1 /*
    2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
    3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
    4  *
    5  * This code is free software; you can redistribute it and/or modify it
    6  * under the terms of the GNU General Public License version 2 only, as
    7  * published by the Free Software Foundation.
    8  *
    9  * This code is distributed in the hope that it will be useful, but WITHOUT
   10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   12  * version 2 for more details (a copy is included in the LICENSE file that
   13  * accompanied this code).
   14  *
   15  * You should have received a copy of the GNU General Public License version
   16  * 2 along with this work; if not, write to the Free Software Foundation,
   17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
   18  *
   19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
   20  * or visit www.oracle.com if you need additional information or have any
   21  * questions.
   22  *
   23  */
   24 
   25 #include "asm/assembler.hpp"
   26 #include "asm/assembler.inline.hpp"
   27 #include "code/compiledIC.hpp"
   28 #include "compiler/compiler_globals.hpp"
   29 #include "compiler/disassembler.hpp"
   30 #include "crc32c.h"
   31 #include "gc/shared/barrierSet.hpp"
   32 #include "gc/shared/barrierSetAssembler.hpp"
   33 #include "gc/shared/collectedHeap.inline.hpp"
   34 #include "gc/shared/tlab_globals.hpp"
   35 #include "interpreter/bytecodeHistogram.hpp"
   36 #include "interpreter/interpreter.hpp"
   37 #include "interpreter/interpreterRuntime.hpp"
   38 #include "jvm.h"
   39 #include "memory/resourceArea.hpp"
   40 #include "memory/universe.hpp"
   41 #include "oops/accessDecorators.hpp"
   42 #include "oops/compressedKlass.inline.hpp"
   43 #include "oops/compressedOops.inline.hpp"
   44 #include "oops/klass.inline.hpp"
   45 #include "prims/methodHandles.hpp"
   46 #include "runtime/continuation.hpp"
   47 #include "runtime/interfaceSupport.inline.hpp"
   48 #include "runtime/javaThread.hpp"
   49 #include "runtime/jniHandles.hpp"
   50 #include "runtime/objectMonitor.hpp"
   51 #include "runtime/os.hpp"
   52 #include "runtime/safepoint.hpp"
   53 #include "runtime/safepointMechanism.hpp"
   54 #include "runtime/sharedRuntime.hpp"
   55 #include "runtime/stubRoutines.hpp"
   56 #include "utilities/checkedCast.hpp"
   57 #include "utilities/macros.hpp"
   58 
   59 #ifdef PRODUCT
   60 #define BLOCK_COMMENT(str) /* nothing */
   61 #define STOP(error) stop(error)
   62 #else
   63 #define BLOCK_COMMENT(str) block_comment(str)
   64 #define STOP(error) block_comment(error); stop(error)
   65 #endif
   66 
   67 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
   68 
   69 #ifdef ASSERT
   70 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
   71 #endif
   72 
   73 static const Assembler::Condition reverse[] = {
   74     Assembler::noOverflow     /* overflow      = 0x0 */ ,
   75     Assembler::overflow       /* noOverflow    = 0x1 */ ,
   76     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
   77     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
   78     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
   79     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
   80     Assembler::above          /* belowEqual    = 0x6 */ ,
   81     Assembler::belowEqual     /* above         = 0x7 */ ,
   82     Assembler::positive       /* negative      = 0x8 */ ,
   83     Assembler::negative       /* positive      = 0x9 */ ,
   84     Assembler::noParity       /* parity        = 0xa */ ,
   85     Assembler::parity         /* noParity      = 0xb */ ,
   86     Assembler::greaterEqual   /* less          = 0xc */ ,
   87     Assembler::less           /* greaterEqual  = 0xd */ ,
   88     Assembler::greater        /* lessEqual     = 0xe */ ,
   89     Assembler::lessEqual      /* greater       = 0xf, */
   90 
   91 };
   92 
   93 
   94 // Implementation of MacroAssembler
   95 
   96 // First all the versions that have distinct versions depending on 32/64 bit
   97 // Unless the difference is trivial (1 line or so).
   98 
   99 #ifndef _LP64
  100 
  101 // 32bit versions
  102 
  103 Address MacroAssembler::as_Address(AddressLiteral adr) {
  104   return Address(adr.target(), adr.rspec());
  105 }
  106 
  107 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) {
  108   assert(rscratch == noreg, "");
  109   return Address::make_array(adr);
  110 }
  111 
  112 void MacroAssembler::call_VM_leaf_base(address entry_point,
  113                                        int number_of_arguments) {
  114   call(RuntimeAddress(entry_point));
  115   increment(rsp, number_of_arguments * wordSize);
  116 }
  117 
  118 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
  119   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  120 }
  121 
  122 
  123 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
  124   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  125 }
  126 
  127 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  128   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  129 }
  130 
  131 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) {
  132   assert(rscratch == noreg, "redundant");
  133   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  134 }
  135 
  136 void MacroAssembler::extend_sign(Register hi, Register lo) {
  137   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  138   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  139     cdql();
  140   } else {
  141     movl(hi, lo);
  142     sarl(hi, 31);
  143   }
  144 }
  145 
  146 void MacroAssembler::jC2(Register tmp, Label& L) {
  147   // set parity bit if FPU flag C2 is set (via rax)
  148   save_rax(tmp);
  149   fwait(); fnstsw_ax();
  150   sahf();
  151   restore_rax(tmp);
  152   // branch
  153   jcc(Assembler::parity, L);
  154 }
  155 
  156 void MacroAssembler::jnC2(Register tmp, Label& L) {
  157   // set parity bit if FPU flag C2 is set (via rax)
  158   save_rax(tmp);
  159   fwait(); fnstsw_ax();
  160   sahf();
  161   restore_rax(tmp);
  162   // branch
  163   jcc(Assembler::noParity, L);
  164 }
  165 
  166 // 32bit can do a case table jump in one instruction but we no longer allow the base
  167 // to be installed in the Address class
  168 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) {
  169   assert(rscratch == noreg, "not needed");
  170   jmp(as_Address(entry, noreg));
  171 }
  172 
  173 // Note: y_lo will be destroyed
  174 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  175   // Long compare for Java (semantics as described in JVM spec.)
  176   Label high, low, done;
  177 
  178   cmpl(x_hi, y_hi);
  179   jcc(Assembler::less, low);
  180   jcc(Assembler::greater, high);
  181   // x_hi is the return register
  182   xorl(x_hi, x_hi);
  183   cmpl(x_lo, y_lo);
  184   jcc(Assembler::below, low);
  185   jcc(Assembler::equal, done);
  186 
  187   bind(high);
  188   xorl(x_hi, x_hi);
  189   increment(x_hi);
  190   jmp(done);
  191 
  192   bind(low);
  193   xorl(x_hi, x_hi);
  194   decrementl(x_hi);
  195 
  196   bind(done);
  197 }
  198 
  199 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  200   mov_literal32(dst, (int32_t)src.target(), src.rspec());
  201 }
  202 
  203 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) {
  204   assert(rscratch == noreg, "not needed");
  205 
  206   // leal(dst, as_Address(adr));
  207   // see note in movl as to why we must use a move
  208   mov_literal32(dst, (int32_t)adr.target(), adr.rspec());
  209 }
  210 
  211 void MacroAssembler::leave() {
  212   mov(rsp, rbp);
  213   pop(rbp);
  214 }
  215 
  216 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  217   // Multiplication of two Java long values stored on the stack
  218   // as illustrated below. Result is in rdx:rax.
  219   //
  220   // rsp ---> [  ??  ] \               \
  221   //            ....    | y_rsp_offset  |
  222   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  223   //          [ y_hi ]                  | (in bytes)
  224   //            ....                    |
  225   //          [ x_lo ]                 /
  226   //          [ x_hi ]
  227   //            ....
  228   //
  229   // Basic idea: lo(result) = lo(x_lo * y_lo)
  230   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  231   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  232   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  233   Label quick;
  234   // load x_hi, y_hi and check if quick
  235   // multiplication is possible
  236   movl(rbx, x_hi);
  237   movl(rcx, y_hi);
  238   movl(rax, rbx);
  239   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  240   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  241   // do full multiplication
  242   // 1st step
  243   mull(y_lo);                                    // x_hi * y_lo
  244   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  245   // 2nd step
  246   movl(rax, x_lo);
  247   mull(rcx);                                     // x_lo * y_hi
  248   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  249   // 3rd step
  250   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  251   movl(rax, x_lo);
  252   mull(y_lo);                                    // x_lo * y_lo
  253   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  254 }
  255 
  256 void MacroAssembler::lneg(Register hi, Register lo) {
  257   negl(lo);
  258   adcl(hi, 0);
  259   negl(hi);
  260 }
  261 
  262 void MacroAssembler::lshl(Register hi, Register lo) {
  263   // Java shift left long support (semantics as described in JVM spec., p.305)
  264   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  265   // shift value is in rcx !
  266   assert(hi != rcx, "must not use rcx");
  267   assert(lo != rcx, "must not use rcx");
  268   const Register s = rcx;                        // shift count
  269   const int      n = BitsPerWord;
  270   Label L;
  271   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  272   cmpl(s, n);                                    // if (s < n)
  273   jcc(Assembler::less, L);                       // else (s >= n)
  274   movl(hi, lo);                                  // x := x << n
  275   xorl(lo, lo);
  276   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  277   bind(L);                                       // s (mod n) < n
  278   shldl(hi, lo);                                 // x := x << s
  279   shll(lo);
  280 }
  281 
  282 
  283 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  284   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  285   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  286   assert(hi != rcx, "must not use rcx");
  287   assert(lo != rcx, "must not use rcx");
  288   const Register s = rcx;                        // shift count
  289   const int      n = BitsPerWord;
  290   Label L;
  291   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  292   cmpl(s, n);                                    // if (s < n)
  293   jcc(Assembler::less, L);                       // else (s >= n)
  294   movl(lo, hi);                                  // x := x >> n
  295   if (sign_extension) sarl(hi, 31);
  296   else                xorl(hi, hi);
  297   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  298   bind(L);                                       // s (mod n) < n
  299   shrdl(lo, hi);                                 // x := x >> s
  300   if (sign_extension) sarl(hi);
  301   else                shrl(hi);
  302 }
  303 
  304 void MacroAssembler::movoop(Register dst, jobject obj) {
  305   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  306 }
  307 
  308 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) {
  309   assert(rscratch == noreg, "redundant");
  310   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  311 }
  312 
  313 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  314   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  315 }
  316 
  317 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) {
  318   assert(rscratch == noreg, "redundant");
  319   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  320 }
  321 
  322 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  323   if (src.is_lval()) {
  324     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  325   } else {
  326     movl(dst, as_Address(src));
  327   }
  328 }
  329 
  330 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) {
  331   assert(rscratch == noreg, "redundant");
  332   movl(as_Address(dst, noreg), src);
  333 }
  334 
  335 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  336   movl(dst, as_Address(src, noreg));
  337 }
  338 
  339 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) {
  340   assert(rscratch == noreg, "redundant");
  341   movl(dst, src);
  342 }
  343 
  344 void MacroAssembler::pushoop(jobject obj, Register rscratch) {
  345   assert(rscratch == noreg, "redundant");
  346   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  347 }
  348 
  349 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) {
  350   assert(rscratch == noreg, "redundant");
  351   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
  352 }
  353 
  354 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) {
  355   assert(rscratch == noreg, "redundant");
  356   if (src.is_lval()) {
  357     push_literal32((int32_t)src.target(), src.rspec());
  358   } else {
  359     pushl(as_Address(src));
  360   }
  361 }
  362 
  363 static void pass_arg0(MacroAssembler* masm, Register arg) {
  364   masm->push(arg);
  365 }
  366 
  367 static void pass_arg1(MacroAssembler* masm, Register arg) {
  368   masm->push(arg);
  369 }
  370 
  371 static void pass_arg2(MacroAssembler* masm, Register arg) {
  372   masm->push(arg);
  373 }
  374 
  375 static void pass_arg3(MacroAssembler* masm, Register arg) {
  376   masm->push(arg);
  377 }
  378 
  379 #ifndef PRODUCT
  380 extern "C" void findpc(intptr_t x);
  381 #endif
  382 
  383 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  384   // In order to get locks to work, we need to fake a in_VM state
  385   JavaThread* thread = JavaThread::current();
  386   JavaThreadState saved_state = thread->thread_state();
  387   thread->set_thread_state(_thread_in_vm);
  388   if (ShowMessageBoxOnError) {
  389     JavaThread* thread = JavaThread::current();
  390     JavaThreadState saved_state = thread->thread_state();
  391     thread->set_thread_state(_thread_in_vm);
  392     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  393       ttyLocker ttyl;
  394       BytecodeCounter::print();
  395     }
  396     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  397     // This is the value of eip which points to where verify_oop will return.
  398     if (os::message_box(msg, "Execution stopped, print registers?")) {
  399       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
  400       BREAKPOINT;
  401     }
  402   }
  403   fatal("DEBUG MESSAGE: %s", msg);
  404 }
  405 
  406 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
  407   ttyLocker ttyl;
  408   DebuggingContext debugging{};
  409   tty->print_cr("eip = 0x%08x", eip);
  410 #ifndef PRODUCT
  411   if ((WizardMode || Verbose) && PrintMiscellaneous) {
  412     tty->cr();
  413     findpc(eip);
  414     tty->cr();
  415   }
  416 #endif
  417 #define PRINT_REG(rax) \
  418   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
  419   PRINT_REG(rax);
  420   PRINT_REG(rbx);
  421   PRINT_REG(rcx);
  422   PRINT_REG(rdx);
  423   PRINT_REG(rdi);
  424   PRINT_REG(rsi);
  425   PRINT_REG(rbp);
  426   PRINT_REG(rsp);
  427 #undef PRINT_REG
  428   // Print some words near top of staack.
  429   int* dump_sp = (int*) rsp;
  430   for (int col1 = 0; col1 < 8; col1++) {
  431     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  432     os::print_location(tty, *dump_sp++);
  433   }
  434   for (int row = 0; row < 16; row++) {
  435     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  436     for (int col = 0; col < 8; col++) {
  437       tty->print(" 0x%08x", *dump_sp++);
  438     }
  439     tty->cr();
  440   }
  441   // Print some instructions around pc:
  442   Disassembler::decode((address)eip-64, (address)eip);
  443   tty->print_cr("--------");
  444   Disassembler::decode((address)eip, (address)eip+32);
  445 }
  446 
  447 void MacroAssembler::stop(const char* msg) {
  448   // push address of message
  449   ExternalAddress message((address)msg);
  450   pushptr(message.addr(), noreg);
  451   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  452   pusha();                                            // push registers
  453   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  454   hlt();
  455 }
  456 
  457 void MacroAssembler::warn(const char* msg) {
  458   push_CPU_state();
  459 
  460   // push address of message
  461   ExternalAddress message((address)msg);
  462   pushptr(message.addr(), noreg);
  463 
  464   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  465   addl(rsp, wordSize);       // discard argument
  466   pop_CPU_state();
  467 }
  468 
  469 void MacroAssembler::print_state() {
  470   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  471   pusha();                                            // push registers
  472 
  473   push_CPU_state();
  474   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
  475   pop_CPU_state();
  476 
  477   popa();
  478   addl(rsp, wordSize);
  479 }
  480 
  481 #else // _LP64
  482 
  483 // 64 bit versions
  484 
  485 Address MacroAssembler::as_Address(AddressLiteral adr) {
  486   // amd64 always does this as a pc-rel
  487   // we can be absolute or disp based on the instruction type
  488   // jmp/call are displacements others are absolute
  489   assert(!adr.is_lval(), "must be rval");
  490   assert(reachable(adr), "must be");
  491   return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc());
  492 
  493 }
  494 
  495 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) {
  496   AddressLiteral base = adr.base();
  497   lea(rscratch, base);
  498   Address index = adr.index();
  499   assert(index._disp == 0, "must not have disp"); // maybe it can?
  500   Address array(rscratch, index._index, index._scale, index._disp);
  501   return array;
  502 }
  503 
  504 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  505   Label L, E;
  506 
  507 #ifdef _WIN64
  508   // Windows always allocates space for it's register args
  509   assert(num_args <= 4, "only register arguments supported");
  510   subq(rsp,  frame::arg_reg_save_area_bytes);
  511 #endif
  512 
  513   // Align stack if necessary
  514   testl(rsp, 15);
  515   jcc(Assembler::zero, L);
  516 
  517   subq(rsp, 8);
  518   call(RuntimeAddress(entry_point));
  519   addq(rsp, 8);
  520   jmp(E);
  521 
  522   bind(L);
  523   call(RuntimeAddress(entry_point));
  524 
  525   bind(E);
  526 
  527 #ifdef _WIN64
  528   // restore stack pointer
  529   addq(rsp, frame::arg_reg_save_area_bytes);
  530 #endif
  531 }
  532 
  533 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) {
  534   assert(!src2.is_lval(), "should use cmpptr");
  535   assert(rscratch != noreg || always_reachable(src2), "missing");
  536 
  537   if (reachable(src2)) {
  538     cmpq(src1, as_Address(src2));
  539   } else {
  540     lea(rscratch, src2);
  541     Assembler::cmpq(src1, Address(rscratch, 0));
  542   }
  543 }
  544 
  545 int MacroAssembler::corrected_idivq(Register reg) {
  546   // Full implementation of Java ldiv and lrem; checks for special
  547   // case as described in JVM spec., p.243 & p.271.  The function
  548   // returns the (pc) offset of the idivl instruction - may be needed
  549   // for implicit exceptions.
  550   //
  551   //         normal case                           special case
  552   //
  553   // input : rax: dividend                         min_long
  554   //         reg: divisor   (may not be eax/edx)   -1
  555   //
  556   // output: rax: quotient  (= rax idiv reg)       min_long
  557   //         rdx: remainder (= rax irem reg)       0
  558   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  559   static const int64_t min_long = 0x8000000000000000;
  560   Label normal_case, special_case;
  561 
  562   // check for special case
  563   cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/);
  564   jcc(Assembler::notEqual, normal_case);
  565   xorl(rdx, rdx); // prepare rdx for possible special case (where
  566                   // remainder = 0)
  567   cmpq(reg, -1);
  568   jcc(Assembler::equal, special_case);
  569 
  570   // handle normal case
  571   bind(normal_case);
  572   cdqq();
  573   int idivq_offset = offset();
  574   idivq(reg);
  575 
  576   // normal and special case exit
  577   bind(special_case);
  578 
  579   return idivq_offset;
  580 }
  581 
  582 void MacroAssembler::decrementq(Register reg, int value) {
  583   if (value == min_jint) { subq(reg, value); return; }
  584   if (value <  0) { incrementq(reg, -value); return; }
  585   if (value == 0) {                        ; return; }
  586   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  587   /* else */      { subq(reg, value)       ; return; }
  588 }
  589 
  590 void MacroAssembler::decrementq(Address dst, int value) {
  591   if (value == min_jint) { subq(dst, value); return; }
  592   if (value <  0) { incrementq(dst, -value); return; }
  593   if (value == 0) {                        ; return; }
  594   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  595   /* else */      { subq(dst, value)       ; return; }
  596 }
  597 
  598 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) {
  599   assert(rscratch != noreg || always_reachable(dst), "missing");
  600 
  601   if (reachable(dst)) {
  602     incrementq(as_Address(dst));
  603   } else {
  604     lea(rscratch, dst);
  605     incrementq(Address(rscratch, 0));
  606   }
  607 }
  608 
  609 void MacroAssembler::incrementq(Register reg, int value) {
  610   if (value == min_jint) { addq(reg, value); return; }
  611   if (value <  0) { decrementq(reg, -value); return; }
  612   if (value == 0) {                        ; return; }
  613   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  614   /* else */      { addq(reg, value)       ; return; }
  615 }
  616 
  617 void MacroAssembler::incrementq(Address dst, int value) {
  618   if (value == min_jint) { addq(dst, value); return; }
  619   if (value <  0) { decrementq(dst, -value); return; }
  620   if (value == 0) {                        ; return; }
  621   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  622   /* else */      { addq(dst, value)       ; return; }
  623 }
  624 
  625 // 32bit can do a case table jump in one instruction but we no longer allow the base
  626 // to be installed in the Address class
  627 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) {
  628   lea(rscratch, entry.base());
  629   Address dispatch = entry.index();
  630   assert(dispatch._base == noreg, "must be");
  631   dispatch._base = rscratch;
  632   jmp(dispatch);
  633 }
  634 
  635 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  636   ShouldNotReachHere(); // 64bit doesn't use two regs
  637   cmpq(x_lo, y_lo);
  638 }
  639 
  640 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  641   mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  642 }
  643 
  644 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) {
  645   lea(rscratch, adr);
  646   movptr(dst, rscratch);
  647 }
  648 
  649 void MacroAssembler::leave() {
  650   // %%% is this really better? Why not on 32bit too?
  651   emit_int8((unsigned char)0xC9); // LEAVE
  652 }
  653 
  654 void MacroAssembler::lneg(Register hi, Register lo) {
  655   ShouldNotReachHere(); // 64bit doesn't use two regs
  656   negq(lo);
  657 }
  658 
  659 void MacroAssembler::movoop(Register dst, jobject obj) {
  660   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  661 }
  662 
  663 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) {
  664   mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  665   movq(dst, rscratch);
  666 }
  667 
  668 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  669   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  670 }
  671 
  672 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) {
  673   mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  674   movq(dst, rscratch);
  675 }
  676 
  677 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  678   if (src.is_lval()) {
  679     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  680   } else {
  681     if (reachable(src)) {
  682       movq(dst, as_Address(src));
  683     } else {
  684       lea(dst, src);
  685       movq(dst, Address(dst, 0));
  686     }
  687   }
  688 }
  689 
  690 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) {
  691   movq(as_Address(dst, rscratch), src);
  692 }
  693 
  694 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  695   movq(dst, as_Address(src, dst /*rscratch*/));
  696 }
  697 
  698 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  699 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) {
  700   if (is_simm32(src)) {
  701     movptr(dst, checked_cast<int32_t>(src));
  702   } else {
  703     mov64(rscratch, src);
  704     movq(dst, rscratch);
  705   }
  706 }
  707 
  708 void MacroAssembler::pushoop(jobject obj, Register rscratch) {
  709   movoop(rscratch, obj);
  710   push(rscratch);
  711 }
  712 
  713 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) {
  714   mov_metadata(rscratch, obj);
  715   push(rscratch);
  716 }
  717 
  718 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) {
  719   lea(rscratch, src);
  720   if (src.is_lval()) {
  721     push(rscratch);
  722   } else {
  723     pushq(Address(rscratch, 0));
  724   }
  725 }
  726 
  727 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
  728   reset_last_Java_frame(r15_thread, clear_fp);
  729 }
  730 
  731 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  732                                          Register last_java_fp,
  733                                          address  last_java_pc,
  734                                          Register rscratch) {
  735   set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, last_java_pc, rscratch);
  736 }
  737 
  738 static void pass_arg0(MacroAssembler* masm, Register arg) {
  739   if (c_rarg0 != arg ) {
  740     masm->mov(c_rarg0, arg);
  741   }
  742 }
  743 
  744 static void pass_arg1(MacroAssembler* masm, Register arg) {
  745   if (c_rarg1 != arg ) {
  746     masm->mov(c_rarg1, arg);
  747   }
  748 }
  749 
  750 static void pass_arg2(MacroAssembler* masm, Register arg) {
  751   if (c_rarg2 != arg ) {
  752     masm->mov(c_rarg2, arg);
  753   }
  754 }
  755 
  756 static void pass_arg3(MacroAssembler* masm, Register arg) {
  757   if (c_rarg3 != arg ) {
  758     masm->mov(c_rarg3, arg);
  759   }
  760 }
  761 
  762 void MacroAssembler::stop(const char* msg) {
  763   if (ShowMessageBoxOnError) {
  764     address rip = pc();
  765     pusha(); // get regs on stack
  766     lea(c_rarg1, InternalAddress(rip));
  767     movq(c_rarg2, rsp); // pass pointer to regs array
  768   }
  769   lea(c_rarg0, ExternalAddress((address) msg));
  770   andq(rsp, -16); // align stack as required by ABI
  771   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  772   hlt();
  773 }
  774 
  775 void MacroAssembler::warn(const char* msg) {
  776   push(rbp);
  777   movq(rbp, rsp);
  778   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  779   push_CPU_state();   // keeps alignment at 16 bytes
  780 
  781 #ifdef _WIN64
  782   // Windows always allocates space for its register args
  783   subq(rsp,  frame::arg_reg_save_area_bytes);
  784 #endif
  785   lea(c_rarg0, ExternalAddress((address) msg));
  786   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  787 
  788 #ifdef _WIN64
  789   // restore stack pointer
  790   addq(rsp, frame::arg_reg_save_area_bytes);
  791 #endif
  792   pop_CPU_state();
  793   mov(rsp, rbp);
  794   pop(rbp);
  795 }
  796 
  797 void MacroAssembler::print_state() {
  798   address rip = pc();
  799   pusha();            // get regs on stack
  800   push(rbp);
  801   movq(rbp, rsp);
  802   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  803   push_CPU_state();   // keeps alignment at 16 bytes
  804 
  805   lea(c_rarg0, InternalAddress(rip));
  806   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
  807   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
  808 
  809   pop_CPU_state();
  810   mov(rsp, rbp);
  811   pop(rbp);
  812   popa();
  813 }
  814 
  815 #ifndef PRODUCT
  816 extern "C" void findpc(intptr_t x);
  817 #endif
  818 
  819 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  820   // In order to get locks to work, we need to fake a in_VM state
  821   if (ShowMessageBoxOnError) {
  822     JavaThread* thread = JavaThread::current();
  823     JavaThreadState saved_state = thread->thread_state();
  824     thread->set_thread_state(_thread_in_vm);
  825 #ifndef PRODUCT
  826     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  827       ttyLocker ttyl;
  828       BytecodeCounter::print();
  829     }
  830 #endif
  831     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  832     // XXX correct this offset for amd64
  833     // This is the value of eip which points to where verify_oop will return.
  834     if (os::message_box(msg, "Execution stopped, print registers?")) {
  835       print_state64(pc, regs);
  836       BREAKPOINT;
  837     }
  838   }
  839   fatal("DEBUG MESSAGE: %s", msg);
  840 }
  841 
  842 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
  843   ttyLocker ttyl;
  844   DebuggingContext debugging{};
  845   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
  846 #ifndef PRODUCT
  847   tty->cr();
  848   findpc(pc);
  849   tty->cr();
  850 #endif
  851 #define PRINT_REG(rax, value) \
  852   { tty->print("%s = ", #rax); os::print_location(tty, value); }
  853   PRINT_REG(rax, regs[15]);
  854   PRINT_REG(rbx, regs[12]);
  855   PRINT_REG(rcx, regs[14]);
  856   PRINT_REG(rdx, regs[13]);
  857   PRINT_REG(rdi, regs[8]);
  858   PRINT_REG(rsi, regs[9]);
  859   PRINT_REG(rbp, regs[10]);
  860   // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp
  861   PRINT_REG(rsp, (intptr_t)(&regs[16]));
  862   PRINT_REG(r8 , regs[7]);
  863   PRINT_REG(r9 , regs[6]);
  864   PRINT_REG(r10, regs[5]);
  865   PRINT_REG(r11, regs[4]);
  866   PRINT_REG(r12, regs[3]);
  867   PRINT_REG(r13, regs[2]);
  868   PRINT_REG(r14, regs[1]);
  869   PRINT_REG(r15, regs[0]);
  870 #undef PRINT_REG
  871   // Print some words near the top of the stack.
  872   int64_t* rsp = &regs[16];
  873   int64_t* dump_sp = rsp;
  874   for (int col1 = 0; col1 < 8; col1++) {
  875     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  876     os::print_location(tty, *dump_sp++);
  877   }
  878   for (int row = 0; row < 25; row++) {
  879     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  880     for (int col = 0; col < 4; col++) {
  881       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
  882     }
  883     tty->cr();
  884   }
  885   // Print some instructions around pc:
  886   Disassembler::decode((address)pc-64, (address)pc);
  887   tty->print_cr("--------");
  888   Disassembler::decode((address)pc, (address)pc+32);
  889 }
  890 
  891 // The java_calling_convention describes stack locations as ideal slots on
  892 // a frame with no abi restrictions. Since we must observe abi restrictions
  893 // (like the placement of the register window) the slots must be biased by
  894 // the following value.
  895 static int reg2offset_in(VMReg r) {
  896   // Account for saved rbp and return address
  897   // This should really be in_preserve_stack_slots
  898   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
  899 }
  900 
  901 static int reg2offset_out(VMReg r) {
  902   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
  903 }
  904 
  905 // A long move
  906 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  907 
  908   // The calling conventions assures us that each VMregpair is either
  909   // all really one physical register or adjacent stack slots.
  910 
  911   if (src.is_single_phys_reg() ) {
  912     if (dst.is_single_phys_reg()) {
  913       if (dst.first() != src.first()) {
  914         mov(dst.first()->as_Register(), src.first()->as_Register());
  915       }
  916     } else {
  917       assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)",
  918              src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name());
  919       movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register());
  920     }
  921   } else if (dst.is_single_phys_reg()) {
  922     assert(src.is_single_reg(),  "not a stack pair");
  923     movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  924   } else {
  925     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  926     movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  927     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  928   }
  929 }
  930 
  931 // A double move
  932 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  933 
  934   // The calling conventions assures us that each VMregpair is either
  935   // all really one physical register or adjacent stack slots.
  936 
  937   if (src.is_single_phys_reg() ) {
  938     if (dst.is_single_phys_reg()) {
  939       // In theory these overlap but the ordering is such that this is likely a nop
  940       if ( src.first() != dst.first()) {
  941         movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
  942       }
  943     } else {
  944       assert(dst.is_single_reg(), "not a stack pair");
  945       movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister());
  946     }
  947   } else if (dst.is_single_phys_reg()) {
  948     assert(src.is_single_reg(),  "not a stack pair");
  949     movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  950   } else {
  951     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  952     movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  953     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  954   }
  955 }
  956 
  957 
  958 // A float arg may have to do float reg int reg conversion
  959 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  960   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  961 
  962   // The calling conventions assures us that each VMregpair is either
  963   // all really one physical register or adjacent stack slots.
  964 
  965   if (src.first()->is_stack()) {
  966     if (dst.first()->is_stack()) {
  967       movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  968       movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  969     } else {
  970       // stack to reg
  971       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  972       movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  973     }
  974   } else if (dst.first()->is_stack()) {
  975     // reg to stack
  976     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  977     movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister());
  978   } else {
  979     // reg to reg
  980     // In theory these overlap but the ordering is such that this is likely a nop
  981     if ( src.first() != dst.first()) {
  982       movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
  983     }
  984   }
  985 }
  986 
  987 // On 64 bit we will store integer like items to the stack as
  988 // 64 bits items (x86_32/64 abi) even though java would only store
  989 // 32bits for a parameter. On 32bit it will simply be 32 bits
  990 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  991 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  992   if (src.first()->is_stack()) {
  993     if (dst.first()->is_stack()) {
  994       // stack to stack
  995       movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  996       movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  997     } else {
  998       // stack to reg
  999       movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
 1000     }
 1001   } else if (dst.first()->is_stack()) {
 1002     // reg to stack
 1003     // Do we really have to sign extend???
 1004     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
 1005     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register());
 1006   } else {
 1007     // Do we really have to sign extend???
 1008     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
 1009     if (dst.first() != src.first()) {
 1010       movq(dst.first()->as_Register(), src.first()->as_Register());
 1011     }
 1012   }
 1013 }
 1014 
 1015 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) {
 1016   if (src.first()->is_stack()) {
 1017     if (dst.first()->is_stack()) {
 1018       // stack to stack
 1019       movq(rax, Address(rbp, reg2offset_in(src.first())));
 1020       movq(Address(rsp, reg2offset_out(dst.first())), rax);
 1021     } else {
 1022       // stack to reg
 1023       movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
 1024     }
 1025   } else if (dst.first()->is_stack()) {
 1026     // reg to stack
 1027     movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 1028   } else {
 1029     if (dst.first() != src.first()) {
 1030       movq(dst.first()->as_Register(), src.first()->as_Register());
 1031     }
 1032   }
 1033 }
 1034 
 1035 // An oop arg. Must pass a handle not the oop itself
 1036 void MacroAssembler::object_move(OopMap* map,
 1037                         int oop_handle_offset,
 1038                         int framesize_in_slots,
 1039                         VMRegPair src,
 1040                         VMRegPair dst,
 1041                         bool is_receiver,
 1042                         int* receiver_offset) {
 1043 
 1044   // must pass a handle. First figure out the location we use as a handle
 1045 
 1046   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
 1047 
 1048   // See if oop is null if it is we need no handle
 1049 
 1050   if (src.first()->is_stack()) {
 1051 
 1052     // Oop is already on the stack as an argument
 1053     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 1054     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
 1055     if (is_receiver) {
 1056       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
 1057     }
 1058 
 1059     cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD);
 1060     lea(rHandle, Address(rbp, reg2offset_in(src.first())));
 1061     // conditionally move a null
 1062     cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
 1063   } else {
 1064 
 1065     // Oop is in a register we must store it to the space we reserve
 1066     // on the stack for oop_handles and pass a handle if oop is non-null
 1067 
 1068     const Register rOop = src.first()->as_Register();
 1069     int oop_slot;
 1070     if (rOop == j_rarg0)
 1071       oop_slot = 0;
 1072     else if (rOop == j_rarg1)
 1073       oop_slot = 1;
 1074     else if (rOop == j_rarg2)
 1075       oop_slot = 2;
 1076     else if (rOop == j_rarg3)
 1077       oop_slot = 3;
 1078     else if (rOop == j_rarg4)
 1079       oop_slot = 4;
 1080     else {
 1081       assert(rOop == j_rarg5, "wrong register");
 1082       oop_slot = 5;
 1083     }
 1084 
 1085     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
 1086     int offset = oop_slot*VMRegImpl::stack_slot_size;
 1087 
 1088     map->set_oop(VMRegImpl::stack2reg(oop_slot));
 1089     // Store oop in handle area, may be null
 1090     movptr(Address(rsp, offset), rOop);
 1091     if (is_receiver) {
 1092       *receiver_offset = offset;
 1093     }
 1094 
 1095     cmpptr(rOop, NULL_WORD);
 1096     lea(rHandle, Address(rsp, offset));
 1097     // conditionally move a null from the handle area where it was just stored
 1098     cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
 1099   }
 1100 
 1101   // If arg is on the stack then place it otherwise it is already in correct reg.
 1102   if (dst.first()->is_stack()) {
 1103     movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
 1104   }
 1105 }
 1106 
 1107 #endif // _LP64
 1108 
 1109 // Now versions that are common to 32/64 bit
 1110 
 1111 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 1112   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 1113 }
 1114 
 1115 void MacroAssembler::addptr(Register dst, Register src) {
 1116   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 1117 }
 1118 
 1119 void MacroAssembler::addptr(Address dst, Register src) {
 1120   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 1121 }
 1122 
 1123 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1124   assert(rscratch != noreg || always_reachable(src), "missing");
 1125 
 1126   if (reachable(src)) {
 1127     Assembler::addsd(dst, as_Address(src));
 1128   } else {
 1129     lea(rscratch, src);
 1130     Assembler::addsd(dst, Address(rscratch, 0));
 1131   }
 1132 }
 1133 
 1134 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1135   assert(rscratch != noreg || always_reachable(src), "missing");
 1136 
 1137   if (reachable(src)) {
 1138     addss(dst, as_Address(src));
 1139   } else {
 1140     lea(rscratch, src);
 1141     addss(dst, Address(rscratch, 0));
 1142   }
 1143 }
 1144 
 1145 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1146   assert(rscratch != noreg || always_reachable(src), "missing");
 1147 
 1148   if (reachable(src)) {
 1149     Assembler::addpd(dst, as_Address(src));
 1150   } else {
 1151     lea(rscratch, src);
 1152     Assembler::addpd(dst, Address(rscratch, 0));
 1153   }
 1154 }
 1155 
 1156 // See 8273459.  Function for ensuring 64-byte alignment, intended for stubs only.
 1157 // Stub code is generated once and never copied.
 1158 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes.
 1159 void MacroAssembler::align64() {
 1160   align(64, (uint)(uintptr_t)pc());
 1161 }
 1162 
 1163 void MacroAssembler::align32() {
 1164   align(32, (uint)(uintptr_t)pc());
 1165 }
 1166 
 1167 void MacroAssembler::align(uint modulus) {
 1168   // 8273459: Ensure alignment is possible with current segment alignment
 1169   assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment");
 1170   align(modulus, offset());
 1171 }
 1172 
 1173 void MacroAssembler::align(uint modulus, uint target) {
 1174   if (target % modulus != 0) {
 1175     nop(modulus - (target % modulus));
 1176   }
 1177 }
 1178 
 1179 void MacroAssembler::push_f(XMMRegister r) {
 1180   subptr(rsp, wordSize);
 1181   movflt(Address(rsp, 0), r);
 1182 }
 1183 
 1184 void MacroAssembler::pop_f(XMMRegister r) {
 1185   movflt(r, Address(rsp, 0));
 1186   addptr(rsp, wordSize);
 1187 }
 1188 
 1189 void MacroAssembler::push_d(XMMRegister r) {
 1190   subptr(rsp, 2 * wordSize);
 1191   movdbl(Address(rsp, 0), r);
 1192 }
 1193 
 1194 void MacroAssembler::pop_d(XMMRegister r) {
 1195   movdbl(r, Address(rsp, 0));
 1196   addptr(rsp, 2 * Interpreter::stackElementSize);
 1197 }
 1198 
 1199 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1200   // Used in sign-masking with aligned address.
 1201   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 1202   assert(rscratch != noreg || always_reachable(src), "missing");
 1203 
 1204   if (UseAVX > 2 &&
 1205       (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
 1206       (dst->encoding() >= 16)) {
 1207     vpand(dst, dst, src, AVX_512bit, rscratch);
 1208   } else if (reachable(src)) {
 1209     Assembler::andpd(dst, as_Address(src));
 1210   } else {
 1211     lea(rscratch, src);
 1212     Assembler::andpd(dst, Address(rscratch, 0));
 1213   }
 1214 }
 1215 
 1216 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1217   // Used in sign-masking with aligned address.
 1218   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 1219   assert(rscratch != noreg || always_reachable(src), "missing");
 1220 
 1221   if (reachable(src)) {
 1222     Assembler::andps(dst, as_Address(src));
 1223   } else {
 1224     lea(rscratch, src);
 1225     Assembler::andps(dst, Address(rscratch, 0));
 1226   }
 1227 }
 1228 
 1229 void MacroAssembler::andptr(Register dst, int32_t imm32) {
 1230   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
 1231 }
 1232 
 1233 #ifdef _LP64
 1234 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) {
 1235   assert(rscratch != noreg || always_reachable(src), "missing");
 1236 
 1237   if (reachable(src)) {
 1238     andq(dst, as_Address(src));
 1239   } else {
 1240     lea(rscratch, src);
 1241     andq(dst, Address(rscratch, 0));
 1242   }
 1243 }
 1244 #endif
 1245 
 1246 void MacroAssembler::atomic_incl(Address counter_addr) {
 1247   lock();
 1248   incrementl(counter_addr);
 1249 }
 1250 
 1251 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) {
 1252   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1253 
 1254   if (reachable(counter_addr)) {
 1255     atomic_incl(as_Address(counter_addr));
 1256   } else {
 1257     lea(rscratch, counter_addr);
 1258     atomic_incl(Address(rscratch, 0));
 1259   }
 1260 }
 1261 
 1262 #ifdef _LP64
 1263 void MacroAssembler::atomic_incq(Address counter_addr) {
 1264   lock();
 1265   incrementq(counter_addr);
 1266 }
 1267 
 1268 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) {
 1269   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1270 
 1271   if (reachable(counter_addr)) {
 1272     atomic_incq(as_Address(counter_addr));
 1273   } else {
 1274     lea(rscratch, counter_addr);
 1275     atomic_incq(Address(rscratch, 0));
 1276   }
 1277 }
 1278 #endif
 1279 
 1280 // Writes to stack successive pages until offset reached to check for
 1281 // stack overflow + shadow pages.  This clobbers tmp.
 1282 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
 1283   movptr(tmp, rsp);
 1284   // Bang stack for total size given plus shadow page size.
 1285   // Bang one page at a time because large size can bang beyond yellow and
 1286   // red zones.
 1287   Label loop;
 1288   bind(loop);
 1289   movl(Address(tmp, (-(int)os::vm_page_size())), size );
 1290   subptr(tmp, (int)os::vm_page_size());
 1291   subl(size, (int)os::vm_page_size());
 1292   jcc(Assembler::greater, loop);
 1293 
 1294   // Bang down shadow pages too.
 1295   // At this point, (tmp-0) is the last address touched, so don't
 1296   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
 1297   // was post-decremented.)  Skip this address by starting at i=1, and
 1298   // touch a few more pages below.  N.B.  It is important to touch all
 1299   // the way down including all pages in the shadow zone.
 1300   for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) {
 1301     // this could be any sized move but this is can be a debugging crumb
 1302     // so the bigger the better.
 1303     movptr(Address(tmp, (-i*(int)os::vm_page_size())), size );
 1304   }
 1305 }
 1306 
 1307 void MacroAssembler::reserved_stack_check() {
 1308   // testing if reserved zone needs to be enabled
 1309   Label no_reserved_zone_enabling;
 1310   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 1311   NOT_LP64(get_thread(rsi);)
 1312 
 1313   cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
 1314   jcc(Assembler::below, no_reserved_zone_enabling);
 1315 
 1316   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
 1317   jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry()));
 1318   should_not_reach_here();
 1319 
 1320   bind(no_reserved_zone_enabling);
 1321 }
 1322 
 1323 void MacroAssembler::c2bool(Register x) {
 1324   // implements x == 0 ? 0 : 1
 1325   // note: must only look at least-significant byte of x
 1326   //       since C-style booleans are stored in one byte
 1327   //       only! (was bug)
 1328   andl(x, 0xFF);
 1329   setb(Assembler::notZero, x);
 1330 }
 1331 
 1332 // Wouldn't need if AddressLiteral version had new name
 1333 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
 1334   Assembler::call(L, rtype);
 1335 }
 1336 
 1337 void MacroAssembler::call(Register entry) {
 1338   Assembler::call(entry);
 1339 }
 1340 
 1341 void MacroAssembler::call(AddressLiteral entry, Register rscratch) {
 1342   assert(rscratch != noreg || always_reachable(entry), "missing");
 1343 
 1344   if (reachable(entry)) {
 1345     Assembler::call_literal(entry.target(), entry.rspec());
 1346   } else {
 1347     lea(rscratch, entry);
 1348     Assembler::call(rscratch);
 1349   }
 1350 }
 1351 
 1352 void MacroAssembler::ic_call(address entry, jint method_index) {
 1353   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
 1354 #ifdef _LP64
 1355   // Needs full 64-bit immediate for later patching.
 1356   mov64(rax, (int64_t)Universe::non_oop_word());
 1357 #else
 1358   movptr(rax, (intptr_t)Universe::non_oop_word());
 1359 #endif
 1360   call(AddressLiteral(entry, rh));
 1361 }
 1362 
 1363 int MacroAssembler::ic_check_size() {
 1364   return
 1365       LP64_ONLY(UseCompactObjectHeaders ? 17 : 14) NOT_LP64(12);
 1366 }
 1367 
 1368 int MacroAssembler::ic_check(int end_alignment) {
 1369   Register receiver = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
 1370   Register data = rax;
 1371   Register temp = LP64_ONLY(rscratch1) NOT_LP64(rbx);
 1372 
 1373   // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed
 1374   // before the inline cache check, so we don't have to execute any nop instructions when dispatching
 1375   // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align
 1376   // before the inline cache check here, and not after
 1377   align(end_alignment, offset() + ic_check_size());
 1378 
 1379   int uep_offset = offset();
 1380 
 1381 #ifdef _LP64
 1382   if (UseCompactObjectHeaders) {
 1383     load_narrow_klass_compact(temp, receiver);
 1384     cmpl(temp, Address(data, CompiledICData::speculated_klass_offset()));
 1385   } else
 1386 #endif
 1387   if (UseCompressedClassPointers) {
 1388     movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 1389     cmpl(temp, Address(data, CompiledICData::speculated_klass_offset()));
 1390   } else {
 1391     movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 1392     cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset()));
 1393   }
 1394 
 1395   // if inline cache check fails, then jump to runtime routine
 1396   jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 1397   assert((offset() % end_alignment) == 0, "Misaligned verified entry point (%d, %d, %d)", uep_offset, offset(), end_alignment);
 1398 
 1399   return uep_offset;
 1400 }
 1401 
 1402 void MacroAssembler::emit_static_call_stub() {
 1403   // Static stub relocation also tags the Method* in the code-stream.
 1404   mov_metadata(rbx, (Metadata*) nullptr);  // Method is zapped till fixup time.
 1405   // This is recognized as unresolved by relocs/nativeinst/ic code.
