1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "c1/c1_CodeStubs.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_MacroAssembler.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciUtilities.hpp" 36 #include "code/aotCodeCache.hpp" 37 #include "compiler/oopMap.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gc_globals.hpp" 40 #include "nativeInst_x86.hpp" 41 #include "oops/objArrayKlass.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/safepointMechanism.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "runtime/threadIdentifier.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 #include "vmreg_x86.inline.hpp" 49 50 51 // These masks are used to provide 128-bit aligned bitmasks to the XMM 52 // instructions, to allow sign-masking or sign-bit flipping. They allow 53 // fast versions of NegF/NegD and AbsF/AbsD. 54 55 // Note: 'double' and 'long long' have 32-bits alignment on x86. 56 static address double_quadword(jlong *adr, jlong lo, jlong hi) { 57 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 58 // of 128-bits operands for SSE instructions. 59 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF))); 60 // Store the value to a 128-bits operand. 61 operand[0] = lo; 62 operand[1] = hi; 63 return (address)operand; 64 } 65 66 // Buffer for 128-bits masks used by SSE instructions. 67 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment) 68 69 // Static initialization during VM startup. 70 address LIR_Assembler::float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF)); 71 address LIR_Assembler::double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF)); 72 address LIR_Assembler::float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000)); 73 address LIR_Assembler::double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000)); 74 75 76 NEEDS_CLEANUP // remove this definitions ? 77 const Register SYNC_header = rax; // synchronization header 78 const Register SHIFT_count = rcx; // where count for shift operations must be 79 80 #define __ _masm-> 81 82 83 static void select_different_registers(Register preserve, 84 Register extra, 85 Register &tmp1, 86 Register &tmp2) { 87 if (tmp1 == preserve) { 88 assert_different_registers(tmp1, tmp2, extra); 89 tmp1 = extra; 90 } else if (tmp2 == preserve) { 91 assert_different_registers(tmp1, tmp2, extra); 92 tmp2 = extra; 93 } 94 assert_different_registers(preserve, tmp1, tmp2); 95 } 96 97 98 99 static void select_different_registers(Register preserve, 100 Register extra, 101 Register &tmp1, 102 Register &tmp2, 103 Register &tmp3) { 104 if (tmp1 == preserve) { 105 assert_different_registers(tmp1, tmp2, tmp3, extra); 106 tmp1 = extra; 107 } else if (tmp2 == preserve) { 108 assert_different_registers(tmp1, tmp2, tmp3, extra); 109 tmp2 = extra; 110 } else if (tmp3 == preserve) { 111 assert_different_registers(tmp1, tmp2, tmp3, extra); 112 tmp3 = extra; 113 } 114 assert_different_registers(preserve, tmp1, tmp2, tmp3); 115 } 116 117 118 119 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 120 if (opr->is_constant()) { 121 LIR_Const* constant = opr->as_constant_ptr(); 122 switch (constant->type()) { 123 case T_INT: { 124 return true; 125 } 126 127 default: 128 return false; 129 } 130 } 131 return false; 132 } 133 134 135 LIR_Opr LIR_Assembler::receiverOpr() { 136 return FrameMap::receiver_opr; 137 } 138 139 LIR_Opr LIR_Assembler::osrBufferPointer() { 140 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 141 } 142 143 //--------------fpu register translations----------------------- 144 145 146 address LIR_Assembler::float_constant(float f) { 147 address const_addr = __ float_constant(f); 148 if (const_addr == nullptr) { 149 bailout("const section overflow"); 150 return __ code()->consts()->start(); 151 } else { 152 return const_addr; 153 } 154 } 155 156 157 address LIR_Assembler::double_constant(double d) { 158 address const_addr = __ double_constant(d); 159 if (const_addr == nullptr) { 160 bailout("const section overflow"); 161 return __ code()->consts()->start(); 162 } else { 163 return const_addr; 164 } 165 } 166 167 void LIR_Assembler::breakpoint() { 168 __ int3(); 169 } 170 171 void LIR_Assembler::push(LIR_Opr opr) { 172 if (opr->is_single_cpu()) { 173 __ push_reg(opr->as_register()); 174 } else if (opr->is_double_cpu()) { 175 __ push_reg(opr->as_register_lo()); 176 } else if (opr->is_stack()) { 177 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix())); 178 } else if (opr->is_constant()) { 179 LIR_Const* const_opr = opr->as_constant_ptr(); 180 if (const_opr->type() == T_OBJECT) { 181 __ push_oop(const_opr->as_jobject(), rscratch1); 182 } else if (const_opr->type() == T_INT) { 183 __ push_jint(const_opr->as_jint()); 184 } else { 185 ShouldNotReachHere(); 186 } 187 188 } else { 189 ShouldNotReachHere(); 190 } 191 } 192 193 void LIR_Assembler::pop(LIR_Opr opr) { 194 if (opr->is_single_cpu()) { 195 __ pop_reg(opr->as_register()); 196 } else { 197 ShouldNotReachHere(); 198 } 199 } 200 201 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { 202 return addr->base()->is_illegal() && addr->index()->is_illegal(); 203 } 204 205 //------------------------------------------- 206 207 Address LIR_Assembler::as_Address(LIR_Address* addr) { 208 return as_Address(addr, rscratch1); 209 } 210 211 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 212 if (addr->base()->is_illegal()) { 213 assert(addr->index()->is_illegal(), "must be illegal too"); 214 AddressLiteral laddr((address)addr->disp(), relocInfo::none); 215 if (! __ reachable(laddr)) { 216 __ movptr(tmp, laddr.addr()); 217 Address res(tmp, 0); 218 return res; 219 } else { 220 return __ as_Address(laddr); 221 } 222 } 223 224 Register base = addr->base()->as_pointer_register(); 225 226 if (addr->index()->is_illegal()) { 227 return Address( base, addr->disp()); 228 } else if (addr->index()->is_cpu_register()) { 229 Register index = addr->index()->as_pointer_register(); 230 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp()); 231 } else if (addr->index()->is_constant()) { 232 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp(); 233 assert(Assembler::is_simm32(addr_offset), "must be"); 234 235 return Address(base, addr_offset); 236 } else { 237 Unimplemented(); 238 return Address(); 239 } 240 } 241 242 243 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 244 Address base = as_Address(addr); 245 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord); 246 } 247 248 249 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 250 return as_Address(addr); 251 } 252 253 254 void LIR_Assembler::osr_entry() { 255 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 256 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 257 ValueStack* entry_state = osr_entry->state(); 258 int number_of_locks = entry_state->locks_size(); 259 260 // we jump here if osr happens with the interpreter 261 // state set up to continue at the beginning of the 262 // loop that triggered osr - in particular, we have 263 // the following registers setup: 264 // 265 // rcx: osr buffer 266 // 267 268 // build frame 269 ciMethod* m = compilation()->method(); 270 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 271 272 // OSR buffer is 273 // 274 // locals[nlocals-1..0] 275 // monitors[0..number_of_locks] 276 // 277 // locals is a direct copy of the interpreter frame so in the osr buffer 278 // so first slot in the local array is the last local from the interpreter 279 // and last slot is local[0] (receiver) from the interpreter 280 // 281 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 282 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 283 // in the interpreter frame (the method lock if a sync method) 284 285 // Initialize monitors in the compiled activation. 286 // rcx: pointer to osr buffer 287 // 288 // All other registers are dead at this point and the locals will be 289 // copied into place by code emitted in the IR. 290 291 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 292 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 293 int monitor_offset = BytesPerWord * method()->max_locals() + 294 (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1); 295 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 296 // the OSR buffer using 2 word entries: first the lock and then 297 // the oop. 298 for (int i = 0; i < number_of_locks; i++) { 299 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 300 #ifdef ASSERT 301 // verify the interpreter's monitor has a non-null object 302 { 303 Label L; 304 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD); 305 __ jcc(Assembler::notZero, L); 306 __ stop("locked object is null"); 307 __ bind(L); 308 } 309 #endif 310 __ movptr(rbx, Address(OSR_buf, slot_offset + 0)); 311 __ movptr(frame_map()->address_for_monitor_lock(i), rbx); 312 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 313 __ movptr(frame_map()->address_for_monitor_object(i), rbx); 314 } 315 } 316 } 317 318 319 // inline cache check; done before the frame is built. 320 int LIR_Assembler::check_icache() { 321 return __ ic_check(CodeEntryAlignment); 322 } 323 324 void LIR_Assembler::clinit_barrier(ciMethod* method) { 325 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 326 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 327 328 Label L_skip_barrier; 329 Register klass = rscratch1; 330 331 __ mov_metadata(klass, method->holder()->constant_encoding()); 332 __ clinit_barrier(klass, &L_skip_barrier /*L_fast_path*/); 333 334 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 335 336 __ bind(L_skip_barrier); 337 } 338 339 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) { 340 jobject o = nullptr; 341 PatchingStub* patch = new PatchingStub(_masm, patching_id(info)); 342 __ movoop(reg, o); 343 patching_epilog(patch, lir_patch_normal, reg, info); 344 } 345 346 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 347 Metadata* o = nullptr; 348 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id); 349 __ mov_metadata(reg, o); 350 patching_epilog(patch, lir_patch_normal, reg, info); 351 } 352 353 // This specifies the rsp decrement needed to build the frame 354 int LIR_Assembler::initial_frame_size_in_bytes() const { 355 // if rounding, must let FrameMap know! 356 357 // The frame_map records size in slots (32bit word) 358 359 // subtract two words to account for return address and link 360 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size; 361 } 362 363 364 int LIR_Assembler::emit_exception_handler() { 365 // generate code for exception handler 366 address handler_base = __ start_a_stub(exception_handler_size()); 367 if (handler_base == nullptr) { 368 // not enough space left for the handler 369 bailout("exception handler overflow"); 370 return -1; 371 } 372 373 int offset = code_offset(); 374 375 // the exception oop and pc are in rax, and rdx 376 // no other registers need to be preserved, so invalidate them 377 __ invalidate_registers(false, true, true, false, true, true); 378 379 // check that there is really an exception 380 __ verify_not_null_oop(rax); 381 382 // search an exception handler (rax: exception oop, rdx: throwing pc) 383 __ call(RuntimeAddress(Runtime1::entry_for(StubId::c1_handle_exception_from_callee_id))); 384 __ should_not_reach_here(); 385 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 386 __ end_a_stub(); 387 388 return offset; 389 } 390 391 392 // Emit the code to remove the frame from the stack in the exception 393 // unwind path. 394 int LIR_Assembler::emit_unwind_handler() { 395 #ifndef PRODUCT 396 if (CommentedAssembly) { 397 _masm->block_comment("Unwind handler"); 398 } 399 #endif 400 401 int offset = code_offset(); 402 403 // Fetch the exception from TLS and clear out exception related thread state 404 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); 405 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), NULL_WORD); 406 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), NULL_WORD); 407 408 __ bind(_unwind_handler_entry); 409 __ verify_not_null_oop(rax); 410 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 411 __ mov(rbx, rax); // Preserve the exception (rbx is always callee-saved) 412 } 413 414 // Perform needed unlocking 415 MonitorExitStub* stub = nullptr; 416 if (method()->is_synchronized()) { 417 monitor_address(0, FrameMap::rax_opr); 418 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0); 419 __ unlock_object(rdi, rsi, rax, *stub->entry()); 420 __ bind(*stub->continuation()); 421 } 422 423 if (compilation()->env()->dtrace_method_probes()) { 424 __ mov(rdi, r15_thread); 425 __ mov_metadata(rsi, method()->constant_encoding()); 426 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit))); 427 } 428 429 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 430 __ mov(rax, rbx); // Restore the exception 431 } 432 433 // remove the activation and dispatch to the unwind handler 434 __ remove_frame(initial_frame_size_in_bytes()); 