1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "c1/c1_CodeStubs.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_MacroAssembler.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciUtilities.hpp" 36 #include "code/SCCache.hpp" 37 #include "compiler/oopMap.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gc_globals.hpp" 40 #include "nativeInst_x86.hpp" 41 #include "oops/objArrayKlass.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/safepointMechanism.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 #include "vmreg_x86.inline.hpp" 48 49 50 // These masks are used to provide 128-bit aligned bitmasks to the XMM 51 // instructions, to allow sign-masking or sign-bit flipping. They allow 52 // fast versions of NegF/NegD and AbsF/AbsD. 53 54 // Note: 'double' and 'long long' have 32-bits alignment on x86. 55 static address double_quadword(jlong *adr, jlong lo, jlong hi) { 56 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 57 // of 128-bits operands for SSE instructions. 58 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF))); 59 // Store the value to a 128-bits operand. 60 operand[0] = lo; 61 operand[1] = hi; 62 return (address)operand; 63 } 64 65 // Buffer for 128-bits masks used by SSE instructions. 66 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment) 67 68 // Static initialization during VM startup. 69 address LIR_Assembler::float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF)); 70 address LIR_Assembler::double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF)); 71 address LIR_Assembler::float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000)); 72 address LIR_Assembler::double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000)); 73 74 75 NEEDS_CLEANUP // remove this definitions ? 76 const Register SYNC_header = rax; // synchronization header 77 const Register SHIFT_count = rcx; // where count for shift operations must be 78 79 #define __ _masm-> 80 81 82 static void select_different_registers(Register preserve, 83 Register extra, 84 Register &tmp1, 85 Register &tmp2) { 86 if (tmp1 == preserve) { 87 assert_different_registers(tmp1, tmp2, extra); 88 tmp1 = extra; 89 } else if (tmp2 == preserve) { 90 assert_different_registers(tmp1, tmp2, extra); 91 tmp2 = extra; 92 } 93 assert_different_registers(preserve, tmp1, tmp2); 94 } 95 96 97 98 static void select_different_registers(Register preserve, 99 Register extra, 100 Register &tmp1, 101 Register &tmp2, 102 Register &tmp3) { 103 if (tmp1 == preserve) { 104 assert_different_registers(tmp1, tmp2, tmp3, extra); 105 tmp1 = extra; 106 } else if (tmp2 == preserve) { 107 assert_different_registers(tmp1, tmp2, tmp3, extra); 108 tmp2 = extra; 109 } else if (tmp3 == preserve) { 110 assert_different_registers(tmp1, tmp2, tmp3, extra); 111 tmp3 = extra; 112 } 113 assert_different_registers(preserve, tmp1, tmp2, tmp3); 114 } 115 116 117 118 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 119 if (opr->is_constant()) { 120 LIR_Const* constant = opr->as_constant_ptr(); 121 switch (constant->type()) { 122 case T_INT: { 123 return true; 124 } 125 126 default: 127 return false; 128 } 129 } 130 return false; 131 } 132 133 134 LIR_Opr LIR_Assembler::receiverOpr() { 135 return FrameMap::receiver_opr; 136 } 137 138 LIR_Opr LIR_Assembler::osrBufferPointer() { 139 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 140 } 141 142 //--------------fpu register translations----------------------- 143 144 145 address LIR_Assembler::float_constant(float f) { 146 address const_addr = __ float_constant(f); 147 if (const_addr == nullptr) { 148 bailout("const section overflow"); 149 return __ code()->consts()->start(); 150 } else { 151 return const_addr; 152 } 153 } 154 155 156 address LIR_Assembler::double_constant(double d) { 157 address const_addr = __ double_constant(d); 158 if (const_addr == nullptr) { 159 bailout("const section overflow"); 160 return __ code()->consts()->start(); 161 } else { 162 return const_addr; 163 } 164 } 165 166 void LIR_Assembler::breakpoint() { 167 __ int3(); 168 } 169 170 void LIR_Assembler::push(LIR_Opr opr) { 171 if (opr->is_single_cpu()) { 172 __ push_reg(opr->as_register()); 173 } else if (opr->is_double_cpu()) { 174 __ push_reg(opr->as_register_lo()); 175 } else if (opr->is_stack()) { 176 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix())); 177 } else if (opr->is_constant()) { 178 LIR_Const* const_opr = opr->as_constant_ptr(); 179 if (const_opr->type() == T_OBJECT) { 180 __ push_oop(const_opr->as_jobject(), rscratch1); 181 } else if (const_opr->type() == T_INT) { 182 __ push_jint(const_opr->as_jint()); 183 } else { 184 ShouldNotReachHere(); 185 } 186 187 } else { 188 ShouldNotReachHere(); 189 } 190 } 191 192 void LIR_Assembler::pop(LIR_Opr opr) { 193 if (opr->is_single_cpu()) { 194 __ pop_reg(opr->as_register()); 195 } else { 196 ShouldNotReachHere(); 197 } 198 } 199 200 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { 201 return addr->base()->is_illegal() && addr->index()->is_illegal(); 202 } 203 204 //------------------------------------------- 205 206 Address LIR_Assembler::as_Address(LIR_Address* addr) { 207 return as_Address(addr, rscratch1); 208 } 209 210 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 211 if (addr->base()->is_illegal()) { 212 assert(addr->index()->is_illegal(), "must be illegal too"); 213 AddressLiteral laddr((address)addr->disp(), relocInfo::none); 214 if (! __ reachable(laddr)) { 215 __ movptr(tmp, laddr.addr()); 216 Address res(tmp, 0); 217 return res; 218 } else { 219 return __ as_Address(laddr); 220 } 221 } 222 223 Register base = addr->base()->as_pointer_register(); 224 225 if (addr->index()->is_illegal()) { 226 return Address( base, addr->disp()); 227 } else if (addr->index()->is_cpu_register()) { 228 Register index = addr->index()->as_pointer_register(); 229 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp()); 230 } else if (addr->index()->is_constant()) { 231 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp(); 232 assert(Assembler::is_simm32(addr_offset), "must be"); 233 234 return Address(base, addr_offset); 235 } else { 236 Unimplemented(); 237 return Address(); 238 } 239 } 240 241 242 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 243 Address base = as_Address(addr); 244 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord); 245 } 246 247 248 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 249 return as_Address(addr); 250 } 251 252 253 void LIR_Assembler::osr_entry() { 254 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 255 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 256 ValueStack* entry_state = osr_entry->state(); 257 int number_of_locks = entry_state->locks_size(); 258 259 // we jump here if osr happens with the interpreter 260 // state set up to continue at the beginning of the 261 // loop that triggered osr - in particular, we have 262 // the following registers setup: 263 // 264 // rcx: osr buffer 265 // 266 267 // build frame 268 ciMethod* m = compilation()->method(); 269 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 270 271 // OSR buffer is 272 // 273 // locals[nlocals-1..0] 274 // monitors[0..number_of_locks] 275 // 276 // locals is a direct copy of the interpreter frame so in the osr buffer 277 // so first slot in the local array is the last local from the interpreter 278 // and last slot is local[0] (receiver) from the interpreter 279 // 280 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 281 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 282 // in the interpreter frame (the method lock if a sync method) 283 284 // Initialize monitors in the compiled activation. 285 // rcx: pointer to osr buffer 286 // 287 // All other registers are dead at this point and the locals will be 288 // copied into place by code emitted in the IR. 289 290 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 291 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 292 int monitor_offset = BytesPerWord * method()->max_locals() + 293 (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1); 294 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 295 // the OSR buffer using 2 word entries: first the lock and then 296 // the oop. 297 for (int i = 0; i < number_of_locks; i++) { 298 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 299 #ifdef ASSERT 300 // verify the interpreter's monitor has a non-null object 301 { 302 Label L; 303 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD); 304 __ jcc(Assembler::notZero, L); 305 __ stop("locked object is null"); 306 __ bind(L); 307 } 308 #endif 309 __ movptr(rbx, Address(OSR_buf, slot_offset + 0)); 310 __ movptr(frame_map()->address_for_monitor_lock(i), rbx); 311 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 312 __ movptr(frame_map()->address_for_monitor_object(i), rbx); 313 } 314 } 315 } 316 317 318 // inline cache check; done before the frame is built. 319 int LIR_Assembler::check_icache() { 320 return __ ic_check(CodeEntryAlignment); 321 } 322 323 void LIR_Assembler::clinit_barrier(ciMethod* method) { 324 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 325 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 326 327 Label L_skip_barrier; 328 Register klass = rscratch1; 329 330 __ mov_metadata(klass, method->holder()->constant_encoding()); 331 __ clinit_barrier(klass, &L_skip_barrier /*L_fast_path*/); 332 333 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 334 335 __ bind(L_skip_barrier); 336 } 337 338 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) { 339 jobject o = nullptr; 340 PatchingStub* patch = new PatchingStub(_masm, patching_id(info)); 341 __ movoop(reg, o); 342 patching_epilog(patch, lir_patch_normal, reg, info); 343 } 344 345 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 346 Metadata* o = nullptr; 347 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id); 348 __ mov_metadata(reg, o); 349 patching_epilog(patch, lir_patch_normal, reg, info); 350 } 351 352 // This specifies the rsp decrement needed to build the frame 353 int LIR_Assembler::initial_frame_size_in_bytes() const { 354 // if rounding, must let FrameMap know! 355 356 // The frame_map records size in slots (32bit word) 357 358 // subtract two words to account for return address and link 359 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size; 360 } 361 362 363 int LIR_Assembler::emit_exception_handler() { 364 // generate code for exception handler 365 address handler_base = __ start_a_stub(exception_handler_size()); 366 if (handler_base == nullptr) { 367 // not enough space left for the handler 368 bailout("exception handler overflow"); 369 return -1; 370 } 371 372 int offset = code_offset(); 373 374 // the exception oop and pc are in rax, and rdx 375 // no other registers need to be preserved, so invalidate them 376 __ invalidate_registers(false, true, true, false, true, true); 377 378 // check that there is really an exception 379 __ verify_not_null_oop(rax); 380 381 // search an exception handler (rax: exception oop, rdx: throwing pc) 382 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id))); 383 __ should_not_reach_here(); 384 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 385 __ end_a_stub(); 386 387 return offset; 388 } 389 390 391 // Emit the code to remove the frame from the stack in the exception 392 // unwind path. 393 int LIR_Assembler::emit_unwind_handler() { 394 #ifndef PRODUCT 395 if (CommentedAssembly) { 396 _masm->block_comment("Unwind handler"); 397 } 398 #endif 399 400 int offset = code_offset(); 401 402 // Fetch the exception from TLS and clear out exception related thread state 403 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); 404 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), NULL_WORD); 405 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), NULL_WORD); 406 407 __ bind(_unwind_handler_entry); 408 __ verify_not_null_oop(rax); 409 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 410 __ mov(rbx, rax); // Preserve the exception (rbx is always callee-saved) 411 } 412 413 // Perform needed unlocking 414 MonitorExitStub* stub = nullptr; 415 if (method()->is_synchronized()) { 416 monitor_address(0, FrameMap::rax_opr); 417 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0); 418 if (LockingMode == LM_MONITOR) { 419 __ jmp(*stub->entry()); 420 } else { 421 __ unlock_object(rdi, rsi, rax, *stub->entry()); 422 } 423 __ bind(*stub->continuation()); 424 } 425 426 if (compilation()->env()->dtrace_method_probes()) { 427 __ mov(rdi, r15_thread); 428 __ mov_metadata(rsi, method()->constant_encoding()); 429 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit))); 430 } 431 432 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 433 __ mov(rax, rbx); // Restore the exception 434 } 435 436 // remove the activation and dispatch to the unwind handler 437 __ remove_frame(initial_frame_size_in_bytes()); 438 __ jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id))); 439 440 // Emit the slow path assembly 441 if (stub != nullptr) { 442 stub->emit_code(this); 443 } 444 445 return offset; 446 } 447 448 449 int LIR_Assembler::emit_deopt_handler() { 450 // generate code for exception handler 451 address handler_base = __ start_a_stub(deopt_handler_size()); 452 if (handler_base == nullptr) { 453 // not enough space left for the handler 454 bailout("deopt handler overflow"); 455 return -1; 456 } 457 458 int offset = code_offset(); 459 InternalAddress here(__ pc()); 460 461 __ pushptr(here.addr(), rscratch1); 462 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 463 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 464 __ end_a_stub(); 465 466 return offset; 467 } 468 469 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 470 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,"); 471 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) { 472 assert(result->fpu() == 0, "result must already be on TOS"); 473 } 474 475 // Pop the stack before the safepoint code 476 __ remove_frame(initial_frame_size_in_bytes()); 477 478 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 479 __ reserved_stack_check(); 480 } 481 482 // Note: we do not need to round double result; float result has the right precision 483 // the poll sets the condition code, but no data registers 484 485 code_stub->set_safepoint_offset(__ offset()); 486 __ relocate(relocInfo::poll_return_type); 487 __ safepoint_poll(*code_stub->entry(), true /* at_return */, true /* in_nmethod */); 488 __ ret(0); 489 } 490 491 492 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 493 guarantee(info != nullptr, "Shouldn't be null"); 494 int offset = __ offset(); 495 const Register poll_addr = rscratch1; 496 __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset())); 497 add_debug_info_for_branch(info); 498 __ relocate(relocInfo::poll_type); 499 address pre_pc = __ pc(); 500 __ testl(rax, Address(poll_addr, 0)); 501 address post_pc = __ pc(); 502 guarantee(pointer_delta(post_pc, pre_pc, 1) == 3, "must be exact length"); 503 return offset; 504 } 505 506 507 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 508 if (from_reg != to_reg) __ mov(to_reg, from_reg); 509 } 510 511 void LIR_Assembler::swap_reg(Register a, Register b) { 512 __ xchgptr(a, b); 513 } 514 515 516 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 517 assert(src->is_constant(), "should not call otherwise"); 518 assert(dest->is_register(), "should not call otherwise"); 519 LIR_Const* c = src->as_constant_ptr(); 520 521 switch (c->type()) { 522 case T_INT: { 523 assert(patch_code == lir_patch_none, "no patching handled here"); 524 __ movl(dest->as_register(), c->as_jint()); 525 break; 526 } 527 528 case T_ADDRESS: { 529 assert(patch_code == lir_patch_none, "no patching handled here"); 530 __ movptr(dest->as_register(), c->as_jint()); 531 break; 532 } 533 534 case T_LONG: { 535 assert(patch_code == lir_patch_none, "no patching handled here"); 536 if (SCCache::is_on_for_write()) { 537 // SCA needs relocation info for card table base 538 address b = c->as_pointer(); 539 if (is_card_table_address(b)) { 540 __ lea(dest->as_register_lo(), ExternalAddress(b)); 541 break; 542 } 543 if (AOTRuntimeConstants::contains(b)) { 544 __ load_aotrc_address(dest->as_register_lo(), b); 545 break; 546 } 547 } 548 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong()); 549 break; 550 } 551 552 case T_OBJECT: { 553 if (patch_code != lir_patch_none) { 554 jobject2reg_with_patching(dest->as_register(), info); 555 } else { 556 __ movoop(dest->as_register(), c->as_jobject()); 557 } 558 break; 559 } 560 561 case T_METADATA: { 562 if (patch_code != lir_patch_none) { 563 klass2reg_with_patching(dest->as_register(), info); 564 } else { 565 __ mov_metadata(dest->as_register(), c->as_metadata()); 566 } 567 break; 568 } 569 570 case T_FLOAT: { 571 if (dest->is_single_xmm()) { 572 if (UseAVX <= 2 && c->is_zero_float()) { 573 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg()); 574 } else { 575 __ movflt(dest->as_xmm_float_reg(), 576 InternalAddress(float_constant(c->as_jfloat()))); 577 } 578 } else { 579 ShouldNotReachHere(); 580 } 581 break; 582 } 583 584 case T_DOUBLE: { 585 if (dest->is_double_xmm()) { 586 if (UseAVX <= 2 && c->is_zero_double()) { 587 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg()); 588 } else { 589 __ movdbl(dest->as_xmm_double_reg(), 590 InternalAddress(double_constant(c->as_jdouble()))); 591 } 592 } else { 593 ShouldNotReachHere(); 594 } 595 break; 596 } 597 598 default: 599 ShouldNotReachHere(); 600 } 601 } 602 603 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 604 assert(src->is_constant(), "should not call otherwise"); 605 assert(dest->is_stack(), "should not call otherwise"); 606 LIR_Const* c = src->as_constant_ptr(); 607 608 switch (c->type()) { 609 case T_INT: // fall through 610 case T_FLOAT: 611 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 612 break; 613 614 case T_ADDRESS: 615 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 616 break; 617 618 case T_OBJECT: 619 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1); 620 break; 621 622 case T_LONG: // fall through 623 case T_DOUBLE: 624 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 625 lo_word_offset_in_bytes), 626 (intptr_t)c->as_jlong_bits(), 627 rscratch1); 628 break; 629 630 default: 631 ShouldNotReachHere(); 632 } 633 } 634 635 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 636 assert(src->is_constant(), "should not call otherwise"); 637 assert(dest->is_address(), "should not call otherwise"); 638 LIR_Const* c = src->as_constant_ptr(); 639 LIR_Address* addr = dest->as_address_ptr(); 640 641 int null_check_here = code_offset(); 642 switch (type) { 643 case T_INT: // fall through 644 case T_FLOAT: 645 __ movl(as_Address(addr), c->as_jint_bits()); 646 break; 647 648 case T_ADDRESS: 649 __ movptr(as_Address(addr), c->as_jint_bits()); 650 break; 651 652 case T_OBJECT: // fall through 653 case T_ARRAY: 654 if (c->as_jobject() == nullptr) { 655 if (UseCompressedOops && !wide) { 656 __ movl(as_Address(addr), NULL_WORD); 657 } else { 658 __ xorptr(rscratch1, rscratch1); 659 null_check_here = code_offset(); 660 __ movptr(as_Address(addr), rscratch1); 661 } 662 } else { 663 if (is_literal_address(addr)) { 664 ShouldNotReachHere(); 665 __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1); 666 } else { 667 __ movoop(rscratch1, c->as_jobject()); 668 if (UseCompressedOops && !wide) { 669 __ encode_heap_oop(rscratch1); 670 null_check_here = code_offset(); 671 __ movl(as_Address_lo(addr), rscratch1); 672 } else { 673 null_check_here = code_offset(); 674 __ movptr(as_Address_lo(addr), rscratch1); 675 } 676 } 677 } 678 break; 679 680 case T_LONG: // fall through 681 case T_DOUBLE: 682 if (is_literal_address(addr)) { 683 ShouldNotReachHere(); 684 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits()); 685 } else { 686 __ movptr(r10, (intptr_t)c->as_jlong_bits()); 687 null_check_here = code_offset(); 688 __ movptr(as_Address_lo(addr), r10); 689 } 690 break; 691 692 case T_BOOLEAN: // fall through 693 case T_BYTE: 694 __ movb(as_Address(addr), c->as_jint() & 0xFF); 695 break; 696 697 case T_CHAR: // fall through 698 case T_SHORT: 699 __ movw(as_Address(addr), c->as_jint() & 0xFFFF); 700 break; 701 702 default: 703 ShouldNotReachHere(); 704 }; 705 706 if (info != nullptr) { 707 add_debug_info_for_null_check(null_check_here, info); 708 } 709 } 710 711 712 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 713 assert(src->is_register(), "should not call otherwise"); 714 assert(dest->is_register(), "should not call otherwise"); 715 716 // move between cpu-registers 717 if (dest->is_single_cpu()) { 718 if (src->type() == T_LONG) { 719 // Can do LONG -> OBJECT 720 move_regs(src->as_register_lo(), dest->as_register()); 721 return; 722 } 723 assert(src->is_single_cpu(), "must match"); 724 if (src->type() == T_OBJECT) { 725 __ verify_oop(src->as_register()); 726 } 727 move_regs(src->as_register(), dest->as_register()); 728 729 } else if (dest->is_double_cpu()) { 730 if (is_reference_type(src->type())) { 731 // Surprising to me but we can see move of a long to t_object 732 __ verify_oop(src->as_register()); 733 move_regs(src->as_register(), dest->as_register_lo()); 734 return; 735 } 736 assert(src->is_double_cpu(), "must match"); 737 Register f_lo = src->as_register_lo(); 738 Register f_hi = src->as_register_hi(); 739 Register t_lo = dest->as_register_lo(); 740 Register t_hi = dest->as_register_hi(); 741 assert(f_hi == f_lo, "must be same"); 742 assert(t_hi == t_lo, "must be same"); 743 move_regs(f_lo, t_lo); 744 745 // move between xmm-registers 746 } else if (dest->is_single_xmm()) { 747 assert(src->is_single_xmm(), "must match"); 748 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg()); 749 } else if (dest->is_double_xmm()) { 750 assert(src->is_double_xmm(), "must match"); 751 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg()); 752 753 } else { 754 ShouldNotReachHere(); 755 } 756 } 757 758 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 759 assert(src->is_register(), "should not call otherwise"); 760 assert(dest->is_stack(), "should not call otherwise"); 761 762 if (src->is_single_cpu()) { 763 Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); 764 if (is_reference_type(type)) { 765 __ verify_oop(src->as_register()); 766 __ movptr (dst, src->as_register()); 767 } else if (type == T_METADATA || type == T_ADDRESS) { 768 __ movptr (dst, src->as_register()); 769 } else { 770 __ movl (dst, src->as_register()); 771 } 772 773 } else if (src->is_double_cpu()) { 774 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes); 775 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes); 776 __ movptr (dstLO, src->as_register_lo()); 777 778 } else if (src->is_single_xmm()) { 779 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 780 __ movflt(dst_addr, src->as_xmm_float_reg()); 781 782 } else if (src->is_double_xmm()) { 783 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 784 __ movdbl(dst_addr, src->as_xmm_double_reg()); 785 786 } else { 787 ShouldNotReachHere(); 788 } 789 } 790 791 792 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 793 LIR_Address* to_addr = dest->as_address_ptr(); 794 PatchingStub* patch = nullptr; 795 Register compressed_src = rscratch1; 796 797 if (is_reference_type(type)) { 798 __ verify_oop(src->as_register()); 799 if (UseCompressedOops && !wide) { 800 __ movptr(compressed_src, src->as_register()); 801 __ encode_heap_oop(compressed_src); 802 if (patch_code != lir_patch_none) { 803 info->oop_map()->set_narrowoop(compressed_src->as_VMReg()); 804 } 805 } 806 } 807 808 if (patch_code != lir_patch_none) { 809 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 810 Address toa = as_Address(to_addr); 811 assert(toa.disp() != 0, "must have"); 812 } 813 814 int null_check_here = code_offset(); 815 switch (type) { 816 case T_FLOAT: { 817 assert(src->is_single_xmm(), "not a float"); 818 __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); 819 break; 820 } 821 822 case T_DOUBLE: { 823 assert(src->is_double_xmm(), "not a double"); 824 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); 825 break; 826 } 827 828 case T_ARRAY: // fall through 829 case T_OBJECT: // fall through 830 if (UseCompressedOops && !wide) { 831 __ movl(as_Address(to_addr), compressed_src); 832 } else { 833 __ movptr(as_Address(to_addr), src->as_register()); 834 } 835 break; 836 case T_ADDRESS: 837 __ movptr(as_Address(to_addr), src->as_register()); 838 break; 839 case T_INT: 840 __ movl(as_Address(to_addr), src->as_register()); 841 break; 842 843 case T_LONG: { 844 Register from_lo = src->as_register_lo(); 845 Register from_hi = src->as_register_hi(); 846 __ movptr(as_Address_lo(to_addr), from_lo); 847 break; 848 } 849 850 case T_BYTE: // fall through 851 case T_BOOLEAN: { 852 Register src_reg = src->as_register(); 853 Address dst_addr = as_Address(to_addr); 854 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6"); 855 __ movb(dst_addr, src_reg); 856 break; 857 } 858 859 case T_CHAR: // fall through 860 case T_SHORT: 861 __ movw(as_Address(to_addr), src->as_register()); 862 break; 863 864 default: 865 ShouldNotReachHere(); 866 } 867 if (info != nullptr) { 868 add_debug_info_for_null_check(null_check_here, info); 869 } 870 871 if (patch_code != lir_patch_none) { 872 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info); 873 } 874 } 875 876 877 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 878 assert(src->is_stack(), "should not call otherwise"); 879 assert(dest->is_register(), "should not call otherwise"); 880 881 if (dest->is_single_cpu()) { 882 if (is_reference_type(type)) { 883 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 884 __ verify_oop(dest->as_register()); 885 } else if (type == T_METADATA || type == T_ADDRESS) { 886 