 1406   jump(RuntimeAddress(pc()));
 1407 }
 1408 
 1409 // Implementation of call_VM versions
 1410 
 1411 void MacroAssembler::call_VM(Register oop_result,
 1412                              address entry_point,
 1413                              bool check_exceptions) {
 1414   Label C, E;
 1415   call(C, relocInfo::none);
 1416   jmp(E);
 1417 
 1418   bind(C);
 1419   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
 1420   ret(0);
 1421 
 1422   bind(E);
 1423 }
 1424 
 1425 void MacroAssembler::call_VM(Register oop_result,
 1426                              address entry_point,
 1427                              Register arg_1,
 1428                              bool check_exceptions) {
 1429   Label C, E;
 1430   call(C, relocInfo::none);
 1431   jmp(E);
 1432 
 1433   bind(C);
 1434   pass_arg1(this, arg_1);
 1435   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
 1436   ret(0);
 1437 
 1438   bind(E);
 1439 }
 1440 
 1441 void MacroAssembler::call_VM(Register oop_result,
 1442                              address entry_point,
 1443                              Register arg_1,
 1444                              Register arg_2,
 1445                              bool check_exceptions) {
 1446   Label C, E;
 1447   call(C, relocInfo::none);
 1448   jmp(E);
 1449 
 1450   bind(C);
 1451 
 1452   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1453 
 1454   pass_arg2(this, arg_2);
 1455   pass_arg1(this, arg_1);
 1456   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
 1457   ret(0);
 1458 
 1459   bind(E);
 1460 }
 1461 
 1462 void MacroAssembler::call_VM(Register oop_result,
 1463                              address entry_point,
 1464                              Register arg_1,
 1465                              Register arg_2,
 1466                              Register arg_3,
 1467                              bool check_exceptions) {
 1468   Label C, E;
 1469   call(C, relocInfo::none);
 1470   jmp(E);
 1471 
 1472   bind(C);
 1473 
 1474   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1475   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1476   pass_arg3(this, arg_3);
 1477   pass_arg2(this, arg_2);
 1478   pass_arg1(this, arg_1);
 1479   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
 1480   ret(0);
 1481 
 1482   bind(E);
 1483 }
 1484 
 1485 void MacroAssembler::call_VM(Register oop_result,
 1486                              Register last_java_sp,
 1487                              address entry_point,
 1488                              int number_of_arguments,
 1489                              bool check_exceptions) {
 1490   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
 1491   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 1492 }
 1493 
 1494 void MacroAssembler::call_VM(Register oop_result,
 1495                              Register last_java_sp,
 1496                              address entry_point,
 1497                              Register arg_1,
 1498                              bool check_exceptions) {
 1499   pass_arg1(this, arg_1);
 1500   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 1501 }
 1502 
 1503 void MacroAssembler::call_VM(Register oop_result,
 1504                              Register last_java_sp,
 1505                              address entry_point,
 1506                              Register arg_1,
 1507                              Register arg_2,
 1508                              bool check_exceptions) {
 1509 
 1510   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1511   pass_arg2(this, arg_2);
 1512   pass_arg1(this, arg_1);
 1513   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 1514 }
 1515 
 1516 void MacroAssembler::call_VM(Register oop_result,
 1517                              Register last_java_sp,
 1518                              address entry_point,
 1519                              Register arg_1,
 1520                              Register arg_2,
 1521                              Register arg_3,
 1522                              bool check_exceptions) {
 1523   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1524   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1525   pass_arg3(this, arg_3);
 1526   pass_arg2(this, arg_2);
 1527   pass_arg1(this, arg_1);
 1528   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 1529 }
 1530 
 1531 void MacroAssembler::super_call_VM(Register oop_result,
 1532                                    Register last_java_sp,
 1533                                    address entry_point,
 1534                                    int number_of_arguments,
 1535                                    bool check_exceptions) {
 1536   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
 1537   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 1538 }
 1539 
 1540 void MacroAssembler::super_call_VM(Register oop_result,
 1541                                    Register last_java_sp,
 1542                                    address entry_point,
 1543                                    Register arg_1,
 1544                                    bool check_exceptions) {
 1545   pass_arg1(this, arg_1);
 1546   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 1547 }
 1548 
 1549 void MacroAssembler::super_call_VM(Register oop_result,
 1550                                    Register last_java_sp,
 1551                                    address entry_point,
 1552                                    Register arg_1,
 1553                                    Register arg_2,
 1554                                    bool check_exceptions) {
 1555 
 1556   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1557   pass_arg2(this, arg_2);
 1558   pass_arg1(this, arg_1);
 1559   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 1560 }
 1561 
 1562 void MacroAssembler::super_call_VM(Register oop_result,
 1563                                    Register last_java_sp,
 1564                                    address entry_point,
 1565                                    Register arg_1,
 1566                                    Register arg_2,
 1567                                    Register arg_3,
 1568                                    bool check_exceptions) {
 1569   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1570   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1571   pass_arg3(this, arg_3);
 1572   pass_arg2(this, arg_2);
 1573   pass_arg1(this, arg_1);
 1574   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 1575 }
 1576 
 1577 void MacroAssembler::call_VM_base(Register oop_result,
 1578                                   Register java_thread,
 1579                                   Register last_java_sp,
 1580                                   address  entry_point,
 1581                                   int      number_of_arguments,
 1582                                   bool     check_exceptions) {
 1583   // determine java_thread register
 1584   if (!java_thread->is_valid()) {
 1585 #ifdef _LP64
 1586     java_thread = r15_thread;
 1587 #else
 1588     java_thread = rdi;
 1589     get_thread(java_thread);
 1590 #endif // LP64
 1591   }
 1592   // determine last_java_sp register
 1593   if (!last_java_sp->is_valid()) {
 1594     last_java_sp = rsp;
 1595   }
 1596   // debugging support
 1597   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
 1598   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
 1599 #ifdef ASSERT
 1600   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
 1601   // r12 is the heapbase.
 1602   LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
 1603 #endif // ASSERT
 1604 
 1605   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
 1606   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
 1607 
 1608   // push java thread (becomes first argument of C function)
 1609 
 1610   NOT_LP64(push(java_thread); number_of_arguments++);
 1611   LP64_ONLY(mov(c_rarg0, r15_thread));
 1612 
 1613   // set last Java frame before call
 1614   assert(last_java_sp != rbp, "can't use ebp/rbp");
 1615 
 1616   // Only interpreter should have to set fp
 1617   set_last_Java_frame(java_thread, last_java_sp, rbp, nullptr, rscratch1);
 1618 
 1619   // do the call, remove parameters
 1620   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 1621 
 1622   // restore the thread (cannot use the pushed argument since arguments
 1623   // may be overwritten by C code generated by an optimizing compiler);
 1624   // however can use the register value directly if it is callee saved.
 1625   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
 1626     // rdi & rsi (also r15) are callee saved -> nothing to do
 1627 #ifdef ASSERT
 1628     guarantee(java_thread != rax, "change this code");
 1629     push(rax);
 1630     { Label L;
 1631       get_thread(rax);
 1632       cmpptr(java_thread, rax);
 1633       jcc(Assembler::equal, L);
 1634       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
 1635       bind(L);
 1636     }
 1637     pop(rax);
 1638 #endif
 1639   } else {
 1640     get_thread(java_thread);
 1641   }
 1642   // reset last Java frame
 1643   // Only interpreter should have to clear fp
 1644   reset_last_Java_frame(java_thread, true);
 1645 
 1646    // C++ interp handles this in the interpreter
 1647   check_and_handle_popframe(java_thread);
 1648   check_and_handle_earlyret(java_thread);
 1649 
 1650   if (check_exceptions) {
 1651     // check for pending exceptions (java_thread is set upon return)
 1652     cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
 1653 #ifndef _LP64
 1654     jump_cc(Assembler::notEqual,
 1655             RuntimeAddress(StubRoutines::forward_exception_entry()));
 1656 #else
 1657     // This used to conditionally jump to forward_exception however it is
 1658     // possible if we relocate that the branch will not reach. So we must jump
 1659     // around so we can always reach
 1660 
 1661     Label ok;
 1662     jcc(Assembler::equal, ok);
 1663     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 1664     bind(ok);
 1665 #endif // LP64
 1666   }
 1667 
 1668   // get oop result if there is one and reset the value in the thread
 1669   if (oop_result->is_valid()) {
 1670     get_vm_result(oop_result, java_thread);
 1671   }
 1672 }
 1673 
 1674 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
 1675 
 1676   // Calculate the value for last_Java_sp
 1677   // somewhat subtle. call_VM does an intermediate call
 1678   // which places a return address on the stack just under the
 1679   // stack pointer as the user finished with it. This allows
 1680   // use to retrieve last_Java_pc from last_Java_sp[-1].
 1681   // On 32bit we then have to push additional args on the stack to accomplish
 1682   // the actual requested call. On 64bit call_VM only can use register args
 1683   // so the only extra space is the return address that call_VM created.
 1684   // This hopefully explains the calculations here.
 1685 
 1686 #ifdef _LP64
 1687   // We've pushed one address, correct last_Java_sp
 1688   lea(rax, Address(rsp, wordSize));
 1689 #else
 1690   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
 1691 #endif // LP64
 1692 
 1693   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
 1694 
 1695 }
 1696 
 1697 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
 1698 void MacroAssembler::call_VM_leaf0(address entry_point) {
 1699   MacroAssembler::call_VM_leaf_base(entry_point, 0);
 1700 }
 1701 
 1702 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
 1703   call_VM_leaf_base(entry_point, number_of_arguments);
 1704 }
 1705 
 1706 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
 1707   pass_arg0(this, arg_0);
 1708   call_VM_leaf(entry_point, 1);
 1709 }
 1710 
 1711 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
 1712 
 1713   LP64_ONLY(assert_different_registers(arg_0, c_rarg1));
 1714   pass_arg1(this, arg_1);
 1715   pass_arg0(this, arg_0);
 1716   call_VM_leaf(entry_point, 2);
 1717 }
 1718 
 1719 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
 1720   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2));
 1721   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1722   pass_arg2(this, arg_2);
 1723   pass_arg1(this, arg_1);
 1724   pass_arg0(this, arg_0);
 1725   call_VM_leaf(entry_point, 3);
 1726 }
 1727 
 1728 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
 1729   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3));
 1730   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1731   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1732   pass_arg3(this, arg_3);
 1733   pass_arg2(this, arg_2);
 1734   pass_arg1(this, arg_1);
 1735   pass_arg0(this, arg_0);
 1736   call_VM_leaf(entry_point, 3);
 1737 }
 1738 
 1739 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
 1740   pass_arg0(this, arg_0);
 1741   MacroAssembler::call_VM_leaf_base(entry_point, 1);
 1742 }
 1743 
 1744 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
 1745   LP64_ONLY(assert_different_registers(arg_0, c_rarg1));
 1746   pass_arg1(this, arg_1);
 1747   pass_arg0(this, arg_0);
 1748   MacroAssembler::call_VM_leaf_base(entry_point, 2);
 1749 }
 1750 
 1751 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
 1752   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2));
 1753   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1754   pass_arg2(this, arg_2);
 1755   pass_arg1(this, arg_1);
 1756   pass_arg0(this, arg_0);
 1757   MacroAssembler::call_VM_leaf_base(entry_point, 3);
 1758 }
 1759 
 1760 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
 1761   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3));
 1762   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1763   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1764   pass_arg3(this, arg_3);
 1765   pass_arg2(this, arg_2);
 1766   pass_arg1(this, arg_1);
 1767   pass_arg0(this, arg_0);
 1768   MacroAssembler::call_VM_leaf_base(entry_point, 4);
 1769 }
 1770 
 1771 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
 1772   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
 1773   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
 1774   verify_oop_msg(oop_result, "broken oop in call_VM_base");
 1775 }
 1776 
 1777 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
 1778   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
 1779   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 1780 }
 1781 
 1782 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
 1783 }
 1784 
 1785 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
 1786 }
 1787 
 1788 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) {
 1789   assert(rscratch != noreg || always_reachable(src1), "missing");
 1790 
 1791   if (reachable(src1)) {
 1792     cmpl(as_Address(src1), imm);
 1793   } else {
 1794     lea(rscratch, src1);
 1795     cmpl(Address(rscratch, 0), imm);
 1796   }
 1797 }
 1798 
 1799 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) {
 1800   assert(!src2.is_lval(), "use cmpptr");
 1801   assert(rscratch != noreg || always_reachable(src2), "missing");
 1802 
 1803   if (reachable(src2)) {
 1804     cmpl(src1, as_Address(src2));
 1805   } else {
 1806     lea(rscratch, src2);
 1807     cmpl(src1, Address(rscratch, 0));
 1808   }
 1809 }
 1810 
 1811 void MacroAssembler::cmp32(Register src1, int32_t imm) {
 1812   Assembler::cmpl(src1, imm);
 1813 }
 1814 
 1815 void MacroAssembler::cmp32(Register src1, Address src2) {
 1816   Assembler::cmpl(src1, src2);
 1817 }
 1818 
 1819 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
 1820   ucomisd(opr1, opr2);
 1821 
 1822   Label L;
 1823   if (unordered_is_less) {
 1824     movl(dst, -1);
 1825     jcc(Assembler::parity, L);
 1826     jcc(Assembler::below , L);
 1827     movl(dst, 0);
 1828     jcc(Assembler::equal , L);
 1829     increment(dst);
 1830   } else { // unordered is greater
 1831     movl(dst, 1);
 1832     jcc(Assembler::parity, L);
 1833     jcc(Assembler::above , L);
 1834     movl(dst, 0);
 1835     jcc(Assembler::equal , L);
 1836     decrementl(dst);
 1837   }
 1838   bind(L);
 1839 }
 1840 
 1841 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
 1842   ucomiss(opr1, opr2);
 1843 
 1844   Label L;
 1845   if (unordered_is_less) {
 1846     movl(dst, -1);
 1847     jcc(Assembler::parity, L);
 1848     jcc(Assembler::below , L);
 1849     movl(dst, 0);
 1850     jcc(Assembler::equal , L);
 1851     increment(dst);
 1852   } else { // unordered is greater
 1853     movl(dst, 1);
 1854     jcc(Assembler::parity, L);
 1855     jcc(Assembler::above , L);
 1856     movl(dst, 0);
 1857     jcc(Assembler::equal , L);
 1858     decrementl(dst);
 1859   }
 1860   bind(L);
 1861 }
 1862 
 1863 
 1864 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) {
 1865   assert(rscratch != noreg || always_reachable(src1), "missing");
 1866 
 1867   if (reachable(src1)) {
 1868     cmpb(as_Address(src1), imm);
 1869   } else {
 1870     lea(rscratch, src1);
 1871     cmpb(Address(rscratch, 0), imm);
 1872   }
 1873 }
 1874 
 1875 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) {
 1876 #ifdef _LP64
 1877   assert(rscratch != noreg || always_reachable(src2), "missing");
 1878 
 1879   if (src2.is_lval()) {
 1880     movptr(rscratch, src2);
 1881     Assembler::cmpq(src1, rscratch);
 1882   } else if (reachable(src2)) {
 1883     cmpq(src1, as_Address(src2));
 1884   } else {
 1885     lea(rscratch, src2);
 1886     Assembler::cmpq(src1, Address(rscratch, 0));
 1887   }
 1888 #else
 1889   assert(rscratch == noreg, "not needed");
 1890   if (src2.is_lval()) {
 1891     cmp_literal32(src1, (int32_t)src2.target(), src2.rspec());
 1892   } else {
 1893     cmpl(src1, as_Address(src2));
 1894   }
 1895 #endif // _LP64
 1896 }
 1897 
 1898 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) {
 1899   assert(src2.is_lval(), "not a mem-mem compare");
 1900 #ifdef _LP64
 1901   // moves src2's literal address
 1902   movptr(rscratch, src2);
 1903   Assembler::cmpq(src1, rscratch);
 1904 #else
 1905   assert(rscratch == noreg, "not needed");
 1906   cmp_literal32(src1, (int32_t)src2.target(), src2.rspec());
 1907 #endif // _LP64
 1908 }
 1909 
 1910 void MacroAssembler::cmpoop(Register src1, Register src2) {
 1911   cmpptr(src1, src2);
 1912 }
 1913 
 1914 void MacroAssembler::cmpoop(Register src1, Address src2) {
 1915   cmpptr(src1, src2);
 1916 }
 1917 
 1918 #ifdef _LP64
 1919 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) {
 1920   movoop(rscratch, src2);
 1921   cmpptr(src1, rscratch);
 1922 }
 1923 #endif
 1924 
 1925 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) {
 1926   assert(rscratch != noreg || always_reachable(adr), "missing");
 1927 
 1928   if (reachable(adr)) {
 1929     lock();
 1930     cmpxchgptr(reg, as_Address(adr));
 1931   } else {
 1932     lea(rscratch, adr);
 1933     lock();
 1934     cmpxchgptr(reg, Address(rscratch, 0));
 1935   }
 1936 }
 1937 
 1938 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
 1939   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
 1940 }
 1941 
 1942 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1943   assert(rscratch != noreg || always_reachable(src), "missing");
 1944 
 1945   if (reachable(src)) {
 1946     Assembler::comisd(dst, as_Address(src));
 1947   } else {
 1948     lea(rscratch, src);
 1949     Assembler::comisd(dst, Address(rscratch, 0));
 1950   }
 1951 }
 1952 
 1953 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1954   assert(rscratch != noreg || always_reachable(src), "missing");
 1955 
 1956   if (reachable(src)) {
 1957     Assembler::comiss(dst, as_Address(src));
 1958   } else {
 1959     lea(rscratch, src);
 1960     Assembler::comiss(dst, Address(rscratch, 0));
 1961   }
 1962 }
 1963 
 1964 
 1965 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) {
 1966   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1967 
 1968   Condition negated_cond = negate_condition(cond);
 1969   Label L;
 1970   jcc(negated_cond, L);
 1971   pushf(); // Preserve flags
 1972   atomic_incl(counter_addr, rscratch);
 1973   popf();
 1974   bind(L);
 1975 }
 1976 
 1977 int MacroAssembler::corrected_idivl(Register reg) {
 1978   // Full implementation of Java idiv and irem; checks for
 1979   // special case as described in JVM spec., p.243 & p.271.
 1980   // The function returns the (pc) offset of the idivl
 1981   // instruction - may be needed for implicit exceptions.
 1982   //
 1983   //         normal case                           special case
 1984   //
 1985   // input : rax,: dividend                         min_int
 1986   //         reg: divisor   (may not be rax,/rdx)   -1
 1987   //
 1988   // output: rax,: quotient  (= rax, idiv reg)       min_int
 1989   //         rdx: remainder (= rax, irem reg)       0
 1990   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
 1991   const int min_int = 0x80000000;
 1992   Label normal_case, special_case;
 1993 
 1994   // check for special case
 1995   cmpl(rax, min_int);
 1996   jcc(Assembler::notEqual, normal_case);
 1997   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
 1998   cmpl(reg, -1);
 1999   jcc(Assembler::equal, special_case);
 2000 
 2001   // handle normal case
 2002   bind(normal_case);
 2003   cdql();
 2004   int idivl_offset = offset();
 2005   idivl(reg);
 2006 
 2007   // normal and special case exit
 2008   bind(special_case);
 2009 
 2010   return idivl_offset;
 2011 }
 2012 
 2013 
 2014 
 2015 void MacroAssembler::decrementl(Register reg, int value) {
 2016   if (value == min_jint) {subl(reg, value) ; return; }
 2017   if (value <  0) { incrementl(reg, -value); return; }
 2018   if (value == 0) {                        ; return; }
 2019   if (value == 1 && UseIncDec) { decl(reg) ; return; }
 2020   /* else */      { subl(reg, value)       ; return; }
 2021 }
 2022 
 2023 void MacroAssembler::decrementl(Address dst, int value) {
 2024   if (value == min_jint) {subl(dst, value) ; return; }
 2025   if (value <  0) { incrementl(dst, -value); return; }
 2026   if (value == 0) {                        ; return; }
 2027   if (value == 1 && UseIncDec) { decl(dst) ; return; }
 2028   /* else */      { subl(dst, value)       ; return; }
 2029 }
 2030 
 2031 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
 2032   assert(shift_value > 0, "illegal shift value");
 2033   Label _is_positive;
 2034   testl (reg, reg);
 2035   jcc (Assembler::positive, _is_positive);
 2036   int offset = (1 << shift_value) - 1 ;
 2037 
 2038   if (offset == 1) {
 2039     incrementl(reg);
 2040   } else {
 2041     addl(reg, offset);
 2042   }
 2043 
 2044   bind (_is_positive);
 2045   sarl(reg, shift_value);
 2046 }
 2047 
 2048 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2049   assert(rscratch != noreg || always_reachable(src), "missing");
 2050 
 2051   if (reachable(src)) {
 2052     Assembler::divsd(dst, as_Address(src));
 2053   } else {
 2054     lea(rscratch, src);
 2055     Assembler::divsd(dst, Address(rscratch, 0));
 2056   }
 2057 }
 2058 
 2059 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2060   assert(rscratch != noreg || always_reachable(src), "missing");
 2061 
 2062   if (reachable(src)) {
 2063     Assembler::divss(dst, as_Address(src));
 2064   } else {
 2065     lea(rscratch, src);
 2066     Assembler::divss(dst, Address(rscratch, 0));
 2067   }
 2068 }
 2069 
 2070 void MacroAssembler::enter() {
 2071   push(rbp);
 2072   mov(rbp, rsp);
 2073 }
 2074 
 2075 void MacroAssembler::post_call_nop() {
 2076   if (!Continuations::enabled()) {
 2077     return;
 2078   }
 2079   InstructionMark im(this);
 2080   relocate(post_call_nop_Relocation::spec());
 2081   InlineSkippedInstructionsCounter skipCounter(this);
 2082   emit_int8((uint8_t)0x0f);
 2083   emit_int8((uint8_t)0x1f);
 2084   emit_int8((uint8_t)0x84);
 2085   emit_int8((uint8_t)0x00);
 2086   emit_int32(0x00);
 2087 }
 2088 
 2089 // A 5 byte nop that is safe for patching (see patch_verified_entry)
 2090 void MacroAssembler::fat_nop() {
 2091   if (UseAddressNop) {
 2092     addr_nop_5();
 2093   } else {
 2094     emit_int8((uint8_t)0x26); // es:
 2095     emit_int8((uint8_t)0x2e); // cs:
 2096     emit_int8((uint8_t)0x64); // fs:
 2097     emit_int8((uint8_t)0x65); // gs:
 2098     emit_int8((uint8_t)0x90);
 2099   }
 2100 }
 2101 
 2102 #ifndef _LP64
 2103 void MacroAssembler::fcmp(Register tmp) {
 2104   fcmp(tmp, 1, true, true);
 2105 }
 2106 
 2107 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
 2108   assert(!pop_right || pop_left, "usage error");
 2109   if (VM_Version::supports_cmov()) {
 2110     assert(tmp == noreg, "unneeded temp");
 2111     if (pop_left) {
 2112       fucomip(index);
 2113     } else {
 2114       fucomi(index);
 2115     }
 2116     if (pop_right) {
 2117       fpop();
 2118     }
 2119   } else {
 2120     assert(tmp != noreg, "need temp");
 2121     if (pop_left) {
 2122       if (pop_right) {
 2123         fcompp();
 2124       } else {
 2125         fcomp(index);
 2126       }
 2127     } else {
 2128       fcom(index);
 2129     }
 2130     // convert FPU condition into eflags condition via rax,
 2131     save_rax(tmp);
 2132     fwait(); fnstsw_ax();
 2133     sahf();
 2134     restore_rax(tmp);
 2135   }
 2136   // condition codes set as follows:
 2137   //
 2138   // CF (corresponds to C0) if x < y
 2139   // PF (corresponds to C2) if unordered
 2140   // ZF (corresponds to C3) if x = y
 2141 }
 2142 
 2143 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
 2144   fcmp2int(dst, unordered_is_less, 1, true, true);
 2145 }
 2146 
 2147 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
 2148   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
 2149   Label L;
 2150   if (unordered_is_less) {
 2151     movl(dst, -1);
 2152     jcc(Assembler::parity, L);
 2153     jcc(Assembler::below , L);
 2154     movl(dst, 0);
 2155     jcc(Assembler::equal , L);
 2156     increment(dst);
 2157   } else { // unordered is greater
 2158     movl(dst, 1);
 2159     jcc(Assembler::parity, L);
 2160     jcc(Assembler::above , L);
 2161     movl(dst, 0);
 2162     jcc(Assembler::equal , L);
 2163     decrementl(dst);
 2164   }
 2165   bind(L);
 2166 }
 2167 
 2168 void MacroAssembler::fld_d(AddressLiteral src) {
 2169   fld_d(as_Address(src));
 2170 }
 2171 
 2172 void MacroAssembler::fld_s(AddressLiteral src) {
 2173   fld_s(as_Address(src));
 2174 }
 2175 
 2176 void MacroAssembler::fldcw(AddressLiteral src) {
 2177   fldcw(as_Address(src));
 2178 }
 2179 
 2180 void MacroAssembler::fpop() {
 2181   ffree();
 2182   fincstp();
 2183 }
 2184 
 2185 void MacroAssembler::fremr(Register tmp) {
 2186   save_rax(tmp);
 2187   { Label L;
 2188     bind(L);
 2189     fprem();
 2190     fwait(); fnstsw_ax();
 2191     sahf();
 2192     jcc(Assembler::parity, L);
 2193   }
 2194   restore_rax(tmp);
 2195   // Result is in ST0.
 2196   // Note: fxch & fpop to get rid of ST1
 2197   // (otherwise FPU stack could overflow eventually)
 2198   fxch(1);
 2199   fpop();
 2200 }
 2201 
 2202 void MacroAssembler::empty_FPU_stack() {
 2203   if (VM_Version::supports_mmx()) {
 2204     emms();
 2205   } else {
 2206     for (int i = 8; i-- > 0; ) ffree(i);
 2207   }
 2208 }
 2209 #endif // !LP64
 2210 
 2211 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2212   assert(rscratch != noreg || always_reachable(src), "missing");
 2213   if (reachable(src)) {
 2214     Assembler::mulpd(dst, as_Address(src));
 2215   } else {
 2216     lea(rscratch, src);
 2217     Assembler::mulpd(dst, Address(rscratch, 0));
 2218   }
 2219 }
 2220 
 2221 void MacroAssembler::load_float(Address src) {
 2222 #ifdef _LP64
 2223   movflt(xmm0, src);
 2224 #else
 2225   if (UseSSE >= 1) {
 2226     movflt(xmm0, src);
 2227   } else {
 2228     fld_s(src);
 2229   }
 2230 #endif // LP64
 2231 }
 2232 
 2233 void MacroAssembler::store_float(Address dst) {
 2234 #ifdef _LP64
 2235   movflt(dst, xmm0);
 2236 #else
 2237   if (UseSSE >= 1) {
 2238     movflt(dst, xmm0);
 2239   } else {
 2240     fstp_s(dst);
 2241   }
 2242 #endif // LP64
 2243 }
 2244 
 2245 void MacroAssembler::load_double(Address src) {
 2246 #ifdef _LP64
 2247   movdbl(xmm0, src);
 2248 #else
 2249   if (UseSSE >= 2) {
 2250     movdbl(xmm0, src);
 2251   } else {
 2252     fld_d(src);
 2253   }
 2254 #endif // LP64
 2255 }
 2256 
 2257 void MacroAssembler::store_double(Address dst) {
 2258 #ifdef _LP64
 2259   movdbl(dst, xmm0);
 2260 #else
 2261   if (UseSSE >= 2) {
 2262     movdbl(dst, xmm0);
 2263   } else {
 2264     fstp_d(dst);
 2265   }
 2266 #endif // LP64
 2267 }
 2268 
 2269 // dst = c = a * b + c
 2270 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
 2271   Assembler::vfmadd231sd(c, a, b);
 2272   if (dst != c) {
 2273     movdbl(dst, c);
 2274   }
 2275 }
 2276 
 2277 // dst = c = a * b + c
 2278 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
 2279   Assembler::vfmadd231ss(c, a, b);
 2280   if (dst != c) {
 2281     movflt(dst, c);
 2282   }
 2283 }
 2284 
 2285 // dst = c = a * b + c
 2286 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
 2287   Assembler::vfmadd231pd(c, a, b, vector_len);
 2288   if (dst != c) {
 2289     vmovdqu(dst, c);
 2290   }
 2291 }
 2292 
 2293 // dst = c = a * b + c
 2294 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
 2295   Assembler::vfmadd231ps(c, a, b, vector_len);
 2296   if (dst != c) {
 2297     vmovdqu(dst, c);
 2298   }
 2299 }
 2300 
 2301 // dst = c = a * b + c
 2302 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
 2303   Assembler::vfmadd231pd(c, a, b, vector_len);
 2304   if (dst != c) {
 2305     vmovdqu(dst, c);
 2306   }
 2307 }
 2308 
 2309 // dst = c = a * b + c
 2310 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
 2311   Assembler::vfmadd231ps(c, a, b, vector_len);
 2312   if (dst != c) {
 2313     vmovdqu(dst, c);
 2314   }
 2315 }
 2316 
 2317 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) {
 2318   assert(rscratch != noreg || always_reachable(dst), "missing");
 2319 
 2320   if (reachable(dst)) {
 2321     incrementl(as_Address(dst));
 2322   } else {
 2323     lea(rscratch, dst);
 2324     incrementl(Address(rscratch, 0));
 2325   }
 2326 }
 2327 
 2328 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) {
 2329   incrementl(as_Address(dst, rscratch));
 2330 }
 2331 
 2332 void MacroAssembler::incrementl(Register reg, int value) {
 2333   if (value == min_jint) {addl(reg, value) ; return; }
 2334   if (value <  0) { decrementl(reg, -value); return; }
 2335   if (value == 0) {                        ; return; }
 2336   if (value == 1 && UseIncDec) { incl(reg) ; return; }
 2337   /* else */      { addl(reg, value)       ; return; }
 2338 }
 2339 
 2340 void MacroAssembler::incrementl(Address dst, int value) {
 2341   if (value == min_jint) {addl(dst, value) ; return; }
 2342   if (value <  0) { decrementl(dst, -value); return; }
 2343   if (value == 0) {                        ; return; }
 2344   if (value == 1 && UseIncDec) { incl(dst) ; return; }
 2345   /* else */      { addl(dst, value)       ; return; }
 2346 }
 2347 
 2348 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) {
 2349   assert(rscratch != noreg || always_reachable(dst), "missing");
 2350   assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump");
 2351   if (reachable(dst)) {
 2352     jmp_literal(dst.target(), dst.rspec());
 2353   } else {
 2354     lea(rscratch, dst);
 2355     jmp(rscratch);
 2356   }
 2357 }
 2358 
 2359 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) {
 2360   assert(rscratch != noreg || always_reachable(dst), "missing");
 2361   assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc");
 2362   if (reachable(dst)) {
 2363     InstructionMark im(this);
 2364     relocate(dst.reloc());
 2365     const int short_size = 2;
 2366     const int long_size = 6;
 2367     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
 2368     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
 2369       // 0111 tttn #8-bit disp
 2370       emit_int8(0x70 | cc);
 2371       emit_int8((offs - short_size) & 0xFF);
 2372     } else {
 2373       // 0000 1111 1000 tttn #32-bit disp
 2374       emit_int8(0x0F);
 2375       emit_int8((unsigned char)(0x80 | cc));
 2376       emit_int32(offs - long_size);
 2377     }
 2378   } else {
 2379 #ifdef ASSERT
 2380     warning("reversing conditional branch");
 2381 #endif /* ASSERT */
 2382     Label skip;
 2383     jccb(reverse[cc], skip);
 2384     lea(rscratch, dst);
 2385     Assembler::jmp(rscratch);
 2386     bind(skip);
 2387   }
 2388 }
 2389 
 2390 void MacroAssembler::cmp32_mxcsr_std(Address mxcsr_save, Register tmp, Register rscratch) {
 2391   ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
 2392   assert(rscratch != noreg || always_reachable(mxcsr_std), "missing");
 2393 
 2394   stmxcsr(mxcsr_save);
 2395   movl(tmp, mxcsr_save);
 2396   if (EnableX86ECoreOpts) {
 2397     // The mxcsr_std has status bits set for performance on ECore
 2398     orl(tmp, 0x003f);
 2399   } else {
 2400     // Mask out status bits (only check control and mask bits)
 2401     andl(tmp, 0xFFC0);
 2402   }
 2403   cmp32(tmp, mxcsr_std, rscratch);
 2404 }
 2405 
 2406 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) {
 2407   assert(rscratch != noreg || always_reachable(src), "missing");
 2408 
 2409   if (reachable(src)) {
 2410     Assembler::ldmxcsr(as_Address(src));
 2411   } else {
 2412     lea(rscratch, src);
 2413     Assembler::ldmxcsr(Address(rscratch, 0));
 2414   }
 2415 }
 2416 
 2417 int MacroAssembler::load_signed_byte(Register dst, Address src) {
 2418   int off;
 2419   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 2420     off = offset();
 2421     movsbl(dst, src); // movsxb
 2422   } else {
 2423     off = load_unsigned_byte(dst, src);
 2424     shll(dst, 24);
 2425     sarl(dst, 24);
 2426   }
 2427   return off;
 2428 }
 2429 
 2430 // Note: load_signed_short used to be called load_signed_word.
 2431 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
 2432 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
 2433 // The term "word" in HotSpot means a 32- or 64-bit machine word.
 2434 int MacroAssembler::load_signed_short(Register dst, Address src) {
 2435   int off;
 2436   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 2437     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
 2438     // version but this is what 64bit has always done. This seems to imply
 2439     // that users are only using 32bits worth.
 2440     off = offset();
 2441     movswl(dst, src); // movsxw
 2442   } else {
 2443     off = load_unsigned_short(dst, src);
 2444     shll(dst, 16);
 2445     sarl(dst, 16);
 2446   }
 2447   return off;
 2448 }
 2449 
 2450 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
 2451   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
 2452   // and "3.9 Partial Register Penalties", p. 22).
 2453   int off;
 2454   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
 2455     off = offset();
 2456     movzbl(dst, src); // movzxb
 2457   } else {
 2458     xorl(dst, dst);
 2459     off = offset();
 2460     movb(dst, src);
 2461   }
 2462   return off;
 2463 }
 2464 
 2465 // Note: load_unsigned_short used to be called load_unsigned_word.
 2466 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
 2467   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
 2468   // and "3.9 Partial Register Penalties", p. 22).
 2469   int off;
 2470   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
 2471     off = offset();
 2472     movzwl(dst, src); // movzxw
 2473   } else {
 2474     xorl(dst, dst);
 2475     off = offset();
 2476     movw(dst, src);
 2477   }
 2478   return off;
 2479 }
 2480 
 2481 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
 2482   switch (size_in_bytes) {
 2483 #ifndef _LP64
 2484   case  8:
 2485     assert(dst2 != noreg, "second dest register required");
 2486     movl(dst,  src);
 2487     movl(dst2, src.plus_disp(BytesPerInt));
 2488     break;
 2489 #else
 2490   case  8:  movq(dst, src); break;
 2491 #endif
 2492   case  4:  movl(dst, src); break;
 2493   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
 2494   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
 2495   default:  ShouldNotReachHere();
 2496   }
 2497 }
 2498 
 2499 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
 2500   switch (size_in_bytes) {
 2501 #ifndef _LP64
 2502   case  8:
 2503     assert(src2 != noreg, "second source register required");
 2504     movl(dst,                        src);
 2505     movl(dst.plus_disp(BytesPerInt), src2);
 2506     break;
 2507 #else
 2508   case  8:  movq(dst, src); break;
 2509 #endif
 2510   case  4:  movl(dst, src); break;
 2511   case  2:  movw(dst, src); break;
 2512   case  1:  movb(dst, src); break;
 2513   default:  ShouldNotReachHere();
 2514   }
 2515 }
 2516 
 2517 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) {
 2518   assert(rscratch != noreg || always_reachable(dst), "missing");
 2519 
 2520   if (reachable(dst)) {
 2521     movl(as_Address(dst), src);
 2522   } else {
 2523     lea(rscratch, dst);
 2524     movl(Address(rscratch, 0), src);
 2525   }
 2526 }
 2527 
 2528 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
 2529   if (reachable(src)) {
 2530     movl(dst, as_Address(src));
 2531   } else {
 2532     lea(dst, src);
 2533     movl(dst, Address(dst, 0));
 2534   }
 2535 }
 2536 
 2537 // C++ bool manipulation
 2538 
 2539 void MacroAssembler::movbool(Register dst, Address src) {
 2540   if(sizeof(bool) == 1)
 2541     movb(dst, src);
 2542   else if(sizeof(bool) == 2)
 2543     movw(dst, src);
 2544   else if(sizeof(bool) == 4)
 2545     movl(dst, src);
 2546   else
 2547     // unsupported
 2548     ShouldNotReachHere();
 2549 }
 2550 
 2551 void MacroAssembler::movbool(Address dst, bool boolconst) {
 2552   if(sizeof(bool) == 1)
 2553     movb(dst, (int) boolconst);
 2554   else if(sizeof(bool) == 2)
 2555     movw(dst, (int) boolconst);
 2556   else if(sizeof(bool) == 4)
 2557     movl(dst, (int) boolconst);
 2558   else
 2559     // unsupported
 2560     ShouldNotReachHere();
 2561 }
 2562 
 2563 void MacroAssembler::movbool(Address dst, Register src) {
 2564   if(sizeof(bool) == 1)
 2565     movb(dst, src);
 2566   else if(sizeof(bool) == 2)
 2567     movw(dst, src);
 2568   else if(sizeof(bool) == 4)
 2569     movl(dst, src);
 2570   else
 2571     // unsupported
 2572     ShouldNotReachHere();
 2573 }
 2574 
 2575 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2576   assert(rscratch != noreg || always_reachable(src), "missing");
 2577 
 2578   if (reachable(src)) {
 2579     movdl(dst, as_Address(src));
 2580   } else {
 2581     lea(rscratch, src);
 2582     movdl(dst, Address(rscratch, 0));
 2583   }
 2584 }
 2585 
 2586 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2587   assert(rscratch != noreg || always_reachable(src), "missing");
 2588 
 2589   if (reachable(src)) {
 2590     movq(dst, as_Address(src));
 2591   } else {
 2592     lea(rscratch, src);
 2593     movq(dst, Address(rscratch, 0));
 2594   }
 2595 }
 2596 
 2597 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2598   assert(rscratch != noreg || always_reachable(src), "missing");
 2599 
 2600   if (reachable(src)) {
 2601     if (UseXmmLoadAndClearUpper) {
 2602       movsd (dst, as_Address(src));
 2603     } else {
 2604       movlpd(dst, as_Address(src));
 2605     }
 2606   } else {
 2607     lea(rscratch, src);
 2608     if (UseXmmLoadAndClearUpper) {
 2609       movsd (dst, Address(rscratch, 0));
 2610     } else {
 2611       movlpd(dst, Address(rscratch, 0));
 2612     }
 2613   }
 2614 }
 2615 
 2616 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2617   assert(rscratch != noreg || always_reachable(src), "missing");
 2618 
 2619   if (reachable(src)) {
 2620     movss(dst, as_Address(src));
 2621   } else {
 2622     lea(rscratch, src);
 2623     movss(dst, Address(rscratch, 0));
 2624   }
 2625 }
 2626 
 2627 void MacroAssembler::movptr(Register dst, Register src) {
 2628   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2629 }
 2630 
 2631 void MacroAssembler::movptr(Register dst, Address src) {
 2632   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2633 }
 2634 
 2635 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 2636 void MacroAssembler::movptr(Register dst, intptr_t src) {
 2637 #ifdef _LP64
 2638   if (is_uimm32(src)) {
 2639     movl(dst, checked_cast<uint32_t>(src));
 2640   } else if (is_simm32(src)) {
 2641     movq(dst, checked_cast<int32_t>(src));
 2642   } else {
 2643     mov64(dst, src);
 2644   }
 2645 #else
 2646   movl(dst, src);
 2647 #endif
 2648 }
 2649 
 2650 void MacroAssembler::movptr(Address dst, Register src) {
 2651   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2652 }
 2653 
 2654 void MacroAssembler::movptr(Address dst, int32_t src) {
 2655   LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src));
 2656 }
 2657 
 2658 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
 2659   assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2660   Assembler::movdqu(dst, src);
 2661 }
 2662 
 2663 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
 2664   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2665   Assembler::movdqu(dst, src);
 2666 }
 2667 
 2668 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
 2669   assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2670   Assembler::movdqu(dst, src);
 2671 }
 2672 
 2673 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2674   assert(rscratch != noreg || always_reachable(src), "missing");
 2675 
 2676   if (reachable(src)) {
 2677     movdqu(dst, as_Address(src));
 2678   } else {
 2679     lea(rscratch, src);
 2680     movdqu(dst, Address(rscratch, 0));
 2681   }
 2682 }
 2683 
 2684 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
 2685   assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2686   Assembler::vmovdqu(dst, src);
 2687 }
 2688 
 2689 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
 2690   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2691   Assembler::vmovdqu(dst, src);
 2692 }
 2693 
 2694 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
 2695   assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2696   Assembler::vmovdqu(dst, src);
 2697 }
 2698 
 2699 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2700   assert(rscratch != noreg || always_reachable(src), "missing");
 2701 
 2702   if (reachable(src)) {
 2703     vmovdqu(dst, as_Address(src));
 2704   }
 2705   else {
 2706     lea(rscratch, src);
 2707     vmovdqu(dst, Address(rscratch, 0));
 2708   }
 2709 }
 2710 
 2711 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2712   assert(rscratch != noreg || always_reachable(src), "missing");
 2713 
 2714   if (vector_len == AVX_512bit) {
 2715     evmovdquq(dst, src, AVX_512bit, rscratch);
 2716   } else if (vector_len == AVX_256bit) {
 2717     vmovdqu(dst, src, rscratch);
 2718   } else {
 2719     movdqu(dst, src, rscratch);
 2720   }
 2721 }
 2722 
 2723 void MacroAssembler::kmov(KRegister dst, Address src) {
 2724   if (VM_Version::supports_avx512bw()) {
 2725     kmovql(dst, src);
 2726   } else {
 2727     assert(VM_Version::supports_evex(), "");
 2728     kmovwl(dst, src);
 2729   }
 2730 }
 2731 
 2732 void MacroAssembler::kmov(Address dst, KRegister src) {
 2733   if (VM_Version::supports_avx512bw()) {
 2734     kmovql(dst, src);
 2735   } else {
 2736     assert(VM_Version::supports_evex(), "");
 2737     kmovwl(dst, src);
 2738   }
 2739 }
 2740 
 2741 void MacroAssembler::kmov(KRegister dst, KRegister src) {
 2742   if (VM_Version::supports_avx512bw()) {
 2743     kmovql(dst, src);
 2744   } else {
 2745     assert(VM_Version::supports_evex(), "");
 2746     kmovwl(dst, src);
 2747   }
 2748 }
 2749 
 2750 void MacroAssembler::kmov(Register dst, KRegister src) {
 2751   if (VM_Version::supports_avx512bw()) {
 2752     kmovql(dst, src);
 2753   } else {
 2754     assert(VM_Version::supports_evex(), "");
 2755     kmovwl(dst, src);
 2756   }
 2757 }
 2758 
 2759 void MacroAssembler::kmov(KRegister dst, Register src) {
 2760   if (VM_Version::supports_avx512bw()) {
 2761     kmovql(dst, src);
 2762   } else {
 2763     assert(VM_Version::supports_evex(), "");
 2764     kmovwl(dst, src);
 2765   }
 2766 }
 2767 
 2768 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) {
 2769   assert(rscratch != noreg || always_reachable(src), "missing");
 2770 
 2771   if (reachable(src)) {
 2772     kmovql(dst, as_Address(src));
 2773   } else {
 2774     lea(rscratch, src);
 2775     kmovql(dst, Address(rscratch, 0));
 2776   }
 2777 }
 2778 
 2779 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) {
 2780   assert(rscratch != noreg || always_reachable(src), "missing");
 2781 
 2782   if (reachable(src)) {
 2783     kmovwl(dst, as_Address(src));
 2784   } else {
 2785     lea(rscratch, src);
 2786     kmovwl(dst, Address(rscratch, 0));
 2787   }
 2788 }
 2789 
 2790 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge,
 2791                                int vector_len, Register rscratch) {
 2792   assert(rscratch != noreg || always_reachable(src), "missing");
 2793 
 2794   if (reachable(src)) {
 2795     Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len);
 2796   } else {
 2797     lea(rscratch, src);
 2798     Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len);
 2799   }
 2800 }
 2801 
 2802 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge,
 2803                                int vector_len, Register rscratch) {
 2804   assert(rscratch != noreg || always_reachable(src), "missing");
 2805 
 2806   if (reachable(src)) {
 2807     Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len);
 2808   } else {
 2809     lea(rscratch, src);
 2810     Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len);
 2811   }
 2812 }
 2813 
 2814 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
 2815   assert(rscratch != noreg || always_reachable(src), "missing");
 2816 
 2817   if (reachable(src)) {
 2818     Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len);
 2819   } else {
 2820     lea(rscratch, src);
 2821     Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len);
 2822   }
 2823 }
 2824 
 2825 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
 2826   assert(rscratch != noreg || always_reachable(src), "missing");
 2827 
 2828   if (reachable(src)) {
 2829     Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len);
 2830   } else {
 2831     lea(rscratch, src);
 2832     Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len);
 2833   }
 2834 }
 2835 
 2836 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2837   assert(rscratch != noreg || always_reachable(src), "missing");
 2838 
 2839   if (reachable(src)) {
 2840     Assembler::evmovdquq(dst, as_Address(src), vector_len);
 2841   } else {
 2842     lea(rscratch, src);
 2843     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
 2844   }
 2845 }
 2846 
 2847 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2848   assert(rscratch != noreg || always_reachable(src), "missing");
 2849 
 2850   if (reachable(src)) {
 2851     Assembler::movdqa(dst, as_Address(src));
 2852   } else {
 2853     lea(rscratch, src);
 2854     Assembler::movdqa(dst, Address(rscratch, 0));
 2855   }
 2856 }
 2857 
 2858 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2859   assert(rscratch != noreg || always_reachable(src), "missing");
 2860 
 2861   if (reachable(src)) {
 2862     Assembler::movsd(dst, as_Address(src));
 2863   } else {
 2864     lea(rscratch, src);
 2865     Assembler::movsd(dst, Address(rscratch, 0));
 2866   }
 2867 }
 2868 
 2869 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2870   assert(rscratch != noreg || always_reachable(src), "missing");
 2871 
 2872   if (reachable(src)) {
 2873     Assembler::movss(dst, as_Address(src));
 2874   } else {
 2875     lea(rscratch, src);
 2876     Assembler::movss(dst, Address(rscratch, 0));
 2877   }
 2878 }
 2879 
 2880 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2881   assert(rscratch != noreg || always_reachable(src), "missing");
 2882 
 2883   if (reachable(src)) {
 2884     Assembler::movddup(dst, as_Address(src));
 2885   } else {
 2886     lea(rscratch, src);
 2887     Assembler::movddup(dst, Address(rscratch, 0));
 2888   }
 2889 }
 2890 
 2891 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2892   assert(rscratch != noreg || always_reachable(src), "missing");
 2893 
 2894   if (reachable(src)) {
 2895     Assembler::vmovddup(dst, as_Address(src), vector_len);
 2896   } else {
 2897     lea(rscratch, src);
 2898     Assembler::vmovddup(dst, Address(rscratch, 0), vector_len);
 2899   }
 2900 }
 2901 
 2902 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2903   assert(rscratch != noreg || always_reachable(src), "missing");
 2904 
 2905   if (reachable(src)) {
 2906     Assembler::mulsd(dst, as_Address(src));
 2907   } else {
 2908     lea(rscratch, src);
 2909     Assembler::mulsd(dst, Address(rscratch, 0));
 2910   }
 2911 }
 2912 
 2913 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2914   assert(rscratch != noreg || always_reachable(src), "missing");
 2915 
 2916   if (reachable(src)) {
 2917     Assembler::mulss(dst, as_Address(src));
 2918   } else {
 2919     lea(rscratch, src);
 2920     Assembler::mulss(dst, Address(rscratch, 0));
 2921   }
 2922 }
 2923 
 2924 void MacroAssembler::null_check(Register reg, int offset) {
 2925   if (needs_explicit_null_check(offset)) {
 2926     // provoke OS null exception if reg is null by
 2927     // accessing M[reg] w/o changing any (non-CC) registers
 2928     // NOTE: cmpl is plenty here to provoke a segv
 2929     cmpptr(rax, Address(reg, 0));
 2930     // Note: should probably use testl(rax, Address(reg, 0));
 2931     //       may be shorter code (however, this version of
 2932     //       testl needs to be implemented first)
 2933   } else {
 2934     // nothing to do, (later) access of M[reg + offset]
 2935     // will provoke OS null exception if reg is null
 2936   }
 2937 }
 2938 
 2939 void MacroAssembler::os_breakpoint() {
 2940   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
 2941   // (e.g., MSVC can't call ps() otherwise)
 2942   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
 2943 }
 2944 
 2945 void MacroAssembler::unimplemented(const char* what) {
 2946   const char* buf = nullptr;
 2947   {
 2948     ResourceMark rm;
 2949     stringStream ss;
 2950     ss.print("unimplemented: %s", what);
 2951     buf = code_string(ss.as_string());
 2952   }
 2953   stop(buf);
 2954 }
 2955 
 2956 #ifdef _LP64
 2957 #define XSTATE_BV 0x200
 2958 #endif
 2959 
 2960 void MacroAssembler::pop_CPU_state() {
 2961   pop_FPU_state();
 2962   pop_IU_state();
 2963 }
 2964 
 2965 void MacroAssembler::pop_FPU_state() {
 2966 #ifndef _LP64
 2967   frstor(Address(rsp, 0));
 2968 #else
 2969   fxrstor(Address(rsp, 0));
 2970 #endif
 2971   addptr(rsp, FPUStateSizeInWords * wordSize);
 2972 }
 2973 
 2974 void MacroAssembler::pop_IU_state() {
 2975   popa();
 2976   LP64_ONLY(addq(rsp, 8));
 2977   popf();
 2978 }
 2979 
 2980 // Save Integer and Float state
 2981 // Warning: Stack must be 16 byte aligned (64bit)
 2982 void MacroAssembler::push_CPU_state() {
 2983   push_IU_state();
 2984   push_FPU_state();
 2985 }
 2986 
 2987 void MacroAssembler::push_FPU_state() {
 2988   subptr(rsp, FPUStateSizeInWords * wordSize);
 2989 #ifndef _LP64
 2990   fnsave(Address(rsp, 0));
 2991   fwait();
 2992 #else
 2993   fxsave(Address(rsp, 0));
 2994 #endif // LP64
 2995 }
 2996 
 2997 void MacroAssembler::push_IU_state() {
 2998   // Push flags first because pusha kills them
 2999   pushf();
 3000   // Make sure rsp stays 16-byte aligned
 3001   LP64_ONLY(subq(rsp, 8));
 3002   pusha();
 3003 }
 3004 
 3005 void MacroAssembler::push_cont_fastpath() {
 3006   if (!Continuations::enabled()) return;
 3007 
 3008 #ifndef _LP64
 3009   Register rthread = rax;
 3010   Register rrealsp = rbx;
 3011   push(rthread);
 3012   push(rrealsp);
 3013 
 3014   get_thread(rthread);
 3015 
 3016   // The code below wants the original RSP.