435 __ jump(RuntimeAddress(Runtime1::entry_for(StubId::c1_unwind_exception_id))); 436 437 // Emit the slow path assembly 438 if (stub != nullptr) { 439 stub->emit_code(this); 440 } 441 442 return offset; 443 } 444 445 446 int LIR_Assembler::emit_deopt_handler() { 447 // generate code for exception handler 448 address handler_base = __ start_a_stub(deopt_handler_size()); 449 if (handler_base == nullptr) { 450 // not enough space left for the handler 451 bailout("deopt handler overflow"); 452 return -1; 453 } 454 455 int offset = code_offset(); 456 InternalAddress here(__ pc()); 457 458 __ pushptr(here.addr(), rscratch1); 459 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 460 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 461 __ end_a_stub(); 462 463 return offset; 464 } 465 466 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 467 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,"); 468 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) { 469 assert(result->fpu() == 0, "result must already be on TOS"); 470 } 471 472 // Pop the stack before the safepoint code 473 __ remove_frame(initial_frame_size_in_bytes()); 474 475 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 476 __ reserved_stack_check(); 477 } 478 479 // Note: we do not need to round double result; float result has the right precision 480 // the poll sets the condition code, but no data registers 481 482 code_stub->set_safepoint_offset(__ offset()); 483 __ relocate(relocInfo::poll_return_type); 484 __ safepoint_poll(*code_stub->entry(), true /* at_return */, true /* in_nmethod */); 485 __ ret(0); 486 } 487 488 489 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 490 guarantee(info != nullptr, "Shouldn't be null"); 491 int offset = __ offset(); 492 const Register poll_addr = rscratch1; 493 __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset())); 494 add_debug_info_for_branch(info); 495 __ relocate(relocInfo::poll_type); 496 address pre_pc = __ pc(); 497 __ testl(rax, Address(poll_addr, 0)); 498 address post_pc = __ pc(); 499 guarantee(pointer_delta(post_pc, pre_pc, 1) == 3, "must be exact length"); 500 return offset; 501 } 502 503 504 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 505 if (from_reg != to_reg) __ mov(to_reg, from_reg); 506 } 507 508 void LIR_Assembler::swap_reg(Register a, Register b) { 509 __ xchgptr(a, b); 510 } 511 512 513 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 514 assert(src->is_constant(), "should not call otherwise"); 515 assert(dest->is_register(), "should not call otherwise"); 516 LIR_Const* c = src->as_constant_ptr(); 517 518 switch (c->type()) { 519 case T_INT: { 520 assert(patch_code == lir_patch_none, "no patching handled here"); 521 __ movl(dest->as_register(), c->as_jint()); 522 break; 523 } 524 525 case T_ADDRESS: { 526 assert(patch_code == lir_patch_none, "no patching handled here"); 527 __ movptr(dest->as_register(), c->as_jint()); 528 break; 529 } 530 531 case T_LONG: { 532 assert(patch_code == lir_patch_none, "no patching handled here"); 533 #if INCLUDE_CDS 534 if (AOTCodeCache::is_on_for_dump()) { 535 address b = c->as_pointer(); 536 if (b == (address)ThreadIdentifier::unsafe_offset()) { 537 __ lea(dest->as_register_lo(), ExternalAddress(b)); 538 break; 539 } 540 if (AOTRuntimeConstants::contains(b)) { 541 __ load_aotrc_address(dest->as_register_lo(), b); 542 break; 543 } 544 } 545 #endif 546 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong()); 547 break; 548 } 549 550 case T_OBJECT: { 551 if (patch_code != lir_patch_none) { 552 jobject2reg_with_patching(dest->as_register(), info); 553 } else { 554 __ movoop(dest->as_register(), c->as_jobject()); 555 } 556 break; 557 } 558 559 case T_METADATA: { 560 if (patch_code != lir_patch_none) { 561 klass2reg_with_patching(dest->as_register(), info); 562 } else { 563 __ mov_metadata(dest->as_register(), c->as_metadata()); 564 } 565 break; 566 } 567 568 case T_FLOAT: { 569 if (dest->is_single_xmm()) { 570 if (UseAVX <= 2 && c->is_zero_float()) { 571 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg()); 572 } else { 573 __ movflt(dest->as_xmm_float_reg(), 574 InternalAddress(float_constant(c->as_jfloat()))); 575 } 576 } else { 577 ShouldNotReachHere(); 578 } 579 break; 580 } 581 582 case T_DOUBLE: { 583 if (dest->is_double_xmm()) { 584 if (UseAVX <= 2 && c->is_zero_double()) { 585 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg()); 586 } else { 587 __ movdbl(dest->as_xmm_double_reg(), 588 InternalAddress(double_constant(c->as_jdouble()))); 589 } 590 } else { 591 ShouldNotReachHere(); 592 } 593 break; 594 } 595 596 default: 597 ShouldNotReachHere(); 598 } 599 } 600 601 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 602 assert(src->is_constant(), "should not call otherwise"); 603 assert(dest->is_stack(), "should not call otherwise"); 604 LIR_Const* c = src->as_constant_ptr(); 605 606 switch (c->type()) { 607 case T_INT: // fall through 608 case T_FLOAT: 609 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 610 break; 611 612 case T_ADDRESS: 613 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 614 break; 615 616 case T_OBJECT: 617 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1); 618 break; 619 620 case T_LONG: // fall through 621 case T_DOUBLE: 622 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 623 lo_word_offset_in_bytes), 624 (intptr_t)c->as_jlong_bits(), 625 rscratch1); 626 break; 627 628 default: 629 ShouldNotReachHere(); 630 } 631 } 632 633 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 634 assert(src->is_constant(), "should not call otherwise"); 635 assert(dest->is_address(), "should not call otherwise"); 636 LIR_Const* c = src->as_constant_ptr(); 637 LIR_Address* addr = dest->as_address_ptr(); 638 639 int null_check_here = code_offset(); 640 switch (type) { 641 case T_INT: // fall through 642 case T_FLOAT: 643 __ movl(as_Address(addr), c->as_jint_bits()); 644 break; 645 646 case T_ADDRESS: 647 __ movptr(as_Address(addr), c->as_jint_bits()); 648 break; 649 650 case T_OBJECT: // fall through 651 case T_ARRAY: 652 if (c->as_jobject() == nullptr) { 653 if (UseCompressedOops && !wide) { 654 __ movl(as_Address(addr), NULL_WORD); 655 } else { 656 __ xorptr(rscratch1, rscratch1); 657 null_check_here = code_offset(); 658 __ movptr(as_Address(addr), rscratch1); 659 } 660 } else { 661 if (is_literal_address(addr)) { 662 ShouldNotReachHere(); 663 __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1); 664 } else { 665 __ movoop(rscratch1, c->as_jobject()); 666 if (UseCompressedOops && !wide) { 667 __ encode_heap_oop(rscratch1); 668 null_check_here = code_offset(); 669 __ movl(as_Address_lo(addr), rscratch1); 670 } else { 671 null_check_here = code_offset(); 672 __ movptr(as_Address_lo(addr), rscratch1); 673 } 674 } 675 } 676 break; 677 678 case T_LONG: // fall through 679 case T_DOUBLE: 680 if (is_literal_address(addr)) { 681 ShouldNotReachHere(); 682 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits()); 683 } else { 684 __ movptr(r10, (intptr_t)c->as_jlong_bits()); 685 null_check_here = code_offset(); 686 __ movptr(as_Address_lo(addr), r10); 687 } 688 break; 689 690 case T_BOOLEAN: // fall through 691 case T_BYTE: 692 __ movb(as_Address(addr), c->as_jint() & 0xFF); 693 break; 694 695 case T_CHAR: // fall through 696 case T_SHORT: 697 __ movw(as_Address(addr), c->as_jint() & 0xFFFF); 698 break; 699 700 default: 701 ShouldNotReachHere(); 702 }; 703 704 if (info != nullptr) { 705 add_debug_info_for_null_check(null_check_here, info); 706 } 707 } 708 709 710 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 711 assert(src->is_register(), "should not call otherwise"); 712 assert(dest->is_register(), "should not call otherwise"); 713 714 // move between cpu-registers 715 if (dest->is_single_cpu()) { 716 if (src->type() == T_LONG) { 717 // Can do LONG -> OBJECT 718 move_regs(src->as_register_lo(), dest->as_register()); 719 return; 720 } 721 assert(src->is_single_cpu(), "must match"); 722 if (src->type() == T_OBJECT) { 723 __ verify_oop(src->as_register()); 724 } 725 move_regs(src->as_register(), dest->as_register()); 726 727 } else if (dest->is_double_cpu()) { 728 if (is_reference_type(src->type())) { 729 // Surprising to me but we can see move of a long to t_object 730 __ verify_oop(src->as_register()); 731 move_regs(src->as_register(), dest->as_register_lo()); 732 return; 733 } 734 assert(src->is_double_cpu(), "must match"); 735 Register f_lo = src->as_register_lo(); 736 Register f_hi = src->as_register_hi(); 737 Register t_lo = dest->as_register_lo(); 738 Register t_hi = dest->as_register_hi(); 739 assert(f_hi == f_lo, "must be same"); 740 assert(t_hi == t_lo, "must be same"); 741 move_regs(f_lo, t_lo); 742 743 // move between xmm-registers 744 } else if (dest->is_single_xmm()) { 745 assert(src->is_single_xmm(), "must match"); 746 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg()); 747 } else if (dest->is_double_xmm()) { 748 assert(src->is_double_xmm(), "must match"); 749 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg()); 750 751 } else { 752 ShouldNotReachHere(); 753 } 754 } 755 756 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 757 assert(src->is_register(), "should not call otherwise"); 758 assert(dest->is_stack(), "should not call otherwise"); 759 760 if (src->is_single_cpu()) { 761 Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); 762 if (is_reference_type(type)) { 763 __ verify_oop(src->as_register()); 764 __ movptr (dst, src->as_register()); 765 } else if (type == T_METADATA || type == T_ADDRESS) { 766 __ movptr (dst, src->as_register()); 767 } else { 768 __ movl (dst, src->as_register()); 769 } 770 771 } else if (src->is_double_cpu()) { 772 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes); 773 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes); 774 __ movptr (dstLO, src->as_register_lo()); 775 776 } else if (src->is_single_xmm()) { 777 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 778 __ movflt(dst_addr, src->as_xmm_float_reg()); 779 780 } else if (src->is_double_xmm()) { 781 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 782 __ movdbl(dst_addr, src->as_xmm_double_reg()); 783 784 } else { 785 ShouldNotReachHere(); 786 } 787 } 788 789 790 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 791 LIR_Address* to_addr = dest->as_address_ptr(); 792 PatchingStub* patch = nullptr; 793 Register compressed_src = rscratch1; 794 795 if (is_reference_type(type)) { 796 __ verify_oop(src->as_register()); 797 if (UseCompressedOops && !wide) { 798 __ movptr(compressed_src, src->as_register()); 799 __ encode_heap_oop(compressed_src); 800 if (patch_code != lir_patch_none) { 801 info->oop_map()->set_narrowoop(compressed_src->as_VMReg()); 802 } 803 } 804 } 805 806 if (patch_code != lir_patch_none) { 807 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 808 Address toa = as_Address(to_addr); 809 assert(toa.disp() != 0, "must have"); 810 } 811 812 int null_check_here = code_offset(); 813 switch (type) { 814 case T_FLOAT: { 815 assert(src->is_single_xmm(), "not a float"); 816 __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); 817 break; 818 } 819 820 case T_DOUBLE: { 821 assert(src->is_double_xmm(), "not a double"); 822 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); 823 break; 824 } 825 826 case T_ARRAY: // fall through 827 case T_OBJECT: // fall through 828 if (UseCompressedOops && !wide) { 829 __ movl(as_Address(to_addr), compressed_src); 830 } else { 831 __ movptr(as_Address(to_addr), src->as_register()); 832 } 833 break; 834 case T_ADDRESS: 835 __ movptr(as_Address(to_addr), src->as_register()); 836 break; 837 case T_INT: 838 __ movl(as_Address(to_addr), src->as_register()); 839 break; 840 841 case T_LONG: { 842 Register from_lo = src->as_register_lo(); 843 Register from_hi = src->as_register_hi(); 844 __ movptr(as_Address_lo(to_addr), from_lo); 845 break; 846 } 847 848 case T_BYTE: // fall through 849 case T_BOOLEAN: { 850 Register src_reg = src->as_register(); 851 Address dst_addr = as_Address(to_addr); 852 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6"); 853 __ movb(dst_addr, src_reg); 854 break; 855 } 856 857 case T_CHAR: // fall through 858 case T_SHORT: 859 __ movw(as_Address(to_addr), src->as_register()); 860 break; 861 862 default: 863 ShouldNotReachHere(); 864 } 865 if (info != nullptr) { 866 add_debug_info_for_null_check(null_check_here, info); 867 } 868 869 if (patch_code != lir_patch_none) { 870 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info); 871 } 872 } 873 874 875 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 876 assert(src->is_stack(), "should not call otherwise"); 877 assert(dest->is_register(), "should not call otherwise"); 878 879 if (dest->is_single_cpu()) { 880 if (is_reference_type(type)) { 881 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 882 __ verify_oop(dest->as_register()); 