1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "c1/c1_CodeStubs.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_MacroAssembler.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciUtilities.hpp" 36 #include "code/aotCodeCache.hpp" 37 #include "compiler/oopMap.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gc_globals.hpp" 40 #include "nativeInst_x86.hpp" 41 #include "oops/objArrayKlass.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/safepointMechanism.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "runtime/threadIdentifier.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 #include "vmreg_x86.inline.hpp" 49 50 51 // These masks are used to provide 128-bit aligned bitmasks to the XMM 52 // instructions, to allow sign-masking or sign-bit flipping. They allow 53 // fast versions of NegF/NegD and AbsF/AbsD. 54 55 // Note: 'double' and 'long long' have 32-bits alignment on x86. 56 static address double_quadword(jlong *adr, jlong lo, jlong hi) { 57 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 58 // of 128-bits operands for SSE instructions. 59 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF))); 60 // Store the value to a 128-bits operand. 61 operand[0] = lo; 62 operand[1] = hi; 63 return (address)operand; 64 } 65 66 // Buffer for 128-bits masks used by SSE instructions. 67 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment) 68 69 // Static initialization during VM startup. 70 address LIR_Assembler::float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF)); 71 address LIR_Assembler::double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF)); 72 address LIR_Assembler::float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000)); 73 address LIR_Assembler::double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000)); 74 75 76 NEEDS_CLEANUP // remove this definitions ? 77 const Register SYNC_header = rax; // synchronization header 78 const Register SHIFT_count = rcx; // where count for shift operations must be 79 80 #define __ _masm-> 81 82 83 static void select_different_registers(Register preserve, 84 Register extra, 85 Register &tmp1, 86 Register &tmp2) { 87 if (tmp1 == preserve) { 88 assert_different_registers(tmp1, tmp2, extra); 89 tmp1 = extra; 90 } else if (tmp2 == preserve) { 91 assert_different_registers(tmp1, tmp2, extra); 92 tmp2 = extra; 93 } 94 assert_different_registers(preserve, tmp1, tmp2); 95 } 96 97 98 99 static void select_different_registers(Register preserve, 100 Register extra, 101 Register &tmp1, 102 Register &tmp2, 103 Register &tmp3) { 104 if (tmp1 == preserve) { 105 assert_different_registers(tmp1, tmp2, tmp3, extra); 106 tmp1 = extra; 107 } else if (tmp2 == preserve) { 108 assert_different_registers(tmp1, tmp2, tmp3, extra); 109 tmp2 = extra; 110 } else if (tmp3 == preserve) { 111 assert_different_registers(tmp1, tmp2, tmp3, extra); 112 tmp3 = extra; 113 } 114 assert_different_registers(preserve, tmp1, tmp2, tmp3); 115 } 116 117 118 119 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 120 if (opr->is_constant()) { 121 LIR_Const* constant = opr->as_constant_ptr(); 122 switch (constant->type()) { 123 case T_INT: { 124 return true; 125 } 126 127 default: 128 return false; 129 } 130 } 131 return false; 132 } 133 134 135 LIR_Opr LIR_Assembler::receiverOpr() { 136 return FrameMap::receiver_opr; 137 } 138 139 LIR_Opr LIR_Assembler::osrBufferPointer() { 140 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 141 } 142 143 //--------------fpu register translations----------------------- 144 145 146 address LIR_Assembler::float_constant(float f) { 147 address const_addr = __ float_constant(f); 148 if (const_addr == nullptr) { 149 bailout("const section overflow"); 150 return __ code()->consts()->start(); 151 } else { 152 return const_addr; 153 } 154 } 155 156 157 address LIR_Assembler::double_constant(double d) { 158 address const_addr = __ double_constant(d); 159 if (const_addr == nullptr) { 160 bailout("const section overflow"); 161 return __ code()->consts()->start(); 162 } else { 163 return const_addr; 164 } 165 } 166 167 void LIR_Assembler::breakpoint() { 168 __ int3(); 169 } 170 171 void LIR_Assembler::push(LIR_Opr opr) { 172 if (opr->is_single_cpu()) { 173 __ push_reg(opr->as_register()); 174 } else if (opr->is_double_cpu()) { 175 __ push_reg(opr->as_register_lo()); 176 } else if (opr->is_stack()) { 177 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix())); 178 } else if (opr->is_constant()) { 179 LIR_Const* const_opr = opr->as_constant_ptr(); 180 if (const_opr->type() == T_OBJECT) { 181 __ push_oop(const_opr->as_jobject(), rscratch1); 182 } else if (const_opr->type() == T_INT) { 183 __ push_jint(const_opr->as_jint()); 184 } else { 185 ShouldNotReachHere(); 186 } 187 188 } else { 189 ShouldNotReachHere(); 190 } 191 } 192 193 void LIR_Assembler::pop(LIR_Opr opr) { 194 if (opr->is_single_cpu()) { 195 __ pop_reg(opr->as_register()); 196 } else { 197 ShouldNotReachHere(); 198 } 199 } 200 201 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { 202 return addr->base()->is_illegal() && addr->index()->is_illegal(); 203 } 204 205 //------------------------------------------- 206 207 Address LIR_Assembler::as_Address(LIR_Address* addr) { 208 return as_Address(addr, rscratch1); 209 } 210 211 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 212 if (addr->base()->is_illegal()) { 213 assert(addr->index()->is_illegal(), "must be illegal too"); 214 AddressLiteral laddr((address)addr->disp(), relocInfo::none); 215 if (! __ reachable(laddr)) { 216 __ movptr(tmp, laddr.addr()); 217 Address res(tmp, 0); 218 return res; 219 } else { 220 return __ as_Address(laddr); 221 } 222 } 223 224 Register base = addr->base()->as_pointer_register(); 225 226 if (addr->index()->is_illegal()) { 227 return Address( base, addr->disp()); 228 } else if (addr->index()->is_cpu_register()) { 229 Register index = addr->index()->as_pointer_register(); 230 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp()); 231 } else if (addr->index()->is_constant()) { 232 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp(); 233 assert(Assembler::is_simm32(addr_offset), "must be"); 234 235 return Address(base, addr_offset); 236 } else { 237 Unimplemented(); 238 return Address(); 239 } 240 } 241 242 243 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 244 Address base = as_Address(addr); 245 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord); 246 } 247 248 249 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 250 return as_Address(addr); 251 } 252 253 254 void LIR_Assembler::osr_entry() { 255 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 256 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 257 ValueStack* entry_state = osr_entry->state(); 258 int number_of_locks = entry_state->locks_size(); 259 260 // we jump here if osr happens with the interpreter 261 // state set up to continue at the beginning of the 262 // loop that triggered osr - in particular, we have 263 // the following registers setup: 264 // 265 // rcx: osr buffer 266 // 267 268 // build frame 269 ciMethod* m = compilation()->method(); 270 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 271 272 // OSR buffer is 273 // 274 // locals[nlocals-1..0] 275 // monitors[0..number_of_locks] 276 // 277 // locals is a direct copy of the interpreter frame so in the osr buffer 278 // so first slot in the local array is the last local from the interpreter 279 // and last slot is local[0] (receiver) from the interpreter 280 // 281 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 282 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 283 // in the interpreter frame (the method lock if a sync method) 284 285 // Initialize monitors in the compiled activation. 286 // rcx: pointer to osr buffer 287 // 288 // All other registers are dead at this point and the locals will be 289 // copied into place by code emitted in the IR. 290 291 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 292 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 293 int monitor_offset = BytesPerWord * method()->max_locals() + 294 (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1); 295 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 296 // the OSR buffer using 2 word entries: first the lock and then 297 // the oop. 298 for (int i = 0; i < number_of_locks; i++) { 299 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 300 #ifdef ASSERT 301 // verify the interpreter's monitor has a non-null object 302 { 303 Label L; 304 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD); 305 __ jcc(Assembler::notZero, L); 306 __ stop("locked object is null"); 307 __ bind(L); 308 } 309 #endif 310 __ movptr(rbx, Address(OSR_buf, slot_offset + 0)); 311 __ movptr(frame_map()->address_for_monitor_lock(i), rbx); 312 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 313 __ movptr(frame_map()->address_for_monitor_object(i), rbx); 314 } 315 } 316 } 317 318 319 // inline cache check; done before the frame is built. 320 int LIR_Assembler::check_icache() { 321 return __ ic_check(CodeEntryAlignment); 322 } 323 324 void LIR_Assembler::clinit_barrier(ciMethod* method) { 325 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 326 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 327 328 Label L_skip_barrier; 329 Register klass = rscratch1; 330 331 __ mov_metadata(klass, method->holder()->constant_encoding()); 332 __ clinit_barrier(klass, &L_skip_barrier /*L_fast_path*/); 333 334 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 335 336 __ bind(L_skip_barrier); 337 } 338 339 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) { 340 jobject o = nullptr; 341 PatchingStub* patch = new PatchingStub(_masm, patching_id(info)); 342 __ movoop(reg, o); 343 patching_epilog(patch, lir_patch_normal, reg, info); 344 } 345 346 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 347 Metadata* o = nullptr; 348 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id); 349 __ mov_metadata(reg, o); 350 patching_epilog(patch, lir_patch_normal, reg, info); 351 } 352 353 // This specifies the rsp decrement needed to build the frame 354 int LIR_Assembler::initial_frame_size_in_bytes() const { 355 // if rounding, must let FrameMap know! 356 357 // The frame_map records size in slots (32bit word) 358 359 // subtract two words to account for return address and link 360 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size; 361 } 362 363 364 int LIR_Assembler::emit_exception_handler() { 365 // generate code for exception handler 366 address handler_base = __ start_a_stub(exception_handler_size()); 367 if (handler_base == nullptr) { 368 // not enough space left for the handler 369 bailout("exception handler overflow"); 370 return -1; 371 } 372 373 int offset = code_offset(); 374 375 // the exception oop and pc are in rax, and rdx 376 // no other registers need to be preserved, so invalidate them 377 __ invalidate_registers(false, true, true, false, true, true); 378 379 // check that there is really an exception 380 __ verify_not_null_oop(rax); 381 382 // search an exception handler (rax: exception oop, rdx: throwing pc) 383 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id))); 384 __ should_not_reach_here(); 385 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 386 __ end_a_stub(); 387 388 return offset; 389 } 390 391 392 // Emit the code to remove the frame from the stack in the exception 393 // unwind path. 394 int LIR_Assembler::emit_unwind_handler() { 395 #ifndef PRODUCT 396 if (CommentedAssembly) { 397 _masm->block_comment("Unwind handler"); 398 } 399 #endif 400 401 int offset = code_offset(); 402 403 // Fetch the exception from TLS and clear out exception related thread state 404 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); 405 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), NULL_WORD); 406 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), NULL_WORD); 407 408 __ bind(_unwind_handler_entry); 409 __ verify_not_null_oop(rax); 410 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 411 __ mov(rbx, rax); // Preserve the exception (rbx is always callee-saved) 412 } 413 414 // Perform needed unlocking 415 MonitorExitStub* stub = nullptr; 416 if (method()->is_synchronized()) { 417 monitor_address(0, FrameMap::rax_opr); 418 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0); 419 if (LockingMode == LM_MONITOR) { 420 __ jmp(*stub->entry()); 421 } else { 422 __ unlock_object(rdi, rsi, rax, *stub->entry()); 423 } 424 __ bind(*stub->continuation()); 425 } 426 427 if (compilation()->env()->dtrace_method_probes()) { 428 __ mov(rdi, r15_thread); 429 __ mov_metadata(rsi, method()->constant_encoding()); 430 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit))); 431 } 432 433 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 434 __ mov(rax, rbx); // Restore the exception 435 } 436 437 // remove the activation and dispatch to the unwind handler 438 __ remove_frame(initial_frame_size_in_bytes()); 