1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compiler_globals.hpp" 26 #include "interp_masm_x86.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "logging/log.hpp" 30 #include "oops/arrayOop.hpp" 31 #include "oops/markWord.hpp" 32 #include "oops/methodData.hpp" 33 #include "oops/method.hpp" 34 #include "oops/resolvedFieldEntry.hpp" 35 #include "oops/resolvedIndyEntry.hpp" 36 #include "oops/resolvedMethodEntry.hpp" 37 #include "prims/jvmtiExport.hpp" 38 #include "prims/jvmtiThreadState.hpp" 39 #include "runtime/basicLock.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/javaThread.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "utilities/powerOfTwo.hpp" 45 46 // Implementation of InterpreterMacroAssembler 47 48 void InterpreterMacroAssembler::jump_to_entry(address entry) { 49 assert(entry, "Entry must have been generated by now"); 50 jump(RuntimeAddress(entry)); 51 } 52 53 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 54 Label update, next, none; 55 56 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 57 58 interp_verify_oop(obj, atos); 59 60 testptr(obj, obj); 61 jccb(Assembler::notZero, update); 62 testptr(mdo_addr, TypeEntries::null_seen); 63 jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore. 64 // atomic update to prevent overwriting Klass* with 0 65 lock(); 66 orptr(mdo_addr, TypeEntries::null_seen); 67 jmpb(next); 68 69 bind(update); 70 load_klass(obj, obj, rscratch1); 71 mov(rscratch1, obj); 72 73 xorptr(obj, mdo_addr); 74 testptr(obj, TypeEntries::type_klass_mask); 75 jccb(Assembler::zero, next); // klass seen before, nothing to 76 // do. The unknown bit may have been 77 // set already but no need to check. 78 79 testptr(obj, TypeEntries::type_unknown); 80 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 81 82 cmpptr(mdo_addr, 0); 83 jccb(Assembler::equal, none); 84 cmpptr(mdo_addr, TypeEntries::null_seen); 85 jccb(Assembler::equal, none); 86 87 // There is a chance that the checks above (re-reading profiling 88 // data from memory) fail if another thread has just set the 89 // profiling to this obj's klass 90 mov(obj, rscratch1); 91 xorptr(obj, mdo_addr); 92 testptr(obj, TypeEntries::type_klass_mask); 93 jccb(Assembler::zero, next); 94 95 // different than before. Cannot keep accurate profile. 96 orptr(mdo_addr, TypeEntries::type_unknown); 97 jmpb(next); 98 99 bind(none); 100 // first time here. Set profile type. 101 movptr(mdo_addr, obj); 102 #ifdef ASSERT 103 andptr(obj, TypeEntries::type_klass_mask); 104 verify_klass_ptr(obj); 105 #endif 106 107 bind(next); 108 } 109 110 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 111 if (!ProfileInterpreter) { 112 return; 113 } 114 115 if (MethodData::profile_arguments() || MethodData::profile_return()) { 116 Label profile_continue; 117 118 test_method_data_pointer(mdp, profile_continue); 119 120 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 121 122 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 123 jcc(Assembler::notEqual, profile_continue); 124 125 if (MethodData::profile_arguments()) { 126 Label done; 127 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 128 addptr(mdp, off_to_args); 129 130 for (int i = 0; i < TypeProfileArgsLimit; i++) { 131 if (i > 0 || MethodData::profile_return()) { 132 // If return value type is profiled we may have no argument to profile 133 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 134 subl(tmp, i*TypeStackSlotEntries::per_arg_count()); 135 cmpl(tmp, TypeStackSlotEntries::per_arg_count()); 136 jcc(Assembler::less, done); 137 } 138 movptr(tmp, Address(callee, Method::const_offset())); 139 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 140 // stack offset o (zero based) from the start of the argument 141 // list, for n arguments translates into offset n - o - 1 from 142 // the end of the argument list 143 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 144 subl(tmp, 1); 145 Address arg_addr = argument_address(tmp); 146 movptr(tmp, arg_addr); 147 148 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 149 profile_obj_type(tmp, mdo_arg_addr); 150 151 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 152 addptr(mdp, to_add); 153 off_to_args += to_add; 154 } 155 156 if (MethodData::profile_return()) { 157 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 158 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 159 } 160 161 bind(done); 162 163 if (MethodData::profile_return()) { 164 // We're right after the type profile for the last 165 // argument. tmp is the number of cells left in the 166 // CallTypeData/VirtualCallTypeData to reach its end. Non null 167 // if there's a return to profile. 168 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 169 shll(tmp, log2i_exact((int)DataLayout::cell_size)); 170 addptr(mdp, tmp); 171 } 172 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp); 173 } else { 174 assert(MethodData::profile_return(), "either profile call args or call ret"); 175 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 176 } 177 178 // mdp points right after the end of the 179 // CallTypeData/VirtualCallTypeData, right after the cells for the 180 // return value type if there's one 181 182 bind(profile_continue); 183 } 184 } 185 186 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 187 assert_different_registers(mdp, ret, tmp, _bcp_register); 188 if (ProfileInterpreter && MethodData::profile_return()) { 189 Label profile_continue; 190 191 test_method_data_pointer(mdp, profile_continue); 192 193 if (MethodData::profile_return_jsr292_only()) { 194 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 195 196 // If we don't profile all invoke bytecodes we must make sure 197 // it's a bytecode we indeed profile. We can't go back to the 198 // beginning of the ProfileData we intend to update to check its 199 // type because we're right after it and we don't known its 200 // length 201 Label do_profile; 202 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic); 203 jcc(Assembler::equal, do_profile); 204 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle); 205 jcc(Assembler::equal, do_profile); 206 get_method(tmp); 207 cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 208 jcc(Assembler::notEqual, profile_continue); 209 210 bind(do_profile); 211 } 212 213 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 214 mov(tmp, ret); 215 profile_obj_type(tmp, mdo_ret_addr); 216 217 bind(profile_continue); 218 } 219 } 220 221 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 222 if (ProfileInterpreter && MethodData::profile_parameters()) { 223 Label profile_continue; 224 225 test_method_data_pointer(mdp, profile_continue); 226 227 // Load the offset of the area within the MDO used for 228 // parameters. If it's negative we're not profiling any parameters 229 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 230 testl(tmp1, tmp1); 231 jcc(Assembler::negative, profile_continue); 232 233 // Compute a pointer to the area for parameters from the offset 234 // and move the pointer to the slot for the last 235 // parameters. Collect profiling from last parameter down. 236 // mdo start + parameters offset + array length - 1 237 addptr(mdp, tmp1); 238 movptr(tmp1, Address(mdp, ArrayData::array_len_offset())); 239 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 240 241 Label loop; 242 bind(loop); 243 244 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 245 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 246 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size); 247 Address arg_off(mdp, tmp1, per_arg_scale, off_base); 248 Address arg_type(mdp, tmp1, per_arg_scale, type_base); 249 250 // load offset on the stack from the slot for this parameter 251 movptr(tmp2, arg_off); 252 negptr(tmp2); 253 // read the parameter from the local area 254 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale())); 255 256 // profile the parameter 257 profile_obj_type(tmp2, arg_type); 258 259 // go to next parameter 260 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 261 jcc(Assembler::positive, loop); 262 263 bind(profile_continue); 264 } 265 } 266 267 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 268 int number_of_arguments) { 269 // interpreter specific 270 // 271 // Note: No need to save/restore bcp & locals registers 272 // since these are callee saved registers and no blocking/ 273 // GC can happen in leaf calls. 