1 /*
   2  * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_CodeStubs.hpp"
  29 #include "c1/c1_Compilation.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "ci/ciArrayKlass.hpp"
  35 #include "ci/ciInstance.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "code/SCCache.hpp"
  38 #include "compiler/oopMap.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gc_globals.hpp"
  41 #include "nativeInst_x86.hpp"
  42 #include "oops/objArrayKlass.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/safepointMechanism.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 #include "vmreg_x86.inline.hpp"
  49 
  50 
  51 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  52 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  53 // fast versions of NegF/NegD and AbsF/AbsD.
  54 
  55 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  56 static address double_quadword(jlong *adr, jlong lo, jlong hi) {
  57   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  58   // of 128-bits operands for SSE instructions.
  59   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  60   // Store the value to a 128-bits operand.
  61   operand[0] = lo;
  62   operand[1] = hi;
  63   return (address)operand;
  64 }
  65 
  66 // Buffer for 128-bits masks used by SSE instructions.
  67 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  68 
  69 // Static initialization during VM startup.
  70 address LIR_Assembler::float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  71 address LIR_Assembler::double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  72 address LIR_Assembler::float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  73 address LIR_Assembler::double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  74 
  75 
  76 NEEDS_CLEANUP // remove this definitions ?
  77 const Register SYNC_header = rax;   // synchronization header
  78 const Register SHIFT_count = rcx;   // where count for shift operations must be
  79 
  80 #define __ _masm->
  81 
  82 
  83 static void select_different_registers(Register preserve,
  84                                        Register extra,
  85                                        Register &tmp1,
  86                                        Register &tmp2) {
  87   if (tmp1 == preserve) {
  88     assert_different_registers(tmp1, tmp2, extra);
  89     tmp1 = extra;
  90   } else if (tmp2 == preserve) {
  91     assert_different_registers(tmp1, tmp2, extra);
  92     tmp2 = extra;
  93   }
  94   assert_different_registers(preserve, tmp1, tmp2);
  95 }
  96 
  97 
  98 
  99 static void select_different_registers(Register preserve,
 100                                        Register extra,
 101                                        Register &tmp1,
 102                                        Register &tmp2,
 103                                        Register &tmp3) {
 104   if (tmp1 == preserve) {
 105     assert_different_registers(tmp1, tmp2, tmp3, extra);
 106     tmp1 = extra;
 107   } else if (tmp2 == preserve) {
 108     assert_different_registers(tmp1, tmp2, tmp3, extra);
 109     tmp2 = extra;
 110   } else if (tmp3 == preserve) {
 111     assert_different_registers(tmp1, tmp2, tmp3, extra);
 112     tmp3 = extra;
 113   }
 114   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 115 }
 116 
 117 
 118 
 119 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 120   if (opr->is_constant()) {
 121     LIR_Const* constant = opr->as_constant_ptr();
 122     switch (constant->type()) {
 123       case T_INT: {
 124         return true;
 125       }
 126 
 127       default:
 128         return false;
 129     }
 130   }
 131   return false;
 132 }
 133 
 134 
 135 LIR_Opr LIR_Assembler::receiverOpr() {
 136   return FrameMap::receiver_opr;
 137 }
 138 
 139 LIR_Opr LIR_Assembler::osrBufferPointer() {
 140   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 141 }
 142 
 143 //--------------fpu register translations-----------------------
 144 
 145 
 146 address LIR_Assembler::float_constant(float f) {
 147   address const_addr = __ float_constant(f);
 148   if (const_addr == nullptr) {
 149     bailout("const section overflow");
 150     return __ code()->consts()->start();
 151   } else {
 152     return const_addr;
 153   }
 154 }
 155 
 156 
 157 address LIR_Assembler::double_constant(double d) {
 158   address const_addr = __ double_constant(d);
 159   if (const_addr == nullptr) {
 160     bailout("const section overflow");
 161     return __ code()->consts()->start();
 162   } else {
 163     return const_addr;
 164   }
 165 }
 166 
 167 #ifndef _LP64
 168 void LIR_Assembler::fpop() {
 169   __ fpop();
 170 }
 171 
 172 void LIR_Assembler::fxch(int i) {
 173   __ fxch(i);
 174 }
 175 
 176 void LIR_Assembler::fld(int i) {
 177   __ fld_s(i);
 178 }
 179 
 180 void LIR_Assembler::ffree(int i) {
 181   __ ffree(i);
 182 }
 183 #endif // !_LP64
 184 
 185 void LIR_Assembler::breakpoint() {
 186   __ int3();
 187 }
 188 
 189 void LIR_Assembler::push(LIR_Opr opr) {
 190   if (opr->is_single_cpu()) {
 191     __ push_reg(opr->as_register());
 192   } else if (opr->is_double_cpu()) {
 193     NOT_LP64(__ push_reg(opr->as_register_hi()));
 194     __ push_reg(opr->as_register_lo());
 195   } else if (opr->is_stack()) {
 196     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 197   } else if (opr->is_constant()) {
 198     LIR_Const* const_opr = opr->as_constant_ptr();
 199     if (const_opr->type() == T_OBJECT) {
 200       __ push_oop(const_opr->as_jobject(), rscratch1);
 201     } else if (const_opr->type() == T_INT) {
 202       __ push_jint(const_opr->as_jint());
 203     } else {
 204       ShouldNotReachHere();
 205     }
 206 
 207   } else {
 208     ShouldNotReachHere();
 209   }
 210 }
 211 
 212 void LIR_Assembler::pop(LIR_Opr opr) {
 213   if (opr->is_single_cpu()) {
 214     __ pop_reg(opr->as_register());
 215   } else {
 216     ShouldNotReachHere();
 217   }
 218 }
 219 
 220 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 221   return addr->base()->is_illegal() && addr->index()->is_illegal();
 222 }
 223 
 224 //-------------------------------------------
 225 
 226 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 227   return as_Address(addr, rscratch1);
 228 }
 229 
 230 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 231   if (addr->base()->is_illegal()) {
 232     assert(addr->index()->is_illegal(), "must be illegal too");
 233     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 234     if (! __ reachable(laddr)) {
 235       __ movptr(tmp, laddr.addr());
 236       Address res(tmp, 0);
 237       return res;
 238     } else {
 239       return __ as_Address(laddr);
 240     }
 241   }
 242 
 243   Register base = addr->base()->as_pointer_register();
 244 
 245   if (addr->index()->is_illegal()) {
 246     return Address( base, addr->disp());
 247   } else if (addr->index()->is_cpu_register()) {
 248     Register index = addr->index()->as_pointer_register();
 249     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 250   } else if (addr->index()->is_constant()) {
 251     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 252     assert(Assembler::is_simm32(addr_offset), "must be");
 253 
 254     return Address(base, addr_offset);
 255   } else {
 256     Unimplemented();
 257     return Address();
 258   }
 259 }
 260 
 261 
 262 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 263   Address base = as_Address(addr);
 264   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 265 }
 266 
 267 
 268 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 269   return as_Address(addr);
 270 }
 271 
 272 
 273 void LIR_Assembler::osr_entry() {
 274   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 275   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 276   ValueStack* entry_state = osr_entry->state();
 277   int number_of_locks = entry_state->locks_size();
 278 
 279   // we jump here if osr happens with the interpreter
 280   // state set up to continue at the beginning of the
 281   // loop that triggered osr - in particular, we have
 282   // the following registers setup:
 283   //
 284   // rcx: osr buffer
 285   //
 286 
 287   // build frame
 288   ciMethod* m = compilation()->method();
 289   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 290 
 291   // OSR buffer is
 292   //
 293   // locals[nlocals-1..0]
 294   // monitors[0..number_of_locks]
 295   //
 296   // locals is a direct copy of the interpreter frame so in the osr buffer
 297   // so first slot in the local array is the last local from the interpreter
 298   // and last slot is local[0] (receiver) from the interpreter
 299   //
 300   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 301   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 302   // in the interpreter frame (the method lock if a sync method)
 303 
 304   // Initialize monitors in the compiled activation.
 305   //   rcx: pointer to osr buffer
 306   //
 307   // All other registers are dead at this point and the locals will be
 308   // copied into place by code emitted in the IR.
 309 
 310   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 311   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 312     int monitor_offset = BytesPerWord * method()->max_locals() +
 313       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 314     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 315     // the OSR buffer using 2 word entries: first the lock and then
 316     // the oop.
 317     for (int i = 0; i < number_of_locks; i++) {
 318       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 319 #ifdef ASSERT
 320       // verify the interpreter's monitor has a non-null object
 321       {
 322         Label L;
 323         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD);
 324         __ jcc(Assembler::notZero, L);
 325         __ stop("locked object is null");
 326         __ bind(L);
 327       }
 328 #endif
 329       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 330       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 331       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 332       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 333     }
 334   }
 335 }
 336 
 337 
 338 // inline cache check; done before the frame is built.
 339 int LIR_Assembler::check_icache() {
 340   return __ ic_check(CodeEntryAlignment);
 341 }
 342 
 343 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 344   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 345   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
 346 
 347   Label L_skip_barrier;
 348   Register klass = rscratch1;
 349   Register thread = LP64_ONLY( r15_thread ) NOT_LP64( noreg );
 350   assert(thread != noreg, "x86_32 not implemented");
 351 
 352   __ mov_metadata(klass, method->holder()->constant_encoding());
 353   __ clinit_barrier(klass, thread, &L_skip_barrier /*L_fast_path*/);
 354 
 355   __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 356 
 357   __ bind(L_skip_barrier);
 358 }
 359 
 360 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 361   jobject o = nullptr;
 362   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 363   __ movoop(reg, o);
 364   patching_epilog(patch, lir_patch_normal, reg, info);
 365 }
 366 
 367 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 368   Metadata* o = nullptr;
 369   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 370   __ mov_metadata(reg, o);
 371   patching_epilog(patch, lir_patch_normal, reg, info);
 372 }
 373 
 374 // This specifies the rsp decrement needed to build the frame
 375 int LIR_Assembler::initial_frame_size_in_bytes() const {
 376   // if rounding, must let FrameMap know!
 377 
 378   // The frame_map records size in slots (32bit word)
 379 
 380   // subtract two words to account for return address and link
 381   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 382 }
 383 
 384 
 385 int LIR_Assembler::emit_exception_handler() {
 386   // generate code for exception handler
 387   address handler_base = __ start_a_stub(exception_handler_size());
 388   if (handler_base == nullptr) {
 389     // not enough space left for the handler
 390     bailout("exception handler overflow");
 391     return -1;
 392   }
 393 
 394   int offset = code_offset();
 395 
 396   // the exception oop and pc are in rax, and rdx
 397   // no other registers need to be preserved, so invalidate them
 398   __ invalidate_registers(false, true, true, false, true, true);
 399 
 400   // check that there is really an exception
 401   __ verify_not_null_oop(rax);
 402 
 403   // search an exception handler (rax: exception oop, rdx: throwing pc)
 404   __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id)));
 405   __ should_not_reach_here();
 406   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 407   __ end_a_stub();
 408 
 409   return offset;
 410 }
 411 
 412 
 413 // Emit the code to remove the frame from the stack in the exception
 414 // unwind path.
 415 int LIR_Assembler::emit_unwind_handler() {
 416 #ifndef PRODUCT
 417   if (CommentedAssembly) {
 418     _masm->block_comment("Unwind handler");
 419   }
 420 #endif
 421 
 422   int offset = code_offset();
 423 
 424   // Fetch the exception from TLS and clear out exception related thread state
 425   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 426   NOT_LP64(__ get_thread(thread));
 427   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 428   __ movptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD);
 429   __ movptr(Address(thread, JavaThread::exception_pc_offset()), NULL_WORD);
 430 
 431   __ bind(_unwind_handler_entry);
 432   __ verify_not_null_oop(rax);
 433   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 434     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 435   }
 436 
 437   // Perform needed unlocking
 438   MonitorExitStub* stub = nullptr;
 439   if (method()->is_synchronized()) {
 440     monitor_address(0, FrameMap::rax_opr);
 441     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 442     if (LockingMode == LM_MONITOR) {
 443       __ jmp(*stub->entry());
 444     } else {
 445       __ unlock_object(rdi, rsi, rax, *stub->entry());
 446     }
 447     __ bind(*stub->continuation());
 448   }
 449 
 450   if (compilation()->env()->dtrace_method_probes()) {
 451 #ifdef _LP64
 452     __ mov(rdi, r15_thread);
 453     __ mov_metadata(rsi, method()->constant_encoding());
 454 #else
 455     __ get_thread(rax);
 456     __ movptr(Address(rsp, 0), rax);
 457     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding(), noreg);
 458 #endif
 459     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 460   }
 461 
 462   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 463     __ mov(rax, rbx);  // Restore the exception
 464   }
 465 
 466   // remove the activation and dispatch to the unwind handler
 467   __ remove_frame(initial_frame_size_in_bytes());
 468   __ jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id)));
 469 
 470   // Emit the slow path assembly
 471   if (stub != nullptr) {
 472     stub->emit_code(this);
 473   }
 474 
 475   return offset;
 476 }
 477 
 478 
 479 int LIR_Assembler::emit_deopt_handler() {
 480   // generate code for exception handler
 481   address handler_base = __ start_a_stub(deopt_handler_size());
 482   if (handler_base == nullptr) {
 483     // not enough space left for the handler
 484     bailout("deopt handler overflow");
 485     return -1;
 486   }
 487 
 488   int offset = code_offset();
 489   InternalAddress here(__ pc());
 490 
 491   __ pushptr(here.addr(), rscratch1);
 492   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 493   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 494   __ end_a_stub();
 495 
 496   return offset;
 497 }
 498 
 499 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 500   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 501   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 502     assert(result->fpu() == 0, "result must already be on TOS");
 503   }
 504 
 505   // Pop the stack before the safepoint code
 506   __ remove_frame(initial_frame_size_in_bytes());
 507 
 508   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 509     __ reserved_stack_check();
 510   }
 511 
 512   // Note: we do not need to round double result; float result has the right precision
 513   // the poll sets the condition code, but no data registers
 514 
 515 #ifdef _LP64
 516   const Register thread = r15_thread;
 517 #else
 518   const Register thread = rbx;
 519   __ get_thread(thread);
 520 #endif
 521   code_stub->set_safepoint_offset(__ offset());
 522   __ relocate(relocInfo::poll_return_type);
 523   __ safepoint_poll(*code_stub->entry(), thread, true /* at_return */, true /* in_nmethod */);
 524   __ ret(0);
 525 }
 526 
 527 
 528 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 529   guarantee(info != nullptr, "Shouldn't be null");
 530   int offset = __ offset();
 531 #ifdef _LP64
 532   const Register poll_addr = rscratch1;
 533   __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset()));
 534 #else
 535   assert(tmp->is_cpu_register(), "needed");
 536   const Register poll_addr = tmp->as_register();
 537   __ get_thread(poll_addr);
 538   __ movptr(poll_addr, Address(poll_addr, in_bytes(JavaThread::polling_page_offset())));
 539 #endif
 540   add_debug_info_for_branch(info);
 541   __ relocate(relocInfo::poll_type);
 542   address pre_pc = __ pc();
 543   __ testl(rax, Address(poll_addr, 0));
 544   address post_pc = __ pc();
 545   guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 546   return offset;
 547 }
 548 
 549 
 550 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 551   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 552 }
 553 
 554 void LIR_Assembler::swap_reg(Register a, Register b) {
 555   __ xchgptr(a, b);
 556 }
 557 
 558 
 559 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 560   assert(src->is_constant(), "should not call otherwise");
 561   assert(dest->is_register(), "should not call otherwise");
 562   LIR_Const* c = src->as_constant_ptr();
 563 
 564   switch (c->type()) {
 565     case T_INT: {
 566       assert(patch_code == lir_patch_none, "no patching handled here");
 567       __ movl(dest->as_register(), c->as_jint());
 568       break;
 569     }
 570 
 571     case T_ADDRESS: {
 572       assert(patch_code == lir_patch_none, "no patching handled here");
 573       __ movptr(dest->as_register(), c->as_jint());
 574       break;
 575     }
 576 
 577     case T_LONG: {
 578       assert(patch_code == lir_patch_none, "no patching handled here");
 579 #ifdef _LP64
 580       if (SCCache::is_on_for_write()) {
 581         // SCA needs relocation info for card table base
 582         address b = c->as_pointer();
 583         if (is_card_table_address(b)) {
 584           __ lea(dest->as_register_lo(), ExternalAddress(b));
 585           break;
 586         }
 587         if (AOTRuntimeConstants::contains(b)) {
 588           __ load_aotrc_address(dest->as_register_lo(), b);
 589           break;
 590         }
 591       }
 592       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 593 #else
 594       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 595       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 596 #endif // _LP64
 597       break;
 598     }
 599 
 600     case T_OBJECT: {
 601       if (patch_code != lir_patch_none) {
 602         jobject2reg_with_patching(dest->as_register(), info);
 603       } else {
 604         __ movoop(dest->as_register(), c->as_jobject());
 605       }
 606       break;
 607     }
 608 
 609     case T_METADATA: {
 610       if (patch_code != lir_patch_none) {
 611         klass2reg_with_patching(dest->as_register(), info);
 612       } else {
 613         __ mov_metadata(dest->as_register(), c->as_metadata());
 614       }
 615       break;
 616     }
 617 
 618     case T_FLOAT: {
 619       if (dest->is_single_xmm()) {
 620         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) {
 621           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 622         } else {
 623           __ movflt(dest->as_xmm_float_reg(),
 624                    InternalAddress(float_constant(c->as_jfloat())));
 625         }