 3017   // Move it back after the pushes above.
 3018   movptr(rrealsp, rsp);
 3019   addptr(rrealsp, 2*wordSize);
 3020 #else
 3021   Register rthread = r15_thread;
 3022   Register rrealsp = rsp;
 3023 #endif
 3024 
 3025   Label done;
 3026   cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset()));
 3027   jccb(Assembler::belowEqual, done);
 3028   movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp);
 3029   bind(done);
 3030 
 3031 #ifndef _LP64
 3032   pop(rrealsp);
 3033   pop(rthread);
 3034 #endif
 3035 }
 3036 
 3037 void MacroAssembler::pop_cont_fastpath() {
 3038   if (!Continuations::enabled()) return;
 3039 
 3040 #ifndef _LP64
 3041   Register rthread = rax;
 3042   Register rrealsp = rbx;
 3043   push(rthread);
 3044   push(rrealsp);
 3045 
 3046   get_thread(rthread);
 3047 
 3048   // The code below wants the original RSP.
 3049   // Move it back after the pushes above.
 3050   movptr(rrealsp, rsp);
 3051   addptr(rrealsp, 2*wordSize);
 3052 #else
 3053   Register rthread = r15_thread;
 3054   Register rrealsp = rsp;
 3055 #endif
 3056 
 3057   Label done;
 3058   cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset()));
 3059   jccb(Assembler::below, done);
 3060   movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0);
 3061   bind(done);
 3062 
 3063 #ifndef _LP64
 3064   pop(rrealsp);
 3065   pop(rthread);
 3066 #endif
 3067 }
 3068 
 3069 void MacroAssembler::inc_held_monitor_count() {
 3070 #ifdef _LP64
 3071   incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset()));
 3072 #endif
 3073 }
 3074 
 3075 void MacroAssembler::dec_held_monitor_count() {
 3076 #ifdef _LP64
 3077   decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset()));
 3078 #endif
 3079 }
 3080 
 3081 #ifdef ASSERT
 3082 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) {
 3083 #ifdef _LP64
 3084   Label no_cont;
 3085   movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset()));
 3086   testl(cont, cont);
 3087   jcc(Assembler::zero, no_cont);
 3088   stop(name);
 3089   bind(no_cont);
 3090 #else
 3091   Unimplemented();
 3092 #endif
 3093 }
 3094 #endif
 3095 
 3096 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
 3097   if (!java_thread->is_valid()) {
 3098     java_thread = rdi;
 3099     get_thread(java_thread);
 3100   }
 3101   // we must set sp to zero to clear frame
 3102   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 3103   // must clear fp, so that compiled frames are not confused; it is
 3104   // possible that we need it only for debugging
 3105   if (clear_fp) {
 3106     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 3107   }
 3108   // Always clear the pc because it could have been set by make_walkable()
 3109   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 3110   vzeroupper();
 3111 }
 3112 
 3113 void MacroAssembler::restore_rax(Register tmp) {
 3114   if (tmp == noreg) pop(rax);
 3115   else if (tmp != rax) mov(rax, tmp);
 3116 }
 3117 
 3118 void MacroAssembler::round_to(Register reg, int modulus) {
 3119   addptr(reg, modulus - 1);
 3120   andptr(reg, -modulus);
 3121 }
 3122 
 3123 void MacroAssembler::save_rax(Register tmp) {
 3124   if (tmp == noreg) push(rax);
 3125   else if (tmp != rax) mov(tmp, rax);
 3126 }
 3127 
 3128 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod) {
 3129   if (at_return) {
 3130     // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore,
 3131     // we may safely use rsp instead to perform the stack watermark check.
 3132     cmpptr(in_nmethod ? rsp : rbp, Address(thread_reg, JavaThread::polling_word_offset()));
 3133     jcc(Assembler::above, slow_path);
 3134     return;
 3135   }
 3136   testb(Address(thread_reg, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
 3137   jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
 3138 }
 3139 
 3140 // Calls to C land
 3141 //
 3142 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
 3143 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
 3144 // has to be reset to 0. This is required to allow proper stack traversal.
 3145 void MacroAssembler::set_last_Java_frame(Register java_thread,
 3146                                          Register last_java_sp,
 3147                                          Register last_java_fp,
 3148                                          address  last_java_pc,
 3149                                          Register rscratch) {
 3150   vzeroupper();
 3151   // determine java_thread register
 3152   if (!java_thread->is_valid()) {
 3153     java_thread = rdi;
 3154     get_thread(java_thread);
 3155   }
 3156   // determine last_java_sp register
 3157   if (!last_java_sp->is_valid()) {
 3158     last_java_sp = rsp;
 3159   }
 3160   // last_java_fp is optional
 3161   if (last_java_fp->is_valid()) {
 3162     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
 3163   }
 3164   // last_java_pc is optional
 3165   if (last_java_pc != nullptr) {
 3166     Address java_pc(java_thread,
 3167                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 3168     lea(java_pc, InternalAddress(last_java_pc), rscratch);
 3169   }
 3170   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 3171 }
 3172 
 3173 #ifdef _LP64
 3174 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 3175                                          Register last_java_fp,
 3176                                          Label &L,
 3177                                          Register scratch) {
 3178   lea(scratch, L);
 3179   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), scratch);
 3180   set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, nullptr, scratch);
 3181 }
 3182 #endif
 3183 
 3184 void MacroAssembler::shlptr(Register dst, int imm8) {
 3185   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
 3186 }
 3187 
 3188 void MacroAssembler::shrptr(Register dst, int imm8) {
 3189   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
 3190 }
 3191 
 3192 void MacroAssembler::sign_extend_byte(Register reg) {
 3193   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
 3194     movsbl(reg, reg); // movsxb
 3195   } else {
 3196     shll(reg, 24);
 3197     sarl(reg, 24);
 3198   }
 3199 }
 3200 
 3201 void MacroAssembler::sign_extend_short(Register reg) {
 3202   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 3203     movswl(reg, reg); // movsxw
 3204   } else {
 3205     shll(reg, 16);
 3206     sarl(reg, 16);
 3207   }
 3208 }
 3209 
 3210 void MacroAssembler::testl(Address dst, int32_t imm32) {
 3211   if (imm32 >= 0 && is8bit(imm32)) {
 3212     testb(dst, imm32);
 3213   } else {
 3214     Assembler::testl(dst, imm32);
 3215   }
 3216 }
 3217 
 3218 void MacroAssembler::testl(Register dst, int32_t imm32) {
 3219   if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) {
 3220     testb(dst, imm32);
 3221   } else {
 3222     Assembler::testl(dst, imm32);
 3223   }
 3224 }
 3225 
 3226 void MacroAssembler::testl(Register dst, AddressLiteral src) {
 3227   assert(always_reachable(src), "Address should be reachable");
 3228   testl(dst, as_Address(src));
 3229 }
 3230 
 3231 #ifdef _LP64
 3232 
 3233 void MacroAssembler::testq(Address dst, int32_t imm32) {
 3234   if (imm32 >= 0) {
 3235     testl(dst, imm32);
 3236   } else {
 3237     Assembler::testq(dst, imm32);
 3238   }
 3239 }
 3240 
 3241 void MacroAssembler::testq(Register dst, int32_t imm32) {
 3242   if (imm32 >= 0) {
 3243     testl(dst, imm32);
 3244   } else {
 3245     Assembler::testq(dst, imm32);
 3246   }
 3247 }
 3248 
 3249 #endif
 3250 
 3251 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
 3252   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3253   Assembler::pcmpeqb(dst, src);
 3254 }
 3255 
 3256 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
 3257   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3258   Assembler::pcmpeqw(dst, src);
 3259 }
 3260 
 3261 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
 3262   assert((dst->encoding() < 16),"XMM register should be 0-15");
 3263   Assembler::pcmpestri(dst, src, imm8);
 3264 }
 3265 
 3266 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
 3267   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3268   Assembler::pcmpestri(dst, src, imm8);
 3269 }
 3270 
 3271 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
 3272   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3273   Assembler::pmovzxbw(dst, src);
 3274 }
 3275 
 3276 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
 3277   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3278   Assembler::pmovzxbw(dst, src);
 3279 }
 3280 
 3281 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
 3282   assert((src->encoding() < 16),"XMM register should be 0-15");
 3283   Assembler::pmovmskb(dst, src);
 3284 }
 3285 
 3286 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
 3287   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3288   Assembler::ptest(dst, src);
 3289 }
 3290 
 3291 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3292   assert(rscratch != noreg || always_reachable(src), "missing");
 3293 
 3294   if (reachable(src)) {
 3295     Assembler::sqrtss(dst, as_Address(src));
 3296   } else {
 3297     lea(rscratch, src);
 3298     Assembler::sqrtss(dst, Address(rscratch, 0));
 3299   }
 3300 }
 3301 
 3302 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3303   assert(rscratch != noreg || always_reachable(src), "missing");
 3304 
 3305   if (reachable(src)) {
 3306     Assembler::subsd(dst, as_Address(src));
 3307   } else {
 3308     lea(rscratch, src);
 3309     Assembler::subsd(dst, Address(rscratch, 0));
 3310   }
 3311 }
 3312 
 3313 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) {
 3314   assert(rscratch != noreg || always_reachable(src), "missing");
 3315 
 3316   if (reachable(src)) {
 3317     Assembler::roundsd(dst, as_Address(src), rmode);
 3318   } else {
 3319     lea(rscratch, src);
 3320     Assembler::roundsd(dst, Address(rscratch, 0), rmode);
 3321   }
 3322 }
 3323 
 3324 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3325   assert(rscratch != noreg || always_reachable(src), "missing");
 3326 
 3327   if (reachable(src)) {
 3328     Assembler::subss(dst, as_Address(src));
 3329   } else {
 3330     lea(rscratch, src);
 3331     Assembler::subss(dst, Address(rscratch, 0));
 3332   }
 3333 }
 3334 
 3335 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3336   assert(rscratch != noreg || always_reachable(src), "missing");
 3337 
 3338   if (reachable(src)) {
 3339     Assembler::ucomisd(dst, as_Address(src));
 3340   } else {
 3341     lea(rscratch, src);
 3342     Assembler::ucomisd(dst, Address(rscratch, 0));
 3343   }
 3344 }
 3345 
 3346 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3347   assert(rscratch != noreg || always_reachable(src), "missing");
 3348 
 3349   if (reachable(src)) {
 3350     Assembler::ucomiss(dst, as_Address(src));
 3351   } else {
 3352     lea(rscratch, src);
 3353     Assembler::ucomiss(dst, Address(rscratch, 0));
 3354   }
 3355 }
 3356 
 3357 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3358   assert(rscratch != noreg || always_reachable(src), "missing");
 3359 
 3360   // Used in sign-bit flipping with aligned address.
 3361   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 3362 
 3363   if (UseAVX > 2 &&
 3364       (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
 3365       (dst->encoding() >= 16)) {
 3366     vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch);
 3367   } else if (reachable(src)) {
 3368     Assembler::xorpd(dst, as_Address(src));
 3369   } else {
 3370     lea(rscratch, src);
 3371     Assembler::xorpd(dst, Address(rscratch, 0));
 3372   }
 3373 }
 3374 
 3375 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
 3376   if (UseAVX > 2 &&
 3377       (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
 3378       ((dst->encoding() >= 16) || (src->encoding() >= 16))) {
 3379     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
 3380   } else {
 3381     Assembler::xorpd(dst, src);
 3382   }
 3383 }
 3384 
 3385 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
 3386   if (UseAVX > 2 &&
 3387       (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
 3388       ((dst->encoding() >= 16) || (src->encoding() >= 16))) {
 3389     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
 3390   } else {
 3391     Assembler::xorps(dst, src);
 3392   }
 3393 }
 3394 
 3395 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3396   assert(rscratch != noreg || always_reachable(src), "missing");
 3397 
 3398   // Used in sign-bit flipping with aligned address.
 3399   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 3400 
 3401   if (UseAVX > 2 &&
 3402       (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
 3403       (dst->encoding() >= 16)) {
 3404     vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch);
 3405   } else if (reachable(src)) {
 3406     Assembler::xorps(dst, as_Address(src));
 3407   } else {
 3408     lea(rscratch, src);
 3409     Assembler::xorps(dst, Address(rscratch, 0));
 3410   }
 3411 }
 3412 
 3413 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3414   assert(rscratch != noreg || always_reachable(src), "missing");
 3415 
 3416   // Used in sign-bit flipping with aligned address.
 3417   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
 3418   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
 3419   if (reachable(src)) {
 3420     Assembler::pshufb(dst, as_Address(src));
 3421   } else {
 3422     lea(rscratch, src);
 3423     Assembler::pshufb(dst, Address(rscratch, 0));
 3424   }
 3425 }
 3426 
 3427 // AVX 3-operands instructions
 3428 
 3429 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3430   assert(rscratch != noreg || always_reachable(src), "missing");
 3431 
 3432   if (reachable(src)) {
 3433     vaddsd(dst, nds, as_Address(src));
 3434   } else {
 3435     lea(rscratch, src);
 3436     vaddsd(dst, nds, Address(rscratch, 0));
 3437   }
 3438 }
 3439 
 3440 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3441   assert(rscratch != noreg || always_reachable(src), "missing");
 3442 
 3443   if (reachable(src)) {
 3444     vaddss(dst, nds, as_Address(src));
 3445   } else {
 3446     lea(rscratch, src);
 3447     vaddss(dst, nds, Address(rscratch, 0));
 3448   }
 3449 }
 3450 
 3451 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3452   assert(UseAVX > 0, "requires some form of AVX");
 3453   assert(rscratch != noreg || always_reachable(src), "missing");
 3454 
 3455   if (reachable(src)) {
 3456     Assembler::vpaddb(dst, nds, as_Address(src), vector_len);
 3457   } else {
 3458     lea(rscratch, src);
 3459     Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len);
 3460   }
 3461 }
 3462 
 3463 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3464   assert(UseAVX > 0, "requires some form of AVX");
 3465   assert(rscratch != noreg || always_reachable(src), "missing");
 3466 
 3467   if (reachable(src)) {
 3468     Assembler::vpaddd(dst, nds, as_Address(src), vector_len);
 3469   } else {
 3470     lea(rscratch, src);
 3471     Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len);
 3472   }
 3473 }
 3474 
 3475 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) {
 3476   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3477   assert(rscratch != noreg || always_reachable(negate_field), "missing");
 3478 
 3479   vandps(dst, nds, negate_field, vector_len, rscratch);
 3480 }
 3481 
 3482 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) {
 3483   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3484   assert(rscratch != noreg || always_reachable(negate_field), "missing");
 3485 
 3486   vandpd(dst, nds, negate_field, vector_len, rscratch);
 3487 }
 3488 
 3489 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3490   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3491   Assembler::vpaddb(dst, nds, src, vector_len);
 3492 }
 3493 
 3494 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3495   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3496   Assembler::vpaddb(dst, nds, src, vector_len);
 3497 }
 3498 
 3499 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3500   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3501   Assembler::vpaddw(dst, nds, src, vector_len);
 3502 }
 3503 
 3504 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3505   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3506   Assembler::vpaddw(dst, nds, src, vector_len);
 3507 }
 3508 
 3509 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3510   assert(rscratch != noreg || always_reachable(src), "missing");
 3511 
 3512   if (reachable(src)) {
 3513     Assembler::vpand(dst, nds, as_Address(src), vector_len);
 3514   } else {
 3515     lea(rscratch, src);
 3516     Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len);
 3517   }
 3518 }
 3519 
 3520 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3521   assert(rscratch != noreg || always_reachable(src), "missing");
 3522 
 3523   if (reachable(src)) {
 3524     Assembler::vpbroadcastd(dst, as_Address(src), vector_len);
 3525   } else {
 3526     lea(rscratch, src);
 3527     Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len);
 3528   }
 3529 }
 3530 
 3531 void MacroAssembler::vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3532   assert(rscratch != noreg || always_reachable(src), "missing");
 3533 
 3534   if (reachable(src)) {
 3535     Assembler::vbroadcasti128(dst, as_Address(src), vector_len);
 3536   } else {
 3537     lea(rscratch, src);
 3538     Assembler::vbroadcasti128(dst, Address(rscratch, 0), vector_len);
 3539   }
 3540 }
 3541 
 3542 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3543   assert(rscratch != noreg || always_reachable(src), "missing");
 3544 
 3545   if (reachable(src)) {
 3546     Assembler::vpbroadcastq(dst, as_Address(src), vector_len);
 3547   } else {
 3548     lea(rscratch, src);
 3549     Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len);
 3550   }
 3551 }
 3552 
 3553 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3554   assert(rscratch != noreg || always_reachable(src), "missing");
 3555 
 3556   if (reachable(src)) {
 3557     Assembler::vbroadcastsd(dst, as_Address(src), vector_len);
 3558   } else {
 3559     lea(rscratch, src);
 3560     Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len);
 3561   }
 3562 }
 3563 
 3564 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3565   assert(rscratch != noreg || always_reachable(src), "missing");
 3566 
 3567   if (reachable(src)) {
 3568     Assembler::vbroadcastss(dst, as_Address(src), vector_len);
 3569   } else {
 3570     lea(rscratch, src);
 3571     Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len);
 3572   }
 3573 }
 3574 
 3575 // Vector float blend
 3576 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg)
 3577 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) {
 3578   // WARN: Allow dst == (src1|src2), mask == scratch
 3579   bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1;
 3580   bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst;
 3581   bool dst_available = dst != mask && (dst != src1 || dst != src2);
 3582   if (blend_emulation && scratch_available && dst_available) {
 3583     if (compute_mask) {
 3584       vpsrad(scratch, mask, 32, vector_len);
 3585       mask = scratch;
 3586     }
 3587     if (dst == src1) {
 3588       vpandn(dst,     mask, src1, vector_len); // if mask == 0, src1
 3589       vpand (scratch, mask, src2, vector_len); // if mask == 1, src2
 3590     } else {
 3591       vpand (dst,     mask, src2, vector_len); // if mask == 1, src2
 3592       vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1
 3593     }
 3594     vpor(dst, dst, scratch, vector_len);
 3595   } else {
 3596     Assembler::vblendvps(dst, src1, src2, mask, vector_len);
 3597   }
 3598 }
 3599 
 3600 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg)
 3601 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) {
 3602   // WARN: Allow dst == (src1|src2), mask == scratch
 3603   bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1;
 3604   bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask);
 3605   bool dst_available = dst != mask && (dst != src1 || dst != src2);
 3606   if (blend_emulation && scratch_available && dst_available) {
 3607     if (compute_mask) {
 3608       vpxor(scratch, scratch, scratch, vector_len);
 3609       vpcmpgtq(scratch, scratch, mask, vector_len);
 3610       mask = scratch;
 3611     }
 3612     if (dst == src1) {
 3613       vpandn(dst,     mask, src1, vector_len); // if mask == 0, src
 3614       vpand (scratch, mask, src2, vector_len); // if mask == 1, src2
 3615     } else {
 3616       vpand (dst,     mask, src2, vector_len); // if mask == 1, src2
 3617       vpandn(scratch, mask, src1, vector_len); // if mask == 0, src
 3618     }
 3619     vpor(dst, dst, scratch, vector_len);
 3620   } else {
 3621     Assembler::vblendvpd(dst, src1, src2, mask, vector_len);
 3622   }
 3623 }
 3624 
 3625 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3626   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3627   Assembler::vpcmpeqb(dst, nds, src, vector_len);
 3628 }
 3629 
 3630 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
 3631   assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3632   Assembler::vpcmpeqb(dst, src1, src2, vector_len);
 3633 }
 3634 
 3635 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3636   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3637   Assembler::vpcmpeqw(dst, nds, src, vector_len);
 3638 }
 3639 
 3640 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3641   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3642   Assembler::vpcmpeqw(dst, nds, src, vector_len);
 3643 }
 3644 
 3645 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3646   assert(rscratch != noreg || always_reachable(src), "missing");
 3647 
 3648   if (reachable(src)) {
 3649     Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len);
 3650   } else {
 3651     lea(rscratch, src);
 3652     Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len);
 3653   }
 3654 }
 3655 
 3656 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3657                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3658   assert(rscratch != noreg || always_reachable(src), "missing");
 3659 
 3660   if (reachable(src)) {
 3661     Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3662   } else {
 3663     lea(rscratch, src);
 3664     Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3665   }
 3666 }
 3667 
 3668 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3669                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3670   assert(rscratch != noreg || always_reachable(src), "missing");
 3671 
 3672   if (reachable(src)) {
 3673     Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3674   } else {
 3675     lea(rscratch, src);
 3676     Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3677   }
 3678 }
 3679 
 3680 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3681                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3682   assert(rscratch != noreg || always_reachable(src), "missing");
 3683 
 3684   if (reachable(src)) {
 3685     Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3686   } else {
 3687     lea(rscratch, src);
 3688     Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3689   }
 3690 }
 3691 
 3692 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3693                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3694   assert(rscratch != noreg || always_reachable(src), "missing");
 3695 
 3696   if (reachable(src)) {
 3697     Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3698   } else {
 3699     lea(rscratch, src);
 3700     Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3701   }
 3702 }
 3703 
 3704 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) {
 3705   if (width == Assembler::Q) {
 3706     Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len);
 3707   } else {
 3708     Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len);
 3709   }
 3710 }
 3711 
 3712 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) {
 3713   int eq_cond_enc = 0x29;
 3714   int gt_cond_enc = 0x37;
 3715   if (width != Assembler::Q) {
 3716     eq_cond_enc = 0x74 + width;
 3717     gt_cond_enc = 0x64 + width;
 3718   }
 3719   switch (cond) {
 3720   case eq:
 3721     vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len);
 3722     break;
 3723   case neq:
 3724     vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len);
 3725     vallones(xtmp, vector_len);
 3726     vpxor(dst, xtmp, dst, vector_len);
 3727     break;
 3728   case le:
 3729     vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len);
 3730     vallones(xtmp, vector_len);
 3731     vpxor(dst, xtmp, dst, vector_len);
 3732     break;
 3733   case nlt:
 3734     vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len);
 3735     vallones(xtmp, vector_len);
 3736     vpxor(dst, xtmp, dst, vector_len);
 3737     break;
 3738   case lt:
 3739     vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len);
 3740     break;
 3741   case nle:
 3742     vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len);
 3743     break;
 3744   default:
 3745     assert(false, "Should not reach here");
 3746   }
 3747 }
 3748 
 3749 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
 3750   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3751   Assembler::vpmovzxbw(dst, src, vector_len);
 3752 }
 3753 
 3754 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) {
 3755   assert((src->encoding() < 16),"XMM register should be 0-15");
 3756   Assembler::vpmovmskb(dst, src, vector_len);
 3757 }
 3758 
 3759 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3760   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3761   Assembler::vpmullw(dst, nds, src, vector_len);
 3762 }
 3763 
 3764 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3765   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3766   Assembler::vpmullw(dst, nds, src, vector_len);
 3767 }
 3768 
 3769 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3770   assert((UseAVX > 0), "AVX support is needed");
 3771   assert(rscratch != noreg || always_reachable(src), "missing");
 3772 
 3773   if (reachable(src)) {
 3774     Assembler::vpmulld(dst, nds, as_Address(src), vector_len);
 3775   } else {
 3776     lea(rscratch, src);
 3777     Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len);
 3778   }
 3779 }
 3780 
 3781 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3782   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3783   Assembler::vpsubb(dst, nds, src, vector_len);
 3784 }
 3785 
 3786 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3787   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3788   Assembler::vpsubb(dst, nds, src, vector_len);
 3789 }
 3790 
 3791 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3792   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3793   Assembler::vpsubw(dst, nds, src, vector_len);
 3794 }
 3795 
 3796 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3797   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3798   Assembler::vpsubw(dst, nds, src, vector_len);
 3799 }
 3800 
 3801 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3802   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3803   Assembler::vpsraw(dst, nds, shift, vector_len);
 3804 }
 3805 
 3806 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3807   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3808   Assembler::vpsraw(dst, nds, shift, vector_len);
 3809 }
 3810 
 3811 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3812   assert(UseAVX > 2,"");
 3813   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
 3814      vector_len = 2;
 3815   }
 3816   Assembler::evpsraq(dst, nds, shift, vector_len);
 3817 }
 3818 
 3819 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3820   assert(UseAVX > 2,"");
 3821   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
 3822      vector_len = 2;
 3823   }
 3824   Assembler::evpsraq(dst, nds, shift, vector_len);
 3825 }
 3826 
 3827 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3828   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3829   Assembler::vpsrlw(dst, nds, shift, vector_len);
 3830 }
 3831 
 3832 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3833   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3834   Assembler::vpsrlw(dst, nds, shift, vector_len);
 3835 }
 3836 
 3837 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3838   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3839   Assembler::vpsllw(dst, nds, shift, vector_len);
 3840 }
 3841 
 3842 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3843   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3844   Assembler::vpsllw(dst, nds, shift, vector_len);
 3845 }
 3846 
 3847 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
 3848   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3849   Assembler::vptest(dst, src);
 3850 }
 3851 
 3852 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
 3853   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3854   Assembler::punpcklbw(dst, src);
 3855 }
 3856 
 3857 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
 3858   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 3859   Assembler::pshufd(dst, src, mode);
 3860 }
 3861 
 3862 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
 3863   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3864   Assembler::pshuflw(dst, src, mode);
 3865 }
 3866 
 3867 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3868   assert(rscratch != noreg || always_reachable(src), "missing");
 3869 
 3870   if (reachable(src)) {
 3871     vandpd(dst, nds, as_Address(src), vector_len);
 3872   } else {
 3873     lea(rscratch, src);
 3874     vandpd(dst, nds, Address(rscratch, 0), vector_len);
 3875   }
 3876 }
 3877 
 3878 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3879   assert(rscratch != noreg || always_reachable(src), "missing");
 3880 
 3881   if (reachable(src)) {
 3882     vandps(dst, nds, as_Address(src), vector_len);
 3883   } else {
 3884     lea(rscratch, src);
 3885     vandps(dst, nds, Address(rscratch, 0), vector_len);
 3886   }
 3887 }
 3888 
 3889 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3890                             bool merge, int vector_len, Register rscratch) {
 3891   assert(rscratch != noreg || always_reachable(src), "missing");
 3892 
 3893   if (reachable(src)) {
 3894     Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len);
 3895   } else {
 3896     lea(rscratch, src);
 3897     Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len);
 3898   }
 3899 }
 3900 
 3901 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3902   assert(rscratch != noreg || always_reachable(src), "missing");
 3903 
 3904   if (reachable(src)) {
 3905     vdivsd(dst, nds, as_Address(src));
 3906   } else {
 3907     lea(rscratch, src);
 3908     vdivsd(dst, nds, Address(rscratch, 0));
 3909   }
 3910 }
 3911 
 3912 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3913   assert(rscratch != noreg || always_reachable(src), "missing");
 3914 
 3915   if (reachable(src)) {
 3916     vdivss(dst, nds, as_Address(src));
 3917   } else {
 3918     lea(rscratch, src);
 3919     vdivss(dst, nds, Address(rscratch, 0));
 3920   }
 3921 }
 3922 
 3923 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3924   assert(rscratch != noreg || always_reachable(src), "missing");
 3925 
 3926   if (reachable(src)) {
 3927     vmulsd(dst, nds, as_Address(src));
 3928   } else {
 3929     lea(rscratch, src);
 3930     vmulsd(dst, nds, Address(rscratch, 0));
 3931   }
 3932 }
 3933 
 3934 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3935   assert(rscratch != noreg || always_reachable(src), "missing");
 3936 
 3937   if (reachable(src)) {
 3938     vmulss(dst, nds, as_Address(src));
 3939   } else {
 3940     lea(rscratch, src);
 3941     vmulss(dst, nds, Address(rscratch, 0));
 3942   }
 3943 }
 3944 
 3945 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3946   assert(rscratch != noreg || always_reachable(src), "missing");
 3947 
 3948   if (reachable(src)) {
 3949     vsubsd(dst, nds, as_Address(src));
 3950   } else {
 3951     lea(rscratch, src);
 3952     vsubsd(dst, nds, Address(rscratch, 0));
 3953   }
 3954 }
 3955 
 3956 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3957   assert(rscratch != noreg || always_reachable(src), "missing");
 3958 
 3959   if (reachable(src)) {
 3960     vsubss(dst, nds, as_Address(src));
 3961   } else {
 3962     lea(rscratch, src);
 3963     vsubss(dst, nds, Address(rscratch, 0));
 3964   }
 3965 }
 3966 
 3967 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3968   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3969   assert(rscratch != noreg || always_reachable(src), "missing");
 3970 
 3971   vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch);
 3972 }
 3973 
 3974 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3975   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3976   assert(rscratch != noreg || always_reachable(src), "missing");
 3977 
 3978   vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch);
 3979 }
 3980 
 3981 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3982   assert(rscratch != noreg || always_reachable(src), "missing");
 3983 
 3984   if (reachable(src)) {
 3985     vxorpd(dst, nds, as_Address(src), vector_len);
 3986   } else {
 3987     lea(rscratch, src);
 3988     vxorpd(dst, nds, Address(rscratch, 0), vector_len);
 3989   }
 3990 }
 3991 
 3992 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3993   assert(rscratch != noreg || always_reachable(src), "missing");
 3994 
 3995   if (reachable(src)) {
 3996     vxorps(dst, nds, as_Address(src), vector_len);
 3997   } else {
 3998     lea(rscratch, src);
 3999     vxorps(dst, nds, Address(rscratch, 0), vector_len);
 4000   }
 4001 }
 4002 
 4003 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 4004   assert(rscratch != noreg || always_reachable(src), "missing");
 4005 
 4006   if (UseAVX > 1 || (vector_len < 1)) {
 4007     if (reachable(src)) {
 4008       Assembler::vpxor(dst, nds, as_Address(src), vector_len);
 4009     } else {
 4010       lea(rscratch, src);
 4011       Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len);
 4012     }
 4013   } else {
 4014     MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch);
 4015   }
 4016 }
 4017 
 4018 void MacroAssembler::vpermd(XMMRegister dst,  XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 4019   assert(rscratch != noreg || always_reachable(src), "missing");
 4020 
 4021   if (reachable(src)) {
 4022     Assembler::vpermd(dst, nds, as_Address(src), vector_len);
 4023   } else {
 4024     lea(rscratch, src);
 4025     Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len);
 4026   }
 4027 }
 4028 
 4029 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) {
 4030   const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask);
 4031   STATIC_ASSERT(inverted_mask == -4); // otherwise check this code
 4032   // The inverted mask is sign-extended
 4033   andptr(possibly_non_local, inverted_mask);
 4034 }
 4035 
 4036 void MacroAssembler::resolve_jobject(Register value,
 4037                                      Register thread,
 4038                                      Register tmp) {
 4039   assert_different_registers(value, thread, tmp);
 4040   Label done, tagged, weak_tagged;
 4041   testptr(value, value);
 4042   jcc(Assembler::zero, done);           // Use null as-is.
 4043   testptr(value, JNIHandles::tag_mask); // Test for tag.
 4044   jcc(Assembler::notZero, tagged);
 4045 
 4046   // Resolve local handle
 4047   access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread);
 4048   verify_oop(value);
 4049   jmp(done);
 4050 
 4051   bind(tagged);
 4052   testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag.
 4053   jcc(Assembler::notZero, weak_tagged);
 4054 
 4055   // Resolve global handle
 4056   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread);
 4057   verify_oop(value);
 4058   jmp(done);
 4059 
 4060   bind(weak_tagged);
 4061   // Resolve jweak.
 4062   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
 4063                  value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread);
 4064   verify_oop(value);
 4065 
 4066   bind(done);
 4067 }
 4068 
 4069 void MacroAssembler::resolve_global_jobject(Register value,
 4070                                             Register thread,
 4071                                             Register tmp) {
 4072   assert_different_registers(value, thread, tmp);
 4073   Label done;
 4074 
 4075   testptr(value, value);
 4076   jcc(Assembler::zero, done);           // Use null as-is.
 4077 
 4078 #ifdef ASSERT
 4079   {
 4080     Label valid_global_tag;
 4081     testptr(value, JNIHandles::TypeTag::global); // Test for global tag.
 4082     jcc(Assembler::notZero, valid_global_tag);
 4083     stop("non global jobject using resolve_global_jobject");
 4084     bind(valid_global_tag);
 4085   }
 4086 #endif
 4087 
 4088   // Resolve global handle
 4089   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread);
 4090   verify_oop(value);
 4091 
 4092   bind(done);
 4093 }
 4094 
 4095 void MacroAssembler::subptr(Register dst, int32_t imm32) {
 4096   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
 4097 }
 4098 
 4099 // Force generation of a 4 byte immediate value even if it fits into 8bit
 4100 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
 4101   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
 4102 }
 4103 
 4104 void MacroAssembler::subptr(Register dst, Register src) {
 4105   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
 4106 }
 4107 
 4108 // C++ bool manipulation
 4109 void MacroAssembler::testbool(Register dst) {
 4110   if(sizeof(bool) == 1)
 4111     testb(dst, 0xff);
 4112   else if(sizeof(bool) == 2) {
 4113     // testw implementation needed for two byte bools
 4114     ShouldNotReachHere();
 4115   } else if(sizeof(bool) == 4)
 4116     testl(dst, dst);
 4117   else
 4118     // unsupported
 4119     ShouldNotReachHere();
 4120 }
 4121 
 4122 void MacroAssembler::testptr(Register dst, Register src) {
 4123   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
 4124 }
 4125 
 4126 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
 4127 void MacroAssembler::tlab_allocate(Register thread, Register obj,
 4128                                    Register var_size_in_bytes,
 4129                                    int con_size_in_bytes,
 4130                                    Register t1,
 4131                                    Register t2,
 4132                                    Label& slow_case) {
 4133   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 4134   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
 4135 }
 4136 
 4137 RegSet MacroAssembler::call_clobbered_gp_registers() {
 4138   RegSet regs;
 4139 #ifdef _LP64
 4140   regs += RegSet::of(rax, rcx, rdx);
 4141 #ifndef _WINDOWS
 4142   regs += RegSet::of(rsi, rdi);
 4143 #endif
 4144   regs += RegSet::range(r8, r11);
 4145 #else
 4146   regs += RegSet::of(rax, rcx, rdx);
 4147 #endif
 4148 #ifdef _LP64
 4149   if (UseAPX) {
 4150     regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1));
 4151   }
 4152 #endif
 4153   return regs;
 4154 }
 4155 
 4156 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() {
 4157   int num_xmm_registers = XMMRegister::available_xmm_registers();
 4158 #if defined(_WINDOWS)
 4159   XMMRegSet result = XMMRegSet::range(xmm0, xmm5);
 4160   if (num_xmm_registers > 16) {
 4161      result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1));
 4162   }
 4163   return result;
 4164 #else
 4165   return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1));
 4166 #endif
 4167 }
 4168 
 4169 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor
 4170 
 4171 #ifndef _LP64
 4172 static bool use_x87_registers() { return UseSSE < 2; }
 4173 #endif
 4174 static bool use_xmm_registers() { return UseSSE >= 1; }
 4175 
 4176 // C1 only ever uses the first double/float of the XMM register.
 4177 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); }
 4178 
 4179 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) {
 4180   if (UseSSE == 1) {
 4181     masm->movflt(Address(rsp, offset), reg);
 4182   } else {
 4183     masm->movdbl(Address(rsp, offset), reg);
 4184   }
 4185 }
 4186 
 4187 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) {
 4188   if (UseSSE == 1) {
 4189     masm->movflt(reg, Address(rsp, offset));
 4190   } else {
 4191     masm->movdbl(reg, Address(rsp, offset));
 4192   }
 4193 }
 4194 
 4195 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers,
 4196                                   bool save_fpu, int& gp_area_size,
 4197                                   int& fp_area_size, int& xmm_area_size) {
 4198 
 4199   gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size,
 4200                          StackAlignmentInBytes);
 4201 #ifdef _LP64
 4202   fp_area_size = 0;
 4203 #else
 4204   fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0;
 4205 #endif
 4206   xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0;
 4207 
 4208   return gp_area_size + fp_area_size + xmm_area_size;
 4209 }
 4210 
 4211 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) {
 4212   block_comment("push_call_clobbered_registers start");
 4213   // Regular registers
 4214   RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude;
 4215 
 4216   int gp_area_size;
 4217   int fp_area_size;
 4218   int xmm_area_size;
 4219   int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu,
 4220                                                gp_area_size, fp_area_size, xmm_area_size);
 4221   subptr(rsp, total_save_size);
 4222 
 4223   push_set(gp_registers_to_push, 0);
 4224 
 4225 #ifndef _LP64
 4226   if (save_fpu && use_x87_registers()) {
 4227     fnsave(Address(rsp, gp_area_size));
 4228     fwait();
 4229   }
 4230 #endif
 4231   if (save_fpu && use_xmm_registers()) {
 4232     push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size);
 4233   }
 4234 
 4235   block_comment("push_call_clobbered_registers end");
 4236 }
 4237 
 4238 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) {
 4239   block_comment("pop_call_clobbered_registers start");
 4240 
 4241   RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude;
 4242 
 4243   int gp_area_size;
 4244   int fp_area_size;
 4245   int xmm_area_size;
 4246   int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu,
 4247                                                gp_area_size, fp_area_size, xmm_area_size);
 4248 
 4249   if (restore_fpu && use_xmm_registers()) {
 4250     pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size);
 4251   }
 4252 #ifndef _LP64
 4253   if (restore_fpu && use_x87_registers()) {
 4254     frstor(Address(rsp, gp_area_size));
 4255   }
 4256 #endif
 4257 
 4258   pop_set(gp_registers_to_pop, 0);
 4259 
 4260   addptr(rsp, total_save_size);
 4261 
 4262   vzeroupper();
 4263 
 4264   block_comment("pop_call_clobbered_registers end");
 4265 }
 4266 
 4267 void MacroAssembler::push_set(XMMRegSet set, int offset) {
 4268   assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be");
 4269   int spill_offset = offset;
 4270 
 4271   for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) {
 4272     save_xmm_register(this, spill_offset, *it);
 4273     spill_offset += xmm_save_size();
 4274   }
 4275 }
 4276 
 4277 void MacroAssembler::pop_set(XMMRegSet set, int offset) {
 4278   int restore_size = set.size() * xmm_save_size();
 4279   assert(is_aligned(restore_size, StackAlignmentInBytes), "must be");
 4280 
 4281   int restore_offset = offset + restore_size - xmm_save_size();
 4282 
 4283   for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) {
 4284     restore_xmm_register(this, restore_offset, *it);
 4285     restore_offset -= xmm_save_size();
 4286   }
 4287 }
 4288 
 4289 void MacroAssembler::push_set(RegSet set, int offset) {
 4290   int spill_offset;
 4291   if (offset == -1) {
 4292     int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4293     int aligned_size = align_up(register_push_size, StackAlignmentInBytes);
 4294     subptr(rsp, aligned_size);
 4295     spill_offset = 0;
 4296   } else {
 4297     spill_offset = offset;
 4298   }
 4299 
 4300   for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) {
 4301     movptr(Address(rsp, spill_offset), *it);
 4302     spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4303   }
 4304 }
 4305 
 4306 void MacroAssembler::pop_set(RegSet set, int offset) {
 4307 
 4308   int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4309   int restore_size = set.size() * gp_reg_size;
 4310   int aligned_size = align_up(restore_size, StackAlignmentInBytes);
 4311 
 4312   int restore_offset;
 4313   if (offset == -1) {
 4314     restore_offset = restore_size - gp_reg_size;
 4315   } else {
 4316     restore_offset = offset + restore_size - gp_reg_size;
 4317   }
 4318   for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) {
 4319     movptr(*it, Address(rsp, restore_offset));
 4320     restore_offset -= gp_reg_size;
 4321   }
 4322 
 4323   if (offset == -1) {
 4324     addptr(rsp, aligned_size);
 4325   }
 4326 }
 4327 
 4328 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
 4329 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
 4330   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
 4331   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
 4332   Label done;
 4333 
 4334   testptr(length_in_bytes, length_in_bytes);
 4335   jcc(Assembler::zero, done);
 4336 
 4337   // initialize topmost word, divide index by 2, check if odd and test if zero
 4338   // note: for the remaining code to work, index must be a multiple of BytesPerWord
 4339 #ifdef ASSERT
 4340   {
 4341     Label L;
 4342     testptr(length_in_bytes, BytesPerWord - 1);
 4343     jcc(Assembler::zero, L);
 4344     stop("length must be a multiple of BytesPerWord");
 4345     bind(L);
 4346   }
 4347 #endif
 4348   Register index = length_in_bytes;
 4349   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
 4350   if (UseIncDec) {
 4351     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
 4352   } else {
 4353     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
 4354     shrptr(index, 1);
 4355   }
 4356 #ifndef _LP64
 4357   // index could have not been a multiple of 8 (i.e., bit 2 was set)
 4358   {
 4359     Label even;
 4360     // note: if index was a multiple of 8, then it cannot
 4361     //       be 0 now otherwise it must have been 0 before
 4362     //       => if it is even, we don't need to check for 0 again
 4363     jcc(Assembler::carryClear, even);
 4364     // clear topmost word (no jump would be needed if conditional assignment worked here)
 4365     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
 4366     // index could be 0 now, must check again
 4367     jcc(Assembler::zero, done);
 4368     bind(even);
 4369   }
 4370 #endif // !_LP64
 4371   // initialize remaining object fields: index is a multiple of 2 now
 4372   {
 4373     Label loop;
 4374     bind(loop);
 4375     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
 4376     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
 4377     decrement(index);
 4378     jcc(Assembler::notZero, loop);
 4379   }
 4380 
 4381   bind(done);
 4382 }
 4383 
 4384 // Look up the method for a megamorphic invokeinterface call.
