1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/assembler.hpp" 26 #include "asm/assembler.inline.hpp" 27 #include "code/aotCodeCache.hpp" 28 #include "code/compiledIC.hpp" 29 #include "compiler/compiler_globals.hpp" 30 #include "compiler/disassembler.hpp" 31 #include "crc32c.h" 32 #include "gc/shared/barrierSet.hpp" 33 #include "gc/shared/barrierSetAssembler.hpp" 34 #include "gc/shared/collectedHeap.inline.hpp" 35 #include "gc/shared/tlab_globals.hpp" 36 #include "interpreter/bytecodeHistogram.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "interpreter/interpreterRuntime.hpp" 39 #include "jvm.h" 40 #include "memory/resourceArea.hpp" 41 #include "memory/universe.hpp" 42 #include "oops/accessDecorators.hpp" 43 #include "oops/compressedKlass.inline.hpp" 44 #include "oops/compressedOops.inline.hpp" 45 #include "oops/klass.inline.hpp" 46 #include "prims/methodHandles.hpp" 47 #include "runtime/continuation.hpp" 48 #include "runtime/interfaceSupport.inline.hpp" 49 #include "runtime/javaThread.hpp" 50 #include "runtime/jniHandles.hpp" 51 #include "runtime/objectMonitor.hpp" 52 #include "runtime/os.hpp" 53 #include "runtime/safepoint.hpp" 54 #include "runtime/safepointMechanism.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "utilities/checkedCast.hpp" 58 #include "utilities/macros.hpp" 59 60 #ifdef PRODUCT 61 #define BLOCK_COMMENT(str) /* nothing */ 62 #define STOP(error) stop(error) 63 #else 64 #define BLOCK_COMMENT(str) block_comment(str) 65 #define STOP(error) block_comment(error); stop(error) 66 #endif 67 68 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 69 70 #ifdef ASSERT 71 bool AbstractAssembler::pd_check_instruction_mark() { return true; } 72 #endif 73 74 static const Assembler::Condition reverse[] = { 75 Assembler::noOverflow /* overflow = 0x0 */ , 76 Assembler::overflow /* noOverflow = 0x1 */ , 77 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , 78 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , 79 Assembler::notZero /* zero = 0x4, equal = 0x4 */ , 80 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , 81 Assembler::above /* belowEqual = 0x6 */ , 82 Assembler::belowEqual /* above = 0x7 */ , 83 Assembler::positive /* negative = 0x8 */ , 84 Assembler::negative /* positive = 0x9 */ , 85 Assembler::noParity /* parity = 0xa */ , 86 Assembler::parity /* noParity = 0xb */ , 87 Assembler::greaterEqual /* less = 0xc */ , 88 Assembler::less /* greaterEqual = 0xd */ , 89 Assembler::greater /* lessEqual = 0xe */ , 90 Assembler::lessEqual /* greater = 0xf, */ 91 92 }; 93 94 95 // Implementation of MacroAssembler 96 97 Address MacroAssembler::as_Address(AddressLiteral adr) { 98 // amd64 always does this as a pc-rel 99 // we can be absolute or disp based on the instruction type 100 // jmp/call are displacements others are absolute 101 assert(!adr.is_lval(), "must be rval"); 102 assert(reachable(adr), "must be"); 103 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc()); 104 105 } 106 107 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 108 AddressLiteral base = adr.base(); 109 lea(rscratch, base); 110 Address index = adr.index(); 111 assert(index._disp == 0, "must not have disp"); // maybe it can? 112 Address array(rscratch, index._index, index._scale, index._disp); 113 return array; 114 } 115 116 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { 117 Label L, E; 118 119 #ifdef _WIN64 120 // Windows always allocates space for it's register args 121 assert(num_args <= 4, "only register arguments supported"); 122 subq(rsp, frame::arg_reg_save_area_bytes); 123 #endif 124 125 // Align stack if necessary 126 testl(rsp, 15); 127 jcc(Assembler::zero, L); 128 129 subq(rsp, 8); 130 call(RuntimeAddress(entry_point)); 131 addq(rsp, 8); 132 jmp(E); 133 134 bind(L); 135 call(RuntimeAddress(entry_point)); 136 137 bind(E); 138 139 #ifdef _WIN64 140 // restore stack pointer 141 addq(rsp, frame::arg_reg_save_area_bytes); 142 #endif 143 } 144 145 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) { 146 assert(!src2.is_lval(), "should use cmpptr"); 147 assert(rscratch != noreg || always_reachable(src2), "missing"); 148 149 if (reachable(src2)) { 150 cmpq(src1, as_Address(src2)); 151 } else { 152 lea(rscratch, src2); 153 Assembler::cmpq(src1, Address(rscratch, 0)); 154 } 155 } 156 157 int MacroAssembler::corrected_idivq(Register reg) { 158 // Full implementation of Java ldiv and lrem; checks for special 159 // case as described in JVM spec., p.243 & p.271. The function 160 // returns the (pc) offset of the idivl instruction - may be needed 161 // for implicit exceptions. 162 // 163 // normal case special case 164 // 165 // input : rax: dividend min_long 166 // reg: divisor (may not be eax/edx) -1 167 // 168 // output: rax: quotient (= rax idiv reg) min_long 169 // rdx: remainder (= rax irem reg) 0 170 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); 171 static const int64_t min_long = 0x8000000000000000; 172 Label normal_case, special_case; 173 174 // check for special case 175 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/); 176 jcc(Assembler::notEqual, normal_case); 177 xorl(rdx, rdx); // prepare rdx for possible special case (where 178 // remainder = 0) 179 cmpq(reg, -1); 180 jcc(Assembler::equal, special_case); 181 182 // handle normal case 183 bind(normal_case); 184 cdqq(); 185 int idivq_offset = offset(); 186 idivq(reg); 187 188 // normal and special case exit 189 bind(special_case); 190 191 return idivq_offset; 192 } 193 194 void MacroAssembler::decrementq(Register reg, int value) { 195 if (value == min_jint) { subq(reg, value); return; } 196 if (value < 0) { incrementq(reg, -value); return; } 197 if (value == 0) { ; return; } 198 if (value == 1 && UseIncDec) { decq(reg) ; return; } 199 /* else */ { subq(reg, value) ; return; } 200 } 201 202 void MacroAssembler::decrementq(Address dst, int value) { 203 if (value == min_jint) { subq(dst, value); return; } 204 if (value < 0) { incrementq(dst, -value); return; } 205 if (value == 0) { ; return; } 206 if (value == 1 && UseIncDec) { decq(dst) ; return; } 207 /* else */ { subq(dst, value) ; return; } 208 } 209 210 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) { 211 assert(rscratch != noreg || always_reachable(dst), "missing"); 212 213 if (reachable(dst)) { 214 incrementq(as_Address(dst)); 215 } else { 216 lea(rscratch, dst); 217 incrementq(Address(rscratch, 0)); 218 } 219 } 220 221 void MacroAssembler::incrementq(Register reg, int value) { 222 if (value == min_jint) { addq(reg, value); return; } 223 if (value < 0) { decrementq(reg, -value); return; } 224 if (value == 0) { ; return; } 225 if (value == 1 && UseIncDec) { incq(reg) ; return; } 226 /* else */ { addq(reg, value) ; return; } 227 } 228 229 void MacroAssembler::incrementq(Address dst, int value) { 230 if (value == min_jint) { addq(dst, value); return; } 231 if (value < 0) { decrementq(dst, -value); return; } 232 if (value == 0) { ; return; } 233 if (value == 1 && UseIncDec) { incq(dst) ; return; } 234 /* else */ { addq(dst, value) ; return; } 235 } 236 237 // 32bit can do a case table jump in one instruction but we no longer allow the base 238 // to be installed in the Address class 239 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 240 lea(rscratch, entry.base()); 241 Address dispatch = entry.index(); 242 assert(dispatch._base == noreg, "must be"); 243 dispatch._base = rscratch; 244 jmp(dispatch); 245 } 246 247 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 248 ShouldNotReachHere(); // 64bit doesn't use two regs 249 cmpq(x_lo, y_lo); 250 } 251 252 void MacroAssembler::lea(Register dst, AddressLiteral src) { 253 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 254 } 255 256 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 257 lea(rscratch, adr); 258 movptr(dst, rscratch); 259 } 260 261 void MacroAssembler::leave() { 262 // %%% is this really better? Why not on 32bit too? 263 emit_int8((unsigned char)0xC9); // LEAVE 264 } 265 266 void MacroAssembler::lneg(Register hi, Register lo) { 267 ShouldNotReachHere(); // 64bit doesn't use two regs 268 negq(lo); 269 } 270 271 void MacroAssembler::movoop(Register dst, jobject obj) { 272 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 273 } 274 275 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 276 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 277 movq(dst, rscratch); 278 } 279 280 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 281 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 282 } 283 284 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 285 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 286 movq(dst, rscratch); 287 } 288 289 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 290 if (src.is_lval()) { 291 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 292 } else { 293 if (reachable(src)) { 294 movq(dst, as_Address(src)); 295 } else { 296 lea(dst, src); 297 movq(dst, Address(dst, 0)); 298 } 299 } 300 } 301 302 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 303 movq(as_Address(dst, rscratch), src); 304 } 305 306 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 307 movq(dst, as_Address(src, dst /*rscratch*/)); 308 } 309 310 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 311 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 312 if (is_simm32(src)) { 313 movptr(dst, checked_cast<int32_t>(src)); 314 } else { 315 mov64(rscratch, src); 316 movq(dst, rscratch); 317 } 318 } 319 320 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 321 movoop(rscratch, obj); 322 push(rscratch); 323 } 324 325 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 326 mov_metadata(rscratch, obj); 327 push(rscratch); 328 } 329 330 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 331 lea(rscratch, src); 332 if (src.is_lval()) { 333 push(rscratch); 334 } else { 335 pushq(Address(rscratch, 0)); 336 } 337 } 338 339 static void pass_arg0(MacroAssembler* masm, Register arg) { 340 if (c_rarg0 != arg ) { 341 masm->mov(c_rarg0, arg); 342 } 343 } 344 345 static void pass_arg1(MacroAssembler* masm, Register arg) { 346 if (c_rarg1 != arg ) { 347 masm->mov(c_rarg1, arg); 348 } 349 } 350 351 static void pass_arg2(MacroAssembler* masm, Register arg) { 352 if (c_rarg2 != arg ) { 353 masm->mov(c_rarg2, arg); 354 } 355 } 356 357 static void pass_arg3(MacroAssembler* masm, Register arg) { 358 if (c_rarg3 != arg ) { 359 masm->mov(c_rarg3, arg); 360 } 361 } 362 363 void MacroAssembler::stop(const char* msg) { 364 if (ShowMessageBoxOnError) { 365 address rip = pc(); 366 pusha(); // get regs on stack 367 lea(c_rarg1, InternalAddress(rip)); 368 movq(c_rarg2, rsp); // pass pointer to regs array 369 } 370 // Skip AOT caching C strings in scratch buffer. 371 const char* str = (code_section()->scratch_emit()) ? msg : AOTCodeCache::add_C_string(msg); 372 lea(c_rarg0, ExternalAddress((address) str)); 373 andq(rsp, -16); // align stack as required by ABI 374 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 375 hlt(); 376 } 377 378 void MacroAssembler::warn(const char* msg) { 379 push(rbp); 380 movq(rbp, rsp); 381 andq(rsp, -16); // align stack as required by push_CPU_state and call 382 push_CPU_state(); // keeps alignment at 16 bytes 383 384 #ifdef _WIN64 385 // Windows always allocates space for its register args 386 subq(rsp, frame::arg_reg_save_area_bytes); 387 #endif 388 lea(c_rarg0, ExternalAddress((address) msg)); 389 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 390 391 #ifdef _WIN64 392 // restore stack pointer 393 addq(rsp, frame::arg_reg_save_area_bytes); 394 #endif 395 pop_CPU_state(); 396 mov(rsp, rbp); 397 pop(rbp); 398 } 399 400 void MacroAssembler::print_state() { 401 address rip = pc(); 402 pusha(); // get regs on stack 403 push(rbp); 404 movq(rbp, rsp); 405 andq(rsp, -16); // align stack as required by push_CPU_state and call 406 push_CPU_state(); // keeps alignment at 16 bytes 407 408 lea(c_rarg0, InternalAddress(rip)); 409 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array 410 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1); 411 412 pop_CPU_state(); 413 mov(rsp, rbp); 414 pop(rbp); 415 popa(); 416 } 417 418 #ifndef PRODUCT 419 extern "C" void findpc(intptr_t x); 420 #endif 421 422 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { 423 // In order to get locks to work, we need to fake a in_VM state 424 if (ShowMessageBoxOnError) { 425 JavaThread* thread = JavaThread::current(); 426 JavaThreadState saved_state = thread->thread_state(); 427 thread->set_thread_state(_thread_in_vm); 428 #ifndef PRODUCT 429 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 430 ttyLocker ttyl; 431 BytecodeCounter::print(); 432 } 433 #endif 434 // To see where a verify_oop failed, get $ebx+40/X for this frame. 435 // XXX correct this offset for amd64 436 // This is the value of eip which points to where verify_oop will return. 437 if (os::message_box(msg, "Execution stopped, print registers?")) { 438 print_state64(pc, regs); 439 BREAKPOINT; 440 } 441 } 442 fatal("DEBUG MESSAGE: %s", msg); 443 } 444 445 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) { 446 ttyLocker ttyl; 447 DebuggingContext debugging{}; 448 tty->print_cr("rip = 0x%016lx", (intptr_t)pc); 449 #ifndef PRODUCT 450 tty->cr(); 451 findpc(pc); 452 tty->cr(); 453 #endif 454 #define PRINT_REG(rax, value) \ 455 { tty->print("%s = ", #rax); os::print_location(tty, value); } 456 PRINT_REG(rax, regs[15]); 457 PRINT_REG(rbx, regs[12]); 458 PRINT_REG(rcx, regs[14]); 459 PRINT_REG(rdx, regs[13]); 460 PRINT_REG(rdi, regs[8]); 461 PRINT_REG(rsi, regs[9]); 462 PRINT_REG(rbp, regs[10]); 463 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp 464 PRINT_REG(rsp, (intptr_t)(®s[16])); 465 PRINT_REG(r8 , regs[7]); 466 PRINT_REG(r9 , regs[6]); 467 PRINT_REG(r10, regs[5]); 468 PRINT_REG(r11, regs[4]); 469 PRINT_REG(r12, regs[3]); 470 PRINT_REG(r13, regs[2]); 471 PRINT_REG(r14, regs[1]); 472 PRINT_REG(r15, regs[0]); 473 #undef PRINT_REG 474 // Print some words near the top of the stack. 475 int64_t* rsp = ®s[16]; 476 int64_t* dump_sp = rsp; 477 for (int col1 = 0; col1 < 8; col1++) { 478 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 479 os::print_location(tty, *dump_sp++); 480 } 481 for (int row = 0; row < 25; row++) { 482 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 483 for (int col = 0; col < 4; col++) { 484 tty->print(" 0x%016lx", (intptr_t)*dump_sp++); 485 } 486 tty->cr(); 487 } 488 // Print some instructions around pc: 489 Disassembler::decode((address)pc-64, (address)pc); 490 tty->print_cr("--------"); 491 Disassembler::decode((address)pc, (address)pc+32); 492 } 493 494 // The java_calling_convention describes stack locations as ideal slots on 495 // a frame with no abi restrictions. Since we must observe abi restrictions 496 // (like the placement of the register window) the slots must be biased by 497 // the following value. 498 static int reg2offset_in(VMReg r) { 499 // Account for saved rbp and return address 500 // This should really be in_preserve_stack_slots 501 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 502 } 503 504 static int reg2offset_out(VMReg r) { 505 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 506 } 507 508 // A long move 509 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 510 511 // The calling conventions assures us that each VMregpair is either 512 // all really one physical register or adjacent stack slots. 513 514 if (src.is_single_phys_reg() ) { 515 if (dst.is_single_phys_reg()) { 516 if (dst.first() != src.first()) { 517 mov(dst.first()->as_Register(), src.first()->as_Register()); 518 } 519 } else { 520 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)", 521 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name()); 522 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 523 } 524 } else if (dst.is_single_phys_reg()) { 525 assert(src.is_single_reg(), "not a stack pair"); 526 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 527 } else { 528 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 529 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 530 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 531 } 532 } 533 534 // A double move 535 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 536 537 // The calling conventions assures us that each VMregpair is either 538 // all really one physical register or adjacent stack slots. 539 540 if (src.is_single_phys_reg() ) { 541 if (dst.is_single_phys_reg()) { 542 // In theory these overlap but the ordering is such that this is likely a nop 543 if ( src.first() != dst.first()) { 544 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 545 } 546 } else { 547 assert(dst.is_single_reg(), "not a stack pair"); 548 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 549 } 550 } else if (dst.is_single_phys_reg()) { 551 assert(src.is_single_reg(), "not a stack pair"); 552 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 553 } else { 554 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 555 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 556 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 557 } 558 } 559 560 561 // A float arg may have to do float reg int reg conversion 562 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 563 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 564 565 // The calling conventions assures us that each VMregpair is either 566 // all really one physical register or adjacent stack slots. 567 568 if (src.first()->is_stack()) { 569 if (dst.first()->is_stack()) { 570 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 571 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 572 } else { 573 // stack to reg 574 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 575 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 576 } 577 } else if (dst.first()->is_stack()) { 578 // reg to stack 579 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 580 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 581 } else { 582 // reg to reg 583 // In theory these overlap but the ordering is such that this is likely a nop 584 if ( src.first() != dst.first()) { 585 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 586 } 587 } 588 } 589 590 // On 64 bit we will store integer like items to the stack as 591 // 64 bits items (x86_32/64 abi) even though java would only store 592 // 32bits for a parameter. On 32bit it will simply be 32 bits 593 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 594 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 595 if (src.first()->is_stack()) { 596 if (dst.first()->is_stack()) { 597 // stack to stack 598 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 599 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 600 } else { 601 // stack to reg 602 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 603 } 604 } else if (dst.first()->is_stack()) { 605 // reg to stack 606 // Do we really have to sign extend??? 607 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 608 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 609 } else { 610 // Do we really have to sign extend??? 611 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 612 if (dst.first() != src.first()) { 613 movq(dst.first()->as_Register(), src.first()->as_Register()); 614 } 615 } 616 } 617 618 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) { 619 if (src.first()->is_stack()) { 620 if (dst.first()->is_stack()) { 621 // stack to stack 622 movq(rax, Address(rbp, reg2offset_in(src.first()))); 623 movq(Address(rsp, reg2offset_out(dst.first())), rax); 624 } else { 625 // stack to reg 626 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 627 } 628 } else if (dst.first()->is_stack()) { 629 // reg to stack 630 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 631 } else { 632 if (dst.first() != src.first()) { 633 movq(dst.first()->as_Register(), src.first()->as_Register()); 634 } 635 } 636 } 637 638 // An oop arg. Must pass a handle not the oop itself 639 void MacroAssembler::object_move(OopMap* map, 640 int oop_handle_offset, 641 int framesize_in_slots, 642 VMRegPair src, 643 VMRegPair dst, 644 bool is_receiver, 645 int* receiver_offset) { 646 647 // must pass a handle. First figure out the location we use as a handle 648 649 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 650 651 // See if oop is null if it is we need no handle 652 653 if (src.first()->is_stack()) { 654 655 // Oop is already on the stack as an argument 656 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 657 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 658 if (is_receiver) { 659 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 660 } 661 662 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 663 lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 664 // conditionally move a null 665 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 666 } else { 667 668 // Oop is in a register we must store it to the space we reserve 669 // on the stack for oop_handles and pass a handle if oop is non-null 670 671 const Register rOop = src.first()->as_Register(); 672 int oop_slot; 673 if (rOop == j_rarg0) 674 oop_slot = 0; 675 else if (rOop == j_rarg1) 676 oop_slot = 1; 677 else if (rOop == j_rarg2) 678 oop_slot = 2; 679 else if (rOop == j_rarg3) 680 oop_slot = 3; 681 else if (rOop == j_rarg4) 682 oop_slot = 4; 683 else { 684 assert(rOop == j_rarg5, "wrong register"); 685 oop_slot = 5; 686 } 687 688 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 689 int offset = oop_slot*VMRegImpl::stack_slot_size; 690 691 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 692 // Store oop in handle area, may be null 693 movptr(Address(rsp, offset), rOop); 694 if (is_receiver) { 695 *receiver_offset = offset; 696 } 697 698 cmpptr(rOop, NULL_WORD); 699 lea(rHandle, Address(rsp, offset)); 700 // conditionally move a null from the handle area where it was just stored 701 cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 702 } 703 704 // If arg is on the stack then place it otherwise it is already in correct reg. 705 if (dst.first()->is_stack()) { 706 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 707 } 708 } 709 710 void MacroAssembler::addptr(Register dst, int32_t imm32) { 711 addq(dst, imm32); 712 } 713 714 void MacroAssembler::addptr(Register dst, Register src) { 715 addq(dst, src); 716 } 717 718 void MacroAssembler::addptr(Address dst, Register src) { 719 addq(dst, src); 720 } 721 722 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 723 assert(rscratch != noreg || always_reachable(src), "missing"); 724 725 if (reachable(src)) { 726 Assembler::addsd(dst, as_Address(src)); 727 } else { 728 lea(rscratch, src); 729 Assembler::addsd(dst, Address(rscratch, 0)); 730 } 731 } 732 733 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) { 734 assert(rscratch != noreg || always_reachable(src), "missing"); 735 736 if (reachable(src)) { 737 addss(dst, as_Address(src)); 738 } else { 739 lea(rscratch, src); 740 addss(dst, Address(rscratch, 0)); 741 } 742 } 743 744 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 745 assert(rscratch != noreg || always_reachable(src), "missing"); 746 747 if (reachable(src)) { 748 Assembler::addpd(dst, as_Address(src)); 749 } else { 750 lea(rscratch, src); 751 Assembler::addpd(dst, Address(rscratch, 0)); 752 } 753 } 754 755 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only. 756 // Stub code is generated once and never copied. 757 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes. 758 void MacroAssembler::align64() { 759 align(64, (uint)(uintptr_t)pc()); 760 } 761 762 void MacroAssembler::align32() { 763 align(32, (uint)(uintptr_t)pc()); 764 } 765 766 void MacroAssembler::align(uint modulus) { 767 // 8273459: Ensure alignment is possible with current segment alignment 768 assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment"); 769 align(modulus, offset()); 770 } 771 772 void MacroAssembler::align(uint modulus, uint target) { 773 if (target % modulus != 0) { 774 nop(modulus - (target % modulus)); 775 } 776 } 777 778 void MacroAssembler::push_f(XMMRegister r) { 779 subptr(rsp, wordSize); 780 movflt(Address(rsp, 0), r); 781 } 782 783 void MacroAssembler::pop_f(XMMRegister r) { 784 movflt(r, Address(rsp, 0)); 785 addptr(rsp, wordSize); 786 } 787 788 void MacroAssembler::push_d(XMMRegister r) { 789 subptr(rsp, 2 * wordSize); 790 movdbl(Address(rsp, 0), r); 791 } 792 793 void MacroAssembler::pop_d(XMMRegister r) { 794 movdbl(r, Address(rsp, 0)); 795 addptr(rsp, 2 * Interpreter::stackElementSize); 796 } 797 798 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 799 // Used in sign-masking with aligned address. 800 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 801 assert(rscratch != noreg || always_reachable(src), "missing"); 802 803 if (UseAVX > 2 && 804 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 805 (dst->encoding() >= 16)) { 806 vpand(dst, dst, src, AVX_512bit, rscratch); 807 } else if (reachable(src)) { 808 Assembler::andpd(dst, as_Address(src)); 809 } else { 810 lea(rscratch, src); 811 Assembler::andpd(dst, Address(rscratch, 0)); 812 } 813 } 814 815 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) { 816 // Used in sign-masking with aligned address. 817 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 818 assert(rscratch != noreg || always_reachable(src), "missing"); 819 820 if (reachable(src)) { 821 Assembler::andps(dst, as_Address(src)); 822 } else { 823 lea(rscratch, src); 824 Assembler::andps(dst, Address(rscratch, 0)); 825 } 826 } 827 828 void MacroAssembler::andptr(Register dst, int32_t imm32) { 829 andq(dst, imm32); 830 } 831 832 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) { 833 assert(rscratch != noreg || always_reachable(src), "missing"); 834 835 if (reachable(src)) { 836 andq(dst, as_Address(src)); 837 } else { 838 lea(rscratch, src); 839 andq(dst, Address(rscratch, 0)); 840 } 841 } 842 843 void MacroAssembler::atomic_incl(Address counter_addr) { 844 lock(); 845 incrementl(counter_addr); 846 } 847 848 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) { 849 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 850 851 if (reachable(counter_addr)) { 852 atomic_incl(as_Address(counter_addr)); 853 } else { 854 lea(rscratch, counter_addr); 855 atomic_incl(Address(rscratch, 0)); 856 } 857 } 858 859 void MacroAssembler::atomic_incq(Address counter_addr) { 860 lock(); 861 incrementq(counter_addr); 862 } 863 864 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) { 865 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 866 867 if (reachable(counter_addr)) { 868 atomic_incq(as_Address(counter_addr)); 869 } else { 870 lea(rscratch, counter_addr); 871 atomic_incq(Address(rscratch, 0)); 872 } 873 } 874 875 // Writes to stack successive pages until offset reached to check for 876 // stack overflow + shadow pages. This clobbers tmp. 877 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 878 movptr(tmp, rsp); 879 // Bang stack for total size given plus shadow page size. 880 // Bang one page at a time because large size can bang beyond yellow and 881 // red zones. 882 Label loop; 883 bind(loop); 884 movl(Address(tmp, (-(int)os::vm_page_size())), size ); 885 subptr(tmp, (int)os::vm_page_size()); 886 subl(size, (int)os::vm_page_size()); 887 jcc(Assembler::greater, loop); 888 889 // Bang down shadow pages too. 890 // At this point, (tmp-0) is the last address touched, so don't 891 // touch it again. (It was touched as (tmp-pagesize) but then tmp 892 // was post-decremented.) Skip this address by starting at i=1, and 893 // touch a few more pages below. N.B. It is important to touch all 894 // the way down including all pages in the shadow zone. 895 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) { 896 // this could be any sized move but this is can be a debugging crumb 897 // so the bigger the better. 898 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size ); 899 } 900 } 901 902 void MacroAssembler::reserved_stack_check() { 903 // testing if reserved zone needs to be enabled 904 Label no_reserved_zone_enabling; 905 906 cmpptr(rsp, Address(r15_thread, JavaThread::reserved_stack_activation_offset())); 907 jcc(Assembler::below, no_reserved_zone_enabling); 908 909 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), r15_thread); 910 jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 911 should_not_reach_here(); 912 913 bind(no_reserved_zone_enabling); 914 } 915 916 void MacroAssembler::c2bool(Register x) { 917 // implements x == 0 ? 0 : 1 918 // note: must only look at least-significant byte of x 919 // since C-style booleans are stored in one byte 920 // only! (was bug) 921 andl(x, 0xFF); 922 setb(Assembler::notZero, x); 923 } 924 925 // Wouldn't need if AddressLiteral version had new name 926 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { 927 Assembler::call(L, rtype); 928 } 929 930 void MacroAssembler::call(Register entry) { 931 Assembler::call(entry); 932 } 933 934 void MacroAssembler::call(AddressLiteral entry, Register rscratch) { 935 assert(rscratch != noreg || always_reachable(entry), "missing"); 936 937 if (reachable(entry)) { 938 Assembler::call_literal(entry.target(), entry.rspec()); 939 } else { 940 lea(rscratch, entry); 941 Assembler::call(rscratch); 942 } 943 } 944 945 void MacroAssembler::ic_call(address entry, jint method_index) { 946 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 947 // Needs full 64-bit immediate for later patching. 948 mov64(rax, (int64_t)Universe::non_oop_word()); 949 call(AddressLiteral(entry, rh)); 950 } 951 952 int MacroAssembler::ic_check_size() { 953 return UseCompactObjectHeaders ? 17 : 14; 954 } 955 956 int MacroAssembler::ic_check(int end_alignment) { 957 Register receiver = j_rarg0; 958 Register data = rax; 959 Register temp = rscratch1; 960 961 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 962 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 963 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 964 // before the inline cache check here, and not after 965 align(end_alignment, offset() + ic_check_size()); 966 967 int uep_offset = offset(); 968 969 if (UseCompactObjectHeaders) { 970 load_narrow_klass_compact(temp, receiver); 971 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 972 } else if (UseCompressedClassPointers) { 973 movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 974 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 975 } else { 976 movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 977 cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset())); 978 } 979 980 // if inline cache check fails, then jump to runtime routine 981 jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 982 assert((offset() % end_alignment) == 0, "Misaligned verified entry point (%d, %d, %d)", uep_offset, offset(), end_alignment); 983 984 return uep_offset; 985 } 986 987 void MacroAssembler::emit_static_call_stub() { 988 // Static stub relocation also tags the Method* in the code-stream. 989 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time. 990 // This is recognized as unresolved by relocs/nativeinst/ic code. 991 jump(RuntimeAddress(pc())); 992 } 993 994 // Implementation of call_VM versions 995 996 void MacroAssembler::call_VM(Register oop_result, 997 address entry_point, 998 bool check_exceptions) { 999 Label C, E; 1000 call(C, relocInfo::none); 1001 jmp(E); 1002 1003 bind(C); 1004 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1005 ret(0); 1006 1007 bind(E); 1008 } 1009 1010 void MacroAssembler::call_VM(Register oop_result, 1011 address entry_point, 1012 Register arg_1, 1013 bool check_exceptions) { 1014 Label C, E; 1015 call(C, relocInfo::none); 1016 jmp(E); 1017 1018 bind(C); 1019 pass_arg1(this, arg_1); 1020 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1021 ret(0); 1022 1023 bind(E); 1024 } 1025 1026 void MacroAssembler::call_VM(Register oop_result, 1027 address entry_point, 1028 Register arg_1, 1029 Register arg_2, 1030 bool check_exceptions) { 1031 Label C, E; 1032 call(C, relocInfo::none); 1033 jmp(E); 1034 1035 bind(C); 1036 1037 assert_different_registers(arg_1, c_rarg2); 1038 1039 pass_arg2(this, arg_2); 1040 pass_arg1(this, arg_1); 1041 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1042 ret(0); 1043 1044 bind(E); 1045 } 1046 1047 void MacroAssembler::call_VM(Register oop_result, 1048 address entry_point, 1049 Register arg_1, 1050 Register arg_2, 1051 Register arg_3, 1052 bool check_exceptions) { 1053 Label C, E; 1054 call(C, relocInfo::none); 1055 jmp(E); 1056 1057 bind(C); 1058 1059 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1060 assert_different_registers(arg_2, c_rarg3); 1061 pass_arg3(this, arg_3); 1062 pass_arg2(this, arg_2); 1063 pass_arg1(this, arg_1); 1064 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1065 ret(0); 1066 1067 bind(E); 1068 } 1069 1070 void MacroAssembler::call_VM(Register oop_result, 1071 Register last_java_sp, 1072 address entry_point, 1073 int number_of_arguments, 1074 bool check_exceptions) { 1075 call_VM_base(oop_result, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1076 } 1077 1078 void MacroAssembler::call_VM(Register oop_result, 1079 Register last_java_sp, 1080 address entry_point, 1081 Register arg_1, 1082 bool check_exceptions) { 1083 pass_arg1(this, arg_1); 1084 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1085 } 1086 1087 void MacroAssembler::call_VM(Register oop_result, 1088 Register last_java_sp, 1089 address entry_point, 1090 Register arg_1, 1091 Register arg_2, 1092 bool check_exceptions) { 1093 1094 assert_different_registers(arg_1, c_rarg2); 1095 pass_arg2(this, arg_2); 1096 pass_arg1(this, arg_1); 1097 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1098 } 1099 1100 void MacroAssembler::call_VM(Register oop_result, 1101 Register last_java_sp, 1102 address entry_point, 1103 Register arg_1, 1104 Register arg_2, 1105 Register arg_3, 1106 bool check_exceptions) { 1107 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1108 assert_different_registers(arg_2, c_rarg3); 1109 pass_arg3(this, arg_3); 1110 pass_arg2(this, arg_2); 1111 pass_arg1(this, arg_1); 1112 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1113 } 1114 1115 void MacroAssembler::super_call_VM(Register oop_result, 1116 Register last_java_sp, 1117 address entry_point, 1118 int number_of_arguments, 1119 bool check_exceptions) { 1120 MacroAssembler::call_VM_base(oop_result, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1121 } 1122 1123 void MacroAssembler::super_call_VM(Register oop_result, 1124 Register last_java_sp, 1125 address entry_point, 1126 Register arg_1, 1127 bool check_exceptions) { 1128 pass_arg1(this, arg_1); 1129 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1130 } 1131 1132 void MacroAssembler::super_call_VM(Register oop_result, 1133 Register last_java_sp, 1134 address entry_point, 1135 Register arg_1, 1136 Register arg_2, 1137 bool check_exceptions) { 1138 1139 assert_different_registers(arg_1, c_rarg2); 1140 pass_arg2(this, arg_2); 1141 pass_arg1(this, arg_1); 1142 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1143 } 1144 1145 void MacroAssembler::super_call_VM(Register oop_result, 1146 Register last_java_sp, 1147 address entry_point, 1148 Register arg_1, 1149 Register arg_2, 1150 Register arg_3, 1151 bool check_exceptions) { 1152 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1153 assert_different_registers(arg_2, c_rarg3); 1154 pass_arg3(this, arg_3); 1155 pass_arg2(this, arg_2); 1156 pass_arg1(this, arg_1); 1157 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1158 } 1159 1160 void MacroAssembler::call_VM_base(Register oop_result, 1161 Register last_java_sp, 1162 address entry_point, 1163 int number_of_arguments, 1164 bool check_exceptions) { 1165 Register java_thread = r15_thread; 1166 1167 // determine last_java_sp register 1168 if (!last_java_sp->is_valid()) { 1169 last_java_sp = rsp; 1170 } 1171 // debugging support 1172 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 1173 #ifdef ASSERT 1174 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 1175 // r12 is the heapbase. 1176 if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 1177 #endif // ASSERT 1178 1179 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 1180 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 1181 1182 // push java thread (becomes first argument of C function) 1183 1184 mov(c_rarg0, r15_thread); 1185 1186 // set last Java frame before call 1187 assert(last_java_sp != rbp, "can't use ebp/rbp"); 1188 1189 // Only interpreter should have to set fp 1190 set_last_Java_frame(last_java_sp, rbp, nullptr, rscratch1); 1191 1192 // do the call, remove parameters 1193 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1194 1195 #ifdef ASSERT 1196 // Check that thread register is not clobbered. 1197 guarantee(java_thread != rax, "change this code"); 1198 push(rax); 1199 { Label L; 1200 get_thread_slow(rax); 1201 cmpptr(java_thread, rax); 1202 jcc(Assembler::equal, L); 1203 STOP("MacroAssembler::call_VM_base: java_thread not callee saved?"); 1204 bind(L); 1205 } 1206 pop(rax); 1207 #endif 1208 1209 // reset last Java frame 1210 // Only interpreter should have to clear fp 1211 reset_last_Java_frame(true); 1212 1213 // C++ interp handles this in the interpreter 1214 check_and_handle_popframe(); 1215 check_and_handle_earlyret(); 1216 1217 if (check_exceptions) { 1218 // check for pending exceptions (java_thread is set upon return) 1219 cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 1220 // This used to conditionally jump to forward_exception however it is 1221 // possible if we relocate that the branch will not reach. So we must jump 1222 // around so we can always reach 1223 1224 Label ok; 1225 jcc(Assembler::equal, ok); 1226 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1227 bind(ok); 1228 } 1229 1230 // get oop result if there is one and reset the value in the thread 1231 if (oop_result->is_valid()) { 1232 get_vm_result_oop(oop_result); 1233 } 1234 } 1235 1236 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 1237 // Calculate the value for last_Java_sp somewhat subtle. 