1 /*
   2  * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciUtilities.hpp"
  36 #include "code/SCCache.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gc_globals.hpp"
  40 #include "nativeInst_x86.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/safepointMechanism.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "utilities/powerOfTwo.hpp"
  47 #include "vmreg_x86.inline.hpp"
  48 
  49 
  50 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  51 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  52 // fast versions of NegF/NegD and AbsF/AbsD.
  53 
  54 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  55 static address double_quadword(jlong *adr, jlong lo, jlong hi) {
  56   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  57   // of 128-bits operands for SSE instructions.
  58   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  59   // Store the value to a 128-bits operand.
  60   operand[0] = lo;
  61   operand[1] = hi;
  62   return (address)operand;
  63 }
  64 
  65 // Buffer for 128-bits masks used by SSE instructions.
  66 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  67 
  68 // Static initialization during VM startup.
  69 address LIR_Assembler::float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  70 address LIR_Assembler::double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  71 address LIR_Assembler::float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  72 address LIR_Assembler::double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  73 
  74 
  75 NEEDS_CLEANUP // remove this definitions ?
  76 const Register SYNC_header = rax;   // synchronization header
  77 const Register SHIFT_count = rcx;   // where count for shift operations must be
  78 
  79 #define __ _masm->
  80 
  81 
  82 static void select_different_registers(Register preserve,
  83                                        Register extra,
  84                                        Register &tmp1,
  85                                        Register &tmp2) {
  86   if (tmp1 == preserve) {
  87     assert_different_registers(tmp1, tmp2, extra);
  88     tmp1 = extra;
  89   } else if (tmp2 == preserve) {
  90     assert_different_registers(tmp1, tmp2, extra);
  91     tmp2 = extra;
  92   }
  93   assert_different_registers(preserve, tmp1, tmp2);
  94 }
  95 
  96 
  97 
  98 static void select_different_registers(Register preserve,
  99                                        Register extra,
 100                                        Register &tmp1,
 101                                        Register &tmp2,
 102                                        Register &tmp3) {
 103   if (tmp1 == preserve) {
 104     assert_different_registers(tmp1, tmp2, tmp3, extra);
 105     tmp1 = extra;
 106   } else if (tmp2 == preserve) {
 107     assert_different_registers(tmp1, tmp2, tmp3, extra);
 108     tmp2 = extra;
 109   } else if (tmp3 == preserve) {
 110     assert_different_registers(tmp1, tmp2, tmp3, extra);
 111     tmp3 = extra;
 112   }
 113   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 114 }
 115 
 116 
 117 
 118 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 119   if (opr->is_constant()) {
 120     LIR_Const* constant = opr->as_constant_ptr();
 121     switch (constant->type()) {
 122       case T_INT: {
 123         return true;
 124       }
 125 
 126       default:
 127         return false;
 128     }
 129   }
 130   return false;
 131 }
 132 
 133 
 134 LIR_Opr LIR_Assembler::receiverOpr() {
 135   return FrameMap::receiver_opr;
 136 }
 137 
 138 LIR_Opr LIR_Assembler::osrBufferPointer() {
 139   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 140 }
 141 
 142 //--------------fpu register translations-----------------------
 143 
 144 
 145 address LIR_Assembler::float_constant(float f) {
 146   address const_addr = __ float_constant(f);
 147   if (const_addr == nullptr) {
 148     bailout("const section overflow");
 149     return __ code()->consts()->start();
 150   } else {
 151     return const_addr;
 152   }
 153 }
 154 
 155 
 156 address LIR_Assembler::double_constant(double d) {
 157   address const_addr = __ double_constant(d);
 158   if (const_addr == nullptr) {
 159     bailout("const section overflow");
 160     return __ code()->consts()->start();
 161   } else {
 162     return const_addr;
 163   }
 164 }
 165 
 166 #ifndef _LP64
 167 void LIR_Assembler::fpop() {
 168   __ fpop();
 169 }
 170 
 171 void LIR_Assembler::fxch(int i) {
 172   __ fxch(i);
 173 }
 174 
 175 void LIR_Assembler::fld(int i) {
 176   __ fld_s(i);
 177 }
 178 
 179 void LIR_Assembler::ffree(int i) {
 180   __ ffree(i);
 181 }
 182 #endif // !_LP64
 183 
 184 void LIR_Assembler::breakpoint() {
 185   __ int3();
 186 }
 187 
 188 void LIR_Assembler::push(LIR_Opr opr) {
 189   if (opr->is_single_cpu()) {
 190     __ push_reg(opr->as_register());
 191   } else if (opr->is_double_cpu()) {
 192     NOT_LP64(__ push_reg(opr->as_register_hi()));
 193     __ push_reg(opr->as_register_lo());
 194   } else if (opr->is_stack()) {
 195     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 196   } else if (opr->is_constant()) {
 197     LIR_Const* const_opr = opr->as_constant_ptr();
 198     if (const_opr->type() == T_OBJECT) {
 199       __ push_oop(const_opr->as_jobject(), rscratch1);
 200     } else if (const_opr->type() == T_INT) {
 201       __ push_jint(const_opr->as_jint());
 202     } else {
 203       ShouldNotReachHere();
 204     }
 205 
 206   } else {
 207     ShouldNotReachHere();
 208   }
 209 }
 210 
 211 void LIR_Assembler::pop(LIR_Opr opr) {
 212   if (opr->is_single_cpu()) {
 213     __ pop_reg(opr->as_register());
 214   } else {
 215     ShouldNotReachHere();
 216   }
 217 }
 218 
 219 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 220   return addr->base()->is_illegal() && addr->index()->is_illegal();
 221 }
 222 
 223 //-------------------------------------------
 224 
 225 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 226   return as_Address(addr, rscratch1);
 227 }
 228 
 229 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 230   if (addr->base()->is_illegal()) {
 231     assert(addr->index()->is_illegal(), "must be illegal too");
 232     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 233     if (! __ reachable(laddr)) {
 234       __ movptr(tmp, laddr.addr());
 235       Address res(tmp, 0);
 236       return res;
 237     } else {
 238       return __ as_Address(laddr);
 239     }
 240   }
 241 
 242   Register base = addr->base()->as_pointer_register();
 243 
 244   if (addr->index()->is_illegal()) {
 245     return Address( base, addr->disp());
 246   } else if (addr->index()->is_cpu_register()) {
 247     Register index = addr->index()->as_pointer_register();
 248     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 249   } else if (addr->index()->is_constant()) {
 250     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 251     assert(Assembler::is_simm32(addr_offset), "must be");
 252 
 253     return Address(base, addr_offset);
 254   } else {
 255     Unimplemented();
 256     return Address();
 257   }
 258 }
 259 
 260 
 261 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 262   Address base = as_Address(addr);
 263   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 264 }
 265 
 266 
 267 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 268   return as_Address(addr);
 269 }
 270 
 271 
 272 void LIR_Assembler::osr_entry() {
 273   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 274   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 275   ValueStack* entry_state = osr_entry->state();
 276   int number_of_locks = entry_state->locks_size();
 277 
 278   // we jump here if osr happens with the interpreter
 279   // state set up to continue at the beginning of the
 280   // loop that triggered osr - in particular, we have
 281   // the following registers setup:
 282   //
 283   // rcx: osr buffer
 284   //
 285 
 286   // build frame
 287   ciMethod* m = compilation()->method();
 288   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 289 
 290   // OSR buffer is
 291   //
 292   // locals[nlocals-1..0]
 293   // monitors[0..number_of_locks]
 294   //
 295   // locals is a direct copy of the interpreter frame so in the osr buffer
 296   // so first slot in the local array is the last local from the interpreter
 297   // and last slot is local[0] (receiver) from the interpreter
 298   //
 299   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 300   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 301   // in the interpreter frame (the method lock if a sync method)
 302 
 303   // Initialize monitors in the compiled activation.
 304   //   rcx: pointer to osr buffer
 305   //
 306   // All other registers are dead at this point and the locals will be
 307   // copied into place by code emitted in the IR.
 308 
 309   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 310   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 311     int monitor_offset = BytesPerWord * method()->max_locals() +
 312       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 313     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 314     // the OSR buffer using 2 word entries: first the lock and then
 315     // the oop.
 316     for (int i = 0; i < number_of_locks; i++) {
 317       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 318 #ifdef ASSERT
 319       // verify the interpreter's monitor has a non-null object
 320       {
 321         Label L;
 322         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD);
 323         __ jcc(Assembler::notZero, L);
 324         __ stop("locked object is null");
 325         __ bind(L);
 326       }
 327 #endif
 328       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 329       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 330       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 331       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 332     }
 333   }
 334 }
 335 
 336 
 337 // inline cache check; done before the frame is built.
 338 int LIR_Assembler::check_icache() {
 339   return __ ic_check(CodeEntryAlignment);
 340 }
 341 
 342 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 343   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 344   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
 345 
 346   Label L_skip_barrier;
 347   Register klass = rscratch1;
 348   Register thread = LP64_ONLY( r15_thread ) NOT_LP64( noreg );
 349   assert(thread != noreg, "x86_32 not implemented");
 350 
 351   __ mov_metadata(klass, method->holder()->constant_encoding());
 352   __ clinit_barrier(klass, thread, &L_skip_barrier /*L_fast_path*/);
 353 
 354   __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 355 
 356   __ bind(L_skip_barrier);
 357 }
 358 
 359 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 360   jobject o = nullptr;
 361   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 362   __ movoop(reg, o);
 363   patching_epilog(patch, lir_patch_normal, reg, info);
 364 }
 365 
 366 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 367   Metadata* o = nullptr;
 368   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 369   __ mov_metadata(reg, o);
 370   patching_epilog(patch, lir_patch_normal, reg, info);
 371 }
 372 
 373 // This specifies the rsp decrement needed to build the frame
 374 int LIR_Assembler::initial_frame_size_in_bytes() const {
 375   // if rounding, must let FrameMap know!
 376 
 377   // The frame_map records size in slots (32bit word)
 378 
 379   // subtract two words to account for return address and link
 380   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 381 }
 382 
 383 
 384 int LIR_Assembler::emit_exception_handler() {
 385   // generate code for exception handler
 386   address handler_base = __ start_a_stub(exception_handler_size());
 387   if (handler_base == nullptr) {
 388     // not enough space left for the handler
 389     bailout("exception handler overflow");
 390     return -1;
 391   }
 392 
 393   int offset = code_offset();
 394 
 395   // the exception oop and pc are in rax, and rdx
 396   // no other registers need to be preserved, so invalidate them
 397   __ invalidate_registers(false, true, true, false, true, true);
 398 
 399   // check that there is really an exception
 400   __ verify_not_null_oop(rax);
 401 
 402   // search an exception handler (rax: exception oop, rdx: throwing pc)
 403   __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id)));
 404   __ should_not_reach_here();
 405   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 406   __ end_a_stub();
 407 
 408   return offset;
 409 }
 410 
 411 
 412 // Emit the code to remove the frame from the stack in the exception
 413 // unwind path.
 414 int LIR_Assembler::emit_unwind_handler() {
 415 #ifndef PRODUCT
 416   if (CommentedAssembly) {
 417     _masm->block_comment("Unwind handler");
 418   }
 419 #endif
 420 
 421   int offset = code_offset();
 422 
 423   // Fetch the exception from TLS and clear out exception related thread state
 424   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 425   NOT_LP64(__ get_thread(thread));
 426   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 427   __ movptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD);
 428   __ movptr(Address(thread, JavaThread::exception_pc_offset()), NULL_WORD);
 429 
 430   __ bind(_unwind_handler_entry);
 431   __ verify_not_null_oop(rax);
 432   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 433     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 434   }
 435 
 436   // Perform needed unlocking
 437   MonitorExitStub* stub = nullptr;
 438   if (method()->is_synchronized()) {
 439     monitor_address(0, FrameMap::rax_opr);
 440     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 441     if (LockingMode == LM_MONITOR) {
 442       __ jmp(*stub->entry());
 443     } else {
 444       __ unlock_object(rdi, rsi, rax, *stub->entry());
 445     }
 446     __ bind(*stub->continuation());
 447   }
 448 
 449   if (compilation()->env()->dtrace_method_probes()) {
 450 #ifdef _LP64
 451     __ mov(rdi, r15_thread);
 452     __ mov_metadata(rsi, method()->constant_encoding());
 453 #else
 454     __ get_thread(rax);
 455     __ movptr(Address(rsp, 0), rax);
 456     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding(), noreg);
 457 #endif
 458     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 459   }
 460 
 461   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 462     __ mov(rax, rbx);  // Restore the exception
 463   }
 464 
 465   // remove the activation and dispatch to the unwind handler
 466   __ remove_frame(initial_frame_size_in_bytes());
 467   __ jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id)));
 468 
 469   // Emit the slow path assembly
 470   if (stub != nullptr) {
 471     stub->emit_code(this);
 472   }
 473 
 474   return offset;
 475 }
 476 
 477 
 478 int LIR_Assembler::emit_deopt_handler() {
 479   // generate code for exception handler
 480   address handler_base = __ start_a_stub(deopt_handler_size());
 481   if (handler_base == nullptr) {
 482     // not enough space left for the handler
 483     bailout("deopt handler overflow");
 484     return -1;
 485   }
 486 
 487   int offset = code_offset();
 488   InternalAddress here(__ pc());
 489 
 490   __ pushptr(here.addr(), rscratch1);
 491   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 492   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 493   __ end_a_stub();
 494 
 495   return offset;
 496 }
 497 
 498 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 499   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 500   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 501     assert(result->fpu() == 0, "result must already be on TOS");
 502   }
 503 
 504   // Pop the stack before the safepoint code
 505   __ remove_frame(initial_frame_size_in_bytes());
 506 
 507   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 508     __ reserved_stack_check();
 509   }
 510 
 511   // Note: we do not need to round double result; float result has the right precision
 512   // the poll sets the condition code, but no data registers
 513 
 514 #ifdef _LP64
 515   const Register thread = r15_thread;
 516 #else
 517   const Register thread = rbx;
 518   __ get_thread(thread);
 519 #endif
 520   code_stub->set_safepoint_offset(__ offset());
 521   __ relocate(relocInfo::poll_return_type);
 522   __ safepoint_poll(*code_stub->entry(), thread, true /* at_return */, true /* in_nmethod */);
 523   __ ret(0);
 524 }
 525 
 526 
 527 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 528   guarantee(info != nullptr, "Shouldn't be null");
 529   int offset = __ offset();
 530 #ifdef _LP64
 531   const Register poll_addr = rscratch1;
 532   __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset()));
 533 #else
 534   assert(tmp->is_cpu_register(), "needed");
