1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compiler_globals.hpp" 27 #include "interp_masm_x86.hpp" 28 #include "interpreter/interpreter.hpp" 29 #include "interpreter/interpreterRuntime.hpp" 30 #include "logging/log.hpp" 31 #include "oops/arrayOop.hpp" 32 #include "oops/markWord.hpp" 33 #include "oops/methodData.hpp" 34 #include "oops/method.hpp" 35 #include "oops/resolvedFieldEntry.hpp" 36 #include "oops/resolvedIndyEntry.hpp" 37 #include "oops/resolvedMethodEntry.hpp" 38 #include "prims/jvmtiExport.hpp" 39 #include "prims/jvmtiThreadState.hpp" 40 #include "runtime/basicLock.hpp" 41 #include "runtime/frame.inline.hpp" 42 #include "runtime/javaThread.hpp" 43 #include "runtime/safepointMechanism.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "utilities/powerOfTwo.hpp" 46 47 // Implementation of InterpreterMacroAssembler 48 49 void InterpreterMacroAssembler::jump_to_entry(address entry) { 50 assert(entry, "Entry must have been generated by now"); 51 jump(RuntimeAddress(entry)); 52 } 53 54 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 55 Label update, next, none; 56 57 #ifdef _LP64 58 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 59 #else 60 assert_different_registers(obj, mdo_addr.base(), mdo_addr.index()); 61 #endif 62 63 interp_verify_oop(obj, atos); 64 65 testptr(obj, obj); 66 jccb(Assembler::notZero, update); 67 testptr(mdo_addr, TypeEntries::null_seen); 68 jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore. 69 // atomic update to prevent overwriting Klass* with 0 70 lock(); 71 orptr(mdo_addr, TypeEntries::null_seen); 72 jmpb(next); 73 74 bind(update); 75 load_klass(obj, obj, rscratch1); 76 #ifdef _LP64 77 mov(rscratch1, obj); 78 #endif 79 80 xorptr(obj, mdo_addr); 81 testptr(obj, TypeEntries::type_klass_mask); 82 jccb(Assembler::zero, next); // klass seen before, nothing to 83 // do. The unknown bit may have been 84 // set already but no need to check. 85 86 testptr(obj, TypeEntries::type_unknown); 87 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 88 89 cmpptr(mdo_addr, 0); 90 jccb(Assembler::equal, none); 91 cmpptr(mdo_addr, TypeEntries::null_seen); 92 jccb(Assembler::equal, none); 93 #ifdef _LP64 94 // There is a chance that the checks above (re-reading profiling 95 // data from memory) fail if another thread has just set the 96 // profiling to this obj's klass 97 mov(obj, rscratch1); 98 xorptr(obj, mdo_addr); 99 testptr(obj, TypeEntries::type_klass_mask); 100 jccb(Assembler::zero, next); 101 #endif 102 103 // different than before. Cannot keep accurate profile. 104 orptr(mdo_addr, TypeEntries::type_unknown); 105 jmpb(next); 106 107 bind(none); 108 // first time here. Set profile type. 109 movptr(mdo_addr, obj); 110 #ifdef ASSERT 111 andptr(obj, TypeEntries::type_klass_mask); 112 verify_klass_ptr(obj); 113 #endif 114 115 bind(next); 116 } 117 118 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 119 if (!ProfileInterpreter) { 120 return; 121 } 122 123 if (MethodData::profile_arguments() || MethodData::profile_return()) { 124 Label profile_continue; 125 126 test_method_data_pointer(mdp, profile_continue); 127 128 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 129 130 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 131 jcc(Assembler::notEqual, profile_continue); 132 133 if (MethodData::profile_arguments()) { 134 Label done; 135 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 136 addptr(mdp, off_to_args); 137 138 for (int i = 0; i < TypeProfileArgsLimit; i++) { 139 if (i > 0 || MethodData::profile_return()) { 140 // If return value type is profiled we may have no argument to profile 141 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 142 subl(tmp, i*TypeStackSlotEntries::per_arg_count()); 143 cmpl(tmp, TypeStackSlotEntries::per_arg_count()); 144 jcc(Assembler::less, done); 145 } 146 movptr(tmp, Address(callee, Method::const_offset())); 147 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 148 // stack offset o (zero based) from the start of the argument 149 // list, for n arguments translates into offset n - o - 1 from 150 // the end of the argument list 151 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 152 subl(tmp, 1); 153 Address arg_addr = argument_address(tmp); 154 movptr(tmp, arg_addr); 155 156 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 157 profile_obj_type(tmp, mdo_arg_addr); 158 159 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 160 addptr(mdp, to_add); 161 off_to_args += to_add; 162 } 163 164 if (MethodData::profile_return()) { 165 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 166 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 167 } 168 169 bind(done); 170 171 if (MethodData::profile_return()) { 172 // We're right after the type profile for the last 173 // argument. tmp is the number of cells left in the 174 // CallTypeData/VirtualCallTypeData to reach its end. Non null 175 // if there's a return to profile. 176 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 177 shll(tmp, log2i_exact((int)DataLayout::cell_size)); 178 addptr(mdp, tmp); 179 } 180 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp); 181 } else { 182 assert(MethodData::profile_return(), "either profile call args or call ret"); 183 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 184 } 185 186 // mdp points right after the end of the 187 // CallTypeData/VirtualCallTypeData, right after the cells for the 188 // return value type if there's one 189 190 bind(profile_continue); 191 } 192 } 193 194 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 195 assert_different_registers(mdp, ret, tmp, _bcp_register); 196 if (ProfileInterpreter && MethodData::profile_return()) { 197 Label profile_continue; 198 199 test_method_data_pointer(mdp, profile_continue); 200 201 if (MethodData::profile_return_jsr292_only()) { 202 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 203 204 // If we don't profile all invoke bytecodes we must make sure 205 // it's a bytecode we indeed profile. We can't go back to the 206 // beginning of the ProfileData we intend to update to check its 207 // type because we're right after it and we don't known its 208 // length 209 Label do_profile; 210 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic); 211 jcc(Assembler::equal, do_profile); 212 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle); 213 jcc(Assembler::equal, do_profile); 214 get_method(tmp); 215 cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 216 jcc(Assembler::notEqual, profile_continue); 217 218 bind(do_profile); 219 } 220 221 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 222 mov(tmp, ret); 223 profile_obj_type(tmp, mdo_ret_addr); 224 225 bind(profile_continue); 226 } 227 } 228 229 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 230 if (ProfileInterpreter && MethodData::profile_parameters()) { 231 Label profile_continue; 232 233 test_method_data_pointer(mdp, profile_continue); 234 235 // Load the offset of the area within the MDO used for 236 // parameters. If it's negative we're not profiling any parameters 237 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 238 testl(tmp1, tmp1); 239 jcc(Assembler::negative, profile_continue); 240 241 // Compute a pointer to the area for parameters from the offset 242 // and move the pointer to the slot for the last 243 // parameters. Collect profiling from last parameter down. 244 // mdo start + parameters offset + array length - 1 245 addptr(mdp, tmp1); 246 movptr(tmp1, Address(mdp, ArrayData::array_len_offset())); 247 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 248 249 Label loop; 250 bind(loop); 251 252 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 253 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 254 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size); 255 Address arg_off(mdp, tmp1, per_arg_scale, off_base); 256 Address arg_type(mdp, tmp1, per_arg_scale, type_base); 257 258 // load offset on the stack from the slot for this parameter 259 movptr(tmp2, arg_off); 260 negptr(tmp2); 261 // read the parameter from the local area 262 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale())); 263 264 // profile the parameter 265 profile_obj_type(tmp2, arg_type); 266 267 // go to next parameter 268 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 269 jcc(Assembler::positive, loop); 270 271 bind(profile_continue); 272 } 273 } 274 275 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 276 int number_of_arguments) { 277 // interpreter specific 278 // 279 // Note: No need to save/restore bcp & locals registers 280 // since these are callee saved registers and no blocking/ 281 // GC can happen in leaf calls. 