1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compiler_globals.hpp" 26 #include "interp_masm_x86.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "logging/log.hpp" 30 #include "oops/arrayOop.hpp" 31 #include "oops/markWord.hpp" 32 #include "oops/methodData.hpp" 33 #include "oops/method.hpp" 34 #include "oops/resolvedFieldEntry.hpp" 35 #include "oops/resolvedIndyEntry.hpp" 36 #include "oops/resolvedMethodEntry.hpp" 37 #include "prims/jvmtiExport.hpp" 38 #include "prims/jvmtiThreadState.hpp" 39 #include "runtime/basicLock.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/javaThread.hpp" 42 #include "runtime/runtimeUpcalls.hpp" 43 #include "runtime/safepointMechanism.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "utilities/powerOfTwo.hpp" 46 47 // Implementation of InterpreterMacroAssembler 48 49 void InterpreterMacroAssembler::jump_to_entry(address entry) { 50 assert(entry, "Entry must have been generated by now"); 51 jump(RuntimeAddress(entry)); 52 } 53 54 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 55 Label update, next, none; 56 57 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 58 59 interp_verify_oop(obj, atos); 60 61 testptr(obj, obj); 62 jccb(Assembler::notZero, update); 63 testptr(mdo_addr, TypeEntries::null_seen); 64 jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore. 65 // atomic update to prevent overwriting Klass* with 0 66 lock(); 67 orptr(mdo_addr, TypeEntries::null_seen); 68 jmpb(next); 69 70 bind(update); 71 load_klass(obj, obj, rscratch1); 72 mov(rscratch1, obj); 73 74 xorptr(obj, mdo_addr); 75 testptr(obj, TypeEntries::type_klass_mask); 76 jccb(Assembler::zero, next); // klass seen before, nothing to 77 // do. The unknown bit may have been 78 // set already but no need to check. 79 80 testptr(obj, TypeEntries::type_unknown); 81 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 82 83 cmpptr(mdo_addr, 0); 84 jccb(Assembler::equal, none); 85 cmpptr(mdo_addr, TypeEntries::null_seen); 86 jccb(Assembler::equal, none); 87 88 // There is a chance that the checks above (re-reading profiling 89 // data from memory) fail if another thread has just set the 90 // profiling to this obj's klass 91 mov(obj, rscratch1); 92 xorptr(obj, mdo_addr); 93 testptr(obj, TypeEntries::type_klass_mask); 94 jccb(Assembler::zero, next); 95 96 // different than before. Cannot keep accurate profile. 97 orptr(mdo_addr, TypeEntries::type_unknown); 98 jmpb(next); 99 100 bind(none); 101 // first time here. Set profile type. 102 movptr(mdo_addr, obj); 103 #ifdef ASSERT 104 andptr(obj, TypeEntries::type_klass_mask); 105 verify_klass_ptr(obj); 106 #endif 107 108 bind(next); 109 } 110 111 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 112 if (!ProfileInterpreter) { 113 return; 114 } 115 116 if (MethodData::profile_arguments() || MethodData::profile_return()) { 117 Label profile_continue; 118 119 test_method_data_pointer(mdp, profile_continue); 120 121 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 122 123 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 124 jcc(Assembler::notEqual, profile_continue); 125 126 if (MethodData::profile_arguments()) { 127 Label done; 128 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 129 addptr(mdp, off_to_args); 130 131 for (int i = 0; i < TypeProfileArgsLimit; i++) { 132 if (i > 0 || MethodData::profile_return()) { 133 // If return value type is profiled we may have no argument to profile 134 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 135 subl(tmp, i*TypeStackSlotEntries::per_arg_count()); 136 cmpl(tmp, TypeStackSlotEntries::per_arg_count()); 137 jcc(Assembler::less, done); 138 } 139 movptr(tmp, Address(callee, Method::const_offset())); 140 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 141 // stack offset o (zero based) from the start of the argument 142 // list, for n arguments translates into offset n - o - 1 from 143 // the end of the argument list 144 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 145 subl(tmp, 1); 146 Address arg_addr = argument_address(tmp); 147 movptr(tmp, arg_addr); 148 149 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 150 profile_obj_type(tmp, mdo_arg_addr); 151 152 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 153 addptr(mdp, to_add); 154 off_to_args += to_add; 155 } 156 157 if (MethodData::profile_return()) { 158 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 159 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 160 } 161 162 bind(done); 163 164 if (MethodData::profile_return()) { 165 // We're right after the type profile for the last 166 // argument. tmp is the number of cells left in the 167 // CallTypeData/VirtualCallTypeData to reach its end. Non null 168 // if there's a return to profile. 169 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 170 shll(tmp, log2i_exact((int)DataLayout::cell_size)); 171 addptr(mdp, tmp); 172 } 173 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp); 174 } else { 175 assert(MethodData::profile_return(), "either profile call args or call ret"); 176 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 177 } 178 179 // mdp points right after the end of the 180 // CallTypeData/VirtualCallTypeData, right after the cells for the 181 // return value type if there's one 182 183 bind(profile_continue); 184 } 185 } 186 187 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 188 assert_different_registers(mdp, ret, tmp, _bcp_register); 189 if (ProfileInterpreter && MethodData::profile_return()) { 190 Label profile_continue; 191 192 test_method_data_pointer(mdp, profile_continue); 193 194 if (MethodData::profile_return_jsr292_only()) { 195 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 196 197 // If we don't profile all invoke bytecodes we must make sure 198 // it's a bytecode we indeed profile. We can't go back to the 199 // beginning of the ProfileData we intend to update to check its 200 // type because we're right after it and we don't known its 201 // length 202 Label do_profile; 203 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic); 204 jcc(Assembler::equal, do_profile); 205 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle); 206 jcc(Assembler::equal, do_profile); 207 get_method(tmp); 208 cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 209 jcc(Assembler::notEqual, profile_continue); 210 211 bind(do_profile); 212 } 213 214 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 215 mov(tmp, ret); 216 profile_obj_type(tmp, mdo_ret_addr); 217 218 bind(profile_continue); 219 } 220 } 221 222 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 223 if (ProfileInterpreter && MethodData::profile_parameters()) { 224 Label profile_continue; 225 226 test_method_data_pointer(mdp, profile_continue); 227 228 // Load the offset of the area within the MDO used for 229 // parameters. If it's negative we're not profiling any parameters 230 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 231 testl(tmp1, tmp1); 232 jcc(Assembler::negative, profile_continue); 233 234 // Compute a pointer to the area for parameters from the offset 235 // and move the pointer to the slot for the last 236 // parameters. Collect profiling from last parameter down. 237 // mdo start + parameters offset + array length - 1 238 addptr(mdp, tmp1); 239 movptr(tmp1, Address(mdp, ArrayData::array_len_offset())); 240 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 241 242 Label loop; 243 bind(loop); 244 245 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 246 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 247 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size); 248 Address arg_off(mdp, tmp1, per_arg_scale, off_base); 249 Address arg_type(mdp, tmp1, per_arg_scale, type_base); 250 251 // load offset on the stack from the slot for this parameter 252 movptr(tmp2, arg_off); 253 negptr(tmp2); 254 // read the parameter from the local area 255 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale())); 256 257 // profile the parameter 258 profile_obj_type(tmp2, arg_type); 259 260 // go to next parameter 261 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 262 jcc(Assembler::positive, loop); 263 264 bind(profile_continue); 265 } 266 } 267 268 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 269 int number_of_arguments) { 270 // interpreter specific 271 // 272 // Note: No need to save/restore bcp & locals registers 273 // since these are callee saved registers and no blocking/ 274 // GC can happen in leaf calls. 