 4385 // The target method is determined by <intf_klass, itable_index>.
 4386 // The receiver klass is in recv_klass.
 4387 // On success, the result will be in method_result, and execution falls through.
 4388 // On failure, execution transfers to the given label.
 4389 void MacroAssembler::lookup_interface_method(Register recv_klass,
 4390                                              Register intf_klass,
 4391                                              RegisterOrConstant itable_index,
 4392                                              Register method_result,
 4393                                              Register scan_temp,
 4394                                              Label& L_no_such_interface,
 4395                                              bool return_method) {
 4396   assert_different_registers(recv_klass, intf_klass, scan_temp);
 4397   assert_different_registers(method_result, intf_klass, scan_temp);
 4398   assert(recv_klass != method_result || !return_method,
 4399          "recv_klass can be destroyed when method isn't needed");
 4400 
 4401   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
 4402          "caller must use same register for non-constant itable index as for method");
 4403 
 4404   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
 4405   int vtable_base = in_bytes(Klass::vtable_start_offset());
 4406   int itentry_off = in_bytes(itableMethodEntry::method_offset());
 4407   int scan_step   = itableOffsetEntry::size() * wordSize;
 4408   int vte_size    = vtableEntry::size_in_bytes();
 4409   Address::ScaleFactor times_vte_scale = Address::times_ptr;
 4410   assert(vte_size == wordSize, "else adjust times_vte_scale");
 4411 
 4412   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
 4413 
 4414   // Could store the aligned, prescaled offset in the klass.
 4415   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
 4416 
 4417   if (return_method) {
 4418     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
 4419     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 4420     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
 4421   }
 4422 
 4423   // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) {
 4424   //   if (scan->interface() == intf) {
 4425   //     result = (klass + scan->offset() + itable_index);
 4426   //   }
 4427   // }
 4428   Label search, found_method;
 4429 
 4430   for (int peel = 1; peel >= 0; peel--) {
 4431     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
 4432     cmpptr(intf_klass, method_result);
 4433 
 4434     if (peel) {
 4435       jccb(Assembler::equal, found_method);
 4436     } else {
 4437       jccb(Assembler::notEqual, search);
 4438       // (invert the test to fall through to found_method...)
 4439     }
 4440 
 4441     if (!peel)  break;
 4442 
 4443     bind(search);
 4444 
 4445     // Check that the previous entry is non-null.  A null entry means that
 4446     // the receiver class doesn't implement the interface, and wasn't the
 4447     // same as when the caller was compiled.
 4448     testptr(method_result, method_result);
 4449     jcc(Assembler::zero, L_no_such_interface);
 4450     addptr(scan_temp, scan_step);
 4451   }
 4452 
 4453   bind(found_method);
 4454 
 4455   if (return_method) {
 4456     // Got a hit.
 4457     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset()));
 4458     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
 4459   }
 4460 }
 4461 
 4462 // Look up the method for a megamorphic invokeinterface call in a single pass over itable:
 4463 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData
 4464 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index
 4465 // The target method is determined by <holder_klass, itable_index>.
 4466 // The receiver klass is in recv_klass.
 4467 // On success, the result will be in method_result, and execution falls through.
 4468 // On failure, execution transfers to the given label.
 4469 void MacroAssembler::lookup_interface_method_stub(Register recv_klass,
 4470                                                   Register holder_klass,
 4471                                                   Register resolved_klass,
 4472                                                   Register method_result,
 4473                                                   Register scan_temp,
 4474                                                   Register temp_reg2,
 4475                                                   Register receiver,
 4476                                                   int itable_index,
 4477                                                   Label& L_no_such_interface) {
 4478   assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver);
 4479   Register temp_itbl_klass = method_result;
 4480   Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl
 4481 
 4482   int vtable_base = in_bytes(Klass::vtable_start_offset());
 4483   int itentry_off = in_bytes(itableMethodEntry::method_offset());
 4484   int scan_step = itableOffsetEntry::size() * wordSize;
 4485   int vte_size = vtableEntry::size_in_bytes();
 4486   int ioffset = in_bytes(itableOffsetEntry::interface_offset());
 4487   int ooffset = in_bytes(itableOffsetEntry::offset_offset());
 4488   Address::ScaleFactor times_vte_scale = Address::times_ptr;
 4489   assert(vte_size == wordSize, "adjust times_vte_scale");
 4490 
 4491   Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found;
 4492 
 4493   // temp_itbl_klass = recv_klass.itable[0]
 4494   // scan_temp = &recv_klass.itable[0] + step
 4495   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
 4496   movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset));
 4497   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step));
 4498   xorptr(temp_reg, temp_reg);
 4499 
 4500   // Initial checks:
 4501   //   - if (holder_klass != resolved_klass), go to "scan for resolved"
 4502   //   - if (itable[0] == 0), no such interface
 4503   //   - if (itable[0] == holder_klass), shortcut to "holder found"
 4504   cmpptr(holder_klass, resolved_klass);
 4505   jccb(Assembler::notEqual, L_loop_scan_resolved_entry);
 4506   testptr(temp_itbl_klass, temp_itbl_klass);
 4507   jccb(Assembler::zero, L_no_such_interface);
 4508   cmpptr(holder_klass, temp_itbl_klass);
 4509   jccb(Assembler::equal, L_holder_found);
 4510 
 4511   // Loop: Look for holder_klass record in itable
 4512   //   do {
 4513   //     tmp = itable[index];
 4514   //     index += step;
 4515   //     if (tmp == holder_klass) {
 4516   //       goto L_holder_found; // Found!
 4517   //     }
 4518   //   } while (tmp != 0);
 4519   //   goto L_no_such_interface // Not found.
 4520   Label L_scan_holder;
 4521   bind(L_scan_holder);
 4522     movptr(temp_itbl_klass, Address(scan_temp, 0));
 4523     addptr(scan_temp, scan_step);
 4524     cmpptr(holder_klass, temp_itbl_klass);
 4525     jccb(Assembler::equal, L_holder_found);
 4526     testptr(temp_itbl_klass, temp_itbl_klass);
 4527     jccb(Assembler::notZero, L_scan_holder);
 4528 
 4529   jmpb(L_no_such_interface);
 4530 
 4531   // Loop: Look for resolved_class record in itable
 4532   //   do {
 4533   //     tmp = itable[index];
 4534   //     index += step;
 4535   //     if (tmp == holder_klass) {
 4536   //        // Also check if we have met a holder klass
 4537   //        holder_tmp = itable[index-step-ioffset];
 4538   //     }
 4539   //     if (tmp == resolved_klass) {
 4540   //        goto L_resolved_found;  // Found!
 4541   //     }
 4542   //   } while (tmp != 0);
 4543   //   goto L_no_such_interface // Not found.
 4544   //
 4545   Label L_loop_scan_resolved;
 4546   bind(L_loop_scan_resolved);
 4547     movptr(temp_itbl_klass, Address(scan_temp, 0));
 4548     addptr(scan_temp, scan_step);
 4549     bind(L_loop_scan_resolved_entry);
 4550     cmpptr(holder_klass, temp_itbl_klass);
 4551     cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step));
 4552     cmpptr(resolved_klass, temp_itbl_klass);
 4553     jccb(Assembler::equal, L_resolved_found);
 4554     testptr(temp_itbl_klass, temp_itbl_klass);
 4555     jccb(Assembler::notZero, L_loop_scan_resolved);
 4556 
 4557   jmpb(L_no_such_interface);
 4558 
 4559   Label L_ready;
 4560 
 4561   // See if we already have a holder klass. If not, go and scan for it.
 4562   bind(L_resolved_found);
 4563   testptr(temp_reg, temp_reg);
 4564   jccb(Assembler::zero, L_scan_holder);
 4565   jmpb(L_ready);
 4566 
 4567   bind(L_holder_found);
 4568   movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step));
 4569 
 4570   // Finally, temp_reg contains holder_klass vtable offset
 4571   bind(L_ready);
 4572   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 4573   if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl
 4574     load_klass(scan_temp, receiver, noreg);
 4575     movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off));
 4576   } else {
 4577     movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off));
 4578   }
 4579 }
 4580 
 4581 
 4582 // virtual method calling
 4583 void MacroAssembler::lookup_virtual_method(Register recv_klass,
 4584                                            RegisterOrConstant vtable_index,
 4585                                            Register method_result) {
 4586   const ByteSize base = Klass::vtable_start_offset();
 4587   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
 4588   Address vtable_entry_addr(recv_klass,
 4589                             vtable_index, Address::times_ptr,
 4590                             base + vtableEntry::method_offset());
 4591   movptr(method_result, vtable_entry_addr);
 4592 }
 4593 
 4594 
 4595 void MacroAssembler::check_klass_subtype(Register sub_klass,
 4596                            Register super_klass,
 4597                            Register temp_reg,
 4598                            Label& L_success) {
 4599   Label L_failure;
 4600   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, nullptr);
 4601   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr);
 4602   bind(L_failure);
 4603 }
 4604 
 4605 
 4606 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
 4607                                                    Register super_klass,
 4608                                                    Register temp_reg,
 4609                                                    Label* L_success,
 4610                                                    Label* L_failure,
 4611                                                    Label* L_slow_path,
 4612                                         RegisterOrConstant super_check_offset) {
 4613   assert_different_registers(sub_klass, super_klass, temp_reg);
 4614   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
 4615   if (super_check_offset.is_register()) {
 4616     assert_different_registers(sub_klass, super_klass,
 4617                                super_check_offset.as_register());
 4618   } else if (must_load_sco) {
 4619     assert(temp_reg != noreg, "supply either a temp or a register offset");
 4620   }
 4621 
 4622   Label L_fallthrough;
 4623   int label_nulls = 0;
 4624   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 4625   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 4626   if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
 4627   assert(label_nulls <= 1, "at most one null in the batch");
 4628 
 4629   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
 4630   int sco_offset = in_bytes(Klass::super_check_offset_offset());
 4631   Address super_check_offset_addr(super_klass, sco_offset);
 4632 
 4633   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
 4634   // range of a jccb.  If this routine grows larger, reconsider at
 4635   // least some of these.
 4636 #define local_jcc(assembler_cond, label)                                \
 4637   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
 4638   else                             jcc( assembler_cond, label) /*omit semi*/
 4639 
 4640   // Hacked jmp, which may only be used just before L_fallthrough.
 4641 #define final_jmp(label)                                                \
 4642   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
 4643   else                            jmp(label)                /*omit semi*/
 4644 
 4645   // If the pointers are equal, we are done (e.g., String[] elements).
 4646   // This self-check enables sharing of secondary supertype arrays among
 4647   // non-primary types such as array-of-interface.  Otherwise, each such
 4648   // type would need its own customized SSA.
 4649   // We move this check to the front of the fast path because many
 4650   // type checks are in fact trivially successful in this manner,
 4651   // so we get a nicely predicted branch right at the start of the check.
 4652   cmpptr(sub_klass, super_klass);
 4653   local_jcc(Assembler::equal, *L_success);
 4654 
 4655   // Check the supertype display:
 4656   if (must_load_sco) {
 4657     // Positive movl does right thing on LP64.
 4658     movl(temp_reg, super_check_offset_addr);
 4659     super_check_offset = RegisterOrConstant(temp_reg);
 4660   }
 4661   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
 4662   cmpptr(super_klass, super_check_addr); // load displayed supertype
 4663 
 4664   // This check has worked decisively for primary supers.
 4665   // Secondary supers are sought in the super_cache ('super_cache_addr').
 4666   // (Secondary supers are interfaces and very deeply nested subtypes.)
 4667   // This works in the same check above because of a tricky aliasing
 4668   // between the super_cache and the primary super display elements.
 4669   // (The 'super_check_addr' can address either, as the case requires.)
 4670   // Note that the cache is updated below if it does not help us find
 4671   // what we need immediately.
 4672   // So if it was a primary super, we can just fail immediately.
 4673   // Otherwise, it's the slow path for us (no success at this point).
 4674 
 4675   if (super_check_offset.is_register()) {
 4676     local_jcc(Assembler::equal, *L_success);
 4677     cmpl(super_check_offset.as_register(), sc_offset);
 4678     if (L_failure == &L_fallthrough) {
 4679       local_jcc(Assembler::equal, *L_slow_path);
 4680     } else {
 4681       local_jcc(Assembler::notEqual, *L_failure);
 4682       final_jmp(*L_slow_path);
 4683     }
 4684   } else if (super_check_offset.as_constant() == sc_offset) {
 4685     // Need a slow path; fast failure is impossible.
 4686     if (L_slow_path == &L_fallthrough) {
 4687       local_jcc(Assembler::equal, *L_success);
 4688     } else {
 4689       local_jcc(Assembler::notEqual, *L_slow_path);
 4690       final_jmp(*L_success);
 4691     }
 4692   } else {
 4693     // No slow path; it's a fast decision.
 4694     if (L_failure == &L_fallthrough) {
 4695       local_jcc(Assembler::equal, *L_success);
 4696     } else {
 4697       local_jcc(Assembler::notEqual, *L_failure);
 4698       final_jmp(*L_success);
 4699     }
 4700   }
 4701 
 4702   bind(L_fallthrough);
 4703 
 4704 #undef local_jcc
 4705 #undef final_jmp
 4706 }
 4707 
 4708 
 4709 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass,
 4710                                                           Register super_klass,
 4711                                                           Register temp_reg,
 4712                                                           Register temp2_reg,
 4713                                                           Label* L_success,
 4714                                                           Label* L_failure,
 4715                                                           bool set_cond_codes) {
 4716   assert_different_registers(sub_klass, super_klass, temp_reg);
 4717   if (temp2_reg != noreg)
 4718     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
 4719 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
 4720 
 4721   Label L_fallthrough;
 4722   int label_nulls = 0;
 4723   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 4724   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 4725   assert(label_nulls <= 1, "at most one null in the batch");
 4726 
 4727   // a couple of useful fields in sub_klass:
 4728   int ss_offset = in_bytes(Klass::secondary_supers_offset());
 4729   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
 4730   Address secondary_supers_addr(sub_klass, ss_offset);
 4731   Address super_cache_addr(     sub_klass, sc_offset);
 4732 
 4733   // Do a linear scan of the secondary super-klass chain.
 4734   // This code is rarely used, so simplicity is a virtue here.
 4735   // The repne_scan instruction uses fixed registers, which we must spill.
 4736   // Don't worry too much about pre-existing connections with the input regs.
 4737 
 4738   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
 4739   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
 4740 
 4741   // Get super_klass value into rax (even if it was in rdi or rcx).
 4742   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
 4743   if (super_klass != rax) {
 4744     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
 4745     mov(rax, super_klass);
 4746   }
 4747   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
 4748   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
 4749 
 4750 #ifndef PRODUCT
 4751   uint* pst_counter = &SharedRuntime::_partial_subtype_ctr;
 4752   ExternalAddress pst_counter_addr((address) pst_counter);
 4753   NOT_LP64(  incrementl(pst_counter_addr) );
 4754   LP64_ONLY( lea(rcx, pst_counter_addr) );
 4755   LP64_ONLY( incrementl(Address(rcx, 0)) );
 4756 #endif //PRODUCT
 4757 
 4758   // We will consult the secondary-super array.
 4759   movptr(rdi, secondary_supers_addr);
 4760   // Load the array length.  (Positive movl does right thing on LP64.)
 4761   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
 4762   // Skip to start of data.
 4763   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
 4764 
 4765   // Scan RCX words at [RDI] for an occurrence of RAX.
 4766   // Set NZ/Z based on last compare.
 4767   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
 4768   // not change flags (only scas instruction which is repeated sets flags).
 4769   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
 4770 
 4771     testptr(rax,rax); // Set Z = 0
 4772     repne_scan();
 4773 
 4774   // Unspill the temp. registers:
 4775   if (pushed_rdi)  pop(rdi);
 4776   if (pushed_rcx)  pop(rcx);
 4777   if (pushed_rax)  pop(rax);
 4778 
 4779   if (set_cond_codes) {
 4780     // Special hack for the AD files:  rdi is guaranteed non-zero.
 4781     assert(!pushed_rdi, "rdi must be left non-null");
 4782     // Also, the condition codes are properly set Z/NZ on succeed/failure.
 4783   }
 4784 
 4785   if (L_failure == &L_fallthrough)
 4786         jccb(Assembler::notEqual, *L_failure);
 4787   else  jcc(Assembler::notEqual, *L_failure);
 4788 
 4789   // Success.  Cache the super we found and proceed in triumph.
 4790   movptr(super_cache_addr, super_klass);
 4791 
 4792   if (L_success != &L_fallthrough) {
 4793     jmp(*L_success);
 4794   }
 4795 
 4796 #undef IS_A_TEMP
 4797 
 4798   bind(L_fallthrough);
 4799 }
 4800 
 4801 #ifndef _LP64
 4802 
 4803 // 32-bit x86 only: always use the linear search.
 4804 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
 4805                                                    Register super_klass,
 4806                                                    Register temp_reg,
 4807                                                    Register temp2_reg,
 4808                                                    Label* L_success,
 4809                                                    Label* L_failure,
 4810                                                    bool set_cond_codes) {
 4811   check_klass_subtype_slow_path_linear
 4812     (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes);
 4813 }
 4814 
 4815 #else // _LP64
 4816 
 4817 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
 4818                                                    Register super_klass,
 4819                                                    Register temp_reg,
 4820                                                    Register temp2_reg,
 4821                                                    Label* L_success,
 4822                                                    Label* L_failure,
 4823                                                    bool set_cond_codes) {
 4824   assert(set_cond_codes == false, "must be false on 64-bit x86");
 4825   check_klass_subtype_slow_path
 4826     (sub_klass, super_klass, temp_reg, temp2_reg, noreg, noreg,
 4827      L_success, L_failure);
 4828 }
 4829 
 4830 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
 4831                                                    Register super_klass,
 4832                                                    Register temp_reg,
 4833                                                    Register temp2_reg,
 4834                                                    Register temp3_reg,
 4835                                                    Register temp4_reg,
 4836                                                    Label* L_success,
 4837                                                    Label* L_failure) {
 4838   if (UseSecondarySupersTable) {
 4839     check_klass_subtype_slow_path_table
 4840       (sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, temp4_reg,
 4841        L_success, L_failure);
 4842   } else {
 4843     check_klass_subtype_slow_path_linear
 4844       (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, /*set_cond_codes*/false);
 4845   }
 4846 }
 4847 
 4848 Register MacroAssembler::allocate_if_noreg(Register r,
 4849                                   RegSetIterator<Register> &available_regs,
 4850                                   RegSet &regs_to_push) {
 4851   if (!r->is_valid()) {
 4852     r = *available_regs++;
 4853     regs_to_push += r;
 4854   }
 4855   return r;
 4856 }
 4857 
 4858 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass,
 4859                                                          Register super_klass,
 4860                                                          Register temp_reg,
 4861                                                          Register temp2_reg,
 4862                                                          Register temp3_reg,
 4863                                                          Register result_reg,
 4864                                                          Label* L_success,
 4865                                                          Label* L_failure) {
 4866   // NB! Callers may assume that, when temp2_reg is a valid register,
 4867   // this code sets it to a nonzero value.
 4868   bool temp2_reg_was_valid = temp2_reg->is_valid();
 4869 
 4870   RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg);
 4871 
 4872   Label L_fallthrough;
 4873   int label_nulls = 0;
 4874   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 4875   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 4876   assert(label_nulls <= 1, "at most one null in the batch");
 4877 
 4878   BLOCK_COMMENT("check_klass_subtype_slow_path_table");
 4879 
 4880   RegSetIterator<Register> available_regs
 4881     = (RegSet::of(rax, rcx, rdx, r8) + r9 + r10 + r11 + r12 - temps - sub_klass - super_klass).begin();
 4882 
 4883   RegSet pushed_regs;
 4884 
 4885   temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs);
 4886   temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs);
 4887   temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs);
 4888   result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs);
 4889   Register temp4_reg = allocate_if_noreg(noreg, available_regs, pushed_regs);
 4890 
 4891   assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, result_reg);
 4892 
 4893   {
 4894 
 4895     int register_push_size = pushed_regs.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4896     int aligned_size = align_up(register_push_size, StackAlignmentInBytes);
 4897     subptr(rsp, aligned_size);
 4898     push_set(pushed_regs, 0);
 4899 
 4900     lookup_secondary_supers_table_var(sub_klass,
 4901                                       super_klass,
 4902                                       temp_reg, temp2_reg, temp3_reg, temp4_reg, result_reg);
 4903     cmpq(result_reg, 0);
 4904 
 4905     // Unspill the temp. registers:
 4906     pop_set(pushed_regs, 0);
 4907     // Increment SP but do not clobber flags.
 4908     lea(rsp, Address(rsp, aligned_size));
 4909   }
 4910 
 4911   if (temp2_reg_was_valid) {
 4912     movq(temp2_reg, 1);
 4913   }
 4914 
 4915   jcc(Assembler::notEqual, *L_failure);
 4916 
 4917   if (L_success != &L_fallthrough) {
 4918     jmp(*L_success);
 4919   }
 4920 
 4921   bind(L_fallthrough);
 4922 }
 4923 
 4924 // population_count variant for running without the POPCNT
 4925 // instruction, which was introduced with SSE4.2 in 2008.
 4926 void MacroAssembler::population_count(Register dst, Register src,
 4927                                       Register scratch1, Register scratch2) {
 4928   assert_different_registers(src, scratch1, scratch2);
 4929   if (UsePopCountInstruction) {
 4930     Assembler::popcntq(dst, src);
 4931   } else {
 4932     assert_different_registers(src, scratch1, scratch2);
 4933     assert_different_registers(dst, scratch1, scratch2);
 4934     Label loop, done;
 4935 
 4936     mov(scratch1, src);
 4937     // dst = 0;
 4938     // while(scratch1 != 0) {
 4939     //   dst++;
 4940     //   scratch1 &= (scratch1 - 1);
 4941     // }
 4942     xorl(dst, dst);
 4943     testq(scratch1, scratch1);
 4944     jccb(Assembler::equal, done);
 4945     {
 4946       bind(loop);
 4947       incq(dst);
 4948       movq(scratch2, scratch1);
 4949       decq(scratch2);
 4950       andq(scratch1, scratch2);
 4951       jccb(Assembler::notEqual, loop);
 4952     }
 4953     bind(done);
 4954   }
 4955 #ifdef ASSERT
 4956   mov64(scratch1, 0xCafeBabeDeadBeef);
 4957   movq(scratch2, scratch1);
 4958 #endif
 4959 }
 4960 
 4961 // Ensure that the inline code and the stub are using the same registers.
 4962 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS                      \
 4963 do {                                                                 \
 4964   assert(r_super_klass  == rax, "mismatch");                         \
 4965   assert(r_array_base   == rbx, "mismatch");                         \
 4966   assert(r_array_length == rcx, "mismatch");                         \
 4967   assert(r_array_index  == rdx, "mismatch");                         \
 4968   assert(r_sub_klass    == rsi || r_sub_klass == noreg, "mismatch"); \
 4969   assert(r_bitmap       == r11 || r_bitmap    == noreg, "mismatch"); \
 4970   assert(result         == rdi || result      == noreg, "mismatch"); \
 4971 } while(0)
 4972 
 4973 // Versions of salq and rorq that don't need count to be in rcx
 4974 
 4975 void MacroAssembler::salq(Register dest, Register count) {
 4976   if (count == rcx) {
 4977     Assembler::salq(dest);
 4978   } else {
 4979     assert_different_registers(rcx, dest);
 4980     xchgq(rcx, count);
 4981     Assembler::salq(dest);
 4982     xchgq(rcx, count);
 4983   }
 4984 }
 4985 
 4986 void MacroAssembler::rorq(Register dest, Register count) {
 4987   if (count == rcx) {
 4988     Assembler::rorq(dest);
 4989   } else {
 4990     assert_different_registers(rcx, dest);
 4991     xchgq(rcx, count);
 4992     Assembler::rorq(dest);
 4993     xchgq(rcx, count);
 4994   }
 4995 }
 4996 
 4997 // Return true: we succeeded in generating this code
 4998 //
 4999 // At runtime, return 0 in result if r_super_klass is a superclass of
 5000 // r_sub_klass, otherwise return nonzero. Use this if you know the
 5001 // super_klass_slot of the class you're looking for. This is always
 5002 // the case for instanceof and checkcast.
 5003 void MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass,
 5004                                                          Register r_super_klass,
 5005                                                          Register temp1,
 5006                                                          Register temp2,
 5007                                                          Register temp3,
 5008                                                          Register temp4,
 5009                                                          Register result,
 5010                                                          u1 super_klass_slot) {
 5011   assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result);
 5012 
 5013   Label L_fallthrough, L_success, L_failure;
 5014 
 5015   BLOCK_COMMENT("lookup_secondary_supers_table {");
 5016 
 5017   const Register
 5018     r_array_index  = temp1,
 5019     r_array_length = temp2,
 5020     r_array_base   = temp3,
 5021     r_bitmap       = temp4;
 5022 
 5023   LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
 5024 
 5025   xorq(result, result); // = 0
 5026 
 5027   movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
 5028   movq(r_array_index, r_bitmap);
 5029 
 5030   // First check the bitmap to see if super_klass might be present. If
 5031   // the bit is zero, we are certain that super_klass is not one of
 5032   // the secondary supers.
 5033   u1 bit = super_klass_slot;
 5034   {
 5035     // NB: If the count in a x86 shift instruction is 0, the flags are
 5036     // not affected, so we do a testq instead.
 5037     int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit;
 5038     if (shift_count != 0) {
 5039       salq(r_array_index, shift_count);
 5040     } else {
 5041       testq(r_array_index, r_array_index);
 5042     }
 5043   }
 5044   // We test the MSB of r_array_index, i.e. its sign bit
 5045   jcc(Assembler::positive, L_failure);
 5046 
 5047   // Get the first array index that can contain super_klass into r_array_index.
 5048   if (bit != 0) {
 5049     population_count(r_array_index, r_array_index, temp2, temp3);
 5050   } else {
 5051     movl(r_array_index, 1);
 5052   }
 5053   // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
 5054 
 5055   // We will consult the secondary-super array.
 5056   movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
 5057 
 5058   // We're asserting that the first word in an Array<Klass*> is the
 5059   // length, and the second word is the first word of the data. If
 5060   // that ever changes, r_array_base will have to be adjusted here.
 5061   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
 5062   assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
 5063 
 5064   cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
 5065   jccb(Assembler::equal, L_success);
 5066 
 5067   // Is there another entry to check? Consult the bitmap.
 5068   btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK);
 5069   jccb(Assembler::carryClear, L_failure);
 5070 
 5071   // Linear probe. Rotate the bitmap so that the next bit to test is
 5072   // in Bit 1.
 5073   if (bit != 0) {
 5074     rorq(r_bitmap, bit);
 5075   }
 5076 
 5077   // Calls into the stub generated by lookup_secondary_supers_table_slow_path.
 5078   // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap.
 5079   // Kills: r_array_length.
 5080   // Returns: result.
 5081   call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()));
 5082   // Result (0/1) is in rdi
 5083   jmpb(L_fallthrough);
 5084 
 5085   bind(L_failure);
 5086   incq(result); // 0 => 1
 5087 
 5088   bind(L_success);
 5089   // result = 0;
 5090 
 5091   bind(L_fallthrough);
 5092   BLOCK_COMMENT("} lookup_secondary_supers_table");
 5093 
 5094   if (VerifySecondarySupers) {
 5095     verify_secondary_supers_table(r_sub_klass, r_super_klass, result,
 5096                                   temp1, temp2, temp3);
 5097   }
 5098 }
 5099 
 5100 // At runtime, return 0 in result if r_super_klass is a superclass of
 5101 // r_sub_klass, otherwise return nonzero. Use this version of
 5102 // lookup_secondary_supers_table() if you don't know ahead of time
 5103 // which superclass will be searched for. Used by interpreter and
 5104 // runtime stubs. It is larger and has somewhat greater latency than
 5105 // the version above, which takes a constant super_klass_slot.
 5106 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass,
 5107                                                        Register r_super_klass,
 5108                                                        Register temp1,
 5109                                                        Register temp2,
 5110                                                        Register temp3,
 5111                                                        Register temp4,
 5112                                                        Register result) {
 5113   assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result);
 5114   assert_different_registers(r_sub_klass, r_super_klass, rcx);
 5115   RegSet temps = RegSet::of(temp1, temp2, temp3, temp4);
 5116 
 5117   Label L_fallthrough, L_success, L_failure;
 5118 
 5119   BLOCK_COMMENT("lookup_secondary_supers_table {");
 5120 
 5121   RegSetIterator<Register> available_regs = (temps - rcx).begin();
 5122 
 5123   // FIXME. Once we are sure that all paths reaching this point really
 5124   // do pass rcx as one of our temps we can get rid of the following
 5125   // workaround.
 5126   assert(temps.contains(rcx), "fix this code");
 5127 
 5128   // We prefer to have our shift count in rcx. If rcx is one of our
 5129   // temps, use it for slot. If not, pick any of our temps.
 5130   Register slot;
 5131   if (!temps.contains(rcx)) {
 5132     slot = *available_regs++;
 5133   } else {
 5134     slot = rcx;
 5135   }
 5136 
 5137   const Register r_array_index = *available_regs++;
 5138   const Register r_bitmap      = *available_regs++;
 5139 
 5140   // The logic above guarantees this property, but we state it here.
 5141   assert_different_registers(r_array_index, r_bitmap, rcx);
 5142 
 5143   movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
 5144   movq(r_array_index, r_bitmap);
 5145 
 5146   // First check the bitmap to see if super_klass might be present. If
 5147   // the bit is zero, we are certain that super_klass is not one of
 5148   // the secondary supers.
 5149   movb(slot, Address(r_super_klass, Klass::hash_slot_offset()));
 5150   xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64)
 5151   salq(r_array_index, slot);
 5152 
 5153   testq(r_array_index, r_array_index);
 5154   // We test the MSB of r_array_index, i.e. its sign bit
 5155   jcc(Assembler::positive, L_failure);
 5156 
 5157   const Register r_array_base = *available_regs++;
 5158 
 5159   // Get the first array index that can contain super_klass into r_array_index.
 5160   // Note: Clobbers r_array_base and slot.
 5161   population_count(r_array_index, r_array_index, /*temp2*/r_array_base, /*temp3*/slot);
 5162 
 5163   // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
 5164 
 5165   // We will consult the secondary-super array.
 5166   movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
 5167 
 5168   // We're asserting that the first word in an Array<Klass*> is the
 5169   // length, and the second word is the first word of the data. If
 5170   // that ever changes, r_array_base will have to be adjusted here.
 5171   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
 5172   assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
 5173 
 5174   cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
 5175   jccb(Assembler::equal, L_success);
 5176 
 5177   // Restore slot to its true value
 5178   movb(slot, Address(r_super_klass, Klass::hash_slot_offset()));
 5179 
 5180   // Linear probe. Rotate the bitmap so that the next bit to test is
 5181   // in Bit 1.
 5182   rorq(r_bitmap, slot);
 5183 
 5184   // Is there another entry to check? Consult the bitmap.
 5185   btq(r_bitmap, 1);
 5186   jccb(Assembler::carryClear, L_failure);
 5187 
 5188   // Calls into the stub generated by lookup_secondary_supers_table_slow_path.
 5189   // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap.
 5190   // Kills: r_array_length.
 5191   // Returns: result.
 5192   lookup_secondary_supers_table_slow_path(r_super_klass,
 5193                                           r_array_base,
 5194                                           r_array_index,
 5195                                           r_bitmap,
 5196                                           /*temp1*/result,
 5197                                           /*temp2*/slot,
 5198                                           &L_success,
 5199                                           nullptr);
 5200 
 5201   bind(L_failure);
 5202   movq(result, 1);
 5203   jmpb(L_fallthrough);
 5204 
 5205   bind(L_success);
 5206   xorq(result, result); // = 0
 5207 
 5208   bind(L_fallthrough);
 5209   BLOCK_COMMENT("} lookup_secondary_supers_table");
 5210 
 5211   if (VerifySecondarySupers) {
 5212     verify_secondary_supers_table(r_sub_klass, r_super_klass, result,
 5213                                   temp1, temp2, temp3);
 5214   }
 5215 }
 5216 
 5217 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit,
 5218                                  Label* L_success, Label* L_failure) {
 5219   Label L_loop, L_fallthrough;
 5220   {
 5221     int label_nulls = 0;
 5222     if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
 5223     if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
 5224     assert(label_nulls <= 1, "at most one null in the batch");
 5225   }
 5226   bind(L_loop);
 5227   cmpq(value, Address(addr, count, Address::times_8));
 5228   jcc(Assembler::equal, *L_success);
 5229   addl(count, 1);
 5230   cmpl(count, limit);
 5231   jcc(Assembler::less, L_loop);
 5232 
 5233   if (&L_fallthrough != L_failure) {
 5234     jmp(*L_failure);
 5235   }
 5236   bind(L_fallthrough);
 5237 }
 5238 
 5239 // Called by code generated by check_klass_subtype_slow_path
 5240 // above. This is called when there is a collision in the hashed
 5241 // lookup in the secondary supers array.
 5242 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass,
 5243                                                              Register r_array_base,
 5244                                                              Register r_array_index,
 5245                                                              Register r_bitmap,
 5246                                                              Register temp1,
 5247                                                              Register temp2,
 5248                                                              Label* L_success,
 5249                                                              Label* L_failure) {
 5250   assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2);
 5251 
 5252   const Register
 5253     r_array_length = temp1,
 5254     r_sub_klass    = noreg,
 5255     result         = noreg;
 5256 
 5257   Label L_fallthrough;
 5258   int label_nulls = 0;
 5259   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 5260   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 5261   assert(label_nulls <= 1, "at most one null in the batch");
 5262 
 5263   // Load the array length.
 5264   movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
 5265   // And adjust the array base to point to the data.
 5266   // NB! Effectively increments current slot index by 1.
 5267   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "");
 5268   addptr(r_array_base, Array<Klass*>::base_offset_in_bytes());
 5269 
 5270   // Linear probe
 5271   Label L_huge;
 5272 
 5273   // The bitmap is full to bursting.
 5274   // Implicit invariant: BITMAP_FULL implies (length > 0)
 5275   cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2);
 5276   jcc(Assembler::greater, L_huge);
 5277 
 5278   // NB! Our caller has checked bits 0 and 1 in the bitmap. The
 5279   // current slot (at secondary_supers[r_array_index]) has not yet
 5280   // been inspected, and r_array_index may be out of bounds if we
 5281   // wrapped around the end of the array.
 5282 
 5283   { // This is conventional linear probing, but instead of terminating
 5284     // when a null entry is found in the table, we maintain a bitmap
 5285     // in which a 0 indicates missing entries.
 5286     // The check above guarantees there are 0s in the bitmap, so the loop
 5287     // eventually terminates.
 5288 
 5289     xorl(temp2, temp2); // = 0;
 5290 
 5291     Label L_again;
 5292     bind(L_again);
 5293 
 5294     // Check for array wraparound.
 5295     cmpl(r_array_index, r_array_length);
 5296     cmovl(Assembler::greaterEqual, r_array_index, temp2);
 5297 
 5298     cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
 5299     jcc(Assembler::equal, *L_success);
 5300 
 5301     // If the next bit in bitmap is zero, we're done.
 5302     btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now
 5303     jcc(Assembler::carryClear, *L_failure);
 5304 
 5305     rorq(r_bitmap, 1); // Bits 1/2 => 0/1
 5306     addl(r_array_index, 1);
 5307 
 5308     jmp(L_again);
 5309   }
 5310 
 5311   { // Degenerate case: more than 64 secondary supers.
 5312     // FIXME: We could do something smarter here, maybe a vectorized
 5313     // comparison or a binary search, but is that worth any added
 5314     // complexity?
 5315     bind(L_huge);
 5316     xorl(r_array_index, r_array_index); // = 0
 5317     repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length,
 5318                 L_success,
 5319                 (&L_fallthrough != L_failure ? L_failure : nullptr));
 5320 
 5321     bind(L_fallthrough);
 5322   }
 5323 }
 5324 
 5325 struct VerifyHelperArguments {
 5326   Klass* _super;
 5327   Klass* _sub;
 5328   intptr_t _linear_result;
 5329   intptr_t _table_result;
 5330 };
 5331 
 5332 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) {
 5333   Klass::on_secondary_supers_verification_failure(args->_super,
 5334                                                   args->_sub,
 5335                                                   args->_linear_result,
 5336                                                   args->_table_result,
 5337                                                   msg);
 5338 }
 5339 
 5340 // Make sure that the hashed lookup and a linear scan agree.
 5341 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass,
 5342                                                    Register r_super_klass,
 5343                                                    Register result,
 5344                                                    Register temp1,
 5345                                                    Register temp2,
 5346                                                    Register temp3) {
 5347   const Register
 5348       r_array_index  = temp1,
 5349       r_array_length = temp2,
 5350       r_array_base   = temp3,
 5351       r_bitmap       = noreg;
 5352 
 5353   BLOCK_COMMENT("verify_secondary_supers_table {");
 5354 
 5355   Label L_success, L_failure, L_check, L_done;
 5356 
 5357   movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
 5358   movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
 5359   // And adjust the array base to point to the data.
 5360   addptr(r_array_base, Array<Klass*>::base_offset_in_bytes());
 5361 
 5362   testl(r_array_length, r_array_length); // array_length == 0?
 5363   jcc(Assembler::zero, L_failure);
 5364 
 5365   movl(r_array_index, 0);
 5366   repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success);
 5367   // fall through to L_failure
 5368 
 5369   const Register linear_result = r_array_index; // reuse temp1
 5370 
 5371   bind(L_failure); // not present
 5372   movl(linear_result, 1);
 5373   jmp(L_check);
 5374 
 5375   bind(L_success); // present
 5376   movl(linear_result, 0);
 5377 
 5378   bind(L_check);
 5379   cmpl(linear_result, result);
 5380   jcc(Assembler::equal, L_done);
 5381 
 5382   { // To avoid calling convention issues, build a record on the stack
 5383     // and pass the pointer to that instead.
 5384     push(result);
 5385     push(linear_result);
 5386     push(r_sub_klass);
 5387     push(r_super_klass);
 5388     movptr(c_rarg1, rsp);
 5389     movptr(c_rarg0, (uintptr_t) "mismatch");
 5390     call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper)));
 5391     should_not_reach_here();
 5392   }
 5393   bind(L_done);
 5394 
 5395   BLOCK_COMMENT("} verify_secondary_supers_table");
 5396 }
 5397 
 5398 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS
 5399 
 5400 #endif // LP64
 5401 
 5402 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
 5403   assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
 5404 
 5405   Label L_fallthrough;
 5406   if (L_fast_path == nullptr) {
 5407     L_fast_path = &L_fallthrough;
 5408   } else if (L_slow_path == nullptr) {
 5409     L_slow_path = &L_fallthrough;
 5410   }
 5411 
 5412   // Fast path check: class is fully initialized.
 5413   // init_state needs acquire, but x86 is TSO, and so we are already good.
 5414   cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
 5415   jcc(Assembler::equal, *L_fast_path);
 5416 
 5417   // Fast path check: current thread is initializer thread
 5418   cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset()));
 5419   if (L_slow_path == &L_fallthrough) {
 5420     jcc(Assembler::equal, *L_fast_path);
 5421     bind(*L_slow_path);
 5422   } else if (L_fast_path == &L_fallthrough) {
 5423     jcc(Assembler::notEqual, *L_slow_path);
 5424     bind(*L_fast_path);
 5425   } else {
 5426     Unimplemented();
 5427   }
 5428 }
 5429 
 5430 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
 5431   if (VM_Version::supports_cmov()) {
 5432     cmovl(cc, dst, src);
 5433   } else {
 5434     Label L;
 5435     jccb(negate_condition(cc), L);
 5436     movl(dst, src);
 5437     bind(L);
 5438   }
 5439 }
 5440 
 5441 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
 5442   if (VM_Version::supports_cmov()) {
 5443     cmovl(cc, dst, src);
 5444   } else {
 5445     Label L;
 5446     jccb(negate_condition(cc), L);
 5447     movl(dst, src);
 5448     bind(L);
 5449   }
 5450 }
 5451 
 5452 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
 5453   if (!VerifyOops) return;
 5454 
 5455   BLOCK_COMMENT("verify_oop {");
 5456 #ifdef _LP64
 5457   push(rscratch1);
 5458 #endif
 5459   push(rax);                          // save rax
 5460   push(reg);                          // pass register argument
 5461 
 5462   // Pass register number to verify_oop_subroutine
 5463   const char* b = nullptr;
 5464   {
 5465     ResourceMark rm;
 5466     stringStream ss;
 5467     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
 5468     b = code_string(ss.as_string());
 5469   }
 5470   AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate());
 5471   pushptr(buffer.addr(), rscratch1);
 5472 
 5473   // call indirectly to solve generation ordering problem
 5474   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
 5475   call(rax);
 5476   // Caller pops the arguments (oop, message) and restores rax, r10
 5477   BLOCK_COMMENT("} verify_oop");
 5478 }
 5479 
 5480 void MacroAssembler::vallones(XMMRegister dst, int vector_len) {
 5481   if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) {
 5482     // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without
 5483     // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog
 5484     vpternlogd(dst, 0xFF, dst, dst, vector_len);
 5485   } else if (VM_Version::supports_avx()) {
 5486     vpcmpeqd(dst, dst, dst, vector_len);
 5487   } else {
 5488     pcmpeqd(dst, dst);
 5489   }
 5490 }
 5491 
 5492 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
 5493                                          int extra_slot_offset) {
 5494   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
 5495   int stackElementSize = Interpreter::stackElementSize;
 5496   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
 5497 #ifdef ASSERT
 5498   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
 5499   assert(offset1 - offset == stackElementSize, "correct arithmetic");
 5500 #endif
 5501   Register             scale_reg    = noreg;
 5502   Address::ScaleFactor scale_factor = Address::no_scale;
 5503   if (arg_slot.is_constant()) {
 5504     offset += arg_slot.as_constant() * stackElementSize;
 5505   } else {
 5506     scale_reg    = arg_slot.as_register();
 5507     scale_factor = Address::times(stackElementSize);
 5508   }
 5509   offset += wordSize;           // return PC is on stack
 5510   return Address(rsp, scale_reg, scale_factor, offset);
 5511 }
 5512 
 5513 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
 5514   if (!VerifyOops) return;
 5515 
 5516 #ifdef _LP64
 5517   push(rscratch1);
 5518 #endif
 5519   push(rax); // save rax,
 5520   // addr may contain rsp so we will have to adjust it based on the push
 5521   // we just did (and on 64 bit we do two pushes)
 5522   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
 5523   // stores rax into addr which is backwards of what was intended.
 5524   if (addr.uses(rsp)) {
 5525     lea(rax, addr);
 5526     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
 5527   } else {
 5528     pushptr(addr);
 5529   }
 5530 
 5531   // Pass register number to verify_oop_subroutine
 5532   const char* b = nullptr;
 5533   {
 5534     ResourceMark rm;
 5535     stringStream ss;
 5536     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
 5537     b = code_string(ss.as_string());
 5538   }
 5539   AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate());
 5540   pushptr(buffer.addr(), rscratch1);
 5541 
 5542   // call indirectly to solve generation ordering problem
 5543   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
 5544   call(rax);
 5545   // Caller pops the arguments (addr, message) and restores rax, r10.