1238 // call_VM does an intermediate call which places a return address on 1239 // the stack just under the stack pointer as the user finished with it. 1240 // This allows use to retrieve last_Java_pc from last_Java_sp[-1]. 1241 1242 // We've pushed one address, correct last_Java_sp 1243 lea(rax, Address(rsp, wordSize)); 1244 1245 call_VM_base(oop_result, rax, entry_point, number_of_arguments, check_exceptions); 1246 } 1247 1248 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter. 1249 void MacroAssembler::call_VM_leaf0(address entry_point) { 1250 MacroAssembler::call_VM_leaf_base(entry_point, 0); 1251 } 1252 1253 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1254 call_VM_leaf_base(entry_point, number_of_arguments); 1255 } 1256 1257 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1258 pass_arg0(this, arg_0); 1259 call_VM_leaf(entry_point, 1); 1260 } 1261 1262 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1263 1264 assert_different_registers(arg_0, c_rarg1); 1265 pass_arg1(this, arg_1); 1266 pass_arg0(this, arg_0); 1267 call_VM_leaf(entry_point, 2); 1268 } 1269 1270 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1271 assert_different_registers(arg_0, c_rarg1, c_rarg2); 1272 assert_different_registers(arg_1, c_rarg2); 1273 pass_arg2(this, arg_2); 1274 pass_arg1(this, arg_1); 1275 pass_arg0(this, arg_0); 1276 call_VM_leaf(entry_point, 3); 1277 } 1278 1279 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1280 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 1281 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1282 assert_different_registers(arg_2, c_rarg3); 1283 pass_arg3(this, arg_3); 1284 pass_arg2(this, arg_2); 1285 pass_arg1(this, arg_1); 1286 pass_arg0(this, arg_0); 1287 call_VM_leaf(entry_point, 3); 1288 } 1289 1290 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1291 pass_arg0(this, arg_0); 1292 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1293 } 1294 1295 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1296 assert_different_registers(arg_0, c_rarg1); 1297 pass_arg1(this, arg_1); 1298 pass_arg0(this, arg_0); 1299 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1300 } 1301 1302 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1303 assert_different_registers(arg_0, c_rarg1, c_rarg2); 1304 assert_different_registers(arg_1, c_rarg2); 1305 pass_arg2(this, arg_2); 1306 pass_arg1(this, arg_1); 1307 pass_arg0(this, arg_0); 1308 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1309 } 1310 1311 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1312 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 1313 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1314 assert_different_registers(arg_2, c_rarg3); 1315 pass_arg3(this, arg_3); 1316 pass_arg2(this, arg_2); 1317 pass_arg1(this, arg_1); 1318 pass_arg0(this, arg_0); 1319 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1320 } 1321 1322 void MacroAssembler::get_vm_result_oop(Register oop_result) { 1323 movptr(oop_result, Address(r15_thread, JavaThread::vm_result_oop_offset())); 1324 movptr(Address(r15_thread, JavaThread::vm_result_oop_offset()), NULL_WORD); 1325 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1326 } 1327 1328 void MacroAssembler::get_vm_result_metadata(Register metadata_result) { 1329 movptr(metadata_result, Address(r15_thread, JavaThread::vm_result_metadata_offset())); 1330 movptr(Address(r15_thread, JavaThread::vm_result_metadata_offset()), NULL_WORD); 1331 } 1332 1333 void MacroAssembler::check_and_handle_earlyret() { 1334 } 1335 1336 void MacroAssembler::check_and_handle_popframe() { 1337 } 1338 1339 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) { 1340 assert(rscratch != noreg || always_reachable(src1), "missing"); 1341 1342 if (reachable(src1)) { 1343 cmpl(as_Address(src1), imm); 1344 } else { 1345 lea(rscratch, src1); 1346 cmpl(Address(rscratch, 0), imm); 1347 } 1348 } 1349 1350 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) { 1351 assert(!src2.is_lval(), "use cmpptr"); 1352 assert(rscratch != noreg || always_reachable(src2), "missing"); 1353 1354 if (reachable(src2)) { 1355 cmpl(src1, as_Address(src2)); 1356 } else { 1357 lea(rscratch, src2); 1358 cmpl(src1, Address(rscratch, 0)); 1359 } 1360 } 1361 1362 void MacroAssembler::cmp32(Register src1, int32_t imm) { 1363 Assembler::cmpl(src1, imm); 1364 } 1365 1366 void MacroAssembler::cmp32(Register src1, Address src2) { 1367 Assembler::cmpl(src1, src2); 1368 } 1369 1370 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1371 ucomisd(opr1, opr2); 1372 1373 Label L; 1374 if (unordered_is_less) { 1375 movl(dst, -1); 1376 jcc(Assembler::parity, L); 1377 jcc(Assembler::below , L); 1378 movl(dst, 0); 1379 jcc(Assembler::equal , L); 1380 increment(dst); 1381 } else { // unordered is greater 1382 movl(dst, 1); 1383 jcc(Assembler::parity, L); 1384 jcc(Assembler::above , L); 1385 movl(dst, 0); 1386 jcc(Assembler::equal , L); 1387 decrementl(dst); 1388 } 1389 bind(L); 1390 } 1391 1392 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1393 ucomiss(opr1, opr2); 1394 1395 Label L; 1396 if (unordered_is_less) { 1397 movl(dst, -1); 1398 jcc(Assembler::parity, L); 1399 jcc(Assembler::below , L); 1400 movl(dst, 0); 1401 jcc(Assembler::equal , L); 1402 increment(dst); 1403 } else { // unordered is greater 1404 movl(dst, 1); 1405 jcc(Assembler::parity, L); 1406 jcc(Assembler::above , L); 1407 movl(dst, 0); 1408 jcc(Assembler::equal , L); 1409 decrementl(dst); 1410 } 1411 bind(L); 1412 } 1413 1414 1415 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) { 1416 assert(rscratch != noreg || always_reachable(src1), "missing"); 1417 1418 if (reachable(src1)) { 1419 cmpb(as_Address(src1), imm); 1420 } else { 1421 lea(rscratch, src1); 1422 cmpb(Address(rscratch, 0), imm); 1423 } 1424 } 1425 1426 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) { 1427 assert(rscratch != noreg || always_reachable(src2), "missing"); 1428 1429 if (src2.is_lval()) { 1430 movptr(rscratch, src2); 1431 Assembler::cmpq(src1, rscratch); 1432 } else if (reachable(src2)) { 1433 cmpq(src1, as_Address(src2)); 1434 } else { 1435 lea(rscratch, src2); 1436 Assembler::cmpq(src1, Address(rscratch, 0)); 1437 } 1438 } 1439 1440 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) { 1441 assert(src2.is_lval(), "not a mem-mem compare"); 1442 // moves src2's literal address 1443 movptr(rscratch, src2); 1444 Assembler::cmpq(src1, rscratch); 1445 } 1446 1447 void MacroAssembler::cmpoop(Register src1, Register src2) { 1448 cmpptr(src1, src2); 1449 } 1450 1451 void MacroAssembler::cmpoop(Register src1, Address src2) { 1452 cmpptr(src1, src2); 1453 } 1454 1455 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) { 1456 movoop(rscratch, src2); 1457 cmpptr(src1, rscratch); 1458 } 1459 1460 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) { 1461 assert(rscratch != noreg || always_reachable(adr), "missing"); 1462 1463 if (reachable(adr)) { 1464 lock(); 1465 cmpxchgptr(reg, as_Address(adr)); 1466 } else { 1467 lea(rscratch, adr); 1468 lock(); 1469 cmpxchgptr(reg, Address(rscratch, 0)); 1470 } 1471 } 1472 1473 void MacroAssembler::cmpxchgptr(Register reg, Address adr) { 1474 cmpxchgq(reg, adr); 1475 } 1476 1477 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1478 assert(rscratch != noreg || always_reachable(src), "missing"); 1479 1480 if (reachable(src)) { 1481 Assembler::comisd(dst, as_Address(src)); 1482 } else { 1483 lea(rscratch, src); 1484 Assembler::comisd(dst, Address(rscratch, 0)); 1485 } 1486 } 1487 1488 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1489 assert(rscratch != noreg || always_reachable(src), "missing"); 1490 1491 if (reachable(src)) { 1492 Assembler::comiss(dst, as_Address(src)); 1493 } else { 1494 lea(rscratch, src); 1495 Assembler::comiss(dst, Address(rscratch, 0)); 1496 } 1497 } 1498 1499 1500 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) { 1501 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1502 1503 Condition negated_cond = negate_condition(cond); 1504 Label L; 1505 jcc(negated_cond, L); 1506 pushf(); // Preserve flags 1507 atomic_incl(counter_addr, rscratch); 1508 popf(); 1509 bind(L); 1510 } 1511 1512 int MacroAssembler::corrected_idivl(Register reg) { 1513 // Full implementation of Java idiv and irem; checks for 1514 // special case as described in JVM spec., p.243 & p.271. 1515 // The function returns the (pc) offset of the idivl 1516 // instruction - may be needed for implicit exceptions. 1517 // 1518 // normal case special case 1519 // 1520 // input : rax,: dividend min_int 1521 // reg: divisor (may not be rax,/rdx) -1 1522 // 1523 // output: rax,: quotient (= rax, idiv reg) min_int 1524 // rdx: remainder (= rax, irem reg) 0 1525 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); 1526 const int min_int = 0x80000000; 1527 Label normal_case, special_case; 1528 1529 // check for special case 1530 cmpl(rax, min_int); 1531 jcc(Assembler::notEqual, normal_case); 1532 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) 1533 cmpl(reg, -1); 1534 jcc(Assembler::equal, special_case); 1535 1536 // handle normal case 1537 bind(normal_case); 1538 cdql(); 1539 int idivl_offset = offset(); 1540 idivl(reg); 1541 1542 // normal and special case exit 1543 bind(special_case); 1544 1545 return idivl_offset; 1546 } 1547 1548 1549 1550 void MacroAssembler::decrementl(Register reg, int value) { 1551 if (value == min_jint) {subl(reg, value) ; return; } 1552 if (value < 0) { incrementl(reg, -value); return; } 1553 if (value == 0) { ; return; } 1554 if (value == 1 && UseIncDec) { decl(reg) ; return; } 1555 /* else */ { subl(reg, value) ; return; } 1556 } 1557 1558 void MacroAssembler::decrementl(Address dst, int value) { 1559 if (value == min_jint) {subl(dst, value) ; return; } 1560 if (value < 0) { incrementl(dst, -value); return; } 1561 if (value == 0) { ; return; } 1562 if (value == 1 && UseIncDec) { decl(dst) ; return; } 1563 /* else */ { subl(dst, value) ; return; } 1564 } 1565 1566 void MacroAssembler::division_with_shift (Register reg, int shift_value) { 1567 assert(shift_value > 0, "illegal shift value"); 1568 Label _is_positive; 1569 testl (reg, reg); 1570 jcc (Assembler::positive, _is_positive); 1571 int offset = (1 << shift_value) - 1 ; 1572 1573 if (offset == 1) { 1574 incrementl(reg); 1575 } else { 1576 addl(reg, offset); 1577 } 1578 1579 bind (_is_positive); 1580 sarl(reg, shift_value); 1581 } 1582 1583 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1584 assert(rscratch != noreg || always_reachable(src), "missing"); 1585 1586 if (reachable(src)) { 1587 Assembler::divsd(dst, as_Address(src)); 1588 } else { 1589 lea(rscratch, src); 1590 Assembler::divsd(dst, Address(rscratch, 0)); 1591 } 1592 } 1593 1594 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1595 assert(rscratch != noreg || always_reachable(src), "missing"); 1596 1597 if (reachable(src)) { 1598 Assembler::divss(dst, as_Address(src)); 1599 } else { 1600 lea(rscratch, src); 1601 Assembler::divss(dst, Address(rscratch, 0)); 1602 } 1603 } 1604 1605 void MacroAssembler::enter() { 1606 push(rbp); 1607 mov(rbp, rsp); 1608 } 1609 1610 void MacroAssembler::post_call_nop() { 1611 if (!Continuations::enabled()) { 1612 return; 1613 } 1614 InstructionMark im(this); 1615 relocate(post_call_nop_Relocation::spec()); 1616 InlineSkippedInstructionsCounter skipCounter(this); 1617 emit_int8((uint8_t)0x0f); 1618 emit_int8((uint8_t)0x1f); 1619 emit_int8((uint8_t)0x84); 1620 emit_int8((uint8_t)0x00); 1621 emit_int32(0x00); 1622 } 1623 1624 // A 5 byte nop that is safe for patching (see patch_verified_entry) 1625 void MacroAssembler::fat_nop() { 1626 if (UseAddressNop) { 1627 addr_nop_5(); 1628 } else { 1629 emit_int8((uint8_t)0x26); // es: 1630 emit_int8((uint8_t)0x2e); // cs: 1631 emit_int8((uint8_t)0x64); // fs: 1632 emit_int8((uint8_t)0x65); // gs: 1633 emit_int8((uint8_t)0x90); 1634 } 1635 } 1636 1637 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1638 assert(rscratch != noreg || always_reachable(src), "missing"); 1639 if (reachable(src)) { 1640 Assembler::mulpd(dst, as_Address(src)); 1641 } else { 1642 lea(rscratch, src); 1643 Assembler::mulpd(dst, Address(rscratch, 0)); 1644 } 1645 } 1646 1647 // dst = c = a * b + c 1648 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 1649 Assembler::vfmadd231sd(c, a, b); 1650 if (dst != c) { 1651 movdbl(dst, c); 1652 } 1653 } 1654 1655 // dst = c = a * b + c 1656 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 1657 Assembler::vfmadd231ss(c, a, b); 1658 if (dst != c) { 1659 movflt(dst, c); 1660 } 1661 } 1662 1663 // dst = c = a * b + c 1664 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 1665 Assembler::vfmadd231pd(c, a, b, vector_len); 1666 if (dst != c) { 1667 vmovdqu(dst, c); 1668 } 1669 } 1670 1671 // dst = c = a * b + c 1672 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 1673 Assembler::vfmadd231ps(c, a, b, vector_len); 1674 if (dst != c) { 1675 vmovdqu(dst, c); 1676 } 1677 } 1678 1679 // dst = c = a * b + c 1680 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 1681 Assembler::vfmadd231pd(c, a, b, vector_len); 1682 if (dst != c) { 1683 vmovdqu(dst, c); 1684 } 1685 } 1686 1687 // dst = c = a * b + c 1688 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 1689 Assembler::vfmadd231ps(c, a, b, vector_len); 1690 if (dst != c) { 1691 vmovdqu(dst, c); 1692 } 1693 } 1694 1695 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) { 1696 assert(rscratch != noreg || always_reachable(dst), "missing"); 1697 1698 if (reachable(dst)) { 1699 incrementl(as_Address(dst)); 1700 } else { 1701 lea(rscratch, dst); 1702 incrementl(Address(rscratch, 0)); 1703 } 1704 } 1705 1706 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) { 1707 incrementl(as_Address(dst, rscratch)); 1708 } 1709 1710 void MacroAssembler::incrementl(Register reg, int value) { 1711 if (value == min_jint) {addl(reg, value) ; return; } 1712 if (value < 0) { decrementl(reg, -value); return; } 1713 if (value == 0) { ; return; } 1714 if (value == 1 && UseIncDec) { incl(reg) ; return; } 1715 /* else */ { addl(reg, value) ; return; } 1716 } 1717 1718 void MacroAssembler::incrementl(Address dst, int value) { 1719 if (value == min_jint) {addl(dst, value) ; return; } 1720 if (value < 0) { decrementl(dst, -value); return; } 1721 if (value == 0) { ; return; } 1722 if (value == 1 && UseIncDec) { incl(dst) ; return; } 1723 /* else */ { addl(dst, value) ; return; } 1724 } 1725 1726 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) { 1727 assert(rscratch != noreg || always_reachable(dst), "missing"); 1728 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump"); 1729 if (reachable(dst)) { 1730 jmp_literal(dst.target(), dst.rspec()); 1731 } else { 1732 lea(rscratch, dst); 1733 jmp(rscratch); 1734 } 1735 } 1736 1737 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) { 1738 assert(rscratch != noreg || always_reachable(dst), "missing"); 1739 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc"); 1740 if (reachable(dst)) { 1741 InstructionMark im(this); 1742 relocate(dst.reloc()); 1743 const int short_size = 2; 1744 const int long_size = 6; 1745 int offs = (intptr_t)dst.target() - ((intptr_t)pc()); 1746 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { 1747 // 0111 tttn #8-bit disp 1748 emit_int8(0x70 | cc); 1749 emit_int8((offs - short_size) & 0xFF); 1750 } else { 1751 // 0000 1111 1000 tttn #32-bit disp 1752 emit_int8(0x0F); 1753 emit_int8((unsigned char)(0x80 | cc)); 1754 emit_int32(offs - long_size); 1755 } 1756 } else { 1757 #ifdef ASSERT 1758 warning("reversing conditional branch"); 1759 #endif /* ASSERT */ 1760 Label skip; 1761 jccb(reverse[cc], skip); 1762 lea(rscratch, dst); 1763 Assembler::jmp(rscratch); 1764 bind(skip); 1765 } 1766 } 1767 1768 void MacroAssembler::cmp32_mxcsr_std(Address mxcsr_save, Register tmp, Register rscratch) { 1769 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 1770 assert(rscratch != noreg || always_reachable(mxcsr_std), "missing"); 1771 1772 stmxcsr(mxcsr_save); 1773 movl(tmp, mxcsr_save); 1774 if (EnableX86ECoreOpts) { 1775 // The mxcsr_std has status bits set for performance on ECore 1776 orl(tmp, 0x003f); 1777 } else { 1778 // Mask out status bits (only check control and mask bits) 1779 andl(tmp, 0xFFC0); 1780 } 1781 cmp32(tmp, mxcsr_std, rscratch); 1782 } 1783 1784 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) { 1785 assert(rscratch != noreg || always_reachable(src), "missing"); 1786 1787 if (reachable(src)) { 1788 Assembler::ldmxcsr(as_Address(src)); 1789 } else { 1790 lea(rscratch, src); 1791 Assembler::ldmxcsr(Address(rscratch, 0)); 1792 } 1793 } 1794 1795 int MacroAssembler::load_signed_byte(Register dst, Address src) { 1796 int off = offset(); 1797 movsbl(dst, src); // movsxb 1798 return off; 1799 } 1800 1801 // Note: load_signed_short used to be called load_signed_word. 1802 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler 1803 // manual, which means 16 bits, that usage is found nowhere in HotSpot code. 1804 // The term "word" in HotSpot means a 32- or 64-bit machine word. 1805 int MacroAssembler::load_signed_short(Register dst, Address src) { 1806 // This is dubious to me since it seems safe to do a signed 16 => 64 bit 1807 // version but this is what 64bit has always done. This seems to imply 1808 // that users are only using 32bits worth. 1809 int off = offset(); 1810 movswl(dst, src); // movsxw 1811 return off; 1812 } 1813 1814 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 1815 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 1816 // and "3.9 Partial Register Penalties", p. 22). 1817 int off = offset(); 1818 movzbl(dst, src); // movzxb 1819 return off; 1820 } 1821 1822 // Note: load_unsigned_short used to be called load_unsigned_word. 1823 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 1824 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 1825 // and "3.9 Partial Register Penalties", p. 22). 1826 int off = offset(); 1827 movzwl(dst, src); // movzxw 1828 return off; 1829 } 1830 1831 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 1832 switch (size_in_bytes) { 1833 case 8: movq(dst, src); break; 1834 case 4: movl(dst, src); break; 1835 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 1836 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 1837 default: ShouldNotReachHere(); 1838 } 1839 } 1840 1841 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 1842 switch (size_in_bytes) { 1843 case 8: movq(dst, src); break; 1844 case 4: movl(dst, src); break; 1845 case 2: movw(dst, src); break; 1846 case 1: movb(dst, src); break; 1847 default: ShouldNotReachHere(); 1848 } 1849 } 1850 1851 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) { 1852 assert(rscratch != noreg || always_reachable(dst), "missing"); 1853 1854 if (reachable(dst)) { 1855 movl(as_Address(dst), src); 1856 } else { 1857 lea(rscratch, dst); 1858 movl(Address(rscratch, 0), src); 1859 } 1860 } 1861 1862 void MacroAssembler::mov32(Register dst, AddressLiteral src) { 1863 if (reachable(src)) { 1864 movl(dst, as_Address(src)); 1865 } else { 1866 lea(dst, src); 1867 movl(dst, Address(dst, 0)); 1868 } 1869 } 1870 1871 // C++ bool manipulation 1872 1873 void MacroAssembler::movbool(Register dst, Address src) { 1874 if(sizeof(bool) == 1) 1875 movb(dst, src); 1876 else if(sizeof(bool) == 2) 1877 movw(dst, src); 1878 else if(sizeof(bool) == 4) 1879 movl(dst, src); 1880 else 1881 // unsupported 1882 ShouldNotReachHere(); 1883 } 1884 1885 void MacroAssembler::movbool(Address dst, bool boolconst) { 1886 if(sizeof(bool) == 1) 1887 movb(dst, (int) boolconst); 1888 else if(sizeof(bool) == 2) 1889 movw(dst, (int) boolconst); 1890 else if(sizeof(bool) == 4) 1891 movl(dst, (int) boolconst); 1892 else 1893 // unsupported 1894 ShouldNotReachHere(); 1895 } 1896 1897 void MacroAssembler::movbool(Address dst, Register src) { 1898 if(sizeof(bool) == 1) 1899 movb(dst, src); 1900 else if(sizeof(bool) == 2) 1901 movw(dst, src); 1902 else if(sizeof(bool) == 4) 1903 movl(dst, src); 1904 else 1905 // unsupported 1906 ShouldNotReachHere(); 1907 } 1908 1909 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) { 1910 assert(rscratch != noreg || always_reachable(src), "missing"); 1911 1912 if (reachable(src)) { 1913 movdl(dst, as_Address(src)); 1914 } else { 1915 lea(rscratch, src); 1916 movdl(dst, Address(rscratch, 0)); 1917 } 1918 } 1919 1920 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) { 1921 assert(rscratch != noreg || always_reachable(src), "missing"); 1922 1923 if (reachable(src)) { 1924 movq(dst, as_Address(src)); 1925 } else { 1926 lea(rscratch, src); 1927 movq(dst, Address(rscratch, 0)); 1928 } 1929 } 1930 1931 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) { 1932 assert(rscratch != noreg || always_reachable(src), "missing"); 1933 1934 if (reachable(src)) { 1935 if (UseXmmLoadAndClearUpper) { 1936 movsd (dst, as_Address(src)); 1937 } else { 1938 movlpd(dst, as_Address(src)); 1939 } 1940 } else { 1941 lea(rscratch, src); 1942 if (UseXmmLoadAndClearUpper) { 1943 movsd (dst, Address(rscratch, 0)); 1944 } else { 1945 movlpd(dst, Address(rscratch, 0)); 1946 } 1947 } 1948 } 1949 1950 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) { 1951 assert(rscratch != noreg || always_reachable(src), "missing"); 1952 1953 if (reachable(src)) { 1954 movss(dst, as_Address(src)); 1955 } else { 1956 lea(rscratch, src); 1957 movss(dst, Address(rscratch, 0)); 1958 } 1959 } 1960 1961 void MacroAssembler::movptr(Register dst, Register src) { 1962 movq(dst, src); 1963 } 1964 1965 void MacroAssembler::movptr(Register dst, Address src) { 1966 movq(dst, src); 1967 } 1968 1969 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 1970 void MacroAssembler::movptr(Register dst, intptr_t src) { 1971 if (is_uimm32(src)) { 1972 movl(dst, checked_cast<uint32_t>(src)); 1973 } else if (is_simm32(src)) { 1974 movq(dst, checked_cast<int32_t>(src)); 1975 } else { 1976 mov64(dst, src); 1977 } 1978 } 1979 1980 void MacroAssembler::movptr(Address dst, Register src) { 1981 movq(dst, src); 1982 } 1983 1984 void MacroAssembler::movptr(Address dst, int32_t src) { 1985 movslq(dst, src); 1986 } 1987 1988 void MacroAssembler::movdqu(Address dst, XMMRegister src) { 1989 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 1990 Assembler::movdqu(dst, src); 1991 } 1992 1993 void MacroAssembler::movdqu(XMMRegister dst, Address src) { 1994 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 1995 Assembler::movdqu(dst, src); 1996 } 1997 1998 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) { 1999 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2000 Assembler::movdqu(dst, src); 2001 } 2002 2003 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2004 assert(rscratch != noreg || always_reachable(src), "missing"); 2005 2006 if (reachable(src)) { 2007 movdqu(dst, as_Address(src)); 2008 } else { 2009 lea(rscratch, src); 2010 movdqu(dst, Address(rscratch, 0)); 2011 } 2012 } 2013 2014 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) { 2015 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2016 Assembler::vmovdqu(dst, src); 2017 } 2018 2019 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) { 2020 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2021 Assembler::vmovdqu(dst, src); 2022 } 2023 2024 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) { 2025 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2026 Assembler::vmovdqu(dst, src); 2027 } 2028 2029 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2030 assert(rscratch != noreg || always_reachable(src), "missing"); 2031 2032 if (reachable(src)) { 2033 vmovdqu(dst, as_Address(src)); 2034 } 2035 else { 2036 lea(rscratch, src); 2037 vmovdqu(dst, Address(rscratch, 0)); 2038 } 2039 } 2040 2041 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2042 assert(rscratch != noreg || always_reachable(src), "missing"); 2043 2044 if (vector_len == AVX_512bit) { 2045 evmovdquq(dst, src, AVX_512bit, rscratch); 2046 } else if (vector_len == AVX_256bit) { 2047 vmovdqu(dst, src, rscratch); 2048 } else { 2049 movdqu(dst, src, rscratch); 2050 } 2051 } 2052 2053 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src, int vector_len) { 2054 if (vector_len == AVX_512bit) { 2055 evmovdquq(dst, src, AVX_512bit); 2056 } else if (vector_len == AVX_256bit) { 2057 vmovdqu(dst, src); 2058 } else { 2059 movdqu(dst, src); 2060 } 2061 } 2062 2063 void MacroAssembler::vmovdqu(Address dst, XMMRegister src, int vector_len) { 2064 if (vector_len == AVX_512bit) { 2065 evmovdquq(dst, src, AVX_512bit); 2066 } else if (vector_len == AVX_256bit) { 2067 vmovdqu(dst, src); 2068 } else { 2069 movdqu(dst, src); 2070 } 2071 } 2072 2073 void MacroAssembler::vmovdqu(XMMRegister dst, Address src, int vector_len) { 2074 if (vector_len == AVX_512bit) { 2075 evmovdquq(dst, src, AVX_512bit); 2076 } else if (vector_len == AVX_256bit) { 2077 vmovdqu(dst, src); 2078 } else { 2079 movdqu(dst, src); 2080 } 2081 } 2082 2083 void MacroAssembler::vmovdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2084 assert(rscratch != noreg || always_reachable(src), "missing"); 2085 2086 if (reachable(src)) { 2087 vmovdqa(dst, as_Address(src)); 2088 } 2089 else { 2090 lea(rscratch, src); 2091 vmovdqa(dst, Address(rscratch, 0)); 2092 } 2093 } 2094 2095 void MacroAssembler::vmovdqa(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2096 assert(rscratch != noreg || always_reachable(src), "missing"); 2097 2098 if (vector_len == AVX_512bit) { 2099 evmovdqaq(dst, src, AVX_512bit, rscratch); 2100 } else if (vector_len == AVX_256bit) { 2101 vmovdqa(dst, src, rscratch); 2102 } else { 2103 movdqa(dst, src, rscratch); 2104 } 2105 } 2106 2107 void MacroAssembler::kmov(KRegister dst, Address src) { 2108 if (VM_Version::supports_avx512bw()) { 2109 kmovql(dst, src); 2110 } else { 2111 assert(VM_Version::supports_evex(), ""); 2112 kmovwl(dst, src); 2113 } 2114 } 2115 2116 void MacroAssembler::kmov(Address dst, KRegister src) { 2117 if (VM_Version::supports_avx512bw()) { 2118 kmovql(dst, src); 2119 } else { 2120 assert(VM_Version::supports_evex(), ""); 2121 kmovwl(dst, src); 2122 } 2123 } 2124 2125 void MacroAssembler::kmov(KRegister dst, KRegister src) { 2126 if (VM_Version::supports_avx512bw()) { 2127 kmovql(dst, src); 2128 } else { 2129 assert(VM_Version::supports_evex(), ""); 2130 kmovwl(dst, src); 2131 } 2132 } 2133 2134 void MacroAssembler::kmov(Register dst, KRegister src) { 2135 if (VM_Version::supports_avx512bw()) { 2136 kmovql(dst, src); 2137 } else { 2138 assert(VM_Version::supports_evex(), ""); 2139 kmovwl(dst, src); 2140 } 2141 } 2142 2143 void MacroAssembler::kmov(KRegister dst, Register src) { 2144 if (VM_Version::supports_avx512bw()) { 2145 kmovql(dst, src); 2146 } else { 2147 assert(VM_Version::supports_evex(), ""); 2148 kmovwl(dst, src); 2149 } 2150 } 2151 2152 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) { 2153 assert(rscratch != noreg || always_reachable(src), "missing"); 2154 2155 if (reachable(src)) { 2156 kmovql(dst, as_Address(src)); 2157 } else { 2158 lea(rscratch, src); 2159 kmovql(dst, Address(rscratch, 0)); 2160 } 2161 } 2162 2163 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) { 2164 assert(rscratch != noreg || always_reachable(src), "missing"); 2165 2166 if (reachable(src)) { 2167 kmovwl(dst, as_Address(src)); 2168 } else { 2169 lea(rscratch, src); 2170 kmovwl(dst, Address(rscratch, 0)); 2171 } 2172 } 2173 2174 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2175 int vector_len, Register rscratch) { 2176 assert(rscratch != noreg || always_reachable(src), "missing"); 2177 2178 if (reachable(src)) { 2179 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len); 2180 } else { 2181 lea(rscratch, src); 2182 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len); 2183 } 2184 } 2185 2186 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2187 int vector_len, Register rscratch) { 2188 assert(rscratch != noreg || always_reachable(src), "missing"); 2189 2190 if (reachable(src)) { 2191 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len); 2192 } else { 2193 lea(rscratch, src); 2194 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len); 2195 } 2196 } 2197 2198 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2199 assert(rscratch != noreg || always_reachable(src), "missing"); 2200 2201 if (reachable(src)) { 2202 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len); 2203 } else { 2204 lea(rscratch, src); 2205 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len); 2206 } 2207 } 2208 2209 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2210 assert(rscratch != noreg || always_reachable(src), "missing"); 2211 2212 if (reachable(src)) { 2213 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len); 2214 } else { 2215 lea(rscratch, src); 2216 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len); 2217 } 2218 } 2219 2220 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2221 assert(rscratch != noreg || always_reachable(src), "missing"); 2222 2223 if (reachable(src)) { 2224 Assembler::evmovdquq(dst, as_Address(src), vector_len); 2225 } else { 2226 lea(rscratch, src); 2227 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len); 2228 } 2229 } 2230 2231 void MacroAssembler::evmovdqaq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2232 assert(rscratch != noreg || always_reachable(src), "missing"); 2233 2234 if (reachable(src)) { 2235 Assembler::evmovdqaq(dst, mask, as_Address(src), merge, vector_len); 2236 } else { 2237 lea(rscratch, src); 2238 Assembler::evmovdqaq(dst, mask, Address(rscratch, 0), merge, vector_len); 2239 } 2240 } 2241 2242 void MacroAssembler::evmovdqaq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2243 assert(rscratch != noreg || always_reachable(src), "missing"); 2244 2245 if (reachable(src)) { 2246 Assembler::evmovdqaq(dst, as_Address(src), vector_len); 2247 } else { 2248 lea(rscratch, src); 2249 Assembler::evmovdqaq(dst, Address(rscratch, 0), vector_len); 2250 } 2251 } 2252 2253 void MacroAssembler::movapd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2254 assert(rscratch != noreg || always_reachable(src), "missing"); 2255 2256 if (reachable(src)) { 2257 Assembler::movapd(dst, as_Address(src)); 2258 } else { 2259 lea(rscratch, src); 2260 Assembler::movapd(dst, Address(rscratch, 0)); 2261 } 2262 } 2263 2264 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2265 assert(rscratch != noreg || always_reachable(src), "missing"); 2266 2267 if (reachable(src)) { 2268 Assembler::movdqa(dst, as_Address(src)); 2269 } else { 2270 lea(rscratch, src); 2271 Assembler::movdqa(dst, Address(rscratch, 0)); 2272 } 2273 } 2274 2275 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2276 assert(rscratch != noreg || always_reachable(src), "missing"); 2277 2278 if (reachable(src)) { 2279 Assembler::movsd(dst, as_Address(src)); 2280 } else { 2281 lea(rscratch, src); 2282 Assembler::movsd(dst, Address(rscratch, 0)); 2283 } 2284 } 2285 2286 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2287 assert(rscratch != noreg || always_reachable(src), "missing"); 2288 2289 if (reachable(src)) { 2290 Assembler::movss(dst, as_Address(src)); 2291 } else { 2292 lea(rscratch, src); 2293 Assembler::movss(dst, Address(rscratch, 0)); 2294 } 2295 } 2296 2297 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) { 2298 assert(rscratch != noreg || always_reachable(src), "missing"); 2299 2300 if (reachable(src)) { 2301 Assembler::movddup(dst, as_Address(src)); 2302 } else { 2303 lea(rscratch, src); 2304 Assembler::movddup(dst, Address(rscratch, 0)); 2305 } 2306 } 2307 2308 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2309 assert(rscratch != noreg || always_reachable(src), "missing"); 2310 2311 if (reachable(src)) { 2312 Assembler::vmovddup(dst, as_Address(src), vector_len); 2313 } else { 2314 lea(rscratch, src); 2315 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len); 2316 } 2317 } 2318 2319 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2320 assert(rscratch != noreg || always_reachable(src), "missing"); 2321 2322 if (reachable(src)) { 2323 Assembler::mulsd(dst, as_Address(src)); 2324 } else { 2325 lea(rscratch, src); 2326 Assembler::mulsd(dst, Address(rscratch, 0)); 2327 } 2328 } 2329 2330 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2331 assert(rscratch != noreg || always_reachable(src), "missing"); 2332 2333 if (reachable(src)) { 2334 Assembler::mulss(dst, as_Address(src)); 2335 } else { 2336 lea(rscratch, src); 2337 Assembler::mulss(dst, Address(rscratch, 0)); 2338 } 2339 } 2340 2341 void MacroAssembler::null_check(Register reg, int offset) { 2342 if (needs_explicit_null_check(offset)) { 2343 // provoke OS null exception if reg is null by 2344 // accessing M[reg] w/o changing any (non-CC) registers 2345 // NOTE: cmpl is plenty here to provoke a segv 2346 cmpptr(rax, Address(reg, 0)); 2347 // Note: should probably use testl(rax, Address(reg, 0)); 2348 // may be shorter code (however, this version of 2349 // testl needs to be implemented first) 2350 } else { 2351 // nothing to do, (later) access of M[reg + offset] 2352 // will provoke OS null exception if reg is null 2353 } 2354 } 2355 2356 void MacroAssembler::os_breakpoint() { 2357 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability 2358 // (e.g., MSVC can't call ps() otherwise) 2359 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); 2360 } 2361 2362 void MacroAssembler::unimplemented(const char* what) { 2363 const char* buf = nullptr; 2364 { 2365 ResourceMark rm; 2366 stringStream ss; 2367 ss.print("unimplemented: %s", what); 2368 buf = code_string(ss.as_string()); 2369 } 2370 stop(buf); 2371 } 2372 2373 #define XSTATE_BV 0x200 2374 2375 void MacroAssembler::pop_CPU_state() { 2376 pop_FPU_state(); 2377 pop_IU_state(); 2378 } 2379 2380 void MacroAssembler::pop_FPU_state() { 2381 fxrstor(Address(rsp, 0)); 2382 addptr(rsp, FPUStateSizeInWords * wordSize); 2383 } 2384 2385 void MacroAssembler::pop_IU_state() { 2386 popa(); 2387 addq(rsp, 8); 2388 popf(); 2389 } 2390 2391 // Save Integer and Float state 2392 // Warning: Stack must be 16 byte aligned (64bit) 2393 void MacroAssembler::push_CPU_state() { 2394 push_IU_state(); 2395 push_FPU_state(); 2396 } 2397 2398 void MacroAssembler::push_FPU_state() { 2399 subptr(rsp, FPUStateSizeInWords * wordSize); 2400 fxsave(Address(rsp, 0)); 2401 } 2402 2403 void MacroAssembler::push_IU_state() { 2404 // Push flags first because pusha kills them 2405 pushf(); 2406 // Make sure rsp stays 16-byte aligned 2407 subq(rsp, 8); 2408 pusha(); 2409 } 2410 2411 void MacroAssembler::push_cont_fastpath() { 2412 if (!Continuations::enabled()) return; 2413 2414 Label L_done; 2415 cmpptr(rsp, Address(r15_thread, JavaThread::cont_fastpath_offset())); 2416 jccb(Assembler::belowEqual, L_done); 2417 movptr(Address(r15_thread, JavaThread::cont_fastpath_offset()), rsp); 2418 bind(L_done); 2419 } 2420 2421 void MacroAssembler::pop_cont_fastpath() { 2422 if (!Continuations::enabled()) return; 2423 2424 Label L_done; 2425 cmpptr(rsp, Address(r15_thread, JavaThread::cont_fastpath_offset())); 2426 jccb(Assembler::below, L_done); 2427 movptr(Address(r15_thread, JavaThread::cont_fastpath_offset()), 0); 2428 bind(L_done); 2429 } 2430 2431 void MacroAssembler::inc_held_monitor_count() { 2432 incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 2433 } 2434 2435 void MacroAssembler::dec_held_monitor_count() { 2436 decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 2437 } 2438 2439 #ifdef ASSERT 2440 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) { 2441 Label no_cont; 2442 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset())); 2443 testl(cont, cont); 2444 jcc(Assembler::zero, no_cont); 2445 stop(name); 2446 bind(no_cont); 2447 } 2448 #endif 2449 2450 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { // determine java_thread register 2451 // we must set sp to zero to clear frame 2452 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); 2453 // must clear fp, so that compiled frames are not confused; it is 2454 // possible that we need it only for debugging 2455 if (clear_fp) { 2456 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); 2457 } 2458 // Always clear the pc because it could have been set by make_walkable() 2459 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); 2460 vzeroupper(); 2461 } 2462 2463 void MacroAssembler::round_to(Register reg, int modulus) { 2464 addptr(reg, modulus - 1); 2465 andptr(reg, -modulus); 2466 } 2467 2468 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod) { 2469 if (at_return) { 2470 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 2471 // we may safely use rsp instead to perform the stack watermark check. 2472 cmpptr(in_nmethod ? rsp : rbp, Address(r15_thread, JavaThread::polling_word_offset())); 2473 jcc(Assembler::above, slow_path); 2474 return; 2475 } 2476 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2477 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll 2478 } 2479 2480 // Calls to C land 2481 // 2482 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded 2483 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 2484 // has to be reset to 0. This is required to allow proper stack traversal. 