275 // Further Note: DO NOT save/restore bcp/locals. If a caller has 276 // already saved them so that it can use rsi/rdi as temporaries 277 // then a save/restore here will DESTROY the copy the caller 278 // saved! There used to be a save_bcp() that only happened in 279 // the ASSERT path (no restore_bcp). Which caused bizarre failures 280 // when jvm built with ASSERTs. 281 #ifdef ASSERT 282 { 283 Label L; 284 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 285 jcc(Assembler::equal, L); 286 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 287 " last_sp != null"); 288 bind(L); 289 } 290 #endif 291 // super call 292 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 293 // interpreter specific 294 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals 295 // but since they may not have been saved (and we don't want to 296 // save them here (see note above) the assert is invalid. 297 } 298 299 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 300 Register last_java_sp, 301 address entry_point, 302 int number_of_arguments, 303 bool check_exceptions) { 304 // interpreter specific 305 // 306 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 307 // really make a difference for these runtime calls, since they are 308 // slow anyway. Btw., bcp must be saved/restored since it may change 309 // due to GC. 310 save_bcp(); 311 #ifdef ASSERT 312 { 313 Label L; 314 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 315 jcc(Assembler::equal, L); 316 stop("InterpreterMacroAssembler::call_VM_base:" 317 " last_sp isn't null"); 318 bind(L); 319 } 320 #endif /* ASSERT */ 321 // super call 322 MacroAssembler::call_VM_base(oop_result, last_java_sp, 323 entry_point, number_of_arguments, 324 check_exceptions); 325 // interpreter specific 326 restore_bcp(); 327 restore_locals(); 328 } 329 330 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 331 address entry_point, 332 Register arg_1) { 333 assert(arg_1 == c_rarg1, ""); 334 Label resume_pc, not_preempted; 335 336 #ifdef ASSERT 337 { 338 Label L; 339 cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 340 jcc(Assembler::equal, L); 341 stop("Should not have alternate return address set"); 342 bind(L); 343 } 344 #endif /* ASSERT */ 345 346 // Force freeze slow path. 347 push_cont_fastpath(); 348 349 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 350 // Note: call_VM_helper requires last_Java_pc for anchor to be at the top of the stack. 351 lea(rscratch1, resume_pc); 352 push(rscratch1); 353 MacroAssembler::call_VM_helper(oop_result, entry_point, 1, false /*check_exceptions*/); 354 pop(rscratch1); 355 356 pop_cont_fastpath(); 357 358 // Check if preempted. 359 movptr(rscratch1, Address(r15_thread, JavaThread::preempt_alternate_return_offset())); 360 cmpptr(rscratch1, NULL_WORD); 361 jccb(Assembler::zero, not_preempted); 362 movptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 363 jmp(rscratch1); 364 365 // In case of preemption, this is where we will resume once we finally acquire the monitor. 366 bind(resume_pc); 367 restore_after_resume(false /* is_native */); 368 369 bind(not_preempted); 370 } 371 372 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 373 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 374 call(rscratch1); 375 if (is_native) { 376 // On resume we need to set up stack as expected. 377 push(dtos); 378 push(ltos); 379 } 380 } 381 382 void InterpreterMacroAssembler::check_and_handle_popframe() { 383 if (JvmtiExport::can_pop_frame()) { 384 Label L; 385 // Initiate popframe handling only if it is not already being 386 // processed. If the flag has the popframe_processing bit set, it 387 // means that this code is called *during* popframe handling - we 388 // don't want to reenter. 389 // This method is only called just after the call into the vm in 390 // call_VM_base, so the arg registers are available. 391 Register pop_cond = c_rarg0; 392 movl(pop_cond, Address(r15_thread, JavaThread::popframe_condition_offset())); 393 testl(pop_cond, JavaThread::popframe_pending_bit); 394 jcc(Assembler::zero, L); 395 testl(pop_cond, JavaThread::popframe_processing_bit); 396 jcc(Assembler::notZero, L); 397 // Call Interpreter::remove_activation_preserving_args_entry() to get the 398 // address of the same-named entrypoint in the generated interpreter code. 399 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 400 jmp(rax); 401 bind(L); 402 } 403 } 404 405 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 406 movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset())); 407 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); 408 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); 409 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); 410 411 switch (state) { 412 case atos: movptr(rax, oop_addr); 413 movptr(oop_addr, NULL_WORD); 414 interp_verify_oop(rax, state); break; 415 case ltos: movptr(rax, val_addr); break; 416 case btos: // fall through 417 case ztos: // fall through 418 case ctos: // fall through 419 case stos: // fall through 420 case itos: movl(rax, val_addr); break; 421 case ftos: movflt(xmm0, val_addr); break; 422 case dtos: movdbl(xmm0, val_addr); break; 423 case vtos: /* nothing to do */ break; 424 default : ShouldNotReachHere(); 425 } 426 427 // Clean up tos value in the thread object 428 movl(tos_addr, ilgl); 429 movptr(val_addr, NULL_WORD); 430 } 431 432 433 void InterpreterMacroAssembler::check_and_handle_earlyret() { 434 if (JvmtiExport::can_force_early_return()) { 435 Label L; 436 Register tmp = c_rarg0; 437 Register rthread = r15_thread; 438 439 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 440 testptr(tmp, tmp); 441 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit; 442 443 // Initiate earlyret handling only if it is not already being processed. 444 // If the flag has the earlyret_processing bit set, it means that this code 445 // is called *during* earlyret handling - we don't want to reenter. 