274 // Further Note: DO NOT save/restore bcp/locals. If a caller has 275 // already saved them so that it can use rsi/rdi as temporaries 276 // then a save/restore here will DESTROY the copy the caller 277 // saved! There used to be a save_bcp() that only happened in 278 // the ASSERT path (no restore_bcp). Which caused bizarre failures 279 // when jvm built with ASSERTs. 280 #ifdef ASSERT 281 { 282 Label L; 283 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 284 jcc(Assembler::equal, L); 285 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 286 " last_sp != null"); 287 bind(L); 288 } 289 #endif 290 // super call 291 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 292 // interpreter specific 293 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals 294 // but since they may not have been saved (and we don't want to 295 // save them here (see note above) the assert is invalid. 296 } 297 298 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 299 Register last_java_sp, 300 address entry_point, 301 int number_of_arguments, 302 bool check_exceptions) { 303 // interpreter specific 304 // 305 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 306 // really make a difference for these runtime calls, since they are 307 // slow anyway. Btw., bcp must be saved/restored since it may change 308 // due to GC. 309 save_bcp(); 310 #ifdef ASSERT 311 { 312 Label L; 313 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 314 jcc(Assembler::equal, L); 315 stop("InterpreterMacroAssembler::call_VM_base:" 316 " last_sp isn't null"); 317 bind(L); 318 } 319 #endif /* ASSERT */ 320 // super call 321 MacroAssembler::call_VM_base(oop_result, last_java_sp, 322 entry_point, number_of_arguments, 323 check_exceptions); 324 // interpreter specific 325 restore_bcp(); 326 restore_locals(); 327 } 328 329 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 330 address entry_point, 331 Register arg_1) { 332 assert(arg_1 == c_rarg1, ""); 333 Label resume_pc, not_preempted; 334 335 #ifdef ASSERT 336 { 337 Label L; 338 cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 339 jcc(Assembler::equal, L); 340 stop("Should not have alternate return address set"); 341 bind(L); 342 } 343 #endif /* ASSERT */ 344 345 // Force freeze slow path. 346 push_cont_fastpath(); 347 348 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 349 // Note: call_VM_helper requires last_Java_pc for anchor to be at the top of the stack. 350 lea(rscratch1, resume_pc); 351 push(rscratch1); 352 MacroAssembler::call_VM_helper(oop_result, entry_point, 1, false /*check_exceptions*/); 353 pop(rscratch1); 354 355 pop_cont_fastpath(); 356 357 // Check if preempted. 358 movptr(rscratch1, Address(r15_thread, JavaThread::preempt_alternate_return_offset())); 359 cmpptr(rscratch1, NULL_WORD); 360 jccb(Assembler::zero, not_preempted); 361 movptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 362 jmp(rscratch1); 363 364 // In case of preemption, this is where we will resume once we finally acquire the monitor. 365 bind(resume_pc); 366 restore_after_resume(false /* is_native */); 367 368 bind(not_preempted); 369 } 370 371 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 372 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 373 call(rscratch1); 374 if (is_native) { 375 // On resume we need to set up stack as expected. 376 push(dtos); 377 push(ltos); 378 } 379 } 380 381 void InterpreterMacroAssembler::check_and_handle_popframe() { 382 if (JvmtiExport::can_pop_frame()) { 383 Label L; 384 // Initiate popframe handling only if it is not already being 385 // processed. If the flag has the popframe_processing bit set, it 386 // means that this code is called *during* popframe handling - we 387 // don't want to reenter. 388 // This method is only called just after the call into the vm in 389 // call_VM_base, so the arg registers are available. 390 Register pop_cond = c_rarg0; 391 movl(pop_cond, Address(r15_thread, JavaThread::popframe_condition_offset())); 392 testl(pop_cond, JavaThread::popframe_pending_bit); 393 jcc(Assembler::zero, L); 394 testl(pop_cond, JavaThread::popframe_processing_bit); 395 jcc(Assembler::notZero, L); 396 // Call Interpreter::remove_activation_preserving_args_entry() to get the 397 // address of the same-named entrypoint in the generated interpreter code. 398 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 399 jmp(rax); 400 bind(L); 401 } 402 } 403 404 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 405 movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset())); 406 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); 407 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); 408 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); 409 410 switch (state) { 411 case atos: movptr(rax, oop_addr); 412 movptr(oop_addr, NULL_WORD); 413 interp_verify_oop(rax, state); break; 414 case ltos: movptr(rax, val_addr); break; 415 case btos: // fall through 416 case ztos: // fall through 417 case ctos: // fall through 418 case stos: // fall through 419 case itos: movl(rax, val_addr); break; 420 case ftos: load_float(val_addr); break; 421 case dtos: load_double(val_addr); break; 422 case vtos: /* nothing to do */ break; 423 default : ShouldNotReachHere(); 424 } 425 426 // Clean up tos value in the thread object 427 movl(tos_addr, ilgl); 428 movptr(val_addr, NULL_WORD); 429 } 430 431 432 void InterpreterMacroAssembler::check_and_handle_earlyret() { 433 if (JvmtiExport::can_force_early_return()) { 434 Label L; 435 Register tmp = c_rarg0; 436 Register rthread = r15_thread; 437 438 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 439 testptr(tmp, tmp); 440 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit; 441 442 // Initiate earlyret handling only if it is not already being processed. 443 // If the flag has the earlyret_processing bit set, it means that this code 444 // is called *during* earlyret handling - we don't want to reenter. 445 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); 446 cmpl(tmp, JvmtiThreadState::earlyret_pending); 447 jcc(Assembler::notEqual, L); 448 449 // Call Interpreter::remove_activation_early_entry() to get the address of the 450 // same-named entrypoint in the generated interpreter code. 451 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 452 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 453 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); 454 jmp(rax); 455 bind(L); 456 } 457 } 458 459 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 460 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 461 load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); 462 bswapl(reg); 463 shrl(reg, 16); 464 } 465 466 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 467 int bcp_offset, 468 size_t index_size) { 469 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 470 if (index_size == sizeof(u2)) { 471 load_unsigned_short(index, Address(_bcp_register, bcp_offset)); 472 } else if (index_size == sizeof(u4)) { 473 movl(index, Address(_bcp_register, bcp_offset)); 474 } else if (index_size == sizeof(u1)) { 475 