 535   const Register poll_addr = tmp->as_register();
 536   __ get_thread(poll_addr);
 537   __ movptr(poll_addr, Address(poll_addr, in_bytes(JavaThread::polling_page_offset())));
 538 #endif
 539   add_debug_info_for_branch(info);
 540   __ relocate(relocInfo::poll_type);
 541   address pre_pc = __ pc();
 542   __ testl(rax, Address(poll_addr, 0));
 543   address post_pc = __ pc();
 544   guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 545   return offset;
 546 }
 547 
 548 
 549 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 550   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 551 }
 552 
 553 void LIR_Assembler::swap_reg(Register a, Register b) {
 554   __ xchgptr(a, b);
 555 }
 556 
 557 
 558 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 559   assert(src->is_constant(), "should not call otherwise");
 560   assert(dest->is_register(), "should not call otherwise");
 561   LIR_Const* c = src->as_constant_ptr();
 562 
 563   switch (c->type()) {
 564     case T_INT: {
 565       assert(patch_code == lir_patch_none, "no patching handled here");
 566       __ movl(dest->as_register(), c->as_jint());
 567       break;
 568     }
 569 
 570     case T_ADDRESS: {
 571       assert(patch_code == lir_patch_none, "no patching handled here");
 572       __ movptr(dest->as_register(), c->as_jint());
 573       break;
 574     }
 575 
 576     case T_LONG: {
 577       assert(patch_code == lir_patch_none, "no patching handled here");
 578 #ifdef _LP64
 579       if (SCCache::is_on_for_write()) {
 580         // SCA needs relocation info for card table base
 581         address b = c->as_pointer();
 582         if (is_card_table_address(b)) {
 583           __ lea(dest->as_register_lo(), ExternalAddress(b));
 584           break;
 585         }
 586         if (AOTRuntimeConstants::contains(b)) {
 587           __ load_aotrc_address(dest->as_register_lo(), b);
 588           break;
 589         }
 590       }
 591       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 592 #else
 593       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 594       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 595 #endif // _LP64
 596       break;
 597     }
 598 
 599     case T_OBJECT: {
 600       if (patch_code != lir_patch_none) {
 601         jobject2reg_with_patching(dest->as_register(), info);
 602       } else {
 603         __ movoop(dest->as_register(), c->as_jobject());
 604       }
 605       break;
 606     }
 607 
 608     case T_METADATA: {
 609       if (patch_code != lir_patch_none) {
 610         klass2reg_with_patching(dest->as_register(), info);
 611       } else {
 612         __ mov_metadata(dest->as_register(), c->as_metadata());
 613       }
 614       break;
 615     }
 616 
 617     case T_FLOAT: {
 618       if (dest->is_single_xmm()) {
 619         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) {
 620           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 621         } else {
 622           __ movflt(dest->as_xmm_float_reg(),
 623                    InternalAddress(float_constant(c->as_jfloat())));
 624         }
 625       } else {
 626 #ifndef _LP64
 627         assert(dest->is_single_fpu(), "must be");
 628         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 629         if (c->is_zero_float()) {
 630           __ fldz();
 631         } else if (c->is_one_float()) {
 632           __ fld1();
 633         } else {
 634           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 635         }
 636 #else
 637         ShouldNotReachHere();
 638 #endif // !_LP64
 639       }
 640       break;
 641     }
 642 
 643     case T_DOUBLE: {
 644       if (dest->is_double_xmm()) {
 645         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) {
 646           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 647         } else {
 648           __ movdbl(dest->as_xmm_double_reg(),
 649                     InternalAddress(double_constant(c->as_jdouble())));
 650         }
 651       } else {
 652 #ifndef _LP64
 653         assert(dest->is_double_fpu(), "must be");
 654         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 655         if (c->is_zero_double()) {
 656           __ fldz();
 657         } else if (c->is_one_double()) {
 658           __ fld1();
 659         } else {
 660           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 661         }
 662 #else
 663         ShouldNotReachHere();
 664 #endif // !_LP64
 665       }
 666       break;
 667     }
 668 
 669     default:
 670       ShouldNotReachHere();
 671   }
 672 }
 673 
 674 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 675   assert(src->is_constant(), "should not call otherwise");
 676   assert(dest->is_stack(), "should not call otherwise");
 677   LIR_Const* c = src->as_constant_ptr();
 678 
 679   switch (c->type()) {
 680     case T_INT:  // fall through
 681     case T_FLOAT:
 682       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 683       break;
 684 
 685     case T_ADDRESS:
 686       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 687       break;
 688 
 689     case T_OBJECT:
 690       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1);
 691       break;
 692 
 693     case T_LONG:  // fall through
 694     case T_DOUBLE:
 695 #ifdef _LP64
 696       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 697                                               lo_word_offset_in_bytes),
 698                 (intptr_t)c->as_jlong_bits(),
 699                 rscratch1);
 700 #else
 701       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 702                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 703       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 704                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 705 #endif // _LP64
 706       break;
 707 
 708     default:
 709       ShouldNotReachHere();
 710   }
 711 }
 712 
 713 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 714   assert(src->is_constant(), "should not call otherwise");
 715   assert(dest->is_address(), "should not call otherwise");
 716   LIR_Const* c = src->as_constant_ptr();
 717   LIR_Address* addr = dest->as_address_ptr();
 718 
 719   int null_check_here = code_offset();
 720   switch (type) {
 721     case T_INT:    // fall through
 722     case T_FLOAT:
 723       __ movl(as_Address(addr), c->as_jint_bits());
 724       break;
 725 
 726     case T_ADDRESS:
 727       __ movptr(as_Address(addr), c->as_jint_bits());
 728       break;
 729 
 730     case T_OBJECT:  // fall through
 731     case T_ARRAY:
 732       if (c->as_jobject() == nullptr) {
 733         if (UseCompressedOops && !wide) {
 734           __ movl(as_Address(addr), NULL_WORD);
 735         } else {
 736 #ifdef _LP64
 737           __ xorptr(rscratch1, rscratch1);
 738           null_check_here = code_offset();
 739           __ movptr(as_Address(addr), rscratch1);
 740 #else
 741           __ movptr(as_Address(addr), NULL_WORD);
 742 #endif
 743         }
 744       } else {
 745         if (is_literal_address(addr)) {
 746           ShouldNotReachHere();
 747           __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1);
 748         } else {
 749 #ifdef _LP64
 750           __ movoop(rscratch1, c->as_jobject());
 751           if (UseCompressedOops && !wide) {
 752             __ encode_heap_oop(rscratch1);
 753             null_check_here = code_offset();
 754             __ movl(as_Address_lo(addr), rscratch1);
 755           } else {
 756             null_check_here = code_offset();
 757             __ movptr(as_Address_lo(addr), rscratch1);
 758           }
 759 #else
 760           __ movoop(as_Address(addr), c->as_jobject(), noreg);
 761 #endif
 762         }
 763       }
 764       break;
 765 
 766     case T_LONG:    // fall through
 767     case T_DOUBLE:
 768 #ifdef _LP64
 769       if (is_literal_address(addr)) {
 770         ShouldNotReachHere();
 771         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 772       } else {
 773         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 774         null_check_here = code_offset();
 775         __ movptr(as_Address_lo(addr), r10);
 776       }
 777 #else
 778       // Always reachable in 32bit so this doesn't produce useless move literal
 779       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 780       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 781 #endif // _LP64
 782       break;
 783 
 784     case T_BOOLEAN: // fall through
 785     case T_BYTE:
 786       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 787       break;
 788 
 789     case T_CHAR:    // fall through
 790     case T_SHORT:
 791       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 792       break;
 793 
 794     default:
 795       ShouldNotReachHere();
 796   };
 797 
 798   if (info != nullptr) {
 799     add_debug_info_for_null_check(null_check_here, info);
 800   }
 801 }
 802 
 803 
 804 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 805   assert(src->is_register(), "should not call otherwise");
 806   assert(dest->is_register(), "should not call otherwise");
 807 
 808   // move between cpu-registers
 809   if (dest->is_single_cpu()) {
 810 #ifdef _LP64
 811     if (src->type() == T_LONG) {
 812       // Can do LONG -> OBJECT
 813       move_regs(src->as_register_lo(), dest->as_register());
 814       return;
 815     }
 816 #endif
 817     assert(src->is_single_cpu(), "must match");
 818     if (src->type() == T_OBJECT) {
 819       __ verify_oop(src->as_register());
 820     }
 821     move_regs(src->as_register(), dest->as_register());
 822 
 823   } else if (dest->is_double_cpu()) {
 824 #ifdef _LP64
 825     if (is_reference_type(src->type())) {
 826       // Surprising to me but we can see move of a long to t_object
 827       __ verify_oop(src->as_register());
 828       move_regs(src->as_register(), dest->as_register_lo());
 829       return;
 830     }
 831 #endif
 832     assert(src->is_double_cpu(), "must match");
 833     Register f_lo = src->as_register_lo();
 834     Register f_hi = src->as_register_hi();
 835     Register t_lo = dest->as_register_lo();
 836     Register t_hi = dest->as_register_hi();
 837 #ifdef _LP64
 838     assert(f_hi == f_lo, "must be same");
 839     assert(t_hi == t_lo, "must be same");
 840     move_regs(f_lo, t_lo);
 841 #else
 842     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 843 
 844 
 845     if (f_lo == t_hi && f_hi == t_lo) {
 846       swap_reg(f_lo, f_hi);
 847     } else if (f_hi == t_lo) {
 848       assert(f_lo != t_hi, "overwriting register");
 849       move_regs(f_hi, t_hi);
 850       move_regs(f_lo, t_lo);
 851     } else {
 852       assert(f_hi != t_lo, "overwriting register");
 853       move_regs(f_lo, t_lo);
 854       move_regs(f_hi, t_hi);
 855     }
 856 #endif // LP64
 857 
 858 #ifndef _LP64
 859     // special moves from fpu-register to xmm-register
 860     // necessary for method results
 861   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 862     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 863     __ fld_s(Address(rsp, 0));
 864   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 865     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 866     __ fld_d(Address(rsp, 0));
 867   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 868     __ fstp_s(Address(rsp, 0));
 869     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 870   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 871     __ fstp_d(Address(rsp, 0));
 872     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 873 #endif // !_LP64
 874 
 875     // move between xmm-registers
 876   } else if (dest->is_single_xmm()) {
 877     assert(src->is_single_xmm(), "must match");
 878     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 879   } else if (dest->is_double_xmm()) {
 880     assert(src->is_double_xmm(), "must match");
 881     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 882 
 883 #ifndef _LP64
 884     // move between fpu-registers (no instruction necessary because of fpu-stack)
 885   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 886     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 887     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 888 #endif // !_LP64
 889 
 890   } else {
 891     ShouldNotReachHere();
 892   }
 893 }
 894 
 895 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 896   assert(src->is_register(), "should not call otherwise");
 897   assert(dest->is_stack(), "should not call otherwise");
 898 
 899   if (src->is_single_cpu()) {
 900     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 901     if (is_reference_type(type)) {
 902       __ verify_oop(src->as_register());
 903       __ movptr (dst, src->as_register());
 904     } else if (type == T_METADATA || type == T_ADDRESS) {
 905       __ movptr (dst, src->as_register());
 906     } else {
 907       __ movl (dst, src->as_register());
 908     }
 909 
 910   } else if (src->is_double_cpu()) {
 911     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 912     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 913     __ movptr (dstLO, src->as_register_lo());
 914     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 915 
 916   } else if (src->is_single_xmm()) {
 917     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 918     __ movflt(dst_addr, src->as_xmm_float_reg());
 919 
 920   } else if (src->is_double_xmm()) {
 921     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 922     __ movdbl(dst_addr, src->as_xmm_double_reg());
 923 
 924 #ifndef _LP64
 925   } else if (src->is_single_fpu()) {
 926     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 927     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 928     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 929     else                   __ fst_s  (dst_addr);
 930 
 931   } else if (src->is_double_fpu()) {
 932     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 933     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 934     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 935     else                   __ fst_d  (dst_addr);
 936 #endif // !_LP64
 937 
 938   } else {
 939     ShouldNotReachHere();
 940   }
 941 }
 942 
 943 
 944 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) {
 945   LIR_Address* to_addr = dest->as_address_ptr();
 946   PatchingStub* patch = nullptr;
 947   Register compressed_src = rscratch1;
 948 
 949   if (is_reference_type(type)) {
 950     __ verify_oop(src->as_register());
 951 #ifdef _LP64
 952     if (UseCompressedOops && !wide) {
 953       __ movptr(compressed_src, src->as_register());
 954       __ encode_heap_oop(compressed_src);
 955       if (patch_code != lir_patch_none) {
 956         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 957       }
 958     }
 959 #endif
 960   }
 961 
 962   if (patch_code != lir_patch_none) {
 963     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 964     Address toa = as_Address(to_addr);
 965     assert(toa.disp() != 0, "must have");
 966   }
 967 
 968   int null_check_here = code_offset();
 969   switch (type) {
 970     case T_FLOAT: {
 971 #ifdef _LP64
 972       assert(src->is_single_xmm(), "not a float");
 973       __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 974 #else
 975       if (src->is_single_xmm()) {
 976         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 977       } else {
 978         assert(src->is_single_fpu(), "must be");
 979         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 980         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 981         else                    __ fst_s (as_Address(to_addr));
 982       }
 983 #endif // _LP64
 984       break;
 985     }
 986 
 987     case T_DOUBLE: {
 988 #ifdef _LP64
 989       assert(src->is_double_xmm(), "not a double");
 990       __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 991 #else
 992       if (src->is_double_xmm()) {
 993         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 994       } else {
 995         assert(src->is_double_fpu(), "must be");
 996         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 997         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
 998         else                    __ fst_d (as_Address(to_addr));
 999       }
1000 #endif // _LP64
1001       break;
1002     }
1003 
1004     case T_ARRAY:   // fall through
1005     case T_OBJECT:  // fall through
1006       if (UseCompressedOops && !wide) {
1007         __ movl(as_Address(to_addr), compressed_src);
1008       } else {
1009         __ movptr(as_Address(to_addr), src->as_register());
1010       }
1011       break;
1012     case T_METADATA:
1013       // We get here to store a method pointer to the stack to pass to
1014       // a dtrace runtime call. This can't work on 64 bit with
1015       // compressed klass ptrs: T_METADATA can be a compressed klass
1016       // ptr or a 64 bit method pointer.