883 } else if (type == T_METADATA || type == T_ADDRESS) { 884 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 885 } else { 886 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 887 } 888 889 } else if (dest->is_double_cpu()) { 890 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes); 891 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes); 892 __ movptr(dest->as_register_lo(), src_addr_LO); 893 894 } else if (dest->is_single_xmm()) { 895 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 896 __ movflt(dest->as_xmm_float_reg(), src_addr); 897 898 } else if (dest->is_double_xmm()) { 899 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 900 __ movdbl(dest->as_xmm_double_reg(), src_addr); 901 902 } else { 903 ShouldNotReachHere(); 904 } 905 } 906 907 908 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 909 if (src->is_single_stack()) { 910 if (is_reference_type(type)) { 911 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix())); 912 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix())); 913 } else { 914 //no pushl on 64bits 915 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix())); 916 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1); 917 } 918 919 } else if (src->is_double_stack()) { 920 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix())); 921 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix())); 922 923 } else { 924 ShouldNotReachHere(); 925 } 926 } 927 928 929 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 930 assert(src->is_address(), "should not call otherwise"); 931 assert(dest->is_register(), "should not call otherwise"); 932 933 LIR_Address* addr = src->as_address_ptr(); 934 Address from_addr = as_Address(addr); 935 936 if (addr->base()->type() == T_OBJECT) { 937 __ verify_oop(addr->base()->as_pointer_register()); 938 } 939 940 switch (type) { 941 case T_BOOLEAN: // fall through 942 case T_BYTE: // fall through 943 case T_CHAR: // fall through 944 case T_SHORT: 945 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) { 946 // on pre P6 processors we may get partial register stalls 947 // so blow away the value of to_rinfo before loading a 948 // partial word into it. Do it here so that it precedes 949 // the potential patch point below. 950 __ xorptr(dest->as_register(), dest->as_register()); 951 } 952 break; 953 default: 954 break; 955 } 956 957 PatchingStub* patch = nullptr; 958 if (patch_code != lir_patch_none) { 959 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 960 assert(from_addr.disp() != 0, "must have"); 961 } 962 if (info != nullptr) { 963 add_debug_info_for_null_check_here(info); 964 } 965 966 switch (type) { 967 case T_FLOAT: { 968 if (dest->is_single_xmm()) { 969 __ movflt(dest->as_xmm_float_reg(), from_addr); 970 } else { 971 ShouldNotReachHere(); 972 } 973 break; 974 } 975 976 case T_DOUBLE: { 977 if (dest->is_double_xmm()) { 978 __ movdbl(dest->as_xmm_double_reg(), from_addr); 979 } else { 980 ShouldNotReachHere(); 981 } 982 break; 983 } 984 985 case T_OBJECT: // fall through 986 case T_ARRAY: // fall through 987 if (UseCompressedOops && !wide) { 988 __ movl(dest->as_register(), from_addr); 989 } else { 990 __ movptr(dest->as_register(), from_addr); 991 } 992 break; 993 994 case T_ADDRESS: 995 __ movptr(dest->as_register(), from_addr); 996 break; 997 case T_INT: 998 __ movl(dest->as_register(), from_addr); 999 break; 1000 1001 case T_LONG: { 1002 Register to_lo = dest->as_register_lo(); 1003 Register to_hi = dest->as_register_hi(); 1004 __ movptr(to_lo, as_Address_lo(addr)); 1005 break; 1006 } 1007 1008 case T_BOOLEAN: // fall through 1009 case T_BYTE: { 1010 Register dest_reg = dest->as_register(); 1011 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1012 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1013 __ movsbl(dest_reg, from_addr); 1014 } else { 1015 __ movb(dest_reg, from_addr); 1016 __ shll(dest_reg, 24); 1017 __ sarl(dest_reg, 24); 1018 } 1019 break; 1020 } 1021 1022 case T_CHAR: { 1023 Register dest_reg = dest->as_register(); 1024 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1025 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1026 __ movzwl(dest_reg, from_addr); 1027 } else { 1028 __ movw(dest_reg, from_addr); 1029 } 1030 break; 1031 } 1032 1033 case T_SHORT: { 1034 Register dest_reg = dest->as_register(); 1035 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1036 __ movswl(dest_reg, from_addr); 1037 } else { 1038 __ movw(dest_reg, from_addr); 1039 __ shll(dest_reg, 16); 1040 __ sarl(dest_reg, 16); 1041 } 1042 break; 1043 } 1044 1045 default: 1046 ShouldNotReachHere(); 1047 } 1048 1049 if (patch != nullptr) { 1050 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 1051 } 1052 1053 if (is_reference_type(type)) { 1054 if (UseCompressedOops && !wide) { 1055 __ decode_heap_oop(dest->as_register()); 1056 } 1057 1058 __ verify_oop(dest->as_register()); 1059 } 1060 } 1061 1062 1063 NEEDS_CLEANUP; // This could be static? 1064 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const { 1065 int elem_size = type2aelembytes(type); 1066 switch (elem_size) { 1067 case 1: return Address::times_1; 1068 case 2: return Address::times_2; 1069 case 4: return Address::times_4; 1070 case 8: return Address::times_8; 1071 } 1072 ShouldNotReachHere(); 1073 return Address::no_scale; 1074 } 1075 1076 1077 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1078 switch (op->code()) { 1079 case lir_idiv: 1080 case lir_irem: 1081 arithmetic_idiv(op->code(), 1082 op->in_opr1(), 1083 op->in_opr2(), 1084 op->in_opr3(), 1085 op->result_opr(), 1086 op->info()); 1087 break; 1088 case lir_fmad: 1089 __ fmad(op->result_opr()->as_xmm_double_reg(), 1090 op->in_opr1()->as_xmm_double_reg(), 1091 op->in_opr2()->as_xmm_double_reg(), 1092 op->in_opr3()->as_xmm_double_reg()); 1093 break; 1094 case lir_fmaf: 1095 __ fmaf(op->result_opr()->as_xmm_float_reg(), 1096 op->in_opr1()->as_xmm_float_reg(), 1097 op->in_opr2()->as_xmm_float_reg(), 1098 op->in_opr3()->as_xmm_float_reg()); 1099 break; 1100 default: ShouldNotReachHere(); break; 1101 } 1102 } 1103 1104 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1105 #ifdef ASSERT 1106 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1107 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1108 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1109 #endif 1110 1111 if (op->cond() == lir_cond_always) { 1112 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1113 __ jmp (*(op->label())); 1114 } else { 1115 Assembler::Condition acond = Assembler::zero; 1116 if (op->code() == lir_cond_float_branch) { 1117 assert(op->ublock() != nullptr, "must have unordered successor"); 1118 __ jcc(Assembler::parity, *(op->ublock()->label())); 1119 switch(op->cond()) { 1120 case lir_cond_equal: acond = Assembler::equal; break; 1121 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1122 case lir_cond_less: acond = Assembler::below; break; 1123 case lir_cond_lessEqual: acond = Assembler::belowEqual; break; 1124 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break; 1125 case lir_cond_greater: acond = Assembler::above; break; 1126 default: ShouldNotReachHere(); 1127 } 1128 } else { 1129 switch (op->cond()) { 1130 case lir_cond_equal: acond = Assembler::equal; break; 1131 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1132 case lir_cond_less: acond = Assembler::less; break; 1133 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 1134 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 1135 case lir_cond_greater: acond = Assembler::greater; break; 1136 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 1137 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 1138 default: ShouldNotReachHere(); 1139 } 1140 } 1141 __ jcc(acond,*(op->label())); 1142 } 1143 } 1144 1145 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1146 LIR_Opr src = op->in_opr(); 1147 LIR_Opr dest = op->result_opr(); 1148 1149 switch (op->bytecode()) { 1150 case Bytecodes::_i2l: 1151 __ movl2ptr(dest->as_register_lo(), src->as_register()); 1152 break; 1153 1154 case Bytecodes::_l2i: 1155 __ movl(dest->as_register(), src->as_register_lo()); 1156 break; 1157 1158 case Bytecodes::_i2b: 1159 move_regs(src->as_register(), dest->as_register()); 1160 __ sign_extend_byte(dest->as_register()); 1161 break; 1162 1163 case Bytecodes::_i2c: 1164 move_regs(src->as_register(), dest->as_register()); 1165 __ andl(dest->as_register(), 0xFFFF); 1166 break; 1167 1168 case Bytecodes::_i2s: 1169 move_regs(src->as_register(), dest->as_register()); 1170 __ sign_extend_short(dest->as_register()); 1171 break; 1172 1173 case Bytecodes::_f2d: 1174 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); 1175 break; 1176 1177 case Bytecodes::_d2f: 1178 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); 1179 break; 1180 1181 case Bytecodes::_i2f: 1182 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register()); 1183 break; 1184 1185 case Bytecodes::_i2d: 1186 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register()); 1187 break; 1188 1189 case Bytecodes::_l2f: 1190 __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo()); 1191 break; 1192 1193 case Bytecodes::_l2d: 1194 __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo()); 1195 break; 1196 1197 case Bytecodes::_f2i: 1198 __ convert_f2i(dest->as_register(), src->as_xmm_float_reg()); 1199 break; 1200 1201 case Bytecodes::_d2i: 1202 __ convert_d2i(dest->as_register(), src->as_xmm_double_reg()); 1203 break; 1204 1205 case Bytecodes::_f2l: 1206 __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg()); 1207 break; 1208 1209 case Bytecodes::_d2l: 1210 __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg()); 1211 break; 1212 1213 default: ShouldNotReachHere(); 1214 } 1215 } 1216 1217 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1218 if (op->init_check()) { 1219 add_debug_info_for_null_check_here(op->stub()->info()); 1220 // init_state needs acquire, but x86 is TSO, and so we are already good. 1221 __ cmpb(Address(op->klass()->as_register(), 1222 InstanceKlass::init_state_offset()), 1223 InstanceKlass::fully_initialized); 1224 __ jcc(Assembler::notEqual, *op->stub()->entry()); 1225 } 1226 __ allocate_object(op->obj()->as_register(), 1227 op->tmp1()->as_register(), 1228 op->tmp2()->as_register(), 1229 op->header_size(), 1230 op->object_size(), 1231 op->klass()->as_register(), 1232 *op->stub()->entry()); 1233 __ bind(*op->stub()->continuation()); 1234 } 1235 1236 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1237 Register len = op->len()->as_register(); 1238 __ movslq(len, len); 1239 1240 if (UseSlowPath || 1241 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1242 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1243 __ jmp(*op->stub()->entry()); 1244 } else { 1245 Register tmp1 = op->tmp1()->as_register(); 1246 Register tmp2 = op->tmp2()->as_register(); 1247 Register tmp3 = op->tmp3()->as_register(); 1248 if (len == tmp1) { 1249 tmp1 = tmp3; 1250 } else if (len == tmp2) { 1251 tmp2 = tmp3; 1252 } else if (len == tmp3) { 1253 // everything is ok 1254 } else { 1255 __ mov(tmp3, len); 1256 } 1257 __ allocate_array(op->obj()->as_register(), 1258 len, 1259 tmp1, 1260 tmp2, 1261 arrayOopDesc::base_offset_in_bytes(op->type()), 1262 array_element_size(op->type()), 1263 op->klass()->as_register(), 1264 *op->stub()->entry(), 1265 op->zero_array()); 1266 } 1267 __ bind(*op->stub()->continuation()); 1268 } 1269 1270 void LIR_Assembler::type_profile_helper(Register mdo, 1271 ciMethodData *md, ciProfileData *data, 1272 Register recv, Label* update_done) { 1273 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1274 Label next_test; 1275 // See if the receiver is receiver[n]. 