282 // Further Note: DO NOT save/restore bcp/locals. If a caller has 283 // already saved them so that it can use rsi/rdi as temporaries 284 // then a save/restore here will DESTROY the copy the caller 285 // saved! There used to be a save_bcp() that only happened in 286 // the ASSERT path (no restore_bcp). Which caused bizarre failures 287 // when jvm built with ASSERTs. 288 #ifdef ASSERT 289 { 290 Label L; 291 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 292 jcc(Assembler::equal, L); 293 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 294 " last_sp != null"); 295 bind(L); 296 } 297 #endif 298 // super call 299 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 300 // interpreter specific 301 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals 302 // but since they may not have been saved (and we don't want to 303 // save them here (see note above) the assert is invalid. 304 } 305 306 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 307 Register java_thread, 308 Register last_java_sp, 309 address entry_point, 310 int number_of_arguments, 311 bool check_exceptions) { 312 // interpreter specific 313 // 314 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 315 // really make a difference for these runtime calls, since they are 316 // slow anyway. Btw., bcp must be saved/restored since it may change 317 // due to GC. 318 NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");) 319 save_bcp(); 320 #ifdef ASSERT 321 { 322 Label L; 323 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 324 jcc(Assembler::equal, L); 325 stop("InterpreterMacroAssembler::call_VM_base:" 326 " last_sp isn't null"); 327 bind(L); 328 } 329 #endif /* ASSERT */ 330 // super call 331 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 332 entry_point, number_of_arguments, 333 check_exceptions); 334 // interpreter specific 335 restore_bcp(); 336 restore_locals(); 337 } 338 339 #ifdef _LP64 340 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 341 address entry_point, 342 Register arg_1) { 343 assert(arg_1 == c_rarg1, ""); 344 Label resume_pc, not_preempted; 345 346 #ifdef ASSERT 347 { 348 Label L; 349 cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 350 jcc(Assembler::equal, L); 351 stop("Should not have alternate return address set"); 352 bind(L); 353 } 354 #endif /* ASSERT */ 355 356 // Force freeze slow path. 357 push_cont_fastpath(); 358 359 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 360 // Note: call_VM_helper requires last_Java_pc for anchor to be at the top of the stack. 361 lea(rscratch1, resume_pc); 362 push(rscratch1); 363 MacroAssembler::call_VM_helper(oop_result, entry_point, 1, false /*check_exceptions*/); 364 pop(rscratch1); 365 366 pop_cont_fastpath(); 367 368 // Check if preempted. 369 movptr(rscratch1, Address(r15_thread, JavaThread::preempt_alternate_return_offset())); 370 cmpptr(rscratch1, NULL_WORD); 371 jccb(Assembler::zero, not_preempted); 372 movptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 373 jmp(rscratch1); 374 375 // In case of preemption, this is where we will resume once we finally acquire the monitor. 376 bind(resume_pc); 377 restore_after_resume(false /* is_native */); 378 379 bind(not_preempted); 380 } 381 382 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 383 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 384 call(rscratch1); 385 if (is_native) { 386 // On resume we need to set up stack as expected. 387 push(dtos); 388 push(ltos); 389 } 390 } 391 #else 392 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 393 address entry_point, 394 Register arg_1) { 395 MacroAssembler::call_VM(oop_result, entry_point, arg_1); 396 } 397 #endif // _LP64 398 399 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 400 if (JvmtiExport::can_pop_frame()) { 401 Label L; 402 // Initiate popframe handling only if it is not already being 403 // processed. If the flag has the popframe_processing bit set, it 404 // means that this code is called *during* popframe handling - we 405 // don't want to reenter. 406 // This method is only called just after the call into the vm in 407 // call_VM_base, so the arg registers are available. 408 Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit 409 LP64_ONLY(c_rarg0); 410 movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset())); 411 testl(pop_cond, JavaThread::popframe_pending_bit); 412 jcc(Assembler::zero, L); 413 testl(pop_cond, JavaThread::popframe_processing_bit); 414 jcc(Assembler::notZero, L); 415 // Call Interpreter::remove_activation_preserving_args_entry() to get the 416 // address of the same-named entrypoint in the generated interpreter code. 417 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 418 jmp(rax); 419 bind(L); 420 NOT_LP64(get_thread(java_thread);) 421 } 422 } 423 424 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 425 Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 426 NOT_LP64(get_thread(thread);) 427 movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset())); 428 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); 429 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); 430 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); 431 #ifdef _LP64 432 switch (state) { 433 case atos: movptr(rax, oop_addr); 434 movptr(oop_addr, NULL_WORD); 435 interp_verify_oop(rax, state); break; 436 case ltos: movptr(rax, val_addr); break; 437 case btos: // fall through 438 case ztos: // fall through 439 case ctos: // fall through 440 case stos: // fall through 441 case itos: movl(rax, val_addr); break; 442 case ftos: load_float(val_addr); break; 443 case dtos: load_double(val_addr); break; 444 case vtos: /* nothing to do */ break; 445 default : ShouldNotReachHere(); 446 } 447 // Clean up tos value in the thread object 448 movl(tos_addr, ilgl); 449 movl(val_addr, NULL_WORD); 450 #else 451 const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset() 452 + in_ByteSize(wordSize)); 453 switch (state) { 454 case atos: movptr(rax, oop_addr); 455 movptr(oop_addr, NULL_WORD); 456 interp_verify_oop(rax, state); break; 457 case ltos: 458 movl(rdx, val_addr1); // fall through 459 case btos: // fall through 460 case ztos: // fall through 461 case ctos: // fall through 462 case stos: // fall through 463 case itos: movl(rax, val_addr); break; 464 case ftos: load_float(val_addr); break; 465 case dtos: load_double(val_addr); break; 466 case vtos: /* nothing to do */ break; 467 default : ShouldNotReachHere(); 468 } 469 #endif // _LP64 470 // Clean up tos value in the thread object 471 movl(tos_addr, ilgl); 472 movptr(val_addr, NULL_WORD); 473 NOT_LP64(movptr(val_addr1, NULL_WORD);) 474 } 475 476 477 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 478 if (JvmtiExport::can_force_early_return()) { 479 Label L; 480 Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread); 481 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread); 482 483 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 484 testptr(tmp, tmp); 485 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit; 486 487 // Initiate earlyret handling only if it is not already being processed. 488 // If the flag has the earlyret_processing bit set, it means that this code 489 // is called *during* earlyret handling - we don't want to reenter. 490 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); 491 cmpl(tmp, JvmtiThreadState::earlyret_pending); 492 jcc(Assembler::notEqual, L); 493 494 // Call Interpreter::remove_activation_early_entry() to get the address of the 495 // same-named entrypoint in the generated interpreter code. 496 NOT_LP64(get_thread(java_thread);) 497 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 498 #ifdef _LP64 499 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 500 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); 501 #else 502 pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 503 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1); 504 #endif // _LP64 505 jmp(rax); 506 bind(L); 507 NOT_LP64(get_thread(java_thread);) 508 } 509 } 510 511 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 512 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 513 load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); 514 bswapl(reg); 515 shrl(reg, 16); 516 } 517 518 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 519 int bcp_offset, 520 size_t index_size) { 521 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 522 if (index_size == sizeof(u2)) { 523 load_unsigned_short(index, Address(_bcp_register, bcp_offset)); 524 } else if (index_size == sizeof(u4)) { 525 movl(index, Address(_bcp_register, bcp_offset)); 526 } else if (index_size == sizeof(u1)) { 527 load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); 528 } else { 529 ShouldNotReachHere(); 530 } 531 } 532 533 // Load object from cpool->resolved_references(index) 534 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, 535 Register index, 536 Register tmp) { 537 assert_different_registers(result, index); 538 539 get_constant_pool(result); 540 // load pointer for resolved_references[] objArray 541 movptr(result, Address(result, ConstantPool::cache_offset())); 542 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 543 resolve_oop_handle(result, tmp); 544 load_heap_oop(result, Address(result, index, 545 UseCompressedOops ? Address::times_4 : Address::times_ptr, 546 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp); 547 } 548 549 // load cpool->resolved_klass_at(index) 550 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass, 551 Register cpool, 552 Register index) { 553 assert_different_registers(cpool, index); 554 555 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool))); 556 Register resolved_klasses = cpool; 557 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset())); 558 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes())); 559 } 560 561 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 562 // subtype of super_klass. 