1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compiler_globals.hpp" 26 #include "interp_masm_x86.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "logging/log.hpp" 30 #include "oops/arrayOop.hpp" 31 #include "oops/markWord.hpp" 32 #include "oops/methodData.hpp" 33 #include "oops/method.hpp" 34 #include "oops/resolvedFieldEntry.hpp" 35 #include "oops/resolvedIndyEntry.hpp" 36 #include "oops/resolvedMethodEntry.hpp" 37 #include "prims/jvmtiExport.hpp" 38 #include "prims/jvmtiThreadState.hpp" 39 #include "runtime/basicLock.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/javaThread.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "utilities/powerOfTwo.hpp" 45 46 // Implementation of InterpreterMacroAssembler 47 48 void InterpreterMacroAssembler::jump_to_entry(address entry) { 49 assert(entry, "Entry must have been generated by now"); 50 jump(RuntimeAddress(entry)); 51 } 52 53 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 54 Label update, next, none; 55 56 #ifdef _LP64 57 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 58 #else 59 assert_different_registers(obj, mdo_addr.base(), mdo_addr.index()); 60 #endif 61 62 interp_verify_oop(obj, atos); 63 64 testptr(obj, obj); 65 jccb(Assembler::notZero, update); 66 testptr(mdo_addr, TypeEntries::null_seen); 67 jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore. 68 // atomic update to prevent overwriting Klass* with 0 69 lock(); 70 orptr(mdo_addr, TypeEntries::null_seen); 71 jmpb(next); 72 73 bind(update); 74 load_klass(obj, obj, rscratch1); 75 #ifdef _LP64 76 mov(rscratch1, obj); 77 #endif 78 79 xorptr(obj, mdo_addr); 80 testptr(obj, TypeEntries::type_klass_mask); 81 jccb(Assembler::zero, next); // klass seen before, nothing to 82 // do. The unknown bit may have been 83 // set already but no need to check. 84 85 testptr(obj, TypeEntries::type_unknown); 86 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 87 88 cmpptr(mdo_addr, 0); 89 jccb(Assembler::equal, none); 90 cmpptr(mdo_addr, TypeEntries::null_seen); 91 jccb(Assembler::equal, none); 92 #ifdef _LP64 93 // There is a chance that the checks above (re-reading profiling 94 // data from memory) fail if another thread has just set the 95 // profiling to this obj's klass 96 mov(obj, rscratch1); 97 xorptr(obj, mdo_addr); 98 testptr(obj, TypeEntries::type_klass_mask); 99 jccb(Assembler::zero, next); 100 #endif 101 102 // different than before. Cannot keep accurate profile. 103 orptr(mdo_addr, TypeEntries::type_unknown); 104 jmpb(next); 105 106 bind(none); 107 // first time here. Set profile type. 108 movptr(mdo_addr, obj); 109 #ifdef ASSERT 110 andptr(obj, TypeEntries::type_klass_mask); 111 verify_klass_ptr(obj); 112 #endif 113 114 bind(next); 115 } 116 117 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 118 if (!ProfileInterpreter) { 119 return; 120 } 121 122 if (MethodData::profile_arguments() || MethodData::profile_return()) { 123 Label profile_continue; 124 125 test_method_data_pointer(mdp, profile_continue); 126 127 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 128 129 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 130 jcc(Assembler::notEqual, profile_continue); 131 132 if (MethodData::profile_arguments()) { 133 Label done; 134 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 135 addptr(mdp, off_to_args); 136 137 for (int i = 0; i < TypeProfileArgsLimit; i++) { 138 if (i > 0 || MethodData::profile_return()) { 139 // If return value type is profiled we may have no argument to profile 140 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 141 subl(tmp, i*TypeStackSlotEntries::per_arg_count()); 142 cmpl(tmp, TypeStackSlotEntries::per_arg_count()); 143 jcc(Assembler::less, done); 144 } 145 movptr(tmp, Address(callee, Method::const_offset())); 146 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 147 // stack offset o (zero based) from the start of the argument 148 // list, for n arguments translates into offset n - o - 1 from 149 // the end of the argument list 150 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 151 subl(tmp, 1); 152 Address arg_addr = argument_address(tmp); 153 movptr(tmp, arg_addr); 154 155 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 156 profile_obj_type(tmp, mdo_arg_addr); 157 158 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 159 addptr(mdp, to_add); 160 off_to_args += to_add; 161 } 162 163 if (MethodData::profile_return()) { 164 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 165 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 166 } 167 168 bind(done); 169 170 if (MethodData::profile_return()) { 171 // We're right after the type profile for the last 172 // argument. tmp is the number of cells left in the 173 // CallTypeData/VirtualCallTypeData to reach its end. Non null 174 // if there's a return to profile. 175 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 176 shll(tmp, log2i_exact((int)DataLayout::cell_size)); 177 addptr(mdp, tmp); 178 } 179 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp); 180 } else { 181 assert(MethodData::profile_return(), "either profile call args or call ret"); 182 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 183 } 184 185 // mdp points right after the end of the 186 // CallTypeData/VirtualCallTypeData, right after the cells for the 187 // return value type if there's one 188 189 bind(profile_continue); 190 } 191 } 192 193 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 194 assert_different_registers(mdp, ret, tmp, _bcp_register); 195 if (ProfileInterpreter && MethodData::profile_return()) { 196 Label profile_continue; 197 198 test_method_data_pointer(mdp, profile_continue); 199 200 if (MethodData::profile_return_jsr292_only()) { 201 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 202 203 // If we don't profile all invoke bytecodes we must make sure 204 // it's a bytecode we indeed profile. We can't go back to the 205 // beginning of the ProfileData we intend to update to check its 206 // type because we're right after it and we don't known its 207 // length 208 Label do_profile; 209 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic); 210 jcc(Assembler::equal, do_profile); 211 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle); 212 jcc(Assembler::equal, do_profile); 213 get_method(tmp); 214 cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 215 jcc(Assembler::notEqual, profile_continue); 216 217 bind(do_profile); 218 } 219 220 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 221 mov(tmp, ret); 222 profile_obj_type(tmp, mdo_ret_addr); 223 224 bind(profile_continue); 225 } 226 } 227 228 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 229 if (ProfileInterpreter && MethodData::profile_parameters()) { 230 Label profile_continue; 231 232 test_method_data_pointer(mdp, profile_continue); 233 234 // Load the offset of the area within the MDO used for 235 // parameters. If it's negative we're not profiling any parameters 236 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 237 testl(tmp1, tmp1); 238 jcc(Assembler::negative, profile_continue); 239 240 // Compute a pointer to the area for parameters from the offset 241 // and move the pointer to the slot for the last 242 // parameters. Collect profiling from last parameter down. 243 // mdo start + parameters offset + array length - 1 244 addptr(mdp, tmp1); 245 movptr(tmp1, Address(mdp, ArrayData::array_len_offset())); 246 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 247 248 Label loop; 249 bind(loop); 250 251 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 252 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 253 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size); 254 Address arg_off(mdp, tmp1, per_arg_scale, off_base); 255 Address arg_type(mdp, tmp1, per_arg_scale, type_base); 256 257 // load offset on the stack from the slot for this parameter 258 movptr(tmp2, arg_off); 259 negptr(tmp2); 260 // read the parameter from the local area 261 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale())); 262 263 // profile the parameter 264 profile_obj_type(tmp2, arg_type); 265 266 // go to next parameter 267 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 268 jcc(Assembler::positive, loop); 269 270 bind(profile_continue); 271 } 272 } 273 274 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 275 int number_of_arguments) { 276 // interpreter specific 277 // 278 // Note: No need to save/restore bcp & locals registers 279 // since these are callee saved registers and no blocking/ 280 // GC can happen in leaf calls. 