802 __ decrementl(laddr, c); 1803 break; 1804 } 1805 default: ShouldNotReachHere(); 1806 } 1807 } else { 1808 ShouldNotReachHere(); 1809 } 1810 1811 } else { 1812 ShouldNotReachHere(); 1813 } 1814 } 1815 1816 1817 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1818 if (value->is_double_xmm()) { 1819 switch(code) { 1820 case lir_abs : 1821 { 1822 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) { 1823 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); 1824 } 1825 assert(!tmp->is_valid(), "do not need temporary"); 1826 __ andpd(dest->as_xmm_double_reg(), 1827 ExternalAddress((address)double_signmask_pool), 1828 rscratch1); 1829 } 1830 break; 1831 1832 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break; 1833 // all other intrinsics are not available in the SSE instruction set, so FPU is used 1834 default : ShouldNotReachHere(); 1835 } 1836 1837 } else if (code == lir_f2hf) { 1838 __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg()); 1839 } else if (code == lir_hf2f) { 1840 __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register()); 1841 } else { 1842 Unimplemented(); 1843 } 1844 } 1845 1846 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1847 // assert(left->destroys_register(), "check"); 1848 if (left->is_single_cpu()) { 1849 Register reg = left->as_register(); 1850 if (right->is_constant()) { 1851 int val = right->as_constant_ptr()->as_jint(); 1852 switch (code) { 1853 case lir_logic_and: __ andl (reg, val); break; 1854 case lir_logic_or: __ orl (reg, val); break; 1855 case lir_logic_xor: __ xorl (reg, val); break; 1856 default: ShouldNotReachHere(); 1857 } 1858 } else if (right->is_stack()) { 1859 // added support for stack operands 1860 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1861 switch (code) { 1862 case lir_logic_and: __ andl (reg, raddr); break; 1863 case lir_logic_or: __ orl (reg, raddr); break; 1864 case lir_logic_xor: __ xorl (reg, raddr); break; 1865 default: ShouldNotReachHere(); 1866 } 1867 } else { 1868 Register rright = right->as_register(); 1869 switch (code) { 1870 case lir_logic_and: __ andptr (reg, rright); break; 1871 case lir_logic_or : __ orptr (reg, rright); break; 1872 case lir_logic_xor: __ xorptr (reg, rright); break; 1873 default: ShouldNotReachHere(); 1874 } 1875 } 1876 move_regs(reg, dst->as_register()); 1877 } else { 1878 Register l_lo = left->as_register_lo(); 1879 Register l_hi = left->as_register_hi(); 1880 if (right->is_constant()) { 1881 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong()); 1882 switch (code) { 1883 case lir_logic_and: 1884 __ andq(l_lo, rscratch1); 1885 break; 1886 case lir_logic_or: 1887 __ orq(l_lo, rscratch1); 1888 break; 1889 case lir_logic_xor: 1890 __ xorq(l_lo, rscratch1); 1891 break; 1892 default: ShouldNotReachHere(); 1893 } 1894 } else { 1895 Register r_lo; 1896 if (is_reference_type(right->type())) { 1897 r_lo = right->as_register(); 1898 } else { 1899 r_lo = right->as_register_lo(); 1900 } 1901 switch (code) { 1902 case lir_logic_and: 1903 __ andptr(l_lo, r_lo); 1904 break; 1905 case lir_logic_or: 1906 __ orptr(l_lo, r_lo); 1907 break; 1908 case lir_logic_xor: 1909 __ xorptr(l_lo, r_lo); 1910 break; 1911 default: ShouldNotReachHere(); 1912 } 1913 } 1914 1915 Register dst_lo = dst->as_register_lo(); 1916 Register dst_hi = dst->as_register_hi(); 1917 1918 move_regs(l_lo, dst_lo); 1919 } 1920 } 1921 1922 1923 // we assume that rax, and rdx can be overwritten 1924 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 1925 1926 assert(left->is_single_cpu(), "left must be register"); 1927 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1928 assert(result->is_single_cpu(), "result must be register"); 1929 1930 // assert(left->destroys_register(), "check"); 1931 // assert(right->destroys_register(), "check"); 1932 1933 Register lreg = left->as_register(); 1934 Register dreg = result->as_register(); 1935 1936 if (right->is_constant()) { 1937 jint divisor = right->as_constant_ptr()->as_jint(); 1938 assert(divisor > 0 && is_power_of_2(divisor), "must be"); 1939 if (code == lir_idiv) { 1940 assert(lreg == rax, "must be rax,"); 1941 assert(temp->as_register() == rdx, "tmp register must be rdx"); 1942 __ cdql(); // sign extend into rdx:rax 1943 if (divisor == 2) { 1944 __ subl(lreg, rdx); 1945 } else { 1946 __ andl(rdx, divisor - 1); 1947 __ addl(lreg, rdx); 1948 } 1949 __ sarl(lreg, log2i_exact(divisor)); 1950 move_regs(lreg, dreg); 1951 } else if (code == lir_irem) { 1952 Label done; 1953 __ mov(dreg, lreg); 1954 __ andl(dreg, 0x80000000 | (divisor - 1)); 1955 __ jcc(Assembler::positive, done); 1956 __ decrement(dreg); 1957 __ orl(dreg, ~(divisor - 1)); 1958 __ increment(dreg); 1959 __ bind(done); 1960 } else { 1961 ShouldNotReachHere(); 1962 } 1963 } else { 1964 Register rreg = right->as_register(); 1965 assert(lreg == rax, "left register must be rax,"); 1966 assert(rreg != rdx, "right register must not be rdx"); 1967 assert(temp->as_register() == rdx, "tmp register must be rdx"); 1968 1969 move_regs(lreg, rax); 1970 1971 int idivl_offset = __ corrected_idivl(rreg); 1972 if (ImplicitDiv0Checks) { 1973 add_debug_info_for_div0(idivl_offset, info); 1974 } 1975 if (code == lir_irem) { 1976 move_regs(rdx, dreg); // result is in rdx 1977 } else { 1978 move_regs(rax, dreg); 1979 } 1980 } 1981 } 1982 1983 1984 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1985 if (opr1->is_single_cpu()) { 1986 Register reg1 = opr1->as_register(); 1987 if (opr2->is_single_cpu()) { 1988 // cpu register - cpu register 1989 if (is_reference_type(opr1->type())) { 1990 __ cmpoop(reg1, opr2->as_register()); 1991 } else { 1992 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 1993 __ cmpl(reg1, opr2->as_register()); 1994 } 1995 } else if (opr2->is_stack()) { 1996 // cpu register - stack 1997 if (is_reference_type(opr1->type())) { 1998 __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 1999 } else { 2000 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2001 } 2002 } else if (opr2->is_constant()) { 2003 // cpu register - constant 2004 LIR_Const* c = opr2->as_constant_ptr(); 2005 if (c->type() == T_INT) { 2006 jint i = c->as_jint(); 2007 if (i == 0) { 2008 __ testl(reg1, reg1); 2009 } else { 2010 __ cmpl(reg1, i); 2011 } 2012 } else if (c->type() == T_METADATA) { 2013 // All we need for now is a comparison with null for equality. 