 626       } else {
 627 #ifndef _LP64
 628         assert(dest->is_single_fpu(), "must be");
 629         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 630         if (c->is_zero_float()) {
 631           __ fldz();
 632         } else if (c->is_one_float()) {
 633           __ fld1();
 634         } else {
 635           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 636         }
 637 #else
 638         ShouldNotReachHere();
 639 #endif // !_LP64
 640       }
 641       break;
 642     }
 643 
 644     case T_DOUBLE: {
 645       if (dest->is_double_xmm()) {
 646         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) {
 647           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 648         } else {
 649           __ movdbl(dest->as_xmm_double_reg(),
 650                     InternalAddress(double_constant(c->as_jdouble())));
 651         }
 652       } else {
 653 #ifndef _LP64
 654         assert(dest->is_double_fpu(), "must be");
 655         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 656         if (c->is_zero_double()) {
 657           __ fldz();
 658         } else if (c->is_one_double()) {
 659           __ fld1();
 660         } else {
 661           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 662         }
 663 #else
 664         ShouldNotReachHere();
 665 #endif // !_LP64
 666       }
 667       break;
 668     }
 669 
 670     default:
 671       ShouldNotReachHere();
 672   }
 673 }
 674 
 675 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 676   assert(src->is_constant(), "should not call otherwise");
 677   assert(dest->is_stack(), "should not call otherwise");
 678   LIR_Const* c = src->as_constant_ptr();
 679 
 680   switch (c->type()) {
 681     case T_INT:  // fall through
 682     case T_FLOAT:
 683       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 684       break;
 685 
 686     case T_ADDRESS:
 687       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 688       break;
 689 
 690     case T_OBJECT:
 691       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1);
 692       break;
 693 
 694     case T_LONG:  // fall through
 695     case T_DOUBLE:
 696 #ifdef _LP64
 697       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 698                                               lo_word_offset_in_bytes),
 699                 (intptr_t)c->as_jlong_bits(),
 700                 rscratch1);
 701 #else
 702       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 703                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 704       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 705                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 706 #endif // _LP64
 707       break;
 708 
 709     default:
 710       ShouldNotReachHere();
 711   }
 712 }
 713 
 714 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 715   assert(src->is_constant(), "should not call otherwise");
 716   assert(dest->is_address(), "should not call otherwise");
 717   LIR_Const* c = src->as_constant_ptr();
 718   LIR_Address* addr = dest->as_address_ptr();
 719 
 720   int null_check_here = code_offset();
 721   switch (type) {
 722     case T_INT:    // fall through
 723     case T_FLOAT:
 724       __ movl(as_Address(addr), c->as_jint_bits());
 725       break;
 726 
 727     case T_ADDRESS:
 728       __ movptr(as_Address(addr), c->as_jint_bits());
 729       break;
 730 
 731     case T_OBJECT:  // fall through
 732     case T_ARRAY:
 733       if (c->as_jobject() == nullptr) {
 734         if (UseCompressedOops && !wide) {
 735           __ movl(as_Address(addr), NULL_WORD);
 736         } else {
 737 #ifdef _LP64
 738           __ xorptr(rscratch1, rscratch1);
 739           null_check_here = code_offset();
 740           __ movptr(as_Address(addr), rscratch1);
 741 #else
 742           __ movptr(as_Address(addr), NULL_WORD);
 743 #endif
 744         }
 745       } else {
 746         if (is_literal_address(addr)) {
 747           ShouldNotReachHere();
 748           __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1);
 749         } else {
 750 #ifdef _LP64
 751           __ movoop(rscratch1, c->as_jobject());
 752           if (UseCompressedOops && !wide) {
 753             __ encode_heap_oop(rscratch1);
 754             null_check_here = code_offset();
 755             __ movl(as_Address_lo(addr), rscratch1);
 756           } else {
 757             null_check_here = code_offset();
 758             __ movptr(as_Address_lo(addr), rscratch1);
 759           }
 760 #else
 761           __ movoop(as_Address(addr), c->as_jobject(), noreg);
 762 #endif
 763         }
 764       }
 765       break;
 766 
 767     case T_LONG:    // fall through
 768     case T_DOUBLE:
 769 #ifdef _LP64
 770       if (is_literal_address(addr)) {
 771         ShouldNotReachHere();
 772         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 773       } else {
 774         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 775         null_check_here = code_offset();
 776         __ movptr(as_Address_lo(addr), r10);
 777       }
 778 #else
 779       // Always reachable in 32bit so this doesn't produce useless move literal
 780       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 781       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 782 #endif // _LP64
 783       break;
 784 
 785     case T_BOOLEAN: // fall through
 786     case T_BYTE:
 787       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 788       break;
 789 
 790     case T_CHAR:    // fall through
 791     case T_SHORT:
 792       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 793       break;
 794 
 795     default:
 796       ShouldNotReachHere();
 797   };
 798 
 799   if (info != nullptr) {
 800     add_debug_info_for_null_check(null_check_here, info);
 801   }
 802 }
 803 
 804 
 805 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 806   assert(src->is_register(), "should not call otherwise");
 807   assert(dest->is_register(), "should not call otherwise");
 808 
 809   // move between cpu-registers
 810   if (dest->is_single_cpu()) {
 811 #ifdef _LP64
 812     if (src->type() == T_LONG) {
 813       // Can do LONG -> OBJECT
 814       move_regs(src->as_register_lo(), dest->as_register());
 815       return;
 816     }
 817 #endif
 818     assert(src->is_single_cpu(), "must match");
 819     if (src->type() == T_OBJECT) {
 820       __ verify_oop(src->as_register());
 821     }
 822     move_regs(src->as_register(), dest->as_register());
 823 
 824   } else if (dest->is_double_cpu()) {
 825 #ifdef _LP64
 826     if (is_reference_type(src->type())) {
 827       // Surprising to me but we can see move of a long to t_object
 828       __ verify_oop(src->as_register());
 829       move_regs(src->as_register(), dest->as_register_lo());
 830       return;
 831     }
 832 #endif
 833     assert(src->is_double_cpu(), "must match");
 834     Register f_lo = src->as_register_lo();
 835     Register f_hi = src->as_register_hi();
 836     Register t_lo = dest->as_register_lo();
 837     Register t_hi = dest->as_register_hi();
 838 #ifdef _LP64
 839     assert(f_hi == f_lo, "must be same");
 840     assert(t_hi == t_lo, "must be same");
 841     move_regs(f_lo, t_lo);
 842 #else
 843     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 844 
 845 
 846     if (f_lo == t_hi && f_hi == t_lo) {
 847       swap_reg(f_lo, f_hi);
 848     } else if (f_hi == t_lo) {
 849       assert(f_lo != t_hi, "overwriting register");
 850       move_regs(f_hi, t_hi);
 851       move_regs(f_lo, t_lo);
 852     } else {
 853       assert(f_hi != t_lo, "overwriting register");
 854       move_regs(f_lo, t_lo);
 855       move_regs(f_hi, t_hi);
 856     }
 857 #endif // LP64
 858 
 859 #ifndef _LP64
 860     // special moves from fpu-register to xmm-register
 861     // necessary for method results
 862   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 863     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 864     __ fld_s(Address(rsp, 0));
 865   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 866     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 867     __ fld_d(Address(rsp, 0));
 868   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 869     __ fstp_s(Address(rsp, 0));
 870     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 871   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 872     __ fstp_d(Address(rsp, 0));
 873     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 874 #endif // !_LP64
 875 
 876     // move between xmm-registers
 877   } else if (dest->is_single_xmm()) {
 878     assert(src->is_single_xmm(), "must match");
 879     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 880   } else if (dest->is_double_xmm()) {
 881     assert(src->is_double_xmm(), "must match");
 882     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 883 
 884 #ifndef _LP64
 885     // move between fpu-registers (no instruction necessary because of fpu-stack)
 886   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 887     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 888     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 889 #endif // !_LP64
 890 
 891   } else {
 892     ShouldNotReachHere();
 893   }
 894 }
 895 
 896 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 897   assert(src->is_register(), "should not call otherwise");
 898   assert(dest->is_stack(), "should not call otherwise");
 899 
 900   if (src->is_single_cpu()) {
 901     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 902     if (is_reference_type(type)) {
 903       __ verify_oop(src->as_register());
 904       __ movptr (dst, src->as_register());
 905     } else if (type == T_METADATA || type == T_ADDRESS) {
 906       __ movptr (dst, src->as_register());
 907     } else {
 908       __ movl (dst, src->as_register());
 909     }
 910 
 911   } else if (src->is_double_cpu()) {
 912     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 913     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 914     __ movptr (dstLO, src->as_register_lo());
 915     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 916 
 917   } else if (src->is_single_xmm()) {
 918     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 919     __ movflt(dst_addr, src->as_xmm_float_reg());
 920 
 921   } else if (src->is_double_xmm()) {
 922     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 923     __ movdbl(dst_addr, src->as_xmm_double_reg());
 924 
 925 #ifndef _LP64
 926   } else if (src->is_single_fpu()) {
 927     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 928     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 929     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 930     else                   __ fst_s  (dst_addr);
 931 
 932   } else if (src->is_double_fpu()) {
 933     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 934     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 935     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 936     else                   __ fst_d  (dst_addr);
 937 #endif // !_LP64
 938 
 939   } else {
 940     ShouldNotReachHere();
 941   }
 942 }
 943 
 944 
 945 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) {
 946   LIR_Address* to_addr = dest->as_address_ptr();
 947   PatchingStub* patch = nullptr;
 948   Register compressed_src = rscratch1;
 949 
 950   if (is_reference_type(type)) {
 951     __ verify_oop(src->as_register());
 952 #ifdef _LP64
 953     if (UseCompressedOops && !wide) {
 954       __ movptr(compressed_src, src->as_register());
 955       __ encode_heap_oop(compressed_src);
 956       if (patch_code != lir_patch_none) {
 957         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 958       }
 959     }
 960 #endif
 961   }
 962 
 963   if (patch_code != lir_patch_none) {
 964     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 965     Address toa = as_Address(to_addr);
 966     assert(toa.disp() != 0, "must have");
 967   }
 968 
 969   int null_check_here = code_offset();
 970   switch (type) {
 971     case T_FLOAT: {
 972 #ifdef _LP64
 973       assert(src->is_single_xmm(), "not a float");
 974       __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 975 #else
 976       if (src->is_single_xmm()) {
 977         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 978       } else {
 979         assert(src->is_single_fpu(), "must be");
 980         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 981         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 982         else                    __ fst_s (as_Address(to_addr));
 983       }
 984 #endif // _LP64
 985       break;
 986     }
 987 
 988     case T_DOUBLE: {
 989 #ifdef _LP64
 990       assert(src->is_double_xmm(), "not a double");
 991       __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 992 #else
 993       if (src->is_double_xmm()) {
 994         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 995       } else {
 996         assert(src->is_double_fpu(), "must be");
 997         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 998         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
 999         else                    __ fst_d (as_Address(to_addr));
1000       }
1001 #endif // _LP64
1002       break;
1003     }
1004 
1005     case T_ARRAY:   // fall through
1006     case T_OBJECT:  // fall through
1007       if (UseCompressedOops && !wide) {
1008         __ movl(as_Address(to_addr), compressed_src);
1009       } else {
1010         __ movptr(as_Address(to_addr), src->as_register());
1011       }
1012       break;
1013     case T_METADATA:
1014       // We get here to store a method pointer to the stack to pass to
1015       // a dtrace runtime call. This can't work on 64 bit with
1016       // compressed klass ptrs: T_METADATA can be a compressed klass
1017       // ptr or a 64 bit method pointer.
1018       LP64_ONLY(ShouldNotReachHere());
1019       __ movptr(as_Address(to_addr), src->as_register());
1020       break;
1021     case T_ADDRESS:
1022       __ movptr(as_Address(to_addr), src->as_register());
1023       break;
1024     case T_INT:
1025       __ movl(as_Address(to_addr), src->as_register());
1026       break;
1027 
1028     case T_LONG: {
1029       Register from_lo = src->as_register_lo();
1030       Register from_hi = src->as_register_hi();
1031 #ifdef _LP64
1032       __ movptr(as_Address_lo(to_addr), from_lo);
1033 #else
1034       Register base = to_addr->base()->as_register();
1035       Register index = noreg;
1036       if (to_addr->index()->is_register()) {
1037         index = to_addr->index()->as_register();
1038       }
1039       if (base == from_lo || index == from_lo) {
1040         assert(base != from_hi, "can't be");
1041         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1042         __ movl(as_Address_hi(to_addr), from_hi);
1043         if (patch != nullptr) {
1044           patching_epilog(patch, lir_patch_high, base, info);
1045           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1046           patch_code = lir_patch_low;
1047         }
1048         __ movl(as_Address_lo(to_addr), from_lo);
1049       } else {
1050         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1051         __ movl(as_Address_lo(to_addr), from_lo);
1052         if (patch != nullptr) {
1053           patching_epilog(patch, lir_patch_low, base, info);
1054           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1055           patch_code = lir_patch_high;
1056         }
1057         __ movl(as_Address_hi(to_addr), from_hi);
1058       }
1059 #endif // _LP64
1060       break;
1061     }
1062 
1063     case T_BYTE:    // fall through
1064     case T_BOOLEAN: {
1065       Register src_reg = src->as_register();
1066       Address dst_addr = as_Address(to_addr);
1067       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1068       __ movb(dst_addr, src_reg);
1069       break;
1070     }
1071 
1072     case T_CHAR:    // fall through
1073     case T_SHORT:
1074       __ movw(as_Address(to_addr), src->as_register());
1075       break;
1076 
1077     default:
1078       ShouldNotReachHere();
1079   }
1080   if (info != nullptr) {
1081     add_debug_info_for_null_check(null_check_here, info);
1082   }
1083 
1084   if (patch_code != lir_patch_none) {
1085     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1086   }
1087 }
1088 
1089 
1090 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1091   assert(src->is_stack(), "should not call otherwise");
1092   assert(dest->is_register(), "should not call otherwise");
1093 
1094   if (dest->is_single_cpu()) {
1095     if (is_reference_type(type)) {
1096       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1097       __ verify_oop(dest->as_register());
1098     } else if (type == T_METADATA || type == T_ADDRESS) {
1099       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1100     } else {
1101       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1102     }
1103 
1104   } else if (dest->is_double_cpu()) {
1105     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1106     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1107     __ movptr(dest->as_register_lo(), src_addr_LO);
1108     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1109 
1110   } else if (dest->is_single_xmm()) {
1111     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1112     __ movflt(dest->as_xmm_float_reg(), src_addr);
1113 
1114   } else if (dest->is_double_xmm()) {
1115     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1116     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1117 
1118 #ifndef _LP64
1119   } else if (dest->is_single_fpu()) {
1120     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1121     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1122     __ fld_s(src_addr);
1123 
1124   } else if (dest->is_double_fpu()) {
1125     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1126     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1127     __ fld_d(src_addr);
1128 #endif // _LP64
1129 
1130   } else {
1131     ShouldNotReachHere();
1132   }
1133 }
1134 
1135 
1136 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1137   if (src->is_single_stack()) {
1138     if (is_reference_type(type)) {
1139       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1140       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1141     } else {
1142 #ifndef _LP64
1143       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1144       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1145 #else
1146       //no pushl on 64bits
1147       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1148       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1149 #endif
1150     }
1151 
1152   } else if (src->is_double_stack()) {
1153 #ifdef _LP64
1154     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1155     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1156 #else
1157     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1158     // push and pop the part at src + wordSize, adding wordSize for the previous push
1159     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1160     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1161     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1162 #endif // _LP64
1163 
1164   } else {
1165     ShouldNotReachHere();
1166   }
1167 }
1168 
1169 
1170 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
1171   assert(src->is_address(), "should not call otherwise");
1172   assert(dest->is_register(), "should not call otherwise");
1173 
1174   LIR_Address* addr = src->as_address_ptr();
1175   Address from_addr = as_Address(addr);
1176 
1177   if (addr->base()->type() == T_OBJECT) {
1178     __ verify_oop(addr->base()->as_pointer_register());
1179   }
1180 
1181   switch (type) {
1182     case T_BOOLEAN: // fall through
1183     case T_BYTE:    // fall through
1184     case T_CHAR:    // fall through
1185     case T_SHORT:
1186       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1187         // on pre P6 processors we may get partial register stalls
1188         // so blow away the value of to_rinfo before loading a
1189         // partial word into it.  Do it here so that it precedes
1190         // the potential patch point below.