439 __ jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id))); 440 441 // Emit the slow path assembly 442 if (stub != nullptr) { 443 stub->emit_code(this); 444 } 445 446 return offset; 447 } 448 449 450 int LIR_Assembler::emit_deopt_handler() { 451 // generate code for exception handler 452 address handler_base = __ start_a_stub(deopt_handler_size()); 453 if (handler_base == nullptr) { 454 // not enough space left for the handler 455 bailout("deopt handler overflow"); 456 return -1; 457 } 458 459 int offset = code_offset(); 460 InternalAddress here(__ pc()); 461 462 __ pushptr(here.addr(), rscratch1); 463 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 464 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 465 __ end_a_stub(); 466 467 return offset; 468 } 469 470 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 471 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,"); 472 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) { 473 assert(result->fpu() == 0, "result must already be on TOS"); 474 } 475 476 // Pop the stack before the safepoint code 477 __ remove_frame(initial_frame_size_in_bytes()); 478 479 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 480 __ reserved_stack_check(); 481 } 482 483 // Note: we do not need to round double result; float result has the right precision 484 // the poll sets the condition code, but no data registers 485 486 code_stub->set_safepoint_offset(__ offset()); 487 __ relocate(relocInfo::poll_return_type); 488 __ safepoint_poll(*code_stub->entry(), true /* at_return */, true /* in_nmethod */); 489 __ ret(0); 490 } 491 492 493 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 494 guarantee(info != nullptr, "Shouldn't be null"); 495 int offset = __ offset(); 496 const Register poll_addr = rscratch1; 497 __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset())); 498 add_debug_info_for_branch(info); 499 __ relocate(relocInfo::poll_type); 500 address pre_pc = __ pc(); 501 __ testl(rax, Address(poll_addr, 0)); 502 address post_pc = __ pc(); 503 guarantee(pointer_delta(post_pc, pre_pc, 1) == 3, "must be exact length"); 504 return offset; 505 } 506 507 508 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 509 if (from_reg != to_reg) __ mov(to_reg, from_reg); 510 } 511 512 void LIR_Assembler::swap_reg(Register a, Register b) { 513 __ xchgptr(a, b); 514 } 515 516 517 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 518 assert(src->is_constant(), "should not call otherwise"); 519 assert(dest->is_register(), "should not call otherwise"); 520 LIR_Const* c = src->as_constant_ptr(); 521 522 switch (c->type()) { 523 case T_INT: { 524 assert(patch_code == lir_patch_none, "no patching handled here"); 525 __ movl(dest->as_register(), c->as_jint()); 526 break; 527 } 528 529 case T_ADDRESS: { 530 assert(patch_code == lir_patch_none, "no patching handled here"); 531 __ movptr(dest->as_register(), c->as_jint()); 532 break; 533 } 534 535 case T_LONG: { 536 assert(patch_code == lir_patch_none, "no patching handled here"); 537 if (AOTCodeCache::is_on_for_dump()) { 538 // AOTCodeCache needs relocation info for card table base 539 address b = c->as_pointer(); 540 if (is_card_table_address(b)) { 541 __ lea(dest->as_register_lo(), ExternalAddress(b)); 542 break; 543 } 544 if (b == (address)ThreadIdentifier::unsafe_offset()) { 545 __ lea(dest->as_register_lo(), ExternalAddress(b)); 546 break; 547 } 548 #if INCLUDE_CDS 549 if (AOTRuntimeConstants::contains(b)) { 550 __ load_aotrc_address(dest->as_register_lo(), b); 551 break; 552 } 553 #endif 554 } 555 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong()); 556 break; 557 } 558 559 case T_OBJECT: { 560 if (patch_code != lir_patch_none) { 561 jobject2reg_with_patching(dest->as_register(), info); 562 } else { 563 __ movoop(dest->as_register(), c->as_jobject()); 564 } 565 break; 566 } 567 568 case T_METADATA: { 569 if (patch_code != lir_patch_none) { 570 klass2reg_with_patching(dest->as_register(), info); 571 } else { 572 __ mov_metadata(dest->as_register(), c->as_metadata()); 573 } 574 break; 575 } 576 577 case T_FLOAT: { 578 if (dest->is_single_xmm()) { 579 if (UseAVX <= 2 && c->is_zero_float()) { 580 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg()); 581 } else { 582 __ movflt(dest->as_xmm_float_reg(), 583 InternalAddress(float_constant(c->as_jfloat()))); 584 } 585 } else { 586 ShouldNotReachHere(); 587 } 588 break; 589 } 590 591 case T_DOUBLE: { 592 if (dest->is_double_xmm()) { 593 if (UseAVX <= 2 && c->is_zero_double()) { 594 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg()); 595 } else { 596 __ movdbl(dest->as_xmm_double_reg(), 597 InternalAddress(double_constant(c->as_jdouble()))); 598 } 599 } else { 600 ShouldNotReachHere(); 601 } 602 break; 603 } 604 605 default: 606 ShouldNotReachHere(); 607 } 608 } 609 610 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 611 assert(src->is_constant(), "should not call otherwise"); 612 assert(dest->is_stack(), "should not call otherwise"); 613 LIR_Const* c = src->as_constant_ptr(); 614 615 switch (c->type()) { 616 case T_INT: // fall through 617 case T_FLOAT: 618 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 619 break; 620 621 case T_ADDRESS: 622 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 623 break; 624 625 case T_OBJECT: 626 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1); 627 break; 628 629 case T_LONG: // fall through 630 case T_DOUBLE: 631 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 632 lo_word_offset_in_bytes), 633 (intptr_t)c->as_jlong_bits(), 634 rscratch1); 635 break; 636 637 default: 638 ShouldNotReachHere(); 639 } 640 } 641 642 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 643 assert(src->is_constant(), "should not call otherwise"); 644 assert(dest->is_address(), "should not call otherwise"); 645 LIR_Const* c = src->as_constant_ptr(); 646 LIR_Address* addr = dest->as_address_ptr(); 647 648 int null_check_here = code_offset(); 649 switch (type) { 650 case T_INT: // fall through 651 case T_FLOAT: 652 __ movl(as_Address(addr), c->as_jint_bits()); 653 break; 654 655 case T_ADDRESS: 656 __ movptr(as_Address(addr), c->as_jint_bits()); 657 break; 658 659 case T_OBJECT: // fall through 660 case T_ARRAY: 661 if (c->as_jobject() == nullptr) { 662 if (UseCompressedOops && !wide) { 663 __ movl(as_Address(addr), NULL_WORD); 664 } else { 665 __ xorptr(rscratch1, rscratch1); 666 null_check_here = code_offset(); 667 __ movptr(as_Address(addr), rscratch1); 668 } 669 } else { 670 if (is_literal_address(addr)) { 671 ShouldNotReachHere(); 672 __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1); 673 } else { 674 __ movoop(rscratch1, c->as_jobject()); 675 if (UseCompressedOops && !wide) { 676 __ encode_heap_oop(rscratch1); 677 null_check_here = code_offset(); 678 __ movl(as_Address_lo(addr), rscratch1); 679 } else { 680 null_check_here = code_offset(); 681 __ movptr(as_Address_lo(addr), rscratch1); 682 } 683 } 684 } 685 break; 686 687 case T_LONG: // fall through 688 case T_DOUBLE: 689 if (is_literal_address(addr)) { 690 ShouldNotReachHere(); 691 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits()); 692 } else { 693 __ movptr(r10, (intptr_t)c->as_jlong_bits()); 694 null_check_here = code_offset(); 695 __ movptr(as_Address_lo(addr), r10); 696 } 697 break; 698 699 case T_BOOLEAN: // fall through 700 case T_BYTE: 701 __ movb(as_Address(addr), c->as_jint() & 0xFF); 702 break; 703 704 case T_CHAR: // fall through 705 case T_SHORT: 706 __ movw(as_Address(addr), c->as_jint() & 0xFFFF); 707 break; 708 709 default: 710 ShouldNotReachHere(); 711 }; 712 713 if (info != nullptr) { 714 add_debug_info_for_null_check(null_check_here, info); 715 } 716 } 717 718 719 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 720 assert(src->is_register(), "should not call otherwise"); 721 assert(dest->is_register(), "should not call otherwise"); 722 723 // move between cpu-registers 724 if (dest->is_single_cpu()) { 725 if (src->type() == T_LONG) { 726 // Can do LONG -> OBJECT 727 move_regs(src->as_register_lo(), dest->as_register()); 728 return; 729 } 730 assert(src->is_single_cpu(), "must match"); 731 if (src->type() == T_OBJECT) { 732 __ verify_oop(src->as_register()); 733 } 734 move_regs(src->as_register(), dest->as_register()); 735 736 } else if (dest->is_double_cpu()) { 737 if (is_reference_type(src->type())) { 738 // Surprising to me but we can see move of a long to t_object 739 __ verify_oop(src->as_register()); 740 move_regs(src->as_register(), dest->as_register_lo()); 741 return; 742 } 743 assert(src->is_double_cpu(), "must match"); 744 Register f_lo = src->as_register_lo(); 745 Register f_hi = src->as_register_hi(); 746 Register t_lo = dest->as_register_lo(); 747 Register t_hi = dest->as_register_hi(); 748 assert(f_hi == f_lo, "must be same"); 749 assert(t_hi == t_lo, "must be same"); 750 move_regs(f_lo, t_lo); 751 752 // move between xmm-registers 753 } else if (dest->is_single_xmm()) { 754 assert(src->is_single_xmm(), "must match"); 755 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg()); 756 } else if (dest->is_double_xmm()) { 757 assert(src->is_double_xmm(), "must match"); 758 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg()); 759 760 } else { 761 ShouldNotReachHere(); 762 } 763 } 764 765 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 766 assert(src->is_register(), "should not call otherwise"); 767 assert(dest->is_stack(), "should not call otherwise"); 768 769 if (src->is_single_cpu()) { 770 Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); 771 if (is_reference_type(type)) { 772 __ verify_oop(src->as_register()); 773 __ movptr (dst, src->as_register()); 774 } else if (type == T_METADATA || type == T_ADDRESS) { 775 __ movptr (dst, src->as_register()); 776 } else { 777 __ movl (dst, src->as_register()); 778 } 779 780 } else if (src->is_double_cpu()) { 781 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes); 782 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes); 783 __ movptr (dstLO, src->as_register_lo()); 784 785 } else if (src->is_single_xmm()) { 786 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 787 __ movflt(dst_addr, src->as_xmm_float_reg()); 788 789 } else if (src->is_double_xmm()) { 790 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 791 __ movdbl(dst_addr, src->as_xmm_double_reg()); 792 793 } else { 794 ShouldNotReachHere(); 795 } 796 } 797 798 799 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 800 LIR_Address* to_addr = dest->as_address_ptr(); 801 PatchingStub* patch = nullptr; 802 Register compressed_src = rscratch1; 803 804 if (is_reference_type(type)) { 805 __ verify_oop(src->as_register()); 806 if (UseCompressedOops && !wide) { 807 __ movptr(compressed_src, src->as_register()); 808 __ encode_heap_oop(compressed_src); 809 if (patch_code != lir_patch_none) { 810 info->oop_map()->set_narrowoop(compressed_src->as_VMReg()); 811 } 812 } 813 } 814 815 if (patch_code != lir_patch_none) { 816 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 817 Address toa = as_Address(to_addr); 818 assert(toa.disp() != 0, "must have"); 819 } 820 821 int null_check_here = code_offset(); 822 switch (type) { 823 case T_FLOAT: { 824 assert(src->is_single_xmm(), "not a float"); 825 __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); 826 break; 827 } 828 829 case T_DOUBLE: { 830 assert(src->is_double_xmm(), "not a double"); 831 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); 832 break; 833 } 834 835 case T_ARRAY: // fall through 836 case T_OBJECT: // fall through 837 if (UseCompressedOops && !wide) { 838 __ movl(as_Address(to_addr), compressed_src); 839 } else { 840 __ movptr(as_Address(to_addr), src->as_register()); 841 } 842 break; 843 case T_ADDRESS: 844 __ movptr(as_Address(to_addr), src->as_register()); 845 break; 846 case T_INT: 847 __ movl(as_Address(to_addr), src->as_register()); 848 break; 849 850 case T_LONG: { 851 Register from_lo = src->as_register_lo(); 852 Register from_hi = src->as_register_hi(); 853 __ movptr(as_Address_lo(to_addr), from_lo); 854 break; 855 } 856 857 case T_BYTE: // fall through 858 case T_BOOLEAN: { 859 Register src_reg = src->as_register(); 860 Address dst_addr = as_Address(to_addr); 861 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6"); 862 __ movb(dst_addr, src_reg); 863 break; 864 } 865 866 case T_CHAR: // fall through 867 case T_SHORT: 868 __ movw(as_Address(to_addr), src->as_register()); 869 break; 870 871 default: 872 ShouldNotReachHere(); 873 } 874 if (info != nullptr) { 875 add_debug_info_for_null_check(null_check_here, info); 876 } 877 878 if (patch_code != lir_patch_none) { 879 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info); 880 } 881 } 882 883 884 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 885 assert(src->is_stack(), "should not call otherwise"); 886 assert(dest->is_register(), "should not call otherwise"); 887 888 if (dest->is_single_cpu()) { 889 if (is_reference_type(type)) { 890 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 891 __ verify_oop(dest->as_register()); 892 } else if (type == T_METADATA || type == T_ADDRESS) { 893 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 894 } else { 895 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 896 } 897 898 } else if (dest->is_double_cpu()) { 899 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes); 900 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes); 901 __ movptr(dest->as_register_lo(), src_addr_LO); 902 903 } else if (dest->is_single_xmm()) { 904 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 905 __ movflt(dest->as_xmm_float_reg(), src_addr); 906 907 } else if (dest->is_double_xmm()) { 908 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 909 __ movdbl(dest->as_xmm_double_reg(), src_addr); 910 911 } else { 912 ShouldNotReachHere(); 913 } 914 } 915 916 917 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 918 if (src->is_single_stack()) { 919 if (is_reference_type(type)) { 920 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix())); 921 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix())); 922 } else { 923 //no pushl on 64bits 924 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix())); 925 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1); 926 } 927 928 } else if (src->is_double_stack()) { 929 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix())); 930 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix())); 931 932 } else { 933 ShouldNotReachHere(); 934 } 935 } 936 937 938 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 939 assert(src->is_address(), "should not call otherwise"); 940 assert(dest->is_register(), "should not call otherwise"); 941 942 LIR_Address* addr = src->as_address_ptr(); 943 Address from_addr = as_Address(addr); 944 945 if (addr->base()->type() == T_OBJECT) { 946 __ verify_oop(addr->base()->as_pointer_register()); 947 } 948 949 switch (type) { 950 case T_BOOLEAN: // fall through 951 case T_BYTE: // fall through 952 case T_CHAR: // fall through 953 case T_SHORT: 954 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) { 955 // on pre P6 processors we may get partial register stalls 956 // so blow away the value of to_rinfo before loading a 957 // partial word into it. Do it here so that it precedes 958 // the potential patch point below. 959 __ xorptr(dest->as_register(), dest->as_register()); 960 } 961 break; 962 default: 963 break; 964 } 965 966 PatchingStub* patch = nullptr; 967 if (patch_code != lir_patch_none) { 968 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 969 assert(from_addr.disp() != 0, "must have"); 970 } 971 if (info != nullptr) { 972 add_debug_info_for_null_check_here(info); 973 } 974 975 switch (type) { 976 case T_FLOAT: { 977 if (dest->is_single_xmm()) { 978 __ movflt(dest->as_xmm_float_reg(), from_addr); 979 } else { 980 ShouldNotReachHere(); 981 } 982 break; 983 } 984 985 case T_DOUBLE: { 986 if (dest->is_double_xmm()) { 987 __ movdbl(dest->as_xmm_double_reg(), from_addr); 988 } else { 989 ShouldNotReachHere(); 990 } 991 break; 992 } 993 994 case T_OBJECT: // fall through 995 case T_ARRAY: // fall through 996 if (UseCompressedOops && !wide) { 997 __ movl(dest->as_register(), from_addr); 998 } else { 999 __ movptr(dest->as_register(), from_addr); 1000 } 1001 break; 1002 1003 case T_ADDRESS: 1004 __ movptr(dest->as_register(), from_addr); 1005 break; 1006 case T_INT: 1007 __ movl(dest->as_register(), from_addr); 1008 break; 1009 1010 case T_LONG: { 1011 Register to_lo = dest->as_register_lo(); 1012 Register to_hi = dest->as_register_hi(); 1013 __ movptr(to_lo, as_Address_lo(addr)); 1014 break; 1015 } 1016 1017 case T_BOOLEAN: // fall through 1018 case T_BYTE: { 1019 Register dest_reg = dest->as_register(); 1020 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1021 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1022 __ movsbl(dest_reg, from_addr); 1023 } else { 1024 __ movb(dest_reg, from_addr); 1025 __ shll(dest_reg, 24); 1026 __ sarl(dest_reg, 24); 1027 } 1028 break; 1029 } 1030 1031 case T_CHAR: { 1032 Register dest_reg = dest->as_register(); 1033 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1034 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1035 __ movzwl(dest_reg, from_addr); 1036 } else { 1037 __ movw(dest_reg, from_addr); 1038 } 1039 break; 1040 } 1041 1042 case T_SHORT: { 1043 Register dest_reg = dest->as_register(); 1044 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1045 __ movswl(dest_reg, from_addr); 1046 } else { 1047 __ movw(dest_reg, from_addr); 1048 __ shll(dest_reg, 16); 1049 __ sarl(dest_reg, 16); 1050 } 1051 break; 1052 } 1053 1054 default: 1055 ShouldNotReachHere(); 1056 } 1057 1058 if (patch != nullptr) { 1059 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 1060 } 1061 1062 if (is_reference_type(type)) { 1063 if (UseCompressedOops && !wide) { 1064 __ decode_heap_oop(dest->as_register()); 1065 } 1066 1067 __ verify_oop(dest->as_register()); 1068 } 1069 } 1070 1071 1072 NEEDS_CLEANUP; // This could be static? 1073 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const { 1074 int elem_size = type2aelembytes(type); 1075 switch (elem_size) { 1076 case 1: return Address::times_1; 1077 case 2: return Address::times_2; 1078 case 4: return Address::times_4; 1079 case 8: return Address::times_8; 1080 } 1081 ShouldNotReachHere(); 1082 return Address::no_scale; 1083 } 1084 1085 1086 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1087 switch (op->code()) { 1088 case lir_idiv: 1089 case lir_irem: 1090 arithmetic_idiv(op->code(), 1091 op->in_opr1(), 1092 op->in_opr2(), 1093 op->in_opr3(), 1094 op->result_opr(), 1095 op->info()); 1096 break; 1097 case lir_fmad: 1098 __ fmad(op->result_opr()->as_xmm_double_reg(), 1099 op->in_opr1()->as_xmm_double_reg(), 1100 op->in_opr2()->as_xmm_double_reg(), 1101 op->in_opr3()->as_xmm_double_reg()); 1102 break; 1103 case lir_fmaf: 1104 __ fmaf(op->result_opr()->as_xmm_float_reg(), 1105 op->in_opr1()->as_xmm_float_reg(), 1106 op->in_opr2()->as_xmm_float_reg(), 1107 op->in_opr3()->as_xmm_float_reg()); 1108 break; 1109 default: ShouldNotReachHere(); break; 1110 } 1111 } 1112 1113 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1114 #ifdef ASSERT 1115 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1116 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1117 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1118 #endif 1119 1120 if (op->cond() == lir_cond_always) { 1121 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1122 __ jmp (*(op->label())); 1123 } else { 1124 Assembler::Condition acond = Assembler::zero; 1125 if (op->code() == lir_cond_float_branch) { 1126 assert(op->ublock() != nullptr, "must have unordered successor"); 1127 __ jcc(Assembler::parity, *(op->ublock()->label())); 1128 switch(op->cond()) { 1129 case lir_cond_equal: acond = Assembler::equal; break; 1130 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1131 case lir_cond_less: acond = Assembler::below; break; 1132 case lir_cond_lessEqual: acond = Assembler::belowEqual; break; 1133 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break; 1134 case lir_cond_greater: acond = Assembler::above; break; 1135 default: ShouldNotReachHere(); 1136 } 1137 } else { 1138 switch (op->cond()) { 1139 case lir_cond_equal: acond = Assembler::equal; break; 1140 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1141 case lir_cond_less: acond = Assembler::less; break; 1142 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 1143 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 1144 case lir_cond_greater: acond = Assembler::greater; break; 1145 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 1146 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 1147 default: ShouldNotReachHere(); 1148 } 1149 } 1150 __ jcc(acond,*(op->label())); 1151 } 1152 } 1153 1154 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1155 LIR_Opr src = op->in_opr(); 1156 LIR_Opr dest = op->result_opr(); 1157 1158 switch (op->bytecode()) { 1159 case Bytecodes::_i2l: 1160 __ movl2ptr(dest->as_register_lo(), src->as_register()); 1161 break; 1162 1163 case Bytecodes::_l2i: 1164 __ movl(dest->as_register(), src->as_register_lo()); 1165 break; 1166 1167 case Bytecodes::_i2b: 1168 move_regs(src->as_register(), dest->as_register()); 1169 __ sign_extend_byte(dest->as_register()); 1170 break; 1171 1172 case Bytecodes::_i2c: 1173 move_regs(src->as_register(), dest->as_register()); 1174 __ andl(dest->as_register(), 0xFFFF); 1175 break; 1176 1177 case Bytecodes::_i2s: 1178 move_regs(src->as_register(), dest->as_register()); 1179 __ sign_extend_short(dest->as_register()); 1180 break; 1181 1182 case Bytecodes::_f2d: 1183 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); 1184 break; 1185 1186 case Bytecodes::_d2f: 1187 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); 1188 break; 1189 1190 case Bytecodes::_i2f: 1191 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register()); 1192 break; 1193 1194 case Bytecodes::_i2d: 1195 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register()); 1196 break; 1197 1198 case Bytecodes::_l2f: 1199 __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo()); 1200 break; 1201 1202 case Bytecodes::_l2d: 1203 __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo()); 1204 break; 1205 1206 case Bytecodes::_f2i: 1207 __ convert_f2i(dest->as_register(), src->as_xmm_float_reg()); 1208 break; 1209 1210 case Bytecodes::_d2i: 1211 __ convert_d2i(dest->as_register(), src->as_xmm_double_reg()); 1212 break; 1213 1214 case Bytecodes::_f2l: 1215 __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg()); 1216 break; 1217 1218 case Bytecodes::_d2l: 1219 __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg()); 1220 break; 1221 1222 default: ShouldNotReachHere(); 1223 } 1224 } 1225 1226 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1227 if (op->init_check()) { 1228 add_debug_info_for_null_check_here(op->stub()->info()); 1229 // init_state needs acquire, but x86 is TSO, and so we are already good. 1230 __ cmpb(Address(op->klass()->as_register(), 1231 InstanceKlass::init_state_offset()), 1232 InstanceKlass::fully_initialized); 1233 __ jcc(Assembler::notEqual, *op->stub()->entry()); 1234 } 1235 __ allocate_object(op->obj()->as_register(), 1236 op->tmp1()->as_register(), 1237 op->tmp2()->as_register(), 1238 op->header_size(), 1239 op->object_size(), 1240 op->klass()->as_register(), 1241 *op->stub()->entry()); 1242 __ bind(*op->stub()->continuation()); 1243 } 1244 1245 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1246 Register len = op->len()->as_register(); 1247 __ movslq(len, len); 1248 1249 if (UseSlowPath || 1250 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1251 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1252 __ jmp(*op->stub()->entry()); 1253 } else { 1254 Register tmp1 = op->tmp1()->as_register(); 1255 Register tmp2 = op->tmp2()->as_register(); 1256 Register tmp3 = op->tmp3()->as_register(); 1257 if (len == tmp1) { 1258 tmp1 = tmp3; 1259 } else if (len == tmp2) { 1260 tmp2 = tmp3; 1261 } else if (len == tmp3) { 1262 // everything is ok 1263 } else { 1264 __ mov(tmp3, len); 1265 } 1266 __ allocate_array(op->obj()->as_register(), 1267 len, 1268 tmp1, 1269 tmp2, 1270 arrayOopDesc::base_offset_in_bytes(op->type()), 1271 array_element_size(op->type()), 1272 op->klass()->as_register(), 1273 *op->stub()->entry(), 1274 op->zero_array()); 1275 } 1276 __ bind(*op->stub()->continuation()); 1277 } 1278 1279 void LIR_Assembler::type_profile_helper(Register mdo, 1280 ciMethodData *md, ciProfileData *data, 1281 Register recv, Label* update_done) { 1282 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1283 Label next_test; 1284 // See if the receiver is receiver[n]. 