1 /*
   2  * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_CodeStubs.hpp"
  29 #include "c1/c1_Compilation.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "ci/ciArrayKlass.hpp"
  35 #include "ci/ciInstance.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "code/SCCache.hpp"
  38 #include "compiler/oopMap.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gc_globals.hpp"
  41 #include "nativeInst_x86.hpp"
  42 #include "oops/objArrayKlass.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/safepointMechanism.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 #include "vmreg_x86.inline.hpp"
  49 
  50 
  51 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  52 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  53 // fast versions of NegF/NegD and AbsF/AbsD.
  54 
  55 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  56 static address double_quadword(jlong *adr, jlong lo, jlong hi) {
  57   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  58   // of 128-bits operands for SSE instructions.
  59   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  60   // Store the value to a 128-bits operand.
  61   operand[0] = lo;
  62   operand[1] = hi;
  63   return (address)operand;
  64 }
  65 
  66 // Buffer for 128-bits masks used by SSE instructions.
  67 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  68 
  69 // Static initialization during VM startup.
  70 address LIR_Assembler::float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  71 address LIR_Assembler::double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  72 address LIR_Assembler::float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  73 address LIR_Assembler::double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  74 
  75 
  76 NEEDS_CLEANUP // remove this definitions ?
  77 const Register SYNC_header = rax;   // synchronization header
  78 const Register SHIFT_count = rcx;   // where count for shift operations must be
  79 
  80 #define __ _masm->
  81 
  82 
  83 static void select_different_registers(Register preserve,
  84                                        Register extra,
  85                                        Register &tmp1,
  86                                        Register &tmp2) {
  87   if (tmp1 == preserve) {
  88     assert_different_registers(tmp1, tmp2, extra);
  89     tmp1 = extra;
  90   } else if (tmp2 == preserve) {
  91     assert_different_registers(tmp1, tmp2, extra);
  92     tmp2 = extra;
  93   }
  94   assert_different_registers(preserve, tmp1, tmp2);
  95 }
  96 
  97 
  98 
  99 static void select_different_registers(Register preserve,
 100                                        Register extra,
 101                                        Register &tmp1,
 102                                        Register &tmp2,
 103                                        Register &tmp3) {
 104   if (tmp1 == preserve) {
 105     assert_different_registers(tmp1, tmp2, tmp3, extra);
 106     tmp1 = extra;
 107   } else if (tmp2 == preserve) {
 108     assert_different_registers(tmp1, tmp2, tmp3, extra);
 109     tmp2 = extra;
 110   } else if (tmp3 == preserve) {
 111     assert_different_registers(tmp1, tmp2, tmp3, extra);
 112     tmp3 = extra;
 113   }
 114   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 115 }
 116 
 117 
 118 
 119 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 120   if (opr->is_constant()) {
 121     LIR_Const* constant = opr->as_constant_ptr();
 122     switch (constant->type()) {
 123       case T_INT: {
 124         return true;
 125       }
 126 
 127       default:
 128         return false;
 129     }
 130   }
 131   return false;
 132 }
 133 
 134 
 135 LIR_Opr LIR_Assembler::receiverOpr() {
 136   return FrameMap::receiver_opr;
 137 }
 138 
 139 LIR_Opr LIR_Assembler::osrBufferPointer() {
 140   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 141 }
 142 
 143 //--------------fpu register translations-----------------------
 144 
 145 
 146 address LIR_Assembler::float_constant(float f) {
 147   address const_addr = __ float_constant(f);
 148   if (const_addr == nullptr) {
 149     bailout("const section overflow");
 150     return __ code()->consts()->start();
 151   } else {
 152     return const_addr;
 153   }
 154 }
 155 
 156 
 157 address LIR_Assembler::double_constant(double d) {
 158   address const_addr = __ double_constant(d);
 159   if (const_addr == nullptr) {
 160     bailout("const section overflow");
 161     return __ code()->consts()->start();
 162   } else {
 163     return const_addr;
 164   }
 165 }
 166 
 167 #ifndef _LP64
 168 void LIR_Assembler::fpop() {
 169   __ fpop();
 170 }
 171 
 172 void LIR_Assembler::fxch(int i) {
 173   __ fxch(i);
 174 }
 175 
 176 void LIR_Assembler::fld(int i) {
 177   __ fld_s(i);
 178 }
 179 
 180 void LIR_Assembler::ffree(int i) {
 181   __ ffree(i);
 182 }
 183 #endif // !_LP64
 184 
 185 void LIR_Assembler::breakpoint() {
 186   __ int3();
 187 }
 188 
 189 void LIR_Assembler::push(LIR_Opr opr) {
 190   if (opr->is_single_cpu()) {
 191     __ push_reg(opr->as_register());
 192   } else if (opr->is_double_cpu()) {
 193     NOT_LP64(__ push_reg(opr->as_register_hi()));
 194     __ push_reg(opr->as_register_lo());
 195   } else if (opr->is_stack()) {
 196     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 197   } else if (opr->is_constant()) {
 198     LIR_Const* const_opr = opr->as_constant_ptr();
 199     if (const_opr->type() == T_OBJECT) {
 200       __ push_oop(const_opr->as_jobject(), rscratch1);
 201     } else if (const_opr->type() == T_INT) {
 202       __ push_jint(const_opr->as_jint());
 203     } else {
 204       ShouldNotReachHere();
 205     }
 206 
 207   } else {
 208     ShouldNotReachHere();
 209   }
 210 }
 211 
 212 void LIR_Assembler::pop(LIR_Opr opr) {
 213   if (opr->is_single_cpu()) {
 214     __ pop_reg(opr->as_register());
 215   } else {
 216     ShouldNotReachHere();
 217   }
 218 }
 219 
 220 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 221   return addr->base()->is_illegal() && addr->index()->is_illegal();
 222 }
 223 
 224 //-------------------------------------------
 225 
 226 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 227   return as_Address(addr, rscratch1);
 228 }
 229 
 230 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 231   if (addr->base()->is_illegal()) {
 232     assert(addr->index()->is_illegal(), "must be illegal too");
 233     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 234     if (! __ reachable(laddr)) {
 235       __ movptr(tmp, laddr.addr());
 236       Address res(tmp, 0);
 237       return res;
 238     } else {
 239       return __ as_Address(laddr);
 240     }
 241   }
 242 
 243   Register base = addr->base()->as_pointer_register();
 244 
 245   if (addr->index()->is_illegal()) {
 246     return Address( base, addr->disp());
 247   } else if (addr->index()->is_cpu_register()) {
 248     Register index = addr->index()->as_pointer_register();
 249     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 250   } else if (addr->index()->is_constant()) {
 251     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 252     assert(Assembler::is_simm32(addr_offset), "must be");
 253 
 254     return Address(base, addr_offset);
 255   } else {
 256     Unimplemented();
 257     return Address();
 258   }
 259 }
 260 
 261 
 262 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 263   Address base = as_Address(addr);
 264   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 265 }
 266 
 267 
 268 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 269   return as_Address(addr);
 270 }
 271 
 272 
 273 void LIR_Assembler::osr_entry() {
 274   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 275   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 276   ValueStack* entry_state = osr_entry->state();
 277   int number_of_locks = entry_state->locks_size();
 278 
 279   // we jump here if osr happens with the interpreter
 280   // state set up to continue at the beginning of the
 281   // loop that triggered osr - in particular, we have
 282   // the following registers setup:
 283   //
 284   // rcx: osr buffer
 285   //
 286 
 287   // build frame
 288   ciMethod* m = compilation()->method();
 289   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 290 
 291   // OSR buffer is
 292   //
 293   // locals[nlocals-1..0]
 294   // monitors[0..number_of_locks]
 295   //
 296   // locals is a direct copy of the interpreter frame so in the osr buffer
 297   // so first slot in the local array is the last local from the interpreter
 298   // and last slot is local[0] (receiver) from the interpreter
 299   //
 300   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 301   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 302   // in the interpreter frame (the method lock if a sync method)
 303 
 304   // Initialize monitors in the compiled activation.
 305   //   rcx: pointer to osr buffer
 306   //
 307   // All other registers are dead at this point and the locals will be
 308   // copied into place by code emitted in the IR.
 309 
 310   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 311   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 312     int monitor_offset = BytesPerWord * method()->max_locals() +
 313       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 314     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 315     // the OSR buffer using 2 word entries: first the lock and then
 316     // the oop.
 317     for (int i = 0; i < number_of_locks; i++) {
 318       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 319 #ifdef ASSERT
 320       // verify the interpreter's monitor has a non-null object
 321       {
 322         Label L;
 323         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD);
 324         __ jcc(Assembler::notZero, L);
 325         __ stop("locked object is null");
 326         __ bind(L);
 327       }
 328 #endif
 329       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 330       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 331       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 332       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 333     }
 334   }
 335 }
 336 
 337 
 338 // inline cache check; done before the frame is built.
 339 int LIR_Assembler::check_icache() {
 340   return __ ic_check(CodeEntryAlignment);
 341 }
 342 
 343 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 344   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 345   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
 346 
 347   Label L_skip_barrier;
 348   Register klass = rscratch1;
 349   Register thread = LP64_ONLY( r15_thread ) NOT_LP64( noreg );
 350   assert(thread != noreg, "x86_32 not implemented");
 351 
 352   __ mov_metadata(klass, method->holder()->constant_encoding());
 353   __ clinit_barrier(klass, thread, &L_skip_barrier /*L_fast_path*/);
 354 
 355   __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 356 
 357   __ bind(L_skip_barrier);
 358 }
 359 
 360 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 361   jobject o = nullptr;
 362   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 363   __ movoop(reg, o);
 364   patching_epilog(patch, lir_patch_normal, reg, info);
 365 }
 366 
 367 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 368   Metadata* o = nullptr;
 369   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 370   __ mov_metadata(reg, o);
 371   patching_epilog(patch, lir_patch_normal, reg, info);
 372 }
 373 
 374 // This specifies the rsp decrement needed to build the frame
 375 int LIR_Assembler::initial_frame_size_in_bytes() const {
 376   // if rounding, must let FrameMap know!
 377 
 378   // The frame_map records size in slots (32bit word)
 379 
 380   // subtract two words to account for return address and link
 381   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 382 }
 383 
 384 
 385 int LIR_Assembler::emit_exception_handler() {
 386   // generate code for exception handler
 387   address handler_base = __ start_a_stub(exception_handler_size());
 388   if (handler_base == nullptr) {
 389     // not enough space left for the handler
 390     bailout("exception handler overflow");
 391     return -1;
 392   }
 393 
 394   int offset = code_offset();
 395 
 396   // the exception oop and pc are in rax, and rdx
 397   // no other registers need to be preserved, so invalidate them
 398   __ invalidate_registers(false, true, true, false, true, true);
 399 
 400   // check that there is really an exception
 401   __ verify_not_null_oop(rax);
 402 
 403   // search an exception handler (rax: exception oop, rdx: throwing pc)
 404   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 405   __ should_not_reach_here();
 406   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 407   __ end_a_stub();
 408 
 409   return offset;
 410 }
 411 
 412 
 413 // Emit the code to remove the frame from the stack in the exception
 414 // unwind path.