281 // Further Note: DO NOT save/restore bcp/locals. If a caller has 282 // already saved them so that it can use rsi/rdi as temporaries 283 // then a save/restore here will DESTROY the copy the caller 284 // saved! There used to be a save_bcp() that only happened in 285 // the ASSERT path (no restore_bcp). Which caused bizarre failures 286 // when jvm built with ASSERTs. 287 #ifdef ASSERT 288 { 289 Label L; 290 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 291 jcc(Assembler::equal, L); 292 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 293 " last_sp != null"); 294 bind(L); 295 } 296 #endif 297 // super call 298 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 299 // interpreter specific 300 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals 301 // but since they may not have been saved (and we don't want to 302 // save them here (see note above) the assert is invalid. 303 } 304 305 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 306 Register java_thread, 307 Register last_java_sp, 308 address entry_point, 309 int number_of_arguments, 310 bool check_exceptions) { 311 // interpreter specific 312 // 313 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 314 // really make a difference for these runtime calls, since they are 315 // slow anyway. Btw., bcp must be saved/restored since it may change 316 // due to GC. 317 NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");) 318 save_bcp(); 319 #ifdef ASSERT 320 { 321 Label L; 322 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 323 jcc(Assembler::equal, L); 324 stop("InterpreterMacroAssembler::call_VM_base:" 325 " last_sp isn't null"); 326 bind(L); 327 } 328 #endif /* ASSERT */ 329 // super call 330 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 331 entry_point, number_of_arguments, 332 check_exceptions); 333 // interpreter specific 334 restore_bcp(); 335 restore_locals(); 336 } 337 338 #ifdef _LP64 339 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 340 address entry_point, 341 Register arg_1) { 342 assert(arg_1 == c_rarg1, ""); 343 Label resume_pc, not_preempted; 344 345 #ifdef ASSERT 346 { 347 Label L; 348 cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 349 jcc(Assembler::equal, L); 350 stop("Should not have alternate return address set"); 351 bind(L); 352 } 353 #endif /* ASSERT */ 354 355 // Force freeze slow path. 356 push_cont_fastpath(); 357 358 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 359 // Note: call_VM_helper requires last_Java_pc for anchor to be at the top of the stack. 360 lea(rscratch1, resume_pc); 361 push(rscratch1); 362 MacroAssembler::call_VM_helper(oop_result, entry_point, 1, false /*check_exceptions*/); 363 pop(rscratch1); 364 365 pop_cont_fastpath(); 366 367 // Check if preempted. 368 movptr(rscratch1, Address(r15_thread, JavaThread::preempt_alternate_return_offset())); 369 cmpptr(rscratch1, NULL_WORD); 370 jccb(Assembler::zero, not_preempted); 371 movptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 372 jmp(rscratch1); 373 374 // In case of preemption, this is where we will resume once we finally acquire the monitor. 375 bind(resume_pc); 376 restore_after_resume(false /* is_native */); 377 378 bind(not_preempted); 379 } 380 381 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 382 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 383 call(rscratch1); 384 if (is_native) { 385 // On resume we need to set up stack as expected. 386 push(dtos); 387 push(ltos); 388 } 389 } 390 #else 391 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 392 address entry_point, 393 Register arg_1) { 394 MacroAssembler::call_VM(oop_result, entry_point, arg_1); 395 } 396 #endif // _LP64 397 398 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 399 if (JvmtiExport::can_pop_frame()) { 400 Label L; 401 // Initiate popframe handling only if it is not already being 402 // processed. If the flag has the popframe_processing bit set, it 403 // means that this code is called *during* popframe handling - we 404 // don't want to reenter. 405 // This method is only called just after the call into the vm in 406 // call_VM_base, so the arg registers are available. 407 Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit 408 LP64_ONLY(c_rarg0); 409 movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset())); 410 testl(pop_cond, JavaThread::popframe_pending_bit); 411 jcc(Assembler::zero, L); 412 testl(pop_cond, JavaThread::popframe_processing_bit); 413 jcc(Assembler::notZero, L); 414 // Call Interpreter::remove_activation_preserving_args_entry() to get the 415 // address of the same-named entrypoint in the generated interpreter code. 416 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 417 jmp(rax); 418 bind(L); 419 NOT_LP64(get_thread(java_thread);) 420 } 421 } 422 423 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 424 Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 425 NOT_LP64(get_thread(thread);) 426 movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset())); 427 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); 428 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); 429 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); 430 #ifdef _LP64 431 switch (state) { 432 case atos: movptr(rax, oop_addr); 433 movptr(oop_addr, NULL_WORD); 434 interp_verify_oop(rax, state); break; 435 case ltos: movptr(rax, val_addr); break; 436 case btos: // fall through 437 case ztos: // fall through 438 case ctos: // fall through 439 case stos: // fall through 440 case itos: movl(rax, val_addr); break; 441 case ftos: load_float(val_addr); break; 442 case dtos: load_double(val_addr); break; 443 case vtos: /* nothing to do */ break; 444 default : ShouldNotReachHere(); 445 } 446 // Clean up tos value in the thread object 447 movl(tos_addr, ilgl); 448 movl(val_addr, NULL_WORD); 449 #else 450 const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset() 451 + in_ByteSize(wordSize)); 452 switch (state) { 453 case atos: movptr(rax, oop_addr); 454 movptr(oop_addr, NULL_WORD); 455 interp_verify_oop(rax, state); break; 456 case ltos: 457 movl(rdx, val_addr1); // fall through 458 case btos: // fall through 459 case ztos: // fall through 460 case ctos: // fall through 461 case stos: // fall through 462 case itos: movl(rax, val_addr); break; 463 case ftos: load_float(val_addr); break; 464 case dtos: load_double(val_addr); break; 465 case vtos: /* nothing to do */ break; 466 default : ShouldNotReachHere(); 467 } 468 #endif // _LP64 469 // Clean up tos value in the thread object 470 movl(tos_addr, ilgl); 471 movptr(val_addr, NULL_WORD); 472 NOT_LP64(movptr(val_addr1, NULL_WORD);) 473 } 474 475 476 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 477 if (JvmtiExport::can_force_early_return()) { 478 Label L; 479 Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread); 480 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread); 481 482 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 483 testptr(tmp, tmp); 484 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit; 485 486 // Initiate earlyret handling only if it is not already being processed. 487 // If the flag has the earlyret_processing bit set, it means that this code 488 // is called *during* earlyret handling - we don't want to reenter. 489 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); 490 cmpl(tmp, JvmtiThreadState::earlyret_pending); 491 jcc(Assembler::notEqual, L); 492 493 // Call Interpreter::remove_activation_early_entry() to get the address of the 494 // same-named entrypoint in the generated interpreter code. 495 NOT_LP64(get_thread(java_thread);) 496 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 497 #ifdef _LP64 498 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 499 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); 500 #else 501 pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 502 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1); 503 #endif // _LP64 504 jmp(rax); 505 bind(L); 506 NOT_LP64(get_thread(java_thread);) 507 } 508 } 509 510 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 511 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 512 load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); 513 bswapl(reg); 514 shrl(reg, 16); 515 } 516 517 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 518 int bcp_offset, 519 size_t index_size) { 520 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 521 if (index_size == sizeof(u2)) { 522 load_unsigned_short(index, Address(_bcp_register, bcp_offset)); 523 } else if (index_size == sizeof(u4)) { 524 movl(index, Address(_bcp_register, bcp_offset)); 525 } else if (index_size == sizeof(u1)) { 526 load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); 527 } else { 528 ShouldNotReachHere(); 529 } 530 } 531 532 // Load object from cpool->resolved_references(index) 533 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, 534 Register index, 535 Register tmp) { 536 assert_different_registers(result, index); 537 538 get_constant_pool(result); 539 // load pointer for resolved_references[] objArray 540 movptr(result, Address(result, ConstantPool::cache_offset())); 541 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 542 resolve_oop_handle(result, tmp); 543 load_heap_oop(result, Address(result, index, 544 UseCompressedOops ? Address::times_4 : Address::times_ptr, 545 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp); 546 } 547 548 // load cpool->resolved_klass_at(index) 549 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass, 550 Register cpool, 551 Register index) { 552 assert_different_registers(cpool, index); 553 554 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool))); 555 Register resolved_klasses = cpool; 556 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset())); 557 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes())); 558 } 559 560 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 561 // subtype of super_klass. 