2485 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 2486 Register last_java_fp, 2487 address last_java_pc, 2488 Register rscratch) { 2489 vzeroupper(); 2490 // determine last_java_sp register 2491 if (!last_java_sp->is_valid()) { 2492 last_java_sp = rsp; 2493 } 2494 // last_java_fp is optional 2495 if (last_java_fp->is_valid()) { 2496 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), last_java_fp); 2497 } 2498 // last_java_pc is optional 2499 if (last_java_pc != nullptr) { 2500 Address java_pc(r15_thread, 2501 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); 2502 lea(java_pc, InternalAddress(last_java_pc), rscratch); 2503 } 2504 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp); 2505 } 2506 2507 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 2508 Register last_java_fp, 2509 Label &L, 2510 Register scratch) { 2511 lea(scratch, L); 2512 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), scratch); 2513 set_last_Java_frame(last_java_sp, last_java_fp, nullptr, scratch); 2514 } 2515 2516 void MacroAssembler::shlptr(Register dst, int imm8) { 2517 shlq(dst, imm8); 2518 } 2519 2520 void MacroAssembler::shrptr(Register dst, int imm8) { 2521 shrq(dst, imm8); 2522 } 2523 2524 void MacroAssembler::sign_extend_byte(Register reg) { 2525 movsbl(reg, reg); // movsxb 2526 } 2527 2528 void MacroAssembler::sign_extend_short(Register reg) { 2529 movswl(reg, reg); // movsxw 2530 } 2531 2532 void MacroAssembler::testl(Address dst, int32_t imm32) { 2533 if (imm32 >= 0 && is8bit(imm32)) { 2534 testb(dst, imm32); 2535 } else { 2536 Assembler::testl(dst, imm32); 2537 } 2538 } 2539 2540 void MacroAssembler::testl(Register dst, int32_t imm32) { 2541 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) { 2542 testb(dst, imm32); 2543 } else { 2544 Assembler::testl(dst, imm32); 2545 } 2546 } 2547 2548 void MacroAssembler::testl(Register dst, AddressLiteral src) { 2549 assert(always_reachable(src), "Address should be reachable"); 2550 testl(dst, as_Address(src)); 2551 } 2552 2553 void MacroAssembler::testq(Address dst, int32_t imm32) { 2554 if (imm32 >= 0) { 2555 testl(dst, imm32); 2556 } else { 2557 Assembler::testq(dst, imm32); 2558 } 2559 } 2560 2561 void MacroAssembler::testq(Register dst, int32_t imm32) { 2562 if (imm32 >= 0) { 2563 testl(dst, imm32); 2564 } else { 2565 Assembler::testq(dst, imm32); 2566 } 2567 } 2568 2569 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) { 2570 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2571 Assembler::pcmpeqb(dst, src); 2572 } 2573 2574 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) { 2575 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2576 Assembler::pcmpeqw(dst, src); 2577 } 2578 2579 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) { 2580 assert((dst->encoding() < 16),"XMM register should be 0-15"); 2581 Assembler::pcmpestri(dst, src, imm8); 2582 } 2583 2584 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { 2585 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 2586 Assembler::pcmpestri(dst, src, imm8); 2587 } 2588 2589 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) { 2590 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2591 Assembler::pmovzxbw(dst, src); 2592 } 2593 2594 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) { 2595 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2596 Assembler::pmovzxbw(dst, src); 2597 } 2598 2599 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) { 2600 assert((src->encoding() < 16),"XMM register should be 0-15"); 2601 Assembler::pmovmskb(dst, src); 2602 } 2603 2604 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) { 2605 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 2606 Assembler::ptest(dst, src); 2607 } 2608 2609 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2610 assert(rscratch != noreg || always_reachable(src), "missing"); 2611 2612 if (reachable(src)) { 2613 Assembler::sqrtss(dst, as_Address(src)); 2614 } else { 2615 lea(rscratch, src); 2616 Assembler::sqrtss(dst, Address(rscratch, 0)); 2617 } 2618 } 2619 2620 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2621 assert(rscratch != noreg || always_reachable(src), "missing"); 2622 2623 if (reachable(src)) { 2624 Assembler::subsd(dst, as_Address(src)); 2625 } else { 2626 lea(rscratch, src); 2627 Assembler::subsd(dst, Address(rscratch, 0)); 2628 } 2629 } 2630 2631 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) { 2632 assert(rscratch != noreg || always_reachable(src), "missing"); 2633 2634 if (reachable(src)) { 2635 Assembler::roundsd(dst, as_Address(src), rmode); 2636 } else { 2637 lea(rscratch, src); 2638 Assembler::roundsd(dst, Address(rscratch, 0), rmode); 2639 } 2640 } 2641 2642 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2643 assert(rscratch != noreg || always_reachable(src), "missing"); 2644 2645 if (reachable(src)) { 2646 Assembler::subss(dst, as_Address(src)); 2647 } else { 2648 lea(rscratch, src); 2649 Assembler::subss(dst, Address(rscratch, 0)); 2650 } 2651 } 2652 2653 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2654 assert(rscratch != noreg || always_reachable(src), "missing"); 2655 2656 if (reachable(src)) { 2657 Assembler::ucomisd(dst, as_Address(src)); 2658 } else { 2659 lea(rscratch, src); 2660 Assembler::ucomisd(dst, Address(rscratch, 0)); 2661 } 2662 } 2663 2664 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2665 assert(rscratch != noreg || always_reachable(src), "missing"); 2666 2667 if (reachable(src)) { 2668 Assembler::ucomiss(dst, as_Address(src)); 2669 } else { 2670 lea(rscratch, src); 2671 Assembler::ucomiss(dst, Address(rscratch, 0)); 2672 } 2673 } 2674 2675 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2676 assert(rscratch != noreg || always_reachable(src), "missing"); 2677 2678 // Used in sign-bit flipping with aligned address. 2679 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 2680 2681 if (UseAVX > 2 && 2682 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 2683 (dst->encoding() >= 16)) { 2684 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch); 2685 } else if (reachable(src)) { 2686 Assembler::xorpd(dst, as_Address(src)); 2687 } else { 2688 lea(rscratch, src); 2689 Assembler::xorpd(dst, Address(rscratch, 0)); 2690 } 2691 } 2692 2693 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) { 2694 if (UseAVX > 2 && 2695 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 2696 ((dst->encoding() >= 16) || (src->encoding() >= 16))) { 2697 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 2698 } else { 2699 Assembler::xorpd(dst, src); 2700 } 2701 } 2702 2703 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) { 2704 if (UseAVX > 2 && 2705 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 2706 ((dst->encoding() >= 16) || (src->encoding() >= 16))) { 2707 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 2708 } else { 2709 Assembler::xorps(dst, src); 2710 } 2711 } 2712 2713 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) { 2714 assert(rscratch != noreg || always_reachable(src), "missing"); 2715 2716 // Used in sign-bit flipping with aligned address. 2717 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 2718 2719 if (UseAVX > 2 && 2720 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 2721 (dst->encoding() >= 16)) { 2722 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch); 2723 } else if (reachable(src)) { 2724 Assembler::xorps(dst, as_Address(src)); 2725 } else { 2726 lea(rscratch, src); 2727 Assembler::xorps(dst, Address(rscratch, 0)); 2728 } 2729 } 2730 2731 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) { 2732 assert(rscratch != noreg || always_reachable(src), "missing"); 2733 2734 // Used in sign-bit flipping with aligned address. 2735 bool aligned_adr = (((intptr_t)src.target() & 15) == 0); 2736 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes"); 2737 if (reachable(src)) { 2738 Assembler::pshufb(dst, as_Address(src)); 2739 } else { 2740 lea(rscratch, src); 2741 Assembler::pshufb(dst, Address(rscratch, 0)); 2742 } 2743 } 2744 2745 // AVX 3-operands instructions 2746 2747 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 2748 assert(rscratch != noreg || always_reachable(src), "missing"); 2749 2750 if (reachable(src)) { 2751 vaddsd(dst, nds, as_Address(src)); 2752 } else { 2753 lea(rscratch, src); 2754 vaddsd(dst, nds, Address(rscratch, 0)); 2755 } 2756 } 2757 2758 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 2759 assert(rscratch != noreg || always_reachable(src), "missing"); 2760 2761 if (reachable(src)) { 2762 vaddss(dst, nds, as_Address(src)); 2763 } else { 2764 lea(rscratch, src); 2765 vaddss(dst, nds, Address(rscratch, 0)); 2766 } 2767 } 2768 2769 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 2770 assert(UseAVX > 0, "requires some form of AVX"); 2771 assert(rscratch != noreg || always_reachable(src), "missing"); 2772 2773 if (reachable(src)) { 2774 Assembler::vpaddb(dst, nds, as_Address(src), vector_len); 2775 } else { 2776 lea(rscratch, src); 2777 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len); 2778 } 2779 } 2780 2781 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 2782 assert(UseAVX > 0, "requires some form of AVX"); 2783 assert(rscratch != noreg || always_reachable(src), "missing"); 2784 2785 if (reachable(src)) { 2786 Assembler::vpaddd(dst, nds, as_Address(src), vector_len); 2787 } else { 2788 lea(rscratch, src); 2789 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len); 2790 } 2791 } 2792 2793 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 2794 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 2795 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 2796 2797 vandps(dst, nds, negate_field, vector_len, rscratch); 2798 } 2799 2800 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 2801 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 2802 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 2803 2804 vandpd(dst, nds, negate_field, vector_len, rscratch); 2805 } 2806 2807 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 2808 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2809 Assembler::vpaddb(dst, nds, src, vector_len); 2810 } 2811 2812 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 2813 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2814 Assembler::vpaddb(dst, nds, src, vector_len); 2815 } 2816 2817 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 2818 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2819 Assembler::vpaddw(dst, nds, src, vector_len); 2820 } 2821 2822 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 2823 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2824 Assembler::vpaddw(dst, nds, src, vector_len); 2825 } 2826 2827 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 2828 assert(rscratch != noreg || always_reachable(src), "missing"); 2829 2830 if (reachable(src)) { 2831 Assembler::vpand(dst, nds, as_Address(src), vector_len); 2832 } else { 2833 lea(rscratch, src); 2834 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len); 2835 } 2836 } 2837 2838 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2839 assert(rscratch != noreg || always_reachable(src), "missing"); 2840 2841 if (reachable(src)) { 2842 Assembler::vpbroadcastd(dst, as_Address(src), vector_len); 2843 } else { 2844 lea(rscratch, src); 2845 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len); 2846 } 2847 } 2848 2849 void MacroAssembler::vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2850 assert(rscratch != noreg || always_reachable(src), "missing"); 2851 2852 if (reachable(src)) { 2853 Assembler::vbroadcasti128(dst, as_Address(src), vector_len); 2854 } else { 2855 lea(rscratch, src); 2856 Assembler::vbroadcasti128(dst, Address(rscratch, 0), vector_len); 2857 } 2858 } 2859 2860 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2861 assert(rscratch != noreg || always_reachable(src), "missing"); 2862 2863 if (reachable(src)) { 2864 Assembler::vpbroadcastq(dst, as_Address(src), vector_len); 2865 } else { 2866 lea(rscratch, src); 2867 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len); 2868 } 2869 } 2870 2871 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2872 assert(rscratch != noreg || always_reachable(src), "missing"); 2873 2874 if (reachable(src)) { 2875 Assembler::vbroadcastsd(dst, as_Address(src), vector_len); 2876 } else { 2877 lea(rscratch, src); 2878 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len); 2879 } 2880 } 2881 2882 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2883 assert(rscratch != noreg || always_reachable(src), "missing"); 2884 2885 if (reachable(src)) { 2886 Assembler::vbroadcastss(dst, as_Address(src), vector_len); 2887 } else { 2888 lea(rscratch, src); 2889 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len); 2890 } 2891 } 2892 2893 // Vector float blend 2894 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 2895 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 2896 // WARN: Allow dst == (src1|src2), mask == scratch 2897 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 2898 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst; 2899 bool dst_available = dst != mask && (dst != src1 || dst != src2); 2900 if (blend_emulation && scratch_available && dst_available) { 2901 if (compute_mask) { 2902 vpsrad(scratch, mask, 32, vector_len); 2903 mask = scratch; 2904 } 2905 if (dst == src1) { 2906 vpandn(dst, mask, src1, vector_len); // if mask == 0, src1 2907 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 2908 } else { 2909 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 2910 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1 2911 } 2912 vpor(dst, dst, scratch, vector_len); 2913 } else { 2914 Assembler::vblendvps(dst, src1, src2, mask, vector_len); 2915 } 2916 } 2917 2918 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 2919 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 2920 // WARN: Allow dst == (src1|src2), mask == scratch 2921 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 2922 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask); 2923 bool dst_available = dst != mask && (dst != src1 || dst != src2); 2924 if (blend_emulation && scratch_available && dst_available) { 2925 if (compute_mask) { 2926 vpxor(scratch, scratch, scratch, vector_len); 2927 vpcmpgtq(scratch, scratch, mask, vector_len); 2928 mask = scratch; 2929 } 2930 if (dst == src1) { 2931 vpandn(dst, mask, src1, vector_len); // if mask == 0, src 2932 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 2933 } else { 2934 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 2935 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src 2936 } 2937 vpor(dst, dst, scratch, vector_len); 2938 } else { 2939 Assembler::vblendvpd(dst, src1, src2, mask, vector_len); 2940 } 2941 } 2942 2943 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 2944 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2945 Assembler::vpcmpeqb(dst, nds, src, vector_len); 2946 } 2947 2948 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) { 2949 assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2950 Assembler::vpcmpeqb(dst, src1, src2, vector_len); 2951 } 2952 2953 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 2954 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2955 Assembler::vpcmpeqw(dst, nds, src, vector_len); 2956 } 2957 2958 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 2959 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2960 Assembler::vpcmpeqw(dst, nds, src, vector_len); 2961 } 2962 2963 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 2964 assert(rscratch != noreg || always_reachable(src), "missing"); 2965 2966 if (reachable(src)) { 2967 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len); 2968 } else { 2969 lea(rscratch, src); 2970 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len); 2971 } 2972 } 2973 2974 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 2975 int comparison, bool is_signed, int vector_len, Register rscratch) { 2976 assert(rscratch != noreg || always_reachable(src), "missing"); 2977 2978 if (reachable(src)) { 2979 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 2980 } else { 2981 lea(rscratch, src); 2982 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 2983 } 2984 } 2985 2986 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 2987 int comparison, bool is_signed, int vector_len, Register rscratch) { 2988 assert(rscratch != noreg || always_reachable(src), "missing"); 2989 2990 if (reachable(src)) { 2991 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 2992 } else { 2993 lea(rscratch, src); 2994 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 2995 } 2996 } 2997 2998 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 2999 int comparison, bool is_signed, int vector_len, Register rscratch) { 3000 assert(rscratch != noreg || always_reachable(src), "missing"); 3001 3002 if (reachable(src)) { 3003 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3004 } else { 3005 lea(rscratch, src); 3006 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3007 } 3008 } 3009 3010 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3011 int comparison, bool is_signed, int vector_len, Register rscratch) { 3012 assert(rscratch != noreg || always_reachable(src), "missing"); 3013 3014 if (reachable(src)) { 3015 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3016 } else { 3017 lea(rscratch, src); 3018 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3019 } 3020 } 3021 3022 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) { 3023 if (width == Assembler::Q) { 3024 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len); 3025 } else { 3026 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len); 3027 } 3028 } 3029 3030 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) { 3031 int eq_cond_enc = 0x29; 3032 int gt_cond_enc = 0x37; 3033 if (width != Assembler::Q) { 3034 eq_cond_enc = 0x74 + width; 3035 gt_cond_enc = 0x64 + width; 3036 } 3037 switch (cond) { 3038 case eq: 3039 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3040 break; 3041 case neq: 3042 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3043 vallones(xtmp, vector_len); 3044 vpxor(dst, xtmp, dst, vector_len); 3045 break; 3046 case le: 3047 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3048 vallones(xtmp, vector_len); 3049 vpxor(dst, xtmp, dst, vector_len); 3050 break; 3051 case nlt: 3052 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3053 vallones(xtmp, vector_len); 3054 vpxor(dst, xtmp, dst, vector_len); 3055 break; 3056 case lt: 3057 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3058 break; 3059 case nle: 3060 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3061 break; 3062 default: 3063 assert(false, "Should not reach here"); 3064 } 3065 } 3066 3067 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) { 3068 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3069 Assembler::vpmovzxbw(dst, src, vector_len); 3070 } 3071 3072 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) { 3073 assert((src->encoding() < 16),"XMM register should be 0-15"); 3074 Assembler::vpmovmskb(dst, src, vector_len); 3075 } 3076 3077 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3078 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3079 Assembler::vpmullw(dst, nds, src, vector_len); 3080 } 3081 3082 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3083 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3084 Assembler::vpmullw(dst, nds, src, vector_len); 3085 } 3086 3087 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3088 assert((UseAVX > 0), "AVX support is needed"); 3089 assert(rscratch != noreg || always_reachable(src), "missing"); 3090 3091 if (reachable(src)) { 3092 Assembler::vpmulld(dst, nds, as_Address(src), vector_len); 3093 } else { 3094 lea(rscratch, src); 3095 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len); 3096 } 3097 } 3098 3099 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3100 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3101 Assembler::vpsubb(dst, nds, src, vector_len); 3102 } 3103 3104 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3105 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3106 Assembler::vpsubb(dst, nds, src, vector_len); 3107 } 3108 3109 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3110 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3111 Assembler::vpsubw(dst, nds, src, vector_len); 3112 } 3113 3114 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3115 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3116 Assembler::vpsubw(dst, nds, src, vector_len); 3117 } 3118 3119 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3120 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3121 Assembler::vpsraw(dst, nds, shift, vector_len); 3122 } 3123 3124 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3125 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3126 Assembler::vpsraw(dst, nds, shift, vector_len); 3127 } 3128 3129 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3130 assert(UseAVX > 2,""); 3131 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3132 vector_len = 2; 3133 } 3134 Assembler::evpsraq(dst, nds, shift, vector_len); 3135 } 3136 3137 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3138 assert(UseAVX > 2,""); 3139 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3140 vector_len = 2; 3141 } 3142 Assembler::evpsraq(dst, nds, shift, vector_len); 3143 } 3144 3145 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3146 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3147 Assembler::vpsrlw(dst, nds, shift, vector_len); 3148 } 3149 3150 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3151 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3152 Assembler::vpsrlw(dst, nds, shift, vector_len); 3153 } 3154 3155 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3156 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3157 Assembler::vpsllw(dst, nds, shift, vector_len); 3158 } 3159 3160 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3161 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3162 Assembler::vpsllw(dst, nds, shift, vector_len); 3163 } 3164 3165 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) { 3166 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3167 Assembler::vptest(dst, src); 3168 } 3169 3170 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) { 3171 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3172 Assembler::punpcklbw(dst, src); 3173 } 3174 3175 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) { 3176 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 3177 Assembler::pshufd(dst, src, mode); 3178 } 3179 3180 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { 3181 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3182 Assembler::pshuflw(dst, src, mode); 3183 } 3184 3185 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3186 assert(rscratch != noreg || always_reachable(src), "missing"); 3187 3188 if (reachable(src)) { 3189 vandpd(dst, nds, as_Address(src), vector_len); 3190 } else { 3191 lea(rscratch, src); 3192 vandpd(dst, nds, Address(rscratch, 0), vector_len); 3193 } 3194 } 3195 3196 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3197 assert(rscratch != noreg || always_reachable(src), "missing"); 3198 3199 if (reachable(src)) { 3200 vandps(dst, nds, as_Address(src), vector_len); 3201 } else { 3202 lea(rscratch, src); 3203 vandps(dst, nds, Address(rscratch, 0), vector_len); 3204 } 3205 } 3206 3207 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, 3208 bool merge, int vector_len, Register rscratch) { 3209 assert(rscratch != noreg || always_reachable(src), "missing"); 3210 3211 if (reachable(src)) { 3212 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len); 3213 } else { 3214 lea(rscratch, src); 3215 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 3216 } 3217 } 3218 3219 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3220 assert(rscratch != noreg || always_reachable(src), "missing"); 3221 3222 if (reachable(src)) { 3223 vdivsd(dst, nds, as_Address(src)); 3224 } else { 3225 lea(rscratch, src); 3226 vdivsd(dst, nds, Address(rscratch, 0)); 3227 } 3228 } 3229 3230 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3231 assert(rscratch != noreg || always_reachable(src), "missing"); 3232 3233 if (reachable(src)) { 3234 vdivss(dst, nds, as_Address(src)); 3235 } else { 3236 lea(rscratch, src); 3237 vdivss(dst, nds, Address(rscratch, 0)); 3238 } 3239 } 3240 3241 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3242 assert(rscratch != noreg || always_reachable(src), "missing"); 3243 3244 if (reachable(src)) { 3245 vmulsd(dst, nds, as_Address(src)); 3246 } else { 3247 lea(rscratch, src); 3248 vmulsd(dst, nds, Address(rscratch, 0)); 3249 } 3250 } 3251 3252 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3253 assert(rscratch != noreg || always_reachable(src), "missing"); 3254 3255 if (reachable(src)) { 3256 vmulss(dst, nds, as_Address(src)); 3257 } else { 3258 lea(rscratch, src); 3259 vmulss(dst, nds, Address(rscratch, 0)); 3260 } 3261 } 3262 3263 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3264 assert(rscratch != noreg || always_reachable(src), "missing"); 3265 3266 if (reachable(src)) { 3267 vsubsd(dst, nds, as_Address(src)); 3268 } else { 3269 lea(rscratch, src); 3270 vsubsd(dst, nds, Address(rscratch, 0)); 3271 } 3272 } 3273 3274 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3275 assert(rscratch != noreg || always_reachable(src), "missing"); 3276 3277 if (reachable(src)) { 3278 vsubss(dst, nds, as_Address(src)); 3279 } else { 3280 lea(rscratch, src); 3281 vsubss(dst, nds, Address(rscratch, 0)); 3282 } 3283 } 3284 3285 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3286 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3287 assert(rscratch != noreg || always_reachable(src), "missing"); 3288 3289 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch); 3290 } 3291 3292 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3293 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3294 assert(rscratch != noreg || always_reachable(src), "missing"); 3295 3296 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch); 3297 } 3298 3299 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3300 assert(rscratch != noreg || always_reachable(src), "missing"); 3301 3302 if (reachable(src)) { 3303 vxorpd(dst, nds, as_Address(src), vector_len); 3304 } else { 3305 lea(rscratch, src); 3306 vxorpd(dst, nds, Address(rscratch, 0), vector_len); 3307 } 3308 } 3309 3310 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3311 assert(rscratch != noreg || always_reachable(src), "missing"); 3312 3313 if (reachable(src)) { 3314 vxorps(dst, nds, as_Address(src), vector_len); 3315 } else { 3316 lea(rscratch, src); 3317 vxorps(dst, nds, Address(rscratch, 0), vector_len); 3318 } 3319 } 3320 3321 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3322 assert(rscratch != noreg || always_reachable(src), "missing"); 3323 3324 if (UseAVX > 1 || (vector_len < 1)) { 3325 if (reachable(src)) { 3326 Assembler::vpxor(dst, nds, as_Address(src), vector_len); 3327 } else { 3328 lea(rscratch, src); 3329 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len); 3330 } 3331 } else { 3332 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch); 3333 } 3334 } 3335 3336 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3337 assert(rscratch != noreg || always_reachable(src), "missing"); 3338 3339 if (reachable(src)) { 3340 Assembler::vpermd(dst, nds, as_Address(src), vector_len); 3341 } else { 3342 lea(rscratch, src); 3343 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len); 3344 } 3345 } 3346 3347 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) { 3348 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask); 3349 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code 3350 // The inverted mask is sign-extended 3351 andptr(possibly_non_local, inverted_mask); 3352 } 3353 3354 void MacroAssembler::resolve_jobject(Register value, 3355 Register tmp) { 3356 Register thread = r15_thread; 3357 assert_different_registers(value, thread, tmp); 3358 Label done, tagged, weak_tagged; 3359 testptr(value, value); 3360 jcc(Assembler::zero, done); // Use null as-is. 3361 testptr(value, JNIHandles::tag_mask); // Test for tag. 3362 jcc(Assembler::notZero, tagged); 3363 3364 // Resolve local handle 3365 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp); 3366 verify_oop(value); 3367 jmp(done); 3368 3369 bind(tagged); 3370 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag. 3371 jcc(Assembler::notZero, weak_tagged); 3372 3373 // Resolve global handle 3374 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp); 3375 verify_oop(value); 3376 jmp(done); 3377 3378 bind(weak_tagged); 3379 // Resolve jweak. 3380 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3381 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp); 3382 verify_oop(value); 3383 3384 bind(done); 3385 } 3386 3387 void MacroAssembler::resolve_global_jobject(Register value, 3388 Register tmp) { 3389 Register thread = r15_thread; 3390 assert_different_registers(value, thread, tmp); 3391 Label done; 3392 3393 testptr(value, value); 3394 jcc(Assembler::zero, done); // Use null as-is. 3395 3396 #ifdef ASSERT 3397 { 3398 Label valid_global_tag; 3399 testptr(value, JNIHandles::TypeTag::global); // Test for global tag. 3400 jcc(Assembler::notZero, valid_global_tag); 3401 stop("non global jobject using resolve_global_jobject"); 3402 bind(valid_global_tag); 3403 } 3404 #endif 3405 3406 // Resolve global handle 3407 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp); 3408 verify_oop(value); 3409 3410 bind(done); 3411 } 3412 3413 void MacroAssembler::subptr(Register dst, int32_t imm32) { 3414 subq(dst, imm32); 3415 } 3416 3417 // Force generation of a 4 byte immediate value even if it fits into 8bit 3418 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) { 3419 subq_imm32(dst, imm32); 3420 } 3421 3422 void MacroAssembler::subptr(Register dst, Register src) { 3423 subq(dst, src); 3424 } 3425 3426 // C++ bool manipulation 3427 void MacroAssembler::testbool(Register dst) { 3428 if(sizeof(bool) == 1) 3429 testb(dst, 0xff); 3430 else if(sizeof(bool) == 2) { 3431 // testw implementation needed for two byte bools 3432 ShouldNotReachHere(); 3433 } else if(sizeof(bool) == 4) 3434 testl(dst, dst); 3435 else 3436 // unsupported 3437 ShouldNotReachHere(); 3438 } 3439 3440 void MacroAssembler::testptr(Register dst, Register src) { 3441 testq(dst, src); 3442 } 3443 3444 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 3445 void MacroAssembler::tlab_allocate(Register obj, 3446 Register var_size_in_bytes, 3447 int con_size_in_bytes, 3448 Register t1, 3449 Register t2, 3450 Label& slow_case) { 3451 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 3452 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 3453 } 3454 3455 RegSet MacroAssembler::call_clobbered_gp_registers() { 3456 RegSet regs; 3457 regs += RegSet::of(rax, rcx, rdx); 3458 #ifndef _WINDOWS 3459 regs += RegSet::of(rsi, rdi); 3460 #endif 3461 regs += RegSet::range(r8, r11); 3462 if (UseAPX) { 3463 regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1)); 3464 } 3465 return regs; 3466 } 3467 3468 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() { 3469 int num_xmm_registers = XMMRegister::available_xmm_registers(); 3470 #if defined(_WINDOWS) 3471 XMMRegSet result = XMMRegSet::range(xmm0, xmm5); 3472 if (num_xmm_registers > 16) { 3473 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1)); 3474 } 3475 return result; 3476 #else 3477 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1)); 3478 #endif 3479 } 3480 3481 // C1 only ever uses the first double/float of the XMM register. 3482 static int xmm_save_size() { return sizeof(double); } 3483 3484 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 3485 masm->movdbl(Address(rsp, offset), reg); 3486 } 3487 3488 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 3489 masm->movdbl(reg, Address(rsp, offset)); 3490 } 3491 3492 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers, 3493 bool save_fpu, int& gp_area_size, int& xmm_area_size) { 3494 3495 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size, 3496 StackAlignmentInBytes); 3497 xmm_area_size = save_fpu ? xmm_registers.size() * xmm_save_size() : 0; 3498 3499 return gp_area_size + xmm_area_size; 3500 } 3501 3502 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) { 3503 block_comment("push_call_clobbered_registers start"); 3504 // Regular registers 3505 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude; 3506 3507 int gp_area_size; 3508 int xmm_area_size; 3509 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu, 3510 gp_area_size, xmm_area_size); 3511 subptr(rsp, total_save_size); 3512 3513 push_set(gp_registers_to_push, 0); 3514 3515 if (save_fpu) { 3516 push_set(call_clobbered_xmm_registers(), gp_area_size); 3517 } 3518 3519 block_comment("push_call_clobbered_registers end"); 3520 } 3521 3522 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) { 3523 block_comment("pop_call_clobbered_registers start"); 3524 3525 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude; 3526 3527 int gp_area_size; 3528 int xmm_area_size; 3529 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu, 3530 gp_area_size, xmm_area_size); 3531 3532 if (restore_fpu) { 3533 pop_set(call_clobbered_xmm_registers(), gp_area_size); 3534 } 3535 3536 pop_set(gp_registers_to_pop, 0); 3537 3538 addptr(rsp, total_save_size); 3539 3540 vzeroupper(); 3541 3542 block_comment("pop_call_clobbered_registers end"); 3543 } 3544 3545 void MacroAssembler::push_set(XMMRegSet set, int offset) { 3546 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be"); 3547 int spill_offset = offset; 3548 3549 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) { 3550 save_xmm_register(this, spill_offset, *it); 3551 spill_offset += xmm_save_size(); 3552 } 3553 } 3554 3555 void MacroAssembler::pop_set(XMMRegSet set, int offset) { 3556 int restore_size = set.size() * xmm_save_size(); 3557 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be"); 3558 3559 int restore_offset = offset + restore_size - xmm_save_size(); 3560 3561 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) { 3562 restore_xmm_register(this, restore_offset, *it); 3563 restore_offset -= xmm_save_size(); 3564 } 3565 } 3566 3567 void MacroAssembler::push_set(RegSet set, int offset) { 3568 int spill_offset; 3569 if (offset == -1) { 3570 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 3571 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 3572 subptr(rsp, aligned_size); 3573 spill_offset = 0; 3574 } else { 3575 spill_offset = offset; 3576 } 3577 3578 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) { 3579 movptr(Address(rsp, spill_offset), *it); 3580 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size; 3581 } 3582 } 3583 3584 void MacroAssembler::pop_set(RegSet set, int offset) { 3585 3586 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size; 3587 int restore_size = set.size() * gp_reg_size; 3588 int aligned_size = align_up(restore_size, StackAlignmentInBytes); 3589 3590 int restore_offset; 3591 if (offset == -1) { 3592 restore_offset = restore_size - gp_reg_size; 3593 } else { 3594 restore_offset = offset + restore_size - gp_reg_size; 3595 } 3596 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) { 3597 movptr(*it, Address(rsp, restore_offset)); 3598 restore_offset -= gp_reg_size; 3599 } 3600 3601 if (offset == -1) { 3602 addptr(rsp, aligned_size); 3603 } 3604 } 3605 3606 // Preserves the contents of address, destroys the contents length_in_bytes and temp. 3607 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) { 3608 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different"); 3609 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord"); 3610 Label done; 3611 3612 testptr(length_in_bytes, length_in_bytes); 3613 jcc(Assembler::zero, done); 3614 3615 // initialize topmost word, divide index by 2, check if odd and test if zero 3616 // note: for the remaining code to work, index must be a multiple of BytesPerWord 3617 #ifdef ASSERT 3618 { 3619 Label L; 3620 testptr(length_in_bytes, BytesPerWord - 1); 3621 jcc(Assembler::zero, L); 3622 stop("length must be a multiple of BytesPerWord"); 3623 bind(L); 3624 } 3625 #endif 3626 Register index = length_in_bytes; 3627 xorptr(temp, temp); // use _zero reg to clear memory (shorter code) 3628 if (UseIncDec) { 3629 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set 3630 } else { 3631 shrptr(index, 2); // use 2 instructions to avoid partial flag stall 3632 shrptr(index, 1); 3633 } 3634 3635 // initialize remaining object fields: index is a multiple of 2 now 3636 { 3637 Label loop; 3638 bind(loop); 3639 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp); 3640 decrement(index); 3641 jcc(Assembler::notZero, loop); 3642 } 3643 3644 bind(done); 3645 } 3646 3647 // Look up the method for a megamorphic invokeinterface call. 3648 // The target method is determined by <intf_klass, itable_index>. 3649 // The receiver klass is in recv_klass. 3650 // On success, the result will be in method_result, and execution falls through. 3651 // On failure, execution transfers to the given label. 3652 void MacroAssembler::lookup_interface_method(Register recv_klass, 3653 Register intf_klass, 3654 RegisterOrConstant itable_index, 3655 Register method_result, 3656 Register scan_temp, 3657 Label& L_no_such_interface, 3658 bool return_method) { 3659 assert_different_registers(recv_klass, intf_klass, scan_temp); 3660 assert_different_registers(method_result, intf_klass, scan_temp); 3661 assert(recv_klass != method_result || !return_method, 3662 "recv_klass can be destroyed when method isn't needed"); 3663 3664 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 3665 "caller must use same register for non-constant itable index as for method"); 3666 3667 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 3668 int vtable_base = in_bytes(Klass::vtable_start_offset()); 3669 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 3670 int scan_step = itableOffsetEntry::size() * wordSize; 3671 int vte_size = vtableEntry::size_in_bytes(); 3672 Address::ScaleFactor times_vte_scale = Address::times_ptr; 3673 assert(vte_size == wordSize, "else adjust times_vte_scale"); 3674 3675 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 3676 3677 // Could store the aligned, prescaled offset in the klass. 3678 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 3679 3680 if (return_method) { 3681 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 3682 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 3683 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 3684 } 3685 3686 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 3687 // if (scan->interface() == intf) { 3688 // result = (klass + scan->offset() + itable_index); 3689 // } 3690 // } 3691 Label search, found_method; 3692 3693 for (int peel = 1; peel >= 0; peel--) { 3694 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 3695 cmpptr(intf_klass, method_result); 3696 3697 if (peel) { 3698 jccb(Assembler::equal, found_method); 3699 } else { 3700 jccb(Assembler::notEqual, search); 3701 // (invert the test to fall through to found_method...) 