 415 int LIR_Assembler::emit_unwind_handler() {
 416 #ifndef PRODUCT
 417   if (CommentedAssembly) {
 418     _masm->block_comment("Unwind handler");
 419   }
 420 #endif
 421 
 422   int offset = code_offset();
 423 
 424   // Fetch the exception from TLS and clear out exception related thread state
 425   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 426   NOT_LP64(__ get_thread(thread));
 427   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 428   __ movptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD);
 429   __ movptr(Address(thread, JavaThread::exception_pc_offset()), NULL_WORD);
 430 
 431   __ bind(_unwind_handler_entry);
 432   __ verify_not_null_oop(rax);
 433   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 434     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 435   }
 436 
 437   // Perform needed unlocking
 438   MonitorExitStub* stub = nullptr;
 439   if (method()->is_synchronized()) {
 440     monitor_address(0, FrameMap::rax_opr);
 441     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 442     if (LockingMode == LM_MONITOR) {
 443       __ jmp(*stub->entry());
 444     } else {
 445       __ unlock_object(rdi, rsi, rax, *stub->entry());
 446     }
 447     __ bind(*stub->continuation());
 448   }
 449 
 450   if (compilation()->env()->dtrace_method_probes()) {
 451 #ifdef _LP64
 452     __ mov(rdi, r15_thread);
 453     __ mov_metadata(rsi, method()->constant_encoding());
 454 #else
 455     __ get_thread(rax);
 456     __ movptr(Address(rsp, 0), rax);
 457     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding(), noreg);
 458 #endif
 459     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 460   }
 461 
 462   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 463     __ mov(rax, rbx);  // Restore the exception
 464   }
 465 
 466   // remove the activation and dispatch to the unwind handler
 467   __ remove_frame(initial_frame_size_in_bytes());
 468   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 469 
 470   // Emit the slow path assembly
 471   if (stub != nullptr) {
 472     stub->emit_code(this);
 473   }
 474 
 475   return offset;
 476 }
 477 
 478 
 479 int LIR_Assembler::emit_deopt_handler() {
 480   // generate code for exception handler
 481   address handler_base = __ start_a_stub(deopt_handler_size());
 482   if (handler_base == nullptr) {
 483     // not enough space left for the handler
 484     bailout("deopt handler overflow");
 485     return -1;
 486   }
 487 
 488   int offset = code_offset();
 489   InternalAddress here(__ pc());
 490 
 491   __ pushptr(here.addr(), rscratch1);
 492   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 493   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 494   __ end_a_stub();
 495 
 496   return offset;
 497 }
 498 
 499 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 500   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 501   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 502     assert(result->fpu() == 0, "result must already be on TOS");
 503   }
 504 
 505   // Pop the stack before the safepoint code
 506   __ remove_frame(initial_frame_size_in_bytes());
 507 
 508   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 509     __ reserved_stack_check();
 510   }
 511 
 512   // Note: we do not need to round double result; float result has the right precision
 513   // the poll sets the condition code, but no data registers
 514 
 515 #ifdef _LP64
 516   const Register thread = r15_thread;
 517 #else
 518   const Register thread = rbx;
 519   __ get_thread(thread);
 520 #endif
 521   code_stub->set_safepoint_offset(__ offset());
 522   __ relocate(relocInfo::poll_return_type);
 523   __ safepoint_poll(*code_stub->entry(), thread, true /* at_return */, true /* in_nmethod */);
 524   __ ret(0);
 525 }
 526 
 527 
 528 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 529   guarantee(info != nullptr, "Shouldn't be null");
 530   int offset = __ offset();
 531 #ifdef _LP64
 532   const Register poll_addr = rscratch1;
 533   __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset()));
 534 #else
 535   assert(tmp->is_cpu_register(), "needed");
 536   const Register poll_addr = tmp->as_register();
 537   __ get_thread(poll_addr);
 538   __ movptr(poll_addr, Address(poll_addr, in_bytes(JavaThread::polling_page_offset())));
 539 #endif
 540   add_debug_info_for_branch(info);
 541   __ relocate(relocInfo::poll_type);
 542   address pre_pc = __ pc();
 543   __ testl(rax, Address(poll_addr, 0));
 544   address post_pc = __ pc();
 545   guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 546   return offset;
 547 }
 548 
 549 
 550 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 551   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 552 }
 553 
 554 void LIR_Assembler::swap_reg(Register a, Register b) {
 555   __ xchgptr(a, b);
 556 }
 557 
 558 
 559 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 560   assert(src->is_constant(), "should not call otherwise");
 561   assert(dest->is_register(), "should not call otherwise");
 562   LIR_Const* c = src->as_constant_ptr();
 563 
 564   switch (c->type()) {
 565     case T_INT: {
 566       assert(patch_code == lir_patch_none, "no patching handled here");
 567       __ movl(dest->as_register(), c->as_jint());
 568       break;
 569     }
 570 
 571     case T_ADDRESS: {
 572       assert(patch_code == lir_patch_none, "no patching handled here");
 573       __ movptr(dest->as_register(), c->as_jint());
 574       break;
 575     }
 576 
 577     case T_LONG: {
 578       assert(patch_code == lir_patch_none, "no patching handled here");
 579 #ifdef _LP64
 580       if (SCCache::is_on_for_write()) {
 581         // SCA needs relocation info for card table base
 582         address b = c->as_pointer();
 583         if (is_card_table_address(b)) {
 584           __ lea(dest->as_register_lo(), ExternalAddress(b));
 585           break;
 586         }
 587       }
 588       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 589 #else
 590       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 591       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 592 #endif // _LP64
 593       break;
 594     }
 595 
 596     case T_OBJECT: {
 597       if (patch_code != lir_patch_none) {
 598         jobject2reg_with_patching(dest->as_register(), info);
 599       } else {
 600         __ movoop(dest->as_register(), c->as_jobject());
 601       }
 602       break;
 603     }
 604 
 605     case T_METADATA: {
 606       if (patch_code != lir_patch_none) {
 607         klass2reg_with_patching(dest->as_register(), info);
 608       } else {
 609         __ mov_metadata(dest->as_register(), c->as_metadata());
 610       }
 611       break;
 612     }
 613 
 614     case T_FLOAT: {
 615       if (dest->is_single_xmm()) {
 616         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) {
 617           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 618         } else {
 619           __ movflt(dest->as_xmm_float_reg(),
 620                    InternalAddress(float_constant(c->as_jfloat())));
 621         }
 622       } else {
 623 #ifndef _LP64
 624         assert(dest->is_single_fpu(), "must be");
 625         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 626         if (c->is_zero_float()) {
 627           __ fldz();
 628         } else if (c->is_one_float()) {
 629           __ fld1();
 630         } else {
 631           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 632         }
 633 #else
 634         ShouldNotReachHere();
 635 #endif // !_LP64
 636       }
 637       break;
 638     }
 639 
 640     case T_DOUBLE: {
 641       if (dest->is_double_xmm()) {
 642         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) {
 643           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 644         } else {
 645           __ movdbl(dest->as_xmm_double_reg(),
 646                     InternalAddress(double_constant(c->as_jdouble())));
 647         }
 648       } else {
 649 #ifndef _LP64
 650         assert(dest->is_double_fpu(), "must be");
 651         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 652         if (c->is_zero_double()) {
 653           __ fldz();
 654         } else if (c->is_one_double()) {
 655           __ fld1();
 656         } else {
 657           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 658         }
 659 #else
 660         ShouldNotReachHere();
 661 #endif // !_LP64
 662       }
 663       break;
 664     }
 665 
 666     default:
 667       ShouldNotReachHere();
 668   }
 669 }
 670 
 671 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 672   assert(src->is_constant(), "should not call otherwise");
 673   assert(dest->is_stack(), "should not call otherwise");
 674   LIR_Const* c = src->as_constant_ptr();
 675 
 676   switch (c->type()) {
 677     case T_INT:  // fall through
 678     case T_FLOAT:
 679       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 680       break;
 681 
 682     case T_ADDRESS:
 683       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 684       break;
 685 
 686     case T_OBJECT:
 687       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1);
 688       break;
 689 
 690     case T_LONG:  // fall through
 691     case T_DOUBLE:
 692 #ifdef _LP64
 693       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 694                                               lo_word_offset_in_bytes),
 695                 (intptr_t)c->as_jlong_bits(),
 696                 rscratch1);
 697 #else
 698       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 699                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 700       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 701                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 702 #endif // _LP64
 703       break;
 704 
 705     default:
 706       ShouldNotReachHere();
 707   }
 708 }
 709 
 710 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 711   assert(src->is_constant(), "should not call otherwise");
 712   assert(dest->is_address(), "should not call otherwise");
 713   LIR_Const* c = src->as_constant_ptr();
 714   LIR_Address* addr = dest->as_address_ptr();
 715 
 716   int null_check_here = code_offset();
 717   switch (type) {
 718     case T_INT:    // fall through
 719     case T_FLOAT:
 720       __ movl(as_Address(addr), c->as_jint_bits());
 721       break;
 722 
 723     case T_ADDRESS:
 724       __ movptr(as_Address(addr), c->as_jint_bits());
 725       break;
 726 
 727     case T_OBJECT:  // fall through
 728     case T_ARRAY:
 729       if (c->as_jobject() == nullptr) {
 730         if (UseCompressedOops && !wide) {
 731           __ movl(as_Address(addr), NULL_WORD);
 732         } else {
 733 #ifdef _LP64
 734           __ xorptr(rscratch1, rscratch1);
 735           null_check_here = code_offset();
 736           __ movptr(as_Address(addr), rscratch1);
 737 #else
 738           __ movptr(as_Address(addr), NULL_WORD);
 739 #endif
 740         }
 741       } else {
 742         if (is_literal_address(addr)) {
 743           ShouldNotReachHere();
 744           __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1);
 745         } else {
 746 #ifdef _LP64
 747           __ movoop(rscratch1, c->as_jobject());
 748           if (UseCompressedOops && !wide) {
 749             __ encode_heap_oop(rscratch1);
 750             null_check_here = code_offset();
 751             __ movl(as_Address_lo(addr), rscratch1);
 752           } else {
 753             null_check_here = code_offset();
 754             __ movptr(as_Address_lo(addr), rscratch1);
 755           }
 756 #else
 757           __ movoop(as_Address(addr), c->as_jobject(), noreg);
 758 #endif
 759         }
 760       }
 761       break;
 762 
 763     case T_LONG:    // fall through
 764     case T_DOUBLE:
 765 #ifdef _LP64
 766       if (is_literal_address(addr)) {
 767         ShouldNotReachHere();
 768         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 769       } else {
 770         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 771         null_check_here = code_offset();
 772         __ movptr(as_Address_lo(addr), r10);
 773       }
 774 #else
 775       // Always reachable in 32bit so this doesn't produce useless move literal
 776       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 777       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 778 #endif // _LP64
 779       break;
 780 
 781     case T_BOOLEAN: // fall through
 782     case T_BYTE:
 783       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 784       break;
 785 
 786     case T_CHAR:    // fall through
 787     case T_SHORT:
 788       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 789       break;
 790 
 791     default:
 792       ShouldNotReachHere();
 793   };
 794 
 795   if (info != nullptr) {
 796     add_debug_info_for_null_check(null_check_here, info);
 797   }
 798 }
 799 
 800 
 801 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 802   assert(src->is_register(), "should not call otherwise");
 803   assert(dest->is_register(), "should not call otherwise");
 804 
 805   // move between cpu-registers
 806   if (dest->is_single_cpu()) {
 807 #ifdef _LP64
 808     if (src->type() == T_LONG) {
 809       // Can do LONG -> OBJECT
 810       move_regs(src->as_register_lo(), dest->as_register());
 811       return;
 812     }
 813 #endif
 814     assert(src->is_single_cpu(), "must match");
 815     if (src->type() == T_OBJECT) {
 816       __ verify_oop(src->as_register());
 817     }
 818     move_regs(src->as_register(), dest->as_register());
 819 
 820   } else if (dest->is_double_cpu()) {
 821 #ifdef _LP64
 822     if (is_reference_type(src->type())) {
 823       // Surprising to me but we can see move of a long to t_object
 824       __ verify_oop(src->as_register());
 825       move_regs(src->as_register(), dest->as_register_lo());
 826       return;
 827     }
 828 #endif
 829     assert(src->is_double_cpu(), "must match");
 830     Register f_lo = src->as_register_lo();
 831     Register f_hi = src->as_register_hi();
 832     Register t_lo = dest->as_register_lo();
 833     Register t_hi = dest->as_register_hi();
 834 #ifdef _LP64
 835     assert(f_hi == f_lo, "must be same");
 836     assert(t_hi == t_lo, "must be same");
 837     move_regs(f_lo, t_lo);
 838 #else
 839     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 840 
 841 
 842     if (f_lo == t_hi && f_hi == t_lo) {
 843       swap_reg(f_lo, f_hi);
 844     } else if (f_hi == t_lo) {
 845       assert(f_lo != t_hi, "overwriting register");
 846       move_regs(f_hi, t_hi);
 847       move_regs(f_lo, t_lo);
 848     } else {
 849       assert(f_hi != t_lo, "overwriting register");
 850       move_regs(f_lo, t_lo);
 851       move_regs(f_hi, t_hi);
 852     }
 853 #endif // LP64
 854 
 855 #ifndef _LP64
 856     // special moves from fpu-register to xmm-register
 857     // necessary for method results
 858   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 859     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 860     __ fld_s(Address(rsp, 0));
 861   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 862     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 863     __ fld_d(Address(rsp, 0));
 864   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 865     __ fstp_s(Address(rsp, 0));
 866     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 867   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 868     __ fstp_d(Address(rsp, 0));
 869     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 870 #endif // !_LP64
 871 
 872     // move between xmm-registers
 873   } else if (dest->is_single_xmm()) {
 874     assert(src->is_single_xmm(), "must match");
 875     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 876   } else if (dest->is_double_xmm()) {
 877     assert(src->is_double_xmm(), "must match");
 878     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 879 
 880 #ifndef _LP64
 881     // move between fpu-registers (no instruction necessary because of fpu-stack)
 882   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 883     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 884     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 885 #endif // !_LP64
 886 
 887   } else {
 888     ShouldNotReachHere();
 889   }
 890 }
 891 
 892 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 893   assert(src->is_register(), "should not call otherwise");
 894   assert(dest->is_stack(), "should not call otherwise");
 895 
 896   if (src->is_single_cpu()) {
 897     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 898     if (is_reference_type(type)) {
 899       __ verify_oop(src->as_register());
 900       __ movptr (dst, src->as_register());
 901     } else if (type == T_METADATA || type == T_ADDRESS) {
 902       __ movptr (dst, src->as_register());
 903     } else {
 904       __ movl (dst, src->as_register());
 905     }
 906 
 907   } else if (src->is_double_cpu()) {
 908     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 909     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 910     __ movptr (dstLO, src->as_register_lo());
 911     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 912 
 913   } else if (src->is_single_xmm()) {
 914     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 915     __ movflt(dst_addr, src->as_xmm_float_reg());
 916 
 917   } else if (src->is_double_xmm()) {
 918     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 919     __ movdbl(dst_addr, src->as_xmm_double_reg());
 920 
 921 #ifndef _LP64
 922   } else if (src->is_single_fpu()) {
 923     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 924     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 925     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 926     else                   __ fst_s  (dst_addr);
 927 
 928   } else if (src->is_double_fpu()) {
 929     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 930     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 931     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 932     else                   __ fst_d  (dst_addr);
 933 #endif // !_LP64
 934 
 935   } else {
 936     ShouldNotReachHere();
 937   }
 938 }
 939 
 940 
 941 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) {
 942   LIR_Address* to_addr = dest->as_address_ptr();
 943   PatchingStub* patch = nullptr;
 944   Register compressed_src = rscratch1;
 945 
 946   if (is_reference_type(type)) {
 947     __ verify_oop(src->as_register());
 948 #ifdef _LP64
 949     if (UseCompressedOops && !wide) {
 950       __ movptr(compressed_src, src->as_register());
 951       __ encode_heap_oop(compressed_src);
 952       if (patch_code != lir_patch_none) {
 953         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 954       }
 955     }
 956 #endif
 957   }
 958 
 959   if (patch_code != lir_patch_none) {
 960     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 961     Address toa = as_Address(to_addr);
 962     assert(toa.disp() != 0, "must have");
 963   }
 964 
 965   int null_check_here = code_offset();
 966   switch (type) {
 967     case T_FLOAT: {
 968 #ifdef _LP64
 969       assert(src->is_single_xmm(), "not a float");
 970       __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 971 #else
 972       if (src->is_single_xmm()) {
 973         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 974       } else {
 975         assert(src->is_single_fpu(), "must be");
 976         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 977         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 978         else                    __ fst_s (as_Address(to_addr));
 979       }
 980 #endif // _LP64
 981       break;
 982     }
 983 
 984     case T_DOUBLE: {
 985 #ifdef _LP64
 986       assert(src->is_double_xmm(), "not a double");
 987       __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 988 #else
 989       if (src->is_double_xmm()) {
 990         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 991       } else {
 992         assert(src->is_double_fpu(), "must be");
 993         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 994         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
 995         else                    __ fst_d (as_Address(to_addr));
 996       }
 997 #endif // _LP64
 998       break;
 999     }
1000 
1001     case T_ARRAY:   // fall through
1002     case T_OBJECT:  // fall through
1003       if (UseCompressedOops && !wide) {
1004         __ movl(as_Address(to_addr), compressed_src);
1005       } else {
1006         __ movptr(as_Address(to_addr), src->as_register());
1007       }
1008       break;
1009     case T_METADATA:
1010       // We get here to store a method pointer to the stack to pass to
1011       // a dtrace runtime call. This can't work on 64 bit with
1012       // compressed klass ptrs: T_METADATA can be a compressed klass
1013       // ptr or a 64 bit method pointer.
1014       LP64_ONLY(ShouldNotReachHere());
1015       __ movptr(as_Address(to_addr), src->as_register());
1016       break;
1017     case T_ADDRESS:
1018       __ movptr(as_Address(to_addr), src->as_register());
1019       break;
1020     case T_INT:
1021       __ movl(as_Address(to_addr), src->as_register());
1022       break;
1023 
1024     case T_LONG: {
1025       Register from_lo = src->as_register_lo();
1026       Register from_hi = src->as_register_hi();
1027 #ifdef _LP64
1028       __ movptr(as_Address_lo(to_addr), from_lo);
1029 #else
1030       Register base = to_addr->base()->as_register();
1031       Register index = noreg;
1032       if (to_addr->index()->is_register()) {
1033         index = to_addr->index()->as_register();
1034       }
1035       if (base == from_lo || index == from_lo) {
1036         assert(base != from_hi, "can't be");
1037         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1038         __ movl(as_Address_hi(to_addr), from_hi);
1039         if (patch != nullptr) {
1040           patching_epilog(patch, lir_patch_high, base, info);
1041           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1042           patch_code = lir_patch_low;
1043         }
1044         __ movl(as_Address_lo(to_addr), from_lo);
1045       } else {
1046         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1047         __ movl(as_Address_lo(to_addr), from_lo);
1048         if (patch != nullptr) {
1049           patching_epilog(patch, lir_patch_low, base, info);
1050           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1051           patch_code = lir_patch_high;
1052         }
1053         __ movl(as_Address_hi(to_addr), from_hi);
1054       }
1055 #endif // _LP64
1056       break;
1057     }
1058 
1059     case T_BYTE:    // fall through
1060     case T_BOOLEAN: {
1061       Register src_reg = src->as_register();
1062       Address dst_addr = as_Address(to_addr);
1063       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1064       __ movb(dst_addr, src_reg);
1065       break;
1066     }
1067 
1068     case T_CHAR:    // fall through
1069     case T_SHORT:
1070       __ movw(as_Address(to_addr), src->as_register());
1071       break;
1072 
1073     default:
1074       ShouldNotReachHere();
1075   }
1076   if (info != nullptr) {
1077     add_debug_info_for_null_check(null_check_here, info);
1078   }
1079 
1080   if (patch_code != lir_patch_none) {
1081     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1082   }
1083 }
1084 
1085 
1086 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1087   assert(src->is_stack(), "should not call otherwise");
1088   assert(dest->is_register(), "should not call otherwise");
1089 
1090   if (dest->is_single_cpu()) {
1091     if (is_reference_type(type)) {
1092       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1093       __ verify_oop(dest->as_register());
1094     } else if (type == T_METADATA || type == T_ADDRESS) {
1095       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1096     } else {
1097       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1098     }
1099 
1100   } else if (dest->is_double_cpu()) {
1101     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1102     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1103     __ movptr(dest->as_register_lo(), src_addr_LO);
1104     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1105 
1106   } else if (dest->is_single_xmm()) {
1107     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1108     __ movflt(dest->as_xmm_float_reg(), src_addr);
1109 
1110   } else if (dest->is_double_xmm()) {
1111     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1112     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1113 
1114 #ifndef _LP64
1115   } else if (dest->is_single_fpu()) {
1116     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1117     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1118     __ fld_s(src_addr);
1119 
1120   } else if (dest->is_double_fpu()) {
1121     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1122     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1123     __ fld_d(src_addr);
1124 #endif // _LP64
1125 
1126   } else {
1127     ShouldNotReachHere();
1128   }
1129 }
1130 
1131 
1132 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1133   if (src->is_single_stack()) {
1134     if (is_reference_type(type)) {
1135       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1136       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1137     } else {
1138 #ifndef _LP64
1139       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1140       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1141 #else
1142       //no pushl on 64bits
1143       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1144       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1145 #endif
1146     }
1147 
1148   } else if (src->is_double_stack()) {
1149 #ifdef _LP64
1150     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1151     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1152 #else
1153     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1154     // push and pop the part at src + wordSize, adding wordSize for the previous push
1155     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1156     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1157     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1158 #endif // _LP64
1159 
1160   } else {
1161     ShouldNotReachHere();
1162   }
1163 }
1164 
1165 
1166 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
1167   assert(src->is_address(), "should not call otherwise");
1168   assert(dest->is_register(), "should not call otherwise");
1169 
1170   LIR_Address* addr = src->as_address_ptr();
1171   Address from_addr = as_Address(addr);
1172 
1173   if (addr->base()->type() == T_OBJECT) {
1174     __ verify_oop(addr->base()->as_pointer_register());
1175   }
1176 
1177   switch (type) {
1178     case T_BOOLEAN: // fall through
1179     case T_BYTE:    // fall through
1180     case T_CHAR:    // fall through
1181     case T_SHORT:
1182       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1183         // on pre P6 processors we may get partial register stalls
1184         // so blow away the value of to_rinfo before loading a
1185         // partial word into it.  Do it here so that it precedes
1186         // the potential patch point below.