1017       LP64_ONLY(ShouldNotReachHere());
1018       __ movptr(as_Address(to_addr), src->as_register());
1019       break;
1020     case T_ADDRESS:
1021       __ movptr(as_Address(to_addr), src->as_register());
1022       break;
1023     case T_INT:
1024       __ movl(as_Address(to_addr), src->as_register());
1025       break;
1026 
1027     case T_LONG: {
1028       Register from_lo = src->as_register_lo();
1029       Register from_hi = src->as_register_hi();
1030 #ifdef _LP64
1031       __ movptr(as_Address_lo(to_addr), from_lo);
1032 #else
1033       Register base = to_addr->base()->as_register();
1034       Register index = noreg;
1035       if (to_addr->index()->is_register()) {
1036         index = to_addr->index()->as_register();
1037       }
1038       if (base == from_lo || index == from_lo) {
1039         assert(base != from_hi, "can't be");
1040         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1041         __ movl(as_Address_hi(to_addr), from_hi);
1042         if (patch != nullptr) {
1043           patching_epilog(patch, lir_patch_high, base, info);
1044           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1045           patch_code = lir_patch_low;
1046         }
1047         __ movl(as_Address_lo(to_addr), from_lo);
1048       } else {
1049         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1050         __ movl(as_Address_lo(to_addr), from_lo);
1051         if (patch != nullptr) {
1052           patching_epilog(patch, lir_patch_low, base, info);
1053           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1054           patch_code = lir_patch_high;
1055         }
1056         __ movl(as_Address_hi(to_addr), from_hi);
1057       }
1058 #endif // _LP64
1059       break;
1060     }
1061 
1062     case T_BYTE:    // fall through
1063     case T_BOOLEAN: {
1064       Register src_reg = src->as_register();
1065       Address dst_addr = as_Address(to_addr);
1066       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1067       __ movb(dst_addr, src_reg);
1068       break;
1069     }
1070 
1071     case T_CHAR:    // fall through
1072     case T_SHORT:
1073       __ movw(as_Address(to_addr), src->as_register());
1074       break;
1075 
1076     default:
1077       ShouldNotReachHere();
1078   }
1079   if (info != nullptr) {
1080     add_debug_info_for_null_check(null_check_here, info);
1081   }
1082 
1083   if (patch_code != lir_patch_none) {
1084     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1085   }
1086 }
1087 
1088 
1089 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1090   assert(src->is_stack(), "should not call otherwise");
1091   assert(dest->is_register(), "should not call otherwise");
1092 
1093   if (dest->is_single_cpu()) {
1094     if (is_reference_type(type)) {
1095       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1096       __ verify_oop(dest->as_register());
1097     } else if (type == T_METADATA || type == T_ADDRESS) {
1098       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1099     } else {
1100       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1101     }
1102 
1103   } else if (dest->is_double_cpu()) {
1104     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1105     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1106     __ movptr(dest->as_register_lo(), src_addr_LO);
1107     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1108 
1109   } else if (dest->is_single_xmm()) {
1110     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1111     __ movflt(dest->as_xmm_float_reg(), src_addr);
1112 
1113   } else if (dest->is_double_xmm()) {
1114     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1115     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1116 
1117 #ifndef _LP64
1118   } else if (dest->is_single_fpu()) {
1119     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1120     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1121     __ fld_s(src_addr);
1122 
1123   } else if (dest->is_double_fpu()) {
1124     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1125     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1126     __ fld_d(src_addr);
1127 #endif // _LP64
1128 
1129   } else {
1130     ShouldNotReachHere();
1131   }
1132 }
1133 
1134 
1135 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1136   if (src->is_single_stack()) {
1137     if (is_reference_type(type)) {
1138       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1139       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1140     } else {
1141 #ifndef _LP64
1142       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1143       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1144 #else
1145       //no pushl on 64bits
1146       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1147       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1148 #endif
1149     }
1150 
1151   } else if (src->is_double_stack()) {
1152 #ifdef _LP64
1153     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1154     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1155 #else
1156     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1157     // push and pop the part at src + wordSize, adding wordSize for the previous push
1158     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1159     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1160     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1161 #endif // _LP64
1162 
1163   } else {
1164     ShouldNotReachHere();
1165   }
1166 }
1167 
1168 
1169 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
1170   assert(src->is_address(), "should not call otherwise");
1171   assert(dest->is_register(), "should not call otherwise");
1172 
1173   LIR_Address* addr = src->as_address_ptr();
1174   Address from_addr = as_Address(addr);
1175 
1176   if (addr->base()->type() == T_OBJECT) {
1177     __ verify_oop(addr->base()->as_pointer_register());
1178   }
1179 
1180   switch (type) {
1181     case T_BOOLEAN: // fall through
1182     case T_BYTE:    // fall through
1183     case T_CHAR:    // fall through
1184     case T_SHORT:
1185       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1186         // on pre P6 processors we may get partial register stalls
1187         // so blow away the value of to_rinfo before loading a
1188         // partial word into it.  Do it here so that it precedes
1189         // the potential patch point below.
1190         __ xorptr(dest->as_register(), dest->as_register());
1191       }
1192       break;
1193    default:
1194      break;
1195   }
1196 
1197   PatchingStub* patch = nullptr;
1198   if (patch_code != lir_patch_none) {
1199     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1200     assert(from_addr.disp() != 0, "must have");
1201   }
1202   if (info != nullptr) {
1203     add_debug_info_for_null_check_here(info);
1204   }
1205 
1206   switch (type) {
1207     case T_FLOAT: {
1208       if (dest->is_single_xmm()) {
1209         __ movflt(dest->as_xmm_float_reg(), from_addr);
1210       } else {
1211 #ifndef _LP64
1212         assert(dest->is_single_fpu(), "must be");
1213         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1214         __ fld_s(from_addr);
1215 #else
1216         ShouldNotReachHere();
1217 #endif // !LP64
1218       }
1219       break;
1220     }
1221 
1222     case T_DOUBLE: {
1223       if (dest->is_double_xmm()) {
1224         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1225       } else {
1226 #ifndef _LP64
1227         assert(dest->is_double_fpu(), "must be");
1228         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1229         __ fld_d(from_addr);
1230 #else
1231         ShouldNotReachHere();
1232 #endif // !LP64
1233       }
1234       break;
1235     }
1236 
1237     case T_OBJECT:  // fall through
1238     case T_ARRAY:   // fall through
1239       if (UseCompressedOops && !wide) {
1240         __ movl(dest->as_register(), from_addr);
1241       } else {
1242         __ movptr(dest->as_register(), from_addr);
1243       }
1244       break;
1245 
1246     case T_ADDRESS:
1247       __ movptr(dest->as_register(), from_addr);
1248       break;
1249     case T_INT:
1250       __ movl(dest->as_register(), from_addr);
1251       break;
1252 
1253     case T_LONG: {
1254       Register to_lo = dest->as_register_lo();
1255       Register to_hi = dest->as_register_hi();
1256 #ifdef _LP64
1257       __ movptr(to_lo, as_Address_lo(addr));
1258 #else
1259       Register base = addr->base()->as_register();
1260       Register index = noreg;
1261       if (addr->index()->is_register()) {
1262         index = addr->index()->as_register();
1263       }
1264       if ((base == to_lo && index == to_hi) ||
1265           (base == to_hi && index == to_lo)) {
1266         // addresses with 2 registers are only formed as a result of
1267         // array access so this code will never have to deal with
1268         // patches or null checks.
1269         assert(info == nullptr && patch == nullptr, "must be");
1270         __ lea(to_hi, as_Address(addr));
1271         __ movl(to_lo, Address(to_hi, 0));
1272         __ movl(to_hi, Address(to_hi, BytesPerWord));
1273       } else if (base == to_lo || index == to_lo) {
1274         assert(base != to_hi, "can't be");
1275         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1276         __ movl(to_hi, as_Address_hi(addr));
1277         if (patch != nullptr) {
1278           patching_epilog(patch, lir_patch_high, base, info);
1279           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1280           patch_code = lir_patch_low;
1281         }
1282         __ movl(to_lo, as_Address_lo(addr));
1283       } else {
1284         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1285         __ movl(to_lo, as_Address_lo(addr));
1286         if (patch != nullptr) {
1287           patching_epilog(patch, lir_patch_low, base, info);
1288           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1289           patch_code = lir_patch_high;
1290         }
1291         __ movl(to_hi, as_Address_hi(addr));
1292       }
1293 #endif // _LP64
1294       break;
1295     }
1296 
1297     case T_BOOLEAN: // fall through
1298     case T_BYTE: {
1299       Register dest_reg = dest->as_register();
1300       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1301       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1302         __ movsbl(dest_reg, from_addr);
1303       } else {
1304         __ movb(dest_reg, from_addr);
1305         __ shll(dest_reg, 24);
1306         __ sarl(dest_reg, 24);
1307       }
1308       break;
1309     }
1310 
1311     case T_CHAR: {
1312       Register dest_reg = dest->as_register();
1313       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1314       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1315         __ movzwl(dest_reg, from_addr);
1316       } else {
1317         __ movw(dest_reg, from_addr);
1318       }
1319       break;
1320     }
1321 
1322     case T_SHORT: {
1323       Register dest_reg = dest->as_register();
1324       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1325         __ movswl(dest_reg, from_addr);
1326       } else {
1327         __ movw(dest_reg, from_addr);
1328         __ shll(dest_reg, 16);
1329         __ sarl(dest_reg, 16);
1330       }
1331       break;
1332     }
1333 
1334     default:
1335       ShouldNotReachHere();
1336   }
1337 
1338   if (patch != nullptr) {
1339     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1340   }
1341 
1342   if (is_reference_type(type)) {
1343 #ifdef _LP64
1344     if (UseCompressedOops && !wide) {
1345       __ decode_heap_oop(dest->as_register());
1346     }
1347 #endif
1348 
1349     __ verify_oop(dest->as_register());
1350   }
1351 }
1352 
1353 
1354 NEEDS_CLEANUP; // This could be static?
1355 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1356   int elem_size = type2aelembytes(type);
1357   switch (elem_size) {
1358     case 1: return Address::times_1;
1359     case 2: return Address::times_2;
1360     case 4: return Address::times_4;
1361     case 8: return Address::times_8;
1362   }
1363   ShouldNotReachHere();
1364   return Address::no_scale;
1365 }
1366 
1367 
1368 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1369   switch (op->code()) {
1370     case lir_idiv:
1371     case lir_irem:
1372       arithmetic_idiv(op->code(),
1373                       op->in_opr1(),
1374                       op->in_opr2(),
1375                       op->in_opr3(),
1376                       op->result_opr(),
1377                       op->info());
1378       break;
1379     case lir_fmad:
1380       __ fmad(op->result_opr()->as_xmm_double_reg(),
1381               op->in_opr1()->as_xmm_double_reg(),
1382               op->in_opr2()->as_xmm_double_reg(),
1383               op->in_opr3()->as_xmm_double_reg());
1384       break;
1385     case lir_fmaf:
1386       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1387               op->in_opr1()->as_xmm_float_reg(),
1388               op->in_opr2()->as_xmm_float_reg(),
1389               op->in_opr3()->as_xmm_float_reg());
1390       break;
1391     default:      ShouldNotReachHere(); break;
1392   }
1393 }
1394 
1395 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1396 #ifdef ASSERT
1397   assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
1398   if (op->block() != nullptr)  _branch_target_blocks.append(op->block());
1399   if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
1400 #endif
1401 
1402   if (op->cond() == lir_cond_always) {
1403     if (op->info() != nullptr) add_debug_info_for_branch(op->info());
1404     __ jmp (*(op->label()));
1405   } else {
1406     Assembler::Condition acond = Assembler::zero;
1407     if (op->code() == lir_cond_float_branch) {
1408       assert(op->ublock() != nullptr, "must have unordered successor");
1409       __ jcc(Assembler::parity, *(op->ublock()->label()));
1410       switch(op->cond()) {
1411         case lir_cond_equal:        acond = Assembler::equal;      break;
1412         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1413         case lir_cond_less:         acond = Assembler::below;      break;
1414         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1415         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1416         case lir_cond_greater:      acond = Assembler::above;      break;
1417         default:                         ShouldNotReachHere();
1418       }
1419     } else {
1420       switch (op->cond()) {
1421         case lir_cond_equal:        acond = Assembler::equal;       break;
1422         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1423         case lir_cond_less:         acond = Assembler::less;        break;
1424         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1425         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1426         case lir_cond_greater:      acond = Assembler::greater;     break;
1427         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1428         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1429         default:                         ShouldNotReachHere();
1430       }
1431     }
1432     __ jcc(acond,*(op->label()));
1433   }
1434 }
1435 
1436 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1437   LIR_Opr src  = op->in_opr();
1438   LIR_Opr dest = op->result_opr();
1439 
1440   switch (op->bytecode()) {
1441     case Bytecodes::_i2l:
1442 #ifdef _LP64
1443       __ movl2ptr(dest->as_register_lo(), src->as_register());
1444 #else
1445       move_regs(src->as_register(), dest->as_register_lo());
1446       move_regs(src->as_register(), dest->as_register_hi());
1447       __ sarl(dest->as_register_hi(), 31);
1448 #endif // LP64
1449       break;
1450 
1451     case Bytecodes::_l2i:
1452 #ifdef _LP64
1453       __ movl(dest->as_register(), src->as_register_lo());
1454 #else
1455       move_regs(src->as_register_lo(), dest->as_register());
1456 #endif
1457       break;
1458 
1459     case Bytecodes::_i2b:
1460       move_regs(src->as_register(), dest->as_register());
1461       __ sign_extend_byte(dest->as_register());
1462       break;
1463 
1464     case Bytecodes::_i2c:
1465       move_regs(src->as_register(), dest->as_register());
1466       __ andl(dest->as_register(), 0xFFFF);
1467       break;
1468 
1469     case Bytecodes::_i2s:
1470       move_regs(src->as_register(), dest->as_register());
1471       __ sign_extend_short(dest->as_register());
1472       break;
1473 
1474 
1475 #ifdef _LP64
1476     case Bytecodes::_f2d:
1477       __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1478       break;
1479 
1480     case Bytecodes::_d2f:
1481       __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1482       break;
1483 
1484     case Bytecodes::_i2f:
1485       __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1486       break;
1487 
1488     case Bytecodes::_i2d:
1489       __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1490       break;
1491 
1492     case Bytecodes::_l2f:
1493       __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo());
1494       break;
1495 
1496     case Bytecodes::_l2d:
1497       __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo());
1498       break;
1499 
1500     case Bytecodes::_f2i:
1501       __ convert_f2i(dest->as_register(), src->as_xmm_float_reg());
1502       break;
1503 
1504     case Bytecodes::_d2i:
1505       __ convert_d2i(dest->as_register(), src->as_xmm_double_reg());
1506       break;
1507 
1508     case Bytecodes::_f2l:
1509       __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg());
1510       break;
1511 
1512     case Bytecodes::_d2l:
1513       __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg());
1514       break;
1515 #else
1516     case Bytecodes::_f2d:
1517     case Bytecodes::_d2f:
1518       if (dest->is_single_xmm()) {
1519         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1520       } else if (dest->is_double_xmm()) {
1521         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1522       } else {
1523         assert(src->fpu() == dest->fpu(), "register must be equal");
1524         // do nothing (float result is rounded later through spilling)
1525       }
1526       break;
1527 
1528     case Bytecodes::_i2f:
1529     case Bytecodes::_i2d:
1530       if (dest->is_single_xmm()) {
1531         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1532       } else if (dest->is_double_xmm()) {
1533         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1534       } else {
1535         assert(dest->fpu() == 0, "result must be on TOS");
1536         __ movl(Address(rsp, 0), src->as_register());
1537         __ fild_s(Address(rsp, 0));
1538       }
1539       break;
1540 
1541     case Bytecodes::_l2f:
1542     case Bytecodes::_l2d:
1543       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1544       assert(dest->fpu() == 0, "result must be on TOS");
1545       __ movptr(Address(rsp, 0),          src->as_register_lo());
1546       __ movl(Address(rsp, BytesPerWord), src->as_register_hi());
1547       __ fild_d(Address(rsp, 0));
1548       // float result is rounded later through spilling
1549       break;
1550 
1551     case Bytecodes::_f2i:
1552     case Bytecodes::_d2i:
1553       if (src->is_single_xmm()) {
1554         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1555       } else if (src->is_double_xmm()) {
1556         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1557       } else {
1558         assert(src->fpu() == 0, "input must be on TOS");
1559         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_trunc()));
1560         __ fist_s(Address(rsp, 0));
1561         __ movl(dest->as_register(), Address(rsp, 0));
1562         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
1563       }
1564       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1565       assert(op->stub() != nullptr, "stub required");
1566       __ cmpl(dest->as_register(), 0x80000000);
1567       __ jcc(Assembler::equal, *op->stub()->entry());
1568       __ bind(*op->stub()->continuation());
1569       break;
1570 
1571     case Bytecodes::_f2l:
1572     case Bytecodes::_d2l:
1573       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1574       assert(src->fpu() == 0, "input must be on TOS");
1575       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1576 
1577       // instruction sequence too long to inline it here
1578       {
1579         __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::fpu2long_stub_id)));
1580       }
1581       break;
1582 #endif // _LP64
1583 
1584     default: ShouldNotReachHere();
1585   }
1586 }
1587 
1588 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1589   if (op->init_check()) {
1590     add_debug_info_for_null_check_here(op->stub()->info());
1591     // init_state needs acquire, but x86 is TSO, and so we are already good.