3702 } 3703 3704 if (!peel) break; 3705 3706 bind(search); 3707 3708 // Check that the previous entry is non-null. A null entry means that 3709 // the receiver class doesn't implement the interface, and wasn't the 3710 // same as when the caller was compiled. 3711 testptr(method_result, method_result); 3712 jcc(Assembler::zero, L_no_such_interface); 3713 addptr(scan_temp, scan_step); 3714 } 3715 3716 bind(found_method); 3717 3718 if (return_method) { 3719 // Got a hit. 3720 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 3721 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); 3722 } 3723 } 3724 3725 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 3726 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 3727 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 3728 // The target method is determined by <holder_klass, itable_index>. 3729 // The receiver klass is in recv_klass. 3730 // On success, the result will be in method_result, and execution falls through. 3731 // On failure, execution transfers to the given label. 3732 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 3733 Register holder_klass, 3734 Register resolved_klass, 3735 Register method_result, 3736 Register scan_temp, 3737 Register temp_reg2, 3738 Register receiver, 3739 int itable_index, 3740 Label& L_no_such_interface) { 3741 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver); 3742 Register temp_itbl_klass = method_result; 3743 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl 3744 3745 int vtable_base = in_bytes(Klass::vtable_start_offset()); 3746 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 3747 int scan_step = itableOffsetEntry::size() * wordSize; 3748 int vte_size = vtableEntry::size_in_bytes(); 3749 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 3750 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 3751 Address::ScaleFactor times_vte_scale = Address::times_ptr; 3752 assert(vte_size == wordSize, "adjust times_vte_scale"); 3753 3754 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found; 3755 3756 // temp_itbl_klass = recv_klass.itable[0] 3757 // scan_temp = &recv_klass.itable[0] + step 3758 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 3759 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset)); 3760 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step)); 3761 xorptr(temp_reg, temp_reg); 3762 3763 // Initial checks: 3764 // - if (holder_klass != resolved_klass), go to "scan for resolved" 3765 // - if (itable[0] == 0), no such interface 3766 // - if (itable[0] == holder_klass), shortcut to "holder found" 3767 cmpptr(holder_klass, resolved_klass); 3768 jccb(Assembler::notEqual, L_loop_scan_resolved_entry); 3769 testptr(temp_itbl_klass, temp_itbl_klass); 3770 jccb(Assembler::zero, L_no_such_interface); 3771 cmpptr(holder_klass, temp_itbl_klass); 3772 jccb(Assembler::equal, L_holder_found); 3773 3774 // Loop: Look for holder_klass record in itable 3775 // do { 3776 // tmp = itable[index]; 3777 // index += step; 3778 // if (tmp == holder_klass) { 3779 // goto L_holder_found; // Found! 3780 // } 3781 // } while (tmp != 0); 3782 // goto L_no_such_interface // Not found. 3783 Label L_scan_holder; 3784 bind(L_scan_holder); 3785 movptr(temp_itbl_klass, Address(scan_temp, 0)); 3786 addptr(scan_temp, scan_step); 3787 cmpptr(holder_klass, temp_itbl_klass); 3788 jccb(Assembler::equal, L_holder_found); 3789 testptr(temp_itbl_klass, temp_itbl_klass); 3790 jccb(Assembler::notZero, L_scan_holder); 3791 3792 jmpb(L_no_such_interface); 3793 3794 // Loop: Look for resolved_class record in itable 3795 // do { 3796 // tmp = itable[index]; 3797 // index += step; 3798 // if (tmp == holder_klass) { 3799 // // Also check if we have met a holder klass 3800 // holder_tmp = itable[index-step-ioffset]; 3801 // } 3802 // if (tmp == resolved_klass) { 3803 // goto L_resolved_found; // Found! 3804 // } 3805 // } while (tmp != 0); 3806 // goto L_no_such_interface // Not found. 3807 // 3808 Label L_loop_scan_resolved; 3809 bind(L_loop_scan_resolved); 3810 movptr(temp_itbl_klass, Address(scan_temp, 0)); 3811 addptr(scan_temp, scan_step); 3812 bind(L_loop_scan_resolved_entry); 3813 cmpptr(holder_klass, temp_itbl_klass); 3814 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 3815 cmpptr(resolved_klass, temp_itbl_klass); 3816 jccb(Assembler::equal, L_resolved_found); 3817 testptr(temp_itbl_klass, temp_itbl_klass); 3818 jccb(Assembler::notZero, L_loop_scan_resolved); 3819 3820 jmpb(L_no_such_interface); 3821 3822 Label L_ready; 3823 3824 // See if we already have a holder klass. If not, go and scan for it. 3825 bind(L_resolved_found); 3826 testptr(temp_reg, temp_reg); 3827 jccb(Assembler::zero, L_scan_holder); 3828 jmpb(L_ready); 3829 3830 bind(L_holder_found); 3831 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 3832 3833 // Finally, temp_reg contains holder_klass vtable offset 3834 bind(L_ready); 3835 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 3836 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl 3837 load_klass(scan_temp, receiver, noreg); 3838 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 3839 } else { 3840 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 3841 } 3842 } 3843 3844 3845 // virtual method calling 3846 void MacroAssembler::lookup_virtual_method(Register recv_klass, 3847 RegisterOrConstant vtable_index, 3848 Register method_result) { 3849 const ByteSize base = Klass::vtable_start_offset(); 3850 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below"); 3851 Address vtable_entry_addr(recv_klass, 3852 vtable_index, Address::times_ptr, 3853 base + vtableEntry::method_offset()); 3854 movptr(method_result, vtable_entry_addr); 3855 } 3856 3857 3858 void MacroAssembler::check_klass_subtype(Register sub_klass, 3859 Register super_klass, 3860 Register temp_reg, 3861 Label& L_success) { 3862 Label L_failure; 3863 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 3864 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 3865 bind(L_failure); 3866 } 3867 3868 3869 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 3870 Register super_klass, 3871 Register temp_reg, 3872 Label* L_success, 3873 Label* L_failure, 3874 Label* L_slow_path, 3875 RegisterOrConstant super_check_offset) { 3876 assert_different_registers(sub_klass, super_klass, temp_reg); 3877 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 3878 if (super_check_offset.is_register()) { 3879 assert_different_registers(sub_klass, super_klass, 3880 super_check_offset.as_register()); 3881 } else if (must_load_sco) { 3882 assert(temp_reg != noreg, "supply either a temp or a register offset"); 3883 } 3884 3885 Label L_fallthrough; 3886 int label_nulls = 0; 3887 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 3888 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 3889 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 3890 assert(label_nulls <= 1, "at most one null in the batch"); 3891 3892 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 3893 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 3894 Address super_check_offset_addr(super_klass, sco_offset); 3895 3896 // Hacked jcc, which "knows" that L_fallthrough, at least, is in 3897 // range of a jccb. If this routine grows larger, reconsider at 3898 // least some of these. 3899 #define local_jcc(assembler_cond, label) \ 3900 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ 3901 else jcc( assembler_cond, label) /*omit semi*/ 3902 3903 // Hacked jmp, which may only be used just before L_fallthrough. 3904 #define final_jmp(label) \ 3905 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 3906 else jmp(label) /*omit semi*/ 3907 3908 // If the pointers are equal, we are done (e.g., String[] elements). 3909 // This self-check enables sharing of secondary supertype arrays among 3910 // non-primary types such as array-of-interface. Otherwise, each such 3911 // type would need its own customized SSA. 3912 // We move this check to the front of the fast path because many 3913 // type checks are in fact trivially successful in this manner, 3914 // so we get a nicely predicted branch right at the start of the check. 3915 cmpptr(sub_klass, super_klass); 3916 local_jcc(Assembler::equal, *L_success); 3917 3918 // Check the supertype display: 3919 if (must_load_sco) { 3920 // Positive movl does right thing on LP64. 3921 movl(temp_reg, super_check_offset_addr); 3922 super_check_offset = RegisterOrConstant(temp_reg); 3923 } 3924 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); 3925 cmpptr(super_klass, super_check_addr); // load displayed supertype 3926 3927 // This check has worked decisively for primary supers. 3928 // Secondary supers are sought in the super_cache ('super_cache_addr'). 3929 // (Secondary supers are interfaces and very deeply nested subtypes.) 3930 // This works in the same check above because of a tricky aliasing 3931 // between the super_cache and the primary super display elements. 3932 // (The 'super_check_addr' can address either, as the case requires.) 3933 // Note that the cache is updated below if it does not help us find 3934 // what we need immediately. 3935 // So if it was a primary super, we can just fail immediately. 3936 // Otherwise, it's the slow path for us (no success at this point). 3937 3938 if (super_check_offset.is_register()) { 3939 local_jcc(Assembler::equal, *L_success); 3940 cmpl(super_check_offset.as_register(), sc_offset); 3941 if (L_failure == &L_fallthrough) { 3942 local_jcc(Assembler::equal, *L_slow_path); 3943 } else { 3944 local_jcc(Assembler::notEqual, *L_failure); 3945 final_jmp(*L_slow_path); 3946 } 3947 } else if (super_check_offset.as_constant() == sc_offset) { 3948 // Need a slow path; fast failure is impossible. 3949 if (L_slow_path == &L_fallthrough) { 3950 local_jcc(Assembler::equal, *L_success); 3951 } else { 3952 local_jcc(Assembler::notEqual, *L_slow_path); 3953 final_jmp(*L_success); 3954 } 3955 } else { 3956 // No slow path; it's a fast decision. 3957 if (L_failure == &L_fallthrough) { 3958 local_jcc(Assembler::equal, *L_success); 3959 } else { 3960 local_jcc(Assembler::notEqual, *L_failure); 3961 final_jmp(*L_success); 3962 } 3963 } 3964 3965 bind(L_fallthrough); 3966 3967 #undef local_jcc 3968 #undef final_jmp 3969 } 3970 3971 3972 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 3973 Register super_klass, 3974 Register temp_reg, 3975 Register temp2_reg, 3976 Label* L_success, 3977 Label* L_failure, 3978 bool set_cond_codes) { 3979 assert_different_registers(sub_klass, super_klass, temp_reg); 3980 if (temp2_reg != noreg) 3981 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); 3982 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 3983 3984 Label L_fallthrough; 3985 int label_nulls = 0; 3986 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 3987 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 3988 assert(label_nulls <= 1, "at most one null in the batch"); 3989 3990 // a couple of useful fields in sub_klass: 3991 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 3992 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 3993 Address secondary_supers_addr(sub_klass, ss_offset); 3994 Address super_cache_addr( sub_klass, sc_offset); 3995 3996 // Do a linear scan of the secondary super-klass chain. 3997 // This code is rarely used, so simplicity is a virtue here. 3998 // The repne_scan instruction uses fixed registers, which we must spill. 3999 // Don't worry too much about pre-existing connections with the input regs. 4000 4001 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) 4002 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) 4003 4004 // Get super_klass value into rax (even if it was in rdi or rcx). 4005 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; 4006 if (super_klass != rax) { 4007 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } 4008 mov(rax, super_klass); 4009 } 4010 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } 4011 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } 4012 4013 #ifndef PRODUCT 4014 uint* pst_counter = &SharedRuntime::_partial_subtype_ctr; 4015 ExternalAddress pst_counter_addr((address) pst_counter); 4016 lea(rcx, pst_counter_addr); 4017 incrementl(Address(rcx, 0)); 4018 #endif //PRODUCT 4019 4020 // We will consult the secondary-super array. 4021 movptr(rdi, secondary_supers_addr); 4022 // Load the array length. (Positive movl does right thing on LP64.) 4023 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes())); 4024 // Skip to start of data. 4025 addptr(rdi, Array<Klass*>::base_offset_in_bytes()); 4026 4027 // Scan RCX words at [RDI] for an occurrence of RAX. 4028 // Set NZ/Z based on last compare. 4029 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does 4030 // not change flags (only scas instruction which is repeated sets flags). 4031 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. 4032 4033 testptr(rax,rax); // Set Z = 0 4034 repne_scan(); 4035 4036 // Unspill the temp. registers: 4037 if (pushed_rdi) pop(rdi); 4038 if (pushed_rcx) pop(rcx); 4039 if (pushed_rax) pop(rax); 4040 4041 if (set_cond_codes) { 4042 // Special hack for the AD files: rdi is guaranteed non-zero. 4043 assert(!pushed_rdi, "rdi must be left non-null"); 4044 // Also, the condition codes are properly set Z/NZ on succeed/failure. 4045 } 4046 4047 if (L_failure == &L_fallthrough) 4048 jccb(Assembler::notEqual, *L_failure); 4049 else jcc(Assembler::notEqual, *L_failure); 4050 4051 // Success. Cache the super we found and proceed in triumph. 4052 movptr(super_cache_addr, super_klass); 4053 4054 if (L_success != &L_fallthrough) { 4055 jmp(*L_success); 4056 } 4057 4058 #undef IS_A_TEMP 4059 4060 bind(L_fallthrough); 4061 } 4062 4063 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4064 Register super_klass, 4065 Register temp_reg, 4066 Register temp2_reg, 4067 Label* L_success, 4068 Label* L_failure, 4069 bool set_cond_codes) { 4070 assert(set_cond_codes == false, "must be false on 64-bit x86"); 4071 check_klass_subtype_slow_path 4072 (sub_klass, super_klass, temp_reg, temp2_reg, noreg, noreg, 4073 L_success, L_failure); 4074 } 4075 4076 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4077 Register super_klass, 4078 Register temp_reg, 4079 Register temp2_reg, 4080 Register temp3_reg, 4081 Register temp4_reg, 4082 Label* L_success, 4083 Label* L_failure) { 4084 if (UseSecondarySupersTable) { 4085 check_klass_subtype_slow_path_table 4086 (sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, temp4_reg, 4087 L_success, L_failure); 4088 } else { 4089 check_klass_subtype_slow_path_linear 4090 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, /*set_cond_codes*/false); 4091 } 4092 } 4093 4094 Register MacroAssembler::allocate_if_noreg(Register r, 4095 RegSetIterator<Register> &available_regs, 4096 RegSet ®s_to_push) { 4097 if (!r->is_valid()) { 4098 r = *available_regs++; 4099 regs_to_push += r; 4100 } 4101 return r; 4102 } 4103 4104 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 4105 Register super_klass, 4106 Register temp_reg, 4107 Register temp2_reg, 4108 Register temp3_reg, 4109 Register result_reg, 4110 Label* L_success, 4111 Label* L_failure) { 4112 // NB! Callers may assume that, when temp2_reg is a valid register, 4113 // this code sets it to a nonzero value. 4114 bool temp2_reg_was_valid = temp2_reg->is_valid(); 4115 4116 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 4117 4118 Label L_fallthrough; 4119 int label_nulls = 0; 4120 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4121 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4122 assert(label_nulls <= 1, "at most one null in the batch"); 4123 4124 BLOCK_COMMENT("check_klass_subtype_slow_path_table"); 4125 4126 RegSetIterator<Register> available_regs 4127 = (RegSet::of(rax, rcx, rdx, r8) + r9 + r10 + r11 + r12 - temps - sub_klass - super_klass).begin(); 4128 4129 RegSet pushed_regs; 4130 4131 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 4132 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 4133 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 4134 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 4135 Register temp4_reg = allocate_if_noreg(noreg, available_regs, pushed_regs); 4136 4137 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, result_reg); 4138 4139 { 4140 4141 int register_push_size = pushed_regs.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4142 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4143 subptr(rsp, aligned_size); 4144 push_set(pushed_regs, 0); 4145 4146 lookup_secondary_supers_table_var(sub_klass, 4147 super_klass, 4148 temp_reg, temp2_reg, temp3_reg, temp4_reg, result_reg); 4149 cmpq(result_reg, 0); 4150 4151 // Unspill the temp. registers: 4152 pop_set(pushed_regs, 0); 4153 // Increment SP but do not clobber flags. 4154 lea(rsp, Address(rsp, aligned_size)); 4155 } 4156 4157 if (temp2_reg_was_valid) { 4158 movq(temp2_reg, 1); 4159 } 4160 4161 jcc(Assembler::notEqual, *L_failure); 4162 4163 if (L_success != &L_fallthrough) { 4164 jmp(*L_success); 4165 } 4166 4167 bind(L_fallthrough); 4168 } 4169 4170 // population_count variant for running without the POPCNT 4171 // instruction, which was introduced with SSE4.2 in 2008. 4172 void MacroAssembler::population_count(Register dst, Register src, 4173 Register scratch1, Register scratch2) { 4174 assert_different_registers(src, scratch1, scratch2); 4175 if (UsePopCountInstruction) { 4176 Assembler::popcntq(dst, src); 4177 } else { 4178 assert_different_registers(src, scratch1, scratch2); 4179 assert_different_registers(dst, scratch1, scratch2); 4180 Label loop, done; 4181 4182 mov(scratch1, src); 4183 // dst = 0; 4184 // while(scratch1 != 0) { 4185 // dst++; 4186 // scratch1 &= (scratch1 - 1); 4187 // } 4188 xorl(dst, dst); 4189 testq(scratch1, scratch1); 4190 jccb(Assembler::equal, done); 4191 { 4192 bind(loop); 4193 incq(dst); 4194 movq(scratch2, scratch1); 4195 decq(scratch2); 4196 andq(scratch1, scratch2); 4197 jccb(Assembler::notEqual, loop); 4198 } 4199 bind(done); 4200 } 4201 #ifdef ASSERT 4202 mov64(scratch1, 0xCafeBabeDeadBeef); 4203 movq(scratch2, scratch1); 4204 #endif 4205 } 4206 4207 // Ensure that the inline code and the stub are using the same registers. 4208 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 4209 do { \ 4210 assert(r_super_klass == rax, "mismatch"); \ 4211 assert(r_array_base == rbx, "mismatch"); \ 4212 assert(r_array_length == rcx, "mismatch"); \ 4213 assert(r_array_index == rdx, "mismatch"); \ 4214 assert(r_sub_klass == rsi || r_sub_klass == noreg, "mismatch"); \ 4215 assert(r_bitmap == r11 || r_bitmap == noreg, "mismatch"); \ 4216 assert(result == rdi || result == noreg, "mismatch"); \ 4217 } while(0) 4218 4219 // Versions of salq and rorq that don't need count to be in rcx 4220 4221 void MacroAssembler::salq(Register dest, Register count) { 4222 if (count == rcx) { 4223 Assembler::salq(dest); 4224 } else { 4225 assert_different_registers(rcx, dest); 4226 xchgq(rcx, count); 4227 Assembler::salq(dest); 4228 xchgq(rcx, count); 4229 } 4230 } 4231 4232 void MacroAssembler::rorq(Register dest, Register count) { 4233 if (count == rcx) { 4234 Assembler::rorq(dest); 4235 } else { 4236 assert_different_registers(rcx, dest); 4237 xchgq(rcx, count); 4238 Assembler::rorq(dest); 4239 xchgq(rcx, count); 4240 } 4241 } 4242 4243 // Return true: we succeeded in generating this code 4244 // 4245 // At runtime, return 0 in result if r_super_klass is a superclass of 4246 // r_sub_klass, otherwise return nonzero. Use this if you know the 4247 // super_klass_slot of the class you're looking for. This is always 4248 // the case for instanceof and checkcast. 4249 void MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 4250 Register r_super_klass, 4251 Register temp1, 4252 Register temp2, 4253 Register temp3, 4254 Register temp4, 4255 Register result, 4256 u1 super_klass_slot) { 4257 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 4258 4259 Label L_fallthrough, L_success, L_failure; 4260 4261 BLOCK_COMMENT("lookup_secondary_supers_table {"); 4262 4263 const Register 4264 r_array_index = temp1, 4265 r_array_length = temp2, 4266 r_array_base = temp3, 4267 r_bitmap = temp4; 4268 4269 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 4270 4271 xorq(result, result); // = 0 4272 4273 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 4274 movq(r_array_index, r_bitmap); 4275 4276 // First check the bitmap to see if super_klass might be present. If 4277 // the bit is zero, we are certain that super_klass is not one of 4278 // the secondary supers. 4279 u1 bit = super_klass_slot; 4280 { 4281 // NB: If the count in a x86 shift instruction is 0, the flags are 4282 // not affected, so we do a testq instead. 4283 int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit; 4284 if (shift_count != 0) { 4285 salq(r_array_index, shift_count); 4286 } else { 4287 testq(r_array_index, r_array_index); 4288 } 4289 } 4290 // We test the MSB of r_array_index, i.e. its sign bit 4291 jcc(Assembler::positive, L_failure); 4292 4293 // Get the first array index that can contain super_klass into r_array_index. 4294 if (bit != 0) { 4295 population_count(r_array_index, r_array_index, temp2, temp3); 4296 } else { 4297 movl(r_array_index, 1); 4298 } 4299 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 4300 4301 // We will consult the secondary-super array. 4302 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 4303 4304 // We're asserting that the first word in an Array<Klass*> is the 4305 // length, and the second word is the first word of the data. If 4306 // that ever changes, r_array_base will have to be adjusted here. 4307 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 4308 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 4309 4310 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4311 jccb(Assembler::equal, L_success); 4312 4313 // Is there another entry to check? Consult the bitmap. 4314 btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK); 4315 jccb(Assembler::carryClear, L_failure); 4316 4317 // Linear probe. Rotate the bitmap so that the next bit to test is 4318 // in Bit 1. 4319 if (bit != 0) { 4320 rorq(r_bitmap, bit); 4321 } 4322 4323 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 4324 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 4325 // Kills: r_array_length. 4326 // Returns: result. 4327 call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub())); 4328 // Result (0/1) is in rdi 4329 jmpb(L_fallthrough); 4330 4331 bind(L_failure); 4332 incq(result); // 0 => 1 4333 4334 bind(L_success); 4335 // result = 0; 4336 4337 bind(L_fallthrough); 4338 BLOCK_COMMENT("} lookup_secondary_supers_table"); 4339 4340 if (VerifySecondarySupers) { 4341 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 4342 temp1, temp2, temp3); 4343 } 4344 } 4345 4346 // At runtime, return 0 in result if r_super_klass is a superclass of 4347 // r_sub_klass, otherwise return nonzero. Use this version of 4348 // lookup_secondary_supers_table() if you don't know ahead of time 4349 // which superclass will be searched for. Used by interpreter and 4350 // runtime stubs. It is larger and has somewhat greater latency than 4351 // the version above, which takes a constant super_klass_slot. 4352 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 4353 Register r_super_klass, 4354 Register temp1, 4355 Register temp2, 4356 Register temp3, 4357 Register temp4, 4358 Register result) { 4359 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 4360 assert_different_registers(r_sub_klass, r_super_klass, rcx); 4361 RegSet temps = RegSet::of(temp1, temp2, temp3, temp4); 4362 4363 Label L_fallthrough, L_success, L_failure; 4364 4365 BLOCK_COMMENT("lookup_secondary_supers_table {"); 4366 4367 RegSetIterator<Register> available_regs = (temps - rcx).begin(); 4368 4369 // FIXME. Once we are sure that all paths reaching this point really 4370 // do pass rcx as one of our temps we can get rid of the following 4371 // workaround. 4372 assert(temps.contains(rcx), "fix this code"); 4373 4374 // We prefer to have our shift count in rcx. If rcx is one of our 4375 // temps, use it for slot. If not, pick any of our temps. 4376 Register slot; 4377 if (!temps.contains(rcx)) { 4378 slot = *available_regs++; 4379 } else { 4380 slot = rcx; 4381 } 4382 4383 const Register r_array_index = *available_regs++; 4384 const Register r_bitmap = *available_regs++; 4385 4386 // The logic above guarantees this property, but we state it here. 4387 assert_different_registers(r_array_index, r_bitmap, rcx); 4388 4389 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 4390 movq(r_array_index, r_bitmap); 4391 4392 // First check the bitmap to see if super_klass might be present. If 4393 // the bit is zero, we are certain that super_klass is not one of 4394 // the secondary supers. 4395 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 4396 xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64) 4397 salq(r_array_index, slot); 4398 4399 testq(r_array_index, r_array_index); 4400 // We test the MSB of r_array_index, i.e. its sign bit 4401 jcc(Assembler::positive, L_failure); 4402 4403 const Register r_array_base = *available_regs++; 4404 4405 // Get the first array index that can contain super_klass into r_array_index. 4406 // Note: Clobbers r_array_base and slot. 4407 population_count(r_array_index, r_array_index, /*temp2*/r_array_base, /*temp3*/slot); 4408 4409 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 4410 4411 // We will consult the secondary-super array. 4412 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 4413 4414 // We're asserting that the first word in an Array<Klass*> is the 4415 // length, and the second word is the first word of the data. If 4416 // that ever changes, r_array_base will have to be adjusted here. 4417 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 4418 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 4419 4420 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4421 jccb(Assembler::equal, L_success); 4422 4423 // Restore slot to its true value 4424 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 4425 4426 // Linear probe. Rotate the bitmap so that the next bit to test is 4427 // in Bit 1. 4428 rorq(r_bitmap, slot); 4429 4430 // Is there another entry to check? Consult the bitmap. 4431 btq(r_bitmap, 1); 4432 jccb(Assembler::carryClear, L_failure); 4433 4434 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 4435 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 4436 // Kills: r_array_length. 4437 // Returns: result. 4438 lookup_secondary_supers_table_slow_path(r_super_klass, 4439 r_array_base, 4440 r_array_index, 4441 r_bitmap, 4442 /*temp1*/result, 4443 /*temp2*/slot, 4444 &L_success, 4445 nullptr); 4446 4447 bind(L_failure); 4448 movq(result, 1); 4449 jmpb(L_fallthrough); 4450 4451 bind(L_success); 4452 xorq(result, result); // = 0 4453 4454 bind(L_fallthrough); 4455 BLOCK_COMMENT("} lookup_secondary_supers_table"); 4456 4457 if (VerifySecondarySupers) { 4458 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 4459 temp1, temp2, temp3); 4460 } 4461 } 4462 4463 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit, 4464 Label* L_success, Label* L_failure) { 4465 Label L_loop, L_fallthrough; 4466 { 4467 int label_nulls = 0; 4468 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4469 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4470 assert(label_nulls <= 1, "at most one null in the batch"); 4471 } 4472 bind(L_loop); 4473 cmpq(value, Address(addr, count, Address::times_8)); 4474 jcc(Assembler::equal, *L_success); 4475 addl(count, 1); 4476 cmpl(count, limit); 4477 jcc(Assembler::less, L_loop); 4478 4479 if (&L_fallthrough != L_failure) { 4480 jmp(*L_failure); 4481 } 4482 bind(L_fallthrough); 4483 } 4484 4485 // Called by code generated by check_klass_subtype_slow_path 4486 // above. This is called when there is a collision in the hashed 4487 // lookup in the secondary supers array. 4488 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 4489 Register r_array_base, 4490 Register r_array_index, 4491 Register r_bitmap, 4492 Register temp1, 4493 Register temp2, 4494 Label* L_success, 4495 Label* L_failure) { 4496 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2); 4497 4498 const Register 4499 r_array_length = temp1, 4500 r_sub_klass = noreg, 4501 result = noreg; 4502 4503 Label L_fallthrough; 4504 int label_nulls = 0; 4505 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4506 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4507 assert(label_nulls <= 1, "at most one null in the batch"); 4508 4509 // Load the array length. 4510 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 4511 // And adjust the array base to point to the data. 4512 // NB! Effectively increments current slot index by 1. 4513 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 4514 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 4515 4516 // Linear probe 4517 Label L_huge; 4518 4519 // The bitmap is full to bursting. 4520 // Implicit invariant: BITMAP_FULL implies (length > 0) 4521 cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2); 4522 jcc(Assembler::greater, L_huge); 4523 4524 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 4525 // current slot (at secondary_supers[r_array_index]) has not yet 4526 // been inspected, and r_array_index may be out of bounds if we 4527 // wrapped around the end of the array. 4528 4529 { // This is conventional linear probing, but instead of terminating 4530 // when a null entry is found in the table, we maintain a bitmap 4531 // in which a 0 indicates missing entries. 4532 // The check above guarantees there are 0s in the bitmap, so the loop 4533 // eventually terminates. 4534 4535 xorl(temp2, temp2); // = 0; 4536 4537 Label L_again; 4538 bind(L_again); 4539 4540 // Check for array wraparound. 4541 cmpl(r_array_index, r_array_length); 4542 cmovl(Assembler::greaterEqual, r_array_index, temp2); 4543 4544 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4545 jcc(Assembler::equal, *L_success); 4546 4547 // If the next bit in bitmap is zero, we're done. 4548 btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now 4549 jcc(Assembler::carryClear, *L_failure); 4550 4551 rorq(r_bitmap, 1); // Bits 1/2 => 0/1 4552 addl(r_array_index, 1); 4553 4554 jmp(L_again); 4555 } 4556 4557 { // Degenerate case: more than 64 secondary supers. 4558 // FIXME: We could do something smarter here, maybe a vectorized 4559 // comparison or a binary search, but is that worth any added 4560 // complexity? 4561 bind(L_huge); 4562 xorl(r_array_index, r_array_index); // = 0 4563 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, 4564 L_success, 4565 (&L_fallthrough != L_failure ? L_failure : nullptr)); 4566 4567 bind(L_fallthrough); 4568 } 4569 } 4570 4571 struct VerifyHelperArguments { 4572 Klass* _super; 4573 Klass* _sub; 4574 intptr_t _linear_result; 4575 intptr_t _table_result; 4576 }; 4577 4578 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) { 4579 Klass::on_secondary_supers_verification_failure(args->_super, 4580 args->_sub, 4581 args->_linear_result, 4582 args->_table_result, 4583 msg); 4584 } 4585 4586 // Make sure that the hashed lookup and a linear scan agree. 4587 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 4588 Register r_super_klass, 4589 Register result, 4590 Register temp1, 4591 Register temp2, 4592 Register temp3) { 4593 const Register 4594 r_array_index = temp1, 4595 r_array_length = temp2, 4596 r_array_base = temp3, 4597 r_bitmap = noreg; 4598 4599 BLOCK_COMMENT("verify_secondary_supers_table {"); 4600 4601 Label L_success, L_failure, L_check, L_done; 4602 4603 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 4604 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 4605 // And adjust the array base to point to the data. 4606 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 4607 4608 testl(r_array_length, r_array_length); // array_length == 0? 4609 jcc(Assembler::zero, L_failure); 4610 4611 movl(r_array_index, 0); 4612 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success); 4613 // fall through to L_failure 4614 4615 const Register linear_result = r_array_index; // reuse temp1 4616 4617 bind(L_failure); // not present 4618 movl(linear_result, 1); 4619 jmp(L_check); 4620 4621 bind(L_success); // present 4622 movl(linear_result, 0); 4623 4624 bind(L_check); 4625 cmpl(linear_result, result); 4626 jcc(Assembler::equal, L_done); 4627 4628 { // To avoid calling convention issues, build a record on the stack 4629 // and pass the pointer to that instead. 4630 push(result); 4631 push(linear_result); 4632 push(r_sub_klass); 4633 push(r_super_klass); 4634 movptr(c_rarg1, rsp); 4635 movptr(c_rarg0, (uintptr_t) "mismatch"); 4636 call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper))); 4637 should_not_reach_here(); 4638 } 4639 bind(L_done); 4640 4641 BLOCK_COMMENT("} verify_secondary_supers_table"); 4642 } 4643 4644 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS 4645 4646 void MacroAssembler::clinit_barrier(Register klass, Label* L_fast_path, Label* L_slow_path) { 4647 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 4648 4649 Label L_fallthrough; 4650 if (L_fast_path == nullptr) { 4651 L_fast_path = &L_fallthrough; 4652 } else if (L_slow_path == nullptr) { 4653 L_slow_path = &L_fallthrough; 4654 } 4655 4656 // Fast path check: class is fully initialized. 4657 // init_state needs acquire, but x86 is TSO, and so we are already good. 4658 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 4659 jcc(Assembler::equal, *L_fast_path); 4660 4661 // Fast path check: current thread is initializer thread 4662 cmpptr(r15_thread, Address(klass, InstanceKlass::init_thread_offset())); 4663 if (L_slow_path == &L_fallthrough) { 4664 jcc(Assembler::equal, *L_fast_path); 4665 bind(*L_slow_path); 4666 } else if (L_fast_path == &L_fallthrough) { 4667 jcc(Assembler::notEqual, *L_slow_path); 4668 bind(*L_fast_path); 4669 } else { 4670 Unimplemented(); 4671 } 4672 } 4673 4674 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { 4675 if (VM_Version::supports_cmov()) { 4676 cmovl(cc, dst, src); 4677 } else { 4678 Label L; 4679 jccb(negate_condition(cc), L); 4680 movl(dst, src); 4681 bind(L); 4682 } 4683 } 4684 4685 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { 4686 if (VM_Version::supports_cmov()) { 4687 cmovl(cc, dst, src); 4688 } else { 4689 Label L; 4690 jccb(negate_condition(cc), L); 4691 movl(dst, src); 4692 bind(L); 4693 } 4694 } 4695 4696 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 4697 if (!VerifyOops) return; 4698 4699 BLOCK_COMMENT("verify_oop {"); 4700 push(rscratch1); 4701 push(rax); // save rax 4702 push(reg); // pass register argument 4703 4704 // Pass register number to verify_oop_subroutine 4705 const char* b = nullptr; 4706 { 4707 ResourceMark rm; 4708 stringStream ss; 4709 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 4710 b = code_string(ss.as_string()); 4711 } 4712 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 4713 pushptr(buffer.addr(), rscratch1); 4714 4715 // call indirectly to solve generation ordering problem 4716 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 4717 call(rax); 4718 // Caller pops the arguments (oop, message) and restores rax, r10 4719 BLOCK_COMMENT("} verify_oop"); 4720 } 4721 4722 void MacroAssembler::vallones(XMMRegister dst, int vector_len) { 4723 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) { 4724 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without 4725 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog 4726 vpternlogd(dst, 0xFF, dst, dst, vector_len); 4727 } else if (VM_Version::supports_avx()) { 4728 vpcmpeqd(dst, dst, dst, vector_len); 4729 } else { 4730 pcmpeqd(dst, dst); 4731 } 4732 } 4733 4734 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 4735 int extra_slot_offset) { 4736 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 4737 int stackElementSize = Interpreter::stackElementSize; 4738 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 4739 #ifdef ASSERT 4740 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 4741 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 4742 #endif 4743 Register scale_reg = noreg; 4744 Address::ScaleFactor scale_factor = Address::no_scale; 4745 if (arg_slot.is_constant()) { 4746 offset += arg_slot.as_constant() * stackElementSize; 4747 } else { 4748 scale_reg = arg_slot.as_register(); 4749 scale_factor = Address::times(stackElementSize); 4750 } 4751 offset += wordSize; // return PC is on stack 4752 return Address(rsp, scale_reg, scale_factor, offset); 4753 } 4754 4755 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 4756 if (!VerifyOops) return; 4757 4758 push(rscratch1); 4759 push(rax); // save rax, 4760 // addr may contain rsp so we will have to adjust it based on the push 4761 // we just did (and on 64 bit we do two pushes) 4762 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which 4763 // stores rax into addr which is backwards of what was intended. 4764 if (addr.uses(rsp)) { 4765 lea(rax, addr); 4766 pushptr(Address(rax, 2 * BytesPerWord)); 4767 } else { 4768 pushptr(addr); 4769 } 4770 4771 // Pass register number to verify_oop_subroutine 4772 const char* b = nullptr; 4773 { 4774 ResourceMark rm; 4775 stringStream ss; 4776 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 4777 b = code_string(ss.as_string()); 4778 } 4779 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 4780 pushptr(buffer.addr(), rscratch1); 4781 4782 // call indirectly to solve generation ordering problem 4783 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 4784 call(rax); 4785 // Caller pops the arguments (addr, message) and restores rax, r10. 