1187         __ xorptr(dest->as_register(), dest->as_register());
1188       }
1189       break;
1190    default:
1191      break;
1192   }
1193 
1194   PatchingStub* patch = nullptr;
1195   if (patch_code != lir_patch_none) {
1196     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1197     assert(from_addr.disp() != 0, "must have");
1198   }
1199   if (info != nullptr) {
1200     add_debug_info_for_null_check_here(info);
1201   }
1202 
1203   switch (type) {
1204     case T_FLOAT: {
1205       if (dest->is_single_xmm()) {
1206         __ movflt(dest->as_xmm_float_reg(), from_addr);
1207       } else {
1208 #ifndef _LP64
1209         assert(dest->is_single_fpu(), "must be");
1210         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1211         __ fld_s(from_addr);
1212 #else
1213         ShouldNotReachHere();
1214 #endif // !LP64
1215       }
1216       break;
1217     }
1218 
1219     case T_DOUBLE: {
1220       if (dest->is_double_xmm()) {
1221         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1222       } else {
1223 #ifndef _LP64
1224         assert(dest->is_double_fpu(), "must be");
1225         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1226         __ fld_d(from_addr);
1227 #else
1228         ShouldNotReachHere();
1229 #endif // !LP64
1230       }
1231       break;
1232     }
1233 
1234     case T_OBJECT:  // fall through
1235     case T_ARRAY:   // fall through
1236       if (UseCompressedOops && !wide) {
1237         __ movl(dest->as_register(), from_addr);
1238       } else {
1239         __ movptr(dest->as_register(), from_addr);
1240       }
1241       break;
1242 
1243     case T_ADDRESS:
1244       __ movptr(dest->as_register(), from_addr);
1245       break;
1246     case T_INT:
1247       __ movl(dest->as_register(), from_addr);
1248       break;
1249 
1250     case T_LONG: {
1251       Register to_lo = dest->as_register_lo();
1252       Register to_hi = dest->as_register_hi();
1253 #ifdef _LP64
1254       __ movptr(to_lo, as_Address_lo(addr));
1255 #else
1256       Register base = addr->base()->as_register();
1257       Register index = noreg;
1258       if (addr->index()->is_register()) {
1259         index = addr->index()->as_register();
1260       }
1261       if ((base == to_lo && index == to_hi) ||
1262           (base == to_hi && index == to_lo)) {
1263         // addresses with 2 registers are only formed as a result of
1264         // array access so this code will never have to deal with
1265         // patches or null checks.
1266         assert(info == nullptr && patch == nullptr, "must be");
1267         __ lea(to_hi, as_Address(addr));
1268         __ movl(to_lo, Address(to_hi, 0));
1269         __ movl(to_hi, Address(to_hi, BytesPerWord));
1270       } else if (base == to_lo || index == to_lo) {
1271         assert(base != to_hi, "can't be");
1272         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1273         __ movl(to_hi, as_Address_hi(addr));
1274         if (patch != nullptr) {
1275           patching_epilog(patch, lir_patch_high, base, info);
1276           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1277           patch_code = lir_patch_low;
1278         }
1279         __ movl(to_lo, as_Address_lo(addr));
1280       } else {
1281         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1282         __ movl(to_lo, as_Address_lo(addr));
1283         if (patch != nullptr) {
1284           patching_epilog(patch, lir_patch_low, base, info);
1285           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1286           patch_code = lir_patch_high;
1287         }
1288         __ movl(to_hi, as_Address_hi(addr));
1289       }
1290 #endif // _LP64
1291       break;
1292     }
1293 
1294     case T_BOOLEAN: // fall through
1295     case T_BYTE: {
1296       Register dest_reg = dest->as_register();
1297       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1298       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1299         __ movsbl(dest_reg, from_addr);
1300       } else {
1301         __ movb(dest_reg, from_addr);
1302         __ shll(dest_reg, 24);
1303         __ sarl(dest_reg, 24);
1304       }
1305       break;
1306     }
1307 
1308     case T_CHAR: {
1309       Register dest_reg = dest->as_register();
1310       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1311       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1312         __ movzwl(dest_reg, from_addr);
1313       } else {
1314         __ movw(dest_reg, from_addr);
1315       }
1316       break;
1317     }
1318 
1319     case T_SHORT: {
1320       Register dest_reg = dest->as_register();
1321       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1322         __ movswl(dest_reg, from_addr);
1323       } else {
1324         __ movw(dest_reg, from_addr);
1325         __ shll(dest_reg, 16);
1326         __ sarl(dest_reg, 16);
1327       }
1328       break;
1329     }
1330 
1331     default:
1332       ShouldNotReachHere();
1333   }
1334 
1335   if (patch != nullptr) {
1336     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1337   }
1338 
1339   if (is_reference_type(type)) {
1340 #ifdef _LP64
1341     if (UseCompressedOops && !wide) {
1342       __ decode_heap_oop(dest->as_register());
1343     }
1344 #endif
1345 
1346     if (!(UseZGC && !ZGenerational)) {
1347       // Load barrier has not yet been applied, so ZGC can't verify the oop here
1348       __ verify_oop(dest->as_register());
1349     }
1350   }
1351 }
1352 
1353 
1354 NEEDS_CLEANUP; // This could be static?
1355 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1356   int elem_size = type2aelembytes(type);
1357   switch (elem_size) {
1358     case 1: return Address::times_1;
1359     case 2: return Address::times_2;
1360     case 4: return Address::times_4;
1361     case 8: return Address::times_8;
1362   }
1363   ShouldNotReachHere();
1364   return Address::no_scale;
1365 }
1366 
1367 
1368 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1369   switch (op->code()) {
1370     case lir_idiv:
1371     case lir_irem:
1372       arithmetic_idiv(op->code(),
1373                       op->in_opr1(),
1374                       op->in_opr2(),
1375                       op->in_opr3(),
1376                       op->result_opr(),
1377                       op->info());
1378       break;
1379     case lir_fmad:
1380       __ fmad(op->result_opr()->as_xmm_double_reg(),
1381               op->in_opr1()->as_xmm_double_reg(),
1382               op->in_opr2()->as_xmm_double_reg(),
1383               op->in_opr3()->as_xmm_double_reg());
1384       break;
1385     case lir_fmaf:
1386       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1387               op->in_opr1()->as_xmm_float_reg(),
1388               op->in_opr2()->as_xmm_float_reg(),
1389               op->in_opr3()->as_xmm_float_reg());
1390       break;
1391     default:      ShouldNotReachHere(); break;
1392   }
1393 }
1394 
1395 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1396 #ifdef ASSERT
1397   assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
1398   if (op->block() != nullptr)  _branch_target_blocks.append(op->block());
1399   if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
1400 #endif
1401 
1402   if (op->cond() == lir_cond_always) {
1403     if (op->info() != nullptr) add_debug_info_for_branch(op->info());
1404     __ jmp (*(op->label()));
1405   } else {
1406     Assembler::Condition acond = Assembler::zero;
1407     if (op->code() == lir_cond_float_branch) {
1408       assert(op->ublock() != nullptr, "must have unordered successor");
1409       __ jcc(Assembler::parity, *(op->ublock()->label()));
1410       switch(op->cond()) {
1411         case lir_cond_equal:        acond = Assembler::equal;      break;
1412         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1413         case lir_cond_less:         acond = Assembler::below;      break;
1414         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1415         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1416         case lir_cond_greater:      acond = Assembler::above;      break;
1417         default:                         ShouldNotReachHere();
1418       }
1419     } else {
1420       switch (op->cond()) {
1421         case lir_cond_equal:        acond = Assembler::equal;       break;
1422         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1423         case lir_cond_less:         acond = Assembler::less;        break;
1424         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1425         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1426         case lir_cond_greater:      acond = Assembler::greater;     break;
1427         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1428         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1429         default:                         ShouldNotReachHere();
1430       }
1431     }
1432     __ jcc(acond,*(op->label()));
1433   }
1434 }
1435 
1436 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1437   LIR_Opr src  = op->in_opr();
1438   LIR_Opr dest = op->result_opr();
1439 
1440   switch (op->bytecode()) {
1441     case Bytecodes::_i2l:
1442 #ifdef _LP64
1443       __ movl2ptr(dest->as_register_lo(), src->as_register());
1444 #else
1445       move_regs(src->as_register(), dest->as_register_lo());
1446       move_regs(src->as_register(), dest->as_register_hi());
1447       __ sarl(dest->as_register_hi(), 31);
1448 #endif // LP64
1449       break;
1450 
1451     case Bytecodes::_l2i:
1452 #ifdef _LP64
1453       __ movl(dest->as_register(), src->as_register_lo());
1454 #else
1455       move_regs(src->as_register_lo(), dest->as_register());
1456 #endif
1457       break;
1458 
1459     case Bytecodes::_i2b:
1460       move_regs(src->as_register(), dest->as_register());
1461       __ sign_extend_byte(dest->as_register());
1462       break;
1463 
1464     case Bytecodes::_i2c:
1465       move_regs(src->as_register(), dest->as_register());
1466       __ andl(dest->as_register(), 0xFFFF);
1467       break;
1468 
1469     case Bytecodes::_i2s:
1470       move_regs(src->as_register(), dest->as_register());
1471       __ sign_extend_short(dest->as_register());
1472       break;
1473 
1474 
1475 #ifdef _LP64
1476     case Bytecodes::_f2d:
1477       __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1478       break;
1479 
1480     case Bytecodes::_d2f:
1481       __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1482       break;
1483 
1484     case Bytecodes::_i2f:
1485       __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1486       break;
1487 
1488     case Bytecodes::_i2d:
1489       __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1490       break;
1491 
1492     case Bytecodes::_l2f:
1493       __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo());
1494       break;
1495 
1496     case Bytecodes::_l2d:
1497       __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo());
1498       break;
1499 
1500     case Bytecodes::_f2i:
1501       __ convert_f2i(dest->as_register(), src->as_xmm_float_reg());
1502       break;
1503 
1504     case Bytecodes::_d2i:
1505       __ convert_d2i(dest->as_register(), src->as_xmm_double_reg());
1506       break;
1507 
1508     case Bytecodes::_f2l:
1509       __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg());
1510       break;
1511 
1512     case Bytecodes::_d2l:
1513       __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg());
1514       break;
1515 #else
1516     case Bytecodes::_f2d:
1517     case Bytecodes::_d2f:
1518       if (dest->is_single_xmm()) {
1519         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1520       } else if (dest->is_double_xmm()) {
1521         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1522       } else {
1523         assert(src->fpu() == dest->fpu(), "register must be equal");
1524         // do nothing (float result is rounded later through spilling)
1525       }
1526       break;
1527 
1528     case Bytecodes::_i2f:
1529     case Bytecodes::_i2d:
1530       if (dest->is_single_xmm()) {
1531         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1532       } else if (dest->is_double_xmm()) {
1533         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1534       } else {
1535         assert(dest->fpu() == 0, "result must be on TOS");
1536         __ movl(Address(rsp, 0), src->as_register());
1537         __ fild_s(Address(rsp, 0));
1538       }
1539       break;
1540 
1541     case Bytecodes::_l2f:
1542     case Bytecodes::_l2d:
1543       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1544       assert(dest->fpu() == 0, "result must be on TOS");
1545       __ movptr(Address(rsp, 0),          src->as_register_lo());
1546       __ movl(Address(rsp, BytesPerWord), src->as_register_hi());
1547       __ fild_d(Address(rsp, 0));
1548       // float result is rounded later through spilling
1549       break;
1550 
1551     case Bytecodes::_f2i:
1552     case Bytecodes::_d2i:
1553       if (src->is_single_xmm()) {
1554         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1555       } else if (src->is_double_xmm()) {
1556         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1557       } else {
1558         assert(src->fpu() == 0, "input must be on TOS");
1559         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_trunc()));
1560         __ fist_s(Address(rsp, 0));
1561         __ movl(dest->as_register(), Address(rsp, 0));
1562         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
1563       }
1564       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1565       assert(op->stub() != nullptr, "stub required");
1566       __ cmpl(dest->as_register(), 0x80000000);
1567       __ jcc(Assembler::equal, *op->stub()->entry());
1568       __ bind(*op->stub()->continuation());
1569       break;
1570 
1571     case Bytecodes::_f2l:
1572     case Bytecodes::_d2l:
1573       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1574       assert(src->fpu() == 0, "input must be on TOS");
1575       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1576 
1577       // instruction sequence too long to inline it here
1578       {
1579         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1580       }
1581       break;
1582 #endif // _LP64
1583 
1584     default: ShouldNotReachHere();
1585   }
1586 }
1587 
1588 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1589   if (op->init_check()) {
1590     add_debug_info_for_null_check_here(op->stub()->info());
1591     __ cmpb(Address(op->klass()->as_register(),
1592                     InstanceKlass::init_state_offset()),
1593                     InstanceKlass::fully_initialized);
1594     __ jcc(Assembler::notEqual, *op->stub()->entry());
1595   }
1596   __ allocate_object(op->obj()->as_register(),
1597                      op->tmp1()->as_register(),
1598                      op->tmp2()->as_register(),
1599                      op->header_size(),
1600                      op->object_size(),
1601                      op->klass()->as_register(),
1602                      *op->stub()->entry());
1603   __ bind(*op->stub()->continuation());
1604 }
1605 
1606 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1607   Register len =  op->len()->as_register();
1608   LP64_ONLY( __ movslq(len, len); )
1609 
1610   if (UseSlowPath ||
1611       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1612       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1613     __ jmp(*op->stub()->entry());
1614   } else {
1615     Register tmp1 = op->tmp1()->as_register();
1616     Register tmp2 = op->tmp2()->as_register();
1617     Register tmp3 = op->tmp3()->as_register();
1618     if (len == tmp1) {
1619       tmp1 = tmp3;
1620     } else if (len == tmp2) {
1621       tmp2 = tmp3;
1622     } else if (len == tmp3) {
1623       // everything is ok
1624     } else {
1625       __ mov(tmp3, len);
1626     }
1627     __ allocate_array(op->obj()->as_register(),
1628                       len,
1629                       tmp1,
1630                       tmp2,
1631                       arrayOopDesc::base_offset_in_bytes(op->type()),
1632                       array_element_size(op->type()),
1633                       op->klass()->as_register(),
1634                       *op->stub()->entry(),
1635                       op->zero_array());
1636   }
1637   __ bind(*op->stub()->continuation());
1638 }
1639 
1640 void LIR_Assembler::type_profile_helper(Register mdo,
1641                                         ciMethodData *md, ciProfileData *data,
1642                                         Register recv, Label* update_done) {
1643   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1644     Label next_test;
1645     // See if the receiver is receiver[n].