562 // 563 // Args: 564 // rax: superklass 565 // Rsub_klass: subklass 566 // 567 // Kills: 568 // rcx, rdi 569 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 570 Label& ok_is_subtype) { 571 assert(Rsub_klass != rax, "rax holds superklass"); 572 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) 573 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) 574 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); 575 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); 576 577 // Profile the not-null value's klass. 578 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi 579 580 // Do the check. 581 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx 582 } 583 584 585 #ifndef _LP64 586 void InterpreterMacroAssembler::f2ieee() { 587 if (IEEEPrecision) { 588 fstp_s(Address(rsp, 0)); 589 fld_s(Address(rsp, 0)); 590 } 591 } 592 593 594 void InterpreterMacroAssembler::d2ieee() { 595 if (IEEEPrecision) { 596 fstp_d(Address(rsp, 0)); 597 fld_d(Address(rsp, 0)); 598 } 599 } 600 #endif // _LP64 601 602 // Java Expression Stack 603 604 void InterpreterMacroAssembler::pop_ptr(Register r) { 605 pop(r); 606 } 607 608 void InterpreterMacroAssembler::push_ptr(Register r) { 609 push(r); 610 } 611 612 void InterpreterMacroAssembler::push_i(Register r) { 613 push(r); 614 } 615 616 void InterpreterMacroAssembler::push_i_or_ptr(Register r) { 617 push(r); 618 } 619 620 void InterpreterMacroAssembler::push_f(XMMRegister r) { 621 subptr(rsp, wordSize); 622 movflt(Address(rsp, 0), r); 623 } 624 625 void InterpreterMacroAssembler::pop_f(XMMRegister r) { 626 movflt(r, Address(rsp, 0)); 627 addptr(rsp, wordSize); 628 } 629 630 void InterpreterMacroAssembler::push_d(XMMRegister r) { 631 subptr(rsp, 2 * wordSize); 632 movdbl(Address(rsp, 0), r); 633 } 634 635 void InterpreterMacroAssembler::pop_d(XMMRegister r) { 636 movdbl(r, Address(rsp, 0)); 637 addptr(rsp, 2 * Interpreter::stackElementSize); 638 } 639 640 #ifdef _LP64 641 void InterpreterMacroAssembler::pop_i(Register r) { 642 // XXX can't use pop currently, upper half non clean 643 movl(r, Address(rsp, 0)); 644 addptr(rsp, wordSize); 645 } 646 647 void InterpreterMacroAssembler::pop_l(Register r) { 648 movq(r, Address(rsp, 0)); 649 addptr(rsp, 2 * Interpreter::stackElementSize); 650 } 651 652 void InterpreterMacroAssembler::push_l(Register r) { 653 subptr(rsp, 2 * wordSize); 654 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r ); 655 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD ); 656 } 657 658 void InterpreterMacroAssembler::pop(TosState state) { 659 switch (state) { 660 case atos: pop_ptr(); break; 661 case btos: 662 case ztos: 663 case ctos: 664 case stos: 665 case itos: pop_i(); break; 666 case ltos: pop_l(); break; 667 case ftos: pop_f(xmm0); break; 668 case dtos: pop_d(xmm0); break; 669 case vtos: /* nothing to do */ break; 670 default: ShouldNotReachHere(); 671 } 672 interp_verify_oop(rax, state); 673 } 674 675 void InterpreterMacroAssembler::push(TosState state) { 676 interp_verify_oop(rax, state); 677 switch (state) { 678 case atos: push_ptr(); break; 679 case btos: 680 case ztos: 681 case ctos: 682 case stos: 683 case itos: push_i(); break; 684 case ltos: push_l(); break; 685 case ftos: push_f(xmm0); break; 686 case dtos: push_d(xmm0); break; 687 case vtos: /* nothing to do */ break; 688 default : ShouldNotReachHere(); 689 } 690 } 691 #else 692 void InterpreterMacroAssembler::pop_i(Register r) { 693 pop(r); 694 } 695 696 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) { 697 pop(lo); 698 pop(hi); 699 } 700 701 void InterpreterMacroAssembler::pop_f() { 702 fld_s(Address(rsp, 0)); 703 addptr(rsp, 1 * wordSize); 704 } 705 706 void InterpreterMacroAssembler::pop_d() { 707 fld_d(Address(rsp, 0)); 708 addptr(rsp, 2 * wordSize); 709 } 710 711 712 void InterpreterMacroAssembler::pop(TosState state) { 713 switch (state) { 714 case atos: pop_ptr(rax); break; 715 case btos: // fall through 716 case ztos: // fall through 717 case ctos: // fall through 718 case stos: // fall through 719 case itos: pop_i(rax); break; 720 case ltos: pop_l(rax, rdx); break; 721 case ftos: 722 if (UseSSE >= 1) { 723 pop_f(xmm0); 724 } else { 725 pop_f(); 726 } 727 break; 728 case dtos: 729 if (UseSSE >= 2) { 730 pop_d(xmm0); 731 } else { 732 pop_d(); 733 } 734 break; 735 case vtos: /* nothing to do */ break; 736 default : ShouldNotReachHere(); 737 } 738 interp_verify_oop(rax, state); 739 } 740 741 742 void InterpreterMacroAssembler::push_l(Register lo, Register hi) { 743 push(hi); 744 push(lo); 745 } 746 747 void InterpreterMacroAssembler::push_f() { 748 // Do not schedule for no AGI! Never write beyond rsp! 749 subptr(rsp, 1 * wordSize); 750 fstp_s(Address(rsp, 0)); 751 } 752 753 void InterpreterMacroAssembler::push_d() { 754 // Do not schedule for no AGI! Never write beyond rsp! 755 subptr(rsp, 2 * wordSize); 756 fstp_d(Address(rsp, 0)); 757 } 758 759 760 void InterpreterMacroAssembler::push(TosState state) { 761 interp_verify_oop(rax, state); 762 switch (state) { 763 case atos: push_ptr(rax); break; 764 case btos: // fall through 765 case ztos: // fall through 766 case ctos: // fall through 767 case stos: // fall through 768 case itos: push_i(rax); break; 769 case ltos: push_l(rax, rdx); break; 770 case ftos: 771 if (UseSSE >= 1) { 772 push_f(xmm0); 773 } else { 774 push_f(); 775 } 776 break; 777 case dtos: 778 if (UseSSE >= 2) { 779 push_d(xmm0); 780 } else { 781 push_d(); 782 } 783 break; 784 case vtos: /* nothing to do */ break; 785 default : ShouldNotReachHere(); 786 } 787 } 788 #endif // _LP64 789 790 791 // Helpers for swap and dup 792 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 793 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); 794 } 795 796 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 797 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); 798 } 799 800 801 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 802 // set sender sp 803 lea(_bcp_register, Address(rsp, wordSize)); 804 // record last_sp 805 mov(rcx, _bcp_register); 806 subptr(rcx, rbp); 807 sarptr(rcx, LogBytesPerWord); 808 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx); 809 } 810 811 812 // Jump to from_interpreted entry of a call unless single stepping is possible 813 // in this thread in which case we must call the i2i entry 814 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 815 prepare_to_jump_from_interpreted(); 816 817 if (JvmtiExport::can_post_interpreter_events()) { 818 Label run_compiled_code; 819 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 820 // compiled code in threads for which the event is enabled. Check here for 821 // interp_only_mode if these events CAN be enabled. 822 // interp_only is an int, on little endian it is sufficient to test the byte only 823 // Is a cmpl faster? 