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 887 } else { 888 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 889 } 890 891 } else if (dest->is_double_cpu()) { 892 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes); 893 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes); 894 __ movptr(dest->as_register_lo(), src_addr_LO); 895 896 } else if (dest->is_single_xmm()) { 897 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 898 __ movflt(dest->as_xmm_float_reg(), src_addr); 899 900 } else if (dest->is_double_xmm()) { 901 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 902 __ movdbl(dest->as_xmm_double_reg(), src_addr); 903 904 } else { 905 ShouldNotReachHere(); 906 } 907 } 908 909 910 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 911 if (src->is_single_stack()) { 912 if (is_reference_type(type)) { 913 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix())); 914 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix())); 915 } else { 916 //no pushl on 64bits 917 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix())); 918 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1); 919 } 920 921 } else if (src->is_double_stack()) { 922 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix())); 923 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix())); 924 925 } else { 926 ShouldNotReachHere(); 927 } 928 } 929 930 931 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 932 assert(src->is_address(), "should not call otherwise"); 933 assert(dest->is_register(), "should not call otherwise"); 934 935 LIR_Address* addr = src->as_address_ptr(); 936 Address from_addr = as_Address(addr); 937 938 if (addr->base()->type() == T_OBJECT) { 939 __ verify_oop(addr->base()->as_pointer_register()); 940 } 941 942 switch (type) { 943 case T_BOOLEAN: // fall through 944 case T_BYTE: // fall through 945 case T_CHAR: // fall through 946 case T_SHORT: 947 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) { 948 // on pre P6 processors we may get partial register stalls 949 // so blow away the value of to_rinfo before loading a 950 // partial word into it. Do it here so that it precedes 951 // the potential patch point below. 952 __ xorptr(dest->as_register(), dest->as_register()); 953 } 954 break; 955 default: 956 break; 957 } 958 959 PatchingStub* patch = nullptr; 960 if (patch_code != lir_patch_none) { 961 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 962 assert(from_addr.disp() != 0, "must have"); 963 } 964 if (info != nullptr) { 965 add_debug_info_for_null_check_here(info); 966 } 967 968 switch (type) { 969 case T_FLOAT: { 970 if (dest->is_single_xmm()) { 971 __ movflt(dest->as_xmm_float_reg(), from_addr); 972 } else { 973 ShouldNotReachHere(); 974 } 975 break; 976 } 977 978 case T_DOUBLE: { 979 if (dest->is_double_xmm()) { 980 __ movdbl(dest->as_xmm_double_reg(), from_addr); 981 } else { 982 ShouldNotReachHere(); 983 } 984 break; 985 } 986 987 case T_OBJECT: // fall through 988 case T_ARRAY: // fall through 989 if (UseCompressedOops && !wide) { 990 __ movl(dest->as_register(), from_addr); 991 } else { 992 __ movptr(dest->as_register(), from_addr); 993 } 994 break; 995 996 case T_ADDRESS: 997 __ movptr(dest->as_register(), from_addr); 998 break; 999 case T_INT: 1000 __ movl(dest->as_register(), from_addr); 1001 break; 1002 1003 case T_LONG: { 1004 Register to_lo = dest->as_register_lo(); 1005 Register to_hi = dest->as_register_hi(); 1006 __ movptr(to_lo, as_Address_lo(addr)); 1007 break; 1008 } 1009 1010 case T_BOOLEAN: // fall through 1011 case T_BYTE: { 1012 Register dest_reg = dest->as_register(); 1013 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1014 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1015 __ movsbl(dest_reg, from_addr); 1016 } else { 1017 __ movb(dest_reg, from_addr); 1018 __ shll(dest_reg, 24); 1019 __ sarl(dest_reg, 24); 1020 } 1021 break; 1022 } 1023 1024 case T_CHAR: { 1025 Register dest_reg = dest->as_register(); 1026 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1027 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1028 __ movzwl(dest_reg, from_addr); 1029 } else { 1030 __ movw(dest_reg, from_addr); 1031 } 1032 break; 1033 } 1034 1035 case T_SHORT: { 1036 Register dest_reg = dest->as_register(); 1037 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1038 __ movswl(dest_reg, from_addr); 1039 } else { 1040 __ movw(dest_reg, from_addr); 1041 __ shll(dest_reg, 16); 1042 __ sarl(dest_reg, 16); 1043 } 1044 break; 1045 } 1046 1047 default: 1048 ShouldNotReachHere(); 1049 } 1050 1051 if (patch != nullptr) { 1052 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 1053 } 1054 1055 if (is_reference_type(type)) { 1056 if (UseCompressedOops && !wide) { 1057 __ decode_heap_oop(dest->as_register()); 1058 } 1059 1060 __ verify_oop(dest->as_register()); 1061 } 1062 } 1063 1064 1065 NEEDS_CLEANUP; // This could be static? 1066 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const { 1067 int elem_size = type2aelembytes(type); 1068 switch (elem_size) { 1069 case 1: return Address::times_1; 1070 case 2: return Address::times_2; 1071 case 4: return Address::times_4; 1072 case 8: return Address::times_8; 1073 } 1074 ShouldNotReachHere(); 1075 return Address::no_scale; 1076 } 1077 1078 1079 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1080 switch (op->code()) { 1081 case lir_idiv: 1082 case lir_irem: 1083 arithmetic_idiv(op->code(), 1084 op->in_opr1(), 1085 op->in_opr2(), 1086 op->in_opr3(), 1087 op->result_opr(), 1088 op->info()); 1089 break; 1090 case lir_fmad: 1091 __ fmad(op->result_opr()->as_xmm_double_reg(), 1092 op->in_opr1()->as_xmm_double_reg(), 1093 op->in_opr2()->as_xmm_double_reg(), 1094 op->in_opr3()->as_xmm_double_reg()); 1095 break; 1096 case lir_fmaf: 1097 __ fmaf(op->result_opr()->as_xmm_float_reg(), 1098 op->in_opr1()->as_xmm_float_reg(), 1099 op->in_opr2()->as_xmm_float_reg(), 1100 op->in_opr3()->as_xmm_float_reg()); 1101 break; 1102 default: ShouldNotReachHere(); break; 1103 } 1104 } 1105 1106 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1107 #ifdef ASSERT 1108 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1109 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1110 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1111 #endif 1112 1113 if (op->cond() == lir_cond_always) { 1114 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1115 __ jmp (*(op->label())); 1116 } else { 1117 Assembler::Condition acond = Assembler::zero; 1118 if (op->code() == lir_cond_float_branch) { 1119 assert(op->ublock() != nullptr, "must have unordered successor"); 1120 __ jcc(Assembler::parity, *(op->ublock()->label())); 1121 switch(op->cond()) { 1122 case lir_cond_equal: acond = Assembler::equal; break; 1123 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1124 case lir_cond_less: acond = Assembler::below; break; 1125 case lir_cond_lessEqual: acond = Assembler::belowEqual; break; 1126 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break; 1127 case lir_cond_greater: acond = Assembler::above; break; 1128 default: ShouldNotReachHere(); 1129 } 1130 } else { 1131 switch (op->cond()) { 1132 case lir_cond_equal: acond = Assembler::equal; break; 1133 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1134 case lir_cond_less: acond = Assembler::less; break; 1135 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 1136 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 1137 case lir_cond_greater: acond = Assembler::greater; break; 1138 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 1139 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 1140 default: ShouldNotReachHere(); 1141 } 1142 } 1143 __ jcc(acond,*(op->label())); 1144 } 1145 } 1146 1147 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1148 LIR_Opr src = op->in_opr(); 1149 LIR_Opr dest = op->result_opr(); 1150 1151 switch (op->bytecode()) { 1152 case Bytecodes::_i2l: 1153 __ movl2ptr(dest->as_register_lo(), src->as_register()); 1154 break; 1155 1156 case Bytecodes::_l2i: 1157 __ movl(dest->as_register(), src->as_register_lo()); 1158 break; 1159 1160 case Bytecodes::_i2b: 1161 move_regs(src->as_register(), dest->as_register()); 1162 __ sign_extend_byte(dest->as_register()); 1163 break; 1164 1165 case Bytecodes::_i2c: 1166 move_regs(src->as_register(), dest->as_register()); 1167 __ andl(dest->as_register(), 0xFFFF); 1168 break; 1169 1170 case Bytecodes::_i2s: 1171 move_regs(src->as_register(), dest->as_register()); 1172 __ sign_extend_short(dest->as_register()); 1173 break; 1174 1175 case Bytecodes::_f2d: 1176 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); 1177 break; 1178 1179 case Bytecodes::_d2f: 1180 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); 1181 break; 1182 1183 case Bytecodes::_i2f: 1184 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register()); 1185 break; 1186 1187 case Bytecodes::_i2d: 1188 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register()); 1189 break; 1190 1191 case Bytecodes::_l2f: 1192 __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo()); 1193 break; 1194 1195 case Bytecodes::_l2d: 1196 __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo()); 1197 break; 1198 1199 case Bytecodes::_f2i: 1200 __ convert_f2i(dest->as_register(), src->as_xmm_float_reg()); 1201 break; 1202 1203 case Bytecodes::_d2i: 1204 __ convert_d2i(dest->as_register(), src->as_xmm_double_reg()); 1205 break; 1206 1207 case Bytecodes::_f2l: 1208 __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg()); 1209 break; 1210 1211 case Bytecodes::_d2l: 1212 __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg()); 1213 break; 1214 1215 default: ShouldNotReachHere(); 1216 } 1217 } 1218 1219 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1220 if (op->init_check()) { 1221 add_debug_info_for_null_check_here(op->stub()->info()); 1222 // init_state needs acquire, but x86 is TSO, and so we are already good. 1223 __ cmpb(Address(op->klass()->as_register(), 1224 InstanceKlass::init_state_offset()), 1225 InstanceKlass::fully_initialized); 1226 __ jcc(Assembler::notEqual, *op->stub()->entry()); 1227 } 1228 __ allocate_object(op->obj()->as_register(), 1229 op->tmp1()->as_register(), 1230 op->tmp2()->as_register(), 1231 op->header_size(), 1232 op->object_size(), 1233 op->klass()->as_register(), 1234 *op->stub()->entry()); 1235 __ bind(*op->stub()->continuation()); 1236 } 1237 1238 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1239 Register len = op->len()->as_register(); 1240 __ movslq(len, len); 1241 1242 if (UseSlowPath || 1243 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1244 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1245 __ jmp(*op->stub()->entry()); 1246 } else { 1247 Register tmp1 = op->tmp1()->as_register(); 1248 Register tmp2 = op->tmp2()->as_register(); 1249 Register tmp3 = op->tmp3()->as_register(); 1250 if (len == tmp1) { 1251 tmp1 = tmp3; 1252 } else if (len == tmp2) { 1253 tmp2 = tmp3; 1254 } else if (len == tmp3) { 1255 // everything is ok 1256 } else { 1257 __ mov(tmp3, len); 1258 } 1259 __ allocate_array(op->obj()->as_register(), 1260 len, 1261 tmp1, 1262 tmp2, 1263 arrayOopDesc::base_offset_in_bytes(op->type()), 1264 array_element_size(op->type()), 1265 op->klass()->as_register(), 1266 *op->stub()->entry(), 1267 op->zero_array()); 1268 } 1269 __ bind(*op->stub()->continuation()); 1270 } 1271 1272 void LIR_Assembler::type_profile_helper(Register mdo, 1273 ciMethodData *md, ciProfileData *data, 1274 Register recv, Label* update_done) { 1275 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1276 Label next_test; 1277 // See if the receiver is receiver[n]. 