4786 } 4787 4788 void MacroAssembler::verify_tlab() { 4789 #ifdef ASSERT 4790 if (UseTLAB && VerifyOops) { 4791 Label next, ok; 4792 Register t1 = rsi; 4793 4794 push(t1); 4795 4796 movptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); 4797 cmpptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_start_offset()))); 4798 jcc(Assembler::aboveEqual, next); 4799 STOP("assert(top >= start)"); 4800 should_not_reach_here(); 4801 4802 bind(next); 4803 movptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset()))); 4804 cmpptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); 4805 jcc(Assembler::aboveEqual, ok); 4806 STOP("assert(top <= end)"); 4807 should_not_reach_here(); 4808 4809 bind(ok); 4810 pop(t1); 4811 } 4812 #endif 4813 } 4814 4815 class ControlWord { 4816 public: 4817 int32_t _value; 4818 4819 int rounding_control() const { return (_value >> 10) & 3 ; } 4820 int precision_control() const { return (_value >> 8) & 3 ; } 4821 bool precision() const { return ((_value >> 5) & 1) != 0; } 4822 bool underflow() const { return ((_value >> 4) & 1) != 0; } 4823 bool overflow() const { return ((_value >> 3) & 1) != 0; } 4824 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 4825 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 4826 bool invalid() const { return ((_value >> 0) & 1) != 0; } 4827 4828 void print() const { 4829 // rounding control 4830 const char* rc; 4831 switch (rounding_control()) { 4832 case 0: rc = "round near"; break; 4833 case 1: rc = "round down"; break; 4834 case 2: rc = "round up "; break; 4835 case 3: rc = "chop "; break; 4836 default: 4837 rc = nullptr; // silence compiler warnings 4838 fatal("Unknown rounding control: %d", rounding_control()); 4839 }; 4840 // precision control 4841 const char* pc; 4842 switch (precision_control()) { 4843 case 0: pc = "24 bits "; break; 4844 case 1: pc = "reserved"; break; 4845 case 2: pc = "53 bits "; break; 4846 case 3: pc = "64 bits "; break; 4847 default: 4848 pc = nullptr; // silence compiler warnings 4849 fatal("Unknown precision control: %d", precision_control()); 4850 }; 4851 // flags 4852 char f[9]; 4853 f[0] = ' '; 4854 f[1] = ' '; 4855 f[2] = (precision ()) ? 'P' : 'p'; 4856 f[3] = (underflow ()) ? 'U' : 'u'; 4857 f[4] = (overflow ()) ? 'O' : 'o'; 4858 f[5] = (zero_divide ()) ? 'Z' : 'z'; 4859 f[6] = (denormalized()) ? 'D' : 'd'; 4860 f[7] = (invalid ()) ? 'I' : 'i'; 4861 f[8] = '\x0'; 4862 // output 4863 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); 4864 } 4865 4866 }; 4867 4868 class StatusWord { 4869 public: 4870 int32_t _value; 4871 4872 bool busy() const { return ((_value >> 15) & 1) != 0; } 4873 bool C3() const { return ((_value >> 14) & 1) != 0; } 4874 bool C2() const { return ((_value >> 10) & 1) != 0; } 4875 bool C1() const { return ((_value >> 9) & 1) != 0; } 4876 bool C0() const { return ((_value >> 8) & 1) != 0; } 4877 int top() const { return (_value >> 11) & 7 ; } 4878 bool error_status() const { return ((_value >> 7) & 1) != 0; } 4879 bool stack_fault() const { return ((_value >> 6) & 1) != 0; } 4880 bool precision() const { return ((_value >> 5) & 1) != 0; } 4881 bool underflow() const { return ((_value >> 4) & 1) != 0; } 4882 bool overflow() const { return ((_value >> 3) & 1) != 0; } 4883 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 4884 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 4885 bool invalid() const { return ((_value >> 0) & 1) != 0; } 4886 4887 void print() const { 4888 // condition codes 4889 char c[5]; 4890 c[0] = (C3()) ? '3' : '-'; 4891 c[1] = (C2()) ? '2' : '-'; 4892 c[2] = (C1()) ? '1' : '-'; 4893 c[3] = (C0()) ? '0' : '-'; 4894 c[4] = '\x0'; 4895 // flags 4896 char f[9]; 4897 f[0] = (error_status()) ? 'E' : '-'; 4898 f[1] = (stack_fault ()) ? 'S' : '-'; 4899 f[2] = (precision ()) ? 'P' : '-'; 4900 f[3] = (underflow ()) ? 'U' : '-'; 4901 f[4] = (overflow ()) ? 'O' : '-'; 4902 f[5] = (zero_divide ()) ? 'Z' : '-'; 4903 f[6] = (denormalized()) ? 'D' : '-'; 4904 f[7] = (invalid ()) ? 'I' : '-'; 4905 f[8] = '\x0'; 4906 // output 4907 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); 4908 } 4909 4910 }; 4911 4912 class TagWord { 4913 public: 4914 int32_t _value; 4915 4916 int tag_at(int i) const { return (_value >> (i*2)) & 3; } 4917 4918 void print() const { 4919 printf("%04x", _value & 0xFFFF); 4920 } 4921 4922 }; 4923 4924 class FPU_Register { 4925 public: 4926 int32_t _m0; 4927 int32_t _m1; 4928 int16_t _ex; 4929 4930 bool is_indefinite() const { 4931 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; 4932 } 4933 4934 void print() const { 4935 char sign = (_ex < 0) ? '-' : '+'; 4936 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; 4937 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); 4938 }; 4939 4940 }; 4941 4942 class FPU_State { 4943 public: 4944 enum { 4945 register_size = 10, 4946 number_of_registers = 8, 4947 register_mask = 7 4948 }; 4949 4950 ControlWord _control_word; 4951 StatusWord _status_word; 4952 TagWord _tag_word; 4953 int32_t _error_offset; 4954 int32_t _error_selector; 4955 int32_t _data_offset; 4956 int32_t _data_selector; 4957 int8_t _register[register_size * number_of_registers]; 4958 4959 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } 4960 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } 4961 4962 const char* tag_as_string(int tag) const { 4963 switch (tag) { 4964 case 0: return "valid"; 4965 case 1: return "zero"; 4966 case 2: return "special"; 4967 case 3: return "empty"; 4968 } 4969 ShouldNotReachHere(); 4970 return nullptr; 4971 } 4972 4973 void print() const { 4974 // print computation registers 4975 { int t = _status_word.top(); 4976 for (int i = 0; i < number_of_registers; i++) { 4977 int j = (i - t) & register_mask; 4978 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); 4979 st(j)->print(); 4980 printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); 4981 } 4982 } 4983 printf("\n"); 4984 // print control registers 4985 printf("ctrl = "); _control_word.print(); printf("\n"); 4986 printf("stat = "); _status_word .print(); printf("\n"); 4987 printf("tags = "); _tag_word .print(); printf("\n"); 4988 } 4989 4990 }; 4991 4992 class Flag_Register { 4993 public: 4994 int32_t _value; 4995 4996 bool overflow() const { return ((_value >> 11) & 1) != 0; } 4997 bool direction() const { return ((_value >> 10) & 1) != 0; } 4998 bool sign() const { return ((_value >> 7) & 1) != 0; } 4999 bool zero() const { return ((_value >> 6) & 1) != 0; } 5000 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } 5001 bool parity() const { return ((_value >> 2) & 1) != 0; } 5002 bool carry() const { return ((_value >> 0) & 1) != 0; } 5003 5004 void print() const { 5005 // flags 5006 char f[8]; 5007 f[0] = (overflow ()) ? 'O' : '-'; 5008 f[1] = (direction ()) ? 'D' : '-'; 5009 f[2] = (sign ()) ? 'S' : '-'; 5010 f[3] = (zero ()) ? 'Z' : '-'; 5011 f[4] = (auxiliary_carry()) ? 'A' : '-'; 5012 f[5] = (parity ()) ? 'P' : '-'; 5013 f[6] = (carry ()) ? 'C' : '-'; 5014 f[7] = '\x0'; 5015 // output 5016 printf("%08x flags = %s", _value, f); 5017 } 5018 5019 }; 5020 5021 class IU_Register { 5022 public: 5023 int32_t _value; 5024 5025 void print() const { 5026 printf("%08x %11d", _value, _value); 5027 } 5028 5029 }; 5030 5031 class IU_State { 5032 public: 5033 Flag_Register _eflags; 5034 IU_Register _rdi; 5035 IU_Register _rsi; 5036 IU_Register _rbp; 5037 IU_Register _rsp; 5038 IU_Register _rbx; 5039 IU_Register _rdx; 5040 IU_Register _rcx; 5041 IU_Register _rax; 5042 5043 void print() const { 5044 // computation registers 5045 printf("rax, = "); _rax.print(); printf("\n"); 5046 printf("rbx, = "); _rbx.print(); printf("\n"); 5047 printf("rcx = "); _rcx.print(); printf("\n"); 5048 printf("rdx = "); _rdx.print(); printf("\n"); 5049 printf("rdi = "); _rdi.print(); printf("\n"); 5050 printf("rsi = "); _rsi.print(); printf("\n"); 5051 printf("rbp, = "); _rbp.print(); printf("\n"); 5052 printf("rsp = "); _rsp.print(); printf("\n"); 5053 printf("\n"); 5054 // control registers 5055 printf("flgs = "); _eflags.print(); printf("\n"); 5056 } 5057 }; 5058 5059 5060 class CPU_State { 5061 public: 5062 FPU_State _fpu_state; 5063 IU_State _iu_state; 5064 5065 void print() const { 5066 printf("--------------------------------------------------\n"); 5067 _iu_state .print(); 5068 printf("\n"); 5069 _fpu_state.print(); 5070 printf("--------------------------------------------------\n"); 5071 } 5072 5073 }; 5074 5075 5076 static void _print_CPU_state(CPU_State* state) { 5077 state->print(); 5078 }; 5079 5080 5081 void MacroAssembler::print_CPU_state() { 5082 push_CPU_state(); 5083 push(rsp); // pass CPU state 5084 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); 5085 addptr(rsp, wordSize); // discard argument 5086 pop_CPU_state(); 5087 } 5088 5089 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) { 5090 // Either restore the MXCSR register after returning from the JNI Call 5091 // or verify that it wasn't changed (with -Xcheck:jni flag). 5092 if (VM_Version::supports_sse()) { 5093 if (RestoreMXCSROnJNICalls) { 5094 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch); 5095 } else if (CheckJNICalls) { 5096 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry())); 5097 } 5098 } 5099 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty. 5100 vzeroupper(); 5101 } 5102 5103 // ((OopHandle)result).resolve(); 5104 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 5105 assert_different_registers(result, tmp); 5106 5107 // Only 64 bit platforms support GCs that require a tmp register 5108 // Only IN_HEAP loads require a thread_tmp register 5109 // OopHandle::resolve is an indirection like jobject. 5110 access_load_at(T_OBJECT, IN_NATIVE, 5111 result, Address(result, 0), tmp); 5112 } 5113 5114 // ((WeakHandle)result).resolve(); 5115 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 5116 assert_different_registers(rresult, rtmp); 5117 Label resolved; 5118 5119 // A null weak handle resolves to null. 5120 cmpptr(rresult, 0); 5121 jcc(Assembler::equal, resolved); 5122 5123 // Only 64 bit platforms support GCs that require a tmp register 5124 // Only IN_HEAP loads require a thread_tmp register 5125 // WeakHandle::resolve is an indirection like jweak. 5126 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5127 rresult, Address(rresult, 0), rtmp); 5128 bind(resolved); 5129 } 5130 5131 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) { 5132 // get mirror 5133 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5134 load_method_holder(mirror, method); 5135 movptr(mirror, Address(mirror, mirror_offset)); 5136 resolve_oop_handle(mirror, tmp); 5137 } 5138 5139 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5140 load_method_holder(rresult, rmethod); 5141 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5142 } 5143 5144 void MacroAssembler::load_method_holder(Register holder, Register method) { 5145 movptr(holder, Address(method, Method::const_offset())); // ConstMethod* 5146 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5147 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5148 } 5149 5150 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5151 assert(UseCompactObjectHeaders, "expect compact object headers"); 5152 movq(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5153 shrq(dst, markWord::klass_shift); 5154 } 5155 5156 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) { 5157 assert_different_registers(src, tmp); 5158 assert_different_registers(dst, tmp); 5159 5160 if (UseCompactObjectHeaders) { 5161 load_narrow_klass_compact(dst, src); 5162 decode_klass_not_null(dst, tmp); 5163 } else if (UseCompressedClassPointers) { 5164 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5165 decode_klass_not_null(dst, tmp); 5166 } else { 5167 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5168 } 5169 } 5170 5171 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) { 5172 assert(!UseCompactObjectHeaders, "not with compact headers"); 5173 assert_different_registers(src, tmp); 5174 assert_different_registers(dst, tmp); 5175 if (UseCompressedClassPointers) { 5176 encode_klass_not_null(src, tmp); 5177 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5178 } else { 5179 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5180 } 5181 } 5182 5183 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) { 5184 if (UseCompactObjectHeaders) { 5185 assert(tmp != noreg, "need tmp"); 5186 assert_different_registers(klass, obj, tmp); 5187 load_narrow_klass_compact(tmp, obj); 5188 cmpl(klass, tmp); 5189 } else if (UseCompressedClassPointers) { 5190 cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 5191 } else { 5192 cmpptr(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 5193 } 5194 } 5195 5196 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5197 if (UseCompactObjectHeaders) { 5198 assert(tmp2 != noreg, "need tmp2"); 5199 assert_different_registers(obj1, obj2, tmp1, tmp2); 5200 load_narrow_klass_compact(tmp1, obj1); 5201 load_narrow_klass_compact(tmp2, obj2); 5202 cmpl(tmp1, tmp2); 5203 } else if (UseCompressedClassPointers) { 5204 movl(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5205 cmpl(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes())); 5206 } else { 5207 movptr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5208 cmpptr(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes())); 5209 } 5210 } 5211 5212 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 5213 Register tmp1) { 5214 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5215 decorators = AccessInternal::decorator_fixup(decorators, type); 5216 bool as_raw = (decorators & AS_RAW) != 0; 5217 if (as_raw) { 5218 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1); 5219 } else { 5220 bs->load_at(this, decorators, type, dst, src, tmp1); 5221 } 5222 } 5223 5224 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 5225 Register tmp1, Register tmp2, Register tmp3) { 5226 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5227 decorators = AccessInternal::decorator_fixup(decorators, type); 5228 bool as_raw = (decorators & AS_RAW) != 0; 5229 if (as_raw) { 5230 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5231 } else { 5232 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5233 } 5234 } 5235 5236 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, DecoratorSet decorators) { 5237 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1); 5238 } 5239 5240 // Doesn't do verification, generates fixed size code 5241 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, DecoratorSet decorators) { 5242 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1); 5243 } 5244 5245 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5246 Register tmp2, Register tmp3, DecoratorSet decorators) { 5247 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5248 } 5249 5250 // Used for storing nulls. 5251 void MacroAssembler::store_heap_oop_null(Address dst) { 5252 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5253 } 5254 5255 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5256 assert(!UseCompactObjectHeaders, "Don't use with compact headers"); 5257 if (UseCompressedClassPointers) { 5258 // Store to klass gap in destination 5259 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); 5260 } 5261 } 5262 5263 #ifdef ASSERT 5264 void MacroAssembler::verify_heapbase(const char* msg) { 5265 assert (UseCompressedOops, "should be compressed"); 5266 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5267 if (CheckCompressedOops) { 5268 Label ok; 5269 ExternalAddress src2(CompressedOops::base_addr()); 5270 const bool is_src2_reachable = reachable(src2); 5271 if (!is_src2_reachable) { 5272 push(rscratch1); // cmpptr trashes rscratch1 5273 } 5274 cmpptr(r12_heapbase, src2, rscratch1); 5275 jcc(Assembler::equal, ok); 5276 STOP(msg); 5277 bind(ok); 5278 if (!is_src2_reachable) { 5279 pop(rscratch1); 5280 } 5281 } 5282 } 5283 #endif 5284 5285 // Algorithm must match oop.inline.hpp encode_heap_oop. 5286 void MacroAssembler::encode_heap_oop(Register r) { 5287 #ifdef ASSERT 5288 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5289 #endif 5290 verify_oop_msg(r, "broken oop in encode_heap_oop"); 5291 if (CompressedOops::base() == nullptr) { 5292 if (CompressedOops::shift() != 0) { 5293 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5294 shrq(r, LogMinObjAlignmentInBytes); 5295 } 5296 return; 5297 } 5298 testq(r, r); 5299 cmovq(Assembler::equal, r, r12_heapbase); 5300 subq(r, r12_heapbase); 5301 shrq(r, LogMinObjAlignmentInBytes); 5302 } 5303 5304 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5305 #ifdef ASSERT 5306 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5307 if (CheckCompressedOops) { 5308 Label ok; 5309 testq(r, r); 5310 jcc(Assembler::notEqual, ok); 5311 STOP("null oop passed to encode_heap_oop_not_null"); 5312 bind(ok); 5313 } 5314 #endif 5315 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5316 if (CompressedOops::base() != nullptr) { 5317 subq(r, r12_heapbase); 5318 } 5319 if (CompressedOops::shift() != 0) { 5320 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5321 shrq(r, LogMinObjAlignmentInBytes); 5322 } 5323 } 5324 5325 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5326 #ifdef ASSERT 5327 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5328 if (CheckCompressedOops) { 5329 Label ok; 5330 testq(src, src); 5331 jcc(Assembler::notEqual, ok); 5332 STOP("null oop passed to encode_heap_oop_not_null2"); 5333 bind(ok); 5334 } 5335 #endif 5336 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5337 if (dst != src) { 5338 movq(dst, src); 5339 } 5340 if (CompressedOops::base() != nullptr) { 5341 subq(dst, r12_heapbase); 5342 } 5343 if (CompressedOops::shift() != 0) { 5344 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5345 shrq(dst, LogMinObjAlignmentInBytes); 5346 } 5347 } 5348 5349 void MacroAssembler::decode_heap_oop(Register r) { 5350 #ifdef ASSERT 5351 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5352 #endif 5353 if (CompressedOops::base() == nullptr) { 5354 if (CompressedOops::shift() != 0) { 5355 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5356 shlq(r, LogMinObjAlignmentInBytes); 5357 } 5358 } else { 5359 Label done; 5360 shlq(r, LogMinObjAlignmentInBytes); 5361 jccb(Assembler::equal, done); 5362 addq(r, r12_heapbase); 5363 bind(done); 5364 } 5365 verify_oop_msg(r, "broken oop in decode_heap_oop"); 5366 } 5367 5368 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5369 // Note: it will change flags 5370 assert (UseCompressedOops, "should only be used for compressed headers"); 5371 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5372 // Cannot assert, unverified entry point counts instructions (see .ad file) 5373 // vtableStubs also counts instructions in pd_code_size_limit. 5374 // Also do not verify_oop as this is called by verify_oop. 5375 if (CompressedOops::shift() != 0) { 5376 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5377 shlq(r, LogMinObjAlignmentInBytes); 5378 if (CompressedOops::base() != nullptr) { 5379 addq(r, r12_heapbase); 5380 } 5381 } else { 5382 assert (CompressedOops::base() == nullptr, "sanity"); 5383 } 5384 } 5385 5386 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5387 // Note: it will change flags 5388 assert (UseCompressedOops, "should only be used for compressed headers"); 5389 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5390 // Cannot assert, unverified entry point counts instructions (see .ad file) 5391 // vtableStubs also counts instructions in pd_code_size_limit. 5392 // Also do not verify_oop as this is called by verify_oop. 5393 if (CompressedOops::shift() != 0) { 5394 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5395 if (LogMinObjAlignmentInBytes == Address::times_8) { 5396 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); 5397 } else { 5398 if (dst != src) { 5399 movq(dst, src); 5400 } 5401 shlq(dst, LogMinObjAlignmentInBytes); 5402 if (CompressedOops::base() != nullptr) { 5403 addq(dst, r12_heapbase); 5404 } 5405 } 5406 } else { 5407 assert (CompressedOops::base() == nullptr, "sanity"); 5408 if (dst != src) { 5409 movq(dst, src); 5410 } 5411 } 5412 } 5413 5414 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) { 5415 BLOCK_COMMENT("encode_klass_not_null {"); 5416 assert_different_registers(r, tmp); 5417 if (CompressedKlassPointers::base() != nullptr) { 5418 if (AOTCodeCache::is_on_for_dump()) { 5419 movptr(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5420 } else { 5421 movptr(tmp, (intptr_t)CompressedKlassPointers::base()); 5422 } 5423 subq(r, tmp); 5424 } 5425 if (CompressedKlassPointers::shift() != 0) { 5426 shrq(r, CompressedKlassPointers::shift()); 5427 } 5428 BLOCK_COMMENT("} encode_klass_not_null"); 5429 } 5430 5431 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) { 5432 BLOCK_COMMENT("encode_and_move_klass_not_null {"); 5433 assert_different_registers(src, dst); 5434 if (CompressedKlassPointers::base() != nullptr) { 5435 movptr(dst, -(intptr_t)CompressedKlassPointers::base()); 5436 addq(dst, src); 5437 } else { 5438 movptr(dst, src); 5439 } 5440 if (CompressedKlassPointers::shift() != 0) { 5441 shrq(dst, CompressedKlassPointers::shift()); 5442 } 5443 BLOCK_COMMENT("} encode_and_move_klass_not_null"); 5444 } 5445 5446 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) { 5447 BLOCK_COMMENT("decode_klass_not_null {"); 5448 assert_different_registers(r, tmp); 5449 // Note: it will change flags 5450 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 5451 // Cannot assert, unverified entry point counts instructions (see .ad file) 5452 // vtableStubs also counts instructions in pd_code_size_limit. 5453 // Also do not verify_oop as this is called by verify_oop. 5454 if (CompressedKlassPointers::shift() != 0) { 5455 shlq(r, CompressedKlassPointers::shift()); 5456 } 5457 if (CompressedKlassPointers::base() != nullptr) { 5458 if (AOTCodeCache::is_on_for_dump()) { 5459 movptr(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5460 } else { 5461 movptr(tmp, (intptr_t)CompressedKlassPointers::base()); 5462 } 5463 addq(r, tmp); 5464 } 5465 BLOCK_COMMENT("} decode_klass_not_null"); 5466 } 5467 5468 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) { 5469 BLOCK_COMMENT("decode_and_move_klass_not_null {"); 5470 assert_different_registers(src, dst); 5471 // Note: it will change flags 5472 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5473 // Cannot assert, unverified entry point counts instructions (see .ad file) 5474 // vtableStubs also counts instructions in pd_code_size_limit. 5475 // Also do not verify_oop as this is called by verify_oop. 5476 5477 if (CompressedKlassPointers::base() == nullptr && 5478 CompressedKlassPointers::shift() == 0) { 5479 // The best case scenario is that there is no base or shift. Then it is already 5480 // a pointer that needs nothing but a register rename. 5481 movl(dst, src); 5482 } else { 5483 if (CompressedKlassPointers::shift() <= Address::times_8) { 5484 if (CompressedKlassPointers::base() != nullptr) { 5485 movptr(dst, (intptr_t)CompressedKlassPointers::base()); 5486 } else { 5487 xorq(dst, dst); 5488 } 5489 if (CompressedKlassPointers::shift() != 0) { 5490 assert(CompressedKlassPointers::shift() == Address::times_8, "klass not aligned on 64bits?"); 5491 leaq(dst, Address(dst, src, Address::times_8, 0)); 5492 } else { 5493 addq(dst, src); 5494 } 5495 } else { 5496 if (CompressedKlassPointers::base() != nullptr) { 5497 const intptr_t base_right_shifted = 5498 (intptr_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5499 movptr(dst, base_right_shifted); 5500 } else { 5501 xorq(dst, dst); 5502 } 5503 addq(dst, src); 5504 shlq(dst, CompressedKlassPointers::shift()); 5505 } 5506 } 5507 BLOCK_COMMENT("} decode_and_move_klass_not_null"); 5508 } 5509 5510 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5511 assert (UseCompressedOops, "should only be used for compressed headers"); 5512 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5513 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5514 int oop_index = oop_recorder()->find_index(obj); 5515 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5516 mov_narrow_oop(dst, oop_index, rspec); 5517 } 5518 5519 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { 5520 assert (UseCompressedOops, "should only be used for compressed headers"); 5521 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5522 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5523 int oop_index = oop_recorder()->find_index(obj); 5524 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5525 mov_narrow_oop(dst, oop_index, rspec); 5526 } 5527 5528 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5529 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5530 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5531 int klass_index = oop_recorder()->find_index(k); 5532 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5533 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5534 } 5535 5536 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) { 5537 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5538 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5539 int klass_index = oop_recorder()->find_index(k); 5540 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5541 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5542 } 5543 5544 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { 5545 assert (UseCompressedOops, "should only be used for compressed headers"); 5546 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5547 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5548 int oop_index = oop_recorder()->find_index(obj); 5549 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5550 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 5551 } 5552 5553 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { 5554 assert (UseCompressedOops, "should only be used for compressed headers"); 5555 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5556 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5557 int oop_index = oop_recorder()->find_index(obj); 5558 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5559 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 5560 } 5561 5562 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) { 5563 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5564 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5565 int klass_index = oop_recorder()->find_index(k); 5566 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5567 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5568 } 5569 5570 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) { 5571 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5572 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5573 int klass_index = oop_recorder()->find_index(k); 5574 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5575 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5576 } 5577 5578 void MacroAssembler::reinit_heapbase() { 5579 if (UseCompressedOops) { 5580 if (Universe::heap() != nullptr) { 5581 if (CompressedOops::base() == nullptr) { 5582 MacroAssembler::xorptr(r12_heapbase, r12_heapbase); 5583 } else { 5584 mov64(r12_heapbase, (int64_t)CompressedOops::base()); 5585 } 5586 } else { 5587 movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr())); 5588 } 5589 } 5590 } 5591 5592 #if COMPILER2_OR_JVMCI 5593 5594 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers 5595 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 5596 // cnt - number of qwords (8-byte words). 5597 // base - start address, qword aligned. 5598 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end; 5599 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0); 5600 if (use64byteVector) { 5601 vpxor(xtmp, xtmp, xtmp, AVX_512bit); 5602 } else if (MaxVectorSize >= 32) { 5603 vpxor(xtmp, xtmp, xtmp, AVX_256bit); 5604 } else { 5605 pxor(xtmp, xtmp); 5606 } 5607 jmp(L_zero_64_bytes); 5608 5609 BIND(L_loop); 5610 if (MaxVectorSize >= 32) { 5611 fill64(base, 0, xtmp, use64byteVector); 5612 } else { 5613 movdqu(Address(base, 0), xtmp); 5614 movdqu(Address(base, 16), xtmp); 5615 movdqu(Address(base, 32), xtmp); 5616 movdqu(Address(base, 48), xtmp); 5617 } 5618 addptr(base, 64); 5619 5620 BIND(L_zero_64_bytes); 5621 subptr(cnt, 8); 5622 jccb(Assembler::greaterEqual, L_loop); 5623 5624 // Copy trailing 64 bytes 5625 if (use64byteVector) { 5626 addptr(cnt, 8); 5627 jccb(Assembler::equal, L_end); 5628 fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true); 5629 jmp(L_end); 5630 } else { 5631 addptr(cnt, 4); 5632 jccb(Assembler::less, L_tail); 5633 if (MaxVectorSize >= 32) { 5634 vmovdqu(Address(base, 0), xtmp); 5635 } else { 5636 movdqu(Address(base, 0), xtmp); 5637 movdqu(Address(base, 16), xtmp); 5638 } 5639 } 5640 addptr(base, 32); 5641 subptr(cnt, 4); 5642 5643 BIND(L_tail); 5644 addptr(cnt, 4); 5645 jccb(Assembler::lessEqual, L_end); 5646 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) { 5647 fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp); 5648 } else { 5649 decrement(cnt); 5650 5651 BIND(L_sloop); 5652 movq(Address(base, 0), xtmp); 5653 addptr(base, 8); 5654 decrement(cnt); 5655 jccb(Assembler::greaterEqual, L_sloop); 5656 } 5657 BIND(L_end); 5658 } 5659 5660 // Clearing constant sized memory using YMM/ZMM registers. 5661 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 5662 assert(UseAVX > 2 && VM_Version::supports_avx512vl(), ""); 5663 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0); 5664 5665 int vector64_count = (cnt & (~0x7)) >> 3; 5666 cnt = cnt & 0x7; 5667 const int fill64_per_loop = 4; 5668 const int max_unrolled_fill64 = 8; 5669 5670 // 64 byte initialization loop. 5671 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit); 5672 int start64 = 0; 5673 if (vector64_count > max_unrolled_fill64) { 5674 Label LOOP; 5675 Register index = rtmp; 5676 5677 start64 = vector64_count - (vector64_count % fill64_per_loop); 5678 5679 movl(index, 0); 5680 BIND(LOOP); 5681 for (int i = 0; i < fill64_per_loop; i++) { 5682 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector); 5683 } 5684 addl(index, fill64_per_loop * 64); 5685 cmpl(index, start64 * 64); 5686 jccb(Assembler::less, LOOP); 5687 } 5688 for (int i = start64; i < vector64_count; i++) { 5689 fill64(base, i * 64, xtmp, use64byteVector); 5690 } 5691 5692 // Clear remaining 64 byte tail. 5693 int disp = vector64_count * 64; 5694 if (cnt) { 5695 switch (cnt) { 5696 case 1: 5697 movq(Address(base, disp), xtmp); 5698 break; 5699 case 2: 5700 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit); 5701 break; 5702 case 3: 5703 movl(rtmp, 0x7); 5704 kmovwl(mask, rtmp); 5705 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit); 5706 break; 5707 case 4: 5708 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 5709 break; 5710 case 5: 5711 if (use64byteVector) { 5712 movl(rtmp, 0x1F); 5713 kmovwl(mask, rtmp); 5714 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 5715 } else { 5716 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 5717 movq(Address(base, disp + 32), xtmp); 5718 } 5719 break; 5720 case 6: 5721 if (use64byteVector) { 5722 movl(rtmp, 0x3F); 5723 kmovwl(mask, rtmp); 5724 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 5725 } else { 5726 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 5727 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit); 5728 } 5729 break; 5730 case 7: 5731 if (use64byteVector) { 5732 movl(rtmp, 0x7F); 5733 kmovwl(mask, rtmp); 5734 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 5735 } else { 5736 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 5737 movl(rtmp, 0x7); 5738 kmovwl(mask, rtmp); 5739 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit); 5740 } 5741 break; 5742 default: 5743 fatal("Unexpected length : %d\n",cnt); 5744 break; 5745 } 5746 } 5747 } 5748 5749 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, 5750 bool is_large, KRegister mask) { 5751 // cnt - number of qwords (8-byte words). 5752 // base - start address, qword aligned. 5753 // is_large - if optimizers know cnt is larger than InitArrayShortSize 5754 assert(base==rdi, "base register must be edi for rep stos"); 5755 assert(tmp==rax, "tmp register must be eax for rep stos"); 5756 assert(cnt==rcx, "cnt register must be ecx for rep stos"); 5757 assert(InitArrayShortSize % BytesPerLong == 0, 5758 "InitArrayShortSize should be the multiple of BytesPerLong"); 5759 5760 Label DONE; 5761 if (!is_large || !UseXMMForObjInit) { 5762 xorptr(tmp, tmp); 5763 } 5764 5765 if (!is_large) { 5766 Label LOOP, LONG; 5767 cmpptr(cnt, InitArrayShortSize/BytesPerLong); 5768 jccb(Assembler::greater, LONG); 5769 5770 decrement(cnt); 5771 jccb(Assembler::negative, DONE); // Zero length 5772 5773 // Use individual pointer-sized stores for small counts: 5774 BIND(LOOP); 5775 movptr(Address(base, cnt, Address::times_ptr), tmp); 5776 decrement(cnt); 5777 jccb(Assembler::greaterEqual, LOOP); 5778 jmpb(DONE); 5779 5780 BIND(LONG); 5781 } 5782 5783 // Use longer rep-prefixed ops for non-small counts: 5784 if (UseFastStosb) { 5785 shlptr(cnt, 3); // convert to number of bytes 5786 rep_stosb(); 5787 } else if (UseXMMForObjInit) { 5788 xmm_clear_mem(base, cnt, tmp, xtmp, mask); 5789 } else { 5790 rep_stos(); 5791 } 5792 5793 BIND(DONE); 5794 } 5795 5796 #endif //COMPILER2_OR_JVMCI 5797 5798 5799 void MacroAssembler::generate_fill(BasicType t, bool aligned, 5800 Register to, Register value, Register count, 5801 Register rtmp, XMMRegister xtmp) { 5802 ShortBranchVerifier sbv(this); 5803 assert_different_registers(to, value, count, rtmp); 5804 Label L_exit; 5805 Label L_fill_2_bytes, L_fill_4_bytes; 5806 5807 #if defined(COMPILER2) 5808 if(MaxVectorSize >=32 && 5809 VM_Version::supports_avx512vlbw() && 5810 VM_Version::supports_bmi2()) { 5811 generate_fill_avx3(t, to, value, count, rtmp, xtmp); 5812 return; 5813 } 5814 #endif 5815 5816 int shift = -1; 5817 switch (t) { 5818 case T_BYTE: 5819 shift = 2; 5820 break; 5821 case T_SHORT: 5822 shift = 1; 5823 break; 5824 case T_INT: 5825 shift = 0; 5826 break; 5827 default: ShouldNotReachHere(); 5828 } 5829 5830 if (t == T_BYTE) { 5831 andl(value, 0xff); 5832 movl(rtmp, value); 5833 shll(rtmp, 8); 5834 orl(value, rtmp); 5835 } 5836 if (t == T_SHORT) { 5837 andl(value, 0xffff); 5838 } 5839 if (t == T_BYTE || t == T_SHORT) { 5840 movl(rtmp, value); 5841 shll(rtmp, 16); 5842 orl(value, rtmp); 5843 } 5844 5845 cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element 5846 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp 5847 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) { 5848 Label L_skip_align2; 5849 // align source address at 4 bytes address boundary 5850 if (t == T_BYTE) { 5851 Label L_skip_align1; 5852 // One byte misalignment happens only for byte arrays 5853 testptr(to, 1); 5854 jccb(Assembler::zero, L_skip_align1); 5855 movb(Address(to, 0), value); 5856 increment(to); 5857 decrement(count); 5858 BIND(L_skip_align1); 5859 } 5860 // Two bytes misalignment happens only for byte and short (char) arrays 5861 testptr(to, 2); 5862 jccb(Assembler::zero, L_skip_align2); 5863 movw(Address(to, 0), value); 5864 addptr(to, 2); 5865 subptr(count, 1<<(shift-1)); 5866 BIND(L_skip_align2); 5867 } 5868 { 5869 Label L_fill_32_bytes; 5870 if (!UseUnalignedLoadStores) { 5871 // align to 8 bytes, we know we are 4 byte aligned to start 5872 testptr(to, 4); 5873 jccb(Assembler::zero, L_fill_32_bytes); 5874 movl(Address(to, 0), value); 5875 addptr(to, 4); 5876 subptr(count, 1<<shift); 5877 } 5878 BIND(L_fill_32_bytes); 5879 { 5880 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 5881 movdl(xtmp, value); 5882 if (UseAVX >= 2 && UseUnalignedLoadStores) { 5883 Label L_check_fill_32_bytes; 5884 if (UseAVX > 2) { 5885 // Fill 64-byte chunks 5886 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2; 5887 5888 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2 5889 cmpptr(count, VM_Version::avx3_threshold()); 5890 jccb(Assembler::below, L_check_fill_64_bytes_avx2); 5891 5892 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit); 5893 5894 subptr(count, 16 << shift); 5895 jccb(Assembler::less, L_check_fill_32_bytes); 5896 align(16); 5897 5898 BIND(L_fill_64_bytes_loop_avx3); 5899 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit); 5900 addptr(to, 64); 5901 subptr(count, 16 << shift); 5902 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3); 5903 jmpb(L_check_fill_32_bytes); 5904 5905 BIND(L_check_fill_64_bytes_avx2); 5906 } 5907 // Fill 64-byte chunks 5908 Label L_fill_64_bytes_loop; 5909 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit); 5910 5911 subptr(count, 16 << shift); 5912 jcc(Assembler::less, L_check_fill_32_bytes); 5913 align(16); 5914 5915 BIND(L_fill_64_bytes_loop); 5916 vmovdqu(Address(to, 0), xtmp); 5917 vmovdqu(Address(to, 32), xtmp); 5918 addptr(to, 64); 5919 subptr(count, 16 << shift); 5920 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop); 5921 5922 BIND(L_check_fill_32_bytes); 5923 addptr(count, 8 << shift); 5924 jccb(Assembler::less, L_check_fill_8_bytes); 5925 vmovdqu(Address(to, 0), xtmp); 5926 addptr(to, 32); 5927 subptr(count, 8 << shift); 5928 5929 BIND(L_check_fill_8_bytes); 5930 // clean upper bits of YMM registers 5931 movdl(xtmp, value); 5932 pshufd(xtmp, xtmp, 0); 5933 } else { 5934 // Fill 32-byte chunks 5935 pshufd(xtmp, xtmp, 0); 5936 5937 subptr(count, 8 << shift); 5938 jcc(Assembler::less, L_check_fill_8_bytes); 5939 align(16); 5940 5941 BIND(L_fill_32_bytes_loop); 5942 5943 if (UseUnalignedLoadStores) { 5944 movdqu(Address(to, 0), xtmp); 5945 movdqu(Address(to, 16), xtmp); 5946 } else { 5947 movq(Address(to, 0), xtmp); 5948 movq(Address(to, 8), xtmp); 5949 movq(Address(to, 16), xtmp); 5950 movq(Address(to, 24), xtmp); 5951 } 5952 5953 addptr(to, 32); 5954 subptr(count, 8 << shift); 5955 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 5956 5957 BIND(L_check_fill_8_bytes); 5958 } 5959 addptr(count, 8 << shift); 5960 jccb(Assembler::zero, L_exit); 5961 jmpb(L_fill_8_bytes); 5962 5963 // 5964 // length is too short, just fill qwords 5965 // 5966 BIND(L_fill_8_bytes_loop); 5967 movq(Address(to, 0), xtmp); 5968 addptr(to, 8); 5969 BIND(L_fill_8_bytes); 5970 subptr(count, 1 << (shift + 1)); 5971 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 5972 } 5973 } 5974 // fill trailing 4 bytes 5975 BIND(L_fill_4_bytes); 5976 testl(count, 1<<shift); 5977 jccb(Assembler::zero, L_fill_2_bytes); 5978 movl(Address(to, 0), value); 5979 if (t == T_BYTE || t == T_SHORT) { 5980 Label L_fill_byte; 5981 addptr(to, 4); 5982 BIND(L_fill_2_bytes); 5983 // fill trailing 2 bytes 5984 testl(count, 1<<(shift-1)); 5985 jccb(Assembler::zero, L_fill_byte); 5986 movw(Address(to, 0), value); 5987 if (t == T_BYTE) { 5988 addptr(to, 2); 5989 BIND(L_fill_byte); 5990 // fill trailing byte 5991 testl(count, 1); 5992 jccb(Assembler::zero, L_exit); 5993 movb(Address(to, 0), value); 5994 } else { 5995 BIND(L_fill_byte); 5996 } 5997 } else { 5998 BIND(L_fill_2_bytes); 5999 } 6000 BIND(L_exit); 6001 } 6002 6003 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) { 6004 switch(type) { 6005 case T_BYTE: 6006 case T_BOOLEAN: 6007 evpbroadcastb(dst, src, vector_len); 6008 break; 6009 case T_SHORT: 6010 case T_CHAR: 6011 evpbroadcastw(dst, src, vector_len); 6012 break; 6013 case T_INT: 6014 case T_FLOAT: 6015 evpbroadcastd(dst, src, vector_len); 6016 break; 6017 case T_LONG: 6018 case T_DOUBLE: 6019 evpbroadcastq(dst, src, vector_len); 6020 break; 6021 default: 6022 fatal("Unhandled type : %s", type2name(type)); 6023 break; 6024 } 6025 } 6026 6027 // encode char[] to byte[] in ISO_8859_1 or ASCII 6028 //@IntrinsicCandidate 6029 //private static int implEncodeISOArray(byte[] sa, int sp, 6030 //byte[] da, int dp, int len) { 6031 // int i = 0; 6032 // for (; i < len; i++) { 6033 // char c = StringUTF16.getChar(sa, sp++); 6034 // if (c > '\u00FF') 6035 // break; 6036 // da[dp++] = (byte)c; 6037 // } 6038 // return i; 6039 //} 6040 // 6041 //@IntrinsicCandidate 6042 //private static int implEncodeAsciiArray(char[] sa, int sp, 6043 // byte[] da, int dp, int len) { 6044 // int i = 0; 6045 // for (; i < len; i++) { 6046 // char c = sa[sp++]; 6047 // if (c >= '\u0080') 6048 // break; 6049 // da[dp++] = (byte)c; 6050 // } 6051 // return i; 6052 //} 6053 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, 6054 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 6055 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 6056 Register tmp5, Register result, bool ascii) { 6057 6058 // rsi: src 6059 // rdi: dst 6060 // rdx: len 6061 // rcx: tmp5 6062 // rax: result 6063 ShortBranchVerifier sbv(this); 6064 assert_different_registers(src, dst, len, tmp5, result); 6065 Label L_done, L_copy_1_char, L_copy_1_char_exit; 6066 6067 int mask = ascii ? 