1646     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1647     __ jccb(Assembler::notEqual, next_test);
1648     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1649     __ addptr(data_addr, DataLayout::counter_increment);
1650     __ jmp(*update_done);
1651     __ bind(next_test);
1652   }
1653 
1654   // Didn't find receiver; find next empty slot and fill it in
1655   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1656     Label next_test;
1657     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1658     __ cmpptr(recv_addr, NULL_WORD);
1659     __ jccb(Assembler::notEqual, next_test);
1660     __ movptr(recv_addr, recv);
1661     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1662     __ jmp(*update_done);
1663     __ bind(next_test);
1664   }
1665 }
1666 
1667 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1668   // we always need a stub for the failure case.
1669   CodeStub* stub = op->stub();
1670   Register obj = op->object()->as_register();
1671   Register k_RInfo = op->tmp1()->as_register();
1672   Register klass_RInfo = op->tmp2()->as_register();
1673   Register dst = op->result_opr()->as_register();
1674   ciKlass* k = op->klass();
1675   Register Rtmp1 = noreg;
1676   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1677 
1678   // check if it needs to be profiled
1679   ciMethodData* md = nullptr;
1680   ciProfileData* data = nullptr;
1681 
1682   if (op->should_profile()) {
1683     ciMethod* method = op->profiled_method();
1684     assert(method != nullptr, "Should have method");
1685     int bci = op->profiled_bci();
1686     md = method->method_data_or_null();
1687     assert(md != nullptr, "Sanity");
1688     data = md->bci_to_data(bci);
1689     assert(data != nullptr,                "need data for type check");
1690     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1691   }
1692   Label* success_target = success;
1693   Label* failure_target = failure;
1694 
1695   if (obj == k_RInfo) {
1696     k_RInfo = dst;
1697   } else if (obj == klass_RInfo) {
1698     klass_RInfo = dst;
1699   }
1700   if (k->is_loaded() && !UseCompressedClassPointers) {
1701     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1702   } else {
1703     Rtmp1 = op->tmp3()->as_register();
1704     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1705   }
1706 
1707   assert_different_registers(obj, k_RInfo, klass_RInfo);
1708 
1709   __ testptr(obj, obj);
1710   if (op->should_profile()) {
1711     Label not_null;
1712     Register mdo  = klass_RInfo;
1713     __ mov_metadata(mdo, md->constant_encoding());
1714     __ jccb(Assembler::notEqual, not_null);
1715     // Object is null; update MDO and exit
1716     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1717     int header_bits = BitData::null_seen_byte_constant();
1718     __ orb(data_addr, header_bits);
1719     __ jmp(*obj_is_null);
1720     __ bind(not_null);
1721 
1722     Label update_done;
1723     Register recv = k_RInfo;
1724     __ load_klass(recv, obj, tmp_load_klass);
1725     type_profile_helper(mdo, md, data, recv, &update_done);
1726 
1727     Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1728     __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment);
1729 
1730     __ bind(update_done);
1731   } else {
1732     __ jcc(Assembler::equal, *obj_is_null);
1733   }
1734 
1735   if (!k->is_loaded()) {
1736     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1737   } else {
1738 #ifdef _LP64
1739     __ mov_metadata(k_RInfo, k->constant_encoding());
1740 #endif // _LP64
1741   }
1742   __ verify_oop(obj);
1743 
1744   if (op->fast_check()) {
1745     // get object class
1746     // not a safepoint as obj null check happens earlier
1747 #ifdef _LP64
1748     if (UseCompressedClassPointers) {
1749       __ load_klass(Rtmp1, obj, tmp_load_klass);
1750       __ cmpptr(k_RInfo, Rtmp1);
1751     } else {
1752       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1753     }
1754 #else
1755     if (k->is_loaded()) {
1756       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1757     } else {
1758       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1759     }
1760 #endif
1761     __ jcc(Assembler::notEqual, *failure_target);
1762     // successful cast, fall through to profile or jump
1763   } else {
1764     // get object class
1765     // not a safepoint as obj null check happens earlier
1766     __ load_klass(klass_RInfo, obj, tmp_load_klass);
1767     if (k->is_loaded()) {
1768       // See if we get an immediate positive hit
1769 #ifdef _LP64
1770       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1771 #else
1772       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1773 #endif // _LP64
1774       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1775         __ jcc(Assembler::notEqual, *failure_target);
1776         // successful cast, fall through to profile or jump
1777       } else {
1778         // See if we get an immediate positive hit
1779         __ jcc(Assembler::equal, *success_target);
1780         // check for self
1781 #ifdef _LP64
1782         __ cmpptr(klass_RInfo, k_RInfo);
1783 #else
1784         __ cmpklass(klass_RInfo, k->constant_encoding());
1785 #endif // _LP64
1786         __ jcc(Assembler::equal, *success_target);
1787 
1788         __ push(klass_RInfo);
1789 #ifdef _LP64
1790         __ push(k_RInfo);
1791 #else
1792         __ pushklass(k->constant_encoding(), noreg);
1793 #endif // _LP64
1794         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1795         __ pop(klass_RInfo);
1796         __ pop(klass_RInfo);
1797         // result is a boolean
1798         __ testl(klass_RInfo, klass_RInfo);
1799         __ jcc(Assembler::equal, *failure_target);
1800         // successful cast, fall through to profile or jump
1801       }
1802     } else {
1803       // perform the fast part of the checking logic
1804       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1805       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1806       __ push(klass_RInfo);
1807       __ push(k_RInfo);
1808       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1809       __ pop(klass_RInfo);
1810       __ pop(k_RInfo);
1811       // result is a boolean
1812       __ testl(k_RInfo, k_RInfo);
1813       __ jcc(Assembler::equal, *failure_target);
1814       // successful cast, fall through to profile or jump
1815     }
1816   }
1817   __ jmp(*success);
1818 }
1819 
1820 
1821 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1822   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1823   LIR_Code code = op->code();
1824   if (code == lir_store_check) {
1825     Register value = op->object()->as_register();
1826     Register array = op->array()->as_register();
1827     Register k_RInfo = op->tmp1()->as_register();
1828     Register klass_RInfo = op->tmp2()->as_register();
1829     Register Rtmp1 = op->tmp3()->as_register();
1830 
1831     CodeStub* stub = op->stub();
1832 
1833     // check if it needs to be profiled
1834     ciMethodData* md = nullptr;
1835     ciProfileData* data = nullptr;
1836 
1837     if (op->should_profile()) {
1838       ciMethod* method = op->profiled_method();
1839       assert(method != nullptr, "Should have method");
1840       int bci = op->profiled_bci();
1841       md = method->method_data_or_null();
1842       assert(md != nullptr, "Sanity");
1843       data = md->bci_to_data(bci);
1844       assert(data != nullptr,                "need data for type check");
1845       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1846     }
1847     Label done;
1848     Label* success_target = &done;
1849     Label* failure_target = stub->entry();
1850 
1851     __ testptr(value, value);
1852     if (op->should_profile()) {
1853       Label not_null;
1854       Register mdo  = klass_RInfo;
1855       __ mov_metadata(mdo, md->constant_encoding());
1856       __ jccb(Assembler::notEqual, not_null);
1857       // Object is null; update MDO and exit
1858       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1859       int header_bits = BitData::null_seen_byte_constant();
1860       __ orb(data_addr, header_bits);
1861       __ jmp(done);
1862       __ bind(not_null);
1863 
1864       Label update_done;
1865       Register recv = k_RInfo;
1866       __ load_klass(recv, value, tmp_load_klass);
1867       type_profile_helper(mdo, md, data, recv, &update_done);
1868 
1869       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1870       __ addptr(counter_addr, DataLayout::counter_increment);
1871       __ bind(update_done);
1872     } else {
1873       __ jcc(Assembler::equal, done);
1874     }
1875 
1876     add_debug_info_for_null_check_here(op->info_for_exception());
1877     __ load_klass(k_RInfo, array, tmp_load_klass);
1878     __ load_klass(klass_RInfo, value, tmp_load_klass);
1879 
1880     // get instance klass (it's already uncompressed)
1881     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1882     // perform the fast part of the checking logic
1883     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1884     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1885     __ push(klass_RInfo);
1886     __ push(k_RInfo);
1887     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1888     __ pop(klass_RInfo);
1889     __ pop(k_RInfo);
1890     // result is a boolean
1891     __ testl(k_RInfo, k_RInfo);
1892     __ jcc(Assembler::equal, *failure_target);
1893     // fall through to the success case
1894 
1895     __ bind(done);
1896   } else
1897     if (code == lir_checkcast) {
1898       Register obj = op->object()->as_register();
1899       Register dst = op->result_opr()->as_register();
1900       Label success;
1901       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1902       __ bind(success);
1903       if (dst != obj) {
1904         __ mov(dst, obj);
1905       }
1906     } else
1907       if (code == lir_instanceof) {
1908         Register obj = op->object()->as_register();
1909         Register dst = op->result_opr()->as_register();
1910         Label success, failure, done;
1911         emit_typecheck_helper(op, &success, &failure, &failure);
1912         __ bind(failure);
1913         __ xorptr(dst, dst);
1914         __ jmpb(done);
1915         __ bind(success);
1916         __ movptr(dst, 1);
1917         __ bind(done);
1918       } else {
1919         ShouldNotReachHere();
1920       }
1921 
1922 }
1923 
1924 
1925 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1926   if (LP64_ONLY(false &&) op->code() == lir_cas_long) {
1927     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1928     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1929     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1930     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1931     Register addr = op->addr()->as_register();
1932     __ lock();
1933     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1934 
1935   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1936     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1937     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1938     Register newval = op->new_value()->as_register();
1939     Register cmpval = op->cmp_value()->as_register();
1940     assert(cmpval == rax, "wrong register");
1941     assert(newval != noreg, "new val must be register");
1942     assert(cmpval != newval, "cmp and new values must be in different registers");
1943     assert(cmpval != addr, "cmp and addr must be in different registers");
1944     assert(newval != addr, "new value and addr must be in different registers");
1945 
1946     if ( op->code() == lir_cas_obj) {
1947 #ifdef _LP64
1948       if (UseCompressedOops) {
1949         __ encode_heap_oop(cmpval);
1950         __ mov(rscratch1, newval);
1951         __ encode_heap_oop(rscratch1);
1952         __ lock();
1953         // cmpval (rax) is implicitly used by this instruction
1954         __ cmpxchgl(rscratch1, Address(addr, 0));
1955       } else
1956 #endif
1957       {
1958         __ lock();
1959         __ cmpxchgptr(newval, Address(addr, 0));
1960       }
1961     } else {
1962       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1963       __ lock();
1964       __ cmpxchgl(newval, Address(addr, 0));
1965     }
1966 #ifdef _LP64
1967   } else if (op->code() == lir_cas_long) {
1968     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1969     Register newval = op->new_value()->as_register_lo();
1970     Register cmpval = op->cmp_value()->as_register_lo();
1971     assert(cmpval == rax, "wrong register");
1972     assert(newval != noreg, "new val must be register");
1973     assert(cmpval != newval, "cmp and new values must be in different registers");
1974     assert(cmpval != addr, "cmp and addr must be in different registers");
1975     assert(newval != addr, "new value and addr must be in different registers");
1976     __ lock();
1977     __ cmpxchgq(newval, Address(addr, 0));
1978 #endif // _LP64
1979   } else {
1980     Unimplemented();
1981   }
1982 }
1983 
1984 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
1985                           LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
1986   assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86");
1987 
1988   Assembler::Condition acond, ncond;
1989   switch (condition) {
1990     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1991     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1992     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1993     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1994     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1995     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1996     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1997     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1998     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
1999                                 ShouldNotReachHere();
2000   }
2001 
2002   if (opr1->is_cpu_register()) {
2003     reg2reg(opr1, result);
2004   } else if (opr1->is_stack()) {
2005     stack2reg(opr1, result, result->type());
2006   } else if (opr1->is_constant()) {
2007     const2reg(opr1, result, lir_patch_none, nullptr);
2008   } else {
2009     ShouldNotReachHere();
2010   }
2011 
2012   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2013     // optimized version that does not require a branch
2014     if (opr2->is_single_cpu()) {
2015       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2016       __ cmov(ncond, result->as_register(), opr2->as_register());
2017     } else if (opr2->is_double_cpu()) {
2018       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2019       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2020       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2021       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2022     } else if (opr2->is_single_stack()) {
2023       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2024     } else if (opr2->is_double_stack()) {
2025       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2026       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2027     } else {
2028       ShouldNotReachHere();
2029     }
2030 
2031   } else {
2032     Label skip;
2033     __ jccb(acond, skip);
2034     if (opr2->is_cpu_register()) {
2035       reg2reg(opr2, result);
2036     } else if (opr2->is_stack()) {
2037       stack2reg(opr2, result, result->type());
2038     } else if (opr2->is_constant()) {
2039       const2reg(opr2, result, lir_patch_none, nullptr);
2040     } else {
2041       ShouldNotReachHere();
2042     }
2043     __ bind(skip);
2044   }
2045 }
2046 
2047 
2048 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2049   assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2050 
2051   if (left->is_single_cpu()) {
2052     assert(left == dest, "left and dest must be equal");
2053     Register lreg = left->as_register();
2054 
2055     if (right->is_single_cpu()) {
2056       // cpu register - cpu register
2057       Register rreg = right->as_register();
2058       switch (code) {
2059         case lir_add: __ addl (lreg, rreg); break;
2060         case lir_sub: __ subl (lreg, rreg); break;
2061         case lir_mul: __ imull(lreg, rreg); break;
2062         default:      ShouldNotReachHere();
2063       }
2064 
2065     } else if (right->is_stack()) {
2066       // cpu register - stack
2067       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2068       switch (code) {
2069         case lir_add: __ addl(lreg, raddr); break;
2070         case lir_sub: __ subl(lreg, raddr); break;
2071         default:      ShouldNotReachHere();
2072       }
2073 
2074     } else if (right->is_constant()) {
2075       // cpu register - constant
2076       jint c = right->as_constant_ptr()->as_jint();
2077       switch (code) {
2078         case lir_add: {
2079           __ incrementl(lreg, c);
2080           break;
2081         }
2082         case lir_sub: {
2083           __ decrementl(lreg, c);
2084           break;
2085         }
2086         default: ShouldNotReachHere();
2087       }
2088 
2089     } else {
2090       ShouldNotReachHere();
2091     }
2092 
2093   } else if (left->is_double_cpu()) {
2094     assert(left == dest, "left and dest must be equal");
2095     Register lreg_lo = left->as_register_lo();
2096     Register lreg_hi = left->as_register_hi();
2097 
2098     if (right->is_double_cpu()) {
2099       // cpu register - cpu register
2100       Register rreg_lo = right->as_register_lo();
2101       Register rreg_hi = right->as_register_hi();
2102       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2103       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2104       switch (code) {
2105         case lir_add:
2106           __ addptr(lreg_lo, rreg_lo);
2107           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2108           break;
2109         case lir_sub:
2110           __ subptr(lreg_lo, rreg_lo);
2111           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2112           break;
2113         case lir_mul:
2114 #ifdef _LP64
2115           __ imulq(lreg_lo, rreg_lo);
2116 #else
2117           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2118           __ imull(lreg_hi, rreg_lo);
2119           __ imull(rreg_hi, lreg_lo);
2120           __ addl (rreg_hi, lreg_hi);
2121           __ mull (rreg_lo);
2122           __ addl (lreg_hi, rreg_hi);
2123 #endif // _LP64
2124           break;
2125         default:
2126           ShouldNotReachHere();
2127       }
2128 
2129     } else if (right->is_constant()) {
2130       // cpu register - constant
2131 #ifdef _LP64
2132       jlong c = right->as_constant_ptr()->as_jlong_bits();
2133       __ movptr(r10, (intptr_t) c);