1191         __ xorptr(dest->as_register(), dest->as_register());
1192       }
1193       break;
1194    default:
1195      break;
1196   }
1197 
1198   PatchingStub* patch = nullptr;
1199   if (patch_code != lir_patch_none) {
1200     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1201     assert(from_addr.disp() != 0, "must have");
1202   }
1203   if (info != nullptr) {
1204     add_debug_info_for_null_check_here(info);
1205   }
1206 
1207   switch (type) {
1208     case T_FLOAT: {
1209       if (dest->is_single_xmm()) {
1210         __ movflt(dest->as_xmm_float_reg(), from_addr);
1211       } else {
1212 #ifndef _LP64
1213         assert(dest->is_single_fpu(), "must be");
1214         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1215         __ fld_s(from_addr);
1216 #else
1217         ShouldNotReachHere();
1218 #endif // !LP64
1219       }
1220       break;
1221     }
1222 
1223     case T_DOUBLE: {
1224       if (dest->is_double_xmm()) {
1225         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1226       } else {
1227 #ifndef _LP64
1228         assert(dest->is_double_fpu(), "must be");
1229         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1230         __ fld_d(from_addr);
1231 #else
1232         ShouldNotReachHere();
1233 #endif // !LP64
1234       }
1235       break;
1236     }
1237 
1238     case T_OBJECT:  // fall through
1239     case T_ARRAY:   // fall through
1240       if (UseCompressedOops && !wide) {
1241         __ movl(dest->as_register(), from_addr);
1242       } else {
1243         __ movptr(dest->as_register(), from_addr);
1244       }
1245       break;
1246 
1247     case T_ADDRESS:
1248       __ movptr(dest->as_register(), from_addr);
1249       break;
1250     case T_INT:
1251       __ movl(dest->as_register(), from_addr);
1252       break;
1253 
1254     case T_LONG: {
1255       Register to_lo = dest->as_register_lo();
1256       Register to_hi = dest->as_register_hi();
1257 #ifdef _LP64
1258       __ movptr(to_lo, as_Address_lo(addr));
1259 #else
1260       Register base = addr->base()->as_register();
1261       Register index = noreg;
1262       if (addr->index()->is_register()) {
1263         index = addr->index()->as_register();
1264       }
1265       if ((base == to_lo && index == to_hi) ||
1266           (base == to_hi && index == to_lo)) {
1267         // addresses with 2 registers are only formed as a result of
1268         // array access so this code will never have to deal with
1269         // patches or null checks.
1270         assert(info == nullptr && patch == nullptr, "must be");
1271         __ lea(to_hi, as_Address(addr));
1272         __ movl(to_lo, Address(to_hi, 0));
1273         __ movl(to_hi, Address(to_hi, BytesPerWord));
1274       } else if (base == to_lo || index == to_lo) {
1275         assert(base != to_hi, "can't be");
1276         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1277         __ movl(to_hi, as_Address_hi(addr));
1278         if (patch != nullptr) {
1279           patching_epilog(patch, lir_patch_high, base, info);
1280           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1281           patch_code = lir_patch_low;
1282         }
1283         __ movl(to_lo, as_Address_lo(addr));
1284       } else {
1285         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1286         __ movl(to_lo, as_Address_lo(addr));
1287         if (patch != nullptr) {
1288           patching_epilog(patch, lir_patch_low, base, info);
1289           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1290           patch_code = lir_patch_high;
1291         }
1292         __ movl(to_hi, as_Address_hi(addr));
1293       }
1294 #endif // _LP64
1295       break;
1296     }
1297 
1298     case T_BOOLEAN: // fall through
1299     case T_BYTE: {
1300       Register dest_reg = dest->as_register();
1301       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1302       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1303         __ movsbl(dest_reg, from_addr);
1304       } else {
1305         __ movb(dest_reg, from_addr);
1306         __ shll(dest_reg, 24);
1307         __ sarl(dest_reg, 24);
1308       }
1309       break;
1310     }
1311 
1312     case T_CHAR: {
1313       Register dest_reg = dest->as_register();
1314       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1315       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1316         __ movzwl(dest_reg, from_addr);
1317       } else {
1318         __ movw(dest_reg, from_addr);
1319       }
1320       break;
1321     }
1322 
1323     case T_SHORT: {
1324       Register dest_reg = dest->as_register();
1325       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1326         __ movswl(dest_reg, from_addr);
1327       } else {
1328         __ movw(dest_reg, from_addr);
1329         __ shll(dest_reg, 16);
1330         __ sarl(dest_reg, 16);
1331       }
1332       break;
1333     }
1334 
1335     default:
1336       ShouldNotReachHere();
1337   }
1338 
1339   if (patch != nullptr) {
1340     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1341   }
1342 
1343   if (is_reference_type(type)) {
1344 #ifdef _LP64
1345     if (UseCompressedOops && !wide) {
1346       __ decode_heap_oop(dest->as_register());
1347     }
1348 #endif
1349 
1350     if (!(UseZGC && !ZGenerational)) {
1351       // Load barrier has not yet been applied, so ZGC can't verify the oop here
1352       __ verify_oop(dest->as_register());
1353     }
1354   }
1355 }
1356 
1357 
1358 NEEDS_CLEANUP; // This could be static?
1359 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1360   int elem_size = type2aelembytes(type);
1361   switch (elem_size) {
1362     case 1: return Address::times_1;
1363     case 2: return Address::times_2;
1364     case 4: return Address::times_4;
1365     case 8: return Address::times_8;
1366   }
1367   ShouldNotReachHere();
1368   return Address::no_scale;
1369 }
1370 
1371 
1372 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1373   switch (op->code()) {
1374     case lir_idiv:
1375     case lir_irem:
1376       arithmetic_idiv(op->code(),
1377                       op->in_opr1(),
1378                       op->in_opr2(),
1379                       op->in_opr3(),
1380                       op->result_opr(),
1381                       op->info());
1382       break;
1383     case lir_fmad:
1384       __ fmad(op->result_opr()->as_xmm_double_reg(),
1385               op->in_opr1()->as_xmm_double_reg(),
1386               op->in_opr2()->as_xmm_double_reg(),
1387               op->in_opr3()->as_xmm_double_reg());
1388       break;
1389     case lir_fmaf:
1390       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1391               op->in_opr1()->as_xmm_float_reg(),
1392               op->in_opr2()->as_xmm_float_reg(),
1393               op->in_opr3()->as_xmm_float_reg());
1394       break;
1395     default:      ShouldNotReachHere(); break;
1396   }
1397 }
1398 
1399 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1400 #ifdef ASSERT
1401   assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
1402   if (op->block() != nullptr)  _branch_target_blocks.append(op->block());
1403   if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
1404 #endif
1405 
1406   if (op->cond() == lir_cond_always) {
1407     if (op->info() != nullptr) add_debug_info_for_branch(op->info());
1408     __ jmp (*(op->label()));
1409   } else {
1410     Assembler::Condition acond = Assembler::zero;
1411     if (op->code() == lir_cond_float_branch) {
1412       assert(op->ublock() != nullptr, "must have unordered successor");
1413       __ jcc(Assembler::parity, *(op->ublock()->label()));
1414       switch(op->cond()) {
1415         case lir_cond_equal:        acond = Assembler::equal;      break;
1416         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1417         case lir_cond_less:         acond = Assembler::below;      break;
1418         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1419         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1420         case lir_cond_greater:      acond = Assembler::above;      break;
1421         default:                         ShouldNotReachHere();
1422       }
1423     } else {
1424       switch (op->cond()) {
1425         case lir_cond_equal:        acond = Assembler::equal;       break;
1426         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1427         case lir_cond_less:         acond = Assembler::less;        break;
1428         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1429         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1430         case lir_cond_greater:      acond = Assembler::greater;     break;
1431         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1432         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1433         default:                         ShouldNotReachHere();
1434       }
1435     }
1436     __ jcc(acond,*(op->label()));
1437   }
1438 }
1439 
1440 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1441   LIR_Opr src  = op->in_opr();
1442   LIR_Opr dest = op->result_opr();
1443 
1444   switch (op->bytecode()) {
1445     case Bytecodes::_i2l:
1446 #ifdef _LP64
1447       __ movl2ptr(dest->as_register_lo(), src->as_register());
1448 #else
1449       move_regs(src->as_register(), dest->as_register_lo());
1450       move_regs(src->as_register(), dest->as_register_hi());
1451       __ sarl(dest->as_register_hi(), 31);
1452 #endif // LP64
1453       break;
1454 
1455     case Bytecodes::_l2i:
1456 #ifdef _LP64
1457       __ movl(dest->as_register(), src->as_register_lo());
1458 #else
1459       move_regs(src->as_register_lo(), dest->as_register());
1460 #endif
1461       break;
1462 
1463     case Bytecodes::_i2b:
1464       move_regs(src->as_register(), dest->as_register());
1465       __ sign_extend_byte(dest->as_register());
1466       break;
1467 
1468     case Bytecodes::_i2c:
1469       move_regs(src->as_register(), dest->as_register());
1470       __ andl(dest->as_register(), 0xFFFF);
1471       break;
1472 
1473     case Bytecodes::_i2s:
1474       move_regs(src->as_register(), dest->as_register());
1475       __ sign_extend_short(dest->as_register());
1476       break;
1477 
1478 
1479 #ifdef _LP64
1480     case Bytecodes::_f2d:
1481       __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1482       break;
1483 
1484     case Bytecodes::_d2f:
1485       __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1486       break;
1487 
1488     case Bytecodes::_i2f:
1489       __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1490       break;
1491 
1492     case Bytecodes::_i2d:
1493       __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1494       break;
1495 
1496     case Bytecodes::_l2f:
1497       __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo());
1498       break;
1499 
1500     case Bytecodes::_l2d:
1501       __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo());
1502       break;
1503 
1504     case Bytecodes::_f2i:
1505       __ convert_f2i(dest->as_register(), src->as_xmm_float_reg());
1506       break;
1507 
1508     case Bytecodes::_d2i:
1509       __ convert_d2i(dest->as_register(), src->as_xmm_double_reg());
1510       break;
1511 
1512     case Bytecodes::_f2l:
1513       __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg());
1514       break;
1515 
1516     case Bytecodes::_d2l:
1517       __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg());
1518       break;
1519 #else
1520     case Bytecodes::_f2d:
1521     case Bytecodes::_d2f:
1522       if (dest->is_single_xmm()) {
1523         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1524       } else if (dest->is_double_xmm()) {
1525         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1526       } else {
1527         assert(src->fpu() == dest->fpu(), "register must be equal");
1528         // do nothing (float result is rounded later through spilling)
1529       }
1530       break;
1531 
1532     case Bytecodes::_i2f:
1533     case Bytecodes::_i2d:
1534       if (dest->is_single_xmm()) {
1535         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1536       } else if (dest->is_double_xmm()) {
1537         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1538       } else {
1539         assert(dest->fpu() == 0, "result must be on TOS");
1540         __ movl(Address(rsp, 0), src->as_register());
1541         __ fild_s(Address(rsp, 0));
1542       }
1543       break;
1544 
1545     case Bytecodes::_l2f:
1546     case Bytecodes::_l2d:
1547       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1548       assert(dest->fpu() == 0, "result must be on TOS");
1549       __ movptr(Address(rsp, 0),          src->as_register_lo());
1550       __ movl(Address(rsp, BytesPerWord), src->as_register_hi());
1551       __ fild_d(Address(rsp, 0));
1552       // float result is rounded later through spilling
1553       break;
1554 
1555     case Bytecodes::_f2i:
1556     case Bytecodes::_d2i:
1557       if (src->is_single_xmm()) {
1558         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1559       } else if (src->is_double_xmm()) {
1560         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1561       } else {
1562         assert(src->fpu() == 0, "input must be on TOS");
1563         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_trunc()));
1564         __ fist_s(Address(rsp, 0));
1565         __ movl(dest->as_register(), Address(rsp, 0));
1566         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
1567       }
1568       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1569       assert(op->stub() != nullptr, "stub required");
1570       __ cmpl(dest->as_register(), 0x80000000);
1571       __ jcc(Assembler::equal, *op->stub()->entry());
1572       __ bind(*op->stub()->continuation());
1573       break;
1574 
1575     case Bytecodes::_f2l:
1576     case Bytecodes::_d2l:
1577       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1578       assert(src->fpu() == 0, "input must be on TOS");
1579       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1580 
1581       // instruction sequence too long to inline it here
1582       {
1583         __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::fpu2long_stub_id)));
1584       }
1585       break;
1586 #endif // _LP64
1587 
1588     default: ShouldNotReachHere();
1589   }
1590 }
1591 
1592 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1593   if (op->init_check()) {
1594     add_debug_info_for_null_check_here(op->stub()->info());
1595     // init_state needs acquire, but x86 is TSO, and so we are already good.
