1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "code/SCCache.hpp" 29 #include "code/compiledIC.hpp" 30 #include "compiler/compiler_globals.hpp" 31 #include "compiler/disassembler.hpp" 32 #include "crc32c.h" 33 #include "gc/shared/barrierSet.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "gc/shared/collectedHeap.inline.hpp" 36 #include "gc/shared/tlab_globals.hpp" 37 #include "interpreter/bytecodeHistogram.hpp" 38 #include "interpreter/interpreter.hpp" 39 #include "jvm.h" 40 #include "memory/resourceArea.hpp" 41 #include "memory/universe.hpp" 42 #include "oops/accessDecorators.hpp" 43 #include "oops/compressedKlass.inline.hpp" 44 #include "oops/compressedOops.inline.hpp" 45 #include "oops/klass.inline.hpp" 46 #include "prims/methodHandles.hpp" 47 #include "runtime/continuation.hpp" 48 #include "runtime/interfaceSupport.inline.hpp" 49 #include "runtime/javaThread.hpp" 50 #include "runtime/jniHandles.hpp" 51 #include "runtime/objectMonitor.hpp" 52 #include "runtime/os.hpp" 53 #include "runtime/safepoint.hpp" 54 #include "runtime/safepointMechanism.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "utilities/checkedCast.hpp" 58 #include "utilities/macros.hpp" 59 60 #ifdef PRODUCT 61 #define BLOCK_COMMENT(str) /* nothing */ 62 #define STOP(error) stop(error) 63 #else 64 #define BLOCK_COMMENT(str) block_comment(str) 65 #define STOP(error) block_comment(error); stop(error) 66 #endif 67 68 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 69 70 #ifdef ASSERT 71 bool AbstractAssembler::pd_check_instruction_mark() { return true; } 72 #endif 73 74 static const Assembler::Condition reverse[] = { 75 Assembler::noOverflow /* overflow = 0x0 */ , 76 Assembler::overflow /* noOverflow = 0x1 */ , 77 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , 78 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , 79 Assembler::notZero /* zero = 0x4, equal = 0x4 */ , 80 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , 81 Assembler::above /* belowEqual = 0x6 */ , 82 Assembler::belowEqual /* above = 0x7 */ , 83 Assembler::positive /* negative = 0x8 */ , 84 Assembler::negative /* positive = 0x9 */ , 85 Assembler::noParity /* parity = 0xa */ , 86 Assembler::parity /* noParity = 0xb */ , 87 Assembler::greaterEqual /* less = 0xc */ , 88 Assembler::less /* greaterEqual = 0xd */ , 89 Assembler::greater /* lessEqual = 0xe */ , 90 Assembler::lessEqual /* greater = 0xf, */ 91 92 }; 93 94 95 // Implementation of MacroAssembler 96 97 // First all the versions that have distinct versions depending on 32/64 bit 98 // Unless the difference is trivial (1 line or so). 99 100 #ifndef _LP64 101 102 // 32bit versions 103 104 Address MacroAssembler::as_Address(AddressLiteral adr) { 105 return Address(adr.target(), adr.rspec()); 106 } 107 108 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 109 assert(rscratch == noreg, ""); 110 return Address::make_array(adr); 111 } 112 113 void MacroAssembler::call_VM_leaf_base(address entry_point, 114 int number_of_arguments) { 115 call(RuntimeAddress(entry_point)); 116 increment(rsp, number_of_arguments * wordSize); 117 } 118 119 void MacroAssembler::cmpklass(Address src1, Metadata* obj) { 120 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 121 } 122 123 124 void MacroAssembler::cmpklass(Register src1, Metadata* obj) { 125 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 126 } 127 128 void MacroAssembler::cmpoop(Address src1, jobject obj) { 129 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 130 } 131 132 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) { 133 assert(rscratch == noreg, "redundant"); 134 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 135 } 136 137 void MacroAssembler::extend_sign(Register hi, Register lo) { 138 // According to Intel Doc. AP-526, "Integer Divide", p.18. 139 if (VM_Version::is_P6() && hi == rdx && lo == rax) { 140 cdql(); 141 } else { 142 movl(hi, lo); 143 sarl(hi, 31); 144 } 145 } 146 147 void MacroAssembler::jC2(Register tmp, Label& L) { 148 // set parity bit if FPU flag C2 is set (via rax) 149 save_rax(tmp); 150 fwait(); fnstsw_ax(); 151 sahf(); 152 restore_rax(tmp); 153 // branch 154 jcc(Assembler::parity, L); 155 } 156 157 void MacroAssembler::jnC2(Register tmp, Label& L) { 158 // set parity bit if FPU flag C2 is set (via rax) 159 save_rax(tmp); 160 fwait(); fnstsw_ax(); 161 sahf(); 162 restore_rax(tmp); 163 // branch 164 jcc(Assembler::noParity, L); 165 } 166 167 // 32bit can do a case table jump in one instruction but we no longer allow the base 168 // to be installed in the Address class 169 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 170 assert(rscratch == noreg, "not needed"); 171 jmp(as_Address(entry, noreg)); 172 } 173 174 // Note: y_lo will be destroyed 175 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 176 // Long compare for Java (semantics as described in JVM spec.) 177 Label high, low, done; 178 179 cmpl(x_hi, y_hi); 180 jcc(Assembler::less, low); 181 jcc(Assembler::greater, high); 182 // x_hi is the return register 183 xorl(x_hi, x_hi); 184 cmpl(x_lo, y_lo); 185 jcc(Assembler::below, low); 186 jcc(Assembler::equal, done); 187 188 bind(high); 189 xorl(x_hi, x_hi); 190 increment(x_hi); 191 jmp(done); 192 193 bind(low); 194 xorl(x_hi, x_hi); 195 decrementl(x_hi); 196 197 bind(done); 198 } 199 200 void MacroAssembler::lea(Register dst, AddressLiteral src) { 201 mov_literal32(dst, (int32_t)src.target(), src.rspec()); 202 } 203 204 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 205 assert(rscratch == noreg, "not needed"); 206 207 // leal(dst, as_Address(adr)); 208 // see note in movl as to why we must use a move 209 mov_literal32(dst, (int32_t)adr.target(), adr.rspec()); 210 } 211 212 void MacroAssembler::leave() { 213 mov(rsp, rbp); 214 pop(rbp); 215 } 216 217 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) { 218 // Multiplication of two Java long values stored on the stack 219 // as illustrated below. Result is in rdx:rax. 220 // 221 // rsp ---> [ ?? ] \ \ 222 // .... | y_rsp_offset | 223 // [ y_lo ] / (in bytes) | x_rsp_offset 224 // [ y_hi ] | (in bytes) 225 // .... | 226 // [ x_lo ] / 227 // [ x_hi ] 228 // .... 229 // 230 // Basic idea: lo(result) = lo(x_lo * y_lo) 231 // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) 232 Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset); 233 Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset); 234 Label quick; 235 // load x_hi, y_hi and check if quick 236 // multiplication is possible 237 movl(rbx, x_hi); 238 movl(rcx, y_hi); 239 movl(rax, rbx); 240 orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0 241 jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply 242 // do full multiplication 243 // 1st step 244 mull(y_lo); // x_hi * y_lo 245 movl(rbx, rax); // save lo(x_hi * y_lo) in rbx, 246 // 2nd step 247 movl(rax, x_lo); 248 mull(rcx); // x_lo * y_hi 249 addl(rbx, rax); // add lo(x_lo * y_hi) to rbx, 250 // 3rd step 251 bind(quick); // note: rbx, = 0 if quick multiply! 252 movl(rax, x_lo); 253 mull(y_lo); // x_lo * y_lo 254 addl(rdx, rbx); // correct hi(x_lo * y_lo) 255 } 256 257 void MacroAssembler::lneg(Register hi, Register lo) { 258 negl(lo); 259 adcl(hi, 0); 260 negl(hi); 261 } 262 263 void MacroAssembler::lshl(Register hi, Register lo) { 264 // Java shift left long support (semantics as described in JVM spec., p.305) 265 // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n)) 266 // shift value is in rcx ! 267 assert(hi != rcx, "must not use rcx"); 268 assert(lo != rcx, "must not use rcx"); 269 const Register s = rcx; // shift count 270 const int n = BitsPerWord; 271 Label L; 272 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 273 cmpl(s, n); // if (s < n) 274 jcc(Assembler::less, L); // else (s >= n) 275 movl(hi, lo); // x := x << n 276 xorl(lo, lo); 277 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 278 bind(L); // s (mod n) < n 279 shldl(hi, lo); // x := x << s 280 shll(lo); 281 } 282 283 284 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) { 285 // Java shift right long support (semantics as described in JVM spec., p.306 & p.310) 286 // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n)) 287 assert(hi != rcx, "must not use rcx"); 288 assert(lo != rcx, "must not use rcx"); 289 const Register s = rcx; // shift count 290 const int n = BitsPerWord; 291 Label L; 292 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 293 cmpl(s, n); // if (s < n) 294 jcc(Assembler::less, L); // else (s >= n) 295 movl(lo, hi); // x := x >> n 296 if (sign_extension) sarl(hi, 31); 297 else xorl(hi, hi); 298 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 299 bind(L); // s (mod n) < n 300 shrdl(lo, hi); // x := x >> s 301 if (sign_extension) sarl(hi); 302 else shrl(hi); 303 } 304 305 void MacroAssembler::movoop(Register dst, jobject obj) { 306 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 307 } 308 309 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 310 assert(rscratch == noreg, "redundant"); 311 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 312 } 313 314 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 315 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 316 } 317 318 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 319 assert(rscratch == noreg, "redundant"); 320 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 321 } 322 323 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 324 if (src.is_lval()) { 325 mov_literal32(dst, (intptr_t)src.target(), src.rspec()); 326 } else { 327 movl(dst, as_Address(src)); 328 } 329 } 330 331 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 332 assert(rscratch == noreg, "redundant"); 333 movl(as_Address(dst, noreg), src); 334 } 335 336 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 337 movl(dst, as_Address(src, noreg)); 338 } 339 340 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 341 assert(rscratch == noreg, "redundant"); 342 movl(dst, src); 343 } 344 345 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 346 assert(rscratch == noreg, "redundant"); 347 push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate()); 