2134       switch (code) {
2135         case lir_add:
2136           __ addptr(lreg_lo, r10);
2137           break;
2138         case lir_sub:
2139           __ subptr(lreg_lo, r10);
2140           break;
2141         default:
2142           ShouldNotReachHere();
2143       }
2144 #else
2145       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2146       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2147       switch (code) {
2148         case lir_add:
2149           __ addptr(lreg_lo, c_lo);
2150           __ adcl(lreg_hi, c_hi);
2151           break;
2152         case lir_sub:
2153           __ subptr(lreg_lo, c_lo);
2154           __ sbbl(lreg_hi, c_hi);
2155           break;
2156         default:
2157           ShouldNotReachHere();
2158       }
2159 #endif // _LP64
2160 
2161     } else {
2162       ShouldNotReachHere();
2163     }
2164 
2165   } else if (left->is_single_xmm()) {
2166     assert(left == dest, "left and dest must be equal");
2167     XMMRegister lreg = left->as_xmm_float_reg();
2168 
2169     if (right->is_single_xmm()) {
2170       XMMRegister rreg = right->as_xmm_float_reg();
2171       switch (code) {
2172         case lir_add: __ addss(lreg, rreg);  break;
2173         case lir_sub: __ subss(lreg, rreg);  break;
2174         case lir_mul: __ mulss(lreg, rreg);  break;
2175         case lir_div: __ divss(lreg, rreg);  break;
2176         default: ShouldNotReachHere();
2177       }
2178     } else {
2179       Address raddr;
2180       if (right->is_single_stack()) {
2181         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2182       } else if (right->is_constant()) {
2183         // hack for now
2184         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2185       } else {
2186         ShouldNotReachHere();
2187       }
2188       switch (code) {
2189         case lir_add: __ addss(lreg, raddr);  break;
2190         case lir_sub: __ subss(lreg, raddr);  break;
2191         case lir_mul: __ mulss(lreg, raddr);  break;
2192         case lir_div: __ divss(lreg, raddr);  break;
2193         default: ShouldNotReachHere();
2194       }
2195     }
2196 
2197   } else if (left->is_double_xmm()) {
2198     assert(left == dest, "left and dest must be equal");
2199 
2200     XMMRegister lreg = left->as_xmm_double_reg();
2201     if (right->is_double_xmm()) {
2202       XMMRegister rreg = right->as_xmm_double_reg();
2203       switch (code) {
2204         case lir_add: __ addsd(lreg, rreg);  break;
2205         case lir_sub: __ subsd(lreg, rreg);  break;
2206         case lir_mul: __ mulsd(lreg, rreg);  break;
2207         case lir_div: __ divsd(lreg, rreg);  break;
2208         default: ShouldNotReachHere();
2209       }
2210     } else {
2211       Address raddr;
2212       if (right->is_double_stack()) {
2213         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2214       } else if (right->is_constant()) {
2215         // hack for now
2216         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2217       } else {
2218         ShouldNotReachHere();
2219       }
2220       switch (code) {
2221         case lir_add: __ addsd(lreg, raddr);  break;
2222         case lir_sub: __ subsd(lreg, raddr);  break;
2223         case lir_mul: __ mulsd(lreg, raddr);  break;
2224         case lir_div: __ divsd(lreg, raddr);  break;
2225         default: ShouldNotReachHere();
2226       }
2227     }
2228 
2229 #ifndef _LP64
2230   } else if (left->is_single_fpu()) {
2231     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2232 
2233     if (right->is_single_fpu()) {
2234       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2235 
2236     } else {
2237       assert(left->fpu_regnr() == 0, "left must be on TOS");
2238       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2239 
2240       Address raddr;
2241       if (right->is_single_stack()) {
2242         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2243       } else if (right->is_constant()) {
2244         address const_addr = float_constant(right->as_jfloat());
2245         assert(const_addr != nullptr, "incorrect float/double constant maintenance");
2246         // hack for now
2247         raddr = __ as_Address(InternalAddress(const_addr));
2248       } else {
2249         ShouldNotReachHere();
2250       }
2251 
2252       switch (code) {
2253         case lir_add: __ fadd_s(raddr); break;
2254         case lir_sub: __ fsub_s(raddr); break;
2255         case lir_mul: __ fmul_s(raddr); break;
2256         case lir_div: __ fdiv_s(raddr); break;
2257         default:      ShouldNotReachHere();
2258       }
2259     }
2260 
2261   } else if (left->is_double_fpu()) {
2262     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2263 
2264     if (code == lir_mul || code == lir_div) {
2265       // Double values require special handling for strictfp mul/div on x86
2266       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1()));
2267       __ fmulp(left->fpu_regnrLo() + 1);
2268     }
2269 
2270     if (right->is_double_fpu()) {
2271       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2272 
2273     } else {
2274       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2275       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2276 
2277       Address raddr;
2278       if (right->is_double_stack()) {
2279         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2280       } else if (right->is_constant()) {
2281         // hack for now
2282         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2283       } else {
2284         ShouldNotReachHere();
2285       }
2286 
2287       switch (code) {
2288         case lir_add: __ fadd_d(raddr); break;
2289         case lir_sub: __ fsub_d(raddr); break;
2290         case lir_mul: __ fmul_d(raddr); break;
2291         case lir_div: __ fdiv_d(raddr); break;
2292         default: ShouldNotReachHere();
2293       }
2294     }
2295 
2296     if (code == lir_mul || code == lir_div) {
2297       // Double values require special handling for strictfp mul/div on x86
2298       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2()));
2299       __ fmulp(dest->fpu_regnrLo() + 1);
2300     }
2301 #endif // !_LP64
2302 
2303   } else if (left->is_single_stack() || left->is_address()) {
2304     assert(left == dest, "left and dest must be equal");
2305 
2306     Address laddr;
2307     if (left->is_single_stack()) {
2308       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2309     } else if (left->is_address()) {
2310       laddr = as_Address(left->as_address_ptr());
2311     } else {
2312       ShouldNotReachHere();
2313     }
2314 
2315     if (right->is_single_cpu()) {
2316       Register rreg = right->as_register();
2317       switch (code) {
2318         case lir_add: __ addl(laddr, rreg); break;
2319         case lir_sub: __ subl(laddr, rreg); break;
2320         default:      ShouldNotReachHere();
2321       }
2322     } else if (right->is_constant()) {
2323       jint c = right->as_constant_ptr()->as_jint();
2324       switch (code) {
2325         case lir_add: {
2326           __ incrementl(laddr, c);
2327           break;
2328         }
2329         case lir_sub: {
2330           __ decrementl(laddr, c);
2331           break;
2332         }
2333         default: ShouldNotReachHere();
2334       }
2335     } else {
2336       ShouldNotReachHere();
2337     }
2338 
2339   } else {
2340     ShouldNotReachHere();
2341   }
2342 }
2343 
2344 #ifndef _LP64
2345 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2346   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2347   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2348   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2349 
2350   bool left_is_tos = (left_index == 0);
2351   bool dest_is_tos = (dest_index == 0);
2352   int non_tos_index = (left_is_tos ? right_index : left_index);
2353 
2354   switch (code) {
2355     case lir_add:
2356       if (pop_fpu_stack)       __ faddp(non_tos_index);
2357       else if (dest_is_tos)    __ fadd (non_tos_index);
2358       else                     __ fadda(non_tos_index);
2359       break;
2360 
2361     case lir_sub:
2362       if (left_is_tos) {
2363         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2364         else if (dest_is_tos)  __ fsub  (non_tos_index);
2365         else                   __ fsubra(non_tos_index);
2366       } else {
2367         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2368         else if (dest_is_tos)  __ fsubr (non_tos_index);
2369         else                   __ fsuba (non_tos_index);
2370       }
2371       break;
2372 
2373     case lir_mul:
2374       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2375       else if (dest_is_tos)    __ fmul (non_tos_index);
2376       else                     __ fmula(non_tos_index);
2377       break;
2378 
2379     case lir_div:
2380       if (left_is_tos) {
2381         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2382         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2383         else                   __ fdivra(non_tos_index);
2384       } else {
2385         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2386         else if (dest_is_tos)  __ fdivr (non_tos_index);
2387         else                   __ fdiva (non_tos_index);
2388       }
2389       break;
2390 
2391     case lir_rem:
2392       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2393       __ fremr(noreg);
2394       break;
2395 
2396     default:
2397       ShouldNotReachHere();
2398   }
2399 }
2400 #endif // _LP64
2401 
2402 
2403 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
2404   if (value->is_double_xmm()) {
2405     switch(code) {
2406       case lir_abs :
2407         {
2408 #ifdef _LP64
2409           if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
2410             assert(tmp->is_valid(), "need temporary");
2411             __ vpandn(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), value->as_xmm_double_reg(), 2);
2412           } else
2413 #endif
2414           {
2415             if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2416               __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2417             }
2418             assert(!tmp->is_valid(), "do not need temporary");
2419             __ andpd(dest->as_xmm_double_reg(),
2420                      ExternalAddress(LIR_Assembler::double_signmask_pool),
2421                      rscratch1);
2422           }
2423         }
2424         break;
2425 
2426       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2427       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2428       default      : ShouldNotReachHere();
2429     }
2430 
2431 #ifndef _LP64
2432   } else if (value->is_double_fpu()) {
2433     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2434     switch(code) {
2435       case lir_abs   : __ fabs() ; break;
2436       case lir_sqrt  : __ fsqrt(); break;
2437       default      : ShouldNotReachHere();
2438     }
2439 #endif // !_LP64
2440   } else if (code == lir_f2hf) {
2441     __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg());
2442   } else if (code == lir_hf2f) {
2443     __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register());
2444   } else {
2445     Unimplemented();
2446   }
2447 }
2448 
2449 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2450   // assert(left->destroys_register(), "check");
2451   if (left->is_single_cpu()) {
2452     Register reg = left->as_register();
2453     if (right->is_constant()) {
2454       int val = right->as_constant_ptr()->as_jint();
2455       switch (code) {
2456         case lir_logic_and: __ andl (reg, val); break;
2457         case lir_logic_or:  __ orl  (reg, val); break;
2458         case lir_logic_xor: __ xorl (reg, val); break;
2459         default: ShouldNotReachHere();
2460       }
2461     } else if (right->is_stack()) {
2462       // added support for stack operands
2463       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2464       switch (code) {
2465         case lir_logic_and: __ andl (reg, raddr); break;
2466         case lir_logic_or:  __ orl  (reg, raddr); break;
2467         case lir_logic_xor: __ xorl (reg, raddr); break;
2468         default: ShouldNotReachHere();
2469       }
2470     } else {
2471       Register rright = right->as_register();
2472       switch (code) {
2473         case lir_logic_and: __ andptr (reg, rright); break;
2474         case lir_logic_or : __ orptr  (reg, rright); break;
2475         case lir_logic_xor: __ xorptr (reg, rright); break;
2476         default: ShouldNotReachHere();
2477       }
2478     }
2479     move_regs(reg, dst->as_register());
2480   } else {
2481     Register l_lo = left->as_register_lo();
2482     Register l_hi = left->as_register_hi();
2483     if (right->is_constant()) {
2484 #ifdef _LP64
2485       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2486       switch (code) {
2487         case lir_logic_and:
2488           __ andq(l_lo, rscratch1);
2489           break;
2490         case lir_logic_or:
2491           __ orq(l_lo, rscratch1);
2492           break;
2493         case lir_logic_xor:
2494           __ xorq(l_lo, rscratch1);
2495           break;
2496         default: ShouldNotReachHere();
2497       }
2498 #else
2499       int r_lo = right->as_constant_ptr()->as_jint_lo();
2500       int r_hi = right->as_constant_ptr()->as_jint_hi();
2501       switch (code) {
2502         case lir_logic_and:
2503           __ andl(l_lo, r_lo);
2504           __ andl(l_hi, r_hi);
2505           break;
2506         case lir_logic_or:
2507           __ orl(l_lo, r_lo);
2508           __ orl(l_hi, r_hi);
2509           break;
2510         case lir_logic_xor:
2511           __ xorl(l_lo, r_lo);
2512           __ xorl(l_hi, r_hi);
2513           break;
2514         default: ShouldNotReachHere();
2515       }
2516 #endif // _LP64
2517     } else {
2518 #ifdef _LP64
2519       Register r_lo;
2520       if (is_reference_type(right->type())) {
2521         r_lo = right->as_register();
2522       } else {
2523         r_lo = right->as_register_lo();
2524       }
2525 #else
2526       Register r_lo = right->as_register_lo();
2527       Register r_hi = right->as_register_hi();
2528       assert(l_lo != r_hi, "overwriting registers");
2529 #endif
2530       switch (code) {
2531         case lir_logic_and:
2532           __ andptr(l_lo, r_lo);
2533           NOT_LP64(__ andptr(l_hi, r_hi);)
2534           break;
2535         case lir_logic_or:
2536           __ orptr(l_lo, r_lo);
2537           NOT_LP64(__ orptr(l_hi, r_hi);)
2538           break;
2539         case lir_logic_xor:
2540           __ xorptr(l_lo, r_lo);
2541           NOT_LP64(__ xorptr(l_hi, r_hi);)
2542           break;
2543         default: ShouldNotReachHere();
2544       }
2545     }
2546 
2547     Register dst_lo = dst->as_register_lo();
2548     Register dst_hi = dst->as_register_hi();
2549 
2550 #ifdef _LP64
2551     move_regs(l_lo, dst_lo);
2552 #else
2553     if (dst_lo == l_hi) {
2554       assert(dst_hi != l_lo, "overwriting registers");
2555       move_regs(l_hi, dst_hi);
2556       move_regs(l_lo, dst_lo);
2557     } else {
2558       assert(dst_lo != l_hi, "overwriting registers");
2559       move_regs(l_lo, dst_lo);
2560       move_regs(l_hi, dst_hi);
2561     }
2562 #endif // _LP64
2563   }
2564 }
2565 
2566 
2567 // we assume that rax, and rdx can be overwritten
2568 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2569 
2570   assert(left->is_single_cpu(),   "left must be register");
2571   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2572   assert(result->is_single_cpu(), "result must be register");
2573 
2574   //  assert(left->destroys_register(), "check");
2575   //  assert(right->destroys_register(), "check");
2576 
2577   Register lreg = left->as_register();
2578   Register dreg = result->as_register();
2579 
2580   if (right->is_constant()) {
2581     jint divisor = right->as_constant_ptr()->as_jint();
2582     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2583     if (code == lir_idiv) {
2584       assert(lreg == rax, "must be rax,");
2585       assert(temp->as_register() == rdx, "tmp register must be rdx");
2586       __ cdql(); // sign extend into rdx:rax
2587       if (divisor == 2) {
2588         __ subl(lreg, rdx);
2589       } else {
2590         __ andl(rdx, divisor - 1);
2591         __ addl(lreg, rdx);
2592       }
2593       __ sarl(lreg, log2i_exact(divisor));
2594       move_regs(lreg, dreg);
2595     } else if (code == lir_irem) {
2596       Label done;
2597       __ mov(dreg, lreg);
2598       __ andl(dreg, 0x80000000 | (divisor - 1));
2599       __ jcc(Assembler::positive, done);
2600       __ decrement(dreg);
2601       __ orl(dreg, ~(divisor - 1));
2602       __ increment(dreg);
2603       __ bind(done);
2604     } else {
2605       ShouldNotReachHere();
2606     }
2607   } else {
2608     Register rreg = right->as_register();
2609     assert(lreg == rax, "left register must be rax,");
2610     assert(rreg != rdx, "right register must not be rdx");
2611     assert(temp->as_register() == rdx, "tmp register must be rdx");
2612 
2613     move_regs(lreg, rax);
2614 
2615     int idivl_offset = __ corrected_idivl(rreg);
2616     if (ImplicitDiv0Checks) {
2617       add_debug_info_for_div0(idivl_offset, info);
2618     }
2619     if (code == lir_irem) {
2620       move_regs(rdx, dreg); // result is in rdx
2621     } else {
2622       move_regs(rax, dreg);
2623     }
2624   }
2625 }
2626 
2627 
2628 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2629   if (opr1->is_single_cpu()) {
2630     Register reg1 = opr1->as_register();
2631     if (opr2->is_single_cpu()) {
2632       // cpu register - cpu register
2633       if (is_reference_type(opr1->type())) {
2634         __ cmpoop(reg1, opr2->as_register());
2635       } else {
2636         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
2637         __ cmpl(reg1, opr2->as_register());
2638       }
2639     } else if (opr2->is_stack()) {
2640       // cpu register - stack
2641       if (is_reference_type(opr1->type())) {
2642         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2643       } else {
2644         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2645       }
2646     } else if (opr2->is_constant()) {
2647       // cpu register - constant
2648       LIR_Const* c = opr2->as_constant_ptr();
2649       if (c->type() == T_INT) {
2650         jint i = c->as_jint();
2651         if (i == 0) {
2652           __ testl(reg1, reg1);
2653         } else {
2654           __ cmpl(reg1, i);
2655         }
2656       } else if (c->type() == T_METADATA) {
2657         // All we need for now is a comparison with null for equality.