0xff80ff80 : 0xff00ff00; 6068 int short_mask = ascii ? 0xff80 : 0xff00; 6069 6070 // set result 6071 xorl(result, result); 6072 // check for zero length 6073 testl(len, len); 6074 jcc(Assembler::zero, L_done); 6075 6076 movl(result, len); 6077 6078 // Setup pointers 6079 lea(src, Address(src, len, Address::times_2)); // char[] 6080 lea(dst, Address(dst, len, Address::times_1)); // byte[] 6081 negptr(len); 6082 6083 if (UseSSE42Intrinsics || UseAVX >= 2) { 6084 Label L_copy_8_chars, L_copy_8_chars_exit; 6085 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit; 6086 6087 if (UseAVX >= 2) { 6088 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit; 6089 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6090 movdl(tmp1Reg, tmp5); 6091 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit); 6092 jmp(L_chars_32_check); 6093 6094 bind(L_copy_32_chars); 6095 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64)); 6096 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32)); 6097 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6098 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6099 jccb(Assembler::notZero, L_copy_32_chars_exit); 6100 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6101 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1); 6102 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg); 6103 6104 bind(L_chars_32_check); 6105 addptr(len, 32); 6106 jcc(Assembler::lessEqual, L_copy_32_chars); 6107 6108 bind(L_copy_32_chars_exit); 6109 subptr(len, 16); 6110 jccb(Assembler::greater, L_copy_16_chars_exit); 6111 6112 } else if (UseSSE42Intrinsics) { 6113 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6114 movdl(tmp1Reg, tmp5); 6115 pshufd(tmp1Reg, tmp1Reg, 0); 6116 jmpb(L_chars_16_check); 6117 } 6118 6119 bind(L_copy_16_chars); 6120 if (UseAVX >= 2) { 6121 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32)); 6122 vptest(tmp2Reg, tmp1Reg); 6123 jcc(Assembler::notZero, L_copy_16_chars_exit); 6124 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1); 6125 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1); 6126 } else { 6127 if (UseAVX > 0) { 6128 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6129 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6130 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0); 6131 } else { 6132 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6133 por(tmp2Reg, tmp3Reg); 6134 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6135 por(tmp2Reg, tmp4Reg); 6136 } 6137 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6138 jccb(Assembler::notZero, L_copy_16_chars_exit); 6139 packuswb(tmp3Reg, tmp4Reg); 6140 } 6141 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg); 6142 6143 bind(L_chars_16_check); 6144 addptr(len, 16); 6145 jcc(Assembler::lessEqual, L_copy_16_chars); 6146 6147 bind(L_copy_16_chars_exit); 6148 if (UseAVX >= 2) { 6149 // clean upper bits of YMM registers 6150 vpxor(tmp2Reg, tmp2Reg); 6151 vpxor(tmp3Reg, tmp3Reg); 6152 vpxor(tmp4Reg, tmp4Reg); 6153 movdl(tmp1Reg, tmp5); 6154 pshufd(tmp1Reg, tmp1Reg, 0); 6155 } 6156 subptr(len, 8); 6157 jccb(Assembler::greater, L_copy_8_chars_exit); 6158 6159 bind(L_copy_8_chars); 6160 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16)); 6161 ptest(tmp3Reg, tmp1Reg); 6162 jccb(Assembler::notZero, L_copy_8_chars_exit); 6163 packuswb(tmp3Reg, tmp1Reg); 6164 movq(Address(dst, len, Address::times_1, -8), tmp3Reg); 6165 addptr(len, 8); 6166 jccb(Assembler::lessEqual, L_copy_8_chars); 6167 6168 bind(L_copy_8_chars_exit); 6169 subptr(len, 8); 6170 jccb(Assembler::zero, L_done); 6171 } 6172 6173 bind(L_copy_1_char); 6174 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0)); 6175 testl(tmp5, short_mask); // check if Unicode or non-ASCII char 6176 jccb(Assembler::notZero, L_copy_1_char_exit); 6177 movb(Address(dst, len, Address::times_1, 0), tmp5); 6178 addptr(len, 1); 6179 jccb(Assembler::less, L_copy_1_char); 6180 6181 bind(L_copy_1_char_exit); 6182 addptr(result, len); // len is negative count of not processed elements 6183 6184 bind(L_done); 6185 } 6186 6187 /** 6188 * Helper for multiply_to_len(). 6189 */ 6190 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 6191 addq(dest_lo, src1); 6192 adcq(dest_hi, 0); 6193 addq(dest_lo, src2); 6194 adcq(dest_hi, 0); 6195 } 6196 6197 /** 6198 * Multiply 64 bit by 64 bit first loop. 6199 */ 6200 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 6201 Register y, Register y_idx, Register z, 6202 Register carry, Register product, 6203 Register idx, Register kdx) { 6204 // 6205 // jlong carry, x[], y[], z[]; 6206 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 6207 // huge_128 product = y[idx] * x[xstart] + carry; 6208 // z[kdx] = (jlong)product; 6209 // carry = (jlong)(product >>> 64); 6210 // } 6211 // z[xstart] = carry; 6212 // 6213 6214 Label L_first_loop, L_first_loop_exit; 6215 Label L_one_x, L_one_y, L_multiply; 6216 6217 decrementl(xstart); 6218 jcc(Assembler::negative, L_one_x); 6219 6220 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 6221 rorq(x_xstart, 32); // convert big-endian to little-endian 6222 6223 bind(L_first_loop); 6224 decrementl(idx); 6225 jcc(Assembler::negative, L_first_loop_exit); 6226 decrementl(idx); 6227 jcc(Assembler::negative, L_one_y); 6228 movq(y_idx, Address(y, idx, Address::times_4, 0)); 6229 rorq(y_idx, 32); // convert big-endian to little-endian 6230 bind(L_multiply); 6231 movq(product, x_xstart); 6232 mulq(y_idx); // product(rax) * y_idx -> rdx:rax 6233 addq(product, carry); 6234 adcq(rdx, 0); 6235 subl(kdx, 2); 6236 movl(Address(z, kdx, Address::times_4, 4), product); 6237 shrq(product, 32); 6238 movl(Address(z, kdx, Address::times_4, 0), product); 6239 movq(carry, rdx); 6240 jmp(L_first_loop); 6241 6242 bind(L_one_y); 6243 movl(y_idx, Address(y, 0)); 6244 jmp(L_multiply); 6245 6246 bind(L_one_x); 6247 movl(x_xstart, Address(x, 0)); 6248 jmp(L_first_loop); 6249 6250 bind(L_first_loop_exit); 6251 } 6252 6253 /** 6254 * Multiply 64 bit by 64 bit and add 128 bit. 6255 */ 6256 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, 6257 Register yz_idx, Register idx, 6258 Register carry, Register product, int offset) { 6259 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; 6260 // z[kdx] = (jlong)product; 6261 6262 movq(yz_idx, Address(y, idx, Address::times_4, offset)); 6263 rorq(yz_idx, 32); // convert big-endian to little-endian 6264 movq(product, x_xstart); 6265 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 6266 movq(yz_idx, Address(z, idx, Address::times_4, offset)); 6267 rorq(yz_idx, 32); // convert big-endian to little-endian 6268 6269 add2_with_carry(rdx, product, carry, yz_idx); 6270 6271 movl(Address(z, idx, Address::times_4, offset+4), product); 6272 shrq(product, 32); 6273 movl(Address(z, idx, Address::times_4, offset), product); 6274 6275 } 6276 6277 /** 6278 * Multiply 128 bit by 128 bit. Unrolled inner loop. 6279 */ 6280 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 6281 Register yz_idx, Register idx, Register jdx, 6282 Register carry, Register product, 6283 Register carry2) { 6284 // jlong carry, x[], y[], z[]; 6285 // int kdx = ystart+1; 6286 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 6287 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; 6288 // z[kdx+idx+1] = (jlong)product; 6289 // jlong carry2 = (jlong)(product >>> 64); 6290 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; 6291 // z[kdx+idx] = (jlong)product; 6292 // carry = (jlong)(product >>> 64); 6293 // } 6294 // idx += 2; 6295 // if (idx > 0) { 6296 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; 6297 // z[kdx+idx] = (jlong)product; 6298 // carry = (jlong)(product >>> 64); 6299 // } 6300 // 6301 6302 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 6303 6304 movl(jdx, idx); 6305 andl(jdx, 0xFFFFFFFC); 6306 shrl(jdx, 2); 6307 6308 bind(L_third_loop); 6309 subl(jdx, 1); 6310 jcc(Assembler::negative, L_third_loop_exit); 6311 subl(idx, 4); 6312 6313 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8); 6314 movq(carry2, rdx); 6315 6316 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0); 6317 movq(carry, rdx); 6318 jmp(L_third_loop); 6319 6320 bind (L_third_loop_exit); 6321 6322 andl (idx, 0x3); 6323 jcc(Assembler::zero, L_post_third_loop_done); 6324 6325 Label L_check_1; 6326 subl(idx, 2); 6327 jcc(Assembler::negative, L_check_1); 6328 6329 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0); 6330 movq(carry, rdx); 6331 6332 bind (L_check_1); 6333 addl (idx, 0x2); 6334 andl (idx, 0x1); 6335 subl(idx, 1); 6336 jcc(Assembler::negative, L_post_third_loop_done); 6337 6338 movl(yz_idx, Address(y, idx, Address::times_4, 0)); 6339 movq(product, x_xstart); 6340 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 6341 movl(yz_idx, Address(z, idx, Address::times_4, 0)); 6342 6343 add2_with_carry(rdx, product, yz_idx, carry); 6344 6345 movl(Address(z, idx, Address::times_4, 0), product); 6346 shrq(product, 32); 6347 6348 shlq(rdx, 32); 6349 orq(product, rdx); 6350 movq(carry, product); 6351 6352 bind(L_post_third_loop_done); 6353 } 6354 6355 /** 6356 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop. 6357 * 6358 */ 6359 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z, 6360 Register carry, Register carry2, 6361 Register idx, Register jdx, 6362 Register yz_idx1, Register yz_idx2, 6363 Register tmp, Register tmp3, Register tmp4) { 6364 assert(UseBMI2Instructions, "should be used only when BMI2 is available"); 6365 6366 // jlong carry, x[], y[], z[]; 6367 // int kdx = ystart+1; 6368 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 6369 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry; 6370 // jlong carry2 = (jlong)(tmp3 >>> 64); 6371 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2; 6372 // carry = (jlong)(tmp4 >>> 64); 6373 // z[kdx+idx+1] = (jlong)tmp3; 6374 // z[kdx+idx] = (jlong)tmp4; 6375 // } 6376 // idx += 2; 6377 // if (idx > 0) { 6378 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry; 6379 // z[kdx+idx] = (jlong)yz_idx1; 6380 // carry = (jlong)(yz_idx1 >>> 64); 6381 // } 6382 // 6383 6384 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 6385 6386 movl(jdx, idx); 6387 andl(jdx, 0xFFFFFFFC); 6388 shrl(jdx, 2); 6389 6390 bind(L_third_loop); 6391 subl(jdx, 1); 6392 jcc(Assembler::negative, L_third_loop_exit); 6393 subl(idx, 4); 6394 6395 movq(yz_idx1, Address(y, idx, Address::times_4, 8)); 6396 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 6397 movq(yz_idx2, Address(y, idx, Address::times_4, 0)); 6398 rorxq(yz_idx2, yz_idx2, 32); 6399 6400 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 6401 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp 6402 6403 movq(yz_idx1, Address(z, idx, Address::times_4, 8)); 6404 rorxq(yz_idx1, yz_idx1, 32); 6405 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 6406 rorxq(yz_idx2, yz_idx2, 32); 6407 6408 if (VM_Version::supports_adx()) { 6409 adcxq(tmp3, carry); 6410 adoxq(tmp3, yz_idx1); 6411 6412 adcxq(tmp4, tmp); 6413 adoxq(tmp4, yz_idx2); 6414 6415 movl(carry, 0); // does not affect flags 6416 adcxq(carry2, carry); 6417 adoxq(carry2, carry); 6418 } else { 6419 add2_with_carry(tmp4, tmp3, carry, yz_idx1); 6420 add2_with_carry(carry2, tmp4, tmp, yz_idx2); 6421 } 6422 movq(carry, carry2); 6423 6424 movl(Address(z, idx, Address::times_4, 12), tmp3); 6425 shrq(tmp3, 32); 6426 movl(Address(z, idx, Address::times_4, 8), tmp3); 6427 6428 movl(Address(z, idx, Address::times_4, 4), tmp4); 6429 shrq(tmp4, 32); 6430 movl(Address(z, idx, Address::times_4, 0), tmp4); 6431 6432 jmp(L_third_loop); 6433 6434 bind (L_third_loop_exit); 6435 6436 andl (idx, 0x3); 6437 jcc(Assembler::zero, L_post_third_loop_done); 6438 6439 Label L_check_1; 6440 subl(idx, 2); 6441 jcc(Assembler::negative, L_check_1); 6442 6443 movq(yz_idx1, Address(y, idx, Address::times_4, 0)); 6444 rorxq(yz_idx1, yz_idx1, 32); 6445 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 6446 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 6447 rorxq(yz_idx2, yz_idx2, 32); 6448 6449 add2_with_carry(tmp4, tmp3, carry, yz_idx2); 6450 6451 movl(Address(z, idx, Address::times_4, 4), tmp3); 6452 shrq(tmp3, 32); 6453 movl(Address(z, idx, Address::times_4, 0), tmp3); 6454 movq(carry, tmp4); 6455 6456 bind (L_check_1); 6457 addl (idx, 0x2); 6458 andl (idx, 0x1); 6459 subl(idx, 1); 6460 jcc(Assembler::negative, L_post_third_loop_done); 6461 movl(tmp4, Address(y, idx, Address::times_4, 0)); 6462 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3 6463 movl(tmp4, Address(z, idx, Address::times_4, 0)); 6464 6465 add2_with_carry(carry2, tmp3, tmp4, carry); 6466 6467 movl(Address(z, idx, Address::times_4, 0), tmp3); 6468 shrq(tmp3, 32); 6469 6470 shlq(carry2, 32); 6471 orq(tmp3, carry2); 6472 movq(carry, tmp3); 6473 6474 bind(L_post_third_loop_done); 6475 } 6476 6477 /** 6478 * Code for BigInteger::multiplyToLen() intrinsic. 6479 * 6480 * rdi: x 6481 * rax: xlen 6482 * rsi: y 6483 * rcx: ylen 6484 * r8: z 6485 * r11: tmp0 6486 * r12: tmp1 6487 * r13: tmp2 6488 * r14: tmp3 6489 * r15: tmp4 6490 * rbx: tmp5 6491 * 6492 */ 6493 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0, 6494 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) { 6495 ShortBranchVerifier sbv(this); 6496 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx); 6497 6498 push(tmp0); 6499 push(tmp1); 6500 push(tmp2); 6501 push(tmp3); 6502 push(tmp4); 6503 push(tmp5); 6504 6505 push(xlen); 6506 6507 const Register idx = tmp1; 6508 const Register kdx = tmp2; 6509 const Register xstart = tmp3; 6510 6511 const Register y_idx = tmp4; 6512 const Register carry = tmp5; 6513 const Register product = xlen; 6514 const Register x_xstart = tmp0; 6515 6516 // First Loop. 6517 // 6518 // final static long LONG_MASK = 0xffffffffL; 6519 // int xstart = xlen - 1; 6520 // int ystart = ylen - 1; 6521 // long carry = 0; 6522 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 6523 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 6524 // z[kdx] = (int)product; 6525 // carry = product >>> 32; 6526 // } 6527 // z[xstart] = (int)carry; 6528 // 6529 6530 movl(idx, ylen); // idx = ylen; 6531 lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen; 6532 xorq(carry, carry); // carry = 0; 6533 6534 Label L_done; 6535 6536 movl(xstart, xlen); 6537 decrementl(xstart); 6538 jcc(Assembler::negative, L_done); 6539 6540 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 6541 6542 Label L_second_loop; 6543 testl(kdx, kdx); 6544 jcc(Assembler::zero, L_second_loop); 6545 6546 Label L_carry; 6547 subl(kdx, 1); 6548 jcc(Assembler::zero, L_carry); 6549 6550 movl(Address(z, kdx, Address::times_4, 0), carry); 6551 shrq(carry, 32); 6552 subl(kdx, 1); 6553 6554 bind(L_carry); 6555 movl(Address(z, kdx, Address::times_4, 0), carry); 6556 6557 // Second and third (nested) loops. 6558 // 6559 // for (int i = xstart-1; i >= 0; i--) { // Second loop 6560 // carry = 0; 6561 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 6562 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 6563 // (z[k] & LONG_MASK) + carry; 6564 // z[k] = (int)product; 6565 // carry = product >>> 32; 6566 // } 6567 // z[i] = (int)carry; 6568 // } 6569 // 6570 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx 6571 6572 const Register jdx = tmp1; 6573 6574 bind(L_second_loop); 6575 xorl(carry, carry); // carry = 0; 6576 movl(jdx, ylen); // j = ystart+1 6577 6578 subl(xstart, 1); // i = xstart-1; 6579 jcc(Assembler::negative, L_done); 6580 6581 push (z); 6582 6583 Label L_last_x; 6584 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j 6585 subl(xstart, 1); // i = xstart-1; 6586 jcc(Assembler::negative, L_last_x); 6587 6588 if (UseBMI2Instructions) { 6589 movq(rdx, Address(x, xstart, Address::times_4, 0)); 6590 rorxq(rdx, rdx, 32); // convert big-endian to little-endian 6591 } else { 6592 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 6593 rorq(x_xstart, 32); // convert big-endian to little-endian 6594 } 6595 6596 Label L_third_loop_prologue; 6597 bind(L_third_loop_prologue); 6598 6599 push (x); 6600 push (xstart); 6601 push (ylen); 6602 6603 6604 if (UseBMI2Instructions) { 6605 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4); 6606 } else { // !UseBMI2Instructions 6607 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x); 6608 } 6609 6610 pop(ylen); 6611 pop(xlen); 6612 pop(x); 6613 pop(z); 6614 6615 movl(tmp3, xlen); 6616 addl(tmp3, 1); 6617 movl(Address(z, tmp3, Address::times_4, 0), carry); 6618 subl(tmp3, 1); 6619 jccb(Assembler::negative, L_done); 6620 6621 shrq(carry, 32); 6622 movl(Address(z, tmp3, Address::times_4, 0), carry); 6623 jmp(L_second_loop); 6624 6625 // Next infrequent code is moved outside loops. 6626 bind(L_last_x); 6627 if (UseBMI2Instructions) { 6628 movl(rdx, Address(x, 0)); 6629 } else { 6630 movl(x_xstart, Address(x, 0)); 6631 } 6632 jmp(L_third_loop_prologue); 6633 6634 bind(L_done); 6635 6636 pop(xlen); 6637 6638 pop(tmp5); 6639 pop(tmp4); 6640 pop(tmp3); 6641 pop(tmp2); 6642 pop(tmp1); 6643 pop(tmp0); 6644 } 6645 6646 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 6647 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){ 6648 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled."); 6649 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP; 6650 Label VECTOR8_TAIL, VECTOR4_TAIL; 6651 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL; 6652 Label SAME_TILL_END, DONE; 6653 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL; 6654 6655 //scale is in rcx in both Win64 and Unix 6656 ShortBranchVerifier sbv(this); 6657 6658 shlq(length); 6659 xorq(result, result); 6660 6661 if ((AVX3Threshold == 0) && (UseAVX > 2) && 6662 VM_Version::supports_avx512vlbw()) { 6663 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL; 6664 6665 cmpq(length, 64); 6666 jcc(Assembler::less, VECTOR32_TAIL); 6667 6668 movq(tmp1, length); 6669 andq(tmp1, 0x3F); // tail count 6670 andq(length, ~(0x3F)); //vector count 6671 6672 bind(VECTOR64_LOOP); 6673 // AVX512 code to compare 64 byte vectors. 6674 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit); 6675 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit); 6676 kortestql(k7, k7); 6677 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch 6678 addq(result, 64); 6679 subq(length, 64); 6680 jccb(Assembler::notZero, VECTOR64_LOOP); 6681 6682 //bind(VECTOR64_TAIL); 6683 testq(tmp1, tmp1); 6684 jcc(Assembler::zero, SAME_TILL_END); 6685 6686 //bind(VECTOR64_TAIL); 6687 // AVX512 code to compare up to 63 byte vectors. 6688 mov64(tmp2, 0xFFFFFFFFFFFFFFFF); 6689 shlxq(tmp2, tmp2, tmp1); 6690 notq(tmp2); 6691 kmovql(k3, tmp2); 6692 6693 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit); 6694 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit); 6695 6696 ktestql(k7, k3); 6697 jcc(Assembler::below, SAME_TILL_END); // not mismatch 6698 6699 bind(VECTOR64_NOT_EQUAL); 6700 kmovql(tmp1, k7); 6701 notq(tmp1); 6702 tzcntq(tmp1, tmp1); 6703 addq(result, tmp1); 6704 shrq(result); 6705 jmp(DONE); 6706 bind(VECTOR32_TAIL); 6707 } 6708 6709 cmpq(length, 8); 6710 jcc(Assembler::equal, VECTOR8_LOOP); 6711 jcc(Assembler::less, VECTOR4_TAIL); 6712 6713 if (UseAVX >= 2) { 6714 Label VECTOR16_TAIL, VECTOR32_LOOP; 6715 6716 cmpq(length, 16); 6717 jcc(Assembler::equal, VECTOR16_LOOP); 6718 jcc(Assembler::less, VECTOR8_LOOP); 6719 6720 cmpq(length, 32); 6721 jccb(Assembler::less, VECTOR16_TAIL); 6722 6723 subq(length, 32); 6724 bind(VECTOR32_LOOP); 6725 vmovdqu(rymm0, Address(obja, result)); 6726 vmovdqu(rymm1, Address(objb, result)); 6727 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit); 6728 vptest(rymm2, rymm2); 6729 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found 6730 addq(result, 32); 6731 subq(length, 32); 6732 jcc(Assembler::greaterEqual, VECTOR32_LOOP); 6733 addq(length, 32); 6734 jcc(Assembler::equal, SAME_TILL_END); 6735 //falling through if less than 32 bytes left //close the branch here. 6736 6737 bind(VECTOR16_TAIL); 6738 cmpq(length, 16); 6739 jccb(Assembler::less, VECTOR8_TAIL); 6740 bind(VECTOR16_LOOP); 6741 movdqu(rymm0, Address(obja, result)); 6742 movdqu(rymm1, Address(objb, result)); 6743 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit); 6744 ptest(rymm2, rymm2); 6745 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 6746 addq(result, 16); 6747 subq(length, 16); 6748 jcc(Assembler::equal, SAME_TILL_END); 6749 //falling through if less than 16 bytes left 6750 } else {//regular intrinsics 6751 6752 cmpq(length, 16); 6753 jccb(Assembler::less, VECTOR8_TAIL); 6754 6755 subq(length, 16); 6756 bind(VECTOR16_LOOP); 6757 movdqu(rymm0, Address(obja, result)); 6758 movdqu(rymm1, Address(objb, result)); 6759 pxor(rymm0, rymm1); 6760 ptest(rymm0, rymm0); 6761 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 6762 addq(result, 16); 6763 subq(length, 16); 6764 jccb(Assembler::greaterEqual, VECTOR16_LOOP); 6765 addq(length, 16); 6766 jcc(Assembler::equal, SAME_TILL_END); 6767 //falling through if less than 16 bytes left 6768 } 6769 6770 bind(VECTOR8_TAIL); 6771 cmpq(length, 8); 6772 jccb(Assembler::less, VECTOR4_TAIL); 6773 bind(VECTOR8_LOOP); 6774 movq(tmp1, Address(obja, result)); 6775 movq(tmp2, Address(objb, result)); 6776 xorq(tmp1, tmp2); 6777 testq(tmp1, tmp1); 6778 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found 6779 addq(result, 8); 6780 subq(length, 8); 6781 jcc(Assembler::equal, SAME_TILL_END); 6782 //falling through if less than 8 bytes left 6783 6784 bind(VECTOR4_TAIL); 6785 cmpq(length, 4); 6786 jccb(Assembler::less, BYTES_TAIL); 6787 bind(VECTOR4_LOOP); 6788 movl(tmp1, Address(obja, result)); 6789 xorl(tmp1, Address(objb, result)); 6790 testl(tmp1, tmp1); 6791 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found 6792 addq(result, 4); 6793 subq(length, 4); 6794 jcc(Assembler::equal, SAME_TILL_END); 6795 //falling through if less than 4 bytes left 6796 6797 bind(BYTES_TAIL); 6798 bind(BYTES_LOOP); 6799 load_unsigned_byte(tmp1, Address(obja, result)); 6800 load_unsigned_byte(tmp2, Address(objb, result)); 6801 xorl(tmp1, tmp2); 6802 testl(tmp1, tmp1); 6803 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 6804 decq(length); 6805 jcc(Assembler::zero, SAME_TILL_END); 6806 incq(result); 6807 load_unsigned_byte(tmp1, Address(obja, result)); 6808 load_unsigned_byte(tmp2, Address(objb, result)); 6809 xorl(tmp1, tmp2); 6810 testl(tmp1, tmp1); 6811 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 6812 decq(length); 6813 jcc(Assembler::zero, SAME_TILL_END); 6814 incq(result); 6815 load_unsigned_byte(tmp1, Address(obja, result)); 6816 load_unsigned_byte(tmp2, Address(objb, result)); 6817 xorl(tmp1, tmp2); 6818 testl(tmp1, tmp1); 6819 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 6820 jmp(SAME_TILL_END); 6821 6822 if (UseAVX >= 2) { 6823 bind(VECTOR32_NOT_EQUAL); 6824 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit); 6825 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit); 6826 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit); 6827 vpmovmskb(tmp1, rymm0); 6828 bsfq(tmp1, tmp1); 6829 addq(result, tmp1); 6830 shrq(result); 6831 jmp(DONE); 6832 } 6833 6834 bind(VECTOR16_NOT_EQUAL); 6835 if (UseAVX >= 2) { 6836 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit); 6837 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit); 6838 pxor(rymm0, rymm2); 6839 } else { 6840 pcmpeqb(rymm2, rymm2); 6841 pxor(rymm0, rymm1); 6842 pcmpeqb(rymm0, rymm1); 6843 pxor(rymm0, rymm2); 6844 } 6845 pmovmskb(tmp1, rymm0); 6846 bsfq(tmp1, tmp1); 6847 addq(result, tmp1); 6848 shrq(result); 6849 jmpb(DONE); 6850 6851 bind(VECTOR8_NOT_EQUAL); 6852 bind(VECTOR4_NOT_EQUAL); 6853 bsfq(tmp1, tmp1); 6854 shrq(tmp1, 3); 6855 addq(result, tmp1); 6856 bind(BYTES_NOT_EQUAL); 6857 shrq(result); 6858 jmpb(DONE); 6859 6860 bind(SAME_TILL_END); 6861 mov64(result, -1); 6862 6863 bind(DONE); 6864 } 6865 6866 //Helper functions for square_to_len() 6867 6868 /** 6869 * Store the squares of x[], right shifted one bit (divided by 2) into z[] 6870 * Preserves x and z and modifies rest of the registers. 6871 */ 6872 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 6873 // Perform square and right shift by 1 6874 // Handle odd xlen case first, then for even xlen do the following 6875 // jlong carry = 0; 6876 // for (int j=0, i=0; j < xlen; j+=2, i+=4) { 6877 // huge_128 product = x[j:j+1] * x[j:j+1]; 6878 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65); 6879 // z[i+2:i+3] = (jlong)(product >>> 1); 6880 // carry = (jlong)product; 6881 // } 6882 6883 xorq(tmp5, tmp5); // carry 6884 xorq(rdxReg, rdxReg); 6885 xorl(tmp1, tmp1); // index for x 6886 xorl(tmp4, tmp4); // index for z 6887 6888 Label L_first_loop, L_first_loop_exit; 6889 6890 testl(xlen, 1); 6891 jccb(Assembler::zero, L_first_loop); //jump if xlen is even 6892 6893 // Square and right shift by 1 the odd element using 32 bit multiply 6894 movl(raxReg, Address(x, tmp1, Address::times_4, 0)); 6895 imulq(raxReg, raxReg); 6896 shrq(raxReg, 1); 6897 adcq(tmp5, 0); 6898 movq(Address(z, tmp4, Address::times_4, 0), raxReg); 6899 incrementl(tmp1); 6900 addl(tmp4, 2); 6901 6902 // Square and right shift by 1 the rest using 64 bit multiply 6903 bind(L_first_loop); 6904 cmpptr(tmp1, xlen); 6905 jccb(Assembler::equal, L_first_loop_exit); 6906 6907 // Square 6908 movq(raxReg, Address(x, tmp1, Address::times_4, 0)); 6909 rorq(raxReg, 32); // convert big-endian to little-endian 6910 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax 6911 6912 // Right shift by 1 and save carry 6913 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1 6914 rcrq(rdxReg, 1); 6915 rcrq(raxReg, 1); 6916 adcq(tmp5, 0); 6917 6918 // Store result in z 6919 movq(Address(z, tmp4, Address::times_4, 0), rdxReg); 6920 movq(Address(z, tmp4, Address::times_4, 8), raxReg); 6921 6922 // Update indices for x and z 6923 addl(tmp1, 2); 6924 addl(tmp4, 4); 6925 jmp(L_first_loop); 6926 6927 bind(L_first_loop_exit); 6928 } 6929 6930 6931 /** 6932 * Perform the following multiply add operation using BMI2 instructions 6933 * carry:sum = sum + op1*op2 + carry 6934 * op2 should be in rdx 6935 * op2 is preserved, all other registers are modified 6936 */ 6937 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) { 6938 // assert op2 is rdx 6939 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1 6940 addq(sum, carry); 6941 adcq(tmp2, 0); 6942 addq(sum, op1); 6943 adcq(tmp2, 0); 6944 movq(carry, tmp2); 6945 } 6946 6947 /** 6948 * Perform the following multiply add operation: 6949 * carry:sum = sum + op1*op2 + carry 6950 * Preserves op1, op2 and modifies rest of registers 6951 */ 6952 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) { 6953 // rdx:rax = op1 * op2 6954 movq(raxReg, op2); 6955 mulq(op1); 6956 6957 // rdx:rax = sum + carry + rdx:rax 6958 addq(sum, carry); 6959 adcq(rdxReg, 0); 6960 addq(sum, raxReg); 6961 adcq(rdxReg, 0); 6962 6963 // carry:sum = rdx:sum 6964 movq(carry, rdxReg); 6965 } 6966 6967 /** 6968 * Add 64 bit long carry into z[] with carry propagation. 6969 * Preserves z and carry register values and modifies rest of registers. 6970 * 6971 */ 6972 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) { 6973 Label L_fourth_loop, L_fourth_loop_exit; 6974 6975 movl(tmp1, 1); 6976 subl(zlen, 2); 6977 addq(Address(z, zlen, Address::times_4, 0), carry); 6978 6979 bind(L_fourth_loop); 6980 jccb(Assembler::carryClear, L_fourth_loop_exit); 6981 subl(zlen, 2); 6982 jccb(Assembler::negative, L_fourth_loop_exit); 6983 addq(Address(z, zlen, Address::times_4, 0), tmp1); 6984 jmp(L_fourth_loop); 6985 bind(L_fourth_loop_exit); 6986 } 6987 6988 /** 6989 * Shift z[] left by 1 bit. 6990 * Preserves x, len, z and zlen registers and modifies rest of the registers. 6991 * 6992 */ 6993 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { 6994 6995 Label L_fifth_loop, L_fifth_loop_exit; 6996 6997 // Fifth loop 6998 // Perform primitiveLeftShift(z, zlen, 1) 6999 7000 const Register prev_carry = tmp1; 7001 const Register new_carry = tmp4; 7002 const Register value = tmp2; 7003 const Register zidx = tmp3; 7004 7005 // int zidx, carry; 7006 // long value; 7007 // carry = 0; 7008 // for (zidx = zlen-2; zidx >=0; zidx -= 2) { 7009 // (carry:value) = (z[i] << 1) | carry ; 7010 // z[i] = value; 7011 // } 7012 7013 movl(zidx, zlen); 7014 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register 7015 7016 bind(L_fifth_loop); 7017 decl(zidx); // Use decl to preserve carry flag 7018 decl(zidx); 7019 jccb(Assembler::negative, L_fifth_loop_exit); 7020 7021 if (UseBMI2Instructions) { 7022 movq(value, Address(z, zidx, Address::times_4, 0)); 7023 rclq(value, 1); 7024 rorxq(value, value, 32); 7025 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7026 } 7027 else { 7028 // clear new_carry 7029 xorl(new_carry, new_carry); 7030 7031 // Shift z[i] by 1, or in previous carry and save new carry 7032 movq(value, Address(z, zidx, Address::times_4, 0)); 7033 shlq(value, 1); 7034 adcl(new_carry, 0); 7035 7036 orq(value, prev_carry); 7037 rorq(value, 0x20); 7038 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7039 7040 // Set previous carry = new carry 7041 movl(prev_carry, new_carry); 7042 } 7043 jmp(L_fifth_loop); 7044 7045 bind(L_fifth_loop_exit); 7046 } 7047 7048 7049 /** 7050 * Code for BigInteger::squareToLen() intrinsic 7051 * 7052 * rdi: x 7053 * rsi: len 7054 * r8: z 7055 * rcx: zlen 7056 * r12: tmp1 7057 * r13: tmp2 7058 * r14: tmp3 7059 * r15: tmp4 7060 * rbx: tmp5 7061 * 7062 */ 7063 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7064 7065 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply; 7066 push(tmp1); 7067 push(tmp2); 7068 push(tmp3); 7069 push(tmp4); 7070 push(tmp5); 7071 7072 // First loop 7073 // Store the squares, right shifted one bit (i.e., divided by 2). 7074 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg); 7075 7076 // Add in off-diagonal sums. 7077 // 7078 // Second, third (nested) and fourth loops. 7079 // zlen +=2; 7080 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) { 7081 // carry = 0; 7082 // long op2 = x[xidx:xidx+1]; 7083 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) { 7084 // k -= 2; 7085 // long op1 = x[j:j+1]; 7086 // long sum = z[k:k+1]; 7087 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs); 7088 // z[k:k+1] = sum; 7089 // } 7090 // add_one_64(z, k, carry, tmp_regs); 7091 // } 7092 7093 const Register carry = tmp5; 7094 const Register sum = tmp3; 7095 const Register op1 = tmp4; 7096 Register op2 = tmp2; 7097 7098 push(zlen); 7099 push(len); 7100 addl(zlen,2); 7101 bind(L_second_loop); 7102 xorq(carry, carry); 7103 subl(zlen, 4); 7104 subl(len, 2); 7105 push(zlen); 7106 push(len); 7107 cmpl(len, 0); 7108 jccb(Assembler::lessEqual, L_second_loop_exit); 7109 7110 // Multiply an array by one 64 bit long. 7111 if (UseBMI2Instructions) { 7112 op2 = rdxReg; 7113 movq(op2, Address(x, len, Address::times_4, 0)); 7114 rorxq(op2, op2, 32); 7115 } 7116 else { 7117 movq(op2, Address(x, len, Address::times_4, 0)); 7118 rorq(op2, 32); 7119 } 7120 7121 bind(L_third_loop); 7122 decrementl(len); 7123 jccb(Assembler::negative, L_third_loop_exit); 7124 decrementl(len); 7125 jccb(Assembler::negative, L_last_x); 7126 7127 movq(op1, Address(x, len, Address::times_4, 0)); 7128 rorq(op1, 32); 7129 7130 bind(L_multiply); 7131 subl(zlen, 2); 7132 movq(sum, Address(z, zlen, Address::times_4, 0)); 7133 7134 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry. 7135 if (UseBMI2Instructions) { 7136 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2); 7137 } 7138 else { 7139 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7140 } 7141 7142 movq(Address(z, zlen, Address::times_4, 0), sum); 7143 7144 jmp(L_third_loop); 7145 bind(L_third_loop_exit); 7146 7147 // Fourth loop 7148 // Add 64 bit long carry into z with carry propagation. 7149 // Uses offsetted zlen. 7150 add_one_64(z, zlen, carry, tmp1); 7151 7152 pop(len); 7153 pop(zlen); 7154 jmp(L_second_loop); 7155 7156 // Next infrequent code is moved outside loops. 7157 bind(L_last_x); 7158 movl(op1, Address(x, 0)); 7159 jmp(L_multiply); 7160 7161 bind(L_second_loop_exit); 7162 pop(len); 7163 pop(zlen); 7164 pop(len); 7165 pop(zlen); 7166 7167 // Fifth loop 7168 // Shift z left 1 bit. 7169 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4); 7170 7171 // z[zlen-1] |= x[len-1] & 1; 7172 movl(tmp3, Address(x, len, Address::times_4, -4)); 7173 andl(tmp3, 1); 7174 orl(Address(z, zlen, Address::times_4, -4), tmp3); 7175 7176 pop(tmp5); 7177 pop(tmp4); 7178 pop(tmp3); 7179 pop(tmp2); 7180 pop(tmp1); 7181 } 7182 7183 /** 7184 * Helper function for mul_add() 7185 * Multiply the in[] by int k and add to out[] starting at offset offs using 7186 * 128 bit by 32 bit multiply and return the carry in tmp5. 7187 * Only quad int aligned length of in[] is operated on in this function. 7188 * k is in rdxReg for BMI2Instructions, for others it is in tmp2. 7189 * This function preserves out, in and k registers. 7190 * len and offset point to the appropriate index in "in" & "out" correspondingly 7191 * tmp5 has the carry. 7192 * other registers are temporary and are modified. 7193 * 7194 */ 7195 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in, 7196 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, 7197 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7198 7199 Label L_first_loop, L_first_loop_exit; 7200 7201 movl(tmp1, len); 7202 shrl(tmp1, 2); 7203 7204 bind(L_first_loop); 7205 subl(tmp1, 1); 7206 jccb(Assembler::negative, L_first_loop_exit); 7207 7208 subl(len, 4); 7209 subl(offset, 4); 7210 7211 Register op2 = tmp2; 7212 const Register sum = tmp3; 7213 const Register op1 = tmp4; 7214 const Register carry = tmp5; 7215 7216 if (UseBMI2Instructions) { 7217 op2 = rdxReg; 7218 } 7219 7220 movq(op1, Address(in, len, Address::times_4, 8)); 7221 rorq(op1, 32); 7222 movq(sum, Address(out, offset, Address::times_4, 8)); 7223 rorq(sum, 32); 7224 if (UseBMI2Instructions) { 7225 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7226 } 7227 else { 7228 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7229 } 7230 // Store back in big endian from little endian 7231 rorq(sum, 0x20); 7232 movq(Address(out, offset, Address::times_4, 8), sum); 7233 7234 movq(op1, Address(in, len, Address::times_4, 0)); 7235 rorq(op1, 32); 7236 movq(sum, Address(out, offset, Address::times_4, 0)); 7237 rorq(sum, 32); 7238 if (UseBMI2Instructions) { 7239 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7240 } 7241 else { 7242 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7243 } 7244 // Store back in big endian from little endian 7245 rorq(sum, 0x20); 7246 movq(Address(out, offset, Address::times_4, 0), sum); 7247 7248 jmp(L_first_loop); 7249 bind(L_first_loop_exit); 7250 } 7251 7252 /** 7253 * Code for BigInteger::mulAdd() intrinsic 7254 * 7255 * rdi: out 7256 * rsi: in 7257 * r11: offs (out.length - offset) 7258 * rcx: len 7259 * r8: k 7260 * r12: tmp1 7261 * r13: tmp2 7262 * r14: tmp3 7263 * r15: tmp4 7264 * rbx: tmp5 7265 * Multiply the in[] by word k and add to out[], return the carry in rax 7266 */ 7267 void MacroAssembler::mul_add(Register out, Register in, Register offs, 7268 Register len, Register k, Register tmp1, Register tmp2, Register tmp3, 7269 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7270 7271 Label L_carry, L_last_in, L_done; 7272 7273 // carry = 0; 7274 // for (int j=len-1; j >= 0; j--) { 7275 // long product = (in[j] & LONG_MASK) * kLong + 7276 // (out[offs] & LONG_MASK) + carry; 7277 // out[offs--] = (int)product; 7278 // carry = product >>> 32; 7279 // } 7280 // 7281 push(tmp1); 7282 push(tmp2); 7283 push(tmp3); 7284 push(tmp4); 7285 push(tmp5); 7286 7287 Register op2 = tmp2; 7288 const Register sum = tmp3; 7289 const Register op1 = tmp4; 7290 const Register carry = tmp5; 7291 7292 if (UseBMI2Instructions) { 7293 op2 = rdxReg; 7294 movl(op2, k); 7295 } 7296 else { 7297 movl(op2, k); 7298 } 7299 7300 xorq(carry, carry); 7301 7302 //First loop 7303 7304 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply 7305 //The carry is in tmp5 7306 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg); 7307 7308 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any 7309 decrementl(len); 7310 jccb(Assembler::negative, L_carry); 7311 decrementl(len); 7312 jccb(Assembler::negative, L_last_in); 7313 7314 movq(op1, Address(in, len, Address::times_4, 0)); 7315 rorq(op1, 32); 7316 7317 subl(offs, 2); 7318 movq(sum, Address(out, offs, Address::times_4, 0)); 7319 rorq(sum, 32); 7320 7321 if (UseBMI2Instructions) { 7322 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7323 } 7324 else { 7325 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7326 } 7327 7328 // Store back in big endian from little endian 7329 rorq(sum, 0x20); 7330 movq(Address(out, offs, Address::times_4, 0), sum); 7331 7332 testl(len, len); 7333 jccb(Assembler::zero, L_carry); 7334 7335 //Multiply the last in[] entry, if any 7336 bind(L_last_in); 7337 movl(op1, Address(in, 0)); 7338 movl(sum, Address(out, offs, Address::times_4, -4)); 7339 7340 movl(raxReg, k); 7341 mull(op1); //tmp4 * eax -> edx:eax 7342 addl(sum, carry); 7343 adcl(rdxReg, 0); 7344 addl(sum, raxReg); 7345 adcl(rdxReg, 0); 7346 movl(carry, rdxReg); 7347 7348 movl(Address(out, offs, Address::times_4, -4), sum); 7349 7350 bind(L_carry); 7351 //return tmp5/carry as carry in rax 7352 movl(rax, carry); 7353 7354 bind(L_done); 7355 pop(tmp5); 7356 pop(tmp4); 7357 pop(tmp3); 7358 pop(tmp2); 7359 pop(tmp1); 7360 } 7361 7362 /** 7363 * Emits code to update CRC-32 with a byte value according to constants in table 7364 * 7365 * @param [in,out]crc Register containing the crc. 7366 * @param [in]val Register containing the byte to fold into the CRC. 7367 * @param [in]table Register containing the table of crc constants. 