1596     __ cmpb(Address(op->klass()->as_register(),
1597                     InstanceKlass::init_state_offset()),
1598                     InstanceKlass::fully_initialized);
1599     __ jcc(Assembler::notEqual, *op->stub()->entry());
1600   }
1601   __ allocate_object(op->obj()->as_register(),
1602                      op->tmp1()->as_register(),
1603                      op->tmp2()->as_register(),
1604                      op->header_size(),
1605                      op->object_size(),
1606                      op->klass()->as_register(),
1607                      *op->stub()->entry());
1608   __ bind(*op->stub()->continuation());
1609 }
1610 
1611 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1612   Register len =  op->len()->as_register();
1613   LP64_ONLY( __ movslq(len, len); )
1614 
1615   if (UseSlowPath ||
1616       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1617       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1618     __ jmp(*op->stub()->entry());
1619   } else {
1620     Register tmp1 = op->tmp1()->as_register();
1621     Register tmp2 = op->tmp2()->as_register();
1622     Register tmp3 = op->tmp3()->as_register();
1623     if (len == tmp1) {
1624       tmp1 = tmp3;
1625     } else if (len == tmp2) {
1626       tmp2 = tmp3;
1627     } else if (len == tmp3) {
1628       // everything is ok
1629     } else {
1630       __ mov(tmp3, len);
1631     }
1632     __ allocate_array(op->obj()->as_register(),
1633                       len,
1634                       tmp1,
1635                       tmp2,
1636                       arrayOopDesc::base_offset_in_bytes(op->type()),
1637                       array_element_size(op->type()),
1638                       op->klass()->as_register(),
1639                       *op->stub()->entry(),
1640                       op->zero_array());
1641   }
1642   __ bind(*op->stub()->continuation());
1643 }
1644 
1645 void LIR_Assembler::type_profile_helper(Register mdo,
1646                                         ciMethodData *md, ciProfileData *data,
1647                                         Register recv, Label* update_done) {
1648   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1649     Label next_test;
1650     // See if the receiver is receiver[n].
1651     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1652     __ jccb(Assembler::notEqual, next_test);
1653     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1654     __ addptr(data_addr, DataLayout::counter_increment);
1655     __ jmp(*update_done);
1656     __ bind(next_test);
1657   }
1658 
1659   // Didn't find receiver; find next empty slot and fill it in
1660   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1661     Label next_test;
1662     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1663     __ cmpptr(recv_addr, NULL_WORD);
1664     __ jccb(Assembler::notEqual, next_test);
1665     __ movptr(recv_addr, recv);
1666     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1667     __ jmp(*update_done);
1668     __ bind(next_test);
1669   }
1670 }
1671 
1672 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1673   // we always need a stub for the failure case.
1674   CodeStub* stub = op->stub();
1675   Register obj = op->object()->as_register();
1676   Register k_RInfo = op->tmp1()->as_register();
1677   Register klass_RInfo = op->tmp2()->as_register();
1678   Register dst = op->result_opr()->as_register();
1679   ciKlass* k = op->klass();
1680   Register Rtmp1 = noreg;
1681   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1682 
1683   // check if it needs to be profiled
1684   ciMethodData* md = nullptr;
1685   ciProfileData* data = nullptr;
1686 
1687   if (op->should_profile()) {
1688     ciMethod* method = op->profiled_method();
1689     assert(method != nullptr, "Should have method");
1690     int bci = op->profiled_bci();
1691     md = method->method_data_or_null();
1692     assert(md != nullptr, "Sanity");
1693     data = md->bci_to_data(bci);
1694     assert(data != nullptr,                "need data for type check");
1695     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1696   }
1697   Label* success_target = success;
1698   Label* failure_target = failure;
1699 
1700   if (obj == k_RInfo) {
1701     k_RInfo = dst;
1702   } else if (obj == klass_RInfo) {
1703     klass_RInfo = dst;
1704   }
1705   if (k->is_loaded() && !UseCompressedClassPointers) {
1706     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1707   } else {
1708     Rtmp1 = op->tmp3()->as_register();
1709     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1710   }
1711 
1712   assert_different_registers(obj, k_RInfo, klass_RInfo);
1713 
1714   __ testptr(obj, obj);
1715   if (op->should_profile()) {
1716     Label not_null;
1717     Register mdo  = klass_RInfo;
1718     __ mov_metadata(mdo, md->constant_encoding());
1719     __ jccb(Assembler::notEqual, not_null);
1720     // Object is null; update MDO and exit
1721     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1722     int header_bits = BitData::null_seen_byte_constant();
1723     __ orb(data_addr, header_bits);
1724     __ jmp(*obj_is_null);
1725     __ bind(not_null);
1726 
1727     Label update_done;
1728     Register recv = k_RInfo;
1729     __ load_klass(recv, obj, tmp_load_klass);
1730     type_profile_helper(mdo, md, data, recv, &update_done);
1731 
1732     Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1733     __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment);
1734 
1735     __ bind(update_done);
1736   } else {
1737     __ jcc(Assembler::equal, *obj_is_null);
1738   }
1739 
1740   if (!k->is_loaded()) {
1741     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1742   } else {
1743 #ifdef _LP64
1744     __ mov_metadata(k_RInfo, k->constant_encoding());
1745 #endif // _LP64
1746   }
1747   __ verify_oop(obj);
1748 
1749   if (op->fast_check()) {
1750     // get object class
1751     // not a safepoint as obj null check happens earlier
1752 #ifdef _LP64
1753     if (UseCompressedClassPointers) {
1754       __ load_klass(Rtmp1, obj, tmp_load_klass);
1755       __ cmpptr(k_RInfo, Rtmp1);
1756     } else {
1757       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1758     }
1759 #else
1760     if (k->is_loaded()) {
1761       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1762     } else {
1763       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1764     }
1765 #endif
1766     __ jcc(Assembler::notEqual, *failure_target);
1767     // successful cast, fall through to profile or jump
1768   } else {
1769     // get object class
1770     // not a safepoint as obj null check happens earlier
1771     __ load_klass(klass_RInfo, obj, tmp_load_klass);
1772     if (k->is_loaded()) {
1773       // See if we get an immediate positive hit
1774 #ifdef _LP64
1775       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1776 #else
1777       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1778 #endif // _LP64
1779       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1780         __ jcc(Assembler::notEqual, *failure_target);
1781         // successful cast, fall through to profile or jump
1782       } else {
1783         // See if we get an immediate positive hit
1784         __ jcc(Assembler::equal, *success_target);
1785         // check for self
1786 #ifdef _LP64
1787         __ cmpptr(klass_RInfo, k_RInfo);
1788 #else
1789         __ cmpklass(klass_RInfo, k->constant_encoding());
1790 #endif // _LP64
1791         __ jcc(Assembler::equal, *success_target);
1792 
1793         __ push(klass_RInfo);
1794 #ifdef _LP64
1795         __ push(k_RInfo);
1796 #else
1797         __ pushklass(k->constant_encoding(), noreg);
1798 #endif // _LP64
1799         __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1800         __ pop(klass_RInfo);
1801         __ pop(klass_RInfo);
1802         // result is a boolean
1803         __ testl(klass_RInfo, klass_RInfo);
1804         __ jcc(Assembler::equal, *failure_target);
1805         // successful cast, fall through to profile or jump
1806       }
1807     } else {
1808       // perform the fast part of the checking logic
1809       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1810       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1811       __ push(klass_RInfo);
1812       __ push(k_RInfo);
1813       __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1814       __ pop(klass_RInfo);
1815       __ pop(k_RInfo);
1816       // result is a boolean
1817       __ testl(k_RInfo, k_RInfo);
1818       __ jcc(Assembler::equal, *failure_target);
1819       // successful cast, fall through to profile or jump
1820     }
1821   }
1822   __ jmp(*success);
1823 }
1824 
1825 
1826 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1827   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1828   LIR_Code code = op->code();
1829   if (code == lir_store_check) {
1830     Register value = op->object()->as_register();
1831     Register array = op->array()->as_register();
1832     Register k_RInfo = op->tmp1()->as_register();
1833     Register klass_RInfo = op->tmp2()->as_register();
1834     Register Rtmp1 = op->tmp3()->as_register();
1835 
1836     CodeStub* stub = op->stub();
1837 
1838     // check if it needs to be profiled
1839     ciMethodData* md = nullptr;
1840     ciProfileData* data = nullptr;
1841 
1842     if (op->should_profile()) {
1843       ciMethod* method = op->profiled_method();
1844       assert(method != nullptr, "Should have method");
1845       int bci = op->profiled_bci();
1846       md = method->method_data_or_null();
1847       assert(md != nullptr, "Sanity");
1848       data = md->bci_to_data(bci);
1849       assert(data != nullptr,                "need data for type check");
1850       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1851     }
1852     Label done;
1853     Label* success_target = &done;
1854     Label* failure_target = stub->entry();
1855 
1856     __ testptr(value, value);
1857     if (op->should_profile()) {
1858       Label not_null;
1859       Register mdo  = klass_RInfo;
1860       __ mov_metadata(mdo, md->constant_encoding());
1861       __ jccb(Assembler::notEqual, not_null);
1862       // Object is null; update MDO and exit
1863       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1864       int header_bits = BitData::null_seen_byte_constant();
1865       __ orb(data_addr, header_bits);
1866       __ jmp(done);
1867       __ bind(not_null);
1868 
1869       Label update_done;
1870       Register recv = k_RInfo;
1871       __ load_klass(recv, value, tmp_load_klass);
1872       type_profile_helper(mdo, md, data, recv, &update_done);
1873 
1874       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1875       __ addptr(counter_addr, DataLayout::counter_increment);
1876       __ bind(update_done);
1877     } else {
1878       __ jcc(Assembler::equal, done);
1879     }
1880 
1881     add_debug_info_for_null_check_here(op->info_for_exception());
1882     __ load_klass(k_RInfo, array, tmp_load_klass);
1883     __ load_klass(klass_RInfo, value, tmp_load_klass);
1884 
1885     // get instance klass (it's already uncompressed)
1886     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1887     // perform the fast part of the checking logic
1888     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1889     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1890     __ push(klass_RInfo);
1891     __ push(k_RInfo);
1892     __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1893     __ pop(klass_RInfo);
1894     __ pop(k_RInfo);
1895     // result is a boolean
1896     __ testl(k_RInfo, k_RInfo);
1897     __ jcc(Assembler::equal, *failure_target);
1898     // fall through to the success case
1899 
1900     __ bind(done);
1901   } else
1902     if (code == lir_checkcast) {
1903       Register obj = op->object()->as_register();
1904       Register dst = op->result_opr()->as_register();
1905       Label success;
1906       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1907       __ bind(success);
1908       if (dst != obj) {
1909         __ mov(dst, obj);
1910       }
1911     } else
1912       if (code == lir_instanceof) {
1913         Register obj = op->object()->as_register();
1914         Register dst = op->result_opr()->as_register();
1915         Label success, failure, done;
1916         emit_typecheck_helper(op, &success, &failure, &failure);
1917         __ bind(failure);
1918         __ xorptr(dst, dst);
1919         __ jmpb(done);
1920         __ bind(success);
1921         __ movptr(dst, 1);
1922         __ bind(done);
1923       } else {
1924         ShouldNotReachHere();
1925       }
1926 
1927 }
1928 
1929 
1930 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1931   if (LP64_ONLY(false &&) op->code() == lir_cas_long) {
1932     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1933     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1934     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1935     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1936     Register addr = op->addr()->as_register();
1937     __ lock();
1938     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1939 
1940   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1941     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1942     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1943     Register newval = op->new_value()->as_register();
1944     Register cmpval = op->cmp_value()->as_register();
1945     assert(cmpval == rax, "wrong register");
1946     assert(newval != noreg, "new val must be register");
1947     assert(cmpval != newval, "cmp and new values must be in different registers");
1948     assert(cmpval != addr, "cmp and addr must be in different registers");
1949     assert(newval != addr, "new value and addr must be in different registers");
1950 
1951     if ( op->code() == lir_cas_obj) {
1952 #ifdef _LP64
1953       if (UseCompressedOops) {
1954         __ encode_heap_oop(cmpval);
1955         __ mov(rscratch1, newval);
1956         __ encode_heap_oop(rscratch1);
1957         __ lock();
1958         // cmpval (rax) is implicitly used by this instruction
1959         __ cmpxchgl(rscratch1, Address(addr, 0));
1960       } else
1961 #endif
1962       {
1963         __ lock();
1964         __ cmpxchgptr(newval, Address(addr, 0));
1965       }
1966     } else {
1967       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1968       __ lock();
1969       __ cmpxchgl(newval, Address(addr, 0));
1970     }
1971 #ifdef _LP64
1972   } else if (op->code() == lir_cas_long) {
1973     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1974     Register newval = op->new_value()->as_register_lo();
1975     Register cmpval = op->cmp_value()->as_register_lo();
1976     assert(cmpval == rax, "wrong register");
1977     assert(newval != noreg, "new val must be register");
1978     assert(cmpval != newval, "cmp and new values must be in different registers");
1979     assert(cmpval != addr, "cmp and addr must be in different registers");
1980     assert(newval != addr, "new value and addr must be in different registers");
1981     __ lock();
1982     __ cmpxchgq(newval, Address(addr, 0));
1983 #endif // _LP64
1984   } else {
1985     Unimplemented();
1986   }
1987 }
1988 
1989 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
1990                           LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
1991   assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86");
1992 
1993   Assembler::Condition acond, ncond;
1994   switch (condition) {
1995     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1996     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1997     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1998     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1999     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
2000     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
2001     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
2002     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
2003     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
2004                                 ShouldNotReachHere();
2005   }
2006 
2007   if (opr1->is_cpu_register()) {
2008     reg2reg(opr1, result);
2009   } else if (opr1->is_stack()) {
2010     stack2reg(opr1, result, result->type());
2011   } else if (opr1->is_constant()) {
2012     const2reg(opr1, result, lir_patch_none, nullptr);
2013   } else {
2014     ShouldNotReachHere();
2015   }
2016 
2017   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2018     // optimized version that does not require a branch
2019     if (opr2->is_single_cpu()) {
2020       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2021       __ cmov(ncond, result->as_register(), opr2->as_register());
2022     } else if (opr2->is_double_cpu()) {
2023       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2024       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2025       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2026       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2027     } else if (opr2->is_single_stack()) {
2028       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2029     } else if (opr2->is_double_stack()) {
2030       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2031       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2032     } else {
2033       ShouldNotReachHere();
2034     }
2035 
2036   } else {
2037     Label skip;
2038     __ jccb(acond, skip);
2039     if (opr2->is_cpu_register()) {
2040       reg2reg(opr2, result);
2041     } else if (opr2->is_stack()) {
2042       stack2reg(opr2, result, result->type());
2043     } else if (opr2->is_constant()) {
2044       const2reg(opr2, result, lir_patch_none, nullptr);
2045     } else {
2046       ShouldNotReachHere();
2047     }
2048     __ bind(skip);
2049   }
2050 }
2051 
2052 
2053 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2054   assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2055 
2056   if (left->is_single_cpu()) {
2057     assert(left == dest, "left and dest must be equal");
2058     Register lreg = left->as_register();
2059 
2060     if (right->is_single_cpu()) {
2061       // cpu register - cpu register
2062       Register rreg = right->as_register();
2063       switch (code) {
2064         case lir_add: __ addl (lreg, rreg); break;
2065         case lir_sub: __ subl (lreg, rreg); break;
2066         case lir_mul: __ imull(lreg, rreg); break;
2067         default:      ShouldNotReachHere();
2068       }
2069 
2070     } else if (right->is_stack()) {
2071       // cpu register - stack
2072       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2073       switch (code) {
2074         case lir_add: __ addl(lreg, raddr); break;
2075         case lir_sub: __ subl(lreg, raddr); break;
2076         default:      ShouldNotReachHere();
2077       }
2078 
2079     } else if (right->is_constant()) {
2080       // cpu register - constant
2081       jint c = right->as_constant_ptr()->as_jint();
2082       switch (code) {
2083         case lir_add: {
2084           __ incrementl(lreg, c);
2085           break;
2086         }
2087         case lir_sub: {
2088           __ decrementl(lreg, c);
2089           break;
2090         }
2091         default: ShouldNotReachHere();
2092       }
2093 
2094     } else {
2095       ShouldNotReachHere();
2096     }
2097 
2098   } else if (left->is_double_cpu()) {
2099     assert(left == dest, "left and dest must be equal");
2100     Register lreg_lo = left->as_register_lo();
2101     Register lreg_hi = left->as_register_hi();
2102 
2103     if (right->is_double_cpu()) {
2104       // cpu register - cpu register
2105       Register rreg_lo = right->as_register_lo();
2106       Register rreg_hi = right->as_register_hi();
