1 /*
    2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
    3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
    4  *
    5  * This code is free software; you can redistribute it and/or modify it
    6  * under the terms of the GNU General Public License version 2 only, as
    7  * published by the Free Software Foundation.
    8  *
    9  * This code is distributed in the hope that it will be useful, but WITHOUT
   10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   12  * version 2 for more details (a copy is included in the LICENSE file that
   13  * accompanied this code).
   14  *
   15  * You should have received a copy of the GNU General Public License version
   16  * 2 along with this work; if not, write to the Free Software Foundation,
   17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
   18  *
   19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
   20  * or visit www.oracle.com if you need additional information or have any
   21  * questions.
   22  *
   23  */
   24 
   25 #include "precompiled.hpp"
   26 #include "asm/assembler.hpp"
   27 #include "asm/assembler.inline.hpp"
   28 #include "code/compiledIC.hpp"
   29 #include "compiler/compiler_globals.hpp"
   30 #include "compiler/disassembler.hpp"
   31 #include "crc32c.h"
   32 #include "gc/shared/barrierSet.hpp"
   33 #include "gc/shared/barrierSetAssembler.hpp"
   34 #include "gc/shared/collectedHeap.inline.hpp"
   35 #include "gc/shared/tlab_globals.hpp"
   36 #include "interpreter/bytecodeHistogram.hpp"
   37 #include "interpreter/interpreter.hpp"
   38 #include "interpreter/interpreterRuntime.hpp"
   39 #include "jvm.h"
   40 #include "memory/resourceArea.hpp"
   41 #include "memory/universe.hpp"
   42 #include "oops/accessDecorators.hpp"
   43 #include "oops/compressedKlass.inline.hpp"
   44 #include "oops/compressedOops.inline.hpp"
   45 #include "oops/klass.inline.hpp"
   46 #include "prims/methodHandles.hpp"
   47 #include "runtime/continuation.hpp"
   48 #include "runtime/interfaceSupport.inline.hpp"
   49 #include "runtime/javaThread.hpp"
   50 #include "runtime/jniHandles.hpp"
   51 #include "runtime/objectMonitor.hpp"
   52 #include "runtime/os.hpp"
   53 #include "runtime/safepoint.hpp"
   54 #include "runtime/safepointMechanism.hpp"
   55 #include "runtime/sharedRuntime.hpp"
   56 #include "runtime/stubRoutines.hpp"
   57 #include "utilities/checkedCast.hpp"
   58 #include "utilities/macros.hpp"
   59 
   60 #ifdef PRODUCT
   61 #define BLOCK_COMMENT(str) /* nothing */
   62 #define STOP(error) stop(error)
   63 #else
   64 #define BLOCK_COMMENT(str) block_comment(str)
   65 #define STOP(error) block_comment(error); stop(error)
   66 #endif
   67 
   68 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
   69 
   70 #ifdef ASSERT
   71 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
   72 #endif
   73 
   74 static const Assembler::Condition reverse[] = {
   75     Assembler::noOverflow     /* overflow      = 0x0 */ ,
   76     Assembler::overflow       /* noOverflow    = 0x1 */ ,
   77     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
   78     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
   79     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
   80     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
   81     Assembler::above          /* belowEqual    = 0x6 */ ,
   82     Assembler::belowEqual     /* above         = 0x7 */ ,
   83     Assembler::positive       /* negative      = 0x8 */ ,
   84     Assembler::negative       /* positive      = 0x9 */ ,
   85     Assembler::noParity       /* parity        = 0xa */ ,
   86     Assembler::parity         /* noParity      = 0xb */ ,
   87     Assembler::greaterEqual   /* less          = 0xc */ ,
   88     Assembler::less           /* greaterEqual  = 0xd */ ,
   89     Assembler::greater        /* lessEqual     = 0xe */ ,
   90     Assembler::lessEqual      /* greater       = 0xf, */
   91 
   92 };
   93 
   94 
   95 // Implementation of MacroAssembler
   96 
   97 // First all the versions that have distinct versions depending on 32/64 bit
   98 // Unless the difference is trivial (1 line or so).
   99 
  100 #ifndef _LP64
  101 
  102 // 32bit versions
  103 
  104 Address MacroAssembler::as_Address(AddressLiteral adr) {
  105   return Address(adr.target(), adr.rspec());
  106 }
  107 
  108 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) {
  109   assert(rscratch == noreg, "");
  110   return Address::make_array(adr);
  111 }
  112 
  113 void MacroAssembler::call_VM_leaf_base(address entry_point,
  114                                        int number_of_arguments) {
  115   call(RuntimeAddress(entry_point));
  116   increment(rsp, number_of_arguments * wordSize);
  117 }
  118 
  119 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
  120   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  121 }
  122 
  123 
  124 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
  125   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  126 }
  127 
  128 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  129   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  130 }
  131 
  132 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) {
  133   assert(rscratch == noreg, "redundant");
  134   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  135 }
  136 
  137 void MacroAssembler::extend_sign(Register hi, Register lo) {
  138   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  139   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  140     cdql();
  141   } else {
  142     movl(hi, lo);
  143     sarl(hi, 31);
  144   }
  145 }
  146 
  147 void MacroAssembler::jC2(Register tmp, Label& L) {
  148   // set parity bit if FPU flag C2 is set (via rax)
  149   save_rax(tmp);
  150   fwait(); fnstsw_ax();
  151   sahf();
  152   restore_rax(tmp);
  153   // branch
  154   jcc(Assembler::parity, L);
  155 }
  156 
  157 void MacroAssembler::jnC2(Register tmp, Label& L) {
  158   // set parity bit if FPU flag C2 is set (via rax)
  159   save_rax(tmp);
  160   fwait(); fnstsw_ax();
  161   sahf();
  162   restore_rax(tmp);
  163   // branch
  164   jcc(Assembler::noParity, L);
  165 }
  166 
  167 // 32bit can do a case table jump in one instruction but we no longer allow the base
  168 // to be installed in the Address class
  169 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) {
  170   assert(rscratch == noreg, "not needed");
  171   jmp(as_Address(entry, noreg));
  172 }
  173 
  174 // Note: y_lo will be destroyed
  175 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  176   // Long compare for Java (semantics as described in JVM spec.)
  177   Label high, low, done;
  178 
  179   cmpl(x_hi, y_hi);
  180   jcc(Assembler::less, low);
  181   jcc(Assembler::greater, high);
  182   // x_hi is the return register
  183   xorl(x_hi, x_hi);
  184   cmpl(x_lo, y_lo);
  185   jcc(Assembler::below, low);
  186   jcc(Assembler::equal, done);
  187 
  188   bind(high);
  189   xorl(x_hi, x_hi);
  190   increment(x_hi);
  191   jmp(done);
  192 
  193   bind(low);
  194   xorl(x_hi, x_hi);
  195   decrementl(x_hi);
  196 
  197   bind(done);
  198 }
  199 
  200 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  201   mov_literal32(dst, (int32_t)src.target(), src.rspec());
  202 }
  203 
  204 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) {
  205   assert(rscratch == noreg, "not needed");
  206 
  207   // leal(dst, as_Address(adr));
  208   // see note in movl as to why we must use a move
  209   mov_literal32(dst, (int32_t)adr.target(), adr.rspec());
  210 }
  211 
  212 void MacroAssembler::leave() {
  213   mov(rsp, rbp);
  214   pop(rbp);
  215 }
  216 
  217 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  218   // Multiplication of two Java long values stored on the stack
  219   // as illustrated below. Result is in rdx:rax.
  220   //
  221   // rsp ---> [  ??  ] \               \
  222   //            ....    | y_rsp_offset  |
  223   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  224   //          [ y_hi ]                  | (in bytes)
  225   //            ....                    |
  226   //          [ x_lo ]                 /
  227   //          [ x_hi ]
  228   //            ....
  229   //
  230   // Basic idea: lo(result) = lo(x_lo * y_lo)
  231   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  232   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  233   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  234   Label quick;
  235   // load x_hi, y_hi and check if quick
  236   // multiplication is possible
  237   movl(rbx, x_hi);
  238   movl(rcx, y_hi);
  239   movl(rax, rbx);
  240   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  241   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  242   // do full multiplication
  243   // 1st step
  244   mull(y_lo);                                    // x_hi * y_lo
  245   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  246   // 2nd step
  247   movl(rax, x_lo);
  248   mull(rcx);                                     // x_lo * y_hi
  249   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  250   // 3rd step
  251   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  252   movl(rax, x_lo);
  253   mull(y_lo);                                    // x_lo * y_lo
  254   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  255 }
  256 
  257 void MacroAssembler::lneg(Register hi, Register lo) {
  258   negl(lo);
  259   adcl(hi, 0);
  260   negl(hi);
  261 }
  262 
  263 void MacroAssembler::lshl(Register hi, Register lo) {
  264   // Java shift left long support (semantics as described in JVM spec., p.305)
  265   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  266   // shift value is in rcx !
  267   assert(hi != rcx, "must not use rcx");
  268   assert(lo != rcx, "must not use rcx");
  269   const Register s = rcx;                        // shift count
  270   const int      n = BitsPerWord;
  271   Label L;
  272   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  273   cmpl(s, n);                                    // if (s < n)
  274   jcc(Assembler::less, L);                       // else (s >= n)
  275   movl(hi, lo);                                  // x := x << n
  276   xorl(lo, lo);
  277   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  278   bind(L);                                       // s (mod n) < n
  279   shldl(hi, lo);                                 // x := x << s
  280   shll(lo);
  281 }
  282 
  283 
  284 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  285   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  286   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  287   assert(hi != rcx, "must not use rcx");
  288   assert(lo != rcx, "must not use rcx");
  289   const Register s = rcx;                        // shift count
  290   const int      n = BitsPerWord;
  291   Label L;
  292   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  293   cmpl(s, n);                                    // if (s < n)
  294   jcc(Assembler::less, L);                       // else (s >= n)
  295   movl(lo, hi);                                  // x := x >> n
  296   if (sign_extension) sarl(hi, 31);
  297   else                xorl(hi, hi);
  298   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  299   bind(L);                                       // s (mod n) < n
  300   shrdl(lo, hi);                                 // x := x >> s
  301   if (sign_extension) sarl(hi);
  302   else                shrl(hi);
  303 }
  304 
  305 void MacroAssembler::movoop(Register dst, jobject obj) {
  306   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  307 }
  308 
  309 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) {
  310   assert(rscratch == noreg, "redundant");
  311   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  312 }
  313 
  314 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  315   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  316 }
  317 
  318 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) {
  319   assert(rscratch == noreg, "redundant");
  320   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  321 }
  322 
  323 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  324   if (src.is_lval()) {
  325     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  326   } else {
  327     movl(dst, as_Address(src));
  328   }
  329 }
  330 
  331 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) {
  332   assert(rscratch == noreg, "redundant");
  333   movl(as_Address(dst, noreg), src);
  334 }
  335 
  336 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  337   movl(dst, as_Address(src, noreg));
  338 }
  339 
  340 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) {
  341   assert(rscratch == noreg, "redundant");
  342   movl(dst, src);
  343 }
  344 
  345 void MacroAssembler::pushoop(jobject obj, Register rscratch) {
  346   assert(rscratch == noreg, "redundant");
  347   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  348 }
  349 
  350 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) {
  351   assert(rscratch == noreg, "redundant");
  352   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
  353 }
  354 
  355 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) {
  356   assert(rscratch == noreg, "redundant");
  357   if (src.is_lval()) {
  358     push_literal32((int32_t)src.target(), src.rspec());
  359   } else {
  360     pushl(as_Address(src));
  361   }
  362 }
  363 
  364 static void pass_arg0(MacroAssembler* masm, Register arg) {
  365   masm->push(arg);
  366 }
  367 
  368 static void pass_arg1(MacroAssembler* masm, Register arg) {
  369   masm->push(arg);
  370 }
  371 
  372 static void pass_arg2(MacroAssembler* masm, Register arg) {
  373   masm->push(arg);
  374 }
  375 
  376 static void pass_arg3(MacroAssembler* masm, Register arg) {
  377   masm->push(arg);
  378 }
  379 
  380 #ifndef PRODUCT
  381 extern "C" void findpc(intptr_t x);
  382 #endif
  383 
  384 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  385   // In order to get locks to work, we need to fake a in_VM state
  386   JavaThread* thread = JavaThread::current();
  387   JavaThreadState saved_state = thread->thread_state();
  388   thread->set_thread_state(_thread_in_vm);
  389   if (ShowMessageBoxOnError) {
  390     JavaThread* thread = JavaThread::current();
  391     JavaThreadState saved_state = thread->thread_state();
  392     thread->set_thread_state(_thread_in_vm);
  393     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  394       ttyLocker ttyl;
  395       BytecodeCounter::print();
  396     }
  397     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  398     // This is the value of eip which points to where verify_oop will return.
  399     if (os::message_box(msg, "Execution stopped, print registers?")) {
  400       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
  401       BREAKPOINT;
  402     }
  403   }
  404   fatal("DEBUG MESSAGE: %s", msg);
  405 }
  406 
  407 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
  408   ttyLocker ttyl;
  409   DebuggingContext debugging{};
  410   tty->print_cr("eip = 0x%08x", eip);
  411 #ifndef PRODUCT
  412   if ((WizardMode || Verbose) && PrintMiscellaneous) {
  413     tty->cr();
  414     findpc(eip);
  415     tty->cr();
  416   }
  417 #endif
  418 #define PRINT_REG(rax) \
  419   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
  420   PRINT_REG(rax);
  421   PRINT_REG(rbx);
  422   PRINT_REG(rcx);
  423   PRINT_REG(rdx);
  424   PRINT_REG(rdi);
  425   PRINT_REG(rsi);
  426   PRINT_REG(rbp);
  427   PRINT_REG(rsp);
  428 #undef PRINT_REG
  429   // Print some words near top of staack.
  430   int* dump_sp = (int*) rsp;
  431   for (int col1 = 0; col1 < 8; col1++) {
  432     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  433     os::print_location(tty, *dump_sp++);
  434   }
  435   for (int row = 0; row < 16; row++) {
  436     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  437     for (int col = 0; col < 8; col++) {
  438       tty->print(" 0x%08x", *dump_sp++);
  439     }
  440     tty->cr();
  441   }
  442   // Print some instructions around pc:
  443   Disassembler::decode((address)eip-64, (address)eip);
  444   tty->print_cr("--------");
  445   Disassembler::decode((address)eip, (address)eip+32);
  446 }
  447 
  448 void MacroAssembler::stop(const char* msg) {
  449   // push address of message
  450   ExternalAddress message((address)msg);
  451   pushptr(message.addr(), noreg);
  452   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  453   pusha();                                            // push registers
  454   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  455   hlt();
  456 }
  457 
  458 void MacroAssembler::warn(const char* msg) {
  459   push_CPU_state();
  460 
  461   // push address of message
  462   ExternalAddress message((address)msg);
  463   pushptr(message.addr(), noreg);
  464 
  465   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  466   addl(rsp, wordSize);       // discard argument
  467   pop_CPU_state();
  468 }
  469 
  470 void MacroAssembler::print_state() {
  471   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  472   pusha();                                            // push registers
  473 
  474   push_CPU_state();
  475   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
  476   pop_CPU_state();
  477 
  478   popa();
  479   addl(rsp, wordSize);
  480 }
  481 
  482 #else // _LP64
  483 
  484 // 64 bit versions
  485 
  486 Address MacroAssembler::as_Address(AddressLiteral adr) {
  487   // amd64 always does this as a pc-rel
  488   // we can be absolute or disp based on the instruction type
  489   // jmp/call are displacements others are absolute
  490   assert(!adr.is_lval(), "must be rval");
  491   assert(reachable(adr), "must be");
  492   return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc());
  493 
  494 }
  495 
  496 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) {
  497   AddressLiteral base = adr.base();
  498   lea(rscratch, base);
  499   Address index = adr.index();
  500   assert(index._disp == 0, "must not have disp"); // maybe it can?
  501   Address array(rscratch, index._index, index._scale, index._disp);
  502   return array;
  503 }
  504 
  505 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  506   Label L, E;
  507 
  508 #ifdef _WIN64
  509   // Windows always allocates space for it's register args
  510   assert(num_args <= 4, "only register arguments supported");
  511   subq(rsp,  frame::arg_reg_save_area_bytes);
  512 #endif
  513 
  514   // Align stack if necessary
  515   testl(rsp, 15);
  516   jcc(Assembler::zero, L);
  517 
  518   subq(rsp, 8);
  519   call(RuntimeAddress(entry_point));
  520   addq(rsp, 8);
  521   jmp(E);
  522 
  523   bind(L);
  524   call(RuntimeAddress(entry_point));
  525 
  526   bind(E);
  527 
  528 #ifdef _WIN64
  529   // restore stack pointer
  530   addq(rsp, frame::arg_reg_save_area_bytes);
  531 #endif
  532 }
  533 
  534 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) {
  535   assert(!src2.is_lval(), "should use cmpptr");
  536   assert(rscratch != noreg || always_reachable(src2), "missing");
  537 
  538   if (reachable(src2)) {
  539     cmpq(src1, as_Address(src2));
  540   } else {
  541     lea(rscratch, src2);
  542     Assembler::cmpq(src1, Address(rscratch, 0));
  543   }
  544 }
  545 
  546 int MacroAssembler::corrected_idivq(Register reg) {
  547   // Full implementation of Java ldiv and lrem; checks for special
  548   // case as described in JVM spec., p.243 & p.271.  The function
  549   // returns the (pc) offset of the idivl instruction - may be needed
  550   // for implicit exceptions.
  551   //
  552   //         normal case                           special case
  553   //
  554   // input : rax: dividend                         min_long
  555   //         reg: divisor   (may not be eax/edx)   -1
  556   //
  557   // output: rax: quotient  (= rax idiv reg)       min_long
  558   //         rdx: remainder (= rax irem reg)       0
  559   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  560   static const int64_t min_long = 0x8000000000000000;
  561   Label normal_case, special_case;
  562 
  563   // check for special case
  564   cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/);
  565   jcc(Assembler::notEqual, normal_case);
  566   xorl(rdx, rdx); // prepare rdx for possible special case (where
  567                   // remainder = 0)
  568   cmpq(reg, -1);
  569   jcc(Assembler::equal, special_case);
  570 
  571   // handle normal case
  572   bind(normal_case);
  573   cdqq();
  574   int idivq_offset = offset();
  575   idivq(reg);
  576 
  577   // normal and special case exit
  578   bind(special_case);
  579 
  580   return idivq_offset;
  581 }
  582 
  583 void MacroAssembler::decrementq(Register reg, int value) {
  584   if (value == min_jint) { subq(reg, value); return; }
  585   if (value <  0) { incrementq(reg, -value); return; }
  586   if (value == 0) {                        ; return; }
  587   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  588   /* else */      { subq(reg, value)       ; return; }
  589 }
  590 
  591 void MacroAssembler::decrementq(Address dst, int value) {
  592   if (value == min_jint) { subq(dst, value); return; }
  593   if (value <  0) { incrementq(dst, -value); return; }
  594   if (value == 0) {                        ; return; }
  595   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  596   /* else */      { subq(dst, value)       ; return; }
  597 }
  598 
  599 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) {
  600   assert(rscratch != noreg || always_reachable(dst), "missing");
  601 
  602   if (reachable(dst)) {
  603     incrementq(as_Address(dst));
  604   } else {
  605     lea(rscratch, dst);
  606     incrementq(Address(rscratch, 0));
  607   }
  608 }
  609 
  610 void MacroAssembler::incrementq(Register reg, int value) {
  611   if (value == min_jint) { addq(reg, value); return; }
  612   if (value <  0) { decrementq(reg, -value); return; }
  613   if (value == 0) {                        ; return; }
  614   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  615   /* else */      { addq(reg, value)       ; return; }
  616 }
  617 
  618 void MacroAssembler::incrementq(Address dst, int value) {
  619   if (value == min_jint) { addq(dst, value); return; }
  620   if (value <  0) { decrementq(dst, -value); return; }
  621   if (value == 0) {                        ; return; }
  622   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  623   /* else */      { addq(dst, value)       ; return; }
  624 }
  625 
  626 // 32bit can do a case table jump in one instruction but we no longer allow the base
  627 // to be installed in the Address class
  628 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) {
  629   lea(rscratch, entry.base());
  630   Address dispatch = entry.index();
  631   assert(dispatch._base == noreg, "must be");
  632   dispatch._base = rscratch;
  633   jmp(dispatch);
  634 }
  635 
  636 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  637   ShouldNotReachHere(); // 64bit doesn't use two regs
  638   cmpq(x_lo, y_lo);
  639 }
  640 
  641 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  642   mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  643 }
  644 
  645 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) {
  646   lea(rscratch, adr);
  647   movptr(dst, rscratch);
  648 }
  649 
  650 void MacroAssembler::leave() {
  651   // %%% is this really better? Why not on 32bit too?
  652   emit_int8((unsigned char)0xC9); // LEAVE
  653 }
  654 
  655 void MacroAssembler::lneg(Register hi, Register lo) {
  656   ShouldNotReachHere(); // 64bit doesn't use two regs
  657   negq(lo);
  658 }
  659 
  660 void MacroAssembler::movoop(Register dst, jobject obj) {
  661   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  662 }
  663 
  664 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) {
  665   mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  666   movq(dst, rscratch);
  667 }
  668 
  669 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  670   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  671 }
  672 
  673 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) {
  674   mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  675   movq(dst, rscratch);
  676 }
  677 
  678 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  679   if (src.is_lval()) {
  680     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  681   } else {
  682     if (reachable(src)) {
  683       movq(dst, as_Address(src));
  684     } else {
  685       lea(dst, src);
  686       movq(dst, Address(dst, 0));
  687     }
  688   }
  689 }
  690 
  691 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) {
  692   movq(as_Address(dst, rscratch), src);
  693 }
  694 
  695 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  696   movq(dst, as_Address(src, dst /*rscratch*/));
  697 }
  698 
  699 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  700 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) {
  701   if (is_simm32(src)) {
  702     movptr(dst, checked_cast<int32_t>(src));
  703   } else {
  704     mov64(rscratch, src);
  705     movq(dst, rscratch);
  706   }
  707 }
  708 
  709 void MacroAssembler::pushoop(jobject obj, Register rscratch) {
  710   movoop(rscratch, obj);
  711   push(rscratch);
  712 }
  713 
  714 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) {
  715   mov_metadata(rscratch, obj);
  716   push(rscratch);
  717 }
  718 
  719 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) {
  720   lea(rscratch, src);
  721   if (src.is_lval()) {
  722     push(rscratch);
  723   } else {
  724     pushq(Address(rscratch, 0));
  725   }
  726 }
  727 
  728 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
  729   reset_last_Java_frame(r15_thread, clear_fp);
  730 }
  731 
  732 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  733                                          Register last_java_fp,
  734                                          address  last_java_pc,
  735                                          Register rscratch) {
  736   set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, last_java_pc, rscratch);
  737 }
  738 
  739 static void pass_arg0(MacroAssembler* masm, Register arg) {
  740   if (c_rarg0 != arg ) {
  741     masm->mov(c_rarg0, arg);
  742   }
  743 }
  744 
  745 static void pass_arg1(MacroAssembler* masm, Register arg) {
  746   if (c_rarg1 != arg ) {
  747     masm->mov(c_rarg1, arg);
  748   }
  749 }
  750 
  751 static void pass_arg2(MacroAssembler* masm, Register arg) {
  752   if (c_rarg2 != arg ) {
  753     masm->mov(c_rarg2, arg);
  754   }
  755 }
  756 
  757 static void pass_arg3(MacroAssembler* masm, Register arg) {
  758   if (c_rarg3 != arg ) {
  759     masm->mov(c_rarg3, arg);
  760   }
  761 }
  762 
  763 void MacroAssembler::stop(const char* msg) {
  764   if (ShowMessageBoxOnError) {
  765     address rip = pc();
  766     pusha(); // get regs on stack
  767     lea(c_rarg1, InternalAddress(rip));
  768     movq(c_rarg2, rsp); // pass pointer to regs array
  769   }
  770   lea(c_rarg0, ExternalAddress((address) msg));
  771   andq(rsp, -16); // align stack as required by ABI
  772   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  773   hlt();
  774 }
  775 
  776 void MacroAssembler::warn(const char* msg) {
  777   push(rbp);
  778   movq(rbp, rsp);
  779   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  780   push_CPU_state();   // keeps alignment at 16 bytes
  781 
  782   lea(c_rarg0, ExternalAddress((address) msg));
  783   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  784 
  785   pop_CPU_state();
  786   mov(rsp, rbp);
  787   pop(rbp);
  788 }
  789 
  790 void MacroAssembler::print_state() {
  791   address rip = pc();
  792   pusha();            // get regs on stack
  793   push(rbp);
  794   movq(rbp, rsp);
  795   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  796   push_CPU_state();   // keeps alignment at 16 bytes
  797 
  798   lea(c_rarg0, InternalAddress(rip));
  799   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
  800   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
  801 
  802   pop_CPU_state();
  803   mov(rsp, rbp);
  804   pop(rbp);
  805   popa();
  806 }
  807 
  808 #ifndef PRODUCT
  809 extern "C" void findpc(intptr_t x);
  810 #endif
  811 
  812 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  813   // In order to get locks to work, we need to fake a in_VM state
  814   if (ShowMessageBoxOnError) {
  815     JavaThread* thread = JavaThread::current();
  816     JavaThreadState saved_state = thread->thread_state();
  817     thread->set_thread_state(_thread_in_vm);
  818 #ifndef PRODUCT
  819     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  820       ttyLocker ttyl;
  821       BytecodeCounter::print();
  822     }
  823 #endif
  824     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  825     // XXX correct this offset for amd64
  826     // This is the value of eip which points to where verify_oop will return.
  827     if (os::message_box(msg, "Execution stopped, print registers?")) {
  828       print_state64(pc, regs);
  829       BREAKPOINT;
  830     }
  831   }
  832   fatal("DEBUG MESSAGE: %s", msg);
  833 }
  834 
  835 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
  836   ttyLocker ttyl;
  837   DebuggingContext debugging{};
  838   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
  839 #ifndef PRODUCT
  840   tty->cr();
  841   findpc(pc);
  842   tty->cr();
  843 #endif
  844 #define PRINT_REG(rax, value) \
  845   { tty->print("%s = ", #rax); os::print_location(tty, value); }
  846   PRINT_REG(rax, regs[15]);
  847   PRINT_REG(rbx, regs[12]);
  848   PRINT_REG(rcx, regs[14]);
  849   PRINT_REG(rdx, regs[13]);
  850   PRINT_REG(rdi, regs[8]);
  851   PRINT_REG(rsi, regs[9]);
  852   PRINT_REG(rbp, regs[10]);
  853   // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp
  854   PRINT_REG(rsp, (intptr_t)(&regs[16]));
  855   PRINT_REG(r8 , regs[7]);
  856   PRINT_REG(r9 , regs[6]);
  857   PRINT_REG(r10, regs[5]);
  858   PRINT_REG(r11, regs[4]);
  859   PRINT_REG(r12, regs[3]);
  860   PRINT_REG(r13, regs[2]);
  861   PRINT_REG(r14, regs[1]);
  862   PRINT_REG(r15, regs[0]);
  863 #undef PRINT_REG
  864   // Print some words near the top of the stack.
  865   int64_t* rsp = &regs[16];
  866   int64_t* dump_sp = rsp;
  867   for (int col1 = 0; col1 < 8; col1++) {
  868     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  869     os::print_location(tty, *dump_sp++);
  870   }
  871   for (int row = 0; row < 25; row++) {
  872     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  873     for (int col = 0; col < 4; col++) {
  874       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
  875     }
  876     tty->cr();
  877   }
  878   // Print some instructions around pc:
  879   Disassembler::decode((address)pc-64, (address)pc);
  880   tty->print_cr("--------");
  881   Disassembler::decode((address)pc, (address)pc+32);
  882 }
  883 
  884 // The java_calling_convention describes stack locations as ideal slots on
  885 // a frame with no abi restrictions. Since we must observe abi restrictions
  886 // (like the placement of the register window) the slots must be biased by
  887 // the following value.
  888 static int reg2offset_in(VMReg r) {
  889   // Account for saved rbp and return address
  890   // This should really be in_preserve_stack_slots
  891   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
  892 }
  893 
  894 static int reg2offset_out(VMReg r) {
  895   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
  896 }
  897 
  898 // A long move
  899 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  900 
  901   // The calling conventions assures us that each VMregpair is either
  902   // all really one physical register or adjacent stack slots.
  903 
  904   if (src.is_single_phys_reg() ) {
  905     if (dst.is_single_phys_reg()) {
  906       if (dst.first() != src.first()) {
  907         mov(dst.first()->as_Register(), src.first()->as_Register());
  908       }
  909     } else {
  910       assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)",
  911              src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name());
  912       movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register());
  913     }
  914   } else if (dst.is_single_phys_reg()) {
  915     assert(src.is_single_reg(),  "not a stack pair");
  916     movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  917   } else {
  918     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  919     movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  920     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  921   }
  922 }
  923 
  924 // A double move
  925 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  926 
  927   // The calling conventions assures us that each VMregpair is either
  928   // all really one physical register or adjacent stack slots.
  929 
  930   if (src.is_single_phys_reg() ) {
  931     if (dst.is_single_phys_reg()) {
  932       // In theory these overlap but the ordering is such that this is likely a nop
  933       if ( src.first() != dst.first()) {
  934         movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
  935       }
  936     } else {
  937       assert(dst.is_single_reg(), "not a stack pair");
  938       movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister());
  939     }
  940   } else if (dst.is_single_phys_reg()) {
  941     assert(src.is_single_reg(),  "not a stack pair");
  942     movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  943   } else {
  944     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  945     movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  946     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  947   }
  948 }
  949 
  950 
  951 // A float arg may have to do float reg int reg conversion
  952 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  953   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  954 
  955   // The calling conventions assures us that each VMregpair is either
  956   // all really one physical register or adjacent stack slots.
  957 
  958   if (src.first()->is_stack()) {
  959     if (dst.first()->is_stack()) {
  960       movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  961       movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  962     } else {
  963       // stack to reg
  964       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  965       movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  966     }
  967   } else if (dst.first()->is_stack()) {
  968     // reg to stack
  969     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  970     movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister());
  971   } else {
  972     // reg to reg
  973     // In theory these overlap but the ordering is such that this is likely a nop
  974     if ( src.first() != dst.first()) {
  975       movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
  976     }
  977   }
  978 }
  979 
  980 // On 64 bit we will store integer like items to the stack as
  981 // 64 bits items (x86_32/64 abi) even though java would only store
  982 // 32bits for a parameter. On 32bit it will simply be 32 bits
  983 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  984 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  985   if (src.first()->is_stack()) {
  986     if (dst.first()->is_stack()) {
  987       // stack to stack
  988       movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  989       movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  990     } else {
  991       // stack to reg
  992       movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  993     }
  994   } else if (dst.first()->is_stack()) {
  995     // reg to stack
  996     // Do we really have to sign extend???
  997     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
  998     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register());
  999   } else {
 1000     // Do we really have to sign extend???
 1001     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
 1002     if (dst.first() != src.first()) {
 1003       movq(dst.first()->as_Register(), src.first()->as_Register());
 1004     }
 1005   }
 1006 }
 1007 
 1008 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) {
 1009   if (src.first()->is_stack()) {
 1010     if (dst.first()->is_stack()) {
 1011       // stack to stack
 1012       movq(rax, Address(rbp, reg2offset_in(src.first())));
 1013       movq(Address(rsp, reg2offset_out(dst.first())), rax);
 1014     } else {
 1015       // stack to reg
 1016       movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
 1017     }
 1018   } else if (dst.first()->is_stack()) {
 1019     // reg to stack
 1020     movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 1021   } else {
 1022     if (dst.first() != src.first()) {
 1023       movq(dst.first()->as_Register(), src.first()->as_Register());
 1024     }
 1025   }
 1026 }
 1027 
 1028 // An oop arg. Must pass a handle not the oop itself
 1029 void MacroAssembler::object_move(OopMap* map,
 1030                         int oop_handle_offset,
 1031                         int framesize_in_slots,
 1032                         VMRegPair src,
 1033                         VMRegPair dst,
 1034                         bool is_receiver,
 1035                         int* receiver_offset) {
 1036 
 1037   // must pass a handle. First figure out the location we use as a handle
 1038 
 1039   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
 1040 
 1041   // See if oop is null if it is we need no handle
 1042 
 1043   if (src.first()->is_stack()) {
 1044 
 1045     // Oop is already on the stack as an argument
 1046     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 1047     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
 1048     if (is_receiver) {
 1049       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
 1050     }
 1051 
 1052     cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD);
 1053     lea(rHandle, Address(rbp, reg2offset_in(src.first())));
 1054     // conditionally move a null
 1055     cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
 1056   } else {
 1057 
 1058     // Oop is in a register we must store it to the space we reserve
 1059     // on the stack for oop_handles and pass a handle if oop is non-null
 1060 
 1061     const Register rOop = src.first()->as_Register();
 1062     int oop_slot;
 1063     if (rOop == j_rarg0)
 1064       oop_slot = 0;
 1065     else if (rOop == j_rarg1)
 1066       oop_slot = 1;
 1067     else if (rOop == j_rarg2)
 1068       oop_slot = 2;
 1069     else if (rOop == j_rarg3)
 1070       oop_slot = 3;
 1071     else if (rOop == j_rarg4)
 1072       oop_slot = 4;
 1073     else {
 1074       assert(rOop == j_rarg5, "wrong register");
 1075       oop_slot = 5;
 1076     }
 1077 
 1078     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
 1079     int offset = oop_slot*VMRegImpl::stack_slot_size;
 1080 
 1081     map->set_oop(VMRegImpl::stack2reg(oop_slot));
 1082     // Store oop in handle area, may be null
 1083     movptr(Address(rsp, offset), rOop);
 1084     if (is_receiver) {
 1085       *receiver_offset = offset;
 1086     }
 1087 
 1088     cmpptr(rOop, NULL_WORD);
 1089     lea(rHandle, Address(rsp, offset));
 1090     // conditionally move a null from the handle area where it was just stored
 1091     cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
 1092   }
 1093 
 1094   // If arg is on the stack then place it otherwise it is already in correct reg.
 1095   if (dst.first()->is_stack()) {
 1096     movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
 1097   }
 1098 }
 1099 
 1100 #endif // _LP64
 1101 
 1102 // Now versions that are common to 32/64 bit
 1103 
 1104 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 1105   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 1106 }
 1107 
 1108 void MacroAssembler::addptr(Register dst, Register src) {
 1109   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 1110 }
 1111 
 1112 void MacroAssembler::addptr(Address dst, Register src) {
 1113   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 1114 }
 1115 
 1116 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1117   assert(rscratch != noreg || always_reachable(src), "missing");
 1118 
 1119   if (reachable(src)) {
 1120     Assembler::addsd(dst, as_Address(src));
 1121   } else {
 1122     lea(rscratch, src);
 1123     Assembler::addsd(dst, Address(rscratch, 0));
 1124   }
 1125 }
 1126 
 1127 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1128   assert(rscratch != noreg || always_reachable(src), "missing");
 1129 
 1130   if (reachable(src)) {
 1131     addss(dst, as_Address(src));
 1132   } else {
 1133     lea(rscratch, src);
 1134     addss(dst, Address(rscratch, 0));
 1135   }
 1136 }
 1137 
 1138 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1139   assert(rscratch != noreg || always_reachable(src), "missing");
 1140 
 1141   if (reachable(src)) {
 1142     Assembler::addpd(dst, as_Address(src));
 1143   } else {
 1144     lea(rscratch, src);
 1145     Assembler::addpd(dst, Address(rscratch, 0));
 1146   }
 1147 }
 1148 
 1149 // See 8273459.  Function for ensuring 64-byte alignment, intended for stubs only.
 1150 // Stub code is generated once and never copied.
 1151 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes.
 1152 void MacroAssembler::align64() {
 1153   align(64, (uint)(uintptr_t)pc());
 1154 }
 1155 
 1156 void MacroAssembler::align32() {
 1157   align(32, (uint)(uintptr_t)pc());
 1158 }
 1159 
 1160 void MacroAssembler::align(uint modulus) {
 1161   // 8273459: Ensure alignment is possible with current segment alignment
 1162   assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment");
 1163   align(modulus, offset());
 1164 }
 1165 
 1166 void MacroAssembler::align(uint modulus, uint target) {
 1167   if (target % modulus != 0) {
 1168     nop(modulus - (target % modulus));
 1169   }
 1170 }
 1171 
 1172 void MacroAssembler::push_f(XMMRegister r) {
 1173   subptr(rsp, wordSize);
 1174   movflt(Address(rsp, 0), r);
 1175 }
 1176 
 1177 void MacroAssembler::pop_f(XMMRegister r) {
 1178   movflt(r, Address(rsp, 0));
 1179   addptr(rsp, wordSize);
 1180 }
 1181 
 1182 void MacroAssembler::push_d(XMMRegister r) {
 1183   subptr(rsp, 2 * wordSize);
 1184   movdbl(Address(rsp, 0), r);
 1185 }
 1186 
 1187 void MacroAssembler::pop_d(XMMRegister r) {
 1188   movdbl(r, Address(rsp, 0));
 1189   addptr(rsp, 2 * Interpreter::stackElementSize);
 1190 }
 1191 
 1192 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1193   // Used in sign-masking with aligned address.
 1194   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 1195   assert(rscratch != noreg || always_reachable(src), "missing");
 1196 
 1197   if (UseAVX > 2 &&
 1198       (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
 1199       (dst->encoding() >= 16)) {
 1200     vpand(dst, dst, src, AVX_512bit, rscratch);
 1201   } else if (reachable(src)) {
 1202     Assembler::andpd(dst, as_Address(src));
 1203   } else {
 1204     lea(rscratch, src);
 1205     Assembler::andpd(dst, Address(rscratch, 0));
 1206   }
 1207 }
 1208 
 1209 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1210   // Used in sign-masking with aligned address.
 1211   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 1212   assert(rscratch != noreg || always_reachable(src), "missing");
 1213 
 1214   if (reachable(src)) {
 1215     Assembler::andps(dst, as_Address(src));
 1216   } else {
 1217     lea(rscratch, src);
 1218     Assembler::andps(dst, Address(rscratch, 0));
 1219   }
 1220 }
 1221 
 1222 void MacroAssembler::andptr(Register dst, int32_t imm32) {
 1223   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
 1224 }
 1225 
 1226 #ifdef _LP64
 1227 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) {
 1228   assert(rscratch != noreg || always_reachable(src), "missing");
 1229 
 1230   if (reachable(src)) {
 1231     andq(dst, as_Address(src));
 1232   } else {
 1233     lea(rscratch, src);
 1234     andq(dst, Address(rscratch, 0));
 1235   }
 1236 }
 1237 #endif
 1238 
 1239 void MacroAssembler::atomic_incl(Address counter_addr) {
 1240   lock();
 1241   incrementl(counter_addr);
 1242 }
 1243 
 1244 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) {
 1245   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1246 
 1247   if (reachable(counter_addr)) {
 1248     atomic_incl(as_Address(counter_addr));
 1249   } else {
 1250     lea(rscratch, counter_addr);
 1251     atomic_incl(Address(rscratch, 0));
 1252   }
 1253 }
 1254 
 1255 #ifdef _LP64
 1256 void MacroAssembler::atomic_incq(Address counter_addr) {
 1257   lock();
 1258   incrementq(counter_addr);
 1259 }
 1260 
 1261 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) {
 1262   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1263 
 1264   if (reachable(counter_addr)) {
 1265     atomic_incq(as_Address(counter_addr));
 1266   } else {
 1267     lea(rscratch, counter_addr);
 1268     atomic_incq(Address(rscratch, 0));
 1269   }
 1270 }
 1271 #endif
 1272 
 1273 // Writes to stack successive pages until offset reached to check for
 1274 // stack overflow + shadow pages.  This clobbers tmp.
 1275 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
 1276   movptr(tmp, rsp);
 1277   // Bang stack for total size given plus shadow page size.
 1278   // Bang one page at a time because large size can bang beyond yellow and
 1279   // red zones.
 1280   Label loop;
 1281   bind(loop);
 1282   movl(Address(tmp, (-(int)os::vm_page_size())), size );
 1283   subptr(tmp, (int)os::vm_page_size());
 1284   subl(size, (int)os::vm_page_size());
 1285   jcc(Assembler::greater, loop);
 1286 
 1287   // Bang down shadow pages too.
 1288   // At this point, (tmp-0) is the last address touched, so don't
 1289   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
 1290   // was post-decremented.)  Skip this address by starting at i=1, and
 1291   // touch a few more pages below.  N.B.  It is important to touch all
 1292   // the way down including all pages in the shadow zone.
 1293   for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) {
 1294     // this could be any sized move but this is can be a debugging crumb
 1295     // so the bigger the better.
 1296     movptr(Address(tmp, (-i*(int)os::vm_page_size())), size );
 1297   }
 1298 }
 1299 
 1300 void MacroAssembler::reserved_stack_check() {
 1301   // testing if reserved zone needs to be enabled
 1302   Label no_reserved_zone_enabling;
 1303   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 1304   NOT_LP64(get_thread(rsi);)
 1305 
 1306   cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
 1307   jcc(Assembler::below, no_reserved_zone_enabling);
 1308 
 1309   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
 1310   jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry()));
 1311   should_not_reach_here();
 1312 
 1313   bind(no_reserved_zone_enabling);
 1314 }
 1315 
 1316 void MacroAssembler::c2bool(Register x) {
 1317   // implements x == 0 ? 0 : 1
 1318   // note: must only look at least-significant byte of x
 1319   //       since C-style booleans are stored in one byte
 1320   //       only! (was bug)
 1321   andl(x, 0xFF);
 1322   setb(Assembler::notZero, x);
 1323 }
 1324 
 1325 // Wouldn't need if AddressLiteral version had new name
 1326 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
 1327   Assembler::call(L, rtype);
 1328 }
 1329 
 1330 void MacroAssembler::call(Register entry) {
 1331   Assembler::call(entry);
 1332 }
 1333 
 1334 void MacroAssembler::call(AddressLiteral entry, Register rscratch) {
 1335   assert(rscratch != noreg || always_reachable(entry), "missing");
 1336 
 1337   if (reachable(entry)) {
 1338     Assembler::call_literal(entry.target(), entry.rspec());
 1339   } else {
 1340     lea(rscratch, entry);
 1341     Assembler::call(rscratch);
 1342   }
 1343 }
 1344 
 1345 void MacroAssembler::ic_call(address entry, jint method_index) {
 1346   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
 1347 #ifdef _LP64
 1348   // Needs full 64-bit immediate for later patching.
 1349   mov64(rax, (int64_t)Universe::non_oop_word());
 1350 #else
 1351   movptr(rax, (intptr_t)Universe::non_oop_word());
 1352 #endif
 1353   call(AddressLiteral(entry, rh));
 1354 }
 1355 
 1356 int MacroAssembler::ic_check_size() {
 1357   return
 1358       LP64_ONLY(UseCompactObjectHeaders ? 17 : 14) NOT_LP64(12);
 1359 }
 1360 
 1361 int MacroAssembler::ic_check(int end_alignment) {
 1362   Register receiver = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
 1363   Register data = rax;
 1364   Register temp = LP64_ONLY(rscratch1) NOT_LP64(rbx);
 1365 
 1366   // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed
 1367   // before the inline cache check, so we don't have to execute any nop instructions when dispatching
 1368   // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align
 1369   // before the inline cache check here, and not after
 1370   align(end_alignment, offset() + ic_check_size());
 1371 
 1372   int uep_offset = offset();
 1373 
 1374 #ifdef _LP64
 1375   if (UseCompactObjectHeaders) {
 1376     load_narrow_klass_compact(temp, receiver);
 1377     cmpl(temp, Address(data, CompiledICData::speculated_klass_offset()));
 1378   } else
 1379 #endif
 1380   if (UseCompressedClassPointers) {
 1381     movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 1382     cmpl(temp, Address(data, CompiledICData::speculated_klass_offset()));
 1383   } else {
 1384     movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 1385     cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset()));
 1386   }
 1387 
 1388   // if inline cache check fails, then jump to runtime routine
 1389   jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 1390   assert((offset() % end_alignment) == 0, "Misaligned verified entry point (%d, %d, %d)", uep_offset, offset(), end_alignment);
 1391 
 1392   return uep_offset;
 1393 }
 1394 
 1395 void MacroAssembler::emit_static_call_stub() {
 1396   // Static stub relocation also tags the Method* in the code-stream.
 1397   mov_metadata(rbx, (Metadata*) nullptr);  // Method is zapped till fixup time.
 1398   // This is recognized as unresolved by relocs/nativeinst/ic code.