 5546 }
 5547 
 5548 void MacroAssembler::verify_tlab() {
 5549 #ifdef ASSERT
 5550   if (UseTLAB && VerifyOops) {
 5551     Label next, ok;
 5552     Register t1 = rsi;
 5553     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
 5554 
 5555     push(t1);
 5556     NOT_LP64(push(thread_reg));
 5557     NOT_LP64(get_thread(thread_reg));
 5558 
 5559     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
 5560     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
 5561     jcc(Assembler::aboveEqual, next);
 5562     STOP("assert(top >= start)");
 5563     should_not_reach_here();
 5564 
 5565     bind(next);
 5566     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
 5567     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
 5568     jcc(Assembler::aboveEqual, ok);
 5569     STOP("assert(top <= end)");
 5570     should_not_reach_here();
 5571 
 5572     bind(ok);
 5573     NOT_LP64(pop(thread_reg));
 5574     pop(t1);
 5575   }
 5576 #endif
 5577 }
 5578 
 5579 class ControlWord {
 5580  public:
 5581   int32_t _value;
 5582 
 5583   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
 5584   int  precision_control() const       { return  (_value >>  8) & 3      ; }
 5585   bool precision() const               { return ((_value >>  5) & 1) != 0; }
 5586   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
 5587   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
 5588   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
 5589   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
 5590   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
 5591 
 5592   void print() const {
 5593     // rounding control
 5594     const char* rc;
 5595     switch (rounding_control()) {
 5596       case 0: rc = "round near"; break;
 5597       case 1: rc = "round down"; break;
 5598       case 2: rc = "round up  "; break;
 5599       case 3: rc = "chop      "; break;
 5600       default:
 5601         rc = nullptr; // silence compiler warnings
 5602         fatal("Unknown rounding control: %d", rounding_control());
 5603     };
 5604     // precision control
 5605     const char* pc;
 5606     switch (precision_control()) {
 5607       case 0: pc = "24 bits "; break;
 5608       case 1: pc = "reserved"; break;
 5609       case 2: pc = "53 bits "; break;
 5610       case 3: pc = "64 bits "; break;
 5611       default:
 5612         pc = nullptr; // silence compiler warnings
 5613         fatal("Unknown precision control: %d", precision_control());
 5614     };
 5615     // flags
 5616     char f[9];
 5617     f[0] = ' ';
 5618     f[1] = ' ';
 5619     f[2] = (precision   ()) ? 'P' : 'p';
 5620     f[3] = (underflow   ()) ? 'U' : 'u';
 5621     f[4] = (overflow    ()) ? 'O' : 'o';
 5622     f[5] = (zero_divide ()) ? 'Z' : 'z';
 5623     f[6] = (denormalized()) ? 'D' : 'd';
 5624     f[7] = (invalid     ()) ? 'I' : 'i';
 5625     f[8] = '\x0';
 5626     // output
 5627     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
 5628   }
 5629 
 5630 };
 5631 
 5632 class StatusWord {
 5633  public:
 5634   int32_t _value;
 5635 
 5636   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
 5637   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
 5638   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
 5639   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
 5640   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
 5641   int  top() const                     { return  (_value >> 11) & 7      ; }
 5642   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
 5643   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
 5644   bool precision() const               { return ((_value >>  5) & 1) != 0; }
 5645   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
 5646   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
 5647   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
 5648   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
 5649   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
 5650 
 5651   void print() const {
 5652     // condition codes
 5653     char c[5];
 5654     c[0] = (C3()) ? '3' : '-';
 5655     c[1] = (C2()) ? '2' : '-';
 5656     c[2] = (C1()) ? '1' : '-';
 5657     c[3] = (C0()) ? '0' : '-';
 5658     c[4] = '\x0';
 5659     // flags
 5660     char f[9];
 5661     f[0] = (error_status()) ? 'E' : '-';
 5662     f[1] = (stack_fault ()) ? 'S' : '-';
 5663     f[2] = (precision   ()) ? 'P' : '-';
 5664     f[3] = (underflow   ()) ? 'U' : '-';
 5665     f[4] = (overflow    ()) ? 'O' : '-';
 5666     f[5] = (zero_divide ()) ? 'Z' : '-';
 5667     f[6] = (denormalized()) ? 'D' : '-';
 5668     f[7] = (invalid     ()) ? 'I' : '-';
 5669     f[8] = '\x0';
 5670     // output
 5671     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
 5672   }
 5673 
 5674 };
 5675 
 5676 class TagWord {
 5677  public:
 5678   int32_t _value;
 5679 
 5680   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
 5681 
 5682   void print() const {
 5683     printf("%04x", _value & 0xFFFF);
 5684   }
 5685 
 5686 };
 5687 
 5688 class FPU_Register {
 5689  public:
 5690   int32_t _m0;
 5691   int32_t _m1;
 5692   int16_t _ex;
 5693 
 5694   bool is_indefinite() const           {
 5695     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
 5696   }
 5697 
 5698   void print() const {
 5699     char  sign = (_ex < 0) ? '-' : '+';
 5700     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
 5701     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
 5702   };
 5703 
 5704 };
 5705 
 5706 class FPU_State {
 5707  public:
 5708   enum {
 5709     register_size       = 10,
 5710     number_of_registers =  8,
 5711     register_mask       =  7
 5712   };
 5713 
 5714   ControlWord  _control_word;
 5715   StatusWord   _status_word;
 5716   TagWord      _tag_word;
 5717   int32_t      _error_offset;
 5718   int32_t      _error_selector;
 5719   int32_t      _data_offset;
 5720   int32_t      _data_selector;
 5721   int8_t       _register[register_size * number_of_registers];
 5722 
 5723   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
 5724   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
 5725 
 5726   const char* tag_as_string(int tag) const {
 5727     switch (tag) {
 5728       case 0: return "valid";
 5729       case 1: return "zero";
 5730       case 2: return "special";
 5731       case 3: return "empty";
 5732     }
 5733     ShouldNotReachHere();
 5734     return nullptr;
 5735   }
 5736 
 5737   void print() const {
 5738     // print computation registers
 5739     { int t = _status_word.top();
 5740       for (int i = 0; i < number_of_registers; i++) {
 5741         int j = (i - t) & register_mask;
 5742         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
 5743         st(j)->print();
 5744         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
 5745       }
 5746     }
 5747     printf("\n");
 5748     // print control registers
 5749     printf("ctrl = "); _control_word.print(); printf("\n");
 5750     printf("stat = "); _status_word .print(); printf("\n");
 5751     printf("tags = "); _tag_word    .print(); printf("\n");
 5752   }
 5753 
 5754 };
 5755 
 5756 class Flag_Register {
 5757  public:
 5758   int32_t _value;
 5759 
 5760   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
 5761   bool direction() const               { return ((_value >> 10) & 1) != 0; }
 5762   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
 5763   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
 5764   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
 5765   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
 5766   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
 5767 
 5768   void print() const {
 5769     // flags
 5770     char f[8];
 5771     f[0] = (overflow       ()) ? 'O' : '-';
 5772     f[1] = (direction      ()) ? 'D' : '-';
 5773     f[2] = (sign           ()) ? 'S' : '-';
 5774     f[3] = (zero           ()) ? 'Z' : '-';
 5775     f[4] = (auxiliary_carry()) ? 'A' : '-';
 5776     f[5] = (parity         ()) ? 'P' : '-';
 5777     f[6] = (carry          ()) ? 'C' : '-';
 5778     f[7] = '\x0';
 5779     // output
 5780     printf("%08x  flags = %s", _value, f);
 5781   }
 5782 
 5783 };
 5784 
 5785 class IU_Register {
 5786  public:
 5787   int32_t _value;
 5788 
 5789   void print() const {
 5790     printf("%08x  %11d", _value, _value);
 5791   }
 5792 
 5793 };
 5794 
 5795 class IU_State {
 5796  public:
 5797   Flag_Register _eflags;
 5798   IU_Register   _rdi;
 5799   IU_Register   _rsi;
 5800   IU_Register   _rbp;
 5801   IU_Register   _rsp;
 5802   IU_Register   _rbx;
 5803   IU_Register   _rdx;
 5804   IU_Register   _rcx;
 5805   IU_Register   _rax;
 5806 
 5807   void print() const {
 5808     // computation registers
 5809     printf("rax,  = "); _rax.print(); printf("\n");
 5810     printf("rbx,  = "); _rbx.print(); printf("\n");
 5811     printf("rcx  = "); _rcx.print(); printf("\n");
 5812     printf("rdx  = "); _rdx.print(); printf("\n");
 5813     printf("rdi  = "); _rdi.print(); printf("\n");
 5814     printf("rsi  = "); _rsi.print(); printf("\n");
 5815     printf("rbp,  = "); _rbp.print(); printf("\n");
 5816     printf("rsp  = "); _rsp.print(); printf("\n");
 5817     printf("\n");
 5818     // control registers
 5819     printf("flgs = "); _eflags.print(); printf("\n");
 5820   }
 5821 };
 5822 
 5823 
 5824 class CPU_State {
 5825  public:
 5826   FPU_State _fpu_state;
 5827   IU_State  _iu_state;
 5828 
 5829   void print() const {
 5830     printf("--------------------------------------------------\n");
 5831     _iu_state .print();
 5832     printf("\n");
 5833     _fpu_state.print();
 5834     printf("--------------------------------------------------\n");
 5835   }
 5836 
 5837 };
 5838 
 5839 
 5840 static void _print_CPU_state(CPU_State* state) {
 5841   state->print();
 5842 };
 5843 
 5844 
 5845 void MacroAssembler::print_CPU_state() {
 5846   push_CPU_state();
 5847   push(rsp);                // pass CPU state
 5848   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
 5849   addptr(rsp, wordSize);       // discard argument
 5850   pop_CPU_state();
 5851 }
 5852 
 5853 
 5854 #ifndef _LP64
 5855 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
 5856   static int counter = 0;
 5857   FPU_State* fs = &state->_fpu_state;
 5858   counter++;
 5859   // For leaf calls, only verify that the top few elements remain empty.
 5860   // We only need 1 empty at the top for C2 code.
 5861   if( stack_depth < 0 ) {
 5862     if( fs->tag_for_st(7) != 3 ) {
 5863       printf("FPR7 not empty\n");
 5864       state->print();
 5865       assert(false, "error");
 5866       return false;
 5867     }
 5868     return true;                // All other stack states do not matter
 5869   }
 5870 
 5871   assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(),
 5872          "bad FPU control word");
 5873 
 5874   // compute stack depth
 5875   int i = 0;
 5876   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
 5877   int d = i;
 5878   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
 5879   // verify findings
 5880   if (i != FPU_State::number_of_registers) {
 5881     // stack not contiguous
 5882     printf("%s: stack not contiguous at ST%d\n", s, i);
 5883     state->print();
 5884     assert(false, "error");
 5885     return false;
 5886   }
 5887   // check if computed stack depth corresponds to expected stack depth
 5888   if (stack_depth < 0) {
 5889     // expected stack depth is -stack_depth or less
 5890     if (d > -stack_depth) {
 5891       // too many elements on the stack
 5892       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
 5893       state->print();
 5894       assert(false, "error");
 5895       return false;
 5896     }
 5897   } else {
 5898     // expected stack depth is stack_depth
 5899     if (d != stack_depth) {
 5900       // wrong stack depth
 5901       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
 5902       state->print();
 5903       assert(false, "error");
 5904       return false;
 5905     }
 5906   }
 5907   // everything is cool
 5908   return true;
 5909 }
 5910 
 5911 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
 5912   if (!VerifyFPU) return;
 5913   push_CPU_state();
 5914   push(rsp);                // pass CPU state
 5915   ExternalAddress msg((address) s);
 5916   // pass message string s
 5917   pushptr(msg.addr(), noreg);
 5918   push(stack_depth);        // pass stack depth
 5919   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
 5920   addptr(rsp, 3 * wordSize);   // discard arguments
 5921   // check for error
 5922   { Label L;
 5923     testl(rax, rax);
 5924     jcc(Assembler::notZero, L);
 5925     int3();                  // break if error condition
 5926     bind(L);
 5927   }
 5928   pop_CPU_state();
 5929 }
 5930 #endif // _LP64
 5931 
 5932 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) {
 5933   // Either restore the MXCSR register after returning from the JNI Call
 5934   // or verify that it wasn't changed (with -Xcheck:jni flag).
 5935   if (VM_Version::supports_sse()) {
 5936     if (RestoreMXCSROnJNICalls) {
 5937       ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch);
 5938     } else if (CheckJNICalls) {
 5939       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
 5940     }
 5941   }
 5942   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
 5943   vzeroupper();
 5944 
 5945 #ifndef _LP64
 5946   // Either restore the x87 floating pointer control word after returning
 5947   // from the JNI call or verify that it wasn't changed.
 5948   if (CheckJNICalls) {
 5949     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
 5950   }
 5951 #endif // _LP64
 5952 }
 5953 
 5954 // ((OopHandle)result).resolve();
 5955 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
 5956   assert_different_registers(result, tmp);
 5957 
 5958   // Only 64 bit platforms support GCs that require a tmp register
 5959   // Only IN_HEAP loads require a thread_tmp register
 5960   // OopHandle::resolve is an indirection like jobject.
 5961   access_load_at(T_OBJECT, IN_NATIVE,
 5962                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
 5963 }
 5964 
 5965 // ((WeakHandle)result).resolve();
 5966 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) {
 5967   assert_different_registers(rresult, rtmp);
 5968   Label resolved;
 5969 
 5970   // A null weak handle resolves to null.
 5971   cmpptr(rresult, 0);
 5972   jcc(Assembler::equal, resolved);
 5973 
 5974   // Only 64 bit platforms support GCs that require a tmp register
 5975   // Only IN_HEAP loads require a thread_tmp register
 5976   // WeakHandle::resolve is an indirection like jweak.
 5977   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
 5978                  rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg);
 5979   bind(resolved);
 5980 }
 5981 
 5982 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
 5983   // get mirror
 5984   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 5985   load_method_holder(mirror, method);
 5986   movptr(mirror, Address(mirror, mirror_offset));
 5987   resolve_oop_handle(mirror, tmp);
 5988 }
 5989 
 5990 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
 5991   load_method_holder(rresult, rmethod);
 5992   movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
 5993 }
 5994 
 5995 void MacroAssembler::load_method_holder(Register holder, Register method) {
 5996   movptr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
 5997   movptr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
 5998   movptr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
 5999 }
 6000 
 6001 #ifdef _LP64
 6002 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) {
 6003   assert(UseCompactObjectHeaders, "expect compact object headers");
 6004   movq(dst, Address(src, oopDesc::mark_offset_in_bytes()));
 6005   shrq(dst, markWord::klass_shift);
 6006 }
 6007 #endif
 6008 
 6009 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) {
 6010   assert_different_registers(src, tmp);
 6011   assert_different_registers(dst, tmp);
 6012 #ifdef _LP64
 6013   if (UseCompactObjectHeaders) {
 6014     load_narrow_klass_compact(dst, src);
 6015     decode_klass_not_null(dst, tmp);
 6016   } else if (UseCompressedClassPointers) {
 6017     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 6018     decode_klass_not_null(dst, tmp);
 6019   } else
 6020 #endif
 6021   {
 6022     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 6023   }
 6024 }
 6025 
 6026 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) {
 6027   assert(!UseCompactObjectHeaders, "not with compact headers");
 6028   assert_different_registers(src, tmp);
 6029   assert_different_registers(dst, tmp);
 6030 #ifdef _LP64
 6031   if (UseCompressedClassPointers) {
 6032     encode_klass_not_null(src, tmp);
 6033     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 6034   } else
 6035 #endif
 6036     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 6037 }
 6038 
 6039 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) {
 6040 #ifdef _LP64
 6041   if (UseCompactObjectHeaders) {
 6042     assert(tmp != noreg, "need tmp");
 6043     assert_different_registers(klass, obj, tmp);
 6044     load_narrow_klass_compact(tmp, obj);
 6045     cmpl(klass, tmp);
 6046   } else if (UseCompressedClassPointers) {
 6047     cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes()));
 6048   } else
 6049 #endif
 6050   {
 6051     cmpptr(klass, Address(obj, oopDesc::klass_offset_in_bytes()));
 6052   }
 6053 }
 6054 
 6055 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) {
 6056 #ifdef _LP64
 6057   if (UseCompactObjectHeaders) {
 6058     assert(tmp2 != noreg, "need tmp2");
 6059     assert_different_registers(obj1, obj2, tmp1, tmp2);
 6060     load_narrow_klass_compact(tmp1, obj1);
 6061     load_narrow_klass_compact(tmp2, obj2);
 6062     cmpl(tmp1, tmp2);
 6063   } else if (UseCompressedClassPointers) {
 6064     movl(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes()));
 6065     cmpl(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes()));
 6066   } else
 6067 #endif
 6068   {
 6069     movptr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes()));
 6070     cmpptr(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes()));
 6071   }
 6072 }
 6073 
 6074 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 6075                                     Register tmp1, Register thread_tmp) {
 6076   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 6077   decorators = AccessInternal::decorator_fixup(decorators, type);
 6078   bool as_raw = (decorators & AS_RAW) != 0;
 6079   if (as_raw) {
 6080     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
 6081   } else {
 6082     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
 6083   }
 6084 }
 6085 
 6086 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 6087                                      Register tmp1, Register tmp2, Register tmp3) {
 6088   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 6089   decorators = AccessInternal::decorator_fixup(decorators, type);
 6090   bool as_raw = (decorators & AS_RAW) != 0;
 6091   if (as_raw) {
 6092     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
 6093   } else {
 6094     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
 6095   }
 6096 }
 6097 
 6098 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
 6099                                    Register thread_tmp, DecoratorSet decorators) {
 6100   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
 6101 }
 6102 
 6103 // Doesn't do verification, generates fixed size code
 6104 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 6105                                             Register thread_tmp, DecoratorSet decorators) {
 6106   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
 6107 }
 6108 
 6109 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
 6110                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
 6111   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
 6112 }
 6113 
 6114 // Used for storing nulls.
 6115 void MacroAssembler::store_heap_oop_null(Address dst) {
 6116   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
 6117 }
 6118 
 6119 #ifdef _LP64
 6120 void MacroAssembler::store_klass_gap(Register dst, Register src) {
 6121   assert(!UseCompactObjectHeaders, "Don't use with compact headers");
 6122   if (UseCompressedClassPointers) {
 6123     // Store to klass gap in destination
 6124     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
 6125   }
 6126 }
 6127 
 6128 #ifdef ASSERT
 6129 void MacroAssembler::verify_heapbase(const char* msg) {
 6130   assert (UseCompressedOops, "should be compressed");
 6131   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6132   if (CheckCompressedOops) {
 6133     Label ok;
 6134     ExternalAddress src2(CompressedOops::base_addr());
 6135     const bool is_src2_reachable = reachable(src2);
 6136     if (!is_src2_reachable) {
 6137       push(rscratch1);  // cmpptr trashes rscratch1
 6138     }
 6139     cmpptr(r12_heapbase, src2, rscratch1);
 6140     jcc(Assembler::equal, ok);
 6141     STOP(msg);
 6142     bind(ok);
 6143     if (!is_src2_reachable) {
 6144       pop(rscratch1);
 6145     }
 6146   }
 6147 }
 6148 #endif
 6149 
 6150 // Algorithm must match oop.inline.hpp encode_heap_oop.
 6151 void MacroAssembler::encode_heap_oop(Register r) {
 6152 #ifdef ASSERT
 6153   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
 6154 #endif
 6155   verify_oop_msg(r, "broken oop in encode_heap_oop");
 6156   if (CompressedOops::base() == nullptr) {
 6157     if (CompressedOops::shift() != 0) {
 6158       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6159       shrq(r, LogMinObjAlignmentInBytes);
 6160     }
 6161     return;
 6162   }
 6163   testq(r, r);
 6164   cmovq(Assembler::equal, r, r12_heapbase);
 6165   subq(r, r12_heapbase);
 6166   shrq(r, LogMinObjAlignmentInBytes);
 6167 }
 6168 
 6169 void MacroAssembler::encode_heap_oop_not_null(Register r) {
 6170 #ifdef ASSERT
 6171   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
 6172   if (CheckCompressedOops) {
 6173     Label ok;
 6174     testq(r, r);
 6175     jcc(Assembler::notEqual, ok);
 6176     STOP("null oop passed to encode_heap_oop_not_null");
 6177     bind(ok);
 6178   }
 6179 #endif
 6180   verify_oop_msg(r, "broken oop in encode_heap_oop_not_null");
 6181   if (CompressedOops::base() != nullptr) {
 6182     subq(r, r12_heapbase);
 6183   }
 6184   if (CompressedOops::shift() != 0) {
 6185     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6186     shrq(r, LogMinObjAlignmentInBytes);
 6187   }
 6188 }
 6189 
 6190 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
 6191 #ifdef ASSERT
 6192   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
 6193   if (CheckCompressedOops) {
 6194     Label ok;
 6195     testq(src, src);
 6196     jcc(Assembler::notEqual, ok);
 6197     STOP("null oop passed to encode_heap_oop_not_null2");
 6198     bind(ok);
 6199   }
 6200 #endif
 6201   verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2");
 6202   if (dst != src) {
 6203     movq(dst, src);
 6204   }
 6205   if (CompressedOops::base() != nullptr) {
 6206     subq(dst, r12_heapbase);
 6207   }
 6208   if (CompressedOops::shift() != 0) {
 6209     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6210     shrq(dst, LogMinObjAlignmentInBytes);
 6211   }
 6212 }
 6213 
 6214 void  MacroAssembler::decode_heap_oop(Register r) {
 6215 #ifdef ASSERT
 6216   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
 6217 #endif
 6218   if (CompressedOops::base() == nullptr) {
 6219     if (CompressedOops::shift() != 0) {
 6220       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6221       shlq(r, LogMinObjAlignmentInBytes);
 6222     }
 6223   } else {
 6224     Label done;
 6225     shlq(r, LogMinObjAlignmentInBytes);
 6226     jccb(Assembler::equal, done);
 6227     addq(r, r12_heapbase);
 6228     bind(done);
 6229   }
 6230   verify_oop_msg(r, "broken oop in decode_heap_oop");
 6231 }
 6232 
 6233 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
 6234   // Note: it will change flags
 6235   assert (UseCompressedOops, "should only be used for compressed headers");
 6236   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6237   // Cannot assert, unverified entry point counts instructions (see .ad file)
 6238   // vtableStubs also counts instructions in pd_code_size_limit.
 6239   // Also do not verify_oop as this is called by verify_oop.
 6240   if (CompressedOops::shift() != 0) {
 6241     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6242     shlq(r, LogMinObjAlignmentInBytes);
 6243     if (CompressedOops::base() != nullptr) {
 6244       addq(r, r12_heapbase);
 6245     }
 6246   } else {
 6247     assert (CompressedOops::base() == nullptr, "sanity");
 6248   }
 6249 }
 6250 
 6251 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
 6252   // Note: it will change flags
 6253   assert (UseCompressedOops, "should only be used for compressed headers");
 6254   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6255   // Cannot assert, unverified entry point counts instructions (see .ad file)
 6256   // vtableStubs also counts instructions in pd_code_size_limit.
 6257   // Also do not verify_oop as this is called by verify_oop.
 6258   if (CompressedOops::shift() != 0) {
 6259     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6260     if (LogMinObjAlignmentInBytes == Address::times_8) {
 6261       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
 6262     } else {
 6263       if (dst != src) {
 6264         movq(dst, src);
 6265       }
 6266       shlq(dst, LogMinObjAlignmentInBytes);
 6267       if (CompressedOops::base() != nullptr) {
 6268         addq(dst, r12_heapbase);
 6269       }
 6270     }
 6271   } else {
 6272     assert (CompressedOops::base() == nullptr, "sanity");
 6273     if (dst != src) {
 6274       movq(dst, src);
 6275     }
 6276   }
 6277 }
 6278 
 6279 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) {
 6280   assert_different_registers(r, tmp);
 6281   if (CompressedKlassPointers::base() != nullptr) {
 6282     mov64(tmp, (int64_t)CompressedKlassPointers::base());
 6283     subq(r, tmp);
 6284   }
 6285   if (CompressedKlassPointers::shift() != 0) {
 6286     shrq(r, CompressedKlassPointers::shift());
 6287   }
 6288 }
 6289 
 6290 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) {
 6291   assert_different_registers(src, dst);
 6292   if (CompressedKlassPointers::base() != nullptr) {
 6293     mov64(dst, -(int64_t)CompressedKlassPointers::base());
 6294     addq(dst, src);
 6295   } else {
 6296     movptr(dst, src);
 6297   }
 6298   if (CompressedKlassPointers::shift() != 0) {
 6299     shrq(dst, CompressedKlassPointers::shift());
 6300   }
 6301 }
 6302 
 6303 void  MacroAssembler::decode_klass_not_null(Register r, Register tmp) {
 6304   assert_different_registers(r, tmp);
 6305   // Note: it will change flags
 6306   assert(UseCompressedClassPointers, "should only be used for compressed headers");
 6307   // Cannot assert, unverified entry point counts instructions (see .ad file)
 6308   // vtableStubs also counts instructions in pd_code_size_limit.
 6309   // Also do not verify_oop as this is called by verify_oop.
 6310   if (CompressedKlassPointers::shift() != 0) {
 6311     shlq(r, CompressedKlassPointers::shift());
 6312   }
 6313   if (CompressedKlassPointers::base() != nullptr) {
 6314     mov64(tmp, (int64_t)CompressedKlassPointers::base());
 6315     addq(r, tmp);
 6316   }
 6317 }
 6318 
 6319 void  MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) {
 6320   assert_different_registers(src, dst);
 6321   // Note: it will change flags
 6322   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6323   // Cannot assert, unverified entry point counts instructions (see .ad file)
 6324   // vtableStubs also counts instructions in pd_code_size_limit.
 6325   // Also do not verify_oop as this is called by verify_oop.
 6326 
 6327   if (CompressedKlassPointers::base() == nullptr &&
 6328       CompressedKlassPointers::shift() == 0) {
 6329     // The best case scenario is that there is no base or shift. Then it is already
 6330     // a pointer that needs nothing but a register rename.
 6331     movl(dst, src);
 6332   } else {
 6333     if (CompressedKlassPointers::shift() <= Address::times_8) {
 6334       if (CompressedKlassPointers::base() != nullptr) {
 6335         mov64(dst, (int64_t)CompressedKlassPointers::base());
 6336       } else {
 6337         xorq(dst, dst);
 6338       }
 6339       if (CompressedKlassPointers::shift() != 0) {
 6340         assert(CompressedKlassPointers::shift() == Address::times_8, "klass not aligned on 64bits?");
 6341         leaq(dst, Address(dst, src, Address::times_8, 0));
 6342       } else {
 6343         addq(dst, src);
 6344       }
 6345     } else {
 6346       if (CompressedKlassPointers::base() != nullptr) {
 6347         const uint64_t base_right_shifted =
 6348             (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift();
 6349         mov64(dst, base_right_shifted);
 6350       } else {
 6351         xorq(dst, dst);
 6352       }
 6353       addq(dst, src);
 6354       shlq(dst, CompressedKlassPointers::shift());
 6355     }
 6356   }
 6357 }
 6358 
 6359 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
 6360   assert (UseCompressedOops, "should only be used for compressed headers");
 6361   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6362   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6363   int oop_index = oop_recorder()->find_index(obj);
 6364   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6365   mov_narrow_oop(dst, oop_index, rspec);
 6366 }
 6367 
 6368 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
 6369   assert (UseCompressedOops, "should only be used for compressed headers");
 6370   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6371   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6372   int oop_index = oop_recorder()->find_index(obj);
 6373   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6374   mov_narrow_oop(dst, oop_index, rspec);
 6375 }
 6376 
 6377 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
 6378   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6379   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6380   int klass_index = oop_recorder()->find_index(k);
 6381   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6382   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6383 }
 6384 
 6385 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
 6386   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6387   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6388   int klass_index = oop_recorder()->find_index(k);
 6389   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6390   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6391 }
 6392 
 6393 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
 6394   assert (UseCompressedOops, "should only be used for compressed headers");
 6395   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6396   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6397   int oop_index = oop_recorder()->find_index(obj);
 6398   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6399   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 6400 }
 6401 
 6402 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
 6403   assert (UseCompressedOops, "should only be used for compressed headers");
 6404   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6405   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6406   int oop_index = oop_recorder()->find_index(obj);
 6407   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6408   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 6409 }
 6410 
 6411 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
 6412   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6413   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6414   int klass_index = oop_recorder()->find_index(k);
 6415   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6416   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6417 }
 6418 
 6419 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
 6420   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6421   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6422   int klass_index = oop_recorder()->find_index(k);
 6423   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6424   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6425 }
 6426 
 6427 void MacroAssembler::reinit_heapbase() {
 6428   if (UseCompressedOops) {
 6429     if (Universe::heap() != nullptr) {
 6430       if (CompressedOops::base() == nullptr) {
 6431         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
 6432       } else {
 6433         mov64(r12_heapbase, (int64_t)CompressedOops::base());
 6434       }
 6435     } else {
 6436       movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr()));
 6437     }
 6438   }
 6439 }
 6440 
 6441 #endif // _LP64
 6442 
 6443 #if COMPILER2_OR_JVMCI
 6444 
 6445 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers
 6446 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
 6447   // cnt - number of qwords (8-byte words).
 6448   // base - start address, qword aligned.
 6449   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
 6450   bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0);
 6451   if (use64byteVector) {
 6452     vpxor(xtmp, xtmp, xtmp, AVX_512bit);
 6453   } else if (MaxVectorSize >= 32) {
 6454     vpxor(xtmp, xtmp, xtmp, AVX_256bit);
 6455   } else {
 6456     pxor(xtmp, xtmp);
 6457   }
 6458   jmp(L_zero_64_bytes);
 6459 
 6460   BIND(L_loop);
 6461   if (MaxVectorSize >= 32) {
 6462     fill64(base, 0, xtmp, use64byteVector);
 6463   } else {
 6464     movdqu(Address(base,  0), xtmp);
 6465     movdqu(Address(base, 16), xtmp);
 6466     movdqu(Address(base, 32), xtmp);
 6467     movdqu(Address(base, 48), xtmp);
 6468   }
 6469   addptr(base, 64);
 6470 
 6471   BIND(L_zero_64_bytes);
 6472   subptr(cnt, 8);
 6473   jccb(Assembler::greaterEqual, L_loop);
 6474 
 6475   // Copy trailing 64 bytes
 6476   if (use64byteVector) {
 6477     addptr(cnt, 8);
 6478     jccb(Assembler::equal, L_end);
 6479     fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true);
 6480     jmp(L_end);
 6481   } else {
 6482     addptr(cnt, 4);
 6483     jccb(Assembler::less, L_tail);
 6484     if (MaxVectorSize >= 32) {
 6485       vmovdqu(Address(base, 0), xtmp);
 6486     } else {
 6487       movdqu(Address(base,  0), xtmp);
 6488       movdqu(Address(base, 16), xtmp);
 6489     }
 6490   }
 6491   addptr(base, 32);
 6492   subptr(cnt, 4);
 6493 
 6494   BIND(L_tail);
 6495   addptr(cnt, 4);
 6496   jccb(Assembler::lessEqual, L_end);
 6497   if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) {
 6498     fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp);
 6499   } else {
 6500     decrement(cnt);
 6501 
 6502     BIND(L_sloop);
 6503     movq(Address(base, 0), xtmp);
 6504     addptr(base, 8);
 6505     decrement(cnt);
 6506     jccb(Assembler::greaterEqual, L_sloop);
 6507   }
 6508   BIND(L_end);
 6509 }
 6510 
 6511 // Clearing constant sized memory using YMM/ZMM registers.
 6512 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
 6513   assert(UseAVX > 2 && VM_Version::supports_avx512vl(), "");
 6514   bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0);
 6515 
 6516   int vector64_count = (cnt & (~0x7)) >> 3;
 6517   cnt = cnt & 0x7;
 6518   const int fill64_per_loop = 4;
 6519   const int max_unrolled_fill64 = 8;
 6520 
 6521   // 64 byte initialization loop.
 6522   vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit);
 6523   int start64 = 0;
 6524   if (vector64_count > max_unrolled_fill64) {
 6525     Label LOOP;
 6526     Register index = rtmp;
 6527 
 6528     start64 = vector64_count - (vector64_count % fill64_per_loop);
 6529 
 6530     movl(index, 0);
 6531     BIND(LOOP);
 6532     for (int i = 0; i < fill64_per_loop; i++) {
 6533       fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector);
 6534     }
 6535     addl(index, fill64_per_loop * 64);
 6536     cmpl(index, start64 * 64);
 6537     jccb(Assembler::less, LOOP);
 6538   }
 6539   for (int i = start64; i < vector64_count; i++) {
 6540     fill64(base, i * 64, xtmp, use64byteVector);
 6541   }
 6542 
 6543   // Clear remaining 64 byte tail.
 6544   int disp = vector64_count * 64;
 6545   if (cnt) {
 6546     switch (cnt) {
 6547       case 1:
 6548         movq(Address(base, disp), xtmp);
 6549         break;
 6550       case 2:
 6551         evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit);
 6552         break;
 6553       case 3:
 6554         movl(rtmp, 0x7);
 6555         kmovwl(mask, rtmp);
 6556         evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit);
 6557         break;
 6558       case 4:
 6559         evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6560         break;
 6561       case 5:
 6562         if (use64byteVector) {
 6563           movl(rtmp, 0x1F);
 6564           kmovwl(mask, rtmp);
 6565           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 6566         } else {
 6567           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6568           movq(Address(base, disp + 32), xtmp);
 6569         }
 6570         break;
 6571       case 6:
 6572         if (use64byteVector) {
 6573           movl(rtmp, 0x3F);
 6574           kmovwl(mask, rtmp);
 6575           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 6576         } else {
 6577           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6578           evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit);
 6579         }
 6580         break;
 6581       case 7:
 6582         if (use64byteVector) {
 6583           movl(rtmp, 0x7F);
 6584           kmovwl(mask, rtmp);
 6585           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 6586         } else {
 6587           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6588           movl(rtmp, 0x7);
 6589           kmovwl(mask, rtmp);
 6590           evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit);
 6591         }
 6592         break;
 6593       default:
 6594         fatal("Unexpected length : %d\n",cnt);
 6595         break;
 6596     }
 6597   }
 6598 }
 6599 
 6600 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp,
 6601                                bool is_large, KRegister mask) {
 6602   // cnt      - number of qwords (8-byte words).
 6603   // base     - start address, qword aligned.
 6604   // is_large - if optimizers know cnt is larger than InitArrayShortSize
 6605   assert(base==rdi, "base register must be edi for rep stos");
 6606   assert(tmp==rax,   "tmp register must be eax for rep stos");
 6607   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
 6608   assert(InitArrayShortSize % BytesPerLong == 0,
 6609     "InitArrayShortSize should be the multiple of BytesPerLong");
 6610 
 6611   Label DONE;
 6612   if (!is_large || !UseXMMForObjInit) {
 6613     xorptr(tmp, tmp);
 6614   }
 6615 
 6616   if (!is_large) {
 6617     Label LOOP, LONG;
 6618     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
 6619     jccb(Assembler::greater, LONG);
 6620 
 6621     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
 6622 
 6623     decrement(cnt);
 6624     jccb(Assembler::negative, DONE); // Zero length
 6625 
 6626     // Use individual pointer-sized stores for small counts:
 6627     BIND(LOOP);
 6628     movptr(Address(base, cnt, Address::times_ptr), tmp);
 6629     decrement(cnt);
 6630     jccb(Assembler::greaterEqual, LOOP);
 6631     jmpb(DONE);
 6632 
 6633     BIND(LONG);
 6634   }
 6635 
 6636   // Use longer rep-prefixed ops for non-small counts:
 6637   if (UseFastStosb) {
 6638     shlptr(cnt, 3); // convert to number of bytes
 6639     rep_stosb();
 6640   } else if (UseXMMForObjInit) {
 6641     xmm_clear_mem(base, cnt, tmp, xtmp, mask);
 6642   } else {
 6643     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
 6644     rep_stos();
 6645   }
 6646 
 6647   BIND(DONE);
 6648 }
 6649 
 6650 #endif //COMPILER2_OR_JVMCI
 6651 
 6652 
 6653 void MacroAssembler::generate_fill(BasicType t, bool aligned,
 6654                                    Register to, Register value, Register count,
 6655                                    Register rtmp, XMMRegister xtmp) {
 6656   ShortBranchVerifier sbv(this);
 6657   assert_different_registers(to, value, count, rtmp);
 6658   Label L_exit;
 6659   Label L_fill_2_bytes, L_fill_4_bytes;
 6660 
 6661 #if defined(COMPILER2) && defined(_LP64)
 6662   if(MaxVectorSize >=32 &&
 6663      VM_Version::supports_avx512vlbw() &&
 6664      VM_Version::supports_bmi2()) {
 6665     generate_fill_avx3(t, to, value, count, rtmp, xtmp);
 6666     return;
 6667   }
 6668 #endif
 6669 
 6670   int shift = -1;
 6671   switch (t) {
 6672     case T_BYTE:
 6673       shift = 2;
 6674       break;
 6675     case T_SHORT:
 6676       shift = 1;
 6677       break;
 6678     case T_INT:
 6679       shift = 0;
 6680       break;
 6681     default: ShouldNotReachHere();
 6682   }
 6683 
 6684   if (t == T_BYTE) {
 6685     andl(value, 0xff);
 6686     movl(rtmp, value);
 6687     shll(rtmp, 8);
 6688     orl(value, rtmp);
 6689   }
 6690   if (t == T_SHORT) {
 6691     andl(value, 0xffff);
 6692   }
 6693   if (t == T_BYTE || t == T_SHORT) {
 6694     movl(rtmp, value);
 6695     shll(rtmp, 16);
 6696     orl(value, rtmp);
 6697   }
 6698 
 6699   cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
 6700   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
 6701   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 6702     Label L_skip_align2;
 6703     // align source address at 4 bytes address boundary
 6704     if (t == T_BYTE) {
 6705       Label L_skip_align1;
 6706       // One byte misalignment happens only for byte arrays
 6707       testptr(to, 1);
 6708       jccb(Assembler::zero, L_skip_align1);
 6709       movb(Address(to, 0), value);
 6710       increment(to);
 6711       decrement(count);
 6712       BIND(L_skip_align1);
 6713     }
 6714     // Two bytes misalignment happens only for byte and short (char) arrays
 6715     testptr(to, 2);
 6716     jccb(Assembler::zero, L_skip_align2);
 6717     movw(Address(to, 0), value);
 6718     addptr(to, 2);
 6719     subptr(count, 1<<(shift-1));
 6720     BIND(L_skip_align2);
 6721   }
 6722   if (UseSSE < 2) {
 6723     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 6724     // Fill 32-byte chunks
 6725     subptr(count, 8 << shift);
 6726     jcc(Assembler::less, L_check_fill_8_bytes);
 6727     align(16);
 6728 
 6729     BIND(L_fill_32_bytes_loop);
 6730 
 6731     for (int i = 0; i < 32; i += 4) {
 6732       movl(Address(to, i), value);
 6733     }
 6734 
 6735     addptr(to, 32);
 6736     subptr(count, 8 << shift);
 6737     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 6738     BIND(L_check_fill_8_bytes);
 6739     addptr(count, 8 << shift);
 6740     jccb(Assembler::zero, L_exit);
 6741     jmpb(L_fill_8_bytes);
 6742 
 6743     //
 6744     // length is too short, just fill qwords
 6745     //
 6746     BIND(L_fill_8_bytes_loop);
 6747     movl(Address(to, 0), value);
 6748     movl(Address(to, 4), value);
 6749     addptr(to, 8);
 6750     BIND(L_fill_8_bytes);
 6751     subptr(count, 1 << (shift + 1));
 6752     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 6753     // fall through to fill 4 bytes
 6754   } else {
 6755     Label L_fill_32_bytes;
 6756     if (!UseUnalignedLoadStores) {
 6757       // align to 8 bytes, we know we are 4 byte aligned to start
 6758       testptr(to, 4);
 6759       jccb(Assembler::zero, L_fill_32_bytes);
 6760       movl(Address(to, 0), value);
 6761       addptr(to, 4);
 6762       subptr(count, 1<<shift);
 6763     }
 6764     BIND(L_fill_32_bytes);
 6765     {
 6766       assert( UseSSE >= 2, "supported cpu only" );
 6767       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 6768       movdl(xtmp, value);
 6769       if (UseAVX >= 2 && UseUnalignedLoadStores) {
 6770         Label L_check_fill_32_bytes;
 6771         if (UseAVX > 2) {
 6772           // Fill 64-byte chunks
 6773           Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2;
 6774 
 6775           // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2
 6776           cmpptr(count, VM_Version::avx3_threshold());
 6777           jccb(Assembler::below, L_check_fill_64_bytes_avx2);
 6778 
 6779           vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
 6780 
 6781           subptr(count, 16 << shift);
 6782           jccb(Assembler::less, L_check_fill_32_bytes);
 6783           align(16);
 6784 
 6785           BIND(L_fill_64_bytes_loop_avx3);
 6786           evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
 6787           addptr(to, 64);
 6788           subptr(count, 16 << shift);
 6789           jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3);
 6790           jmpb(L_check_fill_32_bytes);
 6791 
 6792           BIND(L_check_fill_64_bytes_avx2);
 6793         }
 6794         // Fill 64-byte chunks
 6795         Label L_fill_64_bytes_loop;
 6796         vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
 6797 
 6798         subptr(count, 16 << shift);
 6799         jcc(Assembler::less, L_check_fill_32_bytes);
 6800         align(16);
 6801 
 6802         BIND(L_fill_64_bytes_loop);
 6803         vmovdqu(Address(to, 0), xtmp);
 6804         vmovdqu(Address(to, 32), xtmp);
 6805         addptr(to, 64);
 6806         subptr(count, 16 << shift);
 6807         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
 6808 
 6809         BIND(L_check_fill_32_bytes);
 6810         addptr(count, 8 << shift);
 6811         jccb(Assembler::less, L_check_fill_8_bytes);
 6812         vmovdqu(Address(to, 0), xtmp);
 6813         addptr(to, 32);
 6814         subptr(count, 8 << shift);
 6815 
 6816         BIND(L_check_fill_8_bytes);
 6817         // clean upper bits of YMM registers
 6818         movdl(xtmp, value);
 6819         pshufd(xtmp, xtmp, 0);
 6820       } else {
 6821         // Fill 32-byte chunks
 6822         pshufd(xtmp, xtmp, 0);
 6823 
 6824         subptr(count, 8 << shift);
 6825         jcc(Assembler::less, L_check_fill_8_bytes);
 6826         align(16);
 6827 
 6828         BIND(L_fill_32_bytes_loop);
 6829 
 6830         if (UseUnalignedLoadStores) {
 6831           movdqu(Address(to, 0), xtmp);
 6832           movdqu(Address(to, 16), xtmp);
 6833         } else {
 6834           movq(Address(to, 0), xtmp);
 6835           movq(Address(to, 8), xtmp);
 6836           movq(Address(to, 16), xtmp);
 6837           movq(Address(to, 24), xtmp);
 6838         }
 6839 
 6840         addptr(to, 32);
 6841         subptr(count, 8 << shift);
 6842         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 6843 
 6844         BIND(L_check_fill_8_bytes);
 6845       }
 6846       addptr(count, 8 << shift);
 6847       jccb(Assembler::zero, L_exit);
 6848       jmpb(L_fill_8_bytes);
 6849 
 6850       //
 6851       // length is too short, just fill qwords
 6852       //
 6853       BIND(L_fill_8_bytes_loop);
 6854       movq(Address(to, 0), xtmp);
 6855       addptr(to, 8);
 6856       BIND(L_fill_8_bytes);
 6857       subptr(count, 1 << (shift + 1));
 6858       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 6859     }
 6860   }
 6861   // fill trailing 4 bytes
 6862   BIND(L_fill_4_bytes);
 6863   testl(count, 1<<shift);
 6864   jccb(Assembler::zero, L_fill_2_bytes);
 6865   movl(Address(to, 0), value);
 6866   if (t == T_BYTE || t == T_SHORT) {
 6867     Label L_fill_byte;
 6868     addptr(to, 4);
 6869     BIND(L_fill_2_bytes);
 6870     // fill trailing 2 bytes
 6871     testl(count, 1<<(shift-1));
 6872     jccb(Assembler::zero, L_fill_byte);
 6873     movw(Address(to, 0), value);
 6874     if (t == T_BYTE) {
 6875       addptr(to, 2);
 6876       BIND(L_fill_byte);
 6877       // fill trailing byte
 6878       testl(count, 1);
 6879       jccb(Assembler::zero, L_exit);
 6880       movb(Address(to, 0), value);
 6881     } else {
 6882       BIND(L_fill_byte);
 6883     }
 6884   } else {
 6885     BIND(L_fill_2_bytes);
 6886   }
 6887   BIND(L_exit);
 6888 }
 6889 
 6890 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) {
 6891   switch(type) {
 6892     case T_BYTE:
 6893     case T_BOOLEAN:
 6894       evpbroadcastb(dst, src, vector_len);
 6895       break;
 6896     case T_SHORT:
 6897     case T_CHAR:
 6898       evpbroadcastw(dst, src, vector_len);
 6899       break;
 6900     case T_INT:
 6901     case T_FLOAT:
 6902       evpbroadcastd(dst, src, vector_len);
 6903       break;
 6904     case T_LONG:
 6905     case T_DOUBLE:
 6906       evpbroadcastq(dst, src, vector_len);
 6907       break;
 6908     default:
 6909       fatal("Unhandled type : %s", type2name(type));
 6910       break;
 6911   }
 6912 }
 6913 
 6914 // encode char[] to byte[] in ISO_8859_1 or ASCII
 6915    //@IntrinsicCandidate
 6916    //private static int implEncodeISOArray(byte[] sa, int sp,
 6917    //byte[] da, int dp, int len) {
 6918    //  int i = 0;
 6919    //  for (; i < len; i++) {
 6920    //    char c = StringUTF16.getChar(sa, sp++);
 6921    //    if (c > '\u00FF')
 6922    //      break;
 6923    //    da[dp++] = (byte)c;
 6924    //  }
 6925    //  return i;
 6926    //}
 6927    //
 6928    //@IntrinsicCandidate
 6929    //private static int implEncodeAsciiArray(char[] sa, int sp,
 6930    //    byte[] da, int dp, int len) {
 6931    //  int i = 0;
 6932    //  for (; i < len; i++) {
 6933    //    char c = sa[sp++];
 6934    //    if (c >= '\u0080')
 6935    //      break;
 6936    //    da[dp++] = (byte)c;
 6937    //  }
 6938    //  return i;
 6939    //}
 6940 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
 6941   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
 6942   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
 6943   Register tmp5, Register result, bool ascii) {
 6944 
 6945   // rsi: src
 6946   // rdi: dst
 6947   // rdx: len
 6948   // rcx: tmp5
 6949   // rax: result
 6950   ShortBranchVerifier sbv(this);
 6951   assert_different_registers(src, dst, len, tmp5, result);
 6952   Label L_done, L_copy_1_char, L_copy_1_char_exit;
 6953 
 6954   int mask = ascii ? 0xff80ff80 : 0xff00ff00;
 6955   int short_mask = ascii ? 0xff80 : 0xff00;
 6956 
 6957   // set result
 6958   xorl(result, result);
 6959   // check for zero length
 6960   testl(len, len);
 6961   jcc(Assembler::zero, L_done);
 6962 
 6963   movl(result, len);
 6964 
 6965   // Setup pointers
 6966   lea(src, Address(src, len, Address::times_2)); // char[]
 6967   lea(dst, Address(dst, len, Address::times_1)); // byte[]
 6968   negptr(len);
 6969 
 6970   if (UseSSE42Intrinsics || UseAVX >= 2) {
 6971     Label L_copy_8_chars, L_copy_8_chars_exit;
 6972     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
 6973 
 6974     if (UseAVX >= 2) {
 6975       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
 6976       movl(tmp5, mask);   // create mask to test for Unicode or non-ASCII chars in vector
 6977       movdl(tmp1Reg, tmp5);
 6978       vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
 6979       jmp(L_chars_32_check);
 6980 
 6981       bind(L_copy_32_chars);
 6982       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
 6983       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
 6984       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
 6985       vptest(tmp2Reg, tmp1Reg);       // check for Unicode or non-ASCII chars in vector
 6986       jccb(Assembler::notZero, L_copy_32_chars_exit);
 6987       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
 6988       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
 6989       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
 6990 
 6991       bind(L_chars_32_check);
 6992       addptr(len, 32);
 6993       jcc(Assembler::lessEqual, L_copy_32_chars);
 6994 
 6995       bind(L_copy_32_chars_exit);
 6996       subptr(len, 16);
 6997       jccb(Assembler::greater, L_copy_16_chars_exit);
 6998 
 6999     } else if (UseSSE42Intrinsics) {
 7000       movl(tmp5, mask);   // create mask to test for Unicode or non-ASCII chars in vector
 7001       movdl(tmp1Reg, tmp5);
 7002       pshufd(tmp1Reg, tmp1Reg, 0);
 7003       jmpb(L_chars_16_check);
 7004     }
 7005 
 7006     bind(L_copy_16_chars);
 7007     if (UseAVX >= 2) {
 7008       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
 7009       vptest(tmp2Reg, tmp1Reg);
 7010       jcc(Assembler::notZero, L_copy_16_chars_exit);
 7011       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
 7012       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
 7013     } else {
 7014       if (UseAVX > 0) {
 7015         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
 7016         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
 7017         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
 7018       } else {
 7019         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
 7020         por(tmp2Reg, tmp3Reg);
 7021         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
 7022         por(tmp2Reg, tmp4Reg);
 7023       }
 7024       ptest(tmp2Reg, tmp1Reg);       // check for Unicode or non-ASCII chars in vector
 7025       jccb(Assembler::notZero, L_copy_16_chars_exit);
 7026       packuswb(tmp3Reg, tmp4Reg);
 7027     }
 7028     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
 7029 
 7030     bind(L_chars_16_check);
 7031     addptr(len, 16);
 7032     jcc(Assembler::lessEqual, L_copy_16_chars);
 7033 
 7034     bind(L_copy_16_chars_exit);
 7035     if (UseAVX >= 2) {
 7036       // clean upper bits of YMM registers
 7037       vpxor(tmp2Reg, tmp2Reg);
 7038       vpxor(tmp3Reg, tmp3Reg);
 7039       vpxor(tmp4Reg, tmp4Reg);
 7040       movdl(tmp1Reg, tmp5);
 7041       pshufd(tmp1Reg, tmp1Reg, 0);
 7042     }
 7043     subptr(len, 8);
 7044     jccb(Assembler::greater, L_copy_8_chars_exit);
 7045 
 7046     bind(L_copy_8_chars);
 7047     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
 7048     ptest(tmp3Reg, tmp1Reg);
 7049     jccb(Assembler::notZero, L_copy_8_chars_exit);
 7050     packuswb(tmp3Reg, tmp1Reg);
 7051     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
 7052     addptr(len, 8);
 7053     jccb(Assembler::lessEqual, L_copy_8_chars);
 7054 
 7055     bind(L_copy_8_chars_exit);
 7056     subptr(len, 8);
 7057     jccb(Assembler::zero, L_done);
 7058   }
 7059 
 7060   bind(L_copy_1_char);
 7061   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
 7062   testl(tmp5, short_mask);      // check if Unicode or non-ASCII char
 7063   jccb(Assembler::notZero, L_copy_1_char_exit);
 7064   movb(Address(dst, len, Address::times_1, 0), tmp5);
 7065   addptr(len, 1);
 7066   jccb(Assembler::less, L_copy_1_char);
 7067 
 7068   bind(L_copy_1_char_exit);
 7069   addptr(result, len); // len is negative count of not processed elements
 7070 
 7071   bind(L_done);
 7072 }
 7073 
 7074 #ifdef _LP64
 7075 /**
 7076  * Helper for multiply_to_len().