1276 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1277 __ jccb(Assembler::notEqual, next_test); 1278 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1279 __ addptr(data_addr, DataLayout::counter_increment); 1280 __ jmp(*update_done); 1281 __ bind(next_test); 1282 } 1283 1284 // Didn't find receiver; find next empty slot and fill it in 1285 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1286 Label next_test; 1287 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 1288 __ cmpptr(recv_addr, NULL_WORD); 1289 __ jccb(Assembler::notEqual, next_test); 1290 __ movptr(recv_addr, recv); 1291 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment); 1292 __ jmp(*update_done); 1293 __ bind(next_test); 1294 } 1295 } 1296 1297 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1298 // we always need a stub for the failure case. 1299 CodeStub* stub = op->stub(); 1300 Register obj = op->object()->as_register(); 1301 Register k_RInfo = op->tmp1()->as_register(); 1302 Register klass_RInfo = op->tmp2()->as_register(); 1303 Register dst = op->result_opr()->as_register(); 1304 ciKlass* k = op->klass(); 1305 Register Rtmp1 = noreg; 1306 Register tmp_load_klass = rscratch1; 1307 1308 // check if it needs to be profiled 1309 ciMethodData* md = nullptr; 1310 ciProfileData* data = nullptr; 1311 1312 if (op->should_profile()) { 1313 ciMethod* method = op->profiled_method(); 1314 assert(method != nullptr, "Should have method"); 1315 int bci = op->profiled_bci(); 1316 md = method->method_data_or_null(); 1317 assert(md != nullptr, "Sanity"); 1318 data = md->bci_to_data(bci); 1319 assert(data != nullptr, "need data for type check"); 1320 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1321 } 1322 Label* success_target = success; 1323 Label* failure_target = failure; 1324 1325 if (obj == k_RInfo) { 1326 k_RInfo = dst; 1327 } else if (obj == klass_RInfo) { 1328 klass_RInfo = dst; 1329 } 1330 if (k->is_loaded() && !UseCompressedClassPointers) { 1331 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1332 } else { 1333 Rtmp1 = op->tmp3()->as_register(); 1334 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1335 } 1336 1337 assert_different_registers(obj, k_RInfo, klass_RInfo); 1338 1339 __ testptr(obj, obj); 1340 if (op->should_profile()) { 1341 Label not_null; 1342 Register mdo = klass_RInfo; 1343 __ mov_metadata(mdo, md->constant_encoding()); 1344 __ jccb(Assembler::notEqual, not_null); 1345 // Object is null; update MDO and exit 1346 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1347 int header_bits = BitData::null_seen_byte_constant(); 1348 __ orb(data_addr, header_bits); 1349 __ jmp(*obj_is_null); 1350 __ bind(not_null); 1351 1352 Label update_done; 1353 Register recv = k_RInfo; 1354 __ load_klass(recv, obj, tmp_load_klass); 1355 type_profile_helper(mdo, md, data, recv, &update_done); 1356 1357 Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1358 __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment); 1359 1360 __ bind(update_done); 1361 } else { 1362 __ jcc(Assembler::equal, *obj_is_null); 1363 } 1364 1365 if (!k->is_loaded()) { 1366 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1367 } else { 1368 __ mov_metadata(k_RInfo, k->constant_encoding()); 1369 } 1370 __ verify_oop(obj); 1371 1372 if (op->fast_check()) { 1373 // get object class 1374 // not a safepoint as obj null check happens earlier 1375 if (UseCompressedClassPointers) { 1376 __ load_klass(Rtmp1, obj, tmp_load_klass); 1377 __ cmpptr(k_RInfo, Rtmp1); 1378 } else { 1379 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1380 } 1381 __ jcc(Assembler::notEqual, *failure_target); 1382 // successful cast, fall through to profile or jump 1383 } else { 1384 // get object class 1385 // not a safepoint as obj null check happens earlier 1386 __ load_klass(klass_RInfo, obj, tmp_load_klass); 1387 if (k->is_loaded()) { 1388 // See if we get an immediate positive hit 1389 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset())); 1390 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1391 __ jcc(Assembler::notEqual, *failure_target); 1392 // successful cast, fall through to profile or jump 1393 } else { 1394 // See if we get an immediate positive hit 1395 __ jcc(Assembler::equal, *success_target); 1396 // check for self 1397 __ cmpptr(klass_RInfo, k_RInfo); 1398 __ jcc(Assembler::equal, *success_target); 1399 1400 __ push_ppx(klass_RInfo); 1401 __ push_ppx(k_RInfo); 1402 __ call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1403 __ pop_ppx(klass_RInfo); 1404 __ pop_ppx(klass_RInfo); 1405 // result is a boolean 1406 __ testl(klass_RInfo, klass_RInfo); 1407 __ jcc(Assembler::equal, *failure_target); 1408 // successful cast, fall through to profile or jump 1409 } 1410 } else { 1411 // perform the fast part of the checking logic 1412 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1413 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1414 __ push_ppx(klass_RInfo); 1415 __ push_ppx(k_RInfo); 1416 __ call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1417 __ pop_ppx(klass_RInfo); 1418 __ pop_ppx(k_RInfo); 1419 // result is a boolean 1420 __ testl(k_RInfo, k_RInfo); 1421 __ jcc(Assembler::equal, *failure_target); 1422 // successful cast, fall through to profile or jump 1423 } 1424 } 1425 __ jmp(*success); 1426 } 1427 1428 1429 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1430 Register tmp_load_klass = rscratch1; 1431 LIR_Code code = op->code(); 1432 if (code == lir_store_check) { 1433 Register value = op->object()->as_register(); 1434 Register array = op->array()->as_register(); 1435 Register k_RInfo = op->tmp1()->as_register(); 1436 Register klass_RInfo = op->tmp2()->as_register(); 1437 Register Rtmp1 = op->tmp3()->as_register(); 1438 1439 CodeStub* stub = op->stub(); 1440 1441 // check if it needs to be profiled 1442 ciMethodData* md = nullptr; 1443 ciProfileData* data = nullptr; 1444 1445 if (op->should_profile()) { 1446 ciMethod* method = op->profiled_method(); 1447 assert(method != nullptr, "Should have method"); 1448 int bci = op->profiled_bci(); 1449 md = method->method_data_or_null(); 1450 assert(md != nullptr, "Sanity"); 1451 data = md->bci_to_data(bci); 1452 assert(data != nullptr, "need data for type check"); 1453 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1454 } 1455 Label done; 1456 Label* success_target = &done; 1457 Label* failure_target = stub->entry(); 1458 1459 __ testptr(value, value); 1460 if (op->should_profile()) { 1461 Label not_null; 1462 Register mdo = klass_RInfo; 1463 __ mov_metadata(mdo, md->constant_encoding()); 1464 __ jccb(Assembler::notEqual, not_null); 1465 // Object is null; update MDO and exit 1466 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1467 int header_bits = BitData::null_seen_byte_constant(); 1468 __ orb(data_addr, header_bits); 1469 __ jmp(done); 1470 __ bind(not_null); 1471 1472 Label update_done; 1473 Register recv = k_RInfo; 1474 __ load_klass(recv, value, tmp_load_klass); 1475 type_profile_helper(mdo, md, data, recv, &update_done); 1476 1477 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1478 __ addptr(counter_addr, DataLayout::counter_increment); 1479 __ bind(update_done); 1480 } else { 1481 __ jcc(Assembler::equal, done); 1482 } 1483 1484 add_debug_info_for_null_check_here(op->info_for_exception()); 1485 __ load_klass(k_RInfo, array, tmp_load_klass); 1486 __ load_klass(klass_RInfo, value, tmp_load_klass); 1487 1488 // get instance klass (it's already uncompressed) 1489 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1490 // perform the fast part of the checking logic 1491 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1492 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1493 __ push_ppx(klass_RInfo); 1494 __ push_ppx(k_RInfo); 1495 __ call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1496 __ pop_ppx(klass_RInfo); 1497 __ pop_ppx(k_RInfo); 1498 // result is a boolean 1499 __ testl(k_RInfo, k_RInfo); 1500 __ jcc(Assembler::equal, *failure_target); 1501 // fall through to the success case 1502 1503 __ bind(done); 1504 } else 1505 if (code == lir_checkcast) { 1506 Register obj = op->object()->as_register(); 1507 Register dst = op->result_opr()->as_register(); 1508 Label success; 1509 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1510 __ bind(success); 1511 if (dst != obj) { 1512 __ mov(dst, obj); 1513 } 1514 } else 1515 if (code == lir_instanceof) { 1516 Register obj = op->object()->as_register(); 1517 Register dst = op->result_opr()->as_register(); 1518 Label success, failure, done; 1519 emit_typecheck_helper(op, &success, &failure, &failure); 1520 __ bind(failure); 1521 __ xorptr(dst, dst); 1522 __ jmpb(done); 1523 __ bind(success); 1524 __ movptr(dst, 1); 1525 __ bind(done); 1526 } else { 1527 ShouldNotReachHere(); 1528 } 1529 1530 } 1531 1532 1533 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1534 if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { 1535 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1536 Register newval = op->new_value()->as_register(); 1537 Register cmpval = op->cmp_value()->as_register(); 1538 assert(cmpval == rax, "wrong register"); 1539 assert(newval != noreg, "new val must be register"); 1540 assert(cmpval != newval, "cmp and new values must be in different registers"); 1541 assert(cmpval != addr, "cmp and addr must be in different registers"); 1542 assert(newval != addr, "new value and addr must be in different registers"); 1543 1544 if (op->code() == lir_cas_obj) { 1545 if (UseCompressedOops) { 1546 __ encode_heap_oop(cmpval); 1547 __ mov(rscratch1, newval); 1548 __ encode_heap_oop(rscratch1); 1549 __ lock(); 1550 // cmpval (rax) is implicitly used by this instruction 1551 __ cmpxchgl(rscratch1, Address(addr, 0)); 1552 } else { 1553 __ lock(); 1554 __ cmpxchgptr(newval, Address(addr, 0)); 1555 } 1556 } else { 1557 assert(op->code() == lir_cas_int, "lir_cas_int expected"); 1558 __ lock(); 1559 __ cmpxchgl(newval, Address(addr, 0)); 1560 } 1561 } else if (op->code() == lir_cas_long) { 1562 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1563 Register newval = op->new_value()->as_register_lo(); 1564 Register cmpval = op->cmp_value()->as_register_lo(); 1565 assert(cmpval == rax, "wrong register"); 1566 assert(newval != noreg, "new val must be register"); 1567 assert(cmpval != newval, "cmp and new values must be in different registers"); 1568 assert(cmpval != addr, "cmp and addr must be in different registers"); 1569 assert(newval != addr, "new value and addr must be in different registers"); 1570 __ lock(); 1571 __ cmpxchgq(newval, Address(addr, 0)); 1572 } else { 1573 Unimplemented(); 1574 } 1575 } 1576 1577 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1578 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1579 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86"); 1580 1581 Assembler::Condition acond, ncond; 1582 switch (condition) { 1583 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break; 1584 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break; 1585 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break; 1586 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break; 1587 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break; 1588 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break; 1589 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break; 1590 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break; 1591 default: acond = Assembler::equal; ncond = Assembler::notEqual; 1592 ShouldNotReachHere(); 1593 } 1594 1595 if (opr1->is_cpu_register()) { 1596 reg2reg(opr1, result); 1597 } else if (opr1->is_stack()) { 1598 stack2reg(opr1, result, result->type()); 1599 } else if (opr1->is_constant()) { 1600 const2reg(opr1, result, lir_patch_none, nullptr); 1601 } else { 1602 ShouldNotReachHere(); 1603 } 1604 1605 if (VM_Version::supports_cmov() && !opr2->is_constant()) { 1606 // optimized version that does not require a branch 1607 if (opr2->is_single_cpu()) { 1608 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); 1609 __ cmov(ncond, result->as_register(), opr2->as_register()); 1610 } else if (opr2->is_double_cpu()) { 1611 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1612 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1613 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo()); 1614 } else if (opr2->is_single_stack()) { 1615 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix())); 1616 } else if (opr2->is_double_stack()) { 1617 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes)); 1618 } else { 1619 ShouldNotReachHere(); 1620 } 1621 1622 } else { 1623 Label skip; 1624 __ jccb(acond, skip); 1625 if (opr2->is_cpu_register()) { 1626 reg2reg(opr2, result); 1627 } else if (opr2->is_stack()) { 1628 stack2reg(opr2, result, result->type()); 1629 } else if (opr2->is_constant()) { 1630 const2reg(opr2, result, lir_patch_none, nullptr); 1631 } else { 1632 ShouldNotReachHere(); 1633 } 1634 __ bind(skip); 1635 } 1636 } 1637 1638 1639 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info) { 1640 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1641 1642 if (left->is_single_cpu()) { 1643 assert(left == dest, "left and dest must be equal"); 1644 Register lreg = left->as_register(); 1645 1646 if (right->is_single_cpu()) { 1647 // cpu register - cpu register 1648 Register rreg = right->as_register(); 1649 switch (code) { 1650 case lir_add: __ addl (lreg, rreg); break; 1651 case lir_sub: __ subl (lreg, rreg); break; 1652 case lir_mul: __ imull(lreg, rreg); break; 1653 default: ShouldNotReachHere(); 1654 } 1655 1656 } else if (right->is_stack()) { 1657 // cpu register - stack 1658 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1659 switch (code) { 1660 case lir_add: __ addl(lreg, raddr); break; 1661 case lir_sub: __ subl(lreg, raddr); break; 1662 default: ShouldNotReachHere(); 1663 } 1664 1665 } else if (right->is_constant()) { 1666 // cpu register - constant 1667 jint c = right->as_constant_ptr()->as_jint(); 1668 switch (code) { 1669 case lir_add: { 1670 __ incrementl(lreg, c); 1671 break; 1672 } 1673 case lir_sub: { 1674 __ decrementl(lreg, c); 1675 break; 1676 } 1677 default: ShouldNotReachHere(); 1678 } 1679 1680 } else { 1681 ShouldNotReachHere(); 1682 } 1683 1684 } else if (left->is_double_cpu()) { 1685 assert(left == dest, "left and dest must be equal"); 1686 Register lreg_lo = left->as_register_lo(); 1687 Register lreg_hi = left->as_register_hi(); 1688 1689 if (right->is_double_cpu()) { 1690 // cpu register - cpu register 1691 Register rreg_lo = right->as_register_lo(); 1692 Register rreg_hi = right->as_register_hi(); 1693 assert_different_registers(lreg_lo, rreg_lo); 1694 switch (code) { 1695 case lir_add: 1696 __ addptr(lreg_lo, rreg_lo); 1697 break; 1698 case lir_sub: 1699 __ subptr(lreg_lo, rreg_lo); 1700 break; 1701 case lir_mul: 1702 __ imulq(lreg_lo, rreg_lo); 1703 break; 1704 default: 1705 ShouldNotReachHere(); 1706 } 1707 1708 } else if (right->is_constant()) { 1709 // cpu register - constant 1710 jlong c = right->as_constant_ptr()->as_jlong_bits(); 1711 __ movptr(r10, (intptr_t) c); 1712 switch (code) { 1713 case lir_add: 1714 __ addptr(lreg_lo, r10); 1715 break; 1716 case lir_sub: 1717 __ subptr(lreg_lo, r10); 1718 break; 1719 default: 1720 ShouldNotReachHere(); 1721 } 1722 1723 } else { 1724 ShouldNotReachHere(); 1725 } 1726 1727 } else if (left->is_single_xmm()) { 1728 assert(left == dest, "left and dest must be equal"); 1729 XMMRegister lreg = left->as_xmm_float_reg(); 1730 1731 if (right->is_single_xmm()) { 1732 XMMRegister rreg = right->as_xmm_float_reg(); 1733 switch (code) { 1734 case lir_add: __ addss(lreg, rreg); break; 1735 case lir_sub: __ subss(lreg, rreg); break; 1736 case lir_mul: __ mulss(lreg, rreg); break; 1737 case lir_div: __ divss(lreg, rreg); break; 1738 default: ShouldNotReachHere(); 1739 } 1740 } else { 1741 Address raddr; 1742 if (right->is_single_stack()) { 1743 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1744 } else if (right->is_constant()) { 1745 // hack for now 1746 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat()))); 1747 } else { 1748 ShouldNotReachHere(); 1749 } 1750 switch (code) { 1751 case lir_add: __ addss(lreg, raddr); break; 1752 case lir_sub: __ subss(lreg, raddr); break; 1753 case lir_mul: __ mulss(lreg, raddr); break; 1754 case lir_div: __ divss(lreg, raddr); break; 1755 default: ShouldNotReachHere(); 1756 } 1757 } 1758 1759 } else if (left->is_double_xmm()) { 1760 assert(left == dest, "left and dest must be equal"); 1761 1762 XMMRegister lreg = left->as_xmm_double_reg(); 1763 if (right->is_double_xmm()) { 1764 XMMRegister rreg = right->as_xmm_double_reg(); 1765 switch (code) { 1766 case lir_add: __ addsd(lreg, rreg); break; 1767 case lir_sub: __ subsd(lreg, rreg); break; 1768 case lir_mul: __ mulsd(lreg, rreg); break; 1769 case lir_div: __ divsd(lreg, rreg); break; 1770 default: ShouldNotReachHere(); 1771 } 1772 } else { 1773 Address raddr; 1774 if (right->is_double_stack()) { 1775 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 1776 } else if (right->is_constant()) { 1777 // hack for now 1778 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 1779 } else { 1780 ShouldNotReachHere(); 1781 } 1782 switch (code) { 1783 case lir_add: __ addsd(lreg, raddr); break; 1784 case lir_sub: __ subsd(lreg, raddr); break; 1785 case lir_mul: __ mulsd(lreg, raddr); break; 1786 case lir_div: __ divsd(lreg, raddr); break; 1787 default: ShouldNotReachHere(); 1788 } 1789 } 1790 1791 } else if (left->is_single_stack() || left->is_address()) { 1792 assert(left == dest, "left and dest must be equal"); 1793 1794 Address laddr; 1795 if (left->is_single_stack()) { 1796 laddr = frame_map()->address_for_slot(left->single_stack_ix()); 1797 } else if (left->is_address()) { 1798 laddr = as_Address(left->as_address_ptr()); 1799 } else { 1800 ShouldNotReachHere(); 1801 } 1802 1803 if (right->is_single_cpu()) { 1804 Register rreg = right->as_register(); 1805 switch (code) { 1806 case lir_add: __ addl(laddr, rreg); break; 1807 case lir_sub: __ subl(laddr, rreg); break; 1808 default: ShouldNotReachHere(); 1809 } 1810 } else if (right->is_constant()) { 1811 jint c = right->as_constant_ptr()->as_jint(); 1812 switch (code) { 1813 case lir_add: { 1814 __ incrementl(laddr, c); 1815 break; 1816 } 1817 case lir_sub: { 1818 __ decrementl(laddr, c); 1819 break; 1820 } 1821 default: ShouldNotReachHere(); 1822 } 1823 } else { 1824 ShouldNotReachHere(); 1825 } 1826 1827 } else { 1828 ShouldNotReachHere(); 1829 } 1830 } 1831 1832 1833 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1834 if (value->is_double_xmm()) { 1835 switch(code) { 1836 case lir_abs : 1837 { 1838 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) { 1839 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); 1840 } 1841 assert(!tmp->is_valid(), "do not need temporary"); 1842 __ andpd(dest->as_xmm_double_reg(), 1843 ExternalAddress(LIR_Assembler::double_signmask_pool), 1844 rscratch1); 1845 } 1846 break; 1847 1848 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break; 1849 // all other intrinsics are not available in the SSE instruction set, so FPU is used 1850 default : ShouldNotReachHere(); 1851 } 1852 1853 } else if (code == lir_f2hf) { 1854 __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg()); 1855 } else if (code == lir_hf2f) { 1856 __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register()); 1857 } else { 1858 Unimplemented(); 1859 } 1860 } 1861 1862 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1863 // assert(left->destroys_register(), "check"); 1864 if (left->is_single_cpu()) { 1865 Register reg = left->as_register(); 1866 if (right->is_constant()) { 1867 int val = right->as_constant_ptr()->as_jint(); 1868 switch (code) { 1869 case lir_logic_and: __ andl (reg, val); break; 1870 case lir_logic_or: __ orl (reg, val); break; 1871 case lir_logic_xor: __ xorl (reg, val); break; 1872 default: ShouldNotReachHere(); 1873 } 1874 } else if (right->is_stack()) { 1875 // added support for stack operands 1876 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1877 switch (code) { 1878 case lir_logic_and: __ andl (reg, raddr); break; 1879 case lir_logic_or: __ orl (reg, raddr); break; 1880 case lir_logic_xor: __ xorl (reg, raddr); break; 1881 default: ShouldNotReachHere(); 1882 } 1883 } else { 1884 Register rright = right->as_register(); 1885 switch (code) { 1886 case lir_logic_and: __ andptr (reg, rright); break; 1887 case lir_logic_or : __ orptr (reg, rright); break; 1888 case lir_logic_xor: __ xorptr (reg, rright); break; 1889 default: ShouldNotReachHere(); 1890 } 1891 } 1892 move_regs(reg, dst->as_register()); 1893 } else { 1894 Register l_lo = left->as_register_lo(); 1895 Register l_hi = left->as_register_hi(); 1896 if (right->is_constant()) { 1897 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong()); 1898 switch (code) { 1899 case lir_logic_and: 1900 __ andq(l_lo, rscratch1); 1901 break; 1902 case lir_logic_or: 1903 __ orq(l_lo, rscratch1); 1904 break; 1905 case lir_logic_xor: 1906 __ xorq(l_lo, rscratch1); 1907 break; 1908 default: ShouldNotReachHere(); 1909 } 1910 } else { 1911 Register r_lo; 1912 if (is_reference_type(right->type())) { 1913 r_lo = right->as_register(); 1914 } else { 1915 r_lo = right->as_register_lo(); 1916 } 1917 switch (code) { 1918 case lir_logic_and: 1919 __ andptr(l_lo, r_lo); 1920 break; 1921 case lir_logic_or: 1922 __ orptr(l_lo, r_lo); 1923 break; 1924 case lir_logic_xor: 1925 __ xorptr(l_lo, r_lo); 1926 break; 1927 default: ShouldNotReachHere(); 1928 } 1929 } 1930 1931 Register dst_lo = dst->as_register_lo(); 1932 Register dst_hi = dst->as_register_hi(); 1933 1934 move_regs(l_lo, dst_lo); 1935 } 1936 } 1937 1938 1939 // we assume that rax, and rdx can be overwritten 1940 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 1941 1942 assert(left->is_single_cpu(), "left must be register"); 1943 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1944 assert(result->is_single_cpu(), "result must be register"); 1945 1946 // assert(left->destroys_register(), "check"); 1947 // assert(right->destroys_register(), "check"); 1948 1949 Register lreg = left->as_register(); 1950 Register dreg = result->as_register(); 1951 1952 if (right->is_constant()) { 1953 jint divisor = right->as_constant_ptr()->as_jint(); 1954 assert(divisor > 0 && is_power_of_2(divisor), "must be"); 1955 if (code == lir_idiv) { 1956 assert(lreg == rax, "must be rax,"); 1957 assert(temp->as_register() == rdx, "tmp register must be rdx"); 1958 __ cdql(); // sign extend into rdx:rax 1959 if (divisor == 2) { 1960 __ subl(lreg, rdx); 1961 } else { 1962 __ andl(rdx, divisor - 1); 1963 __ addl(lreg, rdx); 1964 } 1965 __ sarl(lreg, log2i_exact(divisor)); 1966 move_regs(lreg, dreg); 1967 } else if (code == lir_irem) { 1968 Label done; 1969 __ mov(dreg, lreg); 1970 __ andl(dreg, 0x80000000 | (divisor - 1)); 1971 __ jcc(Assembler::positive, done); 1972 __ decrement(dreg); 1973 __ orl(dreg, ~(divisor - 1)); 1974 __ increment(dreg); 1975 __ bind(done); 1976 } else { 1977 ShouldNotReachHere(); 1978 } 1979 } else { 1980 Register rreg = right->as_register(); 1981 assert(lreg == rax, "left register must be rax,"); 1982 assert(rreg != rdx, "right register must not be rdx"); 1983 assert(temp->as_register() == rdx, "tmp register must be rdx"); 1984 1985 move_regs(lreg, rax); 1986 1987 int idivl_offset = __ corrected_idivl(rreg); 1988 if (ImplicitDiv0Checks) { 1989 add_debug_info_for_div0(idivl_offset, info); 1990 } 1991 if (code == lir_irem) { 1992 move_regs(rdx, dreg); // result is in rdx 1993 } else { 1994 move_regs(rax, dreg); 1995 } 1996 } 1997 } 1998 1999 2000 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 2001 if (opr1->is_single_cpu()) { 2002 Register reg1 = opr1->as_register(); 2003 if (opr2->is_single_cpu()) { 2004 // cpu register - cpu register 2005 if (is_reference_type(opr1->type())) { 2006 __ cmpoop(reg1, opr2->as_register()); 2007 } else { 2008 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 2009 __ cmpl(reg1, opr2->as_register()); 2010 } 2011 } else if (opr2->is_stack()) { 2012 // cpu register - stack 2013 if (is_reference_type(opr1->type())) { 2014 __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2015 } else { 2016 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2017 } 2018 } else if (opr2->is_constant()) { 2019 // cpu register - constant 2020 LIR_Const* c = opr2->as_constant_ptr(); 2021 if (c->type() == T_INT) { 2022 jint i = c->as_jint(); 2023 if (i == 0) { 2024 __ testl(reg1, reg1); 2025 } else { 2026 __ cmpl(reg1, i); 2027 } 2028 } else if (c->type() == T_METADATA) { 2029 // All we need for now is a comparison with null for equality. 2030 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 2031 Metadata* m = c->as_metadata(); 2032 if (m == nullptr) { 2033 __ testptr(reg1, reg1); 2034 } else { 2035 ShouldNotReachHere(); 2036 } 2037 } else if (is_reference_type(c->type())) { 2038 // In 64bit oops are single register 2039 jobject o = c->as_jobject(); 2040 if (o == nullptr) { 2041 __ testptr(reg1, reg1); 2042 } else { 2043 __ cmpoop(reg1, o, rscratch1); 2044 } 2045 } else { 2046 fatal("unexpected type: %s", basictype_to_str(c->type())); 2047 } 2048 // cpu register - address 2049 } else if (opr2->is_address()) { 2050 if (op->info() != nullptr) { 2051 add_debug_info_for_null_check_here(op->info()); 2052 } 2053 __ cmpl(reg1, as_Address(opr2->as_address_ptr())); 2054 } else { 2055 ShouldNotReachHere(); 2056 } 2057 2058 } else if(opr1->is_double_cpu()) { 2059 Register xlo = opr1->as_register_lo(); 2060 Register xhi = opr1->as_register_hi(); 2061 if (opr2->is_double_cpu()) { 2062 __ cmpptr(xlo, opr2->as_register_lo()); 2063 } else if (opr2->is_constant()) { 2064 // cpu register - constant 0 2065 assert(opr2->as_jlong() == (jlong)0, "only handles zero"); 2066 __ cmpptr(xlo, (int32_t)opr2->as_jlong()); 2067 } else { 2068 ShouldNotReachHere(); 2069 } 2070 2071 } else if (opr1->is_single_xmm()) { 2072 XMMRegister reg1 = opr1->as_xmm_float_reg(); 2073 if (opr2->is_single_xmm()) { 2074 // xmm register - xmm register 2075 __ ucomiss(reg1, opr2->as_xmm_float_reg()); 2076 } else if (opr2->is_stack()) { 2077 // xmm register - stack 2078 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2079 } else if (opr2->is_constant()) { 2080 // xmm register - constant 2081 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat()))); 2082 } else if (opr2->is_address()) { 2083 // xmm register - address 2084 if (op->info() != nullptr) { 2085 add_debug_info_for_null_check_here(op->info()); 2086 } 2087 __ ucomiss(reg1, as_Address(opr2->as_address_ptr())); 2088 } else { 2089 ShouldNotReachHere(); 2090 } 2091 2092 } else if (opr1->is_double_xmm()) { 2093 XMMRegister reg1 = opr1->as_xmm_double_reg(); 2094 if (opr2->is_double_xmm()) { 2095 // xmm register - xmm register 2096 __ ucomisd(reg1, opr2->as_xmm_double_reg()); 2097 } else if (opr2->is_stack()) { 2098 // xmm register - stack 2099 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix())); 