1285 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1286 __ jccb(Assembler::notEqual, next_test); 1287 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1288 __ addptr(data_addr, DataLayout::counter_increment); 1289 __ jmp(*update_done); 1290 __ bind(next_test); 1291 } 1292 1293 // Didn't find receiver; find next empty slot and fill it in 1294 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1295 Label next_test; 1296 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 1297 __ cmpptr(recv_addr, NULL_WORD); 1298 __ jccb(Assembler::notEqual, next_test); 1299 __ movptr(recv_addr, recv); 1300 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment); 1301 __ jmp(*update_done); 1302 __ bind(next_test); 1303 } 1304 } 1305 1306 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1307 // we always need a stub for the failure case. 1308 CodeStub* stub = op->stub(); 1309 Register obj = op->object()->as_register(); 1310 Register k_RInfo = op->tmp1()->as_register(); 1311 Register klass_RInfo = op->tmp2()->as_register(); 1312 Register dst = op->result_opr()->as_register(); 1313 ciKlass* k = op->klass(); 1314 Register Rtmp1 = noreg; 1315 Register tmp_load_klass = rscratch1; 1316 1317 // check if it needs to be profiled 1318 ciMethodData* md = nullptr; 1319 ciProfileData* data = nullptr; 1320 1321 if (op->should_profile()) { 1322 ciMethod* method = op->profiled_method(); 1323 assert(method != nullptr, "Should have method"); 1324 int bci = op->profiled_bci(); 1325 md = method->method_data_or_null(); 1326 assert(md != nullptr, "Sanity"); 1327 data = md->bci_to_data(bci); 1328 assert(data != nullptr, "need data for type check"); 1329 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1330 } 1331 Label* success_target = success; 1332 Label* failure_target = failure; 1333 1334 if (obj == k_RInfo) { 1335 k_RInfo = dst; 1336 } else if (obj == klass_RInfo) { 1337 klass_RInfo = dst; 1338 } 1339 if (k->is_loaded() && !UseCompressedClassPointers) { 1340 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1341 } else { 1342 Rtmp1 = op->tmp3()->as_register(); 1343 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1344 } 1345 1346 assert_different_registers(obj, k_RInfo, klass_RInfo); 1347 1348 __ testptr(obj, obj); 1349 if (op->should_profile()) { 1350 Label not_null; 1351 Register mdo = klass_RInfo; 1352 __ mov_metadata(mdo, md->constant_encoding()); 1353 __ jccb(Assembler::notEqual, not_null); 1354 // Object is null; update MDO and exit 1355 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1356 int header_bits = BitData::null_seen_byte_constant(); 1357 __ orb(data_addr, header_bits); 1358 __ jmp(*obj_is_null); 1359 __ bind(not_null); 1360 1361 Label update_done; 1362 Register recv = k_RInfo; 1363 __ load_klass(recv, obj, tmp_load_klass); 1364 type_profile_helper(mdo, md, data, recv, &update_done); 1365 1366 Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1367 __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment); 1368 1369 __ bind(update_done); 1370 } else { 1371 __ jcc(Assembler::equal, *obj_is_null); 1372 } 1373 1374 if (!k->is_loaded()) { 1375 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1376 } else { 1377 __ mov_metadata(k_RInfo, k->constant_encoding()); 1378 } 1379 __ verify_oop(obj); 1380 1381 if (op->fast_check()) { 1382 // get object class 1383 // not a safepoint as obj null check happens earlier 1384 if (UseCompressedClassPointers) { 1385 __ load_klass(Rtmp1, obj, tmp_load_klass); 1386 __ cmpptr(k_RInfo, Rtmp1); 1387 } else { 1388 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1389 } 1390 __ jcc(Assembler::notEqual, *failure_target); 1391 // successful cast, fall through to profile or jump 1392 } else { 1393 // get object class 1394 // not a safepoint as obj null check happens earlier 1395 __ load_klass(klass_RInfo, obj, tmp_load_klass); 1396 if (k->is_loaded()) { 1397 // See if we get an immediate positive hit 1398 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset())); 1399 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1400 __ jcc(Assembler::notEqual, *failure_target); 1401 // successful cast, fall through to profile or jump 1402 } else { 1403 // See if we get an immediate positive hit 1404 __ jcc(Assembler::equal, *success_target); 1405 // check for self 1406 __ cmpptr(klass_RInfo, k_RInfo); 1407 __ jcc(Assembler::equal, *success_target); 1408 1409 __ push(klass_RInfo); 1410 __ push(k_RInfo); 1411 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1412 __ pop(klass_RInfo); 1413 __ pop(klass_RInfo); 1414 // result is a boolean 1415 __ testl(klass_RInfo, klass_RInfo); 1416 __ jcc(Assembler::equal, *failure_target); 1417 // successful cast, fall through to profile or jump 1418 } 1419 } else { 1420 // perform the fast part of the checking logic 1421 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1422 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1423 __ push(klass_RInfo); 1424 __ push(k_RInfo); 1425 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1426 __ pop(klass_RInfo); 1427 __ pop(k_RInfo); 1428 // result is a boolean 1429 __ testl(k_RInfo, k_RInfo); 1430 __ jcc(Assembler::equal, *failure_target); 1431 // successful cast, fall through to profile or jump 1432 } 1433 } 1434 __ jmp(*success); 1435 } 1436 1437 1438 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1439 Register tmp_load_klass = rscratch1; 1440 LIR_Code code = op->code(); 1441 if (code == lir_store_check) { 1442 Register value = op->object()->as_register(); 1443 Register array = op->array()->as_register(); 1444 Register k_RInfo = op->tmp1()->as_register(); 1445 Register klass_RInfo = op->tmp2()->as_register(); 1446 Register Rtmp1 = op->tmp3()->as_register(); 1447 1448 CodeStub* stub = op->stub(); 1449 1450 // check if it needs to be profiled 1451 ciMethodData* md = nullptr; 1452 ciProfileData* data = nullptr; 1453 1454 if (op->should_profile()) { 1455 ciMethod* method = op->profiled_method(); 1456 assert(method != nullptr, "Should have method"); 1457 int bci = op->profiled_bci(); 1458 md = method->method_data_or_null(); 1459 assert(md != nullptr, "Sanity"); 1460 data = md->bci_to_data(bci); 1461 assert(data != nullptr, "need data for type check"); 1462 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1463 } 1464 Label done; 1465 Label* success_target = &done; 1466 Label* failure_target = stub->entry(); 1467 1468 __ testptr(value, value); 1469 if (op->should_profile()) { 1470 Label not_null; 1471 Register mdo = klass_RInfo; 1472 __ mov_metadata(mdo, md->constant_encoding()); 1473 __ jccb(Assembler::notEqual, not_null); 1474 // Object is null; update MDO and exit 1475 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1476 int header_bits = BitData::null_seen_byte_constant(); 1477 __ orb(data_addr, header_bits); 1478 __ jmp(done); 1479 __ bind(not_null); 1480 1481 Label update_done; 1482 Register recv = k_RInfo; 1483 __ load_klass(recv, value, tmp_load_klass); 1484 type_profile_helper(mdo, md, data, recv, &update_done); 1485 1486 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1487 __ addptr(counter_addr, DataLayout::counter_increment); 1488 __ bind(update_done); 1489 } else { 1490 __ jcc(Assembler::equal, done); 1491 } 1492 1493 add_debug_info_for_null_check_here(op->info_for_exception()); 1494 __ load_klass(k_RInfo, array, tmp_load_klass); 1495 __ load_klass(klass_RInfo, value, tmp_load_klass); 1496 1497 // get instance klass (it's already uncompressed) 1498 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1499 // perform the fast part of the checking logic 1500 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1501 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1502 __ push(klass_RInfo); 1503 __ push(k_RInfo); 1504 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1505 __ pop(klass_RInfo); 1506 __ pop(k_RInfo); 1507 // result is a boolean 1508 __ testl(k_RInfo, k_RInfo); 1509 __ jcc(Assembler::equal, *failure_target); 1510 // fall through to the success case 1511 1512 __ bind(done); 1513 } else 1514 if (code == lir_checkcast) { 1515 Register obj = op->object()->as_register(); 1516 Register dst = op->result_opr()->as_register(); 1517 Label success; 1518 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1519 __ bind(success); 1520 if (dst != obj) { 1521 __ mov(dst, obj); 1522 } 1523 } else 1524 if (code == lir_instanceof) { 1525 Register obj = op->object()->as_register(); 1526 Register dst = op->result_opr()->as_register(); 1527 Label success, failure, done; 1528 emit_typecheck_helper(op, &success, &failure, &failure); 1529 __ bind(failure); 1530 __ xorptr(dst, dst); 1531 __ jmpb(done); 1532 __ bind(success); 1533 __ movptr(dst, 1); 1534 __ bind(done); 1535 } else { 1536 ShouldNotReachHere(); 1537 } 1538 1539 } 1540 1541 1542 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1543 if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { 1544 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1545 Register newval = op->new_value()->as_register(); 1546 Register cmpval = op->cmp_value()->as_register(); 1547 assert(cmpval == rax, "wrong register"); 1548 assert(newval != noreg, "new val must be register"); 1549 assert(cmpval != newval, "cmp and new values must be in different registers"); 1550 assert(cmpval != addr, "cmp and addr must be in different registers"); 1551 assert(newval != addr, "new value and addr must be in different registers"); 1552 1553 if (op->code() == lir_cas_obj) { 1554 if (UseCompressedOops) { 1555 __ encode_heap_oop(cmpval); 1556 __ mov(rscratch1, newval); 1557 __ encode_heap_oop(rscratch1); 1558 __ lock(); 1559 // cmpval (rax) is implicitly used by this instruction 1560 __ cmpxchgl(rscratch1, Address(addr, 0)); 1561 } else { 1562 __ lock(); 1563 __ cmpxchgptr(newval, Address(addr, 0)); 1564 } 1565 } else { 1566 assert(op->code() == lir_cas_int, "lir_cas_int expected"); 1567 __ lock(); 1568 __ cmpxchgl(newval, Address(addr, 0)); 1569 } 1570 } else if (op->code() == lir_cas_long) { 1571 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1572 Register newval = op->new_value()->as_register_lo(); 1573 Register cmpval = op->cmp_value()->as_register_lo(); 1574 assert(cmpval == rax, "wrong register"); 1575 assert(newval != noreg, "new val must be register"); 1576 assert(cmpval != newval, "cmp and new values must be in different registers"); 1577 assert(cmpval != addr, "cmp and addr must be in different registers"); 1578 assert(newval != addr, "new value and addr must be in different registers"); 1579 __ lock(); 1580 __ cmpxchgq(newval, Address(addr, 0)); 1581 } else { 1582 Unimplemented(); 1583 } 1584 } 1585 1586 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1587 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1588 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86"); 1589 1590 Assembler::Condition acond, ncond; 1591 switch (condition) { 1592 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break; 1593 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break; 1594 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break; 1595 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break; 1596 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break; 1597 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break; 1598 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break; 1599 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break; 1600 default: acond = Assembler::equal; ncond = Assembler::notEqual; 1601 ShouldNotReachHere(); 1602 } 1603 1604 if (opr1->is_cpu_register()) { 1605 reg2reg(opr1, result); 1606 } else if (opr1->is_stack()) { 1607 stack2reg(opr1, result, result->type()); 1608 } else if (opr1->is_constant()) { 1609 const2reg(opr1, result, lir_patch_none, nullptr); 1610 } else { 1611 ShouldNotReachHere(); 1612 } 1613 1614 if (VM_Version::supports_cmov() && !opr2->is_constant()) { 1615 // optimized version that does not require a branch 1616 if (opr2->is_single_cpu()) { 1617 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); 1618 __ cmov(ncond, result->as_register(), opr2->as_register()); 1619 } else if (opr2->is_double_cpu()) { 1620 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1621 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1622 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo()); 1623 } else if (opr2->is_single_stack()) { 1624 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix())); 1625 } else if (opr2->is_double_stack()) { 1626 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes)); 1627 } else { 1628 ShouldNotReachHere(); 1629 } 1630 1631 } else { 1632 Label skip; 1633 __ jccb(acond, skip); 1634 if (opr2->is_cpu_register()) { 1635 reg2reg(opr2, result); 1636 } else if (opr2->is_stack()) { 1637 stack2reg(opr2, result, result->type()); 1638 } else if (opr2->is_constant()) { 1639 const2reg(opr2, result, lir_patch_none, nullptr); 1640 } else { 1641 ShouldNotReachHere(); 1642 } 1643 __ bind(skip); 1644 } 1645 } 1646 1647 1648 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info) { 1649 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1650 1651 if (left->is_single_cpu()) { 1652 assert(left == dest, "left and dest must be equal"); 1653 Register lreg = left->as_register(); 1654 1655 if (right->is_single_cpu()) { 1656 // cpu register - cpu register 1657 Register rreg = right->as_register(); 1658 switch (code) { 1659 case lir_add: __ addl (lreg, rreg); break; 1660 case lir_sub: __ subl (lreg, rreg); break; 1661 case lir_mul: __ imull(lreg, rreg); break; 1662 default: ShouldNotReachHere(); 1663 } 1664 1665 } else if (right->is_stack()) { 1666 // cpu register - stack 1667 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1668 switch (code) { 1669 case lir_add: __ addl(lreg, raddr); break; 1670 case lir_sub: __ subl(lreg, raddr); break; 1671 default: ShouldNotReachHere(); 1672 } 1673 1674 } else if (right->is_constant()) { 1675 // cpu register - constant 1676 jint c = right->as_constant_ptr()->as_jint(); 1677 switch (code) { 1678 case lir_add: { 1679 __ incrementl(lreg, c); 1680 break; 1681 } 1682 case lir_sub: { 1683 __ decrementl(lreg, c); 1684 break; 1685 } 1686 default: ShouldNotReachHere(); 1687 } 1688 1689 } else { 1690 ShouldNotReachHere(); 1691 } 1692 1693 } else if (left->is_double_cpu()) { 1694 assert(left == dest, "left and dest must be equal"); 1695 Register lreg_lo = left->as_register_lo(); 1696 Register lreg_hi = left->as_register_hi(); 1697 1698 if (right->is_double_cpu()) { 1699 // cpu register - cpu register 1700 Register rreg_lo = right->as_register_lo(); 1701 Register rreg_hi = right->as_register_hi(); 1702 assert_different_registers(lreg_lo, rreg_lo); 1703 switch (code) { 1704 case lir_add: 1705 __ addptr(lreg_lo, rreg_lo); 1706 break; 1707 case lir_sub: 1708 __ subptr(lreg_lo, rreg_lo); 1709 break; 1710 case lir_mul: 1711 __ imulq(lreg_lo, rreg_lo); 1712 break; 1713 default: 1714 ShouldNotReachHere(); 1715 } 1716 1717 } else if (right->is_constant()) { 1718 // cpu register - constant 1719 jlong c = right->as_constant_ptr()->as_jlong_bits(); 1720 __ movptr(r10, (intptr_t) c); 1721 switch (code) { 1722 case lir_add: 1723 __ addptr(lreg_lo, r10); 1724 break; 1725 case lir_sub: 1726 __ subptr(lreg_lo, r10); 1727 break; 1728 default: 1729 ShouldNotReachHere(); 1730 } 1731 1732 } else { 1733 ShouldNotReachHere(); 1734 } 1735 1736 } else if (left->is_single_xmm()) { 1737 assert(left == dest, "left and dest must be equal"); 1738 XMMRegister lreg = left->as_xmm_float_reg(); 1739 1740 if (right->is_single_xmm()) { 1741 XMMRegister rreg = right->as_xmm_float_reg(); 1742 switch (code) { 1743 case lir_add: __ addss(lreg, rreg); break; 1744 case lir_sub: __ subss(lreg, rreg); break; 1745 case lir_mul: __ mulss(lreg, rreg); break; 1746 case lir_div: __ divss(lreg, rreg); break; 1747 default: ShouldNotReachHere(); 1748 } 1749 } else { 1750 Address raddr; 1751 if (right->is_single_stack()) { 1752 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1753 } else if (right->is_constant()) { 1754 // hack for now 1755 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat()))); 1756 } else { 1757 ShouldNotReachHere(); 1758 } 1759 switch (code) { 1760 case lir_add: __ addss(lreg, raddr); break; 1761 case lir_sub: __ subss(lreg, raddr); break; 1762 case lir_mul: __ mulss(lreg, raddr); break; 1763 case lir_div: __ divss(lreg, raddr); break; 1764 default: ShouldNotReachHere(); 1765 } 1766 } 1767 1768 } else if (left->is_double_xmm()) { 1769 assert(left == dest, "left and dest must be equal"); 1770 1771 XMMRegister lreg = left->as_xmm_double_reg(); 1772 if (right->is_double_xmm()) { 1773 XMMRegister rreg = right->as_xmm_double_reg(); 1774 switch (code) { 1775 case lir_add: __ addsd(lreg, rreg); break; 1776 case lir_sub: __ subsd(lreg, rreg); break; 1777 case lir_mul: __ mulsd(lreg, rreg); break; 1778 case lir_div: __ divsd(lreg, rreg); break; 1779 default: ShouldNotReachHere(); 1780 } 1781 } else { 1782 Address raddr; 1783 if (right->is_double_stack()) { 1784 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 1785 } else if (right->is_constant()) { 1786 // hack for now 1787 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 1788 } else { 1789 ShouldNotReachHere(); 1790 } 1791 switch (code) { 1792 case lir_add: __ addsd(lreg, raddr); break; 1793 case lir_sub: __ subsd(lreg, raddr); break; 1794 case lir_mul: __ mulsd(lreg, raddr); break; 1795 case lir_div: __ divsd(lreg, raddr); break; 1796 default: ShouldNotReachHere(); 1797 } 1798 } 1799 1800 } else if (left->is_single_stack() || left->is_address()) { 1801 assert(left == dest, "left and dest must be equal"); 1802 1803 Address laddr; 1804 if (left->is_single_stack()) { 1805 laddr = frame_map()->address_for_slot(left->single_stack_ix()); 1806 } else if (left->is_address()) { 1807 laddr = as_Address(left->as_address_ptr()); 1808 } else { 1809 ShouldNotReachHere(); 1810 } 1811 1812 if (right->is_single_cpu()) { 1813 Register rreg = right->as_register(); 1814 switch (code) { 1815 case lir_add: __ addl(laddr, rreg); break; 1816 case lir_sub: __ subl(laddr, rreg); break; 1817 default: ShouldNotReachHere(); 1818 } 1819 } else if (right->is_constant()) { 1820 jint c = right->as_constant_ptr()->as_jint(); 1821 switch (code) { 1822 case lir_add: { 1823 __ incrementl(laddr, c); 1824 break; 1825 } 1826 case lir_sub: { 1827 __ decrementl(laddr, c); 1828 break; 1829 } 1830 default: ShouldNotReachHere(); 1831 } 1832 } else { 1833 ShouldNotReachHere(); 1834 } 1835 1836 } else { 1837 ShouldNotReachHere(); 1838 } 1839 } 1840 1841 1842 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1843 if (value->is_double_xmm()) { 1844 switch(code) { 1845 case lir_abs : 1846 { 1847 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) { 1848 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); 1849 } 1850 assert(!tmp->is_valid(), "do not need temporary"); 1851 __ andpd(dest->as_xmm_double_reg(), 1852 ExternalAddress(LIR_Assembler::double_signmask_pool), 1853 rscratch1); 1854 } 1855 break; 1856 1857 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break; 1858 // all other intrinsics are not available in the SSE instruction set, so FPU is used 1859 default : ShouldNotReachHere(); 1860 } 1861 1862 } else if (code == lir_f2hf) { 1863 __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg()); 1864 } else if (code == lir_hf2f) { 1865 __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register()); 1866 } else { 1867 Unimplemented(); 1868 } 1869 } 1870 1871 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1872 // assert(left->destroys_register(), "check"); 1873 if (left->is_single_cpu()) { 1874 Register reg = left->as_register(); 1875 if (right->is_constant()) { 1876 int val = right->as_constant_ptr()->as_jint(); 1877 switch (code) { 1878 case lir_logic_and: __ andl (reg, val); break; 1879 case lir_logic_or: __ orl (reg, val); break; 1880 case lir_logic_xor: __ xorl (reg, val); break; 1881 default: ShouldNotReachHere(); 1882 } 1883 } else if (right->is_stack()) { 1884 // added support for stack operands 1885 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1886 switch (code) { 1887 case lir_logic_and: __ andl (reg, raddr); break; 1888 case lir_logic_or: __ orl (reg, raddr); break; 1889 case lir_logic_xor: __ xorl (reg, raddr); break; 1890 default: ShouldNotReachHere(); 1891 } 1892 } else { 1893 Register rright = right->as_register(); 1894 switch (code) { 1895 case lir_logic_and: __ andptr (reg, rright); break; 1896 case lir_logic_or : __ orptr (reg, rright); break; 1897 case lir_logic_xor: __ xorptr (reg, rright); break; 1898 default: ShouldNotReachHere(); 1899 } 1900 } 1901 move_regs(reg, dst->as_register()); 1902 } else { 1903 Register l_lo = left->as_register_lo(); 1904 Register l_hi = left->as_register_hi(); 1905 if (right->is_constant()) { 1906 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong()); 1907 switch (code) { 1908 case lir_logic_and: 1909 __ andq(l_lo, rscratch1); 1910 break; 1911 case lir_logic_or: 1912 __ orq(l_lo, rscratch1); 1913 break; 1914 case lir_logic_xor: 1915 __ xorq(l_lo, rscratch1); 1916 break; 1917 default: ShouldNotReachHere(); 1918 } 1919 } else { 1920 Register r_lo; 1921 if (is_reference_type(right->type())) { 1922 r_lo = right->as_register(); 1923 } else { 1924 r_lo = right->as_register_lo(); 1925 } 1926 switch (code) { 1927 case lir_logic_and: 1928 __ andptr(l_lo, r_lo); 1929 break; 1930 case lir_logic_or: 1931 __ orptr(l_lo, r_lo); 1932 break; 1933 case lir_logic_xor: 1934 __ xorptr(l_lo, r_lo); 1935 break; 1936 default: ShouldNotReachHere(); 1937 } 1938 } 1939 1940 Register dst_lo = dst->as_register_lo(); 1941 Register dst_hi = dst->as_register_hi(); 1942 1943 move_regs(l_lo, dst_lo); 1944 } 1945 } 1946 1947 1948 // we assume that rax, and rdx can be overwritten 1949 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 1950 1951 assert(left->is_single_cpu(), "left must be register"); 1952 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1953 assert(result->is_single_cpu(), "result must be register"); 1954 1955 // assert(left->destroys_register(), "check"); 1956 // assert(right->destroys_register(), "check"); 1957 1958 Register lreg = left->as_register(); 1959 Register dreg = result->as_register(); 1960 1961 if (right->is_constant()) { 1962 jint divisor = right->as_constant_ptr()->as_jint(); 1963 assert(divisor > 0 && is_power_of_2(divisor), "must be"); 1964 if (code == lir_idiv) { 1965 assert(lreg == rax, "must be rax,"); 1966 assert(temp->as_register() == rdx, "tmp register must be rdx"); 1967 __ cdql(); // sign extend into rdx:rax 1968 if (divisor == 2) { 1969 __ subl(lreg, rdx); 1970 } else { 1971 __ andl(rdx, divisor - 1); 1972 __ addl(lreg, rdx); 1973 } 1974 __ sarl(lreg, log2i_exact(divisor)); 1975 move_regs(lreg, dreg); 1976 } else if (code == lir_irem) { 1977 Label done; 1978 __ mov(dreg, lreg); 1979 __ andl(dreg, 0x80000000 | (divisor - 1)); 1980 __ jcc(Assembler::positive, done); 1981 __ decrement(dreg); 1982 __ orl(dreg, ~(divisor - 1)); 1983 __ increment(dreg); 1984 __ bind(done); 1985 } else { 1986 ShouldNotReachHere(); 1987 } 1988 } else { 1989 Register rreg = right->as_register(); 1990 assert(lreg == rax, "left register must be rax,"); 1991 assert(rreg != rdx, "right register must not be rdx"); 1992 assert(temp->as_register() == rdx, "tmp register must be rdx"); 1993 1994 move_regs(lreg, rax); 1995 1996 int idivl_offset = __ corrected_idivl(rreg); 1997 if (ImplicitDiv0Checks) { 1998 add_debug_info_for_div0(idivl_offset, info); 1999 } 2000 if (code == lir_irem) { 2001 move_regs(rdx, dreg); // result is in rdx 2002 } else { 2003 move_regs(rax, dreg); 2004 } 2005 } 2006 } 2007 2008 2009 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 2010 if (opr1->is_single_cpu()) { 2011 Register reg1 = opr1->as_register(); 2012 if (opr2->is_single_cpu()) { 2013 // cpu register - cpu register 2014 if (is_reference_type(opr1->type())) { 2015 __ cmpoop(reg1, opr2->as_register()); 2016 } else { 2017 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 2018 __ cmpl(reg1, opr2->as_register()); 2019 } 2020 } else if (opr2->is_stack()) { 2021 // cpu register - stack 2022 if (is_reference_type(opr1->type())) { 2023 __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2024 } else { 2025 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2026 } 2027 } else if (opr2->is_constant()) { 2028 // cpu register - constant 2029 LIR_Const* c = opr2->as_constant_ptr(); 2030 if (c->type() == T_INT) { 2031 jint i = c->as_jint(); 2032 if (i == 0) { 2033 __ testl(reg1, reg1); 2034 } else { 2035 __ cmpl(reg1, i); 2036 } 2037 } else if (c->type() == T_METADATA) { 2038 // All we need for now is a comparison with null for equality. 2039 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 2040 Metadata* m = c->as_metadata(); 2041 if (m == nullptr) { 2042 __ testptr(reg1, reg1); 2043 } else { 2044 ShouldNotReachHere(); 2045 } 2046 } else if (is_reference_type(c->type())) { 2047 // In 64bit oops are single register 2048 jobject o = c->as_jobject(); 2049 if (o == nullptr) { 2050 __ testptr(reg1, reg1); 2051 } else { 2052 __ cmpoop(reg1, o, rscratch1); 2053 } 2054 } else { 2055 fatal("unexpected type: %s", basictype_to_str(c->type())); 2056 } 2057 // cpu register - address 2058 } else if (opr2->is_address()) { 2059 if (op->info() != nullptr) { 2060 add_debug_info_for_null_check_here(op->info()); 2061 } 2062 __ cmpl(reg1, as_Address(opr2->as_address_ptr())); 2063 } else { 2064 ShouldNotReachHere(); 2065 } 2066 2067 } else if(opr1->is_double_cpu()) { 2068 Register xlo = opr1->as_register_lo(); 2069 Register xhi = opr1->as_register_hi(); 2070 if (opr2->is_double_cpu()) { 2071 __ cmpptr(xlo, opr2->as_register_lo()); 2072 } else if (opr2->is_constant()) { 2073 // cpu register - constant 0 2074 assert(opr2->as_jlong() == (jlong)0, "only handles zero"); 2075 __ cmpptr(xlo, (int32_t)opr2->as_jlong()); 2076 } else { 2077 ShouldNotReachHere(); 2078 } 2079 2080 } else if (opr1->is_single_xmm()) { 2081 XMMRegister reg1 = opr1->as_xmm_float_reg(); 2082 if (opr2->is_single_xmm()) { 2083 // xmm register - xmm register 2084 __ ucomiss(reg1, opr2->as_xmm_float_reg()); 2085 } else if (opr2->is_stack()) { 2086 // xmm register - stack 2087 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2088 } else if (opr2->is_constant()) { 2089 // xmm register - constant 2090 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat()))); 2091 } else if (opr2->is_address()) { 2092 // xmm register - address 2093 if (op->info() != nullptr) { 2094 add_debug_info_for_null_check_here(op->info()); 2095 } 2096 __ ucomiss(reg1, as_Address(opr2->as_address_ptr())); 2097 } else { 2098 ShouldNotReachHere(); 2099 } 2100 2101 } else if (opr1->is_double_xmm()) { 2102 XMMRegister reg1 = opr1->as_xmm_double_reg(); 2103 if (opr2->is_double_xmm()) { 2104 // xmm register - xmm register 2105 __ ucomisd(reg1, opr2->as_xmm_double_reg()); 2106 } else if (opr2->is_stack()) { 2107 // xmm register - stack 2108 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix())); 2109 } else if (opr2->is_constant()) { 2110 // xmm register - constant 2111 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble()))); 