1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "compiler/compiler_globals.hpp"
26 #include "interp_masm_x86.hpp"
27 #include "interpreter/interpreter.hpp"
28 #include "interpreter/interpreterRuntime.hpp"
29 #include "logging/log.hpp"
30 #include "oops/arrayOop.hpp"
31 #include "oops/markWord.hpp"
32 #include "oops/methodData.hpp"
33 #include "oops/method.hpp"
34 #include "oops/resolvedFieldEntry.hpp"
35 #include "oops/resolvedIndyEntry.hpp"
36 #include "oops/resolvedMethodEntry.hpp"
37 #include "prims/jvmtiExport.hpp"
38 #include "prims/jvmtiThreadState.hpp"
39 #include "runtime/basicLock.hpp"
40 #include "runtime/frame.inline.hpp"
41 #include "runtime/javaThread.hpp"
42 #include "runtime/runtimeUpcalls.hpp"
43 #include "runtime/safepointMechanism.hpp"
44 #include "runtime/sharedRuntime.hpp"
45 #include "utilities/powerOfTwo.hpp"
46
47 // Implementation of InterpreterMacroAssembler
48
49 void InterpreterMacroAssembler::jump_to_entry(address entry) {
50 assert(entry, "Entry must have been generated by now");
51 jump(RuntimeAddress(entry));
52 }
53
54 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
55 Label update, next, none;
56
57 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
58
59 interp_verify_oop(obj, atos);
60
61 testptr(obj, obj);
62 jccb(Assembler::notZero, update);
63 testptr(mdo_addr, TypeEntries::null_seen);
64 jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore.
65 // atomic update to prevent overwriting Klass* with 0
66 lock();
67 orptr(mdo_addr, TypeEntries::null_seen);
68 jmpb(next);
69
70 bind(update);
71 load_klass(obj, obj, rscratch1);
72 mov(rscratch1, obj);
73
74 xorptr(obj, mdo_addr);
75 testptr(obj, TypeEntries::type_klass_mask);
76 jccb(Assembler::zero, next); // klass seen before, nothing to
77 // do. The unknown bit may have been
78 // set already but no need to check.
79
80 testptr(obj, TypeEntries::type_unknown);
81 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
82
83 cmpptr(mdo_addr, 0);
84 jccb(Assembler::equal, none);
85 cmpptr(mdo_addr, TypeEntries::null_seen);
86 jccb(Assembler::equal, none);
87
88 // There is a chance that the checks above (re-reading profiling
89 // data from memory) fail if another thread has just set the
90 // profiling to this obj's klass
91 mov(obj, rscratch1);
92 xorptr(obj, mdo_addr);
93 testptr(obj, TypeEntries::type_klass_mask);
94 jccb(Assembler::zero, next);
95
96 // different than before. Cannot keep accurate profile.
97 orptr(mdo_addr, TypeEntries::type_unknown);
98 jmpb(next);
99
100 bind(none);
101 // first time here. Set profile type.
102 movptr(mdo_addr, obj);
103 #ifdef ASSERT
104 andptr(obj, TypeEntries::type_klass_mask);
105 verify_klass_ptr(obj);
106 #endif
107
108 bind(next);
109 }
110
111 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
112 if (!ProfileInterpreter) {
113 return;
114 }
115
116 if (MethodData::profile_arguments() || MethodData::profile_return()) {
117 Label profile_continue;
118
119 test_method_data_pointer(mdp, profile_continue);
120
121 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
122
123 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
124 jcc(Assembler::notEqual, profile_continue);
125
126 if (MethodData::profile_arguments()) {
127 Label done;
128 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
129 addptr(mdp, off_to_args);
130
131 for (int i = 0; i < TypeProfileArgsLimit; i++) {
132 if (i > 0 || MethodData::profile_return()) {
133 // If return value type is profiled we may have no argument to profile
134 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
135 subl(tmp, i*TypeStackSlotEntries::per_arg_count());
136 cmpl(tmp, TypeStackSlotEntries::per_arg_count());
137 jcc(Assembler::less, done);
138 }
139 movptr(tmp, Address(callee, Method::const_offset()));
140 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
141 // stack offset o (zero based) from the start of the argument
142 // list, for n arguments translates into offset n - o - 1 from
143 // the end of the argument list
144 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
145 subl(tmp, 1);
146 Address arg_addr = argument_address(tmp);
147 movptr(tmp, arg_addr);
148
149 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
150 profile_obj_type(tmp, mdo_arg_addr);
151
152 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
153 addptr(mdp, to_add);
154 off_to_args += to_add;
155 }
156
157 if (MethodData::profile_return()) {
158 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
159 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
160 }
161
162 bind(done);
163
164 if (MethodData::profile_return()) {
165 // We're right after the type profile for the last
166 // argument. tmp is the number of cells left in the
167 // CallTypeData/VirtualCallTypeData to reach its end. Non null
168 // if there's a return to profile.
169 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
170 shll(tmp, log2i_exact((int)DataLayout::cell_size));
171 addptr(mdp, tmp);
172 }
173 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
174 } else {
175 assert(MethodData::profile_return(), "either profile call args or call ret");
176 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
177 }
178
179 // mdp points right after the end of the
180 // CallTypeData/VirtualCallTypeData, right after the cells for the
181 // return value type if there's one
182
183 bind(profile_continue);
184 }
185 }
186
187 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
188 assert_different_registers(mdp, ret, tmp, _bcp_register);
189 if (ProfileInterpreter && MethodData::profile_return()) {
190 Label profile_continue;
191
192 test_method_data_pointer(mdp, profile_continue);
193
194 if (MethodData::profile_return_jsr292_only()) {
195 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
196
197 // If we don't profile all invoke bytecodes we must make sure
198 // it's a bytecode we indeed profile. We can't go back to the
199 // beginning of the ProfileData we intend to update to check its
200 // type because we're right after it and we don't known its
201 // length
202 Label do_profile;
203 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
204 jcc(Assembler::equal, do_profile);
205 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
206 jcc(Assembler::equal, do_profile);
207 get_method(tmp);
208 cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm));
209 jcc(Assembler::notEqual, profile_continue);
210
211 bind(do_profile);
212 }
213
214 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
215 mov(tmp, ret);
216 profile_obj_type(tmp, mdo_ret_addr);
217
218 bind(profile_continue);
219 }
220 }
221
222 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
223 if (ProfileInterpreter && MethodData::profile_parameters()) {
224 Label profile_continue;
225
226 test_method_data_pointer(mdp, profile_continue);
227
228 // Load the offset of the area within the MDO used for
229 // parameters. If it's negative we're not profiling any parameters
230 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
231 testl(tmp1, tmp1);
232 jcc(Assembler::negative, profile_continue);
233
234 // Compute a pointer to the area for parameters from the offset
235 // and move the pointer to the slot for the last
236 // parameters. Collect profiling from last parameter down.