2014 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 2015 Metadata* m = c->as_metadata(); 2016 if (m == nullptr) { 2017 __ testptr(reg1, reg1); 2018 } else { 2019 ShouldNotReachHere(); 2020 } 2021 } else if (is_reference_type(c->type())) { 2022 // In 64bit oops are single register 2023 jobject o = c->as_jobject(); 2024 if (o == nullptr) { 2025 __ testptr(reg1, reg1); 2026 } else { 2027 __ cmpoop(reg1, o, rscratch1); 2028 } 2029 } else { 2030 fatal("unexpected type: %s", basictype_to_str(c->type())); 2031 } 2032 // cpu register - address 2033 } else if (opr2->is_address()) { 2034 if (op->info() != nullptr) { 2035 add_debug_info_for_null_check_here(op->info()); 2036 } 2037 __ cmpl(reg1, as_Address(opr2->as_address_ptr())); 2038 } else { 2039 ShouldNotReachHere(); 2040 } 2041 2042 } else if(opr1->is_double_cpu()) { 2043 Register xlo = opr1->as_register_lo(); 2044 Register xhi = opr1->as_register_hi(); 2045 if (opr2->is_double_cpu()) { 2046 __ cmpptr(xlo, opr2->as_register_lo()); 2047 } else if (opr2->is_constant()) { 2048 // cpu register - constant 0 2049 assert(opr2->as_jlong() == (jlong)0, "only handles zero"); 2050 __ cmpptr(xlo, (int32_t)opr2->as_jlong()); 2051 } else { 2052 ShouldNotReachHere(); 2053 } 2054 2055 } else if (opr1->is_single_xmm()) { 2056 XMMRegister reg1 = opr1->as_xmm_float_reg(); 2057 if (opr2->is_single_xmm()) { 2058 // xmm register - xmm register 2059 __ ucomiss(reg1, opr2->as_xmm_float_reg()); 2060 } else if (opr2->is_stack()) { 2061 // xmm register - stack 2062 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2063 } else if (opr2->is_constant()) { 2064 // xmm register - constant 2065 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat()))); 2066 } else if (opr2->is_address()) { 2067 // xmm register - address 2068 if (op->info() != nullptr) { 2069 add_debug_info_for_null_check_here(op->info()); 2070 } 2071 __ ucomiss(reg1, as_Address(opr2->as_address_ptr())); 2072 } else { 2073 ShouldNotReachHere(); 2074 } 2075 2076 } else if (opr1->is_double_xmm()) { 2077 XMMRegister reg1 = opr1->as_xmm_double_reg(); 2078 if (opr2->is_double_xmm()) { 2079 // xmm register - xmm register 2080 __ ucomisd(reg1, opr2->as_xmm_double_reg()); 2081 } else if (opr2->is_stack()) { 2082 // xmm register - stack 2083 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix())); 2084 } else if (opr2->is_constant()) { 2085 // xmm register - constant 2086 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble()))); 2087 } else if (opr2->is_address()) { 2088 // xmm register - address 2089 if (op->info() != nullptr) { 2090 add_debug_info_for_null_check_here(op->info()); 2091 } 2092 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address())); 2093 } else { 2094 ShouldNotReachHere(); 2095 } 2096 2097 } else if (opr1->is_address() && opr2->is_constant()) { 2098 LIR_Const* c = opr2->as_constant_ptr(); 2099 if (is_reference_type(c->type())) { 2100 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse"); 2101 __ movoop(rscratch1, c->as_jobject()); 2102 } 2103 if (op->info() != nullptr) { 2104 add_debug_info_for_null_check_here(op->info()); 2105 } 2106 // special case: address - constant 2107 LIR_Address* addr = opr1->as_address_ptr(); 2108 if (c->type() == T_INT) { 2109 __ cmpl(as_Address(addr), c->as_jint()); 2110 } else if (is_reference_type(c->type())) { 2111 // %%% Make this explode if addr isn't reachable until we figure out a 2112 // better strategy by giving noreg as the temp for as_Address 2113 __ cmpoop(rscratch1, as_Address(addr, noreg)); 2114 } else { 2115 ShouldNotReachHere(); 2116 } 2117 2118 } else { 2119 ShouldNotReachHere(); 2120 } 2121 } 2122 2123 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { 2124 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2125 if (left->is_single_xmm()) { 2126 assert(right->is_single_xmm(), "must match"); 2127 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2128 } else if (left->is_double_xmm()) { 2129 assert(right->is_double_xmm(), "must match"); 2130 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2131 2132 } else { 2133 ShouldNotReachHere(); 2134 } 2135 } else { 2136 assert(code == lir_cmp_l2i, "check"); 2137 Label done; 2138 Register dest = dst->as_register(); 2139 __ cmpptr(left->as_register_lo(), right->as_register_lo()); 2140 __ movl(dest, -1); 2141 __ jccb(Assembler::less, done); 2142 __ setb(Assembler::notZero, dest); 2143 __ movzbl(dest, dest); 2144 __ bind(done); 2145 } 2146 } 2147 2148 2149 void LIR_Assembler::align_call(LIR_Code code) { 2150 // make sure that the displacement word of the call ends up word aligned 2151 int offset = __ offset(); 2152 switch (code) { 2153 case lir_static_call: 2154 case lir_optvirtual_call: 2155 case lir_dynamic_call: 2156 offset += NativeCall::displacement_offset; 2157 break; 2158 case lir_icvirtual_call: 2159 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size_rex; 2160 break; 2161 default: ShouldNotReachHere(); 2162 } 2163 __ align(BytesPerWord, offset); 2164 } 2165 2166 2167 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2168 assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0, 2169 "must be aligned"); 2170 __ call(AddressLiteral(op->addr(), rtype)); 2171 add_call_info(code_offset(), op->info()); 2172 __ post_call_nop(); 2173 } 2174 2175 2176 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2177 __ ic_call(op->addr()); 2178 add_call_info(code_offset(), op->info()); 2179 assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0, 2180 "must be aligned"); 2181 __ post_call_nop(); 2182 } 2183 2184 2185 void LIR_Assembler::emit_static_call_stub() { 2186 address call_pc = __ pc(); 2187 address stub = __ start_a_stub(call_stub_size()); 2188 if (stub == nullptr) { 2189 bailout("static call stub overflow"); 2190 return; 2191 } 2192 2193 int start = __ offset(); 2194 2195 // make sure that the displacement word of the call ends up word aligned 2196 __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size_rex + NativeCall::displacement_offset); 2197 __ relocate(static_stub_Relocation::spec(call_pc)); 2198 __ mov_metadata(rbx, (Metadata*)nullptr); 2199 // must be set to -1 at code generation time 2200 assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned"); 2201 // On 64bit this will die since it will take a movq & jmp, must be only a jmp 2202 __ jump(RuntimeAddress(__ pc())); 2203 2204 assert(__ offset() - start <= call_stub_size(), "stub too big"); 2205 __ end_a_stub(); 2206 } 2207 2208 2209 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2210 assert(exceptionOop->as_register() == rax, "must match"); 2211 assert(exceptionPC->as_register() == rdx, "must match"); 2212 2213 // exception object is not added to oop map by LinearScan 2214 // (LinearScan assumes that no oops are in fixed registers) 2215 info->add_register_oop(exceptionOop); 2216 StubId unwind_id; 2217 2218 // get current pc information 2219 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2220 int pc_for_athrow_offset = __ offset(); 2221 InternalAddress pc_for_athrow(__ pc()); 2222 __ lea(exceptionPC->as_register(), pc_for_athrow); 2223 add_call_info(pc_for_athrow_offset, info); // for exception handler 2224 2225 __ verify_not_null_oop(rax); 2226 // search an exception handler (rax: exception oop, rdx: throwing pc) 2227 if (compilation()->has_fpu_code()) { 2228 unwind_id = StubId::c1_handle_exception_id; 2229 } else { 2230 unwind_id = StubId::c1_handle_exception_nofpu_id; 2231 } 2232 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2233 2234 // enough room for two byte trap 2235 __ nop(); 2236 } 2237 2238 2239 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2240 assert(exceptionOop->as_register() == rax, "must match"); 2241 2242 __ jmp(_unwind_handler_entry); 2243 } 2244 2245 2246 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2247 2248 // optimized version for linear scan: 2249 // * count must be already in ECX (guaranteed by LinearScan) 2250 // * left and dest must be equal 2251 // * tmp must be unused 2252 assert(count->as_register() == SHIFT_count, "count must be in ECX"); 2253 assert(left == dest, "left and dest must be equal"); 2254 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2255 2256 if (left->is_single_cpu()) { 2257 Register value = left->as_register(); 2258 assert(value != SHIFT_count, "left cannot be ECX"); 2259 2260 switch (code) { 2261 case lir_shl: __ shll(value); break; 2262 case lir_shr: __ sarl(value); break; 2263 case lir_ushr: __ shrl(value); break; 2264 default: ShouldNotReachHere(); 2265 } 2266 } else if (left->is_double_cpu()) { 2267 Register lo = left->as_register_lo(); 2268 Register hi = left->as_register_hi(); 2269 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX"); 2270 switch (code) { 2271 case lir_shl: __ shlptr(lo); break; 2272 case lir_shr: __ sarptr(lo); break; 2273 case lir_ushr: __ shrptr(lo); break; 2274 default: ShouldNotReachHere(); 2275 } 2276 } else { 2277 ShouldNotReachHere(); 2278 } 2279 } 2280 2281 2282 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2283 if (dest->is_single_cpu()) { 2284 // first move left into dest so that left is not destroyed by the shift 2285 Register value = dest->as_register(); 2286 count = count & 0x1F; // Java spec 2287 2288 move_regs(left->as_register(), value); 2289 switch (code) { 2290 case lir_shl: __ shll(value, count); break; 2291 case lir_shr: __ sarl(value, count); break; 2292 case lir_ushr: __ shrl(value, count); break; 2293 default: ShouldNotReachHere(); 2294 } 2295 } else if (dest->is_double_cpu()) { 2296 // first move left into dest so that left is not destroyed by the shift 2297 Register value = dest->as_register_lo(); 2298 count = count & 0x1F; // Java spec 2299 2300 move_regs(left->as_register_lo(), value); 2301 switch (code) { 2302 case lir_shl: __ shlptr(value, count); break; 2303 case lir_shr: __ sarptr(value, count); break; 2304 case lir_ushr: __ shrptr(value, count); break; 2305 default: ShouldNotReachHere(); 2306 } 2307 } else { 2308 ShouldNotReachHere(); 2309 } 2310 } 2311 2312 2313 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2314 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2315 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2316 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2317 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r); 2318 } 2319 2320 2321 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2322 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2323 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2324 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2325 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c); 2326 } 2327 2328 2329 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2330 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2331 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2332 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2333 __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1); 2334 } 2335 2336 2337 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) { 2338 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2339 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2340 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2341 __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1); 2342 } 2343 2344 2345 // This code replaces a call to arraycopy; no exception may 2346 // be thrown in this code, they must be thrown in the System.arraycopy 2347 // activation frame; we could save some checks if this would not