348 } 349 350 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 351 assert(rscratch == noreg, "redundant"); 352 push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate()); 353 } 354 355 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 356 assert(rscratch == noreg, "redundant"); 357 if (src.is_lval()) { 358 push_literal32((int32_t)src.target(), src.rspec()); 359 } else { 360 pushl(as_Address(src)); 361 } 362 } 363 364 static void pass_arg0(MacroAssembler* masm, Register arg) { 365 masm->push(arg); 366 } 367 368 static void pass_arg1(MacroAssembler* masm, Register arg) { 369 masm->push(arg); 370 } 371 372 static void pass_arg2(MacroAssembler* masm, Register arg) { 373 masm->push(arg); 374 } 375 376 static void pass_arg3(MacroAssembler* masm, Register arg) { 377 masm->push(arg); 378 } 379 380 #ifndef PRODUCT 381 extern "C" void findpc(intptr_t x); 382 #endif 383 384 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) { 385 // In order to get locks to work, we need to fake a in_VM state 386 JavaThread* thread = JavaThread::current(); 387 JavaThreadState saved_state = thread->thread_state(); 388 thread->set_thread_state(_thread_in_vm); 389 if (ShowMessageBoxOnError) { 390 JavaThread* thread = JavaThread::current(); 391 JavaThreadState saved_state = thread->thread_state(); 392 thread->set_thread_state(_thread_in_vm); 393 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 394 ttyLocker ttyl; 395 BytecodeCounter::print(); 396 } 397 // To see where a verify_oop failed, get $ebx+40/X for this frame. 398 // This is the value of eip which points to where verify_oop will return. 399 if (os::message_box(msg, "Execution stopped, print registers?")) { 400 print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip); 401 BREAKPOINT; 402 } 403 } 404 fatal("DEBUG MESSAGE: %s", msg); 405 } 406 407 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) { 408 ttyLocker ttyl; 409 DebuggingContext debugging{}; 410 tty->print_cr("eip = 0x%08x", eip); 411 #ifndef PRODUCT 412 if ((WizardMode || Verbose) && PrintMiscellaneous) { 413 tty->cr(); 414 findpc(eip); 415 tty->cr(); 416 } 417 #endif 418 #define PRINT_REG(rax) \ 419 { tty->print("%s = ", #rax); os::print_location(tty, rax); } 420 PRINT_REG(rax); 421 PRINT_REG(rbx); 422 PRINT_REG(rcx); 423 PRINT_REG(rdx); 424 PRINT_REG(rdi); 425 PRINT_REG(rsi); 426 PRINT_REG(rbp); 427 PRINT_REG(rsp); 428 #undef PRINT_REG 429 // Print some words near top of staack. 430 int* dump_sp = (int*) rsp; 431 for (int col1 = 0; col1 < 8; col1++) { 432 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 433 os::print_location(tty, *dump_sp++); 434 } 435 for (int row = 0; row < 16; row++) { 436 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 437 for (int col = 0; col < 8; col++) { 438 tty->print(" 0x%08x", *dump_sp++); 439 } 440 tty->cr(); 441 } 442 // Print some instructions around pc: 443 Disassembler::decode((address)eip-64, (address)eip); 444 tty->print_cr("--------"); 445 Disassembler::decode((address)eip, (address)eip+32); 446 } 447 448 void MacroAssembler::stop(const char* msg) { 449 // push address of message 450 ExternalAddress message((address)msg); 451 pushptr(message.addr(), noreg); 452 { Label L; call(L, relocInfo::none); bind(L); } // push eip 453 pusha(); // push registers 454 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32))); 455 hlt(); 456 } 457 458 void MacroAssembler::warn(const char* msg) { 459 push_CPU_state(); 460 461 // push address of message 462 ExternalAddress message((address)msg); 463 pushptr(message.addr(), noreg); 464 465 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 466 addl(rsp, wordSize); // discard argument 467 pop_CPU_state(); 468 } 469 470 void MacroAssembler::print_state() { 471 { Label L; call(L, relocInfo::none); bind(L); } // push eip 472 pusha(); // push registers 473 474 push_CPU_state(); 475 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32))); 476 pop_CPU_state(); 477 478 popa(); 479 addl(rsp, wordSize); 480 } 481 482 #else // _LP64 483 484 // 64 bit versions 485 486 Address MacroAssembler::as_Address(AddressLiteral adr) { 487 // amd64 always does this as a pc-rel 488 // we can be absolute or disp based on the instruction type 489 // jmp/call are displacements others are absolute 490 assert(!adr.is_lval(), "must be rval"); 491 assert(reachable(adr), "must be"); 492 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc()); 493 494 } 495 496 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 497 AddressLiteral base = adr.base(); 498 lea(rscratch, base); 499 Address index = adr.index(); 500 assert(index._disp == 0, "must not have disp"); // maybe it can? 501 Address array(rscratch, index._index, index._scale, index._disp); 502 return array; 503 } 504 505 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { 506 Label L, E; 507 508 #ifdef _WIN64 509 // Windows always allocates space for it's register args 510 assert(num_args <= 4, "only register arguments supported"); 511 subq(rsp, frame::arg_reg_save_area_bytes); 512 #endif 513 514 // Align stack if necessary 515 testl(rsp, 15); 516 jcc(Assembler::zero, L); 517 518 subq(rsp, 8); 519 call(RuntimeAddress(entry_point)); 520 addq(rsp, 8); 521 jmp(E); 522 523 bind(L); 524 call(RuntimeAddress(entry_point)); 525 526 bind(E); 527 528 #ifdef _WIN64 529 // restore stack pointer 530 addq(rsp, frame::arg_reg_save_area_bytes); 531 #endif 532 533 } 534 535 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) { 536 assert(!src2.is_lval(), "should use cmpptr"); 537 assert(rscratch != noreg || always_reachable(src2), "missing"); 538 539 if (reachable(src2)) { 540 cmpq(src1, as_Address(src2)); 541 } else { 542 lea(rscratch, src2); 543 Assembler::cmpq(src1, Address(rscratch, 0)); 544 } 545 } 546 547 int MacroAssembler::corrected_idivq(Register reg) { 548 // Full implementation of Java ldiv and lrem; checks for special 549 // case as described in JVM spec., p.243 & p.271. The function 550 // returns the (pc) offset of the idivl instruction - may be needed 551 // for implicit exceptions. 552 // 553 // normal case special case 554 // 555 // input : rax: dividend min_long 556 // reg: divisor (may not be eax/edx) -1 557 // 558 // output: rax: quotient (= rax idiv reg) min_long 559 // rdx: remainder (= rax irem reg) 0 560 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); 561 static const int64_t min_long = 0x8000000000000000; 562 Label normal_case, special_case; 563 564 // check for special case 565 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/); 566 jcc(Assembler::notEqual, normal_case); 567 xorl(rdx, rdx); // prepare rdx for possible special case (where 568 // remainder = 0) 569 cmpq(reg, -1); 570 jcc(Assembler::equal, special_case); 571 572 // handle normal case 573 bind(normal_case); 574 cdqq(); 575 int idivq_offset = offset(); 576 idivq(reg); 577 578 // normal and special case exit 579 bind(special_case); 580 581 return idivq_offset; 582 } 583 584 void MacroAssembler::decrementq(Register reg, int value) { 585 if (value == min_jint) { subq(reg, value); return; } 586 if (value < 0) { incrementq(reg, -value); return; } 587 if (value == 0) { ; return; } 588 if (value == 1 && UseIncDec) { decq(reg) ; return; } 589 /* else */ { subq(reg, value) ; return; } 590 } 591 592 void MacroAssembler::decrementq(Address dst, int value) { 593 if (value == min_jint) { subq(dst, value); return; } 594 if (value < 0) { incrementq(dst, -value); return; } 595 if (value == 0) { ; return; } 596 if (value == 1 && UseIncDec) { decq(dst) ; return; } 597 /* else */ { subq(dst, value) ; return; } 598 } 599 600 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) { 601 assert(rscratch != noreg || always_reachable(dst), "missing"); 602 603 if (reachable(dst)) { 604 incrementq(as_Address(dst)); 605 } else { 606 lea(rscratch, dst); 607 incrementq(Address(rscratch, 0)); 608 } 609 } 610 611 void MacroAssembler::incrementq(Register reg, int value) { 612 if (value == min_jint) { addq(reg, value); return; } 613 if (value < 0) { decrementq(reg, -value); return; } 614 if (value == 0) { ; return; } 615 if (value == 1 && UseIncDec) { incq(reg) ; return; } 616 /* else */ { addq(reg, value) ; return; } 617 } 618 619 void MacroAssembler::incrementq(Address dst, int value) { 620 if (value == min_jint) { addq(dst, value); return; } 621 if (value < 0) { decrementq(dst, -value); return; } 622 if (value == 0) { ; return; } 623 if (value == 1 && UseIncDec) { incq(dst) ; return; } 624 /* else */ { addq(dst, value) ; return; } 625 } 626 627 // 32bit can do a case table jump in one instruction but we no longer allow the base 628 // to be installed in the Address class 629 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 630 lea(rscratch, entry.base()); 631 Address dispatch = entry.index(); 632 assert(dispatch._base == noreg, "must be"); 633 dispatch._base = rscratch; 634 jmp(dispatch); 635 } 636 637 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 638 ShouldNotReachHere(); // 64bit doesn't use two regs 639 cmpq(x_lo, y_lo); 640 } 641 642 void MacroAssembler::lea(Register dst, AddressLiteral src) { 643 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 644 } 645 646 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 647 lea(rscratch, adr); 648 movptr(dst, rscratch); 649 } 650 651 void MacroAssembler::leave() { 652 // %%% is this really better? Why not on 32bit too? 653 emit_int8((unsigned char)0xC9); // LEAVE 654 } 655 656 void MacroAssembler::lneg(Register hi, Register lo) { 657 ShouldNotReachHere(); // 64bit doesn't use two regs 658 negq(lo); 659 } 660 661 void MacroAssembler::movoop(Register dst, jobject obj) { 662 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 663 } 664 665 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 666 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 667 movq(dst, rscratch); 668 } 669 670 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 671 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 672 } 673 674 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 675 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 676 movq(dst, rscratch); 677 } 