824 LP64_ONLY(temp = r15_thread;) 825 NOT_LP64(get_thread(temp);) 826 cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0); 827 jccb(Assembler::zero, run_compiled_code); 828 jmp(Address(method, Method::interpreter_entry_offset())); 829 bind(run_compiled_code); 830 } 831 832 jmp(Address(method, Method::from_interpreted_offset())); 833 } 834 835 // The following two routines provide a hook so that an implementation 836 // can schedule the dispatch in two parts. x86 does not do this. 837 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 838 // Nothing x86 specific to be done here 839 } 840 841 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 842 dispatch_next(state, step); 843 } 844 845 void InterpreterMacroAssembler::dispatch_base(TosState state, 846 address* table, 847 bool verifyoop, 848 bool generate_poll) { 849 verify_FPU(1, state); 850 if (VerifyActivationFrameSize) { 851 Label L; 852 mov(rcx, rbp); 853 subptr(rcx, rsp); 854 int32_t min_frame_size = 855 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * 856 wordSize; 857 cmpptr(rcx, min_frame_size); 858 jcc(Assembler::greaterEqual, L); 859 stop("broken stack frame"); 860 bind(L); 861 } 862 if (verifyoop) { 863 interp_verify_oop(rax, state); 864 } 865 866 address* const safepoint_table = Interpreter::safept_table(state); 867 #ifdef _LP64 868 Label no_safepoint, dispatch; 869 if (table != safepoint_table && generate_poll) { 870 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 871 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 872 873 jccb(Assembler::zero, no_safepoint); 874 lea(rscratch1, ExternalAddress((address)safepoint_table)); 875 jmpb(dispatch); 876 } 877 878 bind(no_safepoint); 879 lea(rscratch1, ExternalAddress((address)table)); 880 bind(dispatch); 881 jmp(Address(rscratch1, rbx, Address::times_8)); 882 883 #else 884 Address index(noreg, rbx, Address::times_ptr); 885 if (table != safepoint_table && generate_poll) { 886 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 887 Label no_safepoint; 888 const Register thread = rcx; 889 get_thread(thread); 890 testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 891 892 jccb(Assembler::zero, no_safepoint); 893 ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index); 894 jump(dispatch_addr, noreg); 895 bind(no_safepoint); 896 } 897 898 { 899 ArrayAddress dispatch_addr(ExternalAddress((address)table), index); 900 jump(dispatch_addr, noreg); 901 } 902 #endif // _LP64 903 } 904 905 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 906 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 907 } 908 909 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 910 dispatch_base(state, Interpreter::normal_table(state)); 911 } 912 913 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 914 dispatch_base(state, Interpreter::normal_table(state), false); 915 } 916 917 918 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 919 // load next bytecode (load before advancing _bcp_register to prevent AGI) 920 load_unsigned_byte(rbx, Address(_bcp_register, step)); 921 // advance _bcp_register 922 increment(_bcp_register, step); 923 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 924 } 925 926 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 927 // load current bytecode 928 load_unsigned_byte(rbx, Address(_bcp_register, 0)); 929 dispatch_base(state, table); 930 } 931 932 void InterpreterMacroAssembler::narrow(Register result) { 933 934 // Get method->_constMethod->_result_type 935 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 936 movptr(rcx, Address(rcx, Method::const_offset())); 937 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); 938 939 Label done, notBool, notByte, notChar; 940 941 // common case first 942 cmpl(rcx, T_INT); 943 jcc(Assembler::equal, done); 944 945 // mask integer result to narrower return type. 946 cmpl(rcx, T_BOOLEAN); 947 jcc(Assembler::notEqual, notBool); 948 andl(result, 0x1); 949 jmp(done); 950 951 bind(notBool); 952 cmpl(rcx, T_BYTE); 953 jcc(Assembler::notEqual, notByte); 954 LP64_ONLY(movsbl(result, result);) 955 NOT_LP64(shll(result, 24);) // truncate upper 24 bits 956 NOT_LP64(sarl(result, 24);) // and sign-extend byte 957 jmp(done); 958 959 bind(notByte); 960 cmpl(rcx, T_CHAR); 961 jcc(Assembler::notEqual, notChar); 962 LP64_ONLY(movzwl(result, result);) 963 NOT_LP64(andl(result, 0xFFFF);) // truncate upper 16 bits 964 jmp(done); 965 966 bind(notChar); 967 // cmpl(rcx, T_SHORT); // all that's left 968 // jcc(Assembler::notEqual, done); 969 LP64_ONLY(movswl(result, result);) 970 NOT_LP64(shll(result, 16);) // truncate upper 16 bits 971 NOT_LP64(sarl(result, 16);) // and sign-extend short 972 973 // Nothing to do for T_INT 974 bind(done); 975 } 976 977 // remove activation 978 // 979 // Apply stack watermark barrier. 980 // Unlock the receiver if this is a synchronized method. 981 // Unlock any Java monitors from synchronized blocks. 982 // Remove the activation from the stack. 983 // 984 // If there are locked Java monitors 985 // If throw_monitor_exception 986 // throws IllegalMonitorStateException 987 // Else if install_monitor_exception 988 // installs IllegalMonitorStateException 989 // Else 990 // no error processing 991 void InterpreterMacroAssembler::remove_activation( 992 TosState state, 993 Register ret_addr, 994 bool throw_monitor_exception, 995 bool install_monitor_exception, 996 bool notify_jvmdi) { 997 // Note: Registers rdx xmm0 may be in use for the 998 // result check if synchronized method 999 Label unlocked, unlock, no_unlock; 1000 1001 const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 1002 const Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 1003 const Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 1004 // monitor pointers need different register 1005 // because rdx may have the result in it 1006 NOT_LP64(get_thread(rthread);) 1007 1008 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 1009 // that would normally not be safe to use. Such bad returns into unsafe territory of 1010 // the stack, will call InterpreterRuntime::at_unwind. 1011 Label slow_path; 1012 Label fast_path; 1013 safepoint_poll(slow_path, rthread, true /* at_return */, false /* in_nmethod */); 1014 jmp(fast_path); 1015 bind(slow_path); 1016 push(state); 1017 set_last_Java_frame(rthread, noreg, rbp, (address)pc(), rscratch1); 1018 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 1019 NOT_LP64(get_thread(rthread);) // call_VM clobbered it, restore 1020 reset_last_Java_frame(rthread, true); 1021 pop(state); 1022 bind(fast_path); 1023 1024 // get the value of _do_not_unlock_if_synchronized into rdx 1025 const Address do_not_unlock_if_synchronized(rthread, 1026 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1027 movbool(rbx, do_not_unlock_if_synchronized); 1028 movbool(do_not_unlock_if_synchronized, false); // reset the flag 1029 1030 // get method access flags 1031 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 1032 load_unsigned_short(rcx, Address(rcx, Method::access_flags_offset())); 1033 testl(rcx, JVM_ACC_SYNCHRONIZED); 1034 jcc(Assembler::zero, unlocked); 1035 1036 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 1037 // is set. 1038 testbool(rbx); 1039 jcc(Assembler::notZero, no_unlock); 1040 1041 // unlock monitor 1042 push(state); // save result 1043 1044 // BasicObjectLock will be first in list, since this is a 1045 // synchronized method. However, need to check that the object has 1046 // not been unlocked by an explicit monitorexit bytecode. 1047 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * 1048 wordSize - (int) sizeof(BasicObjectLock)); 1049 // We use c_rarg1/rdx so that if we go slow path it will be the correct 1050 // register for unlock_object to pass to VM directly 1051 lea(robj, monitor); // address of first monitor 1052 1053 movptr(rax, Address(robj, BasicObjectLock::obj_offset())); 1054 testptr(rax, rax); 1055 jcc(Assembler::notZero, unlock); 1056 1057 pop(state); 1058 if (throw_monitor_exception) { 1059 // Entry already unlocked, need to throw exception 1060 NOT_LP64(empty_FPU_stack();) // remove possible return value from FPU-stack, otherwise stack could overflow 1061 call_VM(noreg, CAST_FROM_FN_PTR(address, 1062 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1063 should_not_reach_here(); 1064 } else { 1065 // Monitor already unlocked during a stack unroll. If requested, 1066 // install an illegal_monitor_state_exception. Continue with 1067 // stack unrolling. 1068 if (install_monitor_exception) { 1069 NOT_LP64(empty_FPU_stack();) 1070 call_VM(noreg, CAST_FROM_FN_PTR(address, 1071 InterpreterRuntime::new_illegal_monitor_state_exception)); 1072 } 1073 jmp(unlocked); 1074 } 1075 1076 bind(unlock); 1077 unlock_object(robj); 1078 pop(state); 1079 1080 // Check that for block-structured locking (i.e., that all locked 1081 // objects has been unlocked) 1082 bind(unlocked); 1083 1084 // rax, rdx: Might contain return value 1085 1086 // Check that all monitors are unlocked 1087 { 1088 Label loop, exception, entry, restart; 1089 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 1090 const Address monitor_block_top( 1091 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 1092 const Address monitor_block_bot( 1093 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 1094 1095 bind(restart); 1096 // We use c_rarg1 so that if we go slow path it will be the correct 1097 // register for unlock_object to pass to VM directly 1098 movptr(rmon, monitor_block_top); // derelativize pointer 1099 lea(rmon, Address(rbp, rmon, Address::times_ptr)); 1100 // c_rarg1 points to current entry, starting with top-most entry 1101 1102 lea(rbx, monitor_block_bot); // points to word before bottom of 1103 // monitor block 1104 jmp(entry); 1105 1106 // Entry already locked, need to throw exception 1107 bind(exception); 1108 1109 if (throw_monitor_exception) { 1110 // Throw exception 1111 NOT_LP64(empty_FPU_stack();) 1112 MacroAssembler::call_VM(noreg, 1113 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 1114 throw_illegal_monitor_state_exception)); 1115 should_not_reach_here(); 1116 } else { 1117 // Stack unrolling. Unlock object and install illegal_monitor_exception. 