be the case 2348 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2349 ciArrayKlass* default_type = op->expected_type(); 2350 Register src = op->src()->as_register(); 2351 Register dst = op->dst()->as_register(); 2352 Register src_pos = op->src_pos()->as_register(); 2353 Register dst_pos = op->dst_pos()->as_register(); 2354 Register length = op->length()->as_register(); 2355 Register tmp = op->tmp()->as_register(); 2356 Register tmp_load_klass = rscratch1; 2357 Register tmp2 = UseCompactObjectHeaders ? rscratch2 : noreg; 2358 2359 CodeStub* stub = op->stub(); 2360 int flags = op->flags(); 2361 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2362 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2363 2364 // if we don't know anything, just go through the generic arraycopy 2365 if (default_type == nullptr) { 2366 // save outgoing arguments on stack in case call to System.arraycopy is needed 2367 // HACK ALERT. This code used to push the parameters in a hardwired fashion 2368 // for interpreter calling conventions. Now we have to do it in new style conventions. 2369 // For the moment until C1 gets the new register allocator I just force all the 2370 // args to the right place (except the register args) and then on the back side 2371 // reload the register args properly if we go slow path. Yuck 2372 2373 // These are proper for the calling convention 2374 store_parameter(length, 2); 2375 store_parameter(dst_pos, 1); 2376 store_parameter(dst, 0); 2377 2378 // these are just temporary placements until we need to reload 2379 store_parameter(src_pos, 3); 2380 store_parameter(src, 4); 2381 2382 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2383 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2384 2385 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint 2386 // The arguments are in java calling convention so we can trivially shift them to C 2387 // convention 2388 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2389 __ mov(c_rarg0, j_rarg0); 2390 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2391 __ mov(c_rarg1, j_rarg1); 2392 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2393 __ mov(c_rarg2, j_rarg2); 2394 assert_different_registers(c_rarg3, j_rarg4); 2395 __ mov(c_rarg3, j_rarg3); 2396 #ifdef _WIN64 2397 // Allocate abi space for args but be sure to keep stack aligned 2398 __ subptr(rsp, 6*wordSize); 2399 store_parameter(j_rarg4, 4); 2400 #ifndef PRODUCT 2401 if (PrintC1Statistics) { 2402 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 2403 } 2404 #endif 2405 __ call(RuntimeAddress(copyfunc_addr)); 2406 __ addptr(rsp, 6*wordSize); 2407 #else 2408 __ mov(c_rarg4, j_rarg4); 2409 #ifndef PRODUCT 2410 if (PrintC1Statistics) { 2411 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 2412 } 2413 #endif 2414 __ call(RuntimeAddress(copyfunc_addr)); 2415 #endif // _WIN64 2416 2417 __ testl(rax, rax); 2418 __ jcc(Assembler::equal, *stub->continuation()); 2419 2420 __ mov(tmp, rax); 2421 __ xorl(tmp, -1); 2422 2423 // Reload values from the stack so they are where the stub 2424 // expects them. 2425 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 2426 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 2427 __ movptr (length, Address(rsp, 2*BytesPerWord)); 2428 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 2429 __ movptr (src, Address(rsp, 4*BytesPerWord)); 2430 2431 __ subl(length, tmp); 2432 __ addl(src_pos, tmp); 2433 __ addl(dst_pos, tmp); 2434 __ jmp(*stub->entry()); 2435 2436 __ bind(*stub->continuation()); 2437 return; 2438 } 2439 2440 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2441 2442 int elem_size = type2aelembytes(basic_type); 2443 Address::ScaleFactor scale; 2444 2445 switch (elem_size) { 2446 case 1 : 2447 scale = Address::times_1; 2448 break; 2449 case 2 : 2450 scale = Address::times_2; 2451 break; 2452 case 4 : 2453 scale = Address::times_4; 2454 break; 2455 case 8 : 2456 scale = Address::times_8; 2457 break; 2458 default: 2459 scale = Address::no_scale; 2460 ShouldNotReachHere(); 2461 } 2462 2463 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2464 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2465 2466 // length and pos's are all sign extended at this point on 64bit 2467 2468 // test for null 2469 if (flags & LIR_OpArrayCopy::src_null_check) { 2470 __ testptr(src, src); 2471 __ jcc(Assembler::zero, *stub->entry()); 2472 } 2473 if (flags & LIR_OpArrayCopy::dst_null_check) { 2474 __ testptr(dst, dst); 2475 __ jcc(Assembler::zero, *stub->entry()); 2476 } 2477 2478 // If the compiler was not able to prove that exact type of the source or the destination 2479 // of the arraycopy is an array type, check at runtime if the source or the destination is 2480 // an instance type. 2481 if (flags & LIR_OpArrayCopy::type_check) { 2482 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2483 __ load_klass(tmp, dst, tmp_load_klass); 2484 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 2485 __ jcc(Assembler::greaterEqual, *stub->entry()); 2486 } 2487 2488 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2489 __ load_klass(tmp, src, tmp_load_klass); 2490 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 2491 __ jcc(Assembler::greaterEqual, *stub->entry()); 2492 } 2493 } 2494 2495 // check if negative 2496 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2497 __ testl(src_pos, src_pos); 2498 __ jcc(Assembler::less, *stub->entry()); 2499 } 2500 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2501 __ testl(dst_pos, dst_pos); 2502 __ jcc(Assembler::less, *stub->entry()); 2503 } 2504 2505 if (flags & LIR_OpArrayCopy::src_range_check) { 2506 __ lea(tmp, Address(src_pos, length, Address::times_1, 0)); 2507 __ cmpl(tmp, src_length_addr); 2508 __ jcc(Assembler::above, *stub->entry()); 2509 } 2510 if (flags & LIR_OpArrayCopy::dst_range_check) { 2511 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0)); 2512 __ cmpl(tmp, dst_length_addr); 