1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "c1/c1_CodeStubs.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_MacroAssembler.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciUtilities.hpp" 36 #include "code/aotCodeCache.hpp" 37 #include "compiler/oopMap.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gc_globals.hpp" 40 #include "nativeInst_x86.hpp" 41 #include "oops/objArrayKlass.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/safepointMechanism.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "runtime/threadIdentifier.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 #include "vmreg_x86.inline.hpp" 49 50 51 // These masks are used to provide 128-bit aligned bitmasks to the XMM 52 // instructions, to allow sign-masking or sign-bit flipping. They allow 53 // fast versions of NegF/NegD and AbsF/AbsD. 54 55 // Note: 'double' and 'long long' have 32-bits alignment on x86. 56 static address double_quadword(jlong *adr, jlong lo, jlong hi) { 57 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 58 // of 128-bits operands for SSE instructions. 59 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF))); 60 // Store the value to a 128-bits operand. 61 operand[0] = lo; 62 operand[1] = hi; 63 return (address)operand; 64 } 65 66 // Buffer for 128-bits masks used by SSE instructions. 67 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment) 68 69 // Static initialization during VM startup. 70 address LIR_Assembler::float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF)); 71 address LIR_Assembler::double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF)); 72 address LIR_Assembler::float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000)); 73 address LIR_Assembler::double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000)); 74 75 76 NEEDS_CLEANUP // remove this definitions ? 77 const Register SYNC_header = rax; // synchronization header 78 const Register SHIFT_count = rcx; // where count for shift operations must be 79 80 #define __ _masm-> 81 82 83 static void select_different_registers(Register preserve, 84 Register extra, 85 Register &tmp1, 86 Register &tmp2) { 87 if (tmp1 == preserve) { 88 assert_different_registers(tmp1, tmp2, extra); 89 tmp1 = extra; 90 } else if (tmp2 == preserve) { 91 assert_different_registers(tmp1, tmp2, extra); 92 tmp2 = extra; 93 } 94 assert_different_registers(preserve, tmp1, tmp2); 95 } 96 97 98 99 static void select_different_registers(Register preserve, 100 Register extra, 101 Register &tmp1, 102 Register &tmp2, 103 Register &tmp3) { 104 if (tmp1 == preserve) { 105 assert_different_registers(tmp1, tmp2, tmp3, extra); 106 tmp1 = extra; 107 } else if (tmp2 == preserve) { 108 assert_different_registers(tmp1, tmp2, tmp3, extra); 109 tmp2 = extra; 110 } else if (tmp3 == preserve) { 111 assert_different_registers(tmp1, tmp2, tmp3, extra); 112 tmp3 = extra; 113 } 114 assert_different_registers(preserve, tmp1, tmp2, tmp3); 115 } 116 117 118 119 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 120 if (opr->is_constant()) { 121 LIR_Const* constant = opr->as_constant_ptr(); 122 switch (constant->type()) { 123 case T_INT: { 124 return true; 125 } 126 127 default: 128 return false; 129 } 130 } 131 return false; 132 } 133 134 135 LIR_Opr LIR_Assembler::receiverOpr() { 136 return FrameMap::receiver_opr; 137 } 138 139 LIR_Opr LIR_Assembler::osrBufferPointer() { 140 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 141 } 142 143 //--------------fpu register translations----------------------- 144 145 146 address LIR_Assembler::float_constant(float f) { 147 address const_addr = __ float_constant(f); 148 if (const_addr == nullptr) { 149 bailout("const section overflow"); 150 return __ code()->consts()->start(); 151 } else { 152 return const_addr; 153 } 154 } 155 156 157 address LIR_Assembler::double_constant(double d) { 158 address const_addr = __ double_constant(d); 159 if (const_addr == nullptr) { 160 bailout("const section overflow"); 161 return __ code()->consts()->start(); 162 } else { 163 return const_addr; 164 } 165 } 166 167 void LIR_Assembler::breakpoint() { 168 __ int3(); 169 } 170 171 void LIR_Assembler::push(LIR_Opr opr) { 172 if (opr->is_single_cpu()) { 173 __ push_reg(opr->as_register()); 174 } else if (opr->is_double_cpu()) { 175 __ push_reg(opr->as_register_lo()); 176 } else if (opr->is_stack()) { 177 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix())); 178 } else if (opr->is_constant()) { 179 LIR_Const* const_opr = opr->as_constant_ptr(); 180 if (const_opr->type() == T_OBJECT) { 181 __ push_oop(const_opr->as_jobject(), rscratch1); 182 } else if (const_opr->type() == T_INT) { 183 __ push_jint(const_opr->as_jint()); 184 } else { 185 ShouldNotReachHere(); 186 } 187 188 } else { 189 ShouldNotReachHere(); 190 } 191 } 192 193 void LIR_Assembler::pop(LIR_Opr opr) { 194 if (opr->is_single_cpu()) { 195 __ pop_reg(opr->as_register()); 196 } else { 197 ShouldNotReachHere(); 198 } 199 } 200 201 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { 202 return addr->base()->is_illegal() && addr->index()->is_illegal(); 203 } 204 205 //------------------------------------------- 206 207 Address LIR_Assembler::as_Address(LIR_Address* addr) { 208 return as_Address(addr, rscratch1); 209 } 210 211 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 212 if (addr->base()->is_illegal()) { 213 assert(addr->index()->is_illegal(), "must be illegal too"); 214 AddressLiteral laddr((address)addr->disp(), relocInfo::none); 215 if (! __ reachable(laddr)) { 216 __ movptr(tmp, laddr.addr()); 217 Address res(tmp, 0); 218 return res; 219 } else { 220 return __ as_Address(laddr); 221 } 222 } 223 224 Register base = addr->base()->as_pointer_register(); 225 226 if (addr->index()->is_illegal()) { 227 return Address( base, addr->disp()); 228 } else if (addr->index()->is_cpu_register()) { 229 Register index = addr->index()->as_pointer_register(); 230 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp()); 231 } else if (addr->index()->is_constant()) { 232 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp(); 233 assert(Assembler::is_simm32(addr_offset), "must be"); 234 235 return Address(base, addr_offset); 236 } else { 237 Unimplemented(); 238 return Address(); 239 } 240 } 241 242 243 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 244 Address base = as_Address(addr); 245 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord); 246 } 247 248 249 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 250 return as_Address(addr); 251 } 252 253 254 void LIR_Assembler::osr_entry() { 255 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 256 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 257 ValueStack* entry_state = osr_entry->state(); 258 int number_of_locks = entry_state->locks_size(); 259 260 // we jump here if osr happens with the interpreter 261 // state set up to continue at the beginning of the 262 // loop that triggered osr - in particular, we have 263 // the following registers setup: 264 // 265 // rcx: osr buffer 266 // 267 268 // build frame 269 ciMethod* m = compilation()->method(); 270 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 271 272 // OSR buffer is 273 // 274 // locals[nlocals-1..0] 275 // monitors[0..number_of_locks] 276 // 277 // locals is a direct copy of the interpreter frame so in the osr buffer 278 // so first slot in the local array is the last local from the interpreter 279 // and last slot is local[0] (receiver) from the interpreter 280 // 281 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 282 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 283 // in the interpreter frame (the method lock if a sync method) 284 285 // Initialize monitors in the compiled activation. 286 // rcx: pointer to osr buffer 287 // 288 // All other registers are dead at this point and the locals will be 289 // copied into place by code emitted in the IR. 290 291 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 292 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 293 int monitor_offset = BytesPerWord * method()->max_locals() + 294 (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1); 295 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 296 // the OSR buffer using 2 word entries: first the lock and then 297 // the oop. 298 for (int i = 0; i < number_of_locks; i++) { 299 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 300 #ifdef ASSERT 301 // verify the interpreter's monitor has a non-null object 302 { 303 Label L; 304 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD); 305 __ jcc(Assembler::notZero, L); 306 __ stop("locked object is null"); 307 __ bind(L); 308 } 309 #endif 310 __ movptr(rbx, Address(OSR_buf, slot_offset + 0)); 311 __ movptr(frame_map()->address_for_monitor_lock(i), rbx); 312 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 313 __ movptr(frame_map()->address_for_monitor_object(i), rbx); 314 } 315 } 316 } 317 318 319 // inline cache check; done before the frame is built. 320 int LIR_Assembler::check_icache() { 321 return __ ic_check(CodeEntryAlignment); 322 } 323 324 void LIR_Assembler::clinit_barrier(ciMethod* method) { 325 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 326 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 327 328 Label L_skip_barrier; 329 Register klass = rscratch1; 330 331 __ mov_metadata(klass, method->holder()->constant_encoding()); 332 __ clinit_barrier(klass, &L_skip_barrier /*L_fast_path*/); 333 334 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 335 336 __ bind(L_skip_barrier); 337 } 338 339 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) { 340 jobject o = nullptr; 341 PatchingStub* patch = new PatchingStub(_masm, patching_id(info)); 342 __ movoop(reg, o); 343 patching_epilog(patch, lir_patch_normal, reg, info); 344 } 345 346 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 347 Metadata* o = nullptr; 348 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id); 349 __ mov_metadata(reg, o); 350 patching_epilog(patch, lir_patch_normal, reg, info); 351 } 352 353 // This specifies the rsp decrement needed to build the frame 354 int LIR_Assembler::initial_frame_size_in_bytes() const { 355 // if rounding, must let FrameMap know! 356 357 // The frame_map records size in slots (32bit word) 358 359 // subtract two words to account for return address and link 360 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size; 361 } 362 363 364 int LIR_Assembler::emit_exception_handler() { 365 // generate code for exception handler 366 address handler_base = __ start_a_stub(exception_handler_size()); 367 if (handler_base == nullptr) { 368 // not enough space left for the handler 369 bailout("exception handler overflow"); 370 return -1; 371 } 372 373 int offset = code_offset(); 374 375 // the exception oop and pc are in rax, and rdx 376 // no other registers need to be preserved, so invalidate them 377 __ invalidate_registers(false, true, true, false, true, true); 378 379 // check that there is really an exception 380 __ verify_not_null_oop(rax); 381 382 // search an exception handler (rax: exception oop, rdx: throwing pc) 383 __ call(RuntimeAddress(Runtime1::entry_for(StubId::c1_handle_exception_from_callee_id))); 384 __ should_not_reach_here(); 385 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 386 __ end_a_stub(); 387 388 return offset; 389 } 390 391 392 // Emit the code to remove the frame from the stack in the exception 393 // unwind path. 394 int LIR_Assembler::emit_unwind_handler() { 395 #ifndef PRODUCT 396 if (CommentedAssembly) { 397 _masm->block_comment("Unwind handler"); 398 } 399 #endif 400 401 int offset = code_offset(); 402 403 // Fetch the exception from TLS and clear out exception related thread state 404 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); 405 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), NULL_WORD); 406 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), NULL_WORD); 407 408 __ bind(_unwind_handler_entry); 409 __ verify_not_null_oop(rax); 410 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 411 __ mov(rbx, rax); // Preserve the exception (rbx is always callee-saved) 412 } 413 414 // Perform needed unlocking 415 MonitorExitStub* stub = nullptr; 416 if (method()->is_synchronized()) { 417 monitor_address(0, FrameMap::rax_opr); 418 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0); 419 __ unlock_object(rdi, rsi, rax, *stub->entry()); 420 __ bind(*stub->continuation()); 421 } 422 423 if (compilation()->env()->dtrace_method_probes()) { 424 __ mov(rdi, r15_thread); 425 __ mov_metadata(rsi, method()->constant_encoding()); 426 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit))); 427 } 428 429 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 430 __ mov(rax, rbx); // Restore the exception 431 } 432 433 // remove the activation and dispatch to the unwind handler 434 __ remove_frame(initial_frame_size_in_bytes()); 435 __ jump(RuntimeAddress(Runtime1::entry_for(StubId::c1_unwind_exception_id))); 436 437 // Emit the slow path assembly 438 if (stub != nullptr) { 439 stub->emit_code(this); 440 } 441 442 return offset; 443 } 444 445 446 int LIR_Assembler::emit_deopt_handler() { 447 // generate code for exception handler 448 address handler_base = __ start_a_stub(deopt_handler_size()); 449 if (handler_base == nullptr) { 450 // not enough space left for the handler 451 bailout("deopt handler overflow"); 452 return -1; 453 } 454 455 int offset = code_offset(); 456 InternalAddress here(__ pc()); 457 458 __ pushptr(here.addr(), rscratch1); 459 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 460 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 461 __ end_a_stub(); 462 463 return offset; 464 } 465 466 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 467 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,"); 468 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) { 469 assert(result->fpu() == 0, "result must already be on TOS"); 470 } 471 472 // Pop the stack before the safepoint code 473 __ remove_frame(initial_frame_size_in_bytes()); 474 475 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 476 __ reserved_stack_check(); 477 } 478 479 // Note: we do not need to round double result; float result has the right precision 480 // the poll sets the condition code, but no data registers 481 482 code_stub->set_safepoint_offset(__ offset()); 483 __ relocate(relocInfo::poll_return_type); 484 __ safepoint_poll(*code_stub->entry(), true /* at_return */, true /* in_nmethod */); 485 __ ret(0); 486 } 487 488 489 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 490 guarantee(info != nullptr, "Shouldn't be null"); 491 int offset = __ offset(); 492 const Register poll_addr = rscratch1; 493 __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset())); 494 add_debug_info_for_branch(info); 495 __ relocate(relocInfo::poll_type); 496 address pre_pc = __ pc(); 497 __ testl(rax, Address(poll_addr, 0)); 498 address post_pc = __ pc(); 499 guarantee(pointer_delta(post_pc, pre_pc, 1) == 3, "must be exact length"); 500 return offset; 501 } 502 503 504 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 505 if (from_reg != to_reg) __ mov(to_reg, from_reg); 506 } 507 508 void LIR_Assembler::swap_reg(Register a, Register b) { 509 __ xchgptr(a, b); 510 } 511 512 513 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 514 assert(src->is_constant(), "should not call otherwise"); 515 assert(dest->is_register(), "should not call otherwise"); 516 LIR_Const* c = src->as_constant_ptr(); 517 518 switch (c->type()) { 519 case T_INT: { 520 assert(patch_code == lir_patch_none, "no patching handled here"); 521 __ movl(dest->as_register(), c->as_jint()); 522 break; 523 } 524 525 case T_ADDRESS: { 526 assert(patch_code == lir_patch_none, "no patching handled here"); 527 __ movptr(dest->as_register(), c->as_jint()); 528 break; 529 } 530 531 case T_LONG: { 532 assert(patch_code == lir_patch_none, "no patching handled here"); 533 if (AOTCodeCache::is_on_for_dump()) { 534 // AOTCodeCache needs relocation info for card table base 535 address b = c->as_pointer(); 536 if (is_card_table_address(b)) { 537 __ lea(dest->as_register_lo(), ExternalAddress(b)); 538 break; 539 } 540 if (b == (address)ThreadIdentifier::unsafe_offset()) { 541 __ lea(dest->as_register_lo(), ExternalAddress(b)); 542 break; 543 } 544 #if INCLUDE_CDS 545 if (AOTRuntimeConstants::contains(b)) { 546 __ load_aotrc_address(dest->as_register_lo(), b); 547 break; 548 } 549 #endif 550 } 551 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong()); 552 break; 553 } 554 555 case T_OBJECT: { 556 if (patch_code != lir_patch_none) { 557 jobject2reg_with_patching(dest->as_register(), info); 558 } else { 559 __ movoop(dest->as_register(), c->as_jobject()); 560 } 561 break; 562 } 563 564 case T_METADATA: { 565 if (patch_code != lir_patch_none) { 566 klass2reg_with_patching(dest->as_register(), info); 567 } else { 568 __ mov_metadata(dest->as_register(), c->as_metadata()); 569 } 570 break; 571 } 572 573 case T_FLOAT: { 574 if (dest->is_single_xmm()) { 575 if (UseAVX <= 2 && c->is_zero_float()) { 576 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg()); 577 } else { 578 __ movflt(dest->as_xmm_float_reg(), 579 InternalAddress(float_constant(c->as_jfloat()))); 580 } 581 } else { 582 ShouldNotReachHere(); 583 } 584 break; 585 } 586 587 case T_DOUBLE: { 588 if (dest->is_double_xmm()) { 589 if (UseAVX <= 2 && c->is_zero_double()) { 590 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg()); 591 } else { 592 __ movdbl(dest->as_xmm_double_reg(), 593 InternalAddress(double_constant(c->as_jdouble()))); 594 } 595 } else { 596 ShouldNotReachHere(); 597 } 598 break; 599 } 600 601 default: 602 ShouldNotReachHere(); 603 } 604 } 605 606 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 607 assert(src->is_constant(), "should not call otherwise"); 608 assert(dest->is_stack(), "should not call otherwise"); 609 LIR_Const* c = src->as_constant_ptr(); 610 611 switch (c->type()) { 612 case T_INT: // fall through 613 case T_FLOAT: 614 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 615 break; 616 617 case T_ADDRESS: 618 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 619 break; 620 621 case T_OBJECT: 622 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1); 623 break; 624 625 case T_LONG: // fall through 626 case T_DOUBLE: 627 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 628 lo_word_offset_in_bytes), 629 (intptr_t)c->as_jlong_bits(), 630 rscratch1); 631 break; 632 633 default: 634 ShouldNotReachHere(); 635 } 636 } 637 638 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 639 assert(src->is_constant(), "should not call otherwise"); 640 assert(dest->is_address(), "should not call otherwise"); 641 LIR_Const* c = src->as_constant_ptr(); 642 LIR_Address* addr = dest->as_address_ptr(); 643 644 int null_check_here = code_offset(); 645 switch (type) { 646 case T_INT: // fall through 647 case T_FLOAT: 648 __ movl(as_Address(addr), c->as_jint_bits()); 649 break; 650 651 case T_ADDRESS: 652 __ movptr(as_Address(addr), c->as_jint_bits()); 653 break; 654 655 case T_OBJECT: // fall through 656 case T_ARRAY: 657 if (c->as_jobject() == nullptr) { 658 if (UseCompressedOops && !wide) { 659 __ movl(as_Address(addr), NULL_WORD); 660 } else { 661 __ xorptr(rscratch1, rscratch1); 662 null_check_here = code_offset(); 663 __ movptr(as_Address(addr), rscratch1); 664 } 665 } else { 666 if (is_literal_address(addr)) { 667 ShouldNotReachHere(); 668 __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1); 669 } else { 670 __ movoop(rscratch1, c->as_jobject()); 671 if (UseCompressedOops && !wide) { 672 __ encode_heap_oop(rscratch1); 673 null_check_here = code_offset(); 674 __ movl(as_Address_lo(addr), rscratch1); 675 } else { 676 null_check_here = code_offset(); 677 __ movptr(as_Address_lo(addr), rscratch1); 678 } 679 } 680 } 681 break; 682 683 case T_LONG: // fall through 684 case T_DOUBLE: 685 if (is_literal_address(addr)) { 686 ShouldNotReachHere(); 687 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits()); 688 } else { 689 __ movptr(r10, (intptr_t)c->as_jlong_bits()); 690 null_check_here = code_offset(); 691 __ movptr(as_Address_lo(addr), r10); 692 } 693 break; 694 695 case T_BOOLEAN: // fall through 696 case T_BYTE: 697 __ movb(as_Address(addr), c->as_jint() & 0xFF); 698 break; 699 700 case T_CHAR: // fall through 701 case T_SHORT: 702 __ movw(as_Address(addr), c->as_jint() & 0xFFFF); 703 break; 704 705 default: 706 ShouldNotReachHere(); 707 }; 708 709 if (info != nullptr) { 710 add_debug_info_for_null_check(null_check_here, info); 711 } 712 } 713 714 715 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 716 assert(src->is_register(), "should not call otherwise"); 717 assert(dest->is_register(), "should not call otherwise"); 718 719 // move between cpu-registers 720 if (dest->is_single_cpu()) { 721 if (src->type() == T_LONG) { 722 // Can do LONG -> OBJECT 723 move_regs(src->as_register_lo(), dest->as_register()); 724 return; 725 } 726 assert(src->is_single_cpu(), "must match"); 727 if (src->type() == T_OBJECT) { 728 __ verify_oop(src->as_register()); 729 } 730 move_regs(src->as_register(), dest->as_register()); 731 732 } else if (dest->is_double_cpu()) { 733 if (is_reference_type(src->type())) { 734 // Surprising to me but we can see move of a long to t_object 735 __ verify_oop(src->as_register()); 736 move_regs(src->as_register(), dest->as_register_lo()); 737 return; 738 } 739 assert(src->is_double_cpu(), "must match"); 740 Register f_lo = src->as_register_lo(); 741 Register f_hi = src->as_register_hi(); 742 Register t_lo = dest->as_register_lo(); 743 Register t_hi = dest->as_register_hi(); 744 assert(f_hi == f_lo, "must be same"); 745 assert(t_hi == t_lo, "must be same"); 746 move_regs(f_lo, t_lo); 747 748 // move between xmm-registers 749 } else if (dest->is_single_xmm()) { 750 assert(src->is_single_xmm(), "must match"); 751 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg()); 752 } else if (dest->is_double_xmm()) { 753 assert(src->is_double_xmm(), "must match"); 754 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg()); 755 756 } else { 757 ShouldNotReachHere(); 758 } 759 } 760 761 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 762 assert(src->is_register(), "should not call otherwise"); 763 assert(dest->is_stack(), "should not call otherwise"); 764 765 if (src->is_single_cpu()) { 766 Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); 767 if (is_reference_type(type)) { 768 __ verify_oop(src->as_register()); 769 __ movptr (dst, src->as_register()); 770 } else if (type == T_METADATA || type == T_ADDRESS) { 771 __ movptr (dst, src->as_register()); 772 } else { 773 __ movl (dst, src->as_register()); 774 } 775 776 } else if (src->is_double_cpu()) { 777 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes); 778 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes); 779 __ movptr (dstLO, src->as_register_lo()); 780 781 } else if (src->is_single_xmm()) { 782 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 783 __ movflt(dst_addr, src->as_xmm_float_reg()); 784 785 } else if (src->is_double_xmm()) { 786 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 787 __ movdbl(dst_addr, src->as_xmm_double_reg()); 788 789 } else { 790 ShouldNotReachHere(); 791 } 792 } 793 794 795 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 796 LIR_Address* to_addr = dest->as_address_ptr(); 797 PatchingStub* patch = nullptr; 798 Register compressed_src = rscratch1; 799 800 if (is_reference_type(type)) { 801 __ verify_oop(src->as_register()); 802 if (UseCompressedOops && !wide) { 803 __ movptr(compressed_src, src->as_register()); 804 __ encode_heap_oop(compressed_src); 805 if (patch_code != lir_patch_none) { 806 info->oop_map()->set_narrowoop(compressed_src->as_VMReg()); 807 } 808 } 809 } 810 811 if (patch_code != lir_patch_none) { 812 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 813 Address toa = as_Address(to_addr); 814 assert(toa.disp() != 0, "must have"); 815 } 816 817 int null_check_here = code_offset(); 818 switch (type) { 819 case T_FLOAT: { 820 assert(src->is_single_xmm(), "not a float"); 821 __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); 822 break; 823 } 824 825 case T_DOUBLE: { 826 assert(src->is_double_xmm(), "not a double"); 827 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); 828 break; 829 } 830 831 case T_ARRAY: // fall through 832 case T_OBJECT: // fall through 833 if (UseCompressedOops && !wide) { 834 __ movl(as_Address(to_addr), compressed_src); 835 } else { 836 __ movptr(as_Address(to_addr), src->as_register()); 837 } 838 break; 839 case T_ADDRESS: 840 __ movptr(as_Address(to_addr), src->as_register()); 841 break; 842 case T_INT: 843 __ movl(as_Address(to_addr), src->as_register()); 844 break; 845 846 case T_LONG: { 847 Register from_lo = src->as_register_lo(); 848 Register from_hi = src->as_register_hi(); 849 __ movptr(as_Address_lo(to_addr), from_lo); 850 break; 851 } 852 853 case T_BYTE: // fall through 854 case T_BOOLEAN: { 855 Register src_reg = src->as_register(); 856 Address dst_addr = as_Address(to_addr); 857 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6"); 858 __ movb(dst_addr, src_reg); 859 break; 860 } 861 862 case T_CHAR: // fall through 863 case T_SHORT: 864 __ movw(as_Address(to_addr), src->as_register()); 865 break; 866 867 default: 868 ShouldNotReachHere(); 869 } 870 if (info != nullptr) { 871 add_debug_info_for_null_check(null_check_here, info); 872 } 873 874 if (patch_code != lir_patch_none) { 875 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info); 876 } 877 } 878 879 880 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 881 assert(src->is_stack(), "should not call otherwise"); 882 assert(dest->is_register(), "should not call otherwise"); 883 884 if (dest->is_single_cpu()) { 885 if (is_reference_type(type)) { 886 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 887 __ verify_oop(dest->as_register()); 888 } else if (type == T_METADATA || type == T_ADDRESS) { 889 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 890 } else { 891 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 892 } 893 894 } else if (dest->is_double_cpu()) { 895 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes); 896 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes); 897 __ movptr(dest->as_register_lo(), src_addr_LO); 898 899 } else if (dest->is_single_xmm()) { 900 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 901 __ movflt(dest->as_xmm_float_reg(), src_addr); 902 903 } else if (dest->is_double_xmm()) { 904 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 905 __ movdbl(dest->as_xmm_double_reg(), src_addr); 906 907 } else { 908 ShouldNotReachHere(); 909 } 910 } 911 912 913 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 914 if (src->is_single_stack()) { 915 if (is_reference_type(type)) { 916 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix())); 917 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix())); 918 } else { 919 //no pushl on 64bits 920 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix())); 921 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1); 922 } 923 924 } else if (src->is_double_stack()) { 925 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix())); 926 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix())); 927 928 } else { 929 ShouldNotReachHere(); 930 } 931 } 932 933 934 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 935 assert(src->is_address(), "should not call otherwise"); 936 assert(dest->is_register(), "should not call otherwise"); 937 938 LIR_Address* addr = src->as_address_ptr(); 939 Address from_addr = as_Address(addr); 940 941 if (addr->base()->type() == T_OBJECT) { 942 __ verify_oop(addr->base()->as_pointer_register()); 943 } 944 945 switch (type) { 946 case T_BOOLEAN: // fall through 947 case T_BYTE: // fall through 948 case T_CHAR: // fall through 949 case T_SHORT: 950 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) { 951 // on pre P6 processors we may get partial register stalls 952 // so blow away the value of to_rinfo before loading a 953 // partial word into it. Do it here so that it precedes 954 // the potential patch point below. 955 __ xorptr(dest->as_register(), dest->as_register()); 956 } 957 break; 958 default: 959 break; 960 } 961 962 PatchingStub* patch = nullptr; 963 if (patch_code != lir_patch_none) { 964 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 965 assert(from_addr.disp() != 0, "must have"); 966 } 967 if (info != nullptr) { 968 add_debug_info_for_null_check_here(info); 969 } 970 971 switch (type) { 972 case T_FLOAT: { 973 if (dest->is_single_xmm()) { 974 __ movflt(dest->as_xmm_float_reg(), from_addr); 975 } else { 976 ShouldNotReachHere(); 977 } 978 break; 979 } 980 981 case T_DOUBLE: { 982 if (dest->is_double_xmm()) { 983 __ movdbl(dest->as_xmm_double_reg(), from_addr); 984 } else { 985 ShouldNotReachHere(); 986 } 987 break; 988 } 989 990 case T_OBJECT: // fall through 991 case T_ARRAY: // fall through 992 if (UseCompressedOops && !wide) { 993 __ movl(dest->as_register(), from_addr); 994 } else { 995 __ movptr(dest->as_register(), from_addr); 996 } 997 break; 998 999 case T_ADDRESS: 1000 __ movptr(dest->as_register(), from_addr); 1001 break; 1002 case T_INT: 1003 __ movl(dest->as_register(), from_addr); 1004 break; 1005 1006 case T_LONG: { 1007 Register to_lo = dest->as_register_lo(); 1008 Register to_hi = dest->as_register_hi(); 1009 __ movptr(to_lo, as_Address_lo(addr)); 1010 break; 1011 } 1012 1013 case T_BOOLEAN: // fall through 1014 case T_BYTE: { 1015 Register dest_reg = dest->as_register(); 1016 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1017 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1018 __ movsbl(dest_reg, from_addr); 1019 } else { 1020 __ movb(dest_reg, from_addr); 1021 __ shll(dest_reg, 24); 1022 __ sarl(dest_reg, 24); 1023 } 1024 break; 1025 } 1026 1027 case T_CHAR: { 1028 Register dest_reg = dest->as_register(); 1029 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1030 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1031 __ movzwl(dest_reg, from_addr); 1032 } else { 1033 __ movw(dest_reg, from_addr); 1034 } 1035 break; 1036 } 1037 1038 case T_SHORT: { 1039 Register dest_reg = dest->as_register(); 1040 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1041 __ movswl(dest_reg, from_addr); 1042 } else { 1043 __ movw(dest_reg, from_addr); 1044 __ shll(dest_reg, 16); 1045 __ sarl(dest_reg, 16); 1046 } 1047 break; 1048 } 1049 1050 default: 1051 ShouldNotReachHere(); 1052 } 1053 1054 if (patch != nullptr) { 1055 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 1056 } 1057 1058 if (is_reference_type(type)) { 1059 if (UseCompressedOops && !wide) { 1060 __ decode_heap_oop(dest->as_register()); 1061 } 1062 1063 __ verify_oop(dest->as_register()); 1064 } 1065 } 1066 1067 1068 NEEDS_CLEANUP; // This could be static? 1069 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const { 1070 int elem_size = type2aelembytes(type); 1071 switch (elem_size) { 1072 case 1: return Address::times_1; 1073 case 2: return Address::times_2; 1074 case 4: return Address::times_4; 1075 case 8: return Address::times_8; 1076 } 1077 ShouldNotReachHere(); 1078 return Address::no_scale; 1079 } 1080 1081 1082 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1083 switch (op->code()) { 1084 case lir_idiv: 1085 case lir_irem: 1086 arithmetic_idiv(op->code(), 1087 op->in_opr1(), 1088 op->in_opr2(), 1089 op->in_opr3(), 1090 op->result_opr(), 1091 op->info()); 1092 break; 1093 case lir_fmad: 1094 __ fmad(op->result_opr()->as_xmm_double_reg(), 1095 op->in_opr1()->as_xmm_double_reg(), 1096 op->in_opr2()->as_xmm_double_reg(), 1097 op->in_opr3()->as_xmm_double_reg()); 1098 break; 1099 case lir_fmaf: 1100 __ fmaf(op->result_opr()->as_xmm_float_reg(), 1101 op->in_opr1()->as_xmm_float_reg(), 1102 op->in_opr2()->as_xmm_float_reg(), 1103 op->in_opr3()->as_xmm_float_reg()); 1104 break; 1105 default: ShouldNotReachHere(); break; 1106 } 1107 } 1108 1109 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1110 #ifdef ASSERT 1111 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1112 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1113 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1114 #endif 1115 1116 if (op->cond() == lir_cond_always) { 1117 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1118 __ jmp (*(op->label())); 1119 } else { 1120 Assembler::Condition acond = Assembler::zero; 1121 if (op->code() == lir_cond_float_branch) { 1122 assert(op->ublock() != nullptr, "must have unordered successor"); 1123 __ jcc(Assembler::parity, *(op->ublock()->label())); 1124 switch(op->cond()) { 1125 case lir_cond_equal: acond = Assembler::equal; break; 1126 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1127 case lir_cond_less: acond = Assembler::below; break; 1128 case lir_cond_lessEqual: acond = Assembler::belowEqual; break; 1129 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break; 1130 case lir_cond_greater: acond = Assembler::above; break; 1131 default: ShouldNotReachHere(); 1132 } 1133 } else { 1134 switch (op->cond()) { 1135 case lir_cond_equal: acond = Assembler::equal; break; 1136 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1137 case lir_cond_less: acond = Assembler::less; break; 1138 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 1139 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 1140 case lir_cond_greater: acond = Assembler::greater; break; 1141 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 1142 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 1143 default: ShouldNotReachHere(); 1144 } 1145 } 1146 __ jcc(acond,*(op->label())); 1147 } 1148 } 1149 1150 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1151 LIR_Opr src = op->in_opr(); 1152 LIR_Opr dest = op->result_opr(); 1153 1154 switch (op->bytecode()) { 1155 case Bytecodes::_i2l: 1156 __ movl2ptr(dest->as_register_lo(), src->as_register()); 1157 break; 1158 1159 case Bytecodes::_l2i: 1160 __ movl(dest->as_register(), src->as_register_lo()); 1161 break; 1162 1163 case Bytecodes::_i2b: 1164 move_regs(src->as_register(), dest->as_register()); 1165 __ sign_extend_byte(dest->as_register()); 1166 break; 1167 1168 case Bytecodes::_i2c: 1169 move_regs(src->as_register(), dest->as_register()); 1170 __ andl(dest->as_register(), 0xFFFF); 1171 break; 1172 1173 case Bytecodes::_i2s: 1174 move_regs(src->as_register(), dest->as_register()); 1175 __ sign_extend_short(dest->as_register()); 1176 break; 1177 1178 case Bytecodes::_f2d: 1179 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); 1180 break; 1181 1182 case Bytecodes::_d2f: 1183 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); 1184 break; 1185 1186 case Bytecodes::_i2f: 1187 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register()); 1188 break; 1189 1190 case Bytecodes::_i2d: 1191 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register()); 1192 break; 1193 1194 case Bytecodes::_l2f: 1195 __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo()); 1196 break; 1197 1198 case Bytecodes::_l2d: 1199 __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo()); 1200 break; 1201 1202 case Bytecodes::_f2i: 1203 __ convert_f2i(dest->as_register(), src->as_xmm_float_reg()); 1204 break; 1205 1206 case Bytecodes::_d2i: 1207 __ convert_d2i(dest->as_register(), src->as_xmm_double_reg()); 1208 break; 1209 1210 case Bytecodes::_f2l: 1211 __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg()); 1212 break; 1213 1214 case Bytecodes::_d2l: 1215 __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg()); 1216 break; 1217 1218 default: ShouldNotReachHere(); 1219 } 1220 } 1221 1222 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1223 if (op->init_check()) { 1224 add_debug_info_for_null_check_here(op->stub()->info()); 1225 // init_state needs acquire, but x86 is TSO, and so we are already good. 1226 __ cmpb(Address(op->klass()->as_register(), 1227 InstanceKlass::init_state_offset()), 1228 InstanceKlass::fully_initialized); 1229 __ jcc(Assembler::notEqual, *op->stub()->entry()); 1230 } 1231 __ allocate_object(op->obj()->as_register(), 1232 op->tmp1()->as_register(), 1233 op->tmp2()->as_register(), 1234 op->header_size(), 1235 op->object_size(), 1236 op->klass()->as_register(), 1237 *op->stub()->entry()); 1238 __ bind(*op->stub()->continuation()); 1239 } 1240 1241 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1242 Register len = op->len()->as_register(); 1243 __ movslq(len, len); 1244 1245 if (UseSlowPath || 1246 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1247 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1248 __ jmp(*op->stub()->entry()); 1249 } else { 1250 Register tmp1 = op->tmp1()->as_register(); 1251 Register tmp2 = op->tmp2()->as_register(); 1252 Register tmp3 = op->tmp3()->as_register(); 1253 if (len == tmp1) { 1254 tmp1 = tmp3; 1255 } else if (len == tmp2) { 1256 tmp2 = tmp3; 1257 } else if (len == tmp3) { 1258 // everything is ok 1259 } else { 1260 __ mov(tmp3, len); 1261 } 1262 __ allocate_array(op->obj()->as_register(), 1263 len, 1264 tmp1, 1265 tmp2, 1266 arrayOopDesc::base_offset_in_bytes(op->type()), 1267 array_element_size(op->type()), 1268 op->klass()->as_register(), 1269 *op->stub()->entry(), 1270 op->zero_array()); 1271 } 1272 __ bind(*op->stub()->continuation()); 1273 } 1274 1275 void LIR_Assembler::type_profile_helper(Register mdo, 1276 ciMethodData *md, ciProfileData *data, 1277 Register recv, Label* update_done) { 1278 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1279 Label next_test; 1280 // See if the receiver is receiver[n]. 