 7077  */
 7078 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
 7079   addq(dest_lo, src1);
 7080   adcq(dest_hi, 0);
 7081   addq(dest_lo, src2);
 7082   adcq(dest_hi, 0);
 7083 }
 7084 
 7085 /**
 7086  * Multiply 64 bit by 64 bit first loop.
 7087  */
 7088 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
 7089                                            Register y, Register y_idx, Register z,
 7090                                            Register carry, Register product,
 7091                                            Register idx, Register kdx) {
 7092   //
 7093   //  jlong carry, x[], y[], z[];
 7094   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
 7095   //    huge_128 product = y[idx] * x[xstart] + carry;
 7096   //    z[kdx] = (jlong)product;
 7097   //    carry  = (jlong)(product >>> 64);
 7098   //  }
 7099   //  z[xstart] = carry;
 7100   //
 7101 
 7102   Label L_first_loop, L_first_loop_exit;
 7103   Label L_one_x, L_one_y, L_multiply;
 7104 
 7105   decrementl(xstart);
 7106   jcc(Assembler::negative, L_one_x);
 7107 
 7108   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
 7109   rorq(x_xstart, 32); // convert big-endian to little-endian
 7110 
 7111   bind(L_first_loop);
 7112   decrementl(idx);
 7113   jcc(Assembler::negative, L_first_loop_exit);
 7114   decrementl(idx);
 7115   jcc(Assembler::negative, L_one_y);
 7116   movq(y_idx, Address(y, idx, Address::times_4,  0));
 7117   rorq(y_idx, 32); // convert big-endian to little-endian
 7118   bind(L_multiply);
 7119   movq(product, x_xstart);
 7120   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
 7121   addq(product, carry);
 7122   adcq(rdx, 0);
 7123   subl(kdx, 2);
 7124   movl(Address(z, kdx, Address::times_4,  4), product);
 7125   shrq(product, 32);
 7126   movl(Address(z, kdx, Address::times_4,  0), product);
 7127   movq(carry, rdx);
 7128   jmp(L_first_loop);
 7129 
 7130   bind(L_one_y);
 7131   movl(y_idx, Address(y,  0));
 7132   jmp(L_multiply);
 7133 
 7134   bind(L_one_x);
 7135   movl(x_xstart, Address(x,  0));
 7136   jmp(L_first_loop);
 7137 
 7138   bind(L_first_loop_exit);
 7139 }
 7140 
 7141 /**
 7142  * Multiply 64 bit by 64 bit and add 128 bit.
 7143  */
 7144 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
 7145                                             Register yz_idx, Register idx,
 7146                                             Register carry, Register product, int offset) {
 7147   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
 7148   //     z[kdx] = (jlong)product;
 7149 
 7150   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
 7151   rorq(yz_idx, 32); // convert big-endian to little-endian
 7152   movq(product, x_xstart);
 7153   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
 7154   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
 7155   rorq(yz_idx, 32); // convert big-endian to little-endian
 7156 
 7157   add2_with_carry(rdx, product, carry, yz_idx);
 7158 
 7159   movl(Address(z, idx, Address::times_4,  offset+4), product);
 7160   shrq(product, 32);
 7161   movl(Address(z, idx, Address::times_4,  offset), product);
 7162 
 7163 }
 7164 
 7165 /**
 7166  * Multiply 128 bit by 128 bit. Unrolled inner loop.
 7167  */
 7168 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
 7169                                              Register yz_idx, Register idx, Register jdx,
 7170                                              Register carry, Register product,
 7171                                              Register carry2) {
 7172   //   jlong carry, x[], y[], z[];
 7173   //   int kdx = ystart+1;
 7174   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
 7175   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
 7176   //     z[kdx+idx+1] = (jlong)product;
 7177   //     jlong carry2  = (jlong)(product >>> 64);
 7178   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
 7179   //     z[kdx+idx] = (jlong)product;
 7180   //     carry  = (jlong)(product >>> 64);
 7181   //   }
 7182   //   idx += 2;
 7183   //   if (idx > 0) {
 7184   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
 7185   //     z[kdx+idx] = (jlong)product;
 7186   //     carry  = (jlong)(product >>> 64);
 7187   //   }
 7188   //
 7189 
 7190   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
 7191 
 7192   movl(jdx, idx);
 7193   andl(jdx, 0xFFFFFFFC);
 7194   shrl(jdx, 2);
 7195 
 7196   bind(L_third_loop);
 7197   subl(jdx, 1);
 7198   jcc(Assembler::negative, L_third_loop_exit);
 7199   subl(idx, 4);
 7200 
 7201   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
 7202   movq(carry2, rdx);
 7203 
 7204   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
 7205   movq(carry, rdx);
 7206   jmp(L_third_loop);
 7207 
 7208   bind (L_third_loop_exit);
 7209 
 7210   andl (idx, 0x3);
 7211   jcc(Assembler::zero, L_post_third_loop_done);
 7212 
 7213   Label L_check_1;
 7214   subl(idx, 2);
 7215   jcc(Assembler::negative, L_check_1);
 7216 
 7217   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
 7218   movq(carry, rdx);
 7219 
 7220   bind (L_check_1);
 7221   addl (idx, 0x2);
 7222   andl (idx, 0x1);
 7223   subl(idx, 1);
 7224   jcc(Assembler::negative, L_post_third_loop_done);
 7225 
 7226   movl(yz_idx, Address(y, idx, Address::times_4,  0));
 7227   movq(product, x_xstart);
 7228   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
 7229   movl(yz_idx, Address(z, idx, Address::times_4,  0));
 7230 
 7231   add2_with_carry(rdx, product, yz_idx, carry);
 7232 
 7233   movl(Address(z, idx, Address::times_4,  0), product);
 7234   shrq(product, 32);
 7235 
 7236   shlq(rdx, 32);
 7237   orq(product, rdx);
 7238   movq(carry, product);
 7239 
 7240   bind(L_post_third_loop_done);
 7241 }
 7242 
 7243 /**
 7244  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
 7245  *
 7246  */
 7247 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
 7248                                                   Register carry, Register carry2,
 7249                                                   Register idx, Register jdx,
 7250                                                   Register yz_idx1, Register yz_idx2,
 7251                                                   Register tmp, Register tmp3, Register tmp4) {
 7252   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
 7253 
 7254   //   jlong carry, x[], y[], z[];
 7255   //   int kdx = ystart+1;
 7256   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
 7257   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
 7258   //     jlong carry2  = (jlong)(tmp3 >>> 64);
 7259   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
 7260   //     carry  = (jlong)(tmp4 >>> 64);
 7261   //     z[kdx+idx+1] = (jlong)tmp3;
 7262   //     z[kdx+idx] = (jlong)tmp4;
 7263   //   }
 7264   //   idx += 2;
 7265   //   if (idx > 0) {
 7266   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
 7267   //     z[kdx+idx] = (jlong)yz_idx1;
 7268   //     carry  = (jlong)(yz_idx1 >>> 64);
 7269   //   }
 7270   //
 7271 
 7272   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
 7273 
 7274   movl(jdx, idx);
 7275   andl(jdx, 0xFFFFFFFC);
 7276   shrl(jdx, 2);
 7277 
 7278   bind(L_third_loop);
 7279   subl(jdx, 1);
 7280   jcc(Assembler::negative, L_third_loop_exit);
 7281   subl(idx, 4);
 7282 
 7283   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
 7284   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
 7285   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
 7286   rorxq(yz_idx2, yz_idx2, 32);
 7287 
 7288   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
 7289   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
 7290 
 7291   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
 7292   rorxq(yz_idx1, yz_idx1, 32);
 7293   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
 7294   rorxq(yz_idx2, yz_idx2, 32);
 7295 
 7296   if (VM_Version::supports_adx()) {
 7297     adcxq(tmp3, carry);
 7298     adoxq(tmp3, yz_idx1);
 7299 
 7300     adcxq(tmp4, tmp);
 7301     adoxq(tmp4, yz_idx2);
 7302 
 7303     movl(carry, 0); // does not affect flags
 7304     adcxq(carry2, carry);
 7305     adoxq(carry2, carry);
 7306   } else {
 7307     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
 7308     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
 7309   }
 7310   movq(carry, carry2);
 7311 
 7312   movl(Address(z, idx, Address::times_4, 12), tmp3);
 7313   shrq(tmp3, 32);
 7314   movl(Address(z, idx, Address::times_4,  8), tmp3);
 7315 
 7316   movl(Address(z, idx, Address::times_4,  4), tmp4);
 7317   shrq(tmp4, 32);
 7318   movl(Address(z, idx, Address::times_4,  0), tmp4);
 7319 
 7320   jmp(L_third_loop);
 7321 
 7322   bind (L_third_loop_exit);
 7323 
 7324   andl (idx, 0x3);
 7325   jcc(Assembler::zero, L_post_third_loop_done);
 7326 
 7327   Label L_check_1;
 7328   subl(idx, 2);
 7329   jcc(Assembler::negative, L_check_1);
 7330 
 7331   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
 7332   rorxq(yz_idx1, yz_idx1, 32);
 7333   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
 7334   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
 7335   rorxq(yz_idx2, yz_idx2, 32);
 7336 
 7337   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
 7338 
 7339   movl(Address(z, idx, Address::times_4,  4), tmp3);
 7340   shrq(tmp3, 32);
 7341   movl(Address(z, idx, Address::times_4,  0), tmp3);
 7342   movq(carry, tmp4);
 7343 
 7344   bind (L_check_1);
 7345   addl (idx, 0x2);
 7346   andl (idx, 0x1);
 7347   subl(idx, 1);
 7348   jcc(Assembler::negative, L_post_third_loop_done);
 7349   movl(tmp4, Address(y, idx, Address::times_4,  0));
 7350   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
 7351   movl(tmp4, Address(z, idx, Address::times_4,  0));
 7352 
 7353   add2_with_carry(carry2, tmp3, tmp4, carry);
 7354 
 7355   movl(Address(z, idx, Address::times_4,  0), tmp3);
 7356   shrq(tmp3, 32);
 7357 
 7358   shlq(carry2, 32);
 7359   orq(tmp3, carry2);
 7360   movq(carry, tmp3);
 7361 
 7362   bind(L_post_third_loop_done);
 7363 }
 7364 
 7365 /**
 7366  * Code for BigInteger::multiplyToLen() intrinsic.
 7367  *
 7368  * rdi: x
 7369  * rax: xlen
 7370  * rsi: y
 7371  * rcx: ylen
 7372  * r8:  z
 7373  * r11: tmp0
 7374  * r12: tmp1
 7375  * r13: tmp2
 7376  * r14: tmp3
 7377  * r15: tmp4
 7378  * rbx: tmp5
 7379  *
 7380  */
 7381 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0,
 7382                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
 7383   ShortBranchVerifier sbv(this);
 7384   assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
 7385 
 7386   push(tmp0);
 7387   push(tmp1);
 7388   push(tmp2);
 7389   push(tmp3);
 7390   push(tmp4);
 7391   push(tmp5);
 7392 
 7393   push(xlen);
 7394 
 7395   const Register idx = tmp1;
 7396   const Register kdx = tmp2;
 7397   const Register xstart = tmp3;
 7398 
 7399   const Register y_idx = tmp4;
 7400   const Register carry = tmp5;
 7401   const Register product  = xlen;
 7402   const Register x_xstart = tmp0;
 7403 
 7404   // First Loop.
 7405   //
 7406   //  final static long LONG_MASK = 0xffffffffL;
 7407   //  int xstart = xlen - 1;
 7408   //  int ystart = ylen - 1;
 7409   //  long carry = 0;
 7410   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
 7411   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
 7412   //    z[kdx] = (int)product;
 7413   //    carry = product >>> 32;
 7414   //  }
 7415   //  z[xstart] = (int)carry;
 7416   //
 7417 
 7418   movl(idx, ylen);               // idx = ylen;
 7419   lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen;
 7420   xorq(carry, carry);            // carry = 0;
 7421 
 7422   Label L_done;
 7423 
 7424   movl(xstart, xlen);
 7425   decrementl(xstart);
 7426   jcc(Assembler::negative, L_done);
 7427 
 7428   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
 7429 
 7430   Label L_second_loop;
 7431   testl(kdx, kdx);
 7432   jcc(Assembler::zero, L_second_loop);
 7433 
 7434   Label L_carry;
 7435   subl(kdx, 1);
 7436   jcc(Assembler::zero, L_carry);
 7437 
 7438   movl(Address(z, kdx, Address::times_4,  0), carry);
 7439   shrq(carry, 32);
 7440   subl(kdx, 1);
 7441 
 7442   bind(L_carry);
 7443   movl(Address(z, kdx, Address::times_4,  0), carry);
 7444 
 7445   // Second and third (nested) loops.
 7446   //
 7447   // for (int i = xstart-1; i >= 0; i--) { // Second loop
 7448   //   carry = 0;
 7449   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
 7450   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
 7451   //                    (z[k] & LONG_MASK) + carry;
 7452   //     z[k] = (int)product;
 7453   //     carry = product >>> 32;
 7454   //   }
 7455   //   z[i] = (int)carry;
 7456   // }
 7457   //
 7458   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
 7459 
 7460   const Register jdx = tmp1;
 7461 
 7462   bind(L_second_loop);
 7463   xorl(carry, carry);    // carry = 0;
 7464   movl(jdx, ylen);       // j = ystart+1
 7465 
 7466   subl(xstart, 1);       // i = xstart-1;
 7467   jcc(Assembler::negative, L_done);
 7468 
 7469   push (z);
 7470 
 7471   Label L_last_x;
 7472   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
 7473   subl(xstart, 1);       // i = xstart-1;
 7474   jcc(Assembler::negative, L_last_x);
 7475 
 7476   if (UseBMI2Instructions) {
 7477     movq(rdx,  Address(x, xstart, Address::times_4,  0));
 7478     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
 7479   } else {
 7480     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
 7481     rorq(x_xstart, 32);  // convert big-endian to little-endian
 7482   }
 7483 
 7484   Label L_third_loop_prologue;
 7485   bind(L_third_loop_prologue);
 7486 
 7487   push (x);
 7488   push (xstart);
 7489   push (ylen);
 7490 
 7491 
 7492   if (UseBMI2Instructions) {
 7493     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
 7494   } else { // !UseBMI2Instructions
 7495     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
 7496   }
 7497 
 7498   pop(ylen);
 7499   pop(xlen);
 7500   pop(x);
 7501   pop(z);
 7502 
 7503   movl(tmp3, xlen);
 7504   addl(tmp3, 1);
 7505   movl(Address(z, tmp3, Address::times_4,  0), carry);
 7506   subl(tmp3, 1);
 7507   jccb(Assembler::negative, L_done);
 7508 
 7509   shrq(carry, 32);
 7510   movl(Address(z, tmp3, Address::times_4,  0), carry);
 7511   jmp(L_second_loop);
 7512 
 7513   // Next infrequent code is moved outside loops.
 7514   bind(L_last_x);
 7515   if (UseBMI2Instructions) {
 7516     movl(rdx, Address(x,  0));
 7517   } else {
 7518     movl(x_xstart, Address(x,  0));
 7519   }
 7520   jmp(L_third_loop_prologue);
 7521 
 7522   bind(L_done);
 7523 
 7524   pop(xlen);
 7525 
 7526   pop(tmp5);
 7527   pop(tmp4);
 7528   pop(tmp3);
 7529   pop(tmp2);
 7530   pop(tmp1);
 7531   pop(tmp0);
 7532 }
 7533 
 7534 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
 7535   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
 7536   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
 7537   Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
 7538   Label VECTOR8_TAIL, VECTOR4_TAIL;
 7539   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
 7540   Label SAME_TILL_END, DONE;
 7541   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
 7542 
 7543   //scale is in rcx in both Win64 and Unix
 7544   ShortBranchVerifier sbv(this);
 7545 
 7546   shlq(length);
 7547   xorq(result, result);
 7548 
 7549   if ((AVX3Threshold == 0) && (UseAVX > 2) &&
 7550       VM_Version::supports_avx512vlbw()) {
 7551     Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
 7552 
 7553     cmpq(length, 64);
 7554     jcc(Assembler::less, VECTOR32_TAIL);
 7555 
 7556     movq(tmp1, length);
 7557     andq(tmp1, 0x3F);      // tail count
 7558     andq(length, ~(0x3F)); //vector count
 7559 
 7560     bind(VECTOR64_LOOP);
 7561     // AVX512 code to compare 64 byte vectors.
 7562     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
 7563     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
 7564     kortestql(k7, k7);
 7565     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
 7566     addq(result, 64);
 7567     subq(length, 64);
 7568     jccb(Assembler::notZero, VECTOR64_LOOP);
 7569 
 7570     //bind(VECTOR64_TAIL);
 7571     testq(tmp1, tmp1);
 7572     jcc(Assembler::zero, SAME_TILL_END);
 7573 
 7574     //bind(VECTOR64_TAIL);
 7575     // AVX512 code to compare up to 63 byte vectors.
 7576     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
 7577     shlxq(tmp2, tmp2, tmp1);
 7578     notq(tmp2);
 7579     kmovql(k3, tmp2);
 7580 
 7581     evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit);
 7582     evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
 7583 
 7584     ktestql(k7, k3);
 7585     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
 7586 
 7587     bind(VECTOR64_NOT_EQUAL);
 7588     kmovql(tmp1, k7);
 7589     notq(tmp1);
 7590     tzcntq(tmp1, tmp1);
 7591     addq(result, tmp1);
 7592     shrq(result);
 7593     jmp(DONE);
 7594     bind(VECTOR32_TAIL);
 7595   }
 7596 
 7597   cmpq(length, 8);
 7598   jcc(Assembler::equal, VECTOR8_LOOP);
 7599   jcc(Assembler::less, VECTOR4_TAIL);
 7600 
 7601   if (UseAVX >= 2) {
 7602     Label VECTOR16_TAIL, VECTOR32_LOOP;
 7603 
 7604     cmpq(length, 16);
 7605     jcc(Assembler::equal, VECTOR16_LOOP);
 7606     jcc(Assembler::less, VECTOR8_LOOP);
 7607 
 7608     cmpq(length, 32);
 7609     jccb(Assembler::less, VECTOR16_TAIL);
 7610 
 7611     subq(length, 32);
 7612     bind(VECTOR32_LOOP);
 7613     vmovdqu(rymm0, Address(obja, result));
 7614     vmovdqu(rymm1, Address(objb, result));
 7615     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
 7616     vptest(rymm2, rymm2);
 7617     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
 7618     addq(result, 32);
 7619     subq(length, 32);
 7620     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
 7621     addq(length, 32);
 7622     jcc(Assembler::equal, SAME_TILL_END);
 7623     //falling through if less than 32 bytes left //close the branch here.
 7624 
 7625     bind(VECTOR16_TAIL);
 7626     cmpq(length, 16);
 7627     jccb(Assembler::less, VECTOR8_TAIL);
 7628     bind(VECTOR16_LOOP);
 7629     movdqu(rymm0, Address(obja, result));
 7630     movdqu(rymm1, Address(objb, result));
 7631     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
 7632     ptest(rymm2, rymm2);
 7633     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
 7634     addq(result, 16);
 7635     subq(length, 16);
 7636     jcc(Assembler::equal, SAME_TILL_END);
 7637     //falling through if less than 16 bytes left
 7638   } else {//regular intrinsics
 7639 
 7640     cmpq(length, 16);
 7641     jccb(Assembler::less, VECTOR8_TAIL);
 7642 
 7643     subq(length, 16);
 7644     bind(VECTOR16_LOOP);
 7645     movdqu(rymm0, Address(obja, result));
 7646     movdqu(rymm1, Address(objb, result));
 7647     pxor(rymm0, rymm1);
 7648     ptest(rymm0, rymm0);
 7649     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
 7650     addq(result, 16);
 7651     subq(length, 16);
 7652     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
 7653     addq(length, 16);
 7654     jcc(Assembler::equal, SAME_TILL_END);
 7655     //falling through if less than 16 bytes left
 7656   }
 7657 
 7658   bind(VECTOR8_TAIL);
 7659   cmpq(length, 8);
 7660   jccb(Assembler::less, VECTOR4_TAIL);
 7661   bind(VECTOR8_LOOP);
 7662   movq(tmp1, Address(obja, result));
 7663   movq(tmp2, Address(objb, result));
 7664   xorq(tmp1, tmp2);
 7665   testq(tmp1, tmp1);
 7666   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
 7667   addq(result, 8);
 7668   subq(length, 8);
 7669   jcc(Assembler::equal, SAME_TILL_END);
 7670   //falling through if less than 8 bytes left
 7671 
 7672   bind(VECTOR4_TAIL);
 7673   cmpq(length, 4);
 7674   jccb(Assembler::less, BYTES_TAIL);
 7675   bind(VECTOR4_LOOP);
 7676   movl(tmp1, Address(obja, result));
 7677   xorl(tmp1, Address(objb, result));
 7678   testl(tmp1, tmp1);
 7679   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
 7680   addq(result, 4);
 7681   subq(length, 4);
 7682   jcc(Assembler::equal, SAME_TILL_END);
 7683   //falling through if less than 4 bytes left
 7684 
 7685   bind(BYTES_TAIL);
 7686   bind(BYTES_LOOP);
 7687   load_unsigned_byte(tmp1, Address(obja, result));
 7688   load_unsigned_byte(tmp2, Address(objb, result));
 7689   xorl(tmp1, tmp2);
 7690   testl(tmp1, tmp1);
 7691   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 7692   decq(length);
 7693   jcc(Assembler::zero, SAME_TILL_END);
 7694   incq(result);
 7695   load_unsigned_byte(tmp1, Address(obja, result));
 7696   load_unsigned_byte(tmp2, Address(objb, result));
 7697   xorl(tmp1, tmp2);
 7698   testl(tmp1, tmp1);
 7699   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 7700   decq(length);
 7701   jcc(Assembler::zero, SAME_TILL_END);
 7702   incq(result);
 7703   load_unsigned_byte(tmp1, Address(obja, result));
 7704   load_unsigned_byte(tmp2, Address(objb, result));
 7705   xorl(tmp1, tmp2);
 7706   testl(tmp1, tmp1);
 7707   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 7708   jmp(SAME_TILL_END);
 7709 
 7710   if (UseAVX >= 2) {
 7711     bind(VECTOR32_NOT_EQUAL);
 7712     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
 7713     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
 7714     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
 7715     vpmovmskb(tmp1, rymm0);
 7716     bsfq(tmp1, tmp1);
 7717     addq(result, tmp1);
 7718     shrq(result);
 7719     jmp(DONE);
 7720   }
 7721 
 7722   bind(VECTOR16_NOT_EQUAL);
 7723   if (UseAVX >= 2) {
 7724     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
 7725     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
 7726     pxor(rymm0, rymm2);
 7727   } else {
 7728     pcmpeqb(rymm2, rymm2);
 7729     pxor(rymm0, rymm1);
 7730     pcmpeqb(rymm0, rymm1);
 7731     pxor(rymm0, rymm2);
 7732   }
 7733   pmovmskb(tmp1, rymm0);
 7734   bsfq(tmp1, tmp1);
 7735   addq(result, tmp1);
 7736   shrq(result);
 7737   jmpb(DONE);
 7738 
 7739   bind(VECTOR8_NOT_EQUAL);
 7740   bind(VECTOR4_NOT_EQUAL);
 7741   bsfq(tmp1, tmp1);
 7742   shrq(tmp1, 3);
 7743   addq(result, tmp1);
 7744   bind(BYTES_NOT_EQUAL);
 7745   shrq(result);
 7746   jmpb(DONE);
 7747 
 7748   bind(SAME_TILL_END);
 7749   mov64(result, -1);
 7750 
 7751   bind(DONE);
 7752 }
 7753 
 7754 //Helper functions for square_to_len()
 7755 
 7756 /**
 7757  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
 7758  * Preserves x and z and modifies rest of the registers.
 7759  */
 7760 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 7761   // Perform square and right shift by 1
 7762   // Handle odd xlen case first, then for even xlen do the following
 7763   // jlong carry = 0;
 7764   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
 7765   //     huge_128 product = x[j:j+1] * x[j:j+1];
 7766   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
 7767   //     z[i+2:i+3] = (jlong)(product >>> 1);
 7768   //     carry = (jlong)product;
 7769   // }
 7770 
 7771   xorq(tmp5, tmp5);     // carry
 7772   xorq(rdxReg, rdxReg);
 7773   xorl(tmp1, tmp1);     // index for x
 7774   xorl(tmp4, tmp4);     // index for z
 7775 
 7776   Label L_first_loop, L_first_loop_exit;
 7777 
 7778   testl(xlen, 1);
 7779   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
 7780 
 7781   // Square and right shift by 1 the odd element using 32 bit multiply
 7782   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
 7783   imulq(raxReg, raxReg);
 7784   shrq(raxReg, 1);
 7785   adcq(tmp5, 0);
 7786   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
 7787   incrementl(tmp1);
 7788   addl(tmp4, 2);
 7789 
 7790   // Square and  right shift by 1 the rest using 64 bit multiply
 7791   bind(L_first_loop);
 7792   cmpptr(tmp1, xlen);
 7793   jccb(Assembler::equal, L_first_loop_exit);
 7794 
 7795   // Square
 7796   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
 7797   rorq(raxReg, 32);    // convert big-endian to little-endian
 7798   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
 7799 
 7800   // Right shift by 1 and save carry
 7801   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
 7802   rcrq(rdxReg, 1);
 7803   rcrq(raxReg, 1);
 7804   adcq(tmp5, 0);
 7805 
 7806   // Store result in z
 7807   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
 7808   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
 7809 
 7810   // Update indices for x and z
 7811   addl(tmp1, 2);
 7812   addl(tmp4, 4);
 7813   jmp(L_first_loop);
 7814 
 7815   bind(L_first_loop_exit);
 7816 }
 7817 
 7818 
 7819 /**
 7820  * Perform the following multiply add operation using BMI2 instructions
 7821  * carry:sum = sum + op1*op2 + carry
 7822  * op2 should be in rdx
 7823  * op2 is preserved, all other registers are modified
 7824  */
 7825 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
 7826   // assert op2 is rdx
 7827   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
 7828   addq(sum, carry);
 7829   adcq(tmp2, 0);
 7830   addq(sum, op1);
 7831   adcq(tmp2, 0);
 7832   movq(carry, tmp2);
 7833 }
 7834 
 7835 /**
 7836  * Perform the following multiply add operation:
 7837  * carry:sum = sum + op1*op2 + carry
 7838  * Preserves op1, op2 and modifies rest of registers
 7839  */
 7840 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
 7841   // rdx:rax = op1 * op2
 7842   movq(raxReg, op2);
 7843   mulq(op1);
 7844 
 7845   //  rdx:rax = sum + carry + rdx:rax
 7846   addq(sum, carry);
 7847   adcq(rdxReg, 0);
 7848   addq(sum, raxReg);
 7849   adcq(rdxReg, 0);
 7850 
 7851   // carry:sum = rdx:sum
 7852   movq(carry, rdxReg);
 7853 }
 7854 
 7855 /**
 7856  * Add 64 bit long carry into z[] with carry propagation.
 7857  * Preserves z and carry register values and modifies rest of registers.
 7858  *
 7859  */
 7860 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
 7861   Label L_fourth_loop, L_fourth_loop_exit;
 7862 
 7863   movl(tmp1, 1);
 7864   subl(zlen, 2);
 7865   addq(Address(z, zlen, Address::times_4, 0), carry);
 7866 
 7867   bind(L_fourth_loop);
 7868   jccb(Assembler::carryClear, L_fourth_loop_exit);
 7869   subl(zlen, 2);
 7870   jccb(Assembler::negative, L_fourth_loop_exit);
 7871   addq(Address(z, zlen, Address::times_4, 0), tmp1);
 7872   jmp(L_fourth_loop);
 7873   bind(L_fourth_loop_exit);
 7874 }
 7875 
 7876 /**
 7877  * Shift z[] left by 1 bit.
 7878  * Preserves x, len, z and zlen registers and modifies rest of the registers.
 7879  *
 7880  */
 7881 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
 7882 
 7883   Label L_fifth_loop, L_fifth_loop_exit;
 7884 
 7885   // Fifth loop
 7886   // Perform primitiveLeftShift(z, zlen, 1)
 7887 
 7888   const Register prev_carry = tmp1;
 7889   const Register new_carry = tmp4;
 7890   const Register value = tmp2;
 7891   const Register zidx = tmp3;
 7892 
 7893   // int zidx, carry;
 7894   // long value;
 7895   // carry = 0;
 7896   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
 7897   //    (carry:value)  = (z[i] << 1) | carry ;
 7898   //    z[i] = value;
 7899   // }
 7900 
 7901   movl(zidx, zlen);
 7902   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
 7903 
 7904   bind(L_fifth_loop);
 7905   decl(zidx);  // Use decl to preserve carry flag
 7906   decl(zidx);
 7907   jccb(Assembler::negative, L_fifth_loop_exit);
 7908 
 7909   if (UseBMI2Instructions) {
 7910      movq(value, Address(z, zidx, Address::times_4, 0));
 7911      rclq(value, 1);
 7912      rorxq(value, value, 32);
 7913      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
 7914   }
 7915   else {
 7916     // clear new_carry
 7917     xorl(new_carry, new_carry);
 7918 
 7919     // Shift z[i] by 1, or in previous carry and save new carry
 7920     movq(value, Address(z, zidx, Address::times_4, 0));
 7921     shlq(value, 1);
 7922     adcl(new_carry, 0);
 7923 
 7924     orq(value, prev_carry);
 7925     rorq(value, 0x20);
 7926     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
 7927 
 7928     // Set previous carry = new carry
 7929     movl(prev_carry, new_carry);
 7930   }
 7931   jmp(L_fifth_loop);
 7932 
 7933   bind(L_fifth_loop_exit);
 7934 }
 7935 
 7936 
 7937 /**
 7938  * Code for BigInteger::squareToLen() intrinsic
 7939  *
 7940  * rdi: x
 7941  * rsi: len
 7942  * r8:  z
 7943  * rcx: zlen
 7944  * r12: tmp1
 7945  * r13: tmp2
 7946  * r14: tmp3
 7947  * r15: tmp4
 7948  * rbx: tmp5
 7949  *
 7950  */
 7951 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 7952 
 7953   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
 7954   push(tmp1);
 7955   push(tmp2);
 7956   push(tmp3);
 7957   push(tmp4);
 7958   push(tmp5);
 7959 
 7960   // First loop
 7961   // Store the squares, right shifted one bit (i.e., divided by 2).
 7962   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
 7963 
 7964   // Add in off-diagonal sums.
 7965   //
 7966   // Second, third (nested) and fourth loops.
 7967   // zlen +=2;
 7968   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
 7969   //    carry = 0;
 7970   //    long op2 = x[xidx:xidx+1];
 7971   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
 7972   //       k -= 2;
 7973   //       long op1 = x[j:j+1];
 7974   //       long sum = z[k:k+1];
 7975   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
 7976   //       z[k:k+1] = sum;
 7977   //    }
 7978   //    add_one_64(z, k, carry, tmp_regs);
 7979   // }
 7980 
 7981   const Register carry = tmp5;
 7982   const Register sum = tmp3;
 7983   const Register op1 = tmp4;
 7984   Register op2 = tmp2;
 7985 
 7986   push(zlen);
 7987   push(len);
 7988   addl(zlen,2);
 7989   bind(L_second_loop);
 7990   xorq(carry, carry);
 7991   subl(zlen, 4);
 7992   subl(len, 2);
 7993   push(zlen);
 7994   push(len);
 7995   cmpl(len, 0);
 7996   jccb(Assembler::lessEqual, L_second_loop_exit);
 7997 
 7998   // Multiply an array by one 64 bit long.
 7999   if (UseBMI2Instructions) {
 8000     op2 = rdxReg;
 8001     movq(op2, Address(x, len, Address::times_4,  0));
 8002     rorxq(op2, op2, 32);
 8003   }
 8004   else {
 8005     movq(op2, Address(x, len, Address::times_4,  0));
 8006     rorq(op2, 32);
 8007   }
 8008 
 8009   bind(L_third_loop);
 8010   decrementl(len);
 8011   jccb(Assembler::negative, L_third_loop_exit);
 8012   decrementl(len);
 8013   jccb(Assembler::negative, L_last_x);
 8014 
 8015   movq(op1, Address(x, len, Address::times_4,  0));
 8016   rorq(op1, 32);
 8017 
 8018   bind(L_multiply);
 8019   subl(zlen, 2);
 8020   movq(sum, Address(z, zlen, Address::times_4,  0));
 8021 
 8022   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
 8023   if (UseBMI2Instructions) {
 8024     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
 8025   }
 8026   else {
 8027     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 8028   }
 8029 
 8030   movq(Address(z, zlen, Address::times_4, 0), sum);
 8031 
 8032   jmp(L_third_loop);
 8033   bind(L_third_loop_exit);
 8034 
 8035   // Fourth loop
 8036   // Add 64 bit long carry into z with carry propagation.
 8037   // Uses offsetted zlen.
 8038   add_one_64(z, zlen, carry, tmp1);
 8039 
 8040   pop(len);
 8041   pop(zlen);
 8042   jmp(L_second_loop);
 8043 
 8044   // Next infrequent code is moved outside loops.
 8045   bind(L_last_x);
 8046   movl(op1, Address(x, 0));
 8047   jmp(L_multiply);
 8048 
 8049   bind(L_second_loop_exit);
 8050   pop(len);
 8051   pop(zlen);
 8052   pop(len);
 8053   pop(zlen);
 8054 
 8055   // Fifth loop
 8056   // Shift z left 1 bit.
 8057   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
 8058 
 8059   // z[zlen-1] |= x[len-1] & 1;
 8060   movl(tmp3, Address(x, len, Address::times_4, -4));
 8061   andl(tmp3, 1);
 8062   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
 8063 
 8064   pop(tmp5);
 8065   pop(tmp4);
 8066   pop(tmp3);
 8067   pop(tmp2);
 8068   pop(tmp1);
 8069 }
 8070 
 8071 /**
 8072  * Helper function for mul_add()
 8073  * Multiply the in[] by int k and add to out[] starting at offset offs using
 8074  * 128 bit by 32 bit multiply and return the carry in tmp5.
 8075  * Only quad int aligned length of in[] is operated on in this function.
 8076  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
 8077  * This function preserves out, in and k registers.
 8078  * len and offset point to the appropriate index in "in" & "out" correspondingly
 8079  * tmp5 has the carry.
 8080  * other registers are temporary and are modified.
 8081  *
 8082  */
 8083 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
 8084   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
 8085   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 8086 
 8087   Label L_first_loop, L_first_loop_exit;
 8088 
 8089   movl(tmp1, len);
 8090   shrl(tmp1, 2);
 8091 
 8092   bind(L_first_loop);
 8093   subl(tmp1, 1);
 8094   jccb(Assembler::negative, L_first_loop_exit);
 8095 
 8096   subl(len, 4);
 8097   subl(offset, 4);
 8098 
 8099   Register op2 = tmp2;
 8100   const Register sum = tmp3;
 8101   const Register op1 = tmp4;
 8102   const Register carry = tmp5;
 8103 
 8104   if (UseBMI2Instructions) {
 8105     op2 = rdxReg;
 8106   }
 8107 
 8108   movq(op1, Address(in, len, Address::times_4,  8));
 8109   rorq(op1, 32);
 8110   movq(sum, Address(out, offset, Address::times_4,  8));
 8111   rorq(sum, 32);
 8112   if (UseBMI2Instructions) {
 8113     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 8114   }
 8115   else {
 8116     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 8117   }
 8118   // Store back in big endian from little endian
 8119   rorq(sum, 0x20);
 8120   movq(Address(out, offset, Address::times_4,  8), sum);
 8121 
 8122   movq(op1, Address(in, len, Address::times_4,  0));
 8123   rorq(op1, 32);
 8124   movq(sum, Address(out, offset, Address::times_4,  0));
 8125   rorq(sum, 32);
 8126   if (UseBMI2Instructions) {
 8127     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 8128   }
 8129   else {
 8130     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 8131   }
 8132   // Store back in big endian from little endian
 8133   rorq(sum, 0x20);
 8134   movq(Address(out, offset, Address::times_4,  0), sum);
 8135 
 8136   jmp(L_first_loop);
 8137   bind(L_first_loop_exit);
 8138 }
 8139 
 8140 /**
 8141  * Code for BigInteger::mulAdd() intrinsic
 8142  *
 8143  * rdi: out
 8144  * rsi: in
 8145  * r11: offs (out.length - offset)
 8146  * rcx: len
 8147  * r8:  k
 8148  * r12: tmp1
 8149  * r13: tmp2
 8150  * r14: tmp3
 8151  * r15: tmp4
 8152  * rbx: tmp5
 8153  * Multiply the in[] by word k and add to out[], return the carry in rax
 8154  */
 8155 void MacroAssembler::mul_add(Register out, Register in, Register offs,
 8156    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
 8157    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 8158 
 8159   Label L_carry, L_last_in, L_done;
 8160 
 8161 // carry = 0;
 8162 // for (int j=len-1; j >= 0; j--) {
 8163 //    long product = (in[j] & LONG_MASK) * kLong +
 8164 //                   (out[offs] & LONG_MASK) + carry;
 8165 //    out[offs--] = (int)product;
 8166 //    carry = product >>> 32;
 8167 // }
 8168 //
 8169   push(tmp1);
 8170   push(tmp2);
 8171   push(tmp3);
 8172   push(tmp4);
 8173   push(tmp5);
 8174 
 8175   Register op2 = tmp2;
 8176   const Register sum = tmp3;
 8177   const Register op1 = tmp4;
 8178   const Register carry =  tmp5;
 8179 
 8180   if (UseBMI2Instructions) {
 8181     op2 = rdxReg;
 8182     movl(op2, k);
 8183   }
 8184   else {
 8185     movl(op2, k);
 8186   }
 8187 
 8188   xorq(carry, carry);
 8189 
 8190   //First loop
 8191 
 8192   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
 8193   //The carry is in tmp5
 8194   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
 8195 
 8196   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
 8197   decrementl(len);
 8198   jccb(Assembler::negative, L_carry);
 8199   decrementl(len);
 8200   jccb(Assembler::negative, L_last_in);
 8201 
 8202   movq(op1, Address(in, len, Address::times_4,  0));
 8203   rorq(op1, 32);
 8204 
 8205   subl(offs, 2);
 8206   movq(sum, Address(out, offs, Address::times_4,  0));
 8207   rorq(sum, 32);
 8208 
 8209   if (UseBMI2Instructions) {
 8210     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 8211   }
 8212   else {
 8213     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 8214   }
 8215 
 8216   // Store back in big endian from little endian
 8217   rorq(sum, 0x20);
 8218   movq(Address(out, offs, Address::times_4,  0), sum);
 8219 
 8220   testl(len, len);
 8221   jccb(Assembler::zero, L_carry);
 8222 
 8223   //Multiply the last in[] entry, if any
 8224   bind(L_last_in);
 8225   movl(op1, Address(in, 0));
 8226   movl(sum, Address(out, offs, Address::times_4,  -4));
 8227 
 8228   movl(raxReg, k);
 8229   mull(op1); //tmp4 * eax -> edx:eax
 8230   addl(sum, carry);
 8231   adcl(rdxReg, 0);
 8232   addl(sum, raxReg);
 8233   adcl(rdxReg, 0);
 8234   movl(carry, rdxReg);
 8235 
 8236   movl(Address(out, offs, Address::times_4,  -4), sum);
 8237 
 8238   bind(L_carry);
 8239   //return tmp5/carry as carry in rax
 8240   movl(rax, carry);
 8241 
 8242   bind(L_done);
 8243   pop(tmp5);
 8244   pop(tmp4);
 8245   pop(tmp3);
 8246   pop(tmp2);
 8247   pop(tmp1);
 8248 }
 8249 #endif
 8250 
 8251 /**
 8252  * Emits code to update CRC-32 with a byte value according to constants in table
 8253  *
 8254  * @param [in,out]crc   Register containing the crc.
 8255  * @param [in]val       Register containing the byte to fold into the CRC.
 8256  * @param [in]table     Register containing the table of crc constants.
 8257  *
 8258  * uint32_t crc;
 8259  * val = crc_table[(val ^ crc) & 0xFF];
 8260  * crc = val ^ (crc >> 8);
 8261  *
 8262  */
 8263 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
 8264   xorl(val, crc);
 8265   andl(val, 0xFF);
 8266   shrl(crc, 8); // unsigned shift
 8267   xorl(crc, Address(table, val, Address::times_4, 0));
 8268 }
 8269 
 8270 /**
 8271  * Fold 128-bit data chunk
 8272  */
 8273 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
 8274   if (UseAVX > 0) {
 8275     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
 8276     vpclmulldq(xcrc, xK, xcrc); // [63:0]
 8277     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
 8278     pxor(xcrc, xtmp);
 8279   } else {
 8280     movdqa(xtmp, xcrc);
 8281     pclmulhdq(xtmp, xK);   // [123:64]
 8282     pclmulldq(xcrc, xK);   // [63:0]
 8283     pxor(xcrc, xtmp);
 8284     movdqu(xtmp, Address(buf, offset));
 8285     pxor(xcrc, xtmp);
 8286   }
 8287 }
 8288 
 8289 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
 8290   if (UseAVX > 0) {
 8291     vpclmulhdq(xtmp, xK, xcrc);
 8292     vpclmulldq(xcrc, xK, xcrc);
 8293     pxor(xcrc, xbuf);
 8294     pxor(xcrc, xtmp);
 8295   } else {
 8296     movdqa(xtmp, xcrc);
 8297     pclmulhdq(xtmp, xK);
 8298     pclmulldq(xcrc, xK);
 8299     pxor(xcrc, xbuf);
 8300     pxor(xcrc, xtmp);
 8301   }
 8302 }
 8303 
 8304 /**
 8305  * 8-bit folds to compute 32-bit CRC
 8306  *
 8307  * uint64_t xcrc;
 8308  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
 8309  */
 8310 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
 8311   movdl(tmp, xcrc);
 8312   andl(tmp, 0xFF);
 8313   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
 8314   psrldq(xcrc, 1); // unsigned shift one byte
 8315   pxor(xcrc, xtmp);
 8316 }
 8317 
 8318 /**
 8319  * uint32_t crc;
 8320  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
 8321  */
 8322 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
 8323   movl(tmp, crc);
 8324   andl(tmp, 0xFF);
 8325   shrl(crc, 8);
 8326   xorl(crc, Address(table, tmp, Address::times_4, 0));
 8327 }
 8328 
 8329 /**
 8330  * @param crc   register containing existing CRC (32-bit)
 8331  * @param buf   register pointing to input byte buffer (byte*)
 8332  * @param len   register containing number of bytes
 8333  * @param table register that will contain address of CRC table
 8334  * @param tmp   scratch register
 8335  */
 8336 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
 8337   assert_different_registers(crc, buf, len, table, tmp, rax);
 8338 
 8339   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
 8340   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
 8341 
 8342   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
 8343   // context for the registers used, where all instructions below are using 128-bit mode
 8344   // On EVEX without VL and BW, these instructions will all be AVX.