2513 __ jcc(Assembler::above, *stub->entry()); 2514 } 2515 2516 if (flags & LIR_OpArrayCopy::length_positive_check) { 2517 __ testl(length, length); 2518 __ jcc(Assembler::less, *stub->entry()); 2519 } 2520 2521 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null 2522 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null 2523 2524 if (flags & LIR_OpArrayCopy::type_check) { 2525 // We don't know the array types are compatible 2526 if (basic_type != T_OBJECT) { 2527 // Simple test for basic type arrays 2528 __ cmp_klasses_from_objects(src, dst, tmp, tmp2); 2529 __ jcc(Assembler::notEqual, *stub->entry()); 2530 } else { 2531 // For object arrays, if src is a sub class of dst then we can 2532 // safely do the copy. 2533 Label cont, slow; 2534 2535 __ push_ppx(src); 2536 __ push_ppx(dst); 2537 2538 __ load_klass(src, src, tmp_load_klass); 2539 __ load_klass(dst, dst, tmp_load_klass); 2540 2541 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2542 2543 __ push_ppx(src); 2544 __ push_ppx(dst); 2545 __ call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 2546 __ pop_ppx(dst); 2547 __ pop_ppx(src); 2548 2549 __ testl(src, src); 2550 __ jcc(Assembler::notEqual, cont); 2551 2552 __ bind(slow); 2553 __ pop_ppx(dst); 2554 __ pop_ppx(src); 2555 2556 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2557 if (copyfunc_addr != nullptr) { // use stub if available 2558 // src is not a sub class of dst so we have to do a 2559 // per-element check. 2560 2561 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2562 if ((flags & mask) != mask) { 2563 // Check that at least both of them object arrays. 2564 assert(flags & mask, "one of the two should be known to be an object array"); 2565 2566 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2567 __ load_klass(tmp, src, tmp_load_klass); 2568 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2569 __ load_klass(tmp, dst, tmp_load_klass); 2570 } 2571 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2572 Address klass_lh_addr(tmp, lh_offset); 2573 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2574 __ cmpl(klass_lh_addr, objArray_lh); 2575 __ jcc(Assembler::notEqual, *stub->entry()); 2576 } 2577 2578 // Spill because stubs can use any register they like and it's 2579 // easier to restore just those that we care about. 2580 store_parameter(dst, 0); 2581 store_parameter(dst_pos, 1); 2582 store_parameter(length, 2); 2583 store_parameter(src_pos, 3); 2584 store_parameter(src, 4); 2585 2586 __ movl2ptr(length, length); //higher 32bits must be null 2587 2588 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2589 assert_different_registers(c_rarg0, dst, dst_pos, length); 2590 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2591 assert_different_registers(c_rarg1, dst, length); 2592 2593 __ mov(c_rarg2, length); 2594 assert_different_registers(c_rarg2, dst); 2595 2596 #ifdef _WIN64 2597 // Allocate abi space for args but be sure to keep stack aligned 2598 __ subptr(rsp, 6*wordSize); 2599 __ load_klass(c_rarg3, dst, tmp_load_klass); 2600 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset())); 2601 store_parameter(c_rarg3, 4); 2602 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset())); 2603 __ call(RuntimeAddress(copyfunc_addr)); 2604 __ addptr(rsp, 6*wordSize); 2605 #else 2606 __ load_klass(c_rarg4, dst, tmp_load_klass); 2607 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2608 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2609 __ call(RuntimeAddress(copyfunc_addr)); 2610 #endif 2611 2612 #ifndef PRODUCT 2613 if (PrintC1Statistics) { 2614 Label failed; 2615 __ testl(rax, rax); 2616 __ jcc(Assembler::notZero, failed); 2617 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1); 2618 __ bind(failed); 2619 } 2620 #endif 2621 2622 __ testl(rax, rax); 2623 __ jcc(Assembler::zero, *stub->continuation()); 2624 2625 #ifndef PRODUCT 2626 if (PrintC1Statistics) { 2627 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1); 2628 } 2629 #endif 2630 2631 __ mov(tmp, rax); 2632 2633 __ xorl(tmp, -1); 2634 2635 // Restore previously spilled arguments 2636 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 2637 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 2638 __ movptr (length, Address(rsp, 2*BytesPerWord)); 2639 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 2640 __ movptr (src, Address(rsp, 4*BytesPerWord)); 2641 2642 2643 __ subl(length, tmp); 2644 __ addl(src_pos, tmp); 2645 __ addl(dst_pos, tmp); 2646 } 2647 2648 __ jmp(*stub->entry()); 2649 2650 __ bind(cont); 2651 __ pop(dst); 2652 __ pop(src); 2653 } 2654 } 2655 2656 #ifdef ASSERT 2657 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2658 // Sanity check the known type with the incoming class. For the 2659 // primitive case the types must match exactly with src.klass and 2660 // dst.klass each exactly matching the default type. For the 2661 // object array case, if no type check is needed then either the 2662 // dst type is exactly the expected type and the src type is a 2663 // subtype which we can't check or src is the same array as dst 2664 // but not necessarily exactly of type default_type. 2665 Label known_ok, halt; 2666 __ mov_metadata(tmp, default_type->constant_encoding()); 2667 if (UseCompressedClassPointers) { 2668 __ encode_klass_not_null(tmp, rscratch1); 2669 } 2670 2671 if (basic_type != T_OBJECT) { 2672 __ cmp_klass(tmp, dst, tmp2); 2673 __ jcc(Assembler::notEqual, halt); 2674 __ cmp_klass(tmp, src, tmp2); 2675 __ jcc(Assembler::equal, known_ok); 2676 } else { 2677 __ cmp_klass(tmp, dst, tmp2); 2678 __ jcc(Assembler::equal, known_ok); 2679 __ cmpptr(src, dst); 2680 __ jcc(Assembler::equal, known_ok); 2681 } 2682 __ bind(halt); 2683 __ stop("incorrect type information in arraycopy"); 2684 __ bind(known_ok); 2685 } 2686 #endif 2687 2688 #ifndef PRODUCT 2689 if (PrintC1Statistics) { 2690 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1); 2691 } 2692 #endif 2693 2694 assert_different_registers(c_rarg0, dst, dst_pos, length); 2695 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2696 assert_different_registers(c_rarg1, length); 2697 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2698 __ mov(c_rarg2, length); 2699 2700 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2701 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2702 const char *name; 2703 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2704 __ call_VM_leaf(entry, 0); 2705 2706 if (stub != nullptr) { 2707 __ bind(*stub->continuation()); 2708 } 2709 } 2710 2711 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2712 assert(op->crc()->is_single_cpu(), "crc must be register"); 2713 assert(op->val()->is_single_cpu(), "byte value must be register"); 2714 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2715 Register crc = op->crc()->as_register(); 2716 Register val = op->val()->as_register(); 2717 Register res = op->result_opr()->as_register(); 2718 2719 assert_different_registers(val, crc, res); 2720 2721 __ lea(res, ExternalAddress(StubRoutines::crc_table_addr())); 2722 __ notl(crc); // ~crc 2723 __ update_byte_crc32(crc, val, res); 2724 __ notl(crc); // ~crc 2725 __ mov(res, crc); 2726 } 2727 2728 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2729 Register obj = op->obj_opr()->as_register(); // may not be an oop 2730 Register hdr = op->hdr_opr()->as_register(); 2731 Register lock = op->lock_opr()->as_register(); 2732 if (op->code() == lir_lock) { 2733 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2734 Register tmp = op->scratch_opr()->as_register(); 2735 // add debug info for NullPointerException only if one is possible 2736 int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry()); 2737 if (op->info() != nullptr) { 2738 add_debug_info_for_null_check(null_check_offset, op->info()); 2739 } 2740 // done 2741 } else if (op->code() == lir_unlock) { 2742 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2743 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2744 } else { 2745 Unimplemented(); 2746 } 2747 __ bind(*op->stub()->continuation()); 2748 } 2749 2750 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2751 Register obj = op->obj()->as_pointer_register(); 2752 Register result = op->result_opr()->as_pointer_register(); 2753 2754 CodeEmitInfo* info = op->info(); 2755 if (info != nullptr) { 2756 add_debug_info_for_null_check_here(info); 2757 } 2758 2759 __ load_klass(result, obj, rscratch1); 2760 } 2761 2762 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2763 ciMethod* method = op->profiled_method(); 2764 int bci = op->profiled_bci(); 2765 ciMethod* callee = op->profiled_callee(); 2766 Register tmp_load_klass = rscratch1; 2767 2768 // Update counter for all call types 2769 ciMethodData* md = method->method_data_or_null(); 2770 assert(md != nullptr, "Sanity"); 2771 ciProfileData* data = md->bci_to_data(bci); 2772 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2773 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2774 Register mdo = op->mdo()->as_register(); 2775 __ mov_metadata(mdo, md->constant_encoding()); 2776 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2777 // Perform additional virtual call profiling for invokevirtual and 2778 // invokeinterface bytecodes 2779 if (op->should_profile_receiver_type()) { 2780 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2781 Register recv = op->recv()->as_register(); 2782 assert_different_registers(mdo, recv); 2783 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2784 ciKlass* known_klass = op->known_holder(); 2785 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2786 // We know the type that will be seen at this call site; we can 2787 // statically update the MethodData* rather than needing to do 2788 // dynamic tests on the receiver type 2789 2790 // NOTE: we should probably put a lock around this search to 2791 // avoid collisions by concurrent compilations 2792 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2793 uint i; 2794 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2795 ciKlass* receiver = vc_data->receiver(i); 2796 if (known_klass->equals(receiver)) { 2797 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2798 __ addptr(data_addr, DataLayout::counter_increment); 2799 return; 2800 } 2801 } 2802 2803 // Receiver type not found in profile data; select an empty slot 2804 2805 // Note that this is less efficient than it should be because it 2806 // always does a write to the receiver part of the 2807 // VirtualCallData rather than just the first time 2808 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2809 ciKlass* receiver = vc_data->receiver(i); 2810 if (receiver == nullptr) { 2811 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 2812 __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1); 2813 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2814 __ addptr(data_addr, DataLayout::counter_increment); 2815 return; 2816 } 2817 } 2818 } else { 2819 __ load_klass(recv, recv, tmp_load_klass); 2820 Label update_done; 2821 type_profile_helper(mdo, md, data, recv, &update_done); 2822 // Receiver did not match any saved receiver and there is no empty row for it. 2823 // Increment total counter to indicate polymorphic case. 2824 __ addptr(counter_addr, DataLayout::counter_increment); 2825 2826 __ bind(update_done); 2827 } 2828 } else { 2829 // Static call 2830 __ addptr(counter_addr, DataLayout::counter_increment); 2831 } 2832 } 2833 2834 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2835 Register obj = op->obj()->as_register(); 2836 Register tmp = op->tmp()->as_pointer_register(); 2837 Register tmp_load_klass = rscratch1; 2838 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2839 ciKlass* exact_klass = op->exact_klass(); 2840 intptr_t current_klass = op->current_klass(); 2841 bool not_null = op->not_null(); 2842 bool no_conflict = op->no_conflict(); 