load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); 476 } else { 477 ShouldNotReachHere(); 478 } 479 } 480 481 // Load object from cpool->resolved_references(index) 482 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, 483 Register index, 484 Register tmp) { 485 assert_different_registers(result, index); 486 487 get_constant_pool(result); 488 // load pointer for resolved_references[] objArray 489 movptr(result, Address(result, ConstantPool::cache_offset())); 490 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 491 resolve_oop_handle(result, tmp); 492 load_heap_oop(result, Address(result, index, 493 UseCompressedOops ? Address::times_4 : Address::times_ptr, 494 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp); 495 } 496 497 // load cpool->resolved_klass_at(index) 498 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass, 499 Register cpool, 500 Register index) { 501 assert_different_registers(cpool, index); 502 503 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool))); 504 Register resolved_klasses = cpool; 505 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset())); 506 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes())); 507 } 508 509 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 510 // subtype of super_klass. 511 // 512 // Args: 513 // rax: superklass 514 // Rsub_klass: subklass 515 // 516 // Kills: 517 // rcx, rdi 518 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 519 Label& ok_is_subtype) { 520 assert(Rsub_klass != rax, "rax holds superklass"); 521 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) 522 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) 523 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); 524 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); 525 526 // Profile the not-null value's klass. 527 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi 528 529 // Do the check. 530 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx 531 } 532 533 534 // Java Expression Stack 535 536 void InterpreterMacroAssembler::pop_ptr(Register r) { 537 pop(r); 538 } 539 540 void InterpreterMacroAssembler::push_ptr(Register r) { 541 push(r); 542 } 543 544 void InterpreterMacroAssembler::push_i(Register r) { 545 push(r); 546 } 547 548 void InterpreterMacroAssembler::push_i_or_ptr(Register r) { 549 push(r); 550 } 551 552 void InterpreterMacroAssembler::push_f(XMMRegister r) { 553 subptr(rsp, wordSize); 554 movflt(Address(rsp, 0), r); 555 } 556 557 void InterpreterMacroAssembler::pop_f(XMMRegister r) { 558 movflt(r, Address(rsp, 0)); 559 addptr(rsp, wordSize); 560 } 561 562 void InterpreterMacroAssembler::push_d(XMMRegister r) { 563 subptr(rsp, 2 * wordSize); 564 movdbl(Address(rsp, 0), r); 565 } 566 567 void InterpreterMacroAssembler::pop_d(XMMRegister r) { 568 movdbl(r, Address(rsp, 0)); 569 addptr(rsp, 2 * Interpreter::stackElementSize); 570 } 571 572 void InterpreterMacroAssembler::pop_i(Register r) { 573 // XXX can't use pop currently, upper half non clean 574 movl(r, Address(rsp, 0)); 575 addptr(rsp, wordSize); 576 } 577 578 void InterpreterMacroAssembler::pop_l(Register r) { 579 movq(r, Address(rsp, 0)); 580 addptr(rsp, 2 * Interpreter::stackElementSize); 581 } 582 583 void InterpreterMacroAssembler::push_l(Register r) { 584 subptr(rsp, 2 * wordSize); 585 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r ); 586 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD ); 587 } 588 589 void InterpreterMacroAssembler::pop(TosState state) { 590 switch (state) { 591 case atos: pop_ptr(); break; 592 case btos: 593 case ztos: 594 case ctos: 595 case stos: 596 case itos: pop_i(); break; 597 case ltos: pop_l(); break; 598 case ftos: pop_f(xmm0); break; 599 case dtos: pop_d(xmm0); break; 600 case vtos: /* nothing to do */ break; 601 default: ShouldNotReachHere(); 602 } 603 interp_verify_oop(rax, state); 604 } 605 606 void InterpreterMacroAssembler::push(TosState state) { 607 interp_verify_oop(rax, state); 608 switch (state) { 609 case atos: push_ptr(); break; 610 case btos: 611 case ztos: 612 case ctos: 613 case stos: 614 case itos: push_i(); break; 615 case ltos: push_l(); break; 616 case ftos: push_f(xmm0); break; 617 case dtos: push_d(xmm0); break; 618 case vtos: /* nothing to do */ break; 619 default : ShouldNotReachHere(); 620 } 621 } 622 623 // Helpers for swap and dup 624 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 625 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); 626 } 627 628 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 629 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); 630 } 631 632 633 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 634 // set sender sp 635 lea(_bcp_register, Address(rsp, wordSize)); 636 // record last_sp 637 mov(rcx, _bcp_register); 638 subptr(rcx, rbp); 639 sarptr(rcx, LogBytesPerWord); 640 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx); 641 } 642 643 644 // Jump to from_interpreted entry of a call unless single stepping is possible 645 // in this thread in which case we must call the i2i entry 646 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 647 prepare_to_jump_from_interpreted(); 648 649 if (JvmtiExport::can_post_interpreter_events()) { 650 Label run_compiled_code; 651 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 652 // compiled code in threads for which the event is enabled. Check here for 653 // interp_only_mode if these events CAN be enabled. 654 // interp_only is an int, on little endian it is sufficient to test the byte only 655 // Is a cmpl faster? 656 cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0); 657 jccb(Assembler::zero, run_compiled_code); 658 jmp(Address(method, Method::interpreter_entry_offset())); 659 bind(run_compiled_code); 660 } 661 662 jmp(Address(method, Method::from_interpreted_offset())); 663 } 664 665 // The following two routines provide a hook so that an implementation 666 // can schedule the dispatch in two parts. x86 does not do this. 667 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 668 // Nothing x86 specific to be done here 669 } 670 671 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 672 dispatch_next(state, step); 673 } 674 675 void InterpreterMacroAssembler::dispatch_base(TosState state, 676 address* table, 677 bool verifyoop, 678 bool generate_poll) { 679 if (VerifyActivationFrameSize) { 680 Label L; 681 mov(rcx, rbp); 682 subptr(rcx, rsp); 683 int32_t min_frame_size = 684 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * 685 wordSize; 686 cmpptr(rcx, min_frame_size); 687 jcc(Assembler::greaterEqual, L); 688 stop("broken stack frame"); 689 bind(L); 690 } 691 if (verifyoop) { 692 interp_verify_oop(rax, state); 693 } 694 695 address* const safepoint_table = Interpreter::safept_table(state); 696 Label no_safepoint, dispatch; 697 if (table != safepoint_table && generate_poll) { 698 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 699 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 700 701 jccb(Assembler::zero, no_safepoint); 702 lea(rscratch1, ExternalAddress((address)safepoint_table)); 703 jmpb(dispatch); 704 } 705 706 bind(no_safepoint); 707 lea(rscratch1, ExternalAddress((address)table)); 708 bind(dispatch); 709 jmp(Address(rscratch1, rbx, Address::times_8)); 710 } 711 712 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 713 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 714 } 715 716 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 717 dispatch_base(state, Interpreter::normal_table(state)); 718 } 719 720 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 721 dispatch_base(state, Interpreter::normal_table(state), false); 722 } 723 724 725 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 726 // load next bytecode (load before advancing _bcp_register to