 1399   jump(RuntimeAddress(pc()));
 1400 }
 1401 
 1402 // Implementation of call_VM versions
 1403 
 1404 void MacroAssembler::call_VM(Register oop_result,
 1405                              address entry_point,
 1406                              bool check_exceptions) {
 1407   Label C, E;
 1408   call(C, relocInfo::none);
 1409   jmp(E);
 1410 
 1411   bind(C);
 1412   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
 1413   ret(0);
 1414 
 1415   bind(E);
 1416 }
 1417 
 1418 void MacroAssembler::call_VM(Register oop_result,
 1419                              address entry_point,
 1420                              Register arg_1,
 1421                              bool check_exceptions) {
 1422   Label C, E;
 1423   call(C, relocInfo::none);
 1424   jmp(E);
 1425 
 1426   bind(C);
 1427   pass_arg1(this, arg_1);
 1428   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
 1429   ret(0);
 1430 
 1431   bind(E);
 1432 }
 1433 
 1434 void MacroAssembler::call_VM(Register oop_result,
 1435                              address entry_point,
 1436                              Register arg_1,
 1437                              Register arg_2,
 1438                              bool check_exceptions) {
 1439   Label C, E;
 1440   call(C, relocInfo::none);
 1441   jmp(E);
 1442 
 1443   bind(C);
 1444 
 1445   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1446 
 1447   pass_arg2(this, arg_2);
 1448   pass_arg1(this, arg_1);
 1449   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
 1450   ret(0);
 1451 
 1452   bind(E);
 1453 }
 1454 
 1455 void MacroAssembler::call_VM(Register oop_result,
 1456                              address entry_point,
 1457                              Register arg_1,
 1458                              Register arg_2,
 1459                              Register arg_3,
 1460                              bool check_exceptions) {
 1461   Label C, E;
 1462   call(C, relocInfo::none);
 1463   jmp(E);
 1464 
 1465   bind(C);
 1466 
 1467   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1468   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1469   pass_arg3(this, arg_3);
 1470   pass_arg2(this, arg_2);
 1471   pass_arg1(this, arg_1);
 1472   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
 1473   ret(0);
 1474 
 1475   bind(E);
 1476 }
 1477 
 1478 void MacroAssembler::call_VM(Register oop_result,
 1479                              Register last_java_sp,
 1480                              address entry_point,
 1481                              int number_of_arguments,
 1482                              bool check_exceptions) {
 1483   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
 1484   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 1485 }
 1486 
 1487 void MacroAssembler::call_VM(Register oop_result,
 1488                              Register last_java_sp,
 1489                              address entry_point,
 1490                              Register arg_1,
 1491                              bool check_exceptions) {
 1492   pass_arg1(this, arg_1);
 1493   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 1494 }
 1495 
 1496 void MacroAssembler::call_VM(Register oop_result,
 1497                              Register last_java_sp,
 1498                              address entry_point,
 1499                              Register arg_1,
 1500                              Register arg_2,
 1501                              bool check_exceptions) {
 1502 
 1503   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1504   pass_arg2(this, arg_2);
 1505   pass_arg1(this, arg_1);
 1506   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 1507 }
 1508 
 1509 void MacroAssembler::call_VM(Register oop_result,
 1510                              Register last_java_sp,
 1511                              address entry_point,
 1512                              Register arg_1,
 1513                              Register arg_2,
 1514                              Register arg_3,
 1515                              bool check_exceptions) {
 1516   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1517   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1518   pass_arg3(this, arg_3);
 1519   pass_arg2(this, arg_2);
 1520   pass_arg1(this, arg_1);
 1521   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 1522 }
 1523 
 1524 void MacroAssembler::super_call_VM(Register oop_result,
 1525                                    Register last_java_sp,
 1526                                    address entry_point,
 1527                                    int number_of_arguments,
 1528                                    bool check_exceptions) {
 1529   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
 1530   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 1531 }
 1532 
 1533 void MacroAssembler::super_call_VM(Register oop_result,
 1534                                    Register last_java_sp,
 1535                                    address entry_point,
 1536                                    Register arg_1,
 1537                                    bool check_exceptions) {
 1538   pass_arg1(this, arg_1);
 1539   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 1540 }
 1541 
 1542 void MacroAssembler::super_call_VM(Register oop_result,
 1543                                    Register last_java_sp,
 1544                                    address entry_point,
 1545                                    Register arg_1,
 1546                                    Register arg_2,
 1547                                    bool check_exceptions) {
 1548 
 1549   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1550   pass_arg2(this, arg_2);
 1551   pass_arg1(this, arg_1);
 1552   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 1553 }
 1554 
 1555 void MacroAssembler::super_call_VM(Register oop_result,
 1556                                    Register last_java_sp,
 1557                                    address entry_point,
 1558                                    Register arg_1,
 1559                                    Register arg_2,
 1560                                    Register arg_3,
 1561                                    bool check_exceptions) {
 1562   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1563   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1564   pass_arg3(this, arg_3);
 1565   pass_arg2(this, arg_2);
 1566   pass_arg1(this, arg_1);
 1567   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 1568 }
 1569 
 1570 void MacroAssembler::call_VM_base(Register oop_result,
 1571                                   Register java_thread,
 1572                                   Register last_java_sp,
 1573                                   address  entry_point,
 1574                                   int      number_of_arguments,
 1575                                   bool     check_exceptions) {
 1576   // determine java_thread register
 1577   if (!java_thread->is_valid()) {
 1578 #ifdef _LP64
 1579     java_thread = r15_thread;
 1580 #else
 1581     java_thread = rdi;
 1582     get_thread(java_thread);
 1583 #endif // LP64
 1584   }
 1585   // determine last_java_sp register
 1586   if (!last_java_sp->is_valid()) {
 1587     last_java_sp = rsp;
 1588   }
 1589   // debugging support
 1590   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
 1591   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
 1592 #ifdef ASSERT
 1593   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
 1594   // r12 is the heapbase.
 1595   LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
 1596 #endif // ASSERT
 1597 
 1598   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
 1599   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
 1600 
 1601   // push java thread (becomes first argument of C function)
 1602 
 1603   NOT_LP64(push(java_thread); number_of_arguments++);
 1604   LP64_ONLY(mov(c_rarg0, r15_thread));
 1605 
 1606   // set last Java frame before call
 1607   assert(last_java_sp != rbp, "can't use ebp/rbp");
 1608 
 1609   // Only interpreter should have to set fp
 1610   set_last_Java_frame(java_thread, last_java_sp, rbp, nullptr, rscratch1);
 1611 
 1612   // do the call, remove parameters
 1613   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 1614 
 1615   // restore the thread (cannot use the pushed argument since arguments
 1616   // may be overwritten by C code generated by an optimizing compiler);
 1617   // however can use the register value directly if it is callee saved.
 1618   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
 1619     // rdi & rsi (also r15) are callee saved -> nothing to do
 1620 #ifdef ASSERT
 1621     guarantee(java_thread != rax, "change this code");
 1622     push(rax);
 1623     { Label L;
 1624       get_thread(rax);
 1625       cmpptr(java_thread, rax);
 1626       jcc(Assembler::equal, L);
 1627       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
 1628       bind(L);
 1629     }
 1630     pop(rax);
 1631 #endif
 1632   } else {
 1633     get_thread(java_thread);
 1634   }
 1635   // reset last Java frame
 1636   // Only interpreter should have to clear fp
 1637   reset_last_Java_frame(java_thread, true);
 1638 
 1639    // C++ interp handles this in the interpreter
 1640   check_and_handle_popframe(java_thread);
 1641   check_and_handle_earlyret(java_thread);
 1642 
 1643   if (check_exceptions) {
 1644     // check for pending exceptions (java_thread is set upon return)
 1645     cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
 1646 #ifndef _LP64
 1647     jump_cc(Assembler::notEqual,
 1648             RuntimeAddress(StubRoutines::forward_exception_entry()));
 1649 #else
 1650     // This used to conditionally jump to forward_exception however it is
 1651     // possible if we relocate that the branch will not reach. So we must jump
 1652     // around so we can always reach
 1653 
 1654     Label ok;
 1655     jcc(Assembler::equal, ok);
 1656     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 1657     bind(ok);
 1658 #endif // LP64
 1659   }
 1660 
 1661   // get oop result if there is one and reset the value in the thread
 1662   if (oop_result->is_valid()) {
 1663     get_vm_result(oop_result, java_thread);
 1664   }
 1665 }
 1666 
 1667 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
 1668 
 1669   // Calculate the value for last_Java_sp
 1670   // somewhat subtle. call_VM does an intermediate call
 1671   // which places a return address on the stack just under the
 1672   // stack pointer as the user finished with it. This allows
 1673   // use to retrieve last_Java_pc from last_Java_sp[-1].
 1674   // On 32bit we then have to push additional args on the stack to accomplish
 1675   // the actual requested call. On 64bit call_VM only can use register args
 1676   // so the only extra space is the return address that call_VM created.
 1677   // This hopefully explains the calculations here.
 1678 
 1679 #ifdef _LP64
 1680   // We've pushed one address, correct last_Java_sp
 1681   lea(rax, Address(rsp, wordSize));
 1682 #else
 1683   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
 1684 #endif // LP64
 1685 
 1686   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
 1687 
 1688 }
 1689 
 1690 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
 1691 void MacroAssembler::call_VM_leaf0(address entry_point) {
 1692   MacroAssembler::call_VM_leaf_base(entry_point, 0);
 1693 }
 1694 
 1695 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
 1696   call_VM_leaf_base(entry_point, number_of_arguments);
 1697 }
 1698 
 1699 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
 1700   pass_arg0(this, arg_0);
 1701   call_VM_leaf(entry_point, 1);
 1702 }
 1703 
 1704 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
 1705 
 1706   LP64_ONLY(assert_different_registers(arg_0, c_rarg1));
 1707   pass_arg1(this, arg_1);
 1708   pass_arg0(this, arg_0);
 1709   call_VM_leaf(entry_point, 2);
 1710 }
 1711 
 1712 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
 1713   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2));
 1714   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1715   pass_arg2(this, arg_2);
 1716   pass_arg1(this, arg_1);
 1717   pass_arg0(this, arg_0);
 1718   call_VM_leaf(entry_point, 3);
 1719 }
 1720 
 1721 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
 1722   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3));
 1723   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1724   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1725   pass_arg3(this, arg_3);
 1726   pass_arg2(this, arg_2);
 1727   pass_arg1(this, arg_1);
 1728   pass_arg0(this, arg_0);
 1729   call_VM_leaf(entry_point, 3);
 1730 }
 1731 
 1732 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
 1733   pass_arg0(this, arg_0);
 1734   MacroAssembler::call_VM_leaf_base(entry_point, 1);
 1735 }
 1736 
 1737 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
 1738   LP64_ONLY(assert_different_registers(arg_0, c_rarg1));
 1739   pass_arg1(this, arg_1);
 1740   pass_arg0(this, arg_0);
 1741   MacroAssembler::call_VM_leaf_base(entry_point, 2);
 1742 }
 1743 
 1744 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
 1745   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2));
 1746   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1747   pass_arg2(this, arg_2);
 1748   pass_arg1(this, arg_1);
 1749   pass_arg0(this, arg_0);
 1750   MacroAssembler::call_VM_leaf_base(entry_point, 3);
 1751 }
 1752 
 1753 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
 1754   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3));
 1755   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1756   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1757   pass_arg3(this, arg_3);
 1758   pass_arg2(this, arg_2);
 1759   pass_arg1(this, arg_1);
 1760   pass_arg0(this, arg_0);
 1761   MacroAssembler::call_VM_leaf_base(entry_point, 4);
 1762 }
 1763 
 1764 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
 1765   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
 1766   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
 1767   verify_oop_msg(oop_result, "broken oop in call_VM_base");
 1768 }
 1769 
 1770 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
 1771   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
 1772   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 1773 }
 1774 
 1775 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
 1776 }
 1777 
 1778 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
 1779 }
 1780 
 1781 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) {
 1782   assert(rscratch != noreg || always_reachable(src1), "missing");
 1783 
 1784   if (reachable(src1)) {
 1785     cmpl(as_Address(src1), imm);
 1786   } else {
 1787     lea(rscratch, src1);
 1788     cmpl(Address(rscratch, 0), imm);
 1789   }
 1790 }
 1791 
 1792 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) {
 1793   assert(!src2.is_lval(), "use cmpptr");
 1794   assert(rscratch != noreg || always_reachable(src2), "missing");
 1795 
 1796   if (reachable(src2)) {
 1797     cmpl(src1, as_Address(src2));
 1798   } else {
 1799     lea(rscratch, src2);
 1800     cmpl(src1, Address(rscratch, 0));
 1801   }
 1802 }
 1803 
 1804 void MacroAssembler::cmp32(Register src1, int32_t imm) {
 1805   Assembler::cmpl(src1, imm);
 1806 }
 1807 
 1808 void MacroAssembler::cmp32(Register src1, Address src2) {
 1809   Assembler::cmpl(src1, src2);
 1810 }
 1811 
 1812 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
 1813   ucomisd(opr1, opr2);
 1814 
 1815   Label L;
 1816   if (unordered_is_less) {
 1817     movl(dst, -1);
 1818     jcc(Assembler::parity, L);
 1819     jcc(Assembler::below , L);
 1820     movl(dst, 0);
 1821     jcc(Assembler::equal , L);
 1822     increment(dst);
 1823   } else { // unordered is greater
 1824     movl(dst, 1);
 1825     jcc(Assembler::parity, L);
 1826     jcc(Assembler::above , L);
 1827     movl(dst, 0);
 1828     jcc(Assembler::equal , L);
 1829     decrementl(dst);
 1830   }
 1831   bind(L);
 1832 }
 1833 
 1834 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
 1835   ucomiss(opr1, opr2);
 1836 
 1837   Label L;
 1838   if (unordered_is_less) {
 1839     movl(dst, -1);
 1840     jcc(Assembler::parity, L);
 1841     jcc(Assembler::below , L);
 1842     movl(dst, 0);
 1843     jcc(Assembler::equal , L);
 1844     increment(dst);
 1845   } else { // unordered is greater
 1846     movl(dst, 1);
 1847     jcc(Assembler::parity, L);
 1848     jcc(Assembler::above , L);
 1849     movl(dst, 0);
 1850     jcc(Assembler::equal , L);
 1851     decrementl(dst);
 1852   }
 1853   bind(L);
 1854 }
 1855 
 1856 
 1857 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) {
 1858   assert(rscratch != noreg || always_reachable(src1), "missing");
 1859 
 1860   if (reachable(src1)) {
 1861     cmpb(as_Address(src1), imm);
 1862   } else {
 1863     lea(rscratch, src1);
 1864     cmpb(Address(rscratch, 0), imm);
 1865   }
 1866 }
 1867 
 1868 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) {
 1869 #ifdef _LP64
 1870   assert(rscratch != noreg || always_reachable(src2), "missing");
 1871 
 1872   if (src2.is_lval()) {
 1873     movptr(rscratch, src2);
 1874     Assembler::cmpq(src1, rscratch);
 1875   } else if (reachable(src2)) {
 1876     cmpq(src1, as_Address(src2));
 1877   } else {
 1878     lea(rscratch, src2);
 1879     Assembler::cmpq(src1, Address(rscratch, 0));
 1880   }
 1881 #else
 1882   assert(rscratch == noreg, "not needed");
 1883   if (src2.is_lval()) {
 1884     cmp_literal32(src1, (int32_t)src2.target(), src2.rspec());
 1885   } else {
 1886     cmpl(src1, as_Address(src2));
 1887   }
 1888 #endif // _LP64
 1889 }
 1890 
 1891 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) {
 1892   assert(src2.is_lval(), "not a mem-mem compare");
 1893 #ifdef _LP64
 1894   // moves src2's literal address
 1895   movptr(rscratch, src2);
 1896   Assembler::cmpq(src1, rscratch);
 1897 #else
 1898   assert(rscratch == noreg, "not needed");
 1899   cmp_literal32(src1, (int32_t)src2.target(), src2.rspec());
 1900 #endif // _LP64
 1901 }
 1902 
 1903 void MacroAssembler::cmpoop(Register src1, Register src2) {
 1904   cmpptr(src1, src2);
 1905 }
 1906 
 1907 void MacroAssembler::cmpoop(Register src1, Address src2) {
 1908   cmpptr(src1, src2);
 1909 }
 1910 
 1911 #ifdef _LP64
 1912 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) {
 1913   movoop(rscratch, src2);
 1914   cmpptr(src1, rscratch);
 1915 }
 1916 #endif
 1917 
 1918 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) {
 1919   assert(rscratch != noreg || always_reachable(adr), "missing");
 1920 
 1921   if (reachable(adr)) {
 1922     lock();
 1923     cmpxchgptr(reg, as_Address(adr));
 1924   } else {
 1925     lea(rscratch, adr);
 1926     lock();
 1927     cmpxchgptr(reg, Address(rscratch, 0));
 1928   }
 1929 }
 1930 
 1931 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
 1932   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
 1933 }
 1934 
 1935 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1936   assert(rscratch != noreg || always_reachable(src), "missing");
 1937 
 1938   if (reachable(src)) {
 1939     Assembler::comisd(dst, as_Address(src));
 1940   } else {
 1941     lea(rscratch, src);
 1942     Assembler::comisd(dst, Address(rscratch, 0));
 1943   }
 1944 }
 1945 
 1946 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1947   assert(rscratch != noreg || always_reachable(src), "missing");
 1948 
 1949   if (reachable(src)) {
 1950     Assembler::comiss(dst, as_Address(src));
 1951   } else {
 1952     lea(rscratch, src);
 1953     Assembler::comiss(dst, Address(rscratch, 0));
 1954   }
 1955 }
 1956 
 1957 
 1958 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) {
 1959   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1960 
 1961   Condition negated_cond = negate_condition(cond);
 1962   Label L;
 1963   jcc(negated_cond, L);
 1964   pushf(); // Preserve flags
 1965   atomic_incl(counter_addr, rscratch);
 1966   popf();
 1967   bind(L);
 1968 }
 1969 
 1970 int MacroAssembler::corrected_idivl(Register reg) {
 1971   // Full implementation of Java idiv and irem; checks for
 1972   // special case as described in JVM spec., p.243 & p.271.
 1973   // The function returns the (pc) offset of the idivl
 1974   // instruction - may be needed for implicit exceptions.
 1975   //
 1976   //         normal case                           special case
 1977   //
 1978   // input : rax,: dividend                         min_int
 1979   //         reg: divisor   (may not be rax,/rdx)   -1
 1980   //
 1981   // output: rax,: quotient  (= rax, idiv reg)       min_int
 1982   //         rdx: remainder (= rax, irem reg)       0
 1983   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
 1984   const int min_int = 0x80000000;
 1985   Label normal_case, special_case;
 1986 
 1987   // check for special case
 1988   cmpl(rax, min_int);
 1989   jcc(Assembler::notEqual, normal_case);
 1990   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
 1991   cmpl(reg, -1);
 1992   jcc(Assembler::equal, special_case);
 1993 
 1994   // handle normal case
 1995   bind(normal_case);
 1996   cdql();
 1997   int idivl_offset = offset();
 1998   idivl(reg);
 1999 
 2000   // normal and special case exit
 2001   bind(special_case);
 2002 
 2003   return idivl_offset;
 2004 }
 2005 
 2006 
 2007 
 2008 void MacroAssembler::decrementl(Register reg, int value) {
 2009   if (value == min_jint) {subl(reg, value) ; return; }
 2010   if (value <  0) { incrementl(reg, -value); return; }
 2011   if (value == 0) {                        ; return; }
 2012   if (value == 1 && UseIncDec) { decl(reg) ; return; }
 2013   /* else */      { subl(reg, value)       ; return; }
 2014 }
 2015 
 2016 void MacroAssembler::decrementl(Address dst, int value) {
 2017   if (value == min_jint) {subl(dst, value) ; return; }
 2018   if (value <  0) { incrementl(dst, -value); return; }
 2019   if (value == 0) {                        ; return; }
 2020   if (value == 1 && UseIncDec) { decl(dst) ; return; }
 2021   /* else */      { subl(dst, value)       ; return; }
 2022 }
 2023 
 2024 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
 2025   assert(shift_value > 0, "illegal shift value");
 2026   Label _is_positive;
 2027   testl (reg, reg);
 2028   jcc (Assembler::positive, _is_positive);
 2029   int offset = (1 << shift_value) - 1 ;
 2030 
 2031   if (offset == 1) {
 2032     incrementl(reg);
 2033   } else {
 2034     addl(reg, offset);
 2035   }
 2036 
 2037   bind (_is_positive);
 2038   sarl(reg, shift_value);
 2039 }
 2040 
 2041 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2042   assert(rscratch != noreg || always_reachable(src), "missing");
 2043 
 2044   if (reachable(src)) {
 2045     Assembler::divsd(dst, as_Address(src));
 2046   } else {
 2047     lea(rscratch, src);
 2048     Assembler::divsd(dst, Address(rscratch, 0));
 2049   }
 2050 }
 2051 
 2052 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2053   assert(rscratch != noreg || always_reachable(src), "missing");
 2054 
 2055   if (reachable(src)) {
 2056     Assembler::divss(dst, as_Address(src));
 2057   } else {
 2058     lea(rscratch, src);
 2059     Assembler::divss(dst, Address(rscratch, 0));
 2060   }
 2061 }
 2062 
 2063 void MacroAssembler::enter() {
 2064   push(rbp);
 2065   mov(rbp, rsp);
 2066 }
 2067 
 2068 void MacroAssembler::post_call_nop() {
 2069   if (!Continuations::enabled()) {
 2070     return;
 2071   }
 2072   InstructionMark im(this);
 2073   relocate(post_call_nop_Relocation::spec());
 2074   InlineSkippedInstructionsCounter skipCounter(this);
 2075   emit_int8((uint8_t)0x0f);
 2076   emit_int8((uint8_t)0x1f);
 2077   emit_int8((uint8_t)0x84);
 2078   emit_int8((uint8_t)0x00);
 2079   emit_int32(0x00);
 2080 }
 2081 
 2082 // A 5 byte nop that is safe for patching (see patch_verified_entry)
 2083 void MacroAssembler::fat_nop() {
 2084   if (UseAddressNop) {
 2085     addr_nop_5();
 2086   } else {
 2087     emit_int8((uint8_t)0x26); // es:
 2088     emit_int8((uint8_t)0x2e); // cs:
 2089     emit_int8((uint8_t)0x64); // fs:
 2090     emit_int8((uint8_t)0x65); // gs:
 2091     emit_int8((uint8_t)0x90);
 2092   }
 2093 }
 2094 
 2095 #ifndef _LP64
 2096 void MacroAssembler::fcmp(Register tmp) {
 2097   fcmp(tmp, 1, true, true);
 2098 }
 2099 
 2100 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
 2101   assert(!pop_right || pop_left, "usage error");
 2102   if (VM_Version::supports_cmov()) {
 2103     assert(tmp == noreg, "unneeded temp");
 2104     if (pop_left) {
 2105       fucomip(index);
 2106     } else {
 2107       fucomi(index);
 2108     }
 2109     if (pop_right) {
 2110       fpop();
 2111     }
 2112   } else {
 2113     assert(tmp != noreg, "need temp");
 2114     if (pop_left) {
 2115       if (pop_right) {
 2116         fcompp();
 2117       } else {
 2118         fcomp(index);
 2119       }
 2120     } else {
 2121       fcom(index);
 2122     }
 2123     // convert FPU condition into eflags condition via rax,
 2124     save_rax(tmp);
 2125     fwait(); fnstsw_ax();
 2126     sahf();
 2127     restore_rax(tmp);
 2128   }
 2129   // condition codes set as follows:
 2130   //
 2131   // CF (corresponds to C0) if x < y
 2132   // PF (corresponds to C2) if unordered
 2133   // ZF (corresponds to C3) if x = y
 2134 }
 2135 
 2136 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
 2137   fcmp2int(dst, unordered_is_less, 1, true, true);
 2138 }
 2139 
 2140 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
 2141   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
 2142   Label L;
 2143   if (unordered_is_less) {
 2144     movl(dst, -1);
 2145     jcc(Assembler::parity, L);
 2146     jcc(Assembler::below , L);
 2147     movl(dst, 0);
 2148     jcc(Assembler::equal , L);
 2149     increment(dst);
 2150   } else { // unordered is greater
 2151     movl(dst, 1);
 2152     jcc(Assembler::parity, L);
 2153     jcc(Assembler::above , L);
 2154     movl(dst, 0);
 2155     jcc(Assembler::equal , L);
 2156     decrementl(dst);
 2157   }
 2158   bind(L);
 2159 }
 2160 
 2161 void MacroAssembler::fld_d(AddressLiteral src) {
 2162   fld_d(as_Address(src));
 2163 }
 2164 
 2165 void MacroAssembler::fld_s(AddressLiteral src) {
 2166   fld_s(as_Address(src));
 2167 }
 2168 
 2169 void MacroAssembler::fldcw(AddressLiteral src) {
 2170   fldcw(as_Address(src));
 2171 }
 2172 
 2173 void MacroAssembler::fpop() {
 2174   ffree();
 2175   fincstp();
 2176 }
 2177 
 2178 void MacroAssembler::fremr(Register tmp) {
 2179   save_rax(tmp);
 2180   { Label L;
 2181     bind(L);
 2182     fprem();
 2183     fwait(); fnstsw_ax();
 2184     sahf();
 2185     jcc(Assembler::parity, L);
 2186   }
 2187   restore_rax(tmp);
 2188   // Result is in ST0.
 2189   // Note: fxch & fpop to get rid of ST1
 2190   // (otherwise FPU stack could overflow eventually)
 2191   fxch(1);
 2192   fpop();
 2193 }
 2194 
 2195 void MacroAssembler::empty_FPU_stack() {
 2196   if (VM_Version::supports_mmx()) {
 2197     emms();
 2198   } else {
 2199     for (int i = 8; i-- > 0; ) ffree(i);
 2200   }
 2201 }
 2202 #endif // !LP64
 2203 
 2204 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2205   assert(rscratch != noreg || always_reachable(src), "missing");
 2206   if (reachable(src)) {
 2207     Assembler::mulpd(dst, as_Address(src));
 2208   } else {
 2209     lea(rscratch, src);
 2210     Assembler::mulpd(dst, Address(rscratch, 0));
 2211   }
 2212 }
 2213 
 2214 void MacroAssembler::load_float(Address src) {
 2215 #ifdef _LP64
 2216   movflt(xmm0, src);
 2217 #else
 2218   if (UseSSE >= 1) {
 2219     movflt(xmm0, src);
 2220   } else {
 2221     fld_s(src);
 2222   }
 2223 #endif // LP64
 2224 }
 2225 
 2226 void MacroAssembler::store_float(Address dst) {
 2227 #ifdef _LP64
 2228   movflt(dst, xmm0);
 2229 #else
 2230   if (UseSSE >= 1) {
 2231     movflt(dst, xmm0);
 2232   } else {
 2233     fstp_s(dst);
 2234   }
 2235 #endif // LP64
 2236 }
 2237 
 2238 void MacroAssembler::load_double(Address src) {
 2239 #ifdef _LP64
 2240   movdbl(xmm0, src);
 2241 #else
 2242   if (UseSSE >= 2) {
 2243     movdbl(xmm0, src);
 2244   } else {
 2245     fld_d(src);
 2246   }
 2247 #endif // LP64
 2248 }
 2249 
 2250 void MacroAssembler::store_double(Address dst) {
 2251 #ifdef _LP64
 2252   movdbl(dst, xmm0);
 2253 #else
 2254   if (UseSSE >= 2) {
 2255     movdbl(dst, xmm0);
 2256   } else {
 2257     fstp_d(dst);
 2258   }
 2259 #endif // LP64
 2260 }
 2261 
 2262 // dst = c = a * b + c
 2263 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
 2264   Assembler::vfmadd231sd(c, a, b);
 2265   if (dst != c) {
 2266     movdbl(dst, c);
 2267   }
 2268 }
 2269 
 2270 // dst = c = a * b + c
 2271 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
 2272   Assembler::vfmadd231ss(c, a, b);
 2273   if (dst != c) {
 2274     movflt(dst, c);
 2275   }
 2276 }
 2277 
 2278 // dst = c = a * b + c
 2279 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
 2280   Assembler::vfmadd231pd(c, a, b, vector_len);
 2281   if (dst != c) {
 2282     vmovdqu(dst, c);
 2283   }
 2284 }
 2285 
 2286 // dst = c = a * b + c
 2287 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
 2288   Assembler::vfmadd231ps(c, a, b, vector_len);
 2289   if (dst != c) {
 2290     vmovdqu(dst, c);
 2291   }
 2292 }
 2293 
 2294 // dst = c = a * b + c
 2295 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
 2296   Assembler::vfmadd231pd(c, a, b, vector_len);
 2297   if (dst != c) {
 2298     vmovdqu(dst, c);
 2299   }
 2300 }
 2301 
 2302 // dst = c = a * b + c
 2303 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
 2304   Assembler::vfmadd231ps(c, a, b, vector_len);
 2305   if (dst != c) {
 2306     vmovdqu(dst, c);
 2307   }
 2308 }
 2309 
 2310 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) {
 2311   assert(rscratch != noreg || always_reachable(dst), "missing");
 2312 
 2313   if (reachable(dst)) {
 2314     incrementl(as_Address(dst));
 2315   } else {
 2316     lea(rscratch, dst);
 2317     incrementl(Address(rscratch, 0));
 2318   }
 2319 }
 2320 
 2321 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) {
 2322   incrementl(as_Address(dst, rscratch));
 2323 }
 2324 
 2325 void MacroAssembler::incrementl(Register reg, int value) {
 2326   if (value == min_jint) {addl(reg, value) ; return; }
 2327   if (value <  0) { decrementl(reg, -value); return; }
 2328   if (value == 0) {                        ; return; }
 2329   if (value == 1 && UseIncDec) { incl(reg) ; return; }
 2330   /* else */      { addl(reg, value)       ; return; }
 2331 }
 2332 
 2333 void MacroAssembler::incrementl(Address dst, int value) {
 2334   if (value == min_jint) {addl(dst, value) ; return; }
 2335   if (value <  0) { decrementl(dst, -value); return; }
 2336   if (value == 0) {                        ; return; }
 2337   if (value == 1 && UseIncDec) { incl(dst) ; return; }
 2338   /* else */      { addl(dst, value)       ; return; }
 2339 }
 2340 
 2341 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) {
 2342   assert(rscratch != noreg || always_reachable(dst), "missing");
 2343   assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump");
 2344   if (reachable(dst)) {
 2345     jmp_literal(dst.target(), dst.rspec());
 2346   } else {
 2347     lea(rscratch, dst);
 2348     jmp(rscratch);
 2349   }
 2350 }
 2351 
 2352 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) {
 2353   assert(rscratch != noreg || always_reachable(dst), "missing");
 2354   assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc");
 2355   if (reachable(dst)) {
 2356     InstructionMark im(this);
 2357     relocate(dst.reloc());
 2358     const int short_size = 2;
 2359     const int long_size = 6;
 2360     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
 2361     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
 2362       // 0111 tttn #8-bit disp
 2363       emit_int8(0x70 | cc);
 2364       emit_int8((offs - short_size) & 0xFF);
 2365     } else {
 2366       // 0000 1111 1000 tttn #32-bit disp
 2367       emit_int8(0x0F);
 2368       emit_int8((unsigned char)(0x80 | cc));
 2369       emit_int32(offs - long_size);
 2370     }
 2371   } else {
 2372 #ifdef ASSERT
 2373     warning("reversing conditional branch");
 2374 #endif /* ASSERT */
 2375     Label skip;
 2376     jccb(reverse[cc], skip);
 2377     lea(rscratch, dst);
 2378     Assembler::jmp(rscratch);
 2379     bind(skip);
 2380   }
 2381 }
 2382 
 2383 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) {
 2384   assert(rscratch != noreg || always_reachable(src), "missing");
 2385 
 2386   if (reachable(src)) {
 2387     Assembler::ldmxcsr(as_Address(src));
 2388   } else {
 2389     lea(rscratch, src);
 2390     Assembler::ldmxcsr(Address(rscratch, 0));
 2391   }
 2392 }
 2393 
 2394 int MacroAssembler::load_signed_byte(Register dst, Address src) {
 2395   int off;
 2396   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 2397     off = offset();
 2398     movsbl(dst, src); // movsxb
 2399   } else {
 2400     off = load_unsigned_byte(dst, src);
 2401     shll(dst, 24);
 2402     sarl(dst, 24);
 2403   }
 2404   return off;
 2405 }
 2406 
 2407 // Note: load_signed_short used to be called load_signed_word.
 2408 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
 2409 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
 2410 // The term "word" in HotSpot means a 32- or 64-bit machine word.
 2411 int MacroAssembler::load_signed_short(Register dst, Address src) {
 2412   int off;
 2413   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 2414     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
 2415     // version but this is what 64bit has always done. This seems to imply
 2416     // that users are only using 32bits worth.
 2417     off = offset();
 2418     movswl(dst, src); // movsxw
 2419   } else {
 2420     off = load_unsigned_short(dst, src);
 2421     shll(dst, 16);
 2422     sarl(dst, 16);
 2423   }
 2424   return off;
 2425 }
 2426 
 2427 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
 2428   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
 2429   // and "3.9 Partial Register Penalties", p. 22).
 2430   int off;
 2431   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
 2432     off = offset();
 2433     movzbl(dst, src); // movzxb
 2434   } else {
 2435     xorl(dst, dst);
 2436     off = offset();
 2437     movb(dst, src);
 2438   }
 2439   return off;
 2440 }
 2441 
 2442 // Note: load_unsigned_short used to be called load_unsigned_word.
 2443 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
 2444   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
 2445   // and "3.9 Partial Register Penalties", p. 22).
 2446   int off;
 2447   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
 2448     off = offset();
 2449     movzwl(dst, src); // movzxw
 2450   } else {
 2451     xorl(dst, dst);
 2452     off = offset();
 2453     movw(dst, src);
 2454   }
 2455   return off;
 2456 }
 2457 
 2458 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
 2459   switch (size_in_bytes) {
 2460 #ifndef _LP64
 2461   case  8:
 2462     assert(dst2 != noreg, "second dest register required");
 2463     movl(dst,  src);
 2464     movl(dst2, src.plus_disp(BytesPerInt));
 2465     break;
 2466 #else
 2467   case  8:  movq(dst, src); break;
 2468 #endif
 2469   case  4:  movl(dst, src); break;
 2470   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
 2471   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
 2472   default:  ShouldNotReachHere();
 2473   }
 2474 }
 2475 
 2476 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
 2477   switch (size_in_bytes) {
 2478 #ifndef _LP64
 2479   case  8:
 2480     assert(src2 != noreg, "second source register required");
 2481     movl(dst,                        src);
 2482     movl(dst.plus_disp(BytesPerInt), src2);
 2483     break;
 2484 #else
 2485   case  8:  movq(dst, src); break;
 2486 #endif
 2487   case  4:  movl(dst, src); break;
 2488   case  2:  movw(dst, src); break;
 2489   case  1:  movb(dst, src); break;
 2490   default:  ShouldNotReachHere();
 2491   }
 2492 }
 2493 
 2494 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) {
 2495   assert(rscratch != noreg || always_reachable(dst), "missing");
 2496 
 2497   if (reachable(dst)) {
 2498     movl(as_Address(dst), src);
 2499   } else {
 2500     lea(rscratch, dst);
 2501     movl(Address(rscratch, 0), src);
 2502   }
 2503 }
 2504 
 2505 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
 2506   if (reachable(src)) {
 2507     movl(dst, as_Address(src));
 2508   } else {
 2509     lea(dst, src);
 2510     movl(dst, Address(dst, 0));
 2511   }
 2512 }
 2513 
 2514 // C++ bool manipulation
 2515 
 2516 void MacroAssembler::movbool(Register dst, Address src) {
 2517   if(sizeof(bool) == 1)
 2518     movb(dst, src);
 2519   else if(sizeof(bool) == 2)
 2520     movw(dst, src);
 2521   else if(sizeof(bool) == 4)
 2522     movl(dst, src);
 2523   else
 2524     // unsupported
 2525     ShouldNotReachHere();
 2526 }
 2527 
 2528 void MacroAssembler::movbool(Address dst, bool boolconst) {
 2529   if(sizeof(bool) == 1)
 2530     movb(dst, (int) boolconst);
 2531   else if(sizeof(bool) == 2)
 2532     movw(dst, (int) boolconst);
 2533   else if(sizeof(bool) == 4)
 2534     movl(dst, (int) boolconst);
 2535   else
 2536     // unsupported
 2537     ShouldNotReachHere();
 2538 }
 2539 
 2540 void MacroAssembler::movbool(Address dst, Register src) {
 2541   if(sizeof(bool) == 1)
 2542     movb(dst, src);
 2543   else if(sizeof(bool) == 2)
 2544     movw(dst, src);
 2545   else if(sizeof(bool) == 4)
 2546     movl(dst, src);
 2547   else
 2548     // unsupported
 2549     ShouldNotReachHere();
 2550 }
 2551 
 2552 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2553   assert(rscratch != noreg || always_reachable(src), "missing");
 2554 
 2555   if (reachable(src)) {
 2556     movdl(dst, as_Address(src));
 2557   } else {
 2558     lea(rscratch, src);
 2559     movdl(dst, Address(rscratch, 0));
 2560   }
 2561 }
 2562 
 2563 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2564   assert(rscratch != noreg || always_reachable(src), "missing");
 2565 
 2566   if (reachable(src)) {
 2567     movq(dst, as_Address(src));
 2568   } else {
 2569     lea(rscratch, src);
 2570     movq(dst, Address(rscratch, 0));
 2571   }
 2572 }
 2573 
 2574 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2575   assert(rscratch != noreg || always_reachable(src), "missing");
 2576 
 2577   if (reachable(src)) {
 2578     if (UseXmmLoadAndClearUpper) {
 2579       movsd (dst, as_Address(src));
 2580     } else {
 2581       movlpd(dst, as_Address(src));
 2582     }
 2583   } else {
 2584     lea(rscratch, src);
 2585     if (UseXmmLoadAndClearUpper) {
 2586       movsd (dst, Address(rscratch, 0));
 2587     } else {
 2588       movlpd(dst, Address(rscratch, 0));
 2589     }
 2590   }
 2591 }
 2592 
 2593 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2594   assert(rscratch != noreg || always_reachable(src), "missing");
 2595 
 2596   if (reachable(src)) {
 2597     movss(dst, as_Address(src));
 2598   } else {
 2599     lea(rscratch, src);
 2600     movss(dst, Address(rscratch, 0));
 2601   }
 2602 }
 2603 
 2604 void MacroAssembler::movptr(Register dst, Register src) {
 2605   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2606 }
 2607 
 2608 void MacroAssembler::movptr(Register dst, Address src) {
 2609   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2610 }
 2611 
 2612 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 2613 void MacroAssembler::movptr(Register dst, intptr_t src) {
 2614 #ifdef _LP64
 2615   if (is_uimm32(src)) {
 2616     movl(dst, checked_cast<uint32_t>(src));
 2617   } else if (is_simm32(src)) {
 2618     movq(dst, checked_cast<int32_t>(src));
 2619   } else {
 2620     mov64(dst, src);
 2621   }
 2622 #else
 2623   movl(dst, src);
 2624 #endif
 2625 }
 2626 
 2627 void MacroAssembler::movptr(Address dst, Register src) {
 2628   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2629 }
 2630 
 2631 void MacroAssembler::movptr(Address dst, int32_t src) {
 2632   LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src));
 2633 }
 2634 
 2635 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
 2636   assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2637   Assembler::movdqu(dst, src);
 2638 }
 2639 
 2640 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
 2641   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2642   Assembler::movdqu(dst, src);
 2643 }
 2644 
 2645 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
 2646   assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2647   Assembler::movdqu(dst, src);
 2648 }
 2649 
 2650 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2651   assert(rscratch != noreg || always_reachable(src), "missing");
 2652 
 2653   if (reachable(src)) {
 2654     movdqu(dst, as_Address(src));
 2655   } else {
 2656     lea(rscratch, src);
 2657     movdqu(dst, Address(rscratch, 0));
 2658   }
 2659 }
 2660 
 2661 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
 2662   assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2663   Assembler::vmovdqu(dst, src);
 2664 }
 2665 
 2666 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
 2667   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2668   Assembler::vmovdqu(dst, src);
 2669 }
 2670 
 2671 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
 2672   assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2673   Assembler::vmovdqu(dst, src);
 2674 }
 2675 
 2676 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2677   assert(rscratch != noreg || always_reachable(src), "missing");
 2678 
 2679   if (reachable(src)) {
 2680     vmovdqu(dst, as_Address(src));
 2681   }
 2682   else {
 2683     lea(rscratch, src);
 2684     vmovdqu(dst, Address(rscratch, 0));
 2685   }
 2686 }
 2687 
 2688 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2689   assert(rscratch != noreg || always_reachable(src), "missing");
 2690 
 2691   if (vector_len == AVX_512bit) {
 2692     evmovdquq(dst, src, AVX_512bit, rscratch);
 2693   } else if (vector_len == AVX_256bit) {
 2694     vmovdqu(dst, src, rscratch);
 2695   } else {
 2696     movdqu(dst, src, rscratch);
 2697   }
 2698 }
 2699 
 2700 void MacroAssembler::kmov(KRegister dst, Address src) {
 2701   if (VM_Version::supports_avx512bw()) {
 2702     kmovql(dst, src);
 2703   } else {
 2704     assert(VM_Version::supports_evex(), "");
 2705     kmovwl(dst, src);
 2706   }
 2707 }
 2708 
 2709 void MacroAssembler::kmov(Address dst, KRegister src) {
 2710   if (VM_Version::supports_avx512bw()) {
 2711     kmovql(dst, src);
 2712   } else {
 2713     assert(VM_Version::supports_evex(), "");
 2714     kmovwl(dst, src);
 2715   }
 2716 }
 2717 
 2718 void MacroAssembler::kmov(KRegister dst, KRegister src) {
 2719   if (VM_Version::supports_avx512bw()) {
 2720     kmovql(dst, src);
 2721   } else {
 2722     assert(VM_Version::supports_evex(), "");
 2723     kmovwl(dst, src);
 2724   }
 2725 }
 2726 
 2727 void MacroAssembler::kmov(Register dst, KRegister src) {
 2728   if (VM_Version::supports_avx512bw()) {
 2729     kmovql(dst, src);
 2730   } else {
 2731     assert(VM_Version::supports_evex(), "");
 2732     kmovwl(dst, src);
 2733   }
 2734 }
 2735 
 2736 void MacroAssembler::kmov(KRegister dst, Register src) {
 2737   if (VM_Version::supports_avx512bw()) {
 2738     kmovql(dst, src);
 2739   } else {
 2740     assert(VM_Version::supports_evex(), "");
 2741     kmovwl(dst, src);
 2742   }
 2743 }
 2744 
 2745 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) {
 2746   assert(rscratch != noreg || always_reachable(src), "missing");
 2747 
 2748   if (reachable(src)) {
 2749     kmovql(dst, as_Address(src));
 2750   } else {
 2751     lea(rscratch, src);
 2752     kmovql(dst, Address(rscratch, 0));
 2753   }
 2754 }
 2755 
 2756 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) {
 2757   assert(rscratch != noreg || always_reachable(src), "missing");
 2758 
 2759   if (reachable(src)) {
 2760     kmovwl(dst, as_Address(src));
 2761   } else {
 2762     lea(rscratch, src);
 2763     kmovwl(dst, Address(rscratch, 0));
 2764   }
 2765 }
 2766 
 2767 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge,
 2768                                int vector_len, Register rscratch) {
 2769   assert(rscratch != noreg || always_reachable(src), "missing");
 2770 
 2771   if (reachable(src)) {
 2772     Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len);
 2773   } else {
 2774     lea(rscratch, src);
 2775     Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len);
 2776   }
 2777 }
 2778 
 2779 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge,
 2780                                int vector_len, Register rscratch) {
 2781   assert(rscratch != noreg || always_reachable(src), "missing");
 2782 
 2783   if (reachable(src)) {
 2784     Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len);
 2785   } else {
 2786     lea(rscratch, src);
 2787     Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len);
 2788   }
 2789 }
 2790 
 2791 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
 2792   assert(rscratch != noreg || always_reachable(src), "missing");
 2793 
 2794   if (reachable(src)) {
 2795     Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len);
 2796   } else {
 2797     lea(rscratch, src);
 2798     Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len);
 2799   }
 2800 }
 2801 
 2802 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
 2803   assert(rscratch != noreg || always_reachable(src), "missing");
 2804 
 2805   if (reachable(src)) {
 2806     Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len);
 2807   } else {
 2808     lea(rscratch, src);
 2809     Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len);
 2810   }
 2811 }
 2812 
 2813 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2814   assert(rscratch != noreg || always_reachable(src), "missing");
 2815 
 2816   if (reachable(src)) {
 2817     Assembler::evmovdquq(dst, as_Address(src), vector_len);
 2818   } else {
 2819     lea(rscratch, src);
 2820     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
 2821   }
 2822 }
 2823 
 2824 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2825   assert(rscratch != noreg || always_reachable(src), "missing");
 2826 
 2827   if (reachable(src)) {
 2828     Assembler::movdqa(dst, as_Address(src));
 2829   } else {
 2830     lea(rscratch, src);
 2831     Assembler::movdqa(dst, Address(rscratch, 0));
 2832   }
 2833 }
 2834 
 2835 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2836   assert(rscratch != noreg || always_reachable(src), "missing");
 2837 
 2838   if (reachable(src)) {
 2839     Assembler::movsd(dst, as_Address(src));
 2840   } else {
 2841     lea(rscratch, src);
 2842     Assembler::movsd(dst, Address(rscratch, 0));
 2843   }
 2844 }
 2845 
 2846 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2847   assert(rscratch != noreg || always_reachable(src), "missing");
 2848 
 2849   if (reachable(src)) {
 2850     Assembler::movss(dst, as_Address(src));
 2851   } else {
 2852     lea(rscratch, src);
 2853     Assembler::movss(dst, Address(rscratch, 0));
 2854   }
 2855 }
 2856 
 2857 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2858   assert(rscratch != noreg || always_reachable(src), "missing");
 2859 
 2860   if (reachable(src)) {
 2861     Assembler::movddup(dst, as_Address(src));
 2862   } else {
 2863     lea(rscratch, src);
 2864     Assembler::movddup(dst, Address(rscratch, 0));
 2865   }
 2866 }
 2867 
 2868 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2869   assert(rscratch != noreg || always_reachable(src), "missing");
 2870 
 2871   if (reachable(src)) {
 2872     Assembler::vmovddup(dst, as_Address(src), vector_len);
 2873   } else {
 2874     lea(rscratch, src);
 2875     Assembler::vmovddup(dst, Address(rscratch, 0), vector_len);
 2876   }
 2877 }
 2878 
 2879 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2880   assert(rscratch != noreg || always_reachable(src), "missing");
 2881 
 2882   if (reachable(src)) {
 2883     Assembler::mulsd(dst, as_Address(src));
 2884   } else {
 2885     lea(rscratch, src);
 2886     Assembler::mulsd(dst, Address(rscratch, 0));
 2887   }
 2888 }
 2889 
 2890 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2891   assert(rscratch != noreg || always_reachable(src), "missing");
 2892 
 2893   if (reachable(src)) {
 2894     Assembler::mulss(dst, as_Address(src));
 2895   } else {
 2896     lea(rscratch, src);
 2897     Assembler::mulss(dst, Address(rscratch, 0));
 2898   }
 2899 }
 2900 
 2901 void MacroAssembler::null_check(Register reg, int offset) {
 2902   if (needs_explicit_null_check(offset)) {
 2903     // provoke OS null exception if reg is null by
 2904     // accessing M[reg] w/o changing any (non-CC) registers
 2905     // NOTE: cmpl is plenty here to provoke a segv
 2906     cmpptr(rax, Address(reg, 0));
 2907     // Note: should probably use testl(rax, Address(reg, 0));
 2908     //       may be shorter code (however, this version of
 2909     //       testl needs to be implemented first)
 2910   } else {
 2911     // nothing to do, (later) access of M[reg + offset]
 2912     // will provoke OS null exception if reg is null
 2913   }
 2914 }
 2915 
 2916 void MacroAssembler::os_breakpoint() {
 2917   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
 2918   // (e.g., MSVC can't call ps() otherwise)
 2919   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
 2920 }
 2921 
 2922 void MacroAssembler::unimplemented(const char* what) {
 2923   const char* buf = nullptr;
 2924   {
 2925     ResourceMark rm;
 2926     stringStream ss;
 2927     ss.print("unimplemented: %s", what);
 2928     buf = code_string(ss.as_string());
 2929   }
 2930   stop(buf);
 2931 }
 2932 
 2933 #ifdef _LP64
 2934 #define XSTATE_BV 0x200
 2935 #endif
 2936 
 2937 void MacroAssembler::pop_CPU_state() {
 2938   pop_FPU_state();
 2939   pop_IU_state();
 2940 }
 2941 
 2942 void MacroAssembler::pop_FPU_state() {
 2943 #ifndef _LP64
 2944   frstor(Address(rsp, 0));
 2945 #else
 2946   fxrstor(Address(rsp, 0));
 2947 #endif
 2948   addptr(rsp, FPUStateSizeInWords * wordSize);
 2949 }
 2950 
 2951 void MacroAssembler::pop_IU_state() {
 2952   popa();
 2953   LP64_ONLY(addq(rsp, 8));
 2954   popf();
 2955 }
 2956 
 2957 // Save Integer and Float state
 2958 // Warning: Stack must be 16 byte aligned (64bit)
 2959 void MacroAssembler::push_CPU_state() {
 2960   push_IU_state();
 2961   push_FPU_state();
 2962 }
 2963 
 2964 void MacroAssembler::push_FPU_state() {
 2965   subptr(rsp, FPUStateSizeInWords * wordSize);
 2966 #ifndef _LP64
 2967   fnsave(Address(rsp, 0));
 2968   fwait();
 2969 #else
 2970   fxsave(Address(rsp, 0));
 2971 #endif // LP64
 2972 }
 2973 
 2974 void MacroAssembler::push_IU_state() {
 2975   // Push flags first because pusha kills them
 2976   pushf();
 2977   // Make sure rsp stays 16-byte aligned
 2978   LP64_ONLY(subq(rsp, 8));
 2979   pusha();
 2980 }
 2981 
 2982 void MacroAssembler::push_cont_fastpath() {
 2983   if (!Continuations::enabled()) return;
 2984 
 2985 #ifndef _LP64
 2986   Register rthread = rax;
 2987   Register rrealsp = rbx;
 2988   push(rthread);
 2989   push(rrealsp);
 2990 
 2991   get_thread(rthread);
 2992 
 2993   // The code below wants the original RSP.