678 679 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 680 if (src.is_lval()) { 681 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 682 } else { 683 if (reachable(src)) { 684 movq(dst, as_Address(src)); 685 } else { 686 lea(dst, src); 687 movq(dst, Address(dst, 0)); 688 } 689 } 690 } 691 692 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 693 movq(as_Address(dst, rscratch), src); 694 } 695 696 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 697 movq(dst, as_Address(src, dst /*rscratch*/)); 698 } 699 700 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 701 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 702 if (is_simm32(src)) { 703 movptr(dst, checked_cast<int32_t>(src)); 704 } else { 705 mov64(rscratch, src); 706 movq(dst, rscratch); 707 } 708 } 709 710 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 711 movoop(rscratch, obj); 712 push(rscratch); 713 } 714 715 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 716 mov_metadata(rscratch, obj); 717 push(rscratch); 718 } 719 720 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 721 lea(rscratch, src); 722 if (src.is_lval()) { 723 push(rscratch); 724 } else { 725 pushq(Address(rscratch, 0)); 726 } 727 } 728 729 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 730 reset_last_Java_frame(r15_thread, clear_fp); 731 } 732 733 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 734 Register last_java_fp, 735 address last_java_pc, 736 Register rscratch) { 737 set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, last_java_pc, rscratch); 738 } 739 740 static void pass_arg0(MacroAssembler* masm, Register arg) { 741 if (c_rarg0 != arg ) { 742 masm->mov(c_rarg0, arg); 743 } 744 } 745 746 static void pass_arg1(MacroAssembler* masm, Register arg) { 747 if (c_rarg1 != arg ) { 748 masm->mov(c_rarg1, arg); 749 } 750 } 751 752 static void pass_arg2(MacroAssembler* masm, Register arg) { 753 if (c_rarg2 != arg ) { 754 masm->mov(c_rarg2, arg); 755 } 756 } 757 758 static void pass_arg3(MacroAssembler* masm, Register arg) { 759 if (c_rarg3 != arg ) { 760 masm->mov(c_rarg3, arg); 761 } 762 } 763 764 void MacroAssembler::stop(const char* msg) { 765 if (ShowMessageBoxOnError) { 766 address rip = pc(); 767 pusha(); // get regs on stack 768 lea(c_rarg1, InternalAddress(rip)); 769 movq(c_rarg2, rsp); // pass pointer to regs array 770 } 771 lea(c_rarg0, ExternalAddress((address) msg)); 772 andq(rsp, -16); // align stack as required by ABI 773 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 774 hlt(); 775 SCCache::add_C_string(msg); 776 } 777 778 void MacroAssembler::warn(const char* msg) { 779 push(rbp); 780 movq(rbp, rsp); 781 andq(rsp, -16); // align stack as required by push_CPU_state and call 782 push_CPU_state(); // keeps alignment at 16 bytes 783 784 lea(c_rarg0, ExternalAddress((address) msg)); 785 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 786 787 pop_CPU_state(); 788 mov(rsp, rbp); 789 pop(rbp); 790 } 791 792 void MacroAssembler::print_state() { 793 address rip = pc(); 794 pusha(); // get regs on stack 795 push(rbp); 796 movq(rbp, rsp); 797 andq(rsp, -16); // align stack as required by push_CPU_state and call 798 push_CPU_state(); // keeps alignment at 16 bytes 799 800 lea(c_rarg0, InternalAddress(rip)); 801 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array 802 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1); 803 804 pop_CPU_state(); 805 mov(rsp, rbp); 806 pop(rbp); 807 popa(); 808 } 809 810 #ifndef PRODUCT 811 extern "C" void findpc(intptr_t x); 812 #endif 813 814 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { 815 // In order to get locks to work, we need to fake a in_VM state 816 if (ShowMessageBoxOnError) { 817 JavaThread* thread = JavaThread::current(); 818 JavaThreadState saved_state = thread->thread_state(); 819 thread->set_thread_state(_thread_in_vm); 820 #ifndef PRODUCT 821 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 822 ttyLocker ttyl; 823 BytecodeCounter::print(); 824 } 825 #endif 826 // To see where a verify_oop failed, get $ebx+40/X for this frame. 827 // XXX correct this offset for amd64 828 // This is the value of eip which points to where verify_oop will return. 829 if (os::message_box(msg, "Execution stopped, print registers?")) { 830 print_state64(pc, regs); 831 BREAKPOINT; 832 } 833 } 834 fatal("DEBUG MESSAGE: %s", msg); 835 } 836 837 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) { 838 ttyLocker ttyl; 839 DebuggingContext debugging{}; 840 tty->print_cr("rip = 0x%016lx", (intptr_t)pc); 841 #ifndef PRODUCT 842 tty->cr(); 843 findpc(pc); 844 tty->cr(); 845 #endif 846 #define PRINT_REG(rax, value) \ 847 { tty->print("%s = ", #rax); os::print_location(tty, value); } 848 PRINT_REG(rax, regs[15]); 849 PRINT_REG(rbx, regs[12]); 850 PRINT_REG(rcx, regs[14]); 851 PRINT_REG(rdx, regs[13]); 852 PRINT_REG(rdi, regs[8]); 853 PRINT_REG(rsi, regs[9]); 854 PRINT_REG(rbp, regs[10]); 855 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp 856 PRINT_REG(rsp, (intptr_t)(®s[16])); 857 PRINT_REG(r8 , regs[7]); 858 PRINT_REG(r9 , regs[6]); 859 PRINT_REG(r10, regs[5]); 860 PRINT_REG(r11, regs[4]); 861 PRINT_REG(r12, regs[3]); 862 PRINT_REG(r13, regs[2]); 863 PRINT_REG(r14, regs[1]); 864 PRINT_REG(r15, regs[0]); 865 #undef PRINT_REG 866 // Print some words near the top of the stack. 867 int64_t* rsp = ®s[16]; 868 int64_t* dump_sp = rsp; 869 for (int col1 = 0; col1 < 8; col1++) { 870 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 871 os::print_location(tty, *dump_sp++); 872 } 873 for (int row = 0; row < 25; row++) { 874 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 875 for (int col = 0; col < 4; col++) { 876 tty->print(" 0x%016lx", (intptr_t)*dump_sp++); 877 } 878 tty->cr(); 879 } 880 // Print some instructions around pc: 881 Disassembler::decode((address)pc-64, (address)pc); 882 tty->print_cr("--------"); 883 Disassembler::decode((address)pc, (address)pc+32); 884 } 885 886 // The java_calling_convention describes stack locations as ideal slots on 887 // a frame with no abi restrictions. Since we must observe abi restrictions 888 // (like the placement of the register window) the slots must be biased by 889 // the following value. 890 static int reg2offset_in(VMReg r) { 891 // Account for saved rbp and return address 892 // This should really be in_preserve_stack_slots 893 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 894 } 895 896 static int reg2offset_out(VMReg r) { 897 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 898 } 899 900 // A long move 901 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 902 903 // The calling conventions assures us that each VMregpair is either 904 // all really one physical register or adjacent stack slots. 905 906 if (src.is_single_phys_reg() ) { 907 if (dst.is_single_phys_reg()) { 908 if (dst.first() != src.first()) { 909 mov(dst.first()->as_Register(), src.first()->as_Register()); 910 } 911 } else { 912 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)", 913 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name()); 914 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 915 } 916 } else if (dst.is_single_phys_reg()) { 917 assert(src.is_single_reg(), "not a stack pair"); 918 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 919 } else { 920 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 921 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 922 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 923 } 924 } 925 926 // A double move 927 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 928 929 // The calling conventions assures us that each VMregpair is either 930 // all really one physical register or adjacent stack slots. 931 932 if (src.is_single_phys_reg() ) { 933 if (dst.is_single_phys_reg()) { 934 // In theory these overlap but the ordering is such that this is likely a nop 935 if ( src.first() != dst.first()) { 936 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 937 } 938 } else { 939 assert(dst.is_single_reg(), "not a stack pair"); 940 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 941 } 942 } else if (dst.is_single_phys_reg()) { 943 assert(src.is_single_reg(), "not a stack pair"); 944 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 945 } else { 946 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 947 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 948 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 949 } 950 } 951 952 953 // A float arg may have to do float reg int reg conversion 954 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 955 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 956 957 // The calling conventions assures us that each VMregpair is either 958 // all really one physical register or adjacent stack slots. 959 960 if (src.first()->is_stack()) { 961 if (dst.first()->is_stack()) { 962 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 963 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 964 } else { 965 // stack to reg 966 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 967 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 968 } 969 } else if (dst.first()->is_stack()) { 970 // reg to stack 971 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 972 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 973 } else { 974 // reg to reg 975 // In theory these overlap but the ordering is such that this is likely a nop 976 if ( src.first() != dst.first()) { 977 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 978 } 979 } 980 } 981 982 // On 64 bit we will store integer like items to the stack as 983 // 64 bits items (x86_32/64 abi) even though java would only store 984 // 32bits for a parameter. On 32bit it will simply be 32 bits 985 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 986 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 987 if (src.first()->is_stack()) { 988 if (dst.first()->is_stack()) { 989 // stack to stack 990 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 991 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 992 } else { 993 // stack to reg 994 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 995 } 996 } else if (dst.first()->is_stack()) { 997 // reg to stack 998 // Do we really have to sign extend??? 