237 // mdo start + parameters offset + array length - 1
238 addptr(mdp, tmp1);
239 movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
240 decrement(tmp1, TypeStackSlotEntries::per_arg_count());
241
242 Label loop;
243 bind(loop);
244
245 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
246 int type_base = in_bytes(ParametersTypeData::type_offset(0));
247 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
248 Address arg_off(mdp, tmp1, per_arg_scale, off_base);
249 Address arg_type(mdp, tmp1, per_arg_scale, type_base);
250
251 // load offset on the stack from the slot for this parameter
252 movptr(tmp2, arg_off);
253 negptr(tmp2);
254 // read the parameter from the local area
255 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
256
257 // profile the parameter
258 profile_obj_type(tmp2, arg_type);
259
260 // go to next parameter
261 decrement(tmp1, TypeStackSlotEntries::per_arg_count());
262 jcc(Assembler::positive, loop);
263
264 bind(profile_continue);
265 }
266 }
267
268 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
269 int number_of_arguments) {
270 // interpreter specific
271 //
272 // Note: No need to save/restore bcp & locals registers
273 // since these are callee saved registers and no blocking/
274 // GC can happen in leaf calls.
275 // Further Note: DO NOT save/restore bcp/locals. If a caller has
276 // already saved them so that it can use rsi/rdi as temporaries
277 // then a save/restore here will DESTROY the copy the caller
278 // saved! There used to be a save_bcp() that only happened in
279 // the ASSERT path (no restore_bcp). Which caused bizarre failures
280 // when jvm built with ASSERTs.
281 #ifdef ASSERT
282 {
283 Label L;
284 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
285 jcc(Assembler::equal, L);
286 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
287 " last_sp != null");
288 bind(L);
289 }
290 #endif
291 // super call
292 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
293 // interpreter specific
294 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
295 // but since they may not have been saved (and we don't want to
296 // save them here (see note above) the assert is invalid.
297 }
298
299 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
300 Register last_java_sp,
301 address entry_point,
302 int number_of_arguments,
303 bool check_exceptions) {
304 // interpreter specific
305 //
306 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
307 // really make a difference for these runtime calls, since they are
308 // slow anyway. Btw., bcp must be saved/restored since it may change
309 // due to GC.
310 save_bcp();
311 #ifdef ASSERT
312 {
313 Label L;
314 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
315 jcc(Assembler::equal, L);
316 stop("InterpreterMacroAssembler::call_VM_base:"
317 " last_sp isn't null");
318 bind(L);
319 }
320 #endif /* ASSERT */
321 // super call
322 MacroAssembler::call_VM_base(oop_result, last_java_sp,
323 entry_point, number_of_arguments,
324 check_exceptions);
325 // interpreter specific
326 restore_bcp();
327 restore_locals();
328 }
329
330 void InterpreterMacroAssembler::call_VM_preemptable_helper(Register oop_result,
331 address entry_point,
332 int number_of_arguments,
333 bool check_exceptions) {
334 assert(InterpreterRuntime::is_preemptable_call(entry_point), "VM call not preemptable, should use call_VM()");
335 Label resume_pc, not_preempted;
336
337 #ifdef ASSERT
338 {
339 Label L1, L2;
340 cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD);
341 jcc(Assembler::equal, L1);
342 stop("call_VM_preemptable_helper: should not have alternate return address set");
343 bind(L1);
344 // We check this counter in patch_return_pc_with_preempt_stub() during freeze.
345 incrementl(Address(r15_thread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
346 cmpl(Address(r15_thread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()), 0);
347 jcc(Assembler::greater, L2);
348 stop("call_VM_preemptable_helper: should be > 0");
349 bind(L2);
350 }
351 #endif /* ASSERT */
352
353 // Force freeze slow path.
354 push_cont_fastpath();
355
356 // Make VM call. In case of preemption set last_pc to the one we want to resume to.
357 lea(rscratch1, resume_pc);
358 push(rscratch1);
359 lea(rax, Address(rsp, wordSize));
360 call_VM_base(noreg, rax, entry_point, number_of_arguments, false);
361 pop(rscratch1);
362
363 pop_cont_fastpath();
364
365 #ifdef ASSERT
366 {
367 Label L;
368 decrementl(Address(r15_thread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
369 cmpl(Address(r15_thread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()), 0);
370 jcc(Assembler::greaterEqual, L);
371 stop("call_VM_preemptable_helper: should be >= 0");
372 bind(L);
373 }
374 #endif /* ASSERT */
375
376 // Check if preempted.
377 movptr(rscratch1, Address(r15_thread, JavaThread::preempt_alternate_return_offset()));
378 cmpptr(rscratch1, NULL_WORD);
379 jccb(Assembler::zero, not_preempted);
380 movptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD);
381 jmp(rscratch1);
382
383 // In case of preemption, this is where we will resume once we finally acquire the monitor.
384 bind(resume_pc);
385 restore_after_resume(false /* is_native */);
386
387 bind(not_preempted);
388 if (check_exceptions) {
389 // check for pending exceptions
390 cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
391 Label ok;
392 jcc(Assembler::equal, ok);
393 // Exception stub expects return pc to be at top of stack. We only need
394 // it to check Interpreter::contains(return_address) so anything will do.
395 lea(rscratch1, resume_pc);
396 push(rscratch1);
397 jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
398 bind(ok);
399 }
400
401 // get oop result if there is one and reset the value in the thread
402 if (oop_result->is_valid()) {
403 get_vm_result_oop(oop_result);
404 }
405 }
406
407 static void pass_arg1(MacroAssembler* masm, Register arg) {
408 if (c_rarg1 != arg ) {
409 masm->mov(c_rarg1, arg);
410 }
411 }
412
413 static void pass_arg2(MacroAssembler* masm, Register arg) {
414 if (c_rarg2 != arg ) {
415 masm->mov(c_rarg2, arg);
416 }
417 }
418
419 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
420 address entry_point,
421 Register arg_1,
422 bool check_exceptions) {
423 pass_arg1(this, arg_1);
424 call_VM_preemptable_helper(oop_result, entry_point, 1, check_exceptions);
425 }
426
427 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
428 address entry_point,
429 Register arg_1,
430 Register arg_2,
431 bool check_exceptions) {
432 LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
433 pass_arg2(this, arg_2);
434 pass_arg1(this, arg_1);
435 call_VM_preemptable_helper(oop_result, entry_point, 2, check_exceptions);
436 }
437
438 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
439 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
440 call(rscratch1);
441 if (is_native) {
442 // On resume we need to set up stack as expected.
443 push(dtos);
444 push(ltos);
445 }
446 }
447
448 void InterpreterMacroAssembler::check_and_handle_popframe() {
449 if (JvmtiExport::can_pop_frame()) {
450 Label L;
451 // Initiate popframe handling only if it is not already being
452 // processed. If the flag has the popframe_processing bit set, it
453 // means that this code is called *during* popframe handling - we
454 // don't want to reenter.
455 // This method is only called just after the call into the vm in
456 // call_VM_base, so the arg registers are available.