7368 * 7369 * uint32_t crc; 7370 * val = crc_table[(val ^ crc) & 0xFF]; 7371 * crc = val ^ (crc >> 8); 7372 * 7373 */ 7374 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 7375 xorl(val, crc); 7376 andl(val, 0xFF); 7377 shrl(crc, 8); // unsigned shift 7378 xorl(crc, Address(table, val, Address::times_4, 0)); 7379 } 7380 7381 /** 7382 * Fold 128-bit data chunk 7383 */ 7384 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { 7385 if (UseAVX > 0) { 7386 vpclmulhdq(xtmp, xK, xcrc); // [123:64] 7387 vpclmulldq(xcrc, xK, xcrc); // [63:0] 7388 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */); 7389 pxor(xcrc, xtmp); 7390 } else { 7391 movdqa(xtmp, xcrc); 7392 pclmulhdq(xtmp, xK); // [123:64] 7393 pclmulldq(xcrc, xK); // [63:0] 7394 pxor(xcrc, xtmp); 7395 movdqu(xtmp, Address(buf, offset)); 7396 pxor(xcrc, xtmp); 7397 } 7398 } 7399 7400 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) { 7401 if (UseAVX > 0) { 7402 vpclmulhdq(xtmp, xK, xcrc); 7403 vpclmulldq(xcrc, xK, xcrc); 7404 pxor(xcrc, xbuf); 7405 pxor(xcrc, xtmp); 7406 } else { 7407 movdqa(xtmp, xcrc); 7408 pclmulhdq(xtmp, xK); 7409 pclmulldq(xcrc, xK); 7410 pxor(xcrc, xbuf); 7411 pxor(xcrc, xtmp); 7412 } 7413 } 7414 7415 /** 7416 * 8-bit folds to compute 32-bit CRC 7417 * 7418 * uint64_t xcrc; 7419 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8); 7420 */ 7421 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) { 7422 movdl(tmp, xcrc); 7423 andl(tmp, 0xFF); 7424 movdl(xtmp, Address(table, tmp, Address::times_4, 0)); 7425 psrldq(xcrc, 1); // unsigned shift one byte 7426 pxor(xcrc, xtmp); 7427 } 7428 7429 /** 7430 * uint32_t crc; 7431 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); 7432 */ 7433 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { 7434 movl(tmp, crc); 7435 andl(tmp, 0xFF); 7436 shrl(crc, 8); 7437 xorl(crc, Address(table, tmp, Address::times_4, 0)); 7438 } 7439 7440 /** 7441 * @param crc register containing existing CRC (32-bit) 7442 * @param buf register pointing to input byte buffer (byte*) 7443 * @param len register containing number of bytes 7444 * @param table register that will contain address of CRC table 7445 * @param tmp scratch register 7446 */ 7447 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) { 7448 assert_different_registers(crc, buf, len, table, tmp, rax); 7449 7450 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 7451 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 7452 7453 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 7454 // context for the registers used, where all instructions below are using 128-bit mode 7455 // On EVEX without VL and BW, these instructions will all be AVX. 7456 lea(table, ExternalAddress(StubRoutines::crc_table_addr())); 7457 notl(crc); // ~crc 7458 cmpl(len, 16); 7459 jcc(Assembler::less, L_tail); 7460 7461 // Align buffer to 16 bytes 7462 movl(tmp, buf); 7463 andl(tmp, 0xF); 7464 jccb(Assembler::zero, L_aligned); 7465 subl(tmp, 16); 7466 addl(len, tmp); 7467 7468 align(4); 7469 BIND(L_align_loop); 7470 movsbl(rax, Address(buf, 0)); // load byte with sign extension 7471 update_byte_crc32(crc, rax, table); 7472 increment(buf); 7473 incrementl(tmp); 7474 jccb(Assembler::less, L_align_loop); 7475 7476 BIND(L_aligned); 7477 movl(tmp, len); // save 7478 shrl(len, 4); 7479 jcc(Assembler::zero, L_tail_restore); 7480 7481 // Fold crc into first bytes of vector 7482 movdqa(xmm1, Address(buf, 0)); 7483 movdl(rax, xmm1); 7484 xorl(crc, rax); 7485 if (VM_Version::supports_sse4_1()) { 7486 pinsrd(xmm1, crc, 0); 7487 } else { 7488 pinsrw(xmm1, crc, 0); 7489 shrl(crc, 16); 7490 pinsrw(xmm1, crc, 1); 7491 } 7492 addptr(buf, 16); 7493 subl(len, 4); // len > 0 7494 jcc(Assembler::less, L_fold_tail); 7495 7496 movdqa(xmm2, Address(buf, 0)); 7497 movdqa(xmm3, Address(buf, 16)); 7498 movdqa(xmm4, Address(buf, 32)); 7499 addptr(buf, 48); 7500 subl(len, 3); 7501 jcc(Assembler::lessEqual, L_fold_512b); 7502 7503 // Fold total 512 bits of polynomial on each iteration, 7504 // 128 bits per each of 4 parallel streams. 7505 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1); 7506 7507 align32(); 7508 BIND(L_fold_512b_loop); 7509 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 7510 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16); 7511 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32); 7512 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48); 7513 addptr(buf, 64); 7514 subl(len, 4); 7515 jcc(Assembler::greater, L_fold_512b_loop); 7516 7517 // Fold 512 bits to 128 bits. 7518 BIND(L_fold_512b); 7519 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 7520 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2); 7521 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3); 7522 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4); 7523 7524 // Fold the rest of 128 bits data chunks 7525 BIND(L_fold_tail); 7526 addl(len, 3); 7527 jccb(Assembler::lessEqual, L_fold_128b); 7528 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 7529 7530 BIND(L_fold_tail_loop); 7531 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 7532 addptr(buf, 16); 7533 decrementl(len); 7534 jccb(Assembler::greater, L_fold_tail_loop); 7535 7536 // Fold 128 bits in xmm1 down into 32 bits in crc register. 7537 BIND(L_fold_128b); 7538 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1); 7539 if (UseAVX > 0) { 7540 vpclmulqdq(xmm2, xmm0, xmm1, 0x1); 7541 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */); 7542 vpclmulqdq(xmm0, xmm0, xmm3, 0x1); 7543 } else { 7544 movdqa(xmm2, xmm0); 7545 pclmulqdq(xmm2, xmm1, 0x1); 7546 movdqa(xmm3, xmm0); 7547 pand(xmm3, xmm2); 7548 pclmulqdq(xmm0, xmm3, 0x1); 7549 } 7550 psrldq(xmm1, 8); 7551 psrldq(xmm2, 4); 7552 pxor(xmm0, xmm1); 7553 pxor(xmm0, xmm2); 7554 7555 // 8 8-bit folds to compute 32-bit CRC. 7556 for (int j = 0; j < 4; j++) { 7557 fold_8bit_crc32(xmm0, table, xmm1, rax); 7558 } 7559 movdl(crc, xmm0); // mov 32 bits to general register 7560 for (int j = 0; j < 4; j++) { 7561 fold_8bit_crc32(crc, table, rax); 7562 } 7563 7564 BIND(L_tail_restore); 7565 movl(len, tmp); // restore 7566 BIND(L_tail); 7567 andl(len, 0xf); 7568 jccb(Assembler::zero, L_exit); 7569 7570 // Fold the rest of bytes 7571 align(4); 7572 BIND(L_tail_loop); 7573 movsbl(rax, Address(buf, 0)); // load byte with sign extension 7574 update_byte_crc32(crc, rax, table); 7575 increment(buf); 7576 decrementl(len); 7577 jccb(Assembler::greater, L_tail_loop); 7578 7579 BIND(L_exit); 7580 notl(crc); // ~c 7581 } 7582 7583 // Helper function for AVX 512 CRC32 7584 // Fold 512-bit data chunks 7585 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, 7586 Register pos, int offset) { 7587 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit); 7588 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64] 7589 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0] 7590 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */); 7591 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */); 7592 } 7593 7594 // Helper function for AVX 512 CRC32 7595 // Compute CRC32 for < 256B buffers 7596 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos, 7597 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 7598 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) { 7599 7600 Label L_less_than_32, L_exact_16_left, L_less_than_16_left; 7601 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left; 7602 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2; 7603 7604 // check if there is enough buffer to be able to fold 16B at a time 7605 cmpl(len, 32); 7606 jcc(Assembler::less, L_less_than_32); 7607 7608 // if there is, load the constants 7609 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10 7610 movdl(xmm0, crc); // get the initial crc value 7611 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 7612 pxor(xmm7, xmm0); 7613 7614 // update the buffer pointer 7615 addl(pos, 16); 7616 //update the counter.subtract 32 instead of 16 to save one instruction from the loop 7617 subl(len, 32); 7618 jmp(L_16B_reduction_loop); 7619 7620 bind(L_less_than_32); 7621 //mov initial crc to the return value. this is necessary for zero - length buffers. 7622 movl(rax, crc); 7623 testl(len, len); 7624 jcc(Assembler::equal, L_cleanup); 7625 7626 movdl(xmm0, crc); //get the initial crc value 7627 7628 cmpl(len, 16); 7629 jcc(Assembler::equal, L_exact_16_left); 7630 jcc(Assembler::less, L_less_than_16_left); 7631 7632 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 7633 pxor(xmm7, xmm0); //xor the initial crc value 7634 addl(pos, 16); 7635 subl(len, 16); 7636 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10 7637 jmp(L_get_last_two_xmms); 7638 7639 bind(L_less_than_16_left); 7640 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first. 7641 pxor(xmm1, xmm1); 7642 movptr(tmp1, rsp); 7643 movdqu(Address(tmp1, 0 * 16), xmm1); 7644 7645 cmpl(len, 4); 7646 jcc(Assembler::less, L_only_less_than_4); 7647 7648 //backup the counter value 7649 movl(tmp2, len); 7650 cmpl(len, 8); 7651 jcc(Assembler::less, L_less_than_8_left); 7652 7653 //load 8 Bytes 7654 movq(rax, Address(buf, pos, Address::times_1, 0 * 16)); 7655 movq(Address(tmp1, 0 * 16), rax); 7656 addptr(tmp1, 8); 7657 subl(len, 8); 7658 addl(pos, 8); 7659 7660 bind(L_less_than_8_left); 7661 cmpl(len, 4); 7662 jcc(Assembler::less, L_less_than_4_left); 7663 7664 //load 4 Bytes 7665 movl(rax, Address(buf, pos, Address::times_1, 0)); 7666 movl(Address(tmp1, 0 * 16), rax); 7667 addptr(tmp1, 4); 7668 subl(len, 4); 7669 addl(pos, 4); 7670 7671 bind(L_less_than_4_left); 7672 cmpl(len, 2); 7673 jcc(Assembler::less, L_less_than_2_left); 7674 7675 // load 2 Bytes 7676 movw(rax, Address(buf, pos, Address::times_1, 0)); 7677 movl(Address(tmp1, 0 * 16), rax); 7678 addptr(tmp1, 2); 7679 subl(len, 2); 7680 addl(pos, 2); 7681 7682 bind(L_less_than_2_left); 7683 cmpl(len, 1); 7684 jcc(Assembler::less, L_zero_left); 7685 7686 // load 1 Byte 7687 movb(rax, Address(buf, pos, Address::times_1, 0)); 7688 movb(Address(tmp1, 0 * 16), rax); 7689 7690 bind(L_zero_left); 7691 movdqu(xmm7, Address(rsp, 0)); 7692 pxor(xmm7, xmm0); //xor the initial crc value 7693 7694 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 7695 movdqu(xmm0, Address(rax, tmp2)); 7696 pshufb(xmm7, xmm0); 7697 jmp(L_128_done); 7698 7699 bind(L_exact_16_left); 7700 movdqu(xmm7, Address(buf, pos, Address::times_1, 0)); 7701 pxor(xmm7, xmm0); //xor the initial crc value 7702 jmp(L_128_done); 7703 7704 bind(L_only_less_than_4); 7705 cmpl(len, 3); 7706 jcc(Assembler::less, L_only_less_than_3); 7707 7708 // load 3 Bytes 7709 movb(rax, Address(buf, pos, Address::times_1, 0)); 7710 movb(Address(tmp1, 0), rax); 7711 7712 movb(rax, Address(buf, pos, Address::times_1, 1)); 7713 movb(Address(tmp1, 1), rax); 7714 7715 movb(rax, Address(buf, pos, Address::times_1, 2)); 7716 movb(Address(tmp1, 2), rax); 7717 7718 movdqu(xmm7, Address(rsp, 0)); 7719 pxor(xmm7, xmm0); //xor the initial crc value 7720 7721 pslldq(xmm7, 0x5); 7722 jmp(L_barrett); 7723 bind(L_only_less_than_3); 7724 cmpl(len, 2); 7725 jcc(Assembler::less, L_only_less_than_2); 7726 7727 // load 2 Bytes 7728 movb(rax, Address(buf, pos, Address::times_1, 0)); 7729 movb(Address(tmp1, 0), rax); 7730 7731 movb(rax, Address(buf, pos, Address::times_1, 1)); 7732 movb(Address(tmp1, 1), rax); 7733 7734 movdqu(xmm7, Address(rsp, 0)); 7735 pxor(xmm7, xmm0); //xor the initial crc value 7736 7737 pslldq(xmm7, 0x6); 7738 jmp(L_barrett); 7739 7740 bind(L_only_less_than_2); 7741 //load 1 Byte 7742 movb(rax, Address(buf, pos, Address::times_1, 0)); 7743 movb(Address(tmp1, 0), rax); 7744 7745 movdqu(xmm7, Address(rsp, 0)); 7746 pxor(xmm7, xmm0); //xor the initial crc value 7747 7748 pslldq(xmm7, 0x7); 7749 } 7750 7751 /** 7752 * Compute CRC32 using AVX512 instructions 7753 * param crc register containing existing CRC (32-bit) 7754 * param buf register pointing to input byte buffer (byte*) 7755 * param len register containing number of bytes 7756 * param table address of crc or crc32c table 7757 * param tmp1 scratch register 7758 * param tmp2 scratch register 7759 * return rax result register 7760 * 7761 * This routine is identical for crc32c with the exception of the precomputed constant 7762 * table which will be passed as the table argument. The calculation steps are 7763 * the same for both variants. 7764 */ 7765 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) { 7766 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12); 7767 7768 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 7769 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 7770 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop; 7771 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop; 7772 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup; 7773 7774 const Register pos = r12; 7775 push(r12); 7776 subptr(rsp, 16 * 2 + 8); 7777 7778 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 7779 // context for the registers used, where all instructions below are using 128-bit mode 7780 // On EVEX without VL and BW, these instructions will all be AVX. 7781 movl(pos, 0); 7782 7783 // check if smaller than 256B 7784 cmpl(len, 256); 7785 jcc(Assembler::less, L_less_than_256); 7786 7787 // load the initial crc value 7788 movdl(xmm10, crc); 7789 7790 // receive the initial 64B data, xor the initial crc value 7791 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); 7792 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); 7793 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit); 7794 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4 7795 7796 subl(len, 256); 7797 cmpl(len, 256); 7798 jcc(Assembler::less, L_fold_128_B_loop); 7799 7800 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); 7801 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); 7802 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2 7803 subl(len, 256); 7804 7805 bind(L_fold_256_B_loop); 7806 addl(pos, 256); 7807 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64); 7808 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64); 7809 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64); 7810 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64); 7811 7812 subl(len, 256); 7813 jcc(Assembler::greaterEqual, L_fold_256_B_loop); 7814 7815 // Fold 256 into 128 7816 addl(pos, 256); 7817 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit); 7818 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit); 7819 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC 7820 7821 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit); 7822 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit); 7823 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC 7824 7825 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit); 7826 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit); 7827 7828 addl(len, 128); 7829 jmp(L_fold_128_B_register); 7830 7831 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop 7832 // loop will fold 128B at a time until we have 128 + y Bytes of buffer 7833 7834 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel 7835 bind(L_fold_128_B_loop); 7836 addl(pos, 128); 7837 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64); 7838 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64); 7839 7840 subl(len, 128); 7841 jcc(Assembler::greaterEqual, L_fold_128_B_loop); 7842 7843 addl(pos, 128); 7844 7845 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 7846 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 7847 bind(L_fold_128_B_register); 7848 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16 7849 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0 7850 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit); 7851 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit); 7852 // save last that has no multiplicand 7853 vextracti64x2(xmm7, xmm4, 3); 7854 7855 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit); 7856 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit); 7857 // Needed later in reduction loop 7858 movdqu(xmm10, Address(table, 1 * 16)); 7859 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC 7860 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC 7861 7862 // Swap 1,0,3,2 - 01 00 11 10 7863 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit); 7864 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit); 7865 vextracti128(xmm5, xmm8, 1); 7866 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit); 7867 7868 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop 7869 // instead of a cmp instruction, we use the negative flag with the jl instruction 7870 addl(len, 128 - 16); 7871 jcc(Assembler::less, L_final_reduction_for_128); 7872 7873 bind(L_16B_reduction_loop); 7874 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 7875 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 7876 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 7877 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16)); 7878 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 7879 addl(pos, 16); 7880 subl(len, 16); 7881 jcc(Assembler::greaterEqual, L_16B_reduction_loop); 7882 7883 bind(L_final_reduction_for_128); 7884 addl(len, 16); 7885 jcc(Assembler::equal, L_128_done); 7886 7887 bind(L_get_last_two_xmms); 7888 movdqu(xmm2, xmm7); 7889 addl(pos, len); 7890 movdqu(xmm1, Address(buf, pos, Address::times_1, -16)); 7891 subl(pos, len); 7892 7893 // get rid of the extra data that was loaded before 7894 // load the shift constant 7895 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 7896 movdqu(xmm0, Address(rax, len)); 7897 addl(rax, len); 7898 7899 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 7900 //Change mask to 512 7901 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2); 7902 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit); 7903 7904 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit); 7905 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 7906 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 7907 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 7908 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit); 7909 7910 bind(L_128_done); 7911 // compute crc of a 128-bit value 7912 movdqu(xmm10, Address(table, 3 * 16)); 7913 movdqu(xmm0, xmm7); 7914 7915 // 64b fold 7916 vpclmulqdq(xmm7, xmm7, xmm10, 0x0); 7917 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit); 7918 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 7919 7920 // 32b fold 7921 movdqu(xmm0, xmm7); 7922 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit); 7923 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 7924 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 7925 jmp(L_barrett); 7926 7927 bind(L_less_than_256); 7928 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup); 7929 7930 //barrett reduction 7931 bind(L_barrett); 7932 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2); 7933 movdqu(xmm1, xmm7); 7934 movdqu(xmm2, xmm7); 7935 movdqu(xmm10, Address(table, 4 * 16)); 7936 7937 pclmulqdq(xmm7, xmm10, 0x0); 7938 pxor(xmm7, xmm2); 7939 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2); 7940 movdqu(xmm2, xmm7); 7941 pclmulqdq(xmm7, xmm10, 0x10); 7942 pxor(xmm7, xmm2); 7943 pxor(xmm7, xmm1); 7944 pextrd(crc, xmm7, 2); 7945 7946 bind(L_cleanup); 7947 addptr(rsp, 16 * 2 + 8); 7948 pop(r12); 7949 } 7950 7951 // S. Gueron / Information Processing Letters 112 (2012) 184 7952 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table. 7953 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0]. 7954 // Output: the 64-bit carry-less product of B * CONST 7955 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n, 7956 Register tmp1, Register tmp2, Register tmp3) { 7957 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 7958 if (n > 0) { 7959 addq(tmp3, n * 256 * 8); 7960 } 7961 // Q1 = TABLEExt[n][B & 0xFF]; 7962 movl(tmp1, in); 7963 andl(tmp1, 0x000000FF); 7964 shll(tmp1, 3); 7965 addq(tmp1, tmp3); 7966 movq(tmp1, Address(tmp1, 0)); 7967 7968 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 7969 movl(tmp2, in); 7970 shrl(tmp2, 8); 7971 andl(tmp2, 0x000000FF); 7972 shll(tmp2, 3); 7973 addq(tmp2, tmp3); 7974 movq(tmp2, Address(tmp2, 0)); 7975 7976 shlq(tmp2, 8); 7977 xorq(tmp1, tmp2); 7978 7979 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 7980 movl(tmp2, in); 7981 shrl(tmp2, 16); 7982 andl(tmp2, 0x000000FF); 7983 shll(tmp2, 3); 7984 addq(tmp2, tmp3); 7985 movq(tmp2, Address(tmp2, 0)); 7986 7987 shlq(tmp2, 16); 7988 xorq(tmp1, tmp2); 7989 7990 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 7991 shrl(in, 24); 7992 andl(in, 0x000000FF); 7993 shll(in, 3); 7994 addq(in, tmp3); 7995 movq(in, Address(in, 0)); 7996 7997 shlq(in, 24); 7998 xorq(in, tmp1); 7999 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8000 } 8001 8002 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8003 Register in_out, 8004 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8005 XMMRegister w_xtmp2, 8006 Register tmp1, 8007 Register n_tmp2, Register n_tmp3) { 8008 if (is_pclmulqdq_supported) { 8009 movdl(w_xtmp1, in_out); // modified blindly 8010 8011 movl(tmp1, const_or_pre_comp_const_index); 8012 movdl(w_xtmp2, tmp1); 8013 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8014 8015 movdq(in_out, w_xtmp1); 8016 } else { 8017 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3); 8018 } 8019 } 8020 8021 // Recombination Alternative 2: No bit-reflections 8022 // T1 = (CRC_A * U1) << 1 8023 // T2 = (CRC_B * U2) << 1 8024 // C1 = T1 >> 32 8025 // C2 = T2 >> 32 8026 // T1 = T1 & 0xFFFFFFFF 8027 // T2 = T2 & 0xFFFFFFFF 8028 // T1 = CRC32(0, T1) 8029 // T2 = CRC32(0, T2) 8030 // C1 = C1 ^ T1 8031 // C2 = C2 ^ T2 8032 // CRC = C1 ^ C2 ^ CRC_C 8033 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8034 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8035 Register tmp1, Register tmp2, 8036 Register n_tmp3) { 8037 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8038 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8039 shlq(in_out, 1); 8040 movl(tmp1, in_out); 8041 shrq(in_out, 32); 8042 xorl(tmp2, tmp2); 8043 crc32(tmp2, tmp1, 4); 8044 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here 8045 shlq(in1, 1); 8046 movl(tmp1, in1); 8047 shrq(in1, 32); 8048 xorl(tmp2, tmp2); 8049 crc32(tmp2, tmp1, 4); 8050 xorl(in1, tmp2); 8051 xorl(in_out, in1); 8052 xorl(in_out, in2); 8053 } 8054 8055 // Set N to predefined value 8056 // Subtract from a length of a buffer 8057 // execute in a loop: 8058 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0 8059 // for i = 1 to N do 8060 // CRC_A = CRC32(CRC_A, A[i]) 8061 // CRC_B = CRC32(CRC_B, B[i]) 8062 // CRC_C = CRC32(CRC_C, C[i]) 8063 // end for 8064 // Recombine 8065 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8066 Register in_out1, Register in_out2, Register in_out3, 8067 Register tmp1, Register tmp2, Register tmp3, 8068 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8069 Register tmp4, Register tmp5, 8070 Register n_tmp6) { 8071 Label L_processPartitions; 8072 Label L_processPartition; 8073 Label L_exit; 8074 8075 bind(L_processPartitions); 8076 cmpl(in_out1, 3 * size); 8077 jcc(Assembler::less, L_exit); 8078 xorl(tmp1, tmp1); 8079 xorl(tmp2, tmp2); 8080 movq(tmp3, in_out2); 8081 addq(tmp3, size); 8082 8083 bind(L_processPartition); 8084 crc32(in_out3, Address(in_out2, 0), 8); 8085 crc32(tmp1, Address(in_out2, size), 8); 8086 crc32(tmp2, Address(in_out2, size * 2), 8); 8087 addq(in_out2, 8); 8088 cmpq(in_out2, tmp3); 8089 jcc(Assembler::less, L_processPartition); 8090 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8091 w_xtmp1, w_xtmp2, w_xtmp3, 8092 tmp4, tmp5, 8093 n_tmp6); 8094 addq(in_out2, 2 * size); 8095 subl(in_out1, 3 * size); 8096 jmp(L_processPartitions); 8097 8098 bind(L_exit); 8099 } 8100 8101 // Algorithm 2: Pipelined usage of the CRC32 instruction. 8102 // Input: A buffer I of L bytes. 8103 // Output: the CRC32C value of the buffer. 8104 // Notations: 8105 // Write L = 24N + r, with N = floor (L/24). 8106 // r = L mod 24 (0 <= r < 24). 8107 // Consider I as the concatenation of A|B|C|R, where A, B, C, each, 8108 // N quadwords, and R consists of r bytes. 8109 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1 8110 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1 8111 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1 8112 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1 8113 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 8114 Register tmp1, Register tmp2, Register tmp3, 8115 Register tmp4, Register tmp5, Register tmp6, 8116 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8117 bool is_pclmulqdq_supported) { 8118 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 8119 Label L_wordByWord; 8120 Label L_byteByByteProlog; 8121 Label L_byteByByte; 8122 Label L_exit; 8123 8124 if (is_pclmulqdq_supported ) { 8125 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::crc32c_table_addr(); 8126 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 1); 8127 8128 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 2); 8129 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 3); 8130 8131 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 4); 8132 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 5); 8133 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\""); 8134 } else { 8135 const_or_pre_comp_const_index[0] = 1; 8136 const_or_pre_comp_const_index[1] = 0; 8137 8138 const_or_pre_comp_const_index[2] = 3; 8139 const_or_pre_comp_const_index[3] = 2; 8140 8141 const_or_pre_comp_const_index[4] = 5; 8142 const_or_pre_comp_const_index[5] = 4; 8143 } 8144 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 8145 in2, in1, in_out, 8146 tmp1, tmp2, tmp3, 8147 w_xtmp1, w_xtmp2, w_xtmp3, 8148 tmp4, tmp5, 8149 tmp6); 8150 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 8151 in2, in1, in_out, 8152 tmp1, tmp2, tmp3, 8153 w_xtmp1, w_xtmp2, w_xtmp3, 8154 tmp4, tmp5, 8155 tmp6); 8156 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 8157 in2, in1, in_out, 8158 tmp1, tmp2, tmp3, 8159 w_xtmp1, w_xtmp2, w_xtmp3, 8160 tmp4, tmp5, 8161 tmp6); 8162 movl(tmp1, in2); 8163 andl(tmp1, 0x00000007); 8164 negl(tmp1); 8165 addl(tmp1, in2); 8166 addq(tmp1, in1); 8167 8168 cmpq(in1, tmp1); 8169 jccb(Assembler::greaterEqual, L_byteByByteProlog); 8170 align(16); 8171 BIND(L_wordByWord); 8172 crc32(in_out, Address(in1, 0), 8); 8173 addq(in1, 8); 8174 cmpq(in1, tmp1); 8175 jcc(Assembler::less, L_wordByWord); 8176 8177 BIND(L_byteByByteProlog); 8178 andl(in2, 0x00000007); 8179 movl(tmp2, 1); 8180 8181 cmpl(tmp2, in2); 8182 jccb(Assembler::greater, L_exit); 8183 BIND(L_byteByByte); 8184 crc32(in_out, Address(in1, 0), 1); 8185 incq(in1); 8186 incl(tmp2); 8187 cmpl(tmp2, in2); 8188 jcc(Assembler::lessEqual, L_byteByByte); 8189 8190 BIND(L_exit); 8191 } 8192 #undef BIND 8193 #undef BLOCK_COMMENT 8194 8195 // Compress char[] array to byte[]. 8196 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 8197 // Return the array length if every element in array can be encoded, 8198 // otherwise, the index of first non-latin1 (> 0xff) character. 8199 // @IntrinsicCandidate 8200 // public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) { 8201 // for (int i = 0; i < len; i++) { 8202 // char c = src[srcOff]; 8203 // if (c > 0xff) { 8204 // return i; // return index of non-latin1 char 8205 // } 8206 // dst[dstOff] = (byte)c; 8207 // srcOff++; 8208 // dstOff++; 8209 // } 8210 // return len; 8211 // } 8212 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 8213 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 8214 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 8215 Register tmp5, Register result, KRegister mask1, KRegister mask2) { 8216 Label copy_chars_loop, done, reset_sp, copy_tail; 8217 8218 // rsi: src 8219 // rdi: dst 8220 // rdx: len 8221 // rcx: tmp5 8222 // rax: result 8223 8224 // rsi holds start addr of source char[] to be compressed 8225 // rdi holds start addr of destination byte[] 8226 // rdx holds length 8227 8228 assert(len != result, ""); 8229 8230 // save length for return 8231 movl(result, len); 8232 8233 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 8234 VM_Version::supports_avx512vlbw() && 8235 VM_Version::supports_bmi2()) { 8236 8237 Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail; 8238 8239 // alignment 8240 Label post_alignment; 8241 8242 // if length of the string is less than 32, handle it the old fashioned way 8243 testl(len, -32); 8244 jcc(Assembler::zero, below_threshold); 8245 8246 // First check whether a character is compressible ( <= 0xFF). 8247 // Create mask to test for Unicode chars inside zmm vector 8248 movl(tmp5, 0x00FF); 8249 evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit); 8250 8251 testl(len, -64); 8252 jccb(Assembler::zero, post_alignment); 8253 8254 movl(tmp5, dst); 8255 andl(tmp5, (32 - 1)); 8256 negl(tmp5); 8257 andl(tmp5, (32 - 1)); 8258 8259 // bail out when there is nothing to be done 8260 testl(tmp5, 0xFFFFFFFF); 8261 jccb(Assembler::zero, post_alignment); 8262 8263 // ~(~0 << len), where len is the # of remaining elements to process 8264 movl(len, 0xFFFFFFFF); 8265 shlxl(len, len, tmp5); 8266 notl(len); 8267 kmovdl(mask2, len); 8268 movl(len, result); 8269 8270 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 8271 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 8272 ktestd(mask1, mask2); 8273 jcc(Assembler::carryClear, copy_tail); 8274 8275 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 8276 8277 addptr(src, tmp5); 8278 addptr(src, tmp5); 8279 addptr(dst, tmp5); 8280 subl(len, tmp5); 8281 8282 bind(post_alignment); 8283 // end of alignment 8284 8285 movl(tmp5, len); 8286 andl(tmp5, (32 - 1)); // tail count (in chars) 8287 andl(len, ~(32 - 1)); // vector count (in chars) 8288 jccb(Assembler::zero, copy_loop_tail); 8289 8290 lea(src, Address(src, len, Address::times_2)); 8291 lea(dst, Address(dst, len, Address::times_1)); 8292 negptr(len); 8293 8294 bind(copy_32_loop); 8295 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit); 8296 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); 8297 kortestdl(mask1, mask1); 8298 jccb(Assembler::carryClear, reset_for_copy_tail); 8299 8300 // All elements in current processed chunk are valid candidates for 8301 // compression. Write a truncated byte elements to the memory. 8302 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit); 8303 addptr(len, 32); 8304 jccb(Assembler::notZero, copy_32_loop); 8305 8306 bind(copy_loop_tail); 8307 // bail out when there is nothing to be done 8308 testl(tmp5, 0xFFFFFFFF); 8309 jcc(Assembler::zero, done); 8310 8311 movl(len, tmp5); 8312 8313 // ~(~0 << len), where len is the # of remaining elements to process 8314 movl(tmp5, 0xFFFFFFFF); 8315 shlxl(tmp5, tmp5, len); 8316 notl(tmp5); 8317 8318 kmovdl(mask2, tmp5); 8319 8320 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 8321 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 8322 ktestd(mask1, mask2); 8323 jcc(Assembler::carryClear, copy_tail); 8324 8325 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 8326 jmp(done); 8327 8328 bind(reset_for_copy_tail); 8329 lea(src, Address(src, tmp5, Address::times_2)); 8330 lea(dst, Address(dst, tmp5, Address::times_1)); 8331 subptr(len, tmp5); 8332 jmp(copy_chars_loop); 8333 8334 bind(below_threshold); 8335 } 8336 8337 if (UseSSE42Intrinsics) { 8338 Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail; 8339 8340 // vectored compression 8341 testl(len, 0xfffffff8); 8342 jcc(Assembler::zero, copy_tail); 8343 8344 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors 8345 movdl(tmp1Reg, tmp5); 8346 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 8347 8348 andl(len, 0xfffffff0); 8349 jccb(Assembler::zero, copy_16); 8350 8351 // compress 16 chars per iter 8352 pxor(tmp4Reg, tmp4Reg); 8353 8354 lea(src, Address(src, len, Address::times_2)); 8355 lea(dst, Address(dst, len, Address::times_1)); 8356 negptr(len); 8357 8358 bind(copy_32_loop); 8359 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters 8360 por(tmp4Reg, tmp2Reg); 8361 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters 8362 por(tmp4Reg, tmp3Reg); 8363 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector 8364 jccb(Assembler::notZero, reset_for_copy_tail); 8365 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte 8366 movdqu(Address(dst, len, Address::times_1), tmp2Reg); 8367 addptr(len, 16); 8368 jccb(Assembler::notZero, copy_32_loop); 8369 8370 // compress next vector of 8 chars (if any) 8371 bind(copy_16); 8372 // len = 0 8373 testl(result, 0x00000008); // check if there's a block of 8 chars to compress 8374 jccb(Assembler::zero, copy_tail_sse); 8375 8376 pxor(tmp3Reg, tmp3Reg); 8377 8378 movdqu(tmp2Reg, Address(src, 0)); 8379 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector 8380 jccb(Assembler::notZero, reset_for_copy_tail); 8381 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte 8382 movq(Address(dst, 0), tmp2Reg); 8383 addptr(src, 16); 8384 addptr(dst, 8); 8385 jmpb(copy_tail_sse); 8386 8387 bind(reset_for_copy_tail); 8388 movl(tmp5, result); 8389 andl(tmp5, 0x0000000f); 8390 lea(src, Address(src, tmp5, Address::times_2)); 8391 lea(dst, Address(dst, tmp5, Address::times_1)); 8392 subptr(len, tmp5); 8393 jmpb(copy_chars_loop); 8394 8395 bind(copy_tail_sse); 8396 movl(len, result); 8397 andl(len, 0x00000007); // tail count (in chars) 8398 } 8399 // compress 1 char per iter 8400 bind(copy_tail); 8401 testl(len, len); 8402 jccb(Assembler::zero, done); 8403 lea(src, Address(src, len, Address::times_2)); 8404 lea(dst, Address(dst, len, Address::times_1)); 8405 negptr(len); 8406 8407 bind(copy_chars_loop); 8408 load_unsigned_short(tmp5, Address(src, len, Address::times_2)); 8409 testl(tmp5, 0xff00); // check if Unicode char 8410 jccb(Assembler::notZero, reset_sp); 8411 movb(Address(dst, len, Address::times_1), tmp5); // ASCII char; compress to 1 byte 8412 increment(len); 8413 jccb(Assembler::notZero, copy_chars_loop); 8414 8415 // add len then return (len will be zero if compress succeeded, otherwise negative) 8416 bind(reset_sp); 8417 addl(result, len); 8418 8419 bind(done); 8420 } 8421 8422 // Inflate byte[] array to char[]. 