563 // 564 // Args: 565 // rax: superklass 566 // Rsub_klass: subklass 567 // 568 // Kills: 569 // rcx, rdi 570 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 571 Label& ok_is_subtype) { 572 assert(Rsub_klass != rax, "rax holds superklass"); 573 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) 574 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) 575 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); 576 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); 577 578 // Profile the not-null value's klass. 579 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi 580 581 // Do the check. 582 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx 583 } 584 585 586 #ifndef _LP64 587 void InterpreterMacroAssembler::f2ieee() { 588 if (IEEEPrecision) { 589 fstp_s(Address(rsp, 0)); 590 fld_s(Address(rsp, 0)); 591 } 592 } 593 594 595 void InterpreterMacroAssembler::d2ieee() { 596 if (IEEEPrecision) { 597 fstp_d(Address(rsp, 0)); 598 fld_d(Address(rsp, 0)); 599 } 600 } 601 #endif // _LP64 602 603 // Java Expression Stack 604 605 void InterpreterMacroAssembler::pop_ptr(Register r) { 606 pop(r); 607 } 608 609 void InterpreterMacroAssembler::push_ptr(Register r) { 610 push(r); 611 } 612 613 void InterpreterMacroAssembler::push_i(Register r) { 614 push(r); 615 } 616 617 void InterpreterMacroAssembler::push_i_or_ptr(Register r) { 618 push(r); 619 } 620 621 void InterpreterMacroAssembler::push_f(XMMRegister r) { 622 subptr(rsp, wordSize); 623 movflt(Address(rsp, 0), r); 624 } 625 626 void InterpreterMacroAssembler::pop_f(XMMRegister r) { 627 movflt(r, Address(rsp, 0)); 628 addptr(rsp, wordSize); 629 } 630 631 void InterpreterMacroAssembler::push_d(XMMRegister r) { 632 subptr(rsp, 2 * wordSize); 633 movdbl(Address(rsp, 0), r); 634 } 635 636 void InterpreterMacroAssembler::pop_d(XMMRegister r) { 637 movdbl(r, Address(rsp, 0)); 638 addptr(rsp, 2 * Interpreter::stackElementSize); 639 } 640 641 #ifdef _LP64 642 void InterpreterMacroAssembler::pop_i(Register r) { 643 // XXX can't use pop currently, upper half non clean 644 movl(r, Address(rsp, 0)); 645 addptr(rsp, wordSize); 646 } 647 648 void InterpreterMacroAssembler::pop_l(Register r) { 649 movq(r, Address(rsp, 0)); 650 addptr(rsp, 2 * Interpreter::stackElementSize); 651 } 652 653 void InterpreterMacroAssembler::push_l(Register r) { 654 subptr(rsp, 2 * wordSize); 655 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r ); 656 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD ); 657 } 658 659 void InterpreterMacroAssembler::pop(TosState state) { 660 switch (state) { 661 case atos: pop_ptr(); break; 662 case btos: 663 case ztos: 664 case ctos: 665 case stos: 666 case itos: pop_i(); break; 667 case ltos: pop_l(); break; 668 case ftos: pop_f(xmm0); break; 669 case dtos: pop_d(xmm0); break; 670 case vtos: /* nothing to do */ break; 671 default: ShouldNotReachHere(); 672 } 673 interp_verify_oop(rax, state); 674 } 675 676 void InterpreterMacroAssembler::push(TosState state) { 677 interp_verify_oop(rax, state); 678 switch (state) { 679 case atos: push_ptr(); break; 680 case btos: 681 case ztos: 682 case ctos: 683 case stos: 684 case itos: push_i(); break; 685 case ltos: push_l(); break; 686 case ftos: push_f(xmm0); break; 687 case dtos: push_d(xmm0); break; 688 case vtos: /* nothing to do */ break; 689 default : ShouldNotReachHere(); 690 } 691 } 692 #else 693 void InterpreterMacroAssembler::pop_i(Register r) { 694 pop(r); 695 } 696 697 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) { 698 pop(lo); 699 pop(hi); 700 } 701 702 void InterpreterMacroAssembler::pop_f() { 703 fld_s(Address(rsp, 0)); 704 addptr(rsp, 1 * wordSize); 705 } 706 707 void InterpreterMacroAssembler::pop_d() { 708 fld_d(Address(rsp, 0)); 709 addptr(rsp, 2 * wordSize); 710 } 711 712 713 void InterpreterMacroAssembler::pop(TosState state) { 714 switch (state) { 715 case atos: pop_ptr(rax); break; 716 case btos: // fall through 717 case ztos: // fall through 718 case ctos: // fall through 719 case stos: // fall through 720 case itos: pop_i(rax); break; 721 case ltos: pop_l(rax, rdx); break; 722 case ftos: 723 if (UseSSE >= 1) { 724 pop_f(xmm0); 725 } else { 726 pop_f(); 727 } 728 break; 729 case dtos: 730 if (UseSSE >= 2) { 731 pop_d(xmm0); 732 } else { 733 pop_d(); 734 } 735 break; 736 case vtos: /* nothing to do */ break; 737 default : ShouldNotReachHere(); 738 } 739 interp_verify_oop(rax, state); 740 } 741 742 743 void InterpreterMacroAssembler::push_l(Register lo, Register hi) { 744 push(hi); 745 push(lo); 746 } 747 748 void InterpreterMacroAssembler::push_f() { 749 // Do not schedule for no AGI! Never write beyond rsp! 750 subptr(rsp, 1 * wordSize); 751 fstp_s(Address(rsp, 0)); 752 } 753 754 void InterpreterMacroAssembler::push_d() { 755 // Do not schedule for no AGI! Never write beyond rsp! 756 subptr(rsp, 2 * wordSize); 757 fstp_d(Address(rsp, 0)); 758 } 759 760 761 void InterpreterMacroAssembler::push(TosState state) { 762 interp_verify_oop(rax, state); 763 switch (state) { 764 case atos: push_ptr(rax); break; 765 case btos: // fall through 766 case ztos: // fall through 767 case ctos: // fall through 768 case stos: // fall through 769 case itos: push_i(rax); break; 770 case ltos: push_l(rax, rdx); break; 771 case ftos: 772 if (UseSSE >= 1) { 773 push_f(xmm0); 774 } else { 775 push_f(); 776 } 777 break; 778 case dtos: 779 if (UseSSE >= 2) { 780 push_d(xmm0); 781 } else { 782 push_d(); 783 } 784 break; 785 case vtos: /* nothing to do */ break; 786 default : ShouldNotReachHere(); 787 } 788 } 789 #endif // _LP64 790 791 792 // Helpers for swap and dup 793 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 794 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); 795 } 796 797 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 798 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); 799 } 800 801 802 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 803 // set sender sp 804 lea(_bcp_register, Address(rsp, wordSize)); 805 // record last_sp 806 mov(rcx, _bcp_register); 807 subptr(rcx, rbp); 808 sarptr(rcx, LogBytesPerWord); 809 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx); 810 } 811 812 813 // Jump to from_interpreted entry of a call unless single stepping is possible 814 // in this thread in which case we must call the i2i entry 815 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 816 prepare_to_jump_from_interpreted(); 817 818 if (JvmtiExport::can_post_interpreter_events()) { 819 Label run_compiled_code; 820 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 821 // compiled code in threads for which the event is enabled. Check here for 822 // interp_only_mode if these events CAN be enabled. 823 // interp_only is an int, on little endian it is sufficient to test the byte only 824 // Is a cmpl faster? 