457 Register pop_cond = c_rarg0;
458 movl(pop_cond, Address(r15_thread, JavaThread::popframe_condition_offset()));
459 testl(pop_cond, JavaThread::popframe_pending_bit);
460 jcc(Assembler::zero, L);
461 testl(pop_cond, JavaThread::popframe_processing_bit);
462 jcc(Assembler::notZero, L);
463 // Call Interpreter::remove_activation_preserving_args_entry() to get the
464 // address of the same-named entrypoint in the generated interpreter code.
465 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
466 jmp(rax);
467 bind(L);
468 }
469 }
470
471 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
472 movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
473 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
474 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
475 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
476
477 switch (state) {
478 case atos: movptr(rax, oop_addr);
479 movptr(oop_addr, NULL_WORD);
480 interp_verify_oop(rax, state); break;
481 case ltos: movptr(rax, val_addr); break;
482 case btos: // fall through
483 case ztos: // fall through
484 case ctos: // fall through
485 case stos: // fall through
486 case itos: movl(rax, val_addr); break;
487 case ftos: movflt(xmm0, val_addr); break;
488 case dtos: movdbl(xmm0, val_addr); break;
489 case vtos: /* nothing to do */ break;
490 default : ShouldNotReachHere();
491 }
492
493 // Clean up tos value in the thread object
494 movl(tos_addr, ilgl);
495 movptr(val_addr, NULL_WORD);
496 }
497
498
499 void InterpreterMacroAssembler::check_and_handle_earlyret() {
500 if (JvmtiExport::can_force_early_return()) {
501 Label L;
502 Register tmp = c_rarg0;
503 Register rthread = r15_thread;
504
505 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
506 testptr(tmp, tmp);
507 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit;
508
509 // Initiate earlyret handling only if it is not already being processed.
510 // If the flag has the earlyret_processing bit set, it means that this code
511 // is called *during* earlyret handling - we don't want to reenter.
512 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
513 cmpl(tmp, JvmtiThreadState::earlyret_pending);
514 jcc(Assembler::notEqual, L);
515
516 // Call Interpreter::remove_activation_early_entry() to get the address of the
517 // same-named entrypoint in the generated interpreter code.
518 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
519 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
520 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
521 jmp(rax);
522 bind(L);
523 }
524 }
525
526 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
527 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
528 load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
529 bswapl(reg);
530 shrl(reg, 16);
531 }
532
533 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
534 int bcp_offset,
535 size_t index_size) {
536 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
537 if (index_size == sizeof(u2)) {
538 load_unsigned_short(index, Address(_bcp_register, bcp_offset));
539 } else if (index_size == sizeof(u4)) {
540 movl(index, Address(_bcp_register, bcp_offset));
541 } else if (index_size == sizeof(u1)) {
542 load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
543 } else {
544 ShouldNotReachHere();
545 }
546 }
547
548 // Load object from cpool->resolved_references(index)
549 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result,
550 Register index,
551 Register tmp) {
552 assert_different_registers(result, index);
553
554 get_constant_pool(result);
555 // load pointer for resolved_references[] objArray
556 movptr(result, Address(result, ConstantPool::cache_offset()));
557 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
558 resolve_oop_handle(result, tmp);
559 load_heap_oop(result, Address(result, index,
560 UseCompressedOops ? Address::times_4 : Address::times_ptr,
561 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp);
562 }
563
564 // load cpool->resolved_klass_at(index)
565 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass,
566 Register cpool,
567 Register index) {
568 assert_different_registers(cpool, index);
569
570 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
571 Register resolved_klasses = cpool;
572 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset()));
573 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
574 }
575
576 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
577 // subtype of super_klass.
578 //
579 // Args:
580 // rax: superklass
581 // Rsub_klass: subklass
582 //
583 // Kills:
584 // rcx, rdi
585 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
586 Label& ok_is_subtype) {
587 assert(Rsub_klass != rax, "rax holds superklass");
588 assert(Rsub_klass != r14, "r14 holds locals");
589 assert(Rsub_klass != r13, "r13 holds bcp");
590 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
591 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
592
593 // Profile the not-null value's klass.
594 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
595
596 // Do the check.
597 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
598 }
599
600
601 // Java Expression Stack
602
603 void InterpreterMacroAssembler::pop_ptr(Register r) {
604 pop(r);
605 }
606
607 void InterpreterMacroAssembler::push_ptr(Register r) {
608 push(r);
609 }
610
611 void InterpreterMacroAssembler::push_i(Register r) {
612 push(r);
613 }
614
615 void InterpreterMacroAssembler::push_i_or_ptr(Register r) {
616 push(r);
617 }
618
619 void InterpreterMacroAssembler::push_f(XMMRegister r) {
620 subptr(rsp, wordSize);
621 movflt(Address(rsp, 0), r);
622 }
623
624 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
625 movflt(r, Address(rsp, 0));
626 addptr(rsp, wordSize);
627 }
628
629 void InterpreterMacroAssembler::push_d(XMMRegister r) {
630 subptr(rsp, 2 * wordSize);
631 movdbl(Address(rsp, 0), r);
632 }
633
634 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
635 movdbl(r, Address(rsp, 0));
636 addptr(rsp, 2 * Interpreter::stackElementSize);
637 }
638
639 void InterpreterMacroAssembler::pop_i(Register r) {
640 // XXX can't use pop currently, upper half non clean
641 movl(r, Address(rsp, 0));
642 addptr(rsp, wordSize);
643 }
644
645 void InterpreterMacroAssembler::pop_l(Register r) {
646 movq(r, Address(rsp, 0));
647 addptr(rsp, 2 * Interpreter::stackElementSize);
648 }
649
650 void InterpreterMacroAssembler::push_l(Register r) {
651 subptr(rsp, 2 * wordSize);
652 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r );
653 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
654 }
655
656 void InterpreterMacroAssembler::pop(TosState state) {
657 switch (state) {
658 case atos: pop_ptr(); break;
659 case btos:
660 case ztos:
661 case ctos:
662 case stos:
663 case itos: pop_i(); break;
664 case ltos: pop_l(); break;
665 case ftos: pop_f(xmm0); break;
666 case dtos: pop_d(xmm0); break;
667 case vtos: /* nothing to do */ break;
668 default: ShouldNotReachHere();
669 }
670 interp_verify_oop(rax, state);
671 }
672
673 void InterpreterMacroAssembler::push(TosState state) {
674 interp_verify_oop(rax, state);
675 switch (state) {
676 case atos: push_ptr(); break;
677 case btos:
678 case ztos:
679 case ctos:
680 case stos:
681 case itos: push_i(); break;
682 case ltos: push_l(); break;
683 case ftos: push_f(xmm0); break;
684 case dtos: push_d(xmm0); break;
685 case vtos: /* nothing to do */ break;
686 default : ShouldNotReachHere();
687 }
688 }
689
690 // Helpers for swap and dup
691 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
692 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
693 }
694
695 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
696 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
697 }
698
699
700 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
701 // set sender sp
702 lea(_bcp_register, Address(rsp, wordSize));
703 // record last_sp
704 mov(rcx, _bcp_register);
705 subptr(rcx, rbp);
706 sarptr(rcx, LogBytesPerWord);
707 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx);
708 }
709
710
711 // Jump to from_interpreted entry of a call unless single stepping is possible
712 // in this thread in which case we must call the i2i entry
713 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
714 prepare_to_jump_from_interpreted();
715
716 if (JvmtiExport::can_post_interpreter_events()) {
717 Label run_compiled_code;
718 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
719 // compiled code in threads for which the event is enabled. Check here for
720 // interp_only_mode if these events CAN be enabled.