999 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 1000 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 1001 } else { 1002 // Do we really have to sign extend??? 1003 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 1004 if (dst.first() != src.first()) { 1005 movq(dst.first()->as_Register(), src.first()->as_Register()); 1006 } 1007 } 1008 } 1009 1010 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) { 1011 if (src.first()->is_stack()) { 1012 if (dst.first()->is_stack()) { 1013 // stack to stack 1014 movq(rax, Address(rbp, reg2offset_in(src.first()))); 1015 movq(Address(rsp, reg2offset_out(dst.first())), rax); 1016 } else { 1017 // stack to reg 1018 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1019 } 1020 } else if (dst.first()->is_stack()) { 1021 // reg to stack 1022 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1023 } else { 1024 if (dst.first() != src.first()) { 1025 movq(dst.first()->as_Register(), src.first()->as_Register()); 1026 } 1027 } 1028 } 1029 1030 // An oop arg. Must pass a handle not the oop itself 1031 void MacroAssembler::object_move(OopMap* map, 1032 int oop_handle_offset, 1033 int framesize_in_slots, 1034 VMRegPair src, 1035 VMRegPair dst, 1036 bool is_receiver, 1037 int* receiver_offset) { 1038 1039 // must pass a handle. First figure out the location we use as a handle 1040 1041 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 1042 1043 // See if oop is null if it is we need no handle 1044 1045 if (src.first()->is_stack()) { 1046 1047 // Oop is already on the stack as an argument 1048 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1049 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1050 if (is_receiver) { 1051 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1052 } 1053 1054 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 1055 lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1056 // conditionally move a null 1057 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 1058 } else { 1059 1060 // Oop is in a register we must store it to the space we reserve 1061 // on the stack for oop_handles and pass a handle if oop is non-null 1062 1063 const Register rOop = src.first()->as_Register(); 1064 int oop_slot; 1065 if (rOop == j_rarg0) 1066 oop_slot = 0; 1067 else if (rOop == j_rarg1) 1068 oop_slot = 1; 1069 else if (rOop == j_rarg2) 1070 oop_slot = 2; 1071 else if (rOop == j_rarg3) 1072 oop_slot = 3; 1073 else if (rOop == j_rarg4) 1074 oop_slot = 4; 1075 else { 1076 assert(rOop == j_rarg5, "wrong register"); 1077 oop_slot = 5; 1078 } 1079 1080 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 1081 int offset = oop_slot*VMRegImpl::stack_slot_size; 1082 1083 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1084 // Store oop in handle area, may be null 1085 movptr(Address(rsp, offset), rOop); 1086 if (is_receiver) { 1087 *receiver_offset = offset; 1088 } 1089 1090 cmpptr(rOop, NULL_WORD); 1091 lea(rHandle, Address(rsp, offset)); 1092 // conditionally move a null from the handle area where it was just stored 1093 cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 1094 } 1095 1096 // If arg is on the stack then place it otherwise it is already in correct reg. 1097 if (dst.first()->is_stack()) { 1098 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1099 } 1100 } 1101 1102 #endif // _LP64 1103 1104 // Now versions that are common to 32/64 bit 1105 1106 void MacroAssembler::addptr(Register dst, int32_t imm32) { 1107 LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32)); 1108 } 1109 1110 void MacroAssembler::addptr(Register dst, Register src) { 1111 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1112 } 1113 1114 void MacroAssembler::addptr(Address dst, Register src) { 1115 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1116 } 1117 1118 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1119 assert(rscratch != noreg || always_reachable(src), "missing"); 1120 1121 if (reachable(src)) { 1122 Assembler::addsd(dst, as_Address(src)); 1123 } else { 1124 lea(rscratch, src); 1125 Assembler::addsd(dst, Address(rscratch, 0)); 1126 } 1127 } 1128 1129 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1130 assert(rscratch != noreg || always_reachable(src), "missing"); 1131 1132 if (reachable(src)) { 1133 addss(dst, as_Address(src)); 1134 } else { 1135 lea(rscratch, src); 1136 addss(dst, Address(rscratch, 0)); 1137 } 1138 } 1139 1140 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1141 assert(rscratch != noreg || always_reachable(src), "missing"); 1142 1143 if (reachable(src)) { 1144 Assembler::addpd(dst, as_Address(src)); 1145 } else { 1146 lea(rscratch, src); 1147 Assembler::addpd(dst, Address(rscratch, 0)); 1148 } 1149 } 1150 1151 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only. 1152 // Stub code is generated once and never copied. 1153 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes. 1154 void MacroAssembler::align64() { 1155 align(64, (uint)(uintptr_t)pc()); 1156 } 1157 1158 void MacroAssembler::align32() { 1159 align(32, (uint)(uintptr_t)pc()); 1160 } 1161 1162 void MacroAssembler::align(uint modulus) { 1163 // 8273459: Ensure alignment is possible with current segment alignment 1164 assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment"); 1165 align(modulus, offset()); 1166 } 1167 1168 void MacroAssembler::align(uint modulus, uint target) { 1169 if (target % modulus != 0) { 1170 nop(modulus - (target % modulus)); 1171 } 1172 } 1173 1174 void MacroAssembler::push_f(XMMRegister r) { 1175 subptr(rsp, wordSize); 1176 movflt(Address(rsp, 0), r); 1177 } 1178 1179 void MacroAssembler::pop_f(XMMRegister r) { 1180 movflt(r, Address(rsp, 0)); 1181 addptr(rsp, wordSize); 1182 } 1183 1184 void MacroAssembler::push_d(XMMRegister r) { 1185 subptr(rsp, 2 * wordSize); 1186 movdbl(Address(rsp, 0), r); 1187 } 1188 1189 void MacroAssembler::pop_d(XMMRegister r) { 1190 movdbl(r, Address(rsp, 0)); 1191 addptr(rsp, 2 * Interpreter::stackElementSize); 1192 } 1193 1194 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1195 // Used in sign-masking with aligned address. 1196 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1197 assert(rscratch != noreg || always_reachable(src), "missing"); 1198 1199 if (reachable(src)) { 1200 Assembler::andpd(dst, as_Address(src)); 1201 } else { 1202 lea(rscratch, src); 1203 Assembler::andpd(dst, Address(rscratch, 0)); 1204 } 1205 } 1206 1207 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) { 1208 // Used in sign-masking with aligned address. 1209 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1210 assert(rscratch != noreg || always_reachable(src), "missing"); 1211 1212 if (reachable(src)) { 1213 Assembler::andps(dst, as_Address(src)); 1214 } else { 1215 lea(rscratch, src); 1216 Assembler::andps(dst, Address(rscratch, 0)); 1217 } 1218 } 1219 1220 void MacroAssembler::andptr(Register dst, int32_t imm32) { 1221 LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32)); 1222 } 1223 1224 #ifdef _LP64 1225 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) { 1226 assert(rscratch != noreg || always_reachable(src), "missing"); 1227 1228 if (reachable(src)) { 1229 andq(dst, as_Address(src)); 1230 } else { 1231 lea(rscratch, src); 1232 andq(dst, Address(rscratch, 0)); 1233 } 1234 } 1235 #endif 1236 1237 void MacroAssembler::atomic_incl(Address counter_addr) { 1238 lock(); 1239 incrementl(counter_addr); 1240 } 1241 1242 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) { 1243 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1244 1245 if (reachable(counter_addr)) { 1246 atomic_incl(as_Address(counter_addr)); 1247 } else { 1248 lea(rscratch, counter_addr); 1249 atomic_incl(Address(rscratch, 0)); 1250 } 1251 } 1252 1253 #ifdef _LP64 1254 void MacroAssembler::atomic_incq(Address counter_addr) { 1255 lock(); 1256 incrementq(counter_addr); 1257 } 1258 1259 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) { 1260 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1261 1262 if (reachable(counter_addr)) { 1263 atomic_incq(as_Address(counter_addr)); 1264 } else { 1265 lea(rscratch, counter_addr); 1266 atomic_incq(Address(rscratch, 0)); 1267 } 1268 } 1269 #endif 1270 1271 // Writes to stack successive pages until offset reached to check for 1272 // stack overflow + shadow pages. This clobbers tmp. 1273 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 1274 movptr(tmp, rsp); 1275 // Bang stack for total size given plus shadow page size. 1276 // Bang one page at a time because large size can bang beyond yellow and 1277 // red zones. 1278 Label loop; 1279 bind(loop); 1280 movl(Address(tmp, (-(int)os::vm_page_size())), size ); 1281 subptr(tmp, (int)os::vm_page_size()); 1282 subl(size, (int)os::vm_page_size()); 1283 jcc(Assembler::greater, loop); 1284 1285 // Bang down shadow pages too. 1286 // At this point, (tmp-0) is the last address touched, so don't 1287 // touch it again. (It was touched as (tmp-pagesize) but then tmp 1288 // was post-decremented.) Skip this address by starting at i=1, and 1289 // touch a few more pages below. N.B. It is important to touch all 1290 // the way down including all pages in the shadow zone. 1291 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) { 1292 // this could be any sized move but this is can be a debugging crumb 1293 // so the bigger the better. 1294 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size ); 1295 } 1296 } 1297 1298 void MacroAssembler::reserved_stack_check() { 1299 // testing if reserved zone needs to be enabled 1300 Label no_reserved_zone_enabling; 1301 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 1302 NOT_LP64(get_thread(rsi);) 1303 1304 cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset())); 1305 jcc(Assembler::below, no_reserved_zone_enabling); 1306 1307 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread); 1308 jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 1309 should_not_reach_here(); 1310 1311 bind(no_reserved_zone_enabling); 1312 } 1313 1314 void MacroAssembler::c2bool(Register x) { 1315 // implements x == 0 ? 