 8345   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
 8346   notl(crc); // ~crc
 8347   cmpl(len, 16);
 8348   jcc(Assembler::less, L_tail);
 8349 
 8350   // Align buffer to 16 bytes
 8351   movl(tmp, buf);
 8352   andl(tmp, 0xF);
 8353   jccb(Assembler::zero, L_aligned);
 8354   subl(tmp,  16);
 8355   addl(len, tmp);
 8356 
 8357   align(4);
 8358   BIND(L_align_loop);
 8359   movsbl(rax, Address(buf, 0)); // load byte with sign extension
 8360   update_byte_crc32(crc, rax, table);
 8361   increment(buf);
 8362   incrementl(tmp);
 8363   jccb(Assembler::less, L_align_loop);
 8364 
 8365   BIND(L_aligned);
 8366   movl(tmp, len); // save
 8367   shrl(len, 4);
 8368   jcc(Assembler::zero, L_tail_restore);
 8369 
 8370   // Fold crc into first bytes of vector
 8371   movdqa(xmm1, Address(buf, 0));
 8372   movdl(rax, xmm1);
 8373   xorl(crc, rax);
 8374   if (VM_Version::supports_sse4_1()) {
 8375     pinsrd(xmm1, crc, 0);
 8376   } else {
 8377     pinsrw(xmm1, crc, 0);
 8378     shrl(crc, 16);
 8379     pinsrw(xmm1, crc, 1);
 8380   }
 8381   addptr(buf, 16);
 8382   subl(len, 4); // len > 0
 8383   jcc(Assembler::less, L_fold_tail);
 8384 
 8385   movdqa(xmm2, Address(buf,  0));
 8386   movdqa(xmm3, Address(buf, 16));
 8387   movdqa(xmm4, Address(buf, 32));
 8388   addptr(buf, 48);
 8389   subl(len, 3);
 8390   jcc(Assembler::lessEqual, L_fold_512b);
 8391 
 8392   // Fold total 512 bits of polynomial on each iteration,
 8393   // 128 bits per each of 4 parallel streams.
 8394   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1);
 8395 
 8396   align32();
 8397   BIND(L_fold_512b_loop);
 8398   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
 8399   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
 8400   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
 8401   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
 8402   addptr(buf, 64);
 8403   subl(len, 4);
 8404   jcc(Assembler::greater, L_fold_512b_loop);
 8405 
 8406   // Fold 512 bits to 128 bits.
 8407   BIND(L_fold_512b);
 8408   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1);
 8409   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
 8410   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
 8411   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
 8412 
 8413   // Fold the rest of 128 bits data chunks
 8414   BIND(L_fold_tail);
 8415   addl(len, 3);
 8416   jccb(Assembler::lessEqual, L_fold_128b);
 8417   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1);
 8418 
 8419   BIND(L_fold_tail_loop);
 8420   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
 8421   addptr(buf, 16);
 8422   decrementl(len);
 8423   jccb(Assembler::greater, L_fold_tail_loop);
 8424 
 8425   // Fold 128 bits in xmm1 down into 32 bits in crc register.
 8426   BIND(L_fold_128b);
 8427   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1);
 8428   if (UseAVX > 0) {
 8429     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
 8430     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
 8431     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
 8432   } else {
 8433     movdqa(xmm2, xmm0);
 8434     pclmulqdq(xmm2, xmm1, 0x1);
 8435     movdqa(xmm3, xmm0);
 8436     pand(xmm3, xmm2);
 8437     pclmulqdq(xmm0, xmm3, 0x1);
 8438   }
 8439   psrldq(xmm1, 8);
 8440   psrldq(xmm2, 4);
 8441   pxor(xmm0, xmm1);
 8442   pxor(xmm0, xmm2);
 8443 
 8444   // 8 8-bit folds to compute 32-bit CRC.
 8445   for (int j = 0; j < 4; j++) {
 8446     fold_8bit_crc32(xmm0, table, xmm1, rax);
 8447   }
 8448   movdl(crc, xmm0); // mov 32 bits to general register
 8449   for (int j = 0; j < 4; j++) {
 8450     fold_8bit_crc32(crc, table, rax);
 8451   }
 8452 
 8453   BIND(L_tail_restore);
 8454   movl(len, tmp); // restore
 8455   BIND(L_tail);
 8456   andl(len, 0xf);
 8457   jccb(Assembler::zero, L_exit);
 8458 
 8459   // Fold the rest of bytes
 8460   align(4);
 8461   BIND(L_tail_loop);
 8462   movsbl(rax, Address(buf, 0)); // load byte with sign extension
 8463   update_byte_crc32(crc, rax, table);
 8464   increment(buf);
 8465   decrementl(len);
 8466   jccb(Assembler::greater, L_tail_loop);
 8467 
 8468   BIND(L_exit);
 8469   notl(crc); // ~c
 8470 }
 8471 
 8472 #ifdef _LP64
 8473 // Helper function for AVX 512 CRC32
 8474 // Fold 512-bit data chunks
 8475 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf,
 8476                                              Register pos, int offset) {
 8477   evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit);
 8478   evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64]
 8479   evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0]
 8480   evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */);
 8481   evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */);
 8482 }
 8483 
 8484 // Helper function for AVX 512 CRC32
 8485 // Compute CRC32 for < 256B buffers
 8486 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos,
 8487                                               Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
 8488                                               Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) {
 8489 
 8490   Label L_less_than_32, L_exact_16_left, L_less_than_16_left;
 8491   Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left;
 8492   Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2;
 8493 
 8494   // check if there is enough buffer to be able to fold 16B at a time
 8495   cmpl(len, 32);
 8496   jcc(Assembler::less, L_less_than_32);
 8497 
 8498   // if there is, load the constants
 8499   movdqu(xmm10, Address(table, 1 * 16));    //rk1 and rk2 in xmm10
 8500   movdl(xmm0, crc);                        // get the initial crc value
 8501   movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext
 8502   pxor(xmm7, xmm0);
 8503 
 8504   // update the buffer pointer
 8505   addl(pos, 16);
 8506   //update the counter.subtract 32 instead of 16 to save one instruction from the loop
 8507   subl(len, 32);
 8508   jmp(L_16B_reduction_loop);
 8509 
 8510   bind(L_less_than_32);
 8511   //mov initial crc to the return value. this is necessary for zero - length buffers.
 8512   movl(rax, crc);
 8513   testl(len, len);
 8514   jcc(Assembler::equal, L_cleanup);
 8515 
 8516   movdl(xmm0, crc);                        //get the initial crc value
 8517 
 8518   cmpl(len, 16);
 8519   jcc(Assembler::equal, L_exact_16_left);
 8520   jcc(Assembler::less, L_less_than_16_left);
 8521 
 8522   movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext
 8523   pxor(xmm7, xmm0);                       //xor the initial crc value
 8524   addl(pos, 16);
 8525   subl(len, 16);
 8526   movdqu(xmm10, Address(table, 1 * 16));    // rk1 and rk2 in xmm10
 8527   jmp(L_get_last_two_xmms);
 8528 
 8529   bind(L_less_than_16_left);
 8530   //use stack space to load data less than 16 bytes, zero - out the 16B in memory first.
 8531   pxor(xmm1, xmm1);
 8532   movptr(tmp1, rsp);
 8533   movdqu(Address(tmp1, 0 * 16), xmm1);
 8534 
 8535   cmpl(len, 4);
 8536   jcc(Assembler::less, L_only_less_than_4);
 8537 
 8538   //backup the counter value
 8539   movl(tmp2, len);
 8540   cmpl(len, 8);
 8541   jcc(Assembler::less, L_less_than_8_left);
 8542 
 8543   //load 8 Bytes
 8544   movq(rax, Address(buf, pos, Address::times_1, 0 * 16));
 8545   movq(Address(tmp1, 0 * 16), rax);
 8546   addptr(tmp1, 8);
 8547   subl(len, 8);
 8548   addl(pos, 8);
 8549 
 8550   bind(L_less_than_8_left);
 8551   cmpl(len, 4);
 8552   jcc(Assembler::less, L_less_than_4_left);
 8553 
 8554   //load 4 Bytes
 8555   movl(rax, Address(buf, pos, Address::times_1, 0));
 8556   movl(Address(tmp1, 0 * 16), rax);
 8557   addptr(tmp1, 4);
 8558   subl(len, 4);
 8559   addl(pos, 4);
 8560 
 8561   bind(L_less_than_4_left);
 8562   cmpl(len, 2);
 8563   jcc(Assembler::less, L_less_than_2_left);
 8564 
 8565   // load 2 Bytes
 8566   movw(rax, Address(buf, pos, Address::times_1, 0));
 8567   movl(Address(tmp1, 0 * 16), rax);
 8568   addptr(tmp1, 2);
 8569   subl(len, 2);
 8570   addl(pos, 2);
 8571 
 8572   bind(L_less_than_2_left);
 8573   cmpl(len, 1);
 8574   jcc(Assembler::less, L_zero_left);
 8575 
 8576   // load 1 Byte
 8577   movb(rax, Address(buf, pos, Address::times_1, 0));
 8578   movb(Address(tmp1, 0 * 16), rax);
 8579 
 8580   bind(L_zero_left);
 8581   movdqu(xmm7, Address(rsp, 0));
 8582   pxor(xmm7, xmm0);                       //xor the initial crc value
 8583 
 8584   lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr()));
 8585   movdqu(xmm0, Address(rax, tmp2));
 8586   pshufb(xmm7, xmm0);
 8587   jmp(L_128_done);
 8588 
 8589   bind(L_exact_16_left);
 8590   movdqu(xmm7, Address(buf, pos, Address::times_1, 0));
 8591   pxor(xmm7, xmm0);                       //xor the initial crc value
 8592   jmp(L_128_done);
 8593 
 8594   bind(L_only_less_than_4);
 8595   cmpl(len, 3);
 8596   jcc(Assembler::less, L_only_less_than_3);
 8597 
 8598   // load 3 Bytes
 8599   movb(rax, Address(buf, pos, Address::times_1, 0));
 8600   movb(Address(tmp1, 0), rax);
 8601 
 8602   movb(rax, Address(buf, pos, Address::times_1, 1));
 8603   movb(Address(tmp1, 1), rax);
 8604 
 8605   movb(rax, Address(buf, pos, Address::times_1, 2));
 8606   movb(Address(tmp1, 2), rax);
 8607 
 8608   movdqu(xmm7, Address(rsp, 0));
 8609   pxor(xmm7, xmm0);                     //xor the initial crc value
 8610 
 8611   pslldq(xmm7, 0x5);
 8612   jmp(L_barrett);
 8613   bind(L_only_less_than_3);
 8614   cmpl(len, 2);
 8615   jcc(Assembler::less, L_only_less_than_2);
 8616 
 8617   // load 2 Bytes
 8618   movb(rax, Address(buf, pos, Address::times_1, 0));
 8619   movb(Address(tmp1, 0), rax);
 8620 
 8621   movb(rax, Address(buf, pos, Address::times_1, 1));
 8622   movb(Address(tmp1, 1), rax);
 8623 
 8624   movdqu(xmm7, Address(rsp, 0));
 8625   pxor(xmm7, xmm0);                     //xor the initial crc value
 8626 
 8627   pslldq(xmm7, 0x6);
 8628   jmp(L_barrett);
 8629 
 8630   bind(L_only_less_than_2);
 8631   //load 1 Byte
 8632   movb(rax, Address(buf, pos, Address::times_1, 0));
 8633   movb(Address(tmp1, 0), rax);
 8634 
 8635   movdqu(xmm7, Address(rsp, 0));
 8636   pxor(xmm7, xmm0);                     //xor the initial crc value
 8637 
 8638   pslldq(xmm7, 0x7);
 8639 }
 8640 
 8641 /**
 8642 * Compute CRC32 using AVX512 instructions
 8643 * param crc   register containing existing CRC (32-bit)
 8644 * param buf   register pointing to input byte buffer (byte*)
 8645 * param len   register containing number of bytes
 8646 * param table address of crc or crc32c table
 8647 * param tmp1  scratch register
 8648 * param tmp2  scratch register
 8649 * return rax  result register
 8650 *
 8651 * This routine is identical for crc32c with the exception of the precomputed constant
 8652 * table which will be passed as the table argument.  The calculation steps are
 8653 * the same for both variants.
 8654 */
 8655 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) {
 8656   assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12);
 8657 
 8658   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
 8659   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
 8660   Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop;
 8661   Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop;
 8662   Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup;
 8663 
 8664   const Register pos = r12;
 8665   push(r12);
 8666   subptr(rsp, 16 * 2 + 8);
 8667 
 8668   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
 8669   // context for the registers used, where all instructions below are using 128-bit mode
 8670   // On EVEX without VL and BW, these instructions will all be AVX.
 8671   movl(pos, 0);
 8672 
 8673   // check if smaller than 256B
 8674   cmpl(len, 256);
 8675   jcc(Assembler::less, L_less_than_256);
 8676 
 8677   // load the initial crc value
 8678   movdl(xmm10, crc);
 8679 
 8680   // receive the initial 64B data, xor the initial crc value
 8681   evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit);
 8682   evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit);
 8683   evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit);
 8684   evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4
 8685 
 8686   subl(len, 256);
 8687   cmpl(len, 256);
 8688   jcc(Assembler::less, L_fold_128_B_loop);
 8689 
 8690   evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit);
 8691   evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit);
 8692   evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2
 8693   subl(len, 256);
 8694 
 8695   bind(L_fold_256_B_loop);
 8696   addl(pos, 256);
 8697   fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64);
 8698   fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64);
 8699   fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64);
 8700   fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64);
 8701 
 8702   subl(len, 256);
 8703   jcc(Assembler::greaterEqual, L_fold_256_B_loop);
 8704 
 8705   // Fold 256 into 128
 8706   addl(pos, 256);
 8707   evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit);
 8708   evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit);
 8709   vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC
 8710 
 8711   evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit);
 8712   evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit);
 8713   vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC
 8714 
 8715   evmovdquq(xmm0, xmm7, Assembler::AVX_512bit);
 8716   evmovdquq(xmm4, xmm8, Assembler::AVX_512bit);
 8717 
 8718   addl(len, 128);
 8719   jmp(L_fold_128_B_register);
 8720 
 8721   // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop
 8722   // loop will fold 128B at a time until we have 128 + y Bytes of buffer
 8723 
 8724   // fold 128B at a time.This section of the code folds 8 xmm registers in parallel
 8725   bind(L_fold_128_B_loop);
 8726   addl(pos, 128);
 8727   fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64);
 8728   fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64);
 8729 
 8730   subl(len, 128);
 8731   jcc(Assembler::greaterEqual, L_fold_128_B_loop);
 8732 
 8733   addl(pos, 128);
 8734 
 8735   // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
 8736   // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7
 8737   bind(L_fold_128_B_register);
 8738   evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16
 8739   evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0
 8740   evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit);
 8741   evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit);
 8742   // save last that has no multiplicand
 8743   vextracti64x2(xmm7, xmm4, 3);
 8744 
 8745   evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit);
 8746   evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit);
 8747   // Needed later in reduction loop
 8748   movdqu(xmm10, Address(table, 1 * 16));
 8749   vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC
 8750   vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC
 8751 
 8752   // Swap 1,0,3,2 - 01 00 11 10
 8753   evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit);
 8754   evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit);
 8755   vextracti128(xmm5, xmm8, 1);
 8756   evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit);
 8757 
 8758   // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop
 8759   // instead of a cmp instruction, we use the negative flag with the jl instruction
 8760   addl(len, 128 - 16);
 8761   jcc(Assembler::less, L_final_reduction_for_128);
 8762 
 8763   bind(L_16B_reduction_loop);
 8764   vpclmulqdq(xmm8, xmm7, xmm10, 0x01);
 8765   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 8766   vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit);
 8767   movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16));
 8768   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8769   addl(pos, 16);
 8770   subl(len, 16);
 8771   jcc(Assembler::greaterEqual, L_16B_reduction_loop);
 8772 
 8773   bind(L_final_reduction_for_128);
 8774   addl(len, 16);
 8775   jcc(Assembler::equal, L_128_done);
 8776 
 8777   bind(L_get_last_two_xmms);
 8778   movdqu(xmm2, xmm7);
 8779   addl(pos, len);
 8780   movdqu(xmm1, Address(buf, pos, Address::times_1, -16));
 8781   subl(pos, len);
 8782 
 8783   // get rid of the extra data that was loaded before
 8784   // load the shift constant
 8785   lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr()));
 8786   movdqu(xmm0, Address(rax, len));
 8787   addl(rax, len);
 8788 
 8789   vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8790   //Change mask to 512
 8791   vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2);
 8792   vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit);
 8793 
 8794   blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit);
 8795   vpclmulqdq(xmm8, xmm7, xmm10, 0x01);
 8796   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 8797   vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit);
 8798   vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit);
 8799 
 8800   bind(L_128_done);
 8801   // compute crc of a 128-bit value
 8802   movdqu(xmm10, Address(table, 3 * 16));
 8803   movdqu(xmm0, xmm7);
 8804 
 8805   // 64b fold
 8806   vpclmulqdq(xmm7, xmm7, xmm10, 0x0);
 8807   vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit);
 8808   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8809 
 8810   // 32b fold
 8811   movdqu(xmm0, xmm7);
 8812   vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit);
 8813   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 8814   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8815   jmp(L_barrett);
 8816 
 8817   bind(L_less_than_256);
 8818   kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup);
 8819 
 8820   //barrett reduction
 8821   bind(L_barrett);
 8822   vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2);
 8823   movdqu(xmm1, xmm7);
 8824   movdqu(xmm2, xmm7);
 8825   movdqu(xmm10, Address(table, 4 * 16));
 8826 
 8827   pclmulqdq(xmm7, xmm10, 0x0);
 8828   pxor(xmm7, xmm2);
 8829   vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2);
 8830   movdqu(xmm2, xmm7);
 8831   pclmulqdq(xmm7, xmm10, 0x10);
 8832   pxor(xmm7, xmm2);
 8833   pxor(xmm7, xmm1);
 8834   pextrd(crc, xmm7, 2);
 8835 
 8836   bind(L_cleanup);
 8837   addptr(rsp, 16 * 2 + 8);
 8838   pop(r12);
 8839 }
 8840 
 8841 // S. Gueron / Information Processing Letters 112 (2012) 184
 8842 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
 8843 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
 8844 // Output: the 64-bit carry-less product of B * CONST
 8845 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
 8846                                      Register tmp1, Register tmp2, Register tmp3) {
 8847   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
 8848   if (n > 0) {
 8849     addq(tmp3, n * 256 * 8);
 8850   }
 8851   //    Q1 = TABLEExt[n][B & 0xFF];
 8852   movl(tmp1, in);
 8853   andl(tmp1, 0x000000FF);
 8854   shll(tmp1, 3);
 8855   addq(tmp1, tmp3);
 8856   movq(tmp1, Address(tmp1, 0));
 8857 
 8858   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
 8859   movl(tmp2, in);
 8860   shrl(tmp2, 8);
 8861   andl(tmp2, 0x000000FF);
 8862   shll(tmp2, 3);
 8863   addq(tmp2, tmp3);
 8864   movq(tmp2, Address(tmp2, 0));
 8865 
 8866   shlq(tmp2, 8);
 8867   xorq(tmp1, tmp2);
 8868 
 8869   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
 8870   movl(tmp2, in);
 8871   shrl(tmp2, 16);
 8872   andl(tmp2, 0x000000FF);
 8873   shll(tmp2, 3);
 8874   addq(tmp2, tmp3);
 8875   movq(tmp2, Address(tmp2, 0));
 8876 
 8877   shlq(tmp2, 16);
 8878   xorq(tmp1, tmp2);
 8879 
 8880   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
 8881   shrl(in, 24);
 8882   andl(in, 0x000000FF);
 8883   shll(in, 3);
 8884   addq(in, tmp3);
 8885   movq(in, Address(in, 0));
 8886 
 8887   shlq(in, 24);
 8888   xorq(in, tmp1);
 8889   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
 8890 }
 8891 
 8892 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
 8893                                       Register in_out,
 8894                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
 8895                                       XMMRegister w_xtmp2,
 8896                                       Register tmp1,
 8897                                       Register n_tmp2, Register n_tmp3) {
 8898   if (is_pclmulqdq_supported) {
 8899     movdl(w_xtmp1, in_out); // modified blindly
 8900 
 8901     movl(tmp1, const_or_pre_comp_const_index);
 8902     movdl(w_xtmp2, tmp1);
 8903     pclmulqdq(w_xtmp1, w_xtmp2, 0);
 8904 
 8905     movdq(in_out, w_xtmp1);
 8906   } else {
 8907     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
 8908   }
 8909 }
 8910 
 8911 // Recombination Alternative 2: No bit-reflections
 8912 // T1 = (CRC_A * U1) << 1
 8913 // T2 = (CRC_B * U2) << 1
 8914 // C1 = T1 >> 32
 8915 // C2 = T2 >> 32
 8916 // T1 = T1 & 0xFFFFFFFF
 8917 // T2 = T2 & 0xFFFFFFFF
 8918 // T1 = CRC32(0, T1)
 8919 // T2 = CRC32(0, T2)
 8920 // C1 = C1 ^ T1
 8921 // C2 = C2 ^ T2
 8922 // CRC = C1 ^ C2 ^ CRC_C
 8923 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
 8924                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8925                                      Register tmp1, Register tmp2,
 8926                                      Register n_tmp3) {
 8927   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 8928   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 8929   shlq(in_out, 1);
 8930   movl(tmp1, in_out);
 8931   shrq(in_out, 32);
 8932   xorl(tmp2, tmp2);
 8933   crc32(tmp2, tmp1, 4);
 8934   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
 8935   shlq(in1, 1);
 8936   movl(tmp1, in1);
 8937   shrq(in1, 32);
 8938   xorl(tmp2, tmp2);
 8939   crc32(tmp2, tmp1, 4);
 8940   xorl(in1, tmp2);
 8941   xorl(in_out, in1);
 8942   xorl(in_out, in2);
 8943 }
 8944 
 8945 // Set N to predefined value
 8946 // Subtract from a length of a buffer
 8947 // execute in a loop:
 8948 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
 8949 // for i = 1 to N do
 8950 //  CRC_A = CRC32(CRC_A, A[i])
 8951 //  CRC_B = CRC32(CRC_B, B[i])
 8952 //  CRC_C = CRC32(CRC_C, C[i])
 8953 // end for
 8954 // Recombine
 8955 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
 8956                                        Register in_out1, Register in_out2, Register in_out3,
 8957                                        Register tmp1, Register tmp2, Register tmp3,
 8958                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8959                                        Register tmp4, Register tmp5,
 8960                                        Register n_tmp6) {
 8961   Label L_processPartitions;
 8962   Label L_processPartition;
 8963   Label L_exit;
 8964 
 8965   bind(L_processPartitions);
 8966   cmpl(in_out1, 3 * size);
 8967   jcc(Assembler::less, L_exit);
 8968     xorl(tmp1, tmp1);
 8969     xorl(tmp2, tmp2);
 8970     movq(tmp3, in_out2);
 8971     addq(tmp3, size);
 8972 
 8973     bind(L_processPartition);
 8974       crc32(in_out3, Address(in_out2, 0), 8);
 8975       crc32(tmp1, Address(in_out2, size), 8);
 8976       crc32(tmp2, Address(in_out2, size * 2), 8);
 8977       addq(in_out2, 8);
 8978       cmpq(in_out2, tmp3);
 8979       jcc(Assembler::less, L_processPartition);
 8980     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
 8981             w_xtmp1, w_xtmp2, w_xtmp3,
 8982             tmp4, tmp5,
 8983             n_tmp6);
 8984     addq(in_out2, 2 * size);
 8985     subl(in_out1, 3 * size);
 8986     jmp(L_processPartitions);
 8987 
 8988   bind(L_exit);
 8989 }
 8990 #else
 8991 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
 8992                                      Register tmp1, Register tmp2, Register tmp3,
 8993                                      XMMRegister xtmp1, XMMRegister xtmp2) {
 8994   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
 8995   if (n > 0) {
 8996     addl(tmp3, n * 256 * 8);
 8997   }
 8998   //    Q1 = TABLEExt[n][B & 0xFF];
 8999   movl(tmp1, in_out);
 9000   andl(tmp1, 0x000000FF);
 9001   shll(tmp1, 3);
 9002   addl(tmp1, tmp3);
 9003   movq(xtmp1, Address(tmp1, 0));
 9004 
 9005   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
 9006   movl(tmp2, in_out);
 9007   shrl(tmp2, 8);
 9008   andl(tmp2, 0x000000FF);
 9009   shll(tmp2, 3);
 9010   addl(tmp2, tmp3);
 9011   movq(xtmp2, Address(tmp2, 0));
 9012 
 9013   psllq(xtmp2, 8);
 9014   pxor(xtmp1, xtmp2);
 9015 
 9016   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
 9017   movl(tmp2, in_out);
 9018   shrl(tmp2, 16);
 9019   andl(tmp2, 0x000000FF);
 9020   shll(tmp2, 3);
 9021   addl(tmp2, tmp3);
 9022   movq(xtmp2, Address(tmp2, 0));
 9023 
 9024   psllq(xtmp2, 16);
 9025   pxor(xtmp1, xtmp2);
 9026 
 9027   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
 9028   shrl(in_out, 24);
 9029   andl(in_out, 0x000000FF);
 9030   shll(in_out, 3);
 9031   addl(in_out, tmp3);
 9032   movq(xtmp2, Address(in_out, 0));
 9033 
 9034   psllq(xtmp2, 24);
 9035   pxor(xtmp1, xtmp2); // Result in CXMM
 9036   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
 9037 }
 9038 
 9039 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
 9040                                       Register in_out,
 9041                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
 9042                                       XMMRegister w_xtmp2,
 9043                                       Register tmp1,
 9044                                       Register n_tmp2, Register n_tmp3) {
 9045   if (is_pclmulqdq_supported) {
 9046     movdl(w_xtmp1, in_out);
 9047 
 9048     movl(tmp1, const_or_pre_comp_const_index);
 9049     movdl(w_xtmp2, tmp1);
 9050     pclmulqdq(w_xtmp1, w_xtmp2, 0);
 9051     // Keep result in XMM since GPR is 32 bit in length
 9052   } else {
 9053     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
 9054   }
 9055 }
 9056 
 9057 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
 9058                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9059                                      Register tmp1, Register tmp2,
 9060                                      Register n_tmp3) {
 9061   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 9062   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 9063 
 9064   psllq(w_xtmp1, 1);
 9065   movdl(tmp1, w_xtmp1);
 9066   psrlq(w_xtmp1, 32);
 9067   movdl(in_out, w_xtmp1);
 9068 
 9069   xorl(tmp2, tmp2);
 9070   crc32(tmp2, tmp1, 4);
 9071   xorl(in_out, tmp2);
 9072 
 9073   psllq(w_xtmp2, 1);
 9074   movdl(tmp1, w_xtmp2);
 9075   psrlq(w_xtmp2, 32);
 9076   movdl(in1, w_xtmp2);
 9077 
 9078   xorl(tmp2, tmp2);
 9079   crc32(tmp2, tmp1, 4);
 9080   xorl(in1, tmp2);
 9081   xorl(in_out, in1);
 9082   xorl(in_out, in2);
 9083 }
 9084 
 9085 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
 9086                                        Register in_out1, Register in_out2, Register in_out3,
 9087                                        Register tmp1, Register tmp2, Register tmp3,
 9088                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9089                                        Register tmp4, Register tmp5,
 9090                                        Register n_tmp6) {
 9091   Label L_processPartitions;
 9092   Label L_processPartition;
 9093   Label L_exit;
 9094 
 9095   bind(L_processPartitions);
 9096   cmpl(in_out1, 3 * size);
 9097   jcc(Assembler::less, L_exit);
 9098     xorl(tmp1, tmp1);
 9099     xorl(tmp2, tmp2);
 9100     movl(tmp3, in_out2);
 9101     addl(tmp3, size);
 9102 
 9103     bind(L_processPartition);
 9104       crc32(in_out3, Address(in_out2, 0), 4);
 9105       crc32(tmp1, Address(in_out2, size), 4);
 9106       crc32(tmp2, Address(in_out2, size*2), 4);
 9107       crc32(in_out3, Address(in_out2, 0+4), 4);
 9108       crc32(tmp1, Address(in_out2, size+4), 4);
 9109       crc32(tmp2, Address(in_out2, size*2+4), 4);
 9110       addl(in_out2, 8);
 9111       cmpl(in_out2, tmp3);
 9112       jcc(Assembler::less, L_processPartition);
 9113 
 9114         push(tmp3);
 9115         push(in_out1);
 9116         push(in_out2);
 9117         tmp4 = tmp3;
 9118         tmp5 = in_out1;
 9119         n_tmp6 = in_out2;
 9120 
 9121       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
 9122             w_xtmp1, w_xtmp2, w_xtmp3,
 9123             tmp4, tmp5,
 9124             n_tmp6);
 9125 
 9126         pop(in_out2);
 9127         pop(in_out1);
 9128         pop(tmp3);
 9129 
 9130     addl(in_out2, 2 * size);
 9131     subl(in_out1, 3 * size);
 9132     jmp(L_processPartitions);
 9133 
 9134   bind(L_exit);
 9135 }
 9136 #endif //LP64
 9137 
 9138 #ifdef _LP64
 9139 // Algorithm 2: Pipelined usage of the CRC32 instruction.
 9140 // Input: A buffer I of L bytes.
 9141 // Output: the CRC32C value of the buffer.
 9142 // Notations:
 9143 // Write L = 24N + r, with N = floor (L/24).
 9144 // r = L mod 24 (0 <= r < 24).
 9145 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
 9146 // N quadwords, and R consists of r bytes.
 9147 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
 9148 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
 9149 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
 9150 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
 9151 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
 9152                                           Register tmp1, Register tmp2, Register tmp3,
 9153                                           Register tmp4, Register tmp5, Register tmp6,
 9154                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9155                                           bool is_pclmulqdq_supported) {
 9156   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
 9157   Label L_wordByWord;
 9158   Label L_byteByByteProlog;
 9159   Label L_byteByByte;
 9160   Label L_exit;
 9161 
 9162   if (is_pclmulqdq_supported ) {
 9163     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::crc32c_table_addr();
 9164     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 1);
 9165 
 9166     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 2);
 9167     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 3);
 9168 
 9169     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 4);
 9170     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 5);
 9171     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
 9172   } else {
 9173     const_or_pre_comp_const_index[0] = 1;
 9174     const_or_pre_comp_const_index[1] = 0;
 9175 
 9176     const_or_pre_comp_const_index[2] = 3;
 9177     const_or_pre_comp_const_index[3] = 2;
 9178 
 9179     const_or_pre_comp_const_index[4] = 5;
 9180     const_or_pre_comp_const_index[5] = 4;
 9181    }
 9182   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
 9183                     in2, in1, in_out,
 9184                     tmp1, tmp2, tmp3,
 9185                     w_xtmp1, w_xtmp2, w_xtmp3,
 9186                     tmp4, tmp5,
 9187                     tmp6);
 9188   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
 9189                     in2, in1, in_out,
 9190                     tmp1, tmp2, tmp3,
 9191                     w_xtmp1, w_xtmp2, w_xtmp3,
 9192                     tmp4, tmp5,
 9193                     tmp6);
 9194   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
 9195                     in2, in1, in_out,
 9196                     tmp1, tmp2, tmp3,
 9197                     w_xtmp1, w_xtmp2, w_xtmp3,
 9198                     tmp4, tmp5,
 9199                     tmp6);
 9200   movl(tmp1, in2);
 9201   andl(tmp1, 0x00000007);
 9202   negl(tmp1);
 9203   addl(tmp1, in2);
 9204   addq(tmp1, in1);
 9205 
 9206   cmpq(in1, tmp1);
 9207   jccb(Assembler::greaterEqual, L_byteByByteProlog);
 9208   align(16);
 9209   BIND(L_wordByWord);
 9210     crc32(in_out, Address(in1, 0), 8);
 9211     addq(in1, 8);
 9212     cmpq(in1, tmp1);
 9213     jcc(Assembler::less, L_wordByWord);
 9214 
 9215   BIND(L_byteByByteProlog);
 9216   andl(in2, 0x00000007);
 9217   movl(tmp2, 1);
 9218 
 9219   cmpl(tmp2, in2);
 9220   jccb(Assembler::greater, L_exit);
 9221   BIND(L_byteByByte);
 9222     crc32(in_out, Address(in1, 0), 1);
 9223     incq(in1);
 9224     incl(tmp2);
 9225     cmpl(tmp2, in2);
 9226     jcc(Assembler::lessEqual, L_byteByByte);
 9227 
 9228   BIND(L_exit);
 9229 }
 9230 #else
 9231 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
 9232                                           Register tmp1, Register  tmp2, Register tmp3,
 9233                                           Register tmp4, Register  tmp5, Register tmp6,
 9234                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9235                                           bool is_pclmulqdq_supported) {
 9236   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
 9237   Label L_wordByWord;
 9238   Label L_byteByByteProlog;
 9239   Label L_byteByByte;
 9240   Label L_exit;
 9241 
 9242   if (is_pclmulqdq_supported) {
 9243     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::crc32c_table_addr();
 9244     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 1);
 9245 
 9246     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 2);
 9247     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 3);
 9248 
 9249     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 4);
 9250     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 5);
 9251   } else {
 9252     const_or_pre_comp_const_index[0] = 1;
 9253     const_or_pre_comp_const_index[1] = 0;
 9254 
 9255     const_or_pre_comp_const_index[2] = 3;
 9256     const_or_pre_comp_const_index[3] = 2;
 9257 
 9258     const_or_pre_comp_const_index[4] = 5;
 9259     const_or_pre_comp_const_index[5] = 4;
 9260   }
 9261   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
 9262                     in2, in1, in_out,
 9263                     tmp1, tmp2, tmp3,
 9264                     w_xtmp1, w_xtmp2, w_xtmp3,
 9265                     tmp4, tmp5,
 9266                     tmp6);
 9267   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
 9268                     in2, in1, in_out,
 9269                     tmp1, tmp2, tmp3,
 9270                     w_xtmp1, w_xtmp2, w_xtmp3,
 9271                     tmp4, tmp5,
 9272                     tmp6);
 9273   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
 9274                     in2, in1, in_out,
 9275                     tmp1, tmp2, tmp3,
 9276                     w_xtmp1, w_xtmp2, w_xtmp3,
 9277                     tmp4, tmp5,
 9278                     tmp6);
 9279   movl(tmp1, in2);
 9280   andl(tmp1, 0x00000007);
 9281   negl(tmp1);
 9282   addl(tmp1, in2);
 9283   addl(tmp1, in1);
 9284 
 9285   BIND(L_wordByWord);
 9286   cmpl(in1, tmp1);
 9287   jcc(Assembler::greaterEqual, L_byteByByteProlog);
 9288     crc32(in_out, Address(in1,0), 4);
 9289     addl(in1, 4);
 9290     jmp(L_wordByWord);
 9291 
 9292   BIND(L_byteByByteProlog);
 9293   andl(in2, 0x00000007);
 9294   movl(tmp2, 1);
 9295 
 9296   BIND(L_byteByByte);
 9297   cmpl(tmp2, in2);
 9298   jccb(Assembler::greater, L_exit);
 9299     movb(tmp1, Address(in1, 0));
 9300     crc32(in_out, tmp1, 1);
 9301     incl(in1);
 9302     incl(tmp2);
 9303     jmp(L_byteByByte);
 9304 
 9305   BIND(L_exit);
 9306 }
 9307 #endif // LP64
 9308 #undef BIND
 9309 #undef BLOCK_COMMENT
 9310 
 9311 // Compress char[] array to byte[].
 9312 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
 9313 // Return the array length if every element in array can be encoded,
 9314 // otherwise, the index of first non-latin1 (> 0xff) character.
 9315 //   @IntrinsicCandidate
 9316 //   public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
 9317 //     for (int i = 0; i < len; i++) {
 9318 //       char c = src[srcOff];
 9319 //       if (c > 0xff) {
 9320 //           return i;  // return index of non-latin1 char
 9321 //       }
 9322 //       dst[dstOff] = (byte)c;
 9323 //       srcOff++;
 9324 //       dstOff++;
 9325 //     }
 9326 //     return len;
 9327 //   }
 9328 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
 9329   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
 9330   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
 9331   Register tmp5, Register result, KRegister mask1, KRegister mask2) {
 9332   Label copy_chars_loop, done, reset_sp, copy_tail;
 9333 
 9334   // rsi: src
 9335   // rdi: dst
 9336   // rdx: len
 9337   // rcx: tmp5
 9338   // rax: result
 9339 
 9340   // rsi holds start addr of source char[] to be compressed
 9341   // rdi holds start addr of destination byte[]
 9342   // rdx holds length
 9343 
 9344   assert(len != result, "");
 9345 
 9346   // save length for return
 9347   movl(result, len);
 9348 
 9349   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
 9350     VM_Version::supports_avx512vlbw() &&
 9351     VM_Version::supports_bmi2()) {
 9352 
 9353     Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail;
 9354 
 9355     // alignment
 9356     Label post_alignment;
 9357 
 9358     // if length of the string is less than 32, handle it the old fashioned way
 9359     testl(len, -32);
 9360     jcc(Assembler::zero, below_threshold);
 9361 
 9362     // First check whether a character is compressible ( <= 0xFF).
 9363     // Create mask to test for Unicode chars inside zmm vector
 9364     movl(tmp5, 0x00FF);
 9365     evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit);
 9366 
 9367     testl(len, -64);
 9368     jccb(Assembler::zero, post_alignment);
 9369 
 9370     movl(tmp5, dst);
 9371     andl(tmp5, (32 - 1));
 9372     negl(tmp5);
 9373     andl(tmp5, (32 - 1));
 9374 
 9375     // bail out when there is nothing to be done
 9376     testl(tmp5, 0xFFFFFFFF);
 9377     jccb(Assembler::zero, post_alignment);
 9378 
 9379     // ~(~0 << len), where len is the # of remaining elements to process
 9380     movl(len, 0xFFFFFFFF);
 9381     shlxl(len, len, tmp5);
 9382     notl(len);
 9383     kmovdl(mask2, len);
 9384     movl(len, result);
 9385 
 9386     evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit);
 9387     evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit);
 9388     ktestd(mask1, mask2);
 9389     jcc(Assembler::carryClear, copy_tail);
 9390 
 9391     evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit);
 9392 
 9393     addptr(src, tmp5);
 9394     addptr(src, tmp5);
 9395     addptr(dst, tmp5);
 9396     subl(len, tmp5);
 9397 
 9398     bind(post_alignment);
 9399     // end of alignment
 9400 
 9401     movl(tmp5, len);
 9402     andl(tmp5, (32 - 1));    // tail count (in chars)
 9403     andl(len, ~(32 - 1));    // vector count (in chars)
 9404     jccb(Assembler::zero, copy_loop_tail);
 9405 
 9406     lea(src, Address(src, len, Address::times_2));
 9407     lea(dst, Address(dst, len, Address::times_1));
 9408     negptr(len);
 9409 
 9410     bind(copy_32_loop);
 9411     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
 9412     evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
 9413     kortestdl(mask1, mask1);
 9414     jccb(Assembler::carryClear, reset_for_copy_tail);
 9415 
 9416     // All elements in current processed chunk are valid candidates for
 9417     // compression. Write a truncated byte elements to the memory.
 9418     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
 9419     addptr(len, 32);
 9420     jccb(Assembler::notZero, copy_32_loop);
 9421 
 9422     bind(copy_loop_tail);
 9423     // bail out when there is nothing to be done
 9424     testl(tmp5, 0xFFFFFFFF);
 9425     jcc(Assembler::zero, done);
 9426 
 9427     movl(len, tmp5);
 9428 
 9429     // ~(~0 << len), where len is the # of remaining elements to process
 9430     movl(tmp5, 0xFFFFFFFF);
 9431     shlxl(tmp5, tmp5, len);
 9432     notl(tmp5);
 9433 
 9434     kmovdl(mask2, tmp5);
 9435 
 9436     evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit);
 9437     evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit);
 9438     ktestd(mask1, mask2);
 9439     jcc(Assembler::carryClear, copy_tail);
 9440 
 9441     evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit);
 9442     jmp(done);
 9443 
 9444     bind(reset_for_copy_tail);
 9445     lea(src, Address(src, tmp5, Address::times_2));
 9446     lea(dst, Address(dst, tmp5, Address::times_1));
 9447     subptr(len, tmp5);
 9448     jmp(copy_chars_loop);
 9449 
 9450     bind(below_threshold);
 9451   }
 9452 
 9453   if (UseSSE42Intrinsics) {
 9454     Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail;
 9455 
 9456     // vectored compression
 9457     testl(len, 0xfffffff8);
 9458     jcc(Assembler::zero, copy_tail);
 9459 
 9460     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
 9461     movdl(tmp1Reg, tmp5);
 9462     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
 9463 
 9464     andl(len, 0xfffffff0);
 9465     jccb(Assembler::zero, copy_16);
 9466 
 9467     // compress 16 chars per iter
 9468     pxor(tmp4Reg, tmp4Reg);
 9469 
 9470     lea(src, Address(src, len, Address::times_2));
 9471     lea(dst, Address(dst, len, Address::times_1));
 9472     negptr(len);
 9473 
 9474     bind(copy_32_loop);
 9475     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
 9476     por(tmp4Reg, tmp2Reg);
 9477     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
 9478     por(tmp4Reg, tmp3Reg);
 9479     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
 9480     jccb(Assembler::notZero, reset_for_copy_tail);
 9481     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
 9482     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
 9483     addptr(len, 16);
 9484     jccb(Assembler::notZero, copy_32_loop);
 9485 
 9486     // compress next vector of 8 chars (if any)
 9487     bind(copy_16);
 9488     // len = 0
 9489     testl(result, 0x00000008);     // check if there's a block of 8 chars to compress
 9490     jccb(Assembler::zero, copy_tail_sse);
 9491 
 9492     pxor(tmp3Reg, tmp3Reg);
 9493 
 9494     movdqu(tmp2Reg, Address(src, 0));
 9495     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
 9496     jccb(Assembler::notZero, reset_for_copy_tail);
 9497     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
 9498     movq(Address(dst, 0), tmp2Reg);
 9499     addptr(src, 16);
 9500     addptr(dst, 8);
 9501     jmpb(copy_tail_sse);
 9502 
 9503     bind(reset_for_copy_tail);
 9504     movl(tmp5, result);
 9505     andl(tmp5, 0x0000000f);
 9506     lea(src, Address(src, tmp5, Address::times_2));
 9507     lea(dst, Address(dst, tmp5, Address::times_1));
 9508     subptr(len, tmp5);
 9509     jmpb(copy_chars_loop);
 9510 
 9511     bind(copy_tail_sse);
 9512     movl(len, result);
 9513     andl(len, 0x00000007);    // tail count (in chars)
 9514   }
 9515   // compress 1 char per iter
 9516   bind(copy_tail);
 9517   testl(len, len);
 9518   jccb(Assembler::zero, done);
 9519   lea(src, Address(src, len, Address::times_2));
 9520   lea(dst, Address(dst, len, Address::times_1));
 9521   negptr(len);
 9522 
 9523   bind(copy_chars_loop);
 9524   load_unsigned_short(tmp5, Address(src, len, Address::times_2));
 9525   testl(tmp5, 0xff00);      // check if Unicode char
 9526   jccb(Assembler::notZero, reset_sp);
 9527   movb(Address(dst, len, Address::times_1), tmp5);  // ASCII char; compress to 1 byte
 9528   increment(len);
 9529   jccb(Assembler::notZero, copy_chars_loop);
 9530 
 9531   // add len then return (len will be zero if compress succeeded, otherwise negative)
 9532   bind(reset_sp);
 9533   addl(result, len);
 9534 
 9535   bind(done);
 9536 }
 9537 
 9538 // Inflate byte[] array to char[].