825 LP64_ONLY(temp = r15_thread;) 826 NOT_LP64(get_thread(temp);) 827 cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0); 828 jccb(Assembler::zero, run_compiled_code); 829 jmp(Address(method, Method::interpreter_entry_offset())); 830 bind(run_compiled_code); 831 } 832 833 jmp(Address(method, Method::from_interpreted_offset())); 834 } 835 836 // The following two routines provide a hook so that an implementation 837 // can schedule the dispatch in two parts. x86 does not do this. 838 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 839 // Nothing x86 specific to be done here 840 } 841 842 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 843 dispatch_next(state, step); 844 } 845 846 void InterpreterMacroAssembler::dispatch_base(TosState state, 847 address* table, 848 bool verifyoop, 849 bool generate_poll) { 850 verify_FPU(1, state); 851 if (VerifyActivationFrameSize) { 852 Label L; 853 mov(rcx, rbp); 854 subptr(rcx, rsp); 855 int32_t min_frame_size = 856 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * 857 wordSize; 858 cmpptr(rcx, min_frame_size); 859 jcc(Assembler::greaterEqual, L); 860 stop("broken stack frame"); 861 bind(L); 862 } 863 if (verifyoop) { 864 interp_verify_oop(rax, state); 865 } 866 867 address* const safepoint_table = Interpreter::safept_table(state); 868 #ifdef _LP64 869 Label no_safepoint, dispatch; 870 if (table != safepoint_table && generate_poll) { 871 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 872 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 873 874 jccb(Assembler::zero, no_safepoint); 875 lea(rscratch1, ExternalAddress((address)safepoint_table)); 876 jmpb(dispatch); 877 } 878 879 bind(no_safepoint); 880 lea(rscratch1, ExternalAddress((address)table)); 881 bind(dispatch); 882 jmp(Address(rscratch1, rbx, Address::times_8)); 883 884 #else 885 Address index(noreg, rbx, Address::times_ptr); 886 if (table != safepoint_table && generate_poll) { 887 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 888 Label no_safepoint; 889 const Register thread = rcx; 890 get_thread(thread); 891 testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 892 893 jccb(Assembler::zero, no_safepoint); 894 ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index); 895 jump(dispatch_addr, noreg); 896 bind(no_safepoint); 897 } 898 899 { 900 ArrayAddress dispatch_addr(ExternalAddress((address)table), index); 901 jump(dispatch_addr, noreg); 902 } 903 #endif // _LP64 904 } 905 906 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 907 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 908 } 909 910 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 911 dispatch_base(state, Interpreter::normal_table(state)); 912 } 913 914 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 915 dispatch_base(state, Interpreter::normal_table(state), false); 916 } 917 918 919 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 920 // load next bytecode (load before advancing _bcp_register to prevent AGI) 921 load_unsigned_byte(rbx, Address(_bcp_register, step)); 922 // advance _bcp_register 923 increment(_bcp_register, step); 924 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 925 } 926 927 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 928 // load current bytecode 929 load_unsigned_byte(rbx, Address(_bcp_register, 0)); 930 dispatch_base(state, table); 931 } 932 933 void InterpreterMacroAssembler::narrow(Register result) { 934 935 // Get method->_constMethod->_result_type 936 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 937 movptr(rcx, Address(rcx, Method::const_offset())); 938 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); 939 940 Label done, notBool, notByte, notChar; 941 942 // common case first 943 cmpl(rcx, T_INT); 944 jcc(Assembler::equal, done); 945 946 // mask integer result to narrower return type. 947 cmpl(rcx, T_BOOLEAN); 948 jcc(Assembler::notEqual, notBool); 949 andl(result, 0x1); 950 jmp(done); 951 952 bind(notBool); 953 cmpl(rcx, T_BYTE); 954 jcc(Assembler::notEqual, notByte); 955 LP64_ONLY(movsbl(result, result);) 956 NOT_LP64(shll(result, 24);) // truncate upper 24 bits 957 NOT_LP64(sarl(result, 24);) // and sign-extend byte 958 jmp(done); 959 960 bind(notByte); 961 cmpl(rcx, T_CHAR); 962 jcc(Assembler::notEqual, notChar); 963 LP64_ONLY(movzwl(result, result);) 964 NOT_LP64(andl(result, 0xFFFF);) // truncate upper 16 bits 965 jmp(done); 966 967 bind(notChar); 968 // cmpl(rcx, T_SHORT); // all that's left 969 // jcc(Assembler::notEqual, done); 970 LP64_ONLY(movswl(result, result);) 971 NOT_LP64(shll(result, 16);) // truncate upper 16 bits 972 NOT_LP64(sarl(result, 16);) // and sign-extend short 973 974 // Nothing to do for T_INT 975 bind(done); 976 } 977 978 // remove activation 979 // 980 // Apply stack watermark barrier. 981 // Unlock the receiver if this is a synchronized method. 982 // Unlock any Java monitors from synchronized blocks. 983 // Remove the activation from the stack. 984 // 985 // If there are locked Java monitors 986 // If throw_monitor_exception 987 // throws IllegalMonitorStateException 988 // Else if install_monitor_exception 989 // installs IllegalMonitorStateException 990 // Else 991 // no error processing 992 void InterpreterMacroAssembler::remove_activation( 993 TosState state, 994 Register ret_addr, 995 bool throw_monitor_exception, 996 bool install_monitor_exception, 997 bool notify_jvmdi) { 998 // Note: Registers rdx xmm0 may be in use for the 999 // result check if synchronized method 1000 Label unlocked, unlock, no_unlock; 1001 1002 const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 1003 const Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 1004 const Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 1005 // monitor pointers need different register 1006 // because rdx may have the result in it 1007 NOT_LP64(get_thread(rthread);) 1008 1009 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 1010 // that would normally not be safe to use. Such bad returns into unsafe territory of 1011 // the stack, will call InterpreterRuntime::at_unwind. 1012 Label slow_path; 1013 Label fast_path; 1014 safepoint_poll(slow_path, rthread, true /* at_return */, false /* in_nmethod */); 1015 jmp(fast_path); 1016 bind(slow_path); 1017 push(state); 1018 set_last_Java_frame(rthread, noreg, rbp, (address)pc(), rscratch1); 1019 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 1020 NOT_LP64(get_thread(rthread);) // call_VM clobbered it, restore 1021 reset_last_Java_frame(rthread, true); 1022 pop(state); 1023 bind(fast_path); 1024 1025 // get the value of _do_not_unlock_if_synchronized into rdx 1026 const Address do_not_unlock_if_synchronized(rthread, 1027 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1028 movbool(rbx, do_not_unlock_if_synchronized); 1029 movbool(do_not_unlock_if_synchronized, false); // reset the flag 1030 1031 // get method access flags 1032 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 1033 movl(rcx, Address(rcx, Method::access_flags_offset())); 1034 testl(rcx, JVM_ACC_SYNCHRONIZED); 1035 jcc(Assembler::zero, unlocked); 1036 1037 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 1038 // is set. 1039 testbool(rbx); 1040 jcc(Assembler::notZero, no_unlock); 1041 1042 // unlock monitor 1043 push(state); // save result 1044 1045 // BasicObjectLock will be first in list, since this is a 1046 // synchronized method. However, need to check that the object has 1047 // not been unlocked by an explicit monitorexit bytecode. 1048 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * 1049 wordSize - (int) sizeof(BasicObjectLock)); 1050 // We use c_rarg1/rdx so that if we go slow path it will be the correct 1051 // register for unlock_object to pass to VM directly 1052 lea(robj, monitor); // address of first monitor 1053 1054 movptr(rax, Address(robj, BasicObjectLock::obj_offset())); 1055 testptr(rax, rax); 1056 jcc(Assembler::notZero, unlock); 1057 1058 pop(state); 1059 if (throw_monitor_exception) { 1060 // Entry already unlocked, need to throw exception 1061 NOT_LP64(empty_FPU_stack();) // remove possible return value from FPU-stack, otherwise stack could overflow 1062 call_VM(noreg, CAST_FROM_FN_PTR(address, 1063 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1064 should_not_reach_here(); 1065 } else { 1066 // Monitor already unlocked during a stack unroll. If requested, 1067 // install an illegal_monitor_state_exception. Continue with 1068 // stack unrolling. 