2112 } else if (opr2->is_address()) { 2113 // xmm register - address 2114 if (op->info() != nullptr) { 2115 add_debug_info_for_null_check_here(op->info()); 2116 } 2117 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address())); 2118 } else { 2119 ShouldNotReachHere(); 2120 } 2121 2122 } else if (opr1->is_address() && opr2->is_constant()) { 2123 LIR_Const* c = opr2->as_constant_ptr(); 2124 if (is_reference_type(c->type())) { 2125 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse"); 2126 __ movoop(rscratch1, c->as_jobject()); 2127 } 2128 if (op->info() != nullptr) { 2129 add_debug_info_for_null_check_here(op->info()); 2130 } 2131 // special case: address - constant 2132 LIR_Address* addr = opr1->as_address_ptr(); 2133 if (c->type() == T_INT) { 2134 __ cmpl(as_Address(addr), c->as_jint()); 2135 } else if (is_reference_type(c->type())) { 2136 // %%% Make this explode if addr isn't reachable until we figure out a 2137 // better strategy by giving noreg as the temp for as_Address 2138 __ cmpoop(rscratch1, as_Address(addr, noreg)); 2139 } else { 2140 ShouldNotReachHere(); 2141 } 2142 2143 } else { 2144 ShouldNotReachHere(); 2145 } 2146 } 2147 2148 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { 2149 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2150 if (left->is_single_xmm()) { 2151 assert(right->is_single_xmm(), "must match"); 2152 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2153 } else if (left->is_double_xmm()) { 2154 assert(right->is_double_xmm(), "must match"); 2155 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2156 2157 } else { 2158 ShouldNotReachHere(); 2159 } 2160 } else { 2161 assert(code == lir_cmp_l2i, "check"); 2162 Label done; 2163 Register dest = dst->as_register(); 2164 __ cmpptr(left->as_register_lo(), right->as_register_lo()); 2165 __ movl(dest, -1); 2166 __ jccb(Assembler::less, done); 2167 __ setb(Assembler::notZero, dest); 2168 __ movzbl(dest, dest); 2169 __ bind(done); 2170 } 2171 } 2172 2173 2174 void LIR_Assembler::align_call(LIR_Code code) { 2175 // make sure that the displacement word of the call ends up word aligned 2176 int offset = __ offset(); 2177 switch (code) { 2178 case lir_static_call: 2179 case lir_optvirtual_call: 2180 case lir_dynamic_call: 2181 offset += NativeCall::displacement_offset; 2182 break; 2183 case lir_icvirtual_call: 2184 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size_rex; 2185 break; 2186 default: ShouldNotReachHere(); 2187 } 2188 __ align(BytesPerWord, offset); 2189 } 2190 2191 2192 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2193 assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0, 2194 "must be aligned"); 2195 __ call(AddressLiteral(op->addr(), rtype)); 2196 add_call_info(code_offset(), op->info()); 2197 __ post_call_nop(); 2198 } 2199 2200 2201 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2202 __ ic_call(op->addr()); 2203 add_call_info(code_offset(), op->info()); 2204 assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0, 2205 "must be aligned"); 2206 __ post_call_nop(); 2207 } 2208 2209 2210 void LIR_Assembler::emit_static_call_stub() { 2211 address call_pc = __ pc(); 2212 address stub = __ start_a_stub(call_stub_size()); 2213 if (stub == nullptr) { 2214 bailout("static call stub overflow"); 2215 return; 2216 } 2217 2218 int start = __ offset(); 2219 2220 // make sure that the displacement word of the call ends up word aligned 2221 __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size_rex + NativeCall::displacement_offset); 2222 __ relocate(static_stub_Relocation::spec(call_pc)); 2223 __ mov_metadata(rbx, (Metadata*)nullptr); 2224 // must be set to -1 at code generation time 2225 assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned"); 2226 // On 64bit this will die since it will take a movq & jmp, must be only a jmp 2227 __ jump(RuntimeAddress(__ pc())); 2228 2229 assert(__ offset() - start <= call_stub_size(), "stub too big"); 2230 __ end_a_stub(); 2231 } 2232 2233 2234 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2235 assert(exceptionOop->as_register() == rax, "must match"); 2236 assert(exceptionPC->as_register() == rdx, "must match"); 2237 2238 // exception object is not added to oop map by LinearScan 2239 // (LinearScan assumes that no oops are in fixed registers) 2240 info->add_register_oop(exceptionOop); 2241 C1StubId unwind_id; 2242 2243 // get current pc information 2244 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2245 int pc_for_athrow_offset = __ offset(); 2246 InternalAddress pc_for_athrow(__ pc()); 2247 __ lea(exceptionPC->as_register(), pc_for_athrow); 2248 add_call_info(pc_for_athrow_offset, info); // for exception handler 2249 2250 __ verify_not_null_oop(rax); 2251 // search an exception handler (rax: exception oop, rdx: throwing pc) 2252 if (compilation()->has_fpu_code()) { 2253 unwind_id = C1StubId::handle_exception_id; 2254 } else { 2255 unwind_id = C1StubId::handle_exception_nofpu_id; 2256 } 2257 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2258 2259 // enough room for two byte trap 2260 __ nop(); 2261 } 2262 2263 2264 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2265 assert(exceptionOop->as_register() == rax, "must match"); 2266 2267 __ jmp(_unwind_handler_entry); 2268 } 2269 2270 2271 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2272 2273 // optimized version for linear scan: 2274 // * count must be already in ECX (guaranteed by LinearScan) 2275 // * left and dest must be equal 2276 // * tmp must be unused 2277 assert(count->as_register() == SHIFT_count, "count must be in ECX"); 2278 assert(left == dest, "left and dest must be equal"); 2279 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2280 2281 if (left->is_single_cpu()) { 2282 Register value = left->as_register(); 2283 assert(value != SHIFT_count, "left cannot be ECX"); 2284 2285 switch (code) { 2286 case lir_shl: __ shll(value); break; 2287 case lir_shr: __ sarl(value); break; 2288 case lir_ushr: __ shrl(value); break; 2289 default: ShouldNotReachHere(); 2290 } 2291 } else if (left->is_double_cpu()) { 2292 Register lo = left->as_register_lo(); 2293 Register hi = left->as_register_hi(); 2294 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX"); 2295 switch (code) { 2296 case lir_shl: __ shlptr(lo); break; 2297 case lir_shr: __ sarptr(lo); break; 2298 case lir_ushr: __ shrptr(lo); break; 2299 default: ShouldNotReachHere(); 2300 } 2301 } else { 2302 ShouldNotReachHere(); 2303 } 2304 } 2305 2306 2307 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2308 if (dest->is_single_cpu()) { 2309 // first move left into dest so that left is not destroyed by the shift 2310 Register value = dest->as_register(); 2311 count = count & 0x1F; // Java spec 2312 2313 move_regs(left->as_register(), value); 2314 switch (code) { 2315 case lir_shl: __ shll(value, count); break; 2316 case lir_shr: __ sarl(value, count); break; 2317 case lir_ushr: __ shrl(value, count); break; 2318 default: ShouldNotReachHere(); 2319 } 2320 } else if (dest->is_double_cpu()) { 2321 // first move left into dest so that left is not destroyed by the shift 2322 Register value = dest->as_register_lo(); 2323 count = count & 0x1F; // Java spec 2324 2325 move_regs(left->as_register_lo(), value); 2326 switch (code) { 2327 case lir_shl: __ shlptr(value, count); break; 2328 case lir_shr: __ sarptr(value, count); break; 2329 case lir_ushr: __ shrptr(value, count); break; 2330 default: ShouldNotReachHere(); 2331 } 2332 } else { 2333 ShouldNotReachHere(); 2334 } 2335 } 2336 2337 2338 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2339 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2340 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2341 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2342 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r); 2343 } 2344 2345 2346 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2347 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2348 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2349 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2350 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c); 2351 } 2352 2353 2354 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2355 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2356 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2357 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2358 __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1); 2359 } 2360 2361 2362 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) { 2363 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2364 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2365 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2366 __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1); 2367 } 2368 2369 2370 // This code replaces a call to arraycopy; no exception may 2371 // be thrown in this code, they must be thrown in the System.arraycopy 2372 // activation frame; we could save some checks if this would not be the case 2373 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2374 ciArrayKlass* default_type = op->expected_type(); 2375 Register src = op->src()->as_register(); 2376 Register dst = op->dst()->as_register(); 2377 Register src_pos = op->src_pos()->as_register(); 2378 Register dst_pos = op->dst_pos()->as_register(); 2379 Register length = op->length()->as_register(); 2380 Register tmp = op->tmp()->as_register(); 2381 Register tmp_load_klass = rscratch1; 2382 Register tmp2 = UseCompactObjectHeaders ? rscratch2 : noreg; 2383 2384 CodeStub* stub = op->stub(); 2385 int flags = op->flags(); 2386 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2387 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2388 2389 // if we don't know anything, just go through the generic arraycopy 2390 if (default_type == nullptr) { 2391 // save outgoing arguments on stack in case call to System.arraycopy is needed 2392 // HACK ALERT. This code used to push the parameters in a hardwired fashion 2393 // for interpreter calling conventions. Now we have to do it in new style conventions. 2394 // For the moment until C1 gets the new register allocator I just force all the 2395 // args to the right place (except the register args) and then on the back side 2396 // reload the register args properly if we go slow path. Yuck 2397 2398 // These are proper for the calling convention 2399 store_parameter(length, 2); 2400 store_parameter(dst_pos, 1); 2401 store_parameter(dst, 0); 2402 2403 // these are just temporary placements until we need to reload 2404 store_parameter(src_pos, 3); 2405 store_parameter(src, 4); 2406 2407 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2408 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2409 2410 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint 2411 // The arguments are in java calling convention so we can trivially shift them to C 2412 // convention 2413 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2414 __ mov(c_rarg0, j_rarg0); 2415 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2416 __ mov(c_rarg1, j_rarg1); 2417 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2418 __ mov(c_rarg2, j_rarg2); 2419 assert_different_registers(c_rarg3, j_rarg4); 2420 __ mov(c_rarg3, j_rarg3); 2421 #ifdef _WIN64 2422 // Allocate abi space for args but be sure to keep stack aligned 2423 __ subptr(rsp, 6*wordSize); 2424 store_parameter(j_rarg4, 4); 2425 #ifndef PRODUCT 2426 if (PrintC1Statistics) { 2427 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 2428 } 2429 #endif 2430 __ call(RuntimeAddress(copyfunc_addr)); 2431 __ addptr(rsp, 6*wordSize); 2432 #else 2433 __ mov(c_rarg4, j_rarg4); 2434 #ifndef PRODUCT 2435 if (PrintC1Statistics) { 2436 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 2437 } 2438 #endif 2439 __ call(RuntimeAddress(copyfunc_addr)); 2440 #endif // _WIN64 2441 2442 __ testl(rax, rax); 2443 __ jcc(Assembler::equal, *stub->continuation()); 2444 2445 __ mov(tmp, rax); 2446 __ xorl(tmp, -1); 2447 2448 // Reload values from the stack so they are where the stub 2449 // expects them. 2450 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 2451 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 2452 __ movptr (length, Address(rsp, 2*BytesPerWord)); 2453 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 2454 __ movptr (src, Address(rsp, 4*BytesPerWord)); 2455 2456 __ subl(length, tmp); 2457 __ addl(src_pos, tmp); 2458 __ addl(dst_pos, tmp); 2459 __ jmp(*stub->entry()); 2460 2461 __ bind(*stub->continuation()); 2462 return; 2463 } 2464 2465 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2466 2467 int elem_size = type2aelembytes(basic_type); 2468 Address::ScaleFactor scale; 2469 2470 switch (elem_size) { 2471 case 1 : 2472 scale = Address::times_1; 2473 break; 2474 case 2 : 2475 scale = Address::times_2; 2476 break; 2477 case 4 : 2478 scale = Address::times_4; 2479 break; 2480 case 8 : 2481 scale = Address::times_8; 