721 // interp_only is an int, on little endian it is sufficient to test the byte only
722 // Is a cmpl faster?
723 cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0);
724 jccb(Assembler::zero, run_compiled_code);
725 jmp(Address(method, Method::interpreter_entry_offset()));
726 bind(run_compiled_code);
727 }
728
729 jmp(Address(method, Method::from_interpreted_offset()));
730 }
731
732 // The following two routines provide a hook so that an implementation
733 // can schedule the dispatch in two parts. x86 does not do this.
734 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
735 // Nothing x86 specific to be done here
736 }
737
738 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
739 dispatch_next(state, step);
740 }
741
742 void InterpreterMacroAssembler::dispatch_base(TosState state,
743 address* table,
744 bool verifyoop,
745 bool generate_poll) {
746 if (VerifyActivationFrameSize) {
747 Label L;
748 mov(rcx, rbp);
749 subptr(rcx, rsp);
750 int32_t min_frame_size =
751 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
752 wordSize;
753 cmpptr(rcx, min_frame_size);
754 jcc(Assembler::greaterEqual, L);
755 stop("broken stack frame");
756 bind(L);
757 }
758 if (verifyoop) {
759 interp_verify_oop(rax, state);
760 }
761
762 address* const safepoint_table = Interpreter::safept_table(state);
763 Label no_safepoint, dispatch;
764 if (table != safepoint_table && generate_poll) {
765 NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
766 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
767
768 jccb(Assembler::zero, no_safepoint);
769 lea(rscratch1, ExternalAddress((address)safepoint_table));
770 jmpb(dispatch);
771 }
772
773 bind(no_safepoint);
774 lea(rscratch1, ExternalAddress((address)table));
775 bind(dispatch);
776 jmp(Address(rscratch1, rbx, Address::times_8));
777 }
778
779 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
780 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
781 }
782
783 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
784 dispatch_base(state, Interpreter::normal_table(state));
785 }
786
787 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
788 dispatch_base(state, Interpreter::normal_table(state), false);
789 }
790
791
792 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
793 // load next bytecode (load before advancing _bcp_register to prevent AGI)
794 load_unsigned_byte(rbx, Address(_bcp_register, step));
795 // advance _bcp_register
796 increment(_bcp_register, step);
797 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
798 }
799
800 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
801 // load current bytecode
802 load_unsigned_byte(rbx, Address(_bcp_register, 0));
803 dispatch_base(state, table);
804 }
805
806 void InterpreterMacroAssembler::narrow(Register result) {
807
808 // Get method->_constMethod->_result_type
809 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
810 movptr(rcx, Address(rcx, Method::const_offset()));
811 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
812
813 Label done, notBool, notByte, notChar;
814
815 // common case first
816 cmpl(rcx, T_INT);
817 jcc(Assembler::equal, done);
818
819 // mask integer result to narrower return type.
820 cmpl(rcx, T_BOOLEAN);
821 jcc(Assembler::notEqual, notBool);
822 andl(result, 0x1);
823 jmp(done);
824
825 bind(notBool);
826 cmpl(rcx, T_BYTE);
827 jcc(Assembler::notEqual, notByte);
828 movsbl(result, result);
829 jmp(done);
830
831 bind(notByte);
832 cmpl(rcx, T_CHAR);
833 jcc(Assembler::notEqual, notChar);
834 movzwl(result, result);
835 jmp(done);
836
837 bind(notChar);
838 // cmpl(rcx, T_SHORT); // all that's left
839 // jcc(Assembler::notEqual, done);
840 movswl(result, result);
841
842 // Nothing to do for T_INT
843 bind(done);
844 }
845
846 // remove activation
847 //
848 // Unlock the receiver if this is a synchronized method.
849 // Unlock any Java monitors from synchronized blocks.
850 // Apply stack watermark barrier.
851 // Notify JVMTI.
852 // Remove the activation from the stack.
853 //
854 // If there are locked Java monitors
855 // If throw_monitor_exception
856 // throws IllegalMonitorStateException
857 // Else if install_monitor_exception
858 // installs IllegalMonitorStateException
859 // Else
860 // no error processing
861 void InterpreterMacroAssembler::remove_activation(TosState state,
862 Register ret_addr,
863 bool throw_monitor_exception,
864 bool install_monitor_exception,
865 bool notify_jvmdi) {
866 // Note: Registers rdx xmm0 may be in use for the
867 // result check if synchronized method
868 Label unlocked, unlock, no_unlock;
869
870 #ifdef ASSERT
871 Label not_preempted;
872 cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD);
873 jcc(Assembler::equal, not_preempted);
874 stop("remove_activation: should not have alternate return address set");
875 bind(not_preempted);
876 #endif /* ASSERT */
877
878 const Register rthread = r15_thread;
879 const Register robj = c_rarg1;
880 const Register rmon = c_rarg1;
881
882 // get the value of _do_not_unlock_if_synchronized into rdx
883 const Address do_not_unlock_if_synchronized(rthread,
884 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
885 movbool(rbx, do_not_unlock_if_synchronized);
886 movbool(do_not_unlock_if_synchronized, false); // reset the flag
887
888 // get method access flags
889 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
890 load_unsigned_short(rcx, Address(rcx, Method::access_flags_offset()));
891 testl(rcx, JVM_ACC_SYNCHRONIZED);
892 jcc(Assembler::zero, unlocked);
893
894 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
895 // is set.
896 testbool(rbx);
897 jcc(Assembler::notZero, no_unlock);
898
899 // unlock monitor
900 push(state); // save result
901
902 // BasicObjectLock will be first in list, since this is a
903 // synchronized method. However, need to check that the object has
904 // not been unlocked by an explicit monitorexit bytecode.
905 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
906 wordSize - (int) sizeof(BasicObjectLock));
907 // We use c_rarg1/rdx so that if we go slow path it will be the correct
908 // register for unlock_object to pass to VM directly
909 lea(robj, monitor); // address of first monitor
910
911 movptr(rax, Address(robj, BasicObjectLock::obj_offset()));
912 testptr(rax, rax);
913 jcc(Assembler::notZero, unlock);
914
915 pop(state);
916 if (throw_monitor_exception) {
917 // Entry already unlocked, need to throw exception
918 call_VM(noreg, CAST_FROM_FN_PTR(address,
919 InterpreterRuntime::throw_illegal_monitor_state_exception));
920 should_not_reach_here();
921 } else {
922 // Monitor already unlocked during a stack unroll. If requested,
923 // install an illegal_monitor_state_exception. Continue with
924 // stack unrolling.