prevent AGI) 727 load_unsigned_byte(rbx, Address(_bcp_register, step)); 728 // advance _bcp_register 729 increment(_bcp_register, step); 730 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 731 } 732 733 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 734 // load current bytecode 735 load_unsigned_byte(rbx, Address(_bcp_register, 0)); 736 dispatch_base(state, table); 737 } 738 739 void InterpreterMacroAssembler::narrow(Register result) { 740 741 // Get method->_constMethod->_result_type 742 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 743 movptr(rcx, Address(rcx, Method::const_offset())); 744 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); 745 746 Label done, notBool, notByte, notChar; 747 748 // common case first 749 cmpl(rcx, T_INT); 750 jcc(Assembler::equal, done); 751 752 // mask integer result to narrower return type. 753 cmpl(rcx, T_BOOLEAN); 754 jcc(Assembler::notEqual, notBool); 755 andl(result, 0x1); 756 jmp(done); 757 758 bind(notBool); 759 cmpl(rcx, T_BYTE); 760 jcc(Assembler::notEqual, notByte); 761 movsbl(result, result); 762 jmp(done); 763 764 bind(notByte); 765 cmpl(rcx, T_CHAR); 766 jcc(Assembler::notEqual, notChar); 767 movzwl(result, result); 768 jmp(done); 769 770 bind(notChar); 771 // cmpl(rcx, T_SHORT); // all that's left 772 // jcc(Assembler::notEqual, done); 773 movswl(result, result); 774 775 // Nothing to do for T_INT 776 bind(done); 777 } 778 779 // remove activation 780 // 781 // Apply stack watermark barrier. 782 // Unlock the receiver if this is a synchronized method. 783 // Unlock any Java monitors from synchronized blocks. 784 // Remove the activation from the stack. 785 // 786 // If there are locked Java monitors 787 // If throw_monitor_exception 788 // throws IllegalMonitorStateException 789 // Else if install_monitor_exception 790 // installs IllegalMonitorStateException 791 // Else 792 // no error processing 793 void InterpreterMacroAssembler::remove_activation( 794 TosState state, 795 Register ret_addr, 796 bool throw_monitor_exception, 797 bool install_monitor_exception, 798 bool notify_jvmdi) { 799 // Note: Registers rdx xmm0 may be in use for the 800 // result check if synchronized method 801 Label unlocked, unlock, no_unlock; 802 803 const Register rthread = r15_thread; 804 const Register robj = c_rarg1; 805 const Register rmon = c_rarg1; 806 807 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 808 // that would normally not be safe to use. Such bad returns into unsafe territory of 809 // the stack, will call InterpreterRuntime::at_unwind. 810 Label slow_path; 811 Label fast_path; 812 safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */); 813 jmp(fast_path); 814 bind(slow_path); 815 push(state); 816 set_last_Java_frame(noreg, rbp, (address)pc(), rscratch1); 817 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 818 reset_last_Java_frame(true); 819 pop(state); 820 bind(fast_path); 821 822 // get the value of _do_not_unlock_if_synchronized into rdx 823 const Address do_not_unlock_if_synchronized(rthread, 824 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 825 movbool(rbx, do_not_unlock_if_synchronized); 826 movbool(do_not_unlock_if_synchronized, false); // reset the flag 827 828 // get method access flags 829 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 830 load_unsigned_short(rcx, Address(rcx, Method::access_flags_offset())); 831 testl(rcx, JVM_ACC_SYNCHRONIZED); 832 jcc(Assembler::zero, unlocked); 833 834 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 835 // is set. 836 testbool(rbx); 837 jcc(Assembler::notZero, no_unlock); 838 839 // unlock monitor 840 push(state); // save result 841 842 // BasicObjectLock will be first in list, since this is a 843 // synchronized method. However, need to check that the object has 844 // not been unlocked by an explicit monitorexit bytecode. 845 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * 846 wordSize - (int) sizeof(BasicObjectLock)); 847 // We use c_rarg1/rdx so that if we go slow path it will be the correct 848 // register for unlock_object to pass to VM directly 849 lea(robj, monitor); // address of first monitor 850 851 movptr(rax, Address(robj, BasicObjectLock::obj_offset())); 852 testptr(rax, rax); 853 jcc(Assembler::notZero, unlock); 854 855 pop(state); 856 if (throw_monitor_exception) { 857 // Entry already unlocked, need to throw exception 858 call_VM(noreg, CAST_FROM_FN_PTR(address, 859 InterpreterRuntime::throw_illegal_monitor_state_exception)); 860 should_not_reach_here(); 861 } else { 862 // Monitor already unlocked during a stack unroll. If requested, 863 // install an illegal_monitor_state_exception. Continue with 864 // stack unrolling. 865 if (install_monitor_exception) { 866 call_VM(noreg, CAST_FROM_FN_PTR(address, 867 InterpreterRuntime::new_illegal_monitor_state_exception)); 868 } 869 jmp(unlocked); 870 } 871 872 bind(unlock); 873 unlock_object(robj); 874 pop(state); 875 876 // Check that for block-structured locking (i.e., that all locked 877 // objects has been unlocked) 878 bind(unlocked); 879 880 // rax, rdx: Might contain return value 881 882 // Check that all monitors are unlocked 883 { 884 Label loop, exception, entry, restart; 885 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 886 const Address monitor_block_top( 887 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 888 const Address monitor_block_bot( 889 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 890 891 bind(restart); 892 // We use c_rarg1 so that if we go slow path it will be the correct 893 // register for unlock_object to pass to VM directly 894 movptr(rmon, monitor_block_top); // derelativize pointer 895 lea(rmon, Address(rbp, rmon, Address::times_ptr)); 896 // c_rarg1 points to current entry, starting with top-most entry 897 898 lea(rbx, monitor_block_bot); // points to word before bottom of 899 // monitor block 900 jmp(entry); 901 902 // Entry already locked, need to throw exception 903 bind(exception); 904 905 if (throw_monitor_exception) { 906 // Throw exception 907 MacroAssembler::call_VM(noreg, 908 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 909 throw_illegal_monitor_state_exception)); 910 should_not_reach_here(); 911 } else { 912 // Stack unrolling. Unlock object and install illegal_monitor_exception. 913 // Unlock does not block, so don't have to worry about the frame. 914 // We don't have to preserve c_rarg1 since we are going to throw an exception. 915 916 push(state); 917 mov(robj, rmon); // nop if robj and rmon are the same 918 unlock_object(robj); 919 pop(state); 920 921 if (install_monitor_exception) { 922 call_VM(noreg, CAST_FROM_FN_PTR(address, 923 InterpreterRuntime:: 924 new_illegal_monitor_state_exception)); 925 } 926 927 jmp(restart); 928 } 929 930 bind(loop); 931 // check if current entry is used 932 cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD); 933 jcc(Assembler::notEqual, exception); 934 935 addptr(rmon, entry_size); // otherwise advance to next entry 936 bind(entry); 937 cmpptr(rmon, rbx); // check if bottom reached 938 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 939 } 940 941 bind(no_unlock); 942 943 // jvmti support 944 if (notify_jvmdi) { 945 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 946 } else { 947 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 948 } 949 950 // remove activation 951 // get sender sp 952 movptr(rbx, 953 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 954 if (StackReservedPages > 0) { 955 // testing if reserved zone needs to be re-enabled 956 Register rthread = r15_thread; 957 Label no_reserved_zone_enabling; 958 959 // check if already enabled - if so no re-enabling needed 960 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 961 