1281 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1282 __ jccb(Assembler::notEqual, next_test); 1283 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1284 __ addptr(data_addr, DataLayout::counter_increment); 1285 __ jmp(*update_done); 1286 __ bind(next_test); 1287 } 1288 1289 // Didn't find receiver; find next empty slot and fill it in 1290 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1291 Label next_test; 1292 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 1293 __ cmpptr(recv_addr, NULL_WORD); 1294 __ jccb(Assembler::notEqual, next_test); 1295 __ movptr(recv_addr, recv); 1296 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment); 1297 __ jmp(*update_done); 1298 __ bind(next_test); 1299 } 1300 } 1301 1302 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1303 // we always need a stub for the failure case. 1304 CodeStub* stub = op->stub(); 1305 Register obj = op->object()->as_register(); 1306 Register k_RInfo = op->tmp1()->as_register(); 1307 Register klass_RInfo = op->tmp2()->as_register(); 1308 Register dst = op->result_opr()->as_register(); 1309 ciKlass* k = op->klass(); 1310 Register Rtmp1 = noreg; 1311 Register tmp_load_klass = rscratch1; 1312 1313 // check if it needs to be profiled 1314 ciMethodData* md = nullptr; 1315 ciProfileData* data = nullptr; 1316 1317 if (op->should_profile()) { 1318 ciMethod* method = op->profiled_method(); 1319 assert(method != nullptr, "Should have method"); 1320 int bci = op->profiled_bci(); 1321 md = method->method_data_or_null(); 1322 assert(md != nullptr, "Sanity"); 1323 data = md->bci_to_data(bci); 1324 assert(data != nullptr, "need data for type check"); 1325 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1326 } 1327 Label* success_target = success; 1328 Label* failure_target = failure; 1329 1330 if (obj == k_RInfo) { 1331 k_RInfo = dst; 1332 } else if (obj == klass_RInfo) { 1333 klass_RInfo = dst; 1334 } 1335 if (k->is_loaded() && !UseCompressedClassPointers) { 1336 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1337 } else { 1338 Rtmp1 = op->tmp3()->as_register(); 1339 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1340 } 1341 1342 assert_different_registers(obj, k_RInfo, klass_RInfo); 1343 1344 __ testptr(obj, obj); 1345 if (op->should_profile()) { 1346 Label not_null; 1347 Register mdo = klass_RInfo; 1348 __ mov_metadata(mdo, md->constant_encoding()); 1349 __ jccb(Assembler::notEqual, not_null); 1350 // Object is null; update MDO and exit 1351 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1352 int header_bits = BitData::null_seen_byte_constant(); 1353 __ orb(data_addr, header_bits); 1354 __ jmp(*obj_is_null); 1355 __ bind(not_null); 1356 1357 Label update_done; 1358 Register recv = k_RInfo; 1359 __ load_klass(recv, obj, tmp_load_klass); 1360 type_profile_helper(mdo, md, data, recv, &update_done); 1361 1362 Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1363 __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment); 1364 1365 __ bind(update_done); 1366 } else { 1367 __ jcc(Assembler::equal, *obj_is_null); 1368 } 1369 1370 if (!k->is_loaded()) { 1371 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1372 } else { 1373 __ mov_metadata(k_RInfo, k->constant_encoding()); 1374 } 1375 __ verify_oop(obj); 1376 1377 if (op->fast_check()) { 1378 // get object class 1379 // not a safepoint as obj null check happens earlier 1380 if (UseCompressedClassPointers) { 1381 __ load_klass(Rtmp1, obj, tmp_load_klass); 1382 __ cmpptr(k_RInfo, Rtmp1); 1383 } else { 1384 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1385 } 1386 __ jcc(Assembler::notEqual, *failure_target); 1387 // successful cast, fall through to profile or jump 1388 } else { 1389 // get object class 1390 // not a safepoint as obj null check happens earlier 1391 __ load_klass(klass_RInfo, obj, tmp_load_klass); 1392 if (k->is_loaded()) { 1393 // See if we get an immediate positive hit 1394 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset())); 1395 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1396 __ jcc(Assembler::notEqual, *failure_target); 1397 // successful cast, fall through to profile or jump 1398 } else { 1399 // See if we get an immediate positive hit 1400 __ jcc(Assembler::equal, *success_target); 1401 // check for self 1402 __ cmpptr(klass_RInfo, k_RInfo); 1403 __ jcc(Assembler::equal, *success_target); 1404 1405 __ push_ppx(klass_RInfo); 1406 __ push_ppx(k_RInfo); 1407 __ call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1408 __ pop_ppx(klass_RInfo); 1409 __ pop_ppx(klass_RInfo); 1410 // result is a boolean 1411 __ testl(klass_RInfo, klass_RInfo); 1412 __ jcc(Assembler::equal, *failure_target); 1413 // successful cast, fall through to profile or jump 1414 } 1415 } else { 1416 // perform the fast part of the checking logic 1417 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1418 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1419 __ push_ppx(klass_RInfo); 1420 __ push_ppx(k_RInfo); 1421 __ call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1422 __ pop_ppx(klass_RInfo); 1423 __ pop_ppx(k_RInfo); 1424 // result is a boolean 1425 __ testl(k_RInfo, k_RInfo); 1426 __ jcc(Assembler::equal, *failure_target); 1427 // successful cast, fall through to profile or jump 1428 } 1429 } 1430 __ jmp(*success); 1431 } 1432 1433 1434 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1435 Register tmp_load_klass = rscratch1; 1436 LIR_Code code = op->code(); 1437 if (code == lir_store_check) { 1438 Register value = op->object()->as_register(); 1439 Register array = op->array()->as_register(); 1440 Register k_RInfo = op->tmp1()->as_register(); 1441 Register klass_RInfo = op->tmp2()->as_register(); 1442 Register Rtmp1 = op->tmp3()->as_register(); 1443 1444 CodeStub* stub = op->stub(); 1445 1446 // check if it needs to be profiled 1447 ciMethodData* md = nullptr; 1448 ciProfileData* data = nullptr; 1449 1450 if (op->should_profile()) { 1451 ciMethod* method = op->profiled_method(); 1452 assert(method != nullptr, "Should have method"); 1453 int bci = op->profiled_bci(); 1454 md = method->method_data_or_null(); 1455 assert(md != nullptr, "Sanity"); 1456 data = md->bci_to_data(bci); 1457 assert(data != nullptr, "need data for type check"); 1458 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1459 } 1460 Label done; 1461 Label* success_target = &done; 1462 Label* failure_target = stub->entry(); 1463 1464 __ testptr(value, value); 1465 if (op->should_profile()) { 1466 Label not_null; 1467 Register mdo = klass_RInfo; 1468 __ mov_metadata(mdo, md->constant_encoding()); 1469 __ jccb(Assembler::notEqual, not_null); 1470 // Object is null; update MDO and exit 1471 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1472 int header_bits = BitData::null_seen_byte_constant(); 1473 __ orb(data_addr, header_bits); 1474 __ jmp(done); 1475 __ bind(not_null); 1476 1477 Label update_done; 1478 Register recv = k_RInfo; 1479 __ load_klass(recv, value, tmp_load_klass); 1480 type_profile_helper(mdo, md, data, recv, &update_done); 1481 1482 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1483 __ addptr(counter_addr, DataLayout::counter_increment); 1484 __ bind(update_done); 1485 } else { 1486 __ jcc(Assembler::equal, done); 1487 } 1488 1489 add_debug_info_for_null_check_here(op->info_for_exception()); 1490 __ load_klass(k_RInfo, array, tmp_load_klass); 1491 __ load_klass(klass_RInfo, value, tmp_load_klass); 1492 1493 // get instance klass (it's already uncompressed) 1494 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1495 // perform the fast part of the checking logic 1496 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1497 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1498 __ push_ppx(klass_RInfo); 1499 __ push_ppx(k_RInfo); 1500 __ call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1501 __ pop_ppx(klass_RInfo); 1502 __ pop_ppx(k_RInfo); 1503 // result is a boolean 1504 __ testl(k_RInfo, k_RInfo); 1505 __ jcc(Assembler::equal, *failure_target); 1506 // fall through to the success case 1507 1508 __ bind(done); 1509 } else 1510 if (code == lir_checkcast) { 1511 Register obj = op->object()->as_register(); 1512 Register dst = op->result_opr()->as_register(); 1513 Label success; 1514 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1515 __ bind(success); 1516 if (dst != obj) { 1517 __ mov(dst, obj); 1518 } 1519 } else 1520 if (code == lir_instanceof) { 1521 Register obj = op->object()->as_register(); 1522 Register dst = op->result_opr()->as_register(); 1523 Label success, failure, done; 1524 emit_typecheck_helper(op, &success, &failure, &failure); 1525 __ bind(failure); 1526 __ xorptr(dst, dst); 1527 __ jmpb(done); 1528 __ bind(success); 1529 __ movptr(dst, 1); 1530 __ bind(done); 1531 } else { 1532 ShouldNotReachHere(); 1533 } 1534 1535 } 1536 1537 1538 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1539 if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { 1540 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1541 Register newval = op->new_value()->as_register(); 1542 Register cmpval = op->cmp_value()->as_register(); 1543 assert(cmpval == rax, "wrong register"); 1544 assert(newval != noreg, "new val must be register"); 1545 assert(cmpval != newval, "cmp and new values must be in different registers"); 1546 assert(cmpval != addr, "cmp and addr must be in different registers"); 1547 assert(newval != addr, "new value and addr must be in different registers"); 1548 1549 if (op->code() == lir_cas_obj) { 1550 if (UseCompressedOops) { 1551 __ encode_heap_oop(cmpval); 1552 __ mov(rscratch1, newval); 1553 __ encode_heap_oop(rscratch1); 1554 __ lock(); 1555 // cmpval (rax) is implicitly used by this instruction 1556 __ cmpxchgl(rscratch1, Address(addr, 0)); 1557 } else { 1558 __ lock(); 1559 __ cmpxchgptr(newval, Address(addr, 0)); 1560 } 1561 } else { 1562 assert(op->code() == lir_cas_int, "lir_cas_int expected"); 1563 __ lock(); 1564 __ cmpxchgl(newval, Address(addr, 0)); 1565 } 1566 } else if (op->code() == lir_cas_long) { 1567 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1568 Register newval = op->new_value()->as_register_lo(); 1569 Register cmpval = op->cmp_value()->as_register_lo(); 1570 assert(cmpval == rax, "wrong register"); 1571 assert(newval != noreg, "new val must be register"); 1572 assert(cmpval != newval, "cmp and new values must be in different registers"); 1573 assert(cmpval != addr, "cmp and addr must be in different registers"); 1574 assert(newval != addr, "new value and addr must be in different registers"); 1575 __ lock(); 1576 __ cmpxchgq(newval, Address(addr, 0)); 1577 } else { 1578 Unimplemented(); 1579 } 1580 } 1581 1582 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1583 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1584 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86"); 1585 1586 Assembler::Condition acond, ncond; 1587 switch (condition) { 1588 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break; 1589 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break; 1590 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break; 1591 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break; 1592 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break; 1593 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break; 1594 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break; 1595 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break; 1596 default: acond = Assembler::equal; ncond = Assembler::notEqual; 1597 ShouldNotReachHere(); 1598 } 1599 1600 if (opr1->is_cpu_register()) { 1601 reg2reg(opr1, result); 1602 } else if (opr1->is_stack()) { 1603 stack2reg(opr1, result, result->type()); 1604 } else if (opr1->is_constant()) { 1605 const2reg(opr1, result, lir_patch_none, nullptr); 1606 } else { 1607 ShouldNotReachHere(); 1608 } 1609 1610 if (VM_Version::supports_cmov() && !opr2->is_constant()) { 1611 // optimized version that does not require a branch 1612 if (opr2->is_single_cpu()) { 1613 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); 1614 __ cmov(ncond, result->as_register(), opr2->as_register()); 1615 } else if (opr2->is_double_cpu()) { 1616 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1617 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1618 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo()); 1619 } else if (opr2->is_single_stack()) { 1620 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix())); 1621 } else if (opr2->is_double_stack()) { 1622 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes)); 1623 } else { 1624 ShouldNotReachHere(); 1625 } 1626 1627 } else { 1628 Label skip; 1629 __ jccb(acond, skip); 1630 if (opr2->is_cpu_register()) { 1631 reg2reg(opr2, result); 1632 } else if (opr2->is_stack()) { 1633 stack2reg(opr2, result, result->type()); 1634 } else if (opr2->is_constant()) { 1635 const2reg(opr2, result, lir_patch_none, nullptr); 1636 } else { 1637 ShouldNotReachHere(); 1638 } 1639 __ bind(skip); 1640 } 1641 } 1642 1643 1644 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info) { 1645 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1646 1647 if (left->is_single_cpu()) { 1648 assert(left == dest, "left and dest must be equal"); 1649 Register lreg = left->as_register(); 1650 1651 if (right->is_single_cpu()) { 1652 // cpu register - cpu register 1653 Register rreg = right->as_register(); 1654 switch (code) { 1655 case lir_add: __ addl (lreg, rreg); break; 1656 case lir_sub: __ subl (lreg, rreg); break; 1657 case lir_mul: __ imull(lreg, rreg); break; 1658 default: ShouldNotReachHere(); 1659 } 1660 1661 } else if (right->is_stack()) { 1662 // cpu register - stack 1663 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1664 switch (code) { 1665 case lir_add: __ addl(lreg, raddr); break; 1666 case lir_sub: __ subl(lreg, raddr); break; 1667 default: ShouldNotReachHere(); 1668 } 1669 1670 } else if (right->is_constant()) { 1671 // cpu register - constant 1672 jint c = right->as_constant_ptr()->as_jint(); 1673 switch (code) { 1674 case lir_add: { 1675 __ incrementl(lreg, c); 1676 