1069 if (install_monitor_exception) { 1070 NOT_LP64(empty_FPU_stack();) 1071 call_VM(noreg, CAST_FROM_FN_PTR(address, 1072 InterpreterRuntime::new_illegal_monitor_state_exception)); 1073 } 1074 jmp(unlocked); 1075 } 1076 1077 bind(unlock); 1078 unlock_object(robj); 1079 pop(state); 1080 1081 // Check that for block-structured locking (i.e., that all locked 1082 // objects has been unlocked) 1083 bind(unlocked); 1084 1085 // rax, rdx: Might contain return value 1086 1087 // Check that all monitors are unlocked 1088 { 1089 Label loop, exception, entry, restart; 1090 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 1091 const Address monitor_block_top( 1092 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 1093 const Address monitor_block_bot( 1094 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 1095 1096 bind(restart); 1097 // We use c_rarg1 so that if we go slow path it will be the correct 1098 // register for unlock_object to pass to VM directly 1099 movptr(rmon, monitor_block_top); // derelativize pointer 1100 lea(rmon, Address(rbp, rmon, Address::times_ptr)); 1101 // c_rarg1 points to current entry, starting with top-most entry 1102 1103 lea(rbx, monitor_block_bot); // points to word before bottom of 1104 // monitor block 1105 jmp(entry); 1106 1107 // Entry already locked, need to throw exception 1108 bind(exception); 1109 1110 if (throw_monitor_exception) { 1111 // Throw exception 1112 NOT_LP64(empty_FPU_stack();) 1113 MacroAssembler::call_VM(noreg, 1114 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 1115 throw_illegal_monitor_state_exception)); 1116 should_not_reach_here(); 1117 } else { 1118 // Stack unrolling. Unlock object and install illegal_monitor_exception. 1119 // Unlock does not block, so don't have to worry about the frame. 1120 // We don't have to preserve c_rarg1 since we are going to throw an exception. 1121 1122 push(state); 1123 mov(robj, rmon); // nop if robj and rmon are the same 1124 unlock_object(robj); 1125 pop(state); 1126 1127 if (install_monitor_exception) { 1128 NOT_LP64(empty_FPU_stack();) 1129 call_VM(noreg, CAST_FROM_FN_PTR(address, 1130 InterpreterRuntime:: 1131 new_illegal_monitor_state_exception)); 1132 } 1133 1134 jmp(restart); 1135 } 1136 1137 bind(loop); 1138 // check if current entry is used 1139 cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD); 1140 jcc(Assembler::notEqual, exception); 1141 1142 addptr(rmon, entry_size); // otherwise advance to next entry 1143 bind(entry); 1144 cmpptr(rmon, rbx); // check if bottom reached 1145 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 1146 } 1147 1148 bind(no_unlock); 1149 1150 // jvmti support 1151 if (notify_jvmdi) { 1152 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 1153 } else { 1154 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 1155 } 1156 1157 // remove activation 1158 // get sender sp 1159 movptr(rbx, 1160 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1161 if (StackReservedPages > 0) { 1162 // testing if reserved zone needs to be re-enabled 1163 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 1164 Label no_reserved_zone_enabling; 1165 1166 NOT_LP64(get_thread(rthread);) 1167 1168 // check if already enabled - if so no re-enabling needed 1169 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 1170 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled); 1171 jcc(Assembler::equal, no_reserved_zone_enabling); 1172 1173 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset())); 1174 jcc(Assembler::lessEqual, no_reserved_zone_enabling); 1175 1176 call_VM_leaf( 1177 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 1178 call_VM(noreg, CAST_FROM_FN_PTR(address, 1179 InterpreterRuntime::throw_delayed_StackOverflowError)); 1180 should_not_reach_here(); 1181 1182 bind(no_reserved_zone_enabling); 1183 } 1184 leave(); // remove frame anchor 1185 pop(ret_addr); // get return address 1186 mov(rsp, rbx); // set sp to sender sp 1187 pop_cont_fastpath(); 1188 } 1189 1190 void InterpreterMacroAssembler::get_method_counters(Register method, 1191 Register mcs, Label& skip) { 1192 Label has_counters; 1193 movptr(mcs, Address(method, Method::method_counters_offset())); 1194 testptr(mcs, mcs); 1195 jcc(Assembler::notZero, has_counters); 1196 call_VM(noreg, CAST_FROM_FN_PTR(address, 1197 InterpreterRuntime::build_method_counters), method); 1198 movptr(mcs, Address(method,Method::method_counters_offset())); 1199 testptr(mcs, mcs); 1200 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory 1201 bind(has_counters); 1202 } 1203 1204 1205 // Lock object 1206 // 1207 // Args: 1208 // rdx, c_rarg1: BasicObjectLock to be used for locking 1209 // 1210 // Kills: 1211 // rax, rbx 1212 void InterpreterMacroAssembler::lock_object(Register lock_reg) { 1213 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), 1214 "The argument is only for looks. It must be c_rarg1"); 1215 1216 if (LockingMode == LM_MONITOR) { 1217 call_VM_preemptable(noreg, 1218 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1219 lock_reg); 1220 } else { 1221 Label count_locking, done, slow_case; 1222 1223 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1224 const Register tmp_reg = rbx; 1225 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop 1226 const Register rklass_decode_tmp = rscratch1; 1227 1228 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 1229 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 1230 const int mark_offset = lock_offset + 1231 BasicLock::displaced_header_offset_in_bytes(); 1232 1233 // Load object pointer into obj_reg 1234 movptr(obj_reg, Address(lock_reg, obj_offset)); 1235 1236 if (DiagnoseSyncOnValueBasedClasses != 0) { 1237 load_klass(tmp_reg, obj_reg, rklass_decode_tmp); 1238 testb(Address(tmp_reg, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class); 1239 jcc(Assembler::notZero, slow_case); 1240 } 1241 1242 if (LockingMode == LM_LIGHTWEIGHT) { 1243 #ifdef _LP64 1244 const Register thread = r15_thread; 1245 lightweight_lock(lock_reg, obj_reg, swap_reg, thread, tmp_reg, slow_case); 1246 #else 1247 // Lacking registers and thread on x86_32. Always take slow path. 1248 jmp(slow_case); 1249 #endif 1250 } else if (LockingMode == LM_LEGACY) { 1251 // Load immediate 1 into swap_reg %rax 1252 movl(swap_reg, 1); 1253 1254 // Load (object->mark() | 1) into swap_reg %rax 1255 orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1256 1257 // Save (object->mark() | 1) into BasicLock's displaced header 1258 movptr(Address(lock_reg, mark_offset), swap_reg); 1259 1260 assert(lock_offset == 0, 1261 "displaced header must be first word in BasicObjectLock"); 1262 1263 lock(); 1264 cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1265 jcc(Assembler::zero, count_locking); 1266 1267 const int zero_bits = LP64_ONLY(7) NOT_LP64(3); 1268 1269 // Fast check for recursive lock. 1270 // 1271 // Can apply the optimization only if this is a stack lock 1272 // allocated in this thread. For efficiency, we can focus on 1273 // recently allocated stack locks (instead of reading the stack 1274 // base and checking whether 'mark' points inside the current 1275 // thread stack): 1276 // 1) (mark & zero_bits) == 0, and 1277 // 2) rsp <= mark < mark + os::pagesize() 1278 // 1279 // Warning: rsp + os::pagesize can overflow the stack base. We must 1280 // neither apply the optimization for an inflated lock allocated 1281 // just above the thread stack (this is why condition 1 matters) 1282 // nor apply the optimization if the stack lock is inside the stack 1283 // of another thread. The latter is avoided even in case of overflow 1284 // because we have guard pages at the end of all stacks. Hence, if 1285 // we go over the stack base and hit the stack of another thread, 1286 // this should not be in a writeable area that could contain a 1287 // stack lock allocated by that thread. As a consequence, a stack 1288 // lock less than page size away from rsp is guaranteed to be 1289 // owned by the current thread. 1290 // 1291 // These 3 tests can be done by evaluating the following 1292 // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())), 1293 // assuming both stack pointer and pagesize have their 1294 // least significant bits clear. 1295 // NOTE: the mark is in swap_reg %rax as the result of cmpxchg 1296 subptr(swap_reg, rsp); 1297 andptr(swap_reg, zero_bits - (int)os::vm_page_size()); 1298 1299 // Save the test result, for recursive case, the result is zero 1300 movptr(Address(lock_reg, mark_offset), swap_reg); 1301 jcc(Assembler::notZero, slow_case); 1302 1303 bind(count_locking); 1304 inc_held_monitor_count(); 1305 } 1306 jmp(done); 1307 1308 bind(slow_case); 1309 1310 // Call the runtime routine for slow case 1311 call_VM_preemptable(noreg, 1312 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1313 lock_reg); 1314 bind(done); 1315 } 1316 } 1317 1318 1319 // Unlocks an object. Used in monitorexit bytecode and 1320 // remove_activation. Throws an IllegalMonitorException if object is 1321 // not locked by current thread. 