0 : 1 1316 // note: must only look at least-significant byte of x 1317 // since C-style booleans are stored in one byte 1318 // only! (was bug) 1319 andl(x, 0xFF); 1320 setb(Assembler::notZero, x); 1321 } 1322 1323 // Wouldn't need if AddressLiteral version had new name 1324 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { 1325 Assembler::call(L, rtype); 1326 } 1327 1328 void MacroAssembler::call(Register entry) { 1329 Assembler::call(entry); 1330 } 1331 1332 void MacroAssembler::call(AddressLiteral entry, Register rscratch) { 1333 assert(rscratch != noreg || always_reachable(entry), "missing"); 1334 1335 if (reachable(entry)) { 1336 Assembler::call_literal(entry.target(), entry.rspec()); 1337 } else { 1338 lea(rscratch, entry); 1339 Assembler::call(rscratch); 1340 } 1341 } 1342 1343 void MacroAssembler::ic_call(address entry, jint method_index) { 1344 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1345 #ifdef _LP64 1346 // Needs full 64-bit immediate for later patching. 1347 mov64(rax, (int64_t)Universe::non_oop_word()); 1348 #else 1349 movptr(rax, (intptr_t)Universe::non_oop_word()); 1350 #endif 1351 call(AddressLiteral(entry, rh)); 1352 } 1353 1354 int MacroAssembler::ic_check_size() { 1355 return LP64_ONLY(14) NOT_LP64(12); 1356 } 1357 1358 int MacroAssembler::ic_check(int end_alignment) { 1359 Register receiver = LP64_ONLY(j_rarg0) NOT_LP64(rcx); 1360 Register data = rax; 1361 Register temp = LP64_ONLY(rscratch1) NOT_LP64(rbx); 1362 1363 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1364 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1365 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1366 // before the inline cache check here, and not after 1367 align(end_alignment, offset() + ic_check_size()); 1368 1369 int uep_offset = offset(); 1370 1371 if (UseCompressedClassPointers) { 1372 movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1373 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 1374 } else { 1375 movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1376 cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset())); 1377 } 1378 1379 // if inline cache check fails, then jump to runtime routine 1380 jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1381 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1382 1383 return uep_offset; 1384 } 1385 1386 void MacroAssembler::emit_static_call_stub() { 1387 // Static stub relocation also tags the Method* in the code-stream. 1388 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time. 1389 // This is recognized as unresolved by relocs/nativeinst/ic code. 1390 jump(RuntimeAddress(pc())); 1391 } 1392 1393 // Implementation of call_VM versions 1394 1395 void MacroAssembler::call_VM(Register oop_result, 1396 address entry_point, 1397 bool check_exceptions) { 1398 Label C, E; 1399 call(C, relocInfo::none); 1400 jmp(E); 1401 1402 bind(C); 1403 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1404 ret(0); 1405 1406 bind(E); 1407 } 1408 1409 void MacroAssembler::call_VM(Register oop_result, 1410 address entry_point, 1411 Register arg_1, 1412 bool check_exceptions) { 1413 Label C, E; 1414 call(C, relocInfo::none); 1415 jmp(E); 1416 1417 bind(C); 1418 pass_arg1(this, arg_1); 1419 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1420 ret(0); 1421 1422 bind(E); 1423 } 1424 1425 void MacroAssembler::call_VM(Register oop_result, 1426 address entry_point, 1427 Register arg_1, 1428 Register arg_2, 1429 bool check_exceptions) { 1430 Label C, E; 1431 call(C, relocInfo::none); 1432 jmp(E); 1433 1434 bind(C); 1435 1436 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1437 1438 pass_arg2(this, arg_2); 1439 pass_arg1(this, arg_1); 1440 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1441 ret(0); 1442 1443 bind(E); 1444 } 1445 1446 void MacroAssembler::call_VM(Register oop_result, 1447 address entry_point, 1448 Register arg_1, 1449 Register arg_2, 1450 Register arg_3, 1451 bool check_exceptions) { 1452 Label C, E; 1453 call(C, relocInfo::none); 1454 jmp(E); 1455 1456 bind(C); 1457 1458 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1459 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1460 pass_arg3(this, arg_3); 1461 pass_arg2(this, arg_2); 1462 pass_arg1(this, arg_1); 1463 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1464 ret(0); 1465 1466 bind(E); 1467 } 1468 1469 void MacroAssembler::call_VM(Register oop_result, 1470 Register last_java_sp, 1471 address entry_point, 1472 int number_of_arguments, 1473 bool check_exceptions) { 1474 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1475 call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1476 } 1477 1478 void MacroAssembler::call_VM(Register oop_result, 1479 Register last_java_sp, 1480 address entry_point, 1481 Register arg_1, 1482 bool check_exceptions) { 1483 pass_arg1(this, arg_1); 1484 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1485 } 1486 1487 void MacroAssembler::call_VM(Register oop_result, 1488 Register last_java_sp, 1489 address entry_point, 1490 Register arg_1, 1491 Register arg_2, 1492 bool check_exceptions) { 1493 1494 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1495 pass_arg2(this, arg_2); 1496 pass_arg1(this, arg_1); 1497 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1498 } 1499 1500 void MacroAssembler::call_VM(Register oop_result, 1501 Register last_java_sp, 1502 address entry_point, 1503 Register arg_1, 1504 Register arg_2, 1505 Register arg_3, 1506 bool check_exceptions) { 1507 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1508 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1509 pass_arg3(this, arg_3); 1510 pass_arg2(this, arg_2); 1511 pass_arg1(this, arg_1); 1512 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1513 } 1514 1515 void MacroAssembler::super_call_VM(Register oop_result, 1516 Register last_java_sp, 1517 address entry_point, 1518 int number_of_arguments, 1519 bool check_exceptions) { 1520 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1521 MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1522 } 1523 1524 void MacroAssembler::super_call_VM(Register oop_result, 1525 Register last_java_sp, 1526 address entry_point, 1527 Register arg_1, 1528 bool check_exceptions) { 1529 pass_arg1(this, arg_1); 1530 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1531 } 1532 1533 void MacroAssembler::super_call_VM(Register oop_result, 1534 Register last_java_sp, 1535 address entry_point, 1536 Register arg_1, 1537 Register arg_2, 1538 bool check_exceptions) { 1539 1540 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1541 pass_arg2(this, arg_2); 1542 pass_arg1(this, arg_1); 1543 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1544 } 1545 1546 void MacroAssembler::super_call_VM(Register oop_result, 1547 Register last_java_sp, 1548 address entry_point, 1549 Register arg_1, 1550 Register arg_2, 1551 Register arg_3, 1552 bool check_exceptions) { 1553 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1554 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1555 pass_arg3(this, arg_3); 1556 pass_arg2(this, arg_2); 1557 pass_arg1(this, arg_1); 1558 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1559 } 1560 1561 void MacroAssembler::call_VM_base(Register oop_result, 1562 Register java_thread, 1563 Register last_java_sp, 1564 address entry_point, 1565 int number_of_arguments, 1566 bool check_exceptions) { 1567 // determine java_thread register 1568 if (!java_thread->is_valid()) { 1569 #ifdef _LP64 1570 java_thread = r15_thread; 1571 #else 1572 java_thread = rdi; 1573 get_thread(java_thread); 1574 #endif // LP64 1575 } 1576 // determine last_java_sp register 1577 if (!last_java_sp->is_valid()) { 1578 last_java_sp = rsp; 1579 } 1580 // debugging support 1581 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 1582 LP64_ONLY(assert(java_thread == r15_thread, "unexpected register")); 1583 #ifdef ASSERT 1584 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 1585 // r12 is the heapbase. 1586 LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");) 1587 #endif // ASSERT 1588 1589 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 1590 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 1591 1592 // push java thread (becomes first argument of C function) 1593 1594 NOT_LP64(push(java_thread); number_of_arguments++); 1595 LP64_ONLY(mov(c_rarg0, r15_thread)); 1596 1597 // set last Java frame before call 1598 assert(last_java_sp != rbp, "can't use ebp/rbp"); 1599 1600 // Only interpreter should have to set fp 1601 set_last_Java_frame(java_thread, last_java_sp, rbp, nullptr, rscratch1); 1602 1603 // do the call, remove parameters 1604 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1605 1606 // restore the thread (cannot use the pushed argument since arguments 1607 // may be overwritten by C code generated by an optimizing compiler); 1608 // however can use the register value directly if it is callee saved. 1609 if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) { 1610 // rdi & rsi (also r15) are callee saved -> nothing to do 1611 #ifdef ASSERT 1612 guarantee(java_thread != rax, "change this code"); 1613 push(rax); 1614 { Label L; 1615 get_thread(rax); 1616 cmpptr(java_thread, rax); 1617 jcc(Assembler::equal, L); 1618 STOP("MacroAssembler::call_VM_base: rdi not callee saved?"); 1619 bind(L); 1620 } 1621 pop(rax); 1622 #endif 1623 } else { 1624 get_thread(java_thread); 1625 } 1626 // reset last Java frame 1627 // Only interpreter should have to clear fp 1628 reset_last_Java_frame(java_thread, true); 1629 1630 // C++ interp handles this in the interpreter 1631 check_and_handle_popframe(java_thread); 1632 check_and_handle_earlyret(java_thread); 1633 1634 if (check_exceptions) { 1635 // check for pending exceptions (java_thread is set upon return) 1636 cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD); 1637 #ifndef _LP64 1638 jump_cc(Assembler::notEqual, 1639 RuntimeAddress(StubRoutines::forward_exception_entry())); 1640 #else 1641 // This used to conditionally jump to forward_exception however it is 1642 // possible if we relocate that the branch will not reach. So we must jump 1643 // around so we can always reach 1644 1645 Label ok; 1646 jcc(Assembler::equal, ok); 1647 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1648 bind(ok); 1649 #endif // LP64 1650 } 1651 1652 // get oop result if there is one and reset the value in the thread 1653 if (oop_result->is_valid()) { 1654 get_vm_result(oop_result, java_thread); 1655 } 1656 } 1657 1658 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 1659 1660 // Calculate the value for last_Java_sp 1661 // somewhat subtle. call_VM does an intermediate call 1662 // which places a return address on the stack just under the 1663 // stack pointer as the user finished with it. This allows 1664 // use to retrieve last_Java_pc from last_Java_sp[-1]. 