1278 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1279 __ jccb(Assembler::notEqual, next_test); 1280 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1281 __ addptr(data_addr, DataLayout::counter_increment); 1282 __ jmp(*update_done); 1283 __ bind(next_test); 1284 } 1285 1286 // Didn't find receiver; find next empty slot and fill it in 1287 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1288 Label next_test; 1289 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 1290 __ cmpptr(recv_addr, NULL_WORD); 1291 __ jccb(Assembler::notEqual, next_test); 1292 __ movptr(recv_addr, recv); 1293 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment); 1294 __ jmp(*update_done); 1295 __ bind(next_test); 1296 } 1297 } 1298 1299 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1300 // we always need a stub for the failure case. 1301 CodeStub* stub = op->stub(); 1302 Register obj = op->object()->as_register(); 1303 Register k_RInfo = op->tmp1()->as_register(); 1304 Register klass_RInfo = op->tmp2()->as_register(); 1305 Register dst = op->result_opr()->as_register(); 1306 ciKlass* k = op->klass(); 1307 Register Rtmp1 = noreg; 1308 Register tmp_load_klass = rscratch1; 1309 1310 // check if it needs to be profiled 1311 ciMethodData* md = nullptr; 1312 ciProfileData* data = nullptr; 1313 1314 if (op->should_profile()) { 1315 ciMethod* method = op->profiled_method(); 1316 assert(method != nullptr, "Should have method"); 1317 int bci = op->profiled_bci(); 1318 md = method->method_data_or_null(); 1319 assert(md != nullptr, "Sanity"); 1320 data = md->bci_to_data(bci); 1321 assert(data != nullptr, "need data for type check"); 1322 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1323 } 1324 Label* success_target = success; 1325 Label* failure_target = failure; 1326 1327 if (obj == k_RInfo) { 1328 k_RInfo = dst; 1329 } else if (obj == klass_RInfo) { 1330 klass_RInfo = dst; 1331 } 1332 if (k->is_loaded() && !UseCompressedClassPointers) { 1333 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1334 } else { 1335 Rtmp1 = op->tmp3()->as_register(); 1336 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1337 } 1338 1339 assert_different_registers(obj, k_RInfo, klass_RInfo); 1340 1341 __ testptr(obj, obj); 1342 if (op->should_profile()) { 1343 Label not_null; 1344 Register mdo = klass_RInfo; 1345 __ mov_metadata(mdo, md->constant_encoding()); 1346 __ jccb(Assembler::notEqual, not_null); 1347 // Object is null; update MDO and exit 1348 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1349 int header_bits = BitData::null_seen_byte_constant(); 1350 __ orb(data_addr, header_bits); 1351 __ jmp(*obj_is_null); 1352 __ bind(not_null); 1353 1354 Label update_done; 1355 Register recv = k_RInfo; 1356 __ load_klass(recv, obj, tmp_load_klass); 1357 type_profile_helper(mdo, md, data, recv, &update_done); 1358 1359 Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1360 __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment); 1361 1362 __ bind(update_done); 1363 } else { 1364 __ jcc(Assembler::equal, *obj_is_null); 1365 } 1366 1367 if (!k->is_loaded()) { 1368 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1369 } else { 1370 __ mov_metadata(k_RInfo, k->constant_encoding()); 1371 } 1372 __ verify_oop(obj); 1373 1374 if (op->fast_check()) { 1375 // get object class 1376 // not a safepoint as obj null check happens earlier 1377 if (UseCompressedClassPointers) { 1378 __ load_klass(Rtmp1, obj, tmp_load_klass); 1379 __ cmpptr(k_RInfo, Rtmp1); 1380 } else { 1381 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1382 } 1383 __ jcc(Assembler::notEqual, *failure_target); 1384 // successful cast, fall through to profile or jump 1385 } else { 1386 // get object class 1387 // not a safepoint as obj null check happens earlier 1388 __ load_klass(klass_RInfo, obj, tmp_load_klass); 1389 if (k->is_loaded()) { 1390 // See if we get an immediate positive hit 1391 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset())); 1392 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1393 __ jcc(Assembler::notEqual, *failure_target); 1394 // successful cast, fall through to profile or jump 1395 } else { 1396 // See if we get an immediate positive hit 1397 __ jcc(Assembler::equal, *success_target); 1398 // check for self 1399 __ cmpptr(klass_RInfo, k_RInfo); 1400 __ jcc(Assembler::equal, *success_target); 1401 1402 __ push(klass_RInfo); 1403 __ push(k_RInfo); 1404 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1405 __ pop(klass_RInfo); 1406 __ pop(klass_RInfo); 1407 // result is a boolean 1408 __ testl(klass_RInfo, klass_RInfo); 1409 __ jcc(Assembler::equal, *failure_target); 1410 // successful cast, fall through to profile or jump 1411 } 1412 } else { 1413 // perform the fast part of the checking logic 1414 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1415 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1416 __ push(klass_RInfo); 1417 __ push(k_RInfo); 1418 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1419 __ pop(klass_RInfo); 1420 __ pop(k_RInfo); 1421 // result is a boolean 1422 __ testl(k_RInfo, k_RInfo); 1423 __ jcc(Assembler::equal, *failure_target); 1424 // successful cast, fall through to profile or jump 1425 } 1426 } 1427 __ jmp(*success); 1428 } 1429 1430 1431 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1432 Register tmp_load_klass = rscratch1; 1433 LIR_Code code = op->code(); 1434 if (code == lir_store_check) { 1435 Register value = op->object()->as_register(); 1436 Register array = op->array()->as_register(); 1437 Register k_RInfo = op->tmp1()->as_register(); 1438 Register klass_RInfo = op->tmp2()->as_register(); 1439 Register Rtmp1 = op->tmp3()->as_register(); 1440 1441 CodeStub* stub = op->stub(); 1442 1443 // check if it needs to be profiled 1444 ciMethodData* md = nullptr; 1445 ciProfileData* data = nullptr; 1446 1447 if (op->should_profile()) { 1448 ciMethod* method = op->profiled_method(); 1449 assert(method != nullptr, "Should have method"); 1450 int bci = op->profiled_bci(); 1451 md = method->method_data_or_null(); 1452 assert(md != nullptr, "Sanity"); 1453 data = md->bci_to_data(bci); 1454 assert(data != nullptr, "need data for type check"); 1455 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1456 } 1457 Label done; 1458 Label* success_target = &done; 1459 Label* failure_target = stub->entry(); 1460 1461 __ testptr(value, value); 1462 if (op->should_profile()) { 1463 Label not_null; 1464 Register mdo = klass_RInfo; 1465 __ mov_metadata(mdo, md->constant_encoding()); 1466 __ jccb(Assembler::notEqual, not_null); 1467 // Object is null; update MDO and exit 1468 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1469 int header_bits = BitData::null_seen_byte_constant(); 1470 __ orb(data_addr, header_bits); 1471 __ jmp(done); 1472 __ bind(not_null); 1473 1474 Label update_done; 1475 Register recv = k_RInfo; 1476 __ load_klass(recv, value, tmp_load_klass); 1477 type_profile_helper(mdo, md, data, recv, &update_done); 1478 1479 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1480 __ addptr(counter_addr, DataLayout::counter_increment); 1481 __ bind(update_done); 1482 } else { 1483 __ jcc(Assembler::equal, done); 1484 } 1485 1486 add_debug_info_for_null_check_here(op->info_for_exception()); 1487 __ load_klass(k_RInfo, array, tmp_load_klass); 1488 __ load_klass(klass_RInfo, value, tmp_load_klass); 1489 1490 // get instance klass (it's already uncompressed) 1491 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1492 // perform the fast part of the checking logic 1493 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1494 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1495 __ push(klass_RInfo); 1496 __ push(k_RInfo); 1497 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1498 __ pop(klass_RInfo); 1499 __ pop(k_RInfo); 1500 // result is a boolean 1501 __ testl(k_RInfo, k_RInfo); 1502 __ jcc(Assembler::equal, *failure_target); 1503 // fall through to the success case 1504 1505 __ bind(done); 1506 } else 1507 if (code == lir_checkcast) { 1508 Register obj = op->object()->as_register(); 1509 Register dst = op->result_opr()->as_register(); 1510 Label success; 1511 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1512 __ bind(success); 1513 if (dst != obj) { 1514 __ mov(dst, obj); 1515 } 1516 } else 1517 if (code == lir_instanceof) { 1518 Register obj = op->object()->as_register(); 1519 Register dst = op->result_opr()->as_register(); 1520 Label success, failure, done; 1521 emit_typecheck_helper(op, &success, &failure, &failure); 1522 __ bind(failure); 1523 __ xorptr(dst, dst); 1524 __ jmpb(done); 1525 __ bind(success); 1526 __ movptr(dst, 1); 1527 __ bind(done); 1528 } else { 1529 ShouldNotReachHere(); 1530 } 1531 1532 } 1533 1534 1535 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1536 if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { 1537 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1538 Register newval = op->new_value()->as_register(); 1539 Register cmpval = op->cmp_value()->as_register(); 1540 assert(cmpval == rax, "wrong register"); 1541 assert(newval != noreg, "new val must be register"); 1542 assert(cmpval != newval, "cmp and new values must be in different registers"); 1543 assert(cmpval != addr, "cmp and addr must be in different registers"); 1544 assert(newval != addr, "new value and addr must be in different registers"); 1545 1546 if (op->code() == lir_cas_obj) { 1547 if (UseCompressedOops) { 1548 __ encode_heap_oop(cmpval); 1549 __ mov(rscratch1, newval); 1550 __ encode_heap_oop(rscratch1); 1551 __ lock(); 1552 // cmpval (rax) is implicitly used by this instruction 1553 __ cmpxchgl(rscratch1, Address(addr, 0)); 1554 } else { 1555 __ lock(); 1556 __ cmpxchgptr(newval, Address(addr, 0)); 1557 } 1558 } else { 1559 assert(op->code() == lir_cas_int, "lir_cas_int expected"); 1560 __ lock(); 1561 __ cmpxchgl(newval, Address(addr, 0)); 1562 } 1563 } else if (op->code() == lir_cas_long) { 1564 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1565 Register newval = op->new_value()->as_register_lo(); 1566 Register cmpval = op->cmp_value()->as_register_lo(); 1567 assert(cmpval == rax, "wrong register"); 1568 assert(newval != noreg, "new val must be register"); 1569 assert(cmpval != newval, "cmp and new values must be in different registers"); 1570 assert(cmpval != addr, "cmp and addr must be in different registers"); 1571 assert(newval != addr, "new value and addr must be in different registers"); 1572 __ lock(); 1573 __ cmpxchgq(newval, Address(addr, 0)); 1574 } else { 1575 Unimplemented(); 1576 } 1577 } 1578 1579 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1580 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1581 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86"); 1582 1583 Assembler::Condition acond, ncond; 1584 switch (condition) { 1585 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break; 1586 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break; 1587 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break; 1588 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break; 1589 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break; 1590 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break; 1591 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break; 1592 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break; 1593 default: acond = Assembler::equal; ncond = Assembler::notEqual; 1594 ShouldNotReachHere(); 1595 } 1596 1597 if (opr1->is_cpu_register()) { 1598 reg2reg(opr1, result); 1599 } else if (opr1->is_stack()) { 1600 stack2reg(opr1, result, result->type()); 1601 } else if (opr1->is_constant()) { 1602 const2reg(opr1, result, lir_patch_none, nullptr); 1603 } else { 1604 ShouldNotReachHere(); 1605 } 1606 1607 if (VM_Version::supports_cmov() && !opr2->is_constant()) { 1608 // optimized version that does not require a branch 1609 if (opr2->is_single_cpu()) { 1610 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); 1611 __ cmov(ncond, result->as_register(), opr2->as_register()); 1612 } else if (opr2->is_double_cpu()) { 1613 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1614 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1615 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo()); 1616 } else if (opr2->is_single_stack()) { 1617 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix())); 1618 } else if (opr2->is_double_stack()) { 1619 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes)); 1620 } else { 1621 ShouldNotReachHere(); 1622 } 1623 1624 } else { 1625 Label skip; 1626 __ jccb(acond, skip); 1627 if (opr2->is_cpu_register()) { 1628 reg2reg(opr2, result); 1629 } else if (opr2->is_stack()) { 1630 stack2reg(opr2, result, result->type()); 1631 } else if (opr2->is_constant()) { 1632 const2reg(opr2, result, lir_patch_none, nullptr); 1633 } else { 1634 ShouldNotReachHere(); 1635 } 1636 __ bind(skip); 1637 } 1638 } 1639 1640 1641 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info) { 1642 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1643 1644 if (left->is_single_cpu()) { 1645 assert(left == dest, "left and dest must be equal"); 1646 Register lreg = left->as_register(); 1647 1648 if (right->is_single_cpu()) { 1649 // cpu register - cpu register 1650 Register rreg = right->as_register(); 1651 switch (code) { 1652 case lir_add: __ addl (lreg, rreg); break; 1653 case lir_sub: __ subl (lreg, rreg); break; 1654 case lir_mul: __ imull(lreg, rreg); break; 1655 default: ShouldNotReachHere(); 1656 } 1657 1658 } else if (right->is_stack()) { 1659 // cpu register - stack 1660 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1661 switch (code) { 1662 case lir_add: __ addl(lreg, raddr); break; 1663 case lir_sub: __ subl(lreg, raddr); break; 1664 default: ShouldNotReachHere(); 1665 } 1666 1667 } else if (right->is_constant()) { 1668 // cpu register - constant 1669 jint c = right->as_constant_ptr()->as_jint(); 1670 switch (code) { 1671 case lir_add: { 1672 __ incrementl(lreg, c); 1673 break; 1674 } 1675 case lir_sub: { 1676 __ decrementl(lreg, c); 1677 break; 1678 } 1679 default: ShouldNotReachHere(); 1680 } 1681 1682 } else { 1683 ShouldNotReachHere(); 1684 } 1685 1686 } else if (left->is_double_cpu()) { 1687 assert(left == dest, "left and dest must be equal"); 1688 Register lreg_lo = left->as_register_lo(); 1689 Register lreg_hi = left->as_register_hi(); 1690 1691 if (right->is_double_cpu()) { 1692 // cpu register - cpu register 1693 Register rreg_lo = right->as_register_lo(); 1694 Register rreg_hi = right->as_register_hi(); 1695 assert_different_registers(lreg_lo, rreg_lo); 1696 switch (code) { 1697 case lir_add: 1698 __ addptr(lreg_lo, rreg_lo); 1699 break; 1700 case lir_sub: 1701 __ subptr(lreg_lo, rreg_lo); 1702 break; 1703 case lir_mul: 1704 __ imulq(lreg_lo, rreg_lo); 1705 break; 1706 default: 1707 ShouldNotReachHere(); 1708 } 1709 1710 } else if (right->is_constant()) { 1711 // cpu register - constant 1712 jlong c = right->as_constant_ptr()->as_jlong_bits(); 1713 __ movptr(r10, (intptr_t) c); 1714 switch (code) { 1715 case lir_add: 1716 __ addptr(lreg_lo, r10); 1717 break; 1718 case lir_sub: 1719 __ subptr(lreg_lo, r10); 1720 break; 1721 default: 1722 ShouldNotReachHere(); 1723 } 1724 1725 } else { 1726 ShouldNotReachHere(); 1727 } 1728 1729 } else if (left->is_single_xmm()) { 1730 assert(left == dest, "left and dest must be equal"); 1731 XMMRegister lreg = left->as_xmm_float_reg(); 1732 1733 if (right->is_single_xmm()) { 1734 XMMRegister rreg = right->as_xmm_float_reg(); 1735 switch (code) { 1736 case lir_add: __ addss(lreg, rreg); break; 1737 case lir_sub: __ subss(lreg, rreg); break; 1738 case lir_mul: __ mulss(lreg, rreg); break; 1739 case lir_div: __ divss(lreg, rreg); break; 1740 default: ShouldNotReachHere(); 1741 } 1742 } else { 1743 Address raddr; 1744 if (right->is_single_stack()) { 1745 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1746 } else if (right->is_constant()) { 1747 // hack for now 1748 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat()))); 1749 } else { 1750 ShouldNotReachHere(); 1751 } 1752 switch (code) { 1753 case lir_add: __ addss(lreg, raddr); break; 1754 case lir_sub: __ subss(lreg, raddr); break; 1755 case lir_mul: __ mulss(lreg, raddr); break; 1756 case lir_div: __ divss(lreg, raddr); break; 1757 default: ShouldNotReachHere(); 1758 } 1759 } 1760 1761 } else if (left->is_double_xmm()) { 1762 assert(left == dest, "left and dest must be equal"); 1763 1764 XMMRegister lreg = left->as_xmm_double_reg(); 1765 if (right->is_double_xmm()) { 1766 XMMRegister rreg = right->as_xmm_double_reg(); 1767 switch (code) { 1768 case lir_add: __ addsd(lreg, rreg); break; 1769 case lir_sub: __ subsd(lreg, rreg); break; 1770 case lir_mul: __ mulsd(lreg, rreg); break; 1771 case lir_div: __ divsd(lreg, rreg); break; 1772 default: ShouldNotReachHere(); 1773 } 1774 } else { 1775 Address raddr; 1776 if (right->is_double_stack()) { 1777 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 1778 } else if (right->is_constant()) { 1779 // hack for now 1780 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 1781 } else { 1782 ShouldNotReachHere(); 1783 } 1784 switch (code) { 1785 case lir_add: __ addsd(lreg, raddr); break; 1786 case lir_sub: __ subsd(lreg, raddr); break; 1787 case lir_mul: __ mulsd(lreg, raddr); break; 1788 case lir_div: __ divsd(lreg, raddr); break; 1789 default: ShouldNotReachHere(); 1790 } 1791 } 1792 1793 } else if (left->is_single_stack() || left->is_address()) { 1794 assert(left == dest, "left and dest must be equal"); 1795 1796 Address laddr; 1797 if (left->is_single_stack()) { 1798 laddr = frame_map()->address_for_slot(left->single_stack_ix()); 1799 } else if (left->is_address()) { 1800 laddr = as_Address(left->as_address_ptr()); 1801 } else { 1802 ShouldNotReachHere(); 1803 } 1804 1805 if (right->is_single_cpu()) { 1806 Register rreg = right->as_register(); 1807 switch (code) { 1808 case lir_add: __ addl(laddr, rreg); break; 1809 case lir_sub: __ subl(laddr, rreg); break; 1810 default: ShouldNotReachHere(); 1811 } 1812 } else if (right->is_constant()) { 1813 jint c = right->as_constant_ptr()->as_jint(); 1814 switch (code) { 1815 case lir_add: { 1816 __ incrementl(laddr, c); 1817 break; 1818 } 1819 case lir_sub: { 1820 __ decrementl(laddr, c); 1821 break; 1822 } 1823 default: ShouldNotReachHere(); 1824 } 1825 } else { 1826 ShouldNotReachHere(); 1827 } 1828 1829 } else { 1830 ShouldNotReachHere(); 1831 } 1832 } 1833 1834 1835 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1836 if (value->is_double_xmm()) { 1837 switch(code) { 1838 case lir_abs : 1839 { 1840 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) { 1841 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); 1842 } 1843 assert(!tmp->is_valid(), "do not need temporary"); 1844 __ andpd(dest->as_xmm_double_reg(), 1845 ExternalAddress(LIR_Assembler::double_signmask_pool), 1846 rscratch1); 1847 } 1848 break; 1849 1850 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break; 1851 // all other intrinsics are not available in the SSE instruction set, so FPU is used 1852 default : ShouldNotReachHere(); 1853 } 1854 1855 } else if (code == lir_f2hf) { 1856 __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg()); 1857 } else if (code == lir_hf2f) { 1858 __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register()); 1859 } else { 1860 Unimplemented(); 1861 } 1862 } 1863 1864 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1865 // assert(left->destroys_register(), "check"); 1866 if (left->is_single_cpu()) { 1867 Register reg = left->as_register(); 1868 if (right->is_constant()) { 1869 int val = right->as_constant_ptr()->as_jint(); 1870 switch (code) { 1871 case lir_logic_and: __ andl (reg, val); break; 1872 case lir_logic_or: __ orl (reg, val); break; 1873 case lir_logic_xor: __ xorl (reg, val); break; 1874 default: ShouldNotReachHere(); 1875 } 1876 } else if (right->is_stack()) { 1877 // added support for stack operands 1878 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1879 switch (code) { 1880 case lir_logic_and: __ andl (reg, raddr); break; 1881 case lir_logic_or: __ orl (reg, raddr); break; 1882 case lir_logic_xor: __ xorl (reg, raddr); break; 1883 default: ShouldNotReachHere(); 1884 } 1885 } else { 1886 Register rright = right->as_register(); 1887 switch (code) { 1888 case lir_logic_and: __ andptr (reg, rright); break; 1889 case lir_logic_or : __ orptr (reg, rright); break; 1890 case lir_logic_xor: __ xorptr (reg, rright); break; 1891 default: ShouldNotReachHere(); 1892 } 1893 } 1894 move_regs(reg, dst->as_register()); 1895 } else { 1896 Register l_lo = left->as_register_lo(); 1897 Register l_hi = left->as_register_hi(); 1898 if (right->is_constant()) { 1899 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong()); 1900 switch (code) { 1901 case lir_logic_and: 1902 __ andq(l_lo, rscratch1); 1903 break; 1904 case lir_logic_or: 1905 __ orq(l_lo, rscratch1); 1906 break; 1907 case lir_logic_xor: 1908 __ xorq(l_lo, rscratch1); 1909 break; 1910 default: ShouldNotReachHere(); 1911 } 1912 } else { 1913 Register r_lo; 1914 if (is_reference_type(right->type())) { 1915 r_lo = right->as_register(); 1916 } else { 1917 r_lo = right->as_register_lo(); 1918 } 1919 switch (code) { 1920 case lir_logic_and: 1921 __ andptr(l_lo, r_lo); 1922 break; 1923 case lir_logic_or: 1924 __ orptr(l_lo, r_lo); 1925 break; 1926 case lir_logic_xor: 1927 __ xorptr(l_lo, r_lo); 1928 break; 1929 default: ShouldNotReachHere(); 1930 } 1931 } 1932 1933 Register dst_lo = dst->as_register_lo(); 1934 Register dst_hi = dst->as_register_hi(); 1935 1936 move_regs(l_lo, dst_lo); 1937 } 1938 } 1939 1940 1941 // we assume that rax, and rdx can be overwritten 1942 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 1943 1944 assert(left->is_single_cpu(), "left must be register"); 1945 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1946 assert(result->is_single_cpu(), "result must be register"); 1947 1948 // assert(left->destroys_register(), "check"); 1949 // assert(right->destroys_register(), "check"); 1950 1951 Register lreg = left->as_register(); 1952 Register dreg = result->as_register(); 1953 1954 if (right->is_constant()) { 1955 jint divisor = right->as_constant_ptr()->as_jint(); 1956 assert(divisor > 0 && is_power_of_2(divisor), "must be"); 1957 if (code == lir_idiv) { 1958 assert(lreg == rax, "must be rax,"); 1959 assert(temp->as_register() == rdx, "tmp register must be rdx"); 1960 __ cdql(); // sign extend into rdx:rax 1961 if (divisor == 2) { 1962 __ subl(lreg, rdx); 1963 } else { 1964 __ andl(rdx, divisor - 1); 1965 __ addl(lreg, rdx); 1966 } 1967 __ sarl(lreg, log2i_exact(divisor)); 1968 move_regs(lreg, dreg); 1969 } else if (code == lir_irem) { 1970 Label done; 1971 __ mov(dreg, lreg); 1972 __ andl(dreg, 0x80000000 | (divisor - 1)); 1973 __ jcc(Assembler::positive, done); 1974 __ decrement(dreg); 1975 __ orl(dreg, ~(divisor - 1)); 1976 __ increment(dreg); 1977 __ bind(done); 1978 } else { 1979 ShouldNotReachHere(); 1980 } 1981 } else { 1982 Register rreg = right->as_register(); 1983 assert(lreg == rax, "left register must be rax,"); 1984 assert(rreg != rdx, "right register must not be rdx"); 1985 assert(temp->as_register() == rdx, "tmp register must be rdx"); 1986 1987 move_regs(lreg, rax); 1988 1989 int idivl_offset = __ corrected_idivl(rreg); 1990 if (ImplicitDiv0Checks) { 1991 add_debug_info_for_div0(idivl_offset, info); 1992 } 1993 if (code == lir_irem) { 1994 move_regs(rdx, dreg); // result is in rdx 1995 } else { 1996 move_regs(rax, dreg); 1997 } 1998 } 1999 } 2000 2001 2002 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 2003 if (opr1->is_single_cpu()) { 2004 Register reg1 = opr1->as_register(); 2005 if (opr2->is_single_cpu()) { 2006 // cpu register - cpu register 2007 if (is_reference_type(opr1->type())) { 2008 __ cmpoop(reg1, opr2->as_register()); 2009 } else { 2010 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 2011 __ cmpl(reg1, opr2->as_register()); 2012 } 2013 } else if (opr2->is_stack()) { 2014 // cpu register - stack 2015 if (is_reference_type(opr1->type())) { 2016 __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2017 } else { 2018 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2019 } 2020 } else if (opr2->is_constant()) { 2021 // cpu register - constant 2022 LIR_Const* c = opr2->as_constant_ptr(); 2023 if (c->type() == T_INT) { 2024 jint i = c->as_jint(); 2025 if (i == 0) { 2026 __ testl(reg1, reg1); 2027 } else { 2028 __ cmpl(reg1, i); 2029 } 2030 } else if (c->type() == T_METADATA) { 2031 // All we need for now is a comparison with null for equality. 2032 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 2033 Metadata* m = c->as_metadata(); 2034 if (m == nullptr) { 2035 __ testptr(reg1, reg1); 2036 } else { 2037 ShouldNotReachHere(); 2038 } 2039 } else if (is_reference_type(c->type())) { 2040 // In 64bit oops are single register 2041 jobject o = c->as_jobject(); 2042 if (o == nullptr) { 2043 __ testptr(reg1, reg1); 2044 } else { 2045 __ cmpoop(reg1, o, rscratch1); 2046 } 2047 } else { 2048 fatal("unexpected type: %s", basictype_to_str(c->type())); 2049 } 2050 // cpu register - address 2051 } else if (opr2->is_address()) { 2052 if (op->info() != nullptr) { 2053 add_debug_info_for_null_check_here(op->info()); 2054 } 2055 __ cmpl(reg1, as_Address(opr2->as_address_ptr())); 2056 } else { 2057 ShouldNotReachHere(); 2058 } 2059 2060 } else if(opr1->is_double_cpu()) { 2061 Register xlo = opr1->as_register_lo(); 2062 Register xhi = opr1->as_register_hi(); 2063 if (opr2->is_double_cpu()) { 2064 __ cmpptr(xlo, opr2->as_register_lo()); 2065 } else if (opr2->is_constant()) { 2066 // cpu register - constant 0 2067 assert(opr2->as_jlong() == (jlong)0, "only handles zero"); 2068 __ cmpptr(xlo, (int32_t)opr2->as_jlong()); 2069 } else { 2070 ShouldNotReachHere(); 2071 } 2072 2073 } else if (opr1->is_single_xmm()) { 2074 XMMRegister reg1 = opr1->as_xmm_float_reg(); 2075 if (opr2->is_single_xmm()) { 2076 // xmm register - xmm register 2077 __ ucomiss(reg1, opr2->as_xmm_float_reg()); 2078 } else if (opr2->is_stack()) { 2079 // xmm register - stack 2080 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2081 } else if (opr2->is_constant()) { 2082 // xmm register - constant 2083 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat()))); 2084 } else if (opr2->is_address()) { 2085 // xmm register - address 2086 if (op->info() != nullptr) { 2087 add_debug_info_for_null_check_here(op->info()); 2088 } 2089 __ ucomiss(reg1, as_Address(opr2->as_address_ptr())); 2090 } else { 2091 ShouldNotReachHere(); 2092 } 2093 2094 } else if (opr1->is_double_xmm()) { 2095 XMMRegister reg1 = opr1->as_xmm_double_reg(); 2096 if (opr2->is_double_xmm()) { 2097 // xmm register - xmm register 2098 __ ucomisd(reg1, opr2->as_xmm_double_reg()); 2099 } else if (opr2->is_stack()) { 2100 // xmm register - stack 2101 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix())); 2102 } else if (opr2->is_constant()) { 2103 // xmm register - constant 2104 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble()))); 2105 } else if (opr2->is_address()) { 2106 // xmm register - address 2107 if (op->info() != nullptr) { 2108 add_debug_info_for_null_check_here(op->info()); 2109 } 2110 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address())); 2111 } else { 2112 ShouldNotReachHere(); 2113 } 2114 2115 } else if (opr1->is_address() && opr2->is_constant()) { 2116 LIR_Const* c = opr2->as_constant_ptr(); 2117 if (is_reference_type(c->type())) { 2118 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse"); 2119 __ movoop(rscratch1, c->as_jobject()); 2120 } 2121 if (op->info() != nullptr) { 2122 add_debug_info_for_null_check_here(op->info()); 2123 } 2124 // special case: address - constant 2125 LIR_Address* addr = opr1->as_address_ptr(); 2126 if (c->type() == T_INT) { 2127 __ cmpl(as_Address(addr), c->as_jint()); 2128 } else if (is_reference_type(c->type())) { 2129 // %%% Make this explode if addr isn't reachable until we figure out a 2130 // better strategy by giving noreg as the temp for as_Address 2131 __ cmpoop(rscratch1, as_Address(addr, noreg)); 2132 } else { 2133 ShouldNotReachHere(); 2134 } 2135 2136 } else { 2137 ShouldNotReachHere(); 2138 } 2139 } 2140 2141 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { 2142 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2143 if (left->is_single_xmm()) { 2144 assert(right->is_single_xmm(), "must match"); 2145 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2146 } else if (left->is_double_xmm()) { 2147 assert(right->is_double_xmm(), "must match"); 2148 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2149 2150 } else { 2151 ShouldNotReachHere(); 2152 } 2153 } else { 2154 assert(code == lir_cmp_l2i, "check"); 2155 Label done; 2156 Register dest = dst->as_register(); 2157 __ cmpptr(left->as_register_lo(), right->as_register_lo()); 2158 __ movl(dest, -1); 2159 __ jccb(Assembler::less, done); 2160 __ setb(Assembler::notZero, dest); 2161 __ movzbl(dest, dest); 2162 __ bind(done); 2163 } 2164 } 2165 2166 2167 void LIR_Assembler::align_call(LIR_Code code) { 2168 // make sure that the displacement word of the call ends up word aligned 2169 int offset = __ offset(); 2170 switch (code) { 2171 case lir_static_call: 2172 case lir_optvirtual_call: 2173 case lir_dynamic_call: 2174 offset += NativeCall::displacement_offset; 2175 break; 2176 case lir_icvirtual_call: 2177 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size_rex; 2178 break; 2179 default: ShouldNotReachHere(); 2180 } 2181 __ align(BytesPerWord, offset); 2182 } 2183 2184 2185 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2186 assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0, 2187 "must be aligned"); 2188 __ call(AddressLiteral(op->addr(), rtype)); 2189 add_call_info(code_offset(), op->info()); 2190 __ post_call_nop(); 2191 } 2192 2193 2194 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2195 __ ic_call(op->addr()); 2196 add_call_info(code_offset(), op->info()); 2197 assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0, 2198 "must be aligned"); 2199 __ post_call_nop(); 2200 } 2201 2202 2203 void LIR_Assembler::emit_static_call_stub() { 2204 address call_pc = __ pc(); 2205 address stub = __ start_a_stub(call_stub_size()); 2206 if (stub == nullptr) { 2207 bailout("static call stub overflow"); 2208 return; 2209 } 2210 2211 int start = __ offset(); 2212 2213 // make sure that the displacement word of the call ends up word aligned 2214 __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size_rex + NativeCall::displacement_offset); 2215 __ relocate(static_stub_Relocation::spec(call_pc)); 2216 __ mov_metadata(rbx, (Metadata*)nullptr); 2217 // must be set to -1 at code generation time 2218 assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned"); 2219 // On 64bit this will die since it will take a movq & jmp, must be only a jmp 2220 __ jump(RuntimeAddress(__ pc())); 2221 2222 assert(__ offset() - start <= call_stub_size(), "stub too big"); 2223 __ end_a_stub(); 2224 } 2225 2226 2227 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2228 assert(exceptionOop->as_register() == rax, "must match"); 2229 assert(exceptionPC->as_register() == rdx, "must match"); 2230 2231 // exception object is not added to oop map by LinearScan 2232 // (LinearScan assumes that no oops are in fixed registers) 2233 info->add_register_oop(exceptionOop); 2234 C1StubId unwind_id; 2235 2236 // get current pc information 2237 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2238 int pc_for_athrow_offset = __ offset(); 2239 InternalAddress pc_for_athrow(__ pc()); 2240 __ lea(exceptionPC->as_register(), pc_for_athrow); 2241 add_call_info(pc_for_athrow_offset, info); // for exception handler 2242 2243 __ verify_not_null_oop(rax); 2244 // search an exception handler (rax: exception oop, rdx: throwing pc) 2245 if (compilation()->has_fpu_code()) { 2246 unwind_id = C1StubId::handle_exception_id; 2247 } else { 2248 unwind_id = C1StubId::handle_exception_nofpu_id; 2249 } 2250 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2251 2252 // enough room for two byte trap 2253 __ nop(); 2254 } 2255 2256 2257 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2258 assert(exceptionOop->as_register() == rax, "must match"); 2259 2260 __ jmp(_unwind_handler_entry); 2261 } 2262 2263 2264 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2265 2266 // optimized version for linear scan: 2267 // * count must be already in ECX (guaranteed by LinearScan) 2268 // * left and dest must be equal 2269 // * tmp must be unused 2270 assert(count->as_register() == SHIFT_count, "count must be in ECX"); 2271 assert(left == dest, "left and dest must be equal"); 2272 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2273 2274 if (left->is_single_cpu()) { 2275 Register value = left->as_register(); 2276 assert(value != SHIFT_count, "left cannot be ECX"); 2277 2278 switch (code) { 2279 case lir_shl: __ shll(value); break; 2280 case lir_shr: __ sarl(value); break; 2281 case lir_ushr: __ shrl(value); break; 2282 default: ShouldNotReachHere(); 2283 } 2284 } else if (left->is_double_cpu()) { 2285 Register lo = left->as_register_lo(); 2286 Register hi = left->as_register_hi(); 2287 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX"); 2288 switch (code) { 2289 case lir_shl: __ shlptr(lo); break; 2290 case lir_shr: __ sarptr(lo); break; 2291 case lir_ushr: __ shrptr(lo); break; 2292 default: ShouldNotReachHere(); 2293 } 2294 } else { 2295 ShouldNotReachHere(); 2296 } 2297 } 2298 2299 2300 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2301 if (dest->is_single_cpu()) { 2302 // first move left into dest so that left is not destroyed by the shift 2303 Register value = dest->as_register(); 2304 count = count & 0x1F; // Java spec 2305 2306 move_regs(left->as_register(), value); 2307 switch (code) { 2308 case lir_shl: __ shll(value, count); break; 2309 case lir_shr: __ sarl(value, count); break; 2310 case lir_ushr: __ shrl(value, count); break; 2311 default: ShouldNotReachHere(); 2312 } 2313 } else if (dest->is_double_cpu()) { 2314 // first move left into dest so that left is not destroyed by the shift 2315 Register value = dest->as_register_lo(); 2316 count = count & 0x1F; // Java spec 2317 2318 move_regs(left->as_register_lo(), value); 2319 switch (code) { 2320 case lir_shl: __ shlptr(value, count); break; 2321 case lir_shr: __ sarptr(value, count); break; 2322 case lir_ushr: __ shrptr(value, count); break; 2323 default: ShouldNotReachHere(); 2324 } 2325 } else { 2326 ShouldNotReachHere(); 2327 } 2328 } 2329 2330 2331 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2332 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2333 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2334 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2335 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r); 2336 } 2337 2338 2339 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2340 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2341 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2342 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2343 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c); 2344 } 2345 2346 2347 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2348 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2349 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2350 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2351 __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1); 2352 } 2353 2354 2355 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) { 2356 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2357 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2358 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2359 __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1); 2360 } 2361 2362 2363 // This code replaces a call to arraycopy; no exception may 2364 // be thrown in this code, they must be thrown in the System.arraycopy 2365 // activation frame; we could save some checks if this would not be the case 2366 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2367 ciArrayKlass* default_type = op->expected_type(); 2368 Register src = op->src()->as_register(); 2369 Register dst = op->dst()->as_register(); 2370 Register src_pos = op->src_pos()->as_register(); 2371 Register dst_pos = op->dst_pos()->as_register(); 2372 Register length = op->length()->as_register(); 2373 Register tmp = op->tmp()->as_register(); 2374 Register tmp_load_klass = rscratch1; 2375 Register tmp2 = UseCompactObjectHeaders ? rscratch2 : noreg; 2376 2377 CodeStub* stub = op->stub(); 2378 int flags = op->flags(); 2379 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2380 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2381 2382 // if we don't know anything, just go through the generic arraycopy 2383 if (default_type == nullptr) { 2384 // save outgoing arguments on stack in case call to System.arraycopy is needed 2385 // HACK ALERT. This code used to push the parameters in a hardwired fashion 2386 // for interpreter calling conventions. Now we have to do it in new style conventions. 2387 // For the moment until C1 gets the new register allocator I just force all the 2388 // args to the right place (except the register args) and then on the back side 2389 // reload the register args properly if we go slow path. Yuck 2390 2391 // These are proper for the calling convention 2392 store_parameter(length, 2); 2393 store_parameter(dst_pos, 1); 2394 store_parameter(dst, 0); 2395 2396 // these are just temporary placements until we need to reload 2397 store_parameter(src_pos, 3); 2398 store_parameter(src, 4); 2399 2400 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2401 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2402 2403 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint 2404 // The arguments are in java calling convention so we can trivially shift them to C 2405 // convention 2406 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2407 __ mov(c_rarg0, j_rarg0); 2408 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2409 __ mov(c_rarg1, j_rarg1); 2410 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2411 __ mov(c_rarg2, j_rarg2); 2412 assert_different_registers(c_rarg3, j_rarg4); 2413 __ mov(c_rarg3, j_rarg3); 2414 #ifdef _WIN64 2415 // Allocate abi space for args but be sure to keep stack aligned 2416 __ subptr(rsp, 6*wordSize); 2417 store_parameter(j_rarg4, 4); 2418 #ifndef PRODUCT 2419 if (PrintC1Statistics) { 2420 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 2421 } 2422 #endif 2423 __ call(RuntimeAddress(copyfunc_addr)); 2424 __ addptr(rsp, 6*wordSize); 2425 #else 2426 __ mov(c_rarg4, j_rarg4); 2427 #ifndef PRODUCT 2428 if (PrintC1Statistics) { 2429 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 2430 } 2431 #endif 2432 __ call(RuntimeAddress(copyfunc_addr)); 2433 #endif // _WIN64 2434 2435 __ testl(rax, rax); 2436 __ jcc(Assembler::equal, *stub->continuation()); 2437 2438 __ mov(tmp, rax); 2439 __ xorl(tmp, -1); 2440 2441 // Reload values from the stack so they are where the stub 2442 // expects them. 2443 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 2444 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 2445 __ movptr (length, Address(rsp, 2*BytesPerWord)); 2446 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 2447 __ movptr (src, Address(rsp, 4*BytesPerWord)); 2448 2449 __ subl(length, tmp); 2450 __ addl(src_pos, tmp); 2451 __ addl(dst_pos, tmp); 2452 __ jmp(*stub->entry()); 2453 2454 __ bind(*stub->continuation()); 2455 return; 2456 } 2457 2458 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2459 2460 int elem_size = type2aelembytes(basic_type); 2461 Address::ScaleFactor scale; 2462 2463 switch (elem_size) { 2464 case 1 : 2465 scale = Address::times_1; 2466 break; 2467 case 2 : 2468 scale = Address::times_2; 2469 break; 2470 case 4 : 2471 scale = Address::times_4; 2472 break; 2473 case 8 : 2474 scale = Address::times_8; 2475 break; 2476 default: 2477 scale = Address::no_scale; 2478 