1592     __ cmpb(Address(op->klass()->as_register(),
1593                     InstanceKlass::init_state_offset()),
1594                     InstanceKlass::fully_initialized);
1595     __ jcc(Assembler::notEqual, *op->stub()->entry());
1596   }
1597   __ allocate_object(op->obj()->as_register(),
1598                      op->tmp1()->as_register(),
1599                      op->tmp2()->as_register(),
1600                      op->header_size(),
1601                      op->object_size(),
1602                      op->klass()->as_register(),
1603                      *op->stub()->entry());
1604   __ bind(*op->stub()->continuation());
1605 }
1606 
1607 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1608   Register len =  op->len()->as_register();
1609   LP64_ONLY( __ movslq(len, len); )
1610 
1611   if (UseSlowPath ||
1612       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1613       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1614     __ jmp(*op->stub()->entry());
1615   } else {
1616     Register tmp1 = op->tmp1()->as_register();
1617     Register tmp2 = op->tmp2()->as_register();
1618     Register tmp3 = op->tmp3()->as_register();
1619     if (len == tmp1) {
1620       tmp1 = tmp3;
1621     } else if (len == tmp2) {
1622       tmp2 = tmp3;
1623     } else if (len == tmp3) {
1624       // everything is ok
1625     } else {
1626       __ mov(tmp3, len);
1627     }
1628     __ allocate_array(op->obj()->as_register(),
1629                       len,
1630                       tmp1,
1631                       tmp2,
1632                       arrayOopDesc::base_offset_in_bytes(op->type()),
1633                       array_element_size(op->type()),
1634                       op->klass()->as_register(),
1635                       *op->stub()->entry(),
1636                       op->zero_array());
1637   }
1638   __ bind(*op->stub()->continuation());
1639 }
1640 
1641 void LIR_Assembler::type_profile_helper(Register mdo,
1642                                         ciMethodData *md, ciProfileData *data,
1643                                         Register recv, Label* update_done) {
1644   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1645     Label next_test;
1646     // See if the receiver is receiver[n].
1647     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1648     __ jccb(Assembler::notEqual, next_test);
1649     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1650     __ addptr(data_addr, DataLayout::counter_increment);
1651     __ jmp(*update_done);
1652     __ bind(next_test);
1653   }
1654 
1655   // Didn't find receiver; find next empty slot and fill it in
1656   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1657     Label next_test;
1658     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1659     __ cmpptr(recv_addr, NULL_WORD);
1660     __ jccb(Assembler::notEqual, next_test);
1661     __ movptr(recv_addr, recv);
1662     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1663     __ jmp(*update_done);
1664     __ bind(next_test);
1665   }
1666 }
1667 
1668 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1669   // we always need a stub for the failure case.
1670   CodeStub* stub = op->stub();
1671   Register obj = op->object()->as_register();
1672   Register k_RInfo = op->tmp1()->as_register();
1673   Register klass_RInfo = op->tmp2()->as_register();
1674   Register dst = op->result_opr()->as_register();
1675   ciKlass* k = op->klass();
1676   Register Rtmp1 = noreg;
1677   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1678 
1679   // check if it needs to be profiled
1680   ciMethodData* md = nullptr;
1681   ciProfileData* data = nullptr;
1682 
1683   if (op->should_profile()) {
1684     ciMethod* method = op->profiled_method();
1685     assert(method != nullptr, "Should have method");
1686     int bci = op->profiled_bci();
1687     md = method->method_data_or_null();
1688     assert(md != nullptr, "Sanity");
1689     data = md->bci_to_data(bci);
1690     assert(data != nullptr,                "need data for type check");
1691     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1692   }
1693   Label* success_target = success;
1694   Label* failure_target = failure;
1695 
1696   if (obj == k_RInfo) {
1697     k_RInfo = dst;
1698   } else if (obj == klass_RInfo) {
1699     klass_RInfo = dst;
1700   }
1701   if (k->is_loaded() && !UseCompressedClassPointers) {
1702     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1703   } else {
1704     Rtmp1 = op->tmp3()->as_register();
1705     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1706   }
1707 
1708   assert_different_registers(obj, k_RInfo, klass_RInfo);
1709 
1710   __ testptr(obj, obj);
1711   if (op->should_profile()) {
1712     Label not_null;
1713     Register mdo  = klass_RInfo;
1714     __ mov_metadata(mdo, md->constant_encoding());
1715     __ jccb(Assembler::notEqual, not_null);
1716     // Object is null; update MDO and exit
1717     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1718     int header_bits = BitData::null_seen_byte_constant();
1719     __ orb(data_addr, header_bits);
1720     __ jmp(*obj_is_null);
1721     __ bind(not_null);
1722 
1723     Label update_done;
1724     Register recv = k_RInfo;
1725     __ load_klass(recv, obj, tmp_load_klass);
1726     type_profile_helper(mdo, md, data, recv, &update_done);
1727 
1728     Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1729     __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment);
1730 
1731     __ bind(update_done);
1732   } else {
1733     __ jcc(Assembler::equal, *obj_is_null);
1734   }
1735 
1736   if (!k->is_loaded()) {
1737     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1738   } else {
1739 #ifdef _LP64
1740     __ mov_metadata(k_RInfo, k->constant_encoding());
1741 #endif // _LP64
1742   }
1743   __ verify_oop(obj);
1744 
1745   if (op->fast_check()) {
1746     // get object class
1747     // not a safepoint as obj null check happens earlier
1748 #ifdef _LP64
1749     if (UseCompressedClassPointers) {
1750       __ load_klass(Rtmp1, obj, tmp_load_klass);
1751       __ cmpptr(k_RInfo, Rtmp1);
1752     } else {
1753       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1754     }
1755 #else
1756     if (k->is_loaded()) {
1757       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1758     } else {
1759       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1760     }
1761 #endif
1762     __ jcc(Assembler::notEqual, *failure_target);
1763     // successful cast, fall through to profile or jump
1764   } else {
1765     // get object class
1766     // not a safepoint as obj null check happens earlier
1767     __ load_klass(klass_RInfo, obj, tmp_load_klass);
1768     if (k->is_loaded()) {
1769       // See if we get an immediate positive hit
1770 #ifdef _LP64
1771       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1772 #else
1773       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1774 #endif // _LP64
1775       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1776         __ jcc(Assembler::notEqual, *failure_target);
1777         // successful cast, fall through to profile or jump
1778       } else {
1779         // See if we get an immediate positive hit
1780         __ jcc(Assembler::equal, *success_target);
1781         // check for self
1782 #ifdef _LP64
1783         __ cmpptr(klass_RInfo, k_RInfo);
1784 #else
1785         __ cmpklass(klass_RInfo, k->constant_encoding());
1786 #endif // _LP64
1787         __ jcc(Assembler::equal, *success_target);
1788 
1789         __ push(klass_RInfo);
1790 #ifdef _LP64
1791         __ push(k_RInfo);
1792 #else
1793         __ pushklass(k->constant_encoding(), noreg);
1794 #endif // _LP64
1795         __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1796         __ pop(klass_RInfo);
1797         __ pop(klass_RInfo);
1798         // result is a boolean
1799         __ testl(klass_RInfo, klass_RInfo);
1800         __ jcc(Assembler::equal, *failure_target);
1801         // successful cast, fall through to profile or jump
1802       }
1803     } else {
1804       // perform the fast part of the checking logic
1805       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1806       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1807       __ push(klass_RInfo);
1808       __ push(k_RInfo);
1809       __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1810       __ pop(klass_RInfo);
1811       __ pop(k_RInfo);
1812       // result is a boolean
1813       __ testl(k_RInfo, k_RInfo);
1814       __ jcc(Assembler::equal, *failure_target);
1815       // successful cast, fall through to profile or jump
1816     }
1817   }
1818   __ jmp(*success);
1819 }
1820 
1821 
1822 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1823   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1824   LIR_Code code = op->code();
1825   if (code == lir_store_check) {
1826     Register value = op->object()->as_register();
1827     Register array = op->array()->as_register();
1828     Register k_RInfo = op->tmp1()->as_register();
1829     Register klass_RInfo = op->tmp2()->as_register();
1830     Register Rtmp1 = op->tmp3()->as_register();
1831 
1832     CodeStub* stub = op->stub();
1833 
1834     // check if it needs to be profiled
1835     ciMethodData* md = nullptr;
1836     ciProfileData* data = nullptr;
1837 
1838     if (op->should_profile()) {
1839       ciMethod* method = op->profiled_method();
1840       assert(method != nullptr, "Should have method");
1841       int bci = op->profiled_bci();
1842       md = method->method_data_or_null();
1843       assert(md != nullptr, "Sanity");
1844       data = md->bci_to_data(bci);
1845       assert(data != nullptr,                "need data for type check");
1846       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1847     }
1848     Label done;
1849     Label* success_target = &done;
1850     Label* failure_target = stub->entry();
1851 
1852     __ testptr(value, value);
1853     if (op->should_profile()) {
1854       Label not_null;
1855       Register mdo  = klass_RInfo;
1856       __ mov_metadata(mdo, md->constant_encoding());
1857       __ jccb(Assembler::notEqual, not_null);
1858       // Object is null; update MDO and exit
1859       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1860       int header_bits = BitData::null_seen_byte_constant();
1861       __ orb(data_addr, header_bits);
1862       __ jmp(done);
1863       __ bind(not_null);
1864 
1865       Label update_done;
1866       Register recv = k_RInfo;
1867       __ load_klass(recv, value, tmp_load_klass);
1868       type_profile_helper(mdo, md, data, recv, &update_done);
1869 
1870       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1871       __ addptr(counter_addr, DataLayout::counter_increment);
1872       __ bind(update_done);
1873     } else {
1874       __ jcc(Assembler::equal, done);
1875     }
1876 
1877     add_debug_info_for_null_check_here(op->info_for_exception());
1878     __ load_klass(k_RInfo, array, tmp_load_klass);
1879     __ load_klass(klass_RInfo, value, tmp_load_klass);
1880 
1881     // get instance klass (it's already uncompressed)
1882     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1883     // perform the fast part of the checking logic
1884     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1885     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1886     __ push(klass_RInfo);
1887     __ push(k_RInfo);
1888     __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1889     __ pop(klass_RInfo);
1890     __ pop(k_RInfo);
1891     // result is a boolean
1892     __ testl(k_RInfo, k_RInfo);
1893     __ jcc(Assembler::equal, *failure_target);
1894     // fall through to the success case
1895 
1896     __ bind(done);
1897   } else
1898     if (code == lir_checkcast) {
1899       Register obj = op->object()->as_register();
1900       Register dst = op->result_opr()->as_register();
1901       Label success;
1902       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1903       __ bind(success);
1904       if (dst != obj) {
1905         __ mov(dst, obj);
1906       }
1907     } else
1908       if (code == lir_instanceof) {
1909         Register obj = op->object()->as_register();
1910         Register dst = op->result_opr()->as_register();
1911         Label success, failure, done;
1912         emit_typecheck_helper(op, &success, &failure, &failure);
1913         __ bind(failure);
1914         __ xorptr(dst, dst);
1915         __ jmpb(done);
1916         __ bind(success);
1917         __ movptr(dst, 1);
1918         __ bind(done);
1919       } else {
1920         ShouldNotReachHere();
1921       }
1922 
1923 }
1924 
1925 
1926 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1927   if (LP64_ONLY(false &&) op->code() == lir_cas_long) {
1928     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1929     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1930     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1931     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1932     Register addr = op->addr()->as_register();
1933     __ lock();
1934     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1935 
1936   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1937     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1938     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1939     Register newval = op->new_value()->as_register();
1940     Register cmpval = op->cmp_value()->as_register();
1941     assert(cmpval == rax, "wrong register");
1942     assert(newval != noreg, "new val must be register");
1943     assert(cmpval != newval, "cmp and new values must be in different registers");
1944     assert(cmpval != addr, "cmp and addr must be in different registers");
1945     assert(newval != addr, "new value and addr must be in different registers");
1946 
1947     if ( op->code() == lir_cas_obj) {
1948 #ifdef _LP64
1949       if (UseCompressedOops) {
1950         __ encode_heap_oop(cmpval);
1951         __ mov(rscratch1, newval);
1952         __ encode_heap_oop(rscratch1);
1953         __ lock();
1954         // cmpval (rax) is implicitly used by this instruction
1955         __ cmpxchgl(rscratch1, Address(addr, 0));
1956       } else
1957 #endif
1958       {
1959         __ lock();
1960         __ cmpxchgptr(newval, Address(addr, 0));
1961       }
1962     } else {
1963       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1964       __ lock();
1965       __ cmpxchgl(newval, Address(addr, 0));
1966     }
1967 #ifdef _LP64
1968   } else if (op->code() == lir_cas_long) {
1969     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1970     Register newval = op->new_value()->as_register_lo();
1971     Register cmpval = op->cmp_value()->as_register_lo();
1972     assert(cmpval == rax, "wrong register");
1973     assert(newval != noreg, "new val must be register");
1974     assert(cmpval != newval, "cmp and new values must be in different registers");
1975     assert(cmpval != addr, "cmp and addr must be in different registers");
1976     assert(newval != addr, "new value and addr must be in different registers");
1977     __ lock();
1978     __ cmpxchgq(newval, Address(addr, 0));
1979 #endif // _LP64
1980   } else {
1981     Unimplemented();
1982   }
1983 }
1984 
1985 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
1986                           LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
1987   assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86");
1988 
1989   Assembler::Condition acond, ncond;
1990   switch (condition) {
1991     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1992     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1993     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1994     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1995     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1996     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1997     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1998     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1999     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
2000                                 ShouldNotReachHere();
2001   }
2002 
2003   if (opr1->is_cpu_register()) {
2004     reg2reg(opr1, result);
2005   } else if (opr1->is_stack()) {
2006     stack2reg(opr1, result, result->type());
2007   } else if (opr1->is_constant()) {
2008     const2reg(opr1, result, lir_patch_none, nullptr);
2009   } else {
2010     ShouldNotReachHere();
2011   }
2012 
2013   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2014     // optimized version that does not require a branch
2015     if (opr2->is_single_cpu()) {
2016       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2017       __ cmov(ncond, result->as_register(), opr2->as_register());
2018     } else if (opr2->is_double_cpu()) {
2019       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2020       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2021       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2022       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2023     } else if (opr2->is_single_stack()) {
2024       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2025     } else if (opr2->is_double_stack()) {
2026       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2027       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2028     } else {
2029       ShouldNotReachHere();
2030     }
2031 
2032   } else {
2033     Label skip;
2034     __ jccb(acond, skip);
2035     if (opr2->is_cpu_register()) {
2036       reg2reg(opr2, result);
2037     } else if (opr2->is_stack()) {
2038       stack2reg(opr2, result, result->type());
2039     } else if (opr2->is_constant()) {
2040       const2reg(opr2, result, lir_patch_none, nullptr);
2041     } else {
2042       ShouldNotReachHere();
2043     }
2044     __ bind(skip);
2045   }
2046 }
2047 
2048 
2049 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2050   assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2051 
2052   if (left->is_single_cpu()) {
2053     assert(left == dest, "left and dest must be equal");
2054     Register lreg = left->as_register();
2055 
2056     if (right->is_single_cpu()) {
2057       // cpu register - cpu register
2058       Register rreg = right->as_register();
2059       switch (code) {
2060         case lir_add: __ addl (lreg, rreg); break;
2061         case lir_sub: __ subl (lreg, rreg); break;
2062         case lir_mul: __ imull(lreg, rreg); break;
2063         default:      ShouldNotReachHere();
2064       }
2065 
2066     } else if (right->is_stack()) {
2067       // cpu register - stack
2068       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2069       switch (code) {
2070         case lir_add: __ addl(lreg, raddr); break;
2071         case lir_sub: __ subl(lreg, raddr); break;
2072         default:      ShouldNotReachHere();
2073       }
2074 
2075     } else if (right->is_constant()) {
2076       // cpu register - constant
2077       jint c = right->as_constant_ptr()->as_jint();
2078       switch (code) {
2079         case lir_add: {
2080           __ incrementl(lreg, c);
2081           break;
2082         }
2083         case lir_sub: {
2084           __ decrementl(lreg, c);
2085           break;
2086         }
2087         default: ShouldNotReachHere();
2088       }
2089 
2090     } else {
2091       ShouldNotReachHere();
2092     }
2093 
2094   } else if (left->is_double_cpu()) {
2095     assert(left == dest, "left and dest must be equal");
2096     Register lreg_lo = left->as_register_lo();
2097     Register lreg_hi = left->as_register_hi();
2098 
2099     if (right->is_double_cpu()) {