2658         assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
2659         Metadata* m = c->as_metadata();
2660         if (m == nullptr) {
2661           __ testptr(reg1, reg1);
2662         } else {
2663           ShouldNotReachHere();
2664         }
2665       } else if (is_reference_type(c->type())) {
2666         // In 64bit oops are single register
2667         jobject o = c->as_jobject();
2668         if (o == nullptr) {
2669           __ testptr(reg1, reg1);
2670         } else {
2671           __ cmpoop(reg1, o, rscratch1);
2672         }
2673       } else {
2674         fatal("unexpected type: %s", basictype_to_str(c->type()));
2675       }
2676       // cpu register - address
2677     } else if (opr2->is_address()) {
2678       if (op->info() != nullptr) {
2679         add_debug_info_for_null_check_here(op->info());
2680       }
2681       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2682     } else {
2683       ShouldNotReachHere();
2684     }
2685 
2686   } else if(opr1->is_double_cpu()) {
2687     Register xlo = opr1->as_register_lo();
2688     Register xhi = opr1->as_register_hi();
2689     if (opr2->is_double_cpu()) {
2690 #ifdef _LP64
2691       __ cmpptr(xlo, opr2->as_register_lo());
2692 #else
2693       // cpu register - cpu register
2694       Register ylo = opr2->as_register_lo();
2695       Register yhi = opr2->as_register_hi();
2696       __ subl(xlo, ylo);
2697       __ sbbl(xhi, yhi);
2698       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2699         __ orl(xhi, xlo);
2700       }
2701 #endif // _LP64
2702     } else if (opr2->is_constant()) {
2703       // cpu register - constant 0
2704       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2705 #ifdef _LP64
2706       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2707 #else
2708       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2709       __ orl(xhi, xlo);
2710 #endif // _LP64
2711     } else {
2712       ShouldNotReachHere();
2713     }
2714 
2715   } else if (opr1->is_single_xmm()) {
2716     XMMRegister reg1 = opr1->as_xmm_float_reg();
2717     if (opr2->is_single_xmm()) {
2718       // xmm register - xmm register
2719       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2720     } else if (opr2->is_stack()) {
2721       // xmm register - stack
2722       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2723     } else if (opr2->is_constant()) {
2724       // xmm register - constant
2725       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2726     } else if (opr2->is_address()) {
2727       // xmm register - address
2728       if (op->info() != nullptr) {
2729         add_debug_info_for_null_check_here(op->info());
2730       }
2731       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2732     } else {
2733       ShouldNotReachHere();
2734     }
2735 
2736   } else if (opr1->is_double_xmm()) {
2737     XMMRegister reg1 = opr1->as_xmm_double_reg();
2738     if (opr2->is_double_xmm()) {
2739       // xmm register - xmm register
2740       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2741     } else if (opr2->is_stack()) {
2742       // xmm register - stack
2743       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2744     } else if (opr2->is_constant()) {
2745       // xmm register - constant
2746       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2747     } else if (opr2->is_address()) {
2748       // xmm register - address
2749       if (op->info() != nullptr) {
2750         add_debug_info_for_null_check_here(op->info());
2751       }
2752       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2753     } else {
2754       ShouldNotReachHere();
2755     }
2756 
2757 #ifndef _LP64
2758   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2759     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2760     assert(opr2->is_fpu_register(), "both must be registers");
2761     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2762 #endif // LP64
2763 
2764   } else if (opr1->is_address() && opr2->is_constant()) {
2765     LIR_Const* c = opr2->as_constant_ptr();
2766 #ifdef _LP64
2767     if (is_reference_type(c->type())) {
2768       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2769       __ movoop(rscratch1, c->as_jobject());
2770     }
2771 #endif // LP64
2772     if (op->info() != nullptr) {
2773       add_debug_info_for_null_check_here(op->info());
2774     }
2775     // special case: address - constant
2776     LIR_Address* addr = opr1->as_address_ptr();
2777     if (c->type() == T_INT) {
2778       __ cmpl(as_Address(addr), c->as_jint());
2779     } else if (is_reference_type(c->type())) {
2780 #ifdef _LP64
2781       // %%% Make this explode if addr isn't reachable until we figure out a
2782       // better strategy by giving noreg as the temp for as_Address
2783       __ cmpoop(rscratch1, as_Address(addr, noreg));
2784 #else
2785       __ cmpoop(as_Address(addr), c->as_jobject());
2786 #endif // _LP64
2787     } else {
2788       ShouldNotReachHere();
2789     }
2790 
2791   } else {
2792     ShouldNotReachHere();
2793   }
2794 }
2795 
2796 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2797   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2798     if (left->is_single_xmm()) {
2799       assert(right->is_single_xmm(), "must match");
2800       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2801     } else if (left->is_double_xmm()) {
2802       assert(right->is_double_xmm(), "must match");
2803       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2804 
2805     } else {
2806 #ifdef _LP64
2807       ShouldNotReachHere();
2808 #else
2809       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2810       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2811 
2812       assert(left->fpu() == 0, "left must be on TOS");
2813       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2814                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2815 #endif // LP64
2816     }
2817   } else {
2818     assert(code == lir_cmp_l2i, "check");
2819 #ifdef _LP64
2820     Label done;
2821     Register dest = dst->as_register();
2822     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2823     __ movl(dest, -1);
2824     __ jccb(Assembler::less, done);
2825     __ setb(Assembler::notZero, dest);
2826     __ movzbl(dest, dest);
2827     __ bind(done);
2828 #else
2829     __ lcmp2int(left->as_register_hi(),
2830                 left->as_register_lo(),
2831                 right->as_register_hi(),
2832                 right->as_register_lo());
2833     move_regs(left->as_register_hi(), dst->as_register());
2834 #endif // _LP64
2835   }
2836 }
2837 
2838 
2839 void LIR_Assembler::align_call(LIR_Code code) {
2840   // make sure that the displacement word of the call ends up word aligned
2841   int offset = __ offset();
2842   switch (code) {
2843   case lir_static_call:
2844   case lir_optvirtual_call:
2845   case lir_dynamic_call:
2846     offset += NativeCall::displacement_offset;
2847     break;
2848   case lir_icvirtual_call:
2849     offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2850     break;
2851   default: ShouldNotReachHere();
2852   }
2853   __ align(BytesPerWord, offset);
2854 }
2855 
2856 
2857 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2858   assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2859          "must be aligned");
2860   __ call(AddressLiteral(op->addr(), rtype));
2861   add_call_info(code_offset(), op->info());
2862   __ post_call_nop();
2863 }
2864 
2865 
2866 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2867   __ ic_call(op->addr());
2868   add_call_info(code_offset(), op->info());
2869   assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2870          "must be aligned");
2871   __ post_call_nop();
2872 }
2873 
2874 
2875 void LIR_Assembler::emit_static_call_stub() {
2876   address call_pc = __ pc();
2877   address stub = __ start_a_stub(call_stub_size());
2878   if (stub == nullptr) {
2879     bailout("static call stub overflow");
2880     return;
2881   }
2882 
2883   int start = __ offset();
2884 
2885   // make sure that the displacement word of the call ends up word aligned
2886   __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2887   __ relocate(static_stub_Relocation::spec(call_pc));
2888   __ mov_metadata(rbx, (Metadata*)nullptr);
2889   // must be set to -1 at code generation time
2890   assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned");
2891   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2892   __ jump(RuntimeAddress(__ pc()));
2893 
2894   assert(__ offset() - start <= call_stub_size(), "stub too big");
2895   __ end_a_stub();
2896 }
2897 
2898 
2899 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2900   assert(exceptionOop->as_register() == rax, "must match");
2901   assert(exceptionPC->as_register() == rdx, "must match");
2902 
2903   // exception object is not added to oop map by LinearScan
2904   // (LinearScan assumes that no oops are in fixed registers)
2905   info->add_register_oop(exceptionOop);
2906   Runtime1::StubID unwind_id;
2907 
2908   // get current pc information
2909   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2910   int pc_for_athrow_offset = __ offset();
2911   InternalAddress pc_for_athrow(__ pc());
2912   __ lea(exceptionPC->as_register(), pc_for_athrow);
2913   add_call_info(pc_for_athrow_offset, info); // for exception handler
2914 
2915   __ verify_not_null_oop(rax);
2916   // search an exception handler (rax: exception oop, rdx: throwing pc)
2917   if (compilation()->has_fpu_code()) {
2918     unwind_id = Runtime1::handle_exception_id;
2919   } else {
2920     unwind_id = Runtime1::handle_exception_nofpu_id;
2921   }
2922   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2923 
2924   // enough room for two byte trap
2925   __ nop();
2926 }
2927 
2928 
2929 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2930   assert(exceptionOop->as_register() == rax, "must match");
2931 
2932   __ jmp(_unwind_handler_entry);
2933 }
2934 
2935 
2936 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2937 
2938   // optimized version for linear scan:
2939   // * count must be already in ECX (guaranteed by LinearScan)
2940   // * left and dest must be equal
2941   // * tmp must be unused
2942   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2943   assert(left == dest, "left and dest must be equal");
2944   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2945 
2946   if (left->is_single_cpu()) {
2947     Register value = left->as_register();
2948     assert(value != SHIFT_count, "left cannot be ECX");
2949 
2950     switch (code) {
2951       case lir_shl:  __ shll(value); break;
2952       case lir_shr:  __ sarl(value); break;
2953       case lir_ushr: __ shrl(value); break;
2954       default: ShouldNotReachHere();
2955     }
2956   } else if (left->is_double_cpu()) {
2957     Register lo = left->as_register_lo();
2958     Register hi = left->as_register_hi();
2959     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2960 #ifdef _LP64
2961     switch (code) {
2962       case lir_shl:  __ shlptr(lo);        break;
2963       case lir_shr:  __ sarptr(lo);        break;
2964       case lir_ushr: __ shrptr(lo);        break;
2965       default: ShouldNotReachHere();
2966     }
2967 #else
2968 
2969     switch (code) {
2970       case lir_shl:  __ lshl(hi, lo);        break;
2971       case lir_shr:  __ lshr(hi, lo, true);  break;
2972       case lir_ushr: __ lshr(hi, lo, false); break;
2973       default: ShouldNotReachHere();
2974     }
2975 #endif // LP64
2976   } else {
2977     ShouldNotReachHere();
2978   }
2979 }
2980 
2981 
2982 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2983   if (dest->is_single_cpu()) {
2984     // first move left into dest so that left is not destroyed by the shift
2985     Register value = dest->as_register();
2986     count = count & 0x1F; // Java spec
2987 
2988     move_regs(left->as_register(), value);
2989     switch (code) {
2990       case lir_shl:  __ shll(value, count); break;
2991       case lir_shr:  __ sarl(value, count); break;
2992       case lir_ushr: __ shrl(value, count); break;
2993       default: ShouldNotReachHere();
2994     }
2995   } else if (dest->is_double_cpu()) {
2996 #ifndef _LP64
2997     Unimplemented();
2998 #else
2999     // first move left into dest so that left is not destroyed by the shift
3000     Register value = dest->as_register_lo();
3001     count = count & 0x1F; // Java spec
3002 
3003     move_regs(left->as_register_lo(), value);
3004     switch (code) {
3005       case lir_shl:  __ shlptr(value, count); break;
3006       case lir_shr:  __ sarptr(value, count); break;
3007       case lir_ushr: __ shrptr(value, count); break;
3008       default: ShouldNotReachHere();
3009     }
3010 #endif // _LP64
3011   } else {
3012     ShouldNotReachHere();
3013   }
3014 }
3015 
3016 
3017 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3018   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3019   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3020   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3021   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3022 }
3023 
3024 
3025 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3026   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3027   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3028   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3029   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3030 }
3031 
3032 
3033 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
3034   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3035   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3036   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3037   __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1);
3038 }
3039 
3040 
3041 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) {
3042   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3043   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3044   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3045   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1);
3046 }
3047 
3048 
3049 // This code replaces a call to arraycopy; no exception may
3050 // be thrown in this code, they must be thrown in the System.arraycopy
3051 // activation frame; we could save some checks if this would not be the case
3052 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3053   ciArrayKlass* default_type = op->expected_type();
3054   Register src = op->src()->as_register();
3055   Register dst = op->dst()->as_register();
3056   Register src_pos = op->src_pos()->as_register();
3057   Register dst_pos = op->dst_pos()->as_register();
3058   Register length  = op->length()->as_register();
3059   Register tmp = op->tmp()->as_register();
3060   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3061 
3062   CodeStub* stub = op->stub();
3063   int flags = op->flags();
3064   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
3065   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
3066 
3067   // if we don't know anything, just go through the generic arraycopy
3068   if (default_type == nullptr) {
3069     // save outgoing arguments on stack in case call to System.arraycopy is needed
3070     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3071     // for interpreter calling conventions. Now we have to do it in new style conventions.