1118 // Unlock does not block, so don't have to worry about the frame. 1119 // We don't have to preserve c_rarg1 since we are going to throw an exception. 1120 1121 push(state); 1122 mov(robj, rmon); // nop if robj and rmon are the same 1123 unlock_object(robj); 1124 pop(state); 1125 1126 if (install_monitor_exception) { 1127 NOT_LP64(empty_FPU_stack();) 1128 call_VM(noreg, CAST_FROM_FN_PTR(address, 1129 InterpreterRuntime:: 1130 new_illegal_monitor_state_exception)); 1131 } 1132 1133 jmp(restart); 1134 } 1135 1136 bind(loop); 1137 // check if current entry is used 1138 cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD); 1139 jcc(Assembler::notEqual, exception); 1140 1141 addptr(rmon, entry_size); // otherwise advance to next entry 1142 bind(entry); 1143 cmpptr(rmon, rbx); // check if bottom reached 1144 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 1145 } 1146 1147 bind(no_unlock); 1148 1149 // jvmti support 1150 if (notify_jvmdi) { 1151 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 1152 } else { 1153 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 1154 } 1155 1156 // remove activation 1157 // get sender sp 1158 movptr(rbx, 1159 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1160 if (StackReservedPages > 0) { 1161 // testing if reserved zone needs to be re-enabled 1162 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 1163 Label no_reserved_zone_enabling; 1164 1165 NOT_LP64(get_thread(rthread);) 1166 1167 // check if already enabled - if so no re-enabling needed 1168 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 1169 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled); 1170 jcc(Assembler::equal, no_reserved_zone_enabling); 1171 1172 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset())); 1173 jcc(Assembler::lessEqual, no_reserved_zone_enabling); 1174 1175 call_VM_leaf( 1176 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 1177 call_VM(noreg, CAST_FROM_FN_PTR(address, 1178 InterpreterRuntime::throw_delayed_StackOverflowError)); 1179 should_not_reach_here(); 1180 1181 bind(no_reserved_zone_enabling); 1182 } 1183 leave(); // remove frame anchor 1184 pop(ret_addr); // get return address 1185 mov(rsp, rbx); // set sp to sender sp 1186 pop_cont_fastpath(); 1187 } 1188 1189 void InterpreterMacroAssembler::get_method_counters(Register method, 1190 Register mcs, Label& skip) { 1191 Label has_counters; 1192 movptr(mcs, Address(method, Method::method_counters_offset())); 1193 testptr(mcs, mcs); 1194 jcc(Assembler::notZero, has_counters); 1195 call_VM(noreg, CAST_FROM_FN_PTR(address, 1196 InterpreterRuntime::build_method_counters), method); 1197 movptr(mcs, Address(method,Method::method_counters_offset())); 1198 testptr(mcs, mcs); 1199 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory 1200 bind(has_counters); 1201 } 1202 1203 1204 // Lock object 1205 // 1206 // Args: 1207 // rdx, c_rarg1: BasicObjectLock to be used for locking 1208 // 1209 // Kills: 1210 // rax, rbx 1211 void InterpreterMacroAssembler::lock_object(Register lock_reg) { 1212 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), 1213 "The argument is only for looks. It must be c_rarg1"); 1214 1215 if (LockingMode == LM_MONITOR) { 1216 call_VM_preemptable(noreg, 1217 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1218 lock_reg); 1219 } else { 1220 Label count_locking, done, slow_case; 1221 1222 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1223 const Register tmp_reg = rbx; 1224 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop 1225 const Register rklass_decode_tmp = rscratch1; 1226 1227 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 1228 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 1229 const int mark_offset = lock_offset + 1230 BasicLock::displaced_header_offset_in_bytes(); 1231 1232 // Load object pointer into obj_reg 1233 movptr(obj_reg, Address(lock_reg, obj_offset)); 1234 1235 if (DiagnoseSyncOnValueBasedClasses != 0) { 1236 load_klass(tmp_reg, obj_reg, rklass_decode_tmp); 1237 testb(Address(tmp_reg, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class); 1238 jcc(Assembler::notZero, slow_case); 1239 } 1240 1241 if (LockingMode == LM_LIGHTWEIGHT) { 1242 #ifdef _LP64 1243 const Register thread = r15_thread; 1244 lightweight_lock(lock_reg, obj_reg, swap_reg, thread, tmp_reg, slow_case); 1245 #else 1246 // Lacking registers and thread on x86_32. Always take slow path. 1247 jmp(slow_case); 1248 #endif 1249 } else if (LockingMode == LM_LEGACY) { 1250 // Load immediate 1 into swap_reg %rax 1251 movl(swap_reg, 1); 1252 1253 // Load (object->mark() | 1) into swap_reg %rax 1254 orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1255 1256 // Save (object->mark() | 1) into BasicLock's displaced header 1257 movptr(Address(lock_reg, mark_offset), swap_reg); 1258 1259 assert(lock_offset == 0, 1260 "displaced header must be first word in BasicObjectLock"); 1261 1262 lock(); 1263 cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1264 jcc(Assembler::zero, count_locking); 1265 1266 const int zero_bits = LP64_ONLY(7) NOT_LP64(3); 1267 1268 // Fast check for recursive lock. 1269 // 1270 // Can apply the optimization only if this is a stack lock 1271 // allocated in this thread. For efficiency, we can focus on 1272 // recently allocated stack locks (instead of reading the stack 1273 // base and checking whether 'mark' points inside the current 1274 // thread stack): 1275 // 1) (mark & zero_bits) == 0, and 1276 // 2) rsp <= mark < mark + os::pagesize() 1277 // 1278 // Warning: rsp + os::pagesize can overflow the stack base. We must 1279 // neither apply the optimization for an inflated lock allocated 1280 // just above the thread stack (this is why condition 1 matters) 1281 // nor apply the optimization if the stack lock is inside the stack 1282 // of another thread. The latter is avoided even in case of overflow 1283 // because we have guard pages at the end of all stacks. Hence, if 1284 // we go over the stack base and hit the stack of another thread, 1285 // this should not be in a writeable area that could contain a 1286 // stack lock allocated by that thread. As a consequence, a stack 1287 // lock less than page size away from rsp is guaranteed to be 1288 // owned by the current thread. 1289 // 1290 // These 3 tests can be done by evaluating the following 1291 // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())), 1292 // assuming both stack pointer and pagesize have their 1293 // least significant bits clear. 1294 // NOTE: the mark is in swap_reg %rax as the result of cmpxchg 1295 subptr(swap_reg, rsp); 1296 andptr(swap_reg, zero_bits - (int)os::vm_page_size()); 1297 1298 // Save the test result, for recursive case, the result is zero 1299 movptr(Address(lock_reg, mark_offset), swap_reg); 1300 jcc(Assembler::notZero, slow_case); 1301 1302 bind(count_locking); 1303 inc_held_monitor_count(); 1304 } 1305 jmp(done); 1306 1307 bind(slow_case); 1308 1309 // Call the runtime routine for slow case 1310 call_VM_preemptable(noreg, 1311 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1312 lock_reg); 1313 bind(done); 1314 } 1315 } 1316 1317 1318 // Unlocks an object. Used in monitorexit bytecode and 1319 // remove_activation. Throws an IllegalMonitorException if object is 1320 // not locked by current thread. 