2100       // cpu register - cpu register
2101       Register rreg_lo = right->as_register_lo();
2102       Register rreg_hi = right->as_register_hi();
2103       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2104       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2105       switch (code) {
2106         case lir_add:
2107           __ addptr(lreg_lo, rreg_lo);
2108           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2109           break;
2110         case lir_sub:
2111           __ subptr(lreg_lo, rreg_lo);
2112           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2113           break;
2114         case lir_mul:
2115 #ifdef _LP64
2116           __ imulq(lreg_lo, rreg_lo);
2117 #else
2118           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2119           __ imull(lreg_hi, rreg_lo);
2120           __ imull(rreg_hi, lreg_lo);
2121           __ addl (rreg_hi, lreg_hi);
2122           __ mull (rreg_lo);
2123           __ addl (lreg_hi, rreg_hi);
2124 #endif // _LP64
2125           break;
2126         default:
2127           ShouldNotReachHere();
2128       }
2129 
2130     } else if (right->is_constant()) {
2131       // cpu register - constant
2132 #ifdef _LP64
2133       jlong c = right->as_constant_ptr()->as_jlong_bits();
2134       __ movptr(r10, (intptr_t) c);
2135       switch (code) {
2136         case lir_add:
2137           __ addptr(lreg_lo, r10);
2138           break;
2139         case lir_sub:
2140           __ subptr(lreg_lo, r10);
2141           break;
2142         default:
2143           ShouldNotReachHere();
2144       }
2145 #else
2146       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2147       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2148       switch (code) {
2149         case lir_add:
2150           __ addptr(lreg_lo, c_lo);
2151           __ adcl(lreg_hi, c_hi);
2152           break;
2153         case lir_sub:
2154           __ subptr(lreg_lo, c_lo);
2155           __ sbbl(lreg_hi, c_hi);
2156           break;
2157         default:
2158           ShouldNotReachHere();
2159       }
2160 #endif // _LP64
2161 
2162     } else {
2163       ShouldNotReachHere();
2164     }
2165 
2166   } else if (left->is_single_xmm()) {
2167     assert(left == dest, "left and dest must be equal");
2168     XMMRegister lreg = left->as_xmm_float_reg();
2169 
2170     if (right->is_single_xmm()) {
2171       XMMRegister rreg = right->as_xmm_float_reg();
2172       switch (code) {
2173         case lir_add: __ addss(lreg, rreg);  break;
2174         case lir_sub: __ subss(lreg, rreg);  break;
2175         case lir_mul: __ mulss(lreg, rreg);  break;
2176         case lir_div: __ divss(lreg, rreg);  break;
2177         default: ShouldNotReachHere();
2178       }
2179     } else {
2180       Address raddr;
2181       if (right->is_single_stack()) {
2182         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2183       } else if (right->is_constant()) {
2184         // hack for now
2185         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2186       } else {
2187         ShouldNotReachHere();
2188       }
2189       switch (code) {
2190         case lir_add: __ addss(lreg, raddr);  break;
2191         case lir_sub: __ subss(lreg, raddr);  break;
2192         case lir_mul: __ mulss(lreg, raddr);  break;
2193         case lir_div: __ divss(lreg, raddr);  break;
2194         default: ShouldNotReachHere();
2195       }
2196     }
2197 
2198   } else if (left->is_double_xmm()) {
2199     assert(left == dest, "left and dest must be equal");
2200 
2201     XMMRegister lreg = left->as_xmm_double_reg();
2202     if (right->is_double_xmm()) {
2203       XMMRegister rreg = right->as_xmm_double_reg();
2204       switch (code) {
2205         case lir_add: __ addsd(lreg, rreg);  break;
2206         case lir_sub: __ subsd(lreg, rreg);  break;
2207         case lir_mul: __ mulsd(lreg, rreg);  break;
2208         case lir_div: __ divsd(lreg, rreg);  break;
2209         default: ShouldNotReachHere();
2210       }
2211     } else {
2212       Address raddr;
2213       if (right->is_double_stack()) {
2214         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2215       } else if (right->is_constant()) {
2216         // hack for now
2217         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2218       } else {
2219         ShouldNotReachHere();
2220       }
2221       switch (code) {
2222         case lir_add: __ addsd(lreg, raddr);  break;
2223         case lir_sub: __ subsd(lreg, raddr);  break;
2224         case lir_mul: __ mulsd(lreg, raddr);  break;
2225         case lir_div: __ divsd(lreg, raddr);  break;
2226         default: ShouldNotReachHere();
2227       }
2228     }
2229 
2230 #ifndef _LP64
2231   } else if (left->is_single_fpu()) {
2232     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2233 
2234     if (right->is_single_fpu()) {
2235       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2236 
2237     } else {
2238       assert(left->fpu_regnr() == 0, "left must be on TOS");
2239       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2240 
2241       Address raddr;
2242       if (right->is_single_stack()) {
2243         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2244       } else if (right->is_constant()) {
2245         address const_addr = float_constant(right->as_jfloat());
2246         assert(const_addr != nullptr, "incorrect float/double constant maintenance");
2247         // hack for now
2248         raddr = __ as_Address(InternalAddress(const_addr));
2249       } else {
2250         ShouldNotReachHere();
2251       }
2252 
2253       switch (code) {
2254         case lir_add: __ fadd_s(raddr); break;
2255         case lir_sub: __ fsub_s(raddr); break;
2256         case lir_mul: __ fmul_s(raddr); break;
2257         case lir_div: __ fdiv_s(raddr); break;
2258         default:      ShouldNotReachHere();
2259       }
2260     }
2261 
2262   } else if (left->is_double_fpu()) {
2263     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2264 
2265     if (code == lir_mul || code == lir_div) {
2266       // Double values require special handling for strictfp mul/div on x86
2267       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1()));
2268       __ fmulp(left->fpu_regnrLo() + 1);
2269     }
2270 
2271     if (right->is_double_fpu()) {
2272       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2273 
2274     } else {
2275       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2276       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2277 
2278       Address raddr;
2279       if (right->is_double_stack()) {
2280         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2281       } else if (right->is_constant()) {
2282         // hack for now
2283         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2284       } else {
2285         ShouldNotReachHere();
2286       }
2287 
2288       switch (code) {
2289         case lir_add: __ fadd_d(raddr); break;
2290         case lir_sub: __ fsub_d(raddr); break;
2291         case lir_mul: __ fmul_d(raddr); break;
2292         case lir_div: __ fdiv_d(raddr); break;
2293         default: ShouldNotReachHere();
2294       }
2295     }
2296 
2297     if (code == lir_mul || code == lir_div) {
2298       // Double values require special handling for strictfp mul/div on x86
2299       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2()));
2300       __ fmulp(dest->fpu_regnrLo() + 1);
2301     }
2302 #endif // !_LP64
2303 
2304   } else if (left->is_single_stack() || left->is_address()) {
2305     assert(left == dest, "left and dest must be equal");
2306 
2307     Address laddr;
2308     if (left->is_single_stack()) {
2309       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2310     } else if (left->is_address()) {
2311       laddr = as_Address(left->as_address_ptr());
2312     } else {
2313       ShouldNotReachHere();
2314     }
2315 
2316     if (right->is_single_cpu()) {
2317       Register rreg = right->as_register();
2318       switch (code) {
2319         case lir_add: __ addl(laddr, rreg); break;
2320         case lir_sub: __ subl(laddr, rreg); break;
2321         default:      ShouldNotReachHere();
2322       }
2323     } else if (right->is_constant()) {
2324       jint c = right->as_constant_ptr()->as_jint();
2325       switch (code) {
2326         case lir_add: {
2327           __ incrementl(laddr, c);
2328           break;
2329         }
2330         case lir_sub: {
2331           __ decrementl(laddr, c);
2332           break;
2333         }
2334         default: ShouldNotReachHere();
2335       }
2336     } else {
2337       ShouldNotReachHere();
2338     }
2339 
2340   } else {
2341     ShouldNotReachHere();
2342   }
2343 }
2344 
2345 #ifndef _LP64
2346 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2347   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2348   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2349   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2350 
2351   bool left_is_tos = (left_index == 0);
2352   bool dest_is_tos = (dest_index == 0);
2353   int non_tos_index = (left_is_tos ? right_index : left_index);
2354 
2355   switch (code) {
2356     case lir_add:
2357       if (pop_fpu_stack)       __ faddp(non_tos_index);
2358       else if (dest_is_tos)    __ fadd (non_tos_index);
2359       else                     __ fadda(non_tos_index);
2360       break;
2361 
2362     case lir_sub:
2363       if (left_is_tos) {
2364         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2365         else if (dest_is_tos)  __ fsub  (non_tos_index);
2366         else                   __ fsubra(non_tos_index);
2367       } else {
2368         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2369         else if (dest_is_tos)  __ fsubr (non_tos_index);
2370         else                   __ fsuba (non_tos_index);
2371       }
2372       break;
2373 
2374     case lir_mul:
2375       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2376       else if (dest_is_tos)    __ fmul (non_tos_index);
2377       else                     __ fmula(non_tos_index);
2378       break;
2379 
2380     case lir_div:
2381       if (left_is_tos) {
2382         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2383         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2384         else                   __ fdivra(non_tos_index);
2385       } else {
2386         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2387         else if (dest_is_tos)  __ fdivr (non_tos_index);
2388         else                   __ fdiva (non_tos_index);
2389       }
2390       break;
2391 
2392     case lir_rem:
2393       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2394       __ fremr(noreg);
2395       break;
2396 
2397     default:
2398       ShouldNotReachHere();
2399   }
2400 }
2401 #endif // _LP64
2402 
2403 
2404 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
2405   if (value->is_double_xmm()) {
2406     switch(code) {
2407       case lir_abs :
2408         {
2409           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2410             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2411           }
2412           assert(!tmp->is_valid(), "do not need temporary");
2413           __ andpd(dest->as_xmm_double_reg(),
2414                    ExternalAddress(LIR_Assembler::double_signmask_pool),
2415                    rscratch1);
2416         }
2417         break;
2418 
2419       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2420       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2421       default      : ShouldNotReachHere();
2422     }
2423 
2424 #ifndef _LP64
2425   } else if (value->is_double_fpu()) {
2426     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2427     switch(code) {
2428       case lir_abs   : __ fabs() ; break;
2429       case lir_sqrt  : __ fsqrt(); break;
2430       default      : ShouldNotReachHere();
2431     }
2432 #endif // !_LP64
2433   } else if (code == lir_f2hf) {
2434     __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg());
2435   } else if (code == lir_hf2f) {
2436     __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register());
2437   } else {
2438     Unimplemented();
2439   }
2440 }
2441 
2442 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2443   // assert(left->destroys_register(), "check");
2444   if (left->is_single_cpu()) {
2445     Register reg = left->as_register();
2446     if (right->is_constant()) {
2447       int val = right->as_constant_ptr()->as_jint();
2448       switch (code) {
2449         case lir_logic_and: __ andl (reg, val); break;
2450         case lir_logic_or:  __ orl  (reg, val); break;
2451         case lir_logic_xor: __ xorl (reg, val); break;
2452         default: ShouldNotReachHere();
2453       }
2454     } else if (right->is_stack()) {
2455       // added support for stack operands
2456       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2457       switch (code) {
2458         case lir_logic_and: __ andl (reg, raddr); break;
2459         case lir_logic_or:  __ orl  (reg, raddr); break;
2460         case lir_logic_xor: __ xorl (reg, raddr); break;
2461         default: ShouldNotReachHere();
2462       }
2463     } else {
2464       Register rright = right->as_register();
2465       switch (code) {
2466         case lir_logic_and: __ andptr (reg, rright); break;
2467         case lir_logic_or : __ orptr  (reg, rright); break;
2468         case lir_logic_xor: __ xorptr (reg, rright); break;
2469         default: ShouldNotReachHere();
2470       }
2471     }
2472     move_regs(reg, dst->as_register());
2473   } else {
2474     Register l_lo = left->as_register_lo();
2475     Register l_hi = left->as_register_hi();
2476     if (right->is_constant()) {
2477 #ifdef _LP64
2478       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2479       switch (code) {
2480         case lir_logic_and:
2481           __ andq(l_lo, rscratch1);
2482           break;
2483         case lir_logic_or:
2484           __ orq(l_lo, rscratch1);
2485           break;
2486         case lir_logic_xor:
2487           __ xorq(l_lo, rscratch1);
2488           break;
2489         default: ShouldNotReachHere();
2490       }
2491 #else
2492       int r_lo = right->as_constant_ptr()->as_jint_lo();
2493       int r_hi = right->as_constant_ptr()->as_jint_hi();
2494       switch (code) {
2495         case lir_logic_and:
2496           __ andl(l_lo, r_lo);
2497           __ andl(l_hi, r_hi);
2498           break;
2499         case lir_logic_or:
2500           __ orl(l_lo, r_lo);
2501           __ orl(l_hi, r_hi);
2502           break;
2503         case lir_logic_xor:
2504           __ xorl(l_lo, r_lo);
2505           __ xorl(l_hi, r_hi);
2506           break;
2507         default: ShouldNotReachHere();
2508       }
2509 #endif // _LP64
2510     } else {
2511 #ifdef _LP64
2512       Register r_lo;
2513       if (is_reference_type(right->type())) {
2514         r_lo = right->as_register();
2515       } else {
2516         r_lo = right->as_register_lo();
2517       }
2518 #else
2519       Register r_lo = right->as_register_lo();
2520       Register r_hi = right->as_register_hi();
2521       assert(l_lo != r_hi, "overwriting registers");
2522 #endif
2523       switch (code) {
2524         case lir_logic_and:
2525           __ andptr(l_lo, r_lo);
2526           NOT_LP64(__ andptr(l_hi, r_hi);)
2527           break;
2528         case lir_logic_or:
2529           __ orptr(l_lo, r_lo);
2530           NOT_LP64(__ orptr(l_hi, r_hi);)
2531           break;
2532         case lir_logic_xor:
2533           __ xorptr(l_lo, r_lo);
2534           NOT_LP64(__ xorptr(l_hi, r_hi);)
2535           break;
2536         default: ShouldNotReachHere();
2537       }
2538     }
2539 
2540     Register dst_lo = dst->as_register_lo();
2541     Register dst_hi = dst->as_register_hi();
2542 
2543 #ifdef _LP64
2544     move_regs(l_lo, dst_lo);
2545 #else
2546     if (dst_lo == l_hi) {
2547       assert(dst_hi != l_lo, "overwriting registers");
2548       move_regs(l_hi, dst_hi);
2549       move_regs(l_lo, dst_lo);
2550     } else {
2551       assert(dst_lo != l_hi, "overwriting registers");
2552       move_regs(l_lo, dst_lo);
2553       move_regs(l_hi, dst_hi);
2554     }
2555 #endif // _LP64
2556   }
2557 }
2558 
2559 
2560 // we assume that rax, and rdx can be overwritten
2561 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2562 
2563   assert(left->is_single_cpu(),   "left must be register");
2564   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2565   assert(result->is_single_cpu(), "result must be register");
2566 
2567   //  assert(left->destroys_register(), "check");
2568   //  assert(right->destroys_register(), "check");
2569 
2570   Register lreg = left->as_register();
2571   Register dreg = result->as_register();
2572 
2573   if (right->is_constant()) {
2574     jint divisor = right->as_constant_ptr()->as_jint();
2575     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2576     if (code == lir_idiv) {
2577       assert(lreg == rax, "must be rax,");
2578       assert(temp->as_register() == rdx, "tmp register must be rdx");
2579       __ cdql(); // sign extend into rdx:rax
2580       if (divisor == 2) {
2581         __ subl(lreg, rdx);
2582       } else {
2583         __ andl(rdx, divisor - 1);
2584         __ addl(lreg, rdx);
2585       }
2586       __ sarl(lreg, log2i_exact(divisor));
2587       move_regs(lreg, dreg);
2588     } else if (code == lir_irem) {
2589       Label done;
2590       __ mov(dreg, lreg);
2591       __ andl(dreg, 0x80000000 | (divisor - 1));
2592       __ jcc(Assembler::positive, done);
2593       __ decrement(dreg);
2594       __ orl(dreg, ~(divisor - 1));
2595       __ increment(dreg);
2596       __ bind(done);
2597     } else {
2598       ShouldNotReachHere();
2599     }
2600   } else {
2601     Register rreg = right->as_register();
2602     assert(lreg == rax, "left register must be rax,");
2603     assert(rreg != rdx, "right register must not be rdx");
2604     assert(temp->as_register() == rdx, "tmp register must be rdx");
2605 
2606     move_regs(lreg, rax);
2607 
2608     int idivl_offset = __ corrected_idivl(rreg);
2609     if (ImplicitDiv0Checks) {
2610       add_debug_info_for_div0(idivl_offset, info);
2611     }
2612     if (code == lir_irem) {
2613       move_regs(rdx, dreg); // result is in rdx
2614     } else {
2615       move_regs(rax, dreg);
2616     }
2617   }
2618 }
2619 
2620 
2621 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2622   if (opr1->is_single_cpu()) {
2623     Register reg1 = opr1->as_register();
2624     if (opr2->is_single_cpu()) {
2625       // cpu register - cpu register
2626       if (is_reference_type(opr1->type())) {
2627         __ cmpoop(reg1, opr2->as_register());
2628       } else {
2629         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
2630         __ cmpl(reg1, opr2->as_register());
2631       }
2632     } else if (opr2->is_stack()) {
2633       // cpu register - stack
2634       if (is_reference_type(opr1->type())) {
2635         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2636       } else {
2637         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2638       }
2639     } else if (opr2->is_constant()) {
2640       // cpu register - constant
2641       LIR_Const* c = opr2->as_constant_ptr();
2642       if (c->type() == T_INT) {
2643         jint i = c->as_jint();
2644         if (i == 0) {
2645           __ testl(reg1, reg1);
2646         } else {
2647           __ cmpl(reg1, i);
2648         }
2649       } else if (c->type() == T_METADATA) {
2650         // All we need for now is a comparison with null for equality.