2107       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2108       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2109       switch (code) {
2110         case lir_add:
2111           __ addptr(lreg_lo, rreg_lo);
2112           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2113           break;
2114         case lir_sub:
2115           __ subptr(lreg_lo, rreg_lo);
2116           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2117           break;
2118         case lir_mul:
2119 #ifdef _LP64
2120           __ imulq(lreg_lo, rreg_lo);
2121 #else
2122           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2123           __ imull(lreg_hi, rreg_lo);
2124           __ imull(rreg_hi, lreg_lo);
2125           __ addl (rreg_hi, lreg_hi);
2126           __ mull (rreg_lo);
2127           __ addl (lreg_hi, rreg_hi);
2128 #endif // _LP64
2129           break;
2130         default:
2131           ShouldNotReachHere();
2132       }
2133 
2134     } else if (right->is_constant()) {
2135       // cpu register - constant
2136 #ifdef _LP64
2137       jlong c = right->as_constant_ptr()->as_jlong_bits();
2138       __ movptr(r10, (intptr_t) c);
2139       switch (code) {
2140         case lir_add:
2141           __ addptr(lreg_lo, r10);
2142           break;
2143         case lir_sub:
2144           __ subptr(lreg_lo, r10);
2145           break;
2146         default:
2147           ShouldNotReachHere();
2148       }
2149 #else
2150       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2151       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2152       switch (code) {
2153         case lir_add:
2154           __ addptr(lreg_lo, c_lo);
2155           __ adcl(lreg_hi, c_hi);
2156           break;
2157         case lir_sub:
2158           __ subptr(lreg_lo, c_lo);
2159           __ sbbl(lreg_hi, c_hi);
2160           break;
2161         default:
2162           ShouldNotReachHere();
2163       }
2164 #endif // _LP64
2165 
2166     } else {
2167       ShouldNotReachHere();
2168     }
2169 
2170   } else if (left->is_single_xmm()) {
2171     assert(left == dest, "left and dest must be equal");
2172     XMMRegister lreg = left->as_xmm_float_reg();
2173 
2174     if (right->is_single_xmm()) {
2175       XMMRegister rreg = right->as_xmm_float_reg();
2176       switch (code) {
2177         case lir_add: __ addss(lreg, rreg);  break;
2178         case lir_sub: __ subss(lreg, rreg);  break;
2179         case lir_mul: __ mulss(lreg, rreg);  break;
2180         case lir_div: __ divss(lreg, rreg);  break;
2181         default: ShouldNotReachHere();
2182       }
2183     } else {
2184       Address raddr;
2185       if (right->is_single_stack()) {
2186         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2187       } else if (right->is_constant()) {
2188         // hack for now
2189         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2190       } else {
2191         ShouldNotReachHere();
2192       }
2193       switch (code) {
2194         case lir_add: __ addss(lreg, raddr);  break;
2195         case lir_sub: __ subss(lreg, raddr);  break;
2196         case lir_mul: __ mulss(lreg, raddr);  break;
2197         case lir_div: __ divss(lreg, raddr);  break;
2198         default: ShouldNotReachHere();
2199       }
2200     }
2201 
2202   } else if (left->is_double_xmm()) {
2203     assert(left == dest, "left and dest must be equal");
2204 
2205     XMMRegister lreg = left->as_xmm_double_reg();
2206     if (right->is_double_xmm()) {
2207       XMMRegister rreg = right->as_xmm_double_reg();
2208       switch (code) {
2209         case lir_add: __ addsd(lreg, rreg);  break;
2210         case lir_sub: __ subsd(lreg, rreg);  break;
2211         case lir_mul: __ mulsd(lreg, rreg);  break;
2212         case lir_div: __ divsd(lreg, rreg);  break;
2213         default: ShouldNotReachHere();
2214       }
2215     } else {
2216       Address raddr;
2217       if (right->is_double_stack()) {
2218         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2219       } else if (right->is_constant()) {
2220         // hack for now
2221         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2222       } else {
2223         ShouldNotReachHere();
2224       }
2225       switch (code) {
2226         case lir_add: __ addsd(lreg, raddr);  break;
2227         case lir_sub: __ subsd(lreg, raddr);  break;
2228         case lir_mul: __ mulsd(lreg, raddr);  break;
2229         case lir_div: __ divsd(lreg, raddr);  break;
2230         default: ShouldNotReachHere();
2231       }
2232     }
2233 
2234 #ifndef _LP64
2235   } else if (left->is_single_fpu()) {
2236     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2237 
2238     if (right->is_single_fpu()) {
2239       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2240 
2241     } else {
2242       assert(left->fpu_regnr() == 0, "left must be on TOS");
2243       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2244 
2245       Address raddr;
2246       if (right->is_single_stack()) {
2247         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2248       } else if (right->is_constant()) {
2249         address const_addr = float_constant(right->as_jfloat());
2250         assert(const_addr != nullptr, "incorrect float/double constant maintenance");
2251         // hack for now
2252         raddr = __ as_Address(InternalAddress(const_addr));
2253       } else {
2254         ShouldNotReachHere();
2255       }
2256 
2257       switch (code) {
2258         case lir_add: __ fadd_s(raddr); break;
2259         case lir_sub: __ fsub_s(raddr); break;
2260         case lir_mul: __ fmul_s(raddr); break;
2261         case lir_div: __ fdiv_s(raddr); break;
2262         default:      ShouldNotReachHere();
2263       }
2264     }
2265 
2266   } else if (left->is_double_fpu()) {
2267     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2268 
2269     if (code == lir_mul || code == lir_div) {
2270       // Double values require special handling for strictfp mul/div on x86
2271       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1()));
2272       __ fmulp(left->fpu_regnrLo() + 1);
2273     }
2274 
2275     if (right->is_double_fpu()) {
2276       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2277 
2278     } else {
2279       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2280       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2281 
2282       Address raddr;
2283       if (right->is_double_stack()) {
2284         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2285       } else if (right->is_constant()) {
2286         // hack for now
2287         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2288       } else {
2289         ShouldNotReachHere();
2290       }
2291 
2292       switch (code) {
2293         case lir_add: __ fadd_d(raddr); break;
2294         case lir_sub: __ fsub_d(raddr); break;
2295         case lir_mul: __ fmul_d(raddr); break;
2296         case lir_div: __ fdiv_d(raddr); break;
2297         default: ShouldNotReachHere();
2298       }
2299     }
2300 
2301     if (code == lir_mul || code == lir_div) {
2302       // Double values require special handling for strictfp mul/div on x86
2303       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2()));
2304       __ fmulp(dest->fpu_regnrLo() + 1);
2305     }
2306 #endif // !_LP64
2307 
2308   } else if (left->is_single_stack() || left->is_address()) {
2309     assert(left == dest, "left and dest must be equal");
2310 
2311     Address laddr;
2312     if (left->is_single_stack()) {
2313       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2314     } else if (left->is_address()) {
2315       laddr = as_Address(left->as_address_ptr());
2316     } else {
2317       ShouldNotReachHere();
2318     }
2319 
2320     if (right->is_single_cpu()) {
2321       Register rreg = right->as_register();
2322       switch (code) {
2323         case lir_add: __ addl(laddr, rreg); break;
2324         case lir_sub: __ subl(laddr, rreg); break;
2325         default:      ShouldNotReachHere();
2326       }
2327     } else if (right->is_constant()) {
2328       jint c = right->as_constant_ptr()->as_jint();
2329       switch (code) {
2330         case lir_add: {
2331           __ incrementl(laddr, c);
2332           break;
2333         }
2334         case lir_sub: {
2335           __ decrementl(laddr, c);
2336           break;
2337         }
2338         default: ShouldNotReachHere();
2339       }
2340     } else {
2341       ShouldNotReachHere();
2342     }
2343 
2344   } else {
2345     ShouldNotReachHere();
2346   }
2347 }
2348 
2349 #ifndef _LP64
2350 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2351   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2352   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2353   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2354 
2355   bool left_is_tos = (left_index == 0);
2356   bool dest_is_tos = (dest_index == 0);
2357   int non_tos_index = (left_is_tos ? right_index : left_index);
2358 
2359   switch (code) {
2360     case lir_add:
2361       if (pop_fpu_stack)       __ faddp(non_tos_index);
2362       else if (dest_is_tos)    __ fadd (non_tos_index);
2363       else                     __ fadda(non_tos_index);
2364       break;
2365 
2366     case lir_sub:
2367       if (left_is_tos) {
2368         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2369         else if (dest_is_tos)  __ fsub  (non_tos_index);
2370         else                   __ fsubra(non_tos_index);
2371       } else {
2372         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2373         else if (dest_is_tos)  __ fsubr (non_tos_index);
2374         else                   __ fsuba (non_tos_index);
2375       }
2376       break;
2377 
2378     case lir_mul:
2379       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2380       else if (dest_is_tos)    __ fmul (non_tos_index);
2381       else                     __ fmula(non_tos_index);
2382       break;
2383 
2384     case lir_div:
2385       if (left_is_tos) {
2386         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2387         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2388         else                   __ fdivra(non_tos_index);
2389       } else {
2390         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2391         else if (dest_is_tos)  __ fdivr (non_tos_index);
2392         else                   __ fdiva (non_tos_index);
2393       }
2394       break;
2395 
2396     case lir_rem:
2397       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2398       __ fremr(noreg);
2399       break;
2400 
2401     default:
2402       ShouldNotReachHere();
2403   }
2404 }
2405 #endif // _LP64
2406 
2407 
2408 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
2409   if (value->is_double_xmm()) {
2410     switch(code) {
2411       case lir_abs :
2412         {
2413 #ifdef _LP64
2414           if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
2415             assert(tmp->is_valid(), "need temporary");
2416             __ vpandn(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), value->as_xmm_double_reg(), 2);
2417           } else
2418 #endif
2419           {
2420             if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2421               __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2422             }
2423             assert(!tmp->is_valid(), "do not need temporary");
2424             __ andpd(dest->as_xmm_double_reg(),
2425                      ExternalAddress(LIR_Assembler::double_signmask_pool),
2426                      rscratch1);
2427           }
2428         }
2429         break;
2430 
2431       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2432       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2433       default      : ShouldNotReachHere();
2434     }
2435 
2436 #ifndef _LP64
2437   } else if (value->is_double_fpu()) {
2438     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2439     switch(code) {
2440       case lir_abs   : __ fabs() ; break;
2441       case lir_sqrt  : __ fsqrt(); break;
2442       default      : ShouldNotReachHere();
2443     }
2444 #endif // !_LP64
2445   } else if (code == lir_f2hf) {
2446     __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg());
2447   } else if (code == lir_hf2f) {
2448     __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register());
2449   } else {
2450     Unimplemented();
2451   }
2452 }
2453 
2454 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2455   // assert(left->destroys_register(), "check");
2456   if (left->is_single_cpu()) {
2457     Register reg = left->as_register();
2458     if (right->is_constant()) {
2459       int val = right->as_constant_ptr()->as_jint();
2460       switch (code) {
2461         case lir_logic_and: __ andl (reg, val); break;
2462         case lir_logic_or:  __ orl  (reg, val); break;
2463         case lir_logic_xor: __ xorl (reg, val); break;
2464         default: ShouldNotReachHere();
2465       }
2466     } else if (right->is_stack()) {
2467       // added support for stack operands
2468       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2469       switch (code) {
2470         case lir_logic_and: __ andl (reg, raddr); break;
2471         case lir_logic_or:  __ orl  (reg, raddr); break;
2472         case lir_logic_xor: __ xorl (reg, raddr); break;
2473         default: ShouldNotReachHere();
2474       }
2475     } else {
2476       Register rright = right->as_register();
2477       switch (code) {
2478         case lir_logic_and: __ andptr (reg, rright); break;
2479         case lir_logic_or : __ orptr  (reg, rright); break;
2480         case lir_logic_xor: __ xorptr (reg, rright); break;
2481         default: ShouldNotReachHere();
2482       }
2483     }
2484     move_regs(reg, dst->as_register());
2485   } else {
2486     Register l_lo = left->as_register_lo();
2487     Register l_hi = left->as_register_hi();
2488     if (right->is_constant()) {
2489 #ifdef _LP64
2490       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2491       switch (code) {
2492         case lir_logic_and:
2493           __ andq(l_lo, rscratch1);
2494           break;
2495         case lir_logic_or:
2496           __ orq(l_lo, rscratch1);
2497           break;
2498         case lir_logic_xor:
2499           __ xorq(l_lo, rscratch1);
2500           break;
2501         default: ShouldNotReachHere();
2502       }
2503 #else
2504       int r_lo = right->as_constant_ptr()->as_jint_lo();
2505       int r_hi = right->as_constant_ptr()->as_jint_hi();
2506       switch (code) {
2507         case lir_logic_and:
2508           __ andl(l_lo, r_lo);
2509           __ andl(l_hi, r_hi);
2510           break;
2511         case lir_logic_or:
2512           __ orl(l_lo, r_lo);
2513           __ orl(l_hi, r_hi);
2514           break;
2515         case lir_logic_xor:
2516           __ xorl(l_lo, r_lo);
2517           __ xorl(l_hi, r_hi);
2518           break;
2519         default: ShouldNotReachHere();
2520       }
2521 #endif // _LP64
2522     } else {
2523 #ifdef _LP64
2524       Register r_lo;
2525       if (is_reference_type(right->type())) {
2526         r_lo = right->as_register();
2527       } else {
2528         r_lo = right->as_register_lo();
2529       }
2530 #else
2531       Register r_lo = right->as_register_lo();
2532       Register r_hi = right->as_register_hi();
2533       assert(l_lo != r_hi, "overwriting registers");
2534 #endif
2535       switch (code) {
2536         case lir_logic_and:
2537           __ andptr(l_lo, r_lo);
2538           NOT_LP64(__ andptr(l_hi, r_hi);)
2539           break;
2540         case lir_logic_or:
2541           __ orptr(l_lo, r_lo);
2542           NOT_LP64(__ orptr(l_hi, r_hi);)
2543           break;
2544         case lir_logic_xor:
2545           __ xorptr(l_lo, r_lo);
2546           NOT_LP64(__ xorptr(l_hi, r_hi);)
2547           break;
2548         default: ShouldNotReachHere();
2549       }
2550     }
2551 
2552     Register dst_lo = dst->as_register_lo();
2553     Register dst_hi = dst->as_register_hi();
2554 
2555 #ifdef _LP64
2556     move_regs(l_lo, dst_lo);
2557 #else
2558     if (dst_lo == l_hi) {
2559       assert(dst_hi != l_lo, "overwriting registers");
2560       move_regs(l_hi, dst_hi);
2561       move_regs(l_lo, dst_lo);
2562     } else {
2563       assert(dst_lo != l_hi, "overwriting registers");
2564       move_regs(l_lo, dst_lo);
2565       move_regs(l_hi, dst_hi);
2566     }
2567 #endif // _LP64
2568   }
2569 }
2570 
2571 
2572 // we assume that rax, and rdx can be overwritten
2573 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2574 
2575   assert(left->is_single_cpu(),   "left must be register");
2576   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2577   assert(result->is_single_cpu(), "result must be register");
2578 
2579   //  assert(left->destroys_register(), "check");
2580   //  assert(right->destroys_register(), "check");
2581 
2582   Register lreg = left->as_register();
2583   Register dreg = result->as_register();
2584 
2585   if (right->is_constant()) {
2586     jint divisor = right->as_constant_ptr()->as_jint();
2587     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2588     if (code == lir_idiv) {
2589       assert(lreg == rax, "must be rax,");
2590       assert(temp->as_register() == rdx, "tmp register must be rdx");
2591       __ cdql(); // sign extend into rdx:rax
2592       if (divisor == 2) {
2593         __ subl(lreg, rdx);
2594       } else {
2595         __ andl(rdx, divisor - 1);
2596         __ addl(lreg, rdx);
2597       }
2598       __ sarl(lreg, log2i_exact(divisor));
2599       move_regs(lreg, dreg);
2600     } else if (code == lir_irem) {
2601       Label done;
2602       __ mov(dreg, lreg);
2603       __ andl(dreg, 0x80000000 | (divisor - 1));
2604       __ jcc(Assembler::positive, done);
2605       __ decrement(dreg);
2606       __ orl(dreg, ~(divisor - 1));
2607       __ increment(dreg);
2608       __ bind(done);
2609     } else {
2610       ShouldNotReachHere();
2611     }
2612   } else {
2613     Register rreg = right->as_register();
2614     assert(lreg == rax, "left register must be rax,");
2615     assert(rreg != rdx, "right register must not be rdx");
2616     assert(temp->as_register() == rdx, "tmp register must be rdx");
2617 
2618     move_regs(lreg, rax);
2619 
2620     int idivl_offset = __ corrected_idivl(rreg);
2621     if (ImplicitDiv0Checks) {
2622       add_debug_info_for_div0(idivl_offset, info);
2623     }
2624     if (code == lir_irem) {
2625       move_regs(rdx, dreg); // result is in rdx
2626     } else {
2627       move_regs(rax, dreg);
2628     }
2629   }
2630 }
2631 
2632 
2633 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2634   if (opr1->is_single_cpu()) {
2635     Register reg1 = opr1->as_register();
2636     if (opr2->is_single_cpu()) {
2637       // cpu register - cpu register
2638       if (is_reference_type(opr1->type())) {
2639         __ cmpoop(reg1, opr2->as_register());
2640       } else {
2641         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
2642         __ cmpl(reg1, opr2->as_register());
2643       }
2644     } else if (opr2->is_stack()) {
2645       // cpu register - stack
2646       if (is_reference_type(opr1->type())) {
2647         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2648       } else {
2649         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2650       }
2651     } else if (opr2->is_constant()) {
2652       // cpu register - constant
2653       LIR_Const* c = opr2->as_constant_ptr();
2654       if (c->type() == T_INT) {
2655         jint i = c->as_jint();
2656         if (i == 0) {
2657           __ testl(reg1, reg1);
2658         } else {
2659           __ cmpl(reg1, i);
2660         }
2661       } else if (c->type() == T_METADATA) {
2662         // All we need for now is a comparison with null for equality.