446 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); 447 cmpl(tmp, JvmtiThreadState::earlyret_pending); 448 jcc(Assembler::notEqual, L); 449 450 // Call Interpreter::remove_activation_early_entry() to get the address of the 451 // same-named entrypoint in the generated interpreter code. 452 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 453 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 454 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); 455 jmp(rax); 456 bind(L); 457 } 458 } 459 460 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 461 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 462 load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); 463 bswapl(reg); 464 shrl(reg, 16); 465 } 466 467 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 468 int bcp_offset, 469 size_t index_size) { 470 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 471 if (index_size == sizeof(u2)) { 472 load_unsigned_short(index, Address(_bcp_register, bcp_offset)); 473 } else if (index_size == sizeof(u4)) { 474 movl(index, Address(_bcp_register, bcp_offset)); 475 } else if (index_size == sizeof(u1)) { 476 load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); 477 } else { 478 ShouldNotReachHere(); 479 } 480 } 481 482 // Load object from cpool->resolved_references(index) 483 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, 484 Register index, 485 Register tmp) { 486 assert_different_registers(result, index); 487 488 get_constant_pool(result); 489 // load pointer for resolved_references[] objArray 490 movptr(result, Address(result, ConstantPool::cache_offset())); 491 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 492 resolve_oop_handle(result, tmp); 493 load_heap_oop(result, Address(result, index, 494 UseCompressedOops ? Address::times_4 : Address::times_ptr, 495 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp); 496 } 497 498 // load cpool->resolved_klass_at(index) 499 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass, 500 Register cpool, 501 Register index) { 502 assert_different_registers(cpool, index); 503 504 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool))); 505 Register resolved_klasses = cpool; 506 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset())); 507 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes())); 508 } 509 510 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 511 // subtype of super_klass. 512 // 513 // Args: 514 // rax: superklass 515 // Rsub_klass: subklass 516 // 517 // Kills: 518 // rcx, rdi 519 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 520 Label& ok_is_subtype) { 521 assert(Rsub_klass != rax, "rax holds superklass"); 522 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) 523 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) 524 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); 525 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); 526 527 // Profile the not-null value's klass. 528 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi 529 530 // Do the check. 531 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx 532 } 533 534 535 // Java Expression Stack 536 537 void InterpreterMacroAssembler::pop_ptr(Register r) { 538 pop(r); 539 } 540 541 void InterpreterMacroAssembler::push_ptr(Register r) { 542 push(r); 543 } 544 545 void InterpreterMacroAssembler::push_i(Register r) { 546 push(r); 547 } 548 549 void InterpreterMacroAssembler::push_i_or_ptr(Register r) { 550 push(r); 551 } 552 553 void InterpreterMacroAssembler::push_f(XMMRegister r) { 554 subptr(rsp, wordSize); 555 movflt(Address(rsp, 0), r); 556 } 557 558 void InterpreterMacroAssembler::pop_f(XMMRegister r) { 559 movflt(r, Address(rsp, 0)); 560 addptr(rsp, wordSize); 561 } 562 563 void InterpreterMacroAssembler::push_d(XMMRegister r) { 564 subptr(rsp, 2 * wordSize); 565 movdbl(Address(rsp, 0), r); 566 } 567 568 void InterpreterMacroAssembler::pop_d(XMMRegister r) { 569 movdbl(r, Address(rsp, 0)); 570 addptr(rsp, 2 * Interpreter::stackElementSize); 571 } 572 573 void InterpreterMacroAssembler::pop_i(Register r) { 574 // XXX can't use pop currently, upper half non clean 575 movl(r, Address(rsp, 0)); 576 addptr(rsp, wordSize); 577 } 578 579 void InterpreterMacroAssembler::pop_l(Register r) { 580 movq(r, Address(rsp, 0)); 581 addptr(rsp, 2 * Interpreter::stackElementSize); 582 } 583 584 void InterpreterMacroAssembler::push_l(Register r) { 585 subptr(rsp, 2 * wordSize); 586 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r ); 587 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD ); 588 } 589 590 void InterpreterMacroAssembler::pop(TosState state) { 591 switch (state) { 592 case atos: pop_ptr(); break; 593 case btos: 594 case ztos: 595 case ctos: 596 case stos: 597 case itos: pop_i(); break; 598 case ltos: pop_l(); break; 599 case ftos: pop_f(xmm0); break; 600 case dtos: pop_d(xmm0); break; 601 case vtos: /* nothing to do */ break; 602 default: ShouldNotReachHere(); 603 } 604 interp_verify_oop(rax, state); 605 } 606 607 void InterpreterMacroAssembler::push(TosState state) { 608 interp_verify_oop(rax, state); 609 switch (state) { 610 case atos: push_ptr(); break; 611 case btos: 612 case ztos: 613 case ctos: 614 case stos: 615 case itos: push_i(); break; 616 case ltos: push_l(); break; 617 case ftos: push_f(xmm0); break; 618 case dtos: push_d(xmm0); break; 619 case vtos: /* nothing to do */ break; 620 default : ShouldNotReachHere(); 621 } 622 } 623 624 // Helpers for swap and dup 625 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 626 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); 627 } 628 629 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 630 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); 631 } 632 633 634 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 635 // set sender sp 636 lea(_bcp_register, Address(rsp, wordSize)); 637 // record last_sp 638 mov(rcx, _bcp_register); 639 subptr(rcx, rbp); 640 sarptr(rcx, LogBytesPerWord); 641 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx); 642 } 643 644 645 // Jump to from_interpreted entry of a call unless single stepping is possible 646 // in this thread in which case we must call the i2i entry 647 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 648 prepare_to_jump_from_interpreted(); 649 650 if (JvmtiExport::can_post_interpreter_events()) { 651 Label run_compiled_code; 652 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 653 // compiled code in threads for which the event is enabled. Check here for 654 // interp_only_mode if these events CAN be enabled. 655 // interp_only is an int, on little endian it is sufficient to test the byte only 656 // Is a cmpl faster? 657 cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0); 658 jccb(Assembler::zero, run_compiled_code); 659 jmp(Address(method, Method::interpreter_entry_offset())); 660 bind(run_compiled_code); 661 } 662 663 jmp(Address(method, Method::from_interpreted_offset())); 664 } 665 666 // The following two routines provide a hook so that an implementation 667 // can schedule the dispatch in two parts. x86 does not do this. 668 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 669 // Nothing x86 specific to be done here 670 } 671 672 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 673 dispatch_next(state, step); 674 } 675 676 void InterpreterMacroAssembler::dispatch_base(TosState state, 677 address* table, 678 bool verifyoop, 679 bool generate_poll) { 680 if (VerifyActivationFrameSize) { 681 Label L; 682 mov(rcx, rbp); 683 subptr(rcx, rsp); 684 int32_t min_frame_size = 685 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * 686 wordSize; 687 cmpptr(rcx, min_frame_size); 688 jcc(Assembler::greaterEqual, L); 689 stop("broken stack frame"); 690 bind(L); 691 } 692 if (verifyoop) { 693 interp_verify_oop(rax, state); 694 } 695 696 address* const safepoint_table = Interpreter::safept_table(state); 697 Label no_safepoint, dispatch; 698 if (table != safepoint_table && generate_poll) { 699 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 700 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 701 702 jccb(Assembler::zero, no_safepoint); 703 lea(rscratch1, ExternalAddress((address)safepoint_table)); 704 jmpb(dispatch); 705 } 706 707 bind(no_safepoint); 708 lea(rscratch1, ExternalAddress((address)table)); 709 bind(dispatch); 710 jmp(Address(rscratch1, rbx, Address::times_8)); 711 } 712 713 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 714 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 715 } 716 717 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 718 dispatch_base(state, Interpreter::normal_table(state)); 719 } 720 721 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 722 dispatch_base(state, Interpreter::normal_table(state), false); 723 } 724 725 726 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 727 // load next bytecode (load before advancing _bcp_register to prevent AGI) 728 