 2994   // Move it back after the pushes above.
 2995   movptr(rrealsp, rsp);
 2996   addptr(rrealsp, 2*wordSize);
 2997 #else
 2998   Register rthread = r15_thread;
 2999   Register rrealsp = rsp;
 3000 #endif
 3001 
 3002   Label done;
 3003   cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset()));
 3004   jccb(Assembler::belowEqual, done);
 3005   movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp);
 3006   bind(done);
 3007 
 3008 #ifndef _LP64
 3009   pop(rrealsp);
 3010   pop(rthread);
 3011 #endif
 3012 }
 3013 
 3014 void MacroAssembler::pop_cont_fastpath() {
 3015   if (!Continuations::enabled()) return;
 3016 
 3017 #ifndef _LP64
 3018   Register rthread = rax;
 3019   Register rrealsp = rbx;
 3020   push(rthread);
 3021   push(rrealsp);
 3022 
 3023   get_thread(rthread);
 3024 
 3025   // The code below wants the original RSP.
 3026   // Move it back after the pushes above.
 3027   movptr(rrealsp, rsp);
 3028   addptr(rrealsp, 2*wordSize);
 3029 #else
 3030   Register rthread = r15_thread;
 3031   Register rrealsp = rsp;
 3032 #endif
 3033 
 3034   Label done;
 3035   cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset()));
 3036   jccb(Assembler::below, done);
 3037   movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0);
 3038   bind(done);
 3039 
 3040 #ifndef _LP64
 3041   pop(rrealsp);
 3042   pop(rthread);
 3043 #endif
 3044 }
 3045 
 3046 void MacroAssembler::inc_held_monitor_count() {
 3047 #ifdef _LP64
 3048   incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset()));
 3049 #endif
 3050 }
 3051 
 3052 void MacroAssembler::dec_held_monitor_count() {
 3053 #ifdef _LP64
 3054   decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset()));
 3055 #endif
 3056 }
 3057 
 3058 #ifdef ASSERT
 3059 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) {
 3060 #ifdef _LP64
 3061   Label no_cont;
 3062   movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset()));
 3063   testl(cont, cont);
 3064   jcc(Assembler::zero, no_cont);
 3065   stop(name);
 3066   bind(no_cont);
 3067 #else
 3068   Unimplemented();
 3069 #endif
 3070 }
 3071 #endif
 3072 
 3073 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
 3074   if (!java_thread->is_valid()) {
 3075     java_thread = rdi;
 3076     get_thread(java_thread);
 3077   }
 3078   // we must set sp to zero to clear frame
 3079   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 3080   // must clear fp, so that compiled frames are not confused; it is
 3081   // possible that we need it only for debugging
 3082   if (clear_fp) {
 3083     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 3084   }
 3085   // Always clear the pc because it could have been set by make_walkable()
 3086   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 3087   vzeroupper();
 3088 }
 3089 
 3090 void MacroAssembler::restore_rax(Register tmp) {
 3091   if (tmp == noreg) pop(rax);
 3092   else if (tmp != rax) mov(rax, tmp);
 3093 }
 3094 
 3095 void MacroAssembler::round_to(Register reg, int modulus) {
 3096   addptr(reg, modulus - 1);
 3097   andptr(reg, -modulus);
 3098 }
 3099 
 3100 void MacroAssembler::save_rax(Register tmp) {
 3101   if (tmp == noreg) push(rax);
 3102   else if (tmp != rax) mov(tmp, rax);
 3103 }
 3104 
 3105 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod) {
 3106   if (at_return) {
 3107     // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore,
 3108     // we may safely use rsp instead to perform the stack watermark check.
 3109     cmpptr(in_nmethod ? rsp : rbp, Address(thread_reg, JavaThread::polling_word_offset()));
 3110     jcc(Assembler::above, slow_path);
 3111     return;
 3112   }
 3113   testb(Address(thread_reg, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
 3114   jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
 3115 }
 3116 
 3117 // Calls to C land
 3118 //
 3119 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
 3120 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
 3121 // has to be reset to 0. This is required to allow proper stack traversal.
 3122 void MacroAssembler::set_last_Java_frame(Register java_thread,
 3123                                          Register last_java_sp,
 3124                                          Register last_java_fp,
 3125                                          address  last_java_pc,
 3126                                          Register rscratch) {
 3127   vzeroupper();
 3128   // determine java_thread register
 3129   if (!java_thread->is_valid()) {
 3130     java_thread = rdi;
 3131     get_thread(java_thread);
 3132   }
 3133   // determine last_java_sp register
 3134   if (!last_java_sp->is_valid()) {
 3135     last_java_sp = rsp;
 3136   }
 3137   // last_java_fp is optional
 3138   if (last_java_fp->is_valid()) {
 3139     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
 3140   }
 3141   // last_java_pc is optional
 3142   if (last_java_pc != nullptr) {
 3143     Address java_pc(java_thread,
 3144                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 3145     lea(java_pc, InternalAddress(last_java_pc), rscratch);
 3146   }
 3147   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 3148 }
 3149 
 3150 #ifdef _LP64
 3151 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 3152                                          Register last_java_fp,
 3153                                          Label &L,
 3154                                          Register scratch) {
 3155   lea(scratch, L);
 3156   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), scratch);
 3157   set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, nullptr, scratch);
 3158 }
 3159 #endif
 3160 
 3161 void MacroAssembler::shlptr(Register dst, int imm8) {
 3162   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
 3163 }
 3164 
 3165 void MacroAssembler::shrptr(Register dst, int imm8) {
 3166   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
 3167 }
 3168 
 3169 void MacroAssembler::sign_extend_byte(Register reg) {
 3170   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
 3171     movsbl(reg, reg); // movsxb
 3172   } else {
 3173     shll(reg, 24);
 3174     sarl(reg, 24);
 3175   }
 3176 }
 3177 
 3178 void MacroAssembler::sign_extend_short(Register reg) {
 3179   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 3180     movswl(reg, reg); // movsxw
 3181   } else {
 3182     shll(reg, 16);
 3183     sarl(reg, 16);
 3184   }
 3185 }
 3186 
 3187 void MacroAssembler::testl(Address dst, int32_t imm32) {
 3188   if (imm32 >= 0 && is8bit(imm32)) {
 3189     testb(dst, imm32);
 3190   } else {
 3191     Assembler::testl(dst, imm32);
 3192   }
 3193 }
 3194 
 3195 void MacroAssembler::testl(Register dst, int32_t imm32) {
 3196   if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) {
 3197     testb(dst, imm32);
 3198   } else {
 3199     Assembler::testl(dst, imm32);
 3200   }
 3201 }
 3202 
 3203 void MacroAssembler::testl(Register dst, AddressLiteral src) {
 3204   assert(always_reachable(src), "Address should be reachable");
 3205   testl(dst, as_Address(src));
 3206 }
 3207 
 3208 #ifdef _LP64
 3209 
 3210 void MacroAssembler::testq(Address dst, int32_t imm32) {
 3211   if (imm32 >= 0) {
 3212     testl(dst, imm32);
 3213   } else {
 3214     Assembler::testq(dst, imm32);
 3215   }
 3216 }
 3217 
 3218 void MacroAssembler::testq(Register dst, int32_t imm32) {
 3219   if (imm32 >= 0) {
 3220     testl(dst, imm32);
 3221   } else {
 3222     Assembler::testq(dst, imm32);
 3223   }
 3224 }
 3225 
 3226 #endif
 3227 
 3228 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
 3229   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3230   Assembler::pcmpeqb(dst, src);
 3231 }
 3232 
 3233 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
 3234   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3235   Assembler::pcmpeqw(dst, src);
 3236 }
 3237 
 3238 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
 3239   assert((dst->encoding() < 16),"XMM register should be 0-15");
 3240   Assembler::pcmpestri(dst, src, imm8);
 3241 }
 3242 
 3243 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
 3244   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3245   Assembler::pcmpestri(dst, src, imm8);
 3246 }
 3247 
 3248 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
 3249   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3250   Assembler::pmovzxbw(dst, src);
 3251 }
 3252 
 3253 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
 3254   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3255   Assembler::pmovzxbw(dst, src);
 3256 }
 3257 
 3258 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
 3259   assert((src->encoding() < 16),"XMM register should be 0-15");
 3260   Assembler::pmovmskb(dst, src);
 3261 }
 3262 
 3263 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
 3264   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3265   Assembler::ptest(dst, src);
 3266 }
 3267 
 3268 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3269   assert(rscratch != noreg || always_reachable(src), "missing");
 3270 
 3271   if (reachable(src)) {
 3272     Assembler::sqrtss(dst, as_Address(src));
 3273   } else {
 3274     lea(rscratch, src);
 3275     Assembler::sqrtss(dst, Address(rscratch, 0));
 3276   }
 3277 }
 3278 
 3279 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3280   assert(rscratch != noreg || always_reachable(src), "missing");
 3281 
 3282   if (reachable(src)) {
 3283     Assembler::subsd(dst, as_Address(src));
 3284   } else {
 3285     lea(rscratch, src);
 3286     Assembler::subsd(dst, Address(rscratch, 0));
 3287   }
 3288 }
 3289 
 3290 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) {
 3291   assert(rscratch != noreg || always_reachable(src), "missing");
 3292 
 3293   if (reachable(src)) {
 3294     Assembler::roundsd(dst, as_Address(src), rmode);
 3295   } else {
 3296     lea(rscratch, src);
 3297     Assembler::roundsd(dst, Address(rscratch, 0), rmode);
 3298   }
 3299 }
 3300 
 3301 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3302   assert(rscratch != noreg || always_reachable(src), "missing");
 3303 
 3304   if (reachable(src)) {
 3305     Assembler::subss(dst, as_Address(src));
 3306   } else {
 3307     lea(rscratch, src);
 3308     Assembler::subss(dst, Address(rscratch, 0));
 3309   }
 3310 }
 3311 
 3312 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3313   assert(rscratch != noreg || always_reachable(src), "missing");
 3314 
 3315   if (reachable(src)) {
 3316     Assembler::ucomisd(dst, as_Address(src));
 3317   } else {
 3318     lea(rscratch, src);
 3319     Assembler::ucomisd(dst, Address(rscratch, 0));
 3320   }
 3321 }
 3322 
 3323 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3324   assert(rscratch != noreg || always_reachable(src), "missing");
 3325 
 3326   if (reachable(src)) {
 3327     Assembler::ucomiss(dst, as_Address(src));
 3328   } else {
 3329     lea(rscratch, src);
 3330     Assembler::ucomiss(dst, Address(rscratch, 0));
 3331   }
 3332 }
 3333 
 3334 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3335   assert(rscratch != noreg || always_reachable(src), "missing");
 3336 
 3337   // Used in sign-bit flipping with aligned address.
 3338   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 3339 
 3340   if (UseAVX > 2 &&
 3341       (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
 3342       (dst->encoding() >= 16)) {
 3343     vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch);
 3344   } else if (reachable(src)) {
 3345     Assembler::xorpd(dst, as_Address(src));
 3346   } else {
 3347     lea(rscratch, src);
 3348     Assembler::xorpd(dst, Address(rscratch, 0));
 3349   }
 3350 }
 3351 
 3352 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
 3353   if (UseAVX > 2 &&
 3354       (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
 3355       ((dst->encoding() >= 16) || (src->encoding() >= 16))) {
 3356     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
 3357   } else {
 3358     Assembler::xorpd(dst, src);
 3359   }
 3360 }
 3361 
 3362 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
 3363   if (UseAVX > 2 &&
 3364       (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
 3365       ((dst->encoding() >= 16) || (src->encoding() >= 16))) {
 3366     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
 3367   } else {
 3368     Assembler::xorps(dst, src);
 3369   }
 3370 }
 3371 
 3372 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3373   assert(rscratch != noreg || always_reachable(src), "missing");
 3374 
 3375   // Used in sign-bit flipping with aligned address.
 3376   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 3377 
 3378   if (UseAVX > 2 &&
 3379       (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
 3380       (dst->encoding() >= 16)) {
 3381     vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch);
 3382   } else if (reachable(src)) {
 3383     Assembler::xorps(dst, as_Address(src));
 3384   } else {
 3385     lea(rscratch, src);
 3386     Assembler::xorps(dst, Address(rscratch, 0));
 3387   }
 3388 }
 3389 
 3390 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3391   assert(rscratch != noreg || always_reachable(src), "missing");
 3392 
 3393   // Used in sign-bit flipping with aligned address.
 3394   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
 3395   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
 3396   if (reachable(src)) {
 3397     Assembler::pshufb(dst, as_Address(src));
 3398   } else {
 3399     lea(rscratch, src);
 3400     Assembler::pshufb(dst, Address(rscratch, 0));
 3401   }
 3402 }
 3403 
 3404 // AVX 3-operands instructions
 3405 
 3406 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3407   assert(rscratch != noreg || always_reachable(src), "missing");
 3408 
 3409   if (reachable(src)) {
 3410     vaddsd(dst, nds, as_Address(src));
 3411   } else {
 3412     lea(rscratch, src);
 3413     vaddsd(dst, nds, Address(rscratch, 0));
 3414   }
 3415 }
 3416 
 3417 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3418   assert(rscratch != noreg || always_reachable(src), "missing");
 3419 
 3420   if (reachable(src)) {
 3421     vaddss(dst, nds, as_Address(src));
 3422   } else {
 3423     lea(rscratch, src);
 3424     vaddss(dst, nds, Address(rscratch, 0));
 3425   }
 3426 }
 3427 
 3428 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3429   assert(UseAVX > 0, "requires some form of AVX");
 3430   assert(rscratch != noreg || always_reachable(src), "missing");
 3431 
 3432   if (reachable(src)) {
 3433     Assembler::vpaddb(dst, nds, as_Address(src), vector_len);
 3434   } else {
 3435     lea(rscratch, src);
 3436     Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len);
 3437   }
 3438 }
 3439 
 3440 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3441   assert(UseAVX > 0, "requires some form of AVX");
 3442   assert(rscratch != noreg || always_reachable(src), "missing");
 3443 
 3444   if (reachable(src)) {
 3445     Assembler::vpaddd(dst, nds, as_Address(src), vector_len);
 3446   } else {
 3447     lea(rscratch, src);
 3448     Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len);
 3449   }
 3450 }
 3451 
 3452 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) {
 3453   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3454   assert(rscratch != noreg || always_reachable(negate_field), "missing");
 3455 
 3456   vandps(dst, nds, negate_field, vector_len, rscratch);
 3457 }
 3458 
 3459 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) {
 3460   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3461   assert(rscratch != noreg || always_reachable(negate_field), "missing");
 3462 
 3463   vandpd(dst, nds, negate_field, vector_len, rscratch);
 3464 }
 3465 
 3466 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3467   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3468   Assembler::vpaddb(dst, nds, src, vector_len);
 3469 }
 3470 
 3471 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3472   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3473   Assembler::vpaddb(dst, nds, src, vector_len);
 3474 }
 3475 
 3476 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3477   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3478   Assembler::vpaddw(dst, nds, src, vector_len);
 3479 }
 3480 
 3481 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3482   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3483   Assembler::vpaddw(dst, nds, src, vector_len);
 3484 }
 3485 
 3486 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3487   assert(rscratch != noreg || always_reachable(src), "missing");
 3488 
 3489   if (reachable(src)) {
 3490     Assembler::vpand(dst, nds, as_Address(src), vector_len);
 3491   } else {
 3492     lea(rscratch, src);
 3493     Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len);
 3494   }
 3495 }
 3496 
 3497 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3498   assert(rscratch != noreg || always_reachable(src), "missing");
 3499 
 3500   if (reachable(src)) {
 3501     Assembler::vpbroadcastd(dst, as_Address(src), vector_len);
 3502   } else {
 3503     lea(rscratch, src);
 3504     Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len);
 3505   }
 3506 }
 3507 
 3508 void MacroAssembler::vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3509   assert(rscratch != noreg || always_reachable(src), "missing");
 3510 
 3511   if (reachable(src)) {
 3512     Assembler::vbroadcasti128(dst, as_Address(src), vector_len);
 3513   } else {
 3514     lea(rscratch, src);
 3515     Assembler::vbroadcasti128(dst, Address(rscratch, 0), vector_len);
 3516   }
 3517 }
 3518 
 3519 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3520   assert(rscratch != noreg || always_reachable(src), "missing");
 3521 
 3522   if (reachable(src)) {
 3523     Assembler::vpbroadcastq(dst, as_Address(src), vector_len);
 3524   } else {
 3525     lea(rscratch, src);
 3526     Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len);
 3527   }
 3528 }
 3529 
 3530 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3531   assert(rscratch != noreg || always_reachable(src), "missing");
 3532 
 3533   if (reachable(src)) {
 3534     Assembler::vbroadcastsd(dst, as_Address(src), vector_len);
 3535   } else {
 3536     lea(rscratch, src);
 3537     Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len);
 3538   }
 3539 }
 3540 
 3541 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3542   assert(rscratch != noreg || always_reachable(src), "missing");
 3543 
 3544   if (reachable(src)) {
 3545     Assembler::vbroadcastss(dst, as_Address(src), vector_len);
 3546   } else {
 3547     lea(rscratch, src);
 3548     Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len);
 3549   }
 3550 }
 3551 
 3552 // Vector float blend
 3553 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg)
 3554 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) {
 3555   // WARN: Allow dst == (src1|src2), mask == scratch
 3556   bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1;
 3557   bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst;
 3558   bool dst_available = dst != mask && (dst != src1 || dst != src2);
 3559   if (blend_emulation && scratch_available && dst_available) {
 3560     if (compute_mask) {
 3561       vpsrad(scratch, mask, 32, vector_len);
 3562       mask = scratch;
 3563     }
 3564     if (dst == src1) {
 3565       vpandn(dst,     mask, src1, vector_len); // if mask == 0, src1
 3566       vpand (scratch, mask, src2, vector_len); // if mask == 1, src2
 3567     } else {
 3568       vpand (dst,     mask, src2, vector_len); // if mask == 1, src2
 3569       vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1
 3570     }
 3571     vpor(dst, dst, scratch, vector_len);
 3572   } else {
 3573     Assembler::vblendvps(dst, src1, src2, mask, vector_len);
 3574   }
 3575 }
 3576 
 3577 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg)
 3578 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) {
 3579   // WARN: Allow dst == (src1|src2), mask == scratch
 3580   bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1;
 3581   bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask);
 3582   bool dst_available = dst != mask && (dst != src1 || dst != src2);
 3583   if (blend_emulation && scratch_available && dst_available) {
 3584     if (compute_mask) {
 3585       vpxor(scratch, scratch, scratch, vector_len);
 3586       vpcmpgtq(scratch, scratch, mask, vector_len);
 3587       mask = scratch;
 3588     }
 3589     if (dst == src1) {
 3590       vpandn(dst,     mask, src1, vector_len); // if mask == 0, src
 3591       vpand (scratch, mask, src2, vector_len); // if mask == 1, src2
 3592     } else {
 3593       vpand (dst,     mask, src2, vector_len); // if mask == 1, src2
 3594       vpandn(scratch, mask, src1, vector_len); // if mask == 0, src
 3595     }
 3596     vpor(dst, dst, scratch, vector_len);
 3597   } else {
 3598     Assembler::vblendvpd(dst, src1, src2, mask, vector_len);
 3599   }
 3600 }
 3601 
 3602 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3603   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3604   Assembler::vpcmpeqb(dst, nds, src, vector_len);
 3605 }
 3606 
 3607 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
 3608   assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3609   Assembler::vpcmpeqb(dst, src1, src2, vector_len);
 3610 }
 3611 
 3612 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3613   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3614   Assembler::vpcmpeqw(dst, nds, src, vector_len);
 3615 }
 3616 
 3617 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3618   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3619   Assembler::vpcmpeqw(dst, nds, src, vector_len);
 3620 }
 3621 
 3622 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3623   assert(rscratch != noreg || always_reachable(src), "missing");
 3624 
 3625   if (reachable(src)) {
 3626     Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len);
 3627   } else {
 3628     lea(rscratch, src);
 3629     Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len);
 3630   }
 3631 }
 3632 
 3633 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3634                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3635   assert(rscratch != noreg || always_reachable(src), "missing");
 3636 
 3637   if (reachable(src)) {
 3638     Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3639   } else {
 3640     lea(rscratch, src);
 3641     Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3642   }
 3643 }
 3644 
 3645 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3646                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3647   assert(rscratch != noreg || always_reachable(src), "missing");
 3648 
 3649   if (reachable(src)) {
 3650     Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3651   } else {
 3652     lea(rscratch, src);
 3653     Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3654   }
 3655 }
 3656 
 3657 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3658                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3659   assert(rscratch != noreg || always_reachable(src), "missing");
 3660 
 3661   if (reachable(src)) {
 3662     Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3663   } else {
 3664     lea(rscratch, src);
 3665     Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3666   }
 3667 }
 3668 
 3669 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3670                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3671   assert(rscratch != noreg || always_reachable(src), "missing");
 3672 
 3673   if (reachable(src)) {
 3674     Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3675   } else {
 3676     lea(rscratch, src);
 3677     Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3678   }
 3679 }
 3680 
 3681 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) {
 3682   if (width == Assembler::Q) {
 3683     Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len);
 3684   } else {
 3685     Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len);
 3686   }
 3687 }
 3688 
 3689 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) {
 3690   int eq_cond_enc = 0x29;
 3691   int gt_cond_enc = 0x37;
 3692   if (width != Assembler::Q) {
 3693     eq_cond_enc = 0x74 + width;
 3694     gt_cond_enc = 0x64 + width;
 3695   }
 3696   switch (cond) {
 3697   case eq:
 3698     vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len);
 3699     break;
 3700   case neq:
 3701     vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len);
 3702     vallones(xtmp, vector_len);
 3703     vpxor(dst, xtmp, dst, vector_len);
 3704     break;
 3705   case le:
 3706     vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len);
 3707     vallones(xtmp, vector_len);
 3708     vpxor(dst, xtmp, dst, vector_len);
 3709     break;
 3710   case nlt:
 3711     vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len);
 3712     vallones(xtmp, vector_len);
 3713     vpxor(dst, xtmp, dst, vector_len);
 3714     break;
 3715   case lt:
 3716     vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len);
 3717     break;
 3718   case nle:
 3719     vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len);
 3720     break;
 3721   default:
 3722     assert(false, "Should not reach here");
 3723   }
 3724 }
 3725 
 3726 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
 3727   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3728   Assembler::vpmovzxbw(dst, src, vector_len);
 3729 }
 3730 
 3731 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) {
 3732   assert((src->encoding() < 16),"XMM register should be 0-15");
 3733   Assembler::vpmovmskb(dst, src, vector_len);
 3734 }
 3735 
 3736 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3737   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3738   Assembler::vpmullw(dst, nds, src, vector_len);
 3739 }
 3740 
 3741 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3742   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3743   Assembler::vpmullw(dst, nds, src, vector_len);
 3744 }
 3745 
 3746 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3747   assert((UseAVX > 0), "AVX support is needed");
 3748   assert(rscratch != noreg || always_reachable(src), "missing");
 3749 
 3750   if (reachable(src)) {
 3751     Assembler::vpmulld(dst, nds, as_Address(src), vector_len);
 3752   } else {
 3753     lea(rscratch, src);
 3754     Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len);
 3755   }
 3756 }
 3757 
 3758 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3759   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3760   Assembler::vpsubb(dst, nds, src, vector_len);
 3761 }
 3762 
 3763 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3764   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3765   Assembler::vpsubb(dst, nds, src, vector_len);
 3766 }
 3767 
 3768 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3769   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3770   Assembler::vpsubw(dst, nds, src, vector_len);
 3771 }
 3772 
 3773 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3774   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3775   Assembler::vpsubw(dst, nds, src, vector_len);
 3776 }
 3777 
 3778 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3779   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3780   Assembler::vpsraw(dst, nds, shift, vector_len);
 3781 }
 3782 
 3783 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3784   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3785   Assembler::vpsraw(dst, nds, shift, vector_len);
 3786 }
 3787 
 3788 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3789   assert(UseAVX > 2,"");
 3790   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
 3791      vector_len = 2;
 3792   }
 3793   Assembler::evpsraq(dst, nds, shift, vector_len);
 3794 }
 3795 
 3796 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3797   assert(UseAVX > 2,"");
 3798   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
 3799      vector_len = 2;
 3800   }
 3801   Assembler::evpsraq(dst, nds, shift, vector_len);
 3802 }
 3803 
 3804 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3805   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3806   Assembler::vpsrlw(dst, nds, shift, vector_len);
 3807 }
 3808 
 3809 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3810   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3811   Assembler::vpsrlw(dst, nds, shift, vector_len);
 3812 }
 3813 
 3814 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3815   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3816   Assembler::vpsllw(dst, nds, shift, vector_len);
 3817 }
 3818 
 3819 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3820   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3821   Assembler::vpsllw(dst, nds, shift, vector_len);
 3822 }
 3823 
 3824 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
 3825   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3826   Assembler::vptest(dst, src);
 3827 }
 3828 
 3829 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
 3830   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3831   Assembler::punpcklbw(dst, src);
 3832 }
 3833 
 3834 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
 3835   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 3836   Assembler::pshufd(dst, src, mode);
 3837 }
 3838 
 3839 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
 3840   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3841   Assembler::pshuflw(dst, src, mode);
 3842 }
 3843 
 3844 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3845   assert(rscratch != noreg || always_reachable(src), "missing");
 3846 
 3847   if (reachable(src)) {
 3848     vandpd(dst, nds, as_Address(src), vector_len);
 3849   } else {
 3850     lea(rscratch, src);
 3851     vandpd(dst, nds, Address(rscratch, 0), vector_len);
 3852   }
 3853 }
 3854 
 3855 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3856   assert(rscratch != noreg || always_reachable(src), "missing");
 3857 
 3858   if (reachable(src)) {
 3859     vandps(dst, nds, as_Address(src), vector_len);
 3860   } else {
 3861     lea(rscratch, src);
 3862     vandps(dst, nds, Address(rscratch, 0), vector_len);
 3863   }
 3864 }
 3865 
 3866 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3867                             bool merge, int vector_len, Register rscratch) {
 3868   assert(rscratch != noreg || always_reachable(src), "missing");
 3869 
 3870   if (reachable(src)) {
 3871     Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len);
 3872   } else {
 3873     lea(rscratch, src);
 3874     Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len);
 3875   }
 3876 }
 3877 
 3878 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3879   assert(rscratch != noreg || always_reachable(src), "missing");
 3880 
 3881   if (reachable(src)) {
 3882     vdivsd(dst, nds, as_Address(src));
 3883   } else {
 3884     lea(rscratch, src);
 3885     vdivsd(dst, nds, Address(rscratch, 0));
 3886   }
 3887 }
 3888 
 3889 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3890   assert(rscratch != noreg || always_reachable(src), "missing");
 3891 
 3892   if (reachable(src)) {
 3893     vdivss(dst, nds, as_Address(src));
 3894   } else {
 3895     lea(rscratch, src);
 3896     vdivss(dst, nds, Address(rscratch, 0));
 3897   }
 3898 }
 3899 
 3900 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3901   assert(rscratch != noreg || always_reachable(src), "missing");
 3902 
 3903   if (reachable(src)) {
 3904     vmulsd(dst, nds, as_Address(src));
 3905   } else {
 3906     lea(rscratch, src);
 3907     vmulsd(dst, nds, Address(rscratch, 0));
 3908   }
 3909 }
 3910 
 3911 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3912   assert(rscratch != noreg || always_reachable(src), "missing");
 3913 
 3914   if (reachable(src)) {
 3915     vmulss(dst, nds, as_Address(src));
 3916   } else {
 3917     lea(rscratch, src);
 3918     vmulss(dst, nds, Address(rscratch, 0));
 3919   }
 3920 }
 3921 
 3922 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3923   assert(rscratch != noreg || always_reachable(src), "missing");
 3924 
 3925   if (reachable(src)) {
 3926     vsubsd(dst, nds, as_Address(src));
 3927   } else {
 3928     lea(rscratch, src);
 3929     vsubsd(dst, nds, Address(rscratch, 0));
 3930   }
 3931 }
 3932 
 3933 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3934   assert(rscratch != noreg || always_reachable(src), "missing");
 3935 
 3936   if (reachable(src)) {
 3937     vsubss(dst, nds, as_Address(src));
 3938   } else {
 3939     lea(rscratch, src);
 3940     vsubss(dst, nds, Address(rscratch, 0));
 3941   }
 3942 }
 3943 
 3944 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3945   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3946   assert(rscratch != noreg || always_reachable(src), "missing");
 3947 
 3948   vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch);
 3949 }
 3950 
 3951 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3952   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3953   assert(rscratch != noreg || always_reachable(src), "missing");
 3954 
 3955   vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch);
 3956 }
 3957 
 3958 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3959   assert(rscratch != noreg || always_reachable(src), "missing");
 3960 
 3961   if (reachable(src)) {
 3962     vxorpd(dst, nds, as_Address(src), vector_len);
 3963   } else {
 3964     lea(rscratch, src);
 3965     vxorpd(dst, nds, Address(rscratch, 0), vector_len);
 3966   }
 3967 }
 3968 
 3969 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3970   assert(rscratch != noreg || always_reachable(src), "missing");
 3971 
 3972   if (reachable(src)) {
 3973     vxorps(dst, nds, as_Address(src), vector_len);
 3974   } else {
 3975     lea(rscratch, src);
 3976     vxorps(dst, nds, Address(rscratch, 0), vector_len);
 3977   }
 3978 }
 3979 
 3980 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3981   assert(rscratch != noreg || always_reachable(src), "missing");
 3982 
 3983   if (UseAVX > 1 || (vector_len < 1)) {
 3984     if (reachable(src)) {
 3985       Assembler::vpxor(dst, nds, as_Address(src), vector_len);
 3986     } else {
 3987       lea(rscratch, src);
 3988       Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len);
 3989     }
 3990   } else {
 3991     MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch);
 3992   }
 3993 }
 3994 
 3995 void MacroAssembler::vpermd(XMMRegister dst,  XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3996   assert(rscratch != noreg || always_reachable(src), "missing");
 3997 
 3998   if (reachable(src)) {
 3999     Assembler::vpermd(dst, nds, as_Address(src), vector_len);
 4000   } else {
 4001     lea(rscratch, src);
 4002     Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len);
 4003   }
 4004 }
 4005 
 4006 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) {
 4007   const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask);
 4008   STATIC_ASSERT(inverted_mask == -4); // otherwise check this code
 4009   // The inverted mask is sign-extended
 4010   andptr(possibly_non_local, inverted_mask);
 4011 }
 4012 
 4013 void MacroAssembler::resolve_jobject(Register value,
 4014                                      Register thread,
 4015                                      Register tmp) {
 4016   assert_different_registers(value, thread, tmp);
 4017   Label done, tagged, weak_tagged;
 4018   testptr(value, value);
 4019   jcc(Assembler::zero, done);           // Use null as-is.
 4020   testptr(value, JNIHandles::tag_mask); // Test for tag.
 4021   jcc(Assembler::notZero, tagged);
 4022 
 4023   // Resolve local handle
 4024   access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread);
 4025   verify_oop(value);
 4026   jmp(done);
 4027 
 4028   bind(tagged);
 4029   testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag.
 4030   jcc(Assembler::notZero, weak_tagged);
 4031 
 4032   // Resolve global handle
 4033   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread);
 4034   verify_oop(value);
 4035   jmp(done);
 4036 
 4037   bind(weak_tagged);
 4038   // Resolve jweak.
 4039   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
 4040                  value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread);
 4041   verify_oop(value);
 4042 
 4043   bind(done);
 4044 }
 4045 
 4046 void MacroAssembler::resolve_global_jobject(Register value,
 4047                                             Register thread,
 4048                                             Register tmp) {
 4049   assert_different_registers(value, thread, tmp);
 4050   Label done;
 4051 
 4052   testptr(value, value);
 4053   jcc(Assembler::zero, done);           // Use null as-is.
 4054 
 4055 #ifdef ASSERT
 4056   {
 4057     Label valid_global_tag;
 4058     testptr(value, JNIHandles::TypeTag::global); // Test for global tag.
 4059     jcc(Assembler::notZero, valid_global_tag);
 4060     stop("non global jobject using resolve_global_jobject");
 4061     bind(valid_global_tag);
 4062   }
 4063 #endif
 4064 
 4065   // Resolve global handle
 4066   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread);
 4067   verify_oop(value);
 4068 
 4069   bind(done);
 4070 }
 4071 
 4072 void MacroAssembler::subptr(Register dst, int32_t imm32) {
 4073   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
 4074 }
 4075 
 4076 // Force generation of a 4 byte immediate value even if it fits into 8bit
 4077 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
 4078   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
 4079 }
 4080 
 4081 void MacroAssembler::subptr(Register dst, Register src) {
 4082   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
 4083 }
 4084 
 4085 // C++ bool manipulation
 4086 void MacroAssembler::testbool(Register dst) {
 4087   if(sizeof(bool) == 1)
 4088     testb(dst, 0xff);
 4089   else if(sizeof(bool) == 2) {
 4090     // testw implementation needed for two byte bools
 4091     ShouldNotReachHere();
 4092   } else if(sizeof(bool) == 4)
 4093     testl(dst, dst);
 4094   else
 4095     // unsupported
 4096     ShouldNotReachHere();
 4097 }
 4098 
 4099 void MacroAssembler::testptr(Register dst, Register src) {
 4100   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
 4101 }
 4102 
 4103 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
 4104 void MacroAssembler::tlab_allocate(Register thread, Register obj,
 4105                                    Register var_size_in_bytes,
 4106                                    int con_size_in_bytes,
 4107                                    Register t1,
 4108                                    Register t2,
 4109                                    Label& slow_case) {
 4110   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 4111   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
 4112 }
 4113 
 4114 RegSet MacroAssembler::call_clobbered_gp_registers() {
 4115   RegSet regs;
 4116 #ifdef _LP64
 4117   regs += RegSet::of(rax, rcx, rdx);
 4118 #ifndef _WINDOWS
 4119   regs += RegSet::of(rsi, rdi);
 4120 #endif
 4121   regs += RegSet::range(r8, r11);
 4122 #else
 4123   regs += RegSet::of(rax, rcx, rdx);
 4124 #endif
 4125 #ifdef _LP64
 4126   if (UseAPX) {
 4127     regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1));
 4128   }
 4129 #endif
 4130   return regs;
 4131 }
 4132 
 4133 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() {
 4134   int num_xmm_registers = XMMRegister::available_xmm_registers();
 4135 #if defined(_WINDOWS)
 4136   XMMRegSet result = XMMRegSet::range(xmm0, xmm5);
 4137   if (num_xmm_registers > 16) {
 4138      result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1));
 4139   }
 4140   return result;
 4141 #else
 4142   return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1));
 4143 #endif
 4144 }
 4145 
 4146 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor
 4147 
 4148 #ifndef _LP64
 4149 static bool use_x87_registers() { return UseSSE < 2; }
 4150 #endif
 4151 static bool use_xmm_registers() { return UseSSE >= 1; }
 4152 
 4153 // C1 only ever uses the first double/float of the XMM register.
 4154 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); }
 4155 
 4156 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) {
 4157   if (UseSSE == 1) {
 4158     masm->movflt(Address(rsp, offset), reg);
 4159   } else {
 4160     masm->movdbl(Address(rsp, offset), reg);
 4161   }
 4162 }
 4163 
 4164 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) {
 4165   if (UseSSE == 1) {
 4166     masm->movflt(reg, Address(rsp, offset));
 4167   } else {
 4168     masm->movdbl(reg, Address(rsp, offset));
 4169   }
 4170 }
 4171 
 4172 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers,
 4173                                   bool save_fpu, int& gp_area_size,
 4174                                   int& fp_area_size, int& xmm_area_size) {
 4175 
 4176   gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size,
 4177                          StackAlignmentInBytes);
 4178 #ifdef _LP64
 4179   fp_area_size = 0;
 4180 #else
 4181   fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0;
 4182 #endif
 4183   xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0;
 4184 
 4185   return gp_area_size + fp_area_size + xmm_area_size;
 4186 }
 4187 
 4188 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) {
 4189   block_comment("push_call_clobbered_registers start");
 4190   // Regular registers
 4191   RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude;
 4192 
 4193   int gp_area_size;
 4194   int fp_area_size;
 4195   int xmm_area_size;
 4196   int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu,
 4197                                                gp_area_size, fp_area_size, xmm_area_size);
 4198   subptr(rsp, total_save_size);
 4199 
 4200   push_set(gp_registers_to_push, 0);
 4201 
 4202 #ifndef _LP64
 4203   if (save_fpu && use_x87_registers()) {
 4204     fnsave(Address(rsp, gp_area_size));
 4205     fwait();
 4206   }
 4207 #endif
 4208   if (save_fpu && use_xmm_registers()) {
 4209     push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size);
 4210   }
 4211 
 4212   block_comment("push_call_clobbered_registers end");
 4213 }
 4214 
 4215 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) {
 4216   block_comment("pop_call_clobbered_registers start");
 4217 
 4218   RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude;
 4219 
 4220   int gp_area_size;
 4221   int fp_area_size;
 4222   int xmm_area_size;
 4223   int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu,
 4224                                                gp_area_size, fp_area_size, xmm_area_size);
 4225 
 4226   if (restore_fpu && use_xmm_registers()) {
 4227     pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size);
 4228   }
 4229 #ifndef _LP64
 4230   if (restore_fpu && use_x87_registers()) {
 4231     frstor(Address(rsp, gp_area_size));
 4232   }
 4233 #endif
 4234 
 4235   pop_set(gp_registers_to_pop, 0);
 4236 
 4237   addptr(rsp, total_save_size);
 4238 
 4239   vzeroupper();
 4240 
 4241   block_comment("pop_call_clobbered_registers end");
 4242 }
 4243 
 4244 void MacroAssembler::push_set(XMMRegSet set, int offset) {
 4245   assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be");
 4246   int spill_offset = offset;
 4247 
 4248   for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) {
 4249     save_xmm_register(this, spill_offset, *it);
 4250     spill_offset += xmm_save_size();
 4251   }
 4252 }
 4253 
 4254 void MacroAssembler::pop_set(XMMRegSet set, int offset) {
 4255   int restore_size = set.size() * xmm_save_size();
 4256   assert(is_aligned(restore_size, StackAlignmentInBytes), "must be");
 4257 
 4258   int restore_offset = offset + restore_size - xmm_save_size();
 4259 
 4260   for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) {
 4261     restore_xmm_register(this, restore_offset, *it);
 4262     restore_offset -= xmm_save_size();
 4263   }
 4264 }
 4265 
 4266 void MacroAssembler::push_set(RegSet set, int offset) {
 4267   int spill_offset;
 4268   if (offset == -1) {
 4269     int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4270     int aligned_size = align_up(register_push_size, StackAlignmentInBytes);
 4271     subptr(rsp, aligned_size);
 4272     spill_offset = 0;
 4273   } else {
 4274     spill_offset = offset;
 4275   }
 4276 
 4277   for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) {
 4278     movptr(Address(rsp, spill_offset), *it);
 4279     spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4280   }
 4281 }
 4282 
 4283 void MacroAssembler::pop_set(RegSet set, int offset) {
 4284 
 4285   int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4286   int restore_size = set.size() * gp_reg_size;
 4287   int aligned_size = align_up(restore_size, StackAlignmentInBytes);
 4288 
 4289   int restore_offset;
 4290   if (offset == -1) {
 4291     restore_offset = restore_size - gp_reg_size;
 4292   } else {
 4293     restore_offset = offset + restore_size - gp_reg_size;
 4294   }
 4295   for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) {
 4296     movptr(*it, Address(rsp, restore_offset));
 4297     restore_offset -= gp_reg_size;
 4298   }
 4299 
 4300   if (offset == -1) {
 4301     addptr(rsp, aligned_size);
 4302   }
 4303 }
 4304 
 4305 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
 4306 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
 4307   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
 4308   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
 4309   Label done;
 4310 
 4311   testptr(length_in_bytes, length_in_bytes);
 4312   jcc(Assembler::zero, done);
 4313 
 4314   // initialize topmost word, divide index by 2, check if odd and test if zero
 4315   // note: for the remaining code to work, index must be a multiple of BytesPerWord
 4316 #ifdef ASSERT
 4317   {
 4318     Label L;
 4319     testptr(length_in_bytes, BytesPerWord - 1);
 4320     jcc(Assembler::zero, L);
 4321     stop("length must be a multiple of BytesPerWord");
 4322     bind(L);
 4323   }
 4324 #endif
 4325   Register index = length_in_bytes;
 4326   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
 4327   if (UseIncDec) {
 4328     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
 4329   } else {
 4330     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
 4331     shrptr(index, 1);
 4332   }
 4333 #ifndef _LP64
 4334   // index could have not been a multiple of 8 (i.e., bit 2 was set)
 4335   {
 4336     Label even;
 4337     // note: if index was a multiple of 8, then it cannot
 4338     //       be 0 now otherwise it must have been 0 before
 4339     //       => if it is even, we don't need to check for 0 again
 4340     jcc(Assembler::carryClear, even);
 4341     // clear topmost word (no jump would be needed if conditional assignment worked here)
 4342     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
 4343     // index could be 0 now, must check again
 4344     jcc(Assembler::zero, done);
 4345     bind(even);
 4346   }
 4347 #endif // !_LP64
 4348   // initialize remaining object fields: index is a multiple of 2 now
 4349   {
 4350     Label loop;
 4351     bind(loop);
 4352     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
 4353     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
 4354     decrement(index);
 4355     jcc(Assembler::notZero, loop);
 4356   }
 4357 
 4358   bind(done);
 4359 }
 4360 
 4361 // Look up the method for a megamorphic invokeinterface call.