2663         assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
2664         Metadata* m = c->as_metadata();
2665         if (m == nullptr) {
2666           __ testptr(reg1, reg1);
2667         } else {
2668           ShouldNotReachHere();
2669         }
2670       } else if (is_reference_type(c->type())) {
2671         // In 64bit oops are single register
2672         jobject o = c->as_jobject();
2673         if (o == nullptr) {
2674           __ testptr(reg1, reg1);
2675         } else {
2676           __ cmpoop(reg1, o, rscratch1);
2677         }
2678       } else {
2679         fatal("unexpected type: %s", basictype_to_str(c->type()));
2680       }
2681       // cpu register - address
2682     } else if (opr2->is_address()) {
2683       if (op->info() != nullptr) {
2684         add_debug_info_for_null_check_here(op->info());
2685       }
2686       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2687     } else {
2688       ShouldNotReachHere();
2689     }
2690 
2691   } else if(opr1->is_double_cpu()) {
2692     Register xlo = opr1->as_register_lo();
2693     Register xhi = opr1->as_register_hi();
2694     if (opr2->is_double_cpu()) {
2695 #ifdef _LP64
2696       __ cmpptr(xlo, opr2->as_register_lo());
2697 #else
2698       // cpu register - cpu register
2699       Register ylo = opr2->as_register_lo();
2700       Register yhi = opr2->as_register_hi();
2701       __ subl(xlo, ylo);
2702       __ sbbl(xhi, yhi);
2703       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2704         __ orl(xhi, xlo);
2705       }
2706 #endif // _LP64
2707     } else if (opr2->is_constant()) {
2708       // cpu register - constant 0
2709       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2710 #ifdef _LP64
2711       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2712 #else
2713       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2714       __ orl(xhi, xlo);
2715 #endif // _LP64
2716     } else {
2717       ShouldNotReachHere();
2718     }
2719 
2720   } else if (opr1->is_single_xmm()) {
2721     XMMRegister reg1 = opr1->as_xmm_float_reg();
2722     if (opr2->is_single_xmm()) {
2723       // xmm register - xmm register
2724       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2725     } else if (opr2->is_stack()) {
2726       // xmm register - stack
2727       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2728     } else if (opr2->is_constant()) {
2729       // xmm register - constant
2730       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2731     } else if (opr2->is_address()) {
2732       // xmm register - address
2733       if (op->info() != nullptr) {
2734         add_debug_info_for_null_check_here(op->info());
2735       }
2736       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2737     } else {
2738       ShouldNotReachHere();
2739     }
2740 
2741   } else if (opr1->is_double_xmm()) {
2742     XMMRegister reg1 = opr1->as_xmm_double_reg();
2743     if (opr2->is_double_xmm()) {
2744       // xmm register - xmm register
2745       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2746     } else if (opr2->is_stack()) {
2747       // xmm register - stack
2748       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2749     } else if (opr2->is_constant()) {
2750       // xmm register - constant
2751       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2752     } else if (opr2->is_address()) {
2753       // xmm register - address
2754       if (op->info() != nullptr) {
2755         add_debug_info_for_null_check_here(op->info());
2756       }
2757       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2758     } else {
2759       ShouldNotReachHere();
2760     }
2761 
2762 #ifndef _LP64
2763   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2764     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2765     assert(opr2->is_fpu_register(), "both must be registers");
2766     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2767 #endif // LP64
2768 
2769   } else if (opr1->is_address() && opr2->is_constant()) {
2770     LIR_Const* c = opr2->as_constant_ptr();
2771 #ifdef _LP64
2772     if (is_reference_type(c->type())) {
2773       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2774       __ movoop(rscratch1, c->as_jobject());
2775     }
2776 #endif // LP64
2777     if (op->info() != nullptr) {
2778       add_debug_info_for_null_check_here(op->info());
2779     }
2780     // special case: address - constant
2781     LIR_Address* addr = opr1->as_address_ptr();
2782     if (c->type() == T_INT) {
2783       __ cmpl(as_Address(addr), c->as_jint());
2784     } else if (is_reference_type(c->type())) {
2785 #ifdef _LP64
2786       // %%% Make this explode if addr isn't reachable until we figure out a
2787       // better strategy by giving noreg as the temp for as_Address
2788       __ cmpoop(rscratch1, as_Address(addr, noreg));
2789 #else
2790       __ cmpoop(as_Address(addr), c->as_jobject());
2791 #endif // _LP64
2792     } else {
2793       ShouldNotReachHere();
2794     }
2795 
2796   } else {
2797     ShouldNotReachHere();
2798   }
2799 }
2800 
2801 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2802   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2803     if (left->is_single_xmm()) {
2804       assert(right->is_single_xmm(), "must match");
2805       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2806     } else if (left->is_double_xmm()) {
2807       assert(right->is_double_xmm(), "must match");
2808       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2809 
2810     } else {
2811 #ifdef _LP64
2812       ShouldNotReachHere();
2813 #else
2814       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2815       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2816 
2817       assert(left->fpu() == 0, "left must be on TOS");
2818       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2819                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2820 #endif // LP64
2821     }
2822   } else {
2823     assert(code == lir_cmp_l2i, "check");
2824 #ifdef _LP64
2825     Label done;
2826     Register dest = dst->as_register();
2827     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2828     __ movl(dest, -1);
2829     __ jccb(Assembler::less, done);
2830     __ setb(Assembler::notZero, dest);
2831     __ movzbl(dest, dest);
2832     __ bind(done);
2833 #else
2834     __ lcmp2int(left->as_register_hi(),
2835                 left->as_register_lo(),
2836                 right->as_register_hi(),
2837                 right->as_register_lo());
2838     move_regs(left->as_register_hi(), dst->as_register());
2839 #endif // _LP64
2840   }
2841 }
2842 
2843 
2844 void LIR_Assembler::align_call(LIR_Code code) {
2845   // make sure that the displacement word of the call ends up word aligned
2846   int offset = __ offset();
2847   switch (code) {
2848   case lir_static_call:
2849   case lir_optvirtual_call:
2850   case lir_dynamic_call:
2851     offset += NativeCall::displacement_offset;
2852     break;
2853   case lir_icvirtual_call:
2854     offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size_rex;
2855     break;
2856   default: ShouldNotReachHere();
2857   }
2858   __ align(BytesPerWord, offset);
2859 }
2860 
2861 
2862 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2863   assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2864          "must be aligned");
2865   __ call(AddressLiteral(op->addr(), rtype));
2866   add_call_info(code_offset(), op->info());
2867   __ post_call_nop();
2868 }
2869 
2870 
2871 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2872   __ ic_call(op->addr());
2873   add_call_info(code_offset(), op->info());
2874   assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2875          "must be aligned");
2876   __ post_call_nop();
2877 }
2878 
2879 
2880 void LIR_Assembler::emit_static_call_stub() {
2881   address call_pc = __ pc();
2882   address stub = __ start_a_stub(call_stub_size());
2883   if (stub == nullptr) {
2884     bailout("static call stub overflow");
2885     return;
2886   }
2887 
2888   int start = __ offset();
2889 
2890   // make sure that the displacement word of the call ends up word aligned
2891   __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size_rex + NativeCall::displacement_offset);
2892   __ relocate(static_stub_Relocation::spec(call_pc));
2893   __ mov_metadata(rbx, (Metadata*)nullptr);
2894   // must be set to -1 at code generation time
2895   assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned");
2896   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2897   __ jump(RuntimeAddress(__ pc()));
2898 
2899   assert(__ offset() - start <= call_stub_size(), "stub too big");
2900   __ end_a_stub();
2901 }
2902 
2903 
2904 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2905   assert(exceptionOop->as_register() == rax, "must match");
2906   assert(exceptionPC->as_register() == rdx, "must match");
2907 
2908   // exception object is not added to oop map by LinearScan
2909   // (LinearScan assumes that no oops are in fixed registers)
2910   info->add_register_oop(exceptionOop);
2911   C1StubId unwind_id;
2912 
2913   // get current pc information
2914   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2915   int pc_for_athrow_offset = __ offset();
2916   InternalAddress pc_for_athrow(__ pc());
2917   __ lea(exceptionPC->as_register(), pc_for_athrow);
2918   add_call_info(pc_for_athrow_offset, info); // for exception handler
2919 
2920   __ verify_not_null_oop(rax);
2921   // search an exception handler (rax: exception oop, rdx: throwing pc)
2922   if (compilation()->has_fpu_code()) {
2923     unwind_id = C1StubId::handle_exception_id;
2924   } else {
2925     unwind_id = C1StubId::handle_exception_nofpu_id;
2926   }
2927   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2928 
2929   // enough room for two byte trap
2930   __ nop();
2931 }
2932 
2933 
2934 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2935   assert(exceptionOop->as_register() == rax, "must match");
2936 
2937   __ jmp(_unwind_handler_entry);
2938 }
2939 
2940 
2941 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2942 
2943   // optimized version for linear scan:
2944   // * count must be already in ECX (guaranteed by LinearScan)
2945   // * left and dest must be equal
2946   // * tmp must be unused
2947   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2948   assert(left == dest, "left and dest must be equal");
2949   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2950 
2951   if (left->is_single_cpu()) {
2952     Register value = left->as_register();
2953     assert(value != SHIFT_count, "left cannot be ECX");
2954 
2955     switch (code) {
2956       case lir_shl:  __ shll(value); break;
2957       case lir_shr:  __ sarl(value); break;
2958       case lir_ushr: __ shrl(value); break;
2959       default: ShouldNotReachHere();
2960     }
2961   } else if (left->is_double_cpu()) {
2962     Register lo = left->as_register_lo();
2963     Register hi = left->as_register_hi();
2964     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2965 #ifdef _LP64
2966     switch (code) {
2967       case lir_shl:  __ shlptr(lo);        break;
2968       case lir_shr:  __ sarptr(lo);        break;
2969       case lir_ushr: __ shrptr(lo);        break;
2970       default: ShouldNotReachHere();
2971     }
2972 #else
2973 
2974     switch (code) {
2975       case lir_shl:  __ lshl(hi, lo);        break;
2976       case lir_shr:  __ lshr(hi, lo, true);  break;
2977       case lir_ushr: __ lshr(hi, lo, false); break;
2978       default: ShouldNotReachHere();
2979     }
2980 #endif // LP64
2981   } else {
2982     ShouldNotReachHere();
2983   }
2984 }
2985 
2986 
2987 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2988   if (dest->is_single_cpu()) {
2989     // first move left into dest so that left is not destroyed by the shift
2990     Register value = dest->as_register();
2991     count = count & 0x1F; // Java spec
2992 
2993     move_regs(left->as_register(), value);
2994     switch (code) {
2995       case lir_shl:  __ shll(value, count); break;
2996       case lir_shr:  __ sarl(value, count); break;
2997       case lir_ushr: __ shrl(value, count); break;
2998       default: ShouldNotReachHere();
2999     }
3000   } else if (dest->is_double_cpu()) {
3001 #ifndef _LP64
3002     Unimplemented();
3003 #else
3004     // first move left into dest so that left is not destroyed by the shift
3005     Register value = dest->as_register_lo();
3006     count = count & 0x1F; // Java spec
3007 
3008     move_regs(left->as_register_lo(), value);
3009     switch (code) {
3010       case lir_shl:  __ shlptr(value, count); break;
3011       case lir_shr:  __ sarptr(value, count); break;
3012       case lir_ushr: __ shrptr(value, count); break;
3013       default: ShouldNotReachHere();
3014     }
3015 #endif // _LP64
3016   } else {
3017     ShouldNotReachHere();
3018   }
3019 }
3020 
3021 
3022 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3023   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3024   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3025   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3026   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3027 }
3028 
3029 
3030 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3031   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3032   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3033   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3034   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3035 }
3036 
3037 
3038 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
3039   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3040   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3041   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3042   __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1);
3043 }
3044 
3045 
3046 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) {
3047   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3048   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3049   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3050   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1);
3051 }
3052 
3053 
3054 // This code replaces a call to arraycopy; no exception may
3055 // be thrown in this code, they must be thrown in the System.arraycopy
3056 // activation frame; we could save some checks if this would not be the case
3057 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3058   ciArrayKlass* default_type = op->expected_type();
3059   Register src = op->src()->as_register();
3060   Register dst = op->dst()->as_register();
3061   Register src_pos = op->src_pos()->as_register();
3062   Register dst_pos = op->dst_pos()->as_register();
3063   Register length  = op->length()->as_register();
3064   Register tmp = op->tmp()->as_register();
3065   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3066 
3067   CodeStub* stub = op->stub();
3068   int flags = op->flags();
3069   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
3070   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
3071 
3072   // if we don't know anything, just go through the generic arraycopy
3073   if (default_type == nullptr) {
3074     // save outgoing arguments on stack in case call to System.arraycopy is needed
3075     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3076     // for interpreter calling conventions. Now we have to do it in new style conventions.