load_unsigned_byte(rbx, Address(_bcp_register, step)); 729 // advance _bcp_register 730 increment(_bcp_register, step); 731 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 732 } 733 734 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 735 // load current bytecode 736 load_unsigned_byte(rbx, Address(_bcp_register, 0)); 737 dispatch_base(state, table); 738 } 739 740 void InterpreterMacroAssembler::narrow(Register result) { 741 742 // Get method->_constMethod->_result_type 743 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 744 movptr(rcx, Address(rcx, Method::const_offset())); 745 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); 746 747 Label done, notBool, notByte, notChar; 748 749 // common case first 750 cmpl(rcx, T_INT); 751 jcc(Assembler::equal, done); 752 753 // mask integer result to narrower return type. 754 cmpl(rcx, T_BOOLEAN); 755 jcc(Assembler::notEqual, notBool); 756 andl(result, 0x1); 757 jmp(done); 758 759 bind(notBool); 760 cmpl(rcx, T_BYTE); 761 jcc(Assembler::notEqual, notByte); 762 movsbl(result, result); 763 jmp(done); 764 765 bind(notByte); 766 cmpl(rcx, T_CHAR); 767 jcc(Assembler::notEqual, notChar); 768 movzwl(result, result); 769 jmp(done); 770 771 bind(notChar); 772 // cmpl(rcx, T_SHORT); // all that's left 773 // jcc(Assembler::notEqual, done); 774 movswl(result, result); 775 776 // Nothing to do for T_INT 777 bind(done); 778 } 779 780 // remove activation 781 // 782 // Unlock the receiver if this is a synchronized method. 783 // Unlock any Java monitors from synchronized blocks. 784 // Apply stack watermark barrier. 785 // Notify JVMTI. 786 // Remove the activation from the stack. 787 // 788 // If there are locked Java monitors 789 // If throw_monitor_exception 790 // throws IllegalMonitorStateException 791 // Else if install_monitor_exception 792 // installs IllegalMonitorStateException 793 // Else 794 // no error processing 795 void InterpreterMacroAssembler::remove_activation(TosState state, 796 Register ret_addr, 797 bool throw_monitor_exception, 798 bool install_monitor_exception, 799 bool notify_jvmdi) { 800 // Note: Registers rdx xmm0 may be in use for the 801 // result check if synchronized method 802 Label unlocked, unlock, no_unlock; 803 804 const Register rthread = r15_thread; 805 const Register robj = c_rarg1; 806 const Register rmon = c_rarg1; 807 808 // get the value of _do_not_unlock_if_synchronized into rdx 809 const Address do_not_unlock_if_synchronized(rthread, 810 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 811 movbool(rbx, do_not_unlock_if_synchronized); 812 movbool(do_not_unlock_if_synchronized, false); // reset the flag 813 814 // get method access flags 815 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 816 load_unsigned_short(rcx, Address(rcx, Method::access_flags_offset())); 817 testl(rcx, JVM_ACC_SYNCHRONIZED); 818 jcc(Assembler::zero, unlocked); 819 820 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 821 // is set. 822 testbool(rbx); 823 jcc(Assembler::notZero, no_unlock); 824 825 // unlock monitor 826 push(state); // save result 827 828 // BasicObjectLock will be first in list, since this is a 829 // synchronized method. However, need to check that the object has 830 // not been unlocked by an explicit monitorexit bytecode. 831 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * 832 wordSize - (int) sizeof(BasicObjectLock)); 833 // We use c_rarg1/rdx so that if we go slow path it will be the correct 834 // register for unlock_object to pass to VM directly 835 lea(robj, monitor); // address of first monitor 836 837 movptr(rax, Address(robj, BasicObjectLock::obj_offset())); 838 testptr(rax, rax); 839 jcc(Assembler::notZero, unlock); 840 841 pop(state); 842 if (throw_monitor_exception) { 843 // Entry already unlocked, need to throw exception 844 call_VM(noreg, CAST_FROM_FN_PTR(address, 845 InterpreterRuntime::throw_illegal_monitor_state_exception)); 846 should_not_reach_here(); 847 } else { 848 // Monitor already unlocked during a stack unroll. If requested, 849 // install an illegal_monitor_state_exception. Continue with 850 // stack unrolling. 851 if (install_monitor_exception) { 852 call_VM(noreg, CAST_FROM_FN_PTR(address, 853 InterpreterRuntime::new_illegal_monitor_state_exception)); 854 } 855 jmp(unlocked); 856 } 857 858 bind(unlock); 859 unlock_object(robj); 860 pop(state); 861 862 // Check that for block-structured locking (i.e., that all locked 863 // objects has been unlocked) 864 bind(unlocked); 865 866 // rax, rdx: Might contain return value 867 868 // Check that all monitors are unlocked 869 { 870 Label loop, exception, entry, restart; 871 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 872 const Address monitor_block_top( 873 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 874 const Address monitor_block_bot( 875 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 876 877 bind(restart); 878 // We use c_rarg1 so that if we go slow path it will be the correct 879 // register for unlock_object to pass to VM directly 880 movptr(rmon, monitor_block_top); // derelativize pointer 881 lea(rmon, Address(rbp, rmon, Address::times_ptr)); 882 // c_rarg1 points to current entry, starting with top-most entry 883 884 lea(rbx, monitor_block_bot); // points to word before bottom of 885 // monitor block 886 jmp(entry); 887 888 // Entry already locked, need to throw exception 889 bind(exception); 890 891 if (throw_monitor_exception) { 892 // Throw exception 893 MacroAssembler::call_VM(noreg, 894 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 895 throw_illegal_monitor_state_exception)); 896 should_not_reach_here(); 897 } else { 898 // Stack unrolling. Unlock object and install illegal_monitor_exception. 899 // Unlock does not block, so don't have to worry about the frame. 900 // We don't have to preserve c_rarg1 since we are going to throw an exception. 901 902 push(state); 903 mov(robj, rmon); // nop if robj and rmon are the same 904 unlock_object(robj); 905 pop(state); 906 907 if (install_monitor_exception) { 908 call_VM(noreg, CAST_FROM_FN_PTR(address, 909 InterpreterRuntime:: 910 new_illegal_monitor_state_exception)); 911 } 912 913 jmp(restart); 914 } 915 916 bind(loop); 917 // check if current entry is used 918 cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD); 919 jcc(Assembler::notEqual, exception); 920 921 addptr(rmon, entry_size); // otherwise advance to next entry 922 bind(entry); 923 cmpptr(rmon, rbx); // check if bottom reached 924 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 925 } 926 927 bind(no_unlock); 928 929 JFR_ONLY(enter_jfr_critical_section();) 930 931 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 932 // that would normally not be safe to use. Such bad returns into unsafe territory of 933 // the stack, will call InterpreterRuntime::at_unwind. 934 Label slow_path; 935 Label fast_path; 936 safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */); 937 jmp(fast_path); 938 bind(slow_path); 939 push(state); 940 set_last_Java_frame(noreg, rbp, (address)pc(), rscratch1); 941 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), r15_thread); 942 reset_last_Java_frame(true); 943 pop(state); 944 bind(fast_path); 945 946 // JVMTI support. Make sure the safepoint poll test is issued prior. 