 4362 // The target method is determined by <intf_klass, itable_index>.
 4363 // The receiver klass is in recv_klass.
 4364 // On success, the result will be in method_result, and execution falls through.
 4365 // On failure, execution transfers to the given label.
 4366 void MacroAssembler::lookup_interface_method(Register recv_klass,
 4367                                              Register intf_klass,
 4368                                              RegisterOrConstant itable_index,
 4369                                              Register method_result,
 4370                                              Register scan_temp,
 4371                                              Label& L_no_such_interface,
 4372                                              bool return_method) {
 4373   assert_different_registers(recv_klass, intf_klass, scan_temp);
 4374   assert_different_registers(method_result, intf_klass, scan_temp);
 4375   assert(recv_klass != method_result || !return_method,
 4376          "recv_klass can be destroyed when method isn't needed");
 4377 
 4378   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
 4379          "caller must use same register for non-constant itable index as for method");
 4380 
 4381   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
 4382   int vtable_base = in_bytes(Klass::vtable_start_offset());
 4383   int itentry_off = in_bytes(itableMethodEntry::method_offset());
 4384   int scan_step   = itableOffsetEntry::size() * wordSize;
 4385   int vte_size    = vtableEntry::size_in_bytes();
 4386   Address::ScaleFactor times_vte_scale = Address::times_ptr;
 4387   assert(vte_size == wordSize, "else adjust times_vte_scale");
 4388 
 4389   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
 4390 
 4391   // Could store the aligned, prescaled offset in the klass.
 4392   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
 4393 
 4394   if (return_method) {
 4395     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
 4396     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 4397     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
 4398   }
 4399 
 4400   // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) {
 4401   //   if (scan->interface() == intf) {
 4402   //     result = (klass + scan->offset() + itable_index);
 4403   //   }
 4404   // }
 4405   Label search, found_method;
 4406 
 4407   for (int peel = 1; peel >= 0; peel--) {
 4408     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
 4409     cmpptr(intf_klass, method_result);
 4410 
 4411     if (peel) {
 4412       jccb(Assembler::equal, found_method);
 4413     } else {
 4414       jccb(Assembler::notEqual, search);
 4415       // (invert the test to fall through to found_method...)
 4416     }
 4417 
 4418     if (!peel)  break;
 4419 
 4420     bind(search);
 4421 
 4422     // Check that the previous entry is non-null.  A null entry means that
 4423     // the receiver class doesn't implement the interface, and wasn't the
 4424     // same as when the caller was compiled.
 4425     testptr(method_result, method_result);
 4426     jcc(Assembler::zero, L_no_such_interface);
 4427     addptr(scan_temp, scan_step);
 4428   }
 4429 
 4430   bind(found_method);
 4431 
 4432   if (return_method) {
 4433     // Got a hit.
 4434     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset()));
 4435     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
 4436   }
 4437 }
 4438 
 4439 // Look up the method for a megamorphic invokeinterface call in a single pass over itable:
 4440 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData
 4441 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index
 4442 // The target method is determined by <holder_klass, itable_index>.
 4443 // The receiver klass is in recv_klass.
 4444 // On success, the result will be in method_result, and execution falls through.
 4445 // On failure, execution transfers to the given label.
 4446 void MacroAssembler::lookup_interface_method_stub(Register recv_klass,
 4447                                                   Register holder_klass,
 4448                                                   Register resolved_klass,
 4449                                                   Register method_result,
 4450                                                   Register scan_temp,
 4451                                                   Register temp_reg2,
 4452                                                   Register receiver,
 4453                                                   int itable_index,
 4454                                                   Label& L_no_such_interface) {
 4455   assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver);
 4456   Register temp_itbl_klass = method_result;
 4457   Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl
 4458 
 4459   int vtable_base = in_bytes(Klass::vtable_start_offset());
 4460   int itentry_off = in_bytes(itableMethodEntry::method_offset());
 4461   int scan_step = itableOffsetEntry::size() * wordSize;
 4462   int vte_size = vtableEntry::size_in_bytes();
 4463   int ioffset = in_bytes(itableOffsetEntry::interface_offset());
 4464   int ooffset = in_bytes(itableOffsetEntry::offset_offset());
 4465   Address::ScaleFactor times_vte_scale = Address::times_ptr;
 4466   assert(vte_size == wordSize, "adjust times_vte_scale");
 4467 
 4468   Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found;
 4469 
 4470   // temp_itbl_klass = recv_klass.itable[0]
 4471   // scan_temp = &recv_klass.itable[0] + step
 4472   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
 4473   movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset));
 4474   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step));
 4475   xorptr(temp_reg, temp_reg);
 4476 
 4477   // Initial checks:
 4478   //   - if (holder_klass != resolved_klass), go to "scan for resolved"
 4479   //   - if (itable[0] == 0), no such interface
 4480   //   - if (itable[0] == holder_klass), shortcut to "holder found"
 4481   cmpptr(holder_klass, resolved_klass);
 4482   jccb(Assembler::notEqual, L_loop_scan_resolved_entry);
 4483   testptr(temp_itbl_klass, temp_itbl_klass);
 4484   jccb(Assembler::zero, L_no_such_interface);
 4485   cmpptr(holder_klass, temp_itbl_klass);
 4486   jccb(Assembler::equal, L_holder_found);
 4487 
 4488   // Loop: Look for holder_klass record in itable
 4489   //   do {
 4490   //     tmp = itable[index];
 4491   //     index += step;
 4492   //     if (tmp == holder_klass) {
 4493   //       goto L_holder_found; // Found!
 4494   //     }
 4495   //   } while (tmp != 0);
 4496   //   goto L_no_such_interface // Not found.
 4497   Label L_scan_holder;
 4498   bind(L_scan_holder);
 4499     movptr(temp_itbl_klass, Address(scan_temp, 0));
 4500     addptr(scan_temp, scan_step);
 4501     cmpptr(holder_klass, temp_itbl_klass);
 4502     jccb(Assembler::equal, L_holder_found);
 4503     testptr(temp_itbl_klass, temp_itbl_klass);
 4504     jccb(Assembler::notZero, L_scan_holder);
 4505 
 4506   jmpb(L_no_such_interface);
 4507 
 4508   // Loop: Look for resolved_class record in itable
 4509   //   do {
 4510   //     tmp = itable[index];
 4511   //     index += step;
 4512   //     if (tmp == holder_klass) {
 4513   //        // Also check if we have met a holder klass
 4514   //        holder_tmp = itable[index-step-ioffset];
 4515   //     }
 4516   //     if (tmp == resolved_klass) {
 4517   //        goto L_resolved_found;  // Found!
 4518   //     }
 4519   //   } while (tmp != 0);
 4520   //   goto L_no_such_interface // Not found.
 4521   //
 4522   Label L_loop_scan_resolved;
 4523   bind(L_loop_scan_resolved);
 4524     movptr(temp_itbl_klass, Address(scan_temp, 0));
 4525     addptr(scan_temp, scan_step);
 4526     bind(L_loop_scan_resolved_entry);
 4527     cmpptr(holder_klass, temp_itbl_klass);
 4528     cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step));
 4529     cmpptr(resolved_klass, temp_itbl_klass);
 4530     jccb(Assembler::equal, L_resolved_found);
 4531     testptr(temp_itbl_klass, temp_itbl_klass);
 4532     jccb(Assembler::notZero, L_loop_scan_resolved);
 4533 
 4534   jmpb(L_no_such_interface);
 4535 
 4536   Label L_ready;
 4537 
 4538   // See if we already have a holder klass. If not, go and scan for it.
 4539   bind(L_resolved_found);
 4540   testptr(temp_reg, temp_reg);
 4541   jccb(Assembler::zero, L_scan_holder);
 4542   jmpb(L_ready);
 4543 
 4544   bind(L_holder_found);
 4545   movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step));
 4546 
 4547   // Finally, temp_reg contains holder_klass vtable offset
 4548   bind(L_ready);
 4549   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 4550   if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl
 4551     load_klass(scan_temp, receiver, noreg);
 4552     movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off));
 4553   } else {
 4554     movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off));
 4555   }
 4556 }
 4557 
 4558 
 4559 // virtual method calling
 4560 void MacroAssembler::lookup_virtual_method(Register recv_klass,
 4561                                            RegisterOrConstant vtable_index,
 4562                                            Register method_result) {
 4563   const ByteSize base = Klass::vtable_start_offset();
 4564   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
 4565   Address vtable_entry_addr(recv_klass,
 4566                             vtable_index, Address::times_ptr,
 4567                             base + vtableEntry::method_offset());
 4568   movptr(method_result, vtable_entry_addr);
 4569 }
 4570 
 4571 
 4572 void MacroAssembler::check_klass_subtype(Register sub_klass,
 4573                            Register super_klass,
 4574                            Register temp_reg,
 4575                            Label& L_success) {
 4576   Label L_failure;
 4577   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, nullptr);
 4578   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr);
 4579   bind(L_failure);
 4580 }
 4581 
 4582 
 4583 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
 4584                                                    Register super_klass,
 4585                                                    Register temp_reg,
 4586                                                    Label* L_success,
 4587                                                    Label* L_failure,
 4588                                                    Label* L_slow_path,
 4589                                         RegisterOrConstant super_check_offset) {
 4590   assert_different_registers(sub_klass, super_klass, temp_reg);
 4591   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
 4592   if (super_check_offset.is_register()) {
 4593     assert_different_registers(sub_klass, super_klass,
 4594                                super_check_offset.as_register());
 4595   } else if (must_load_sco) {
 4596     assert(temp_reg != noreg, "supply either a temp or a register offset");
 4597   }
 4598 
 4599   Label L_fallthrough;
 4600   int label_nulls = 0;
 4601   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 4602   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 4603   if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
 4604   assert(label_nulls <= 1, "at most one null in the batch");
 4605 
 4606   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
 4607   int sco_offset = in_bytes(Klass::super_check_offset_offset());
 4608   Address super_check_offset_addr(super_klass, sco_offset);
 4609 
 4610   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
 4611   // range of a jccb.  If this routine grows larger, reconsider at
 4612   // least some of these.
 4613 #define local_jcc(assembler_cond, label)                                \
 4614   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
 4615   else                             jcc( assembler_cond, label) /*omit semi*/
 4616 
 4617   // Hacked jmp, which may only be used just before L_fallthrough.
 4618 #define final_jmp(label)                                                \
 4619   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
 4620   else                            jmp(label)                /*omit semi*/
 4621 
 4622   // If the pointers are equal, we are done (e.g., String[] elements).
 4623   // This self-check enables sharing of secondary supertype arrays among
 4624   // non-primary types such as array-of-interface.  Otherwise, each such
 4625   // type would need its own customized SSA.
 4626   // We move this check to the front of the fast path because many
 4627   // type checks are in fact trivially successful in this manner,
 4628   // so we get a nicely predicted branch right at the start of the check.
 4629   cmpptr(sub_klass, super_klass);
 4630   local_jcc(Assembler::equal, *L_success);
 4631 
 4632   // Check the supertype display:
 4633   if (must_load_sco) {
 4634     // Positive movl does right thing on LP64.
 4635     movl(temp_reg, super_check_offset_addr);
 4636     super_check_offset = RegisterOrConstant(temp_reg);
 4637   }
 4638   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
 4639   cmpptr(super_klass, super_check_addr); // load displayed supertype
 4640 
 4641   // This check has worked decisively for primary supers.
 4642   // Secondary supers are sought in the super_cache ('super_cache_addr').
 4643   // (Secondary supers are interfaces and very deeply nested subtypes.)
 4644   // This works in the same check above because of a tricky aliasing
 4645   // between the super_cache and the primary super display elements.
 4646   // (The 'super_check_addr' can address either, as the case requires.)
 4647   // Note that the cache is updated below if it does not help us find
 4648   // what we need immediately.
 4649   // So if it was a primary super, we can just fail immediately.
 4650   // Otherwise, it's the slow path for us (no success at this point).
 4651 
 4652   if (super_check_offset.is_register()) {
 4653     local_jcc(Assembler::equal, *L_success);
 4654     cmpl(super_check_offset.as_register(), sc_offset);
 4655     if (L_failure == &L_fallthrough) {
 4656       local_jcc(Assembler::equal, *L_slow_path);
 4657     } else {
 4658       local_jcc(Assembler::notEqual, *L_failure);
 4659       final_jmp(*L_slow_path);
 4660     }
 4661   } else if (super_check_offset.as_constant() == sc_offset) {
 4662     // Need a slow path; fast failure is impossible.
 4663     if (L_slow_path == &L_fallthrough) {
 4664       local_jcc(Assembler::equal, *L_success);
 4665     } else {
 4666       local_jcc(Assembler::notEqual, *L_slow_path);
 4667       final_jmp(*L_success);
 4668     }
 4669   } else {
 4670     // No slow path; it's a fast decision.
 4671     if (L_failure == &L_fallthrough) {
 4672       local_jcc(Assembler::equal, *L_success);
 4673     } else {
 4674       local_jcc(Assembler::notEqual, *L_failure);
 4675       final_jmp(*L_success);
 4676     }
 4677   }
 4678 
 4679   bind(L_fallthrough);
 4680 
 4681 #undef local_jcc
 4682 #undef final_jmp
 4683 }
 4684 
 4685 
 4686 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass,
 4687                                                           Register super_klass,
 4688                                                           Register temp_reg,
 4689                                                           Register temp2_reg,
 4690                                                           Label* L_success,
 4691                                                           Label* L_failure,
 4692                                                           bool set_cond_codes) {
 4693   assert_different_registers(sub_klass, super_klass, temp_reg);
 4694   if (temp2_reg != noreg)
 4695     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
 4696 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
 4697 
 4698   Label L_fallthrough;
 4699   int label_nulls = 0;
 4700   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 4701   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 4702   assert(label_nulls <= 1, "at most one null in the batch");
 4703 
 4704   // a couple of useful fields in sub_klass:
 4705   int ss_offset = in_bytes(Klass::secondary_supers_offset());
 4706   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
 4707   Address secondary_supers_addr(sub_klass, ss_offset);
 4708   Address super_cache_addr(     sub_klass, sc_offset);
 4709 
 4710   // Do a linear scan of the secondary super-klass chain.
 4711   // This code is rarely used, so simplicity is a virtue here.
 4712   // The repne_scan instruction uses fixed registers, which we must spill.
 4713   // Don't worry too much about pre-existing connections with the input regs.
 4714 
 4715   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
 4716   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
 4717 
 4718   // Get super_klass value into rax (even if it was in rdi or rcx).
 4719   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
 4720   if (super_klass != rax) {
 4721     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
 4722     mov(rax, super_klass);
 4723   }
 4724   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
 4725   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
 4726 
 4727 #ifndef PRODUCT
 4728   uint* pst_counter = &SharedRuntime::_partial_subtype_ctr;
 4729   ExternalAddress pst_counter_addr((address) pst_counter);
 4730   NOT_LP64(  incrementl(pst_counter_addr) );
 4731   LP64_ONLY( lea(rcx, pst_counter_addr) );
 4732   LP64_ONLY( incrementl(Address(rcx, 0)) );
 4733 #endif //PRODUCT
 4734 
 4735   // We will consult the secondary-super array.
 4736   movptr(rdi, secondary_supers_addr);
 4737   // Load the array length.  (Positive movl does right thing on LP64.)
 4738   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
 4739   // Skip to start of data.
 4740   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
 4741 
 4742   // Scan RCX words at [RDI] for an occurrence of RAX.
 4743   // Set NZ/Z based on last compare.
 4744   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
 4745   // not change flags (only scas instruction which is repeated sets flags).
 4746   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
 4747 
 4748     testptr(rax,rax); // Set Z = 0
 4749     repne_scan();
 4750 
 4751   // Unspill the temp. registers:
 4752   if (pushed_rdi)  pop(rdi);
 4753   if (pushed_rcx)  pop(rcx);
 4754   if (pushed_rax)  pop(rax);
 4755 
 4756   if (set_cond_codes) {
 4757     // Special hack for the AD files:  rdi is guaranteed non-zero.
 4758     assert(!pushed_rdi, "rdi must be left non-null");
 4759     // Also, the condition codes are properly set Z/NZ on succeed/failure.
 4760   }
 4761 
 4762   if (L_failure == &L_fallthrough)
 4763         jccb(Assembler::notEqual, *L_failure);
 4764   else  jcc(Assembler::notEqual, *L_failure);
 4765 
 4766   // Success.  Cache the super we found and proceed in triumph.
 4767   movptr(super_cache_addr, super_klass);
 4768 
 4769   if (L_success != &L_fallthrough) {
 4770     jmp(*L_success);
 4771   }
 4772 
 4773 #undef IS_A_TEMP
 4774 
 4775   bind(L_fallthrough);
 4776 }
 4777 
 4778 #ifndef _LP64
 4779 
 4780 // 32-bit x86 only: always use the linear search.
 4781 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
 4782                                                    Register super_klass,
 4783                                                    Register temp_reg,
 4784                                                    Register temp2_reg,
 4785                                                    Label* L_success,
 4786                                                    Label* L_failure,
 4787                                                    bool set_cond_codes) {
 4788   check_klass_subtype_slow_path_linear
 4789     (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes);
 4790 }
 4791 
 4792 #else // _LP64
 4793 
 4794 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
 4795                                                    Register super_klass,
 4796                                                    Register temp_reg,
 4797                                                    Register temp2_reg,
 4798                                                    Label* L_success,
 4799                                                    Label* L_failure,
 4800                                                    bool set_cond_codes) {
 4801   assert(set_cond_codes == false, "must be false on 64-bit x86");
 4802   check_klass_subtype_slow_path
 4803     (sub_klass, super_klass, temp_reg, temp2_reg, noreg, noreg,
 4804      L_success, L_failure);
 4805 }
 4806 
 4807 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
 4808                                                    Register super_klass,
 4809                                                    Register temp_reg,
 4810                                                    Register temp2_reg,
 4811                                                    Register temp3_reg,
 4812                                                    Register temp4_reg,
 4813                                                    Label* L_success,
 4814                                                    Label* L_failure) {
 4815   if (UseSecondarySupersTable) {
 4816     check_klass_subtype_slow_path_table
 4817       (sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, temp4_reg,
 4818        L_success, L_failure);
 4819   } else {
 4820     check_klass_subtype_slow_path_linear
 4821       (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, /*set_cond_codes*/false);
 4822   }
 4823 }
 4824 
 4825 Register MacroAssembler::allocate_if_noreg(Register r,
 4826                                   RegSetIterator<Register> &available_regs,
 4827                                   RegSet &regs_to_push) {
 4828   if (!r->is_valid()) {
 4829     r = *available_regs++;
 4830     regs_to_push += r;
 4831   }
 4832   return r;
 4833 }
 4834 
 4835 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass,
 4836                                                          Register super_klass,
 4837                                                          Register temp_reg,
 4838                                                          Register temp2_reg,
 4839                                                          Register temp3_reg,
 4840                                                          Register result_reg,
 4841                                                          Label* L_success,
 4842                                                          Label* L_failure) {
 4843   // NB! Callers may assume that, when temp2_reg is a valid register,
 4844   // this code sets it to a nonzero value.
 4845   bool temp2_reg_was_valid = temp2_reg->is_valid();
 4846 
 4847   RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg);
 4848 
 4849   Label L_fallthrough;
 4850   int label_nulls = 0;
 4851   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 4852   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 4853   assert(label_nulls <= 1, "at most one null in the batch");
 4854 
 4855   BLOCK_COMMENT("check_klass_subtype_slow_path_table");
 4856 
 4857   RegSetIterator<Register> available_regs
 4858     = (RegSet::of(rax, rcx, rdx, r8) + r9 + r10 + r11 + r12 - temps - sub_klass - super_klass).begin();
 4859 
 4860   RegSet pushed_regs;
 4861 
 4862   temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs);
 4863   temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs);
 4864   temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs);
 4865   result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs);
 4866   Register temp4_reg = allocate_if_noreg(noreg, available_regs, pushed_regs);
 4867 
 4868   assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, result_reg);
 4869 
 4870   {
 4871 
 4872     int register_push_size = pushed_regs.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4873     int aligned_size = align_up(register_push_size, StackAlignmentInBytes);
 4874     subptr(rsp, aligned_size);
 4875     push_set(pushed_regs, 0);
 4876 
 4877     lookup_secondary_supers_table_var(sub_klass,
 4878                                       super_klass,
 4879                                       temp_reg, temp2_reg, temp3_reg, temp4_reg, result_reg);
 4880     cmpq(result_reg, 0);
 4881 
 4882     // Unspill the temp. registers:
 4883     pop_set(pushed_regs, 0);
 4884     // Increment SP but do not clobber flags.
 4885     lea(rsp, Address(rsp, aligned_size));
 4886   }
 4887 
 4888   if (temp2_reg_was_valid) {
 4889     movq(temp2_reg, 1);
 4890   }
 4891 
 4892   jcc(Assembler::notEqual, *L_failure);
 4893 
 4894   if (L_success != &L_fallthrough) {
 4895     jmp(*L_success);
 4896   }
 4897 
 4898   bind(L_fallthrough);
 4899 }
 4900 
 4901 // population_count variant for running without the POPCNT
 4902 // instruction, which was introduced with SSE4.2 in 2008.
 4903 void MacroAssembler::population_count(Register dst, Register src,
 4904                                       Register scratch1, Register scratch2) {
 4905   assert_different_registers(src, scratch1, scratch2);
 4906   if (UsePopCountInstruction) {
 4907     Assembler::popcntq(dst, src);
 4908   } else {
 4909     assert_different_registers(src, scratch1, scratch2);
 4910     assert_different_registers(dst, scratch1, scratch2);
 4911     Label loop, done;
 4912 
 4913     mov(scratch1, src);
 4914     // dst = 0;
 4915     // while(scratch1 != 0) {
 4916     //   dst++;
 4917     //   scratch1 &= (scratch1 - 1);
 4918     // }
 4919     xorl(dst, dst);
 4920     testq(scratch1, scratch1);
 4921     jccb(Assembler::equal, done);
 4922     {
 4923       bind(loop);
 4924       incq(dst);
 4925       movq(scratch2, scratch1);
 4926       decq(scratch2);
 4927       andq(scratch1, scratch2);
 4928       jccb(Assembler::notEqual, loop);
 4929     }
 4930     bind(done);
 4931   }
 4932 #ifdef ASSERT
 4933   mov64(scratch1, 0xCafeBabeDeadBeef);
 4934   movq(scratch2, scratch1);
 4935 #endif
 4936 }
 4937 
 4938 // Ensure that the inline code and the stub are using the same registers.
 4939 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS                      \
 4940 do {                                                                 \
 4941   assert(r_super_klass  == rax, "mismatch");                         \
 4942   assert(r_array_base   == rbx, "mismatch");                         \
 4943   assert(r_array_length == rcx, "mismatch");                         \
 4944   assert(r_array_index  == rdx, "mismatch");                         \
 4945   assert(r_sub_klass    == rsi || r_sub_klass == noreg, "mismatch"); \
 4946   assert(r_bitmap       == r11 || r_bitmap    == noreg, "mismatch"); \
 4947   assert(result         == rdi || result      == noreg, "mismatch"); \
 4948 } while(0)
 4949 
 4950 // Versions of salq and rorq that don't need count to be in rcx
 4951 
 4952 void MacroAssembler::salq(Register dest, Register count) {
 4953   if (count == rcx) {
 4954     Assembler::salq(dest);
 4955   } else {
 4956     assert_different_registers(rcx, dest);
 4957     xchgq(rcx, count);
 4958     Assembler::salq(dest);
 4959     xchgq(rcx, count);
 4960   }
 4961 }
 4962 
 4963 void MacroAssembler::rorq(Register dest, Register count) {
 4964   if (count == rcx) {
 4965     Assembler::rorq(dest);
 4966   } else {
 4967     assert_different_registers(rcx, dest);
 4968     xchgq(rcx, count);
 4969     Assembler::rorq(dest);
 4970     xchgq(rcx, count);
 4971   }
 4972 }
 4973 
 4974 // Return true: we succeeded in generating this code
 4975 //
 4976 // At runtime, return 0 in result if r_super_klass is a superclass of
 4977 // r_sub_klass, otherwise return nonzero. Use this if you know the
 4978 // super_klass_slot of the class you're looking for. This is always
 4979 // the case for instanceof and checkcast.
 4980 void MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass,
 4981                                                          Register r_super_klass,
 4982                                                          Register temp1,
 4983                                                          Register temp2,
 4984                                                          Register temp3,
 4985                                                          Register temp4,
 4986                                                          Register result,
 4987                                                          u1 super_klass_slot) {
 4988   assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result);
 4989 
 4990   Label L_fallthrough, L_success, L_failure;
 4991 
 4992   BLOCK_COMMENT("lookup_secondary_supers_table {");
 4993 
 4994   const Register
 4995     r_array_index  = temp1,
 4996     r_array_length = temp2,
 4997     r_array_base   = temp3,
 4998     r_bitmap       = temp4;
 4999 
 5000   LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
 5001 
 5002   xorq(result, result); // = 0
 5003 
 5004   movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
 5005   movq(r_array_index, r_bitmap);
 5006 
 5007   // First check the bitmap to see if super_klass might be present. If
 5008   // the bit is zero, we are certain that super_klass is not one of
 5009   // the secondary supers.
 5010   u1 bit = super_klass_slot;
 5011   {
 5012     // NB: If the count in a x86 shift instruction is 0, the flags are
 5013     // not affected, so we do a testq instead.
 5014     int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit;
 5015     if (shift_count != 0) {
 5016       salq(r_array_index, shift_count);
 5017     } else {
 5018       testq(r_array_index, r_array_index);
 5019     }
 5020   }
 5021   // We test the MSB of r_array_index, i.e. its sign bit
 5022   jcc(Assembler::positive, L_failure);
 5023 
 5024   // Get the first array index that can contain super_klass into r_array_index.
 5025   if (bit != 0) {
 5026     population_count(r_array_index, r_array_index, temp2, temp3);
 5027   } else {
 5028     movl(r_array_index, 1);
 5029   }
 5030   // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
 5031 
 5032   // We will consult the secondary-super array.
 5033   movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
 5034 
 5035   // We're asserting that the first word in an Array<Klass*> is the
 5036   // length, and the second word is the first word of the data. If
 5037   // that ever changes, r_array_base will have to be adjusted here.
 5038   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
 5039   assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
 5040 
 5041   cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
 5042   jccb(Assembler::equal, L_success);
 5043 
 5044   // Is there another entry to check? Consult the bitmap.
 5045   btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK);
 5046   jccb(Assembler::carryClear, L_failure);
 5047 
 5048   // Linear probe. Rotate the bitmap so that the next bit to test is
 5049   // in Bit 1.
 5050   if (bit != 0) {
 5051     rorq(r_bitmap, bit);
 5052   }
 5053 
 5054   // Calls into the stub generated by lookup_secondary_supers_table_slow_path.
 5055   // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap.
 5056   // Kills: r_array_length.
 5057   // Returns: result.
 5058   call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()));
 5059   // Result (0/1) is in rdi
 5060   jmpb(L_fallthrough);
 5061 
 5062   bind(L_failure);
 5063   incq(result); // 0 => 1
 5064 
 5065   bind(L_success);
 5066   // result = 0;
 5067 
 5068   bind(L_fallthrough);
 5069   BLOCK_COMMENT("} lookup_secondary_supers_table");
 5070 
 5071   if (VerifySecondarySupers) {
 5072     verify_secondary_supers_table(r_sub_klass, r_super_klass, result,
 5073                                   temp1, temp2, temp3);
 5074   }
 5075 }
 5076 
 5077 // At runtime, return 0 in result if r_super_klass is a superclass of
 5078 // r_sub_klass, otherwise return nonzero. Use this version of
 5079 // lookup_secondary_supers_table() if you don't know ahead of time
 5080 // which superclass will be searched for. Used by interpreter and
 5081 // runtime stubs. It is larger and has somewhat greater latency than
 5082 // the version above, which takes a constant super_klass_slot.
 5083 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass,
 5084                                                        Register r_super_klass,
 5085                                                        Register temp1,
 5086                                                        Register temp2,
 5087                                                        Register temp3,
 5088                                                        Register temp4,
 5089                                                        Register result) {
 5090   assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result);
 5091   assert_different_registers(r_sub_klass, r_super_klass, rcx);
 5092   RegSet temps = RegSet::of(temp1, temp2, temp3, temp4);
 5093 
 5094   Label L_fallthrough, L_success, L_failure;
 5095 
 5096   BLOCK_COMMENT("lookup_secondary_supers_table {");
 5097 
 5098   RegSetIterator<Register> available_regs = (temps - rcx).begin();
 5099 
 5100   // FIXME. Once we are sure that all paths reaching this point really
 5101   // do pass rcx as one of our temps we can get rid of the following
 5102   // workaround.
 5103   assert(temps.contains(rcx), "fix this code");
 5104 
 5105   // We prefer to have our shift count in rcx. If rcx is one of our
 5106   // temps, use it for slot. If not, pick any of our temps.
 5107   Register slot;
 5108   if (!temps.contains(rcx)) {
 5109     slot = *available_regs++;
 5110   } else {
 5111     slot = rcx;
 5112   }
 5113 
 5114   const Register r_array_index = *available_regs++;
 5115   const Register r_bitmap      = *available_regs++;
 5116 
 5117   // The logic above guarantees this property, but we state it here.
 5118   assert_different_registers(r_array_index, r_bitmap, rcx);
 5119 
 5120   movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
 5121   movq(r_array_index, r_bitmap);
 5122 
 5123   // First check the bitmap to see if super_klass might be present. If
 5124   // the bit is zero, we are certain that super_klass is not one of
 5125   // the secondary supers.
 5126   movb(slot, Address(r_super_klass, Klass::hash_slot_offset()));
 5127   xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64)
 5128   salq(r_array_index, slot);
 5129 
 5130   testq(r_array_index, r_array_index);
 5131   // We test the MSB of r_array_index, i.e. its sign bit
 5132   jcc(Assembler::positive, L_failure);
 5133 
 5134   const Register r_array_base = *available_regs++;
 5135 
 5136   // Get the first array index that can contain super_klass into r_array_index.
 5137   // Note: Clobbers r_array_base and slot.
 5138   population_count(r_array_index, r_array_index, /*temp2*/r_array_base, /*temp3*/slot);
 5139 
 5140   // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
 5141 
 5142   // We will consult the secondary-super array.
 5143   movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
 5144 
 5145   // We're asserting that the first word in an Array<Klass*> is the
 5146   // length, and the second word is the first word of the data. If
 5147   // that ever changes, r_array_base will have to be adjusted here.
 5148   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
 5149   assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
 5150 
 5151   cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
 5152   jccb(Assembler::equal, L_success);
 5153 
 5154   // Restore slot to its true value
 5155   movb(slot, Address(r_super_klass, Klass::hash_slot_offset()));
 5156 
 5157   // Linear probe. Rotate the bitmap so that the next bit to test is
 5158   // in Bit 1.
 5159   rorq(r_bitmap, slot);
 5160 
 5161   // Is there another entry to check? Consult the bitmap.
 5162   btq(r_bitmap, 1);
 5163   jccb(Assembler::carryClear, L_failure);
 5164 
 5165   // Calls into the stub generated by lookup_secondary_supers_table_slow_path.
 5166   // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap.
 5167   // Kills: r_array_length.
 5168   // Returns: result.
 5169   lookup_secondary_supers_table_slow_path(r_super_klass,
 5170                                           r_array_base,
 5171                                           r_array_index,
 5172                                           r_bitmap,
 5173                                           /*temp1*/result,
 5174                                           /*temp2*/slot,
 5175                                           &L_success,
 5176                                           nullptr);
 5177 
 5178   bind(L_failure);
 5179   movq(result, 1);
 5180   jmpb(L_fallthrough);
 5181 
 5182   bind(L_success);
 5183   xorq(result, result); // = 0
 5184 
 5185   bind(L_fallthrough);
 5186   BLOCK_COMMENT("} lookup_secondary_supers_table");
 5187 
 5188   if (VerifySecondarySupers) {
 5189     verify_secondary_supers_table(r_sub_klass, r_super_klass, result,
 5190                                   temp1, temp2, temp3);
 5191   }
 5192 }
 5193 
 5194 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit,
 5195                                  Label* L_success, Label* L_failure) {
 5196   Label L_loop, L_fallthrough;
 5197   {
 5198     int label_nulls = 0;
 5199     if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
 5200     if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
 5201     assert(label_nulls <= 1, "at most one null in the batch");
 5202   }
 5203   bind(L_loop);
 5204   cmpq(value, Address(addr, count, Address::times_8));
 5205   jcc(Assembler::equal, *L_success);
 5206   addl(count, 1);
 5207   cmpl(count, limit);
 5208   jcc(Assembler::less, L_loop);
 5209 
 5210   if (&L_fallthrough != L_failure) {
 5211     jmp(*L_failure);
 5212   }
 5213   bind(L_fallthrough);
 5214 }
 5215 
 5216 // Called by code generated by check_klass_subtype_slow_path
 5217 // above. This is called when there is a collision in the hashed
 5218 // lookup in the secondary supers array.
 5219 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass,
 5220                                                              Register r_array_base,
 5221                                                              Register r_array_index,
 5222                                                              Register r_bitmap,
 5223                                                              Register temp1,
 5224                                                              Register temp2,
 5225                                                              Label* L_success,
 5226                                                              Label* L_failure) {
 5227   assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2);
 5228 
 5229   const Register
 5230     r_array_length = temp1,
 5231     r_sub_klass    = noreg,
 5232     result         = noreg;
 5233 
 5234   Label L_fallthrough;
 5235   int label_nulls = 0;
 5236   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 5237   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 5238   assert(label_nulls <= 1, "at most one null in the batch");
 5239 
 5240   // Load the array length.
 5241   movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
 5242   // And adjust the array base to point to the data.
 5243   // NB! Effectively increments current slot index by 1.
 5244   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "");
 5245   addptr(r_array_base, Array<Klass*>::base_offset_in_bytes());
 5246 
 5247   // Linear probe
 5248   Label L_huge;
 5249 
 5250   // The bitmap is full to bursting.
 5251   // Implicit invariant: BITMAP_FULL implies (length > 0)
 5252   cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2);
 5253   jcc(Assembler::greater, L_huge);
 5254 
 5255   // NB! Our caller has checked bits 0 and 1 in the bitmap. The
 5256   // current slot (at secondary_supers[r_array_index]) has not yet
 5257   // been inspected, and r_array_index may be out of bounds if we
 5258   // wrapped around the end of the array.
 5259 
 5260   { // This is conventional linear probing, but instead of terminating
 5261     // when a null entry is found in the table, we maintain a bitmap
 5262     // in which a 0 indicates missing entries.
 5263     // The check above guarantees there are 0s in the bitmap, so the loop
 5264     // eventually terminates.
 5265 
 5266     xorl(temp2, temp2); // = 0;
 5267 
 5268     Label L_again;
 5269     bind(L_again);
 5270 
 5271     // Check for array wraparound.
 5272     cmpl(r_array_index, r_array_length);
 5273     cmovl(Assembler::greaterEqual, r_array_index, temp2);
 5274 
 5275     cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
 5276     jcc(Assembler::equal, *L_success);
 5277 
 5278     // If the next bit in bitmap is zero, we're done.
 5279     btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now
 5280     jcc(Assembler::carryClear, *L_failure);
 5281 
 5282     rorq(r_bitmap, 1); // Bits 1/2 => 0/1
 5283     addl(r_array_index, 1);
 5284 
 5285     jmp(L_again);
 5286   }
 5287 
 5288   { // Degenerate case: more than 64 secondary supers.
 5289     // FIXME: We could do something smarter here, maybe a vectorized
 5290     // comparison or a binary search, but is that worth any added
 5291     // complexity?
 5292     bind(L_huge);
 5293     xorl(r_array_index, r_array_index); // = 0
 5294     repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length,
 5295                 L_success,
 5296                 (&L_fallthrough != L_failure ? L_failure : nullptr));
 5297 
 5298     bind(L_fallthrough);
 5299   }
 5300 }
 5301 
 5302 struct VerifyHelperArguments {
 5303   Klass* _super;
 5304   Klass* _sub;
 5305   intptr_t _linear_result;
 5306   intptr_t _table_result;
 5307 };
 5308 
 5309 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) {
 5310   Klass::on_secondary_supers_verification_failure(args->_super,
 5311                                                   args->_sub,
 5312                                                   args->_linear_result,
 5313                                                   args->_table_result,
 5314                                                   msg);
 5315 }
 5316 
 5317 // Make sure that the hashed lookup and a linear scan agree.
 5318 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass,
 5319                                                    Register r_super_klass,
 5320                                                    Register result,
 5321                                                    Register temp1,
 5322                                                    Register temp2,
 5323                                                    Register temp3) {
 5324   const Register
 5325       r_array_index  = temp1,
 5326       r_array_length = temp2,
 5327       r_array_base   = temp3,
 5328       r_bitmap       = noreg;
 5329 
 5330   BLOCK_COMMENT("verify_secondary_supers_table {");
 5331 
 5332   Label L_success, L_failure, L_check, L_done;
 5333 
 5334   movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
 5335   movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
 5336   // And adjust the array base to point to the data.
 5337   addptr(r_array_base, Array<Klass*>::base_offset_in_bytes());
 5338 
 5339   testl(r_array_length, r_array_length); // array_length == 0?
 5340   jcc(Assembler::zero, L_failure);
 5341 
 5342   movl(r_array_index, 0);
 5343   repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success);
 5344   // fall through to L_failure
 5345 
 5346   const Register linear_result = r_array_index; // reuse temp1
 5347 
 5348   bind(L_failure); // not present
 5349   movl(linear_result, 1);
 5350   jmp(L_check);
 5351 
 5352   bind(L_success); // present
 5353   movl(linear_result, 0);
 5354 
 5355   bind(L_check);
 5356   cmpl(linear_result, result);
 5357   jcc(Assembler::equal, L_done);
 5358 
 5359   { // To avoid calling convention issues, build a record on the stack
 5360     // and pass the pointer to that instead.
 5361     push(result);
 5362     push(linear_result);
 5363     push(r_sub_klass);
 5364     push(r_super_klass);
 5365     movptr(c_rarg1, rsp);
 5366     movptr(c_rarg0, (uintptr_t) "mismatch");
 5367     call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper)));
 5368     should_not_reach_here();
 5369   }
 5370   bind(L_done);
 5371 
 5372   BLOCK_COMMENT("} verify_secondary_supers_table");
 5373 }
 5374 
 5375 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS
 5376 
 5377 #endif // LP64
 5378 
 5379 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
 5380   assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
 5381 
 5382   Label L_fallthrough;
 5383   if (L_fast_path == nullptr) {
 5384     L_fast_path = &L_fallthrough;
 5385   } else if (L_slow_path == nullptr) {
 5386     L_slow_path = &L_fallthrough;
 5387   }
 5388 
 5389   // Fast path check: class is fully initialized.
 5390   // init_state needs acquire, but x86 is TSO, and so we are already good.
 5391   cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
 5392   jcc(Assembler::equal, *L_fast_path);
 5393 
 5394   // Fast path check: current thread is initializer thread
 5395   cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset()));
 5396   if (L_slow_path == &L_fallthrough) {
 5397     jcc(Assembler::equal, *L_fast_path);
 5398     bind(*L_slow_path);
 5399   } else if (L_fast_path == &L_fallthrough) {
 5400     jcc(Assembler::notEqual, *L_slow_path);
 5401     bind(*L_fast_path);
 5402   } else {
 5403     Unimplemented();
 5404   }
 5405 }
 5406 
 5407 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
 5408   if (VM_Version::supports_cmov()) {
 5409     cmovl(cc, dst, src);
 5410   } else {
 5411     Label L;
 5412     jccb(negate_condition(cc), L);
 5413     movl(dst, src);
 5414     bind(L);
 5415   }
 5416 }
 5417 
 5418 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
 5419   if (VM_Version::supports_cmov()) {
 5420     cmovl(cc, dst, src);
 5421   } else {
 5422     Label L;
 5423     jccb(negate_condition(cc), L);
 5424     movl(dst, src);
 5425     bind(L);
 5426   }
 5427 }
 5428 
 5429 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
 5430   if (!VerifyOops) return;
 5431 
 5432   BLOCK_COMMENT("verify_oop {");
 5433 #ifdef _LP64
 5434   push(rscratch1);
 5435 #endif
 5436   push(rax);                          // save rax
 5437   push(reg);                          // pass register argument
 5438 
 5439   // Pass register number to verify_oop_subroutine
 5440   const char* b = nullptr;
 5441   {
 5442     ResourceMark rm;
 5443     stringStream ss;
 5444     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
 5445     b = code_string(ss.as_string());
 5446   }
 5447   AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate());
 5448   pushptr(buffer.addr(), rscratch1);
 5449 
 5450   // call indirectly to solve generation ordering problem
 5451   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
 5452   call(rax);
 5453   // Caller pops the arguments (oop, message) and restores rax, r10
 5454   BLOCK_COMMENT("} verify_oop");
 5455 }
 5456 
 5457 void MacroAssembler::vallones(XMMRegister dst, int vector_len) {
 5458   if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) {
 5459     // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without
 5460     // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog
 5461     vpternlogd(dst, 0xFF, dst, dst, vector_len);
 5462   } else if (VM_Version::supports_avx()) {
 5463     vpcmpeqd(dst, dst, dst, vector_len);
 5464   } else {
 5465     pcmpeqd(dst, dst);
 5466   }
 5467 }
 5468 
 5469 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
 5470                                          int extra_slot_offset) {
 5471   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
 5472   int stackElementSize = Interpreter::stackElementSize;
 5473   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
 5474 #ifdef ASSERT
 5475   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
 5476   assert(offset1 - offset == stackElementSize, "correct arithmetic");
 5477 #endif
 5478   Register             scale_reg    = noreg;
 5479   Address::ScaleFactor scale_factor = Address::no_scale;
 5480   if (arg_slot.is_constant()) {
 5481     offset += arg_slot.as_constant() * stackElementSize;
 5482   } else {
 5483     scale_reg    = arg_slot.as_register();
 5484     scale_factor = Address::times(stackElementSize);
 5485   }
 5486   offset += wordSize;           // return PC is on stack
 5487   return Address(rsp, scale_reg, scale_factor, offset);
 5488 }
 5489 
 5490 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
 5491   if (!VerifyOops) return;
 5492 
 5493 #ifdef _LP64
 5494   push(rscratch1);
 5495 #endif
 5496   push(rax); // save rax,
 5497   // addr may contain rsp so we will have to adjust it based on the push
 5498   // we just did (and on 64 bit we do two pushes)
 5499   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
 5500   // stores rax into addr which is backwards of what was intended.
 5501   if (addr.uses(rsp)) {
 5502     lea(rax, addr);
 5503     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
 5504   } else {
 5505     pushptr(addr);
 5506   }
 5507 
 5508   // Pass register number to verify_oop_subroutine
 5509   const char* b = nullptr;
 5510   {
 5511     ResourceMark rm;
 5512     stringStream ss;
 5513     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
 5514     b = code_string(ss.as_string());
 5515   }
 5516   AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate());
 5517   pushptr(buffer.addr(), rscratch1);
 5518 
 5519   // call indirectly to solve generation ordering problem
 5520   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
 5521   call(rax);
 5522   // Caller pops the arguments (addr, message) and restores rax, r10.