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled); 962 jcc(Assembler::equal, no_reserved_zone_enabling); 963 964 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset())); 965 jcc(Assembler::lessEqual, no_reserved_zone_enabling); 966 967 call_VM_leaf( 968 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 969 call_VM(noreg, CAST_FROM_FN_PTR(address, 970 InterpreterRuntime::throw_delayed_StackOverflowError)); 971 should_not_reach_here(); 972 973 bind(no_reserved_zone_enabling); 974 } 975 leave(); // remove frame anchor 976 pop(ret_addr); // get return address 977 mov(rsp, rbx); // set sp to sender sp 978 pop_cont_fastpath(); 979 } 980 981 void InterpreterMacroAssembler::get_method_counters(Register method, 982 Register mcs, Label& skip) { 983 Label has_counters; 984 movptr(mcs, Address(method, Method::method_counters_offset())); 985 testptr(mcs, mcs); 986 jcc(Assembler::notZero, has_counters); 987 call_VM(noreg, CAST_FROM_FN_PTR(address, 988 InterpreterRuntime::build_method_counters), method); 989 movptr(mcs, Address(method,Method::method_counters_offset())); 990 testptr(mcs, mcs); 991 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory 992 bind(has_counters); 993 } 994 995 996 // Lock object 997 // 998 // Args: 999 // rdx, c_rarg1: BasicObjectLock to be used for locking 1000 // 1001 // Kills: 1002 // rax, rbx 1003 void InterpreterMacroAssembler::lock_object(Register lock_reg) { 1004 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 1005 1006 if (LockingMode == LM_MONITOR) { 1007 call_VM_preemptable(noreg, 1008 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1009 lock_reg); 1010 } else { 1011 Label count_locking, done, slow_case; 1012 1013 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1014 const Register tmp_reg = rbx; 1015 const Register obj_reg = c_rarg3; // Will contain the oop 1016 const Register rklass_decode_tmp = rscratch1; 1017 1018 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 1019 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 1020 const int mark_offset = lock_offset + 1021 BasicLock::displaced_header_offset_in_bytes(); 1022 1023 // Load object pointer into obj_reg 1024 movptr(obj_reg, Address(lock_reg, obj_offset)); 1025 1026 if (DiagnoseSyncOnValueBasedClasses != 0) { 1027 load_klass(tmp_reg, obj_reg, rklass_decode_tmp); 1028 testb(Address(tmp_reg, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class); 1029 jcc(Assembler::notZero, slow_case); 1030 } 1031 1032 if (LockingMode == LM_LIGHTWEIGHT) { 1033 lightweight_lock(lock_reg, obj_reg, swap_reg, tmp_reg, slow_case); 1034 } else if (LockingMode == LM_LEGACY) { 1035 // Load immediate 1 into swap_reg %rax 1036 movl(swap_reg, 1); 1037 1038 // Load (object->mark() | 1) into swap_reg %rax 1039 orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1040 1041 // Save (object->mark() | 1) into BasicLock's displaced header 1042 movptr(Address(lock_reg, mark_offset), swap_reg); 1043 1044 assert(lock_offset == 0, 1045 "displaced header must be first word in BasicObjectLock"); 1046 1047 lock(); 1048 cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1049 jcc(Assembler::zero, count_locking); 1050 1051 const int zero_bits = 7; 1052 1053 // Fast check for recursive lock. 1054 // 1055 // Can apply the optimization only if this is a stack lock 1056 // allocated in this thread. For efficiency, we can focus on 1057 // recently allocated stack locks (instead of reading the stack 1058 // base and checking whether 'mark' points inside the current 1059 // thread stack): 1060 // 1) (mark & zero_bits) == 0, and 1061 // 2) rsp <= mark < mark + os::pagesize() 1062 // 1063 // Warning: rsp + os::pagesize can overflow the stack base. We must 1064 // neither apply the optimization for an inflated lock allocated 1065 // just above the thread stack (this is why condition 1 matters) 1066 // nor apply the optimization if the stack lock is inside the stack 1067 // of another thread. The latter is avoided even in case of overflow 1068 // because we have guard pages at the end of all stacks. Hence, if 1069 // we go over the stack base and hit the stack of another thread, 1070 // this should not be in a writeable area that could contain a 1071 // stack lock allocated by that thread. As a consequence, a stack 1072 // lock less than page size away from rsp is guaranteed to be 1073 // owned by the current thread. 1074 // 1075 // These 3 tests can be done by evaluating the following 1076 // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())), 1077 // assuming both stack pointer and pagesize have their 1078 // least significant bits clear. 1079 // NOTE: the mark is in swap_reg %rax as the result of cmpxchg 1080 subptr(swap_reg, rsp); 1081 andptr(swap_reg, zero_bits - (int)os::vm_page_size()); 1082 1083 // Save the test result, for recursive case, the result is zero 1084 movptr(Address(lock_reg, mark_offset), swap_reg); 1085 jcc(Assembler::notZero, slow_case); 1086 1087 bind(count_locking); 1088 inc_held_monitor_count(); 1089 } 1090 jmp(done); 1091 1092 bind(slow_case); 1093 1094 // Call the runtime routine for slow case 1095 call_VM_preemptable(noreg, 1096 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1097 lock_reg); 1098 bind(done); 1099 } 1100 } 1101 1102 1103 // Unlocks an object. Used in monitorexit bytecode and 1104 // remove_activation. Throws an IllegalMonitorException if object is 1105 // not locked by current thread. 1106 // 1107 // Args: 1108 // rdx, c_rarg1: BasicObjectLock for lock 1109 // 1110 // Kills: 1111 // rax 1112 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 1113 // rscratch1 (scratch reg) 1114 // rax, rbx, rcx, rdx 1115 void InterpreterMacroAssembler::unlock_object(Register lock_reg) { 1116 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 1117 1118 if (LockingMode == LM_MONITOR) { 1119 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1120 } else { 1121 Label count_locking, done, slow_case; 1122 1123 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1124 const Register header_reg = c_rarg2; // Will contain the old oopMark 1125 const Register obj_reg = c_rarg3; // Will contain the oop 1126 1127 save_bcp(); // Save in case of exception 1128 1129 if (LockingMode != LM_LIGHTWEIGHT) { 1130 // Convert from BasicObjectLock structure to object and BasicLock 1131 // structure Store the BasicLock address into %rax 1132 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 1133 } 1134 1135 // Load oop into obj_reg(%c_rarg3) 1136 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 1137 1138 // Free entry 1139 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD); 1140 1141 if (LockingMode == LM_LIGHTWEIGHT) { 1142 lightweight_unlock(obj_reg, swap_reg, header_reg, slow_case); 1143 } else if (LockingMode == LM_LEGACY) { 1144 // Load the old header from BasicLock structure 1145 movptr(header_reg, Address(swap_reg, 1146 BasicLock::displaced_header_offset_in_bytes())); 1147 1148 // Test for recursion 1149 testptr(header_reg, header_reg); 1150 1151 // zero for recursive case 1152 jcc(Assembler::zero, count_locking); 1153 1154 // Atomic swap back the old header 1155 lock(); 1156 cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1157 1158 // zero for simple unlock of a stack-lock case 1159 jcc(Assembler::notZero, slow_case); 1160 1161 bind(count_locking); 1162 dec_held_monitor_count(); 1163 } 1164 jmp(done); 1165 1166 bind(slow_case); 1167 // Call the runtime routine for slow case. 1168 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj 1169 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1170 1171 bind(done); 1172 1173 restore_bcp(); 1174 } 1175 } 1176 1177 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1178 Label& zero_continue) { 1179 assert(ProfileInterpreter, "must be profiling interpreter"); 1180 