947 if (notify_jvmdi) { 948 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 949 } else { 950 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 951 } 952 953 // remove activation 954 // get sender sp 955 movptr(rbx, 956 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 957 if (StackReservedPages > 0) { 958 // testing if reserved zone needs to be re-enabled 959 Register rthread = r15_thread; 960 Label no_reserved_zone_enabling; 961 962 // check if already enabled - if so no re-enabling needed 963 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 964 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled); 965 jcc(Assembler::equal, no_reserved_zone_enabling); 966 967 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset())); 968 jcc(Assembler::lessEqual, no_reserved_zone_enabling); 969 970 JFR_ONLY(leave_jfr_critical_section();) 971 972 call_VM_leaf( 973 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 974 call_VM(noreg, CAST_FROM_FN_PTR(address, 975 InterpreterRuntime::throw_delayed_StackOverflowError)); 976 should_not_reach_here(); 977 978 bind(no_reserved_zone_enabling); 979 } 980 981 leave(); // remove frame anchor 982 983 JFR_ONLY(leave_jfr_critical_section();) 984 985 pop(ret_addr); // get return address 986 mov(rsp, rbx); // set sp to sender sp 987 pop_cont_fastpath(); 988 989 } 990 991 #if INCLUDE_JFR 992 void InterpreterMacroAssembler::enter_jfr_critical_section() { 993 const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 994 movbool(sampling_critical_section, true); 995 } 996 997 void InterpreterMacroAssembler::leave_jfr_critical_section() { 998 const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 999 movbool(sampling_critical_section, false); 1000 } 1001 #endif // INCLUDE_JFR 1002 1003 void InterpreterMacroAssembler::get_method_counters(Register method, 1004 Register mcs, Label& skip) { 1005 Label has_counters; 1006 movptr(mcs, Address(method, Method::method_counters_offset())); 1007 testptr(mcs, mcs); 1008 jcc(Assembler::notZero, has_counters); 1009 call_VM(noreg, CAST_FROM_FN_PTR(address, 1010 InterpreterRuntime::build_method_counters), method); 1011 movptr(mcs, Address(method,Method::method_counters_offset())); 1012 testptr(mcs, mcs); 1013 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory 1014 bind(has_counters); 1015 } 1016 1017 1018 // Lock object 1019 // 1020 // Args: 1021 // rdx, c_rarg1: BasicObjectLock to be used for locking 1022 // 1023 // Kills: 1024 // rax, rbx 1025 void InterpreterMacroAssembler::lock_object(Register lock_reg) { 1026 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 1027 1028 if (LockingMode == LM_MONITOR) { 1029 call_VM_preemptable(noreg, 1030 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1031 lock_reg); 1032 } else { 1033 Label count_locking, done, slow_case; 1034 1035 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1036 const Register tmp_reg = rbx; 1037 const Register obj_reg = c_rarg3; // Will contain the oop 1038 const Register rklass_decode_tmp = rscratch1; 1039 1040 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 1041 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 1042 const int mark_offset = lock_offset + 1043 BasicLock::displaced_header_offset_in_bytes(); 1044 1045 // Load object pointer into obj_reg 1046 movptr(obj_reg, Address(lock_reg, obj_offset)); 1047 1048 if (LockingMode == LM_LIGHTWEIGHT) { 1049 lightweight_lock(lock_reg, obj_reg, swap_reg, tmp_reg, slow_case); 1050 } else if (LockingMode == LM_LEGACY) { 1051 if (DiagnoseSyncOnValueBasedClasses != 0) { 1052 load_klass(tmp_reg, obj_reg, rklass_decode_tmp); 1053 testb(Address(tmp_reg, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class); 1054 jcc(Assembler::notZero, slow_case); 1055 } 1056 1057 // Load immediate 1 into swap_reg %rax 1058 movl(swap_reg, 1); 1059 1060 // Load (object->mark() | 1) into swap_reg %rax 1061 orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1062 1063 // Save (object->mark() | 1) into BasicLock's displaced header 1064 movptr(Address(lock_reg, mark_offset), swap_reg); 1065 1066 assert(lock_offset == 0, 1067 "displaced header must be first word in BasicObjectLock"); 1068 1069 lock(); 1070 cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1071 jcc(Assembler::zero, count_locking); 1072 1073 const int zero_bits = 7; 1074 1075 // Fast check for recursive lock. 1076 // 1077 // Can apply the optimization only if this is a stack lock 1078 // allocated in this thread. For efficiency, we can focus on 1079 // recently allocated stack locks (instead of reading the stack 1080 // base and checking whether 'mark' points inside the current 1081 // thread stack): 1082 // 1) (mark & zero_bits) == 0, and 1083 // 2) rsp <= mark < mark + os::pagesize() 1084 // 1085 // Warning: rsp + os::pagesize can overflow the stack base. We must 1086 // neither apply the optimization for an inflated lock allocated 1087 // just above the thread stack (this is why condition 1 matters) 1088 // nor apply the optimization if the stack lock is inside the stack 1089 // of another thread. The latter is avoided even in case of overflow 1090 // because we have guard pages at the end of all stacks. Hence, if 1091 // we go over the stack base and hit the stack of another thread, 1092 // this should not be in a writeable area that could contain a 1093 // stack lock allocated by that thread. As a consequence, a stack 1094 // lock less than page size away from rsp is guaranteed to be 1095 // owned by the current thread. 1096 // 1097 // These 3 tests can be done by evaluating the following 1098 // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())), 1099 // assuming both stack pointer and pagesize have their 1100 // least significant bits clear. 1101 // NOTE: the mark is in swap_reg %rax as the result of cmpxchg 1102 subptr(swap_reg, rsp); 1103 andptr(swap_reg, zero_bits - (int)os::vm_page_size()); 1104 1105 // Save the test result, for recursive case, the result is zero 1106 movptr(Address(lock_reg, mark_offset), swap_reg); 1107 jcc(Assembler::notZero, slow_case); 1108 1109 bind(count_locking); 1110 inc_held_monitor_count(); 1111 } 1112 jmp(done); 1113 1114 bind(slow_case); 1115 1116 // Call the runtime routine for slow case 1117 call_VM_preemptable(noreg, 1118 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1119 lock_reg); 1120 bind(done); 1121 } 1122 } 1123 1124 1125 // Unlocks an object. Used in monitorexit bytecode and 1126 // remove_activation. Throws an IllegalMonitorException if object is 1127 // not locked by current thread. 1128 // 1129 // Args: 1130 // rdx, c_rarg1: BasicObjectLock for lock 1131 // 1132 // Kills: 1133 // rax 1134 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 1135 // rscratch1 (scratch reg) 1136 // rax, rbx, rcx, rdx 1137 void InterpreterMacroAssembler::unlock_object(Register lock_reg) { 1138 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 1139 1140 if (LockingMode == LM_MONITOR) { 1141 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1142 } else { 1143 Label count_locking, done, slow_case; 1144 1145 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1146 const Register header_reg = c_rarg2; // Will contain the old oopMark 1147 const Register obj_reg = c_rarg3; // Will contain the oop 1148 1149 save_bcp(); // Save in case of exception 1150 1151 if (LockingMode != LM_LIGHTWEIGHT) { 1152 // Convert from BasicObjectLock structure to object and BasicLock 1153 // structure Store the BasicLock address into %rax 1154 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 1155 } 1156 1157 // Load oop into obj_reg(%c_rarg3) 1158 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 1159 1160 // Free entry 1161 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD); 1162 1163 if (LockingMode == LM_LIGHTWEIGHT) { 1164 lightweight_unlock(obj_reg, swap_reg, header_reg, slow_case); 1165 } else if (LockingMode == LM_LEGACY) { 1166 // Load the old header from BasicLock structure 1167 movptr(header_reg, Address(swap_reg, 1168 BasicLock::displaced_header_offset_in_bytes())); 1169 1170 // Test for recursion 1171 testptr(header_reg, header_reg); 1172 1173 // zero for recursive case 1174 jcc(Assembler::zero, count_locking); 1175 1176 // Atomic swap back the old header 1177 lock(); 1178 cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1179 