3072     // For the moment until C1 gets the new register allocator I just force all the
3073     // args to the right place (except the register args) and then on the back side
3074     // reload the register args properly if we go slow path. Yuck
3075 
3076     // These are proper for the calling convention
3077     store_parameter(length, 2);
3078     store_parameter(dst_pos, 1);
3079     store_parameter(dst, 0);
3080 
3081     // these are just temporary placements until we need to reload
3082     store_parameter(src_pos, 3);
3083     store_parameter(src, 4);
3084     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3085 
3086     address copyfunc_addr = StubRoutines::generic_arraycopy();
3087     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
3088 
3089     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3090 #ifdef _LP64
3091     // The arguments are in java calling convention so we can trivially shift them to C
3092     // convention
3093     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3094     __ mov(c_rarg0, j_rarg0);
3095     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3096     __ mov(c_rarg1, j_rarg1);
3097     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3098     __ mov(c_rarg2, j_rarg2);
3099     assert_different_registers(c_rarg3, j_rarg4);
3100     __ mov(c_rarg3, j_rarg3);
3101 #ifdef _WIN64
3102     // Allocate abi space for args but be sure to keep stack aligned
3103     __ subptr(rsp, 6*wordSize);
3104     store_parameter(j_rarg4, 4);
3105 #ifndef PRODUCT
3106     if (PrintC1Statistics) {
3107       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3108     }
3109 #endif
3110     __ call(RuntimeAddress(copyfunc_addr));
3111     __ addptr(rsp, 6*wordSize);
3112 #else
3113     __ mov(c_rarg4, j_rarg4);
3114 #ifndef PRODUCT
3115     if (PrintC1Statistics) {
3116       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3117     }
3118 #endif
3119     __ call(RuntimeAddress(copyfunc_addr));
3120 #endif // _WIN64
3121 #else
3122     __ push(length);
3123     __ push(dst_pos);
3124     __ push(dst);
3125     __ push(src_pos);
3126     __ push(src);
3127 
3128 #ifndef PRODUCT
3129     if (PrintC1Statistics) {
3130       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3131     }
3132 #endif
3133     __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3134 
3135 #endif // _LP64
3136 
3137     __ testl(rax, rax);
3138     __ jcc(Assembler::equal, *stub->continuation());
3139 
3140     __ mov(tmp, rax);
3141     __ xorl(tmp, -1);
3142 
3143     // Reload values from the stack so they are where the stub
3144     // expects them.
3145     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3146     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3147     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3148     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3149     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3150 
3151     __ subl(length, tmp);
3152     __ addl(src_pos, tmp);
3153     __ addl(dst_pos, tmp);
3154     __ jmp(*stub->entry());
3155 
3156     __ bind(*stub->continuation());
3157     return;
3158   }
3159 
3160   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3161 
3162   int elem_size = type2aelembytes(basic_type);
3163   Address::ScaleFactor scale;
3164 
3165   switch (elem_size) {
3166     case 1 :
3167       scale = Address::times_1;
3168       break;
3169     case 2 :
3170       scale = Address::times_2;
3171       break;
3172     case 4 :
3173       scale = Address::times_4;
3174       break;
3175     case 8 :
3176       scale = Address::times_8;
3177       break;
3178     default:
3179       scale = Address::no_scale;
3180       ShouldNotReachHere();
3181   }
3182 
3183   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3184   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3185   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3186   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3187 
3188   // length and pos's are all sign extended at this point on 64bit
3189 
3190   // test for null
3191   if (flags & LIR_OpArrayCopy::src_null_check) {
3192     __ testptr(src, src);
3193     __ jcc(Assembler::zero, *stub->entry());
3194   }
3195   if (flags & LIR_OpArrayCopy::dst_null_check) {
3196     __ testptr(dst, dst);
3197     __ jcc(Assembler::zero, *stub->entry());
3198   }
3199 
3200   // If the compiler was not able to prove that exact type of the source or the destination
3201   // of the arraycopy is an array type, check at runtime if the source or the destination is
3202   // an instance type.
3203   if (flags & LIR_OpArrayCopy::type_check) {
3204     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3205       __ load_klass(tmp, dst, tmp_load_klass);
3206       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3207       __ jcc(Assembler::greaterEqual, *stub->entry());
3208     }
3209 
3210     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3211       __ load_klass(tmp, src, tmp_load_klass);
3212       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3213       __ jcc(Assembler::greaterEqual, *stub->entry());
3214     }
3215   }
3216 
3217   // check if negative
3218   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3219     __ testl(src_pos, src_pos);
3220     __ jcc(Assembler::less, *stub->entry());
3221   }
3222   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3223     __ testl(dst_pos, dst_pos);
3224     __ jcc(Assembler::less, *stub->entry());
3225   }
3226 
3227   if (flags & LIR_OpArrayCopy::src_range_check) {
3228     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3229     __ cmpl(tmp, src_length_addr);
3230     __ jcc(Assembler::above, *stub->entry());
3231   }
3232   if (flags & LIR_OpArrayCopy::dst_range_check) {
3233     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3234     __ cmpl(tmp, dst_length_addr);
3235     __ jcc(Assembler::above, *stub->entry());
3236   }
3237 
3238   if (flags & LIR_OpArrayCopy::length_positive_check) {
3239     __ testl(length, length);
3240     __ jcc(Assembler::less, *stub->entry());
3241   }
3242 
3243 #ifdef _LP64
3244   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3245   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3246 #endif
3247 
3248   if (flags & LIR_OpArrayCopy::type_check) {
3249     // We don't know the array types are compatible
3250     if (basic_type != T_OBJECT) {
3251       // Simple test for basic type arrays
3252       if (UseCompressedClassPointers) {
3253         __ movl(tmp, src_klass_addr);
3254         __ cmpl(tmp, dst_klass_addr);
3255       } else {
3256         __ movptr(tmp, src_klass_addr);
3257         __ cmpptr(tmp, dst_klass_addr);
3258       }
3259       __ jcc(Assembler::notEqual, *stub->entry());
3260     } else {
3261       // For object arrays, if src is a sub class of dst then we can
3262       // safely do the copy.
3263       Label cont, slow;
3264 
3265       __ push(src);
3266       __ push(dst);
3267 
3268       __ load_klass(src, src, tmp_load_klass);
3269       __ load_klass(dst, dst, tmp_load_klass);
3270 
3271       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr);
3272 
3273       __ push(src);
3274       __ push(dst);
3275       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3276       __ pop(dst);
3277       __ pop(src);
3278 
3279       __ testl(src, src);
3280       __ jcc(Assembler::notEqual, cont);
3281 
3282       __ bind(slow);
3283       __ pop(dst);
3284       __ pop(src);
3285 
3286       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3287       if (copyfunc_addr != nullptr) { // use stub if available
3288         // src is not a sub class of dst so we have to do a
3289         // per-element check.
3290 
3291         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3292         if ((flags & mask) != mask) {
3293           // Check that at least both of them object arrays.
3294           assert(flags & mask, "one of the two should be known to be an object array");
3295 
3296           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3297             __ load_klass(tmp, src, tmp_load_klass);
3298           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3299             __ load_klass(tmp, dst, tmp_load_klass);
3300           }
3301           int lh_offset = in_bytes(Klass::layout_helper_offset());
3302           Address klass_lh_addr(tmp, lh_offset);
3303           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3304           __ cmpl(klass_lh_addr, objArray_lh);
3305           __ jcc(Assembler::notEqual, *stub->entry());
3306         }
3307 
3308        // Spill because stubs can use any register they like and it's
3309        // easier to restore just those that we care about.
3310        store_parameter(dst, 0);
3311        store_parameter(dst_pos, 1);
3312        store_parameter(length, 2);
3313        store_parameter(src_pos, 3);
3314        store_parameter(src, 4);
3315 
3316 #ifndef _LP64
3317         __ movptr(tmp, dst_klass_addr);
3318         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3319         __ push(tmp);
3320         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3321         __ push(tmp);
3322         __ push(length);
3323         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3324         __ push(tmp);
3325         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3326         __ push(tmp);
3327 
3328         __ call_VM_leaf(copyfunc_addr, 5);
3329 #else
3330         __ movl2ptr(length, length); //higher 32bits must be null
3331 
3332         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3333         assert_different_registers(c_rarg0, dst, dst_pos, length);
3334         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3335         assert_different_registers(c_rarg1, dst, length);
3336 
3337         __ mov(c_rarg2, length);
3338         assert_different_registers(c_rarg2, dst);
3339 
3340 #ifdef _WIN64
3341         // Allocate abi space for args but be sure to keep stack aligned
3342         __ subptr(rsp, 6*wordSize);
3343         __ load_klass(c_rarg3, dst, tmp_load_klass);
3344         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3345         store_parameter(c_rarg3, 4);
3346         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3347         __ call(RuntimeAddress(copyfunc_addr));
3348         __ addptr(rsp, 6*wordSize);
3349 #else
3350         __ load_klass(c_rarg4, dst, tmp_load_klass);
3351         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3352         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3353         __ call(RuntimeAddress(copyfunc_addr));
3354 #endif
3355 
3356 #endif
3357 
3358 #ifndef PRODUCT
3359         if (PrintC1Statistics) {
3360           Label failed;
3361           __ testl(rax, rax);
3362           __ jcc(Assembler::notZero, failed);
3363           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1);
3364           __ bind(failed);
3365         }
3366 #endif
3367 
3368         __ testl(rax, rax);
3369         __ jcc(Assembler::zero, *stub->continuation());
3370 
3371 #ifndef PRODUCT
3372         if (PrintC1Statistics) {
3373           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1);
3374         }
3375 #endif
3376 
3377         __ mov(tmp, rax);
3378 
3379         __ xorl(tmp, -1);
3380 
3381         // Restore previously spilled arguments
3382         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3383         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3384         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3385         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3386         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3387 
3388 
3389         __ subl(length, tmp);
3390         __ addl(src_pos, tmp);
3391         __ addl(dst_pos, tmp);
3392       }
3393 
3394       __ jmp(*stub->entry());
3395 
3396       __ bind(cont);
3397       __ pop(dst);
3398       __ pop(src);
3399     }
3400   }
3401 
3402 #ifdef ASSERT
3403   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3404     // Sanity check the known type with the incoming class.  For the
3405     // primitive case the types must match exactly with src.klass and
3406     // dst.klass each exactly matching the default type.  For the
3407     // object array case, if no type check is needed then either the
3408     // dst type is exactly the expected type and the src type is a
3409     // subtype which we can't check or src is the same array as dst
3410     // but not necessarily exactly of type default_type.
3411     Label known_ok, halt;
3412     __ mov_metadata(tmp, default_type->constant_encoding());
3413 #ifdef _LP64
3414     if (UseCompressedClassPointers) {
3415       __ encode_klass_not_null(tmp, rscratch1);
3416     }
3417 #endif
3418 
3419     if (basic_type != T_OBJECT) {
3420 
3421       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3422       else                   __ cmpptr(tmp, dst_klass_addr);
3423       __ jcc(Assembler::notEqual, halt);
3424       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3425       else                   __ cmpptr(tmp, src_klass_addr);
3426       __ jcc(Assembler::equal, known_ok);
3427     } else {
3428       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3429       else                   __ cmpptr(tmp, dst_klass_addr);
3430       __ jcc(Assembler::equal, known_ok);
3431       __ cmpptr(src, dst);
3432       __ jcc(Assembler::equal, known_ok);
3433     }
3434     __ bind(halt);
3435     __ stop("incorrect type information in arraycopy");
3436     __ bind(known_ok);
3437   }
3438 #endif
3439 
3440 #ifndef PRODUCT
3441   if (PrintC1Statistics) {
3442     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1);
3443   }
3444 #endif
3445 
3446 #ifdef _LP64
3447   assert_different_registers(c_rarg0, dst, dst_pos, length);
3448   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3449   assert_different_registers(c_rarg1, length);
3450   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3451   __ mov(c_rarg2, length);
3452 
3453 #else
3454   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3455   store_parameter(tmp, 0);
3456   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3457   store_parameter(tmp, 1);
3458   store_parameter(length, 2);
3459 #endif // _LP64
3460 
3461   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3462   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3463   const char *name;
3464   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3465   __ call_VM_leaf(entry, 0);
3466 
3467   if (stub != nullptr) {
3468     __ bind(*stub->continuation());
3469   }
3470 }
3471 
3472 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3473   assert(op->crc()->is_single_cpu(),  "crc must be register");
3474   assert(op->val()->is_single_cpu(),  "byte value must be register");
3475   assert(op->result_opr()->is_single_cpu(), "result must be register");
3476   Register crc = op->crc()->as_register();
3477   Register val = op->val()->as_register();
3478   Register res = op->result_opr()->as_register();
3479 
3480   assert_different_registers(val, crc, res);
3481 
3482   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3483   __ notl(crc); // ~crc
3484   __ update_byte_crc32(crc, val, res);
3485   __ notl(crc); // ~crc
3486   __ mov(res, crc);
3487 }
3488 
3489 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3490   Register obj = op->obj_opr()->as_register();  // may not be an oop
3491   Register hdr = op->hdr_opr()->as_register();
3492   Register lock = op->lock_opr()->as_register();
3493   if (LockingMode == LM_MONITOR) {
3494     if (op->info() != nullptr) {
3495       add_debug_info_for_null_check_here(op->info());
3496       __ null_check(obj);
3497     }
3498     __ jmp(*op->stub()->entry());
3499   } else if (op->code() == lir_lock) {
3500     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3501     Register tmp = LockingMode == LM_LIGHTWEIGHT ? op->scratch_opr()->as_register() : noreg;
3502     // add debug info for NullPointerException only if one is possible
3503     int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry());
3504     if (op->info() != nullptr) {
3505       add_debug_info_for_null_check(null_check_offset, op->info());
3506     }
3507     // done
3508   } else if (op->code() == lir_unlock) {
3509     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3510     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3511   } else {
3512     Unimplemented();
3513   }
3514   __ bind(*op->stub()->continuation());
3515 }
3516 
3517 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
3518   Register obj = op->obj()->as_pointer_register();
3519   Register result = op->result_opr()->as_pointer_register();
3520 
3521   CodeEmitInfo* info = op->info();
3522   if (info != nullptr) {
3523     add_debug_info_for_null_check_here(info);
3524   }
3525 
3526 #ifdef _LP64
3527   if (UseCompressedClassPointers) {
3528     __ movl(result, Address(obj, oopDesc::klass_offset_in_bytes()));
3529     __ decode_klass_not_null(result, rscratch1);
3530   } else
3531 #endif
3532     __ movptr(result, Address(obj, oopDesc::klass_offset_in_bytes()));
3533 }
3534 
3535 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3536   ciMethod* method = op->profiled_method();
3537   int bci          = op->profiled_bci();
3538   ciMethod* callee = op->profiled_callee();
3539   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3540 
3541   // Update counter for all call types
3542   ciMethodData* md = method->method_data_or_null();
3543   assert(md != nullptr, "Sanity");
3544   ciProfileData* data = md->bci_to_data(bci);
3545   assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
3546   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3547   Register mdo  = op->mdo()->as_register();
3548   __ mov_metadata(mdo, md->constant_encoding());
3549   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3550   // Perform additional virtual call profiling for invokevirtual and
3551   // invokeinterface bytecodes
3552   if (op->should_profile_receiver_type()) {
3553     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3554     Register recv = op->recv()->as_register();
3555     assert_different_registers(mdo, recv);
3556     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3557     ciKlass* known_klass = op->known_holder();
3558     if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
3559       // We know the type that will be seen at this call site; we can
3560       // statically update the MethodData* rather than needing to do
3561       // dynamic tests on the receiver type
3562 
3563       // NOTE: we should probably put a lock around this search to
3564       // avoid collisions by concurrent compilations
3565       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3566       uint i;
3567       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3568         ciKlass* receiver = vc_data->receiver(i);
3569         if (known_klass->equals(receiver)) {
3570           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3571           __ addptr(data_addr, DataLayout::counter_increment);
3572           return;
3573         }
3574       }
3575 
3576       // Receiver type not found in profile data; select an empty slot
3577 
3578       // Note that this is less efficient than it should be because it
3579       // always does a write to the receiver part of the
3580       // VirtualCallData rather than just the first time
3581       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3582         ciKlass* receiver = vc_data->receiver(i);
3583         if (receiver == nullptr) {
3584           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3585           __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1);
3586           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3587           __ addptr(data_addr, DataLayout::counter_increment);
3588           return;
3589         }
3590       }
3591     } else {
3592       __ load_klass(recv, recv, tmp_load_klass);
3593       Label update_done;
3594       type_profile_helper(mdo, md, data, recv, &update_done);
3595       // Receiver did not match any saved receiver and there is no empty row for it.