2100 } else if (opr2->is_constant()) { 2101 // xmm register - constant 2102 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble()))); 2103 } else if (opr2->is_address()) { 2104 // xmm register - address 2105 if (op->info() != nullptr) { 2106 add_debug_info_for_null_check_here(op->info()); 2107 } 2108 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address())); 2109 } else { 2110 ShouldNotReachHere(); 2111 } 2112 2113 } else if (opr1->is_address() && opr2->is_constant()) { 2114 LIR_Const* c = opr2->as_constant_ptr(); 2115 if (is_reference_type(c->type())) { 2116 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse"); 2117 __ movoop(rscratch1, c->as_jobject()); 2118 } 2119 if (op->info() != nullptr) { 2120 add_debug_info_for_null_check_here(op->info()); 2121 } 2122 // special case: address - constant 2123 LIR_Address* addr = opr1->as_address_ptr(); 2124 if (c->type() == T_INT) { 2125 __ cmpl(as_Address(addr), c->as_jint()); 2126 } else if (is_reference_type(c->type())) { 2127 // %%% Make this explode if addr isn't reachable until we figure out a 2128 // better strategy by giving noreg as the temp for as_Address 2129 __ cmpoop(rscratch1, as_Address(addr, noreg)); 2130 } else { 2131 ShouldNotReachHere(); 2132 } 2133 2134 } else { 2135 ShouldNotReachHere(); 2136 } 2137 } 2138 2139 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { 2140 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2141 if (left->is_single_xmm()) { 2142 assert(right->is_single_xmm(), "must match"); 2143 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2144 } else if (left->is_double_xmm()) { 2145 assert(right->is_double_xmm(), "must match"); 2146 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2147 2148 } else { 2149 ShouldNotReachHere(); 2150 } 2151 } else { 2152 assert(code == lir_cmp_l2i, "check"); 2153 Label done; 2154 Register dest = dst->as_register(); 2155 __ cmpptr(left->as_register_lo(), right->as_register_lo()); 2156 __ movl(dest, -1); 2157 __ jccb(Assembler::less, done); 2158 __ setb(Assembler::notZero, dest); 2159 __ movzbl(dest, dest); 2160 __ bind(done); 2161 } 2162 } 2163 2164 2165 void LIR_Assembler::align_call(LIR_Code code) { 2166 // make sure that the displacement word of the call ends up word aligned 2167 int offset = __ offset(); 2168 switch (code) { 2169 case lir_static_call: 2170 case lir_optvirtual_call: 2171 case lir_dynamic_call: 2172 offset += NativeCall::displacement_offset; 2173 break; 2174 case lir_icvirtual_call: 2175 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size_rex; 2176 break; 2177 default: ShouldNotReachHere(); 2178 } 2179 __ align(BytesPerWord, offset); 2180 } 2181 2182 2183 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2184 assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0, 2185 "must be aligned"); 2186 __ call(AddressLiteral(op->addr(), rtype)); 2187 add_call_info(code_offset(), op->info()); 2188 __ post_call_nop(); 2189 } 2190 2191 2192 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2193 __ ic_call(op->addr()); 2194 add_call_info(code_offset(), op->info()); 2195 assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0, 2196 "must be aligned"); 2197 __ post_call_nop(); 2198 } 2199 2200 2201 void LIR_Assembler::emit_static_call_stub() { 2202 address call_pc = __ pc(); 2203 address stub = __ start_a_stub(call_stub_size()); 2204 if (stub == nullptr) { 2205 bailout("static call stub overflow"); 2206 return; 2207 } 2208 2209 int start = __ offset(); 2210 2211 // make sure that the displacement word of the call ends up word aligned 2212 __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size_rex + NativeCall::displacement_offset); 2213 __ relocate(static_stub_Relocation::spec(call_pc)); 2214 __ mov_metadata(rbx, (Metadata*)nullptr); 2215 // must be set to -1 at code generation time 2216 assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned"); 2217 // On 64bit this will die since it will take a movq & jmp, must be only a jmp 2218 __ jump(RuntimeAddress(__ pc())); 2219 2220 assert(__ offset() - start <= call_stub_size(), "stub too big"); 2221 __ end_a_stub(); 2222 } 2223 2224 2225 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2226 assert(exceptionOop->as_register() == rax, "must match"); 2227 assert(exceptionPC->as_register() == rdx, "must match"); 2228 2229 // exception object is not added to oop map by LinearScan 2230 // (LinearScan assumes that no oops are in fixed registers) 2231 info->add_register_oop(exceptionOop); 2232 StubId unwind_id; 2233 2234 // get current pc information 2235 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2236 int pc_for_athrow_offset = __ offset(); 2237 InternalAddress pc_for_athrow(__ pc()); 2238 __ lea(exceptionPC->as_register(), pc_for_athrow); 2239 add_call_info(pc_for_athrow_offset, info); // for exception handler 2240 2241 __ verify_not_null_oop(rax); 2242 // search an exception handler (rax: exception oop, rdx: throwing pc) 2243 if (compilation()->has_fpu_code()) { 2244 unwind_id = StubId::c1_handle_exception_id; 2245 } else { 2246 unwind_id = StubId::c1_handle_exception_nofpu_id; 2247 } 2248 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2249 2250 // enough room for two byte trap 2251 __ nop(); 2252 } 2253 2254 2255 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2256 assert(exceptionOop->as_register() == rax, "must match"); 2257 2258 __ jmp(_unwind_handler_entry); 2259 } 2260 2261 2262 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2263 2264 // optimized version for linear scan: 2265 // * count must be already in ECX (guaranteed by LinearScan) 2266 // * left and dest must be equal 2267 // * tmp must be unused 2268 assert(count->as_register() == SHIFT_count, "count must be in ECX"); 2269 assert(left == dest, "left and dest must be equal"); 2270 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2271 2272 if (left->is_single_cpu()) { 2273 Register value = left->as_register(); 2274 assert(value != SHIFT_count, "left cannot be ECX"); 2275 2276 switch (code) { 2277 case lir_shl: __ shll(value); break; 2278 case lir_shr: __ sarl(value); break; 2279 case lir_ushr: __ shrl(value); break; 2280 default: ShouldNotReachHere(); 2281 } 2282 } else if (left->is_double_cpu()) { 2283 Register lo = left->as_register_lo(); 2284 Register hi = left->as_register_hi(); 2285 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX"); 2286 switch (code) { 2287 case lir_shl: __ shlptr(lo); break; 2288 case lir_shr: __ sarptr(lo); break; 2289 case lir_ushr: __ shrptr(lo); break; 2290 default: ShouldNotReachHere(); 2291 } 2292 } else { 2293 ShouldNotReachHere(); 2294 } 2295 } 2296 2297 2298 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2299 if (dest->is_single_cpu()) { 2300 // first move left into dest so that left is not destroyed by the shift 2301 Register value = dest->as_register(); 2302 count = count & 0x1F; // Java spec 2303 2304 move_regs(left->as_register(), value); 2305 switch (code) { 2306 case lir_shl: __ shll(value, count); break; 2307 case lir_shr: __ sarl(value, count); break; 2308 case lir_ushr: __ shrl(value, count); break; 2309 default: ShouldNotReachHere(); 2310 } 2311 } else if (dest->is_double_cpu()) { 2312 // first move left into dest so that left is not destroyed by the shift 2313 Register value = dest->as_register_lo(); 2314 count = count & 0x1F; // Java spec 2315 2316 move_regs(left->as_register_lo(), value); 2317 switch (code) { 2318 case lir_shl: __ shlptr(value, count); break; 2319 case lir_shr: __ sarptr(value, count); break; 2320 case lir_ushr: __ shrptr(value, count); break; 2321 default: ShouldNotReachHere(); 2322 } 2323 } else { 2324 ShouldNotReachHere(); 2325 } 2326 } 2327 2328 2329 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2330 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2331 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2332 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2333 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r); 2334 } 2335 2336 2337 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2338 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2339 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2340 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2341 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c); 2342 } 2343 2344 2345 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2346 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2347 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2348 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2349 __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1); 2350 } 2351 2352 2353 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) { 2354 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2355 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2356 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2357 __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1); 2358 } 2359 2360 2361 // This code replaces a call to arraycopy; no exception may 2362 // be thrown in this code, they must be thrown in the System.arraycopy 2363 // activation frame; we could save some checks if this would not be the case 2364 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2365 ciArrayKlass* default_type = op->expected_type(); 2366 Register src = op->src()->as_register(); 2367 Register dst = op->dst()->as_register(); 2368 Register src_pos = op->src_pos()->as_register(); 2369 Register dst_pos = op->dst_pos()->as_register(); 2370 Register length = op->length()->as_register(); 2371 Register tmp = op->tmp()->as_register(); 2372 Register tmp_load_klass = rscratch1; 2373 Register tmp2 = UseCompactObjectHeaders ? rscratch2 : noreg; 2374 2375 CodeStub* stub = op->stub(); 2376 int flags = op->flags(); 2377 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2378 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2379 2380 // if we don't know anything, just go through the generic arraycopy 2381 if (default_type == nullptr) { 2382 // save outgoing arguments on stack in case call to System.arraycopy is needed 2383 // HACK ALERT. This code used to push the parameters in a hardwired fashion 2384 // for interpreter calling conventions. Now we have to do it in new style conventions. 2385 // For the moment until C1 gets the new register allocator I just force all the 2386 // args to the right place (except the register args) and then on the back side 2387 // reload the register args properly if we go slow path. Yuck 2388 2389 // These are proper for the calling convention 2390 store_parameter(length, 2); 2391 store_parameter(dst_pos, 1); 2392 store_parameter(dst, 0); 2393 2394 // these are just temporary placements until we need to reload 2395 store_parameter(src_pos, 3); 2396 store_parameter(src, 4); 2397 2398 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2399 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2400 2401 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint 2402 // The arguments are in java calling convention so we can trivially shift them to C 2403 // convention 2404 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2405 __ mov(c_rarg0, j_rarg0); 2406 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2407 __ mov(c_rarg1, j_rarg1); 2408 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2409 __ mov(c_rarg2, j_rarg2); 2410 assert_different_registers(c_rarg3, j_rarg4); 2411 __ mov(c_rarg3, j_rarg3); 2412 #ifdef _WIN64 2413 // Allocate abi space for args but be sure to keep stack aligned 2414 __ subptr(rsp, 6*wordSize); 2415 store_parameter(j_rarg4, 4); 2416 #ifndef PRODUCT 2417 if (PrintC1Statistics) { 2418 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 2419 } 2420 #endif 2421 __ call(RuntimeAddress(copyfunc_addr)); 2422 __ addptr(rsp, 6*wordSize); 2423 #else 2424 __ mov(c_rarg4, j_rarg4); 2425 #ifndef PRODUCT 2426 if (PrintC1Statistics) { 2427 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 2428 } 2429 #endif 2430 __ call(RuntimeAddress(copyfunc_addr)); 2431 #endif // _WIN64 2432 2433 __ testl(rax, rax); 2434 __ jcc(Assembler::equal, *stub->continuation()); 2435 2436 __ mov(tmp, rax); 2437 __ xorl(tmp, -1); 2438 2439 // Reload values from the stack so they are where the stub 2440 // expects them. 2441 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 2442 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 2443 __ movptr (length, Address(rsp, 2*BytesPerWord)); 2444 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 2445 __ movptr (src, Address(rsp, 4*BytesPerWord)); 2446 2447 __ subl(length, tmp); 2448 __ addl(src_pos, tmp); 2449 __ addl(dst_pos, tmp); 2450 __ jmp(*stub->entry()); 2451 2452 __ bind(*stub->continuation()); 2453 return; 2454 } 2455 2456 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2457 2458 int elem_size = type2aelembytes(basic_type); 2459 Address::ScaleFactor scale; 2460 2461 switch (elem_size) { 2462 case 1 : 2463 scale = Address::times_1; 