1180 // zero for simple unlock of a stack-lock case 1181 jcc(Assembler::notZero, slow_case); 1182 1183 bind(count_locking); 1184 dec_held_monitor_count(); 1185 } 1186 jmp(done); 1187 1188 bind(slow_case); 1189 // Call the runtime routine for slow case. 1190 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj 1191 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1192 1193 bind(done); 1194 1195 restore_bcp(); 1196 } 1197 } 1198 1199 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1200 Label& zero_continue) { 1201 assert(ProfileInterpreter, "must be profiling interpreter"); 1202 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); 1203 testptr(mdp, mdp); 1204 jcc(Assembler::zero, zero_continue); 1205 } 1206 1207 1208 // Set the method data pointer for the current bcp. 1209 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1210 assert(ProfileInterpreter, "must be profiling interpreter"); 1211 Label set_mdp; 1212 push(rax); 1213 push(rbx); 1214 1215 get_method(rbx); 1216 // Test MDO to avoid the call if it is null. 1217 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); 1218 testptr(rax, rax); 1219 jcc(Assembler::zero, set_mdp); 1220 // rbx: method 1221 // _bcp_register: bcp 1222 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); 1223 // rax: mdi 1224 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1225 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); 1226 addptr(rbx, in_bytes(MethodData::data_offset())); 1227 addptr(rax, rbx); 1228 bind(set_mdp); 1229 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); 1230 pop(rbx); 1231 pop(rax); 1232 } 1233 1234 void InterpreterMacroAssembler::verify_method_data_pointer() { 1235 assert(ProfileInterpreter, "must be profiling interpreter"); 1236 #ifdef ASSERT 1237 Label verify_continue; 1238 push(rax); 1239 push(rbx); 1240 Register arg3_reg = c_rarg3; 1241 Register arg2_reg = c_rarg2; 1242 push(arg3_reg); 1243 push(arg2_reg); 1244 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue 1245 get_method(rbx); 1246 1247 // If the mdp is valid, it will point to a DataLayout header which is 1248 // consistent with the bcp. The converse is highly probable also. 1249 load_unsigned_short(arg2_reg, 1250 Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); 1251 addptr(arg2_reg, Address(rbx, Method::const_offset())); 1252 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); 1253 cmpptr(arg2_reg, _bcp_register); 1254 jcc(Assembler::equal, verify_continue); 1255 // rbx: method 1256 // _bcp_register: bcp 1257 // c_rarg3: mdp 1258 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1259 rbx, _bcp_register, arg3_reg); 1260 bind(verify_continue); 1261 pop(arg2_reg); 1262 pop(arg3_reg); 1263 pop(rbx); 1264 pop(rax); 1265 #endif // ASSERT 1266 } 1267 1268 1269 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1270 int constant, 1271 Register value) { 1272 assert(ProfileInterpreter, "must be profiling interpreter"); 1273 Address data(mdp_in, constant); 1274 movptr(data, value); 1275 } 1276 1277 1278 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1279 int constant) { 1280 assert(ProfileInterpreter, "must be profiling interpreter"); 1281 Address data(mdp_in, constant); 1282 addptr(data, DataLayout::counter_increment); 1283 } 1284 1285 1286 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1287 Register index, 1288 int constant) { 1289 assert(ProfileInterpreter, "must be profiling interpreter"); 1290 Address data(mdp_in, index, Address::times_1, constant); 1291 addptr(data, DataLayout::counter_increment); 1292 } 1293 1294 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1295 int flag_byte_constant) { 1296 assert(ProfileInterpreter, "must be profiling interpreter"); 1297 int header_offset = in_bytes(DataLayout::flags_offset()); 1298 int header_bits = flag_byte_constant; 1299 // Set the flag 1300 orb(Address(mdp_in, header_offset), header_bits); 1301 } 1302 1303 1304 1305 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1306 int offset, 1307 Register value, 1308 Register test_value_out, 1309 Label& not_equal_continue) { 1310 assert(ProfileInterpreter, "must be profiling interpreter"); 1311 if (test_value_out == noreg) { 1312 cmpptr(value, Address(mdp_in, offset)); 1313 } else { 1314 // Put the test value into a register, so caller can use it: 1315 movptr(test_value_out, Address(mdp_in, offset)); 1316 cmpptr(test_value_out, value); 1317 } 1318 jcc(Assembler::notEqual, not_equal_continue); 1319 } 1320 1321 1322 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1323 int offset_of_disp) { 1324 assert(ProfileInterpreter, "must be profiling interpreter"); 1325 Address disp_address(mdp_in, offset_of_disp); 1326 addptr(mdp_in, disp_address); 1327 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1328 } 1329 1330 1331 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1332 Register reg, 1333 int offset_of_disp) { 1334 assert(ProfileInterpreter, "must be profiling interpreter"); 1335 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); 1336 addptr(mdp_in, disp_address); 1337 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1338 } 1339 1340 1341 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1342 int constant) { 1343 assert(ProfileInterpreter, "must be profiling interpreter"); 1344 addptr(mdp_in, constant); 1345 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1346 } 1347 1348 1349 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1350 assert(ProfileInterpreter, "must be profiling interpreter"); 1351 push(return_bci); // save/restore across call_VM 1352 call_VM(noreg, 1353 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1354 return_bci); 1355 pop(return_bci); 1356 } 1357 1358 1359 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1360 Register bumped_count) { 1361 if (ProfileInterpreter) { 1362 Label profile_continue; 1363 1364 // If no method data exists, go to profile_continue. 1365 // Otherwise, assign to mdp 1366 test_method_data_pointer(mdp, profile_continue); 1367 1368 // We are taking a branch. Increment the taken count. 1369 // We inline increment_mdp_data_at to return bumped_count in a register 1370 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1371 Address data(mdp, in_bytes(JumpData::taken_offset())); 1372 movptr(bumped_count, data); 1373 assert(DataLayout::counter_increment == 1, 1374 "flow-free idiom only works with 1"); 1375 addptr(bumped_count, DataLayout::counter_increment); 1376 sbbptr(bumped_count, 0); 1377 movptr(data, bumped_count); // Store back out 1378 1379 // The method data pointer needs to be updated to reflect the new target. 1380 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1381 bind(profile_continue); 1382 } 1383 } 1384 1385 1386 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1387 if (ProfileInterpreter) { 1388 Label profile_continue; 1389 1390 // If no method data exists, go to profile_continue. 1391 test_method_data_pointer(mdp, profile_continue); 1392 1393 // We are taking a branch. Increment the not taken count. 1394 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1395 1396 // The method data pointer needs to be updated to correspond to 1397 // the next bytecode 1398 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1399 bind(profile_continue); 1400 } 1401 } 1402 1403 void InterpreterMacroAssembler::profile_call(Register mdp) { 1404 if (ProfileInterpreter) { 1405 Label profile_continue; 1406 1407 // If no method data exists, go to profile_continue. 1408 test_method_data_pointer(mdp, profile_continue); 1409 1410 // We are making a call. Increment the count. 1411 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1412 1413 // The method data pointer needs to be updated to reflect the new target. 