2651         assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
2652         Metadata* m = c->as_metadata();
2653         if (m == nullptr) {
2654           __ testptr(reg1, reg1);
2655         } else {
2656           ShouldNotReachHere();
2657         }
2658       } else if (is_reference_type(c->type())) {
2659         // In 64bit oops are single register
2660         jobject o = c->as_jobject();
2661         if (o == nullptr) {
2662           __ testptr(reg1, reg1);
2663         } else {
2664           __ cmpoop(reg1, o, rscratch1);
2665         }
2666       } else {
2667         fatal("unexpected type: %s", basictype_to_str(c->type()));
2668       }
2669       // cpu register - address
2670     } else if (opr2->is_address()) {
2671       if (op->info() != nullptr) {
2672         add_debug_info_for_null_check_here(op->info());
2673       }
2674       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2675     } else {
2676       ShouldNotReachHere();
2677     }
2678 
2679   } else if(opr1->is_double_cpu()) {
2680     Register xlo = opr1->as_register_lo();
2681     Register xhi = opr1->as_register_hi();
2682     if (opr2->is_double_cpu()) {
2683 #ifdef _LP64
2684       __ cmpptr(xlo, opr2->as_register_lo());
2685 #else
2686       // cpu register - cpu register
2687       Register ylo = opr2->as_register_lo();
2688       Register yhi = opr2->as_register_hi();
2689       __ subl(xlo, ylo);
2690       __ sbbl(xhi, yhi);
2691       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2692         __ orl(xhi, xlo);
2693       }
2694 #endif // _LP64
2695     } else if (opr2->is_constant()) {
2696       // cpu register - constant 0
2697       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2698 #ifdef _LP64
2699       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2700 #else
2701       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2702       __ orl(xhi, xlo);
2703 #endif // _LP64
2704     } else {
2705       ShouldNotReachHere();
2706     }
2707 
2708   } else if (opr1->is_single_xmm()) {
2709     XMMRegister reg1 = opr1->as_xmm_float_reg();
2710     if (opr2->is_single_xmm()) {
2711       // xmm register - xmm register
2712       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2713     } else if (opr2->is_stack()) {
2714       // xmm register - stack
2715       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2716     } else if (opr2->is_constant()) {
2717       // xmm register - constant
2718       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2719     } else if (opr2->is_address()) {
2720       // xmm register - address
2721       if (op->info() != nullptr) {
2722         add_debug_info_for_null_check_here(op->info());
2723       }
2724       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2725     } else {
2726       ShouldNotReachHere();
2727     }
2728 
2729   } else if (opr1->is_double_xmm()) {
2730     XMMRegister reg1 = opr1->as_xmm_double_reg();
2731     if (opr2->is_double_xmm()) {
2732       // xmm register - xmm register
2733       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2734     } else if (opr2->is_stack()) {
2735       // xmm register - stack
2736       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2737     } else if (opr2->is_constant()) {
2738       // xmm register - constant
2739       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2740     } else if (opr2->is_address()) {
2741       // xmm register - address
2742       if (op->info() != nullptr) {
2743         add_debug_info_for_null_check_here(op->info());
2744       }
2745       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2746     } else {
2747       ShouldNotReachHere();
2748     }
2749 
2750 #ifndef _LP64
2751   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2752     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2753     assert(opr2->is_fpu_register(), "both must be registers");
2754     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2755 #endif // LP64
2756 
2757   } else if (opr1->is_address() && opr2->is_constant()) {
2758     LIR_Const* c = opr2->as_constant_ptr();
2759 #ifdef _LP64
2760     if (is_reference_type(c->type())) {
2761       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2762       __ movoop(rscratch1, c->as_jobject());
2763     }
2764 #endif // LP64
2765     if (op->info() != nullptr) {
2766       add_debug_info_for_null_check_here(op->info());
2767     }
2768     // special case: address - constant
2769     LIR_Address* addr = opr1->as_address_ptr();
2770     if (c->type() == T_INT) {
2771       __ cmpl(as_Address(addr), c->as_jint());
2772     } else if (is_reference_type(c->type())) {
2773 #ifdef _LP64
2774       // %%% Make this explode if addr isn't reachable until we figure out a
2775       // better strategy by giving noreg as the temp for as_Address
2776       __ cmpoop(rscratch1, as_Address(addr, noreg));
2777 #else
2778       __ cmpoop(as_Address(addr), c->as_jobject());
2779 #endif // _LP64
2780     } else {
2781       ShouldNotReachHere();
2782     }
2783 
2784   } else {
2785     ShouldNotReachHere();
2786   }
2787 }
2788 
2789 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2790   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2791     if (left->is_single_xmm()) {
2792       assert(right->is_single_xmm(), "must match");
2793       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2794     } else if (left->is_double_xmm()) {
2795       assert(right->is_double_xmm(), "must match");
2796       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2797 
2798     } else {
2799 #ifdef _LP64
2800       ShouldNotReachHere();
2801 #else
2802       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2803       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2804 
2805       assert(left->fpu() == 0, "left must be on TOS");
2806       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2807                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2808 #endif // LP64
2809     }
2810   } else {
2811     assert(code == lir_cmp_l2i, "check");
2812 #ifdef _LP64
2813     Label done;
2814     Register dest = dst->as_register();
2815     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2816     __ movl(dest, -1);
2817     __ jccb(Assembler::less, done);
2818     __ setb(Assembler::notZero, dest);
2819     __ movzbl(dest, dest);
2820     __ bind(done);
2821 #else
2822     __ lcmp2int(left->as_register_hi(),
2823                 left->as_register_lo(),
2824                 right->as_register_hi(),
2825                 right->as_register_lo());
2826     move_regs(left->as_register_hi(), dst->as_register());
2827 #endif // _LP64
2828   }
2829 }
2830 
2831 
2832 void LIR_Assembler::align_call(LIR_Code code) {
2833   // make sure that the displacement word of the call ends up word aligned
2834   int offset = __ offset();
2835   switch (code) {
2836   case lir_static_call:
2837   case lir_optvirtual_call:
2838   case lir_dynamic_call:
2839     offset += NativeCall::displacement_offset;
2840     break;
2841   case lir_icvirtual_call:
2842     offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size_rex;
2843     break;
2844   default: ShouldNotReachHere();
2845   }
2846   __ align(BytesPerWord, offset);
2847 }
2848 
2849 
2850 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2851   assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2852          "must be aligned");
2853   __ call(AddressLiteral(op->addr(), rtype));
2854   add_call_info(code_offset(), op->info());
2855   __ post_call_nop();
2856 }
2857 
2858 
2859 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2860   __ ic_call(op->addr());
2861   add_call_info(code_offset(), op->info());
2862   assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2863          "must be aligned");
2864   __ post_call_nop();
2865 }
2866 
2867 
2868 void LIR_Assembler::emit_static_call_stub() {
2869   address call_pc = __ pc();
2870   address stub = __ start_a_stub(call_stub_size());
2871   if (stub == nullptr) {
2872     bailout("static call stub overflow");
2873     return;
2874   }
2875 
2876   int start = __ offset();
2877 
2878   // make sure that the displacement word of the call ends up word aligned
2879   __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size_rex + NativeCall::displacement_offset);
2880   __ relocate(static_stub_Relocation::spec(call_pc));
2881   __ mov_metadata(rbx, (Metadata*)nullptr);
2882   // must be set to -1 at code generation time
2883   assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned");
2884   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2885   __ jump(RuntimeAddress(__ pc()));
2886 
2887   assert(__ offset() - start <= call_stub_size(), "stub too big");
2888   __ end_a_stub();
2889 }
2890 
2891 
2892 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2893   assert(exceptionOop->as_register() == rax, "must match");
2894   assert(exceptionPC->as_register() == rdx, "must match");
2895 
2896   // exception object is not added to oop map by LinearScan
2897   // (LinearScan assumes that no oops are in fixed registers)
2898   info->add_register_oop(exceptionOop);
2899   C1StubId unwind_id;
2900 
2901   // get current pc information
2902   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2903   int pc_for_athrow_offset = __ offset();
2904   InternalAddress pc_for_athrow(__ pc());
2905   __ lea(exceptionPC->as_register(), pc_for_athrow);
2906   add_call_info(pc_for_athrow_offset, info); // for exception handler
2907 
2908   __ verify_not_null_oop(rax);
2909   // search an exception handler (rax: exception oop, rdx: throwing pc)
2910   if (compilation()->has_fpu_code()) {
2911     unwind_id = C1StubId::handle_exception_id;
2912   } else {
2913     unwind_id = C1StubId::handle_exception_nofpu_id;
2914   }
2915   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2916 
2917   // enough room for two byte trap
2918   __ nop();
2919 }
2920 
2921 
2922 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2923   assert(exceptionOop->as_register() == rax, "must match");
2924 
2925   __ jmp(_unwind_handler_entry);
2926 }
2927 
2928 
2929 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2930 
2931   // optimized version for linear scan:
2932   // * count must be already in ECX (guaranteed by LinearScan)
2933   // * left and dest must be equal
2934   // * tmp must be unused
2935   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2936   assert(left == dest, "left and dest must be equal");
2937   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2938 
2939   if (left->is_single_cpu()) {
2940     Register value = left->as_register();
2941     assert(value != SHIFT_count, "left cannot be ECX");
2942 
2943     switch (code) {
2944       case lir_shl:  __ shll(value); break;
2945       case lir_shr:  __ sarl(value); break;
2946       case lir_ushr: __ shrl(value); break;
2947       default: ShouldNotReachHere();
2948     }
2949   } else if (left->is_double_cpu()) {
2950     Register lo = left->as_register_lo();
2951     Register hi = left->as_register_hi();
2952     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2953 #ifdef _LP64
2954     switch (code) {
2955       case lir_shl:  __ shlptr(lo);        break;
2956       case lir_shr:  __ sarptr(lo);        break;
2957       case lir_ushr: __ shrptr(lo);        break;
2958       default: ShouldNotReachHere();
2959     }
2960 #else
2961 
2962     switch (code) {
2963       case lir_shl:  __ lshl(hi, lo);        break;
2964       case lir_shr:  __ lshr(hi, lo, true);  break;
2965       case lir_ushr: __ lshr(hi, lo, false); break;
2966       default: ShouldNotReachHere();
2967     }
2968 #endif // LP64
2969   } else {
2970     ShouldNotReachHere();
2971   }
2972 }
2973 
2974 
2975 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2976   if (dest->is_single_cpu()) {
2977     // first move left into dest so that left is not destroyed by the shift
2978     Register value = dest->as_register();
2979     count = count & 0x1F; // Java spec
2980 
2981     move_regs(left->as_register(), value);
2982     switch (code) {
2983       case lir_shl:  __ shll(value, count); break;
2984       case lir_shr:  __ sarl(value, count); break;
2985       case lir_ushr: __ shrl(value, count); break;
2986       default: ShouldNotReachHere();
2987     }
2988   } else if (dest->is_double_cpu()) {
2989 #ifndef _LP64
2990     Unimplemented();
2991 #else
2992     // first move left into dest so that left is not destroyed by the shift
2993     Register value = dest->as_register_lo();
2994     count = count & 0x1F; // Java spec
2995 
2996     move_regs(left->as_register_lo(), value);
2997     switch (code) {
2998       case lir_shl:  __ shlptr(value, count); break;
2999       case lir_shr:  __ sarptr(value, count); break;
3000       case lir_ushr: __ shrptr(value, count); break;
3001       default: ShouldNotReachHere();
3002     }
3003 #endif // _LP64
3004   } else {
3005     ShouldNotReachHere();
3006   }
3007 }
3008 
3009 
3010 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3011   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3012   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3013   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3014   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3015 }
3016 
3017 
3018 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3019   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3020   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3021   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3022   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3023 }
3024 
3025 
3026 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
3027   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3028   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3029   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3030   __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1);
3031 }
3032 
3033 
3034 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) {
3035   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3036   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3037   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3038   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1);
3039 }
3040 
3041 
3042 // This code replaces a call to arraycopy; no exception may
3043 // be thrown in this code, they must be thrown in the System.arraycopy
3044 // activation frame; we could save some checks if this would not be the case
3045 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3046   ciArrayKlass* default_type = op->expected_type();
3047   Register src = op->src()->as_register();
3048   Register dst = op->dst()->as_register();
3049   Register src_pos = op->src_pos()->as_register();
3050   Register dst_pos = op->dst_pos()->as_register();
3051   Register length  = op->length()->as_register();
3052   Register tmp = op->tmp()->as_register();
3053   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3054   Register tmp2 = UseCompactObjectHeaders ? rscratch2 : noreg;
3055 
3056   CodeStub* stub = op->stub();
3057   int flags = op->flags();
3058   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
3059   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
3060 
3061   // if we don't know anything, just go through the generic arraycopy
3062   if (default_type == nullptr) {
3063     // save outgoing arguments on stack in case call to System.arraycopy is needed
3064     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3065     // for interpreter calling conventions. Now we have to do it in new style conventions.