 5523 }
 5524 
 5525 void MacroAssembler::verify_tlab() {
 5526 #ifdef ASSERT
 5527   if (UseTLAB && VerifyOops) {
 5528     Label next, ok;
 5529     Register t1 = rsi;
 5530     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
 5531 
 5532     push(t1);
 5533     NOT_LP64(push(thread_reg));
 5534     NOT_LP64(get_thread(thread_reg));
 5535 
 5536     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
 5537     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
 5538     jcc(Assembler::aboveEqual, next);
 5539     STOP("assert(top >= start)");
 5540     should_not_reach_here();
 5541 
 5542     bind(next);
 5543     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
 5544     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
 5545     jcc(Assembler::aboveEqual, ok);
 5546     STOP("assert(top <= end)");
 5547     should_not_reach_here();
 5548 
 5549     bind(ok);
 5550     NOT_LP64(pop(thread_reg));
 5551     pop(t1);
 5552   }
 5553 #endif
 5554 }
 5555 
 5556 class ControlWord {
 5557  public:
 5558   int32_t _value;
 5559 
 5560   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
 5561   int  precision_control() const       { return  (_value >>  8) & 3      ; }
 5562   bool precision() const               { return ((_value >>  5) & 1) != 0; }
 5563   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
 5564   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
 5565   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
 5566   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
 5567   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
 5568 
 5569   void print() const {
 5570     // rounding control
 5571     const char* rc;
 5572     switch (rounding_control()) {
 5573       case 0: rc = "round near"; break;
 5574       case 1: rc = "round down"; break;
 5575       case 2: rc = "round up  "; break;
 5576       case 3: rc = "chop      "; break;
 5577       default:
 5578         rc = nullptr; // silence compiler warnings
 5579         fatal("Unknown rounding control: %d", rounding_control());
 5580     };
 5581     // precision control
 5582     const char* pc;
 5583     switch (precision_control()) {
 5584       case 0: pc = "24 bits "; break;
 5585       case 1: pc = "reserved"; break;
 5586       case 2: pc = "53 bits "; break;
 5587       case 3: pc = "64 bits "; break;
 5588       default:
 5589         pc = nullptr; // silence compiler warnings
 5590         fatal("Unknown precision control: %d", precision_control());
 5591     };
 5592     // flags
 5593     char f[9];
 5594     f[0] = ' ';
 5595     f[1] = ' ';
 5596     f[2] = (precision   ()) ? 'P' : 'p';
 5597     f[3] = (underflow   ()) ? 'U' : 'u';
 5598     f[4] = (overflow    ()) ? 'O' : 'o';
 5599     f[5] = (zero_divide ()) ? 'Z' : 'z';
 5600     f[6] = (denormalized()) ? 'D' : 'd';
 5601     f[7] = (invalid     ()) ? 'I' : 'i';
 5602     f[8] = '\x0';
 5603     // output
 5604     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
 5605   }
 5606 
 5607 };
 5608 
 5609 class StatusWord {
 5610  public:
 5611   int32_t _value;
 5612 
 5613   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
 5614   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
 5615   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
 5616   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
 5617   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
 5618   int  top() const                     { return  (_value >> 11) & 7      ; }
 5619   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
 5620   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
 5621   bool precision() const               { return ((_value >>  5) & 1) != 0; }
 5622   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
 5623   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
 5624   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
 5625   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
 5626   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
 5627 
 5628   void print() const {
 5629     // condition codes
 5630     char c[5];
 5631     c[0] = (C3()) ? '3' : '-';
 5632     c[1] = (C2()) ? '2' : '-';
 5633     c[2] = (C1()) ? '1' : '-';
 5634     c[3] = (C0()) ? '0' : '-';
 5635     c[4] = '\x0';
 5636     // flags
 5637     char f[9];
 5638     f[0] = (error_status()) ? 'E' : '-';
 5639     f[1] = (stack_fault ()) ? 'S' : '-';
 5640     f[2] = (precision   ()) ? 'P' : '-';
 5641     f[3] = (underflow   ()) ? 'U' : '-';
 5642     f[4] = (overflow    ()) ? 'O' : '-';
 5643     f[5] = (zero_divide ()) ? 'Z' : '-';
 5644     f[6] = (denormalized()) ? 'D' : '-';
 5645     f[7] = (invalid     ()) ? 'I' : '-';
 5646     f[8] = '\x0';
 5647     // output
 5648     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
 5649   }
 5650 
 5651 };
 5652 
 5653 class TagWord {
 5654  public:
 5655   int32_t _value;
 5656 
 5657   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
 5658 
 5659   void print() const {
 5660     printf("%04x", _value & 0xFFFF);
 5661   }
 5662 
 5663 };
 5664 
 5665 class FPU_Register {
 5666  public:
 5667   int32_t _m0;
 5668   int32_t _m1;
 5669   int16_t _ex;
 5670 
 5671   bool is_indefinite() const           {
 5672     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
 5673   }
 5674 
 5675   void print() const {
 5676     char  sign = (_ex < 0) ? '-' : '+';
 5677     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
 5678     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
 5679   };
 5680 
 5681 };
 5682 
 5683 class FPU_State {
 5684  public:
 5685   enum {
 5686     register_size       = 10,
 5687     number_of_registers =  8,
 5688     register_mask       =  7
 5689   };
 5690 
 5691   ControlWord  _control_word;
 5692   StatusWord   _status_word;
 5693   TagWord      _tag_word;
 5694   int32_t      _error_offset;
 5695   int32_t      _error_selector;
 5696   int32_t      _data_offset;
 5697   int32_t      _data_selector;
 5698   int8_t       _register[register_size * number_of_registers];
 5699 
 5700   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
 5701   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
 5702 
 5703   const char* tag_as_string(int tag) const {
 5704     switch (tag) {
 5705       case 0: return "valid";
 5706       case 1: return "zero";
 5707       case 2: return "special";
 5708       case 3: return "empty";
 5709     }
 5710     ShouldNotReachHere();
 5711     return nullptr;
 5712   }
 5713 
 5714   void print() const {
 5715     // print computation registers
 5716     { int t = _status_word.top();
 5717       for (int i = 0; i < number_of_registers; i++) {
 5718         int j = (i - t) & register_mask;
 5719         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
 5720         st(j)->print();
 5721         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
 5722       }
 5723     }
 5724     printf("\n");
 5725     // print control registers
 5726     printf("ctrl = "); _control_word.print(); printf("\n");
 5727     printf("stat = "); _status_word .print(); printf("\n");
 5728     printf("tags = "); _tag_word    .print(); printf("\n");
 5729   }
 5730 
 5731 };
 5732 
 5733 class Flag_Register {
 5734  public:
 5735   int32_t _value;
 5736 
 5737   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
 5738   bool direction() const               { return ((_value >> 10) & 1) != 0; }
 5739   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
 5740   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
 5741   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
 5742   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
 5743   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
 5744 
 5745   void print() const {
 5746     // flags
 5747     char f[8];
 5748     f[0] = (overflow       ()) ? 'O' : '-';
 5749     f[1] = (direction      ()) ? 'D' : '-';
 5750     f[2] = (sign           ()) ? 'S' : '-';
 5751     f[3] = (zero           ()) ? 'Z' : '-';
 5752     f[4] = (auxiliary_carry()) ? 'A' : '-';
 5753     f[5] = (parity         ()) ? 'P' : '-';
 5754     f[6] = (carry          ()) ? 'C' : '-';
 5755     f[7] = '\x0';
 5756     // output
 5757     printf("%08x  flags = %s", _value, f);
 5758   }
 5759 
 5760 };
 5761 
 5762 class IU_Register {
 5763  public:
 5764   int32_t _value;
 5765 
 5766   void print() const {
 5767     printf("%08x  %11d", _value, _value);
 5768   }
 5769 
 5770 };
 5771 
 5772 class IU_State {
 5773  public:
 5774   Flag_Register _eflags;
 5775   IU_Register   _rdi;
 5776   IU_Register   _rsi;
 5777   IU_Register   _rbp;
 5778   IU_Register   _rsp;
 5779   IU_Register   _rbx;
 5780   IU_Register   _rdx;
 5781   IU_Register   _rcx;
 5782   IU_Register   _rax;
 5783 
 5784   void print() const {
 5785     // computation registers
 5786     printf("rax,  = "); _rax.print(); printf("\n");
 5787     printf("rbx,  = "); _rbx.print(); printf("\n");
 5788     printf("rcx  = "); _rcx.print(); printf("\n");
 5789     printf("rdx  = "); _rdx.print(); printf("\n");
 5790     printf("rdi  = "); _rdi.print(); printf("\n");
 5791     printf("rsi  = "); _rsi.print(); printf("\n");
 5792     printf("rbp,  = "); _rbp.print(); printf("\n");
 5793     printf("rsp  = "); _rsp.print(); printf("\n");
 5794     printf("\n");
 5795     // control registers
 5796     printf("flgs = "); _eflags.print(); printf("\n");
 5797   }
 5798 };
 5799 
 5800 
 5801 class CPU_State {
 5802  public:
 5803   FPU_State _fpu_state;
 5804   IU_State  _iu_state;
 5805 
 5806   void print() const {
 5807     printf("--------------------------------------------------\n");
 5808     _iu_state .print();
 5809     printf("\n");
 5810     _fpu_state.print();
 5811     printf("--------------------------------------------------\n");
 5812   }
 5813 
 5814 };
 5815 
 5816 
 5817 static void _print_CPU_state(CPU_State* state) {
 5818   state->print();
 5819 };
 5820 
 5821 
 5822 void MacroAssembler::print_CPU_state() {
 5823   push_CPU_state();
 5824   push(rsp);                // pass CPU state
 5825   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
 5826   addptr(rsp, wordSize);       // discard argument
 5827   pop_CPU_state();
 5828 }
 5829 
 5830 
 5831 #ifndef _LP64
 5832 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
 5833   static int counter = 0;
 5834   FPU_State* fs = &state->_fpu_state;
 5835   counter++;
 5836   // For leaf calls, only verify that the top few elements remain empty.
 5837   // We only need 1 empty at the top for C2 code.
 5838   if( stack_depth < 0 ) {
 5839     if( fs->tag_for_st(7) != 3 ) {
 5840       printf("FPR7 not empty\n");
 5841       state->print();
 5842       assert(false, "error");
 5843       return false;
 5844     }
 5845     return true;                // All other stack states do not matter
 5846   }
 5847 
 5848   assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(),
 5849          "bad FPU control word");
 5850 
 5851   // compute stack depth
 5852   int i = 0;
 5853   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
 5854   int d = i;
 5855   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
 5856   // verify findings
 5857   if (i != FPU_State::number_of_registers) {
 5858     // stack not contiguous
 5859     printf("%s: stack not contiguous at ST%d\n", s, i);
 5860     state->print();
 5861     assert(false, "error");
 5862     return false;
 5863   }
 5864   // check if computed stack depth corresponds to expected stack depth
 5865   if (stack_depth < 0) {
 5866     // expected stack depth is -stack_depth or less
 5867     if (d > -stack_depth) {
 5868       // too many elements on the stack
 5869       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
 5870       state->print();
 5871       assert(false, "error");
 5872       return false;
 5873     }
 5874   } else {
 5875     // expected stack depth is stack_depth
 5876     if (d != stack_depth) {
 5877       // wrong stack depth
 5878       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
 5879       state->print();
 5880       assert(false, "error");
 5881       return false;
 5882     }
 5883   }
 5884   // everything is cool
 5885   return true;
 5886 }
 5887 
 5888 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
 5889   if (!VerifyFPU) return;
 5890   push_CPU_state();
 5891   push(rsp);                // pass CPU state
 5892   ExternalAddress msg((address) s);
 5893   // pass message string s
 5894   pushptr(msg.addr(), noreg);
 5895   push(stack_depth);        // pass stack depth
 5896   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
 5897   addptr(rsp, 3 * wordSize);   // discard arguments
 5898   // check for error
 5899   { Label L;
 5900     testl(rax, rax);
 5901     jcc(Assembler::notZero, L);
 5902     int3();                  // break if error condition
 5903     bind(L);
 5904   }
 5905   pop_CPU_state();
 5906 }
 5907 #endif // _LP64
 5908 
 5909 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) {
 5910   // Either restore the MXCSR register after returning from the JNI Call
 5911   // or verify that it wasn't changed (with -Xcheck:jni flag).
 5912   if (VM_Version::supports_sse()) {
 5913     if (RestoreMXCSROnJNICalls) {
 5914       ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch);
 5915     } else if (CheckJNICalls) {
 5916       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
 5917     }
 5918   }
 5919   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
 5920   vzeroupper();
 5921 
 5922 #ifndef _LP64
 5923   // Either restore the x87 floating pointer control word after returning
 5924   // from the JNI call or verify that it wasn't changed.
 5925   if (CheckJNICalls) {
 5926     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
 5927   }
 5928 #endif // _LP64
 5929 }
 5930 
 5931 // ((OopHandle)result).resolve();
 5932 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
 5933   assert_different_registers(result, tmp);
 5934 
 5935   // Only 64 bit platforms support GCs that require a tmp register
 5936   // Only IN_HEAP loads require a thread_tmp register
 5937   // OopHandle::resolve is an indirection like jobject.
 5938   access_load_at(T_OBJECT, IN_NATIVE,
 5939                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
 5940 }
 5941 
 5942 // ((WeakHandle)result).resolve();
 5943 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) {
 5944   assert_different_registers(rresult, rtmp);
 5945   Label resolved;
 5946 
 5947   // A null weak handle resolves to null.
 5948   cmpptr(rresult, 0);
 5949   jcc(Assembler::equal, resolved);
 5950 
 5951   // Only 64 bit platforms support GCs that require a tmp register
 5952   // Only IN_HEAP loads require a thread_tmp register
 5953   // WeakHandle::resolve is an indirection like jweak.
 5954   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
 5955                  rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg);
 5956   bind(resolved);
 5957 }
 5958 
 5959 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
 5960   // get mirror
 5961   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 5962   load_method_holder(mirror, method);
 5963   movptr(mirror, Address(mirror, mirror_offset));
 5964   resolve_oop_handle(mirror, tmp);
 5965 }
 5966 
 5967 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
 5968   load_method_holder(rresult, rmethod);
 5969   movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
 5970 }
 5971 
 5972 void MacroAssembler::load_method_holder(Register holder, Register method) {
 5973   movptr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
 5974   movptr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
 5975   movptr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
 5976 }
 5977 
 5978 #ifdef _LP64
 5979 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) {
 5980   assert(UseCompactObjectHeaders, "expect compact object headers");
 5981   movq(dst, Address(src, oopDesc::mark_offset_in_bytes()));
 5982   shrq(dst, markWord::klass_shift);
 5983 }
 5984 #endif
 5985 
 5986 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) {
 5987   assert_different_registers(src, tmp);
 5988   assert_different_registers(dst, tmp);
 5989 #ifdef _LP64
 5990   if (UseCompactObjectHeaders) {
 5991     load_narrow_klass_compact(dst, src);
 5992     decode_klass_not_null(dst, tmp);
 5993   } else if (UseCompressedClassPointers) {
 5994     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 5995     decode_klass_not_null(dst, tmp);
 5996   } else
 5997 #endif
 5998   {
 5999     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 6000   }
 6001 }
 6002 
 6003 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) {
 6004   assert(!UseCompactObjectHeaders, "not with compact headers");
 6005   assert_different_registers(src, tmp);
 6006   assert_different_registers(dst, tmp);
 6007 #ifdef _LP64
 6008   if (UseCompressedClassPointers) {
 6009     encode_klass_not_null(src, tmp);
 6010     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 6011   } else
 6012 #endif
 6013     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 6014 }
 6015 
 6016 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) {
 6017 #ifdef _LP64
 6018   if (UseCompactObjectHeaders) {
 6019     assert(tmp != noreg, "need tmp");
 6020     assert_different_registers(klass, obj, tmp);
 6021     load_narrow_klass_compact(tmp, obj);
 6022     cmpl(klass, tmp);
 6023   } else if (UseCompressedClassPointers) {
 6024     cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes()));
 6025   } else
 6026 #endif
 6027   {
 6028     cmpptr(klass, Address(obj, oopDesc::klass_offset_in_bytes()));
 6029   }
 6030 }
 6031 
 6032 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) {
 6033 #ifdef _LP64
 6034   if (UseCompactObjectHeaders) {
 6035     assert(tmp2 != noreg, "need tmp2");
 6036     assert_different_registers(obj1, obj2, tmp1, tmp2);
 6037     load_narrow_klass_compact(tmp1, obj1);
 6038     load_narrow_klass_compact(tmp2, obj2);
 6039     cmpl(tmp1, tmp2);
 6040   } else if (UseCompressedClassPointers) {
 6041     movl(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes()));
 6042     cmpl(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes()));
 6043   } else
 6044 #endif
 6045   {
 6046     movptr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes()));
 6047     cmpptr(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes()));
 6048   }
 6049 }
 6050 
 6051 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 6052                                     Register tmp1, Register thread_tmp) {
 6053   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 6054   decorators = AccessInternal::decorator_fixup(decorators, type);
 6055   bool as_raw = (decorators & AS_RAW) != 0;
 6056   if (as_raw) {
 6057     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
 6058   } else {
 6059     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
 6060   }
 6061 }
 6062 
 6063 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 6064                                      Register tmp1, Register tmp2, Register tmp3) {
 6065   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 6066   decorators = AccessInternal::decorator_fixup(decorators, type);
 6067   bool as_raw = (decorators & AS_RAW) != 0;
 6068   if (as_raw) {
 6069     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
 6070   } else {
 6071     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
 6072   }
 6073 }
 6074 
 6075 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
 6076                                    Register thread_tmp, DecoratorSet decorators) {
 6077   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
 6078 }
 6079 
 6080 // Doesn't do verification, generates fixed size code
 6081 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 6082                                             Register thread_tmp, DecoratorSet decorators) {
 6083   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
 6084 }
 6085 
 6086 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
 6087                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
 6088   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
 6089 }
 6090 
 6091 // Used for storing nulls.
 6092 void MacroAssembler::store_heap_oop_null(Address dst) {
 6093   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
 6094 }
 6095 
 6096 #ifdef _LP64
 6097 void MacroAssembler::store_klass_gap(Register dst, Register src) {
 6098   assert(!UseCompactObjectHeaders, "Don't use with compact headers");
 6099   if (UseCompressedClassPointers) {
 6100     // Store to klass gap in destination
 6101     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
 6102   }
 6103 }
 6104 
 6105 #ifdef ASSERT
 6106 void MacroAssembler::verify_heapbase(const char* msg) {
 6107   assert (UseCompressedOops, "should be compressed");
 6108   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6109   if (CheckCompressedOops) {
 6110     Label ok;
 6111     ExternalAddress src2(CompressedOops::base_addr());
 6112     const bool is_src2_reachable = reachable(src2);
 6113     if (!is_src2_reachable) {
 6114       push(rscratch1);  // cmpptr trashes rscratch1
 6115     }
 6116     cmpptr(r12_heapbase, src2, rscratch1);
 6117     jcc(Assembler::equal, ok);
 6118     STOP(msg);
 6119     bind(ok);
 6120     if (!is_src2_reachable) {
 6121       pop(rscratch1);
 6122     }
 6123   }
 6124 }
 6125 #endif
 6126 
 6127 // Algorithm must match oop.inline.hpp encode_heap_oop.
 6128 void MacroAssembler::encode_heap_oop(Register r) {
 6129 #ifdef ASSERT
 6130   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
 6131 #endif
 6132   verify_oop_msg(r, "broken oop in encode_heap_oop");
 6133   if (CompressedOops::base() == nullptr) {
 6134     if (CompressedOops::shift() != 0) {
 6135       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6136       shrq(r, LogMinObjAlignmentInBytes);
 6137     }
 6138     return;
 6139   }
 6140   testq(r, r);
 6141   cmovq(Assembler::equal, r, r12_heapbase);
 6142   subq(r, r12_heapbase);
 6143   shrq(r, LogMinObjAlignmentInBytes);
 6144 }
 6145 
 6146 void MacroAssembler::encode_heap_oop_not_null(Register r) {
 6147 #ifdef ASSERT
 6148   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
 6149   if (CheckCompressedOops) {
 6150     Label ok;
 6151     testq(r, r);
 6152     jcc(Assembler::notEqual, ok);
 6153     STOP("null oop passed to encode_heap_oop_not_null");
 6154     bind(ok);
 6155   }
 6156 #endif
 6157   verify_oop_msg(r, "broken oop in encode_heap_oop_not_null");
 6158   if (CompressedOops::base() != nullptr) {
 6159     subq(r, r12_heapbase);
 6160   }
 6161   if (CompressedOops::shift() != 0) {
 6162     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6163     shrq(r, LogMinObjAlignmentInBytes);
 6164   }
 6165 }
 6166 
 6167 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
 6168 #ifdef ASSERT
 6169   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
 6170   if (CheckCompressedOops) {
 6171     Label ok;
 6172     testq(src, src);
 6173     jcc(Assembler::notEqual, ok);
 6174     STOP("null oop passed to encode_heap_oop_not_null2");
 6175     bind(ok);
 6176   }
 6177 #endif
 6178   verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2");
 6179   if (dst != src) {
 6180     movq(dst, src);
 6181   }
 6182   if (CompressedOops::base() != nullptr) {
 6183     subq(dst, r12_heapbase);
 6184   }
 6185   if (CompressedOops::shift() != 0) {
 6186     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6187     shrq(dst, LogMinObjAlignmentInBytes);
 6188   }
 6189 }
 6190 
 6191 void  MacroAssembler::decode_heap_oop(Register r) {
 6192 #ifdef ASSERT
 6193   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
 6194 #endif
 6195   if (CompressedOops::base() == nullptr) {
 6196     if (CompressedOops::shift() != 0) {
 6197       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6198       shlq(r, LogMinObjAlignmentInBytes);
 6199     }
 6200   } else {
 6201     Label done;
 6202     shlq(r, LogMinObjAlignmentInBytes);
 6203     jccb(Assembler::equal, done);
 6204     addq(r, r12_heapbase);
 6205     bind(done);
 6206   }
 6207   verify_oop_msg(r, "broken oop in decode_heap_oop");
 6208 }
 6209 
 6210 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
 6211   // Note: it will change flags
 6212   assert (UseCompressedOops, "should only be used for compressed headers");
 6213   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6214   // Cannot assert, unverified entry point counts instructions (see .ad file)
 6215   // vtableStubs also counts instructions in pd_code_size_limit.
 6216   // Also do not verify_oop as this is called by verify_oop.
 6217   if (CompressedOops::shift() != 0) {
 6218     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6219     shlq(r, LogMinObjAlignmentInBytes);
 6220     if (CompressedOops::base() != nullptr) {
 6221       addq(r, r12_heapbase);
 6222     }
 6223   } else {
 6224     assert (CompressedOops::base() == nullptr, "sanity");
 6225   }
 6226 }
 6227 
 6228 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
 6229   // Note: it will change flags
 6230   assert (UseCompressedOops, "should only be used for compressed headers");
 6231   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6232   // Cannot assert, unverified entry point counts instructions (see .ad file)
 6233   // vtableStubs also counts instructions in pd_code_size_limit.
 6234   // Also do not verify_oop as this is called by verify_oop.
 6235   if (CompressedOops::shift() != 0) {
 6236     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6237     if (LogMinObjAlignmentInBytes == Address::times_8) {
 6238       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
 6239     } else {
 6240       if (dst != src) {
 6241         movq(dst, src);
 6242       }
 6243       shlq(dst, LogMinObjAlignmentInBytes);
 6244       if (CompressedOops::base() != nullptr) {
 6245         addq(dst, r12_heapbase);
 6246       }
 6247     }
 6248   } else {
 6249     assert (CompressedOops::base() == nullptr, "sanity");
 6250     if (dst != src) {
 6251       movq(dst, src);
 6252     }
 6253   }
 6254 }
 6255 
 6256 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) {
 6257   assert_different_registers(r, tmp);
 6258   if (CompressedKlassPointers::base() != nullptr) {
 6259     mov64(tmp, (int64_t)CompressedKlassPointers::base());
 6260     subq(r, tmp);
 6261   }
 6262   if (CompressedKlassPointers::shift() != 0) {
 6263     shrq(r, CompressedKlassPointers::shift());
 6264   }
 6265 }
 6266 
 6267 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) {
 6268   assert_different_registers(src, dst);
 6269   if (CompressedKlassPointers::base() != nullptr) {
 6270     mov64(dst, -(int64_t)CompressedKlassPointers::base());
 6271     addq(dst, src);
 6272   } else {
 6273     movptr(dst, src);
 6274   }
 6275   if (CompressedKlassPointers::shift() != 0) {
 6276     shrq(dst, CompressedKlassPointers::shift());
 6277   }
 6278 }
 6279 
 6280 void  MacroAssembler::decode_klass_not_null(Register r, Register tmp) {
 6281   assert_different_registers(r, tmp);
 6282   // Note: it will change flags
 6283   assert(UseCompressedClassPointers, "should only be used for compressed headers");
 6284   // Cannot assert, unverified entry point counts instructions (see .ad file)
 6285   // vtableStubs also counts instructions in pd_code_size_limit.
 6286   // Also do not verify_oop as this is called by verify_oop.
 6287   if (CompressedKlassPointers::shift() != 0) {
 6288     shlq(r, CompressedKlassPointers::shift());
 6289   }
 6290   if (CompressedKlassPointers::base() != nullptr) {
 6291     mov64(tmp, (int64_t)CompressedKlassPointers::base());
 6292     addq(r, tmp);
 6293   }
 6294 }
 6295 
 6296 void  MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) {
 6297   assert_different_registers(src, dst);
 6298   // Note: it will change flags
 6299   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6300   // Cannot assert, unverified entry point counts instructions (see .ad file)
 6301   // vtableStubs also counts instructions in pd_code_size_limit.
 6302   // Also do not verify_oop as this is called by verify_oop.
 6303 
 6304   if (CompressedKlassPointers::base() == nullptr &&
 6305       CompressedKlassPointers::shift() == 0) {
 6306     // The best case scenario is that there is no base or shift. Then it is already
 6307     // a pointer that needs nothing but a register rename.
 6308     movl(dst, src);
 6309   } else {
 6310     if (CompressedKlassPointers::shift() <= Address::times_8) {
 6311       if (CompressedKlassPointers::base() != nullptr) {
 6312         mov64(dst, (int64_t)CompressedKlassPointers::base());
 6313       } else {
 6314         xorq(dst, dst);
 6315       }
 6316       if (CompressedKlassPointers::shift() != 0) {
 6317         assert(CompressedKlassPointers::shift() == Address::times_8, "klass not aligned on 64bits?");
 6318         leaq(dst, Address(dst, src, Address::times_8, 0));
 6319       } else {
 6320         addq(dst, src);
 6321       }
 6322     } else {
 6323       if (CompressedKlassPointers::base() != nullptr) {
 6324         const uint64_t base_right_shifted =
 6325             (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift();
 6326         mov64(dst, base_right_shifted);
 6327       } else {
 6328         xorq(dst, dst);
 6329       }
 6330       addq(dst, src);
 6331       shlq(dst, CompressedKlassPointers::shift());
 6332     }
 6333   }
 6334 }
 6335 
 6336 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
 6337   assert (UseCompressedOops, "should only be used for compressed headers");
 6338   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6339   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6340   int oop_index = oop_recorder()->find_index(obj);
 6341   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6342   mov_narrow_oop(dst, oop_index, rspec);
 6343 }
 6344 
 6345 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
 6346   assert (UseCompressedOops, "should only be used for compressed headers");
 6347   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6348   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6349   int oop_index = oop_recorder()->find_index(obj);
 6350   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6351   mov_narrow_oop(dst, oop_index, rspec);
 6352 }
 6353 
 6354 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
 6355   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6356   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6357   int klass_index = oop_recorder()->find_index(k);
 6358   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6359   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6360 }
 6361 
 6362 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
 6363   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6364   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6365   int klass_index = oop_recorder()->find_index(k);
 6366   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6367   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6368 }
 6369 
 6370 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
 6371   assert (UseCompressedOops, "should only be used for compressed headers");
 6372   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6373   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6374   int oop_index = oop_recorder()->find_index(obj);
 6375   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6376   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 6377 }
 6378 
 6379 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
 6380   assert (UseCompressedOops, "should only be used for compressed headers");
 6381   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6382   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6383   int oop_index = oop_recorder()->find_index(obj);
 6384   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6385   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 6386 }
 6387 
 6388 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
 6389   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6390   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6391   int klass_index = oop_recorder()->find_index(k);
 6392   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6393   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6394 }
 6395 
 6396 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
 6397   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6398   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6399   int klass_index = oop_recorder()->find_index(k);
 6400   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6401   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6402 }
 6403 
 6404 void MacroAssembler::reinit_heapbase() {
 6405   if (UseCompressedOops) {
 6406     if (Universe::heap() != nullptr) {
 6407       if (CompressedOops::base() == nullptr) {
 6408         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
 6409       } else {
 6410         mov64(r12_heapbase, (int64_t)CompressedOops::base());
 6411       }
 6412     } else {
 6413       movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr()));
 6414     }
 6415   }
 6416 }
 6417 
 6418 #endif // _LP64
 6419 
 6420 #if COMPILER2_OR_JVMCI
 6421 
 6422 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers
 6423 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
 6424   // cnt - number of qwords (8-byte words).
 6425   // base - start address, qword aligned.
 6426   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
 6427   bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0);
 6428   if (use64byteVector) {
 6429     vpxor(xtmp, xtmp, xtmp, AVX_512bit);
 6430   } else if (MaxVectorSize >= 32) {
 6431     vpxor(xtmp, xtmp, xtmp, AVX_256bit);
 6432   } else {
 6433     pxor(xtmp, xtmp);
 6434   }
 6435   jmp(L_zero_64_bytes);
 6436 
 6437   BIND(L_loop);
 6438   if (MaxVectorSize >= 32) {
 6439     fill64(base, 0, xtmp, use64byteVector);
 6440   } else {
 6441     movdqu(Address(base,  0), xtmp);
 6442     movdqu(Address(base, 16), xtmp);
 6443     movdqu(Address(base, 32), xtmp);
 6444     movdqu(Address(base, 48), xtmp);
 6445   }
 6446   addptr(base, 64);
 6447 
 6448   BIND(L_zero_64_bytes);
 6449   subptr(cnt, 8);
 6450   jccb(Assembler::greaterEqual, L_loop);
 6451 
 6452   // Copy trailing 64 bytes
 6453   if (use64byteVector) {
 6454     addptr(cnt, 8);
 6455     jccb(Assembler::equal, L_end);
 6456     fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true);
 6457     jmp(L_end);
 6458   } else {
 6459     addptr(cnt, 4);
 6460     jccb(Assembler::less, L_tail);
 6461     if (MaxVectorSize >= 32) {
 6462       vmovdqu(Address(base, 0), xtmp);
 6463     } else {
 6464       movdqu(Address(base,  0), xtmp);
 6465       movdqu(Address(base, 16), xtmp);
 6466     }
 6467   }
 6468   addptr(base, 32);
 6469   subptr(cnt, 4);
 6470 
 6471   BIND(L_tail);
 6472   addptr(cnt, 4);
 6473   jccb(Assembler::lessEqual, L_end);
 6474   if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) {
 6475     fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp);
 6476   } else {
 6477     decrement(cnt);
 6478 
 6479     BIND(L_sloop);
 6480     movq(Address(base, 0), xtmp);
 6481     addptr(base, 8);
 6482     decrement(cnt);
 6483     jccb(Assembler::greaterEqual, L_sloop);
 6484   }
 6485   BIND(L_end);
 6486 }
 6487 
 6488 // Clearing constant sized memory using YMM/ZMM registers.
 6489 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
 6490   assert(UseAVX > 2 && VM_Version::supports_avx512vl(), "");
 6491   bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0);
 6492 
 6493   int vector64_count = (cnt & (~0x7)) >> 3;
 6494   cnt = cnt & 0x7;
 6495   const int fill64_per_loop = 4;
 6496   const int max_unrolled_fill64 = 8;
 6497 
 6498   // 64 byte initialization loop.
 6499   vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit);
 6500   int start64 = 0;
 6501   if (vector64_count > max_unrolled_fill64) {
 6502     Label LOOP;
 6503     Register index = rtmp;
 6504 
 6505     start64 = vector64_count - (vector64_count % fill64_per_loop);
 6506 
 6507     movl(index, 0);
 6508     BIND(LOOP);
 6509     for (int i = 0; i < fill64_per_loop; i++) {
 6510       fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector);
 6511     }
 6512     addl(index, fill64_per_loop * 64);
 6513     cmpl(index, start64 * 64);
 6514     jccb(Assembler::less, LOOP);
 6515   }
 6516   for (int i = start64; i < vector64_count; i++) {
 6517     fill64(base, i * 64, xtmp, use64byteVector);
 6518   }
 6519 
 6520   // Clear remaining 64 byte tail.
 6521   int disp = vector64_count * 64;
 6522   if (cnt) {
 6523     switch (cnt) {
 6524       case 1:
 6525         movq(Address(base, disp), xtmp);
 6526         break;
 6527       case 2:
 6528         evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit);
 6529         break;
 6530       case 3:
 6531         movl(rtmp, 0x7);
 6532         kmovwl(mask, rtmp);
 6533         evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit);
 6534         break;
 6535       case 4:
 6536         evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6537         break;
 6538       case 5:
 6539         if (use64byteVector) {
 6540           movl(rtmp, 0x1F);
 6541           kmovwl(mask, rtmp);
 6542           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 6543         } else {
 6544           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6545           movq(Address(base, disp + 32), xtmp);
 6546         }
 6547         break;
 6548       case 6:
 6549         if (use64byteVector) {
 6550           movl(rtmp, 0x3F);
 6551           kmovwl(mask, rtmp);
 6552           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 6553         } else {
 6554           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6555           evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit);
 6556         }
 6557         break;
 6558       case 7:
 6559         if (use64byteVector) {
 6560           movl(rtmp, 0x7F);
 6561           kmovwl(mask, rtmp);
 6562           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 6563         } else {
 6564           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6565           movl(rtmp, 0x7);
 6566           kmovwl(mask, rtmp);
 6567           evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit);
 6568         }
 6569         break;
 6570       default:
 6571         fatal("Unexpected length : %d\n",cnt);
 6572         break;
 6573     }
 6574   }
 6575 }
 6576 
 6577 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp,
 6578                                bool is_large, KRegister mask) {
 6579   // cnt      - number of qwords (8-byte words).
 6580   // base     - start address, qword aligned.
 6581   // is_large - if optimizers know cnt is larger than InitArrayShortSize
 6582   assert(base==rdi, "base register must be edi for rep stos");
 6583   assert(tmp==rax,   "tmp register must be eax for rep stos");
 6584   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
 6585   assert(InitArrayShortSize % BytesPerLong == 0,
 6586     "InitArrayShortSize should be the multiple of BytesPerLong");
 6587 
 6588   Label DONE;
 6589   if (!is_large || !UseXMMForObjInit) {
 6590     xorptr(tmp, tmp);
 6591   }
 6592 
 6593   if (!is_large) {
 6594     Label LOOP, LONG;
 6595     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
 6596     jccb(Assembler::greater, LONG);
 6597 
 6598     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
 6599 
 6600     decrement(cnt);
 6601     jccb(Assembler::negative, DONE); // Zero length
 6602 
 6603     // Use individual pointer-sized stores for small counts:
 6604     BIND(LOOP);
 6605     movptr(Address(base, cnt, Address::times_ptr), tmp);
 6606     decrement(cnt);
 6607     jccb(Assembler::greaterEqual, LOOP);
 6608     jmpb(DONE);
 6609 
 6610     BIND(LONG);
 6611   }
 6612 
 6613   // Use longer rep-prefixed ops for non-small counts:
 6614   if (UseFastStosb) {
 6615     shlptr(cnt, 3); // convert to number of bytes
 6616     rep_stosb();
 6617   } else if (UseXMMForObjInit) {
 6618     xmm_clear_mem(base, cnt, tmp, xtmp, mask);
 6619   } else {
 6620     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
 6621     rep_stos();
 6622   }
 6623 
 6624   BIND(DONE);
 6625 }
 6626 
 6627 #endif //COMPILER2_OR_JVMCI
 6628 
 6629 
 6630 void MacroAssembler::generate_fill(BasicType t, bool aligned,
 6631                                    Register to, Register value, Register count,
 6632                                    Register rtmp, XMMRegister xtmp) {
 6633   ShortBranchVerifier sbv(this);
 6634   assert_different_registers(to, value, count, rtmp);
 6635   Label L_exit;
 6636   Label L_fill_2_bytes, L_fill_4_bytes;
 6637 
 6638 #if defined(COMPILER2) && defined(_LP64)
 6639   if(MaxVectorSize >=32 &&
 6640      VM_Version::supports_avx512vlbw() &&
 6641      VM_Version::supports_bmi2()) {
 6642     generate_fill_avx3(t, to, value, count, rtmp, xtmp);
 6643     return;
 6644   }
 6645 #endif
 6646 
 6647   int shift = -1;
 6648   switch (t) {
 6649     case T_BYTE:
 6650       shift = 2;
 6651       break;
 6652     case T_SHORT:
 6653       shift = 1;
 6654       break;
 6655     case T_INT:
 6656       shift = 0;
 6657       break;
 6658     default: ShouldNotReachHere();
 6659   }
 6660 
 6661   if (t == T_BYTE) {
 6662     andl(value, 0xff);
 6663     movl(rtmp, value);
 6664     shll(rtmp, 8);
 6665     orl(value, rtmp);
 6666   }
 6667   if (t == T_SHORT) {
 6668     andl(value, 0xffff);
 6669   }
 6670   if (t == T_BYTE || t == T_SHORT) {
 6671     movl(rtmp, value);
 6672     shll(rtmp, 16);
 6673     orl(value, rtmp);
 6674   }
 6675 
 6676   cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
 6677   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
 6678   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 6679     Label L_skip_align2;
 6680     // align source address at 4 bytes address boundary
 6681     if (t == T_BYTE) {
 6682       Label L_skip_align1;
 6683       // One byte misalignment happens only for byte arrays
 6684       testptr(to, 1);
 6685       jccb(Assembler::zero, L_skip_align1);
 6686       movb(Address(to, 0), value);
 6687       increment(to);
 6688       decrement(count);
 6689       BIND(L_skip_align1);
 6690     }
 6691     // Two bytes misalignment happens only for byte and short (char) arrays
 6692     testptr(to, 2);
 6693     jccb(Assembler::zero, L_skip_align2);
 6694     movw(Address(to, 0), value);
 6695     addptr(to, 2);
 6696     subptr(count, 1<<(shift-1));
 6697     BIND(L_skip_align2);
 6698   }
 6699   if (UseSSE < 2) {
 6700     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 6701     // Fill 32-byte chunks
 6702     subptr(count, 8 << shift);
 6703     jcc(Assembler::less, L_check_fill_8_bytes);
 6704     align(16);
 6705 
 6706     BIND(L_fill_32_bytes_loop);
 6707 
 6708     for (int i = 0; i < 32; i += 4) {
 6709       movl(Address(to, i), value);
 6710     }
 6711 
 6712     addptr(to, 32);
 6713     subptr(count, 8 << shift);
 6714     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 6715     BIND(L_check_fill_8_bytes);
 6716     addptr(count, 8 << shift);
 6717     jccb(Assembler::zero, L_exit);
 6718     jmpb(L_fill_8_bytes);
 6719 
 6720     //
 6721     // length is too short, just fill qwords
 6722     //
 6723     BIND(L_fill_8_bytes_loop);
 6724     movl(Address(to, 0), value);
 6725     movl(Address(to, 4), value);
 6726     addptr(to, 8);
 6727     BIND(L_fill_8_bytes);
 6728     subptr(count, 1 << (shift + 1));
 6729     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 6730     // fall through to fill 4 bytes
 6731   } else {
 6732     Label L_fill_32_bytes;
 6733     if (!UseUnalignedLoadStores) {
 6734       // align to 8 bytes, we know we are 4 byte aligned to start
 6735       testptr(to, 4);
 6736       jccb(Assembler::zero, L_fill_32_bytes);
 6737       movl(Address(to, 0), value);
 6738       addptr(to, 4);
 6739       subptr(count, 1<<shift);
 6740     }
 6741     BIND(L_fill_32_bytes);
 6742     {
 6743       assert( UseSSE >= 2, "supported cpu only" );
 6744       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 6745       movdl(xtmp, value);
 6746       if (UseAVX >= 2 && UseUnalignedLoadStores) {
 6747         Label L_check_fill_32_bytes;
 6748         if (UseAVX > 2) {
 6749           // Fill 64-byte chunks
 6750           Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2;
 6751 
 6752           // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2
 6753           cmpptr(count, VM_Version::avx3_threshold());
 6754           jccb(Assembler::below, L_check_fill_64_bytes_avx2);
 6755 
 6756           vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
 6757 
 6758           subptr(count, 16 << shift);
 6759           jccb(Assembler::less, L_check_fill_32_bytes);
 6760           align(16);
 6761 
 6762           BIND(L_fill_64_bytes_loop_avx3);
 6763           evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
 6764           addptr(to, 64);
 6765           subptr(count, 16 << shift);
 6766           jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3);
 6767           jmpb(L_check_fill_32_bytes);
 6768 
 6769           BIND(L_check_fill_64_bytes_avx2);
 6770         }
 6771         // Fill 64-byte chunks
 6772         Label L_fill_64_bytes_loop;
 6773         vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
 6774 
 6775         subptr(count, 16 << shift);
 6776         jcc(Assembler::less, L_check_fill_32_bytes);
 6777         align(16);
 6778 
 6779         BIND(L_fill_64_bytes_loop);
 6780         vmovdqu(Address(to, 0), xtmp);
 6781         vmovdqu(Address(to, 32), xtmp);
 6782         addptr(to, 64);
 6783         subptr(count, 16 << shift);
 6784         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
 6785 
 6786         BIND(L_check_fill_32_bytes);
 6787         addptr(count, 8 << shift);
 6788         jccb(Assembler::less, L_check_fill_8_bytes);
 6789         vmovdqu(Address(to, 0), xtmp);
 6790         addptr(to, 32);
 6791         subptr(count, 8 << shift);
 6792 
 6793         BIND(L_check_fill_8_bytes);
 6794         // clean upper bits of YMM registers
 6795         movdl(xtmp, value);
 6796         pshufd(xtmp, xtmp, 0);
 6797       } else {
 6798         // Fill 32-byte chunks
 6799         pshufd(xtmp, xtmp, 0);
 6800 
 6801         subptr(count, 8 << shift);
 6802         jcc(Assembler::less, L_check_fill_8_bytes);
 6803         align(16);
 6804 
 6805         BIND(L_fill_32_bytes_loop);
 6806 
 6807         if (UseUnalignedLoadStores) {
 6808           movdqu(Address(to, 0), xtmp);
 6809           movdqu(Address(to, 16), xtmp);
 6810         } else {
 6811           movq(Address(to, 0), xtmp);
 6812           movq(Address(to, 8), xtmp);
 6813           movq(Address(to, 16), xtmp);
 6814           movq(Address(to, 24), xtmp);
 6815         }
 6816 
 6817         addptr(to, 32);
 6818         subptr(count, 8 << shift);
 6819         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 6820 
 6821         BIND(L_check_fill_8_bytes);
 6822       }
 6823       addptr(count, 8 << shift);
 6824       jccb(Assembler::zero, L_exit);
 6825       jmpb(L_fill_8_bytes);
 6826 
 6827       //
 6828       // length is too short, just fill qwords
 6829       //
 6830       BIND(L_fill_8_bytes_loop);
 6831       movq(Address(to, 0), xtmp);
 6832       addptr(to, 8);
 6833       BIND(L_fill_8_bytes);
 6834       subptr(count, 1 << (shift + 1));
 6835       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 6836     }
 6837   }
 6838   // fill trailing 4 bytes
 6839   BIND(L_fill_4_bytes);
 6840   testl(count, 1<<shift);
 6841   jccb(Assembler::zero, L_fill_2_bytes);
 6842   movl(Address(to, 0), value);
 6843   if (t == T_BYTE || t == T_SHORT) {
 6844     Label L_fill_byte;
 6845     addptr(to, 4);
 6846     BIND(L_fill_2_bytes);
 6847     // fill trailing 2 bytes
 6848     testl(count, 1<<(shift-1));
 6849     jccb(Assembler::zero, L_fill_byte);
 6850     movw(Address(to, 0), value);
 6851     if (t == T_BYTE) {
 6852       addptr(to, 2);
 6853       BIND(L_fill_byte);
 6854       // fill trailing byte
 6855       testl(count, 1);
 6856       jccb(Assembler::zero, L_exit);
 6857       movb(Address(to, 0), value);
 6858     } else {
 6859       BIND(L_fill_byte);
 6860     }
 6861   } else {
 6862     BIND(L_fill_2_bytes);
 6863   }
 6864   BIND(L_exit);
 6865 }
 6866 
 6867 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) {
 6868   switch(type) {
 6869     case T_BYTE:
 6870     case T_BOOLEAN:
 6871       evpbroadcastb(dst, src, vector_len);
 6872       break;
 6873     case T_SHORT:
 6874     case T_CHAR:
 6875       evpbroadcastw(dst, src, vector_len);
 6876       break;
 6877     case T_INT:
 6878     case T_FLOAT:
 6879       evpbroadcastd(dst, src, vector_len);
 6880       break;
 6881     case T_LONG:
 6882     case T_DOUBLE:
 6883       evpbroadcastq(dst, src, vector_len);
 6884       break;
 6885     default:
 6886       fatal("Unhandled type : %s", type2name(type));
 6887       break;
 6888   }
 6889 }
 6890 
 6891 // encode char[] to byte[] in ISO_8859_1 or ASCII
 6892    //@IntrinsicCandidate
 6893    //private static int implEncodeISOArray(byte[] sa, int sp,
 6894    //byte[] da, int dp, int len) {
 6895    //  int i = 0;
 6896    //  for (; i < len; i++) {
 6897    //    char c = StringUTF16.getChar(sa, sp++);
 6898    //    if (c > '\u00FF')
 6899    //      break;
 6900    //    da[dp++] = (byte)c;
 6901    //  }
 6902    //  return i;
 6903    //}
 6904    //
 6905    //@IntrinsicCandidate
 6906    //private static int implEncodeAsciiArray(char[] sa, int sp,
 6907    //    byte[] da, int dp, int len) {
 6908    //  int i = 0;
 6909    //  for (; i < len; i++) {
 6910    //    char c = sa[sp++];
 6911    //    if (c >= '\u0080')
 6912    //      break;
 6913    //    da[dp++] = (byte)c;
 6914    //  }
 6915    //  return i;
 6916    //}
 6917 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
 6918   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
 6919   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
 6920   Register tmp5, Register result, bool ascii) {
 6921 
 6922   // rsi: src
 6923   // rdi: dst
 6924   // rdx: len
 6925   // rcx: tmp5
 6926   // rax: result
 6927   ShortBranchVerifier sbv(this);
 6928   assert_different_registers(src, dst, len, tmp5, result);
 6929   Label L_done, L_copy_1_char, L_copy_1_char_exit;
 6930 
 6931   int mask = ascii ? 0xff80ff80 : 0xff00ff00;
 6932   int short_mask = ascii ? 0xff80 : 0xff00;
 6933 
 6934   // set result
 6935   xorl(result, result);
 6936   // check for zero length
 6937   testl(len, len);
 6938   jcc(Assembler::zero, L_done);
 6939 
 6940   movl(result, len);
 6941 
 6942   // Setup pointers
 6943   lea(src, Address(src, len, Address::times_2)); // char[]
 6944   lea(dst, Address(dst, len, Address::times_1)); // byte[]
 6945   negptr(len);
 6946 
 6947   if (UseSSE42Intrinsics || UseAVX >= 2) {
 6948     Label L_copy_8_chars, L_copy_8_chars_exit;
 6949     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
 6950 
 6951     if (UseAVX >= 2) {
 6952       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
 6953       movl(tmp5, mask);   // create mask to test for Unicode or non-ASCII chars in vector
 6954       movdl(tmp1Reg, tmp5);
 6955       vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
 6956       jmp(L_chars_32_check);
 6957 
 6958       bind(L_copy_32_chars);
 6959       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
 6960       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
 6961       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
 6962       vptest(tmp2Reg, tmp1Reg);       // check for Unicode or non-ASCII chars in vector
 6963       jccb(Assembler::notZero, L_copy_32_chars_exit);
 6964       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
 6965       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
 6966       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
 6967 
 6968       bind(L_chars_32_check);
 6969       addptr(len, 32);
 6970       jcc(Assembler::lessEqual, L_copy_32_chars);
 6971 
 6972       bind(L_copy_32_chars_exit);
 6973       subptr(len, 16);
 6974       jccb(Assembler::greater, L_copy_16_chars_exit);
 6975 
 6976     } else if (UseSSE42Intrinsics) {
 6977       movl(tmp5, mask);   // create mask to test for Unicode or non-ASCII chars in vector
 6978       movdl(tmp1Reg, tmp5);
 6979       pshufd(tmp1Reg, tmp1Reg, 0);
 6980       jmpb(L_chars_16_check);
 6981     }
 6982 
 6983     bind(L_copy_16_chars);
 6984     if (UseAVX >= 2) {
 6985       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
 6986       vptest(tmp2Reg, tmp1Reg);
 6987       jcc(Assembler::notZero, L_copy_16_chars_exit);
 6988       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
 6989       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
 6990     } else {
 6991       if (UseAVX > 0) {
 6992         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
 6993         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
 6994         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
 6995       } else {
 6996         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
 6997         por(tmp2Reg, tmp3Reg);
 6998         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
 6999         por(tmp2Reg, tmp4Reg);
 7000       }
 7001       ptest(tmp2Reg, tmp1Reg);       // check for Unicode or non-ASCII chars in vector
 7002       jccb(Assembler::notZero, L_copy_16_chars_exit);
 7003       packuswb(tmp3Reg, tmp4Reg);
 7004     }
 7005     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
 7006 
 7007     bind(L_chars_16_check);
 7008     addptr(len, 16);
 7009     jcc(Assembler::lessEqual, L_copy_16_chars);
 7010 
 7011     bind(L_copy_16_chars_exit);
 7012     if (UseAVX >= 2) {
 7013       // clean upper bits of YMM registers
 7014       vpxor(tmp2Reg, tmp2Reg);
 7015       vpxor(tmp3Reg, tmp3Reg);
 7016       vpxor(tmp4Reg, tmp4Reg);
 7017       movdl(tmp1Reg, tmp5);
 7018       pshufd(tmp1Reg, tmp1Reg, 0);
 7019     }
 7020     subptr(len, 8);
 7021     jccb(Assembler::greater, L_copy_8_chars_exit);
 7022 
 7023     bind(L_copy_8_chars);
 7024     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
 7025     ptest(tmp3Reg, tmp1Reg);
 7026     jccb(Assembler::notZero, L_copy_8_chars_exit);
 7027     packuswb(tmp3Reg, tmp1Reg);
 7028     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
 7029     addptr(len, 8);
 7030     jccb(Assembler::lessEqual, L_copy_8_chars);
 7031 
 7032     bind(L_copy_8_chars_exit);
 7033     subptr(len, 8);
 7034     jccb(Assembler::zero, L_done);
 7035   }
 7036 
 7037   bind(L_copy_1_char);
 7038   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
 7039   testl(tmp5, short_mask);      // check if Unicode or non-ASCII char
 7040   jccb(Assembler::notZero, L_copy_1_char_exit);
 7041   movb(Address(dst, len, Address::times_1, 0), tmp5);
 7042   addptr(len, 1);
 7043   jccb(Assembler::less, L_copy_1_char);
 7044 
 7045   bind(L_copy_1_char_exit);
 7046   addptr(result, len); // len is negative count of not processed elements
 7047 
 7048   bind(L_done);
 7049 }
 7050 
 7051 #ifdef _LP64
 7052 /**
 7053  * Helper for multiply_to_len().