1414 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1415 bind(profile_continue); 1416 } 1417 } 1418 1419 1420 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1421 if (ProfileInterpreter) { 1422 Label profile_continue; 1423 1424 // If no method data exists, go to profile_continue. 1425 test_method_data_pointer(mdp, profile_continue); 1426 1427 // We are making a call. Increment the count. 1428 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1429 1430 // The method data pointer needs to be updated to reflect the new target. 1431 update_mdp_by_constant(mdp, 1432 in_bytes(VirtualCallData:: 1433 virtual_call_data_size())); 1434 bind(profile_continue); 1435 } 1436 } 1437 1438 1439 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1440 Register mdp, 1441 Register reg2, 1442 bool receiver_can_be_null) { 1443 if (ProfileInterpreter) { 1444 Label profile_continue; 1445 1446 // If no method data exists, go to profile_continue. 1447 test_method_data_pointer(mdp, profile_continue); 1448 1449 Label skip_receiver_profile; 1450 if (receiver_can_be_null) { 1451 Label not_null; 1452 testptr(receiver, receiver); 1453 jccb(Assembler::notZero, not_null); 1454 // We are making a call. Increment the count for null receiver. 1455 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1456 jmp(skip_receiver_profile); 1457 bind(not_null); 1458 } 1459 1460 // Record the receiver type. 1461 record_klass_in_profile(receiver, mdp, reg2, true); 1462 bind(skip_receiver_profile); 1463 1464 // The method data pointer needs to be updated to reflect the new target. 1465 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1466 bind(profile_continue); 1467 } 1468 } 1469 1470 // This routine creates a state machine for updating the multi-row 1471 // type profile at a virtual call site (or other type-sensitive bytecode). 1472 // The machine visits each row (of receiver/count) until the receiver type 1473 // is found, or until it runs out of rows. At the same time, it remembers 1474 // the location of the first empty row. (An empty row records null for its 1475 // receiver, and can be allocated for a newly-observed receiver type.) 1476 // Because there are two degrees of freedom in the state, a simple linear 1477 // search will not work; it must be a decision tree. Hence this helper 1478 // function is recursive, to generate the required tree structured code. 1479 // It's the interpreter, so we are trading off code space for speed. 1480 // See below for example code. 1481 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1482 Register receiver, Register mdp, 1483 Register reg2, int start_row, 1484 Label& done, bool is_virtual_call) { 1485 if (TypeProfileWidth == 0) { 1486 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1487 } else { 1488 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1489 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1490 } 1491 } 1492 1493 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row, 1494 Label& done, int total_rows, 1495 OffsetFunction item_offset_fn, 1496 OffsetFunction item_count_offset_fn) { 1497 int last_row = total_rows - 1; 1498 assert(start_row <= last_row, "must be work left to do"); 1499 // Test this row for both the item and for null. 1500 // Take any of three different outcomes: 1501 // 1. found item => increment count and goto done 1502 // 2. found null => keep looking for case 1, maybe allocate this cell 1503 // 3. found something else => keep looking for cases 1 and 2 1504 // Case 3 is handled by a recursive call. 1505 for (int row = start_row; row <= last_row; row++) { 1506 Label next_test; 1507 bool test_for_null_also = (row == start_row); 1508 1509 // See if the item is item[n]. 1510 int item_offset = in_bytes(item_offset_fn(row)); 1511 test_mdp_data_at(mdp, item_offset, item, 1512 (test_for_null_also ? reg2 : noreg), 1513 next_test); 1514 // (Reg2 now contains the item from the CallData.) 1515 1516 // The item is item[n]. Increment count[n]. 1517 int count_offset = in_bytes(item_count_offset_fn(row)); 1518 increment_mdp_data_at(mdp, count_offset); 1519 jmp(done); 1520 bind(next_test); 1521 1522 if (test_for_null_also) { 1523 // Failed the equality check on item[n]... Test for null. 1524 testptr(reg2, reg2); 1525 if (start_row == last_row) { 1526 // The only thing left to do is handle the null case. 1527 Label found_null; 1528 jccb(Assembler::zero, found_null); 1529 // Item did not match any saved item and there is no empty row for it. 1530 // Increment total counter to indicate polymorphic case. 1531 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1532 jmp(done); 1533 bind(found_null); 1534 break; 1535 } 1536 Label found_null; 1537 // Since null is rare, make it be the branch-taken case. 1538 jcc(Assembler::zero, found_null); 1539 1540 // Put all the "Case 3" tests here. 1541 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1542 item_offset_fn, item_count_offset_fn); 1543 1544 // Found a null. Keep searching for a matching item, 1545 // but remember that this is an empty (unused) slot. 1546 bind(found_null); 1547 } 1548 } 1549 1550 // In the fall-through case, we found no matching item, but we 1551 // observed the item[start_row] is null. 1552 1553 // Fill in the item field and increment the count. 1554 int item_offset = in_bytes(item_offset_fn(start_row)); 1555 set_mdp_data_at(mdp, item_offset, item); 1556 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1557 movl(reg2, DataLayout::counter_increment); 1558 set_mdp_data_at(mdp, count_offset, reg2); 1559 if (start_row > 0) { 1560 jmp(done); 1561 } 1562 } 1563 1564 // Example state machine code for three profile rows: 1565 // // main copy of decision tree, rooted at row[1] 1566 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1567 // if (row[0].rec != nullptr) { 1568 // // inner copy of decision tree, rooted at row[1] 1569 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1570 // if (row[1].rec != nullptr) { 1571 // // degenerate decision tree, rooted at row[2] 1572 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1573 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1574 // row[2].init(rec); goto done; 1575 // } else { 1576 // // remember row[1] is empty 1577 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1578 // row[1].init(rec); goto done; 1579 // } 1580 // } else { 1581 // // remember row[0] is empty 1582 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1583 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1584 // row[0].init(rec); goto done; 1585 // } 1586 // done: 1587 1588 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1589 Register mdp, Register reg2, 1590 bool is_virtual_call) { 1591 assert(ProfileInterpreter, "must be profiling"); 1592 Label done; 1593 1594 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1595 1596 bind (done); 1597 } 1598 1599 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1600 Register mdp) { 1601 if (ProfileInterpreter) { 1602 Label profile_continue; 1603 uint row; 1604 1605 // If no method data exists, go to profile_continue. 1606 test_method_data_pointer(mdp, profile_continue); 1607 1608 // Update the total ret count. 1609 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1610 1611 for (row = 0; row < RetData::row_limit(); row++) { 1612 Label next_test; 1613 1614 // See if return_bci is equal to bci[n]: 1615 test_mdp_data_at(mdp, 1616 in_bytes(RetData::bci_offset(row)), 1617 return_bci, noreg, 1618 next_test); 1619 1620 // return_bci is equal to bci[n]. Increment the count. 1621 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1622 1623 // The method data pointer needs to be updated to reflect the new target. 1624 update_mdp_by_offset(mdp, 1625 in_bytes(RetData::bci_displacement_offset(row))); 1626 jmp(profile_continue); 1627 bind(next_test); 1628 } 1629 1630 update_mdp_for_ret(return_bci); 1631 1632 bind(profile_continue); 1633 } 1634 } 1635 1636 1637 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1638 if (ProfileInterpreter) { 1639 Label profile_continue; 1640 1641 // If no method data exists, go to profile_continue. 