1665 // On 32bit we then have to push additional args on the stack to accomplish 1666 // the actual requested call. On 64bit call_VM only can use register args 1667 // so the only extra space is the return address that call_VM created. 1668 // This hopefully explains the calculations here. 1669 1670 #ifdef _LP64 1671 // We've pushed one address, correct last_Java_sp 1672 lea(rax, Address(rsp, wordSize)); 1673 #else 1674 lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize)); 1675 #endif // LP64 1676 1677 call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions); 1678 1679 } 1680 1681 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter. 1682 void MacroAssembler::call_VM_leaf0(address entry_point) { 1683 MacroAssembler::call_VM_leaf_base(entry_point, 0); 1684 } 1685 1686 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1687 call_VM_leaf_base(entry_point, number_of_arguments); 1688 } 1689 1690 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1691 pass_arg0(this, arg_0); 1692 call_VM_leaf(entry_point, 1); 1693 } 1694 1695 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1696 1697 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1698 pass_arg1(this, arg_1); 1699 pass_arg0(this, arg_0); 1700 call_VM_leaf(entry_point, 2); 1701 } 1702 1703 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1704 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1705 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1706 pass_arg2(this, arg_2); 1707 pass_arg1(this, arg_1); 1708 pass_arg0(this, arg_0); 1709 call_VM_leaf(entry_point, 3); 1710 } 1711 1712 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1713 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1714 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1715 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1716 pass_arg3(this, arg_3); 1717 pass_arg2(this, arg_2); 1718 pass_arg1(this, arg_1); 1719 pass_arg0(this, arg_0); 1720 call_VM_leaf(entry_point, 3); 1721 } 1722 1723 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1724 pass_arg0(this, arg_0); 1725 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1726 } 1727 1728 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1729 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1730 pass_arg1(this, arg_1); 1731 pass_arg0(this, arg_0); 1732 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1733 } 1734 1735 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1736 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1737 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1738 pass_arg2(this, arg_2); 1739 pass_arg1(this, arg_1); 1740 pass_arg0(this, arg_0); 1741 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1742 } 1743 1744 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1745 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1746 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1747 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1748 pass_arg3(this, arg_3); 1749 pass_arg2(this, arg_2); 1750 pass_arg1(this, arg_1); 1751 pass_arg0(this, arg_0); 1752 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1753 } 1754 1755 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1756 movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1757 movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD); 1758 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1759 } 1760 1761 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1762 movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1763 movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD); 1764 } 1765 1766 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { 1767 } 1768 1769 void MacroAssembler::check_and_handle_popframe(Register java_thread) { 1770 } 1771 1772 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) { 1773 assert(rscratch != noreg || always_reachable(src1), "missing"); 1774 1775 if (reachable(src1)) { 1776 cmpl(as_Address(src1), imm); 1777 } else { 1778 lea(rscratch, src1); 1779 cmpl(Address(rscratch, 0), imm); 1780 } 1781 } 1782 1783 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) { 1784 assert(!src2.is_lval(), "use cmpptr"); 1785 assert(rscratch != noreg || always_reachable(src2), "missing"); 1786 1787 if (reachable(src2)) { 1788 cmpl(src1, as_Address(src2)); 1789 } else { 1790 lea(rscratch, src2); 1791 cmpl(src1, Address(rscratch, 0)); 1792 } 1793 } 1794 1795 void MacroAssembler::cmp32(Register src1, int32_t imm) { 1796 Assembler::cmpl(src1, imm); 1797 } 1798 1799 void MacroAssembler::cmp32(Register src1, Address src2) { 1800 Assembler::cmpl(src1, src2); 1801 } 1802 1803 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1804 ucomisd(opr1, opr2); 1805 1806 Label L; 1807 if (unordered_is_less) { 1808 movl(dst, -1); 1809 jcc(Assembler::parity, L); 1810 jcc(Assembler::below , L); 1811 movl(dst, 0); 1812 jcc(Assembler::equal , L); 1813 increment(dst); 1814 } else { // unordered is greater 1815 movl(dst, 1); 1816 jcc(Assembler::parity, L); 1817 jcc(Assembler::above , L); 1818 movl(dst, 0); 1819 jcc(Assembler::equal , L); 1820 decrementl(dst); 1821 } 1822 bind(L); 1823 } 1824 1825 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1826 ucomiss(opr1, opr2); 1827 1828 Label L; 1829 if (unordered_is_less) { 1830 movl(dst, -1); 1831 jcc(Assembler::parity, L); 1832 jcc(Assembler::below , L); 1833 movl(dst, 0); 1834 jcc(Assembler::equal , L); 1835 increment(dst); 1836 } else { // unordered is greater 1837 movl(dst, 1); 1838 jcc(Assembler::parity, L); 1839 jcc(Assembler::above , L); 1840 movl(dst, 0); 1841 jcc(Assembler::equal , L); 1842 decrementl(dst); 1843 } 1844 bind(L); 1845 } 1846 1847 1848 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) { 1849 assert(rscratch != noreg || always_reachable(src1), "missing"); 1850 1851 if (reachable(src1)) { 1852 cmpb(as_Address(src1), imm); 1853 } else { 1854 lea(rscratch, src1); 1855 cmpb(Address(rscratch, 0), imm); 1856 } 1857 } 1858 1859 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) { 1860 #ifdef _LP64 1861 assert(rscratch != noreg || always_reachable(src2), "missing"); 1862 1863 if (src2.is_lval()) { 1864 movptr(rscratch, src2); 1865 Assembler::cmpq(src1, rscratch); 1866 } else if (reachable(src2)) { 1867 cmpq(src1, as_Address(src2)); 1868 } else { 1869 lea(rscratch, src2); 1870 Assembler::cmpq(src1, Address(rscratch, 0)); 1871 } 1872 #else 1873 assert(rscratch == noreg, "not needed"); 1874 if (src2.is_lval()) { 1875 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1876 } else { 1877 cmpl(src1, as_Address(src2)); 1878 } 1879 #endif // _LP64 1880 } 1881 1882 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) { 1883 assert(src2.is_lval(), "not a mem-mem compare"); 1884 #ifdef _LP64 1885 // moves src2's literal address 1886 movptr(rscratch, src2); 1887 Assembler::cmpq(src1, rscratch); 1888 #else 1889 assert(rscratch == noreg, "not needed"); 1890 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1891 #endif // _LP64 1892 } 1893 1894 void MacroAssembler::cmpoop(Register src1, Register src2) { 1895 cmpptr(src1, src2); 1896 } 1897 1898 void MacroAssembler::cmpoop(Register src1, Address src2) { 1899 cmpptr(src1, src2); 1900 } 1901 1902 #ifdef _LP64 1903 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) { 1904 movoop(rscratch, src2); 1905 cmpptr(src1, rscratch); 1906 } 1907 #endif 1908 1909 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) { 1910 assert(rscratch != noreg || always_reachable(adr), "missing"); 1911 1912 if (reachable(adr)) { 1913 lock(); 1914 cmpxchgptr(reg, as_Address(adr)); 1915 } else { 1916 lea(rscratch, adr); 1917 lock(); 1918 cmpxchgptr(reg, Address(rscratch, 0)); 1919 } 1920 } 1921 1922 void MacroAssembler::cmpxchgptr(Register reg, Address adr) { 1923 LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr)); 1924 } 1925 1926 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1927 assert(rscratch != noreg || always_reachable(src), "missing"); 1928 1929 if (reachable(src)) { 1930 Assembler::comisd(dst, as_Address(src)); 1931 } else { 1932 lea(rscratch, src); 1933 Assembler::comisd(dst, Address(rscratch, 0)); 1934 } 1935 } 1936 1937 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1938 assert(rscratch != noreg || always_reachable(src), "missing"); 1939 1940 if (reachable(src)) { 1941 Assembler::comiss(dst, as_Address(src)); 1942 } else { 1943 lea(rscratch, src); 1944 Assembler::comiss(dst, Address(rscratch, 0)); 1945 } 1946 } 1947 1948 1949 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) { 1950 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1951 1952 Condition negated_cond = negate_condition(cond); 1953 Label L; 1954 jcc(negated_cond, L); 1955 pushf(); // Preserve flags 1956 atomic_incl(counter_addr, rscratch); 1957 popf(); 1958 bind(L); 1959 } 1960 1961 int MacroAssembler::corrected_idivl(Register reg) { 1962 // Full implementation of Java idiv and irem; checks for 1963 // special case as described in JVM spec., p.243 & p.271. 1964 // The function returns the (pc) offset of the idivl 1965 // instruction - may be needed for implicit exceptions. 