925 if (install_monitor_exception) {
926 call_VM(noreg, CAST_FROM_FN_PTR(address,
927 InterpreterRuntime::new_illegal_monitor_state_exception));
928 }
929 jmp(unlocked);
930 }
931
932 bind(unlock);
933 unlock_object(robj);
934 pop(state);
935
936 // Check that for block-structured locking (i.e., that all locked
937 // objects has been unlocked)
938 bind(unlocked);
939
940 // rax, rdx: Might contain return value
941
942 // Check that all monitors are unlocked
943 {
944 Label loop, exception, entry, restart;
945 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
946 const Address monitor_block_top(
947 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
948 const Address monitor_block_bot(
949 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
950
951 bind(restart);
952 // We use c_rarg1 so that if we go slow path it will be the correct
953 // register for unlock_object to pass to VM directly
954 movptr(rmon, monitor_block_top); // derelativize pointer
955 lea(rmon, Address(rbp, rmon, Address::times_ptr));
956 // c_rarg1 points to current entry, starting with top-most entry
957
958 lea(rbx, monitor_block_bot); // points to word before bottom of
959 // monitor block
960 jmp(entry);
961
962 // Entry already locked, need to throw exception
963 bind(exception);
964
965 if (throw_monitor_exception) {
966 // Throw exception
967 MacroAssembler::call_VM(noreg,
968 CAST_FROM_FN_PTR(address, InterpreterRuntime::
969 throw_illegal_monitor_state_exception));
970 should_not_reach_here();
971 } else {
972 // Stack unrolling. Unlock object and install illegal_monitor_exception.
973 // Unlock does not block, so don't have to worry about the frame.
974 // We don't have to preserve c_rarg1 since we are going to throw an exception.
975
976 push(state);
977 mov(robj, rmon); // nop if robj and rmon are the same
978 unlock_object(robj);
979 pop(state);
980
981 if (install_monitor_exception) {
982 call_VM(noreg, CAST_FROM_FN_PTR(address,
983 InterpreterRuntime::
984 new_illegal_monitor_state_exception));
985 }
986
987 jmp(restart);
988 }
989
990 bind(loop);
991 // check if current entry is used
992 cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD);
993 jcc(Assembler::notEqual, exception);
994
995 addptr(rmon, entry_size); // otherwise advance to next entry
996 bind(entry);
997 cmpptr(rmon, rbx); // check if bottom reached
998 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
999 }
1000
1001 bind(no_unlock);
1002
1003 JFR_ONLY(enter_jfr_critical_section();)
1004
1005 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
1006 // that would normally not be safe to use. Such bad returns into unsafe territory of
1007 // the stack, will call InterpreterRuntime::at_unwind.
1008 Label slow_path;
1009 Label fast_path;
1010 safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */);
1011 jmp(fast_path);
1012 bind(slow_path);
1013 push(state);
1014 set_last_Java_frame(noreg, rbp, (address)pc(), rscratch1);
1015 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), r15_thread);
1016 reset_last_Java_frame(true);
1017 pop(state);
1018 bind(fast_path);
1019
1020 // JVMTI support. Make sure the safepoint poll test is issued prior.
1021 if (notify_jvmdi) {
1022 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
1023 } else {
1024 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1025 }
1026
1027 // remove activation
1028 // get sender sp
1029 movptr(rbx,
1030 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1031 if (StackReservedPages > 0) {
1032 // testing if reserved zone needs to be re-enabled
1033 Register rthread = r15_thread;
1034 Label no_reserved_zone_enabling;
1035
1036 // check if already enabled - if so no re-enabling needed
1037 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
1038 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled);
1039 jcc(Assembler::equal, no_reserved_zone_enabling);
1040
1041 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1042 jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1043
1044 JFR_ONLY(leave_jfr_critical_section();)
1045
1046 call_VM_leaf(
1047 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1048 call_VM(noreg, CAST_FROM_FN_PTR(address,
1049 InterpreterRuntime::throw_delayed_StackOverflowError));
1050 should_not_reach_here();
1051
1052 bind(no_reserved_zone_enabling);
1053 }
1054
1055 leave(); // remove frame anchor
1056
1057 JFR_ONLY(leave_jfr_critical_section();)
1058
1059 pop(ret_addr); // get return address
1060 mov(rsp, rbx); // set sp to sender sp
1061 pop_cont_fastpath();
1062
1063 }
1064
1065 #if INCLUDE_JFR
1066 void InterpreterMacroAssembler::enter_jfr_critical_section() {
1067 const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
1068 movbool(sampling_critical_section, true);
1069 }
1070
1071 void InterpreterMacroAssembler::leave_jfr_critical_section() {
1072 const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
1073 movbool(sampling_critical_section, false);
1074 }
1075 #endif // INCLUDE_JFR
1076
1077 void InterpreterMacroAssembler::get_method_counters(Register method,
1078 Register mcs, Label& skip) {
1079 Label has_counters;
1080 movptr(mcs, Address(method, Method::method_counters_offset()));
1081 testptr(mcs, mcs);
1082 jcc(Assembler::notZero, has_counters);
1083 call_VM(noreg, CAST_FROM_FN_PTR(address,
1084 InterpreterRuntime::build_method_counters), method);
1085 movptr(mcs, Address(method,Method::method_counters_offset()));
1086 testptr(mcs, mcs);
1087 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1088 bind(has_counters);
1089 }
1090
1091
1092 // Lock object
1093 //
1094 // Args:
1095 // rdx, c_rarg1: BasicObjectLock to be used for locking
1096 //
1097 // Kills:
1098 // rax, rbx
1099 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1100 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
1101
1102 Label done, slow_case;
1103
1104 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1105 const Register tmp_reg = rbx;
1106 const Register obj_reg = c_rarg3; // Will contain the oop
1107
1108 // Load object pointer into obj_reg
1109 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
1110
1111 fast_lock(lock_reg, obj_reg, swap_reg, tmp_reg, slow_case);
1112 jmp(done);
1113
1114 bind(slow_case);
1115
1116 // Call the runtime routine for slow case
1117 call_VM_preemptable(noreg,
1118 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1119 lock_reg);
1120 bind(done);
1121 }
1122
1123
1124 // Unlocks an object. Used in monitorexit bytecode and
1125 // remove_activation. Throws an IllegalMonitorException if object is
1126 // not locked by current thread.