3066     // For the moment until C1 gets the new register allocator I just force all the
3067     // args to the right place (except the register args) and then on the back side
3068     // reload the register args properly if we go slow path. Yuck
3069 
3070     // These are proper for the calling convention
3071     store_parameter(length, 2);
3072     store_parameter(dst_pos, 1);
3073     store_parameter(dst, 0);
3074 
3075     // these are just temporary placements until we need to reload
3076     store_parameter(src_pos, 3);
3077     store_parameter(src, 4);
3078     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3079 
3080     address copyfunc_addr = StubRoutines::generic_arraycopy();
3081     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
3082 
3083     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3084 #ifdef _LP64
3085     // The arguments are in java calling convention so we can trivially shift them to C
3086     // convention
3087     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3088     __ mov(c_rarg0, j_rarg0);
3089     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3090     __ mov(c_rarg1, j_rarg1);
3091     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3092     __ mov(c_rarg2, j_rarg2);
3093     assert_different_registers(c_rarg3, j_rarg4);
3094     __ mov(c_rarg3, j_rarg3);
3095 #ifdef _WIN64
3096     // Allocate abi space for args but be sure to keep stack aligned
3097     __ subptr(rsp, 6*wordSize);
3098     store_parameter(j_rarg4, 4);
3099 #ifndef PRODUCT
3100     if (PrintC1Statistics) {
3101       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3102     }
3103 #endif
3104     __ call(RuntimeAddress(copyfunc_addr));
3105     __ addptr(rsp, 6*wordSize);
3106 #else
3107     __ mov(c_rarg4, j_rarg4);
3108 #ifndef PRODUCT
3109     if (PrintC1Statistics) {
3110       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3111     }
3112 #endif
3113     __ call(RuntimeAddress(copyfunc_addr));
3114 #endif // _WIN64
3115 #else
3116     __ push(length);
3117     __ push(dst_pos);
3118     __ push(dst);
3119     __ push(src_pos);
3120     __ push(src);
3121 
3122 #ifndef PRODUCT
3123     if (PrintC1Statistics) {
3124       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3125     }
3126 #endif
3127     __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3128 
3129 #endif // _LP64
3130 
3131     __ testl(rax, rax);
3132     __ jcc(Assembler::equal, *stub->continuation());
3133 
3134     __ mov(tmp, rax);
3135     __ xorl(tmp, -1);
3136 
3137     // Reload values from the stack so they are where the stub
3138     // expects them.
3139     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3140     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3141     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3142     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3143     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3144 
3145     __ subl(length, tmp);
3146     __ addl(src_pos, tmp);
3147     __ addl(dst_pos, tmp);
3148     __ jmp(*stub->entry());
3149 
3150     __ bind(*stub->continuation());
3151     return;
3152   }
3153 
3154   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3155 
3156   int elem_size = type2aelembytes(basic_type);
3157   Address::ScaleFactor scale;
3158 
3159   switch (elem_size) {
3160     case 1 :
3161       scale = Address::times_1;
3162       break;
3163     case 2 :
3164       scale = Address::times_2;
3165       break;
3166     case 4 :
3167       scale = Address::times_4;
3168       break;
3169     case 8 :
3170       scale = Address::times_8;
3171       break;
3172     default:
3173       scale = Address::no_scale;
3174       ShouldNotReachHere();
3175   }
3176 
3177   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3178   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3179 
3180   // length and pos's are all sign extended at this point on 64bit
3181 
3182   // test for null
3183   if (flags & LIR_OpArrayCopy::src_null_check) {
3184     __ testptr(src, src);
3185     __ jcc(Assembler::zero, *stub->entry());
3186   }
3187   if (flags & LIR_OpArrayCopy::dst_null_check) {
3188     __ testptr(dst, dst);
3189     __ jcc(Assembler::zero, *stub->entry());
3190   }
3191 
3192   // If the compiler was not able to prove that exact type of the source or the destination
3193   // of the arraycopy is an array type, check at runtime if the source or the destination is
3194   // an instance type.
3195   if (flags & LIR_OpArrayCopy::type_check) {
3196     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3197       __ load_klass(tmp, dst, tmp_load_klass);
3198       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3199       __ jcc(Assembler::greaterEqual, *stub->entry());
3200     }
3201 
3202     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3203       __ load_klass(tmp, src, tmp_load_klass);
3204       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3205       __ jcc(Assembler::greaterEqual, *stub->entry());
3206     }
3207   }
3208 
3209   // check if negative
3210   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3211     __ testl(src_pos, src_pos);
3212     __ jcc(Assembler::less, *stub->entry());
3213   }
3214   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3215     __ testl(dst_pos, dst_pos);
3216     __ jcc(Assembler::less, *stub->entry());
3217   }
3218 
3219   if (flags & LIR_OpArrayCopy::src_range_check) {
3220     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3221     __ cmpl(tmp, src_length_addr);
3222     __ jcc(Assembler::above, *stub->entry());
3223   }
3224   if (flags & LIR_OpArrayCopy::dst_range_check) {
3225     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3226     __ cmpl(tmp, dst_length_addr);
3227     __ jcc(Assembler::above, *stub->entry());
3228   }
3229 
3230   if (flags & LIR_OpArrayCopy::length_positive_check) {
3231     __ testl(length, length);
3232     __ jcc(Assembler::less, *stub->entry());
3233   }
3234 
3235 #ifdef _LP64
3236   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3237   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3238 #endif
3239 
3240   if (flags & LIR_OpArrayCopy::type_check) {
3241     // We don't know the array types are compatible
3242     if (basic_type != T_OBJECT) {
3243       // Simple test for basic type arrays
3244       __ cmp_klasses_from_objects(src, dst, tmp, tmp2);
3245       __ jcc(Assembler::notEqual, *stub->entry());
3246     } else {
3247       // For object arrays, if src is a sub class of dst then we can
3248       // safely do the copy.
3249       Label cont, slow;
3250 
3251       __ push(src);
3252       __ push(dst);
3253 
3254       __ load_klass(src, src, tmp_load_klass);
3255       __ load_klass(dst, dst, tmp_load_klass);
3256 
3257       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr);
3258 
3259       __ push(src);
3260       __ push(dst);
3261       __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
3262       __ pop(dst);
3263       __ pop(src);
3264 
3265       __ testl(src, src);
3266       __ jcc(Assembler::notEqual, cont);
3267 
3268       __ bind(slow);
3269       __ pop(dst);
3270       __ pop(src);
3271 
3272       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3273       if (copyfunc_addr != nullptr) { // use stub if available
3274         // src is not a sub class of dst so we have to do a
3275         // per-element check.
3276 
3277         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3278         if ((flags & mask) != mask) {
3279           // Check that at least both of them object arrays.
3280           assert(flags & mask, "one of the two should be known to be an object array");
3281 
3282           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3283             __ load_klass(tmp, src, tmp_load_klass);
3284           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3285             __ load_klass(tmp, dst, tmp_load_klass);
3286           }
3287           int lh_offset = in_bytes(Klass::layout_helper_offset());
3288           Address klass_lh_addr(tmp, lh_offset);
3289           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3290           __ cmpl(klass_lh_addr, objArray_lh);
3291           __ jcc(Assembler::notEqual, *stub->entry());
3292         }
3293 
3294        // Spill because stubs can use any register they like and it's
3295        // easier to restore just those that we care about.
3296        store_parameter(dst, 0);
3297        store_parameter(dst_pos, 1);
3298        store_parameter(length, 2);
3299        store_parameter(src_pos, 3);
3300        store_parameter(src, 4);
3301 
3302 #ifndef _LP64
3303        Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3304         __ movptr(tmp, dst_klass_addr);
3305         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3306         __ push(tmp);
3307         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3308         __ push(tmp);
3309         __ push(length);
3310         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3311         __ push(tmp);
3312         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3313         __ push(tmp);
3314 
3315         __ call_VM_leaf(copyfunc_addr, 5);
3316 #else
3317         __ movl2ptr(length, length); //higher 32bits must be null
3318 
3319         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3320         assert_different_registers(c_rarg0, dst, dst_pos, length);
3321         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3322         assert_different_registers(c_rarg1, dst, length);
3323 
3324         __ mov(c_rarg2, length);
3325         assert_different_registers(c_rarg2, dst);
3326 
3327 #ifdef _WIN64
3328         // Allocate abi space for args but be sure to keep stack aligned
3329         __ subptr(rsp, 6*wordSize);
3330         __ load_klass(c_rarg3, dst, tmp_load_klass);
3331         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3332         store_parameter(c_rarg3, 4);
3333         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3334         __ call(RuntimeAddress(copyfunc_addr));
3335         __ addptr(rsp, 6*wordSize);
3336 #else
3337         __ load_klass(c_rarg4, dst, tmp_load_klass);
3338         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3339         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3340         __ call(RuntimeAddress(copyfunc_addr));
3341 #endif
3342 
3343 #endif
3344 
3345 #ifndef PRODUCT
3346         if (PrintC1Statistics) {
3347           Label failed;
3348           __ testl(rax, rax);
3349           __ jcc(Assembler::notZero, failed);
3350           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1);
3351           __ bind(failed);
3352         }
3353 #endif
3354 
3355         __ testl(rax, rax);
3356         __ jcc(Assembler::zero, *stub->continuation());
3357 
3358 #ifndef PRODUCT
3359         if (PrintC1Statistics) {
3360           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1);
3361         }
3362 #endif
3363 
3364         __ mov(tmp, rax);
3365 
3366         __ xorl(tmp, -1);
3367 
3368         // Restore previously spilled arguments
3369         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3370         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3371         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3372         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3373         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3374 
3375 
3376         __ subl(length, tmp);
3377         __ addl(src_pos, tmp);
3378         __ addl(dst_pos, tmp);
3379       }
3380 
3381       __ jmp(*stub->entry());
3382 
3383       __ bind(cont);
3384       __ pop(dst);
3385       __ pop(src);
3386     }
3387   }
3388 
3389 #ifdef ASSERT
3390   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3391     // Sanity check the known type with the incoming class.  For the
3392     // primitive case the types must match exactly with src.klass and
3393     // dst.klass each exactly matching the default type.  For the
3394     // object array case, if no type check is needed then either the
3395     // dst type is exactly the expected type and the src type is a
3396     // subtype which we can't check or src is the same array as dst
3397     // but not necessarily exactly of type default_type.
3398     Label known_ok, halt;
3399     __ mov_metadata(tmp, default_type->constant_encoding());
3400 #ifdef _LP64
3401     if (UseCompressedClassPointers) {
3402       __ encode_klass_not_null(tmp, rscratch1);
3403     }
3404 #endif
3405 
3406     if (basic_type != T_OBJECT) {
3407       __ cmp_klass(tmp, dst, tmp2);
3408       __ jcc(Assembler::notEqual, halt);
3409       __ cmp_klass(tmp, src, tmp2);
3410       __ jcc(Assembler::equal, known_ok);
3411     } else {
3412       __ cmp_klass(tmp, dst, tmp2);
3413       __ jcc(Assembler::equal, known_ok);
3414       __ cmpptr(src, dst);
3415       __ jcc(Assembler::equal, known_ok);
3416     }
3417     __ bind(halt);
3418     __ stop("incorrect type information in arraycopy");
3419     __ bind(known_ok);
3420   }
3421 #endif
3422 
3423 #ifndef PRODUCT
3424   if (PrintC1Statistics) {
3425     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1);
3426   }
3427 #endif
3428 
3429 #ifdef _LP64
3430   assert_different_registers(c_rarg0, dst, dst_pos, length);
3431   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3432   assert_different_registers(c_rarg1, length);
3433   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3434   __ mov(c_rarg2, length);
3435 
3436 #else
3437   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3438   store_parameter(tmp, 0);
3439   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3440   store_parameter(tmp, 1);
3441   store_parameter(length, 2);
3442 #endif // _LP64
3443 
3444   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3445   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3446   const char *name;
3447   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3448   __ call_VM_leaf(entry, 0);
3449 
3450   if (stub != nullptr) {
3451     __ bind(*stub->continuation());
3452   }
3453 }
3454 
3455 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3456   assert(op->crc()->is_single_cpu(),  "crc must be register");
3457   assert(op->val()->is_single_cpu(),  "byte value must be register");
3458   assert(op->result_opr()->is_single_cpu(), "result must be register");
3459   Register crc = op->crc()->as_register();
3460   Register val = op->val()->as_register();
3461   Register res = op->result_opr()->as_register();
3462 
3463   assert_different_registers(val, crc, res);
3464 
3465   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3466   __ notl(crc); // ~crc
3467   __ update_byte_crc32(crc, val, res);
3468   __ notl(crc); // ~crc
3469   __ mov(res, crc);
3470 }
3471 
3472 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3473   Register obj = op->obj_opr()->as_register();  // may not be an oop
3474   Register hdr = op->hdr_opr()->as_register();
3475   Register lock = op->lock_opr()->as_register();
3476   if (LockingMode == LM_MONITOR) {
3477     if (op->info() != nullptr) {
3478       add_debug_info_for_null_check_here(op->info());
3479       __ null_check(obj);
3480     }
3481     __ jmp(*op->stub()->entry());
3482   } else if (op->code() == lir_lock) {
3483     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3484     Register tmp = LockingMode == LM_LIGHTWEIGHT ? op->scratch_opr()->as_register() : noreg;
3485     // add debug info for NullPointerException only if one is possible
3486     int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry());
3487     if (op->info() != nullptr) {
3488       add_debug_info_for_null_check(null_check_offset, op->info());
3489     }
3490     // done
3491   } else if (op->code() == lir_unlock) {
3492     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3493     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3494   } else {
3495     Unimplemented();
3496   }
3497   __ bind(*op->stub()->continuation());
3498 }
3499 
3500 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
3501   Register obj = op->obj()->as_pointer_register();
3502   Register result = op->result_opr()->as_pointer_register();
3503 
3504   CodeEmitInfo* info = op->info();
3505   if (info != nullptr) {
3506     add_debug_info_for_null_check_here(info);
3507   }
3508 
3509   __ load_klass(result, obj, rscratch1);
3510 }
3511 
3512 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3513   ciMethod* method = op->profiled_method();
3514   int bci          = op->profiled_bci();
3515   ciMethod* callee = op->profiled_callee();
3516   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3517 
3518   // Update counter for all call types
3519   ciMethodData* md = method->method_data_or_null();
3520   assert(md != nullptr, "Sanity");
3521   ciProfileData* data = md->bci_to_data(bci);
3522   assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
3523   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3524   Register mdo  = op->mdo()->as_register();
3525   __ mov_metadata(mdo, md->constant_encoding());
3526   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3527   // Perform additional virtual call profiling for invokevirtual and
3528   // invokeinterface bytecodes
3529   if (op->should_profile_receiver_type()) {
3530     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3531     Register recv = op->recv()->as_register();
3532     assert_different_registers(mdo, recv);
3533     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3534     ciKlass* known_klass = op->known_holder();
3535     if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
3536       // We know the type that will be seen at this call site; we can
3537       // statically update the MethodData* rather than needing to do
3538       // dynamic tests on the receiver type
3539 
3540       // NOTE: we should probably put a lock around this search to
3541       // avoid collisions by concurrent compilations
3542       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3543       uint i;
3544       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3545         ciKlass* receiver = vc_data->receiver(i);
3546         if (known_klass->equals(receiver)) {
3547           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3548           __ addptr(data_addr, DataLayout::counter_increment);
3549           return;
3550         }
3551       }
3552 
3553       // Receiver type not found in profile data; select an empty slot
3554 
3555       // Note that this is less efficient than it should be because it
3556       // always does a write to the receiver part of the
3557       // VirtualCallData rather than just the first time
3558       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3559         ciKlass* receiver = vc_data->receiver(i);
3560         if (receiver == nullptr) {
3561           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3562           __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1);
3563           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3564           __ addptr(data_addr, DataLayout::counter_increment);
3565           return;
3566         }
3567       }
3568     } else {
3569       __ load_klass(recv, recv, tmp_load_klass);
3570       Label update_done;
3571       type_profile_helper(mdo, md, data, recv, &update_done);
3572       // Receiver did not match any saved receiver and there is no empty row for it.