2843 2844 Label update, next, none; 2845 2846 bool do_null = !not_null; 2847 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2848 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2849 2850 assert(do_null || do_update, "why are we here?"); 2851 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2852 2853 __ verify_oop(obj); 2854 2855 #ifdef ASSERT 2856 if (obj == tmp) { 2857 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 2858 } else { 2859 assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index()); 2860 } 2861 #endif 2862 if (do_null) { 2863 __ testptr(obj, obj); 2864 __ jccb(Assembler::notZero, update); 2865 if (!TypeEntries::was_null_seen(current_klass)) { 2866 __ testptr(mdo_addr, TypeEntries::null_seen); 2867 #ifndef ASSERT 2868 __ jccb(Assembler::notZero, next); // already set 2869 #else 2870 __ jcc(Assembler::notZero, next); // already set 2871 #endif 2872 // atomic update to prevent overwriting Klass* with 0 2873 __ lock(); 2874 __ orptr(mdo_addr, TypeEntries::null_seen); 2875 } 2876 if (do_update) { 2877 #ifndef ASSERT 2878 __ jmpb(next); 2879 } 2880 #else 2881 __ jmp(next); 2882 } 2883 } else { 2884 __ testptr(obj, obj); 2885 __ jcc(Assembler::notZero, update); 2886 __ stop("unexpected null obj"); 2887 #endif 2888 } 2889 2890 __ bind(update); 2891 2892 if (do_update) { 2893 #ifdef ASSERT 2894 if (exact_klass != nullptr) { 2895 Label ok; 2896 __ load_klass(tmp, obj, tmp_load_klass); 2897 __ push_ppx(tmp); 2898 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2899 __ cmpptr(tmp, Address(rsp, 0)); 2900 __ jcc(Assembler::equal, ok); 2901 __ stop("exact klass and actual klass differ"); 2902 __ bind(ok); 2903 __ pop_ppx(tmp); 2904 } 2905 #endif 2906 if (!no_conflict) { 2907 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2908 if (exact_klass != nullptr) { 2909 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2910 } else { 2911 __ load_klass(tmp, obj, tmp_load_klass); 2912 } 2913 __ mov(rscratch1, tmp); // save original value before XOR 2914 __ xorptr(tmp, mdo_addr); 2915 __ testptr(tmp, TypeEntries::type_klass_mask); 2916 // klass seen before, nothing to do. The unknown bit may have been 2917 // set already but no need to check. 2918 __ jccb(Assembler::zero, next); 2919 2920 __ testptr(tmp, TypeEntries::type_unknown); 2921 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 2922 2923 if (TypeEntries::is_type_none(current_klass)) { 2924 __ testptr(mdo_addr, TypeEntries::type_mask); 2925 __ jccb(Assembler::zero, none); 2926 // There is a chance that the checks above (re-reading profiling 2927 // data from memory) fail if another thread has just set the 2928 // profiling to this obj's klass 2929 __ mov(tmp, rscratch1); // get back original value before XOR 2930 __ xorptr(tmp, mdo_addr); 2931 __ testptr(tmp, TypeEntries::type_klass_mask); 2932 __ jccb(Assembler::zero, next); 2933 } 2934 } else { 2935 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2936 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2937 2938 __ testptr(mdo_addr, TypeEntries::type_unknown); 2939 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 2940 } 2941 2942 // different than before. Cannot keep accurate profile. 2943 __ orptr(mdo_addr, TypeEntries::type_unknown); 2944 2945 if (TypeEntries::is_type_none(current_klass)) { 2946 __ jmpb(next); 2947 2948 __ bind(none); 2949 // first time here. Set profile type. 2950 __ movptr(mdo_addr, tmp); 2951 #ifdef ASSERT 2952 __ andptr(tmp, TypeEntries::type_klass_mask); 2953 __ verify_klass_ptr(tmp); 2954 #endif 2955 } 2956 } else { 2957 // There's a single possible klass at this profile point 2958 assert(exact_klass != nullptr, "should be"); 2959 if (TypeEntries::is_type_none(current_klass)) { 2960 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2961 __ xorptr(tmp, mdo_addr); 2962 __ testptr(tmp, TypeEntries::type_klass_mask); 2963 #ifdef ASSERT 2964 __ jcc(Assembler::zero, next); 2965 2966 { 2967 Label ok; 2968 __ push_ppx(tmp); 2969 __ testptr(mdo_addr, TypeEntries::type_mask); 2970 __ jcc(Assembler::zero, ok); 2971 // may have been set by another thread 2972 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2973 __ xorptr(tmp, mdo_addr); 2974 __ testptr(tmp, TypeEntries::type_mask); 2975 __ jcc(Assembler::zero, ok); 2976 2977 __ stop("unexpected profiling mismatch"); 2978 __ bind(ok); 2979 __ pop_ppx(tmp); 2980 } 2981 #else 2982 __ jccb(Assembler::zero, next); 2983 #endif 2984 // first time here. Set profile type. 2985 __ movptr(mdo_addr, tmp); 2986 #ifdef ASSERT 2987 __ andptr(tmp, TypeEntries::type_klass_mask); 2988 __ verify_klass_ptr(tmp); 2989 #endif 2990 } else { 2991 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2992 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 2993 2994 __ testptr(mdo_addr, TypeEntries::type_unknown); 2995 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 2996 2997 __ orptr(mdo_addr, TypeEntries::type_unknown); 2998 } 2999 } 3000 } 3001 __ bind(next); 3002 } 3003 3004 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 3005 Unimplemented(); 3006 } 3007 3008 3009 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 3010 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 3011 } 3012 3013 3014 void LIR_Assembler::align_backward_branch_target() { 3015 __ align(BytesPerWord); 3016 } 3017 3018 3019 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 3020 if (left->is_single_cpu()) { 3021 __ negl(left->as_register()); 3022 move_regs(left->as_register(), dest->as_register()); 3023 3024 } else if (left->is_double_cpu()) { 3025 Register lo = left->as_register_lo(); 3026 Register dst = dest->as_register_lo(); 3027 __ movptr(dst, lo); 3028 __ negptr(dst); 3029 3030 } else if (dest->is_single_xmm()) { 3031 assert(!tmp->is_valid(), "do not need temporary"); 3032 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) { 3033 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg()); 3034 } 3035 __ xorps(dest->as_xmm_float_reg(), 