ShouldNotReachHere(); 2479 } 2480 2481 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2482 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2483 2484 // length and pos's are all sign extended at this point on 64bit 2485 2486 // test for null 2487 if (flags & LIR_OpArrayCopy::src_null_check) { 2488 __ testptr(src, src); 2489 __ jcc(Assembler::zero, *stub->entry()); 2490 } 2491 if (flags & LIR_OpArrayCopy::dst_null_check) { 2492 __ testptr(dst, dst); 2493 __ jcc(Assembler::zero, *stub->entry()); 2494 } 2495 2496 // If the compiler was not able to prove that exact type of the source or the destination 2497 // of the arraycopy is an array type, check at runtime if the source or the destination is 2498 // an instance type. 2499 if (flags & LIR_OpArrayCopy::type_check) { 2500 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2501 __ load_klass(tmp, dst, tmp_load_klass); 2502 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 2503 __ jcc(Assembler::greaterEqual, *stub->entry()); 2504 } 2505 2506 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2507 __ load_klass(tmp, src, tmp_load_klass); 2508 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 2509 __ jcc(Assembler::greaterEqual, *stub->entry()); 2510 } 2511 } 2512 2513 // check if negative 2514 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2515 __ testl(src_pos, src_pos); 2516 __ jcc(Assembler::less, *stub->entry()); 2517 } 2518 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2519 __ testl(dst_pos, dst_pos); 2520 __ jcc(Assembler::less, *stub->entry()); 2521 } 2522 2523 if (flags & LIR_OpArrayCopy::src_range_check) { 2524 __ lea(tmp, Address(src_pos, length, Address::times_1, 0)); 2525 __ cmpl(tmp, src_length_addr); 2526 __ jcc(Assembler::above, *stub->entry()); 2527 } 2528 if (flags & LIR_OpArrayCopy::dst_range_check) { 2529 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0)); 2530 __ cmpl(tmp, dst_length_addr); 2531 __ jcc(Assembler::above, *stub->entry()); 2532 } 2533 2534 if (flags & LIR_OpArrayCopy::length_positive_check) { 2535 __ testl(length, length); 2536 __ jcc(Assembler::less, *stub->entry()); 2537 } 2538 2539 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null 2540 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null 2541 2542 if (flags & LIR_OpArrayCopy::type_check) { 2543 // We don't know the array types are compatible 2544 if (basic_type != T_OBJECT) { 2545 // Simple test for basic type arrays 2546 __ cmp_klasses_from_objects(src, dst, tmp, tmp2); 2547 __ jcc(Assembler::notEqual, *stub->entry()); 2548 } else { 2549 // For object arrays, if src is a sub class of dst then we can 2550 // safely do the copy. 2551 Label cont, slow; 2552 2553 __ push(src); 2554 __ push(dst); 2555 2556 __ load_klass(src, src, tmp_load_klass); 2557 __ load_klass(dst, dst, tmp_load_klass); 2558 2559 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2560 2561 __ push(src); 2562 __ push(dst); 2563 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 2564 __ pop(dst); 2565 __ pop(src); 2566 2567 __ testl(src, src); 2568 __ jcc(Assembler::notEqual, cont); 2569 2570 __ bind(slow); 2571 __ pop(dst); 2572 __ pop(src); 2573 2574 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2575 if (copyfunc_addr != nullptr) { // use stub if available 2576 // src is not a sub class of dst so we have to do a 2577 // per-element check. 2578 2579 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2580 if ((flags & mask) != mask) { 2581 // Check that at least both of them object arrays. 2582 assert(flags & mask, "one of the two should be known to be an object array"); 2583 2584 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2585 __ load_klass(tmp, src, tmp_load_klass); 2586 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2587 __ load_klass(tmp, dst, tmp_load_klass); 2588 } 2589 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2590 Address klass_lh_addr(tmp, lh_offset); 2591 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2592 __ cmpl(klass_lh_addr, objArray_lh); 2593 __ jcc(Assembler::notEqual, *stub->entry()); 2594 } 2595 2596 // Spill because stubs can use any register they like and it's 2597 // easier to restore just those that we care about. 2598 store_parameter(dst, 0); 2599 store_parameter(dst_pos, 1); 2600 store_parameter(length, 2); 2601 store_parameter(src_pos, 3); 2602 store_parameter(src, 4); 2603 2604 __ movl2ptr(length, length); //higher 32bits must be null 2605 2606 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2607 assert_different_registers(c_rarg0, dst, dst_pos, length); 2608 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2609 assert_different_registers(c_rarg1, dst, length); 2610 2611 __ mov(c_rarg2, length); 2612 assert_different_registers(c_rarg2, dst); 2613 2614 #ifdef _WIN64 2615 // Allocate abi space for args but be sure to keep stack aligned 2616 __ subptr(rsp, 6*wordSize); 2617 __ load_klass(c_rarg3, dst, tmp_load_klass); 2618 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset())); 2619 store_parameter(c_rarg3, 4); 2620 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset())); 2621 __ call(RuntimeAddress(copyfunc_addr)); 2622 __ addptr(rsp, 6*wordSize); 2623 #else 2624 __ load_klass(c_rarg4, dst, tmp_load_klass); 2625 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2626 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2627 __ call(RuntimeAddress(copyfunc_addr)); 2628 #endif 2629 2630 #ifndef PRODUCT 2631 if (PrintC1Statistics) { 2632 Label failed; 2633 __ testl(rax, rax); 2634 __ jcc(Assembler::notZero, failed); 2635 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1); 2636 __ bind(failed); 2637 } 2638 #endif 2639 2640 __ testl(rax, rax); 2641 __ jcc(Assembler::zero, *stub->continuation()); 2642 2643 #ifndef PRODUCT 2644 if (PrintC1Statistics) { 2645 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1); 2646 } 2647 #endif 2648 2649 __ mov(tmp, rax); 2650 2651 __ xorl(tmp, -1); 2652 2653 // Restore previously spilled arguments 2654 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 2655 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 2656 __ movptr (length, Address(rsp, 2*BytesPerWord)); 2657 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 2658 __ movptr (src, Address(rsp, 4*BytesPerWord)); 2659 2660 2661 __ subl(length, tmp); 2662 __ addl(src_pos, tmp); 2663 __ addl(dst_pos, tmp); 2664 } 2665 2666 __ jmp(*stub->entry()); 2667 2668 __ bind(cont); 2669 __ pop(dst); 2670 __ pop(src); 2671 } 2672 } 2673 2674 #ifdef ASSERT 2675 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2676 // Sanity check the known type with the incoming class. For the 2677 // primitive case the types must match exactly with src.klass and 2678 // dst.klass each exactly matching the default type. For the 2679 // object array case, if no type check is needed then either the 2680 // dst type is exactly the expected type and the src type is a 2681 // subtype which we can't check or src is the same array as dst 2682 // but not necessarily exactly of type default_type. 2683 Label known_ok, halt; 2684 __ mov_metadata(tmp, default_type->constant_encoding()); 2685 if (UseCompressedClassPointers) { 2686 __ encode_klass_not_null(tmp, rscratch1); 2687 } 2688 2689 if (basic_type != T_OBJECT) { 2690 __ cmp_klass(tmp, dst, tmp2); 2691 __ jcc(Assembler::notEqual, halt); 2692 __ cmp_klass(tmp, src, tmp2); 2693 __ jcc(Assembler::equal, known_ok); 2694 } else { 2695 __ cmp_klass(tmp, dst, tmp2); 2696 __ jcc(Assembler::equal, known_ok); 2697 __ cmpptr(src, dst); 2698 __ jcc(Assembler::equal, known_ok); 2699 } 2700 __ bind(halt); 2701 __ stop("incorrect type information in arraycopy"); 2702 __ bind(known_ok); 2703 } 2704 #endif 2705 2706 #ifndef PRODUCT 2707 if (PrintC1Statistics) { 2708 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1); 2709 } 2710 #endif 2711 2712 assert_different_registers(c_rarg0, dst, dst_pos, length); 2713 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2714 assert_different_registers(c_rarg1, length); 2715 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2716 __ mov(c_rarg2, length); 2717 2718 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2719 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2720 const char *name; 2721 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2722 __ call_VM_leaf(entry, 0); 2723 2724 if (stub != nullptr) { 2725 __ bind(*stub->continuation()); 2726 } 2727 } 2728 2729 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2730 assert(op->crc()->is_single_cpu(), "crc must be register"); 2731 assert(op->val()->is_single_cpu(), "byte value must be register"); 2732 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2733 Register crc = op->crc()->as_register(); 2734 Register val = op->val()->as_register(); 2735 Register res = op->result_opr()->as_register(); 2736 2737 assert_different_registers(val, crc, res); 2738 2739 __ lea(res, ExternalAddress(StubRoutines::crc_table_addr())); 2740 __ notl(crc); // ~crc 2741 __ update_byte_crc32(crc, val, res); 2742 __ notl(crc); // ~crc 2743 __ mov(res, crc); 2744 } 2745 2746 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2747 Register obj = op->obj_opr()->as_register(); // may not be an oop 2748 Register hdr = op->hdr_opr()->as_register(); 2749 Register lock = op->lock_opr()->as_register(); 2750 if (LockingMode == LM_MONITOR) { 2751 if (op->info() != nullptr) { 2752 add_debug_info_for_null_check_here(op->info()); 2753 __ null_check(obj); 2754 } 2755 __ jmp(*op->stub()->entry()); 2756 } else if (op->code() == lir_lock) { 2757 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2758 Register tmp = LockingMode == LM_LIGHTWEIGHT ? op->scratch_opr()->as_register() : noreg; 2759 // add debug info for NullPointerException only if one is possible 2760 int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry()); 2761 if (op->info() != nullptr) { 2762 add_debug_info_for_null_check(null_check_offset, op->info()); 2763 } 2764 // done 2765 } else if (op->code() == lir_unlock) { 2766 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2767 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2768 } else { 2769 Unimplemented(); 2770 } 2771 __ bind(*op->stub()->continuation()); 2772 } 2773 2774 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2775 Register obj = op->obj()->as_pointer_register(); 2776 Register result = op->result_opr()->as_pointer_register(); 2777 2778 CodeEmitInfo* info = op->info(); 2779 if (info != nullptr) { 2780 add_debug_info_for_null_check_here(info); 2781 } 2782 2783 __ load_klass(result, obj, rscratch1); 2784 } 2785 2786 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2787 ciMethod* method = op->profiled_method(); 2788 int bci = op->profiled_bci(); 2789 ciMethod* callee = op->profiled_callee(); 2790 Register tmp_load_klass = rscratch1; 2791 2792 // Update counter for all call types 2793 ciMethodData* md = method->method_data_or_null(); 2794 assert(md != nullptr, "Sanity"); 2795 ciProfileData* data = md->bci_to_data(bci); 2796 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2797 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2798 Register mdo = op->mdo()->as_register(); 2799 __ mov_metadata(mdo, md->constant_encoding()); 2800 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2801 // Perform additional virtual call profiling for invokevirtual and 2802 // invokeinterface bytecodes 2803 if (op->should_profile_receiver_type()) { 2804 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2805 Register recv = op->recv()->as_register(); 2806 assert_different_registers(mdo, recv); 2807 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2808 ciKlass* known_klass = op->known_holder(); 2809 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2810 // We know the type that will be seen at this call site; we can 2811 // statically update the MethodData* rather than needing to do 2812 // dynamic tests on the receiver type 2813 2814 // NOTE: we should probably put a lock around this search to 2815 // avoid collisions by concurrent compilations 2816 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2817 uint i; 2818 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2819 ciKlass* receiver = vc_data->receiver(i); 2820 if (known_klass->equals(receiver)) { 2821 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2822 __ addptr(data_addr, DataLayout::counter_increment); 2823 return; 2824 } 2825 } 2826 2827 // Receiver type not found in profile data; select an empty slot 2828 2829 // Note that this is less efficient than it should be because it 2830 // always does a write to the receiver part of the 2831 // VirtualCallData rather than just the first time 2832 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2833 ciKlass* receiver = vc_data->receiver(i); 2834 if (receiver == nullptr) { 2835 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 2836 __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1); 2837 