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); 1181 testptr(mdp, mdp); 1182 jcc(Assembler::zero, zero_continue); 1183 } 1184 1185 1186 // Set the method data pointer for the current bcp. 1187 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1188 assert(ProfileInterpreter, "must be profiling interpreter"); 1189 Label set_mdp; 1190 push(rax); 1191 push(rbx); 1192 1193 get_method(rbx); 1194 // Test MDO to avoid the call if it is null. 1195 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); 1196 testptr(rax, rax); 1197 jcc(Assembler::zero, set_mdp); 1198 // rbx: method 1199 // _bcp_register: bcp 1200 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); 1201 // rax: mdi 1202 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1203 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); 1204 addptr(rbx, in_bytes(MethodData::data_offset())); 1205 addptr(rax, rbx); 1206 bind(set_mdp); 1207 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); 1208 pop(rbx); 1209 pop(rax); 1210 } 1211 1212 void InterpreterMacroAssembler::verify_method_data_pointer() { 1213 assert(ProfileInterpreter, "must be profiling interpreter"); 1214 #ifdef ASSERT 1215 Label verify_continue; 1216 push(rax); 1217 push(rbx); 1218 Register arg3_reg = c_rarg3; 1219 Register arg2_reg = c_rarg2; 1220 push(arg3_reg); 1221 push(arg2_reg); 1222 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue 1223 get_method(rbx); 1224 1225 // If the mdp is valid, it will point to a DataLayout header which is 1226 // consistent with the bcp. The converse is highly probable also. 1227 load_unsigned_short(arg2_reg, 1228 Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); 1229 addptr(arg2_reg, Address(rbx, Method::const_offset())); 1230 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); 1231 cmpptr(arg2_reg, _bcp_register); 1232 jcc(Assembler::equal, verify_continue); 1233 // rbx: method 1234 // _bcp_register: bcp 1235 // c_rarg3: mdp 1236 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1237 rbx, _bcp_register, arg3_reg); 1238 bind(verify_continue); 1239 pop(arg2_reg); 1240 pop(arg3_reg); 1241 pop(rbx); 1242 pop(rax); 1243 #endif // ASSERT 1244 } 1245 1246 1247 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1248 int constant, 1249 Register value) { 1250 assert(ProfileInterpreter, "must be profiling interpreter"); 1251 Address data(mdp_in, constant); 1252 movptr(data, value); 1253 } 1254 1255 1256 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1257 int constant, 1258 bool decrement) { 1259 // Counter address 1260 Address data(mdp_in, constant); 1261 1262 increment_mdp_data_at(data, decrement); 1263 } 1264 1265 void InterpreterMacroAssembler::increment_mdp_data_at(Address data, 1266 bool decrement) { 1267 assert(ProfileInterpreter, "must be profiling interpreter"); 1268 // %%% this does 64bit counters at best it is wasting space 1269 // at worst it is a rare bug when counters overflow 1270 1271 if (decrement) { 1272 // Decrement the register. Set condition codes. 1273 addptr(data, -DataLayout::counter_increment); 1274 // If the decrement causes the counter to overflow, stay negative 1275 Label L; 1276 jcc(Assembler::negative, L); 1277 addptr(data, DataLayout::counter_increment); 1278 bind(L); 1279 } else { 1280 assert(DataLayout::counter_increment == 1, 1281 "flow-free idiom only works with 1"); 1282 // Increment the register. Set carry flag. 1283 addptr(data, DataLayout::counter_increment); 1284 // If the increment causes the counter to overflow, pull back by 1. 1285 sbbptr(data, 0); 1286 } 1287 } 1288 1289 1290 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1291 Register reg, 1292 int constant, 1293 bool decrement) { 1294 Address data(mdp_in, reg, Address::times_1, constant); 1295 1296 increment_mdp_data_at(data, decrement); 1297 } 1298 1299 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1300 int flag_byte_constant) { 1301 assert(ProfileInterpreter, "must be profiling interpreter"); 1302 int header_offset = in_bytes(DataLayout::flags_offset()); 1303 int header_bits = flag_byte_constant; 1304 // Set the flag 1305 orb(Address(mdp_in, header_offset), header_bits); 1306 } 1307 1308 1309 1310 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1311 int offset, 1312 Register value, 1313 Register test_value_out, 1314 Label& not_equal_continue) { 1315 assert(ProfileInterpreter, "must be profiling interpreter"); 1316 if (test_value_out == noreg) { 1317 cmpptr(value, Address(mdp_in, offset)); 1318 } else { 1319 // Put the test value into a register, so caller can use it: 1320 movptr(test_value_out, Address(mdp_in, offset)); 1321 cmpptr(test_value_out, value); 1322 } 1323 jcc(Assembler::notEqual, not_equal_continue); 1324 } 1325 1326 1327 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1328 int offset_of_disp) { 1329 assert(ProfileInterpreter, "must be profiling interpreter"); 1330 Address disp_address(mdp_in, offset_of_disp); 1331 addptr(mdp_in, disp_address); 1332 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1333 } 1334 1335 1336 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1337 Register reg, 1338 int offset_of_disp) { 1339 assert(ProfileInterpreter, "must be profiling interpreter"); 1340 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); 1341 addptr(mdp_in, disp_address); 1342 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1343 } 1344 1345 1346 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1347 int constant) { 1348 assert(ProfileInterpreter, "must be profiling interpreter"); 1349 addptr(mdp_in, constant); 1350 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1351 } 1352 1353 1354 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1355 assert(ProfileInterpreter, "must be profiling interpreter"); 1356 push(return_bci); // save/restore across call_VM 1357 call_VM(noreg, 1358 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1359 return_bci); 1360 pop(return_bci); 1361 } 1362 1363 1364 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1365 Register bumped_count) { 1366 if (ProfileInterpreter) { 1367 Label profile_continue; 1368 1369 // If no method data exists, go to profile_continue. 1370 // Otherwise, assign to mdp 1371 test_method_data_pointer(mdp, profile_continue); 1372 1373 // We are taking a branch. Increment the taken count. 1374 // We inline increment_mdp_data_at to return bumped_count in a register 1375 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1376 Address data(mdp, in_bytes(JumpData::taken_offset())); 1377 movptr(bumped_count, data); 1378 assert(DataLayout::counter_increment == 1, 1379 "flow-free idiom only works with 1"); 1380 addptr(bumped_count, DataLayout::counter_increment); 1381 sbbptr(bumped_count, 0); 1382 movptr(data, bumped_count); // Store back out 1383 1384 // The method data pointer needs to be updated to reflect the new target. 1385 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1386 bind(profile_continue); 1387 } 1388 } 1389 1390 1391 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1392 if (ProfileInterpreter) { 1393 Label profile_continue; 1394 1395 // If no method data exists, go to profile_continue. 1396 test_method_data_pointer(mdp, profile_continue); 1397 1398 // We are taking a branch. Increment the not taken count. 1399 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1400 1401 // The method data pointer needs to be updated to correspond to 1402 // the next bytecode 1403 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1404 bind(profile_continue); 1405 } 1406 } 1407 1408 void InterpreterMacroAssembler::profile_call(Register mdp) { 1409 if (ProfileInterpreter) { 1410 Label profile_continue; 1411 1412 // If no method data exists, go to profile_continue. 