1127 //
1128 // Args:
1129 // rdx, c_rarg1: BasicObjectLock for lock
1130 //
1131 // Kills:
1132 // rax
1133 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1134 // rscratch1 (scratch reg)
1135 // rax, rbx, rcx, rdx
1136 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1137 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
1138
1139 Label done, slow_case;
1140
1141 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1142 const Register header_reg = c_rarg2; // Will contain the old oopMark
1143 const Register obj_reg = c_rarg3; // Will contain the oop
1144
1145 save_bcp(); // Save in case of exception
1146
1147 // Load oop into obj_reg(%c_rarg3)
1148 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
1149
1150 // Free entry
1151 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD);
1152
1153 fast_unlock(obj_reg, swap_reg, header_reg, slow_case);
1154 jmp(done);
1155
1156 bind(slow_case);
1157 // Call the runtime routine for slow case.
1158 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj
1159 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1160
1161 bind(done);
1162
1163 restore_bcp();
1164 }
1165
1166 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1167 Label& zero_continue) {
1168 assert(ProfileInterpreter, "must be profiling interpreter");
1169 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1170 testptr(mdp, mdp);
1171 jcc(Assembler::zero, zero_continue);
1172 }
1173
1174
1175 // Set the method data pointer for the current bcp.
1176 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1177 assert(ProfileInterpreter, "must be profiling interpreter");
1178 Label set_mdp;
1179 push(rax);
1180 push(rbx);
1181
1182 get_method(rbx);
1183 // Test MDO to avoid the call if it is null.
1184 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1185 testptr(rax, rax);
1186 jcc(Assembler::zero, set_mdp);
1187 // rbx: method
1188 // _bcp_register: bcp
1189 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1190 // rax: mdi
1191 // mdo is guaranteed to be non-zero here, we checked for it before the call.
1192 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1193 addptr(rbx, in_bytes(MethodData::data_offset()));
1194 addptr(rax, rbx);
1195 bind(set_mdp);
1196 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1197 pop(rbx);
1198 pop(rax);
1199 }
1200
1201 void InterpreterMacroAssembler::verify_method_data_pointer() {
1202 assert(ProfileInterpreter, "must be profiling interpreter");
1203 #ifdef ASSERT
1204 Label verify_continue;
1205 push(rax);
1206 push(rbx);
1207 Register arg3_reg = c_rarg3;
1208 Register arg2_reg = c_rarg2;
1209 push(arg3_reg);
1210 push(arg2_reg);
1211 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1212 get_method(rbx);
1213
1214 // If the mdp is valid, it will point to a DataLayout header which is
1215 // consistent with the bcp. The converse is highly probable also.
1216 load_unsigned_short(arg2_reg,
1217 Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1218 addptr(arg2_reg, Address(rbx, Method::const_offset()));
1219 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1220 cmpptr(arg2_reg, _bcp_register);
1221 jcc(Assembler::equal, verify_continue);
1222 // rbx: method
1223 // _bcp_register: bcp
1224 // c_rarg3: mdp
1225 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1226 rbx, _bcp_register, arg3_reg);
1227 bind(verify_continue);
1228 pop(arg2_reg);
1229 pop(arg3_reg);
1230 pop(rbx);
1231 pop(rax);
1232 #endif // ASSERT
1233 }
1234
1235
1236 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1237 int constant,
1238 Register value) {
1239 assert(ProfileInterpreter, "must be profiling interpreter");
1240 Address data(mdp_in, constant);
1241 movptr(data, value);
1242 }
1243
1244
1245 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1246 int constant) {
1247 assert(ProfileInterpreter, "must be profiling interpreter");
1248 Address data(mdp_in, constant);
1249 addptr(data, DataLayout::counter_increment);
1250 }
1251
1252
1253 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1254 Register index,
1255 int constant) {
1256 assert(ProfileInterpreter, "must be profiling interpreter");
1257 Address data(mdp_in, index, Address::times_1, constant);
1258 addptr(data, DataLayout::counter_increment);
1259 }
1260
1261 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1262 int flag_byte_constant) {
1263 assert(ProfileInterpreter, "must be profiling interpreter");
1264 int header_offset = in_bytes(DataLayout::flags_offset());
1265 int header_bits = flag_byte_constant;
1266 // Set the flag
1267 orb(Address(mdp_in, header_offset), header_bits);
1268 }
1269
1270
1271
1272 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1273 int offset,
1274 Register value,
1275 Register test_value_out,
1276 Label& not_equal_continue) {
1277 assert(ProfileInterpreter, "must be profiling interpreter");
1278 if (test_value_out == noreg) {
1279 cmpptr(value, Address(mdp_in, offset));
1280 } else {
1281 // Put the test value into a register, so caller can use it:
1282 movptr(test_value_out, Address(mdp_in, offset));
1283 cmpptr(test_value_out, value);
1284 }
1285 jcc(Assembler::notEqual, not_equal_continue);
1286 }
1287
1288
1289 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1290 int offset_of_disp) {
1291 assert(ProfileInterpreter, "must be profiling interpreter");
1292 Address disp_address(mdp_in, offset_of_disp);
1293 addptr(mdp_in, disp_address);
1294 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1295 }
1296
1297
1298 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1299 Register reg,
1300 int offset_of_disp) {
1301 assert(ProfileInterpreter, "must be profiling interpreter");
1302 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1303 addptr(mdp_in, disp_address);
1304 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1305 }
1306
1307
1308 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1309 int constant) {
1310 assert(ProfileInterpreter, "must be profiling interpreter");
1311 addptr(mdp_in, constant);
1312 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1313 }
1314
1315
1316 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1317 assert(ProfileInterpreter, "must be profiling interpreter");
1318 push(return_bci); // save/restore across call_VM
1319 call_VM(noreg,
1320 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1321 return_bci);
1322 pop(return_bci);
1323 }
1324
1325
1326 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) {
1327 if (ProfileInterpreter) {
1328 Label profile_continue;
1329
1330 // If no method data exists, go to profile_continue.
1331 test_method_data_pointer(mdp, profile_continue);
1332
1333 // We are taking a branch. Increment the taken count.
1334 increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1335
1336 // The method data pointer needs to be updated to reflect the new target.
1337 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1338 bind(profile_continue);
1339 }
1340 }
1341
1342
1343 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1344 if (ProfileInterpreter) {
1345 Label profile_continue;
1346
1347 // If no method data exists, go to profile_continue.
1348 test_method_data_pointer(mdp, profile_continue);
1349
1350 // We are not taking a branch. Increment the not taken count.
1351 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1352
1353 // The method data pointer needs to be updated to correspond to
1354 // the next bytecode
1355 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1356 bind(profile_continue);
1357 }
1358 }
1359
1360 void InterpreterMacroAssembler::profile_call(Register mdp) {
1361 if (ProfileInterpreter) {
1362 Label profile_continue;
1363
1364 // If no method data exists, go to profile_continue.
1365 test_method_data_pointer(mdp, profile_continue);
1366
1367 // We are making a call. Increment the count.
1368 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1369
1370 // The method data pointer needs to be updated to reflect the new target.
1371 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1372 bind(profile_continue);
1373 }
1374 }
1375
1376
1377 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1378 if (ProfileInterpreter) {
1379 Label profile_continue;
1380
1381 // If no method data exists, go to profile_continue.
1382 test_method_data_pointer(mdp, profile_continue);
1383
1384 // We are making a call. Increment the count.