 7054  */
 7055 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
 7056   addq(dest_lo, src1);
 7057   adcq(dest_hi, 0);
 7058   addq(dest_lo, src2);
 7059   adcq(dest_hi, 0);
 7060 }
 7061 
 7062 /**
 7063  * Multiply 64 bit by 64 bit first loop.
 7064  */
 7065 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
 7066                                            Register y, Register y_idx, Register z,
 7067                                            Register carry, Register product,
 7068                                            Register idx, Register kdx) {
 7069   //
 7070   //  jlong carry, x[], y[], z[];
 7071   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
 7072   //    huge_128 product = y[idx] * x[xstart] + carry;
 7073   //    z[kdx] = (jlong)product;
 7074   //    carry  = (jlong)(product >>> 64);
 7075   //  }
 7076   //  z[xstart] = carry;
 7077   //
 7078 
 7079   Label L_first_loop, L_first_loop_exit;
 7080   Label L_one_x, L_one_y, L_multiply;
 7081 
 7082   decrementl(xstart);
 7083   jcc(Assembler::negative, L_one_x);
 7084 
 7085   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
 7086   rorq(x_xstart, 32); // convert big-endian to little-endian
 7087 
 7088   bind(L_first_loop);
 7089   decrementl(idx);
 7090   jcc(Assembler::negative, L_first_loop_exit);
 7091   decrementl(idx);
 7092   jcc(Assembler::negative, L_one_y);
 7093   movq(y_idx, Address(y, idx, Address::times_4,  0));
 7094   rorq(y_idx, 32); // convert big-endian to little-endian
 7095   bind(L_multiply);
 7096   movq(product, x_xstart);
 7097   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
 7098   addq(product, carry);
 7099   adcq(rdx, 0);
 7100   subl(kdx, 2);
 7101   movl(Address(z, kdx, Address::times_4,  4), product);
 7102   shrq(product, 32);
 7103   movl(Address(z, kdx, Address::times_4,  0), product);
 7104   movq(carry, rdx);
 7105   jmp(L_first_loop);
 7106 
 7107   bind(L_one_y);
 7108   movl(y_idx, Address(y,  0));
 7109   jmp(L_multiply);
 7110 
 7111   bind(L_one_x);
 7112   movl(x_xstart, Address(x,  0));
 7113   jmp(L_first_loop);
 7114 
 7115   bind(L_first_loop_exit);
 7116 }
 7117 
 7118 /**
 7119  * Multiply 64 bit by 64 bit and add 128 bit.
 7120  */
 7121 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
 7122                                             Register yz_idx, Register idx,
 7123                                             Register carry, Register product, int offset) {
 7124   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
 7125   //     z[kdx] = (jlong)product;
 7126 
 7127   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
 7128   rorq(yz_idx, 32); // convert big-endian to little-endian
 7129   movq(product, x_xstart);
 7130   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
 7131   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
 7132   rorq(yz_idx, 32); // convert big-endian to little-endian
 7133 
 7134   add2_with_carry(rdx, product, carry, yz_idx);
 7135 
 7136   movl(Address(z, idx, Address::times_4,  offset+4), product);
 7137   shrq(product, 32);
 7138   movl(Address(z, idx, Address::times_4,  offset), product);
 7139 
 7140 }
 7141 
 7142 /**
 7143  * Multiply 128 bit by 128 bit. Unrolled inner loop.
 7144  */
 7145 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
 7146                                              Register yz_idx, Register idx, Register jdx,
 7147                                              Register carry, Register product,
 7148                                              Register carry2) {
 7149   //   jlong carry, x[], y[], z[];
 7150   //   int kdx = ystart+1;
 7151   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
 7152   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
 7153   //     z[kdx+idx+1] = (jlong)product;
 7154   //     jlong carry2  = (jlong)(product >>> 64);
 7155   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
 7156   //     z[kdx+idx] = (jlong)product;
 7157   //     carry  = (jlong)(product >>> 64);
 7158   //   }
 7159   //   idx += 2;
 7160   //   if (idx > 0) {
 7161   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
 7162   //     z[kdx+idx] = (jlong)product;
 7163   //     carry  = (jlong)(product >>> 64);
 7164   //   }
 7165   //
 7166 
 7167   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
 7168 
 7169   movl(jdx, idx);
 7170   andl(jdx, 0xFFFFFFFC);
 7171   shrl(jdx, 2);
 7172 
 7173   bind(L_third_loop);
 7174   subl(jdx, 1);
 7175   jcc(Assembler::negative, L_third_loop_exit);
 7176   subl(idx, 4);
 7177 
 7178   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
 7179   movq(carry2, rdx);
 7180 
 7181   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
 7182   movq(carry, rdx);
 7183   jmp(L_third_loop);
 7184 
 7185   bind (L_third_loop_exit);
 7186 
 7187   andl (idx, 0x3);
 7188   jcc(Assembler::zero, L_post_third_loop_done);
 7189 
 7190   Label L_check_1;
 7191   subl(idx, 2);
 7192   jcc(Assembler::negative, L_check_1);
 7193 
 7194   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
 7195   movq(carry, rdx);
 7196 
 7197   bind (L_check_1);
 7198   addl (idx, 0x2);
 7199   andl (idx, 0x1);
 7200   subl(idx, 1);
 7201   jcc(Assembler::negative, L_post_third_loop_done);
 7202 
 7203   movl(yz_idx, Address(y, idx, Address::times_4,  0));
 7204   movq(product, x_xstart);
 7205   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
 7206   movl(yz_idx, Address(z, idx, Address::times_4,  0));
 7207 
 7208   add2_with_carry(rdx, product, yz_idx, carry);
 7209 
 7210   movl(Address(z, idx, Address::times_4,  0), product);
 7211   shrq(product, 32);
 7212 
 7213   shlq(rdx, 32);
 7214   orq(product, rdx);
 7215   movq(carry, product);
 7216 
 7217   bind(L_post_third_loop_done);
 7218 }
 7219 
 7220 /**
 7221  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
 7222  *
 7223  */
 7224 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
 7225                                                   Register carry, Register carry2,
 7226                                                   Register idx, Register jdx,
 7227                                                   Register yz_idx1, Register yz_idx2,
 7228                                                   Register tmp, Register tmp3, Register tmp4) {
 7229   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
 7230 
 7231   //   jlong carry, x[], y[], z[];
 7232   //   int kdx = ystart+1;
 7233   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
 7234   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
 7235   //     jlong carry2  = (jlong)(tmp3 >>> 64);
 7236   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
 7237   //     carry  = (jlong)(tmp4 >>> 64);
 7238   //     z[kdx+idx+1] = (jlong)tmp3;
 7239   //     z[kdx+idx] = (jlong)tmp4;
 7240   //   }
 7241   //   idx += 2;
 7242   //   if (idx > 0) {
 7243   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
 7244   //     z[kdx+idx] = (jlong)yz_idx1;
 7245   //     carry  = (jlong)(yz_idx1 >>> 64);
 7246   //   }
 7247   //
 7248 
 7249   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
 7250 
 7251   movl(jdx, idx);
 7252   andl(jdx, 0xFFFFFFFC);
 7253   shrl(jdx, 2);
 7254 
 7255   bind(L_third_loop);
 7256   subl(jdx, 1);
 7257   jcc(Assembler::negative, L_third_loop_exit);
 7258   subl(idx, 4);
 7259 
 7260   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
 7261   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
 7262   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
 7263   rorxq(yz_idx2, yz_idx2, 32);
 7264 
 7265   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
 7266   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
 7267 
 7268   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
 7269   rorxq(yz_idx1, yz_idx1, 32);
 7270   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
 7271   rorxq(yz_idx2, yz_idx2, 32);
 7272 
 7273   if (VM_Version::supports_adx()) {
 7274     adcxq(tmp3, carry);
 7275     adoxq(tmp3, yz_idx1);
 7276 
 7277     adcxq(tmp4, tmp);
 7278     adoxq(tmp4, yz_idx2);
 7279 
 7280     movl(carry, 0); // does not affect flags
 7281     adcxq(carry2, carry);
 7282     adoxq(carry2, carry);
 7283   } else {
 7284     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
 7285     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
 7286   }
 7287   movq(carry, carry2);
 7288 
 7289   movl(Address(z, idx, Address::times_4, 12), tmp3);
 7290   shrq(tmp3, 32);
 7291   movl(Address(z, idx, Address::times_4,  8), tmp3);
 7292 
 7293   movl(Address(z, idx, Address::times_4,  4), tmp4);
 7294   shrq(tmp4, 32);
 7295   movl(Address(z, idx, Address::times_4,  0), tmp4);
 7296 
 7297   jmp(L_third_loop);
 7298 
 7299   bind (L_third_loop_exit);
 7300 
 7301   andl (idx, 0x3);
 7302   jcc(Assembler::zero, L_post_third_loop_done);
 7303 
 7304   Label L_check_1;
 7305   subl(idx, 2);
 7306   jcc(Assembler::negative, L_check_1);
 7307 
 7308   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
 7309   rorxq(yz_idx1, yz_idx1, 32);
 7310   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
 7311   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
 7312   rorxq(yz_idx2, yz_idx2, 32);
 7313 
 7314   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
 7315 
 7316   movl(Address(z, idx, Address::times_4,  4), tmp3);
 7317   shrq(tmp3, 32);
 7318   movl(Address(z, idx, Address::times_4,  0), tmp3);
 7319   movq(carry, tmp4);
 7320 
 7321   bind (L_check_1);
 7322   addl (idx, 0x2);
 7323   andl (idx, 0x1);
 7324   subl(idx, 1);
 7325   jcc(Assembler::negative, L_post_third_loop_done);
 7326   movl(tmp4, Address(y, idx, Address::times_4,  0));
 7327   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
 7328   movl(tmp4, Address(z, idx, Address::times_4,  0));
 7329 
 7330   add2_with_carry(carry2, tmp3, tmp4, carry);
 7331 
 7332   movl(Address(z, idx, Address::times_4,  0), tmp3);
 7333   shrq(tmp3, 32);
 7334 
 7335   shlq(carry2, 32);
 7336   orq(tmp3, carry2);
 7337   movq(carry, tmp3);
 7338 
 7339   bind(L_post_third_loop_done);
 7340 }
 7341 
 7342 /**
 7343  * Code for BigInteger::multiplyToLen() intrinsic.
 7344  *
 7345  * rdi: x
 7346  * rax: xlen
 7347  * rsi: y
 7348  * rcx: ylen
 7349  * r8:  z
 7350  * r11: tmp0
 7351  * r12: tmp1
 7352  * r13: tmp2
 7353  * r14: tmp3
 7354  * r15: tmp4
 7355  * rbx: tmp5
 7356  *
 7357  */
 7358 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0,
 7359                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
 7360   ShortBranchVerifier sbv(this);
 7361   assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
 7362 
 7363   push(tmp0);
 7364   push(tmp1);
 7365   push(tmp2);
 7366   push(tmp3);
 7367   push(tmp4);
 7368   push(tmp5);
 7369 
 7370   push(xlen);
 7371 
 7372   const Register idx = tmp1;
 7373   const Register kdx = tmp2;
 7374   const Register xstart = tmp3;
 7375 
 7376   const Register y_idx = tmp4;
 7377   const Register carry = tmp5;
 7378   const Register product  = xlen;
 7379   const Register x_xstart = tmp0;
 7380 
 7381   // First Loop.
 7382   //
 7383   //  final static long LONG_MASK = 0xffffffffL;
 7384   //  int xstart = xlen - 1;
 7385   //  int ystart = ylen - 1;
 7386   //  long carry = 0;
 7387   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
 7388   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
 7389   //    z[kdx] = (int)product;
 7390   //    carry = product >>> 32;
 7391   //  }
 7392   //  z[xstart] = (int)carry;
 7393   //
 7394 
 7395   movl(idx, ylen);               // idx = ylen;
 7396   lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen;
 7397   xorq(carry, carry);            // carry = 0;
 7398 
 7399   Label L_done;
 7400 
 7401   movl(xstart, xlen);
 7402   decrementl(xstart);
 7403   jcc(Assembler::negative, L_done);
 7404 
 7405   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
 7406 
 7407   Label L_second_loop;
 7408   testl(kdx, kdx);
 7409   jcc(Assembler::zero, L_second_loop);
 7410 
 7411   Label L_carry;
 7412   subl(kdx, 1);
 7413   jcc(Assembler::zero, L_carry);
 7414 
 7415   movl(Address(z, kdx, Address::times_4,  0), carry);
 7416   shrq(carry, 32);
 7417   subl(kdx, 1);
 7418 
 7419   bind(L_carry);
 7420   movl(Address(z, kdx, Address::times_4,  0), carry);
 7421 
 7422   // Second and third (nested) loops.
 7423   //
 7424   // for (int i = xstart-1; i >= 0; i--) { // Second loop
 7425   //   carry = 0;
 7426   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
 7427   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
 7428   //                    (z[k] & LONG_MASK) + carry;
 7429   //     z[k] = (int)product;
 7430   //     carry = product >>> 32;
 7431   //   }
 7432   //   z[i] = (int)carry;
 7433   // }
 7434   //
 7435   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
 7436 
 7437   const Register jdx = tmp1;
 7438 
 7439   bind(L_second_loop);
 7440   xorl(carry, carry);    // carry = 0;
 7441   movl(jdx, ylen);       // j = ystart+1
 7442 
 7443   subl(xstart, 1);       // i = xstart-1;
 7444   jcc(Assembler::negative, L_done);
 7445 
 7446   push (z);
 7447 
 7448   Label L_last_x;
 7449   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
 7450   subl(xstart, 1);       // i = xstart-1;
 7451   jcc(Assembler::negative, L_last_x);
 7452 
 7453   if (UseBMI2Instructions) {
 7454     movq(rdx,  Address(x, xstart, Address::times_4,  0));
 7455     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
 7456   } else {
 7457     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
 7458     rorq(x_xstart, 32);  // convert big-endian to little-endian
 7459   }
 7460 
 7461   Label L_third_loop_prologue;
 7462   bind(L_third_loop_prologue);
 7463 
 7464   push (x);
 7465   push (xstart);
 7466   push (ylen);
 7467 
 7468 
 7469   if (UseBMI2Instructions) {
 7470     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
 7471   } else { // !UseBMI2Instructions
 7472     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
 7473   }
 7474 
 7475   pop(ylen);
 7476   pop(xlen);
 7477   pop(x);
 7478   pop(z);
 7479 
 7480   movl(tmp3, xlen);
 7481   addl(tmp3, 1);
 7482   movl(Address(z, tmp3, Address::times_4,  0), carry);
 7483   subl(tmp3, 1);
 7484   jccb(Assembler::negative, L_done);
 7485 
 7486   shrq(carry, 32);
 7487   movl(Address(z, tmp3, Address::times_4,  0), carry);
 7488   jmp(L_second_loop);
 7489 
 7490   // Next infrequent code is moved outside loops.
 7491   bind(L_last_x);
 7492   if (UseBMI2Instructions) {
 7493     movl(rdx, Address(x,  0));
 7494   } else {
 7495     movl(x_xstart, Address(x,  0));
 7496   }
 7497   jmp(L_third_loop_prologue);
 7498 
 7499   bind(L_done);
 7500 
 7501   pop(xlen);
 7502 
 7503   pop(tmp5);
 7504   pop(tmp4);
 7505   pop(tmp3);
 7506   pop(tmp2);
 7507   pop(tmp1);
 7508   pop(tmp0);
 7509 }
 7510 
 7511 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
 7512   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
 7513   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
 7514   Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
 7515   Label VECTOR8_TAIL, VECTOR4_TAIL;
 7516   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
 7517   Label SAME_TILL_END, DONE;
 7518   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
 7519 
 7520   //scale is in rcx in both Win64 and Unix
 7521   ShortBranchVerifier sbv(this);
 7522 
 7523   shlq(length);
 7524   xorq(result, result);
 7525 
 7526   if ((AVX3Threshold == 0) && (UseAVX > 2) &&
 7527       VM_Version::supports_avx512vlbw()) {
 7528     Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
 7529 
 7530     cmpq(length, 64);
 7531     jcc(Assembler::less, VECTOR32_TAIL);
 7532 
 7533     movq(tmp1, length);
 7534     andq(tmp1, 0x3F);      // tail count
 7535     andq(length, ~(0x3F)); //vector count
 7536 
 7537     bind(VECTOR64_LOOP);
 7538     // AVX512 code to compare 64 byte vectors.
 7539     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
 7540     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
 7541     kortestql(k7, k7);
 7542     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
 7543     addq(result, 64);
 7544     subq(length, 64);
 7545     jccb(Assembler::notZero, VECTOR64_LOOP);
 7546 
 7547     //bind(VECTOR64_TAIL);
 7548     testq(tmp1, tmp1);
 7549     jcc(Assembler::zero, SAME_TILL_END);
 7550 
 7551     //bind(VECTOR64_TAIL);
 7552     // AVX512 code to compare up to 63 byte vectors.
 7553     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
 7554     shlxq(tmp2, tmp2, tmp1);
 7555     notq(tmp2);
 7556     kmovql(k3, tmp2);
 7557 
 7558     evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit);
 7559     evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
 7560 
 7561     ktestql(k7, k3);
 7562     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
 7563 
 7564     bind(VECTOR64_NOT_EQUAL);
 7565     kmovql(tmp1, k7);
 7566     notq(tmp1);
 7567     tzcntq(tmp1, tmp1);
 7568     addq(result, tmp1);
 7569     shrq(result);
 7570     jmp(DONE);
 7571     bind(VECTOR32_TAIL);
 7572   }
 7573 
 7574   cmpq(length, 8);
 7575   jcc(Assembler::equal, VECTOR8_LOOP);
 7576   jcc(Assembler::less, VECTOR4_TAIL);
 7577 
 7578   if (UseAVX >= 2) {
 7579     Label VECTOR16_TAIL, VECTOR32_LOOP;
 7580 
 7581     cmpq(length, 16);
 7582     jcc(Assembler::equal, VECTOR16_LOOP);
 7583     jcc(Assembler::less, VECTOR8_LOOP);
 7584 
 7585     cmpq(length, 32);
 7586     jccb(Assembler::less, VECTOR16_TAIL);
 7587 
 7588     subq(length, 32);
 7589     bind(VECTOR32_LOOP);
 7590     vmovdqu(rymm0, Address(obja, result));
 7591     vmovdqu(rymm1, Address(objb, result));
 7592     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
 7593     vptest(rymm2, rymm2);
 7594     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
 7595     addq(result, 32);
 7596     subq(length, 32);
 7597     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
 7598     addq(length, 32);
 7599     jcc(Assembler::equal, SAME_TILL_END);
 7600     //falling through if less than 32 bytes left //close the branch here.
 7601 
 7602     bind(VECTOR16_TAIL);
 7603     cmpq(length, 16);
 7604     jccb(Assembler::less, VECTOR8_TAIL);
 7605     bind(VECTOR16_LOOP);
 7606     movdqu(rymm0, Address(obja, result));
 7607     movdqu(rymm1, Address(objb, result));
 7608     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
 7609     ptest(rymm2, rymm2);
 7610     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
 7611     addq(result, 16);
 7612     subq(length, 16);
 7613     jcc(Assembler::equal, SAME_TILL_END);
 7614     //falling through if less than 16 bytes left
 7615   } else {//regular intrinsics
 7616 
 7617     cmpq(length, 16);
 7618     jccb(Assembler::less, VECTOR8_TAIL);
 7619 
 7620     subq(length, 16);
 7621     bind(VECTOR16_LOOP);
 7622     movdqu(rymm0, Address(obja, result));
 7623     movdqu(rymm1, Address(objb, result));
 7624     pxor(rymm0, rymm1);
 7625     ptest(rymm0, rymm0);
 7626     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
 7627     addq(result, 16);
 7628     subq(length, 16);
 7629     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
 7630     addq(length, 16);
 7631     jcc(Assembler::equal, SAME_TILL_END);
 7632     //falling through if less than 16 bytes left
 7633   }
 7634 
 7635   bind(VECTOR8_TAIL);
 7636   cmpq(length, 8);
 7637   jccb(Assembler::less, VECTOR4_TAIL);
 7638   bind(VECTOR8_LOOP);
 7639   movq(tmp1, Address(obja, result));
 7640   movq(tmp2, Address(objb, result));
 7641   xorq(tmp1, tmp2);
 7642   testq(tmp1, tmp1);
 7643   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
 7644   addq(result, 8);
 7645   subq(length, 8);
 7646   jcc(Assembler::equal, SAME_TILL_END);
 7647   //falling through if less than 8 bytes left
 7648 
 7649   bind(VECTOR4_TAIL);
 7650   cmpq(length, 4);
 7651   jccb(Assembler::less, BYTES_TAIL);
 7652   bind(VECTOR4_LOOP);
 7653   movl(tmp1, Address(obja, result));
 7654   xorl(tmp1, Address(objb, result));
 7655   testl(tmp1, tmp1);
 7656   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
 7657   addq(result, 4);
 7658   subq(length, 4);
 7659   jcc(Assembler::equal, SAME_TILL_END);
 7660   //falling through if less than 4 bytes left
 7661 
 7662   bind(BYTES_TAIL);
 7663   bind(BYTES_LOOP);
 7664   load_unsigned_byte(tmp1, Address(obja, result));
 7665   load_unsigned_byte(tmp2, Address(objb, result));
 7666   xorl(tmp1, tmp2);
 7667   testl(tmp1, tmp1);
 7668   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 7669   decq(length);
 7670   jcc(Assembler::zero, SAME_TILL_END);
 7671   incq(result);
 7672   load_unsigned_byte(tmp1, Address(obja, result));
 7673   load_unsigned_byte(tmp2, Address(objb, result));
 7674   xorl(tmp1, tmp2);
 7675   testl(tmp1, tmp1);
 7676   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 7677   decq(length);
 7678   jcc(Assembler::zero, SAME_TILL_END);
 7679   incq(result);
 7680   load_unsigned_byte(tmp1, Address(obja, result));
 7681   load_unsigned_byte(tmp2, Address(objb, result));
 7682   xorl(tmp1, tmp2);
 7683   testl(tmp1, tmp1);
 7684   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 7685   jmp(SAME_TILL_END);
 7686 
 7687   if (UseAVX >= 2) {
 7688     bind(VECTOR32_NOT_EQUAL);
 7689     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
 7690     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
 7691     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
 7692     vpmovmskb(tmp1, rymm0);
 7693     bsfq(tmp1, tmp1);
 7694     addq(result, tmp1);
 7695     shrq(result);
 7696     jmp(DONE);
 7697   }
 7698 
 7699   bind(VECTOR16_NOT_EQUAL);
 7700   if (UseAVX >= 2) {
 7701     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
 7702     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
 7703     pxor(rymm0, rymm2);
 7704   } else {
 7705     pcmpeqb(rymm2, rymm2);
 7706     pxor(rymm0, rymm1);
 7707     pcmpeqb(rymm0, rymm1);
 7708     pxor(rymm0, rymm2);
 7709   }
 7710   pmovmskb(tmp1, rymm0);
 7711   bsfq(tmp1, tmp1);
 7712   addq(result, tmp1);
 7713   shrq(result);
 7714   jmpb(DONE);
 7715 
 7716   bind(VECTOR8_NOT_EQUAL);
 7717   bind(VECTOR4_NOT_EQUAL);
 7718   bsfq(tmp1, tmp1);
 7719   shrq(tmp1, 3);
 7720   addq(result, tmp1);
 7721   bind(BYTES_NOT_EQUAL);
 7722   shrq(result);
 7723   jmpb(DONE);
 7724 
 7725   bind(SAME_TILL_END);
 7726   mov64(result, -1);
 7727 
 7728   bind(DONE);
 7729 }
 7730 
 7731 //Helper functions for square_to_len()
 7732 
 7733 /**
 7734  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
 7735  * Preserves x and z and modifies rest of the registers.
 7736  */
 7737 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 7738   // Perform square and right shift by 1
 7739   // Handle odd xlen case first, then for even xlen do the following
 7740   // jlong carry = 0;
 7741   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
 7742   //     huge_128 product = x[j:j+1] * x[j:j+1];
 7743   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
 7744   //     z[i+2:i+3] = (jlong)(product >>> 1);
 7745   //     carry = (jlong)product;
 7746   // }
 7747 
 7748   xorq(tmp5, tmp5);     // carry
 7749   xorq(rdxReg, rdxReg);
 7750   xorl(tmp1, tmp1);     // index for x
 7751   xorl(tmp4, tmp4);     // index for z
 7752 
 7753   Label L_first_loop, L_first_loop_exit;
 7754 
 7755   testl(xlen, 1);
 7756   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
 7757 
 7758   // Square and right shift by 1 the odd element using 32 bit multiply
 7759   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
 7760   imulq(raxReg, raxReg);
 7761   shrq(raxReg, 1);
 7762   adcq(tmp5, 0);
 7763   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
 7764   incrementl(tmp1);
 7765   addl(tmp4, 2);
 7766 
 7767   // Square and  right shift by 1 the rest using 64 bit multiply
 7768   bind(L_first_loop);
 7769   cmpptr(tmp1, xlen);
 7770   jccb(Assembler::equal, L_first_loop_exit);
 7771 
 7772   // Square
 7773   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
 7774   rorq(raxReg, 32);    // convert big-endian to little-endian
 7775   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
 7776 
 7777   // Right shift by 1 and save carry
 7778   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
 7779   rcrq(rdxReg, 1);
 7780   rcrq(raxReg, 1);
 7781   adcq(tmp5, 0);
 7782 
 7783   // Store result in z
 7784   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
 7785   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
 7786 
 7787   // Update indices for x and z
 7788   addl(tmp1, 2);
 7789   addl(tmp4, 4);
 7790   jmp(L_first_loop);
 7791 
 7792   bind(L_first_loop_exit);
 7793 }
 7794 
 7795 
 7796 /**
 7797  * Perform the following multiply add operation using BMI2 instructions
 7798  * carry:sum = sum + op1*op2 + carry
 7799  * op2 should be in rdx
 7800  * op2 is preserved, all other registers are modified
 7801  */
 7802 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
 7803   // assert op2 is rdx
 7804   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
 7805   addq(sum, carry);
 7806   adcq(tmp2, 0);
 7807   addq(sum, op1);
 7808   adcq(tmp2, 0);
 7809   movq(carry, tmp2);
 7810 }
 7811 
 7812 /**
 7813  * Perform the following multiply add operation:
 7814  * carry:sum = sum + op1*op2 + carry
 7815  * Preserves op1, op2 and modifies rest of registers
 7816  */
 7817 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
 7818   // rdx:rax = op1 * op2
 7819   movq(raxReg, op2);
 7820   mulq(op1);
 7821 
 7822   //  rdx:rax = sum + carry + rdx:rax
 7823   addq(sum, carry);
 7824   adcq(rdxReg, 0);
 7825   addq(sum, raxReg);
 7826   adcq(rdxReg, 0);
 7827 
 7828   // carry:sum = rdx:sum
 7829   movq(carry, rdxReg);
 7830 }
 7831 
 7832 /**
 7833  * Add 64 bit long carry into z[] with carry propagation.
 7834  * Preserves z and carry register values and modifies rest of registers.
 7835  *
 7836  */
 7837 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
 7838   Label L_fourth_loop, L_fourth_loop_exit;
 7839 
 7840   movl(tmp1, 1);
 7841   subl(zlen, 2);
 7842   addq(Address(z, zlen, Address::times_4, 0), carry);
 7843 
 7844   bind(L_fourth_loop);
 7845   jccb(Assembler::carryClear, L_fourth_loop_exit);
 7846   subl(zlen, 2);
 7847   jccb(Assembler::negative, L_fourth_loop_exit);
 7848   addq(Address(z, zlen, Address::times_4, 0), tmp1);
 7849   jmp(L_fourth_loop);
 7850   bind(L_fourth_loop_exit);
 7851 }
 7852 
 7853 /**
 7854  * Shift z[] left by 1 bit.
 7855  * Preserves x, len, z and zlen registers and modifies rest of the registers.
 7856  *
 7857  */
 7858 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
 7859 
 7860   Label L_fifth_loop, L_fifth_loop_exit;
 7861 
 7862   // Fifth loop
 7863   // Perform primitiveLeftShift(z, zlen, 1)
 7864 
 7865   const Register prev_carry = tmp1;
 7866   const Register new_carry = tmp4;
 7867   const Register value = tmp2;
 7868   const Register zidx = tmp3;
 7869 
 7870   // int zidx, carry;
 7871   // long value;
 7872   // carry = 0;
 7873   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
 7874   //    (carry:value)  = (z[i] << 1) | carry ;
 7875   //    z[i] = value;
 7876   // }
 7877 
 7878   movl(zidx, zlen);
 7879   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
 7880 
 7881   bind(L_fifth_loop);
 7882   decl(zidx);  // Use decl to preserve carry flag
 7883   decl(zidx);
 7884   jccb(Assembler::negative, L_fifth_loop_exit);
 7885 
 7886   if (UseBMI2Instructions) {
 7887      movq(value, Address(z, zidx, Address::times_4, 0));
 7888      rclq(value, 1);
 7889      rorxq(value, value, 32);
 7890      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
 7891   }
 7892   else {
 7893     // clear new_carry
 7894     xorl(new_carry, new_carry);
 7895 
 7896     // Shift z[i] by 1, or in previous carry and save new carry
 7897     movq(value, Address(z, zidx, Address::times_4, 0));
 7898     shlq(value, 1);
 7899     adcl(new_carry, 0);
 7900 
 7901     orq(value, prev_carry);
 7902     rorq(value, 0x20);
 7903     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
 7904 
 7905     // Set previous carry = new carry
 7906     movl(prev_carry, new_carry);
 7907   }
 7908   jmp(L_fifth_loop);
 7909 
 7910   bind(L_fifth_loop_exit);
 7911 }
 7912 
 7913 
 7914 /**
 7915  * Code for BigInteger::squareToLen() intrinsic
 7916  *
 7917  * rdi: x
 7918  * rsi: len
 7919  * r8:  z
 7920  * rcx: zlen
 7921  * r12: tmp1
 7922  * r13: tmp2
 7923  * r14: tmp3
 7924  * r15: tmp4
 7925  * rbx: tmp5
 7926  *
 7927  */
 7928 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 7929 
 7930   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
 7931   push(tmp1);
 7932   push(tmp2);
 7933   push(tmp3);
 7934   push(tmp4);
 7935   push(tmp5);
 7936 
 7937   // First loop
 7938   // Store the squares, right shifted one bit (i.e., divided by 2).
 7939   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
 7940 
 7941   // Add in off-diagonal sums.
 7942   //
 7943   // Second, third (nested) and fourth loops.
 7944   // zlen +=2;
 7945   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
 7946   //    carry = 0;
 7947   //    long op2 = x[xidx:xidx+1];
 7948   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
 7949   //       k -= 2;
 7950   //       long op1 = x[j:j+1];
 7951   //       long sum = z[k:k+1];
 7952   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
 7953   //       z[k:k+1] = sum;
 7954   //    }
 7955   //    add_one_64(z, k, carry, tmp_regs);
 7956   // }
 7957 
 7958   const Register carry = tmp5;
 7959   const Register sum = tmp3;
 7960   const Register op1 = tmp4;
 7961   Register op2 = tmp2;
 7962 
 7963   push(zlen);
 7964   push(len);
 7965   addl(zlen,2);
 7966   bind(L_second_loop);
 7967   xorq(carry, carry);
 7968   subl(zlen, 4);
 7969   subl(len, 2);
 7970   push(zlen);
 7971   push(len);
 7972   cmpl(len, 0);
 7973   jccb(Assembler::lessEqual, L_second_loop_exit);
 7974 
 7975   // Multiply an array by one 64 bit long.
 7976   if (UseBMI2Instructions) {
 7977     op2 = rdxReg;
 7978     movq(op2, Address(x, len, Address::times_4,  0));
 7979     rorxq(op2, op2, 32);
 7980   }
 7981   else {
 7982     movq(op2, Address(x, len, Address::times_4,  0));
 7983     rorq(op2, 32);
 7984   }
 7985 
 7986   bind(L_third_loop);
 7987   decrementl(len);
 7988   jccb(Assembler::negative, L_third_loop_exit);
 7989   decrementl(len);
 7990   jccb(Assembler::negative, L_last_x);
 7991 
 7992   movq(op1, Address(x, len, Address::times_4,  0));
 7993   rorq(op1, 32);
 7994 
 7995   bind(L_multiply);
 7996   subl(zlen, 2);
 7997   movq(sum, Address(z, zlen, Address::times_4,  0));
 7998 
 7999   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
 8000   if (UseBMI2Instructions) {
 8001     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
 8002   }
 8003   else {
 8004     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 8005   }
 8006 
 8007   movq(Address(z, zlen, Address::times_4, 0), sum);
 8008 
 8009   jmp(L_third_loop);
 8010   bind(L_third_loop_exit);
 8011 
 8012   // Fourth loop
 8013   // Add 64 bit long carry into z with carry propagation.
 8014   // Uses offsetted zlen.
 8015   add_one_64(z, zlen, carry, tmp1);
 8016 
 8017   pop(len);
 8018   pop(zlen);
 8019   jmp(L_second_loop);
 8020 
 8021   // Next infrequent code is moved outside loops.
 8022   bind(L_last_x);
 8023   movl(op1, Address(x, 0));
 8024   jmp(L_multiply);
 8025 
 8026   bind(L_second_loop_exit);
 8027   pop(len);
 8028   pop(zlen);
 8029   pop(len);
 8030   pop(zlen);
 8031 
 8032   // Fifth loop
 8033   // Shift z left 1 bit.
 8034   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
 8035 
 8036   // z[zlen-1] |= x[len-1] & 1;
 8037   movl(tmp3, Address(x, len, Address::times_4, -4));
 8038   andl(tmp3, 1);
 8039   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
 8040 
 8041   pop(tmp5);
 8042   pop(tmp4);
 8043   pop(tmp3);
 8044   pop(tmp2);
 8045   pop(tmp1);
 8046 }
 8047 
 8048 /**
 8049  * Helper function for mul_add()
 8050  * Multiply the in[] by int k and add to out[] starting at offset offs using
 8051  * 128 bit by 32 bit multiply and return the carry in tmp5.
 8052  * Only quad int aligned length of in[] is operated on in this function.
 8053  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
 8054  * This function preserves out, in and k registers.
 8055  * len and offset point to the appropriate index in "in" & "out" correspondingly
 8056  * tmp5 has the carry.
 8057  * other registers are temporary and are modified.
 8058  *
 8059  */
 8060 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
 8061   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
 8062   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 8063 
 8064   Label L_first_loop, L_first_loop_exit;
 8065 
 8066   movl(tmp1, len);
 8067   shrl(tmp1, 2);
 8068 
 8069   bind(L_first_loop);
 8070   subl(tmp1, 1);
 8071   jccb(Assembler::negative, L_first_loop_exit);
 8072 
 8073   subl(len, 4);
 8074   subl(offset, 4);
 8075 
 8076   Register op2 = tmp2;
 8077   const Register sum = tmp3;
 8078   const Register op1 = tmp4;
 8079   const Register carry = tmp5;
 8080 
 8081   if (UseBMI2Instructions) {
 8082     op2 = rdxReg;
 8083   }
 8084 
 8085   movq(op1, Address(in, len, Address::times_4,  8));
 8086   rorq(op1, 32);
 8087   movq(sum, Address(out, offset, Address::times_4,  8));
 8088   rorq(sum, 32);
 8089   if (UseBMI2Instructions) {
 8090     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 8091   }
 8092   else {
 8093     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 8094   }
 8095   // Store back in big endian from little endian
 8096   rorq(sum, 0x20);
 8097   movq(Address(out, offset, Address::times_4,  8), sum);
 8098 
 8099   movq(op1, Address(in, len, Address::times_4,  0));
 8100   rorq(op1, 32);
 8101   movq(sum, Address(out, offset, Address::times_4,  0));
 8102   rorq(sum, 32);
 8103   if (UseBMI2Instructions) {
 8104     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 8105   }
 8106   else {
 8107     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 8108   }
 8109   // Store back in big endian from little endian
 8110   rorq(sum, 0x20);
 8111   movq(Address(out, offset, Address::times_4,  0), sum);
 8112 
 8113   jmp(L_first_loop);
 8114   bind(L_first_loop_exit);
 8115 }
 8116 
 8117 /**
 8118  * Code for BigInteger::mulAdd() intrinsic
 8119  *
 8120  * rdi: out
 8121  * rsi: in
 8122  * r11: offs (out.length - offset)
 8123  * rcx: len
 8124  * r8:  k
 8125  * r12: tmp1
 8126  * r13: tmp2
 8127  * r14: tmp3
 8128  * r15: tmp4
 8129  * rbx: tmp5
 8130  * Multiply the in[] by word k and add to out[], return the carry in rax
 8131  */
 8132 void MacroAssembler::mul_add(Register out, Register in, Register offs,
 8133    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
 8134    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 8135 
 8136   Label L_carry, L_last_in, L_done;
 8137 
 8138 // carry = 0;
 8139 // for (int j=len-1; j >= 0; j--) {
 8140 //    long product = (in[j] & LONG_MASK) * kLong +
 8141 //                   (out[offs] & LONG_MASK) + carry;
 8142 //    out[offs--] = (int)product;
 8143 //    carry = product >>> 32;
 8144 // }
 8145 //
 8146   push(tmp1);
 8147   push(tmp2);
 8148   push(tmp3);
 8149   push(tmp4);
 8150   push(tmp5);
 8151 
 8152   Register op2 = tmp2;
 8153   const Register sum = tmp3;
 8154   const Register op1 = tmp4;
 8155   const Register carry =  tmp5;
 8156 
 8157   if (UseBMI2Instructions) {
 8158     op2 = rdxReg;
 8159     movl(op2, k);
 8160   }
 8161   else {
 8162     movl(op2, k);
 8163   }
 8164 
 8165   xorq(carry, carry);
 8166 
 8167   //First loop
 8168 
 8169   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
 8170   //The carry is in tmp5
 8171   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
 8172 
 8173   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
 8174   decrementl(len);
 8175   jccb(Assembler::negative, L_carry);
 8176   decrementl(len);
 8177   jccb(Assembler::negative, L_last_in);
 8178 
 8179   movq(op1, Address(in, len, Address::times_4,  0));
 8180   rorq(op1, 32);
 8181 
 8182   subl(offs, 2);
 8183   movq(sum, Address(out, offs, Address::times_4,  0));
 8184   rorq(sum, 32);
 8185 
 8186   if (UseBMI2Instructions) {
 8187     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 8188   }
 8189   else {
 8190     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 8191   }
 8192 
 8193   // Store back in big endian from little endian
 8194   rorq(sum, 0x20);
 8195   movq(Address(out, offs, Address::times_4,  0), sum);
 8196 
 8197   testl(len, len);
 8198   jccb(Assembler::zero, L_carry);
 8199 
 8200   //Multiply the last in[] entry, if any
 8201   bind(L_last_in);
 8202   movl(op1, Address(in, 0));
 8203   movl(sum, Address(out, offs, Address::times_4,  -4));
 8204 
 8205   movl(raxReg, k);
 8206   mull(op1); //tmp4 * eax -> edx:eax
 8207   addl(sum, carry);
 8208   adcl(rdxReg, 0);
 8209   addl(sum, raxReg);
 8210   adcl(rdxReg, 0);
 8211   movl(carry, rdxReg);
 8212 
 8213   movl(Address(out, offs, Address::times_4,  -4), sum);
 8214 
 8215   bind(L_carry);
 8216   //return tmp5/carry as carry in rax
 8217   movl(rax, carry);
 8218 
 8219   bind(L_done);
 8220   pop(tmp5);
 8221   pop(tmp4);
 8222   pop(tmp3);
 8223   pop(tmp2);
 8224   pop(tmp1);
 8225 }
 8226 #endif
 8227 
 8228 /**
 8229  * Emits code to update CRC-32 with a byte value according to constants in table
 8230  *
 8231  * @param [in,out]crc   Register containing the crc.
 8232  * @param [in]val       Register containing the byte to fold into the CRC.
 8233  * @param [in]table     Register containing the table of crc constants.
 8234  *
 8235  * uint32_t crc;
 8236  * val = crc_table[(val ^ crc) & 0xFF];
 8237  * crc = val ^ (crc >> 8);
 8238  *
 8239  */
 8240 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
 8241   xorl(val, crc);
 8242   andl(val, 0xFF);
 8243   shrl(crc, 8); // unsigned shift
 8244   xorl(crc, Address(table, val, Address::times_4, 0));
 8245 }
 8246 
 8247 /**
 8248  * Fold 128-bit data chunk
 8249  */
 8250 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
 8251   if (UseAVX > 0) {
 8252     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
 8253     vpclmulldq(xcrc, xK, xcrc); // [63:0]
 8254     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
 8255     pxor(xcrc, xtmp);
 8256   } else {
 8257     movdqa(xtmp, xcrc);
 8258     pclmulhdq(xtmp, xK);   // [123:64]
 8259     pclmulldq(xcrc, xK);   // [63:0]
 8260     pxor(xcrc, xtmp);
 8261     movdqu(xtmp, Address(buf, offset));
 8262     pxor(xcrc, xtmp);
 8263   }
 8264 }
 8265 
 8266 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
 8267   if (UseAVX > 0) {
 8268     vpclmulhdq(xtmp, xK, xcrc);
 8269     vpclmulldq(xcrc, xK, xcrc);
 8270     pxor(xcrc, xbuf);
 8271     pxor(xcrc, xtmp);
 8272   } else {
 8273     movdqa(xtmp, xcrc);
 8274     pclmulhdq(xtmp, xK);
 8275     pclmulldq(xcrc, xK);
 8276     pxor(xcrc, xbuf);
 8277     pxor(xcrc, xtmp);
 8278   }
 8279 }
 8280 
 8281 /**
 8282  * 8-bit folds to compute 32-bit CRC
 8283  *
 8284  * uint64_t xcrc;
 8285  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
 8286  */
 8287 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
 8288   movdl(tmp, xcrc);
 8289   andl(tmp, 0xFF);
 8290   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
 8291   psrldq(xcrc, 1); // unsigned shift one byte
 8292   pxor(xcrc, xtmp);
 8293 }
 8294 
 8295 /**
 8296  * uint32_t crc;
 8297  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
 8298  */
 8299 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
 8300   movl(tmp, crc);
 8301   andl(tmp, 0xFF);
 8302   shrl(crc, 8);
 8303   xorl(crc, Address(table, tmp, Address::times_4, 0));
 8304 }
 8305 
 8306 /**
 8307  * @param crc   register containing existing CRC (32-bit)
 8308  * @param buf   register pointing to input byte buffer (byte*)
 8309  * @param len   register containing number of bytes
 8310  * @param table register that will contain address of CRC table
 8311  * @param tmp   scratch register
 8312  */
 8313 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
 8314   assert_different_registers(crc, buf, len, table, tmp, rax);
 8315 
 8316   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
 8317   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
 8318 
 8319   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
 8320   // context for the registers used, where all instructions below are using 128-bit mode
 8321   // On EVEX without VL and BW, these instructions will all be AVX.