1642 test_method_data_pointer(mdp, profile_continue); 1643 1644 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1645 1646 // The method data pointer needs to be updated. 1647 int mdp_delta = in_bytes(BitData::bit_data_size()); 1648 if (TypeProfileCasts) { 1649 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1650 } 1651 update_mdp_by_constant(mdp, mdp_delta); 1652 1653 bind(profile_continue); 1654 } 1655 } 1656 1657 1658 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1659 if (ProfileInterpreter) { 1660 Label profile_continue; 1661 1662 // If no method data exists, go to profile_continue. 1663 test_method_data_pointer(mdp, profile_continue); 1664 1665 // The method data pointer needs to be updated. 1666 int mdp_delta = in_bytes(BitData::bit_data_size()); 1667 if (TypeProfileCasts) { 1668 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1669 1670 // Record the object type. 1671 record_klass_in_profile(klass, mdp, reg2, false); 1672 } 1673 update_mdp_by_constant(mdp, mdp_delta); 1674 1675 bind(profile_continue); 1676 } 1677 } 1678 1679 1680 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1681 if (ProfileInterpreter) { 1682 Label profile_continue; 1683 1684 // If no method data exists, go to profile_continue. 1685 test_method_data_pointer(mdp, profile_continue); 1686 1687 // Update the default case count 1688 increment_mdp_data_at(mdp, 1689 in_bytes(MultiBranchData::default_count_offset())); 1690 1691 // The method data pointer needs to be updated. 1692 update_mdp_by_offset(mdp, 1693 in_bytes(MultiBranchData:: 1694 default_displacement_offset())); 1695 1696 bind(profile_continue); 1697 } 1698 } 1699 1700 1701 void InterpreterMacroAssembler::profile_switch_case(Register index, 1702 Register mdp, 1703 Register reg2) { 1704 if (ProfileInterpreter) { 1705 Label profile_continue; 1706 1707 // If no method data exists, go to profile_continue. 1708 test_method_data_pointer(mdp, profile_continue); 1709 1710 // Build the base (index * per_case_size_in_bytes()) + 1711 // case_array_offset_in_bytes() 1712 movl(reg2, in_bytes(MultiBranchData::per_case_size())); 1713 imulptr(index, reg2); // XXX l ? 1714 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? 1715 1716 // Update the case count 1717 increment_mdp_data_at(mdp, 1718 index, 1719 in_bytes(MultiBranchData::relative_count_offset())); 1720 1721 // The method data pointer needs to be updated. 1722 update_mdp_by_offset(mdp, 1723 index, 1724 in_bytes(MultiBranchData:: 1725 relative_displacement_offset())); 1726 1727 bind(profile_continue); 1728 } 1729 } 1730 1731 1732 1733 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1734 if (state == atos) { 1735 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1736 } 1737 } 1738 1739 1740 // Jump if ((*counter_addr += increment) & mask) == 0 1741 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask, 1742 Register scratch, Label* where) { 1743 // This update is actually not atomic and can lose a number of updates 1744 // under heavy contention, but the alternative of using the (contended) 1745 // atomic update here penalizes profiling paths too much. 1746 movl(scratch, counter_addr); 1747 incrementl(scratch, InvocationCounter::count_increment); 1748 movl(counter_addr, scratch); 1749 andl(scratch, mask); 1750 if (where != nullptr) { 1751 jcc(Assembler::zero, *where); 1752 } 1753 } 1754 1755 void InterpreterMacroAssembler::generate_runtime_upcalls_on_method_entry() 1756 { 1757 address upcall = RuntimeUpcalls::on_method_entry_upcall_address(); 1758 if (RuntimeUpcalls::does_upcall_need_method_parameter(upcall)) { 1759 get_method(c_rarg1); 1760 call_VM(noreg,upcall, c_rarg1); 1761 } else { 1762 call_VM(noreg,upcall); 1763 } 1764 } 1765 1766 void InterpreterMacroAssembler::notify_method_entry() { 1767 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1768 // track stack depth. If it is possible to enter interp_only_mode we add 1769 // the code to check if the event should be sent. 1770 Register rthread = r15_thread; 1771 Register rarg = c_rarg1; 1772 if (JvmtiExport::can_post_interpreter_events()) { 1773 Label L; 1774 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 1775 testl(rdx, rdx); 1776 jcc(Assembler::zero, L); 1777 call_VM(noreg, CAST_FROM_FN_PTR(address, 1778 InterpreterRuntime::post_method_entry)); 1779 bind(L); 1780 } 1781 1782 if (DTraceMethodProbes) { 1783 get_method(rarg); 1784 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1785 rthread, rarg); 1786 } 1787 1788 // RedefineClasses() tracing support for obsolete method entry 1789 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1790 get_method(rarg); 1791 call_VM_leaf( 1792 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1793 rthread, rarg); 1794 } 1795 } 1796 1797 1798 void InterpreterMacroAssembler::notify_method_exit( 1799 TosState state, NotifyMethodExitMode mode) { 1800 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1801 // track stack depth. If it is possible to enter interp_only_mode we add 1802 // the code to check if the event should be sent. 1803 Register rthread = r15_thread; 1804 Register rarg = c_rarg1; 1805 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1806 Label L; 1807 // Note: frame::interpreter_frame_result has a dependency on how the 1808 // method result is saved across the call to post_method_exit. If this 1809 // is changed then the interpreter_frame_result implementation will 1810 // need to be updated too. 1811 1812 // template interpreter will leave the result on the top of the stack. 1813 push(state); 1814 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 1815 testl(rdx, rdx); 1816 jcc(Assembler::zero, L); 1817 call_VM(noreg, 1818 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1819 bind(L); 1820 pop(state); 1821 } 1822 1823 if (DTraceMethodProbes) { 1824 push(state); 1825 get_method(rarg); 1826 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1827 rthread, rarg); 1828 pop(state); 1829 } 1830 } 1831 1832 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1833 // Get index out of bytecode pointer 1834 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1835 // Get address of invokedynamic array 1836 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1837 movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1838 if (is_power_of_2(sizeof(ResolvedIndyEntry))) { 1839 shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2 1840 } else { 1841 imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1842 } 1843 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes())); 1844 } 1845 1846 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1847 // Get index out of bytecode pointer 1848 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1849 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1850 1851 movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset())); 1852 // Take shortcut if the size is a power of 2 1853 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1854 shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1855 } else { 1856 imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 1857 } 1858 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes())); 1859 } 1860 1861 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1862 // Get index out of bytecode pointer 1863 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1864 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1865 1866 movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset())); 1867 imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1868 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes())); 1869 }