 9539 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
 9540 //   @IntrinsicCandidate
 9541 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
 9542 //     for (int i = 0; i < len; i++) {
 9543 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
 9544 //     }
 9545 //   }
 9546 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
 9547   XMMRegister tmp1, Register tmp2, KRegister mask) {
 9548   Label copy_chars_loop, done, below_threshold, avx3_threshold;
 9549   // rsi: src
 9550   // rdi: dst
 9551   // rdx: len
 9552   // rcx: tmp2
 9553 
 9554   // rsi holds start addr of source byte[] to be inflated
 9555   // rdi holds start addr of destination char[]
 9556   // rdx holds length
 9557   assert_different_registers(src, dst, len, tmp2);
 9558   movl(tmp2, len);
 9559   if ((UseAVX > 2) && // AVX512
 9560     VM_Version::supports_avx512vlbw() &&
 9561     VM_Version::supports_bmi2()) {
 9562 
 9563     Label copy_32_loop, copy_tail;
 9564     Register tmp3_aliased = len;
 9565 
 9566     // if length of the string is less than 16, handle it in an old fashioned way
 9567     testl(len, -16);
 9568     jcc(Assembler::zero, below_threshold);
 9569 
 9570     testl(len, -1 * AVX3Threshold);
 9571     jcc(Assembler::zero, avx3_threshold);
 9572 
 9573     // In order to use only one arithmetic operation for the main loop we use
 9574     // this pre-calculation
 9575     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
 9576     andl(len, -32);     // vector count
 9577     jccb(Assembler::zero, copy_tail);
 9578 
 9579     lea(src, Address(src, len, Address::times_1));
 9580     lea(dst, Address(dst, len, Address::times_2));
 9581     negptr(len);
 9582 
 9583 
 9584     // inflate 32 chars per iter
 9585     bind(copy_32_loop);
 9586     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
 9587     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
 9588     addptr(len, 32);
 9589     jcc(Assembler::notZero, copy_32_loop);
 9590 
 9591     bind(copy_tail);
 9592     // bail out when there is nothing to be done
 9593     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
 9594     jcc(Assembler::zero, done);
 9595 
 9596     // ~(~0 << length), where length is the # of remaining elements to process
 9597     movl(tmp3_aliased, -1);
 9598     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
 9599     notl(tmp3_aliased);
 9600     kmovdl(mask, tmp3_aliased);
 9601     evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit);
 9602     evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit);
 9603 
 9604     jmp(done);
 9605     bind(avx3_threshold);
 9606   }
 9607   if (UseSSE42Intrinsics) {
 9608     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
 9609 
 9610     if (UseAVX > 1) {
 9611       andl(tmp2, (16 - 1));
 9612       andl(len, -16);
 9613       jccb(Assembler::zero, copy_new_tail);
 9614     } else {
 9615       andl(tmp2, 0x00000007);   // tail count (in chars)
 9616       andl(len, 0xfffffff8);    // vector count (in chars)
 9617       jccb(Assembler::zero, copy_tail);
 9618     }
 9619 
 9620     // vectored inflation
 9621     lea(src, Address(src, len, Address::times_1));
 9622     lea(dst, Address(dst, len, Address::times_2));
 9623     negptr(len);
 9624 
 9625     if (UseAVX > 1) {
 9626       bind(copy_16_loop);
 9627       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
 9628       vmovdqu(Address(dst, len, Address::times_2), tmp1);
 9629       addptr(len, 16);
 9630       jcc(Assembler::notZero, copy_16_loop);
 9631 
 9632       bind(below_threshold);
 9633       bind(copy_new_tail);
 9634       movl(len, tmp2);
 9635       andl(tmp2, 0x00000007);
 9636       andl(len, 0xFFFFFFF8);
 9637       jccb(Assembler::zero, copy_tail);
 9638 
 9639       pmovzxbw(tmp1, Address(src, 0));
 9640       movdqu(Address(dst, 0), tmp1);
 9641       addptr(src, 8);
 9642       addptr(dst, 2 * 8);
 9643 
 9644       jmp(copy_tail, true);
 9645     }
 9646 
 9647     // inflate 8 chars per iter
 9648     bind(copy_8_loop);
 9649     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
 9650     movdqu(Address(dst, len, Address::times_2), tmp1);
 9651     addptr(len, 8);
 9652     jcc(Assembler::notZero, copy_8_loop);
 9653 
 9654     bind(copy_tail);
 9655     movl(len, tmp2);
 9656 
 9657     cmpl(len, 4);
 9658     jccb(Assembler::less, copy_bytes);
 9659 
 9660     movdl(tmp1, Address(src, 0));  // load 4 byte chars
 9661     pmovzxbw(tmp1, tmp1);
 9662     movq(Address(dst, 0), tmp1);
 9663     subptr(len, 4);
 9664     addptr(src, 4);
 9665     addptr(dst, 8);
 9666 
 9667     bind(copy_bytes);
 9668   } else {
 9669     bind(below_threshold);
 9670   }
 9671 
 9672   testl(len, len);
 9673   jccb(Assembler::zero, done);
 9674   lea(src, Address(src, len, Address::times_1));
 9675   lea(dst, Address(dst, len, Address::times_2));
 9676   negptr(len);
 9677 
 9678   // inflate 1 char per iter
 9679   bind(copy_chars_loop);
 9680   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
 9681   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
 9682   increment(len);
 9683   jcc(Assembler::notZero, copy_chars_loop);
 9684 
 9685   bind(done);
 9686 }
 9687 
 9688 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len) {
 9689   switch(type) {
 9690     case T_BYTE:
 9691     case T_BOOLEAN:
 9692       evmovdqub(dst, kmask, src, merge, vector_len);
 9693       break;
 9694     case T_CHAR:
 9695     case T_SHORT:
 9696       evmovdquw(dst, kmask, src, merge, vector_len);
 9697       break;
 9698     case T_INT:
 9699     case T_FLOAT:
 9700       evmovdqul(dst, kmask, src, merge, vector_len);
 9701       break;
 9702     case T_LONG:
 9703     case T_DOUBLE:
 9704       evmovdquq(dst, kmask, src, merge, vector_len);
 9705       break;
 9706     default:
 9707       fatal("Unexpected type argument %s", type2name(type));
 9708       break;
 9709   }
 9710 }
 9711 
 9712 
 9713 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) {
 9714   switch(type) {
 9715     case T_BYTE:
 9716     case T_BOOLEAN:
 9717       evmovdqub(dst, kmask, src, merge, vector_len);
 9718       break;
 9719     case T_CHAR:
 9720     case T_SHORT:
 9721       evmovdquw(dst, kmask, src, merge, vector_len);
 9722       break;
 9723     case T_INT:
 9724     case T_FLOAT:
 9725       evmovdqul(dst, kmask, src, merge, vector_len);
 9726       break;
 9727     case T_LONG:
 9728     case T_DOUBLE:
 9729       evmovdquq(dst, kmask, src, merge, vector_len);
 9730       break;
 9731     default:
 9732       fatal("Unexpected type argument %s", type2name(type));
 9733       break;
 9734   }
 9735 }
 9736 
 9737 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) {
 9738   switch(type) {
 9739     case T_BYTE:
 9740     case T_BOOLEAN:
 9741       evmovdqub(dst, kmask, src, merge, vector_len);
 9742       break;
 9743     case T_CHAR:
 9744     case T_SHORT:
 9745       evmovdquw(dst, kmask, src, merge, vector_len);
 9746       break;
 9747     case T_INT:
 9748     case T_FLOAT:
 9749       evmovdqul(dst, kmask, src, merge, vector_len);
 9750       break;
 9751     case T_LONG:
 9752     case T_DOUBLE:
 9753       evmovdquq(dst, kmask, src, merge, vector_len);
 9754       break;
 9755     default:
 9756       fatal("Unexpected type argument %s", type2name(type));
 9757       break;
 9758   }
 9759 }
 9760 
 9761 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) {
 9762   switch(masklen) {
 9763     case 2:
 9764        knotbl(dst, src);
 9765        movl(rtmp, 3);
 9766        kmovbl(ktmp, rtmp);
 9767        kandbl(dst, ktmp, dst);
 9768        break;
 9769     case 4:
 9770        knotbl(dst, src);
 9771        movl(rtmp, 15);
 9772        kmovbl(ktmp, rtmp);
 9773        kandbl(dst, ktmp, dst);
 9774        break;
 9775     case 8:
 9776        knotbl(dst, src);
 9777        break;
 9778     case 16:
 9779        knotwl(dst, src);
 9780        break;
 9781     case 32:
 9782        knotdl(dst, src);
 9783        break;
 9784     case 64:
 9785        knotql(dst, src);
 9786        break;
 9787     default:
 9788       fatal("Unexpected vector length %d", masklen);
 9789       break;
 9790   }
 9791 }
 9792 
 9793 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
 9794   switch(type) {
 9795     case T_BOOLEAN:
 9796     case T_BYTE:
 9797        kandbl(dst, src1, src2);
 9798        break;
 9799     case T_CHAR:
 9800     case T_SHORT:
 9801        kandwl(dst, src1, src2);
 9802        break;
 9803     case T_INT:
 9804     case T_FLOAT:
 9805        kanddl(dst, src1, src2);
 9806        break;
 9807     case T_LONG:
 9808     case T_DOUBLE:
 9809        kandql(dst, src1, src2);
 9810        break;
 9811     default:
 9812       fatal("Unexpected type argument %s", type2name(type));
 9813       break;
 9814   }
 9815 }
 9816 
 9817 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
 9818   switch(type) {
 9819     case T_BOOLEAN:
 9820     case T_BYTE:
 9821        korbl(dst, src1, src2);
 9822        break;
 9823     case T_CHAR:
 9824     case T_SHORT:
 9825        korwl(dst, src1, src2);
 9826        break;
 9827     case T_INT:
 9828     case T_FLOAT:
 9829        kordl(dst, src1, src2);
 9830        break;
 9831     case T_LONG:
 9832     case T_DOUBLE:
 9833        korql(dst, src1, src2);
 9834        break;
 9835     default:
 9836       fatal("Unexpected type argument %s", type2name(type));
 9837       break;
 9838   }
 9839 }
 9840 
 9841 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
 9842   switch(type) {
 9843     case T_BOOLEAN:
 9844     case T_BYTE:
 9845        kxorbl(dst, src1, src2);
 9846        break;
 9847     case T_CHAR:
 9848     case T_SHORT:
 9849        kxorwl(dst, src1, src2);
 9850        break;
 9851     case T_INT:
 9852     case T_FLOAT:
 9853        kxordl(dst, src1, src2);
 9854        break;
 9855     case T_LONG:
 9856     case T_DOUBLE:
 9857        kxorql(dst, src1, src2);
 9858        break;
 9859     default:
 9860       fatal("Unexpected type argument %s", type2name(type));
 9861       break;
 9862   }
 9863 }
 9864 
 9865 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9866   switch(type) {
 9867     case T_BOOLEAN:
 9868     case T_BYTE:
 9869       evpermb(dst, mask, nds, src, merge, vector_len); break;
 9870     case T_CHAR:
 9871     case T_SHORT:
 9872       evpermw(dst, mask, nds, src, merge, vector_len); break;
 9873     case T_INT:
 9874     case T_FLOAT:
 9875       evpermd(dst, mask, nds, src, merge, vector_len); break;
 9876     case T_LONG:
 9877     case T_DOUBLE:
 9878       evpermq(dst, mask, nds, src, merge, vector_len); break;
 9879     default:
 9880       fatal("Unexpected type argument %s", type2name(type)); break;
 9881   }
 9882 }
 9883 
 9884 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9885   switch(type) {
 9886     case T_BOOLEAN:
 9887     case T_BYTE:
 9888       evpermb(dst, mask, nds, src, merge, vector_len); break;
 9889     case T_CHAR:
 9890     case T_SHORT:
 9891       evpermw(dst, mask, nds, src, merge, vector_len); break;
 9892     case T_INT:
 9893     case T_FLOAT:
 9894       evpermd(dst, mask, nds, src, merge, vector_len); break;
 9895     case T_LONG:
 9896     case T_DOUBLE:
 9897       evpermq(dst, mask, nds, src, merge, vector_len); break;
 9898     default:
 9899       fatal("Unexpected type argument %s", type2name(type)); break;
 9900   }
 9901 }
 9902 
 9903 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9904   switch(type) {
 9905     case T_BYTE:
 9906       evpminub(dst, mask, nds, src, merge, vector_len); break;
 9907     case T_SHORT:
 9908       evpminuw(dst, mask, nds, src, merge, vector_len); break;
 9909     case T_INT:
 9910       evpminud(dst, mask, nds, src, merge, vector_len); break;
 9911     case T_LONG:
 9912       evpminuq(dst, mask, nds, src, merge, vector_len); break;
 9913     default:
 9914       fatal("Unexpected type argument %s", type2name(type)); break;
 9915   }
 9916 }
 9917 
 9918 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9919   switch(type) {
 9920     case T_BYTE:
 9921       evpmaxub(dst, mask, nds, src, merge, vector_len); break;
 9922     case T_SHORT:
 9923       evpmaxuw(dst, mask, nds, src, merge, vector_len); break;
 9924     case T_INT:
 9925       evpmaxud(dst, mask, nds, src, merge, vector_len); break;
 9926     case T_LONG:
 9927       evpmaxuq(dst, mask, nds, src, merge, vector_len); break;
 9928     default:
 9929       fatal("Unexpected type argument %s", type2name(type)); break;
 9930   }
 9931 }
 9932 
 9933 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9934   switch(type) {
 9935     case T_BYTE:
 9936       evpminub(dst, mask, nds, src, merge, vector_len); break;
 9937     case T_SHORT:
 9938       evpminuw(dst, mask, nds, src, merge, vector_len); break;
 9939     case T_INT:
 9940       evpminud(dst, mask, nds, src, merge, vector_len); break;
 9941     case T_LONG:
 9942       evpminuq(dst, mask, nds, src, merge, vector_len); break;
 9943     default:
 9944       fatal("Unexpected type argument %s", type2name(type)); break;
 9945   }
 9946 }
 9947 
 9948 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9949   switch(type) {
 9950     case T_BYTE:
 9951       evpmaxub(dst, mask, nds, src, merge, vector_len); break;
 9952     case T_SHORT:
 9953       evpmaxuw(dst, mask, nds, src, merge, vector_len); break;
 9954     case T_INT:
 9955       evpmaxud(dst, mask, nds, src, merge, vector_len); break;
 9956     case T_LONG:
 9957       evpmaxuq(dst, mask, nds, src, merge, vector_len); break;
 9958     default:
 9959       fatal("Unexpected type argument %s", type2name(type)); break;
 9960   }
 9961 }
 9962 
 9963 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9964   switch(type) {
 9965     case T_BYTE:
 9966       evpminsb(dst, mask, nds, src, merge, vector_len); break;
 9967     case T_SHORT:
 9968       evpminsw(dst, mask, nds, src, merge, vector_len); break;
 9969     case T_INT:
 9970       evpminsd(dst, mask, nds, src, merge, vector_len); break;
 9971     case T_LONG:
 9972       evpminsq(dst, mask, nds, src, merge, vector_len); break;
 9973     default:
 9974       fatal("Unexpected type argument %s", type2name(type)); break;
 9975   }
 9976 }
 9977 
 9978 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9979   switch(type) {
 9980     case T_BYTE:
 9981       evpmaxsb(dst, mask, nds, src, merge, vector_len); break;
 9982     case T_SHORT:
 9983       evpmaxsw(dst, mask, nds, src, merge, vector_len); break;
 9984     case T_INT:
 9985       evpmaxsd(dst, mask, nds, src, merge, vector_len); break;
 9986     case T_LONG:
 9987       evpmaxsq(dst, mask, nds, src, merge, vector_len); break;
 9988     default:
 9989       fatal("Unexpected type argument %s", type2name(type)); break;
 9990   }
 9991 }
 9992 
 9993 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9994   switch(type) {
 9995     case T_BYTE:
 9996       evpminsb(dst, mask, nds, src, merge, vector_len); break;
 9997     case T_SHORT:
 9998       evpminsw(dst, mask, nds, src, merge, vector_len); break;
 9999     case T_INT:
10000       evpminsd(dst, mask, nds, src, merge, vector_len); break;
10001     case T_LONG:
10002       evpminsq(dst, mask, nds, src, merge, vector_len); break;
10003     default:
10004       fatal("Unexpected type argument %s", type2name(type)); break;
10005   }
10006 }
10007 
10008 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10009   switch(type) {
10010     case T_BYTE:
10011       evpmaxsb(dst, mask, nds, src, merge, vector_len); break;
10012     case T_SHORT:
10013       evpmaxsw(dst, mask, nds, src, merge, vector_len); break;
10014     case T_INT:
10015       evpmaxsd(dst, mask, nds, src, merge, vector_len); break;
10016     case T_LONG:
10017       evpmaxsq(dst, mask, nds, src, merge, vector_len); break;
10018     default:
10019       fatal("Unexpected type argument %s", type2name(type)); break;
10020   }
10021 }
10022 
10023 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10024   switch(type) {
10025     case T_INT:
10026       evpxord(dst, mask, nds, src, merge, vector_len); break;
10027     case T_LONG:
10028       evpxorq(dst, mask, nds, src, merge, vector_len); break;
10029     default:
10030       fatal("Unexpected type argument %s", type2name(type)); break;
10031   }
10032 }
10033 
10034 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
10035   switch(type) {
10036     case T_INT:
10037       evpxord(dst, mask, nds, src, merge, vector_len); break;
10038     case T_LONG:
10039       evpxorq(dst, mask, nds, src, merge, vector_len); break;
10040     default:
10041       fatal("Unexpected type argument %s", type2name(type)); break;
10042   }
10043 }
10044 
10045 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10046   switch(type) {
10047     case T_INT:
10048       Assembler::evpord(dst, mask, nds, src, merge, vector_len); break;
10049     case T_LONG:
10050       evporq(dst, mask, nds, src, merge, vector_len); break;
10051     default:
10052       fatal("Unexpected type argument %s", type2name(type)); break;
10053   }
10054 }
10055 
10056 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
10057   switch(type) {
10058     case T_INT:
10059       Assembler::evpord(dst, mask, nds, src, merge, vector_len); break;
10060     case T_LONG:
10061       evporq(dst, mask, nds, src, merge, vector_len); break;
10062     default:
10063       fatal("Unexpected type argument %s", type2name(type)); break;
10064   }
10065 }
10066 
10067 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10068   switch(type) {
10069     case T_INT:
10070       evpandd(dst, mask, nds, src, merge, vector_len); break;
10071     case T_LONG:
10072       evpandq(dst, mask, nds, src, merge, vector_len); break;
10073     default:
10074       fatal("Unexpected type argument %s", type2name(type)); break;
10075   }
10076 }
10077 
10078 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
10079   switch(type) {
10080     case T_INT:
10081       evpandd(dst, mask, nds, src, merge, vector_len); break;
10082     case T_LONG:
10083       evpandq(dst, mask, nds, src, merge, vector_len); break;
10084     default:
10085       fatal("Unexpected type argument %s", type2name(type)); break;
10086   }
10087 }
10088 
10089 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) {
10090   switch(masklen) {
10091     case 8:
10092        kortestbl(src1, src2);
10093        break;
10094     case 16:
10095        kortestwl(src1, src2);
10096        break;
10097     case 32:
10098        kortestdl(src1, src2);
10099        break;
10100     case 64:
10101        kortestql(src1, src2);
10102        break;
10103     default:
10104       fatal("Unexpected mask length %d", masklen);
10105       break;
10106   }
10107 }
10108 
10109 
10110 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) {
10111   switch(masklen)  {
10112     case 8:
10113        ktestbl(src1, src2);
10114        break;
10115     case 16:
10116        ktestwl(src1, src2);
10117        break;
10118     case 32:
10119        ktestdl(src1, src2);
10120        break;
10121     case 64:
10122        ktestql(src1, src2);
10123        break;
10124     default:
10125       fatal("Unexpected mask length %d", masklen);
10126       break;
10127   }
10128 }
10129 
10130 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) {
10131   switch(type) {
10132     case T_INT:
10133       evprold(dst, mask, src, shift, merge, vlen_enc); break;
10134     case T_LONG:
10135       evprolq(dst, mask, src, shift, merge, vlen_enc); break;
10136     default:
10137       fatal("Unexpected type argument %s", type2name(type)); break;
10138       break;
10139   }
10140 }
10141 
10142 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) {
10143   switch(type) {
10144     case T_INT:
10145       evprord(dst, mask, src, shift, merge, vlen_enc); break;
10146     case T_LONG:
10147       evprorq(dst, mask, src, shift, merge, vlen_enc); break;
10148     default:
10149       fatal("Unexpected type argument %s", type2name(type)); break;
10150   }
10151 }
10152 
10153 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) {
10154   switch(type) {
10155     case T_INT:
10156       evprolvd(dst, mask, src1, src2, merge, vlen_enc); break;
10157     case T_LONG:
10158       evprolvq(dst, mask, src1, src2, merge, vlen_enc); break;
10159     default:
10160       fatal("Unexpected type argument %s", type2name(type)); break;
10161   }
10162 }
10163 
10164 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) {
10165   switch(type) {
10166     case T_INT:
10167       evprorvd(dst, mask, src1, src2, merge, vlen_enc); break;
10168     case T_LONG:
10169       evprorvq(dst, mask, src1, src2, merge, vlen_enc); break;
10170     default:
10171       fatal("Unexpected type argument %s", type2name(type)); break;
10172   }
10173 }
10174 
10175 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
10176   assert(rscratch != noreg || always_reachable(src), "missing");
10177 
10178   if (reachable(src)) {
10179     evpandq(dst, nds, as_Address(src), vector_len);
10180   } else {
10181     lea(rscratch, src);
10182     evpandq(dst, nds, Address(rscratch, 0), vector_len);
10183   }
10184 }
10185 
10186 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
10187   assert(rscratch != noreg || always_reachable(src), "missing");
10188 
10189   if (reachable(src)) {
10190     Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len);
10191   } else {
10192     lea(rscratch, src);
10193     Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len);
10194   }
10195 }
10196 
10197 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
10198   assert(rscratch != noreg || always_reachable(src), "missing");
10199 
10200   if (reachable(src)) {
10201     evporq(dst, nds, as_Address(src), vector_len);
10202   } else {
10203     lea(rscratch, src);
10204     evporq(dst, nds, Address(rscratch, 0), vector_len);
10205   }
10206 }
10207 
10208 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
10209   assert(rscratch != noreg || always_reachable(src), "missing");
10210 
10211   if (reachable(src)) {
10212     vpshufb(dst, nds, as_Address(src), vector_len);
10213   } else {
10214     lea(rscratch, src);
10215     vpshufb(dst, nds, Address(rscratch, 0), vector_len);
10216   }
10217 }
10218 
10219 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
10220   assert(rscratch != noreg || always_reachable(src), "missing");
10221 
10222   if (reachable(src)) {
10223     Assembler::vpor(dst, nds, as_Address(src), vector_len);
10224   } else {
10225     lea(rscratch, src);
10226     Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len);
10227   }
10228 }
10229 
10230 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) {
10231   assert(rscratch != noreg || always_reachable(src3), "missing");
10232 
10233   if (reachable(src3)) {
10234     vpternlogq(dst, imm8, src2, as_Address(src3), vector_len);
10235   } else {
10236     lea(rscratch, src3);
10237     vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len);
10238   }
10239 }
10240 
10241 #if COMPILER2_OR_JVMCI
10242 
10243 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
10244                                  Register length, Register temp, int vec_enc) {
10245   // Computing mask for predicated vector store.
10246   movptr(temp, -1);
10247   bzhiq(temp, temp, length);
10248   kmov(mask, temp);
10249   evmovdqu(bt, mask, dst, xmm, true, vec_enc);
10250 }
10251 
10252 // Set memory operation for length "less than" 64 bytes.
10253 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp,
10254                                        XMMRegister xmm, KRegister mask, Register length,
10255                                        Register temp, bool use64byteVector) {
10256   assert(MaxVectorSize >= 32, "vector length should be >= 32");
10257   const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
10258   if (!use64byteVector) {
10259     fill32(dst, disp, xmm);
10260     subptr(length, 32 >> shift);
10261     fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp);
10262   } else {
10263     assert(MaxVectorSize == 64, "vector length != 64");
10264     fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit);
10265   }
10266 }
10267 
10268 
10269 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp,
10270                                        XMMRegister xmm, KRegister mask, Register length,
10271                                        Register temp) {
10272   assert(MaxVectorSize >= 32, "vector length should be >= 32");
10273   const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
10274   fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit);
10275 }
10276 
10277 
10278 void MacroAssembler::fill32(Address dst, XMMRegister xmm) {
10279   assert(MaxVectorSize >= 32, "vector length should be >= 32");
10280   vmovdqu(dst, xmm);
10281 }
10282 
10283 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) {
10284   fill32(Address(dst, disp), xmm);
10285 }
10286 
10287 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) {
10288   assert(MaxVectorSize >= 32, "vector length should be >= 32");
10289   if (!use64byteVector) {
10290     fill32(dst, xmm);
10291     fill32(dst.plus_disp(32), xmm);
10292   } else {
10293     evmovdquq(dst, xmm, Assembler::AVX_512bit);
10294   }
10295 }
10296 
10297 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) {
10298   fill64(Address(dst, disp), xmm, use64byteVector);
10299 }
10300 
10301 #ifdef _LP64
10302 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value,
10303                                         Register count, Register rtmp, XMMRegister xtmp) {
10304   Label L_exit;
10305   Label L_fill_start;
10306   Label L_fill_64_bytes;
10307   Label L_fill_96_bytes;
10308   Label L_fill_128_bytes;
10309   Label L_fill_128_bytes_loop;
10310   Label L_fill_128_loop_header;
10311   Label L_fill_128_bytes_loop_header;
10312   Label L_fill_128_bytes_loop_pre_header;
10313   Label L_fill_zmm_sequence;
10314 
10315   int shift = -1;
10316   int avx3threshold = VM_Version::avx3_threshold();
10317   switch(type) {
10318     case T_BYTE:  shift = 0;
10319       break;
10320     case T_SHORT: shift = 1;
10321       break;
10322     case T_INT:   shift = 2;
10323       break;
10324     /* Uncomment when LONG fill stubs are supported.
10325     case T_LONG:  shift = 3;
10326       break;
10327     */
10328     default:
10329       fatal("Unhandled type: %s\n", type2name(type));
10330   }
10331 
10332   if ((avx3threshold != 0)  || (MaxVectorSize == 32)) {
10333 
10334     if (MaxVectorSize == 64) {
10335       cmpq(count, avx3threshold >> shift);
10336       jcc(Assembler::greater, L_fill_zmm_sequence);
10337     }
10338 
10339     evpbroadcast(type, xtmp, value, Assembler::AVX_256bit);
10340 
10341     bind(L_fill_start);
10342 
10343     cmpq(count, 32 >> shift);
10344     jccb(Assembler::greater, L_fill_64_bytes);
10345     fill32_masked(shift, to, 0, xtmp, k2, count, rtmp);
10346     jmp(L_exit);
10347 
10348     bind(L_fill_64_bytes);
10349     cmpq(count, 64 >> shift);
10350     jccb(Assembler::greater, L_fill_96_bytes);
10351     fill64_masked(shift, to, 0, xtmp, k2, count, rtmp);
10352     jmp(L_exit);
10353 
10354     bind(L_fill_96_bytes);
10355     cmpq(count, 96 >> shift);
10356     jccb(Assembler::greater, L_fill_128_bytes);
10357     fill64(to, 0, xtmp);
10358     subq(count, 64 >> shift);
10359     fill32_masked(shift, to, 64, xtmp, k2, count, rtmp);
10360     jmp(L_exit);
10361 
10362     bind(L_fill_128_bytes);
10363     cmpq(count, 128 >> shift);
10364     jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header);
10365     fill64(to, 0, xtmp);
10366     fill32(to, 64, xtmp);
10367     subq(count, 96 >> shift);
10368     fill32_masked(shift, to, 96, xtmp, k2, count, rtmp);
10369     jmp(L_exit);
10370 
10371     bind(L_fill_128_bytes_loop_pre_header);
10372     {
10373       mov(rtmp, to);
10374       andq(rtmp, 31);
10375       jccb(Assembler::zero, L_fill_128_bytes_loop_header);
10376       negq(rtmp);
10377       addq(rtmp, 32);
10378       mov64(r8, -1L);
10379       bzhiq(r8, r8, rtmp);
10380       kmovql(k2, r8);
10381       evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit);
10382       addq(to, rtmp);
10383       shrq(rtmp, shift);
10384       subq(count, rtmp);
10385     }
10386 
10387     cmpq(count, 128 >> shift);
10388     jcc(Assembler::less, L_fill_start);
10389 
10390     bind(L_fill_128_bytes_loop_header);
10391     subq(count, 128 >> shift);
10392 
10393     align32();
10394     bind(L_fill_128_bytes_loop);
10395       fill64(to, 0, xtmp);
10396       fill64(to, 64, xtmp);
10397       addq(to, 128);
10398       subq(count, 128 >> shift);
10399       jccb(Assembler::greaterEqual, L_fill_128_bytes_loop);
10400 
10401     addq(count, 128 >> shift);
10402     jcc(Assembler::zero, L_exit);
10403     jmp(L_fill_start);
10404   }
10405 
10406   if (MaxVectorSize == 64) {
10407     // Sequence using 64 byte ZMM register.
10408     Label L_fill_128_bytes_zmm;
10409     Label L_fill_192_bytes_zmm;
10410     Label L_fill_192_bytes_loop_zmm;
10411     Label L_fill_192_bytes_loop_header_zmm;
10412     Label L_fill_192_bytes_loop_pre_header_zmm;
10413     Label L_fill_start_zmm_sequence;
10414 
10415     bind(L_fill_zmm_sequence);
10416     evpbroadcast(type, xtmp, value, Assembler::AVX_512bit);
10417 
10418     bind(L_fill_start_zmm_sequence);
10419     cmpq(count, 64 >> shift);
10420     jccb(Assembler::greater, L_fill_128_bytes_zmm);
10421     fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true);
10422     jmp(L_exit);
10423 
10424     bind(L_fill_128_bytes_zmm);
10425     cmpq(count, 128 >> shift);
10426     jccb(Assembler::greater, L_fill_192_bytes_zmm);
10427     fill64(to, 0, xtmp, true);
10428     subq(count, 64 >> shift);
10429     fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true);
10430     jmp(L_exit);
10431 
10432     bind(L_fill_192_bytes_zmm);
10433     cmpq(count, 192 >> shift);
10434     jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm);
10435     fill64(to, 0, xtmp, true);
10436     fill64(to, 64, xtmp, true);
10437     subq(count, 128 >> shift);
10438     fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true);
10439     jmp(L_exit);
10440 
10441     bind(L_fill_192_bytes_loop_pre_header_zmm);
10442     {
10443       movq(rtmp, to);
10444       andq(rtmp, 63);
10445       jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm);
10446       negq(rtmp);
10447       addq(rtmp, 64);
10448       mov64(r8, -1L);
10449       bzhiq(r8, r8, rtmp);
10450       kmovql(k2, r8);
10451       evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit);
10452       addq(to, rtmp);
10453       shrq(rtmp, shift);
10454       subq(count, rtmp);
10455     }
10456 
10457     cmpq(count, 192 >> shift);
10458     jcc(Assembler::less, L_fill_start_zmm_sequence);
10459 
10460     bind(L_fill_192_bytes_loop_header_zmm);
10461     subq(count, 192 >> shift);
10462 
10463     align32();
10464     bind(L_fill_192_bytes_loop_zmm);
10465       fill64(to, 0, xtmp, true);
10466       fill64(to, 64, xtmp, true);
10467       fill64(to, 128, xtmp, true);
10468       addq(to, 192);
10469       subq(count, 192 >> shift);
10470       jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm);
10471 
10472     addq(count, 192 >> shift);
10473     jcc(Assembler::zero, L_exit);
10474     jmp(L_fill_start_zmm_sequence);
10475   }
10476   bind(L_exit);
10477 }
10478 #endif
10479 #endif //COMPILER2_OR_JVMCI
10480 
10481 
10482 #ifdef _LP64
10483 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) {
10484   Label done;
10485   cvttss2sil(dst, src);
10486   // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
10487   cmpl(dst, 0x80000000); // float_sign_flip
10488   jccb(Assembler::notEqual, done);
10489   subptr(rsp, 8);
10490   movflt(Address(rsp, 0), src);
10491   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup())));
10492   pop(dst);
10493   bind(done);
10494 }
10495 
10496 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) {
10497   Label done;
10498   cvttsd2sil(dst, src);
10499   // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
10500   cmpl(dst, 0x80000000); // float_sign_flip
10501   jccb(Assembler::notEqual, done);
10502   subptr(rsp, 8);
10503   movdbl(Address(rsp, 0), src);
10504   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup())));
10505   pop(dst);
10506   bind(done);
10507 }
10508 
10509 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) {
10510   Label done;
10511   cvttss2siq(dst, src);
10512   cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
10513   jccb(Assembler::notEqual, done);
10514   subptr(rsp, 8);
10515   movflt(Address(rsp, 0), src);
10516   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup())));
10517   pop(dst);
10518   bind(done);
10519 }
10520 
10521 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) {
10522   // Following code is line by line assembly translation rounding algorithm.
10523   // Please refer to java.lang.Math.round(float) algorithm for details.
10524   const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000;
10525   const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24;
10526   const int32_t FloatConsts_EXP_BIAS = 127;
10527   const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF;
10528   const int32_t MINUS_32 = 0xFFFFFFE0;
10529   Label L_special_case, L_block1, L_exit;
10530   movl(rtmp, FloatConsts_EXP_BIT_MASK);
10531   movdl(dst, src);
10532   andl(dst, rtmp);
10533   sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1);
10534   movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS);
10535   subl(rtmp, dst);
10536   movl(rcx, rtmp);
10537   movl(dst, MINUS_32);
10538   testl(rtmp, dst);
10539   jccb(Assembler::notEqual, L_special_case);
10540   movdl(dst, src);
10541   andl(dst, FloatConsts_SIGNIF_BIT_MASK);
10542   orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1);
10543   movdl(rtmp, src);
10544   testl(rtmp, rtmp);
10545   jccb(Assembler::greaterEqual, L_block1);
10546   negl(dst);
10547   bind(L_block1);
10548   sarl(dst);
10549   addl(dst, 0x1);
10550   sarl(dst, 0x1);
10551   jmp(L_exit);
10552   bind(L_special_case);
10553   convert_f2i(dst, src);
10554   bind(L_exit);
10555 }
10556 
10557 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) {
10558   // Following code is line by line assembly translation rounding algorithm.
10559   // Please refer to java.lang.Math.round(double) algorithm for details.
10560   const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L;
10561   const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53;
10562   const int64_t DoubleConsts_EXP_BIAS = 1023;
10563   const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL;
10564   const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L;
10565   Label L_special_case, L_block1, L_exit;
10566   mov64(rtmp, DoubleConsts_EXP_BIT_MASK);
10567   movq(dst, src);
10568   andq(dst, rtmp);
10569   sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1);
10570   mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS);
10571   subq(rtmp, dst);
10572   movq(rcx, rtmp);
10573   mov64(dst, MINUS_64);
10574   testq(rtmp, dst);
10575   jccb(Assembler::notEqual, L_special_case);
10576   movq(dst, src);
10577   mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK);
10578   andq(dst, rtmp);
10579   mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1);
10580   orq(dst, rtmp);
10581   movq(rtmp, src);
10582   testq(rtmp, rtmp);
10583   jccb(Assembler::greaterEqual, L_block1);
10584   negq(dst);
10585   bind(L_block1);
10586   sarq(dst);
10587   addq(dst, 0x1);
10588   sarq(dst, 0x1);
10589   jmp(L_exit);
10590   bind(L_special_case);
10591   convert_d2l(dst, src);
10592   bind(L_exit);
10593 }
10594 
10595 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) {
10596   Label done;
10597   cvttsd2siq(dst, src);
10598   cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
10599   jccb(Assembler::notEqual, done);
10600   subptr(rsp, 8);
10601   movdbl(Address(rsp, 0), src);
10602   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup())));
10603   pop(dst);
10604   bind(done);
10605 }
10606 
10607 void MacroAssembler::cache_wb(Address line)
10608 {
10609   // 64 bit cpus always support clflush
10610   assert(VM_Version::supports_clflush(), "clflush should be available");
10611   bool optimized = VM_Version::supports_clflushopt();
10612   bool no_evict = VM_Version::supports_clwb();
10613 
10614   // prefer clwb (writeback without evict) otherwise
10615   // prefer clflushopt (potentially parallel writeback with evict)
10616   // otherwise fallback on clflush (serial writeback with evict)
10617 
10618   if (optimized) {
10619     if (no_evict) {
10620       clwb(line);
10621     } else {
10622       clflushopt(line);
10623     }
10624   } else {
10625     // no need for fence when using CLFLUSH
10626     clflush(line);
10627   }
10628 }
10629 
10630 void MacroAssembler::cache_wbsync(bool is_pre)
10631 {
10632   assert(VM_Version::supports_clflush(), "clflush should be available");
10633   bool optimized = VM_Version::supports_clflushopt();
10634   bool no_evict = VM_Version::supports_clwb();
10635 
10636   // pick the correct implementation
10637 
10638   if (!is_pre && (optimized || no_evict)) {
10639     // need an sfence for post flush when using clflushopt or clwb
10640     // otherwise no no need for any synchroniaztion
10641 
10642     sfence();
10643   }
10644 }
10645 
10646 #endif // _LP64
10647 
10648 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
10649   switch (cond) {
10650     // Note some conditions are synonyms for others
10651     case Assembler::zero:         return Assembler::notZero;
10652     case Assembler::notZero:      return Assembler::zero;
10653     case Assembler::less:         return Assembler::greaterEqual;
10654     case Assembler::lessEqual:    return Assembler::greater;
10655     case Assembler::greater:      return Assembler::lessEqual;
10656     case Assembler::greaterEqual: return Assembler::less;
10657     case Assembler::below:        return Assembler::aboveEqual;
10658     case Assembler::belowEqual:   return Assembler::above;
10659     case Assembler::above:        return Assembler::belowEqual;
10660     case Assembler::aboveEqual:   return Assembler::below;
10661     case Assembler::overflow:     return Assembler::noOverflow;
10662     case Assembler::noOverflow:   return Assembler::overflow;
10663     case Assembler::negative:     return Assembler::positive;
10664     case Assembler::positive:     return Assembler::negative;
10665     case Assembler::parity:       return Assembler::noParity;
10666     case Assembler::noParity:     return Assembler::parity;
10667   }
10668   ShouldNotReachHere(); return Assembler::overflow;
10669 }
10670 
10671 // This is simply a call to Thread::current()
10672 void MacroAssembler::get_thread(Register thread) {
10673   if (thread != rax) {
10674     push(rax);
10675   }
10676   LP64_ONLY(push(rdi);)
10677   LP64_ONLY(push(rsi);)
10678   push(rdx);
10679   push(rcx);
10680 #ifdef _LP64
10681   push(r8);
10682   push(r9);
10683   push(r10);
10684   push(r11);
10685 #endif
10686 
10687   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
10688 
10689 #ifdef _LP64
10690   pop(r11);
10691   pop(r10);
10692   pop(r9);
10693   pop(r8);
10694 #endif
10695   pop(rcx);
10696   pop(rdx);
10697   LP64_ONLY(pop(rsi);)
10698   LP64_ONLY(pop(rdi);)
10699   if (thread != rax) {
10700     mov(thread, rax);
10701     pop(rax);
10702   }
10703 }
10704 
10705 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) {
10706   Label L_stack_ok;
10707   if (bias == 0) {
10708     testptr(sp, 2 * wordSize - 1);
10709   } else {
10710     // lea(tmp, Address(rsp, bias);
10711     mov(tmp, sp);
10712     addptr(tmp, bias);
10713     testptr(tmp, 2 * wordSize - 1);
10714   }
10715   jcc(Assembler::equal, L_stack_ok);
10716   block_comment(msg);
10717   stop(msg);
10718   bind(L_stack_ok);
10719 }
10720 
10721 // Implements lightweight-locking.
10722 //
10723 // obj: the object to be locked
10724 // reg_rax: rax
10725 // thread: the thread which attempts to lock obj
10726 // tmp: a temporary register
10727 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) {
10728   assert(reg_rax == rax, "");
10729   assert_different_registers(basic_lock, obj, reg_rax, thread, tmp);
10730 
10731   Label push;
10732   const Register top = tmp;
10733 
10734   // Preload the markWord. It is important that this is the first
10735   // instruction emitted as it is part of C1's null check semantics.
10736   movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes()));
10737 
10738   if (UseObjectMonitorTable) {
10739     // Clear cache in case fast locking succeeds.
10740     movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0);
10741   }
10742 
10743   // Load top.
10744   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10745 
10746   // Check if the lock-stack is full.
10747   cmpl(top, LockStack::end_offset());
10748   jcc(Assembler::greaterEqual, slow);
10749 
10750   // Check for recursion.
10751   cmpptr(obj, Address(thread, top, Address::times_1, -oopSize));
10752   jcc(Assembler::equal, push);
10753 
10754   // Check header for monitor (0b10).
10755   testptr(reg_rax, markWord::monitor_value);
10756   jcc(Assembler::notZero, slow);
10757 
10758   // Try to lock. Transition lock bits 0b01 => 0b00
10759   movptr(tmp, reg_rax);
10760   andptr(tmp, ~(int32_t)markWord::unlocked_value);
10761   orptr(reg_rax, markWord::unlocked_value);
10762   lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
10763   jcc(Assembler::notEqual, slow);
10764 
10765   // Restore top, CAS clobbers register.
10766   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10767 
10768   bind(push);
10769   // After successful lock, push object on lock-stack.
10770   movptr(Address(thread, top), obj);
10771   incrementl(top, oopSize);
10772   movl(Address(thread, JavaThread::lock_stack_top_offset()), top);
10773 }
10774 
10775 // Implements lightweight-unlocking.
10776 //
10777 // obj: the object to be unlocked
10778 // reg_rax: rax
10779 // thread: the thread
10780 // tmp: a temporary register
10781 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) {
10782   assert(reg_rax == rax, "");
10783   assert_different_registers(obj, reg_rax, thread, tmp);
10784 
10785   Label unlocked, push_and_slow;
10786   const Register top = tmp;
10787 
10788   // Check if obj is top of lock-stack.
10789   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10790   cmpptr(obj, Address(thread, top, Address::times_1, -oopSize));
10791   jcc(Assembler::notEqual, slow);
10792 
10793   // Pop lock-stack.
10794   DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);)
10795   subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize);
10796 
10797   // Check if recursive.
10798   cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize));
10799   jcc(Assembler::equal, unlocked);
10800 
10801   // Not recursive. Check header for monitor (0b10).
10802   movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes()));
10803   testptr(reg_rax, markWord::monitor_value);
10804   jcc(Assembler::notZero, push_and_slow);
10805 
10806 #ifdef ASSERT
10807   // Check header not unlocked (0b01).
10808   Label not_unlocked;
10809   testptr(reg_rax, markWord::unlocked_value);
10810   jcc(Assembler::zero, not_unlocked);
10811   stop("lightweight_unlock already unlocked");
10812   bind(not_unlocked);
10813 #endif
10814 
10815   // Try to unlock. Transition lock bits 0b00 => 0b01
10816   movptr(tmp, reg_rax);
10817   orptr(tmp, markWord::unlocked_value);
10818   lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
10819   jcc(Assembler::equal, unlocked);
10820 
10821   bind(push_and_slow);
10822   // Restore lock-stack and handle the unlock in runtime.
10823 #ifdef ASSERT
10824   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10825   movptr(Address(thread, top), obj);
10826 #endif
10827   addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize);
10828   jmp(slow);
10829 
10830   bind(unlocked);
10831 }
10832 
10833 #ifdef _LP64
10834 // Saves legacy GPRs state on stack.
10835 void MacroAssembler::save_legacy_gprs() {
10836   subq(rsp, 16 * wordSize);
10837   movq(Address(rsp, 15 * wordSize), rax);
10838   movq(Address(rsp, 14 * wordSize), rcx);
10839   movq(Address(rsp, 13 * wordSize), rdx);
10840   movq(Address(rsp, 12 * wordSize), rbx);
10841   movq(Address(rsp, 10 * wordSize), rbp);
10842   movq(Address(rsp, 9 * wordSize), rsi);
10843   movq(Address(rsp, 8 * wordSize), rdi);
10844   movq(Address(rsp, 7 * wordSize), r8);
10845   movq(Address(rsp, 6 * wordSize), r9);
10846   movq(Address(rsp, 5 * wordSize), r10);
10847   movq(Address(rsp, 4 * wordSize), r11);
10848   movq(Address(rsp, 3 * wordSize), r12);
10849   movq(Address(rsp, 2 * wordSize), r13);
10850   movq(Address(rsp, wordSize), r14);
10851   movq(Address(rsp, 0), r15);
10852 }
10853 
10854 // Resotres back legacy GPRs state from stack.
10855 void MacroAssembler::restore_legacy_gprs() {
10856   movq(r15, Address(rsp, 0));
10857   movq(r14, Address(rsp, wordSize));
10858   movq(r13, Address(rsp, 2 * wordSize));
10859   movq(r12, Address(rsp, 3 * wordSize));
10860   movq(r11, Address(rsp, 4 * wordSize));
10861   movq(r10, Address(rsp, 5 * wordSize));
10862   movq(r9,  Address(rsp, 6 * wordSize));
10863   movq(r8,  Address(rsp, 7 * wordSize));
10864   movq(rdi, Address(rsp, 8 * wordSize));
10865   movq(rsi, Address(rsp, 9 * wordSize));
10866   movq(rbp, Address(rsp, 10 * wordSize));
10867   movq(rbx, Address(rsp, 12 * wordSize));
10868   movq(rdx, Address(rsp, 13 * wordSize));
10869   movq(rcx, Address(rsp, 14 * wordSize));
10870   movq(rax, Address(rsp, 15 * wordSize));
10871   addq(rsp, 16 * wordSize);
10872 }
10873 
10874 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) {
10875   if (VM_Version::supports_apx_f()) {
10876     esetzucc(comparison, dst);
10877   } else {
10878     setb(comparison, dst);
10879     movzbl(dst, dst);
10880   }
10881 }
10882 #endif