8423 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java 8424 // @IntrinsicCandidate 8425 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) { 8426 // for (int i = 0; i < len; i++) { 8427 // dst[dstOff++] = (char)(src[srcOff++] & 0xff); 8428 // } 8429 // } 8430 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 8431 XMMRegister tmp1, Register tmp2, KRegister mask) { 8432 Label copy_chars_loop, done, below_threshold, avx3_threshold; 8433 // rsi: src 8434 // rdi: dst 8435 // rdx: len 8436 // rcx: tmp2 8437 8438 // rsi holds start addr of source byte[] to be inflated 8439 // rdi holds start addr of destination char[] 8440 // rdx holds length 8441 assert_different_registers(src, dst, len, tmp2); 8442 movl(tmp2, len); 8443 if ((UseAVX > 2) && // AVX512 8444 VM_Version::supports_avx512vlbw() && 8445 VM_Version::supports_bmi2()) { 8446 8447 Label copy_32_loop, copy_tail; 8448 Register tmp3_aliased = len; 8449 8450 // if length of the string is less than 16, handle it in an old fashioned way 8451 testl(len, -16); 8452 jcc(Assembler::zero, below_threshold); 8453 8454 testl(len, -1 * AVX3Threshold); 8455 jcc(Assembler::zero, avx3_threshold); 8456 8457 // In order to use only one arithmetic operation for the main loop we use 8458 // this pre-calculation 8459 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop 8460 andl(len, -32); // vector count 8461 jccb(Assembler::zero, copy_tail); 8462 8463 lea(src, Address(src, len, Address::times_1)); 8464 lea(dst, Address(dst, len, Address::times_2)); 8465 negptr(len); 8466 8467 8468 // inflate 32 chars per iter 8469 bind(copy_32_loop); 8470 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit); 8471 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit); 8472 addptr(len, 32); 8473 jcc(Assembler::notZero, copy_32_loop); 8474 8475 bind(copy_tail); 8476 // bail out when there is nothing to be done 8477 testl(tmp2, -1); // we don't destroy the contents of tmp2 here 8478 jcc(Assembler::zero, done); 8479 8480 // ~(~0 << length), where length is the # of remaining elements to process 8481 movl(tmp3_aliased, -1); 8482 shlxl(tmp3_aliased, tmp3_aliased, tmp2); 8483 notl(tmp3_aliased); 8484 kmovdl(mask, tmp3_aliased); 8485 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit); 8486 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit); 8487 8488 jmp(done); 8489 bind(avx3_threshold); 8490 } 8491 if (UseSSE42Intrinsics) { 8492 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail; 8493 8494 if (UseAVX > 1) { 8495 andl(tmp2, (16 - 1)); 8496 andl(len, -16); 8497 jccb(Assembler::zero, copy_new_tail); 8498 } else { 8499 andl(tmp2, 0x00000007); // tail count (in chars) 8500 andl(len, 0xfffffff8); // vector count (in chars) 8501 jccb(Assembler::zero, copy_tail); 8502 } 8503 8504 // vectored inflation 8505 lea(src, Address(src, len, Address::times_1)); 8506 lea(dst, Address(dst, len, Address::times_2)); 8507 negptr(len); 8508 8509 if (UseAVX > 1) { 8510 bind(copy_16_loop); 8511 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit); 8512 vmovdqu(Address(dst, len, Address::times_2), tmp1); 8513 addptr(len, 16); 8514 jcc(Assembler::notZero, copy_16_loop); 8515 8516 bind(below_threshold); 8517 bind(copy_new_tail); 8518 movl(len, tmp2); 8519 andl(tmp2, 0x00000007); 8520 andl(len, 0xFFFFFFF8); 8521 jccb(Assembler::zero, copy_tail); 8522 8523 pmovzxbw(tmp1, Address(src, 0)); 8524 movdqu(Address(dst, 0), tmp1); 8525 addptr(src, 8); 8526 addptr(dst, 2 * 8); 8527 8528 jmp(copy_tail, true); 8529 } 8530 8531 // inflate 8 chars per iter 8532 bind(copy_8_loop); 8533 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words 8534 movdqu(Address(dst, len, Address::times_2), tmp1); 8535 addptr(len, 8); 8536 jcc(Assembler::notZero, copy_8_loop); 8537 8538 bind(copy_tail); 8539 movl(len, tmp2); 8540 8541 cmpl(len, 4); 8542 jccb(Assembler::less, copy_bytes); 8543 8544 movdl(tmp1, Address(src, 0)); // load 4 byte chars 8545 pmovzxbw(tmp1, tmp1); 8546 movq(Address(dst, 0), tmp1); 8547 subptr(len, 4); 8548 addptr(src, 4); 8549 addptr(dst, 8); 8550 8551 bind(copy_bytes); 8552 } else { 8553 bind(below_threshold); 8554 } 8555 8556 testl(len, len); 8557 jccb(Assembler::zero, done); 8558 lea(src, Address(src, len, Address::times_1)); 8559 lea(dst, Address(dst, len, Address::times_2)); 8560 negptr(len); 8561 8562 // inflate 1 char per iter 8563 bind(copy_chars_loop); 8564 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char 8565 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word 8566 increment(len); 8567 jcc(Assembler::notZero, copy_chars_loop); 8568 8569 bind(done); 8570 } 8571 8572 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len) { 8573 switch(type) { 8574 case T_BYTE: 8575 case T_BOOLEAN: 8576 evmovdqub(dst, kmask, src, merge, vector_len); 8577 break; 8578 case T_CHAR: 8579 case T_SHORT: 8580 evmovdquw(dst, kmask, src, merge, vector_len); 8581 break; 8582 case T_INT: 8583 case T_FLOAT: 8584 evmovdqul(dst, kmask, src, merge, vector_len); 8585 break; 8586 case T_LONG: 8587 case T_DOUBLE: 8588 evmovdquq(dst, kmask, src, merge, vector_len); 8589 break; 8590 default: 8591 fatal("Unexpected type argument %s", type2name(type)); 8592 break; 8593 } 8594 } 8595 8596 8597 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) { 8598 switch(type) { 8599 case T_BYTE: 8600 case T_BOOLEAN: 8601 evmovdqub(dst, kmask, src, merge, vector_len); 8602 break; 8603 case T_CHAR: 8604 case T_SHORT: 8605 evmovdquw(dst, kmask, src, merge, vector_len); 8606 break; 8607 case T_INT: 8608 case T_FLOAT: 8609 evmovdqul(dst, kmask, src, merge, vector_len); 8610 break; 8611 case T_LONG: 8612 case T_DOUBLE: 8613 evmovdquq(dst, kmask, src, merge, vector_len); 8614 break; 8615 default: 8616 fatal("Unexpected type argument %s", type2name(type)); 8617 break; 8618 } 8619 } 8620 8621 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) { 8622 switch(type) { 8623 case T_BYTE: 8624 case T_BOOLEAN: 8625 evmovdqub(dst, kmask, src, merge, vector_len); 8626 break; 8627 case T_CHAR: 8628 case T_SHORT: 8629 evmovdquw(dst, kmask, src, merge, vector_len); 8630 break; 8631 case T_INT: 8632 case T_FLOAT: 8633 evmovdqul(dst, kmask, src, merge, vector_len); 8634 break; 8635 case T_LONG: 8636 case T_DOUBLE: 8637 evmovdquq(dst, kmask, src, merge, vector_len); 8638 break; 8639 default: 8640 fatal("Unexpected type argument %s", type2name(type)); 8641 break; 8642 } 8643 } 8644 8645 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) { 8646 switch(masklen) { 8647 case 2: 8648 knotbl(dst, src); 8649 movl(rtmp, 3); 8650 kmovbl(ktmp, rtmp); 8651 kandbl(dst, ktmp, dst); 8652 break; 8653 case 4: 8654 knotbl(dst, src); 8655 movl(rtmp, 15); 8656 kmovbl(ktmp, rtmp); 8657 kandbl(dst, ktmp, dst); 8658 break; 8659 case 8: 8660 knotbl(dst, src); 8661 break; 8662 case 16: 8663 knotwl(dst, src); 8664 break; 8665 case 32: 8666 knotdl(dst, src); 8667 break; 8668 case 64: 8669 knotql(dst, src); 8670 break; 8671 default: 8672 fatal("Unexpected vector length %d", masklen); 8673 break; 8674 } 8675 } 8676 8677 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 8678 switch(type) { 8679 case T_BOOLEAN: 8680 case T_BYTE: 8681 kandbl(dst, src1, src2); 8682 break; 8683 case T_CHAR: 8684 case T_SHORT: 8685 kandwl(dst, src1, src2); 8686 break; 8687 case T_INT: 8688 case T_FLOAT: 8689 kanddl(dst, src1, src2); 8690 break; 8691 case T_LONG: 8692 case T_DOUBLE: 8693 kandql(dst, src1, src2); 8694 break; 8695 default: 8696 fatal("Unexpected type argument %s", type2name(type)); 8697 break; 8698 } 8699 } 8700 8701 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 8702 switch(type) { 8703 case T_BOOLEAN: 8704 case T_BYTE: 8705 korbl(dst, src1, src2); 8706 break; 8707 case T_CHAR: 8708 case T_SHORT: 8709 korwl(dst, src1, src2); 8710 break; 8711 case T_INT: 8712 case T_FLOAT: 8713 kordl(dst, src1, src2); 8714 break; 8715 case T_LONG: 8716 case T_DOUBLE: 8717 korql(dst, src1, src2); 8718 break; 8719 default: 8720 fatal("Unexpected type argument %s", type2name(type)); 8721 break; 8722 } 8723 } 8724 8725 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 8726 switch(type) { 8727 case T_BOOLEAN: 8728 case T_BYTE: 8729 kxorbl(dst, src1, src2); 8730 break; 8731 case T_CHAR: 8732 case T_SHORT: 8733 kxorwl(dst, src1, src2); 8734 break; 8735 case T_INT: 8736 case T_FLOAT: 8737 kxordl(dst, src1, src2); 8738 break; 8739 case T_LONG: 8740 case T_DOUBLE: 8741 kxorql(dst, src1, src2); 8742 break; 8743 default: 8744 fatal("Unexpected type argument %s", type2name(type)); 8745 break; 8746 } 8747 } 8748 8749 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 8750 switch(type) { 8751 case T_BOOLEAN: 8752 case T_BYTE: 8753 evpermb(dst, mask, nds, src, merge, vector_len); break; 8754 case T_CHAR: 8755 case T_SHORT: 8756 evpermw(dst, mask, nds, src, merge, vector_len); break; 8757 case T_INT: 8758 case T_FLOAT: 8759 evpermd(dst, mask, nds, src, merge, vector_len); break; 8760 case T_LONG: 8761 case T_DOUBLE: 8762 evpermq(dst, mask, nds, src, merge, vector_len); break; 8763 default: 8764 fatal("Unexpected type argument %s", type2name(type)); break; 8765 } 8766 } 8767 8768 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 8769 switch(type) { 8770 case T_BOOLEAN: 8771 case T_BYTE: 8772 evpermb(dst, mask, nds, src, merge, vector_len); break; 8773 case T_CHAR: 8774 case T_SHORT: 8775 evpermw(dst, mask, nds, src, merge, vector_len); break; 8776 case T_INT: 8777 case T_FLOAT: 8778 evpermd(dst, mask, nds, src, merge, vector_len); break; 8779 case T_LONG: 8780 case T_DOUBLE: 8781 evpermq(dst, mask, nds, src, merge, vector_len); break; 8782 default: 8783 fatal("Unexpected type argument %s", type2name(type)); break; 8784 } 8785 } 8786 8787 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 8788 switch(type) { 8789 case T_BYTE: 8790 evpminub(dst, mask, nds, src, merge, vector_len); break; 8791 case T_SHORT: 8792 evpminuw(dst, mask, nds, src, merge, vector_len); break; 8793 case T_INT: 8794 evpminud(dst, mask, nds, src, merge, vector_len); break; 8795 case T_LONG: 8796 evpminuq(dst, mask, nds, src, merge, vector_len); break; 8797 default: 8798 fatal("Unexpected type argument %s", type2name(type)); break; 8799 } 8800 } 8801 8802 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 8803 switch(type) { 8804 case T_BYTE: 8805 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 8806 case T_SHORT: 8807 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 8808 case T_INT: 8809 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 8810 case T_LONG: 8811 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 8812 default: 8813 fatal("Unexpected type argument %s", type2name(type)); break; 8814 } 8815 } 8816 8817 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 8818 switch(type) { 8819 case T_BYTE: 8820 evpminub(dst, mask, nds, src, merge, vector_len); break; 8821 case T_SHORT: 8822 evpminuw(dst, mask, nds, src, merge, vector_len); break; 8823 case T_INT: 8824 evpminud(dst, mask, nds, src, merge, vector_len); break; 8825 case T_LONG: 8826 evpminuq(dst, mask, nds, src, merge, vector_len); break; 8827 default: 8828 fatal("Unexpected type argument %s", type2name(type)); break; 8829 } 8830 } 8831 8832 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 8833 switch(type) { 8834 case T_BYTE: 8835 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 8836 case T_SHORT: 8837 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 8838 case T_INT: 8839 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 8840 case T_LONG: 8841 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 8842 default: 8843 fatal("Unexpected type argument %s", type2name(type)); break; 8844 } 8845 } 8846 8847 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 8848 switch(type) { 8849 case T_BYTE: 8850 evpminsb(dst, mask, nds, src, merge, vector_len); break; 8851 case T_SHORT: 8852 evpminsw(dst, mask, nds, src, merge, vector_len); break; 8853 case T_INT: 8854 evpminsd(dst, mask, nds, src, merge, vector_len); break; 8855 case T_LONG: 8856 evpminsq(dst, mask, nds, src, merge, vector_len); break; 8857 default: 8858 fatal("Unexpected type argument %s", type2name(type)); break; 8859 } 8860 } 8861 8862 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 8863 switch(type) { 8864 case T_BYTE: 8865 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 8866 case T_SHORT: 8867 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 8868 case T_INT: 8869 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 8870 case T_LONG: 8871 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 8872 default: 8873 fatal("Unexpected type argument %s", type2name(type)); break; 8874 } 8875 } 8876 8877 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 8878 switch(type) { 8879 case T_BYTE: 8880 evpminsb(dst, mask, nds, src, merge, vector_len); break; 8881 case T_SHORT: 8882 evpminsw(dst, mask, nds, src, merge, vector_len); break; 8883 case T_INT: 8884 evpminsd(dst, mask, nds, src, merge, vector_len); break; 8885 case T_LONG: 8886 evpminsq(dst, mask, nds, src, merge, vector_len); break; 8887 default: 8888 fatal("Unexpected type argument %s", type2name(type)); break; 8889 } 8890 } 8891 8892 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 8893 switch(type) { 8894 case T_BYTE: 8895 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 8896 case T_SHORT: 8897 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 8898 case T_INT: 8899 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 8900 case T_LONG: 8901 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 8902 default: 8903 fatal("Unexpected type argument %s", type2name(type)); break; 8904 } 8905 } 8906 8907 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 8908 switch(type) { 8909 case T_INT: 8910 evpxord(dst, mask, nds, src, merge, vector_len); break; 8911 case T_LONG: 8912 evpxorq(dst, mask, nds, src, merge, vector_len); break; 8913 default: 8914 fatal("Unexpected type argument %s", type2name(type)); break; 8915 } 8916 } 8917 8918 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 8919 switch(type) { 8920 case T_INT: 8921 evpxord(dst, mask, nds, src, merge, vector_len); break; 8922 case T_LONG: 8923 evpxorq(dst, mask, nds, src, merge, vector_len); break; 8924 default: 8925 fatal("Unexpected type argument %s", type2name(type)); break; 8926 } 8927 } 8928 8929 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 8930 switch(type) { 8931 case T_INT: 8932 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 8933 case T_LONG: 8934 evporq(dst, mask, nds, src, merge, vector_len); break; 8935 default: 8936 fatal("Unexpected type argument %s", type2name(type)); break; 8937 } 8938 } 8939 8940 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 8941 switch(type) { 8942 case T_INT: 8943 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 8944 case T_LONG: 8945 evporq(dst, mask, nds, src, merge, vector_len); break; 8946 default: 8947 fatal("Unexpected type argument %s", type2name(type)); break; 8948 } 8949 } 8950 8951 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 8952 switch(type) { 8953 case T_INT: 8954 evpandd(dst, mask, nds, src, merge, vector_len); break; 8955 case T_LONG: 8956 evpandq(dst, mask, nds, src, merge, vector_len); break; 8957 default: 8958 fatal("Unexpected type argument %s", type2name(type)); break; 8959 } 8960 } 8961 8962 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 8963 switch(type) { 8964 case T_INT: 8965 evpandd(dst, mask, nds, src, merge, vector_len); break; 8966 case T_LONG: 8967 evpandq(dst, mask, nds, src, merge, vector_len); break; 8968 default: 8969 fatal("Unexpected type argument %s", type2name(type)); break; 8970 } 8971 } 8972 8973 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) { 8974 switch(masklen) { 8975 case 8: 8976 kortestbl(src1, src2); 8977 break; 8978 case 16: 8979 kortestwl(src1, src2); 8980 break; 8981 case 32: 8982 kortestdl(src1, src2); 8983 break; 8984 case 64: 8985 kortestql(src1, src2); 8986 break; 8987 default: 8988 fatal("Unexpected mask length %d", masklen); 8989 break; 8990 } 8991 } 8992 8993 8994 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) { 8995 switch(masklen) { 8996 case 8: 8997 ktestbl(src1, src2); 8998 break; 8999 case 16: 9000 ktestwl(src1, src2); 9001 break; 9002 case 32: 9003 ktestdl(src1, src2); 9004 break; 9005 case 64: 9006 ktestql(src1, src2); 9007 break; 9008 default: 9009 fatal("Unexpected mask length %d", masklen); 9010 break; 9011 } 9012 } 9013 9014 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9015 switch(type) { 9016 case T_INT: 9017 evprold(dst, mask, src, shift, merge, vlen_enc); break; 9018 case T_LONG: 9019 evprolq(dst, mask, src, shift, merge, vlen_enc); break; 9020 default: 9021 fatal("Unexpected type argument %s", type2name(type)); break; 9022 break; 9023 } 9024 } 9025 9026 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9027 switch(type) { 9028 case T_INT: 9029 evprord(dst, mask, src, shift, merge, vlen_enc); break; 9030 case T_LONG: 9031 evprorq(dst, mask, src, shift, merge, vlen_enc); break; 9032 default: 9033 fatal("Unexpected type argument %s", type2name(type)); break; 9034 } 9035 } 9036 9037 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9038 switch(type) { 9039 case T_INT: 9040 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break; 9041 case T_LONG: 9042 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break; 9043 default: 9044 fatal("Unexpected type argument %s", type2name(type)); break; 9045 } 9046 } 9047 9048 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9049 switch(type) { 9050 case T_INT: 9051 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break; 9052 case T_LONG: 9053 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break; 9054 default: 9055 fatal("Unexpected type argument %s", type2name(type)); break; 9056 } 9057 } 9058 9059 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9060 assert(rscratch != noreg || always_reachable(src), "missing"); 9061 9062 if (reachable(src)) { 9063 evpandq(dst, nds, as_Address(src), vector_len); 9064 } else { 9065 lea(rscratch, src); 9066 evpandq(dst, nds, Address(rscratch, 0), vector_len); 9067 } 9068 } 9069 9070 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 9071 assert(rscratch != noreg || always_reachable(src), "missing"); 9072 9073 if (reachable(src)) { 9074 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len); 9075 } else { 9076 lea(rscratch, src); 9077 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 9078 } 9079 } 9080 9081 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9082 assert(rscratch != noreg || always_reachable(src), "missing"); 9083 9084 if (reachable(src)) { 9085 evporq(dst, nds, as_Address(src), vector_len); 9086 } else { 9087 lea(rscratch, src); 9088 evporq(dst, nds, Address(rscratch, 0), vector_len); 9089 } 9090 } 9091 9092 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9093 assert(rscratch != noreg || always_reachable(src), "missing"); 9094 9095 if (reachable(src)) { 9096 vpshufb(dst, nds, as_Address(src), vector_len); 9097 } else { 9098 lea(rscratch, src); 9099 vpshufb(dst, nds, Address(rscratch, 0), vector_len); 9100 } 9101 } 9102 9103 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9104 assert(rscratch != noreg || always_reachable(src), "missing"); 9105 9106 if (reachable(src)) { 9107 Assembler::vpor(dst, nds, as_Address(src), vector_len); 9108 } else { 9109 lea(rscratch, src); 9110 Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len); 9111 } 9112 } 9113 9114 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) { 9115 assert(rscratch != noreg || always_reachable(src3), "missing"); 9116 9117 if (reachable(src3)) { 9118 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len); 9119 } else { 9120 lea(rscratch, src3); 9121 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len); 9122 } 9123 } 9124 9125 #if COMPILER2_OR_JVMCI 9126 9127 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 9128 Register length, Register temp, int vec_enc) { 9129 // Computing mask for predicated vector store. 9130 movptr(temp, -1); 9131 bzhiq(temp, temp, length); 9132 kmov(mask, temp); 9133 evmovdqu(bt, mask, dst, xmm, true, vec_enc); 9134 } 9135 9136 // Set memory operation for length "less than" 64 bytes. 9137 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp, 9138 XMMRegister xmm, KRegister mask, Register length, 9139 Register temp, bool use64byteVector) { 9140 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9141 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9142 if (!use64byteVector) { 9143 fill32(dst, disp, xmm); 9144 subptr(length, 32 >> shift); 9145 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp); 9146 } else { 9147 assert(MaxVectorSize == 64, "vector length != 64"); 9148 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit); 9149 } 9150 } 9151 9152 9153 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp, 9154 XMMRegister xmm, KRegister mask, Register length, 9155 Register temp) { 9156 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9157 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9158 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit); 9159 } 9160 9161 9162 void MacroAssembler::fill32(Address dst, XMMRegister xmm) { 9163 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9164 vmovdqu(dst, xmm); 9165 } 9166 9167 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) { 9168 fill32(Address(dst, disp), xmm); 9169 } 9170 9171 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) { 9172 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9173 if (!use64byteVector) { 9174 fill32(dst, xmm); 9175 fill32(dst.plus_disp(32), xmm); 9176 } else { 9177 evmovdquq(dst, xmm, Assembler::AVX_512bit); 9178 } 9179 } 9180 9181 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) { 9182 fill64(Address(dst, disp), xmm, use64byteVector); 9183 } 9184 9185 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value, 9186 Register count, Register rtmp, XMMRegister xtmp) { 9187 Label L_exit; 9188 Label L_fill_start; 9189 Label L_fill_64_bytes; 9190 Label L_fill_96_bytes; 9191 Label L_fill_128_bytes; 9192 Label L_fill_128_bytes_loop; 9193 Label L_fill_128_loop_header; 9194 Label L_fill_128_bytes_loop_header; 9195 Label L_fill_128_bytes_loop_pre_header; 9196 Label L_fill_zmm_sequence; 9197 9198 int shift = -1; 9199 int avx3threshold = VM_Version::avx3_threshold(); 9200 switch(type) { 9201 case T_BYTE: shift = 0; 9202 break; 9203 case T_SHORT: shift = 1; 9204 break; 9205 case T_INT: shift = 2; 9206 break; 9207 /* Uncomment when LONG fill stubs are supported. 9208 case T_LONG: shift = 3; 9209 break; 9210 */ 9211 default: 9212 fatal("Unhandled type: %s\n", type2name(type)); 9213 } 9214 9215 if ((avx3threshold != 0) || (MaxVectorSize == 32)) { 9216 9217 if (MaxVectorSize == 64) { 9218 cmpq(count, avx3threshold >> shift); 9219 jcc(Assembler::greater, L_fill_zmm_sequence); 9220 } 9221 9222 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit); 9223 9224 bind(L_fill_start); 9225 9226 cmpq(count, 32 >> shift); 9227 jccb(Assembler::greater, L_fill_64_bytes); 9228 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp); 9229 jmp(L_exit); 9230 9231 bind(L_fill_64_bytes); 9232 cmpq(count, 64 >> shift); 9233 jccb(Assembler::greater, L_fill_96_bytes); 9234 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp); 9235 jmp(L_exit); 9236 9237 bind(L_fill_96_bytes); 9238 cmpq(count, 96 >> shift); 9239 jccb(Assembler::greater, L_fill_128_bytes); 9240 fill64(to, 0, xtmp); 9241 subq(count, 64 >> shift); 9242 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp); 9243 jmp(L_exit); 9244 9245 bind(L_fill_128_bytes); 9246 cmpq(count, 128 >> shift); 9247 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header); 9248 fill64(to, 0, xtmp); 9249 fill32(to, 64, xtmp); 9250 subq(count, 96 >> shift); 9251 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp); 9252 jmp(L_exit); 9253 9254 bind(L_fill_128_bytes_loop_pre_header); 9255 { 9256 mov(rtmp, to); 9257 andq(rtmp, 31); 9258 jccb(Assembler::zero, L_fill_128_bytes_loop_header); 9259 negq(rtmp); 9260 addq(rtmp, 32); 9261 mov64(r8, -1L); 9262 bzhiq(r8, r8, rtmp); 9263 kmovql(k2, r8); 9264 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit); 9265 addq(to, rtmp); 9266 shrq(rtmp, shift); 9267 subq(count, rtmp); 9268 } 9269 9270 cmpq(count, 128 >> shift); 9271 jcc(Assembler::less, L_fill_start); 9272 9273 bind(L_fill_128_bytes_loop_header); 9274 subq(count, 128 >> shift); 9275 9276 align32(); 9277 bind(L_fill_128_bytes_loop); 9278 fill64(to, 0, xtmp); 9279 fill64(to, 64, xtmp); 9280 addq(to, 128); 9281 subq(count, 128 >> shift); 9282 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop); 9283 9284 addq(count, 128 >> shift); 9285 jcc(Assembler::zero, L_exit); 9286 jmp(L_fill_start); 9287 } 9288 9289 if (MaxVectorSize == 64) { 9290 // Sequence using 64 byte ZMM register. 9291 Label L_fill_128_bytes_zmm; 9292 Label L_fill_192_bytes_zmm; 9293 Label L_fill_192_bytes_loop_zmm; 9294 Label L_fill_192_bytes_loop_header_zmm; 9295 Label L_fill_192_bytes_loop_pre_header_zmm; 9296 Label L_fill_start_zmm_sequence; 9297 9298 bind(L_fill_zmm_sequence); 9299 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit); 9300 9301 bind(L_fill_start_zmm_sequence); 9302 cmpq(count, 64 >> shift); 9303 jccb(Assembler::greater, L_fill_128_bytes_zmm); 9304 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true); 9305 jmp(L_exit); 9306 9307 bind(L_fill_128_bytes_zmm); 9308 cmpq(count, 128 >> shift); 9309 jccb(Assembler::greater, L_fill_192_bytes_zmm); 9310 fill64(to, 0, xtmp, true); 9311 subq(count, 64 >> shift); 9312 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true); 9313 jmp(L_exit); 9314 9315 bind(L_fill_192_bytes_zmm); 9316 cmpq(count, 192 >> shift); 9317 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm); 9318 fill64(to, 0, xtmp, true); 9319 fill64(to, 64, xtmp, true); 9320 subq(count, 128 >> shift); 9321 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true); 9322 jmp(L_exit); 9323 9324 bind(L_fill_192_bytes_loop_pre_header_zmm); 9325 { 9326 movq(rtmp, to); 9327 andq(rtmp, 63); 9328 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm); 9329 negq(rtmp); 9330 addq(rtmp, 64); 9331 mov64(r8, -1L); 9332 bzhiq(r8, r8, rtmp); 9333 kmovql(k2, r8); 9334 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit); 9335 addq(to, rtmp); 9336 shrq(rtmp, shift); 9337 subq(count, rtmp); 9338 } 9339 9340 cmpq(count, 192 >> shift); 9341 jcc(Assembler::less, L_fill_start_zmm_sequence); 9342 9343 bind(L_fill_192_bytes_loop_header_zmm); 9344 subq(count, 192 >> shift); 9345 9346 align32(); 9347 bind(L_fill_192_bytes_loop_zmm); 9348 fill64(to, 0, xtmp, true); 9349 fill64(to, 64, xtmp, true); 9350 fill64(to, 128, xtmp, true); 9351 addq(to, 192); 9352 subq(count, 192 >> shift); 9353 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm); 9354 9355 addq(count, 192 >> shift); 9356 jcc(Assembler::zero, L_exit); 9357 jmp(L_fill_start_zmm_sequence); 9358 } 9359 bind(L_exit); 9360 } 9361 #endif //COMPILER2_OR_JVMCI 9362 9363 9364 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) { 9365 Label done; 9366 cvttss2sil(dst, src); 9367 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 9368 cmpl(dst, 0x80000000); // float_sign_flip 9369 jccb(Assembler::notEqual, done); 9370 subptr(rsp, 8); 9371 movflt(Address(rsp, 0), src); 9372 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup()))); 9373 pop(dst); 9374 bind(done); 9375 } 9376 9377 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) { 9378 Label done; 9379 cvttsd2sil(dst, src); 9380 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 9381 cmpl(dst, 0x80000000); // float_sign_flip 9382 jccb(Assembler::notEqual, done); 9383 subptr(rsp, 8); 9384 movdbl(Address(rsp, 0), src); 9385 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup()))); 9386 pop(dst); 9387 bind(done); 9388 } 9389 9390 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) { 9391 Label done; 9392 cvttss2siq(dst, src); 9393 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 9394 jccb(Assembler::notEqual, done); 9395 subptr(rsp, 8); 9396 movflt(Address(rsp, 0), src); 9397 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup()))); 9398 pop(dst); 9399 bind(done); 9400 } 9401 9402 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) { 9403 // Following code is line by line assembly translation rounding algorithm. 9404 // Please refer to java.lang.Math.round(float) algorithm for details. 9405 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000; 9406 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24; 9407 const int32_t FloatConsts_EXP_BIAS = 127; 9408 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF; 9409 const int32_t MINUS_32 = 0xFFFFFFE0; 9410 Label L_special_case, L_block1, L_exit; 9411 movl(rtmp, FloatConsts_EXP_BIT_MASK); 9412 movdl(dst, src); 9413 andl(dst, rtmp); 9414 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1); 9415 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS); 9416 subl(rtmp, dst); 9417 movl(rcx, rtmp); 9418 movl(dst, MINUS_32); 9419 testl(rtmp, dst); 9420 jccb(Assembler::notEqual, L_special_case); 9421 movdl(dst, src); 9422 andl(dst, FloatConsts_SIGNIF_BIT_MASK); 9423 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1); 9424 movdl(rtmp, src); 9425 testl(rtmp, rtmp); 9426 jccb(Assembler::greaterEqual, L_block1); 9427 negl(dst); 9428 bind(L_block1); 9429 sarl(dst); 9430 addl(dst, 0x1); 9431 sarl(dst, 0x1); 9432 jmp(L_exit); 9433 bind(L_special_case); 9434 convert_f2i(dst, src); 9435 bind(L_exit); 9436 } 9437 9438 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) { 9439 // Following code is line by line assembly translation rounding algorithm. 9440 // Please refer to java.lang.Math.round(double) algorithm for details. 9441 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L; 9442 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53; 9443 const int64_t DoubleConsts_EXP_BIAS = 1023; 9444 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL; 9445 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L; 9446 Label L_special_case, L_block1, L_exit; 9447 mov64(rtmp, DoubleConsts_EXP_BIT_MASK); 9448 movq(dst, src); 9449 andq(dst, rtmp); 9450 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1); 9451 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS); 9452 subq(rtmp, dst); 9453 movq(rcx, rtmp); 9454 mov64(dst, MINUS_64); 9455 testq(rtmp, dst); 9456 jccb(Assembler::notEqual, L_special_case); 9457 movq(dst, src); 9458 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK); 9459 andq(dst, rtmp); 9460 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1); 9461 orq(dst, rtmp); 9462 movq(rtmp, src); 9463 testq(rtmp, rtmp); 9464 jccb(Assembler::greaterEqual, L_block1); 9465 negq(dst); 9466 bind(L_block1); 9467 sarq(dst); 9468 addq(dst, 0x1); 9469 sarq(dst, 0x1); 9470 jmp(L_exit); 9471 bind(L_special_case); 9472 convert_d2l(dst, src); 9473 bind(L_exit); 9474 } 9475 9476 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) { 9477 Label done; 9478 cvttsd2siq(dst, src); 9479 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 9480 jccb(Assembler::notEqual, done); 9481 subptr(rsp, 8); 9482 movdbl(Address(rsp, 0), src); 9483 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 9484 pop(dst); 9485 bind(done); 9486 } 9487 9488 void MacroAssembler::cache_wb(Address line) 9489 { 9490 // 64 bit cpus always support clflush 9491 assert(VM_Version::supports_clflush(), "clflush should be available"); 9492 bool optimized = VM_Version::supports_clflushopt(); 9493 bool no_evict = VM_Version::supports_clwb(); 9494 9495 // prefer clwb (writeback without evict) otherwise 9496 // prefer clflushopt (potentially parallel writeback with evict) 9497 // otherwise fallback on clflush (serial writeback with evict) 9498 9499 if (optimized) { 9500 if (no_evict) { 9501 clwb(line); 9502 } else { 9503 clflushopt(line); 9504 } 9505 } else { 9506 // no need for fence when using CLFLUSH 9507 clflush(line); 9508 } 9509 } 9510 9511 void MacroAssembler::cache_wbsync(bool is_pre) 9512 { 9513 assert(VM_Version::supports_clflush(), "clflush should be available"); 9514 bool optimized = VM_Version::supports_clflushopt(); 9515 bool no_evict = VM_Version::supports_clwb(); 9516 9517 // pick the correct implementation 9518 9519 if (!is_pre && (optimized || no_evict)) { 9520 // need an sfence for post flush when using clflushopt or clwb 9521 // otherwise no no need for any synchroniaztion 9522 9523 sfence(); 9524 } 9525 } 9526 9527 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { 9528 switch (cond) { 9529 // Note some conditions are synonyms for others 9530 case Assembler::zero: return Assembler::notZero; 9531 case Assembler::notZero: return Assembler::zero; 9532 case Assembler::less: return Assembler::greaterEqual; 9533 case Assembler::lessEqual: return Assembler::greater; 9534 case Assembler::greater: return Assembler::lessEqual; 9535 case Assembler::greaterEqual: return Assembler::less; 9536 case Assembler::below: return Assembler::aboveEqual; 9537 case Assembler::belowEqual: return Assembler::above; 9538 case Assembler::above: return Assembler::belowEqual; 9539 case Assembler::aboveEqual: return Assembler::below; 9540 case Assembler::overflow: return Assembler::noOverflow; 9541 case Assembler::noOverflow: return Assembler::overflow; 9542 case Assembler::negative: return Assembler::positive; 9543 case Assembler::positive: return Assembler::negative; 9544 case Assembler::parity: return Assembler::noParity; 9545 case Assembler::noParity: return Assembler::parity; 9546 } 9547 ShouldNotReachHere(); return Assembler::overflow; 9548 } 9549 9550 // This is simply a call to Thread::current() 9551 void MacroAssembler::get_thread_slow(Register thread) { 9552 if (thread != rax) { 9553 push(rax); 9554 } 9555 push(rdi); 9556 push(rsi); 9557 push(rdx); 9558 push(rcx); 9559 push(r8); 9560 push(r9); 9561 push(r10); 9562 push(r11); 9563 9564 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0); 9565 9566 pop(r11); 9567 pop(r10); 9568 pop(r9); 9569 pop(r8); 9570 pop(rcx); 9571 pop(rdx); 9572 pop(rsi); 9573 pop(rdi); 9574 if (thread != rax) { 9575 mov(thread, rax); 9576 pop(rax); 9577 } 9578 } 9579 9580 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) { 9581 Label L_stack_ok; 9582 if (bias == 0) { 9583 testptr(sp, 2 * wordSize - 1); 9584 } else { 9585 // lea(tmp, Address(rsp, bias); 9586 mov(tmp, sp); 9587 addptr(tmp, bias); 9588 testptr(tmp, 2 * wordSize - 1); 9589 } 9590 jcc(Assembler::equal, L_stack_ok); 9591 block_comment(msg); 9592 stop(msg); 9593 bind(L_stack_ok); 9594 } 9595 9596 // Implements lightweight-locking. 9597 // 9598 // obj: the object to be locked 9599 // reg_rax: rax 9600 // thread: the thread which attempts to lock obj 9601 // tmp: a temporary register 9602 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register tmp, Label& slow) { 9603 Register thread = r15_thread; 9604 9605 assert(reg_rax == rax, ""); 9606 assert_different_registers(basic_lock, obj, reg_rax, thread, tmp); 9607 9608 Label push; 9609 const Register top = tmp; 9610 9611 // Preload the markWord. It is important that this is the first 9612 // instruction emitted as it is part of C1's null check semantics. 9613 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 9614 9615 if (UseObjectMonitorTable) { 9616 // Clear cache in case fast locking succeeds or we need to take the slow-path. 9617 movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0); 9618 } 9619 9620 if (DiagnoseSyncOnValueBasedClasses != 0) { 9621 load_klass(tmp, obj, rscratch1); 9622 testb(Address(tmp, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class); 9623 jcc(Assembler::notZero, slow); 9624 } 9625 9626 // Load top. 9627 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 9628 9629 // Check if the lock-stack is full. 9630 cmpl(top, LockStack::end_offset()); 9631 jcc(Assembler::greaterEqual, slow); 9632 9633 // Check for recursion. 9634 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 9635 jcc(Assembler::equal, push); 9636 9637 // Check header for monitor (0b10). 9638 testptr(reg_rax, markWord::monitor_value); 9639 jcc(Assembler::notZero, slow); 9640 9641 // Try to lock. Transition lock bits 0b01 => 0b00 9642 movptr(tmp, reg_rax); 9643 andptr(tmp, ~(int32_t)markWord::unlocked_value); 9644 orptr(reg_rax, markWord::unlocked_value); 9645 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 9646 jcc(Assembler::notEqual, slow); 9647 9648 // Restore top, CAS clobbers register. 9649 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 9650 9651 bind(push); 9652 // After successful lock, push object on lock-stack. 9653 movptr(Address(thread, top), obj); 9654 incrementl(top, oopSize); 9655 movl(Address(thread, JavaThread::lock_stack_top_offset()), top); 9656 } 9657 9658 // Implements lightweight-unlocking. 9659 // 9660 // obj: the object to be unlocked 9661 // reg_rax: rax 9662 // thread: the thread 9663 // tmp: a temporary register 9664 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register tmp, Label& slow) { 9665 Register thread = r15_thread; 9666 9667 assert(reg_rax == rax, ""); 9668 assert_different_registers(obj, reg_rax, thread, tmp); 9669 9670 Label unlocked, push_and_slow; 9671 const Register top = tmp; 9672 9673 // Check if obj is top of lock-stack. 9674 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 9675 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 9676 jcc(Assembler::notEqual, slow); 9677 9678 // Pop lock-stack. 9679 DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);) 9680 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 9681 9682 // Check if recursive. 9683 cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize)); 9684 jcc(Assembler::equal, unlocked); 9685 9686 // Not recursive. Check header for monitor (0b10). 9687 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 9688 testptr(reg_rax, markWord::monitor_value); 9689 jcc(Assembler::notZero, push_and_slow); 9690 9691 #ifdef ASSERT 9692 // Check header not unlocked (0b01). 9693 Label not_unlocked; 9694 testptr(reg_rax, markWord::unlocked_value); 9695 jcc(Assembler::zero, not_unlocked); 9696 stop("lightweight_unlock already unlocked"); 9697 bind(not_unlocked); 9698 #endif 9699 9700 // Try to unlock. Transition lock bits 0b00 => 0b01 9701 movptr(tmp, reg_rax); 9702 orptr(tmp, markWord::unlocked_value); 9703 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 9704 jcc(Assembler::equal, unlocked); 9705 9706 bind(push_and_slow); 9707 // Restore lock-stack and handle the unlock in runtime. 9708 #ifdef ASSERT 9709 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 9710 movptr(Address(thread, top), obj); 9711 #endif 9712 addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 9713 jmp(slow); 9714 9715 bind(unlocked); 9716 } 9717 9718 // Saves legacy GPRs state on stack. 9719 void MacroAssembler::save_legacy_gprs() { 9720 subq(rsp, 16 * wordSize); 9721 movq(Address(rsp, 15 * wordSize), rax); 9722 movq(Address(rsp, 14 * wordSize), rcx); 9723 movq(Address(rsp, 13 * wordSize), rdx); 9724 movq(Address(rsp, 12 * wordSize), rbx); 9725 movq(Address(rsp, 10 * wordSize), rbp); 9726 movq(Address(rsp, 9 * wordSize), rsi); 9727 movq(Address(rsp, 8 * wordSize), rdi); 9728 movq(Address(rsp, 7 * wordSize), r8); 9729 movq(Address(rsp, 6 * wordSize), r9); 9730 movq(Address(rsp, 5 * wordSize), r10); 9731 movq(Address(rsp, 4 * wordSize), r11); 9732 movq(Address(rsp, 3 * wordSize), r12); 9733 movq(Address(rsp, 2 * wordSize), r13); 9734 movq(Address(rsp, wordSize), r14); 9735 movq(Address(rsp, 0), r15); 9736 } 9737 9738 // Resotres back legacy GPRs state from stack. 9739 void MacroAssembler::restore_legacy_gprs() { 9740 movq(r15, Address(rsp, 0)); 9741 movq(r14, Address(rsp, wordSize)); 9742 movq(r13, Address(rsp, 2 * wordSize)); 9743 movq(r12, Address(rsp, 3 * wordSize)); 9744 movq(r11, Address(rsp, 4 * wordSize)); 9745 movq(r10, Address(rsp, 5 * wordSize)); 9746 movq(r9, Address(rsp, 6 * wordSize)); 9747 movq(r8, Address(rsp, 7 * wordSize)); 9748 movq(rdi, Address(rsp, 8 * wordSize)); 9749 movq(rsi, Address(rsp, 9 * wordSize)); 9750 movq(rbp, Address(rsp, 10 * wordSize)); 9751 movq(rbx, Address(rsp, 12 * wordSize)); 9752 movq(rdx, Address(rsp, 13 * wordSize)); 9753 movq(rcx, Address(rsp, 14 * wordSize)); 9754 movq(rax, Address(rsp, 15 * wordSize)); 9755 addq(rsp, 16 * wordSize); 9756 } 9757 9758 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) { 9759 if (VM_Version::supports_apx_f()) { 9760 esetzucc(comparison, dst); 9761 } else { 9762 setb(comparison, dst); 9763 movzbl(dst, dst); 9764 } 9765 }