break; 1677 } 1678 case lir_sub: { 1679 __ decrementl(lreg, c); 1680 break; 1681 } 1682 default: ShouldNotReachHere(); 1683 } 1684 1685 } else { 1686 ShouldNotReachHere(); 1687 } 1688 1689 } else if (left->is_double_cpu()) { 1690 assert(left == dest, "left and dest must be equal"); 1691 Register lreg_lo = left->as_register_lo(); 1692 Register lreg_hi = left->as_register_hi(); 1693 1694 if (right->is_double_cpu()) { 1695 // cpu register - cpu register 1696 Register rreg_lo = right->as_register_lo(); 1697 Register rreg_hi = right->as_register_hi(); 1698 assert_different_registers(lreg_lo, rreg_lo); 1699 switch (code) { 1700 case lir_add: 1701 __ addptr(lreg_lo, rreg_lo); 1702 break; 1703 case lir_sub: 1704 __ subptr(lreg_lo, rreg_lo); 1705 break; 1706 case lir_mul: 1707 __ imulq(lreg_lo, rreg_lo); 1708 break; 1709 default: 1710 ShouldNotReachHere(); 1711 } 1712 1713 } else if (right->is_constant()) { 1714 // cpu register - constant 1715 jlong c = right->as_constant_ptr()->as_jlong_bits(); 1716 __ movptr(r10, (intptr_t) c); 1717 switch (code) { 1718 case lir_add: 1719 __ addptr(lreg_lo, r10); 1720 break; 1721 case lir_sub: 1722 __ subptr(lreg_lo, r10); 1723 break; 1724 default: 1725 ShouldNotReachHere(); 1726 } 1727 1728 } else { 1729 ShouldNotReachHere(); 1730 } 1731 1732 } else if (left->is_single_xmm()) { 1733 assert(left == dest, "left and dest must be equal"); 1734 XMMRegister lreg = left->as_xmm_float_reg(); 1735 1736 if (right->is_single_xmm()) { 1737 XMMRegister rreg = right->as_xmm_float_reg(); 1738 switch (code) { 1739 case lir_add: __ addss(lreg, rreg); break; 1740 case lir_sub: __ subss(lreg, rreg); break; 1741 case lir_mul: __ mulss(lreg, rreg); break; 1742 case lir_div: __ divss(lreg, rreg); break; 1743 default: ShouldNotReachHere(); 1744 } 1745 } else { 1746 Address raddr; 1747 if (right->is_single_stack()) { 1748 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1749 } else if (right->is_constant()) { 1750 // hack for now 1751 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat()))); 1752 } else { 1753 ShouldNotReachHere(); 1754 } 1755 switch (code) { 1756 case lir_add: __ addss(lreg, raddr); break; 1757 case lir_sub: __ subss(lreg, raddr); break; 1758 case lir_mul: __ mulss(lreg, raddr); break; 1759 case lir_div: __ divss(lreg, raddr); break; 1760 default: ShouldNotReachHere(); 1761 } 1762 } 1763 1764 } else if (left->is_double_xmm()) { 1765 assert(left == dest, "left and dest must be equal"); 1766 1767 XMMRegister lreg = left->as_xmm_double_reg(); 1768 if (right->is_double_xmm()) { 1769 XMMRegister rreg = right->as_xmm_double_reg(); 1770 switch (code) { 1771 case lir_add: __ addsd(lreg, rreg); break; 1772 case lir_sub: __ subsd(lreg, rreg); break; 1773 case lir_mul: __ mulsd(lreg, rreg); break; 1774 case lir_div: __ divsd(lreg, rreg); break; 1775 default: ShouldNotReachHere(); 1776 } 1777 } else { 1778 Address raddr; 1779 if (right->is_double_stack()) { 1780 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 1781 } else if (right->is_constant()) { 1782 // hack for now 1783 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 1784 } else { 1785 ShouldNotReachHere(); 1786 } 1787 switch (code) { 1788 case lir_add: __ addsd(lreg, raddr); break; 1789 case lir_sub: __ subsd(lreg, raddr); break; 1790 case lir_mul: __ mulsd(lreg, raddr); break; 1791 case lir_div: __ divsd(lreg, raddr); break; 1792 default: ShouldNotReachHere(); 1793 } 1794 } 1795 1796 } else if (left->is_single_stack() || left->is_address()) { 1797 assert(left == dest, "left and dest must be equal"); 1798 1799 Address laddr; 1800 if (left->is_single_stack()) { 1801 laddr = frame_map()->address_for_slot(left->single_stack_ix()); 1802 } else if (left->is_address()) { 1803 laddr = as_Address(left->as_address_ptr()); 1804 } else { 1805 ShouldNotReachHere(); 1806 } 1807 1808 if (right->is_single_cpu()) { 1809 Register rreg = right->as_register(); 1810 switch (code) { 1811 case lir_add: __ addl(laddr, rreg); break; 1812 case lir_sub: __ subl(laddr, rreg); break; 1813 default: ShouldNotReachHere(); 1814 } 1815 } else if (right->is_constant()) { 1816 jint c = right->as_constant_ptr()->as_jint(); 1817 switch (code) { 1818 case lir_add: { 1819 __ incrementl(laddr, c); 1820 break; 1821 } 1822 case lir_sub: { 1823 __ decrementl(laddr, c); 1824 break; 1825 } 1826 default: ShouldNotReachHere(); 1827 } 1828 } else { 1829 ShouldNotReachHere(); 1830 } 1831 1832 } else { 1833 ShouldNotReachHere(); 1834 } 1835 } 1836 1837 1838 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1839 if (value->is_double_xmm()) { 1840 switch(code) { 1841 case lir_abs : 1842 { 1843 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) { 1844 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); 1845 } 1846 assert(!tmp->is_valid(), "do not need temporary"); 1847 __ andpd(dest->as_xmm_double_reg(), 1848 ExternalAddress(LIR_Assembler::double_signmask_pool), 1849 rscratch1); 1850 } 1851 break; 1852 1853 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break; 1854 // all other intrinsics are not available in the SSE instruction set, so FPU is used 1855 default : ShouldNotReachHere(); 1856 } 1857 1858 } else if (code == lir_f2hf) { 1859 __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg()); 1860 } else if (code == lir_hf2f) { 1861 __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register()); 1862 } else { 1863 Unimplemented(); 1864 } 1865 } 1866 1867 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1868 // assert(left->destroys_register(), "check"); 1869 if (left->is_single_cpu()) { 1870 Register reg = left->as_register(); 1871 if (right->is_constant()) { 1872 int val = right->as_constant_ptr()->as_jint(); 1873 switch (code) { 1874 case lir_logic_and: __ andl (reg, val); break; 1875 case lir_logic_or: __ orl (reg, val); break; 1876 case lir_logic_xor: __ xorl (reg, val); break; 1877 default: ShouldNotReachHere(); 1878 } 1879 } else if (right->is_stack()) { 1880 // added support for stack operands 1881 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1882 switch (code) { 1883 case lir_logic_and: __ andl (reg, raddr); break; 1884 case lir_logic_or: __ orl (reg, raddr); break; 1885 case lir_logic_xor: __ xorl (reg, raddr); break; 1886 default: ShouldNotReachHere(); 1887 } 1888 } else { 1889 Register rright = right->as_register(); 1890 switch (code) { 1891 case lir_logic_and: __ andptr (reg, rright); break; 1892 case lir_logic_or : __ orptr (reg, rright); break; 1893 case lir_logic_xor: __ xorptr (reg, rright); break; 1894 default: ShouldNotReachHere(); 1895 } 1896 } 1897 move_regs(reg, dst->as_register()); 1898 } else { 1899 Register l_lo = left->as_register_lo(); 1900 Register l_hi = left->as_register_hi(); 1901 if (right->is_constant()) { 1902 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong()); 1903 switch (code) { 1904 case lir_logic_and: 1905 __ andq(l_lo, rscratch1); 1906 break; 1907 case lir_logic_or: 1908 __ orq(l_lo, rscratch1); 1909 break; 1910 case lir_logic_xor: 1911 __ xorq(l_lo, rscratch1); 1912 break; 1913 default: ShouldNotReachHere(); 1914 } 1915 } else { 1916 Register r_lo; 1917 if (is_reference_type(right->type())) { 1918 r_lo = right->as_register(); 1919 } else { 1920 r_lo = right->as_register_lo(); 1921 } 1922 switch (code) { 1923 case lir_logic_and: 1924 __ andptr(l_lo, r_lo); 1925 break; 1926 case lir_logic_or: 1927 __ orptr(l_lo, r_lo); 1928 break; 1929 case lir_logic_xor: 1930 __ xorptr(l_lo, r_lo); 1931 break; 1932 default: ShouldNotReachHere(); 1933 } 1934 } 1935 1936 Register dst_lo = dst->as_register_lo(); 1937 Register dst_hi = dst->as_register_hi(); 1938 1939 move_regs(l_lo, dst_lo); 1940 } 1941 } 1942 1943 1944 // we assume that rax, and rdx can be overwritten 1945 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 1946 1947 assert(left->is_single_cpu(), "left must be register"); 1948 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1949 assert(result->is_single_cpu(), "result must be register"); 1950 1951 // assert(left->destroys_register(), "check"); 1952 // assert(right->destroys_register(), "check"); 1953 1954 Register lreg = left->as_register(); 1955 Register dreg = result->as_register(); 1956 1957 if (right->is_constant()) { 1958 jint divisor = right->as_constant_ptr()->as_jint(); 1959 assert(divisor > 0 && is_power_of_2(divisor), "must be"); 1960 if (code == lir_idiv) { 1961 assert(lreg == rax, "must be rax,"); 1962 assert(temp->as_register() == rdx, "tmp register must be rdx"); 1963 __ cdql(); // sign extend into rdx:rax 1964 if (divisor == 2) { 1965 __ subl(lreg, rdx); 1966 } else { 1967 __ andl(rdx, divisor - 1); 1968 __ addl(lreg, rdx); 1969 } 1970 __ sarl(lreg, log2i_exact(divisor)); 1971 move_regs(lreg, dreg); 1972 } else if (code == lir_irem) { 1973 Label done; 1974 __ mov(dreg, lreg); 1975 __ andl(dreg, 0x80000000 | (divisor - 1)); 1976 __ jcc(Assembler::positive, done); 1977 __ decrement(dreg); 1978 __ orl(dreg, ~(divisor - 1)); 1979 __ increment(dreg); 1980 __ bind(done); 1981 } else { 1982 ShouldNotReachHere(); 1983 } 1984 } else { 1985 Register rreg = right->as_register(); 1986 assert(lreg == rax, "left register must be rax,"); 1987 assert(rreg != rdx, "right register must not be rdx"); 1988 assert(temp->as_register() == rdx, "tmp register must be rdx"); 1989 1990 move_regs(lreg, rax); 1991 1992 int idivl_offset = __ corrected_idivl(rreg); 1993 if (ImplicitDiv0Checks) { 1994 add_debug_info_for_div0(idivl_offset, info); 1995 } 1996 if (code == lir_irem) { 1997 move_regs(rdx, dreg); // result is in rdx 1998 } else { 1999 move_regs(rax, dreg); 2000 } 2001 } 2002 } 2003 2004 2005 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 2006 if (opr1->is_single_cpu()) { 2007 Register reg1 = opr1->as_register(); 2008 if (opr2->is_single_cpu()) { 2009 // cpu register - cpu register 2010 if (is_reference_type(opr1->type())) { 2011 __ cmpoop(reg1, opr2->as_register()); 2012 } else { 2013 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 2014 __ cmpl(reg1, opr2->as_register()); 2015 } 2016 } else if (opr2->is_stack()) { 2017 // cpu register - stack 2018 if (is_reference_type(opr1->type())) { 2019 __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2020 } else { 2021 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2022 } 2023 } else if (opr2->is_constant()) { 2024 // cpu register - constant 2025 LIR_Const* c = opr2->as_constant_ptr(); 2026 if (c->type() == T_INT) { 2027 jint i = c->as_jint(); 2028 if (i == 0) { 2029 __ testl(reg1, reg1); 2030 } else { 2031 __ cmpl(reg1, i); 2032 } 2033 } else if (c->type() == T_METADATA) { 2034 // All we need for now is a comparison with null for equality. 2035 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 2036 Metadata* m = c->as_metadata(); 2037 if (m == nullptr) { 2038 __ testptr(reg1, reg1); 2039 } else { 2040 ShouldNotReachHere(); 2041 } 2042 } else if (is_reference_type(c->type())) { 2043 // In 64bit oops are single register 2044 jobject o = c->as_jobject(); 2045 if (o == nullptr) { 2046 __ testptr(reg1, reg1); 2047 } else { 2048 __ cmpoop(reg1, o, rscratch1); 2049 } 2050 } else { 2051 fatal("unexpected type: %s", basictype_to_str(c->type())); 2052 } 2053 // cpu register - address 2054 } else if (opr2->is_address()) { 2055 if (op->info() != nullptr) { 2056 add_debug_info_for_null_check_here(op->info()); 2057 } 2058 __ cmpl(reg1, as_Address(opr2->as_address_ptr())); 2059 } else { 2060 ShouldNotReachHere(); 2061 } 2062 2063 } else if(opr1->is_double_cpu()) { 2064 Register xlo = opr1->as_register_lo(); 2065 Register xhi = opr1->as_register_hi(); 2066 if (opr2->is_double_cpu()) { 2067 __ cmpptr(xlo, opr2->as_register_lo()); 2068 } else if (opr2->is_constant()) { 2069 // cpu register - constant 0 2070 assert(opr2->as_jlong() == (jlong)0, "only handles zero"); 2071 __ cmpptr(xlo, (int32_t)opr2->as_jlong()); 2072 } else { 2073 ShouldNotReachHere(); 2074 } 2075 2076 } else if (opr1->is_single_xmm()) { 2077 XMMRegister reg1 = opr1->as_xmm_float_reg(); 2078 if (opr2->is_single_xmm()) { 2079 // xmm register - xmm register 2080 __ ucomiss(reg1, opr2->as_xmm_float_reg()); 2081 } else if (opr2->is_stack()) { 2082 // xmm register - stack 2083 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2084 } else if (opr2->is_constant()) { 2085 // xmm register - constant 2086 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat()))); 2087 } else if (opr2->is_address()) { 2088 // xmm register - address 2089 if (op->info() != nullptr) { 2090 add_debug_info_for_null_check_here(op->info()); 2091 } 2092 __ ucomiss(reg1, as_Address(opr2->as_address_ptr())); 2093 } else { 2094 ShouldNotReachHere(); 2095 } 2096 2097 } else if (opr1->is_double_xmm()) { 2098 XMMRegister reg1 = opr1->as_xmm_double_reg(); 2099 if (opr2->is_double_xmm()) { 2100 // xmm register - xmm register 2101 __ ucomisd(reg1, opr2->as_xmm_double_reg()); 2102 } else if (opr2->is_stack()) { 2103 // xmm register - stack 2104 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix())); 