 8322   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
 8323   notl(crc); // ~crc
 8324   cmpl(len, 16);
 8325   jcc(Assembler::less, L_tail);
 8326 
 8327   // Align buffer to 16 bytes
 8328   movl(tmp, buf);
 8329   andl(tmp, 0xF);
 8330   jccb(Assembler::zero, L_aligned);
 8331   subl(tmp,  16);
 8332   addl(len, tmp);
 8333 
 8334   align(4);
 8335   BIND(L_align_loop);
 8336   movsbl(rax, Address(buf, 0)); // load byte with sign extension
 8337   update_byte_crc32(crc, rax, table);
 8338   increment(buf);
 8339   incrementl(tmp);
 8340   jccb(Assembler::less, L_align_loop);
 8341 
 8342   BIND(L_aligned);
 8343   movl(tmp, len); // save
 8344   shrl(len, 4);
 8345   jcc(Assembler::zero, L_tail_restore);
 8346 
 8347   // Fold crc into first bytes of vector
 8348   movdqa(xmm1, Address(buf, 0));
 8349   movdl(rax, xmm1);
 8350   xorl(crc, rax);
 8351   if (VM_Version::supports_sse4_1()) {
 8352     pinsrd(xmm1, crc, 0);
 8353   } else {
 8354     pinsrw(xmm1, crc, 0);
 8355     shrl(crc, 16);
 8356     pinsrw(xmm1, crc, 1);
 8357   }
 8358   addptr(buf, 16);
 8359   subl(len, 4); // len > 0
 8360   jcc(Assembler::less, L_fold_tail);
 8361 
 8362   movdqa(xmm2, Address(buf,  0));
 8363   movdqa(xmm3, Address(buf, 16));
 8364   movdqa(xmm4, Address(buf, 32));
 8365   addptr(buf, 48);
 8366   subl(len, 3);
 8367   jcc(Assembler::lessEqual, L_fold_512b);
 8368 
 8369   // Fold total 512 bits of polynomial on each iteration,
 8370   // 128 bits per each of 4 parallel streams.
 8371   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1);
 8372 
 8373   align32();
 8374   BIND(L_fold_512b_loop);
 8375   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
 8376   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
 8377   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
 8378   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
 8379   addptr(buf, 64);
 8380   subl(len, 4);
 8381   jcc(Assembler::greater, L_fold_512b_loop);
 8382 
 8383   // Fold 512 bits to 128 bits.
 8384   BIND(L_fold_512b);
 8385   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1);
 8386   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
 8387   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
 8388   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
 8389 
 8390   // Fold the rest of 128 bits data chunks
 8391   BIND(L_fold_tail);
 8392   addl(len, 3);
 8393   jccb(Assembler::lessEqual, L_fold_128b);
 8394   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1);
 8395 
 8396   BIND(L_fold_tail_loop);
 8397   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
 8398   addptr(buf, 16);
 8399   decrementl(len);
 8400   jccb(Assembler::greater, L_fold_tail_loop);
 8401 
 8402   // Fold 128 bits in xmm1 down into 32 bits in crc register.
 8403   BIND(L_fold_128b);
 8404   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1);
 8405   if (UseAVX > 0) {
 8406     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
 8407     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
 8408     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
 8409   } else {
 8410     movdqa(xmm2, xmm0);
 8411     pclmulqdq(xmm2, xmm1, 0x1);
 8412     movdqa(xmm3, xmm0);
 8413     pand(xmm3, xmm2);
 8414     pclmulqdq(xmm0, xmm3, 0x1);
 8415   }
 8416   psrldq(xmm1, 8);
 8417   psrldq(xmm2, 4);
 8418   pxor(xmm0, xmm1);
 8419   pxor(xmm0, xmm2);
 8420 
 8421   // 8 8-bit folds to compute 32-bit CRC.
 8422   for (int j = 0; j < 4; j++) {
 8423     fold_8bit_crc32(xmm0, table, xmm1, rax);
 8424   }
 8425   movdl(crc, xmm0); // mov 32 bits to general register
 8426   for (int j = 0; j < 4; j++) {
 8427     fold_8bit_crc32(crc, table, rax);
 8428   }
 8429 
 8430   BIND(L_tail_restore);
 8431   movl(len, tmp); // restore
 8432   BIND(L_tail);
 8433   andl(len, 0xf);
 8434   jccb(Assembler::zero, L_exit);
 8435 
 8436   // Fold the rest of bytes
 8437   align(4);
 8438   BIND(L_tail_loop);
 8439   movsbl(rax, Address(buf, 0)); // load byte with sign extension
 8440   update_byte_crc32(crc, rax, table);
 8441   increment(buf);
 8442   decrementl(len);
 8443   jccb(Assembler::greater, L_tail_loop);
 8444 
 8445   BIND(L_exit);
 8446   notl(crc); // ~c
 8447 }
 8448 
 8449 #ifdef _LP64
 8450 // Helper function for AVX 512 CRC32
 8451 // Fold 512-bit data chunks
 8452 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf,
 8453                                              Register pos, int offset) {
 8454   evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit);
 8455   evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64]
 8456   evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0]
 8457   evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */);
 8458   evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */);
 8459 }
 8460 
 8461 // Helper function for AVX 512 CRC32
 8462 // Compute CRC32 for < 256B buffers
 8463 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos,
 8464                                               Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
 8465                                               Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) {
 8466 
 8467   Label L_less_than_32, L_exact_16_left, L_less_than_16_left;
 8468   Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left;
 8469   Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2;
 8470 
 8471   // check if there is enough buffer to be able to fold 16B at a time
 8472   cmpl(len, 32);
 8473   jcc(Assembler::less, L_less_than_32);
 8474 
 8475   // if there is, load the constants
 8476   movdqu(xmm10, Address(table, 1 * 16));    //rk1 and rk2 in xmm10
 8477   movdl(xmm0, crc);                        // get the initial crc value
 8478   movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext
 8479   pxor(xmm7, xmm0);
 8480 
 8481   // update the buffer pointer
 8482   addl(pos, 16);
 8483   //update the counter.subtract 32 instead of 16 to save one instruction from the loop
 8484   subl(len, 32);
 8485   jmp(L_16B_reduction_loop);
 8486 
 8487   bind(L_less_than_32);
 8488   //mov initial crc to the return value. this is necessary for zero - length buffers.
 8489   movl(rax, crc);
 8490   testl(len, len);
 8491   jcc(Assembler::equal, L_cleanup);
 8492 
 8493   movdl(xmm0, crc);                        //get the initial crc value
 8494 
 8495   cmpl(len, 16);
 8496   jcc(Assembler::equal, L_exact_16_left);
 8497   jcc(Assembler::less, L_less_than_16_left);
 8498 
 8499   movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext
 8500   pxor(xmm7, xmm0);                       //xor the initial crc value
 8501   addl(pos, 16);
 8502   subl(len, 16);
 8503   movdqu(xmm10, Address(table, 1 * 16));    // rk1 and rk2 in xmm10
 8504   jmp(L_get_last_two_xmms);
 8505 
 8506   bind(L_less_than_16_left);
 8507   //use stack space to load data less than 16 bytes, zero - out the 16B in memory first.
 8508   pxor(xmm1, xmm1);
 8509   movptr(tmp1, rsp);
 8510   movdqu(Address(tmp1, 0 * 16), xmm1);
 8511 
 8512   cmpl(len, 4);
 8513   jcc(Assembler::less, L_only_less_than_4);
 8514 
 8515   //backup the counter value
 8516   movl(tmp2, len);
 8517   cmpl(len, 8);
 8518   jcc(Assembler::less, L_less_than_8_left);
 8519 
 8520   //load 8 Bytes
 8521   movq(rax, Address(buf, pos, Address::times_1, 0 * 16));
 8522   movq(Address(tmp1, 0 * 16), rax);
 8523   addptr(tmp1, 8);
 8524   subl(len, 8);
 8525   addl(pos, 8);
 8526 
 8527   bind(L_less_than_8_left);
 8528   cmpl(len, 4);
 8529   jcc(Assembler::less, L_less_than_4_left);
 8530 
 8531   //load 4 Bytes
 8532   movl(rax, Address(buf, pos, Address::times_1, 0));
 8533   movl(Address(tmp1, 0 * 16), rax);
 8534   addptr(tmp1, 4);
 8535   subl(len, 4);
 8536   addl(pos, 4);
 8537 
 8538   bind(L_less_than_4_left);
 8539   cmpl(len, 2);
 8540   jcc(Assembler::less, L_less_than_2_left);
 8541 
 8542   // load 2 Bytes
 8543   movw(rax, Address(buf, pos, Address::times_1, 0));
 8544   movl(Address(tmp1, 0 * 16), rax);
 8545   addptr(tmp1, 2);
 8546   subl(len, 2);
 8547   addl(pos, 2);
 8548 
 8549   bind(L_less_than_2_left);
 8550   cmpl(len, 1);
 8551   jcc(Assembler::less, L_zero_left);
 8552 
 8553   // load 1 Byte
 8554   movb(rax, Address(buf, pos, Address::times_1, 0));
 8555   movb(Address(tmp1, 0 * 16), rax);
 8556 
 8557   bind(L_zero_left);
 8558   movdqu(xmm7, Address(rsp, 0));
 8559   pxor(xmm7, xmm0);                       //xor the initial crc value
 8560 
 8561   lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr()));
 8562   movdqu(xmm0, Address(rax, tmp2));
 8563   pshufb(xmm7, xmm0);
 8564   jmp(L_128_done);
 8565 
 8566   bind(L_exact_16_left);
 8567   movdqu(xmm7, Address(buf, pos, Address::times_1, 0));
 8568   pxor(xmm7, xmm0);                       //xor the initial crc value
 8569   jmp(L_128_done);
 8570 
 8571   bind(L_only_less_than_4);
 8572   cmpl(len, 3);
 8573   jcc(Assembler::less, L_only_less_than_3);
 8574 
 8575   // load 3 Bytes
 8576   movb(rax, Address(buf, pos, Address::times_1, 0));
 8577   movb(Address(tmp1, 0), rax);
 8578 
 8579   movb(rax, Address(buf, pos, Address::times_1, 1));
 8580   movb(Address(tmp1, 1), rax);
 8581 
 8582   movb(rax, Address(buf, pos, Address::times_1, 2));
 8583   movb(Address(tmp1, 2), rax);
 8584 
 8585   movdqu(xmm7, Address(rsp, 0));
 8586   pxor(xmm7, xmm0);                     //xor the initial crc value
 8587 
 8588   pslldq(xmm7, 0x5);
 8589   jmp(L_barrett);
 8590   bind(L_only_less_than_3);
 8591   cmpl(len, 2);
 8592   jcc(Assembler::less, L_only_less_than_2);
 8593 
 8594   // load 2 Bytes
 8595   movb(rax, Address(buf, pos, Address::times_1, 0));
 8596   movb(Address(tmp1, 0), rax);
 8597 
 8598   movb(rax, Address(buf, pos, Address::times_1, 1));
 8599   movb(Address(tmp1, 1), rax);
 8600 
 8601   movdqu(xmm7, Address(rsp, 0));
 8602   pxor(xmm7, xmm0);                     //xor the initial crc value
 8603 
 8604   pslldq(xmm7, 0x6);
 8605   jmp(L_barrett);
 8606 
 8607   bind(L_only_less_than_2);
 8608   //load 1 Byte
 8609   movb(rax, Address(buf, pos, Address::times_1, 0));
 8610   movb(Address(tmp1, 0), rax);
 8611 
 8612   movdqu(xmm7, Address(rsp, 0));
 8613   pxor(xmm7, xmm0);                     //xor the initial crc value
 8614 
 8615   pslldq(xmm7, 0x7);
 8616 }
 8617 
 8618 /**
 8619 * Compute CRC32 using AVX512 instructions
 8620 * param crc   register containing existing CRC (32-bit)
 8621 * param buf   register pointing to input byte buffer (byte*)
 8622 * param len   register containing number of bytes
 8623 * param table address of crc or crc32c table
 8624 * param tmp1  scratch register
 8625 * param tmp2  scratch register
 8626 * return rax  result register
 8627 *
 8628 * This routine is identical for crc32c with the exception of the precomputed constant
 8629 * table which will be passed as the table argument.  The calculation steps are
 8630 * the same for both variants.
 8631 */
 8632 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) {
 8633   assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12);
 8634 
 8635   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
 8636   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
 8637   Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop;
 8638   Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop;
 8639   Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup;
 8640 
 8641   const Register pos = r12;
 8642   push(r12);
 8643   subptr(rsp, 16 * 2 + 8);
 8644 
 8645   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
 8646   // context for the registers used, where all instructions below are using 128-bit mode
 8647   // On EVEX without VL and BW, these instructions will all be AVX.
 8648   movl(pos, 0);
 8649 
 8650   // check if smaller than 256B
 8651   cmpl(len, 256);
 8652   jcc(Assembler::less, L_less_than_256);
 8653 
 8654   // load the initial crc value
 8655   movdl(xmm10, crc);
 8656 
 8657   // receive the initial 64B data, xor the initial crc value
 8658   evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit);
 8659   evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit);
 8660   evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit);
 8661   evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4
 8662 
 8663   subl(len, 256);
 8664   cmpl(len, 256);
 8665   jcc(Assembler::less, L_fold_128_B_loop);
 8666 
 8667   evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit);
 8668   evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit);
 8669   evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2
 8670   subl(len, 256);
 8671 
 8672   bind(L_fold_256_B_loop);
 8673   addl(pos, 256);
 8674   fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64);
 8675   fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64);
 8676   fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64);
 8677   fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64);
 8678 
 8679   subl(len, 256);
 8680   jcc(Assembler::greaterEqual, L_fold_256_B_loop);
 8681 
 8682   // Fold 256 into 128
 8683   addl(pos, 256);
 8684   evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit);
 8685   evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit);
 8686   vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC
 8687 
 8688   evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit);
 8689   evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit);
 8690   vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC
 8691 
 8692   evmovdquq(xmm0, xmm7, Assembler::AVX_512bit);
 8693   evmovdquq(xmm4, xmm8, Assembler::AVX_512bit);
 8694 
 8695   addl(len, 128);
 8696   jmp(L_fold_128_B_register);
 8697 
 8698   // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop
 8699   // loop will fold 128B at a time until we have 128 + y Bytes of buffer
 8700 
 8701   // fold 128B at a time.This section of the code folds 8 xmm registers in parallel
 8702   bind(L_fold_128_B_loop);
 8703   addl(pos, 128);
 8704   fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64);
 8705   fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64);
 8706 
 8707   subl(len, 128);
 8708   jcc(Assembler::greaterEqual, L_fold_128_B_loop);
 8709 
 8710   addl(pos, 128);
 8711 
 8712   // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
 8713   // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7
 8714   bind(L_fold_128_B_register);
 8715   evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16
 8716   evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0
 8717   evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit);
 8718   evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit);
 8719   // save last that has no multiplicand
 8720   vextracti64x2(xmm7, xmm4, 3);
 8721 
 8722   evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit);
 8723   evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit);
 8724   // Needed later in reduction loop
 8725   movdqu(xmm10, Address(table, 1 * 16));
 8726   vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC
 8727   vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC
 8728 
 8729   // Swap 1,0,3,2 - 01 00 11 10
 8730   evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit);
 8731   evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit);
 8732   vextracti128(xmm5, xmm8, 1);
 8733   evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit);
 8734 
 8735   // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop
 8736   // instead of a cmp instruction, we use the negative flag with the jl instruction
 8737   addl(len, 128 - 16);
 8738   jcc(Assembler::less, L_final_reduction_for_128);
 8739 
 8740   bind(L_16B_reduction_loop);
 8741   vpclmulqdq(xmm8, xmm7, xmm10, 0x01);
 8742   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 8743   vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit);
 8744   movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16));
 8745   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8746   addl(pos, 16);
 8747   subl(len, 16);
 8748   jcc(Assembler::greaterEqual, L_16B_reduction_loop);
 8749 
 8750   bind(L_final_reduction_for_128);
 8751   addl(len, 16);
 8752   jcc(Assembler::equal, L_128_done);
 8753 
 8754   bind(L_get_last_two_xmms);
 8755   movdqu(xmm2, xmm7);
 8756   addl(pos, len);
 8757   movdqu(xmm1, Address(buf, pos, Address::times_1, -16));
 8758   subl(pos, len);
 8759 
 8760   // get rid of the extra data that was loaded before
 8761   // load the shift constant
 8762   lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr()));
 8763   movdqu(xmm0, Address(rax, len));
 8764   addl(rax, len);
 8765 
 8766   vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8767   //Change mask to 512
 8768   vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2);
 8769   vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit);
 8770 
 8771   blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit);
 8772   vpclmulqdq(xmm8, xmm7, xmm10, 0x01);
 8773   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 8774   vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit);
 8775   vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit);
 8776 
 8777   bind(L_128_done);
 8778   // compute crc of a 128-bit value
 8779   movdqu(xmm10, Address(table, 3 * 16));
 8780   movdqu(xmm0, xmm7);
 8781 
 8782   // 64b fold
 8783   vpclmulqdq(xmm7, xmm7, xmm10, 0x0);
 8784   vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit);
 8785   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8786 
 8787   // 32b fold
 8788   movdqu(xmm0, xmm7);
 8789   vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit);
 8790   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 8791   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8792   jmp(L_barrett);
 8793 
 8794   bind(L_less_than_256);
 8795   kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup);
 8796 
 8797   //barrett reduction
 8798   bind(L_barrett);
 8799   vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2);
 8800   movdqu(xmm1, xmm7);
 8801   movdqu(xmm2, xmm7);
 8802   movdqu(xmm10, Address(table, 4 * 16));
 8803 
 8804   pclmulqdq(xmm7, xmm10, 0x0);
 8805   pxor(xmm7, xmm2);
 8806   vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2);
 8807   movdqu(xmm2, xmm7);
 8808   pclmulqdq(xmm7, xmm10, 0x10);
 8809   pxor(xmm7, xmm2);
 8810   pxor(xmm7, xmm1);
 8811   pextrd(crc, xmm7, 2);
 8812 
 8813   bind(L_cleanup);
 8814   addptr(rsp, 16 * 2 + 8);
 8815   pop(r12);
 8816 }
 8817 
 8818 // S. Gueron / Information Processing Letters 112 (2012) 184
 8819 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
 8820 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
 8821 // Output: the 64-bit carry-less product of B * CONST
 8822 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
 8823                                      Register tmp1, Register tmp2, Register tmp3) {
 8824   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
 8825   if (n > 0) {
 8826     addq(tmp3, n * 256 * 8);
 8827   }
 8828   //    Q1 = TABLEExt[n][B & 0xFF];
 8829   movl(tmp1, in);
 8830   andl(tmp1, 0x000000FF);
 8831   shll(tmp1, 3);
 8832   addq(tmp1, tmp3);
 8833   movq(tmp1, Address(tmp1, 0));
 8834 
 8835   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
 8836   movl(tmp2, in);
 8837   shrl(tmp2, 8);
 8838   andl(tmp2, 0x000000FF);
 8839   shll(tmp2, 3);
 8840   addq(tmp2, tmp3);
 8841   movq(tmp2, Address(tmp2, 0));
 8842 
 8843   shlq(tmp2, 8);
 8844   xorq(tmp1, tmp2);
 8845 
 8846   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
 8847   movl(tmp2, in);
 8848   shrl(tmp2, 16);
 8849   andl(tmp2, 0x000000FF);
 8850   shll(tmp2, 3);
 8851   addq(tmp2, tmp3);
 8852   movq(tmp2, Address(tmp2, 0));
 8853 
 8854   shlq(tmp2, 16);
 8855   xorq(tmp1, tmp2);
 8856 
 8857   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
 8858   shrl(in, 24);
 8859   andl(in, 0x000000FF);
 8860   shll(in, 3);
 8861   addq(in, tmp3);
 8862   movq(in, Address(in, 0));
 8863 
 8864   shlq(in, 24);
 8865   xorq(in, tmp1);
 8866   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
 8867 }
 8868 
 8869 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
 8870                                       Register in_out,
 8871                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
 8872                                       XMMRegister w_xtmp2,
 8873                                       Register tmp1,
 8874                                       Register n_tmp2, Register n_tmp3) {
 8875   if (is_pclmulqdq_supported) {
 8876     movdl(w_xtmp1, in_out); // modified blindly
 8877 
 8878     movl(tmp1, const_or_pre_comp_const_index);
 8879     movdl(w_xtmp2, tmp1);
 8880     pclmulqdq(w_xtmp1, w_xtmp2, 0);
 8881 
 8882     movdq(in_out, w_xtmp1);
 8883   } else {
 8884     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
 8885   }
 8886 }
 8887 
 8888 // Recombination Alternative 2: No bit-reflections
 8889 // T1 = (CRC_A * U1) << 1
 8890 // T2 = (CRC_B * U2) << 1
 8891 // C1 = T1 >> 32
 8892 // C2 = T2 >> 32
 8893 // T1 = T1 & 0xFFFFFFFF
 8894 // T2 = T2 & 0xFFFFFFFF
 8895 // T1 = CRC32(0, T1)
 8896 // T2 = CRC32(0, T2)
 8897 // C1 = C1 ^ T1
 8898 // C2 = C2 ^ T2
 8899 // CRC = C1 ^ C2 ^ CRC_C
 8900 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
 8901                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8902                                      Register tmp1, Register tmp2,
 8903                                      Register n_tmp3) {
 8904   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 8905   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 8906   shlq(in_out, 1);
 8907   movl(tmp1, in_out);
 8908   shrq(in_out, 32);
 8909   xorl(tmp2, tmp2);
 8910   crc32(tmp2, tmp1, 4);
 8911   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
 8912   shlq(in1, 1);
 8913   movl(tmp1, in1);
 8914   shrq(in1, 32);
 8915   xorl(tmp2, tmp2);
 8916   crc32(tmp2, tmp1, 4);
 8917   xorl(in1, tmp2);
 8918   xorl(in_out, in1);
 8919   xorl(in_out, in2);
 8920 }
 8921 
 8922 // Set N to predefined value
 8923 // Subtract from a length of a buffer
 8924 // execute in a loop:
 8925 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
 8926 // for i = 1 to N do
 8927 //  CRC_A = CRC32(CRC_A, A[i])
 8928 //  CRC_B = CRC32(CRC_B, B[i])
 8929 //  CRC_C = CRC32(CRC_C, C[i])
 8930 // end for
 8931 // Recombine
 8932 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
 8933                                        Register in_out1, Register in_out2, Register in_out3,
 8934                                        Register tmp1, Register tmp2, Register tmp3,
 8935                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8936                                        Register tmp4, Register tmp5,
 8937                                        Register n_tmp6) {
 8938   Label L_processPartitions;
 8939   Label L_processPartition;
 8940   Label L_exit;
 8941 
 8942   bind(L_processPartitions);
 8943   cmpl(in_out1, 3 * size);
 8944   jcc(Assembler::less, L_exit);
 8945     xorl(tmp1, tmp1);
 8946     xorl(tmp2, tmp2);
 8947     movq(tmp3, in_out2);
 8948     addq(tmp3, size);
 8949 
 8950     bind(L_processPartition);
 8951       crc32(in_out3, Address(in_out2, 0), 8);
 8952       crc32(tmp1, Address(in_out2, size), 8);
 8953       crc32(tmp2, Address(in_out2, size * 2), 8);
 8954       addq(in_out2, 8);
 8955       cmpq(in_out2, tmp3);
 8956       jcc(Assembler::less, L_processPartition);
 8957     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
 8958             w_xtmp1, w_xtmp2, w_xtmp3,
 8959             tmp4, tmp5,
 8960             n_tmp6);
 8961     addq(in_out2, 2 * size);
 8962     subl(in_out1, 3 * size);
 8963     jmp(L_processPartitions);
 8964 
 8965   bind(L_exit);
 8966 }
 8967 #else
 8968 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
 8969                                      Register tmp1, Register tmp2, Register tmp3,
 8970                                      XMMRegister xtmp1, XMMRegister xtmp2) {
 8971   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
 8972   if (n > 0) {
 8973     addl(tmp3, n * 256 * 8);
 8974   }
 8975   //    Q1 = TABLEExt[n][B & 0xFF];
 8976   movl(tmp1, in_out);
 8977   andl(tmp1, 0x000000FF);
 8978   shll(tmp1, 3);
 8979   addl(tmp1, tmp3);
 8980   movq(xtmp1, Address(tmp1, 0));
 8981 
 8982   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
 8983   movl(tmp2, in_out);
 8984   shrl(tmp2, 8);
 8985   andl(tmp2, 0x000000FF);
 8986   shll(tmp2, 3);
 8987   addl(tmp2, tmp3);
 8988   movq(xtmp2, Address(tmp2, 0));
 8989 
 8990   psllq(xtmp2, 8);
 8991   pxor(xtmp1, xtmp2);
 8992 
 8993   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
 8994   movl(tmp2, in_out);
 8995   shrl(tmp2, 16);
 8996   andl(tmp2, 0x000000FF);
 8997   shll(tmp2, 3);
 8998   addl(tmp2, tmp3);
 8999   movq(xtmp2, Address(tmp2, 0));
 9000 
 9001   psllq(xtmp2, 16);
 9002   pxor(xtmp1, xtmp2);
 9003 
 9004   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
 9005   shrl(in_out, 24);
 9006   andl(in_out, 0x000000FF);
 9007   shll(in_out, 3);
 9008   addl(in_out, tmp3);
 9009   movq(xtmp2, Address(in_out, 0));
 9010 
 9011   psllq(xtmp2, 24);
 9012   pxor(xtmp1, xtmp2); // Result in CXMM
 9013   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
 9014 }
 9015 
 9016 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
 9017                                       Register in_out,
 9018                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
 9019                                       XMMRegister w_xtmp2,
 9020                                       Register tmp1,
 9021                                       Register n_tmp2, Register n_tmp3) {
 9022   if (is_pclmulqdq_supported) {
 9023     movdl(w_xtmp1, in_out);
 9024 
 9025     movl(tmp1, const_or_pre_comp_const_index);
 9026     movdl(w_xtmp2, tmp1);
 9027     pclmulqdq(w_xtmp1, w_xtmp2, 0);
 9028     // Keep result in XMM since GPR is 32 bit in length
 9029   } else {
 9030     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
 9031   }
 9032 }
 9033 
 9034 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
 9035                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9036                                      Register tmp1, Register tmp2,
 9037                                      Register n_tmp3) {
 9038   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 9039   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 9040 
 9041   psllq(w_xtmp1, 1);
 9042   movdl(tmp1, w_xtmp1);
 9043   psrlq(w_xtmp1, 32);
 9044   movdl(in_out, w_xtmp1);
 9045 
 9046   xorl(tmp2, tmp2);
 9047   crc32(tmp2, tmp1, 4);
 9048   xorl(in_out, tmp2);
 9049 
 9050   psllq(w_xtmp2, 1);
 9051   movdl(tmp1, w_xtmp2);
 9052   psrlq(w_xtmp2, 32);
 9053   movdl(in1, w_xtmp2);
 9054 
 9055   xorl(tmp2, tmp2);
 9056   crc32(tmp2, tmp1, 4);
 9057   xorl(in1, tmp2);
 9058   xorl(in_out, in1);
 9059   xorl(in_out, in2);
 9060 }
 9061 
 9062 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
 9063                                        Register in_out1, Register in_out2, Register in_out3,
 9064                                        Register tmp1, Register tmp2, Register tmp3,
 9065                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9066                                        Register tmp4, Register tmp5,
 9067                                        Register n_tmp6) {
 9068   Label L_processPartitions;
 9069   Label L_processPartition;
 9070   Label L_exit;
 9071 
 9072   bind(L_processPartitions);
 9073   cmpl(in_out1, 3 * size);
 9074   jcc(Assembler::less, L_exit);
 9075     xorl(tmp1, tmp1);
 9076     xorl(tmp2, tmp2);
 9077     movl(tmp3, in_out2);
 9078     addl(tmp3, size);
 9079 
 9080     bind(L_processPartition);
 9081       crc32(in_out3, Address(in_out2, 0), 4);
 9082       crc32(tmp1, Address(in_out2, size), 4);
 9083       crc32(tmp2, Address(in_out2, size*2), 4);
 9084       crc32(in_out3, Address(in_out2, 0+4), 4);
 9085       crc32(tmp1, Address(in_out2, size+4), 4);
 9086       crc32(tmp2, Address(in_out2, size*2+4), 4);
 9087       addl(in_out2, 8);
 9088       cmpl(in_out2, tmp3);
 9089       jcc(Assembler::less, L_processPartition);
 9090 
 9091         push(tmp3);
 9092         push(in_out1);
 9093         push(in_out2);
 9094         tmp4 = tmp3;
 9095         tmp5 = in_out1;
 9096         n_tmp6 = in_out2;
 9097 
 9098       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
 9099             w_xtmp1, w_xtmp2, w_xtmp3,
 9100             tmp4, tmp5,
 9101             n_tmp6);
 9102 
 9103         pop(in_out2);
 9104         pop(in_out1);
 9105         pop(tmp3);
 9106 
 9107     addl(in_out2, 2 * size);
 9108     subl(in_out1, 3 * size);
 9109     jmp(L_processPartitions);
 9110 
 9111   bind(L_exit);
 9112 }
 9113 #endif //LP64
 9114 
 9115 #ifdef _LP64
 9116 // Algorithm 2: Pipelined usage of the CRC32 instruction.
 9117 // Input: A buffer I of L bytes.
 9118 // Output: the CRC32C value of the buffer.
 9119 // Notations:
 9120 // Write L = 24N + r, with N = floor (L/24).
 9121 // r = L mod 24 (0 <= r < 24).
 9122 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
 9123 // N quadwords, and R consists of r bytes.
 9124 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
 9125 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
 9126 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
 9127 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
 9128 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
 9129                                           Register tmp1, Register tmp2, Register tmp3,
 9130                                           Register tmp4, Register tmp5, Register tmp6,
 9131                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9132                                           bool is_pclmulqdq_supported) {
 9133   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
 9134   Label L_wordByWord;
 9135   Label L_byteByByteProlog;
 9136   Label L_byteByByte;
 9137   Label L_exit;
 9138 
 9139   if (is_pclmulqdq_supported ) {
 9140     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
 9141     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
 9142 
 9143     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
 9144     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
 9145 
 9146     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
 9147     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
 9148     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
 9149   } else {
 9150     const_or_pre_comp_const_index[0] = 1;
 9151     const_or_pre_comp_const_index[1] = 0;
 9152 
 9153     const_or_pre_comp_const_index[2] = 3;
 9154     const_or_pre_comp_const_index[3] = 2;
 9155 
 9156     const_or_pre_comp_const_index[4] = 5;
 9157     const_or_pre_comp_const_index[5] = 4;
 9158    }
 9159   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
 9160                     in2, in1, in_out,
 9161                     tmp1, tmp2, tmp3,
 9162                     w_xtmp1, w_xtmp2, w_xtmp3,
 9163                     tmp4, tmp5,
 9164                     tmp6);
 9165   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
 9166                     in2, in1, in_out,
 9167                     tmp1, tmp2, tmp3,
 9168                     w_xtmp1, w_xtmp2, w_xtmp3,
 9169                     tmp4, tmp5,
 9170                     tmp6);
 9171   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
 9172                     in2, in1, in_out,
 9173                     tmp1, tmp2, tmp3,
 9174                     w_xtmp1, w_xtmp2, w_xtmp3,
 9175                     tmp4, tmp5,
 9176                     tmp6);
 9177   movl(tmp1, in2);
 9178   andl(tmp1, 0x00000007);
 9179   negl(tmp1);
 9180   addl(tmp1, in2);
 9181   addq(tmp1, in1);
 9182 
 9183   cmpq(in1, tmp1);
 9184   jccb(Assembler::greaterEqual, L_byteByByteProlog);
 9185   align(16);
 9186   BIND(L_wordByWord);
 9187     crc32(in_out, Address(in1, 0), 8);
 9188     addq(in1, 8);
 9189     cmpq(in1, tmp1);
 9190     jcc(Assembler::less, L_wordByWord);
 9191 
 9192   BIND(L_byteByByteProlog);
 9193   andl(in2, 0x00000007);
 9194   movl(tmp2, 1);
 9195 
 9196   cmpl(tmp2, in2);
 9197   jccb(Assembler::greater, L_exit);
 9198   BIND(L_byteByByte);
 9199     crc32(in_out, Address(in1, 0), 1);
 9200     incq(in1);
 9201     incl(tmp2);
 9202     cmpl(tmp2, in2);
 9203     jcc(Assembler::lessEqual, L_byteByByte);
 9204 
 9205   BIND(L_exit);
 9206 }
 9207 #else
 9208 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
 9209                                           Register tmp1, Register  tmp2, Register tmp3,
 9210                                           Register tmp4, Register  tmp5, Register tmp6,
 9211                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9212                                           bool is_pclmulqdq_supported) {
 9213   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
 9214   Label L_wordByWord;
 9215   Label L_byteByByteProlog;
 9216   Label L_byteByByte;
 9217   Label L_exit;
 9218 
 9219   if (is_pclmulqdq_supported) {
 9220     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
 9221     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
 9222 
 9223     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
 9224     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
 9225 
 9226     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
 9227     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
 9228   } else {
 9229     const_or_pre_comp_const_index[0] = 1;
 9230     const_or_pre_comp_const_index[1] = 0;
 9231 
 9232     const_or_pre_comp_const_index[2] = 3;
 9233     const_or_pre_comp_const_index[3] = 2;
 9234 
 9235     const_or_pre_comp_const_index[4] = 5;
 9236     const_or_pre_comp_const_index[5] = 4;
 9237   }
 9238   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
 9239                     in2, in1, in_out,
 9240                     tmp1, tmp2, tmp3,
 9241                     w_xtmp1, w_xtmp2, w_xtmp3,
 9242                     tmp4, tmp5,
 9243                     tmp6);
 9244   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
 9245                     in2, in1, in_out,
 9246                     tmp1, tmp2, tmp3,
 9247                     w_xtmp1, w_xtmp2, w_xtmp3,
 9248                     tmp4, tmp5,
 9249                     tmp6);
 9250   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
 9251                     in2, in1, in_out,
 9252                     tmp1, tmp2, tmp3,
 9253                     w_xtmp1, w_xtmp2, w_xtmp3,
 9254                     tmp4, tmp5,
 9255                     tmp6);
 9256   movl(tmp1, in2);
 9257   andl(tmp1, 0x00000007);
 9258   negl(tmp1);
 9259   addl(tmp1, in2);
 9260   addl(tmp1, in1);
 9261 
 9262   BIND(L_wordByWord);
 9263   cmpl(in1, tmp1);
 9264   jcc(Assembler::greaterEqual, L_byteByByteProlog);
 9265     crc32(in_out, Address(in1,0), 4);
 9266     addl(in1, 4);
 9267     jmp(L_wordByWord);
 9268 
 9269   BIND(L_byteByByteProlog);
 9270   andl(in2, 0x00000007);
 9271   movl(tmp2, 1);
 9272 
 9273   BIND(L_byteByByte);
 9274   cmpl(tmp2, in2);
 9275   jccb(Assembler::greater, L_exit);
 9276     movb(tmp1, Address(in1, 0));
 9277     crc32(in_out, tmp1, 1);
 9278     incl(in1);
 9279     incl(tmp2);
 9280     jmp(L_byteByByte);
 9281 
 9282   BIND(L_exit);
 9283 }
 9284 #endif // LP64
 9285 #undef BIND
 9286 #undef BLOCK_COMMENT
 9287 
 9288 // Compress char[] array to byte[].
 9289 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
 9290 // Return the array length if every element in array can be encoded,
 9291 // otherwise, the index of first non-latin1 (> 0xff) character.
 9292 //   @IntrinsicCandidate
 9293 //   public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
 9294 //     for (int i = 0; i < len; i++) {
 9295 //       char c = src[srcOff];
 9296 //       if (c > 0xff) {
 9297 //           return i;  // return index of non-latin1 char
 9298 //       }
 9299 //       dst[dstOff] = (byte)c;
 9300 //       srcOff++;
 9301 //       dstOff++;
 9302 //     }
 9303 //     return len;
 9304 //   }
 9305 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
 9306   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
 9307   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
 9308   Register tmp5, Register result, KRegister mask1, KRegister mask2) {
 9309   Label copy_chars_loop, done, reset_sp, copy_tail;
 9310 
 9311   // rsi: src
 9312   // rdi: dst
 9313   // rdx: len
 9314   // rcx: tmp5
 9315   // rax: result
 9316 
 9317   // rsi holds start addr of source char[] to be compressed
 9318   // rdi holds start addr of destination byte[]
 9319   // rdx holds length
 9320 
 9321   assert(len != result, "");
 9322 
 9323   // save length for return
 9324   movl(result, len);
 9325 
 9326   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
 9327     VM_Version::supports_avx512vlbw() &&
 9328     VM_Version::supports_bmi2()) {
 9329 
 9330     Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail;
 9331 
 9332     // alignment
 9333     Label post_alignment;
 9334 
 9335     // if length of the string is less than 32, handle it the old fashioned way
 9336     testl(len, -32);
 9337     jcc(Assembler::zero, below_threshold);
 9338 
 9339     // First check whether a character is compressible ( <= 0xFF).
 9340     // Create mask to test for Unicode chars inside zmm vector
 9341     movl(tmp5, 0x00FF);
 9342     evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit);
 9343 
 9344     testl(len, -64);
 9345     jccb(Assembler::zero, post_alignment);
 9346 
 9347     movl(tmp5, dst);
 9348     andl(tmp5, (32 - 1));
 9349     negl(tmp5);
 9350     andl(tmp5, (32 - 1));
 9351 
 9352     // bail out when there is nothing to be done
 9353     testl(tmp5, 0xFFFFFFFF);
 9354     jccb(Assembler::zero, post_alignment);
 9355 
 9356     // ~(~0 << len), where len is the # of remaining elements to process
 9357     movl(len, 0xFFFFFFFF);
 9358     shlxl(len, len, tmp5);
 9359     notl(len);
 9360     kmovdl(mask2, len);
 9361     movl(len, result);
 9362 
 9363     evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit);
 9364     evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit);
 9365     ktestd(mask1, mask2);
 9366     jcc(Assembler::carryClear, copy_tail);
 9367 
 9368     evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit);
 9369 
 9370     addptr(src, tmp5);
 9371     addptr(src, tmp5);
 9372     addptr(dst, tmp5);
 9373     subl(len, tmp5);
 9374 
 9375     bind(post_alignment);
 9376     // end of alignment
 9377 
 9378     movl(tmp5, len);
 9379     andl(tmp5, (32 - 1));    // tail count (in chars)
 9380     andl(len, ~(32 - 1));    // vector count (in chars)
 9381     jccb(Assembler::zero, copy_loop_tail);
 9382 
 9383     lea(src, Address(src, len, Address::times_2));
 9384     lea(dst, Address(dst, len, Address::times_1));
 9385     negptr(len);
 9386 
 9387     bind(copy_32_loop);
 9388     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
 9389     evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
 9390     kortestdl(mask1, mask1);
 9391     jccb(Assembler::carryClear, reset_for_copy_tail);
 9392 
 9393     // All elements in current processed chunk are valid candidates for
 9394     // compression. Write a truncated byte elements to the memory.
 9395     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
 9396     addptr(len, 32);
 9397     jccb(Assembler::notZero, copy_32_loop);
 9398 
 9399     bind(copy_loop_tail);
 9400     // bail out when there is nothing to be done
 9401     testl(tmp5, 0xFFFFFFFF);
 9402     jcc(Assembler::zero, done);
 9403 
 9404     movl(len, tmp5);
 9405 
 9406     // ~(~0 << len), where len is the # of remaining elements to process
 9407     movl(tmp5, 0xFFFFFFFF);
 9408     shlxl(tmp5, tmp5, len);
 9409     notl(tmp5);
 9410 
 9411     kmovdl(mask2, tmp5);
 9412 
 9413     evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit);
 9414     evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit);
 9415     ktestd(mask1, mask2);
 9416     jcc(Assembler::carryClear, copy_tail);
 9417 
 9418     evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit);
 9419     jmp(done);
 9420 
 9421     bind(reset_for_copy_tail);
 9422     lea(src, Address(src, tmp5, Address::times_2));
 9423     lea(dst, Address(dst, tmp5, Address::times_1));
 9424     subptr(len, tmp5);
 9425     jmp(copy_chars_loop);
 9426 
 9427     bind(below_threshold);
 9428   }
 9429 
 9430   if (UseSSE42Intrinsics) {
 9431     Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail;
 9432 
 9433     // vectored compression
 9434     testl(len, 0xfffffff8);
 9435     jcc(Assembler::zero, copy_tail);
 9436 
 9437     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
 9438     movdl(tmp1Reg, tmp5);
 9439     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
 9440 
 9441     andl(len, 0xfffffff0);
 9442     jccb(Assembler::zero, copy_16);
 9443 
 9444     // compress 16 chars per iter
 9445     pxor(tmp4Reg, tmp4Reg);
 9446 
 9447     lea(src, Address(src, len, Address::times_2));
 9448     lea(dst, Address(dst, len, Address::times_1));
 9449     negptr(len);
 9450 
 9451     bind(copy_32_loop);
 9452     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
 9453     por(tmp4Reg, tmp2Reg);
 9454     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
 9455     por(tmp4Reg, tmp3Reg);
 9456     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
 9457     jccb(Assembler::notZero, reset_for_copy_tail);
 9458     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
 9459     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
 9460     addptr(len, 16);
 9461     jccb(Assembler::notZero, copy_32_loop);
 9462 
 9463     // compress next vector of 8 chars (if any)
 9464     bind(copy_16);
 9465     // len = 0
 9466     testl(result, 0x00000008);     // check if there's a block of 8 chars to compress
 9467     jccb(Assembler::zero, copy_tail_sse);
 9468 
 9469     pxor(tmp3Reg, tmp3Reg);
 9470 
 9471     movdqu(tmp2Reg, Address(src, 0));
 9472     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
 9473     jccb(Assembler::notZero, reset_for_copy_tail);
 9474     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
 9475     movq(Address(dst, 0), tmp2Reg);
 9476     addptr(src, 16);
 9477     addptr(dst, 8);
 9478     jmpb(copy_tail_sse);
 9479 
 9480     bind(reset_for_copy_tail);
 9481     movl(tmp5, result);
 9482     andl(tmp5, 0x0000000f);
 9483     lea(src, Address(src, tmp5, Address::times_2));
 9484     lea(dst, Address(dst, tmp5, Address::times_1));
 9485     subptr(len, tmp5);
 9486     jmpb(copy_chars_loop);
 9487 
 9488     bind(copy_tail_sse);
 9489     movl(len, result);
 9490     andl(len, 0x00000007);    // tail count (in chars)
 9491   }
 9492   // compress 1 char per iter
 9493   bind(copy_tail);
 9494   testl(len, len);
 9495   jccb(Assembler::zero, done);
 9496   lea(src, Address(src, len, Address::times_2));
 9497   lea(dst, Address(dst, len, Address::times_1));
 9498   negptr(len);
 9499 
 9500   bind(copy_chars_loop);
 9501   load_unsigned_short(tmp5, Address(src, len, Address::times_2));
 9502   testl(tmp5, 0xff00);      // check if Unicode char
 9503   jccb(Assembler::notZero, reset_sp);
 9504   movb(Address(dst, len, Address::times_1), tmp5);  // ASCII char; compress to 1 byte
 9505   increment(len);
 9506   jccb(Assembler::notZero, copy_chars_loop);
 9507 
 9508   // add len then return (len will be zero if compress succeeded, otherwise negative)
 9509   bind(reset_sp);
 9510   addl(result, len);
 9511 
 9512   bind(done);
 9513 }
 9514 
 9515 // Inflate byte[] array to char[].