3077     // For the moment until C1 gets the new register allocator I just force all the
3078     // args to the right place (except the register args) and then on the back side
3079     // reload the register args properly if we go slow path. Yuck
3080 
3081     // These are proper for the calling convention
3082     store_parameter(length, 2);
3083     store_parameter(dst_pos, 1);
3084     store_parameter(dst, 0);
3085 
3086     // these are just temporary placements until we need to reload
3087     store_parameter(src_pos, 3);
3088     store_parameter(src, 4);
3089     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3090 
3091     address copyfunc_addr = StubRoutines::generic_arraycopy();
3092     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
3093 
3094     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3095 #ifdef _LP64
3096     // The arguments are in java calling convention so we can trivially shift them to C
3097     // convention
3098     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3099     __ mov(c_rarg0, j_rarg0);
3100     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3101     __ mov(c_rarg1, j_rarg1);
3102     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3103     __ mov(c_rarg2, j_rarg2);
3104     assert_different_registers(c_rarg3, j_rarg4);
3105     __ mov(c_rarg3, j_rarg3);
3106 #ifdef _WIN64
3107     // Allocate abi space for args but be sure to keep stack aligned
3108     __ subptr(rsp, 6*wordSize);
3109     store_parameter(j_rarg4, 4);
3110 #ifndef PRODUCT
3111     if (PrintC1Statistics) {
3112       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3113     }
3114 #endif
3115     __ call(RuntimeAddress(copyfunc_addr));
3116     __ addptr(rsp, 6*wordSize);
3117 #else
3118     __ mov(c_rarg4, j_rarg4);
3119 #ifndef PRODUCT
3120     if (PrintC1Statistics) {
3121       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3122     }
3123 #endif
3124     __ call(RuntimeAddress(copyfunc_addr));
3125 #endif // _WIN64
3126 #else
3127     __ push(length);
3128     __ push(dst_pos);
3129     __ push(dst);
3130     __ push(src_pos);
3131     __ push(src);
3132 
3133 #ifndef PRODUCT
3134     if (PrintC1Statistics) {
3135       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3136     }
3137 #endif
3138     __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3139 
3140 #endif // _LP64
3141 
3142     __ testl(rax, rax);
3143     __ jcc(Assembler::equal, *stub->continuation());
3144 
3145     __ mov(tmp, rax);
3146     __ xorl(tmp, -1);
3147 
3148     // Reload values from the stack so they are where the stub
3149     // expects them.
3150     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3151     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3152     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3153     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3154     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3155 
3156     __ subl(length, tmp);
3157     __ addl(src_pos, tmp);
3158     __ addl(dst_pos, tmp);
3159     __ jmp(*stub->entry());
3160 
3161     __ bind(*stub->continuation());
3162     return;
3163   }
3164 
3165   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3166 
3167   int elem_size = type2aelembytes(basic_type);
3168   Address::ScaleFactor scale;
3169 
3170   switch (elem_size) {
3171     case 1 :
3172       scale = Address::times_1;
3173       break;
3174     case 2 :
3175       scale = Address::times_2;
3176       break;
3177     case 4 :
3178       scale = Address::times_4;
3179       break;
3180     case 8 :
3181       scale = Address::times_8;
3182       break;
3183     default:
3184       scale = Address::no_scale;
3185       ShouldNotReachHere();
3186   }
3187 
3188   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3189   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3190   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3191   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3192 
3193   // length and pos's are all sign extended at this point on 64bit
3194 
3195   // test for null
3196   if (flags & LIR_OpArrayCopy::src_null_check) {
3197     __ testptr(src, src);
3198     __ jcc(Assembler::zero, *stub->entry());
3199   }
3200   if (flags & LIR_OpArrayCopy::dst_null_check) {
3201     __ testptr(dst, dst);
3202     __ jcc(Assembler::zero, *stub->entry());
3203   }
3204 
3205   // If the compiler was not able to prove that exact type of the source or the destination
3206   // of the arraycopy is an array type, check at runtime if the source or the destination is
3207   // an instance type.
3208   if (flags & LIR_OpArrayCopy::type_check) {
3209     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3210       __ load_klass(tmp, dst, tmp_load_klass);
3211       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3212       __ jcc(Assembler::greaterEqual, *stub->entry());
3213     }
3214 
3215     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3216       __ load_klass(tmp, src, tmp_load_klass);
3217       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3218       __ jcc(Assembler::greaterEqual, *stub->entry());
3219     }
3220   }
3221 
3222   // check if negative
3223   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3224     __ testl(src_pos, src_pos);
3225     __ jcc(Assembler::less, *stub->entry());
3226   }
3227   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3228     __ testl(dst_pos, dst_pos);
3229     __ jcc(Assembler::less, *stub->entry());
3230   }
3231 
3232   if (flags & LIR_OpArrayCopy::src_range_check) {
3233     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3234     __ cmpl(tmp, src_length_addr);
3235     __ jcc(Assembler::above, *stub->entry());
3236   }
3237   if (flags & LIR_OpArrayCopy::dst_range_check) {
3238     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3239     __ cmpl(tmp, dst_length_addr);
3240     __ jcc(Assembler::above, *stub->entry());
3241   }
3242 
3243   if (flags & LIR_OpArrayCopy::length_positive_check) {
3244     __ testl(length, length);
3245     __ jcc(Assembler::less, *stub->entry());
3246   }
3247 
3248 #ifdef _LP64
3249   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3250   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3251 #endif
3252 
3253   if (flags & LIR_OpArrayCopy::type_check) {
3254     // We don't know the array types are compatible
3255     if (basic_type != T_OBJECT) {
3256       // Simple test for basic type arrays
3257       if (UseCompressedClassPointers) {
3258         __ movl(tmp, src_klass_addr);
3259         __ cmpl(tmp, dst_klass_addr);
3260       } else {
3261         __ movptr(tmp, src_klass_addr);
3262         __ cmpptr(tmp, dst_klass_addr);
3263       }
3264       __ jcc(Assembler::notEqual, *stub->entry());
3265     } else {
3266       // For object arrays, if src is a sub class of dst then we can
3267       // safely do the copy.
3268       Label cont, slow;
3269 
3270       __ push(src);
3271       __ push(dst);
3272 
3273       __ load_klass(src, src, tmp_load_klass);
3274       __ load_klass(dst, dst, tmp_load_klass);
3275 
3276       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr);
3277 
3278       __ push(src);
3279       __ push(dst);
3280       __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
3281       __ pop(dst);
3282       __ pop(src);
3283 
3284       __ testl(src, src);
3285       __ jcc(Assembler::notEqual, cont);
3286 
3287       __ bind(slow);
3288       __ pop(dst);
3289       __ pop(src);
3290 
3291       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3292       if (copyfunc_addr != nullptr) { // use stub if available
3293         // src is not a sub class of dst so we have to do a
3294         // per-element check.
3295 
3296         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3297         if ((flags & mask) != mask) {
3298           // Check that at least both of them object arrays.
3299           assert(flags & mask, "one of the two should be known to be an object array");
3300 
3301           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3302             __ load_klass(tmp, src, tmp_load_klass);
3303           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3304             __ load_klass(tmp, dst, tmp_load_klass);
3305           }
3306           int lh_offset = in_bytes(Klass::layout_helper_offset());
3307           Address klass_lh_addr(tmp, lh_offset);
3308           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3309           __ cmpl(klass_lh_addr, objArray_lh);
3310           __ jcc(Assembler::notEqual, *stub->entry());
3311         }
3312 
3313        // Spill because stubs can use any register they like and it's
3314        // easier to restore just those that we care about.
3315        store_parameter(dst, 0);
3316        store_parameter(dst_pos, 1);
3317        store_parameter(length, 2);
3318        store_parameter(src_pos, 3);
3319        store_parameter(src, 4);
3320 
3321 #ifndef _LP64
3322         __ movptr(tmp, dst_klass_addr);
3323         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3324         __ push(tmp);
3325         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3326         __ push(tmp);
3327         __ push(length);
3328         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3329         __ push(tmp);
3330         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3331         __ push(tmp);
3332 
3333         __ call_VM_leaf(copyfunc_addr, 5);
3334 #else
3335         __ movl2ptr(length, length); //higher 32bits must be null
3336 
3337         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3338         assert_different_registers(c_rarg0, dst, dst_pos, length);
3339         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3340         assert_different_registers(c_rarg1, dst, length);
3341 
3342         __ mov(c_rarg2, length);
3343         assert_different_registers(c_rarg2, dst);
3344 
3345 #ifdef _WIN64
3346         // Allocate abi space for args but be sure to keep stack aligned
3347         __ subptr(rsp, 6*wordSize);
3348         __ load_klass(c_rarg3, dst, tmp_load_klass);
3349         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3350         store_parameter(c_rarg3, 4);
3351         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3352         __ call(RuntimeAddress(copyfunc_addr));
3353         __ addptr(rsp, 6*wordSize);
3354 #else
3355         __ load_klass(c_rarg4, dst, tmp_load_klass);
3356         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3357         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3358         __ call(RuntimeAddress(copyfunc_addr));
3359 #endif
3360 
3361 #endif
3362 
3363 #ifndef PRODUCT
3364         if (PrintC1Statistics) {
3365           Label failed;
3366           __ testl(rax, rax);
3367           __ jcc(Assembler::notZero, failed);
3368           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1);
3369           __ bind(failed);
3370         }
3371 #endif
3372 
3373         __ testl(rax, rax);
3374         __ jcc(Assembler::zero, *stub->continuation());
3375 
3376 #ifndef PRODUCT
3377         if (PrintC1Statistics) {
3378           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1);
3379         }
3380 #endif
3381 
3382         __ mov(tmp, rax);
3383 
3384         __ xorl(tmp, -1);
3385 
3386         // Restore previously spilled arguments
3387         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3388         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3389         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3390         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3391         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3392 
3393 
3394         __ subl(length, tmp);
3395         __ addl(src_pos, tmp);
3396         __ addl(dst_pos, tmp);
3397       }
3398 
3399       __ jmp(*stub->entry());
3400 
3401       __ bind(cont);
3402       __ pop(dst);
3403       __ pop(src);
3404     }
3405   }
3406 
3407 #ifdef ASSERT
3408   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3409     // Sanity check the known type with the incoming class.  For the
3410     // primitive case the types must match exactly with src.klass and
3411     // dst.klass each exactly matching the default type.  For the
3412     // object array case, if no type check is needed then either the
3413     // dst type is exactly the expected type and the src type is a
3414     // subtype which we can't check or src is the same array as dst
3415     // but not necessarily exactly of type default_type.
3416     Label known_ok, halt;
3417     __ mov_metadata(tmp, default_type->constant_encoding());
3418 #ifdef _LP64
3419     if (UseCompressedClassPointers) {
3420       __ encode_klass_not_null(tmp, rscratch1);
3421     }
3422 #endif
3423 
3424     if (basic_type != T_OBJECT) {
3425 
3426       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3427       else                   __ cmpptr(tmp, dst_klass_addr);
3428       __ jcc(Assembler::notEqual, halt);
3429       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3430       else                   __ cmpptr(tmp, src_klass_addr);
3431       __ jcc(Assembler::equal, known_ok);
3432     } else {
3433       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3434       else                   __ cmpptr(tmp, dst_klass_addr);
3435       __ jcc(Assembler::equal, known_ok);
3436       __ cmpptr(src, dst);
3437       __ jcc(Assembler::equal, known_ok);
3438     }
3439     __ bind(halt);
3440     __ stop("incorrect type information in arraycopy");
3441     __ bind(known_ok);
3442   }
3443 #endif
3444 
3445 #ifndef PRODUCT
3446   if (PrintC1Statistics) {
3447     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1);
3448   }
3449 #endif
3450 
3451 #ifdef _LP64
3452   assert_different_registers(c_rarg0, dst, dst_pos, length);
3453   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3454   assert_different_registers(c_rarg1, length);
3455   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3456   __ mov(c_rarg2, length);
3457 
3458 #else
3459   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3460   store_parameter(tmp, 0);
3461   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3462   store_parameter(tmp, 1);
3463   store_parameter(length, 2);
3464 #endif // _LP64
3465 
3466   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3467   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3468   const char *name;
3469   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3470   __ call_VM_leaf(entry, 0);
3471 
3472   if (stub != nullptr) {
3473     __ bind(*stub->continuation());
3474   }
3475 }
3476 
3477 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3478   assert(op->crc()->is_single_cpu(),  "crc must be register");
3479   assert(op->val()->is_single_cpu(),  "byte value must be register");
3480   assert(op->result_opr()->is_single_cpu(), "result must be register");
3481   Register crc = op->crc()->as_register();
3482   Register val = op->val()->as_register();
3483   Register res = op->result_opr()->as_register();
3484 
3485   assert_different_registers(val, crc, res);
3486 
3487   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3488   __ notl(crc); // ~crc
3489   __ update_byte_crc32(crc, val, res);
3490   __ notl(crc); // ~crc
3491   __ mov(res, crc);
3492 }
3493 
3494 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3495   Register obj = op->obj_opr()->as_register();  // may not be an oop
3496   Register hdr = op->hdr_opr()->as_register();
3497   Register lock = op->lock_opr()->as_register();
3498   if (LockingMode == LM_MONITOR) {
3499     if (op->info() != nullptr) {
3500       add_debug_info_for_null_check_here(op->info());
3501       __ null_check(obj);
3502     }
3503     __ jmp(*op->stub()->entry());
3504   } else if (op->code() == lir_lock) {
3505     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3506     Register tmp = LockingMode == LM_LIGHTWEIGHT ? op->scratch_opr()->as_register() : noreg;
3507     // add debug info for NullPointerException only if one is possible
3508     int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry());
3509     if (op->info() != nullptr) {
3510       add_debug_info_for_null_check(null_check_offset, op->info());
3511     }
3512     // done
3513   } else if (op->code() == lir_unlock) {
3514     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3515     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3516   } else {
3517     Unimplemented();
3518   }
3519   __ bind(*op->stub()->continuation());
3520 }
3521 
3522 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
3523   Register obj = op->obj()->as_pointer_register();
3524   Register result = op->result_opr()->as_pointer_register();
3525 
3526   CodeEmitInfo* info = op->info();
3527   if (info != nullptr) {
3528     add_debug_info_for_null_check_here(info);
3529   }
3530 
3531 #ifdef _LP64
3532   if (UseCompressedClassPointers) {
3533     __ movl(result, Address(obj, oopDesc::klass_offset_in_bytes()));
3534     __ decode_klass_not_null(result, rscratch1);
3535   } else
3536 #endif
3537     __ movptr(result, Address(obj, oopDesc::klass_offset_in_bytes()));
3538 }
3539 
3540 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3541   ciMethod* method = op->profiled_method();
3542   int bci          = op->profiled_bci();
3543   ciMethod* callee = op->profiled_callee();
3544   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3545 
3546   // Update counter for all call types
3547   ciMethodData* md = method->method_data_or_null();
3548   assert(md != nullptr, "Sanity");
3549   ciProfileData* data = md->bci_to_data(bci);
3550   assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
3551   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3552   Register mdo  = op->mdo()->as_register();
3553   __ mov_metadata(mdo, md->constant_encoding());
3554   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3555   // Perform additional virtual call profiling for invokevirtual and
3556   // invokeinterface bytecodes
3557   if (op->should_profile_receiver_type()) {
3558     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3559     Register recv = op->recv()->as_register();
3560     assert_different_registers(mdo, recv);
3561     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3562     ciKlass* known_klass = op->known_holder();
3563     if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
3564       // We know the type that will be seen at this call site; we can
3565       // statically update the MethodData* rather than needing to do
3566       // dynamic tests on the receiver type
3567 
3568       // NOTE: we should probably put a lock around this search to
3569       // avoid collisions by concurrent compilations
3570       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3571       uint i;
3572       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3573         ciKlass* receiver = vc_data->receiver(i);
3574         if (known_klass->equals(receiver)) {
3575           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3576           __ addptr(data_addr, DataLayout::counter_increment);
3577           return;
3578         }
3579       }
3580 
3581       // Receiver type not found in profile data; select an empty slot
3582 
3583       // Note that this is less efficient than it should be because it
3584       // always does a write to the receiver part of the
3585       // VirtualCallData rather than just the first time
3586       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3587         ciKlass* receiver = vc_data->receiver(i);
3588         if (receiver == nullptr) {
3589           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3590           __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1);
3591           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3592           __ addptr(data_addr, DataLayout::counter_increment);
3593           return;
3594         }
3595       }
3596     } else {
3597       __ load_klass(recv, recv, tmp_load_klass);
3598       Label update_done;
3599       type_profile_helper(mdo, md, data, recv, &update_done);
3600       // Receiver did not match any saved receiver and there is no empty row for it.