1322 // 1323 // Args: 1324 // rdx, c_rarg1: BasicObjectLock for lock 1325 // 1326 // Kills: 1327 // rax 1328 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 1329 // rscratch1 (scratch reg) 1330 // rax, rbx, rcx, rdx 1331 void InterpreterMacroAssembler::unlock_object(Register lock_reg) { 1332 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), 1333 "The argument is only for looks. It must be c_rarg1"); 1334 1335 if (LockingMode == LM_MONITOR) { 1336 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1337 } else { 1338 Label count_locking, done, slow_case; 1339 1340 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1341 const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx); // Will contain the old oopMark 1342 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop 1343 1344 save_bcp(); // Save in case of exception 1345 1346 if (LockingMode != LM_LIGHTWEIGHT) { 1347 // Convert from BasicObjectLock structure to object and BasicLock 1348 // structure Store the BasicLock address into %rax 1349 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 1350 } 1351 1352 // Load oop into obj_reg(%c_rarg3) 1353 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 1354 1355 // Free entry 1356 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD); 1357 1358 if (LockingMode == LM_LIGHTWEIGHT) { 1359 #ifdef _LP64 1360 lightweight_unlock(obj_reg, swap_reg, r15_thread, header_reg, slow_case); 1361 #else 1362 // Lacking registers and thread on x86_32. Always take slow path. 1363 jmp(slow_case); 1364 #endif 1365 } else if (LockingMode == LM_LEGACY) { 1366 // Load the old header from BasicLock structure 1367 movptr(header_reg, Address(swap_reg, 1368 BasicLock::displaced_header_offset_in_bytes())); 1369 1370 // Test for recursion 1371 testptr(header_reg, header_reg); 1372 1373 // zero for recursive case 1374 jcc(Assembler::zero, count_locking); 1375 1376 // Atomic swap back the old header 1377 lock(); 1378 cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1379 1380 // zero for simple unlock of a stack-lock case 1381 jcc(Assembler::notZero, slow_case); 1382 1383 bind(count_locking); 1384 dec_held_monitor_count(); 1385 } 1386 jmp(done); 1387 1388 bind(slow_case); 1389 // Call the runtime routine for slow case. 1390 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj 1391 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1392 1393 bind(done); 1394 1395 restore_bcp(); 1396 } 1397 } 1398 1399 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1400 Label& zero_continue) { 1401 assert(ProfileInterpreter, "must be profiling interpreter"); 1402 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); 1403 testptr(mdp, mdp); 1404 jcc(Assembler::zero, zero_continue); 1405 } 1406 1407 1408 // Set the method data pointer for the current bcp. 1409 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1410 assert(ProfileInterpreter, "must be profiling interpreter"); 1411 Label set_mdp; 1412 push(rax); 1413 push(rbx); 1414 1415 get_method(rbx); 1416 // Test MDO to avoid the call if it is null. 1417 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); 1418 testptr(rax, rax); 1419 jcc(Assembler::zero, set_mdp); 1420 // rbx: method 1421 // _bcp_register: bcp 1422 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); 1423 // rax: mdi 1424 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1425 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); 1426 addptr(rbx, in_bytes(MethodData::data_offset())); 1427 addptr(rax, rbx); 1428 bind(set_mdp); 1429 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); 1430 pop(rbx); 1431 pop(rax); 1432 } 1433 1434 void InterpreterMacroAssembler::verify_method_data_pointer() { 1435 assert(ProfileInterpreter, "must be profiling interpreter"); 1436 #ifdef ASSERT 1437 Label verify_continue; 1438 push(rax); 1439 push(rbx); 1440 Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 1441 Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 1442 push(arg3_reg); 1443 push(arg2_reg); 1444 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue 1445 get_method(rbx); 1446 1447 // If the mdp is valid, it will point to a DataLayout header which is 1448 // consistent with the bcp. The converse is highly probable also. 1449 load_unsigned_short(arg2_reg, 1450 Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); 1451 addptr(arg2_reg, Address(rbx, Method::const_offset())); 1452 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); 1453 cmpptr(arg2_reg, _bcp_register); 1454 jcc(Assembler::equal, verify_continue); 1455 // rbx: method 1456 // _bcp_register: bcp 1457 // c_rarg3: mdp 1458 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1459 rbx, _bcp_register, arg3_reg); 1460 bind(verify_continue); 1461 pop(arg2_reg); 1462 pop(arg3_reg); 1463 pop(rbx); 1464 pop(rax); 1465 #endif // ASSERT 1466 } 1467 1468 1469 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1470 int constant, 1471 Register value) { 1472 assert(ProfileInterpreter, "must be profiling interpreter"); 1473 Address data(mdp_in, constant); 1474 movptr(data, value); 1475 } 1476 1477 1478 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1479 int constant, 1480 bool decrement) { 1481 // Counter address 1482 Address data(mdp_in, constant); 1483 1484 increment_mdp_data_at(data, decrement); 1485 } 1486 1487 void InterpreterMacroAssembler::increment_mdp_data_at(Address data, 1488 bool decrement) { 1489 assert(ProfileInterpreter, "must be profiling interpreter"); 1490 // %%% this does 64bit counters at best it is wasting space 1491 // at worst it is a rare bug when counters overflow 1492 1493 if (decrement) { 1494 // Decrement the register. Set condition codes. 1495 addptr(data, -DataLayout::counter_increment); 1496 // If the decrement causes the counter to overflow, stay negative 1497 Label L; 1498 jcc(Assembler::negative, L); 1499 addptr(data, DataLayout::counter_increment); 1500 bind(L); 1501 } else { 1502 assert(DataLayout::counter_increment == 1, 1503 "flow-free idiom only works with 1"); 1504 // Increment the register. Set carry flag. 1505 addptr(data, DataLayout::counter_increment); 1506 // If the increment causes the counter to overflow, pull back by 1. 1507 sbbptr(data, 0); 1508 } 1509 } 1510 1511 1512 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1513 Register reg, 1514 int constant, 1515 bool decrement) { 1516 Address data(mdp_in, reg, Address::times_1, constant); 1517 1518 increment_mdp_data_at(data, decrement); 1519 } 1520 1521 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1522 int flag_byte_constant) { 1523 assert(ProfileInterpreter, "must be profiling interpreter"); 1524 int header_offset = in_bytes(DataLayout::flags_offset()); 1525 int header_bits = flag_byte_constant; 1526 // Set the flag 1527 orb(Address(mdp_in, header_offset), header_bits); 1528 } 1529 1530 1531 1532 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1533 int offset, 1534 Register value, 1535 Register test_value_out, 1536 Label& not_equal_continue) { 1537 assert(ProfileInterpreter, "must be profiling interpreter"); 1538 if (test_value_out == noreg) { 1539 cmpptr(value, Address(mdp_in, offset)); 1540 } else { 1541 // Put the test value into a register, so caller can use it: 1542 movptr(test_value_out, Address(mdp_in, offset)); 1543 cmpptr(test_value_out, value); 1544 } 1545 jcc(Assembler::notEqual, not_equal_continue); 1546 } 1547 1548 1549 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1550 int offset_of_disp) { 1551 assert(ProfileInterpreter, "must be profiling interpreter"); 1552 Address disp_address(mdp_in, offset_of_disp); 1553 addptr(mdp_in, disp_address); 1554 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1555 } 1556 1557 1558 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1559 Register reg, 1560 int offset_of_disp) { 1561 assert(ProfileInterpreter, "must be profiling interpreter"); 1562 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); 1563 addptr(mdp_in, disp_address); 1564 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1565 } 1566 1567 1568 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1569 int constant) { 1570 assert(ProfileInterpreter, "must be profiling interpreter"); 1571 addptr(mdp_in, constant); 1572 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1573 } 1574 1575 1576 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1577 assert(ProfileInterpreter, "must be profiling interpreter"); 1578 push(return_bci); // save/restore across call_VM 1579 call_VM(noreg, 1580 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1581 return_bci); 1582 pop(return_bci); 1583 } 1584 1585 1586 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1587 Register bumped_count) { 1588 if (ProfileInterpreter) { 1589 Label profile_continue; 1590 1591 // If no method data exists, go to profile_continue. 1592 // Otherwise, assign to mdp 1593 test_method_data_pointer(mdp, profile_continue); 1594 1595 // We are taking a branch. Increment the taken count. 