2482 break; 2483 default: 2484 scale = Address::no_scale; 2485 ShouldNotReachHere(); 2486 } 2487 2488 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2489 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2490 2491 // length and pos's are all sign extended at this point on 64bit 2492 2493 // test for null 2494 if (flags & LIR_OpArrayCopy::src_null_check) { 2495 __ testptr(src, src); 2496 __ jcc(Assembler::zero, *stub->entry()); 2497 } 2498 if (flags & LIR_OpArrayCopy::dst_null_check) { 2499 __ testptr(dst, dst); 2500 __ jcc(Assembler::zero, *stub->entry()); 2501 } 2502 2503 // If the compiler was not able to prove that exact type of the source or the destination 2504 // of the arraycopy is an array type, check at runtime if the source or the destination is 2505 // an instance type. 2506 if (flags & LIR_OpArrayCopy::type_check) { 2507 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2508 __ load_klass(tmp, dst, tmp_load_klass); 2509 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 2510 __ jcc(Assembler::greaterEqual, *stub->entry()); 2511 } 2512 2513 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2514 __ load_klass(tmp, src, tmp_load_klass); 2515 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 2516 __ jcc(Assembler::greaterEqual, *stub->entry()); 2517 } 2518 } 2519 2520 // check if negative 2521 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2522 __ testl(src_pos, src_pos); 2523 __ jcc(Assembler::less, *stub->entry()); 2524 } 2525 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2526 __ testl(dst_pos, dst_pos); 2527 __ jcc(Assembler::less, *stub->entry()); 2528 } 2529 2530 if (flags & LIR_OpArrayCopy::src_range_check) { 2531 __ lea(tmp, Address(src_pos, length, Address::times_1, 0)); 2532 __ cmpl(tmp, src_length_addr); 2533 __ jcc(Assembler::above, *stub->entry()); 2534 } 2535 if (flags & LIR_OpArrayCopy::dst_range_check) { 2536 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0)); 2537 __ cmpl(tmp, dst_length_addr); 2538 __ jcc(Assembler::above, *stub->entry()); 2539 } 2540 2541 if (flags & LIR_OpArrayCopy::length_positive_check) { 2542 __ testl(length, length); 2543 __ jcc(Assembler::less, *stub->entry()); 2544 } 2545 2546 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null 2547 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null 2548 2549 if (flags & LIR_OpArrayCopy::type_check) { 2550 // We don't know the array types are compatible 2551 if (basic_type != T_OBJECT) { 2552 // Simple test for basic type arrays 2553 __ cmp_klasses_from_objects(src, dst, tmp, tmp2); 2554 __ jcc(Assembler::notEqual, *stub->entry()); 2555 } else { 2556 // For object arrays, if src is a sub class of dst then we can 2557 // safely do the copy. 2558 Label cont, slow; 2559 2560 __ push(src); 2561 __ push(dst); 2562 2563 __ load_klass(src, src, tmp_load_klass); 2564 __ load_klass(dst, dst, tmp_load_klass); 2565 2566 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2567 2568 __ push(src); 2569 __ push(dst); 2570 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 2571 __ pop(dst); 2572 __ pop(src); 2573 2574 __ testl(src, src); 2575 __ jcc(Assembler::notEqual, cont); 2576 2577 __ bind(slow); 2578 __ pop(dst); 2579 __ pop(src); 2580 2581 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2582 if (copyfunc_addr != nullptr) { // use stub if available 2583 // src is not a sub class of dst so we have to do a 2584 // per-element check. 2585 2586 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2587 if ((flags & mask) != mask) { 2588 // Check that at least both of them object arrays. 2589 assert(flags & mask, "one of the two should be known to be an object array"); 2590 2591 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2592 __ load_klass(tmp, src, tmp_load_klass); 2593 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2594 __ load_klass(tmp, dst, tmp_load_klass); 2595 } 2596 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2597 Address klass_lh_addr(tmp, lh_offset); 2598 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2599 __ cmpl(klass_lh_addr, objArray_lh); 2600 __ jcc(Assembler::notEqual, *stub->entry()); 2601 } 2602 2603 // Spill because stubs can use any register they like and it's 2604 // easier to restore just those that we care about. 2605 store_parameter(dst, 0); 2606 store_parameter(dst_pos, 1); 2607 store_parameter(length, 2); 2608 store_parameter(src_pos, 3); 2609 store_parameter(src, 4); 2610 2611 __ movl2ptr(length, length); //higher 32bits must be null 2612 2613 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2614 assert_different_registers(c_rarg0, dst, dst_pos, length); 2615 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2616 assert_different_registers(c_rarg1, dst, length); 2617 2618 __ mov(c_rarg2, length); 2619 assert_different_registers(c_rarg2, dst); 2620 2621 #ifdef _WIN64 2622 // Allocate abi space for args but be sure to keep stack aligned 2623 __ subptr(rsp, 6*wordSize); 2624 __ load_klass(c_rarg3, dst, tmp_load_klass); 2625 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset())); 2626 store_parameter(c_rarg3, 4); 2627 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset())); 2628 __ call(RuntimeAddress(copyfunc_addr)); 2629 __ addptr(rsp, 6*wordSize); 2630 #else 2631 __ load_klass(c_rarg4, dst, tmp_load_klass); 2632 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2633 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2634 __ call(RuntimeAddress(copyfunc_addr)); 2635 #endif 2636 2637 #ifndef PRODUCT 2638 if (PrintC1Statistics) { 2639 Label failed; 2640 __ testl(rax, rax); 2641 __ jcc(Assembler::notZero, failed); 2642 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1); 2643 __ bind(failed); 2644 } 2645 #endif 2646 2647 __ testl(rax, rax); 2648 __ jcc(Assembler::zero, *stub->continuation()); 2649 2650 #ifndef PRODUCT 2651 if (PrintC1Statistics) { 2652 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1); 2653 } 2654 #endif 2655 2656 __ mov(tmp, rax); 2657 2658 __ xorl(tmp, -1); 2659 2660 // Restore previously spilled arguments 2661 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 2662 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 2663 __ movptr (length, Address(rsp, 2*BytesPerWord)); 2664 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 2665 __ movptr (src, Address(rsp, 4*BytesPerWord)); 2666 2667 2668 __ subl(length, tmp); 2669 __ addl(src_pos, tmp); 2670 __ addl(dst_pos, tmp); 2671 } 2672 2673 __ jmp(*stub->entry()); 2674 2675 __ bind(cont); 2676 __ pop(dst); 2677 __ pop(src); 2678 } 2679 } 2680 2681 #ifdef ASSERT 2682 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2683 // Sanity check the known type with the incoming class. For the 2684 // primitive case the types must match exactly with src.klass and 2685 // dst.klass each exactly matching the default type. For the 2686 // object array case, if no type check is needed then either the 2687 // dst type is exactly the expected type and the src type is a 2688 // subtype which we can't check or src is the same array as dst 2689 // but not necessarily exactly of type default_type. 2690 Label known_ok, halt; 2691 __ mov_metadata(tmp, default_type->constant_encoding()); 2692 if (UseCompressedClassPointers) { 2693 __ encode_klass_not_null(tmp, rscratch1); 2694 } 2695 2696 if (basic_type != T_OBJECT) { 2697 __ cmp_klass(tmp, dst, tmp2); 2698 __ jcc(Assembler::notEqual, halt); 2699 __ cmp_klass(tmp, src, tmp2); 2700 __ jcc(Assembler::equal, known_ok); 2701 } else { 2702 __ cmp_klass(tmp, dst, tmp2); 2703 __ jcc(Assembler::equal, known_ok); 2704 __ cmpptr(src, dst); 2705 __ jcc(Assembler::equal, known_ok); 2706 } 2707 __ bind(halt); 2708 __ stop("incorrect type information in arraycopy"); 2709 __ bind(known_ok); 2710 } 2711 #endif 2712 2713 #ifndef PRODUCT 2714 if (PrintC1Statistics) { 2715 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1); 2716 } 2717 #endif 2718 2719 assert_different_registers(c_rarg0, dst, dst_pos, length); 2720 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2721 assert_different_registers(c_rarg1, length); 2722 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2723 __ mov(c_rarg2, length); 2724 2725 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2726 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2727 const char *name; 2728 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2729 __ call_VM_leaf(entry, 0); 2730 2731 if (stub != nullptr) { 2732 __ bind(*stub->continuation()); 2733 } 2734 } 2735 2736 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2737 assert(op->crc()->is_single_cpu(), "crc must be register"); 2738 assert(op->val()->is_single_cpu(), "byte value must be register"); 2739 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2740 Register crc = op->crc()->as_register(); 2741 Register val = op->val()->as_register(); 2742 Register res = op->result_opr()->as_register(); 2743 2744 assert_different_registers(val, crc, res); 2745 2746 __ lea(res, ExternalAddress(StubRoutines::crc_table_addr())); 2747 __ notl(crc); // ~crc 2748 __ update_byte_crc32(crc, val, res); 2749 __ notl(crc); // ~crc 2750 __ mov(res, crc); 2751 } 2752 2753 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2754 Register obj = op->obj_opr()->as_register(); // may not be an oop 2755 Register hdr = op->hdr_opr()->as_register(); 2756 Register lock = op->lock_opr()->as_register(); 2757 if (LockingMode == LM_MONITOR) { 2758 if (op->info() != nullptr) { 2759 add_debug_info_for_null_check_here(op->info()); 2760 __ null_check(obj); 2761 } 2762 __ jmp(*op->stub()->entry()); 2763 } else if (op->code() == lir_lock) { 2764 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2765 Register tmp = LockingMode == LM_LIGHTWEIGHT ? op->scratch_opr()->as_register() : noreg; 2766 // add debug info for NullPointerException only if one is possible 2767 int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry()); 2768 if (op->info() != nullptr) { 2769 add_debug_info_for_null_check(null_check_offset, op->info()); 2770 } 2771 // done 2772 } else if (op->code() == lir_unlock) { 2773 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2774 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2775 } else { 2776 Unimplemented(); 2777 } 2778 __ bind(*op->stub()->continuation()); 2779 } 2780 2781 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2782 Register obj = op->obj()->as_pointer_register(); 2783 Register result = op->result_opr()->as_pointer_register(); 2784 2785 CodeEmitInfo* info = op->info(); 2786 if (info != nullptr) { 2787 add_debug_info_for_null_check_here(info); 2788 } 2789 2790 __ load_klass(result, obj, rscratch1); 2791 } 2792 2793 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2794 ciMethod* method = op->profiled_method(); 2795 int bci = op->profiled_bci(); 2796 ciMethod* callee = op->profiled_callee(); 2797 Register tmp_load_klass = rscratch1; 2798 2799 // Update counter for all call types 2800 ciMethodData* md = method->method_data_or_null(); 2801 assert(md != nullptr, "Sanity"); 2802 ciProfileData* data = md->bci_to_data(bci); 2803 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2804 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2805 Register mdo = op->mdo()->as_register(); 2806 __ mov_metadata(mdo, md->constant_encoding()); 2807 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2808 // Perform additional virtual call profiling for invokevirtual and 2809 // invokeinterface bytecodes 2810 if (op->should_profile_receiver_type()) { 2811 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2812 Register recv = op->recv()->as_register(); 2813 assert_different_registers(mdo, recv); 2814 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2815 ciKlass* known_klass = op->known_holder(); 2816 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2817 // We know the type that will be seen at this call site; we can 2818 // statically update the MethodData* rather than needing to do 2819 // dynamic tests on the receiver type 2820 2821 // NOTE: we should probably put a lock around this search to 2822 // avoid collisions by concurrent compilations 2823 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2824 uint i; 2825 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2826 ciKlass* receiver = vc_data->receiver(i); 2827 if (known_klass->equals(receiver)) { 2828 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2829 __ addptr(data_addr, DataLayout::counter_increment); 2830 return; 2831 } 2832 } 2833 2834 // Receiver type not found in profile data; select an empty slot 2835 2836 // Note that this is less efficient than it should be because it 2837 // always does a write to the receiver part of the 2838 // VirtualCallData rather than just the first time 2839 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2840 ciKlass* receiver = vc_data->receiver(i); 2841 if (receiver == nullptr) { 2842 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 2843 __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1); 