3601       // Increment total counter to indicate polymorphic case.
3602       __ addptr(counter_addr, DataLayout::counter_increment);
3603 
3604       __ bind(update_done);
3605     }
3606   } else {
3607     // Static call
3608     __ addptr(counter_addr, DataLayout::counter_increment);
3609   }
3610 }
3611 
3612 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3613   Register obj = op->obj()->as_register();
3614   Register tmp = op->tmp()->as_pointer_register();
3615   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3616   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3617   ciKlass* exact_klass = op->exact_klass();
3618   intptr_t current_klass = op->current_klass();
3619   bool not_null = op->not_null();
3620   bool no_conflict = op->no_conflict();
3621 
3622   Label update, next, none;
3623 
3624   bool do_null = !not_null;
3625   bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3626   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3627 
3628   assert(do_null || do_update, "why are we here?");
3629   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3630 
3631   __ verify_oop(obj);
3632 
3633 #ifdef ASSERT
3634   if (obj == tmp) {
3635 #ifdef _LP64
3636     assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
3637 #else
3638     assert_different_registers(obj, mdo_addr.base(), mdo_addr.index());
3639 #endif
3640   } else {
3641 #ifdef _LP64
3642     assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index());
3643 #else
3644     assert_different_registers(obj, tmp, mdo_addr.base(), mdo_addr.index());
3645 #endif
3646   }
3647 #endif
3648   if (do_null) {
3649     __ testptr(obj, obj);
3650     __ jccb(Assembler::notZero, update);
3651     if (!TypeEntries::was_null_seen(current_klass)) {
3652       __ testptr(mdo_addr, TypeEntries::null_seen);
3653 #ifndef ASSERT
3654       __ jccb(Assembler::notZero, next); // already set
3655 #else
3656       __ jcc(Assembler::notZero, next); // already set
3657 #endif
3658       // atomic update to prevent overwriting Klass* with 0
3659       __ lock();
3660       __ orptr(mdo_addr, TypeEntries::null_seen);
3661     }
3662     if (do_update) {
3663 #ifndef ASSERT
3664       __ jmpb(next);
3665     }
3666 #else
3667       __ jmp(next);
3668     }
3669   } else {
3670     __ testptr(obj, obj);
3671     __ jcc(Assembler::notZero, update);
3672     __ stop("unexpected null obj");
3673 #endif
3674   }
3675 
3676   __ bind(update);
3677 
3678   if (do_update) {
3679 #ifdef ASSERT
3680     if (exact_klass != nullptr) {
3681       Label ok;
3682       __ load_klass(tmp, obj, tmp_load_klass);
3683       __ push(tmp);
3684       __ mov_metadata(tmp, exact_klass->constant_encoding());
3685       __ cmpptr(tmp, Address(rsp, 0));
3686       __ jcc(Assembler::equal, ok);
3687       __ stop("exact klass and actual klass differ");
3688       __ bind(ok);
3689       __ pop(tmp);
3690     }
3691 #endif
3692     if (!no_conflict) {
3693       if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
3694         if (exact_klass != nullptr) {
3695           __ mov_metadata(tmp, exact_klass->constant_encoding());
3696         } else {
3697           __ load_klass(tmp, obj, tmp_load_klass);
3698         }
3699 #ifdef _LP64
3700         __ mov(rscratch1, tmp); // save original value before XOR
3701 #endif
3702         __ xorptr(tmp, mdo_addr);
3703         __ testptr(tmp, TypeEntries::type_klass_mask);
3704         // klass seen before, nothing to do. The unknown bit may have been
3705         // set already but no need to check.
3706         __ jccb(Assembler::zero, next);
3707 
3708         __ testptr(tmp, TypeEntries::type_unknown);
3709         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3710 
3711         if (TypeEntries::is_type_none(current_klass)) {
3712           __ testptr(mdo_addr, TypeEntries::type_mask);
3713           __ jccb(Assembler::zero, none);
3714 #ifdef _LP64
3715           // There is a chance that the checks above (re-reading profiling
3716           // data from memory) fail if another thread has just set the
3717           // profiling to this obj's klass
3718           __ mov(tmp, rscratch1); // get back original value before XOR
3719           __ xorptr(tmp, mdo_addr);
3720           __ testptr(tmp, TypeEntries::type_klass_mask);
3721           __ jccb(Assembler::zero, next);
3722 #endif
3723         }
3724       } else {
3725         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3726                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3727 
3728         __ testptr(mdo_addr, TypeEntries::type_unknown);
3729         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3730       }
3731 
3732       // different than before. Cannot keep accurate profile.
3733       __ orptr(mdo_addr, TypeEntries::type_unknown);
3734 
3735       if (TypeEntries::is_type_none(current_klass)) {
3736         __ jmpb(next);
3737 
3738         __ bind(none);
3739         // first time here. Set profile type.
3740         __ movptr(mdo_addr, tmp);
3741 #ifdef ASSERT
3742         __ andptr(tmp, TypeEntries::type_klass_mask);
3743         __ verify_klass_ptr(tmp);
3744 #endif
3745       }
3746     } else {
3747       // There's a single possible klass at this profile point
3748       assert(exact_klass != nullptr, "should be");
3749       if (TypeEntries::is_type_none(current_klass)) {
3750         __ mov_metadata(tmp, exact_klass->constant_encoding());
3751         __ xorptr(tmp, mdo_addr);
3752         __ testptr(tmp, TypeEntries::type_klass_mask);
3753 #ifdef ASSERT
3754         __ jcc(Assembler::zero, next);
3755 
3756         {
3757           Label ok;
3758           __ push(tmp);
3759           __ testptr(mdo_addr, TypeEntries::type_mask);
3760           __ jcc(Assembler::zero, ok);
3761           // may have been set by another thread
3762           __ mov_metadata(tmp, exact_klass->constant_encoding());
3763           __ xorptr(tmp, mdo_addr);
3764           __ testptr(tmp, TypeEntries::type_mask);
3765           __ jcc(Assembler::zero, ok);
3766 
3767           __ stop("unexpected profiling mismatch");
3768           __ bind(ok);
3769           __ pop(tmp);
3770         }
3771 #else
3772         __ jccb(Assembler::zero, next);
3773 #endif
3774         // first time here. Set profile type.
3775         __ movptr(mdo_addr, tmp);
3776 #ifdef ASSERT
3777         __ andptr(tmp, TypeEntries::type_klass_mask);
3778         __ verify_klass_ptr(tmp);
3779 #endif
3780       } else {
3781         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3782                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3783 
3784         __ testptr(mdo_addr, TypeEntries::type_unknown);
3785         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3786 
3787         __ orptr(mdo_addr, TypeEntries::type_unknown);
3788       }
3789     }
3790   }
3791   __ bind(next);
3792 }
3793 
3794 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3795   Unimplemented();
3796 }
3797 
3798 
3799 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3800   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3801 }
3802 
3803 
3804 void LIR_Assembler::align_backward_branch_target() {
3805   __ align(BytesPerWord);
3806 }
3807 
3808 
3809 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3810   if (left->is_single_cpu()) {
3811     __ negl(left->as_register());
3812     move_regs(left->as_register(), dest->as_register());
3813 
3814   } else if (left->is_double_cpu()) {
3815     Register lo = left->as_register_lo();
3816 #ifdef _LP64
3817     Register dst = dest->as_register_lo();
3818     __ movptr(dst, lo);
3819     __ negptr(dst);
3820 #else
3821     Register hi = left->as_register_hi();
3822     __ lneg(hi, lo);
3823     if (dest->as_register_lo() == hi) {
3824       assert(dest->as_register_hi() != lo, "destroying register");
3825       move_regs(hi, dest->as_register_hi());
3826       move_regs(lo, dest->as_register_lo());
3827     } else {
3828       move_regs(lo, dest->as_register_lo());
3829       move_regs(hi, dest->as_register_hi());
3830     }
3831 #endif // _LP64
3832 
3833   } else if (dest->is_single_xmm()) {
3834 #ifdef _LP64
3835     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3836       assert(tmp->is_valid(), "need temporary");
3837       assert_different_registers(left->as_xmm_float_reg(), tmp->as_xmm_float_reg());
3838       __ vpxor(dest->as_xmm_float_reg(), tmp->as_xmm_float_reg(), left->as_xmm_float_reg(), 2);
3839     }
3840     else
3841 #endif
3842     {
3843       assert(!tmp->is_valid(), "do not need temporary");
3844       if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3845         __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3846       }
3847       __ xorps(dest->as_xmm_float_reg(),
3848                ExternalAddress(LIR_Assembler::float_signflip_pool),
3849                rscratch1);
3850     }
3851   } else if (dest->is_double_xmm()) {
3852 #ifdef _LP64
3853     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3854       assert(tmp->is_valid(), "need temporary");
3855       assert_different_registers(left->as_xmm_double_reg(), tmp->as_xmm_double_reg());
3856       __ vpxor(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), left->as_xmm_double_reg(), 2);
3857     }
3858     else
3859 #endif
3860     {
3861       assert(!tmp->is_valid(), "do not need temporary");
3862       if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3863         __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3864       }
3865       __ xorpd(dest->as_xmm_double_reg(),
3866                ExternalAddress(LIR_Assembler::double_signflip_pool),
3867                rscratch1);
3868     }
3869 #ifndef _LP64
3870   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3871     assert(left->fpu() == 0, "arg must be on TOS");
3872     assert(dest->fpu() == 0, "dest must be TOS");
3873     __ fchs();
3874 #endif // !_LP64
3875 
3876   } else {
3877     ShouldNotReachHere();
3878   }
3879 }
3880 
3881 
3882 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3883   assert(src->is_address(), "must be an address");
3884   assert(dest->is_register(), "must be a register");
3885 
3886   PatchingStub* patch = nullptr;
3887   if (patch_code != lir_patch_none) {
3888     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3889   }
3890 
3891   Register reg = dest->as_pointer_register();
3892   LIR_Address* addr = src->as_address_ptr();
3893   __ lea(reg, as_Address(addr));
3894 
3895   if (patch != nullptr) {
3896     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
3897   }
3898 }
3899 
3900 
3901 
3902 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3903   assert(!tmp->is_valid(), "don't need temporary");
3904   __ call(RuntimeAddress(dest));
3905   if (info != nullptr) {
3906     add_call_info_here(info);
3907   }
3908   __ post_call_nop();
3909 }
3910 
3911 
3912 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3913   assert(type == T_LONG, "only for volatile long fields");
3914 
3915   if (info != nullptr) {
3916     add_debug_info_for_null_check_here(info);
3917   }
3918 
3919   if (src->is_double_xmm()) {
3920     if (dest->is_double_cpu()) {
3921 #ifdef _LP64
3922       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3923 #else
3924       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3925       __ psrlq(src->as_xmm_double_reg(), 32);
3926       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3927 #endif // _LP64
3928     } else if (dest->is_double_stack()) {
3929       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3930     } else if (dest->is_address()) {
3931       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3932     } else {
3933       ShouldNotReachHere();
3934     }
3935 
3936   } else if (dest->is_double_xmm()) {
3937     if (src->is_double_stack()) {
3938       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3939     } else if (src->is_address()) {
3940       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3941     } else {
3942       ShouldNotReachHere();
3943     }
3944 
3945 #ifndef _LP64
3946   } else if (src->is_double_fpu()) {
3947     assert(src->fpu_regnrLo() == 0, "must be TOS");
3948     if (dest->is_double_stack()) {
3949       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3950     } else if (dest->is_address()) {
3951       __ fistp_d(as_Address(dest->as_address_ptr()));
3952     } else {
3953       ShouldNotReachHere();
3954     }
3955 
3956   } else if (dest->is_double_fpu()) {
3957     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3958     if (src->is_double_stack()) {
3959       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3960     } else if (src->is_address()) {
3961       __ fild_d(as_Address(src->as_address_ptr()));
3962     } else {
3963       ShouldNotReachHere();
3964     }
3965 #endif // !_LP64
3966 
3967   } else {
3968     ShouldNotReachHere();
3969   }
3970 }
3971 
3972 #ifdef ASSERT
3973 // emit run-time assertion
3974 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3975   assert(op->code() == lir_assert, "must be");
3976 
3977   if (op->in_opr1()->is_valid()) {
3978     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3979     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3980   } else {
3981     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3982     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3983   }
3984 
3985   Label ok;
3986   if (op->condition() != lir_cond_always) {
3987     Assembler::Condition acond = Assembler::zero;
3988     switch (op->condition()) {
3989       case lir_cond_equal:        acond = Assembler::equal;       break;
3990       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3991       case lir_cond_less:         acond = Assembler::less;        break;
3992       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3993       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3994       case lir_cond_greater:      acond = Assembler::greater;     break;
3995       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3996       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3997       default:                    ShouldNotReachHere();
3998     }
3999     __ jcc(acond, ok);
4000   }
4001   if (op->halt()) {
4002     const char* str = __ code_string(op->msg());
4003     __ stop(str);
4004   } else {
4005     breakpoint();
4006   }
4007   __ bind(ok);
4008 }
4009 #endif
4010 
4011 void LIR_Assembler::membar() {
4012   // QQQ sparc TSO uses this,
4013   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
4014 }
4015 
4016 void LIR_Assembler::membar_acquire() {
4017   // No x86 machines currently require load fences
4018 }
4019 
4020 void LIR_Assembler::membar_release() {
4021   // No x86 machines currently require store fences
4022 }
4023 
4024 void LIR_Assembler::membar_loadload() {
4025   // no-op
4026   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
4027 }
4028 
4029 void LIR_Assembler::membar_storestore() {
4030   // no-op
4031   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
4032 }
4033 
4034 void LIR_Assembler::membar_loadstore() {
4035   // no-op
4036   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
4037 }
4038 
4039 void LIR_Assembler::membar_storeload() {
4040   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4041 }
4042 
4043 void LIR_Assembler::on_spin_wait() {
4044   __ pause ();
4045 }
4046 
4047 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
4048   assert(result_reg->is_register(), "check");
4049 #ifdef _LP64
4050   // __ get_thread(result_reg->as_register_lo());
4051   __ mov(result_reg->as_register(), r15_thread);
4052 #else
4053   __ get_thread(result_reg->as_register());
4054 #endif // _LP64
4055 }
4056 
4057 
4058 void LIR_Assembler::peephole(LIR_List*) {
4059   // do nothing for now
4060 }
4061 
4062 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
4063   assert(data == dest, "xchg/xadd uses only 2 operands");
4064 
4065   if (data->type() == T_INT) {
4066     if (code == lir_xadd) {
4067       __ lock();
4068       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
4069     } else {
4070       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4071     }
4072   } else if (data->is_oop()) {
4073     assert (code == lir_xchg, "xadd for oops");
4074     Register obj = data->as_register();
4075 #ifdef _LP64
4076     if (UseCompressedOops) {
4077       __ encode_heap_oop(obj);
4078       __ xchgl(obj, as_Address(src->as_address_ptr()));
4079       __ decode_heap_oop(obj);
4080     } else {
4081       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4082     }
4083 #else
4084     __ xchgl(obj, as_Address(src->as_address_ptr()));
4085 #endif
4086   } else if (data->type() == T_LONG) {
4087 #ifdef _LP64
4088     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4089     if (code == lir_xadd) {
4090       __ lock();
4091       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4092     } else {
4093       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4094     }
4095 #else
4096     ShouldNotReachHere();
4097 #endif
4098   } else {
4099     ShouldNotReachHere();
4100   }
4101 }
4102 
4103 #undef __