1413 test_method_data_pointer(mdp, profile_continue); 1414 1415 // We are making a call. Increment the count. 1416 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1417 1418 // The method data pointer needs to be updated to reflect the new target. 1419 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1420 bind(profile_continue); 1421 } 1422 } 1423 1424 1425 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1426 if (ProfileInterpreter) { 1427 Label profile_continue; 1428 1429 // If no method data exists, go to profile_continue. 1430 test_method_data_pointer(mdp, profile_continue); 1431 1432 // We are making a call. Increment the count. 1433 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1434 1435 // The method data pointer needs to be updated to reflect the new target. 1436 update_mdp_by_constant(mdp, 1437 in_bytes(VirtualCallData:: 1438 virtual_call_data_size())); 1439 bind(profile_continue); 1440 } 1441 } 1442 1443 1444 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1445 Register mdp, 1446 Register reg2, 1447 bool receiver_can_be_null) { 1448 if (ProfileInterpreter) { 1449 Label profile_continue; 1450 1451 // If no method data exists, go to profile_continue. 1452 test_method_data_pointer(mdp, profile_continue); 1453 1454 Label skip_receiver_profile; 1455 if (receiver_can_be_null) { 1456 Label not_null; 1457 testptr(receiver, receiver); 1458 jccb(Assembler::notZero, not_null); 1459 // We are making a call. Increment the count for null receiver. 1460 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1461 jmp(skip_receiver_profile); 1462 bind(not_null); 1463 } 1464 1465 // Record the receiver type. 1466 record_klass_in_profile(receiver, mdp, reg2, true); 1467 bind(skip_receiver_profile); 1468 1469 // The method data pointer needs to be updated to reflect the new target. 1470 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1471 bind(profile_continue); 1472 } 1473 } 1474 1475 // This routine creates a state machine for updating the multi-row 1476 // type profile at a virtual call site (or other type-sensitive bytecode). 1477 // The machine visits each row (of receiver/count) until the receiver type 1478 // is found, or until it runs out of rows. At the same time, it remembers 1479 // the location of the first empty row. (An empty row records null for its 1480 // receiver, and can be allocated for a newly-observed receiver type.) 1481 // Because there are two degrees of freedom in the state, a simple linear 1482 // search will not work; it must be a decision tree. Hence this helper 1483 // function is recursive, to generate the required tree structured code. 1484 // It's the interpreter, so we are trading off code space for speed. 1485 // See below for example code. 1486 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1487 Register receiver, Register mdp, 1488 Register reg2, int start_row, 1489 Label& done, bool is_virtual_call) { 1490 if (TypeProfileWidth == 0) { 1491 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1492 } else { 1493 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1494 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1495 } 1496 } 1497 1498 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row, 1499 Label& done, int total_rows, 1500 OffsetFunction item_offset_fn, 1501 OffsetFunction item_count_offset_fn) { 1502 int last_row = total_rows - 1; 1503 assert(start_row <= last_row, "must be work left to do"); 1504 // Test this row for both the item and for null. 1505 // Take any of three different outcomes: 1506 // 1. found item => increment count and goto done 1507 // 2. found null => keep looking for case 1, maybe allocate this cell 1508 // 3. found something else => keep looking for cases 1 and 2 1509 // Case 3 is handled by a recursive call. 1510 for (int row = start_row; row <= last_row; row++) { 1511 Label next_test; 1512 bool test_for_null_also = (row == start_row); 1513 1514 // See if the item is item[n]. 1515 int item_offset = in_bytes(item_offset_fn(row)); 1516 test_mdp_data_at(mdp, item_offset, item, 1517 (test_for_null_also ? reg2 : noreg), 1518 next_test); 1519 // (Reg2 now contains the item from the CallData.) 1520 1521 // The item is item[n]. Increment count[n]. 1522 int count_offset = in_bytes(item_count_offset_fn(row)); 1523 increment_mdp_data_at(mdp, count_offset); 1524 jmp(done); 1525 bind(next_test); 1526 1527 if (test_for_null_also) { 1528 // Failed the equality check on item[n]... Test for null. 1529 testptr(reg2, reg2); 1530 if (start_row == last_row) { 1531 // The only thing left to do is handle the null case. 1532 Label found_null; 1533 jccb(Assembler::zero, found_null); 1534 // Item did not match any saved item and there is no empty row for it. 1535 // Increment total counter to indicate polymorphic case. 1536 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1537 jmp(done); 1538 bind(found_null); 1539 break; 1540 } 1541 Label found_null; 1542 // Since null is rare, make it be the branch-taken case. 1543 jcc(Assembler::zero, found_null); 1544 1545 // Put all the "Case 3" tests here. 1546 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1547 item_offset_fn, item_count_offset_fn); 1548 1549 // Found a null. Keep searching for a matching item, 1550 // but remember that this is an empty (unused) slot. 1551 bind(found_null); 1552 } 1553 } 1554 1555 // In the fall-through case, we found no matching item, but we 1556 // observed the item[start_row] is null. 1557 1558 // Fill in the item field and increment the count. 1559 int item_offset = in_bytes(item_offset_fn(start_row)); 1560 set_mdp_data_at(mdp, item_offset, item); 1561 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1562 movl(reg2, DataLayout::counter_increment); 1563 set_mdp_data_at(mdp, count_offset, reg2); 1564 if (start_row > 0) { 1565 jmp(done); 1566 } 1567 } 1568 1569 // Example state machine code for three profile rows: 1570 // // main copy of decision tree, rooted at row[1] 1571 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1572 // if (row[0].rec != nullptr) { 1573 // // inner copy of decision tree, rooted at row[1] 1574 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1575 // if (row[1].rec != nullptr) { 1576 // // degenerate decision tree, rooted at row[2] 1577 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1578 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1579 // row[2].init(rec); goto done; 1580 // } else { 1581 // // remember row[1] is empty 1582 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1583 // row[1].init(rec); goto done; 1584 // } 1585 // } else { 1586 // // remember row[0] is empty 1587 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1588 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1589 // row[0].init(rec); goto done; 1590 // } 1591 // done: 1592 1593 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1594 Register mdp, Register reg2, 1595 bool is_virtual_call) { 1596 assert(ProfileInterpreter, "must be profiling"); 1597 Label done; 1598 1599 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1600 1601 bind (done); 1602 } 1603 1604 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1605 Register mdp) { 1606 if (ProfileInterpreter) { 1607 Label profile_continue; 1608 uint row; 1609 1610 // If no method data exists, go to profile_continue. 1611 test_method_data_pointer(mdp, profile_continue); 1612 1613 // Update the total ret count. 1614 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1615 1616 for (row = 0; row < RetData::row_limit(); row++) { 1617 Label next_test; 1618 1619 // See if return_bci is equal to bci[n]: 1620 test_mdp_data_at(mdp, 1621 in_bytes(RetData::bci_offset(row)), 1622 return_bci, noreg, 1623 next_test); 1624 1625 // return_bci is equal to bci[n]. Increment the count. 