1966 // 1967 // normal case special case 1968 // 1969 // input : rax,: dividend min_int 1970 // reg: divisor (may not be rax,/rdx) -1 1971 // 1972 // output: rax,: quotient (= rax, idiv reg) min_int 1973 // rdx: remainder (= rax, irem reg) 0 1974 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); 1975 const int min_int = 0x80000000; 1976 Label normal_case, special_case; 1977 1978 // check for special case 1979 cmpl(rax, min_int); 1980 jcc(Assembler::notEqual, normal_case); 1981 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) 1982 cmpl(reg, -1); 1983 jcc(Assembler::equal, special_case); 1984 1985 // handle normal case 1986 bind(normal_case); 1987 cdql(); 1988 int idivl_offset = offset(); 1989 idivl(reg); 1990 1991 // normal and special case exit 1992 bind(special_case); 1993 1994 return idivl_offset; 1995 } 1996 1997 1998 1999 void MacroAssembler::decrementl(Register reg, int value) { 2000 if (value == min_jint) {subl(reg, value) ; return; } 2001 if (value < 0) { incrementl(reg, -value); return; } 2002 if (value == 0) { ; return; } 2003 if (value == 1 && UseIncDec) { decl(reg) ; return; } 2004 /* else */ { subl(reg, value) ; return; } 2005 } 2006 2007 void MacroAssembler::decrementl(Address dst, int value) { 2008 if (value == min_jint) {subl(dst, value) ; return; } 2009 if (value < 0) { incrementl(dst, -value); return; } 2010 if (value == 0) { ; return; } 2011 if (value == 1 && UseIncDec) { decl(dst) ; return; } 2012 /* else */ { subl(dst, value) ; return; } 2013 } 2014 2015 void MacroAssembler::division_with_shift (Register reg, int shift_value) { 2016 assert(shift_value > 0, "illegal shift value"); 2017 Label _is_positive; 2018 testl (reg, reg); 2019 jcc (Assembler::positive, _is_positive); 2020 int offset = (1 << shift_value) - 1 ; 2021 2022 if (offset == 1) { 2023 incrementl(reg); 2024 } else { 2025 addl(reg, offset); 2026 } 2027 2028 bind (_is_positive); 2029 sarl(reg, shift_value); 2030 } 2031 2032 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2033 assert(rscratch != noreg || always_reachable(src), "missing"); 2034 2035 if (reachable(src)) { 2036 Assembler::divsd(dst, as_Address(src)); 2037 } else { 2038 lea(rscratch, src); 2039 Assembler::divsd(dst, Address(rscratch, 0)); 2040 } 2041 } 2042 2043 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2044 assert(rscratch != noreg || always_reachable(src), "missing"); 2045 2046 if (reachable(src)) { 2047 Assembler::divss(dst, as_Address(src)); 2048 } else { 2049 lea(rscratch, src); 2050 Assembler::divss(dst, Address(rscratch, 0)); 2051 } 2052 } 2053 2054 void MacroAssembler::enter() { 2055 push(rbp); 2056 mov(rbp, rsp); 2057 } 2058 2059 void MacroAssembler::post_call_nop() { 2060 if (!Continuations::enabled()) { 2061 return; 2062 } 2063 InstructionMark im(this); 2064 relocate(post_call_nop_Relocation::spec()); 2065 InlineSkippedInstructionsCounter skipCounter(this); 2066 emit_int8((uint8_t)0x0f); 2067 emit_int8((uint8_t)0x1f); 2068 emit_int8((uint8_t)0x84); 2069 emit_int8((uint8_t)0x00); 2070 emit_int32(0x00); 2071 } 2072 2073 // A 5 byte nop that is safe for patching (see patch_verified_entry) 2074 void MacroAssembler::fat_nop() { 2075 if (UseAddressNop) { 2076 addr_nop_5(); 2077 } else { 2078 emit_int8((uint8_t)0x26); // es: 2079 emit_int8((uint8_t)0x2e); // cs: 2080 emit_int8((uint8_t)0x64); // fs: 2081 emit_int8((uint8_t)0x65); // gs: 2082 emit_int8((uint8_t)0x90); 2083 } 2084 } 2085 2086 #ifndef _LP64 2087 void MacroAssembler::fcmp(Register tmp) { 2088 fcmp(tmp, 1, true, true); 2089 } 2090 2091 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) { 2092 assert(!pop_right || pop_left, "usage error"); 2093 if (VM_Version::supports_cmov()) { 2094 assert(tmp == noreg, "unneeded temp"); 2095 if (pop_left) { 2096 fucomip(index); 2097 } else { 2098 fucomi(index); 2099 } 2100 if (pop_right) { 2101 fpop(); 2102 } 2103 } else { 2104 assert(tmp != noreg, "need temp"); 2105 if (pop_left) { 2106 if (pop_right) { 2107 fcompp(); 2108 } else { 2109 fcomp(index); 2110 } 2111 } else { 2112 fcom(index); 2113 } 2114 // convert FPU condition into eflags condition via rax, 2115 save_rax(tmp); 2116 fwait(); fnstsw_ax(); 2117 sahf(); 2118 restore_rax(tmp); 2119 } 2120 // condition codes set as follows: 2121 // 2122 // CF (corresponds to C0) if x < y 2123 // PF (corresponds to C2) if unordered 2124 // ZF (corresponds to C3) if x = y 2125 } 2126 2127 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) { 2128 fcmp2int(dst, unordered_is_less, 1, true, true); 2129 } 2130 2131 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) { 2132 fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right); 2133 Label L; 2134 if (unordered_is_less) { 2135 movl(dst, -1); 2136 jcc(Assembler::parity, L); 2137 jcc(Assembler::below , L); 2138 movl(dst, 0); 2139 jcc(Assembler::equal , L); 2140 increment(dst); 2141 } else { // unordered is greater 2142 movl(dst, 1); 2143 jcc(Assembler::parity, L); 2144 jcc(Assembler::above , L); 2145 movl(dst, 0); 2146 jcc(Assembler::equal , L); 2147 decrementl(dst); 2148 } 2149 bind(L); 2150 } 2151 2152 void MacroAssembler::fld_d(AddressLiteral src) { 2153 fld_d(as_Address(src)); 2154 } 2155 2156 void MacroAssembler::fld_s(AddressLiteral src) { 2157 fld_s(as_Address(src)); 2158 } 2159 2160 void MacroAssembler::fldcw(AddressLiteral src) { 2161 fldcw(as_Address(src)); 2162 } 2163 2164 void MacroAssembler::fpop() { 2165 ffree(); 2166 fincstp(); 2167 } 2168 2169 void MacroAssembler::fremr(Register tmp) { 2170 save_rax(tmp); 2171 { Label L; 2172 bind(L); 2173 fprem(); 2174 fwait(); fnstsw_ax(); 2175 sahf(); 2176 jcc(Assembler::parity, L); 2177 } 2178 restore_rax(tmp); 2179 // Result is in ST0. 2180 // Note: fxch & fpop to get rid of ST1 2181 // (otherwise FPU stack could overflow eventually) 2182 fxch(1); 2183 fpop(); 2184 } 2185 2186 void MacroAssembler::empty_FPU_stack() { 2187 if (VM_Version::supports_mmx()) { 2188 emms(); 2189 } else { 2190 for (int i = 8; i-- > 0; ) ffree(i); 2191 } 2192 } 2193 #endif // !LP64 2194 2195 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2196 assert(rscratch != noreg || always_reachable(src), "missing"); 2197 if (reachable(src)) { 2198 Assembler::mulpd(dst, as_Address(src)); 2199 } else { 2200 lea(rscratch, src); 2201 Assembler::mulpd(dst, Address(rscratch, 0)); 2202 } 2203 } 2204 2205 void MacroAssembler::load_float(Address src) { 2206 #ifdef _LP64 2207 movflt(xmm0, src); 2208 #else 2209 if (UseSSE >= 1) { 2210 movflt(xmm0, src); 2211 } else { 2212 fld_s(src); 2213 } 2214 #endif // LP64 2215 } 2216 2217 void MacroAssembler::store_float(Address dst) { 2218 #ifdef _LP64 2219 movflt(dst, xmm0); 2220 #else 2221 if (UseSSE >= 1) { 2222 movflt(dst, xmm0); 2223 } else { 2224 fstp_s(dst); 2225 } 2226 #endif // LP64 2227 } 2228 2229 void MacroAssembler::load_double(Address src) { 2230 #ifdef _LP64 2231 movdbl(xmm0, src); 2232 #else 2233 if (UseSSE >= 2) { 2234 movdbl(xmm0, src); 2235 } else { 2236 fld_d(src); 2237 } 2238 #endif // LP64 2239 } 2240 2241 void MacroAssembler::store_double(Address dst) { 2242 #ifdef _LP64 2243 movdbl(dst, xmm0); 2244 #else 2245 if (UseSSE >= 2) { 2246 movdbl(dst, xmm0); 2247 } else { 2248 fstp_d(dst); 2249 } 2250 #endif // LP64 2251 } 2252 2253 // dst = c = a * b + c 2254 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2255 Assembler::vfmadd231sd(c, a, b); 2256 if (dst != c) { 2257 movdbl(dst, c); 2258 } 2259 } 2260 2261 // dst = c = a * b + c 2262 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2263 Assembler::vfmadd231ss(c, a, b); 2264 if (dst != c) { 2265 movflt(dst, c); 2266 } 2267 } 2268 2269 // dst = c = a * b + c 2270 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2271 Assembler::vfmadd231pd(c, a, b, vector_len); 2272 if (dst != c) { 2273 vmovdqu(dst, c); 2274 } 2275 } 2276 2277 // dst = c = a * b + c 2278 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2279 Assembler::vfmadd231ps(c, a, b, vector_len); 2280 if (dst != c) { 2281 vmovdqu(dst, c); 2282 } 2283 } 2284 2285 // dst = c = a * b + c 2286 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2287 Assembler::vfmadd231pd(c, a, b, vector_len); 2288 if (dst != c) { 2289 vmovdqu(dst, c); 2290 } 2291 } 2292 2293 // dst = c = a * b + c 2294 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2295 Assembler::vfmadd231ps(c, a, b, vector_len); 2296 if (dst != c) { 2297 vmovdqu(dst, c); 2298 } 2299 } 2300 2301 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) { 2302 assert(rscratch != noreg || always_reachable(dst), "missing"); 2303 2304 if (reachable(dst)) { 2305 incrementl(as_Address(dst)); 2306 } else { 2307 lea(rscratch, dst); 2308 incrementl(Address(rscratch, 0)); 2309 } 2310 } 2311 2312 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) { 2313 incrementl(as_Address(dst, rscratch)); 2314 } 2315 2316 void MacroAssembler::incrementl(Register reg, int value) { 2317 if (value == min_jint) {addl(reg, value) ; return; } 2318 if (value < 0) { decrementl(reg, -value); return; } 2319 if (value == 0) { ; return; } 2320 if (value == 1 && UseIncDec) { incl(reg) ; return; } 2321 /* else */ { addl(reg, value) ; return; } 2322 } 2323 2324 void MacroAssembler::incrementl(Address dst, int value) { 2325 if (value == min_jint) {addl(dst, value) ; return; } 2326 if (value < 0) { decrementl(dst, -value); return; } 2327 if (value == 0) { ; return; } 2328 if (value == 1 && UseIncDec) { incl(dst) ; return; } 2329 /* else */ { addl(dst, value) ; return; } 2330 } 2331 2332 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) { 2333 assert(rscratch != noreg || always_reachable(dst), "missing"); 2334 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump"); 2335 if (reachable(dst)) { 2336 jmp_literal(dst.target(), dst.rspec()); 2337 } else { 2338 lea(rscratch, dst); 2339 jmp(rscratch); 2340 } 2341 } 2342 2343 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) { 2344 assert(rscratch != noreg || always_reachable(dst), "missing"); 2345 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc"); 2346 if (reachable(dst)) { 2347 InstructionMark im(this); 2348 relocate(dst.reloc()); 2349 const int short_size = 2; 2350 const int long_size = 6; 2351 int offs = (intptr_t)dst.target() - ((intptr_t)pc()); 2352 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { 2353 // 0111 tttn #8-bit disp 2354 emit_int8(0x70 | cc); 