1321 // 1322 // Args: 1323 // rdx, c_rarg1: BasicObjectLock for lock 1324 // 1325 // Kills: 1326 // rax 1327 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 1328 // rscratch1 (scratch reg) 1329 // rax, rbx, rcx, rdx 1330 void InterpreterMacroAssembler::unlock_object(Register lock_reg) { 1331 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), 1332 "The argument is only for looks. It must be c_rarg1"); 1333 1334 if (LockingMode == LM_MONITOR) { 1335 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1336 } else { 1337 Label count_locking, done, slow_case; 1338 1339 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1340 const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx); // Will contain the old oopMark 1341 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop 1342 1343 save_bcp(); // Save in case of exception 1344 1345 if (LockingMode != LM_LIGHTWEIGHT) { 1346 // Convert from BasicObjectLock structure to object and BasicLock 1347 // structure Store the BasicLock address into %rax 1348 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 1349 } 1350 1351 // Load oop into obj_reg(%c_rarg3) 1352 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 1353 1354 // Free entry 1355 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD); 1356 1357 if (LockingMode == LM_LIGHTWEIGHT) { 1358 #ifdef _LP64 1359 lightweight_unlock(obj_reg, swap_reg, r15_thread, header_reg, slow_case); 1360 #else 1361 // Lacking registers and thread on x86_32. Always take slow path. 1362 jmp(slow_case); 1363 #endif 1364 } else if (LockingMode == LM_LEGACY) { 1365 // Load the old header from BasicLock structure 1366 movptr(header_reg, Address(swap_reg, 1367 BasicLock::displaced_header_offset_in_bytes())); 1368 1369 // Test for recursion 1370 testptr(header_reg, header_reg); 1371 1372 // zero for recursive case 1373 jcc(Assembler::zero, count_locking); 1374 1375 // Atomic swap back the old header 1376 lock(); 1377 cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1378 1379 // zero for simple unlock of a stack-lock case 1380 jcc(Assembler::notZero, slow_case); 1381 1382 bind(count_locking); 1383 dec_held_monitor_count(); 1384 } 1385 jmp(done); 1386 1387 bind(slow_case); 1388 // Call the runtime routine for slow case. 1389 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj 1390 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1391 1392 bind(done); 1393 1394 restore_bcp(); 1395 } 1396 } 1397 1398 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1399 Label& zero_continue) { 1400 assert(ProfileInterpreter, "must be profiling interpreter"); 1401 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); 1402 testptr(mdp, mdp); 1403 jcc(Assembler::zero, zero_continue); 1404 } 1405 1406 1407 // Set the method data pointer for the current bcp. 1408 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1409 assert(ProfileInterpreter, "must be profiling interpreter"); 1410 Label set_mdp; 1411 push(rax); 1412 push(rbx); 1413 1414 get_method(rbx); 1415 // Test MDO to avoid the call if it is null. 1416 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); 1417 testptr(rax, rax); 1418 jcc(Assembler::zero, set_mdp); 1419 // rbx: method 1420 // _bcp_register: bcp 1421 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); 1422 // rax: mdi 1423 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1424 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); 1425 addptr(rbx, in_bytes(MethodData::data_offset())); 1426 addptr(rax, rbx); 1427 bind(set_mdp); 1428 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); 1429 pop(rbx); 1430 pop(rax); 1431 } 1432 1433 void InterpreterMacroAssembler::verify_method_data_pointer() { 1434 assert(ProfileInterpreter, "must be profiling interpreter"); 1435 #ifdef ASSERT 1436 Label verify_continue; 1437 push(rax); 1438 push(rbx); 1439 Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 1440 Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 1441 push(arg3_reg); 1442 push(arg2_reg); 1443 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue 1444 get_method(rbx); 1445 1446 // If the mdp is valid, it will point to a DataLayout header which is 1447 // consistent with the bcp. The converse is highly probable also. 1448 load_unsigned_short(arg2_reg, 1449 Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); 1450 addptr(arg2_reg, Address(rbx, Method::const_offset())); 1451 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); 1452 cmpptr(arg2_reg, _bcp_register); 1453 jcc(Assembler::equal, verify_continue); 1454 // rbx: method 1455 // _bcp_register: bcp 1456 // c_rarg3: mdp 1457 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1458 rbx, _bcp_register, arg3_reg); 1459 bind(verify_continue); 1460 pop(arg2_reg); 1461 pop(arg3_reg); 1462 pop(rbx); 1463 pop(rax); 1464 #endif // ASSERT 1465 } 1466 1467 1468 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1469 int constant, 1470 Register value) { 1471 assert(ProfileInterpreter, "must be profiling interpreter"); 1472 Address data(mdp_in, constant); 1473 movptr(data, value); 1474 } 1475 1476 1477 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1478 int constant, 1479 bool decrement) { 1480 // Counter address 1481 Address data(mdp_in, constant); 1482 1483 increment_mdp_data_at(data, decrement); 1484 } 1485 1486 void InterpreterMacroAssembler::increment_mdp_data_at(Address data, 1487 bool decrement) { 1488 assert(ProfileInterpreter, "must be profiling interpreter"); 1489 // %%% this does 64bit counters at best it is wasting space 1490 // at worst it is a rare bug when counters overflow 1491 1492 if (decrement) { 1493 // Decrement the register. Set condition codes. 1494 addptr(data, -DataLayout::counter_increment); 1495 // If the decrement causes the counter to overflow, stay negative 1496 Label L; 1497 jcc(Assembler::negative, L); 1498 addptr(data, DataLayout::counter_increment); 1499 bind(L); 1500 } else { 1501 assert(DataLayout::counter_increment == 1, 1502 "flow-free idiom only works with 1"); 1503 // Increment the register. Set carry flag. 1504 addptr(data, DataLayout::counter_increment); 1505 // If the increment causes the counter to overflow, pull back by 1. 1506 sbbptr(data, 0); 1507 } 1508 } 1509 1510 1511 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1512 Register reg, 1513 int constant, 1514 bool decrement) { 1515 Address data(mdp_in, reg, Address::times_1, constant); 1516 1517 increment_mdp_data_at(data, decrement); 1518 } 1519 1520 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1521 int flag_byte_constant) { 1522 assert(ProfileInterpreter, "must be profiling interpreter"); 1523 int header_offset = in_bytes(DataLayout::flags_offset()); 1524 int header_bits = flag_byte_constant; 1525 // Set the flag 1526 orb(Address(mdp_in, header_offset), header_bits); 1527 } 1528 1529 1530 1531 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1532 int offset, 1533 Register value, 1534 Register test_value_out, 1535 Label& not_equal_continue) { 1536 assert(ProfileInterpreter, "must be profiling interpreter"); 1537 if (test_value_out == noreg) { 1538 cmpptr(value, Address(mdp_in, offset)); 1539 } else { 1540 // Put the test value into a register, so caller can use it: 1541 movptr(test_value_out, Address(mdp_in, offset)); 1542 cmpptr(test_value_out, value); 1543 } 1544 jcc(Assembler::notEqual, not_equal_continue); 1545 } 1546 1547 1548 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1549 int offset_of_disp) { 1550 assert(ProfileInterpreter, "must be profiling interpreter"); 1551 Address disp_address(mdp_in, offset_of_disp); 1552 addptr(mdp_in, disp_address); 1553 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1554 } 1555 1556 1557 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1558 Register reg, 1559 int offset_of_disp) { 1560 assert(ProfileInterpreter, "must be profiling interpreter"); 1561 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); 1562 addptr(mdp_in, disp_address); 1563 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1564 } 1565 1566 1567 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1568 int constant) { 1569 assert(ProfileInterpreter, "must be profiling interpreter"); 1570 addptr(mdp_in, constant); 1571 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1572 } 1573 1574 1575 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1576 assert(ProfileInterpreter, "must be profiling interpreter"); 1577 push(return_bci); // save/restore across call_VM 1578 call_VM(noreg, 1579 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1580 return_bci); 1581 pop(return_bci); 1582 } 1583 1584 1585 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1586 Register bumped_count) { 1587 if (ProfileInterpreter) { 1588 Label profile_continue; 1589 1590 // If no method data exists, go to profile_continue. 1591 // Otherwise, assign to mdp 1592 test_method_data_pointer(mdp, profile_continue); 1593 1594 // We are taking a branch. Increment the taken count. 