1596 // We inline increment_mdp_data_at to return bumped_count in a register 1597 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1598 Address data(mdp, in_bytes(JumpData::taken_offset())); 1599 movptr(bumped_count, data); 1600 assert(DataLayout::counter_increment == 1, 1601 "flow-free idiom only works with 1"); 1602 addptr(bumped_count, DataLayout::counter_increment); 1603 sbbptr(bumped_count, 0); 1604 movptr(data, bumped_count); // Store back out 1605 1606 // The method data pointer needs to be updated to reflect the new target. 1607 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1608 bind(profile_continue); 1609 } 1610 } 1611 1612 1613 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1614 if (ProfileInterpreter) { 1615 Label profile_continue; 1616 1617 // If no method data exists, go to profile_continue. 1618 test_method_data_pointer(mdp, profile_continue); 1619 1620 // We are taking a branch. Increment the not taken count. 1621 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1622 1623 // The method data pointer needs to be updated to correspond to 1624 // the next bytecode 1625 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1626 bind(profile_continue); 1627 } 1628 } 1629 1630 void InterpreterMacroAssembler::profile_call(Register mdp) { 1631 if (ProfileInterpreter) { 1632 Label profile_continue; 1633 1634 // If no method data exists, go to profile_continue. 1635 test_method_data_pointer(mdp, profile_continue); 1636 1637 // We are making a call. Increment the count. 1638 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1639 1640 // The method data pointer needs to be updated to reflect the new target. 1641 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1642 bind(profile_continue); 1643 } 1644 } 1645 1646 1647 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1648 if (ProfileInterpreter) { 1649 Label profile_continue; 1650 1651 // If no method data exists, go to profile_continue. 1652 test_method_data_pointer(mdp, profile_continue); 1653 1654 // We are making a call. Increment the count. 1655 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1656 1657 // The method data pointer needs to be updated to reflect the new target. 1658 update_mdp_by_constant(mdp, 1659 in_bytes(VirtualCallData:: 1660 virtual_call_data_size())); 1661 bind(profile_continue); 1662 } 1663 } 1664 1665 1666 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1667 Register mdp, 1668 Register reg2, 1669 bool receiver_can_be_null) { 1670 if (ProfileInterpreter) { 1671 Label profile_continue; 1672 1673 // If no method data exists, go to profile_continue. 1674 test_method_data_pointer(mdp, profile_continue); 1675 1676 Label skip_receiver_profile; 1677 if (receiver_can_be_null) { 1678 Label not_null; 1679 testptr(receiver, receiver); 1680 jccb(Assembler::notZero, not_null); 1681 // We are making a call. Increment the count for null receiver. 1682 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1683 jmp(skip_receiver_profile); 1684 bind(not_null); 1685 } 1686 1687 // Record the receiver type. 1688 record_klass_in_profile(receiver, mdp, reg2, true); 1689 bind(skip_receiver_profile); 1690 1691 // The method data pointer needs to be updated to reflect the new target. 1692 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1693 bind(profile_continue); 1694 } 1695 } 1696 1697 // This routine creates a state machine for updating the multi-row 1698 // type profile at a virtual call site (or other type-sensitive bytecode). 1699 // The machine visits each row (of receiver/count) until the receiver type 1700 // is found, or until it runs out of rows. At the same time, it remembers 1701 // the location of the first empty row. (An empty row records null for its 1702 // receiver, and can be allocated for a newly-observed receiver type.) 1703 // Because there are two degrees of freedom in the state, a simple linear 1704 // search will not work; it must be a decision tree. Hence this helper 1705 // function is recursive, to generate the required tree structured code. 1706 // It's the interpreter, so we are trading off code space for speed. 1707 // See below for example code. 1708 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1709 Register receiver, Register mdp, 1710 Register reg2, int start_row, 1711 Label& done, bool is_virtual_call) { 1712 if (TypeProfileWidth == 0) { 1713 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1714 } else { 1715 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1716 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1717 } 1718 } 1719 1720 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row, 1721 Label& done, int total_rows, 1722 OffsetFunction item_offset_fn, 1723 OffsetFunction item_count_offset_fn) { 1724 int last_row = total_rows - 1; 1725 assert(start_row <= last_row, "must be work left to do"); 1726 // Test this row for both the item and for null. 1727 // Take any of three different outcomes: 1728 // 1. found item => increment count and goto done 1729 // 2. found null => keep looking for case 1, maybe allocate this cell 1730 // 3. found something else => keep looking for cases 1 and 2 1731 // Case 3 is handled by a recursive call. 1732 for (int row = start_row; row <= last_row; row++) { 1733 Label next_test; 1734 bool test_for_null_also = (row == start_row); 1735 1736 // See if the item is item[n]. 1737 int item_offset = in_bytes(item_offset_fn(row)); 1738 test_mdp_data_at(mdp, item_offset, item, 1739 (test_for_null_also ? reg2 : noreg), 1740 next_test); 1741 // (Reg2 now contains the item from the CallData.) 1742 1743 // The item is item[n]. Increment count[n]. 1744 int count_offset = in_bytes(item_count_offset_fn(row)); 1745 increment_mdp_data_at(mdp, count_offset); 1746 jmp(done); 1747 bind(next_test); 1748 1749 if (test_for_null_also) { 1750 // Failed the equality check on item[n]... Test for null. 1751 testptr(reg2, reg2); 1752 if (start_row == last_row) { 1753 // The only thing left to do is handle the null case. 1754 Label found_null; 1755 jccb(Assembler::zero, found_null); 1756 // Item did not match any saved item and there is no empty row for it. 1757 // Increment total counter to indicate polymorphic case. 1758 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1759 jmp(done); 1760 bind(found_null); 1761 break; 1762 } 1763 Label found_null; 1764 // Since null is rare, make it be the branch-taken case. 1765 jcc(Assembler::zero, found_null); 1766 1767 // Put all the "Case 3" tests here. 1768 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1769 item_offset_fn, item_count_offset_fn); 1770 1771 // Found a null. Keep searching for a matching item, 1772 // but remember that this is an empty (unused) slot. 1773 bind(found_null); 1774 } 1775 } 1776 1777 // In the fall-through case, we found no matching item, but we 1778 // observed the item[start_row] is null. 1779 1780 // Fill in the item field and increment the count. 1781 int item_offset = in_bytes(item_offset_fn(start_row)); 1782 set_mdp_data_at(mdp, item_offset, item); 1783 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1784 movl(reg2, DataLayout::counter_increment); 1785 set_mdp_data_at(mdp, count_offset, reg2); 1786 if (start_row > 0) { 1787 jmp(done); 1788 } 1789 } 1790 1791 // Example state machine code for three profile rows: 1792 // // main copy of decision tree, rooted at row[1] 1793 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1794 // if (row[0].rec != nullptr) { 1795 // // inner copy of decision tree, rooted at row[1] 1796 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1797 // if (row[1].rec != nullptr) { 1798 // // degenerate decision tree, rooted at row[2] 1799 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1800 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1801 // row[2].init(rec); goto done; 1802 // } else { 1803 // // remember row[1] is empty 1804 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1805 // row[1].init(rec); goto done; 1806 // } 1807 // } else { 1808 // // remember row[0] is empty 1809 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1810 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1811 // row[0].init(rec); goto done; 1812 // } 1813 // done: 1814 1815 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1816 Register mdp, Register reg2, 1817 bool is_virtual_call) { 1818 assert(ProfileInterpreter, "must be profiling"); 1819 Label done; 1820 1821 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1822 1823 bind (done); 1824 } 1825 1826 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1827 Register mdp) { 1828 if (ProfileInterpreter) { 1829 Label profile_continue; 1830 uint row; 1831 1832 // If no method data exists, go to profile_continue. 1833 test_method_data_pointer(mdp, profile_continue); 1834 1835 // Update the total ret count. 