2844 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2845 __ addptr(data_addr, DataLayout::counter_increment); 2846 return; 2847 } 2848 } 2849 } else { 2850 __ load_klass(recv, recv, tmp_load_klass); 2851 Label update_done; 2852 type_profile_helper(mdo, md, data, recv, &update_done); 2853 // Receiver did not match any saved receiver and there is no empty row for it. 2854 // Increment total counter to indicate polymorphic case. 2855 __ addptr(counter_addr, DataLayout::counter_increment); 2856 2857 __ bind(update_done); 2858 } 2859 } else { 2860 // Static call 2861 __ addptr(counter_addr, DataLayout::counter_increment); 2862 } 2863 } 2864 2865 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2866 Register obj = op->obj()->as_register(); 2867 Register tmp = op->tmp()->as_pointer_register(); 2868 Register tmp_load_klass = rscratch1; 2869 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2870 ciKlass* exact_klass = op->exact_klass(); 2871 intptr_t current_klass = op->current_klass(); 2872 bool not_null = op->not_null(); 2873 bool no_conflict = op->no_conflict(); 2874 2875 Label update, next, none; 2876 2877 bool do_null = !not_null; 2878 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2879 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2880 2881 assert(do_null || do_update, "why are we here?"); 2882 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2883 2884 __ verify_oop(obj); 2885 2886 #ifdef ASSERT 2887 if (obj == tmp) { 2888 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 2889 } else { 2890 assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index()); 2891 } 2892 #endif 2893 if (do_null) { 2894 __ testptr(obj, obj); 2895 __ jccb(Assembler::notZero, update); 2896 if (!TypeEntries::was_null_seen(current_klass)) { 2897 __ testptr(mdo_addr, TypeEntries::null_seen); 2898 #ifndef ASSERT 2899 __ jccb(Assembler::notZero, next); // already set 2900 #else 2901 __ jcc(Assembler::notZero, next); // already set 2902 #endif 2903 // atomic update to prevent overwriting Klass* with 0 2904 __ lock(); 2905 __ orptr(mdo_addr, TypeEntries::null_seen); 2906 } 2907 if (do_update) { 2908 #ifndef ASSERT 2909 __ jmpb(next); 2910 } 2911 #else 2912 __ jmp(next); 2913 } 2914 } else { 2915 __ testptr(obj, obj); 2916 __ jcc(Assembler::notZero, update); 2917 __ stop("unexpected null obj"); 2918 #endif 2919 } 2920 2921 __ bind(update); 2922 2923 if (do_update) { 2924 #ifdef ASSERT 2925 if (exact_klass != nullptr) { 2926 Label ok; 2927 __ load_klass(tmp, obj, tmp_load_klass); 2928 __ push(tmp); 2929 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2930 __ cmpptr(tmp, Address(rsp, 0)); 2931 __ jcc(Assembler::equal, ok); 2932 __ stop("exact klass and actual klass differ"); 2933 __ bind(ok); 2934 __ pop(tmp); 2935 } 2936 #endif 2937 if (!no_conflict) { 2938 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2939 if (exact_klass != nullptr) { 2940 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2941 } else { 2942 __ load_klass(tmp, obj, tmp_load_klass); 2943 } 2944 __ mov(rscratch1, tmp); // save original value before XOR 2945 __ xorptr(tmp, mdo_addr); 2946 __ testptr(tmp, TypeEntries::type_klass_mask); 2947 // klass seen before, nothing to do. The unknown bit may have been 2948 // set already but no need to check. 2949 __ jccb(Assembler::zero, next); 2950 2951 __ testptr(tmp, TypeEntries::type_unknown); 2952 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 2953 2954 if (TypeEntries::is_type_none(current_klass)) { 2955 __ testptr(mdo_addr, TypeEntries::type_mask); 2956 __ jccb(Assembler::zero, none); 2957 // There is a chance that the checks above (re-reading profiling 2958 // data from memory) fail if another thread has just set the 2959 // profiling to this obj's klass 2960 __ mov(tmp, rscratch1); // get back original value before XOR 2961 __ xorptr(tmp, mdo_addr); 2962 __ testptr(tmp, TypeEntries::type_klass_mask); 2963 __ jccb(Assembler::zero, next); 2964 } 2965 } else { 2966 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2967 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2968 2969 __ testptr(mdo_addr, TypeEntries::type_unknown); 2970 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 2971 } 2972 2973 // different than before. Cannot keep accurate profile. 2974 __ orptr(mdo_addr, TypeEntries::type_unknown); 2975 2976 if (TypeEntries::is_type_none(current_klass)) { 2977 __ jmpb(next); 2978 2979 __ bind(none); 2980 // first time here. Set profile type. 2981 __ movptr(mdo_addr, tmp); 2982 #ifdef ASSERT 2983 __ andptr(tmp, TypeEntries::type_klass_mask); 2984 __ verify_klass_ptr(tmp); 2985 #endif 2986 } 2987 } else { 2988 // There's a single possible klass at this profile point 2989 assert(exact_klass != nullptr, "should be"); 2990 if (TypeEntries::is_type_none(current_klass)) { 2991 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2992 __ xorptr(tmp, mdo_addr); 2993 __ testptr(tmp, TypeEntries::type_klass_mask); 2994 #ifdef ASSERT 2995 __ jcc(Assembler::zero, next); 2996 2997 { 2998 Label ok; 2999 __ push(tmp); 3000 __ testptr(mdo_addr, TypeEntries::type_mask); 3001 __ jcc(Assembler::zero, ok); 3002 // may have been set by another thread 3003 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3004 __ xorptr(tmp, mdo_addr); 3005 __ testptr(tmp, TypeEntries::type_mask); 3006 __ jcc(Assembler::zero, ok); 3007 3008 __ stop("unexpected profiling mismatch"); 3009 __ bind(ok); 3010 __ pop(tmp); 3011 } 3012 #else 3013 __ jccb(Assembler::zero, next); 3014 #endif 3015 // first time here. Set profile type. 3016 __ movptr(mdo_addr, tmp); 3017 #ifdef ASSERT 3018 __ andptr(tmp, TypeEntries::type_klass_mask); 3019 __ verify_klass_ptr(tmp); 3020 #endif 3021 } else { 3022 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3023 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3024 3025 __ testptr(mdo_addr, TypeEntries::type_unknown); 3026 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3027 3028 __ orptr(mdo_addr, TypeEntries::type_unknown); 3029 } 3030 } 3031 } 3032 __ bind(next); 3033 } 3034 3035 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 3036 Unimplemented(); 3037 } 3038 3039 3040 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 3041 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 3042 } 3043 3044 3045 void LIR_Assembler::align_backward_branch_target() { 3046 __ align(BytesPerWord); 3047 } 3048 3049 3050 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 3051 if (left->is_single_cpu()) { 3052 __ negl(left->as_register()); 3053 move_regs(left->as_register(), dest->as_register()); 3054 3055 } else if (left->is_double_cpu()) { 3056 Register lo = left->as_register_lo(); 3057 Register dst = dest->as_register_lo(); 3058 __ movptr(dst, lo); 3059 __ negptr(dst); 3060 3061 } else if (dest->is_single_xmm()) { 3062 assert(!tmp->is_valid(), "do not need temporary"); 3063 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) { 3064 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg()); 3065 } 3066 __ xorps(dest->as_xmm_float_reg(), 3067 ExternalAddress((address)float_signflip_pool), 3068 rscratch1); 3069 } else if (dest->is_double_xmm()) { 3070 assert(!tmp->is_valid(), "do not need temporary"); 3071 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) { 3072 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg()); 3073 } 3074 __ xorpd(dest->as_xmm_double_reg(), 3075 ExternalAddress((address)double_signflip_pool), 3076 rscratch1); 3077 } else { 3078 ShouldNotReachHere(); 3079 } 3080 } 3081 3082 3083 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 3084 assert(src->is_address(), "must be an address"); 3085 assert(dest->is_register(), "must be a register"); 3086 3087 PatchingStub* patch = nullptr; 3088 if (patch_code != lir_patch_none) { 3089 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 3090 } 3091 3092 Register reg = dest->as_pointer_register(); 3093 LIR_Address* addr = src->as_address_ptr(); 3094 __ lea(reg, as_Address(addr)); 3095 3096 if (patch != nullptr) { 3097 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 3098 } 3099 } 3100 3101 3102 3103 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 3104 assert(!tmp->is_valid(), "don't need temporary"); 3105 __ call(RuntimeAddress(dest)); 3106 if (info != nullptr) { 3107 add_call_info_here(info); 3108 } 3109 __ post_call_nop(); 3110 } 3111 3112 3113 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 3114 assert(type == T_LONG, "only for volatile long fields"); 3115 3116 if (info != nullptr) { 3117 add_debug_info_for_null_check_here(info); 3118 } 3119 3120 if (src->is_double_xmm()) { 3121 if (dest->is_double_cpu()) { 3122 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg()); 3123 } else if (dest->is_double_stack()) { 3124 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg()); 3125 } else if (dest->is_address()) { 3126 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg()); 3127 } else { 3128 ShouldNotReachHere(); 3129 } 3130 3131 } else if (dest->is_double_xmm()) { 3132 if (src->is_double_stack()) { 3133 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix())); 3134 } else if (src->is_address()) { 3135 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr())); 3136 } else { 3137 ShouldNotReachHere(); 3138 } 3139 3140 } else { 3141 ShouldNotReachHere(); 3142 } 3143 } 3144 3145 #ifdef ASSERT 3146 // emit run-time assertion 3147 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 3148 assert(op->code() == lir_assert, "must be"); 3149 3150 if (op->in_opr1()->is_valid()) { 3151 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 3152 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 3153 } else { 3154 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 3155 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 3156 } 3157 3158 Label ok; 3159 if (op->condition() != lir_cond_always) { 3160 Assembler::Condition acond = Assembler::zero; 3161 switch (op->condition()) { 3162 case lir_cond_equal: acond = Assembler::equal; break; 3163 case lir_cond_notEqual: acond = Assembler::notEqual; break; 3164 case lir_cond_less: acond = Assembler::less; break; 3165 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 3166 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 3167 case lir_cond_greater: acond = Assembler::greater; break; 3168 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 3169 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 3170 default: ShouldNotReachHere(); 3171 } 3172 __ jcc(acond, ok); 3173 } 3174 if (op->halt()) { 3175 const char* str = __ code_string(op->msg()); 3176 __ stop(str); 3177 } else { 3178 breakpoint(); 3179 } 3180 __ bind(ok); 3181 } 3182 #endif 3183 3184 void LIR_Assembler::membar() { 3185 // QQQ sparc TSO uses this, 3186 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3187 } 3188 3189 void LIR_Assembler::membar_acquire() { 3190 // No x86 machines currently require load fences 3191 } 3192 3193 void LIR_Assembler::membar_release() { 3194 // No x86 machines currently require store fences 3195 } 3196 3197 void LIR_Assembler::membar_loadload() { 3198 // no-op 3199 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload)); 3200 } 3201 3202 void LIR_Assembler::membar_storestore() { 3203 // no-op 3204 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore)); 3205 } 3206 3207 void LIR_Assembler::membar_loadstore() { 3208 // no-op 3209 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore)); 3210 } 3211 3212 void LIR_Assembler::membar_storeload() { 3213 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3214 } 3215 3216 void LIR_Assembler::on_spin_wait() { 3217 __ pause (); 3218 } 3219 3220 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 3221 assert(result_reg->is_register(), "check"); 3222 __ mov(result_reg->as_register(), r15_thread); 3223 } 3224 3225 3226 void LIR_Assembler::peephole(LIR_List*) { 3227 // do nothing for now 3228 } 3229 3230 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 3231 assert(data == dest, "xchg/xadd uses only 2 operands"); 3232 3233 if (data->type() == T_INT) { 3234 if (code == lir_xadd) { 3235 __ lock(); 3236 __ xaddl(as_Address(src->as_address_ptr()), data->as_register()); 3237 } else { 3238 __ xchgl(data->as_register(), as_Address(src->as_address_ptr())); 3239 } 3240 } else if (data->is_oop()) { 3241 assert (code == lir_xchg, "xadd for oops"); 3242 Register obj = data->as_register(); 3243 if (UseCompressedOops) { 3244 __ encode_heap_oop(obj); 3245 __ xchgl(obj, as_Address(src->as_address_ptr())); 3246 __ decode_heap_oop(obj); 3247 } else { 3248 __ xchgptr(obj, as_Address(src->as_address_ptr())); 3249 } 3250 } else if (data->type() == T_LONG) { 3251 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register"); 3252 if (code == lir_xadd) { 3253 __ lock(); 3254 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo()); 3255 } else { 3256 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr())); 3257 } 3258 } else { 3259 ShouldNotReachHere(); 3260 } 3261 } 3262 3263 #undef __