1595 // We inline increment_mdp_data_at to return bumped_count in a register 1596 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1597 Address data(mdp, in_bytes(JumpData::taken_offset())); 1598 movptr(bumped_count, data); 1599 assert(DataLayout::counter_increment == 1, 1600 "flow-free idiom only works with 1"); 1601 addptr(bumped_count, DataLayout::counter_increment); 1602 sbbptr(bumped_count, 0); 1603 movptr(data, bumped_count); // Store back out 1604 1605 // The method data pointer needs to be updated to reflect the new target. 1606 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1607 bind(profile_continue); 1608 } 1609 } 1610 1611 1612 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1613 if (ProfileInterpreter) { 1614 Label profile_continue; 1615 1616 // If no method data exists, go to profile_continue. 1617 test_method_data_pointer(mdp, profile_continue); 1618 1619 // We are taking a branch. Increment the not taken count. 1620 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1621 1622 // The method data pointer needs to be updated to correspond to 1623 // the next bytecode 1624 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1625 bind(profile_continue); 1626 } 1627 } 1628 1629 void InterpreterMacroAssembler::profile_call(Register mdp) { 1630 if (ProfileInterpreter) { 1631 Label profile_continue; 1632 1633 // If no method data exists, go to profile_continue. 1634 test_method_data_pointer(mdp, profile_continue); 1635 1636 // We are making a call. Increment the count. 1637 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1638 1639 // The method data pointer needs to be updated to reflect the new target. 1640 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1641 bind(profile_continue); 1642 } 1643 } 1644 1645 1646 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1647 if (ProfileInterpreter) { 1648 Label profile_continue; 1649 1650 // If no method data exists, go to profile_continue. 1651 test_method_data_pointer(mdp, profile_continue); 1652 1653 // We are making a call. Increment the count. 1654 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1655 1656 // The method data pointer needs to be updated to reflect the new target. 1657 update_mdp_by_constant(mdp, 1658 in_bytes(VirtualCallData:: 1659 virtual_call_data_size())); 1660 bind(profile_continue); 1661 } 1662 } 1663 1664 1665 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1666 Register mdp, 1667 Register reg2, 1668 bool receiver_can_be_null) { 1669 if (ProfileInterpreter) { 1670 Label profile_continue; 1671 1672 // If no method data exists, go to profile_continue. 1673 test_method_data_pointer(mdp, profile_continue); 1674 1675 Label skip_receiver_profile; 1676 if (receiver_can_be_null) { 1677 Label not_null; 1678 testptr(receiver, receiver); 1679 jccb(Assembler::notZero, not_null); 1680 // We are making a call. Increment the count for null receiver. 1681 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1682 jmp(skip_receiver_profile); 1683 bind(not_null); 1684 } 1685 1686 // Record the receiver type. 1687 record_klass_in_profile(receiver, mdp, reg2, true); 1688 bind(skip_receiver_profile); 1689 1690 // The method data pointer needs to be updated to reflect the new target. 1691 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1692 bind(profile_continue); 1693 } 1694 } 1695 1696 // This routine creates a state machine for updating the multi-row 1697 // type profile at a virtual call site (or other type-sensitive bytecode). 1698 // The machine visits each row (of receiver/count) until the receiver type 1699 // is found, or until it runs out of rows. At the same time, it remembers 1700 // the location of the first empty row. (An empty row records null for its 1701 // receiver, and can be allocated for a newly-observed receiver type.) 1702 // Because there are two degrees of freedom in the state, a simple linear 1703 // search will not work; it must be a decision tree. Hence this helper 1704 // function is recursive, to generate the required tree structured code. 1705 // It's the interpreter, so we are trading off code space for speed. 1706 // See below for example code. 1707 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1708 Register receiver, Register mdp, 1709 Register reg2, int start_row, 1710 Label& done, bool is_virtual_call) { 1711 if (TypeProfileWidth == 0) { 1712 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1713 } else { 1714 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1715 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1716 } 1717 } 1718 1719 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row, 1720 Label& done, int total_rows, 1721 OffsetFunction item_offset_fn, 1722 OffsetFunction item_count_offset_fn) { 1723 int last_row = total_rows - 1; 1724 assert(start_row <= last_row, "must be work left to do"); 1725 // Test this row for both the item and for null. 1726 // Take any of three different outcomes: 1727 // 1. found item => increment count and goto done 1728 // 2. found null => keep looking for case 1, maybe allocate this cell 1729 // 3. found something else => keep looking for cases 1 and 2 1730 // Case 3 is handled by a recursive call. 1731 for (int row = start_row; row <= last_row; row++) { 1732 Label next_test; 1733 bool test_for_null_also = (row == start_row); 1734 1735 // See if the item is item[n]. 1736 int item_offset = in_bytes(item_offset_fn(row)); 1737 test_mdp_data_at(mdp, item_offset, item, 1738 (test_for_null_also ? reg2 : noreg), 1739 next_test); 1740 // (Reg2 now contains the item from the CallData.) 1741 1742 // The item is item[n]. Increment count[n]. 1743 int count_offset = in_bytes(item_count_offset_fn(row)); 1744 increment_mdp_data_at(mdp, count_offset); 1745 jmp(done); 1746 bind(next_test); 1747 1748 if (test_for_null_also) { 1749 // Failed the equality check on item[n]... Test for null. 1750 testptr(reg2, reg2); 1751 if (start_row == last_row) { 1752 // The only thing left to do is handle the null case. 1753 Label found_null; 1754 jccb(Assembler::zero, found_null); 1755 // Item did not match any saved item and there is no empty row for it. 1756 // Increment total counter to indicate polymorphic case. 1757 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1758 jmp(done); 1759 bind(found_null); 1760 break; 1761 } 1762 Label found_null; 1763 // Since null is rare, make it be the branch-taken case. 1764 jcc(Assembler::zero, found_null); 1765 1766 // Put all the "Case 3" tests here. 1767 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1768 item_offset_fn, item_count_offset_fn); 1769 1770 // Found a null. Keep searching for a matching item, 1771 // but remember that this is an empty (unused) slot. 1772 bind(found_null); 1773 } 1774 } 1775 1776 // In the fall-through case, we found no matching item, but we 1777 // observed the item[start_row] is null. 1778 1779 // Fill in the item field and increment the count. 1780 int item_offset = in_bytes(item_offset_fn(start_row)); 1781 set_mdp_data_at(mdp, item_offset, item); 1782 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1783 movl(reg2, DataLayout::counter_increment); 1784 set_mdp_data_at(mdp, count_offset, reg2); 1785 if (start_row > 0) { 1786 jmp(done); 1787 } 1788 } 1789 1790 // Example state machine code for three profile rows: 1791 // // main copy of decision tree, rooted at row[1] 1792 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1793 // if (row[0].rec != nullptr) { 1794 // // inner copy of decision tree, rooted at row[1] 1795 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1796 // if (row[1].rec != nullptr) { 1797 // // degenerate decision tree, rooted at row[2] 1798 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1799 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1800 // row[2].init(rec); goto done; 1801 // } else { 1802 // // remember row[1] is empty 1803 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1804 // row[1].init(rec); goto done; 1805 // } 1806 // } else { 1807 // // remember row[0] is empty 1808 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1809 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1810 // row[0].init(rec); goto done; 1811 // } 1812 // done: 1813 1814 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1815 Register mdp, Register reg2, 1816 bool is_virtual_call) { 1817 assert(ProfileInterpreter, "must be profiling"); 1818 Label done; 1819 1820 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1821 1822 bind (done); 1823 } 1824 1825 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1826 Register mdp) { 1827 if (ProfileInterpreter) { 1828 Label profile_continue; 1829 uint row; 1830 1831 // If no method data exists, go to profile_continue. 1832 test_method_data_pointer(mdp, profile_continue); 1833 1834 // Update the total ret count. 