 9516 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
 9517 //   @IntrinsicCandidate
 9518 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
 9519 //     for (int i = 0; i < len; i++) {
 9520 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
 9521 //     }
 9522 //   }
 9523 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
 9524   XMMRegister tmp1, Register tmp2, KRegister mask) {
 9525   Label copy_chars_loop, done, below_threshold, avx3_threshold;
 9526   // rsi: src
 9527   // rdi: dst
 9528   // rdx: len
 9529   // rcx: tmp2
 9530 
 9531   // rsi holds start addr of source byte[] to be inflated
 9532   // rdi holds start addr of destination char[]
 9533   // rdx holds length
 9534   assert_different_registers(src, dst, len, tmp2);
 9535   movl(tmp2, len);
 9536   if ((UseAVX > 2) && // AVX512
 9537     VM_Version::supports_avx512vlbw() &&
 9538     VM_Version::supports_bmi2()) {
 9539 
 9540     Label copy_32_loop, copy_tail;
 9541     Register tmp3_aliased = len;
 9542 
 9543     // if length of the string is less than 16, handle it in an old fashioned way
 9544     testl(len, -16);
 9545     jcc(Assembler::zero, below_threshold);
 9546 
 9547     testl(len, -1 * AVX3Threshold);
 9548     jcc(Assembler::zero, avx3_threshold);
 9549 
 9550     // In order to use only one arithmetic operation for the main loop we use
 9551     // this pre-calculation
 9552     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
 9553     andl(len, -32);     // vector count
 9554     jccb(Assembler::zero, copy_tail);
 9555 
 9556     lea(src, Address(src, len, Address::times_1));
 9557     lea(dst, Address(dst, len, Address::times_2));
 9558     negptr(len);
 9559 
 9560 
 9561     // inflate 32 chars per iter
 9562     bind(copy_32_loop);
 9563     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
 9564     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
 9565     addptr(len, 32);
 9566     jcc(Assembler::notZero, copy_32_loop);
 9567 
 9568     bind(copy_tail);
 9569     // bail out when there is nothing to be done
 9570     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
 9571     jcc(Assembler::zero, done);
 9572 
 9573     // ~(~0 << length), where length is the # of remaining elements to process
 9574     movl(tmp3_aliased, -1);
 9575     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
 9576     notl(tmp3_aliased);
 9577     kmovdl(mask, tmp3_aliased);
 9578     evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit);
 9579     evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit);
 9580 
 9581     jmp(done);
 9582     bind(avx3_threshold);
 9583   }
 9584   if (UseSSE42Intrinsics) {
 9585     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
 9586 
 9587     if (UseAVX > 1) {
 9588       andl(tmp2, (16 - 1));
 9589       andl(len, -16);
 9590       jccb(Assembler::zero, copy_new_tail);
 9591     } else {
 9592       andl(tmp2, 0x00000007);   // tail count (in chars)
 9593       andl(len, 0xfffffff8);    // vector count (in chars)
 9594       jccb(Assembler::zero, copy_tail);
 9595     }
 9596 
 9597     // vectored inflation
 9598     lea(src, Address(src, len, Address::times_1));
 9599     lea(dst, Address(dst, len, Address::times_2));
 9600     negptr(len);
 9601 
 9602     if (UseAVX > 1) {
 9603       bind(copy_16_loop);
 9604       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
 9605       vmovdqu(Address(dst, len, Address::times_2), tmp1);
 9606       addptr(len, 16);
 9607       jcc(Assembler::notZero, copy_16_loop);
 9608 
 9609       bind(below_threshold);
 9610       bind(copy_new_tail);
 9611       movl(len, tmp2);
 9612       andl(tmp2, 0x00000007);
 9613       andl(len, 0xFFFFFFF8);
 9614       jccb(Assembler::zero, copy_tail);
 9615 
 9616       pmovzxbw(tmp1, Address(src, 0));
 9617       movdqu(Address(dst, 0), tmp1);
 9618       addptr(src, 8);
 9619       addptr(dst, 2 * 8);
 9620 
 9621       jmp(copy_tail, true);
 9622     }
 9623 
 9624     // inflate 8 chars per iter
 9625     bind(copy_8_loop);
 9626     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
 9627     movdqu(Address(dst, len, Address::times_2), tmp1);
 9628     addptr(len, 8);
 9629     jcc(Assembler::notZero, copy_8_loop);
 9630 
 9631     bind(copy_tail);
 9632     movl(len, tmp2);
 9633 
 9634     cmpl(len, 4);
 9635     jccb(Assembler::less, copy_bytes);
 9636 
 9637     movdl(tmp1, Address(src, 0));  // load 4 byte chars
 9638     pmovzxbw(tmp1, tmp1);
 9639     movq(Address(dst, 0), tmp1);
 9640     subptr(len, 4);
 9641     addptr(src, 4);
 9642     addptr(dst, 8);
 9643 
 9644     bind(copy_bytes);
 9645   } else {
 9646     bind(below_threshold);
 9647   }
 9648 
 9649   testl(len, len);
 9650   jccb(Assembler::zero, done);
 9651   lea(src, Address(src, len, Address::times_1));
 9652   lea(dst, Address(dst, len, Address::times_2));
 9653   negptr(len);
 9654 
 9655   // inflate 1 char per iter
 9656   bind(copy_chars_loop);
 9657   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
 9658   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
 9659   increment(len);
 9660   jcc(Assembler::notZero, copy_chars_loop);
 9661 
 9662   bind(done);
 9663 }
 9664 
 9665 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len) {
 9666   switch(type) {
 9667     case T_BYTE:
 9668     case T_BOOLEAN:
 9669       evmovdqub(dst, kmask, src, merge, vector_len);
 9670       break;
 9671     case T_CHAR:
 9672     case T_SHORT:
 9673       evmovdquw(dst, kmask, src, merge, vector_len);
 9674       break;
 9675     case T_INT:
 9676     case T_FLOAT:
 9677       evmovdqul(dst, kmask, src, merge, vector_len);
 9678       break;
 9679     case T_LONG:
 9680     case T_DOUBLE:
 9681       evmovdquq(dst, kmask, src, merge, vector_len);
 9682       break;
 9683     default:
 9684       fatal("Unexpected type argument %s", type2name(type));
 9685       break;
 9686   }
 9687 }
 9688 
 9689 
 9690 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) {
 9691   switch(type) {
 9692     case T_BYTE:
 9693     case T_BOOLEAN:
 9694       evmovdqub(dst, kmask, src, merge, vector_len);
 9695       break;
 9696     case T_CHAR:
 9697     case T_SHORT:
 9698       evmovdquw(dst, kmask, src, merge, vector_len);
 9699       break;
 9700     case T_INT:
 9701     case T_FLOAT:
 9702       evmovdqul(dst, kmask, src, merge, vector_len);
 9703       break;
 9704     case T_LONG:
 9705     case T_DOUBLE:
 9706       evmovdquq(dst, kmask, src, merge, vector_len);
 9707       break;
 9708     default:
 9709       fatal("Unexpected type argument %s", type2name(type));
 9710       break;
 9711   }
 9712 }
 9713 
 9714 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) {
 9715   switch(type) {
 9716     case T_BYTE:
 9717     case T_BOOLEAN:
 9718       evmovdqub(dst, kmask, src, merge, vector_len);
 9719       break;
 9720     case T_CHAR:
 9721     case T_SHORT:
 9722       evmovdquw(dst, kmask, src, merge, vector_len);
 9723       break;
 9724     case T_INT:
 9725     case T_FLOAT:
 9726       evmovdqul(dst, kmask, src, merge, vector_len);
 9727       break;
 9728     case T_LONG:
 9729     case T_DOUBLE:
 9730       evmovdquq(dst, kmask, src, merge, vector_len);
 9731       break;
 9732     default:
 9733       fatal("Unexpected type argument %s", type2name(type));
 9734       break;
 9735   }
 9736 }
 9737 
 9738 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) {
 9739   switch(masklen) {
 9740     case 2:
 9741        knotbl(dst, src);
 9742        movl(rtmp, 3);
 9743        kmovbl(ktmp, rtmp);
 9744        kandbl(dst, ktmp, dst);
 9745        break;
 9746     case 4:
 9747        knotbl(dst, src);
 9748        movl(rtmp, 15);
 9749        kmovbl(ktmp, rtmp);
 9750        kandbl(dst, ktmp, dst);
 9751        break;
 9752     case 8:
 9753        knotbl(dst, src);
 9754        break;
 9755     case 16:
 9756        knotwl(dst, src);
 9757        break;
 9758     case 32:
 9759        knotdl(dst, src);
 9760        break;
 9761     case 64:
 9762        knotql(dst, src);
 9763        break;
 9764     default:
 9765       fatal("Unexpected vector length %d", masklen);
 9766       break;
 9767   }
 9768 }
 9769 
 9770 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
 9771   switch(type) {
 9772     case T_BOOLEAN:
 9773     case T_BYTE:
 9774        kandbl(dst, src1, src2);
 9775        break;
 9776     case T_CHAR:
 9777     case T_SHORT:
 9778        kandwl(dst, src1, src2);
 9779        break;
 9780     case T_INT:
 9781     case T_FLOAT:
 9782        kanddl(dst, src1, src2);
 9783        break;
 9784     case T_LONG:
 9785     case T_DOUBLE:
 9786        kandql(dst, src1, src2);
 9787        break;
 9788     default:
 9789       fatal("Unexpected type argument %s", type2name(type));
 9790       break;
 9791   }
 9792 }
 9793 
 9794 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
 9795   switch(type) {
 9796     case T_BOOLEAN:
 9797     case T_BYTE:
 9798        korbl(dst, src1, src2);
 9799        break;
 9800     case T_CHAR:
 9801     case T_SHORT:
 9802        korwl(dst, src1, src2);
 9803        break;
 9804     case T_INT:
 9805     case T_FLOAT:
 9806        kordl(dst, src1, src2);
 9807        break;
 9808     case T_LONG:
 9809     case T_DOUBLE:
 9810        korql(dst, src1, src2);
 9811        break;
 9812     default:
 9813       fatal("Unexpected type argument %s", type2name(type));
 9814       break;
 9815   }
 9816 }
 9817 
 9818 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
 9819   switch(type) {
 9820     case T_BOOLEAN:
 9821     case T_BYTE:
 9822        kxorbl(dst, src1, src2);
 9823        break;
 9824     case T_CHAR:
 9825     case T_SHORT:
 9826        kxorwl(dst, src1, src2);
 9827        break;
 9828     case T_INT:
 9829     case T_FLOAT:
 9830        kxordl(dst, src1, src2);
 9831        break;
 9832     case T_LONG:
 9833     case T_DOUBLE:
 9834        kxorql(dst, src1, src2);
 9835        break;
 9836     default:
 9837       fatal("Unexpected type argument %s", type2name(type));
 9838       break;
 9839   }
 9840 }
 9841 
 9842 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9843   switch(type) {
 9844     case T_BOOLEAN:
 9845     case T_BYTE:
 9846       evpermb(dst, mask, nds, src, merge, vector_len); break;
 9847     case T_CHAR:
 9848     case T_SHORT:
 9849       evpermw(dst, mask, nds, src, merge, vector_len); break;
 9850     case T_INT:
 9851     case T_FLOAT:
 9852       evpermd(dst, mask, nds, src, merge, vector_len); break;
 9853     case T_LONG:
 9854     case T_DOUBLE:
 9855       evpermq(dst, mask, nds, src, merge, vector_len); break;
 9856     default:
 9857       fatal("Unexpected type argument %s", type2name(type)); break;
 9858   }
 9859 }
 9860 
 9861 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9862   switch(type) {
 9863     case T_BOOLEAN:
 9864     case T_BYTE:
 9865       evpermb(dst, mask, nds, src, merge, vector_len); break;
 9866     case T_CHAR:
 9867     case T_SHORT:
 9868       evpermw(dst, mask, nds, src, merge, vector_len); break;
 9869     case T_INT:
 9870     case T_FLOAT:
 9871       evpermd(dst, mask, nds, src, merge, vector_len); break;
 9872     case T_LONG:
 9873     case T_DOUBLE:
 9874       evpermq(dst, mask, nds, src, merge, vector_len); break;
 9875     default:
 9876       fatal("Unexpected type argument %s", type2name(type)); break;
 9877   }
 9878 }
 9879 
 9880 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9881   switch(type) {
 9882     case T_BYTE:
 9883       evpminub(dst, mask, nds, src, merge, vector_len); break;
 9884     case T_SHORT:
 9885       evpminuw(dst, mask, nds, src, merge, vector_len); break;
 9886     case T_INT:
 9887       evpminud(dst, mask, nds, src, merge, vector_len); break;
 9888     case T_LONG:
 9889       evpminuq(dst, mask, nds, src, merge, vector_len); break;
 9890     default:
 9891       fatal("Unexpected type argument %s", type2name(type)); break;
 9892   }
 9893 }
 9894 
 9895 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9896   switch(type) {
 9897     case T_BYTE:
 9898       evpmaxub(dst, mask, nds, src, merge, vector_len); break;
 9899     case T_SHORT:
 9900       evpmaxuw(dst, mask, nds, src, merge, vector_len); break;
 9901     case T_INT:
 9902       evpmaxud(dst, mask, nds, src, merge, vector_len); break;
 9903     case T_LONG:
 9904       evpmaxuq(dst, mask, nds, src, merge, vector_len); break;
 9905     default:
 9906       fatal("Unexpected type argument %s", type2name(type)); break;
 9907   }
 9908 }
 9909 
 9910 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9911   switch(type) {
 9912     case T_BYTE:
 9913       evpminub(dst, mask, nds, src, merge, vector_len); break;
 9914     case T_SHORT:
 9915       evpminuw(dst, mask, nds, src, merge, vector_len); break;
 9916     case T_INT:
 9917       evpminud(dst, mask, nds, src, merge, vector_len); break;
 9918     case T_LONG:
 9919       evpminuq(dst, mask, nds, src, merge, vector_len); break;
 9920     default:
 9921       fatal("Unexpected type argument %s", type2name(type)); break;
 9922   }
 9923 }
 9924 
 9925 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9926   switch(type) {
 9927     case T_BYTE:
 9928       evpmaxub(dst, mask, nds, src, merge, vector_len); break;
 9929     case T_SHORT:
 9930       evpmaxuw(dst, mask, nds, src, merge, vector_len); break;
 9931     case T_INT:
 9932       evpmaxud(dst, mask, nds, src, merge, vector_len); break;
 9933     case T_LONG:
 9934       evpmaxuq(dst, mask, nds, src, merge, vector_len); break;
 9935     default:
 9936       fatal("Unexpected type argument %s", type2name(type)); break;
 9937   }
 9938 }
 9939 
 9940 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9941   switch(type) {
 9942     case T_BYTE:
 9943       evpminsb(dst, mask, nds, src, merge, vector_len); break;
 9944     case T_SHORT:
 9945       evpminsw(dst, mask, nds, src, merge, vector_len); break;
 9946     case T_INT:
 9947       evpminsd(dst, mask, nds, src, merge, vector_len); break;
 9948     case T_LONG:
 9949       evpminsq(dst, mask, nds, src, merge, vector_len); break;
 9950     default:
 9951       fatal("Unexpected type argument %s", type2name(type)); break;
 9952   }
 9953 }
 9954 
 9955 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9956   switch(type) {
 9957     case T_BYTE:
 9958       evpmaxsb(dst, mask, nds, src, merge, vector_len); break;
 9959     case T_SHORT:
 9960       evpmaxsw(dst, mask, nds, src, merge, vector_len); break;
 9961     case T_INT:
 9962       evpmaxsd(dst, mask, nds, src, merge, vector_len); break;
 9963     case T_LONG:
 9964       evpmaxsq(dst, mask, nds, src, merge, vector_len); break;
 9965     default:
 9966       fatal("Unexpected type argument %s", type2name(type)); break;
 9967   }
 9968 }
 9969 
 9970 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9971   switch(type) {
 9972     case T_BYTE:
 9973       evpminsb(dst, mask, nds, src, merge, vector_len); break;
 9974     case T_SHORT:
 9975       evpminsw(dst, mask, nds, src, merge, vector_len); break;
 9976     case T_INT:
 9977       evpminsd(dst, mask, nds, src, merge, vector_len); break;
 9978     case T_LONG:
 9979       evpminsq(dst, mask, nds, src, merge, vector_len); break;
 9980     default:
 9981       fatal("Unexpected type argument %s", type2name(type)); break;
 9982   }
 9983 }
 9984 
 9985 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9986   switch(type) {
 9987     case T_BYTE:
 9988       evpmaxsb(dst, mask, nds, src, merge, vector_len); break;
 9989     case T_SHORT:
 9990       evpmaxsw(dst, mask, nds, src, merge, vector_len); break;
 9991     case T_INT:
 9992       evpmaxsd(dst, mask, nds, src, merge, vector_len); break;
 9993     case T_LONG:
 9994       evpmaxsq(dst, mask, nds, src, merge, vector_len); break;
 9995     default:
 9996       fatal("Unexpected type argument %s", type2name(type)); break;
 9997   }
 9998 }
 9999 
10000 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10001   switch(type) {
10002     case T_INT:
10003       evpxord(dst, mask, nds, src, merge, vector_len); break;
10004     case T_LONG:
10005       evpxorq(dst, mask, nds, src, merge, vector_len); break;
10006     default:
10007       fatal("Unexpected type argument %s", type2name(type)); break;
10008   }
10009 }
10010 
10011 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
10012   switch(type) {
10013     case T_INT:
10014       evpxord(dst, mask, nds, src, merge, vector_len); break;
10015     case T_LONG:
10016       evpxorq(dst, mask, nds, src, merge, vector_len); break;
10017     default:
10018       fatal("Unexpected type argument %s", type2name(type)); break;
10019   }
10020 }
10021 
10022 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10023   switch(type) {
10024     case T_INT:
10025       Assembler::evpord(dst, mask, nds, src, merge, vector_len); break;
10026     case T_LONG:
10027       evporq(dst, mask, nds, src, merge, vector_len); break;
10028     default:
10029       fatal("Unexpected type argument %s", type2name(type)); break;
10030   }
10031 }
10032 
10033 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
10034   switch(type) {
10035     case T_INT:
10036       Assembler::evpord(dst, mask, nds, src, merge, vector_len); break;
10037     case T_LONG:
10038       evporq(dst, mask, nds, src, merge, vector_len); break;
10039     default:
10040       fatal("Unexpected type argument %s", type2name(type)); break;
10041   }
10042 }
10043 
10044 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10045   switch(type) {
10046     case T_INT:
10047       evpandd(dst, mask, nds, src, merge, vector_len); break;
10048     case T_LONG:
10049       evpandq(dst, mask, nds, src, merge, vector_len); break;
10050     default:
10051       fatal("Unexpected type argument %s", type2name(type)); break;
10052   }
10053 }
10054 
10055 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
10056   switch(type) {
10057     case T_INT:
10058       evpandd(dst, mask, nds, src, merge, vector_len); break;
10059     case T_LONG:
10060       evpandq(dst, mask, nds, src, merge, vector_len); break;
10061     default:
10062       fatal("Unexpected type argument %s", type2name(type)); break;
10063   }
10064 }
10065 
10066 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) {
10067   switch(masklen) {
10068     case 8:
10069        kortestbl(src1, src2);
10070        break;
10071     case 16:
10072        kortestwl(src1, src2);
10073        break;
10074     case 32:
10075        kortestdl(src1, src2);
10076        break;
10077     case 64:
10078        kortestql(src1, src2);
10079        break;
10080     default:
10081       fatal("Unexpected mask length %d", masklen);
10082       break;
10083   }
10084 }
10085 
10086 
10087 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) {
10088   switch(masklen)  {
10089     case 8:
10090        ktestbl(src1, src2);
10091        break;
10092     case 16:
10093        ktestwl(src1, src2);
10094        break;
10095     case 32:
10096        ktestdl(src1, src2);
10097        break;
10098     case 64:
10099        ktestql(src1, src2);
10100        break;
10101     default:
10102       fatal("Unexpected mask length %d", masklen);
10103       break;
10104   }
10105 }
10106 
10107 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) {
10108   switch(type) {
10109     case T_INT:
10110       evprold(dst, mask, src, shift, merge, vlen_enc); break;
10111     case T_LONG:
10112       evprolq(dst, mask, src, shift, merge, vlen_enc); break;
10113     default:
10114       fatal("Unexpected type argument %s", type2name(type)); break;
10115       break;
10116   }
10117 }
10118 
10119 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) {
10120   switch(type) {
10121     case T_INT:
10122       evprord(dst, mask, src, shift, merge, vlen_enc); break;
10123     case T_LONG:
10124       evprorq(dst, mask, src, shift, merge, vlen_enc); break;
10125     default:
10126       fatal("Unexpected type argument %s", type2name(type)); break;
10127   }
10128 }
10129 
10130 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) {
10131   switch(type) {
10132     case T_INT:
10133       evprolvd(dst, mask, src1, src2, merge, vlen_enc); break;
10134     case T_LONG:
10135       evprolvq(dst, mask, src1, src2, merge, vlen_enc); break;
10136     default:
10137       fatal("Unexpected type argument %s", type2name(type)); break;
10138   }
10139 }
10140 
10141 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) {
10142   switch(type) {
10143     case T_INT:
10144       evprorvd(dst, mask, src1, src2, merge, vlen_enc); break;
10145     case T_LONG:
10146       evprorvq(dst, mask, src1, src2, merge, vlen_enc); break;
10147     default:
10148       fatal("Unexpected type argument %s", type2name(type)); break;
10149   }
10150 }
10151 
10152 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
10153   assert(rscratch != noreg || always_reachable(src), "missing");
10154 
10155   if (reachable(src)) {
10156     evpandq(dst, nds, as_Address(src), vector_len);
10157   } else {
10158     lea(rscratch, src);
10159     evpandq(dst, nds, Address(rscratch, 0), vector_len);
10160   }
10161 }
10162 
10163 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
10164   assert(rscratch != noreg || always_reachable(src), "missing");
10165 
10166   if (reachable(src)) {
10167     Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len);
10168   } else {
10169     lea(rscratch, src);
10170     Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len);
10171   }
10172 }
10173 
10174 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
10175   assert(rscratch != noreg || always_reachable(src), "missing");
10176 
10177   if (reachable(src)) {
10178     evporq(dst, nds, as_Address(src), vector_len);
10179   } else {
10180     lea(rscratch, src);
10181     evporq(dst, nds, Address(rscratch, 0), vector_len);
10182   }
10183 }
10184 
10185 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
10186   assert(rscratch != noreg || always_reachable(src), "missing");
10187 
10188   if (reachable(src)) {
10189     vpshufb(dst, nds, as_Address(src), vector_len);
10190   } else {
10191     lea(rscratch, src);
10192     vpshufb(dst, nds, Address(rscratch, 0), vector_len);
10193   }
10194 }
10195 
10196 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
10197   assert(rscratch != noreg || always_reachable(src), "missing");
10198 
10199   if (reachable(src)) {
10200     Assembler::vpor(dst, nds, as_Address(src), vector_len);
10201   } else {
10202     lea(rscratch, src);
10203     Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len);
10204   }
10205 }
10206 
10207 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) {
10208   assert(rscratch != noreg || always_reachable(src3), "missing");
10209 
10210   if (reachable(src3)) {
10211     vpternlogq(dst, imm8, src2, as_Address(src3), vector_len);
10212   } else {
10213     lea(rscratch, src3);
10214     vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len);
10215   }
10216 }
10217 
10218 #if COMPILER2_OR_JVMCI
10219 
10220 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
10221                                  Register length, Register temp, int vec_enc) {
10222   // Computing mask for predicated vector store.
10223   movptr(temp, -1);
10224   bzhiq(temp, temp, length);
10225   kmov(mask, temp);
10226   evmovdqu(bt, mask, dst, xmm, true, vec_enc);
10227 }
10228 
10229 // Set memory operation for length "less than" 64 bytes.
10230 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp,
10231                                        XMMRegister xmm, KRegister mask, Register length,
10232                                        Register temp, bool use64byteVector) {
10233   assert(MaxVectorSize >= 32, "vector length should be >= 32");
10234   const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
10235   if (!use64byteVector) {
10236     fill32(dst, disp, xmm);
10237     subptr(length, 32 >> shift);
10238     fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp);
10239   } else {
10240     assert(MaxVectorSize == 64, "vector length != 64");
10241     fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit);
10242   }
10243 }
10244 
10245 
10246 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp,
10247                                        XMMRegister xmm, KRegister mask, Register length,
10248                                        Register temp) {
10249   assert(MaxVectorSize >= 32, "vector length should be >= 32");
10250   const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
10251   fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit);
10252 }
10253 
10254 
10255 void MacroAssembler::fill32(Address dst, XMMRegister xmm) {
10256   assert(MaxVectorSize >= 32, "vector length should be >= 32");
10257   vmovdqu(dst, xmm);
10258 }
10259 
10260 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) {
10261   fill32(Address(dst, disp), xmm);
10262 }
10263 
10264 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) {
10265   assert(MaxVectorSize >= 32, "vector length should be >= 32");
10266   if (!use64byteVector) {
10267     fill32(dst, xmm);
10268     fill32(dst.plus_disp(32), xmm);
10269   } else {
10270     evmovdquq(dst, xmm, Assembler::AVX_512bit);
10271   }
10272 }
10273 
10274 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) {
10275   fill64(Address(dst, disp), xmm, use64byteVector);
10276 }
10277 
10278 #ifdef _LP64
10279 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value,
10280                                         Register count, Register rtmp, XMMRegister xtmp) {
10281   Label L_exit;
10282   Label L_fill_start;
10283   Label L_fill_64_bytes;
10284   Label L_fill_96_bytes;
10285   Label L_fill_128_bytes;
10286   Label L_fill_128_bytes_loop;
10287   Label L_fill_128_loop_header;
10288   Label L_fill_128_bytes_loop_header;
10289   Label L_fill_128_bytes_loop_pre_header;
10290   Label L_fill_zmm_sequence;
10291 
10292   int shift = -1;
10293   int avx3threshold = VM_Version::avx3_threshold();
10294   switch(type) {
10295     case T_BYTE:  shift = 0;
10296       break;
10297     case T_SHORT: shift = 1;
10298       break;
10299     case T_INT:   shift = 2;
10300       break;
10301     /* Uncomment when LONG fill stubs are supported.
10302     case T_LONG:  shift = 3;
10303       break;
10304     */
10305     default:
10306       fatal("Unhandled type: %s\n", type2name(type));
10307   }
10308 
10309   if ((avx3threshold != 0)  || (MaxVectorSize == 32)) {
10310 
10311     if (MaxVectorSize == 64) {
10312       cmpq(count, avx3threshold >> shift);
10313       jcc(Assembler::greater, L_fill_zmm_sequence);
10314     }
10315 
10316     evpbroadcast(type, xtmp, value, Assembler::AVX_256bit);
10317 
10318     bind(L_fill_start);
10319 
10320     cmpq(count, 32 >> shift);
10321     jccb(Assembler::greater, L_fill_64_bytes);
10322     fill32_masked(shift, to, 0, xtmp, k2, count, rtmp);
10323     jmp(L_exit);
10324 
10325     bind(L_fill_64_bytes);
10326     cmpq(count, 64 >> shift);
10327     jccb(Assembler::greater, L_fill_96_bytes);
10328     fill64_masked(shift, to, 0, xtmp, k2, count, rtmp);
10329     jmp(L_exit);
10330 
10331     bind(L_fill_96_bytes);
10332     cmpq(count, 96 >> shift);
10333     jccb(Assembler::greater, L_fill_128_bytes);
10334     fill64(to, 0, xtmp);
10335     subq(count, 64 >> shift);
10336     fill32_masked(shift, to, 64, xtmp, k2, count, rtmp);
10337     jmp(L_exit);
10338 
10339     bind(L_fill_128_bytes);
10340     cmpq(count, 128 >> shift);
10341     jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header);
10342     fill64(to, 0, xtmp);
10343     fill32(to, 64, xtmp);
10344     subq(count, 96 >> shift);
10345     fill32_masked(shift, to, 96, xtmp, k2, count, rtmp);
10346     jmp(L_exit);
10347 
10348     bind(L_fill_128_bytes_loop_pre_header);
10349     {
10350       mov(rtmp, to);
10351       andq(rtmp, 31);
10352       jccb(Assembler::zero, L_fill_128_bytes_loop_header);
10353       negq(rtmp);
10354       addq(rtmp, 32);
10355       mov64(r8, -1L);
10356       bzhiq(r8, r8, rtmp);
10357       kmovql(k2, r8);
10358       evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit);
10359       addq(to, rtmp);
10360       shrq(rtmp, shift);
10361       subq(count, rtmp);
10362     }
10363 
10364     cmpq(count, 128 >> shift);
10365     jcc(Assembler::less, L_fill_start);
10366 
10367     bind(L_fill_128_bytes_loop_header);
10368     subq(count, 128 >> shift);
10369 
10370     align32();
10371     bind(L_fill_128_bytes_loop);
10372       fill64(to, 0, xtmp);
10373       fill64(to, 64, xtmp);
10374       addq(to, 128);
10375       subq(count, 128 >> shift);
10376       jccb(Assembler::greaterEqual, L_fill_128_bytes_loop);
10377 
10378     addq(count, 128 >> shift);
10379     jcc(Assembler::zero, L_exit);
10380     jmp(L_fill_start);
10381   }
10382 
10383   if (MaxVectorSize == 64) {
10384     // Sequence using 64 byte ZMM register.
10385     Label L_fill_128_bytes_zmm;
10386     Label L_fill_192_bytes_zmm;
10387     Label L_fill_192_bytes_loop_zmm;
10388     Label L_fill_192_bytes_loop_header_zmm;
10389     Label L_fill_192_bytes_loop_pre_header_zmm;
10390     Label L_fill_start_zmm_sequence;
10391 
10392     bind(L_fill_zmm_sequence);
10393     evpbroadcast(type, xtmp, value, Assembler::AVX_512bit);
10394 
10395     bind(L_fill_start_zmm_sequence);
10396     cmpq(count, 64 >> shift);
10397     jccb(Assembler::greater, L_fill_128_bytes_zmm);
10398     fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true);
10399     jmp(L_exit);
10400 
10401     bind(L_fill_128_bytes_zmm);
10402     cmpq(count, 128 >> shift);
10403     jccb(Assembler::greater, L_fill_192_bytes_zmm);
10404     fill64(to, 0, xtmp, true);
10405     subq(count, 64 >> shift);
10406     fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true);
10407     jmp(L_exit);
10408 
10409     bind(L_fill_192_bytes_zmm);
10410     cmpq(count, 192 >> shift);
10411     jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm);
10412     fill64(to, 0, xtmp, true);
10413     fill64(to, 64, xtmp, true);
10414     subq(count, 128 >> shift);
10415     fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true);
10416     jmp(L_exit);
10417 
10418     bind(L_fill_192_bytes_loop_pre_header_zmm);
10419     {
10420       movq(rtmp, to);
10421       andq(rtmp, 63);
10422       jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm);
10423       negq(rtmp);
10424       addq(rtmp, 64);
10425       mov64(r8, -1L);
10426       bzhiq(r8, r8, rtmp);
10427       kmovql(k2, r8);
10428       evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit);
10429       addq(to, rtmp);
10430       shrq(rtmp, shift);
10431       subq(count, rtmp);
10432     }
10433 
10434     cmpq(count, 192 >> shift);
10435     jcc(Assembler::less, L_fill_start_zmm_sequence);
10436 
10437     bind(L_fill_192_bytes_loop_header_zmm);
10438     subq(count, 192 >> shift);
10439 
10440     align32();
10441     bind(L_fill_192_bytes_loop_zmm);
10442       fill64(to, 0, xtmp, true);
10443       fill64(to, 64, xtmp, true);
10444       fill64(to, 128, xtmp, true);
10445       addq(to, 192);
10446       subq(count, 192 >> shift);
10447       jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm);
10448 
10449     addq(count, 192 >> shift);
10450     jcc(Assembler::zero, L_exit);
10451     jmp(L_fill_start_zmm_sequence);
10452   }
10453   bind(L_exit);
10454 }
10455 #endif
10456 #endif //COMPILER2_OR_JVMCI
10457 
10458 
10459 #ifdef _LP64
10460 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) {
10461   Label done;
10462   cvttss2sil(dst, src);
10463   // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
10464   cmpl(dst, 0x80000000); // float_sign_flip
10465   jccb(Assembler::notEqual, done);
10466   subptr(rsp, 8);
10467   movflt(Address(rsp, 0), src);
10468   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup())));
10469   pop(dst);
10470   bind(done);
10471 }
10472 
10473 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) {
10474   Label done;
10475   cvttsd2sil(dst, src);
10476   // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
10477   cmpl(dst, 0x80000000); // float_sign_flip
10478   jccb(Assembler::notEqual, done);
10479   subptr(rsp, 8);
10480   movdbl(Address(rsp, 0), src);
10481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup())));
10482   pop(dst);
10483   bind(done);
10484 }
10485 
10486 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) {
10487   Label done;
10488   cvttss2siq(dst, src);
10489   cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
10490   jccb(Assembler::notEqual, done);
10491   subptr(rsp, 8);
10492   movflt(Address(rsp, 0), src);
10493   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup())));
10494   pop(dst);
10495   bind(done);
10496 }
10497 
10498 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) {
10499   // Following code is line by line assembly translation rounding algorithm.
10500   // Please refer to java.lang.Math.round(float) algorithm for details.
10501   const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000;
10502   const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24;
10503   const int32_t FloatConsts_EXP_BIAS = 127;
10504   const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF;
10505   const int32_t MINUS_32 = 0xFFFFFFE0;
10506   Label L_special_case, L_block1, L_exit;
10507   movl(rtmp, FloatConsts_EXP_BIT_MASK);
10508   movdl(dst, src);
10509   andl(dst, rtmp);
10510   sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1);
10511   movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS);
10512   subl(rtmp, dst);
10513   movl(rcx, rtmp);
10514   movl(dst, MINUS_32);
10515   testl(rtmp, dst);
10516   jccb(Assembler::notEqual, L_special_case);
10517   movdl(dst, src);
10518   andl(dst, FloatConsts_SIGNIF_BIT_MASK);
10519   orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1);
10520   movdl(rtmp, src);
10521   testl(rtmp, rtmp);
10522   jccb(Assembler::greaterEqual, L_block1);
10523   negl(dst);
10524   bind(L_block1);
10525   sarl(dst);
10526   addl(dst, 0x1);
10527   sarl(dst, 0x1);
10528   jmp(L_exit);
10529   bind(L_special_case);
10530   convert_f2i(dst, src);
10531   bind(L_exit);
10532 }
10533 
10534 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) {
10535   // Following code is line by line assembly translation rounding algorithm.
10536   // Please refer to java.lang.Math.round(double) algorithm for details.
10537   const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L;
10538   const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53;
10539   const int64_t DoubleConsts_EXP_BIAS = 1023;
10540   const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL;
10541   const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L;
10542   Label L_special_case, L_block1, L_exit;
10543   mov64(rtmp, DoubleConsts_EXP_BIT_MASK);
10544   movq(dst, src);
10545   andq(dst, rtmp);
10546   sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1);
10547   mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS);
10548   subq(rtmp, dst);
10549   movq(rcx, rtmp);
10550   mov64(dst, MINUS_64);
10551   testq(rtmp, dst);
10552   jccb(Assembler::notEqual, L_special_case);
10553   movq(dst, src);
10554   mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK);
10555   andq(dst, rtmp);
10556   mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1);
10557   orq(dst, rtmp);
10558   movq(rtmp, src);
10559   testq(rtmp, rtmp);
10560   jccb(Assembler::greaterEqual, L_block1);
10561   negq(dst);
10562   bind(L_block1);
10563   sarq(dst);
10564   addq(dst, 0x1);
10565   sarq(dst, 0x1);
10566   jmp(L_exit);
10567   bind(L_special_case);
10568   convert_d2l(dst, src);
10569   bind(L_exit);
10570 }
10571 
10572 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) {
10573   Label done;
10574   cvttsd2siq(dst, src);
10575   cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
10576   jccb(Assembler::notEqual, done);
10577   subptr(rsp, 8);
10578   movdbl(Address(rsp, 0), src);
10579   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup())));
10580   pop(dst);
10581   bind(done);
10582 }
10583 
10584 void MacroAssembler::cache_wb(Address line)
10585 {
10586   // 64 bit cpus always support clflush
10587   assert(VM_Version::supports_clflush(), "clflush should be available");
10588   bool optimized = VM_Version::supports_clflushopt();
10589   bool no_evict = VM_Version::supports_clwb();
10590 
10591   // prefer clwb (writeback without evict) otherwise
10592   // prefer clflushopt (potentially parallel writeback with evict)
10593   // otherwise fallback on clflush (serial writeback with evict)
10594 
10595   if (optimized) {
10596     if (no_evict) {
10597       clwb(line);
10598     } else {
10599       clflushopt(line);
10600     }
10601   } else {
10602     // no need for fence when using CLFLUSH
10603     clflush(line);
10604   }
10605 }
10606 
10607 void MacroAssembler::cache_wbsync(bool is_pre)
10608 {
10609   assert(VM_Version::supports_clflush(), "clflush should be available");
10610   bool optimized = VM_Version::supports_clflushopt();
10611   bool no_evict = VM_Version::supports_clwb();
10612 
10613   // pick the correct implementation
10614 
10615   if (!is_pre && (optimized || no_evict)) {
10616     // need an sfence for post flush when using clflushopt or clwb
10617     // otherwise no no need for any synchroniaztion
10618 
10619     sfence();
10620   }
10621 }
10622 
10623 #endif // _LP64
10624 
10625 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
10626   switch (cond) {
10627     // Note some conditions are synonyms for others
10628     case Assembler::zero:         return Assembler::notZero;
10629     case Assembler::notZero:      return Assembler::zero;
10630     case Assembler::less:         return Assembler::greaterEqual;
10631     case Assembler::lessEqual:    return Assembler::greater;
10632     case Assembler::greater:      return Assembler::lessEqual;
10633     case Assembler::greaterEqual: return Assembler::less;
10634     case Assembler::below:        return Assembler::aboveEqual;
10635     case Assembler::belowEqual:   return Assembler::above;
10636     case Assembler::above:        return Assembler::belowEqual;
10637     case Assembler::aboveEqual:   return Assembler::below;
10638     case Assembler::overflow:     return Assembler::noOverflow;
10639     case Assembler::noOverflow:   return Assembler::overflow;
10640     case Assembler::negative:     return Assembler::positive;
10641     case Assembler::positive:     return Assembler::negative;
10642     case Assembler::parity:       return Assembler::noParity;
10643     case Assembler::noParity:     return Assembler::parity;
10644   }
10645   ShouldNotReachHere(); return Assembler::overflow;
10646 }
10647 
10648 // This is simply a call to Thread::current()
10649 void MacroAssembler::get_thread(Register thread) {
10650   if (thread != rax) {
10651     push(rax);
10652   }
10653   LP64_ONLY(push(rdi);)
10654   LP64_ONLY(push(rsi);)
10655   push(rdx);
10656   push(rcx);
10657 #ifdef _LP64
10658   push(r8);
10659   push(r9);
10660   push(r10);
10661   push(r11);
10662 #endif
10663 
10664   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
10665 
10666 #ifdef _LP64
10667   pop(r11);
10668   pop(r10);
10669   pop(r9);
10670   pop(r8);
10671 #endif
10672   pop(rcx);
10673   pop(rdx);
10674   LP64_ONLY(pop(rsi);)
10675   LP64_ONLY(pop(rdi);)
10676   if (thread != rax) {
10677     mov(thread, rax);
10678     pop(rax);
10679   }
10680 }
10681 
10682 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) {
10683   Label L_stack_ok;
10684   if (bias == 0) {
10685     testptr(sp, 2 * wordSize - 1);
10686   } else {
10687     // lea(tmp, Address(rsp, bias);
10688     mov(tmp, sp);
10689     addptr(tmp, bias);
10690     testptr(tmp, 2 * wordSize - 1);
10691   }
10692   jcc(Assembler::equal, L_stack_ok);
10693   block_comment(msg);
10694   stop(msg);
10695   bind(L_stack_ok);
10696 }
10697 
10698 // Implements lightweight-locking.
10699 //
10700 // obj: the object to be locked
10701 // reg_rax: rax
10702 // thread: the thread which attempts to lock obj
10703 // tmp: a temporary register
10704 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) {
10705   assert(reg_rax == rax, "");
10706   assert_different_registers(basic_lock, obj, reg_rax, thread, tmp);
10707 
10708   Label push;
10709   const Register top = tmp;
10710 
10711   // Preload the markWord. It is important that this is the first
10712   // instruction emitted as it is part of C1's null check semantics.
10713   movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes()));
10714 
10715   if (UseObjectMonitorTable) {
10716     // Clear cache in case fast locking succeeds.
10717     movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0);
10718   }
10719 
10720   // Load top.
10721   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10722 
10723   // Check if the lock-stack is full.
10724   cmpl(top, LockStack::end_offset());
10725   jcc(Assembler::greaterEqual, slow);
10726 
10727   // Check for recursion.
10728   cmpptr(obj, Address(thread, top, Address::times_1, -oopSize));
10729   jcc(Assembler::equal, push);
10730 
10731   // Check header for monitor (0b10).
10732   testptr(reg_rax, markWord::monitor_value);
10733   jcc(Assembler::notZero, slow);
10734 
10735   // Try to lock. Transition lock bits 0b01 => 0b00
10736   movptr(tmp, reg_rax);
10737   andptr(tmp, ~(int32_t)markWord::unlocked_value);
10738   orptr(reg_rax, markWord::unlocked_value);
10739   lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
10740   jcc(Assembler::notEqual, slow);
10741 
10742   // Restore top, CAS clobbers register.
10743   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10744 
10745   bind(push);
10746   // After successful lock, push object on lock-stack.
10747   movptr(Address(thread, top), obj);
10748   incrementl(top, oopSize);
10749   movl(Address(thread, JavaThread::lock_stack_top_offset()), top);
10750 }
10751 
10752 // Implements lightweight-unlocking.
10753 //
10754 // obj: the object to be unlocked
10755 // reg_rax: rax
10756 // thread: the thread
10757 // tmp: a temporary register
10758 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) {
10759   assert(reg_rax == rax, "");
10760   assert_different_registers(obj, reg_rax, thread, tmp);
10761 
10762   Label unlocked, push_and_slow;
10763   const Register top = tmp;
10764 
10765   // Check if obj is top of lock-stack.
10766   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10767   cmpptr(obj, Address(thread, top, Address::times_1, -oopSize));
10768   jcc(Assembler::notEqual, slow);
10769 
10770   // Pop lock-stack.
10771   DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);)
10772   subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize);
10773 
10774   // Check if recursive.
10775   cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize));
10776   jcc(Assembler::equal, unlocked);
10777 
10778   // Not recursive. Check header for monitor (0b10).
10779   movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes()));
10780   testptr(reg_rax, markWord::monitor_value);
10781   jcc(Assembler::notZero, push_and_slow);
10782 
10783 #ifdef ASSERT
10784   // Check header not unlocked (0b01).
10785   Label not_unlocked;
10786   testptr(reg_rax, markWord::unlocked_value);
10787   jcc(Assembler::zero, not_unlocked);
10788   stop("lightweight_unlock already unlocked");
10789   bind(not_unlocked);
10790 #endif
10791 
10792   // Try to unlock. Transition lock bits 0b00 => 0b01
10793   movptr(tmp, reg_rax);
10794   orptr(tmp, markWord::unlocked_value);
10795   lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
10796   jcc(Assembler::equal, unlocked);
10797 
10798   bind(push_and_slow);
10799   // Restore lock-stack and handle the unlock in runtime.
10800 #ifdef ASSERT
10801   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10802   movptr(Address(thread, top), obj);
10803 #endif
10804   addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize);
10805   jmp(slow);
10806 
10807   bind(unlocked);
10808 }
10809 
10810 #ifdef _LP64
10811 // Saves legacy GPRs state on stack.
10812 void MacroAssembler::save_legacy_gprs() {
10813   subq(rsp, 16 * wordSize);
10814   movq(Address(rsp, 15 * wordSize), rax);
10815   movq(Address(rsp, 14 * wordSize), rcx);
10816   movq(Address(rsp, 13 * wordSize), rdx);
10817   movq(Address(rsp, 12 * wordSize), rbx);
10818   movq(Address(rsp, 10 * wordSize), rbp);
10819   movq(Address(rsp, 9 * wordSize), rsi);
10820   movq(Address(rsp, 8 * wordSize), rdi);
10821   movq(Address(rsp, 7 * wordSize), r8);
10822   movq(Address(rsp, 6 * wordSize), r9);
10823   movq(Address(rsp, 5 * wordSize), r10);
10824   movq(Address(rsp, 4 * wordSize), r11);
10825   movq(Address(rsp, 3 * wordSize), r12);
10826   movq(Address(rsp, 2 * wordSize), r13);
10827   movq(Address(rsp, wordSize), r14);
10828   movq(Address(rsp, 0), r15);
10829 }
10830 
10831 // Resotres back legacy GPRs state from stack.
10832 void MacroAssembler::restore_legacy_gprs() {
10833   movq(r15, Address(rsp, 0));
10834   movq(r14, Address(rsp, wordSize));
10835   movq(r13, Address(rsp, 2 * wordSize));
10836   movq(r12, Address(rsp, 3 * wordSize));
10837   movq(r11, Address(rsp, 4 * wordSize));
10838   movq(r10, Address(rsp, 5 * wordSize));
10839   movq(r9,  Address(rsp, 6 * wordSize));
10840   movq(r8,  Address(rsp, 7 * wordSize));
10841   movq(rdi, Address(rsp, 8 * wordSize));
10842   movq(rsi, Address(rsp, 9 * wordSize));
10843   movq(rbp, Address(rsp, 10 * wordSize));
10844   movq(rbx, Address(rsp, 12 * wordSize));
10845   movq(rdx, Address(rsp, 13 * wordSize));
10846   movq(rcx, Address(rsp, 14 * wordSize));
10847   movq(rax, Address(rsp, 15 * wordSize));
10848   addq(rsp, 16 * wordSize);
10849 }
10850 
10851 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) {
10852   if (VM_Version::supports_apx_f()) {
10853     esetzucc(comparison, dst);
10854   } else {
10855     setb(comparison, dst);
10856     movzbl(dst, dst);
10857   }
10858 }
10859 #endif