2105 } else if (opr2->is_constant()) { 2106 // xmm register - constant 2107 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble()))); 2108 } else if (opr2->is_address()) { 2109 // xmm register - address 2110 if (op->info() != nullptr) { 2111 add_debug_info_for_null_check_here(op->info()); 2112 } 2113 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address())); 2114 } else { 2115 ShouldNotReachHere(); 2116 } 2117 2118 } else if (opr1->is_address() && opr2->is_constant()) { 2119 LIR_Const* c = opr2->as_constant_ptr(); 2120 if (is_reference_type(c->type())) { 2121 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse"); 2122 __ movoop(rscratch1, c->as_jobject()); 2123 } 2124 if (op->info() != nullptr) { 2125 add_debug_info_for_null_check_here(op->info()); 2126 } 2127 // special case: address - constant 2128 LIR_Address* addr = opr1->as_address_ptr(); 2129 if (c->type() == T_INT) { 2130 __ cmpl(as_Address(addr), c->as_jint()); 2131 } else if (is_reference_type(c->type())) { 2132 // %%% Make this explode if addr isn't reachable until we figure out a 2133 // better strategy by giving noreg as the temp for as_Address 2134 __ cmpoop(rscratch1, as_Address(addr, noreg)); 2135 } else { 2136 ShouldNotReachHere(); 2137 } 2138 2139 } else { 2140 ShouldNotReachHere(); 2141 } 2142 } 2143 2144 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { 2145 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2146 if (left->is_single_xmm()) { 2147 assert(right->is_single_xmm(), "must match"); 2148 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2149 } else if (left->is_double_xmm()) { 2150 assert(right->is_double_xmm(), "must match"); 2151 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2152 2153 } else { 2154 ShouldNotReachHere(); 2155 } 2156 } else { 2157 assert(code == lir_cmp_l2i, "check"); 2158 Label done; 2159 Register dest = dst->as_register(); 2160 __ cmpptr(left->as_register_lo(), right->as_register_lo()); 2161 __ movl(dest, -1); 2162 __ jccb(Assembler::less, done); 2163 __ setb(Assembler::notZero, dest); 2164 __ movzbl(dest, dest); 2165 __ bind(done); 2166 } 2167 } 2168 2169 2170 void LIR_Assembler::align_call(LIR_Code code) { 2171 // make sure that the displacement word of the call ends up word aligned 2172 int offset = __ offset(); 2173 switch (code) { 2174 case lir_static_call: 2175 case lir_optvirtual_call: 2176 case lir_dynamic_call: 2177 offset += NativeCall::displacement_offset; 2178 break; 2179 case lir_icvirtual_call: 2180 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size_rex; 2181 break; 2182 default: ShouldNotReachHere(); 2183 } 2184 __ align(BytesPerWord, offset); 2185 } 2186 2187 2188 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2189 assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0, 2190 "must be aligned"); 2191 __ call(AddressLiteral(op->addr(), rtype)); 2192 add_call_info(code_offset(), op->info()); 2193 __ post_call_nop(); 2194 } 2195 2196 2197 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2198 __ ic_call(op->addr()); 2199 add_call_info(code_offset(), op->info()); 2200 assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0, 2201 "must be aligned"); 2202 __ post_call_nop(); 2203 } 2204 2205 2206 void LIR_Assembler::emit_static_call_stub() { 2207 address call_pc = __ pc(); 2208 address stub = __ start_a_stub(call_stub_size()); 2209 if (stub == nullptr) { 2210 bailout("static call stub overflow"); 2211 return; 2212 } 2213 2214 int start = __ offset(); 2215 2216 // make sure that the displacement word of the call ends up word aligned 2217 __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size_rex + NativeCall::displacement_offset); 2218 __ relocate(static_stub_Relocation::spec(call_pc)); 2219 __ mov_metadata(rbx, (Metadata*)nullptr); 2220 // must be set to -1 at code generation time 2221 assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned"); 2222 // On 64bit this will die since it will take a movq & jmp, must be only a jmp 2223 __ jump(RuntimeAddress(__ pc())); 2224 2225 assert(__ offset() - start <= call_stub_size(), "stub too big"); 2226 __ end_a_stub(); 2227 } 2228 2229 2230 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2231 assert(exceptionOop->as_register() == rax, "must match"); 2232 assert(exceptionPC->as_register() == rdx, "must match"); 2233 2234 // exception object is not added to oop map by LinearScan 2235 // (LinearScan assumes that no oops are in fixed registers) 2236 info->add_register_oop(exceptionOop); 2237 StubId unwind_id; 2238 2239 // get current pc information 2240 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2241 int pc_for_athrow_offset = __ offset(); 2242 InternalAddress pc_for_athrow(__ pc()); 2243 __ lea(exceptionPC->as_register(), pc_for_athrow); 2244 add_call_info(pc_for_athrow_offset, info); // for exception handler 2245 2246 __ verify_not_null_oop(rax); 2247 // search an exception handler (rax: exception oop, rdx: throwing pc) 2248 if (compilation()->has_fpu_code()) { 2249 unwind_id = StubId::c1_handle_exception_id; 2250 } else { 2251 unwind_id = StubId::c1_handle_exception_nofpu_id; 2252 } 2253 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2254 2255 // enough room for two byte trap 2256 __ nop(); 2257 } 2258 2259 2260 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2261 assert(exceptionOop->as_register() == rax, "must match"); 2262 2263 __ jmp(_unwind_handler_entry); 2264 } 2265 2266 2267 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2268 2269 // optimized version for linear scan: 2270 // * count must be already in ECX (guaranteed by LinearScan) 2271 // * left and dest must be equal 2272 // * tmp must be unused 2273 assert(count->as_register() == SHIFT_count, "count must be in ECX"); 2274 assert(left == dest, "left and dest must be equal"); 2275 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2276 2277 if (left->is_single_cpu()) { 2278 Register value = left->as_register(); 2279 assert(value != SHIFT_count, "left cannot be ECX"); 2280 2281 switch (code) { 2282 case lir_shl: __ shll(value); break; 2283 case lir_shr: __ sarl(value); break; 2284 case lir_ushr: __ shrl(value); break; 2285 default: ShouldNotReachHere(); 2286 } 2287 } else if (left->is_double_cpu()) { 2288 Register lo = left->as_register_lo(); 2289 Register hi = left->as_register_hi(); 2290 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX"); 2291 switch (code) { 2292 case lir_shl: __ shlptr(lo); break; 2293 case lir_shr: __ sarptr(lo); break; 2294 case lir_ushr: __ shrptr(lo); break; 2295 default: ShouldNotReachHere(); 2296 } 2297 } else { 2298 ShouldNotReachHere(); 2299 } 2300 } 2301 2302 2303 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2304 if (dest->is_single_cpu()) { 2305 // first move left into dest so that left is not destroyed by the shift 2306 Register value = dest->as_register(); 2307 count = count & 0x1F; // Java spec 2308 2309 move_regs(left->as_register(), value); 2310 switch (code) { 2311 case lir_shl: __ shll(value, count); break; 2312 case lir_shr: __ sarl(value, count); break; 2313 case lir_ushr: __ shrl(value, count); break; 2314 default: ShouldNotReachHere(); 2315 } 2316 } else if (dest->is_double_cpu()) { 2317 // first move left into dest so that left is not destroyed by the shift 2318 Register value = dest->as_register_lo(); 2319 count = count & 0x1F; // Java spec 2320 2321 move_regs(left->as_register_lo(), value); 2322 switch (code) { 2323 case lir_shl: __ shlptr(value, count); break; 2324 case lir_shr: __ sarptr(value, count); break; 2325 case lir_ushr: __ shrptr(value, count); break; 2326 default: ShouldNotReachHere(); 2327 } 2328 } else { 2329 ShouldNotReachHere(); 2330 } 2331 } 2332 2333 2334 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2335 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2336 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2337 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2338 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r); 2339 } 2340 2341 2342 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2343 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2344 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2345 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2346 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c); 2347 } 2348 2349 2350 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2351 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2352 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2353 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2354 __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1); 2355 } 2356 2357 2358 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) { 2359 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2360 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2361 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2362 __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1); 2363 } 2364 2365 2366 // This code replaces a call to arraycopy; no exception may 2367 // be thrown in this code, they must be thrown in the System.arraycopy 2368 // activation frame; we could save some checks if this would not be the case 2369 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2370 ciArrayKlass* default_type = op->expected_type(); 2371 Register src = op->src()->as_register(); 2372 Register dst = op->dst()->as_register(); 2373 Register src_pos = op->src_pos()->as_register(); 2374 Register dst_pos = op->dst_pos()->as_register(); 2375 Register length = op->length()->as_register(); 2376 Register tmp = op->tmp()->as_register(); 2377 Register tmp_load_klass = rscratch1; 2378 Register tmp2 = UseCompactObjectHeaders ? rscratch2 : noreg; 2379 2380 CodeStub* stub = op->stub(); 2381 int flags = op->flags(); 2382 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2383 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2384 2385 // if we don't know anything, just go through the generic arraycopy 2386 if (default_type == nullptr) { 2387 // save outgoing arguments on stack in case call to System.arraycopy is needed 2388 // HACK ALERT. This code used to push the parameters in a hardwired fashion 2389 // for interpreter calling conventions. Now we have to do it in new style conventions. 2390 // For the moment until C1 gets the new register allocator I just force all the 2391 // args to the right place (except the register args) and then on the back side 2392 // reload the register args properly if we go slow path. Yuck 2393 2394 // These are proper for the calling convention 2395 store_parameter(length, 2); 2396 store_parameter(dst_pos, 1); 2397 store_parameter(dst, 0); 2398 2399 // these are just temporary placements until we need to reload 2400 store_parameter(src_pos, 3); 2401 store_parameter(src, 4); 2402 2403 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2404 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2405 2406 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint 2407 // The arguments are in java calling convention so we can trivially shift them to C 2408 // convention 2409 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2410 __ mov(c_rarg0, j_rarg0); 2411 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2412 __ mov(c_rarg1, j_rarg1); 2413 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2414 __ mov(c_rarg2, j_rarg2); 2415 assert_different_registers(c_rarg3, j_rarg4); 2416 __ mov(c_rarg3, j_rarg3); 2417 #ifdef _WIN64 2418 // Allocate abi space for args but be sure to keep stack aligned 2419 __ subptr(rsp, 6*wordSize); 2420 store_parameter(j_rarg4, 4); 2421 #ifndef PRODUCT 2422 if (PrintC1Statistics) { 2423 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 2424 } 2425 #endif 2426 __ call(RuntimeAddress(copyfunc_addr)); 2427 __ addptr(rsp, 6*wordSize); 2428 #else 2429 __ mov(c_rarg4, j_rarg4); 2430 #ifndef PRODUCT 2431 if (PrintC1Statistics) { 2432 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 2433 } 2434 #endif 2435 __ call(RuntimeAddress(copyfunc_addr)); 2436 #endif // _WIN64 2437 2438 __ testl(rax, rax); 2439 __ jcc(Assembler::equal, *stub->continuation()); 2440 2441 __ mov(tmp, rax); 2442 __ xorl(tmp, -1); 2443 2444 // Reload values from the stack so they are where the stub 2445 // expects them. 2446 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 2447 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 2448 __ movptr (length, Address(rsp, 2*BytesPerWord)); 2449 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 2450 __ movptr (src, Address(rsp, 4*BytesPerWord)); 2451 2452 __ subl(length, tmp); 2453 __ addl(src_pos, tmp); 2454 __ addl(dst_pos, tmp); 2455 __ jmp(*stub->entry()); 2456 2457 __ bind(*stub->continuation()); 2458 return; 2459 } 2460 2461 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2462 2463 int elem_size = type2aelembytes(basic_type); 2464 Address::ScaleFactor scale; 2465 2466 switch (elem_size) { 2467 case 1 : 2468 scale = Address::times_1; 2469 break; 2470 case 2 : 