1836 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1837 1838 for (row = 0; row < RetData::row_limit(); row++) { 1839 Label next_test; 1840 1841 // See if return_bci is equal to bci[n]: 1842 test_mdp_data_at(mdp, 1843 in_bytes(RetData::bci_offset(row)), 1844 return_bci, noreg, 1845 next_test); 1846 1847 // return_bci is equal to bci[n]. Increment the count. 1848 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1849 1850 // The method data pointer needs to be updated to reflect the new target. 1851 update_mdp_by_offset(mdp, 1852 in_bytes(RetData::bci_displacement_offset(row))); 1853 jmp(profile_continue); 1854 bind(next_test); 1855 } 1856 1857 update_mdp_for_ret(return_bci); 1858 1859 bind(profile_continue); 1860 } 1861 } 1862 1863 1864 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1865 if (ProfileInterpreter) { 1866 Label profile_continue; 1867 1868 // If no method data exists, go to profile_continue. 1869 test_method_data_pointer(mdp, profile_continue); 1870 1871 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1872 1873 // The method data pointer needs to be updated. 1874 int mdp_delta = in_bytes(BitData::bit_data_size()); 1875 if (TypeProfileCasts) { 1876 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1877 } 1878 update_mdp_by_constant(mdp, mdp_delta); 1879 1880 bind(profile_continue); 1881 } 1882 } 1883 1884 1885 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1886 if (ProfileInterpreter) { 1887 Label profile_continue; 1888 1889 // If no method data exists, go to profile_continue. 1890 test_method_data_pointer(mdp, profile_continue); 1891 1892 // The method data pointer needs to be updated. 1893 int mdp_delta = in_bytes(BitData::bit_data_size()); 1894 if (TypeProfileCasts) { 1895 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1896 1897 // Record the object type. 1898 record_klass_in_profile(klass, mdp, reg2, false); 1899 NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");) 1900 NOT_LP64(restore_locals();) // Restore EDI 1901 } 1902 update_mdp_by_constant(mdp, mdp_delta); 1903 1904 bind(profile_continue); 1905 } 1906 } 1907 1908 1909 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1910 if (ProfileInterpreter) { 1911 Label profile_continue; 1912 1913 // If no method data exists, go to profile_continue. 1914 test_method_data_pointer(mdp, profile_continue); 1915 1916 // Update the default case count 1917 increment_mdp_data_at(mdp, 1918 in_bytes(MultiBranchData::default_count_offset())); 1919 1920 // The method data pointer needs to be updated. 1921 update_mdp_by_offset(mdp, 1922 in_bytes(MultiBranchData:: 1923 default_displacement_offset())); 1924 1925 bind(profile_continue); 1926 } 1927 } 1928 1929 1930 void InterpreterMacroAssembler::profile_switch_case(Register index, 1931 Register mdp, 1932 Register reg2) { 1933 if (ProfileInterpreter) { 1934 Label profile_continue; 1935 1936 // If no method data exists, go to profile_continue. 1937 test_method_data_pointer(mdp, profile_continue); 1938 1939 // Build the base (index * per_case_size_in_bytes()) + 1940 // case_array_offset_in_bytes() 1941 movl(reg2, in_bytes(MultiBranchData::per_case_size())); 1942 imulptr(index, reg2); // XXX l ? 1943 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? 1944 1945 // Update the case count 1946 increment_mdp_data_at(mdp, 1947 index, 1948 in_bytes(MultiBranchData::relative_count_offset())); 1949 1950 // The method data pointer needs to be updated. 1951 update_mdp_by_offset(mdp, 1952 index, 1953 in_bytes(MultiBranchData:: 1954 relative_displacement_offset())); 1955 1956 bind(profile_continue); 1957 } 1958 } 1959 1960 1961 1962 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1963 if (state == atos) { 1964 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1965 } 1966 } 1967 1968 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { 1969 #ifndef _LP64 1970 if ((state == ftos && UseSSE < 1) || 1971 (state == dtos && UseSSE < 2)) { 1972 MacroAssembler::verify_FPU(stack_depth); 1973 } 1974 #endif 1975 } 1976 1977 // Jump if ((*counter_addr += increment) & mask) == 0 1978 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask, 1979 Register scratch, Label* where) { 1980 // This update is actually not atomic and can lose a number of updates 1981 // under heavy contention, but the alternative of using the (contended) 1982 // atomic update here penalizes profiling paths too much. 1983 movl(scratch, counter_addr); 1984 incrementl(scratch, InvocationCounter::count_increment); 1985 movl(counter_addr, scratch); 1986 andl(scratch, mask); 1987 if (where != nullptr) { 1988 jcc(Assembler::zero, *where); 1989 } 1990 } 1991 1992 void InterpreterMacroAssembler::notify_method_entry() { 1993 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1994 // track stack depth. If it is possible to enter interp_only_mode we add 1995 // the code to check if the event should be sent. 1996 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 1997 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 1998 if (JvmtiExport::can_post_interpreter_events()) { 1999 Label L; 2000 NOT_LP64(get_thread(rthread);) 2001 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 2002 testl(rdx, rdx); 2003 jcc(Assembler::zero, L); 2004 call_VM(noreg, CAST_FROM_FN_PTR(address, 2005 InterpreterRuntime::post_method_entry)); 2006 bind(L); 2007 } 2008 2009 if (DTraceMethodProbes) { 2010 NOT_LP64(get_thread(rthread);) 2011 get_method(rarg); 2012 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2013 rthread, rarg); 2014 } 2015 2016 // RedefineClasses() tracing support for obsolete method entry 2017 if (log_is_enabled(Trace, redefine, class, obsolete)) { 2018 NOT_LP64(get_thread(rthread);) 2019 get_method(rarg); 2020 call_VM_leaf( 2021 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 2022 rthread, rarg); 2023 } 2024 } 2025 2026 2027 void InterpreterMacroAssembler::notify_method_exit( 2028 TosState state, NotifyMethodExitMode mode) { 2029 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 2030 // track stack depth. If it is possible to enter interp_only_mode we add 2031 // the code to check if the event should be sent. 2032 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 2033 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 2034 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2035 Label L; 2036 // Note: frame::interpreter_frame_result has a dependency on how the 2037 // method result is saved across the call to post_method_exit. If this 2038 // is changed then the interpreter_frame_result implementation will 2039 // need to be updated too. 2040 2041 // template interpreter will leave the result on the top of the stack. 2042 push(state); 2043 NOT_LP64(get_thread(rthread);) 2044 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 2045 testl(rdx, rdx); 2046 jcc(Assembler::zero, L); 2047 call_VM(noreg, 2048 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 2049 bind(L); 2050 pop(state); 2051 } 2052 2053 if (DTraceMethodProbes) { 2054 push(state); 2055 NOT_LP64(get_thread(rthread);) 2056 get_method(rarg); 2057 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2058 rthread, rarg); 2059 pop(state); 2060 } 2061 } 2062 2063 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 2064 // Get index out of bytecode pointer 2065 get_cache_index_at_bcp(index, 1, sizeof(u4)); 2066 // Get address of invokedynamic array 2067 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 2068 movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 2069 if (is_power_of_2(sizeof(ResolvedIndyEntry))) { 2070 shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2 2071 } else { 2072 imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 2073 } 2074 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes())); 2075 } 2076 2077 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 2078 // Get index out of bytecode pointer 2079 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 2080 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 2081 2082 movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset())); 2083 // Take shortcut if the size is a power of 2 2084 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 2085 shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 2086 } else { 2087 imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 2088 } 2089 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes())); 2090 } 2091 2092 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 2093 // Get index out of bytecode pointer 2094 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 2095 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 2096 2097 movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset())); 2098 imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 2099 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes())); 2100 }