1385 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1386
1387 // The method data pointer needs to be updated to reflect the new target.
1388 update_mdp_by_constant(mdp,
1389 in_bytes(VirtualCallData::
1390 virtual_call_data_size()));
1391 bind(profile_continue);
1392 }
1393 }
1394
1395
1396 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1397 Register mdp,
1398 Register reg2,
1399 bool receiver_can_be_null) {
1400 if (ProfileInterpreter) {
1401 Label profile_continue;
1402
1403 // If no method data exists, go to profile_continue.
1404 test_method_data_pointer(mdp, profile_continue);
1405
1406 Label skip_receiver_profile;
1407 if (receiver_can_be_null) {
1408 Label not_null;
1409 testptr(receiver, receiver);
1410 jccb(Assembler::notZero, not_null);
1411 // We are making a call. Increment the count for null receiver.
1412 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1413 jmp(skip_receiver_profile);
1414 bind(not_null);
1415 }
1416
1417 // Record the receiver type.
1418 record_klass_in_profile(receiver, mdp, reg2, true);
1419 bind(skip_receiver_profile);
1420
1421 // The method data pointer needs to be updated to reflect the new target.
1422 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1423 bind(profile_continue);
1424 }
1425 }
1426
1427 // This routine creates a state machine for updating the multi-row
1428 // type profile at a virtual call site (or other type-sensitive bytecode).
1429 // The machine visits each row (of receiver/count) until the receiver type
1430 // is found, or until it runs out of rows. At the same time, it remembers
1431 // the location of the first empty row. (An empty row records null for its
1432 // receiver, and can be allocated for a newly-observed receiver type.)
1433 // Because there are two degrees of freedom in the state, a simple linear
1434 // search will not work; it must be a decision tree. Hence this helper
1435 // function is recursive, to generate the required tree structured code.
1436 // It's the interpreter, so we are trading off code space for speed.
1437 // See below for example code.
1438 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1439 Register receiver, Register mdp,
1440 Register reg2, int start_row,
1441 Label& done, bool is_virtual_call) {
1442 if (TypeProfileWidth == 0) {
1443 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1444 } else {
1445 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1446 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1447 }
1448 }
1449
1450 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row,
1451 Label& done, int total_rows,
1452 OffsetFunction item_offset_fn,
1453 OffsetFunction item_count_offset_fn) {
1454 int last_row = total_rows - 1;
1455 assert(start_row <= last_row, "must be work left to do");
1456 // Test this row for both the item and for null.
1457 // Take any of three different outcomes:
1458 // 1. found item => increment count and goto done
1459 // 2. found null => keep looking for case 1, maybe allocate this cell
1460 // 3. found something else => keep looking for cases 1 and 2
1461 // Case 3 is handled by a recursive call.
1462 for (int row = start_row; row <= last_row; row++) {
1463 Label next_test;
1464 bool test_for_null_also = (row == start_row);
1465
1466 // See if the item is item[n].
1467 int item_offset = in_bytes(item_offset_fn(row));
1468 test_mdp_data_at(mdp, item_offset, item,
1469 (test_for_null_also ? reg2 : noreg),
1470 next_test);
1471 // (Reg2 now contains the item from the CallData.)
1472
1473 // The item is item[n]. Increment count[n].
1474 int count_offset = in_bytes(item_count_offset_fn(row));
1475 increment_mdp_data_at(mdp, count_offset);
1476 jmp(done);
1477 bind(next_test);
1478
1479 if (test_for_null_also) {
1480 // Failed the equality check on item[n]... Test for null.
1481 testptr(reg2, reg2);
1482 if (start_row == last_row) {
1483 // The only thing left to do is handle the null case.
1484 Label found_null;
1485 jccb(Assembler::zero, found_null);
1486 // Item did not match any saved item and there is no empty row for it.
1487 // Increment total counter to indicate polymorphic case.
1488 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1489 jmp(done);
1490 bind(found_null);
1491 break;
1492 }
1493 Label found_null;
1494 // Since null is rare, make it be the branch-taken case.
1495 jcc(Assembler::zero, found_null);
1496
1497 // Put all the "Case 3" tests here.
1498 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1499 item_offset_fn, item_count_offset_fn);
1500
1501 // Found a null. Keep searching for a matching item,
1502 // but remember that this is an empty (unused) slot.
1503 bind(found_null);
1504 }
1505 }
1506
1507 // In the fall-through case, we found no matching item, but we
1508 // observed the item[start_row] is null.
1509
1510 // Fill in the item field and increment the count.
1511 int item_offset = in_bytes(item_offset_fn(start_row));
1512 set_mdp_data_at(mdp, item_offset, item);
1513 int count_offset = in_bytes(item_count_offset_fn(start_row));
1514 movl(reg2, DataLayout::counter_increment);
1515 set_mdp_data_at(mdp, count_offset, reg2);
1516 if (start_row > 0) {
1517 jmp(done);
1518 }
1519 }
1520
1521 // Example state machine code for three profile rows:
1522 // // main copy of decision tree, rooted at row[1]
1523 // if (row[0].rec == rec) { row[0].incr(); goto done; }
1524 // if (row[0].rec != nullptr) {
1525 // // inner copy of decision tree, rooted at row[1]
1526 // if (row[1].rec == rec) { row[1].incr(); goto done; }
1527 // if (row[1].rec != nullptr) {
1528 // // degenerate decision tree, rooted at row[2]
1529 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1530 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1531 // row[2].init(rec); goto done;
1532 // } else {
1533 // // remember row[1] is empty
1534 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1535 // row[1].init(rec); goto done;
1536 // }
1537 // } else {
1538 // // remember row[0] is empty
1539 // if (row[1].rec == rec) { row[1].incr(); goto done; }
1540 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1541 // row[0].init(rec); goto done;
1542 // }
1543 // done:
1544
1545 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1546 Register mdp, Register reg2,
1547 bool is_virtual_call) {
1548 assert(ProfileInterpreter, "must be profiling");
1549 Label done;
1550
1551 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1552
1553 bind (done);
1554 }
1555
1556 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1557 Register mdp) {
1558 if (ProfileInterpreter) {
1559 Label profile_continue;
1560 uint row;
1561
1562 // If no method data exists, go to profile_continue.
1563 test_method_data_pointer(mdp, profile_continue);
1564
1565 // Update the total ret count.
1566 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1567
1568 for (row = 0; row < RetData::row_limit(); row++) {
1569 Label next_test;
1570
1571 // See if return_bci is equal to bci[n]:
1572 test_mdp_data_at(mdp,
1573 in_bytes(RetData::bci_offset(row)),
1574 return_bci, noreg,
1575 next_test);
1576
1577 // return_bci is equal to bci[n]. Increment the count.
1578 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1579
1580 // The method data pointer needs to be updated to reflect the new target.