2471 scale = Address::times_2; 2472 break; 2473 case 4 : 2474 scale = Address::times_4; 2475 break; 2476 case 8 : 2477 scale = Address::times_8; 2478 break; 2479 default: 2480 scale = Address::no_scale; 2481 ShouldNotReachHere(); 2482 } 2483 2484 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2485 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2486 2487 // length and pos's are all sign extended at this point on 64bit 2488 2489 // test for null 2490 if (flags & LIR_OpArrayCopy::src_null_check) { 2491 __ testptr(src, src); 2492 __ jcc(Assembler::zero, *stub->entry()); 2493 } 2494 if (flags & LIR_OpArrayCopy::dst_null_check) { 2495 __ testptr(dst, dst); 2496 __ jcc(Assembler::zero, *stub->entry()); 2497 } 2498 2499 // If the compiler was not able to prove that exact type of the source or the destination 2500 // of the arraycopy is an array type, check at runtime if the source or the destination is 2501 // an instance type. 2502 if (flags & LIR_OpArrayCopy::type_check) { 2503 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2504 __ load_klass(tmp, dst, tmp_load_klass); 2505 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 2506 __ jcc(Assembler::greaterEqual, *stub->entry()); 2507 } 2508 2509 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2510 __ load_klass(tmp, src, tmp_load_klass); 2511 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 2512 __ jcc(Assembler::greaterEqual, *stub->entry()); 2513 } 2514 } 2515 2516 // check if negative 2517 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2518 __ testl(src_pos, src_pos); 2519 __ jcc(Assembler::less, *stub->entry()); 2520 } 2521 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2522 __ testl(dst_pos, dst_pos); 2523 __ jcc(Assembler::less, *stub->entry()); 2524 } 2525 2526 if (flags & LIR_OpArrayCopy::src_range_check) { 2527 __ lea(tmp, Address(src_pos, length, Address::times_1, 0)); 2528 __ cmpl(tmp, src_length_addr); 2529 __ jcc(Assembler::above, *stub->entry()); 2530 } 2531 if (flags & LIR_OpArrayCopy::dst_range_check) { 2532 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0)); 2533 __ cmpl(tmp, dst_length_addr); 2534 __ jcc(Assembler::above, *stub->entry()); 2535 } 2536 2537 if (flags & LIR_OpArrayCopy::length_positive_check) { 2538 __ testl(length, length); 2539 __ jcc(Assembler::less, *stub->entry()); 2540 } 2541 2542 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null 2543 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null 2544 2545 if (flags & LIR_OpArrayCopy::type_check) { 2546 // We don't know the array types are compatible 2547 if (basic_type != T_OBJECT) { 2548 // Simple test for basic type arrays 2549 __ cmp_klasses_from_objects(src, dst, tmp, tmp2); 2550 __ jcc(Assembler::notEqual, *stub->entry()); 2551 } else { 2552 // For object arrays, if src is a sub class of dst then we can 2553 // safely do the copy. 2554 Label cont, slow; 2555 2556 __ push_ppx(src); 2557 __ push_ppx(dst); 2558 2559 __ load_klass(src, src, tmp_load_klass); 2560 __ load_klass(dst, dst, tmp_load_klass); 2561 2562 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2563 2564 __ push_ppx(src); 2565 __ push_ppx(dst); 2566 __ call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 2567 __ pop_ppx(dst); 2568 __ pop_ppx(src); 2569 2570 __ testl(src, src); 2571 __ jcc(Assembler::notEqual, cont); 2572 2573 __ bind(slow); 2574 __ pop_ppx(dst); 2575 __ pop_ppx(src); 2576 2577 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2578 if (copyfunc_addr != nullptr) { // use stub if available 2579 // src is not a sub class of dst so we have to do a 2580 // per-element check. 2581 2582 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2583 if ((flags & mask) != mask) { 2584 // Check that at least both of them object arrays. 2585 assert(flags & mask, "one of the two should be known to be an object array"); 2586 2587 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2588 __ load_klass(tmp, src, tmp_load_klass); 2589 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2590 __ load_klass(tmp, dst, tmp_load_klass); 2591 } 2592 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2593 Address klass_lh_addr(tmp, lh_offset); 2594 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2595 __ cmpl(klass_lh_addr, objArray_lh); 2596 __ jcc(Assembler::notEqual, *stub->entry()); 2597 } 2598 2599 // Spill because stubs can use any register they like and it's 2600 // easier to restore just those that we care about. 2601 store_parameter(dst, 0); 2602 store_parameter(dst_pos, 1); 2603 store_parameter(length, 2); 2604 store_parameter(src_pos, 3); 2605 store_parameter(src, 4); 2606 2607 __ movl2ptr(length, length); //higher 32bits must be null 2608 2609 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2610 assert_different_registers(c_rarg0, dst, dst_pos, length); 2611 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2612 assert_different_registers(c_rarg1, dst, length); 2613 2614 __ mov(c_rarg2, length); 2615 assert_different_registers(c_rarg2, dst); 2616 2617 #ifdef _WIN64 2618 // Allocate abi space for args but be sure to keep stack aligned 2619 __ subptr(rsp, 6*wordSize); 2620 __ load_klass(c_rarg3, dst, tmp_load_klass); 2621 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset())); 2622 store_parameter(c_rarg3, 4); 2623 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset())); 2624 __ call(RuntimeAddress(copyfunc_addr)); 2625 __ addptr(rsp, 6*wordSize); 2626 #else 2627 __ load_klass(c_rarg4, dst, tmp_load_klass); 2628 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2629 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2630 __ call(RuntimeAddress(copyfunc_addr)); 2631 #endif 2632 2633 #ifndef PRODUCT 2634 if (PrintC1Statistics) { 2635 Label failed; 2636 __ testl(rax, rax); 2637 __ jcc(Assembler::notZero, failed); 2638 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1); 2639 __ bind(failed); 2640 } 2641 #endif 2642 2643 __ testl(rax, rax); 2644 __ jcc(Assembler::zero, *stub->continuation()); 2645 2646 #ifndef PRODUCT 2647 if (PrintC1Statistics) { 2648 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1); 2649 } 2650 #endif 2651 2652 __ mov(tmp, rax); 2653 2654 __ xorl(tmp, -1); 2655 2656 // Restore previously spilled arguments 2657 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 2658 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 2659 __ movptr (length, Address(rsp, 2*BytesPerWord)); 2660 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 2661 __ movptr (src, Address(rsp, 4*BytesPerWord)); 2662 2663 2664 __ subl(length, tmp); 2665 __ addl(src_pos, tmp); 2666 __ addl(dst_pos, tmp); 2667 } 2668 2669 __ jmp(*stub->entry()); 2670 2671 __ bind(cont); 2672 __ pop(dst); 2673 __ pop(src); 2674 } 2675 } 2676 2677 #ifdef ASSERT 2678 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2679 // Sanity check the known type with the incoming class. For the 2680 // primitive case the types must match exactly with src.klass and 2681 // dst.klass each exactly matching the default type. For the 2682 // object array case, if no type check is needed then either the 2683 // dst type is exactly the expected type and the src type is a 2684 // subtype which we can't check or src is the same array as dst 2685 // but not necessarily exactly of type default_type. 2686 Label known_ok, halt; 2687 __ mov_metadata(tmp, default_type->constant_encoding()); 2688 if (UseCompressedClassPointers) { 2689 __ encode_klass_not_null(tmp, rscratch1); 2690 } 2691 2692 if (basic_type != T_OBJECT) { 2693 __ cmp_klass(tmp, dst, tmp2); 2694 __ jcc(Assembler::notEqual, halt); 2695 __ cmp_klass(tmp, src, tmp2); 2696 __ jcc(Assembler::equal, known_ok); 2697 } else { 2698 __ cmp_klass(tmp, dst, tmp2); 2699 __ jcc(Assembler::equal, known_ok); 2700 __ cmpptr(src, dst); 2701 __ jcc(Assembler::equal, known_ok); 2702 } 2703 __ bind(halt); 2704 __ stop("incorrect type information in arraycopy"); 2705 __ bind(known_ok); 2706 } 2707 #endif 2708 2709 #ifndef PRODUCT 2710 if (PrintC1Statistics) { 2711 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1); 2712 } 2713 #endif 2714 2715 assert_different_registers(c_rarg0, dst, dst_pos, length); 2716 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2717 assert_different_registers(c_rarg1, length); 2718 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2719 __ mov(c_rarg2, length); 2720 2721 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2722 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2723 const char *name; 2724 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2725 __ call_VM_leaf(entry, 0); 2726 2727 if (stub != nullptr) { 2728 __ bind(*stub->continuation()); 2729 } 2730 } 2731 2732 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2733 assert(op->crc()->is_single_cpu(), "crc must be register"); 2734 assert(op->val()->is_single_cpu(), "byte value must be register"); 2735 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2736 Register crc = op->crc()->as_register(); 2737 Register val = op->val()->as_register(); 2738 Register res = op->result_opr()->as_register(); 2739 2740 assert_different_registers(val, crc, res); 2741 2742 __ lea(res, ExternalAddress(StubRoutines::crc_table_addr())); 2743 __ notl(crc); // ~crc 2744 __ update_byte_crc32(crc, val, res); 2745 __ notl(crc); // ~crc 2746 __ mov(res, crc); 2747 } 2748 2749 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2750 Register obj = op->obj_opr()->as_register(); // may not be an oop 2751 Register hdr = op->hdr_opr()->as_register(); 2752 Register lock = op->lock_opr()->as_register(); 2753 if (op->code() == lir_lock) { 2754 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2755 Register tmp = op->scratch_opr()->as_register(); 2756 // add debug info for NullPointerException only if one is possible 2757 int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry()); 2758 if (op->info() != nullptr) { 2759 add_debug_info_for_null_check(null_check_offset, op->info()); 2760 } 2761 // done 2762 } else if (op->code() == lir_unlock) { 2763 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2764 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2765 } else { 2766 Unimplemented(); 2767 } 2768 __ bind(*op->stub()->continuation()); 2769 } 2770 2771 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2772 Register obj = op->obj()->as_pointer_register(); 2773 Register result = op->result_opr()->as_pointer_register(); 2774 2775 CodeEmitInfo* info = op->info(); 2776 if (info != nullptr) { 2777 add_debug_info_for_null_check_here(info); 2778 } 2779 2780 __ load_klass(result, obj, rscratch1); 2781 } 2782 2783 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2784 ciMethod* method = op->profiled_method(); 2785 int bci = op->profiled_bci(); 2786 ciMethod* callee = op->profiled_callee(); 2787 Register tmp_load_klass = rscratch1; 2788 2789 // Update counter for all call types 2790 ciMethodData* md = method->method_data_or_null(); 2791 assert(md != nullptr, "Sanity"); 2792 ciProfileData* data = md->bci_to_data(bci); 2793 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2794 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2795 Register mdo = op->mdo()->as_register(); 2796 __ mov_metadata(mdo, md->constant_encoding()); 2797 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2798 // Perform additional virtual call profiling for invokevirtual and 2799 // invokeinterface bytecodes 2800 if (op->should_profile_receiver_type()) { 2801 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2802 Register recv = op->recv()->as_register(); 2803 assert_different_registers(mdo, recv); 2804 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2805 ciKlass* known_klass = op->known_holder(); 2806 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2807 // We know the type that will be seen at this call site; we can 2808 // statically update the MethodData* rather than needing to do 2809 // dynamic tests on the receiver type 2810 2811 // NOTE: we should probably put a lock around this search to 2812 // avoid collisions by concurrent compilations 2813 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2814 uint i; 2815 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2816 ciKlass* receiver = vc_data->receiver(i); 2817 if (known_klass->equals(receiver)) { 2818 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2819 __ addptr(data_addr, DataLayout::counter_increment); 2820 return; 2821 } 2822 } 2823 2824 // Receiver type not found in profile data; select an empty slot 2825 2826 // Note that this is less efficient than it should be because it 2827 // always does a write to the receiver part of the 2828 // VirtualCallData rather than just the first time 2829 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2830 ciKlass* receiver = vc_data->receiver(i); 2831 if (receiver == nullptr) { 2832 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 2833 __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1); 2834 