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2838 __ addptr(data_addr, DataLayout::counter_increment); 2839 return; 2840 } 2841 } 2842 } else { 2843 __ load_klass(recv, recv, tmp_load_klass); 2844 Label update_done; 2845 type_profile_helper(mdo, md, data, recv, &update_done); 2846 // Receiver did not match any saved receiver and there is no empty row for it. 2847 // Increment total counter to indicate polymorphic case. 2848 __ addptr(counter_addr, DataLayout::counter_increment); 2849 2850 __ bind(update_done); 2851 } 2852 } else { 2853 // Static call 2854 __ addptr(counter_addr, DataLayout::counter_increment); 2855 } 2856 } 2857 2858 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2859 Register obj = op->obj()->as_register(); 2860 Register tmp = op->tmp()->as_pointer_register(); 2861 Register tmp_load_klass = rscratch1; 2862 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2863 ciKlass* exact_klass = op->exact_klass(); 2864 intptr_t current_klass = op->current_klass(); 2865 bool not_null = op->not_null(); 2866 bool no_conflict = op->no_conflict(); 2867 2868 Label update, next, none; 2869 2870 bool do_null = !not_null; 2871 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2872 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2873 2874 assert(do_null || do_update, "why are we here?"); 2875 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2876 2877 __ verify_oop(obj); 2878 2879 #ifdef ASSERT 2880 if (obj == tmp) { 2881 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 2882 } else { 2883 assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index()); 2884 } 2885 #endif 2886 if (do_null) { 2887 __ testptr(obj, obj); 2888 __ jccb(Assembler::notZero, update); 2889 if (!TypeEntries::was_null_seen(current_klass)) { 2890 __ testptr(mdo_addr, TypeEntries::null_seen); 2891 #ifndef ASSERT 2892 __ jccb(Assembler::notZero, next); // already set 2893 #else 2894 __ jcc(Assembler::notZero, next); // already set 2895 #endif 2896 // atomic update to prevent overwriting Klass* with 0 2897 __ lock(); 2898 __ orptr(mdo_addr, TypeEntries::null_seen); 2899 } 2900 if (do_update) { 2901 #ifndef ASSERT 2902 __ jmpb(next); 2903 } 2904 #else 2905 __ jmp(next); 2906 } 2907 } else { 2908 __ testptr(obj, obj); 2909 __ jcc(Assembler::notZero, update); 2910 __ stop("unexpected null obj"); 2911 #endif 2912 } 2913 2914 __ bind(update); 2915 2916 if (do_update) { 2917 #ifdef ASSERT 2918 if (exact_klass != nullptr) { 2919 Label ok; 2920 __ load_klass(tmp, obj, tmp_load_klass); 2921 __ push(tmp); 2922 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2923 __ cmpptr(tmp, Address(rsp, 0)); 2924 __ jcc(Assembler::equal, ok); 2925 __ stop("exact klass and actual klass differ"); 2926 __ bind(ok); 2927 __ pop(tmp); 2928 } 2929 #endif 2930 if (!no_conflict) { 2931 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2932 if (exact_klass != nullptr) { 2933 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2934 } else { 2935 __ load_klass(tmp, obj, tmp_load_klass); 2936 } 2937 __ mov(rscratch1, tmp); // save original value before XOR 2938 __ xorptr(tmp, mdo_addr); 2939 __ testptr(tmp, TypeEntries::type_klass_mask); 2940 // klass seen before, nothing to do. The unknown bit may have been 2941 // set already but no need to check. 2942 __ jccb(Assembler::zero, next); 2943 2944 __ testptr(tmp, TypeEntries::type_unknown); 2945 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 2946 2947 if (TypeEntries::is_type_none(current_klass)) { 2948 __ testptr(mdo_addr, TypeEntries::type_mask); 2949 __ jccb(Assembler::zero, none); 2950 // There is a chance that the checks above (re-reading profiling 2951 // data from memory) fail if another thread has just set the 2952 // profiling to this obj's klass 2953 __ mov(tmp, rscratch1); // get back original value before XOR 2954 __ xorptr(tmp, mdo_addr); 2955 __ testptr(tmp, TypeEntries::type_klass_mask); 2956 __ jccb(Assembler::zero, next); 2957 } 2958 } else { 2959 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2960 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2961 2962 __ testptr(mdo_addr, TypeEntries::type_unknown); 2963 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 2964 } 2965 2966 // different than before. Cannot keep accurate profile. 2967 __ orptr(mdo_addr, TypeEntries::type_unknown); 2968 2969 if (TypeEntries::is_type_none(current_klass)) { 2970 __ jmpb(next); 2971 2972 __ bind(none); 2973 // first time here. Set profile type. 2974 __ movptr(mdo_addr, tmp); 2975 #ifdef ASSERT 2976 __ andptr(tmp, TypeEntries::type_klass_mask); 2977 __ verify_klass_ptr(tmp); 2978 #endif 2979 } 2980 } else { 2981 // There's a single possible klass at this profile point 2982 assert(exact_klass != nullptr, "should be"); 2983 if (TypeEntries::is_type_none(current_klass)) { 2984 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2985 __ xorptr(tmp, mdo_addr); 2986 __ testptr(tmp, TypeEntries::type_klass_mask); 2987 #ifdef ASSERT 2988 __ jcc(Assembler::zero, next); 2989 2990 { 2991 Label ok; 2992 __ push(tmp); 2993 __ testptr(mdo_addr, TypeEntries::type_mask); 2994 __ jcc(Assembler::zero, ok); 2995 // may have been set by another thread 2996 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2997 __ xorptr(tmp, mdo_addr); 2998 __ testptr(tmp, TypeEntries::type_mask); 2999 __ jcc(Assembler::zero, ok); 3000 3001 __ stop("unexpected profiling mismatch"); 3002 __ bind(ok); 3003 __ pop(tmp); 3004 } 3005 #else 3006 __ jccb(Assembler::zero, next); 3007 #endif 3008 // first time here. Set profile type. 3009 __ movptr(mdo_addr, tmp); 3010 #ifdef ASSERT 3011 __ andptr(tmp, TypeEntries::type_klass_mask); 3012 __ verify_klass_ptr(tmp); 3013 #endif 3014 } else { 3015 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3016 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3017 3018 __ testptr(mdo_addr, TypeEntries::type_unknown); 3019 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3020 3021 __ orptr(mdo_addr, TypeEntries::type_unknown); 3022 } 3023 } 3024 } 3025 __ bind(next); 3026 } 3027 3028 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 3029 Unimplemented(); 3030 } 3031 3032 3033 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 3034 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 3035 } 3036 3037 3038 void LIR_Assembler::align_backward_branch_target() { 3039 __ align(BytesPerWord); 3040 } 3041 3042 3043 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 3044 if (left->is_single_cpu()) { 3045 __ negl(left->as_register()); 3046 move_regs(left->as_register(), dest->as_register()); 3047 3048 } else if (left->is_double_cpu()) { 3049 Register lo = left->as_register_lo(); 3050 Register dst = dest->as_register_lo(); 3051 __ movptr(dst, lo); 3052 __ negptr(dst); 3053 3054 } else if (dest->is_single_xmm()) { 3055 assert(!tmp->is_valid(), "do not need temporary"); 3056 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) { 3057 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg()); 3058 } 3059 __ xorps(dest->as_xmm_float_reg(), 3060 ExternalAddress((address)float_signflip_pool), 3061 rscratch1); 3062 } else if (dest->is_double_xmm()) { 3063 assert(!tmp->is_valid(), "do not need temporary"); 3064 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) { 3065 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg()); 3066 } 3067 __ xorpd(dest->as_xmm_double_reg(), 3068 ExternalAddress((address)double_signflip_pool), 3069 rscratch1); 3070 } else { 3071 ShouldNotReachHere(); 3072 } 3073 } 3074 3075 3076 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 3077 assert(src->is_address(), "must be an address"); 3078 assert(dest->is_register(), "must be a register"); 3079 3080 PatchingStub* patch = nullptr; 3081 if (patch_code != lir_patch_none) { 3082 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 3083 } 3084 3085 Register reg = dest->as_pointer_register(); 3086 LIR_Address* addr = src->as_address_ptr(); 3087 __ lea(reg, as_Address(addr)); 3088 3089 if (patch != nullptr) { 3090 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 3091 } 3092 } 3093 3094 3095 3096 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 3097 assert(!tmp->is_valid(), "don't need temporary"); 3098 __ call(RuntimeAddress(dest)); 3099 if (info != nullptr) { 3100 add_call_info_here(info); 3101 } 3102 __ post_call_nop(); 3103 } 3104 3105 3106 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 3107 assert(type == T_LONG, "only for volatile long fields"); 3108 3109 if (info != nullptr) { 3110 add_debug_info_for_null_check_here(info); 3111 } 3112 3113 if (src->is_double_xmm()) { 3114 if (dest->is_double_cpu()) { 3115 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg()); 3116 } else if (dest->is_double_stack()) { 3117 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg()); 3118 } else if (dest->is_address()) { 3119 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg()); 3120 } else { 3121 ShouldNotReachHere(); 3122 } 3123 3124 } else if (dest->is_double_xmm()) { 3125 if (src->is_double_stack()) { 3126 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix())); 3127 } else if (src->is_address()) { 3128 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr())); 3129 } else { 3130 ShouldNotReachHere(); 3131 } 3132 3133 } else { 3134 ShouldNotReachHere(); 3135 } 3136 } 3137 3138 #ifdef ASSERT 3139 // emit run-time assertion 3140 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 3141 assert(op->code() == lir_assert, "must be"); 3142 3143 if (op->in_opr1()->is_valid()) { 3144 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 3145 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 3146 } else { 3147 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 3148 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 3149 } 3150 3151 Label ok; 3152 if (op->condition() != lir_cond_always) { 3153 Assembler::Condition acond = Assembler::zero; 3154 switch (op->condition()) { 3155 case lir_cond_equal: acond = Assembler::equal; break; 3156 case lir_cond_notEqual: acond = Assembler::notEqual; break; 3157 case lir_cond_less: acond = Assembler::less; break; 3158 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 3159 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 3160 case lir_cond_greater: acond = Assembler::greater; break; 3161 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 3162 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 3163 default: ShouldNotReachHere(); 3164 } 3165 __ jcc(acond, ok); 3166 } 3167 if (op->halt()) { 3168 const char* str = __ code_string(op->msg()); 3169 __ stop(str); 3170 } else { 3171 breakpoint(); 3172 } 3173 __ bind(ok); 3174 } 3175 #endif 3176 3177 void LIR_Assembler::membar() { 3178 // QQQ sparc TSO uses this, 3179 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3180 } 3181 3182 void LIR_Assembler::membar_acquire() { 3183 // No x86 machines currently require load fences 3184 } 3185 3186 void LIR_Assembler::membar_release() { 3187 // No x86 machines currently require store fences 3188 } 3189 3190 void LIR_Assembler::membar_loadload() { 3191 // no-op 3192 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload)); 3193 } 3194 3195 void LIR_Assembler::membar_storestore() { 3196 // no-op 3197 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore)); 3198 } 3199 3200 void LIR_Assembler::membar_loadstore() { 3201 // no-op 3202 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore)); 3203 } 3204 3205 void LIR_Assembler::membar_storeload() { 3206 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3207 } 3208 3209 void LIR_Assembler::on_spin_wait() { 3210 __ pause (); 3211 } 3212 3213 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 3214 assert(result_reg->is_register(), "check"); 3215 __ mov(result_reg->as_register(), r15_thread); 3216 } 3217 3218 3219 void LIR_Assembler::peephole(LIR_List*) { 3220 // do nothing for now 3221 } 3222 3223 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 3224 assert(data == dest, "xchg/xadd uses only 2 operands"); 3225 3226 if (data->type() == T_INT) { 3227 if (code == lir_xadd) { 3228 __ lock(); 3229 __ xaddl(as_Address(src->as_address_ptr()), data->as_register()); 3230 } else { 3231 __ xchgl(data->as_register(), as_Address(src->as_address_ptr())); 3232 } 3233 } else if (data->is_oop()) { 3234 assert (code == lir_xchg, "xadd for oops"); 3235 Register obj = data->as_register(); 3236 if (UseCompressedOops) { 3237 __ encode_heap_oop(obj); 3238 __ xchgl(obj, as_Address(src->as_address_ptr())); 3239 __ decode_heap_oop(obj); 3240 } else { 3241 __ xchgptr(obj, as_Address(src->as_address_ptr())); 3242 } 3243 } else if (data->type() == T_LONG) { 3244 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register"); 3245 if (code == lir_xadd) { 3246 __ lock(); 3247 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo()); 3248 } else { 3249 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr())); 3250 } 3251 } else { 3252 ShouldNotReachHere(); 3253 } 3254 } 3255 3256 #undef __