1581 update_mdp_by_offset(mdp,
1582 in_bytes(RetData::bci_displacement_offset(row)));
1583 jmp(profile_continue);
1584 bind(next_test);
1585 }
1586
1587 update_mdp_for_ret(return_bci);
1588
1589 bind(profile_continue);
1590 }
1591 }
1592
1593
1594 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1595 if (ProfileInterpreter) {
1596 Label profile_continue;
1597
1598 // If no method data exists, go to profile_continue.
1599 test_method_data_pointer(mdp, profile_continue);
1600
1601 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1602
1603 // The method data pointer needs to be updated.
1604 int mdp_delta = in_bytes(BitData::bit_data_size());
1605 if (TypeProfileCasts) {
1606 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1607 }
1608 update_mdp_by_constant(mdp, mdp_delta);
1609
1610 bind(profile_continue);
1611 }
1612 }
1613
1614
1615 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1616 if (ProfileInterpreter) {
1617 Label profile_continue;
1618
1619 // If no method data exists, go to profile_continue.
1620 test_method_data_pointer(mdp, profile_continue);
1621
1622 // The method data pointer needs to be updated.
1623 int mdp_delta = in_bytes(BitData::bit_data_size());
1624 if (TypeProfileCasts) {
1625 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1626
1627 // Record the object type.
1628 record_klass_in_profile(klass, mdp, reg2, false);
1629 }
1630 update_mdp_by_constant(mdp, mdp_delta);
1631
1632 bind(profile_continue);
1633 }
1634 }
1635
1636
1637 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1638 if (ProfileInterpreter) {
1639 Label profile_continue;
1640
1641 // If no method data exists, go to profile_continue.
1642 test_method_data_pointer(mdp, profile_continue);
1643
1644 // Update the default case count
1645 increment_mdp_data_at(mdp,
1646 in_bytes(MultiBranchData::default_count_offset()));
1647
1648 // The method data pointer needs to be updated.
1649 update_mdp_by_offset(mdp,
1650 in_bytes(MultiBranchData::
1651 default_displacement_offset()));
1652
1653 bind(profile_continue);
1654 }
1655 }
1656
1657
1658 void InterpreterMacroAssembler::profile_switch_case(Register index,
1659 Register mdp,
1660 Register reg2) {
1661 if (ProfileInterpreter) {
1662 Label profile_continue;
1663
1664 // If no method data exists, go to profile_continue.
1665 test_method_data_pointer(mdp, profile_continue);
1666
1667 // Build the base (index * per_case_size_in_bytes()) +
1668 // case_array_offset_in_bytes()
1669 movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1670 imulptr(index, reg2); // XXX l ?
1671 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1672
1673 // Update the case count
1674 increment_mdp_data_at(mdp,
1675 index,
1676 in_bytes(MultiBranchData::relative_count_offset()));
1677
1678 // The method data pointer needs to be updated.
1679 update_mdp_by_offset(mdp,
1680 index,
1681 in_bytes(MultiBranchData::
1682 relative_displacement_offset()));
1683
1684 bind(profile_continue);
1685 }
1686 }
1687
1688
1689
1690 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1691 if (state == atos) {
1692 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1693 }
1694 }
1695
1696
1697 // Jump if ((*counter_addr += increment) & mask) == 0
1698 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask,
1699 Register scratch, Label* where) {
1700 // This update is actually not atomic and can lose a number of updates
1701 // under heavy contention, but the alternative of using the (contended)
1702 // atomic update here penalizes profiling paths too much.
1703 movl(scratch, counter_addr);
1704 incrementl(scratch, InvocationCounter::count_increment);
1705 movl(counter_addr, scratch);
1706 andl(scratch, mask);
1707 if (where != nullptr) {
1708 jcc(Assembler::zero, *where);
1709 }
1710 }
1711
1712 void InterpreterMacroAssembler::generate_runtime_upcalls_on_method_entry()
1713 {
1714 address upcall = RuntimeUpcalls::on_method_entry_upcall_address();
1715 if (RuntimeUpcalls::does_upcall_need_method_parameter(upcall)) {
1716 get_method(c_rarg1);
1717 call_VM(noreg,upcall, c_rarg1);
1718 } else {
1719 call_VM(noreg,upcall);
1720 }
1721 }
1722
1723 void InterpreterMacroAssembler::notify_method_entry() {
1724 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1725 // track stack depth. If it is possible to enter interp_only_mode we add
1726 // the code to check if the event should be sent.
1727 Register rthread = r15_thread;
1728 Register rarg = c_rarg1;
1729 if (JvmtiExport::can_post_interpreter_events()) {
1730 Label L;
1731 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1732 testl(rdx, rdx);
1733 jcc(Assembler::zero, L);
1734 call_VM(noreg, CAST_FROM_FN_PTR(address,
1735 InterpreterRuntime::post_method_entry));
1736 bind(L);
1737 }
1738
1739 if (DTraceMethodProbes) {
1740 get_method(rarg);
1741 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1742 rthread, rarg);
1743 }
1744
1745 // RedefineClasses() tracing support for obsolete method entry
1746 if (log_is_enabled(Trace, redefine, class, obsolete)) {
1747 get_method(rarg);
1748 call_VM_leaf(
1749 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1750 rthread, rarg);
1751 }
1752 }
1753
1754
1755 void InterpreterMacroAssembler::notify_method_exit(
1756 TosState state, NotifyMethodExitMode mode) {
1757 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1758 // track stack depth. If it is possible to enter interp_only_mode we add
1759 // the code to check if the event should be sent.
1760 Register rthread = r15_thread;
1761 Register rarg = c_rarg1;
1762 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1763 Label L;
1764 // Note: frame::interpreter_frame_result has a dependency on how the
1765 // method result is saved across the call to post_method_exit. If this
1766 // is changed then the interpreter_frame_result implementation will
1767 // need to be updated too.
1768
1769 // template interpreter will leave the result on the top of the stack.
1770 push(state);
1771 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1772 testl(rdx, rdx);
1773 jcc(Assembler::zero, L);
1774 call_VM(noreg,
1775 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1776 bind(L);
1777 pop(state);
1778 }
1779
1780 if (DTraceMethodProbes) {
1781 push(state);
1782 get_method(rarg);
1783 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1784 rthread, rarg);
1785 pop(state);
1786 }
1787 }
1788
1789 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1790 // Get index out of bytecode pointer
1791 get_cache_index_at_bcp(index, 1, sizeof(u4));
1792 // Get address of invokedynamic array
1793 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
1794 movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1795 if (is_power_of_2(sizeof(ResolvedIndyEntry))) {
1796 shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2
1797 } else {
1798 imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1799 }
1800 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes()));
1801 }
1802
1803 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1804 // Get index out of bytecode pointer
1805 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
1806 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1807
1808 movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset()));
1809 // Take shortcut if the size is a power of 2
1810 if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1811 shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1812 } else {
1813 imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
1814 }
1815 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes()));
1816 }
1817
1818 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1819 // Get index out of bytecode pointer
1820 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
1821 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1822
1823 movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset()));
1824 imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1825 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes()));
1826 }