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2835 __ addptr(data_addr, DataLayout::counter_increment); 2836 return; 2837 } 2838 } 2839 } else { 2840 __ load_klass(recv, recv, tmp_load_klass); 2841 Label update_done; 2842 type_profile_helper(mdo, md, data, recv, &update_done); 2843 // Receiver did not match any saved receiver and there is no empty row for it. 2844 // Increment total counter to indicate polymorphic case. 2845 __ addptr(counter_addr, DataLayout::counter_increment); 2846 2847 __ bind(update_done); 2848 } 2849 } else { 2850 // Static call 2851 __ addptr(counter_addr, DataLayout::counter_increment); 2852 } 2853 } 2854 2855 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2856 Register obj = op->obj()->as_register(); 2857 Register tmp = op->tmp()->as_pointer_register(); 2858 Register tmp_load_klass = rscratch1; 2859 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2860 ciKlass* exact_klass = op->exact_klass(); 2861 intptr_t current_klass = op->current_klass(); 2862 bool not_null = op->not_null(); 2863 bool no_conflict = op->no_conflict(); 2864 2865 Label update, next, none; 2866 2867 bool do_null = !not_null; 2868 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2869 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2870 2871 assert(do_null || do_update, "why are we here?"); 2872 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2873 2874 __ verify_oop(obj); 2875 2876 #ifdef ASSERT 2877 if (obj == tmp) { 2878 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 2879 } else { 2880 assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index()); 2881 } 2882 #endif 2883 if (do_null) { 2884 __ testptr(obj, obj); 2885 __ jccb(Assembler::notZero, update); 2886 if (!TypeEntries::was_null_seen(current_klass)) { 2887 __ testptr(mdo_addr, TypeEntries::null_seen); 2888 #ifndef ASSERT 2889 __ jccb(Assembler::notZero, next); // already set 2890 #else 2891 __ jcc(Assembler::notZero, next); // already set 2892 #endif 2893 // atomic update to prevent overwriting Klass* with 0 2894 __ lock(); 2895 __ orptr(mdo_addr, TypeEntries::null_seen); 2896 } 2897 if (do_update) { 2898 #ifndef ASSERT 2899 __ jmpb(next); 2900 } 2901 #else 2902 __ jmp(next); 2903 } 2904 } else { 2905 __ testptr(obj, obj); 2906 __ jcc(Assembler::notZero, update); 2907 __ stop("unexpected null obj"); 2908 #endif 2909 } 2910 2911 __ bind(update); 2912 2913 if (do_update) { 2914 #ifdef ASSERT 2915 if (exact_klass != nullptr) { 2916 Label ok; 2917 __ load_klass(tmp, obj, tmp_load_klass); 2918 __ push_ppx(tmp); 2919 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2920 __ cmpptr(tmp, Address(rsp, 0)); 2921 __ jcc(Assembler::equal, ok); 2922 __ stop("exact klass and actual klass differ"); 2923 __ bind(ok); 2924 __ pop_ppx(tmp); 2925 } 2926 #endif 2927 if (!no_conflict) { 2928 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2929 if (exact_klass != nullptr) { 2930 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2931 } else { 2932 __ load_klass(tmp, obj, tmp_load_klass); 2933 } 2934 __ mov(rscratch1, tmp); // save original value before XOR 2935 __ xorptr(tmp, mdo_addr); 2936 __ testptr(tmp, TypeEntries::type_klass_mask); 2937 // klass seen before, nothing to do. The unknown bit may have been 2938 // set already but no need to check. 2939 __ jccb(Assembler::zero, next); 2940 2941 __ testptr(tmp, TypeEntries::type_unknown); 2942 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 2943 2944 if (TypeEntries::is_type_none(current_klass)) { 2945 __ testptr(mdo_addr, TypeEntries::type_mask); 2946 __ jccb(Assembler::zero, none); 2947 // There is a chance that the checks above (re-reading profiling 2948 // data from memory) fail if another thread has just set the 2949 // profiling to this obj's klass 2950 __ mov(tmp, rscratch1); // get back original value before XOR 2951 __ xorptr(tmp, mdo_addr); 2952 __ testptr(tmp, TypeEntries::type_klass_mask); 2953 __ jccb(Assembler::zero, next); 2954 } 2955 } else { 2956 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2957 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2958 2959 __ testptr(mdo_addr, TypeEntries::type_unknown); 2960 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 2961 } 2962 2963 // different than before. Cannot keep accurate profile. 2964 __ orptr(mdo_addr, TypeEntries::type_unknown); 2965 2966 if (TypeEntries::is_type_none(current_klass)) { 2967 __ jmpb(next); 2968 2969 __ bind(none); 2970 // first time here. Set profile type. 2971 __ movptr(mdo_addr, tmp); 2972 #ifdef ASSERT 2973 __ andptr(tmp, TypeEntries::type_klass_mask); 2974 __ verify_klass_ptr(tmp); 2975 #endif 2976 } 2977 } else { 2978 // There's a single possible klass at this profile point 2979 assert(exact_klass != nullptr, "should be"); 2980 if (TypeEntries::is_type_none(current_klass)) { 2981 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2982 __ xorptr(tmp, mdo_addr); 2983 __ testptr(tmp, TypeEntries::type_klass_mask); 2984 #ifdef ASSERT 2985 __ jcc(Assembler::zero, next); 2986 2987 { 2988 Label ok; 2989 __ push_ppx(tmp); 2990 __ testptr(mdo_addr, TypeEntries::type_mask); 2991 __ jcc(Assembler::zero, ok); 2992 // may have been set by another thread 2993 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2994 __ xorptr(tmp, mdo_addr); 2995 __ testptr(tmp, TypeEntries::type_mask); 2996 __ jcc(Assembler::zero, ok); 2997 2998 __ stop("unexpected profiling mismatch"); 2999 __ bind(ok); 3000 __ pop_ppx(tmp); 3001 } 3002 #else 3003 __ jccb(Assembler::zero, next); 3004 #endif 3005 // first time here. Set profile type. 3006 __ movptr(mdo_addr, tmp); 3007 #ifdef ASSERT 3008 __ andptr(tmp, TypeEntries::type_klass_mask); 3009 __ verify_klass_ptr(tmp); 3010 #endif 3011 } else { 3012 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3013 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3014 3015 __ testptr(mdo_addr, TypeEntries::type_unknown); 3016 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3017 3018 __ orptr(mdo_addr, TypeEntries::type_unknown); 3019 } 3020 } 3021 } 3022 __ bind(next); 3023 } 3024 3025 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 3026 Unimplemented(); 3027 } 3028 3029 3030 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 3031 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 3032 } 3033 3034 3035 void LIR_Assembler::align_backward_branch_target() { 3036 __ align(BytesPerWord); 3037 } 3038 3039 3040 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 3041 if (left->is_single_cpu()) { 3042 __ negl(left->as_register()); 3043 move_regs(left->as_register(), dest->as_register()); 3044 3045 } else if (left->is_double_cpu()) { 3046 Register lo = left->as_register_lo(); 3047 Register dst = dest->as_register_lo(); 3048 __ movptr(dst, lo); 3049 __ negptr(dst); 3050 3051 } else if (dest->is_single_xmm()) { 3052 assert(!tmp->is_valid(), "do not need temporary"); 3053 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) { 3054 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg()); 3055 } 3056 __ xorps(dest->as_xmm_float_reg(), 3057 ExternalAddress((address)float_signflip_pool), 3058 rscratch1); 3059 } else if (dest->is_double_xmm()) { 3060 assert(!tmp->is_valid(), "do not need temporary"); 3061 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) { 3062 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg()); 3063 } 3064 __ xorpd(dest->as_xmm_double_reg(), 3065 ExternalAddress((address)double_signflip_pool), 3066 rscratch1); 3067 } else { 3068 ShouldNotReachHere(); 3069 } 3070 } 3071 3072 3073 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 3074 assert(src->is_address(), "must be an address"); 3075 assert(dest->is_register(), "must be a register"); 3076 3077 PatchingStub* patch = nullptr; 3078 if (patch_code != lir_patch_none) { 3079 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 3080 } 3081 3082 Register reg = dest->as_pointer_register(); 3083 LIR_Address* addr = src->as_address_ptr(); 3084 __ lea(reg, as_Address(addr)); 3085 3086 if (patch != nullptr) { 3087 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 3088 } 3089 } 3090 3091 3092 3093 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 3094 assert(!tmp->is_valid(), "don't need temporary"); 3095 __ call(RuntimeAddress(dest)); 3096 if (info != nullptr) { 3097 add_call_info_here(info); 3098 } 3099 __ post_call_nop(); 3100 } 3101 3102 3103 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 3104 assert(type == T_LONG, "only for volatile long fields"); 3105 3106 if (info != nullptr) { 3107 add_debug_info_for_null_check_here(info); 3108 } 3109 3110 if (src->is_double_xmm()) { 3111 if (dest->is_double_cpu()) { 3112 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg()); 3113 } else if (dest->is_double_stack()) { 3114 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg()); 3115 } else if (dest->is_address()) { 3116 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg()); 3117 } else { 3118 ShouldNotReachHere(); 3119 } 3120 3121 } else if (dest->is_double_xmm()) { 3122 if (src->is_double_stack()) { 3123 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix())); 3124 } else if (src->is_address()) { 3125 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr())); 3126 } else { 3127 ShouldNotReachHere(); 3128 } 3129 3130 } else { 3131 ShouldNotReachHere(); 3132 } 3133 } 3134 3135 #ifdef ASSERT 3136 // emit run-time assertion 3137 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 3138 assert(op->code() == lir_assert, "must be"); 3139 3140 if (op->in_opr1()->is_valid()) { 3141 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 3142 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 3143 } else { 3144 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 3145 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 3146 } 3147 3148 Label ok; 3149 if (op->condition() != lir_cond_always) { 3150 Assembler::Condition acond = Assembler::zero; 3151 switch (op->condition()) { 3152 case lir_cond_equal: acond = Assembler::equal; break; 3153 case lir_cond_notEqual: acond = Assembler::notEqual; break; 3154 case lir_cond_less: acond = Assembler::less; break; 3155 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 3156 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 3157 case lir_cond_greater: acond = Assembler::greater; break; 3158 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 3159 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 3160 default: ShouldNotReachHere(); 3161 } 3162 __ jcc(acond, ok); 3163 } 3164 if (op->halt()) { 3165 const char* str = __ code_string(op->msg()); 3166 __ stop(str); 3167 } else { 3168 breakpoint(); 3169 } 3170 __ bind(ok); 3171 } 3172 #endif 3173 3174 void LIR_Assembler::membar() { 3175 // QQQ sparc TSO uses this, 3176 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3177 } 3178 3179 void LIR_Assembler::membar_acquire() { 3180 // No x86 machines currently require load fences 3181 } 3182 3183 void LIR_Assembler::membar_release() { 3184 // No x86 machines currently require store fences 3185 } 3186 3187 void LIR_Assembler::membar_loadload() { 3188 // no-op 3189 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload)); 3190 } 3191 3192 void LIR_Assembler::membar_storestore() { 3193 // no-op 3194 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore)); 3195 } 3196 3197 void LIR_Assembler::membar_loadstore() { 3198 // no-op 3199 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore)); 3200 } 3201 3202 void LIR_Assembler::membar_storeload() { 3203 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3204 } 3205 3206 void LIR_Assembler::on_spin_wait() { 3207 __ pause (); 3208 } 3209 3210 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 3211 assert(result_reg->is_register(), "check"); 3212 __ mov(result_reg->as_register(), r15_thread); 3213 } 3214 3215 3216 void LIR_Assembler::peephole(LIR_List*) { 3217 // do nothing for now 3218 } 3219 3220 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 3221 assert(data == dest, "xchg/xadd uses only 2 operands"); 3222 3223 if (data->type() == T_INT) { 3224 if (code == lir_xadd) { 3225 __ lock(); 3226 __ xaddl(as_Address(src->as_address_ptr()), data->as_register()); 3227 } else { 3228 __ xchgl(data->as_register(), as_Address(src->as_address_ptr())); 3229 } 3230 } else if (data->is_oop()) { 3231 assert (code == lir_xchg, "xadd for oops"); 3232 Register obj = data->as_register(); 3233 if (UseCompressedOops) { 3234 __ encode_heap_oop(obj); 3235 __ xchgl(obj, as_Address(src->as_address_ptr())); 3236 __ decode_heap_oop(obj); 3237 } else { 3238 __ xchgptr(obj, as_Address(src->as_address_ptr())); 3239 } 3240 } else if (data->type() == T_LONG) { 3241 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register"); 3242 if (code == lir_xadd) { 3243 __ lock(); 3244 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo()); 3245 } else { 3246 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr())); 3247 } 3248 } else { 3249 ShouldNotReachHere(); 3250 } 3251 } 3252 3253 #undef __