1835 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1836 1837 for (row = 0; row < RetData::row_limit(); row++) { 1838 Label next_test; 1839 1840 // See if return_bci is equal to bci[n]: 1841 test_mdp_data_at(mdp, 1842 in_bytes(RetData::bci_offset(row)), 1843 return_bci, noreg, 1844 next_test); 1845 1846 // return_bci is equal to bci[n]. Increment the count. 1847 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1848 1849 // The method data pointer needs to be updated to reflect the new target. 1850 update_mdp_by_offset(mdp, 1851 in_bytes(RetData::bci_displacement_offset(row))); 1852 jmp(profile_continue); 1853 bind(next_test); 1854 } 1855 1856 update_mdp_for_ret(return_bci); 1857 1858 bind(profile_continue); 1859 } 1860 } 1861 1862 1863 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1864 if (ProfileInterpreter) { 1865 Label profile_continue; 1866 1867 // If no method data exists, go to profile_continue. 1868 test_method_data_pointer(mdp, profile_continue); 1869 1870 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1871 1872 // The method data pointer needs to be updated. 1873 int mdp_delta = in_bytes(BitData::bit_data_size()); 1874 if (TypeProfileCasts) { 1875 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1876 } 1877 update_mdp_by_constant(mdp, mdp_delta); 1878 1879 bind(profile_continue); 1880 } 1881 } 1882 1883 1884 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1885 if (ProfileInterpreter) { 1886 Label profile_continue; 1887 1888 // If no method data exists, go to profile_continue. 1889 test_method_data_pointer(mdp, profile_continue); 1890 1891 // The method data pointer needs to be updated. 1892 int mdp_delta = in_bytes(BitData::bit_data_size()); 1893 if (TypeProfileCasts) { 1894 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1895 1896 // Record the object type. 1897 record_klass_in_profile(klass, mdp, reg2, false); 1898 NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");) 1899 NOT_LP64(restore_locals();) // Restore EDI 1900 } 1901 update_mdp_by_constant(mdp, mdp_delta); 1902 1903 bind(profile_continue); 1904 } 1905 } 1906 1907 1908 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1909 if (ProfileInterpreter) { 1910 Label profile_continue; 1911 1912 // If no method data exists, go to profile_continue. 1913 test_method_data_pointer(mdp, profile_continue); 1914 1915 // Update the default case count 1916 increment_mdp_data_at(mdp, 1917 in_bytes(MultiBranchData::default_count_offset())); 1918 1919 // The method data pointer needs to be updated. 1920 update_mdp_by_offset(mdp, 1921 in_bytes(MultiBranchData:: 1922 default_displacement_offset())); 1923 1924 bind(profile_continue); 1925 } 1926 } 1927 1928 1929 void InterpreterMacroAssembler::profile_switch_case(Register index, 1930 Register mdp, 1931 Register reg2) { 1932 if (ProfileInterpreter) { 1933 Label profile_continue; 1934 1935 // If no method data exists, go to profile_continue. 1936 test_method_data_pointer(mdp, profile_continue); 1937 1938 // Build the base (index * per_case_size_in_bytes()) + 1939 // case_array_offset_in_bytes() 1940 movl(reg2, in_bytes(MultiBranchData::per_case_size())); 1941 imulptr(index, reg2); // XXX l ? 1942 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? 1943 1944 // Update the case count 1945 increment_mdp_data_at(mdp, 1946 index, 1947 in_bytes(MultiBranchData::relative_count_offset())); 1948 1949 // The method data pointer needs to be updated. 1950 update_mdp_by_offset(mdp, 1951 index, 1952 in_bytes(MultiBranchData:: 1953 relative_displacement_offset())); 1954 1955 bind(profile_continue); 1956 } 1957 } 1958 1959 1960 1961 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1962 if (state == atos) { 1963 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1964 } 1965 } 1966 1967 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { 1968 #ifndef _LP64 1969 if ((state == ftos && UseSSE < 1) || 1970 (state == dtos && UseSSE < 2)) { 1971 MacroAssembler::verify_FPU(stack_depth); 1972 } 1973 #endif 1974 } 1975 1976 // Jump if ((*counter_addr += increment) & mask) == 0 1977 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask, 1978 Register scratch, Label* where) { 1979 // This update is actually not atomic and can lose a number of updates 1980 // under heavy contention, but the alternative of using the (contended) 1981 // atomic update here penalizes profiling paths too much. 1982 movl(scratch, counter_addr); 1983 incrementl(scratch, InvocationCounter::count_increment); 1984 movl(counter_addr, scratch); 1985 andl(scratch, mask); 1986 if (where != nullptr) { 1987 jcc(Assembler::zero, *where); 1988 } 1989 } 1990 1991 void InterpreterMacroAssembler::notify_method_entry() { 1992 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1993 // track stack depth. If it is possible to enter interp_only_mode we add 1994 // the code to check if the event should be sent. 1995 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 1996 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 1997 if (JvmtiExport::can_post_interpreter_events()) { 1998 Label L; 1999 NOT_LP64(get_thread(rthread);) 2000 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 2001 testl(rdx, rdx); 2002 jcc(Assembler::zero, L); 2003 call_VM(noreg, CAST_FROM_FN_PTR(address, 2004 InterpreterRuntime::post_method_entry)); 2005 bind(L); 2006 } 2007 2008 if (DTraceMethodProbes) { 2009 NOT_LP64(get_thread(rthread);) 2010 get_method(rarg); 2011 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2012 rthread, rarg); 2013 } 2014 2015 // RedefineClasses() tracing support for obsolete method entry 2016 if (log_is_enabled(Trace, redefine, class, obsolete)) { 2017 NOT_LP64(get_thread(rthread);) 2018 get_method(rarg); 2019 call_VM_leaf( 2020 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 2021 rthread, rarg); 2022 } 2023 } 2024 2025 2026 void InterpreterMacroAssembler::notify_method_exit( 2027 TosState state, NotifyMethodExitMode mode) { 2028 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 2029 // track stack depth. If it is possible to enter interp_only_mode we add 2030 // the code to check if the event should be sent. 2031 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 2032 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 2033 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2034 Label L; 2035 // Note: frame::interpreter_frame_result has a dependency on how the 2036 // method result is saved across the call to post_method_exit. If this 2037 // is changed then the interpreter_frame_result implementation will 2038 // need to be updated too. 2039 2040 // template interpreter will leave the result on the top of the stack. 2041 push(state); 2042 NOT_LP64(get_thread(rthread);) 2043 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 2044 testl(rdx, rdx); 2045 jcc(Assembler::zero, L); 2046 call_VM(noreg, 2047 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 2048 bind(L); 2049 pop(state); 2050 } 2051 2052 if (DTraceMethodProbes) { 2053 push(state); 2054 NOT_LP64(get_thread(rthread);) 2055 get_method(rarg); 2056 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2057 rthread, rarg); 2058 pop(state); 2059 } 2060 } 2061 2062 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 2063 // Get index out of bytecode pointer 2064 get_cache_index_at_bcp(index, 1, sizeof(u4)); 2065 // Get address of invokedynamic array 2066 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 2067 movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 2068 if (is_power_of_2(sizeof(ResolvedIndyEntry))) { 2069 shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2 2070 } else { 2071 imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 2072 } 2073 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes())); 2074 } 2075 2076 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 2077 // Get index out of bytecode pointer 2078 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 2079 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 2080 2081 movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset())); 2082 // Take shortcut if the size is a power of 2 2083 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 2084 shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 2085 } else { 2086 imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 2087 } 2088 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes())); 2089 } 2090 2091 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 2092 // Get index out of bytecode pointer 2093 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 2094 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 2095 2096 movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset())); 2097 imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 2098 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes())); 2099 }