2464 break; 2465 case 2 : 2466 scale = Address::times_2; 2467 break; 2468 case 4 : 2469 scale = Address::times_4; 2470 break; 2471 case 8 : 2472 scale = Address::times_8; 2473 break; 2474 default: 2475 scale = Address::no_scale; 2476 ShouldNotReachHere(); 2477 } 2478 2479 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2480 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2481 2482 // length and pos's are all sign extended at this point on 64bit 2483 2484 // test for null 2485 if (flags & LIR_OpArrayCopy::src_null_check) { 2486 __ testptr(src, src); 2487 __ jcc(Assembler::zero, *stub->entry()); 2488 } 2489 if (flags & LIR_OpArrayCopy::dst_null_check) { 2490 __ testptr(dst, dst); 2491 __ jcc(Assembler::zero, *stub->entry()); 2492 } 2493 2494 // If the compiler was not able to prove that exact type of the source or the destination 2495 // of the arraycopy is an array type, check at runtime if the source or the destination is 2496 // an instance type. 2497 if (flags & LIR_OpArrayCopy::type_check) { 2498 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2499 __ load_klass(tmp, dst, tmp_load_klass); 2500 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 2501 __ jcc(Assembler::greaterEqual, *stub->entry()); 2502 } 2503 2504 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2505 __ load_klass(tmp, src, tmp_load_klass); 2506 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 2507 __ jcc(Assembler::greaterEqual, *stub->entry()); 2508 } 2509 } 2510 2511 // check if negative 2512 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2513 __ testl(src_pos, src_pos); 2514 __ jcc(Assembler::less, *stub->entry()); 2515 } 2516 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2517 __ testl(dst_pos, dst_pos); 2518 __ jcc(Assembler::less, *stub->entry()); 2519 } 2520 2521 if (flags & LIR_OpArrayCopy::src_range_check) { 2522 __ lea(tmp, Address(src_pos, length, Address::times_1, 0)); 2523 __ cmpl(tmp, src_length_addr); 2524 __ jcc(Assembler::above, *stub->entry()); 2525 } 2526 if (flags & LIR_OpArrayCopy::dst_range_check) { 2527 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0)); 2528 __ cmpl(tmp, dst_length_addr); 2529 __ jcc(Assembler::above, *stub->entry()); 2530 } 2531 2532 if (flags & LIR_OpArrayCopy::length_positive_check) { 2533 __ testl(length, length); 2534 __ jcc(Assembler::less, *stub->entry()); 2535 } 2536 2537 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null 2538 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null 2539 2540 if (flags & LIR_OpArrayCopy::type_check) { 2541 // We don't know the array types are compatible 2542 if (basic_type != T_OBJECT) { 2543 // Simple test for basic type arrays 2544 __ cmp_klasses_from_objects(src, dst, tmp, tmp2); 2545 __ jcc(Assembler::notEqual, *stub->entry()); 2546 } else { 2547 // For object arrays, if src is a sub class of dst then we can 2548 // safely do the copy. 2549 Label cont, slow; 2550 2551 __ push_ppx(src); 2552 __ push_ppx(dst); 2553 2554 __ load_klass(src, src, tmp_load_klass); 2555 __ load_klass(dst, dst, tmp_load_klass); 2556 2557 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2558 2559 __ push_ppx(src); 2560 __ push_ppx(dst); 2561 __ call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 2562 __ pop_ppx(dst); 2563 __ pop_ppx(src); 2564 2565 __ testl(src, src); 2566 __ jcc(Assembler::notEqual, cont); 2567 2568 __ bind(slow); 2569 __ pop_ppx(dst); 2570 __ pop_ppx(src); 2571 2572 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2573 if (copyfunc_addr != nullptr) { // use stub if available 2574 // src is not a sub class of dst so we have to do a 2575 // per-element check. 2576 2577 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2578 if ((flags & mask) != mask) { 2579 // Check that at least both of them object arrays. 2580 assert(flags & mask, "one of the two should be known to be an object array"); 2581 2582 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2583 __ load_klass(tmp, src, tmp_load_klass); 2584 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2585 __ load_klass(tmp, dst, tmp_load_klass); 2586 } 2587 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2588 Address klass_lh_addr(tmp, lh_offset); 2589 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2590 __ cmpl(klass_lh_addr, objArray_lh); 2591 __ jcc(Assembler::notEqual, *stub->entry()); 2592 } 2593 2594 // Spill because stubs can use any register they like and it's 2595 // easier to restore just those that we care about. 2596 store_parameter(dst, 0); 2597 store_parameter(dst_pos, 1); 2598 store_parameter(length, 2); 2599 store_parameter(src_pos, 3); 2600 store_parameter(src, 4); 2601 2602 __ movl2ptr(length, length); //higher 32bits must be null 2603 2604 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2605 assert_different_registers(c_rarg0, dst, dst_pos, length); 2606 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2607 assert_different_registers(c_rarg1, dst, length); 2608 2609 __ mov(c_rarg2, length); 2610 assert_different_registers(c_rarg2, dst); 2611 2612 #ifdef _WIN64 2613 // Allocate abi space for args but be sure to keep stack aligned 2614 __ subptr(rsp, 6*wordSize); 2615 __ load_klass(c_rarg3, dst, tmp_load_klass); 2616 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset())); 2617 store_parameter(c_rarg3, 4); 2618 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset())); 2619 __ call(RuntimeAddress(copyfunc_addr)); 2620 __ addptr(rsp, 6*wordSize); 2621 #else 2622 __ load_klass(c_rarg4, dst, tmp_load_klass); 2623 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2624 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2625 __ call(RuntimeAddress(copyfunc_addr)); 2626 #endif 2627 2628 #ifndef PRODUCT 2629 if (PrintC1Statistics) { 2630 Label failed; 2631 __ testl(rax, rax); 2632 __ jcc(Assembler::notZero, failed); 2633 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1); 2634 __ bind(failed); 2635 } 2636 #endif 2637 2638 __ testl(rax, rax); 2639 __ jcc(Assembler::zero, *stub->continuation()); 2640 2641 #ifndef PRODUCT 2642 if (PrintC1Statistics) { 2643 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1); 2644 } 2645 #endif 2646 2647 __ mov(tmp, rax); 2648 2649 __ xorl(tmp, -1); 2650 2651 // Restore previously spilled arguments 2652 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 2653 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 2654 __ movptr (length, Address(rsp, 2*BytesPerWord)); 2655 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 2656 __ movptr (src, Address(rsp, 4*BytesPerWord)); 2657 2658 2659 __ subl(length, tmp); 2660 __ addl(src_pos, tmp); 2661 __ addl(dst_pos, tmp); 2662 } 2663 2664 __ jmp(*stub->entry()); 2665 2666 __ bind(cont); 2667 __ pop(dst); 2668 __ pop(src); 2669 } 2670 } 2671 2672 #ifdef ASSERT 2673 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2674 // Sanity check the known type with the incoming class. For the 2675 // primitive case the types must match exactly with src.klass and 2676 // dst.klass each exactly matching the default type. For the 2677 // object array case, if no type check is needed then either the 2678 // dst type is exactly the expected type and the src type is a 2679 // subtype which we can't check or src is the same array as dst 2680 // but not necessarily exactly of type default_type. 2681 Label known_ok, halt; 2682 __ mov_metadata(tmp, default_type->constant_encoding()); 2683 if (UseCompressedClassPointers) { 2684 __ encode_klass_not_null(tmp, rscratch1); 2685 } 2686 2687 if (basic_type != T_OBJECT) { 2688 __ cmp_klass(tmp, dst, tmp2); 2689 __ jcc(Assembler::notEqual, halt); 2690 __ cmp_klass(tmp, src, tmp2); 2691 __ jcc(Assembler::equal, known_ok); 2692 } else { 2693 __ cmp_klass(tmp, dst, tmp2); 2694 __ jcc(Assembler::equal, known_ok); 2695 __ cmpptr(src, dst); 2696 __ jcc(Assembler::equal, known_ok); 2697 } 2698 __ bind(halt); 2699 __ stop("incorrect type information in arraycopy"); 2700 __ bind(known_ok); 2701 } 2702 #endif 2703 2704 #ifndef PRODUCT 2705 if (PrintC1Statistics) { 2706 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1); 2707 } 2708 #endif 2709 2710 assert_different_registers(c_rarg0, dst, dst_pos, length); 2711 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2712 assert_different_registers(c_rarg1, length); 2713 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2714 __ mov(c_rarg2, length); 2715 2716 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2717 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2718 const char *name; 2719 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2720 __ call_VM_leaf(entry, 0); 2721 2722 if (stub != nullptr) { 2723 __ bind(*stub->continuation()); 2724 } 2725 } 2726 2727 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2728 assert(op->crc()->is_single_cpu(), "crc must be register"); 2729 assert(op->val()->is_single_cpu(), "byte value must be register"); 2730 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2731 Register crc = op->crc()->as_register(); 2732 Register val = op->val()->as_register(); 2733 Register res = op->result_opr()->as_register(); 2734 2735 assert_different_registers(val, crc, res); 2736 2737 __ lea(res, ExternalAddress(StubRoutines::crc_table_addr())); 2738 __ notl(crc); // ~crc 2739 __ update_byte_crc32(crc, val, res); 2740 __ notl(crc); // ~crc 2741 __ mov(res, crc); 2742 } 2743 2744 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2745 Register obj = op->obj_opr()->as_register(); // may not be an oop 2746 Register hdr = op->hdr_opr()->as_register(); 2747 Register lock = op->lock_opr()->as_register(); 2748 if (op->code() == lir_lock) { 2749 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2750 Register tmp = op->scratch_opr()->as_register(); 2751 // add debug info for NullPointerException only if one is possible 2752 int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry()); 2753 if (op->info() != nullptr) { 2754 add_debug_info_for_null_check(null_check_offset, op->info()); 2755 } 2756 // done 2757 } else if (op->code() == lir_unlock) { 2758 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2759 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2760 } else { 2761 Unimplemented(); 2762 } 2763 __ bind(*op->stub()->continuation()); 2764 } 2765 2766 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2767 Register obj = op->obj()->as_pointer_register(); 2768 Register result = op->result_opr()->as_pointer_register(); 2769 2770 CodeEmitInfo* info = op->info(); 2771 if (info != nullptr) { 2772 add_debug_info_for_null_check_here(info); 2773 } 2774 2775 __ load_klass(result, obj, rscratch1); 2776 } 2777 2778 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2779 ciMethod* method = op->profiled_method(); 2780 int bci = op->profiled_bci(); 2781 ciMethod* callee = op->profiled_callee(); 2782 Register tmp_load_klass = rscratch1; 2783 2784 // Update counter for all call types 2785 ciMethodData* md = method->method_data_or_null(); 2786 assert(md != nullptr, "Sanity"); 2787 ciProfileData* data = md->bci_to_data(bci); 2788 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2789 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2790 Register mdo = op->mdo()->as_register(); 2791 __ mov_metadata(mdo, md->constant_encoding()); 2792 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2793 // Perform additional virtual call profiling for invokevirtual and 2794 // invokeinterface bytecodes 2795 if (op->should_profile_receiver_type()) { 2796 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2797 Register recv = op->recv()->as_register(); 2798 assert_different_registers(mdo, recv); 2799 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2800 ciKlass* known_klass = op->known_holder(); 2801 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2802 // We know the type that will be seen at this call site; we can 2803 // statically update the MethodData* rather than needing to do 2804 // dynamic tests on the receiver type 2805 2806 // NOTE: we should probably put a lock around this search to 2807 // avoid collisions by concurrent compilations 2808 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2809 uint i; 2810 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2811 ciKlass* receiver = vc_data->receiver(i); 2812 if (known_klass->equals(receiver)) { 2813 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2814 __ addptr(data_addr, DataLayout::counter_increment); 2815 return; 2816 } 2817 } 2818 2819 // Receiver type not found in profile data; select an empty slot 2820 2821 // Note that this is less efficient than it should be because it 2822 // always does a write to the receiver part of the 2823 // VirtualCallData rather than just the first time 2824 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2825 ciKlass* receiver = vc_data->receiver(i); 2826 if (receiver == nullptr) { 2827 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 2828 __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1); 2829 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2830 __ addptr(data_addr, DataLayout::counter_increment); 2831 return; 2832 } 2833 } 2834 } else { 2835 __ load_klass(recv, recv, tmp_load_klass); 2836 Label update_done; 2837 type_profile_helper(mdo, md, data, recv, &update_done); 2838 // Receiver did not match any saved receiver and there is no empty row for it. 2839 // Increment total counter to indicate polymorphic case. 2840 __ addptr(counter_addr, DataLayout::counter_increment); 2841 2842 __ bind(update_done); 2843 } 2844 } else { 2845 // Static call 2846 __ addptr(counter_addr, DataLayout::counter_increment); 2847 } 2848 } 2849 2850 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2851 Register obj = op->obj()->as_register(); 2852 Register tmp = op->tmp()->as_pointer_register(); 2853 Register tmp_load_klass = rscratch1; 2854 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2855 ciKlass* exact_klass = op->exact_klass(); 2856 intptr_t current_klass = op->current_klass(); 2857 bool not_null = op->not_null(); 2858 bool no_conflict = op->no_conflict(); 2859 2860 Label update, next, none; 2861 2862 bool do_null = !not_null; 2863 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2864 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2865 2866 assert(do_null || do_update, "why are we here?"); 2867 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2868 2869 __ verify_oop(obj); 2870 2871 #ifdef ASSERT 2872 if (obj == tmp) { 2873 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 2874 } else { 2875 assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index()); 2876 } 2877 #endif 2878 if (do_null) { 2879 __ testptr(obj, obj); 2880 __ jccb(Assembler::notZero, update); 2881 if (!TypeEntries::was_null_seen(current_klass)) { 2882 __ testptr(mdo_addr, TypeEntries::null_seen); 2883 #ifndef ASSERT 2884 __ jccb(Assembler::notZero, next); // already set 2885 #else 2886 __ jcc(Assembler::notZero, next); // already set 2887 #endif 2888 // atomic update to prevent overwriting Klass* with 0 2889 __ lock(); 2890 __ orptr(mdo_addr, TypeEntries::null_seen); 2891 } 2892 if (do_update) { 2893 #ifndef ASSERT 2894 __ jmpb(next); 2895 } 2896 #else 2897 __ jmp(next); 2898 } 2899 } else { 2900 __ testptr(obj, obj); 2901 __ jcc(Assembler::notZero, update); 2902 __ stop("unexpected null obj"); 2903 #endif 2904 } 2905 2906 __ bind(update); 2907 2908 if (do_update) { 2909 #ifdef ASSERT 2910 if (exact_klass != nullptr) { 2911 Label ok; 2912 __ load_klass(tmp, obj, tmp_load_klass); 2913 __ push_ppx(tmp); 2914 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2915 __ cmpptr(tmp, Address(rsp, 0)); 2916 __ jcc(Assembler::equal, ok); 2917 __ stop("exact klass and actual klass differ"); 2918 __ bind(ok); 2919 __ pop_ppx(tmp); 2920 } 2921 #endif 2922 if (!no_conflict) { 2923 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2924 if (exact_klass != nullptr) { 2925 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2926 } else { 2927 __ load_klass(tmp, obj, tmp_load_klass); 2928 } 2929 __ mov(rscratch1, tmp); // save original value before XOR 2930 __ xorptr(tmp, mdo_addr); 2931 __ testptr(tmp, TypeEntries::type_klass_mask); 2932 // klass seen before, nothing to do. The unknown bit may have been 2933 // set already but no need to check. 2934 __ jccb(Assembler::zero, next); 2935 2936 __ testptr(tmp, TypeEntries::type_unknown); 2937 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 2938 2939 if (TypeEntries::is_type_none(current_klass)) { 2940 __ testptr(mdo_addr, TypeEntries::type_mask); 2941 __ jccb(Assembler::zero, none); 2942 // There is a chance that the checks above (re-reading profiling 2943 // data from memory) fail if another thread has just set the 2944 // profiling to this obj's klass 2945 __ mov(tmp, rscratch1); // get back original value before XOR 2946 __ xorptr(tmp, mdo_addr); 2947 __ testptr(tmp, TypeEntries::type_klass_mask); 2948 __ jccb(Assembler::zero, next); 2949 } 2950 } else { 2951 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2952 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2953 2954 __ testptr(mdo_addr, TypeEntries::type_unknown); 2955 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 2956 } 2957 2958 // different than before. Cannot keep accurate profile. 2959 __ orptr(mdo_addr, TypeEntries::type_unknown); 2960 2961 if (TypeEntries::is_type_none(current_klass)) { 2962 __ jmpb(next); 2963 2964 __ bind(none); 2965 // first time here. Set profile type. 2966 __ movptr(mdo_addr, tmp); 2967 #ifdef ASSERT 2968 __ andptr(tmp, TypeEntries::type_klass_mask); 2969 __ verify_klass_ptr(tmp); 2970 #endif 2971 } 2972 } else { 2973 // There's a single possible klass at this profile point 2974 assert(exact_klass != nullptr, "should be"); 2975 if (TypeEntries::is_type_none(current_klass)) { 2976 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2977 __ xorptr(tmp, mdo_addr); 2978 __ testptr(tmp, TypeEntries::type_klass_mask); 2979 #ifdef ASSERT 2980 __ jcc(Assembler::zero, next); 2981 2982 { 2983 Label ok; 2984 __ push_ppx(tmp); 2985 __ testptr(mdo_addr, TypeEntries::type_mask); 2986 __ jcc(Assembler::zero, ok); 2987 // may have been set by another thread 2988 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2989 __ xorptr(tmp, mdo_addr); 2990 __ testptr(tmp, TypeEntries::type_mask); 2991 __ jcc(Assembler::zero, ok); 2992 2993 __ stop("unexpected profiling mismatch"); 2994 __ bind(ok); 2995 __ pop_ppx(tmp); 2996 } 2997 #else 2998 __ jccb(Assembler::zero, next); 2999 #endif 3000 // first time here. Set profile type. 3001 __ movptr(mdo_addr, tmp); 3002 #ifdef ASSERT 3003 __ andptr(tmp, TypeEntries::type_klass_mask); 3004 __ verify_klass_ptr(tmp); 3005 #endif 3006 } else { 3007 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3008 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3009 3010 __ testptr(mdo_addr, TypeEntries::type_unknown); 3011 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3012 3013 __ orptr(mdo_addr, TypeEntries::type_unknown); 3014 } 3015 } 3016 } 3017 __ bind(next); 3018 } 3019 3020 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 3021 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 3022 } 3023 3024 3025 void LIR_Assembler::align_backward_branch_target() { 3026 __ align(BytesPerWord); 3027 } 3028 3029 3030 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 3031 if (left->is_single_cpu()) { 3032 __ negl(left->as_register()); 3033 move_regs(left->as_register(), dest->as_register()); 3034 3035 } else if (left->is_double_cpu()) { 3036 Register lo = left->as_register_lo(); 3037 Register dst = dest->as_register_lo(); 3038 __ movptr(dst, lo); 3039 __ negptr(dst); 3040 3041 } else if (dest->is_single_xmm()) { 3042 assert(!tmp->is_valid(), "do not need temporary"); 3043 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) { 3044 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg()); 3045 } 3046 __ xorps(dest->as_xmm_float_reg(), 3047 ExternalAddress((address)float_signflip_pool), 3048 rscratch1); 3049 } else if (dest->is_double_xmm()) { 3050 assert(!tmp->is_valid(), "do not need temporary"); 3051 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) { 3052 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg()); 3053 } 3054 __ xorpd(dest->as_xmm_double_reg(), 3055 ExternalAddress((address)double_signflip_pool), 3056 rscratch1); 3057 } else { 3058 ShouldNotReachHere(); 3059 } 3060 } 3061 3062 3063 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 3064 assert(src->is_address(), "must be an address"); 3065 assert(dest->is_register(), "must be a register"); 3066 3067 PatchingStub* patch = nullptr; 3068 if (patch_code != lir_patch_none) { 3069 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 3070 } 3071 3072 Register reg = dest->as_pointer_register(); 3073 LIR_Address* addr = src->as_address_ptr(); 3074 __ lea(reg, as_Address(addr)); 3075 3076 if (patch != nullptr) { 3077 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 3078 } 3079 } 3080 3081 3082 3083 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 3084 assert(!tmp->is_valid(), "don't need temporary"); 3085 __ call(RuntimeAddress(dest)); 3086 if (info != nullptr) { 3087 add_call_info_here(info); 3088 } 3089 __ post_call_nop(); 3090 } 3091 3092 3093 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 3094 assert(type == T_LONG, "only for volatile long fields"); 3095 3096 if (info != nullptr) { 3097 add_debug_info_for_null_check_here(info); 3098 } 3099 3100 if (src->is_double_xmm()) { 3101 if (dest->is_double_cpu()) { 3102 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg()); 3103 } else if (dest->is_double_stack()) { 3104 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg()); 3105 } else if (dest->is_address()) { 3106 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg()); 3107 } else { 3108 ShouldNotReachHere(); 3109 } 3110 3111 } else if (dest->is_double_xmm()) { 3112 if (src->is_double_stack()) { 3113 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix())); 3114 } else if (src->is_address()) { 3115 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr())); 3116 } else { 3117 ShouldNotReachHere(); 3118 } 3119 3120 } else { 3121 ShouldNotReachHere(); 3122 } 3123 } 3124 3125 #ifdef ASSERT 3126 // emit run-time assertion 3127 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 3128 assert(op->code() == lir_assert, "must be"); 3129 3130 if (op->in_opr1()->is_valid()) { 3131 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 3132 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 3133 } else { 3134 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 3135 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 3136 } 3137 3138 Label ok; 3139 if (op->condition() != lir_cond_always) { 3140 Assembler::Condition acond = Assembler::zero; 3141 switch (op->condition()) { 3142 case lir_cond_equal: acond = Assembler::equal; break; 3143 case lir_cond_notEqual: acond = Assembler::notEqual; break; 3144 case lir_cond_less: acond = Assembler::less; break; 3145 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 3146 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 3147 case lir_cond_greater: acond = Assembler::greater; break; 3148 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 3149 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 3150 default: ShouldNotReachHere(); 3151 } 3152 __ jcc(acond, ok); 3153 } 3154 if (op->halt()) { 3155 const char* str = __ code_string(op->msg()); 3156 __ stop(str); 3157 } else { 3158 breakpoint(); 3159 } 3160 __ bind(ok); 3161 } 3162 #endif 3163 3164 void LIR_Assembler::membar() { 3165 // QQQ sparc TSO uses this, 3166 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3167 } 3168 3169 void LIR_Assembler::membar_acquire() { 3170 // No x86 machines currently require load fences 3171 } 3172 3173 void LIR_Assembler::membar_release() { 3174 // No x86 machines currently require store fences 3175 } 3176 3177 void LIR_Assembler::membar_loadload() { 3178 // no-op 3179 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload)); 3180 } 3181 3182 void LIR_Assembler::membar_storestore() { 3183 // no-op 3184 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore)); 3185 } 3186 3187 void LIR_Assembler::membar_loadstore() { 3188 // no-op 3189 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore)); 3190 } 3191 3192 void LIR_Assembler::membar_storeload() { 3193 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3194 } 3195 3196 void LIR_Assembler::on_spin_wait() { 3197 __ pause (); 3198 } 3199 3200 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 3201 assert(result_reg->is_register(), "check"); 3202 __ mov(result_reg->as_register(), r15_thread); 3203 } 3204 3205 3206 void LIR_Assembler::peephole(LIR_List*) { 3207 // do nothing for now 3208 } 3209 3210 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 3211 assert(data == dest, "xchg/xadd uses only 2 operands"); 3212 3213 if (data->type() == T_INT) { 3214 if (code == lir_xadd) { 3215 __ lock(); 3216 __ xaddl(as_Address(src->as_address_ptr()), data->as_register()); 3217 } else { 3218 __ xchgl(data->as_register(), as_Address(src->as_address_ptr())); 3219 } 3220 } else if (data->is_oop()) { 3221 assert (code == lir_xchg, "xadd for oops"); 3222 Register obj = data->as_register(); 3223 if (UseCompressedOops) { 3224 __ encode_heap_oop(obj); 3225 __ xchgl(obj, as_Address(src->as_address_ptr())); 3226 __ decode_heap_oop(obj); 3227 } else { 3228 __ xchgptr(obj, as_Address(src->as_address_ptr())); 3229 } 3230 } else if (data->type() == T_LONG) { 3231 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register"); 3232 if (code == lir_xadd) { 3233 __ lock(); 3234 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo()); 3235 } else { 3236 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr())); 3237 } 3238 } else { 3239 ShouldNotReachHere(); 3240 } 3241 } 3242 3243 #undef __