1626 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1627 1628 // The method data pointer needs to be updated to reflect the new target. 1629 update_mdp_by_offset(mdp, 1630 in_bytes(RetData::bci_displacement_offset(row))); 1631 jmp(profile_continue); 1632 bind(next_test); 1633 } 1634 1635 update_mdp_for_ret(return_bci); 1636 1637 bind(profile_continue); 1638 } 1639 } 1640 1641 1642 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1643 if (ProfileInterpreter) { 1644 Label profile_continue; 1645 1646 // If no method data exists, go to profile_continue. 1647 test_method_data_pointer(mdp, profile_continue); 1648 1649 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1650 1651 // The method data pointer needs to be updated. 1652 int mdp_delta = in_bytes(BitData::bit_data_size()); 1653 if (TypeProfileCasts) { 1654 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1655 } 1656 update_mdp_by_constant(mdp, mdp_delta); 1657 1658 bind(profile_continue); 1659 } 1660 } 1661 1662 1663 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1664 if (ProfileInterpreter) { 1665 Label profile_continue; 1666 1667 // If no method data exists, go to profile_continue. 1668 test_method_data_pointer(mdp, profile_continue); 1669 1670 // The method data pointer needs to be updated. 1671 int mdp_delta = in_bytes(BitData::bit_data_size()); 1672 if (TypeProfileCasts) { 1673 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1674 1675 // Record the object type. 1676 record_klass_in_profile(klass, mdp, reg2, false); 1677 } 1678 update_mdp_by_constant(mdp, mdp_delta); 1679 1680 bind(profile_continue); 1681 } 1682 } 1683 1684 1685 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1686 if (ProfileInterpreter) { 1687 Label profile_continue; 1688 1689 // If no method data exists, go to profile_continue. 1690 test_method_data_pointer(mdp, profile_continue); 1691 1692 // Update the default case count 1693 increment_mdp_data_at(mdp, 1694 in_bytes(MultiBranchData::default_count_offset())); 1695 1696 // The method data pointer needs to be updated. 1697 update_mdp_by_offset(mdp, 1698 in_bytes(MultiBranchData:: 1699 default_displacement_offset())); 1700 1701 bind(profile_continue); 1702 } 1703 } 1704 1705 1706 void InterpreterMacroAssembler::profile_switch_case(Register index, 1707 Register mdp, 1708 Register reg2) { 1709 if (ProfileInterpreter) { 1710 Label profile_continue; 1711 1712 // If no method data exists, go to profile_continue. 1713 test_method_data_pointer(mdp, profile_continue); 1714 1715 // Build the base (index * per_case_size_in_bytes()) + 1716 // case_array_offset_in_bytes() 1717 movl(reg2, in_bytes(MultiBranchData::per_case_size())); 1718 imulptr(index, reg2); // XXX l ? 1719 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? 1720 1721 // Update the case count 1722 increment_mdp_data_at(mdp, 1723 index, 1724 in_bytes(MultiBranchData::relative_count_offset())); 1725 1726 // The method data pointer needs to be updated. 1727 update_mdp_by_offset(mdp, 1728 index, 1729 in_bytes(MultiBranchData:: 1730 relative_displacement_offset())); 1731 1732 bind(profile_continue); 1733 } 1734 } 1735 1736 1737 1738 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1739 if (state == atos) { 1740 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1741 } 1742 } 1743 1744 1745 // Jump if ((*counter_addr += increment) & mask) == 0 1746 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask, 1747 Register scratch, Label* where) { 1748 // This update is actually not atomic and can lose a number of updates 1749 // under heavy contention, but the alternative of using the (contended) 1750 // atomic update here penalizes profiling paths too much. 1751 movl(scratch, counter_addr); 1752 incrementl(scratch, InvocationCounter::count_increment); 1753 movl(counter_addr, scratch); 1754 andl(scratch, mask); 1755 if (where != nullptr) { 1756 jcc(Assembler::zero, *where); 1757 } 1758 } 1759 1760 void InterpreterMacroAssembler::notify_method_entry() { 1761 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1762 // track stack depth. If it is possible to enter interp_only_mode we add 1763 // the code to check if the event should be sent. 1764 Register rthread = r15_thread; 1765 Register rarg = c_rarg1; 1766 if (JvmtiExport::can_post_interpreter_events()) { 1767 Label L; 1768 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 1769 testl(rdx, rdx); 1770 jcc(Assembler::zero, L); 1771 call_VM(noreg, CAST_FROM_FN_PTR(address, 1772 InterpreterRuntime::post_method_entry)); 1773 bind(L); 1774 } 1775 1776 if (DTraceMethodProbes) { 1777 get_method(rarg); 1778 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1779 rthread, rarg); 1780 } 1781 1782 // RedefineClasses() tracing support for obsolete method entry 1783 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1784 get_method(rarg); 1785 call_VM_leaf( 1786 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1787 rthread, rarg); 1788 } 1789 } 1790 1791 1792 void InterpreterMacroAssembler::notify_method_exit( 1793 TosState state, NotifyMethodExitMode mode) { 1794 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1795 // track stack depth. If it is possible to enter interp_only_mode we add 1796 // the code to check if the event should be sent. 1797 Register rthread = r15_thread; 1798 Register rarg = c_rarg1; 1799 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1800 Label L; 1801 // Note: frame::interpreter_frame_result has a dependency on how the 1802 // method result is saved across the call to post_method_exit. If this 1803 // is changed then the interpreter_frame_result implementation will 1804 // need to be updated too. 1805 1806 // template interpreter will leave the result on the top of the stack. 1807 push(state); 1808 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 1809 testl(rdx, rdx); 1810 jcc(Assembler::zero, L); 1811 call_VM(noreg, 1812 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1813 bind(L); 1814 pop(state); 1815 } 1816 1817 if (DTraceMethodProbes) { 1818 push(state); 1819 get_method(rarg); 1820 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1821 rthread, rarg); 1822 pop(state); 1823 } 1824 } 1825 1826 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1827 // Get index out of bytecode pointer 1828 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1829 // Get address of invokedynamic array 1830 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1831 movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1832 if (is_power_of_2(sizeof(ResolvedIndyEntry))) { 1833 shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2 1834 } else { 1835 imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1836 } 1837 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes())); 1838 } 1839 1840 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1841 // Get index out of bytecode pointer 1842 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1843 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1844 1845 movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset())); 1846 // Take shortcut if the size is a power of 2 1847 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1848 shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1849 } else { 1850 imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 1851 } 1852 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes())); 1853 } 1854 1855 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1856 // Get index out of bytecode pointer 1857 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1858 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1859 1860 movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset())); 1861 imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1862 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes())); 1863 }