3596       // Increment total counter to indicate polymorphic case.
3597       __ addptr(counter_addr, DataLayout::counter_increment);
3598 
3599       __ bind(update_done);
3600     }
3601   } else {
3602     // Static call
3603     __ addptr(counter_addr, DataLayout::counter_increment);
3604   }
3605 }
3606 
3607 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3608   Register obj = op->obj()->as_register();
3609   Register tmp = op->tmp()->as_pointer_register();
3610   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3611   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3612   ciKlass* exact_klass = op->exact_klass();
3613   intptr_t current_klass = op->current_klass();
3614   bool not_null = op->not_null();
3615   bool no_conflict = op->no_conflict();
3616 
3617   Label update, next, none;
3618 
3619   bool do_null = !not_null;
3620   bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3621   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3622 
3623   assert(do_null || do_update, "why are we here?");
3624   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3625 
3626   __ verify_oop(obj);
3627 
3628 #ifdef ASSERT
3629   if (obj == tmp) {
3630 #ifdef _LP64
3631     assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
3632 #else
3633     assert_different_registers(obj, mdo_addr.base(), mdo_addr.index());
3634 #endif
3635   } else {
3636 #ifdef _LP64
3637     assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index());
3638 #else
3639     assert_different_registers(obj, tmp, mdo_addr.base(), mdo_addr.index());
3640 #endif
3641   }
3642 #endif
3643   if (do_null) {
3644     __ testptr(obj, obj);
3645     __ jccb(Assembler::notZero, update);
3646     if (!TypeEntries::was_null_seen(current_klass)) {
3647       __ testptr(mdo_addr, TypeEntries::null_seen);
3648 #ifndef ASSERT
3649       __ jccb(Assembler::notZero, next); // already set
3650 #else
3651       __ jcc(Assembler::notZero, next); // already set
3652 #endif
3653       // atomic update to prevent overwriting Klass* with 0
3654       __ lock();
3655       __ orptr(mdo_addr, TypeEntries::null_seen);
3656     }
3657     if (do_update) {
3658 #ifndef ASSERT
3659       __ jmpb(next);
3660     }
3661 #else
3662       __ jmp(next);
3663     }
3664   } else {
3665     __ testptr(obj, obj);
3666     __ jcc(Assembler::notZero, update);
3667     __ stop("unexpected null obj");
3668 #endif
3669   }
3670 
3671   __ bind(update);
3672 
3673   if (do_update) {
3674 #ifdef ASSERT
3675     if (exact_klass != nullptr) {
3676       Label ok;
3677       __ load_klass(tmp, obj, tmp_load_klass);
3678       __ push(tmp);
3679       __ mov_metadata(tmp, exact_klass->constant_encoding());
3680       __ cmpptr(tmp, Address(rsp, 0));
3681       __ jcc(Assembler::equal, ok);
3682       __ stop("exact klass and actual klass differ");
3683       __ bind(ok);
3684       __ pop(tmp);
3685     }
3686 #endif
3687     if (!no_conflict) {
3688       if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
3689         if (exact_klass != nullptr) {
3690           __ mov_metadata(tmp, exact_klass->constant_encoding());
3691         } else {
3692           __ load_klass(tmp, obj, tmp_load_klass);
3693         }
3694 #ifdef _LP64
3695         __ mov(rscratch1, tmp); // save original value before XOR
3696 #endif
3697         __ xorptr(tmp, mdo_addr);
3698         __ testptr(tmp, TypeEntries::type_klass_mask);
3699         // klass seen before, nothing to do. The unknown bit may have been
3700         // set already but no need to check.
3701         __ jccb(Assembler::zero, next);
3702 
3703         __ testptr(tmp, TypeEntries::type_unknown);
3704         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3705 
3706         if (TypeEntries::is_type_none(current_klass)) {
3707           __ testptr(mdo_addr, TypeEntries::type_mask);
3708           __ jccb(Assembler::zero, none);
3709 #ifdef _LP64
3710           // There is a chance that the checks above (re-reading profiling
3711           // data from memory) fail if another thread has just set the
3712           // profiling to this obj's klass
3713           __ mov(tmp, rscratch1); // get back original value before XOR
3714           __ xorptr(tmp, mdo_addr);
3715           __ testptr(tmp, TypeEntries::type_klass_mask);
3716           __ jccb(Assembler::zero, next);
3717 #endif
3718         }
3719       } else {
3720         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3721                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3722 
3723         __ testptr(mdo_addr, TypeEntries::type_unknown);
3724         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3725       }
3726 
3727       // different than before. Cannot keep accurate profile.
3728       __ orptr(mdo_addr, TypeEntries::type_unknown);
3729 
3730       if (TypeEntries::is_type_none(current_klass)) {
3731         __ jmpb(next);
3732 
3733         __ bind(none);
3734         // first time here. Set profile type.
3735         __ movptr(mdo_addr, tmp);
3736 #ifdef ASSERT
3737         __ andptr(tmp, TypeEntries::type_klass_mask);
3738         __ verify_klass_ptr(tmp);
3739 #endif
3740       }
3741     } else {
3742       // There's a single possible klass at this profile point
3743       assert(exact_klass != nullptr, "should be");
3744       if (TypeEntries::is_type_none(current_klass)) {
3745         __ mov_metadata(tmp, exact_klass->constant_encoding());
3746         __ xorptr(tmp, mdo_addr);
3747         __ testptr(tmp, TypeEntries::type_klass_mask);
3748 #ifdef ASSERT
3749         __ jcc(Assembler::zero, next);
3750 
3751         {
3752           Label ok;
3753           __ push(tmp);
3754           __ testptr(mdo_addr, TypeEntries::type_mask);
3755           __ jcc(Assembler::zero, ok);
3756           // may have been set by another thread
3757           __ mov_metadata(tmp, exact_klass->constant_encoding());
3758           __ xorptr(tmp, mdo_addr);
3759           __ testptr(tmp, TypeEntries::type_mask);
3760           __ jcc(Assembler::zero, ok);
3761 
3762           __ stop("unexpected profiling mismatch");
3763           __ bind(ok);
3764           __ pop(tmp);
3765         }
3766 #else
3767         __ jccb(Assembler::zero, next);
3768 #endif
3769         // first time here. Set profile type.
3770         __ movptr(mdo_addr, tmp);
3771 #ifdef ASSERT
3772         __ andptr(tmp, TypeEntries::type_klass_mask);
3773         __ verify_klass_ptr(tmp);
3774 #endif
3775       } else {
3776         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3777                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3778 
3779         __ testptr(mdo_addr, TypeEntries::type_unknown);
3780         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3781 
3782         __ orptr(mdo_addr, TypeEntries::type_unknown);
3783       }
3784     }
3785   }
3786   __ bind(next);
3787 }
3788 
3789 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3790   Unimplemented();
3791 }
3792 
3793 
3794 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3795   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3796 }
3797 
3798 
3799 void LIR_Assembler::align_backward_branch_target() {
3800   __ align(BytesPerWord);
3801 }
3802 
3803 
3804 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3805   if (left->is_single_cpu()) {
3806     __ negl(left->as_register());
3807     move_regs(left->as_register(), dest->as_register());
3808 
3809   } else if (left->is_double_cpu()) {
3810     Register lo = left->as_register_lo();
3811 #ifdef _LP64
3812     Register dst = dest->as_register_lo();
3813     __ movptr(dst, lo);
3814     __ negptr(dst);
3815 #else
3816     Register hi = left->as_register_hi();
3817     __ lneg(hi, lo);
3818     if (dest->as_register_lo() == hi) {
3819       assert(dest->as_register_hi() != lo, "destroying register");
3820       move_regs(hi, dest->as_register_hi());
3821       move_regs(lo, dest->as_register_lo());
3822     } else {
3823       move_regs(lo, dest->as_register_lo());
3824       move_regs(hi, dest->as_register_hi());
3825     }
3826 #endif // _LP64
3827 
3828   } else if (dest->is_single_xmm()) {
3829 #ifdef _LP64
3830     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3831       assert(tmp->is_valid(), "need temporary");
3832       assert_different_registers(left->as_xmm_float_reg(), tmp->as_xmm_float_reg());
3833       __ vpxor(dest->as_xmm_float_reg(), tmp->as_xmm_float_reg(), left->as_xmm_float_reg(), 2);
3834     }
3835     else
3836 #endif
3837     {
3838       assert(!tmp->is_valid(), "do not need temporary");
3839       if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3840         __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3841       }
3842       __ xorps(dest->as_xmm_float_reg(),
3843                ExternalAddress(LIR_Assembler::float_signflip_pool),
3844                rscratch1);
3845     }
3846   } else if (dest->is_double_xmm()) {
3847 #ifdef _LP64
3848     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3849       assert(tmp->is_valid(), "need temporary");
3850       assert_different_registers(left->as_xmm_double_reg(), tmp->as_xmm_double_reg());
3851       __ vpxor(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), left->as_xmm_double_reg(), 2);
3852     }
3853     else
3854 #endif
3855     {
3856       assert(!tmp->is_valid(), "do not need temporary");
3857       if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3858         __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3859       }
3860       __ xorpd(dest->as_xmm_double_reg(),
3861                ExternalAddress(LIR_Assembler::double_signflip_pool),
3862                rscratch1);
3863     }
3864 #ifndef _LP64
3865   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3866     assert(left->fpu() == 0, "arg must be on TOS");
3867     assert(dest->fpu() == 0, "dest must be TOS");
3868     __ fchs();
3869 #endif // !_LP64
3870 
3871   } else {
3872     ShouldNotReachHere();
3873   }
3874 }
3875 
3876 
3877 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3878   assert(src->is_address(), "must be an address");
3879   assert(dest->is_register(), "must be a register");
3880 
3881   PatchingStub* patch = nullptr;
3882   if (patch_code != lir_patch_none) {
3883     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3884   }
3885 
3886   Register reg = dest->as_pointer_register();
3887   LIR_Address* addr = src->as_address_ptr();
3888   __ lea(reg, as_Address(addr));
3889 
3890   if (patch != nullptr) {
3891     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
3892   }
3893 }
3894 
3895 
3896 
3897 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3898   assert(!tmp->is_valid(), "don't need temporary");
3899   __ call(RuntimeAddress(dest));
3900   if (info != nullptr) {
3901     add_call_info_here(info);
3902   }
3903   __ post_call_nop();
3904 }
3905 
3906 
3907 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3908   assert(type == T_LONG, "only for volatile long fields");
3909 
3910   if (info != nullptr) {
3911     add_debug_info_for_null_check_here(info);
3912   }
3913 
3914   if (src->is_double_xmm()) {
3915     if (dest->is_double_cpu()) {
3916 #ifdef _LP64
3917       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3918 #else
3919       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3920       __ psrlq(src->as_xmm_double_reg(), 32);
3921       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3922 #endif // _LP64
3923     } else if (dest->is_double_stack()) {
3924       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3925     } else if (dest->is_address()) {
3926       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3927     } else {
3928       ShouldNotReachHere();
3929     }
3930 
3931   } else if (dest->is_double_xmm()) {
3932     if (src->is_double_stack()) {
3933       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3934     } else if (src->is_address()) {
3935       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3936     } else {
3937       ShouldNotReachHere();
3938     }
3939 
3940 #ifndef _LP64
3941   } else if (src->is_double_fpu()) {
3942     assert(src->fpu_regnrLo() == 0, "must be TOS");
3943     if (dest->is_double_stack()) {
3944       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3945     } else if (dest->is_address()) {
3946       __ fistp_d(as_Address(dest->as_address_ptr()));
3947     } else {
3948       ShouldNotReachHere();
3949     }
3950 
3951   } else if (dest->is_double_fpu()) {
3952     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3953     if (src->is_double_stack()) {
3954       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3955     } else if (src->is_address()) {
3956       __ fild_d(as_Address(src->as_address_ptr()));
3957     } else {
3958       ShouldNotReachHere();
3959     }
3960 #endif // !_LP64
3961 
3962   } else {
3963     ShouldNotReachHere();
3964   }
3965 }
3966 
3967 #ifdef ASSERT
3968 // emit run-time assertion
3969 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3970   assert(op->code() == lir_assert, "must be");
3971 
3972   if (op->in_opr1()->is_valid()) {
3973     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3974     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3975   } else {
3976     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3977     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3978   }
3979 
3980   Label ok;
3981   if (op->condition() != lir_cond_always) {
3982     Assembler::Condition acond = Assembler::zero;
3983     switch (op->condition()) {
3984       case lir_cond_equal:        acond = Assembler::equal;       break;
3985       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3986       case lir_cond_less:         acond = Assembler::less;        break;
3987       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3988       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3989       case lir_cond_greater:      acond = Assembler::greater;     break;
3990       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3991       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3992       default:                    ShouldNotReachHere();
3993     }
3994     __ jcc(acond, ok);
3995   }
3996   if (op->halt()) {
3997     const char* str = __ code_string(op->msg());
3998     __ stop(str);
3999   } else {
4000     breakpoint();
4001   }
4002   __ bind(ok);
4003 }
4004 #endif
4005 
4006 void LIR_Assembler::membar() {
4007   // QQQ sparc TSO uses this,
4008   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
4009 }
4010 
4011 void LIR_Assembler::membar_acquire() {
4012   // No x86 machines currently require load fences
4013 }
4014 
4015 void LIR_Assembler::membar_release() {
4016   // No x86 machines currently require store fences
4017 }
4018 
4019 void LIR_Assembler::membar_loadload() {
4020   // no-op
4021   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
4022 }
4023 
4024 void LIR_Assembler::membar_storestore() {
4025   // no-op
4026   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
4027 }
4028 
4029 void LIR_Assembler::membar_loadstore() {
4030   // no-op
4031   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
4032 }
4033 
4034 void LIR_Assembler::membar_storeload() {
4035   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4036 }
4037 
4038 void LIR_Assembler::on_spin_wait() {
4039   __ pause ();
4040 }
4041 
4042 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
4043   assert(result_reg->is_register(), "check");
4044 #ifdef _LP64
4045   // __ get_thread(result_reg->as_register_lo());
4046   __ mov(result_reg->as_register(), r15_thread);
4047 #else
4048   __ get_thread(result_reg->as_register());
4049 #endif // _LP64
4050 }
4051 
4052 
4053 void LIR_Assembler::peephole(LIR_List*) {
4054   // do nothing for now
4055 }
4056 
4057 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
4058   assert(data == dest, "xchg/xadd uses only 2 operands");
4059 
4060   if (data->type() == T_INT) {
4061     if (code == lir_xadd) {
4062       __ lock();
4063       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
4064     } else {
4065       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4066     }
4067   } else if (data->is_oop()) {
4068     assert (code == lir_xchg, "xadd for oops");
4069     Register obj = data->as_register();
4070 #ifdef _LP64
4071     if (UseCompressedOops) {
4072       __ encode_heap_oop(obj);
4073       __ xchgl(obj, as_Address(src->as_address_ptr()));
4074       __ decode_heap_oop(obj);
4075     } else {
4076       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4077     }
4078 #else
4079     __ xchgl(obj, as_Address(src->as_address_ptr()));
4080 #endif
4081   } else if (data->type() == T_LONG) {
4082 #ifdef _LP64
4083     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4084     if (code == lir_xadd) {
4085       __ lock();
4086       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4087     } else {
4088       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4089     }
4090 #else
4091     ShouldNotReachHere();
4092 #endif
4093   } else {
4094     ShouldNotReachHere();
4095   }
4096 }
4097 
4098 #undef __