3573       // Increment total counter to indicate polymorphic case.
3574       __ addptr(counter_addr, DataLayout::counter_increment);
3575 
3576       __ bind(update_done);
3577     }
3578   } else {
3579     // Static call
3580     __ addptr(counter_addr, DataLayout::counter_increment);
3581   }
3582 }
3583 
3584 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3585   Register obj = op->obj()->as_register();
3586   Register tmp = op->tmp()->as_pointer_register();
3587   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3588   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3589   ciKlass* exact_klass = op->exact_klass();
3590   intptr_t current_klass = op->current_klass();
3591   bool not_null = op->not_null();
3592   bool no_conflict = op->no_conflict();
3593 
3594   Label update, next, none;
3595 
3596   bool do_null = !not_null;
3597   bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3598   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3599 
3600   assert(do_null || do_update, "why are we here?");
3601   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3602 
3603   __ verify_oop(obj);
3604 
3605 #ifdef ASSERT
3606   if (obj == tmp) {
3607 #ifdef _LP64
3608     assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
3609 #else
3610     assert_different_registers(obj, mdo_addr.base(), mdo_addr.index());
3611 #endif
3612   } else {
3613 #ifdef _LP64
3614     assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index());
3615 #else
3616     assert_different_registers(obj, tmp, mdo_addr.base(), mdo_addr.index());
3617 #endif
3618   }
3619 #endif
3620   if (do_null) {
3621     __ testptr(obj, obj);
3622     __ jccb(Assembler::notZero, update);
3623     if (!TypeEntries::was_null_seen(current_klass)) {
3624       __ testptr(mdo_addr, TypeEntries::null_seen);
3625 #ifndef ASSERT
3626       __ jccb(Assembler::notZero, next); // already set
3627 #else
3628       __ jcc(Assembler::notZero, next); // already set
3629 #endif
3630       // atomic update to prevent overwriting Klass* with 0
3631       __ lock();
3632       __ orptr(mdo_addr, TypeEntries::null_seen);
3633     }
3634     if (do_update) {
3635 #ifndef ASSERT
3636       __ jmpb(next);
3637     }
3638 #else
3639       __ jmp(next);
3640     }
3641   } else {
3642     __ testptr(obj, obj);
3643     __ jcc(Assembler::notZero, update);
3644     __ stop("unexpected null obj");
3645 #endif
3646   }
3647 
3648   __ bind(update);
3649 
3650   if (do_update) {
3651 #ifdef ASSERT
3652     if (exact_klass != nullptr) {
3653       Label ok;
3654       __ load_klass(tmp, obj, tmp_load_klass);
3655       __ push(tmp);
3656       __ mov_metadata(tmp, exact_klass->constant_encoding());
3657       __ cmpptr(tmp, Address(rsp, 0));
3658       __ jcc(Assembler::equal, ok);
3659       __ stop("exact klass and actual klass differ");
3660       __ bind(ok);
3661       __ pop(tmp);
3662     }
3663 #endif
3664     if (!no_conflict) {
3665       if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
3666         if (exact_klass != nullptr) {
3667           __ mov_metadata(tmp, exact_klass->constant_encoding());
3668         } else {
3669           __ load_klass(tmp, obj, tmp_load_klass);
3670         }
3671 #ifdef _LP64
3672         __ mov(rscratch1, tmp); // save original value before XOR
3673 #endif
3674         __ xorptr(tmp, mdo_addr);
3675         __ testptr(tmp, TypeEntries::type_klass_mask);
3676         // klass seen before, nothing to do. The unknown bit may have been
3677         // set already but no need to check.
3678         __ jccb(Assembler::zero, next);
3679 
3680         __ testptr(tmp, TypeEntries::type_unknown);
3681         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3682 
3683         if (TypeEntries::is_type_none(current_klass)) {
3684           __ testptr(mdo_addr, TypeEntries::type_mask);
3685           __ jccb(Assembler::zero, none);
3686 #ifdef _LP64
3687           // There is a chance that the checks above (re-reading profiling
3688           // data from memory) fail if another thread has just set the
3689           // profiling to this obj's klass
3690           __ mov(tmp, rscratch1); // get back original value before XOR
3691           __ xorptr(tmp, mdo_addr);
3692           __ testptr(tmp, TypeEntries::type_klass_mask);
3693           __ jccb(Assembler::zero, next);
3694 #endif
3695         }
3696       } else {
3697         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3698                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3699 
3700         __ testptr(mdo_addr, TypeEntries::type_unknown);
3701         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3702       }
3703 
3704       // different than before. Cannot keep accurate profile.
3705       __ orptr(mdo_addr, TypeEntries::type_unknown);
3706 
3707       if (TypeEntries::is_type_none(current_klass)) {
3708         __ jmpb(next);
3709 
3710         __ bind(none);
3711         // first time here. Set profile type.
3712         __ movptr(mdo_addr, tmp);
3713 #ifdef ASSERT
3714         __ andptr(tmp, TypeEntries::type_klass_mask);
3715         __ verify_klass_ptr(tmp);
3716 #endif
3717       }
3718     } else {
3719       // There's a single possible klass at this profile point
3720       assert(exact_klass != nullptr, "should be");
3721       if (TypeEntries::is_type_none(current_klass)) {
3722         __ mov_metadata(tmp, exact_klass->constant_encoding());
3723         __ xorptr(tmp, mdo_addr);
3724         __ testptr(tmp, TypeEntries::type_klass_mask);
3725 #ifdef ASSERT
3726         __ jcc(Assembler::zero, next);
3727 
3728         {
3729           Label ok;
3730           __ push(tmp);
3731           __ testptr(mdo_addr, TypeEntries::type_mask);
3732           __ jcc(Assembler::zero, ok);
3733           // may have been set by another thread
3734           __ mov_metadata(tmp, exact_klass->constant_encoding());
3735           __ xorptr(tmp, mdo_addr);
3736           __ testptr(tmp, TypeEntries::type_mask);
3737           __ jcc(Assembler::zero, ok);
3738 
3739           __ stop("unexpected profiling mismatch");
3740           __ bind(ok);
3741           __ pop(tmp);
3742         }
3743 #else
3744         __ jccb(Assembler::zero, next);
3745 #endif
3746         // first time here. Set profile type.
3747         __ movptr(mdo_addr, tmp);
3748 #ifdef ASSERT
3749         __ andptr(tmp, TypeEntries::type_klass_mask);
3750         __ verify_klass_ptr(tmp);
3751 #endif
3752       } else {
3753         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3754                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3755 
3756         __ testptr(mdo_addr, TypeEntries::type_unknown);
3757         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3758 
3759         __ orptr(mdo_addr, TypeEntries::type_unknown);
3760       }
3761     }
3762   }
3763   __ bind(next);
3764 }
3765 
3766 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3767   Unimplemented();
3768 }
3769 
3770 
3771 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3772   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3773 }
3774 
3775 
3776 void LIR_Assembler::align_backward_branch_target() {
3777   __ align(BytesPerWord);
3778 }
3779 
3780 
3781 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3782   if (left->is_single_cpu()) {
3783     __ negl(left->as_register());
3784     move_regs(left->as_register(), dest->as_register());
3785 
3786   } else if (left->is_double_cpu()) {
3787     Register lo = left->as_register_lo();
3788 #ifdef _LP64
3789     Register dst = dest->as_register_lo();
3790     __ movptr(dst, lo);
3791     __ negptr(dst);
3792 #else
3793     Register hi = left->as_register_hi();
3794     __ lneg(hi, lo);
3795     if (dest->as_register_lo() == hi) {
3796       assert(dest->as_register_hi() != lo, "destroying register");
3797       move_regs(hi, dest->as_register_hi());
3798       move_regs(lo, dest->as_register_lo());
3799     } else {
3800       move_regs(lo, dest->as_register_lo());
3801       move_regs(hi, dest->as_register_hi());
3802     }
3803 #endif // _LP64
3804 
3805   } else if (dest->is_single_xmm()) {
3806     assert(!tmp->is_valid(), "do not need temporary");
3807     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3808       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3809     }
3810     __ xorps(dest->as_xmm_float_reg(),
3811              ExternalAddress((address)float_signflip_pool),
3812              rscratch1);
3813   } else if (dest->is_double_xmm()) {
3814     assert(!tmp->is_valid(), "do not need temporary");
3815     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3816       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3817     }
3818     __ xorpd(dest->as_xmm_double_reg(),
3819              ExternalAddress((address)double_signflip_pool),
3820              rscratch1);
3821 #ifndef _LP64
3822   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3823     assert(left->fpu() == 0, "arg must be on TOS");
3824     assert(dest->fpu() == 0, "dest must be TOS");
3825     __ fchs();
3826 #endif // !_LP64
3827 
3828   } else {
3829     ShouldNotReachHere();
3830   }
3831 }
3832 
3833 
3834 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3835   assert(src->is_address(), "must be an address");
3836   assert(dest->is_register(), "must be a register");
3837 
3838   PatchingStub* patch = nullptr;
3839   if (patch_code != lir_patch_none) {
3840     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3841   }
3842 
3843   Register reg = dest->as_pointer_register();
3844   LIR_Address* addr = src->as_address_ptr();
3845   __ lea(reg, as_Address(addr));
3846 
3847   if (patch != nullptr) {
3848     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
3849   }
3850 }
3851 
3852 
3853 
3854 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3855   assert(!tmp->is_valid(), "don't need temporary");
3856   __ call(RuntimeAddress(dest));
3857   if (info != nullptr) {
3858     add_call_info_here(info);
3859   }
3860   __ post_call_nop();
3861 }
3862 
3863 
3864 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3865   assert(type == T_LONG, "only for volatile long fields");
3866 
3867   if (info != nullptr) {
3868     add_debug_info_for_null_check_here(info);
3869   }
3870 
3871   if (src->is_double_xmm()) {
3872     if (dest->is_double_cpu()) {
3873 #ifdef _LP64
3874       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3875 #else
3876       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3877       __ psrlq(src->as_xmm_double_reg(), 32);
3878       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3879 #endif // _LP64
3880     } else if (dest->is_double_stack()) {
3881       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3882     } else if (dest->is_address()) {
3883       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3884     } else {
3885       ShouldNotReachHere();
3886     }
3887 
3888   } else if (dest->is_double_xmm()) {
3889     if (src->is_double_stack()) {
3890       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3891     } else if (src->is_address()) {
3892       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3893     } else {
3894       ShouldNotReachHere();
3895     }
3896 
3897 #ifndef _LP64
3898   } else if (src->is_double_fpu()) {
3899     assert(src->fpu_regnrLo() == 0, "must be TOS");
3900     if (dest->is_double_stack()) {
3901       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3902     } else if (dest->is_address()) {
3903       __ fistp_d(as_Address(dest->as_address_ptr()));
3904     } else {
3905       ShouldNotReachHere();
3906     }
3907 
3908   } else if (dest->is_double_fpu()) {
3909     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3910     if (src->is_double_stack()) {
3911       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3912     } else if (src->is_address()) {
3913       __ fild_d(as_Address(src->as_address_ptr()));
3914     } else {
3915       ShouldNotReachHere();
3916     }
3917 #endif // !_LP64
3918 
3919   } else {
3920     ShouldNotReachHere();
3921   }
3922 }
3923 
3924 #ifdef ASSERT
3925 // emit run-time assertion
3926 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3927   assert(op->code() == lir_assert, "must be");
3928 
3929   if (op->in_opr1()->is_valid()) {
3930     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3931     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3932   } else {
3933     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3934     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3935   }
3936 
3937   Label ok;
3938   if (op->condition() != lir_cond_always) {
3939     Assembler::Condition acond = Assembler::zero;
3940     switch (op->condition()) {
3941       case lir_cond_equal:        acond = Assembler::equal;       break;
3942       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3943       case lir_cond_less:         acond = Assembler::less;        break;
3944       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3945       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3946       case lir_cond_greater:      acond = Assembler::greater;     break;
3947       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3948       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3949       default:                    ShouldNotReachHere();
3950     }
3951     __ jcc(acond, ok);
3952   }
3953   if (op->halt()) {
3954     const char* str = __ code_string(op->msg());
3955     __ stop(str);
3956   } else {
3957     breakpoint();
3958   }
3959   __ bind(ok);
3960 }
3961 #endif
3962 
3963 void LIR_Assembler::membar() {
3964   // QQQ sparc TSO uses this,
3965   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3966 }
3967 
3968 void LIR_Assembler::membar_acquire() {
3969   // No x86 machines currently require load fences
3970 }
3971 
3972 void LIR_Assembler::membar_release() {
3973   // No x86 machines currently require store fences
3974 }
3975 
3976 void LIR_Assembler::membar_loadload() {
3977   // no-op
3978   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3979 }
3980 
3981 void LIR_Assembler::membar_storestore() {
3982   // no-op
3983   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3984 }
3985 
3986 void LIR_Assembler::membar_loadstore() {
3987   // no-op
3988   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3989 }
3990 
3991 void LIR_Assembler::membar_storeload() {
3992   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3993 }
3994 
3995 void LIR_Assembler::on_spin_wait() {
3996   __ pause ();
3997 }
3998 
3999 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
4000   assert(result_reg->is_register(), "check");
4001 #ifdef _LP64
4002   // __ get_thread(result_reg->as_register_lo());
4003   __ mov(result_reg->as_register(), r15_thread);
4004 #else
4005   __ get_thread(result_reg->as_register());
4006 #endif // _LP64
4007 }
4008 
4009 
4010 void LIR_Assembler::peephole(LIR_List*) {
4011   // do nothing for now
4012 }
4013 
4014 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
4015   assert(data == dest, "xchg/xadd uses only 2 operands");
4016 
4017   if (data->type() == T_INT) {
4018     if (code == lir_xadd) {
4019       __ lock();
4020       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
4021     } else {
4022       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4023     }
4024   } else if (data->is_oop()) {
4025     assert (code == lir_xchg, "xadd for oops");
4026     Register obj = data->as_register();
4027 #ifdef _LP64
4028     if (UseCompressedOops) {
4029       __ encode_heap_oop(obj);
4030       __ xchgl(obj, as_Address(src->as_address_ptr()));
4031       __ decode_heap_oop(obj);
4032     } else {
4033       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4034     }
4035 #else
4036     __ xchgl(obj, as_Address(src->as_address_ptr()));
4037 #endif
4038   } else if (data->type() == T_LONG) {
4039 #ifdef _LP64
4040     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4041     if (code == lir_xadd) {
4042       __ lock();
4043       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4044     } else {
4045       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4046     }
4047 #else
4048     ShouldNotReachHere();
4049 #endif
4050   } else {
4051     ShouldNotReachHere();
4052   }
4053 }
4054 
4055 #undef __