3036 ExternalAddress((address)float_signflip_pool), 3037 rscratch1); 3038 } else if (dest->is_double_xmm()) { 3039 assert(!tmp->is_valid(), "do not need temporary"); 3040 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) { 3041 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg()); 3042 } 3043 __ xorpd(dest->as_xmm_double_reg(), 3044 ExternalAddress((address)double_signflip_pool), 3045 rscratch1); 3046 } else { 3047 ShouldNotReachHere(); 3048 } 3049 } 3050 3051 3052 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 3053 assert(src->is_address(), "must be an address"); 3054 assert(dest->is_register(), "must be a register"); 3055 3056 PatchingStub* patch = nullptr; 3057 if (patch_code != lir_patch_none) { 3058 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 3059 } 3060 3061 Register reg = dest->as_pointer_register(); 3062 LIR_Address* addr = src->as_address_ptr(); 3063 __ lea(reg, as_Address(addr)); 3064 3065 if (patch != nullptr) { 3066 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 3067 } 3068 } 3069 3070 3071 3072 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 3073 assert(!tmp->is_valid(), "don't need temporary"); 3074 __ call(RuntimeAddress(dest)); 3075 if (info != nullptr) { 3076 add_call_info_here(info); 3077 } 3078 __ post_call_nop(); 3079 } 3080 3081 3082 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 3083 assert(type == T_LONG, "only for volatile long fields"); 3084 3085 if (info != nullptr) { 3086 add_debug_info_for_null_check_here(info); 3087 } 3088 3089 if (src->is_double_xmm()) { 3090 if (dest->is_double_cpu()) { 3091 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg()); 3092 } else if (dest->is_double_stack()) { 3093 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg()); 3094 } else if (dest->is_address()) { 3095 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg()); 3096 } else { 3097 ShouldNotReachHere(); 3098 } 3099 3100 } else if (dest->is_double_xmm()) { 3101 if (src->is_double_stack()) { 3102 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix())); 3103 } else if (src->is_address()) { 3104 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr())); 3105 } else { 3106 ShouldNotReachHere(); 3107 } 3108 3109 } else { 3110 ShouldNotReachHere(); 3111 } 3112 } 3113 3114 #ifdef ASSERT 3115 // emit run-time assertion 3116 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 3117 assert(op->code() == lir_assert, "must be"); 3118 3119 if (op->in_opr1()->is_valid()) { 3120 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 3121 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 3122 } else { 3123 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 3124 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 3125 } 3126 3127 Label ok; 3128 if (op->condition() != lir_cond_always) { 3129 Assembler::Condition acond = Assembler::zero; 3130 switch (op->condition()) { 3131 case lir_cond_equal: acond = Assembler::equal; break; 3132 case lir_cond_notEqual: acond = Assembler::notEqual; break; 3133 case lir_cond_less: acond = Assembler::less; break; 3134 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 3135 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 3136 case lir_cond_greater: acond = Assembler::greater; break; 3137 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 3138 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 3139 default: ShouldNotReachHere(); 3140 } 3141 __ jcc(acond, ok); 3142 } 3143 if (op->halt()) { 3144 const char* str = __ code_string(op->msg()); 3145 __ stop(str); 3146 } else { 3147 breakpoint(); 3148 } 3149 __ bind(ok); 3150 } 3151 #endif 3152 3153 void LIR_Assembler::membar() { 3154 // QQQ sparc TSO uses this, 3155 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3156 } 3157 3158 void LIR_Assembler::membar_acquire() { 3159 // No x86 machines currently require load fences 3160 } 3161 3162 void LIR_Assembler::membar_release() { 3163 // No x86 machines currently require store fences 3164 } 3165 3166 void LIR_Assembler::membar_loadload() { 3167 // no-op 3168 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload)); 3169 } 3170 3171 void LIR_Assembler::membar_storestore() { 3172 // no-op 3173 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore)); 3174 } 3175 3176 void LIR_Assembler::membar_loadstore() { 3177 // no-op 3178 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore)); 3179 } 3180 3181 void LIR_Assembler::membar_storeload() { 3182 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3183 } 3184 3185 void LIR_Assembler::on_spin_wait() { 3186 __ pause (); 3187 } 3188 3189 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 3190 assert(result_reg->is_register(), "check"); 3191 __ mov(result_reg->as_register(), r15_thread); 3192 } 3193 3194 3195 void LIR_Assembler::peephole(LIR_List*) { 3196 // do nothing for now 3197 } 3198 3199 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 3200 assert(data == dest, "xchg/xadd uses only 2 operands"); 3201 3202 if (data->type() == T_INT) { 3203 if (code == lir_xadd) { 3204 __ lock(); 3205 __ xaddl(as_Address(src->as_address_ptr()), data->as_register()); 3206 } else { 3207 __ xchgl(data->as_register(), as_Address(src->as_address_ptr())); 3208 } 3209 } else if (data->is_oop()) { 3210 assert (code == lir_xchg, "xadd for oops"); 3211 Register obj = data->as_register(); 3212 if (UseCompressedOops) { 3213 __ encode_heap_oop(obj); 3214 __ xchgl(obj, as_Address(src->as_address_ptr())); 3215 __ decode_heap_oop(obj); 3216 } else { 3217 __ xchgptr(obj, as_Address(src->as_address_ptr())); 3218 } 3219 } else if (data->type() == T_LONG) { 3220 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register"); 3221 if (code == lir_xadd) { 3222 __ lock(); 3223 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo()); 3224 } else { 3225 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr())); 3226 } 3227 } else { 3228 ShouldNotReachHere(); 3229 } 3230 } 3231 3232 #undef __