2355 emit_int8((offs - short_size) & 0xFF); 2356 } else { 2357 // 0000 1111 1000 tttn #32-bit disp 2358 emit_int8(0x0F); 2359 emit_int8((unsigned char)(0x80 | cc)); 2360 emit_int32(offs - long_size); 2361 } 2362 } else { 2363 #ifdef ASSERT 2364 warning("reversing conditional branch"); 2365 #endif /* ASSERT */ 2366 Label skip; 2367 jccb(reverse[cc], skip); 2368 lea(rscratch, dst); 2369 Assembler::jmp(rscratch); 2370 bind(skip); 2371 } 2372 } 2373 2374 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) { 2375 assert(rscratch != noreg || always_reachable(src), "missing"); 2376 2377 if (reachable(src)) { 2378 Assembler::ldmxcsr(as_Address(src)); 2379 } else { 2380 lea(rscratch, src); 2381 Assembler::ldmxcsr(Address(rscratch, 0)); 2382 } 2383 } 2384 2385 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2386 int off; 2387 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2388 off = offset(); 2389 movsbl(dst, src); // movsxb 2390 } else { 2391 off = load_unsigned_byte(dst, src); 2392 shll(dst, 24); 2393 sarl(dst, 24); 2394 } 2395 return off; 2396 } 2397 2398 // Note: load_signed_short used to be called load_signed_word. 2399 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler 2400 // manual, which means 16 bits, that usage is found nowhere in HotSpot code. 2401 // The term "word" in HotSpot means a 32- or 64-bit machine word. 2402 int MacroAssembler::load_signed_short(Register dst, Address src) { 2403 int off; 2404 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2405 // This is dubious to me since it seems safe to do a signed 16 => 64 bit 2406 // version but this is what 64bit has always done. This seems to imply 2407 // that users are only using 32bits worth. 2408 off = offset(); 2409 movswl(dst, src); // movsxw 2410 } else { 2411 off = load_unsigned_short(dst, src); 2412 shll(dst, 16); 2413 sarl(dst, 16); 2414 } 2415 return off; 2416 } 2417 2418 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2419 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2420 // and "3.9 Partial Register Penalties", p. 22). 2421 int off; 2422 if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) { 2423 off = offset(); 2424 movzbl(dst, src); // movzxb 2425 } else { 2426 xorl(dst, dst); 2427 off = offset(); 2428 movb(dst, src); 2429 } 2430 return off; 2431 } 2432 2433 // Note: load_unsigned_short used to be called load_unsigned_word. 2434 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2435 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2436 // and "3.9 Partial Register Penalties", p. 22). 2437 int off; 2438 if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) { 2439 off = offset(); 2440 movzwl(dst, src); // movzxw 2441 } else { 2442 xorl(dst, dst); 2443 off = offset(); 2444 movw(dst, src); 2445 } 2446 return off; 2447 } 2448 2449 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 2450 switch (size_in_bytes) { 2451 #ifndef _LP64 2452 case 8: 2453 assert(dst2 != noreg, "second dest register required"); 2454 movl(dst, src); 2455 movl(dst2, src.plus_disp(BytesPerInt)); 2456 break; 2457 #else 2458 case 8: movq(dst, src); break; 2459 #endif 2460 case 4: movl(dst, src); break; 2461 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2462 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2463 default: ShouldNotReachHere(); 2464 } 2465 } 2466 2467 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 2468 switch (size_in_bytes) { 2469 #ifndef _LP64 2470 case 8: 2471 assert(src2 != noreg, "second source register required"); 2472 movl(dst, src); 2473 movl(dst.plus_disp(BytesPerInt), src2); 2474 break; 2475 #else 2476 case 8: movq(dst, src); break; 2477 #endif 2478 case 4: movl(dst, src); break; 2479 case 2: movw(dst, src); break; 2480 case 1: movb(dst, src); break; 2481 default: ShouldNotReachHere(); 2482 } 2483 } 2484 2485 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) { 2486 assert(rscratch != noreg || always_reachable(dst), "missing"); 2487 2488 if (reachable(dst)) { 2489 movl(as_Address(dst), src); 2490 } else { 2491 lea(rscratch, dst); 2492 movl(Address(rscratch, 0), src); 2493 } 2494 } 2495 2496 void MacroAssembler::mov32(Register dst, AddressLiteral src) { 2497 if (reachable(src)) { 2498 movl(dst, as_Address(src)); 2499 } else { 2500 lea(dst, src); 2501 movl(dst, Address(dst, 0)); 2502 } 2503 } 2504 2505 // C++ bool manipulation 2506 2507 void MacroAssembler::movbool(Register dst, Address src) { 2508 if(sizeof(bool) == 1) 2509 movb(dst, src); 2510 else if(sizeof(bool) == 2) 2511 movw(dst, src); 2512 else if(sizeof(bool) == 4) 2513 movl(dst, src); 2514 else 2515 // unsupported 2516 ShouldNotReachHere(); 2517 } 2518 2519 void MacroAssembler::movbool(Address dst, bool boolconst) { 2520 if(sizeof(bool) == 1) 2521 movb(dst, (int) boolconst); 2522 else if(sizeof(bool) == 2) 2523 movw(dst, (int) boolconst); 2524 else if(sizeof(bool) == 4) 2525 movl(dst, (int) boolconst); 2526 else 2527 // unsupported 2528 ShouldNotReachHere(); 2529 } 2530 2531 void MacroAssembler::movbool(Address dst, Register src) { 2532 if(sizeof(bool) == 1) 2533 movb(dst, src); 2534 else if(sizeof(bool) == 2) 2535 movw(dst, src); 2536 else if(sizeof(bool) == 4) 2537 movl(dst, src); 2538 else 2539 // unsupported 2540 ShouldNotReachHere(); 2541 } 2542 2543 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2544 assert(rscratch != noreg || always_reachable(src), "missing"); 2545 2546 if (reachable(src)) { 2547 movdl(dst, as_Address(src)); 2548 } else { 2549 lea(rscratch, src); 2550 movdl(dst, Address(rscratch, 0)); 2551 } 2552 } 2553 2554 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) { 2555 assert(rscratch != noreg || always_reachable(src), "missing"); 2556 2557 if (reachable(src)) { 2558 movq(dst, as_Address(src)); 2559 } else { 2560 lea(rscratch, src); 2561 movq(dst, Address(rscratch, 0)); 2562 } 2563 } 2564 2565 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2566 assert(rscratch != noreg || always_reachable(src), "missing"); 2567 2568 if (reachable(src)) { 2569 if (UseXmmLoadAndClearUpper) { 2570 movsd (dst, as_Address(src)); 2571 } else { 2572 movlpd(dst, as_Address(src)); 2573 } 2574 } else { 2575 lea(rscratch, src); 2576 if (UseXmmLoadAndClearUpper) { 2577 movsd (dst, Address(rscratch, 0)); 2578 } else { 2579 movlpd(dst, Address(rscratch, 0)); 2580 } 2581 } 2582 } 2583 2584 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) { 2585 assert(rscratch != noreg || always_reachable(src), "missing"); 2586 2587 if (reachable(src)) { 2588 movss(dst, as_Address(src)); 2589 } else { 2590 lea(rscratch, src); 2591 movss(dst, Address(rscratch, 0)); 2592 } 2593 } 2594 2595 void MacroAssembler::movptr(Register dst, Register src) { 2596 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2597 } 2598 2599 void MacroAssembler::movptr(Register dst, Address src) { 2600 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2601 } 2602 2603 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 2604 void MacroAssembler::movptr(Register dst, intptr_t src) { 2605 #ifdef _LP64 2606 if (is_uimm32(src)) { 2607 movl(dst, checked_cast<uint32_t>(src)); 2608 } else if (is_simm32(src)) { 2609 movq(dst, checked_cast<int32_t>(src)); 2610 } else { 2611 mov64(dst, src); 2612 } 2613 #else 2614 movl(dst, src); 2615 #endif 2616 } 2617 2618 void MacroAssembler::movptr(Address dst, Register src) { 2619 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2620 } 2621 2622 void MacroAssembler::movptr(Address dst, int32_t src) { 2623 LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); 2624 } 2625 2626 void MacroAssembler::movdqu(Address dst, XMMRegister src) { 2627 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2628 Assembler::movdqu(dst, src); 2629 } 2630 2631 void MacroAssembler::movdqu(XMMRegister dst, Address src) { 2632 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2633 Assembler::movdqu(dst, src); 2634 } 2635 2636 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) { 2637 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2638 Assembler::movdqu(dst, src); 2639 } 2640 2641 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2642 assert(rscratch != noreg || always_reachable(src), "missing"); 2643 2644 if (reachable(src)) { 2645 movdqu(dst, as_Address(src)); 2646 } else { 2647 lea(rscratch, src); 2648 movdqu(dst, Address(rscratch, 0)); 2649 } 2650 } 2651 2652 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) { 2653 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2654 Assembler::vmovdqu(dst, src); 2655 } 2656 2657 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) { 2658 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2659 Assembler::vmovdqu(dst, src); 2660 } 2661 2662 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) { 2663 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2664 Assembler::vmovdqu(dst, src); 2665 } 2666 2667 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2668 assert(rscratch != noreg || always_reachable(src), "missing"); 2669 2670 if (reachable(src)) { 2671 vmovdqu(dst, as_Address(src)); 2672 } 2673 else { 2674 lea(rscratch, src); 2675 vmovdqu(dst, Address(rscratch, 0)); 2676 } 2677 } 2678 2679 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2680 assert(rscratch != noreg || always_reachable(src), "missing"); 2681 2682 if (vector_len == AVX_512bit) { 2683 evmovdquq(dst, src, AVX_512bit, rscratch); 2684 } else if (vector_len == AVX_256bit) { 2685 vmovdqu(dst, src, rscratch); 2686 } else { 2687 movdqu(dst, src, rscratch); 2688 } 2689 } 2690 2691 void MacroAssembler::kmov(KRegister dst, Address src) { 2692 if (VM_Version::supports_avx512bw()) { 2693 kmovql(dst, src); 2694 } else { 2695 assert(VM_Version::supports_evex(), ""); 2696 kmovwl(dst, src); 2697 } 2698 } 2699 2700 void MacroAssembler::kmov(Address dst, KRegister src) { 2701 if (VM_Version::supports_avx512bw()) { 2702 kmovql(dst, src); 2703 } else { 2704 assert(VM_Version::supports_evex(), ""); 2705 kmovwl(dst, src); 2706 } 2707 } 2708 2709 void MacroAssembler::kmov(KRegister dst, KRegister src) { 2710 if (VM_Version::supports_avx512bw()) { 2711 kmovql(dst, src); 2712 } else { 2713 assert(VM_Version::supports_evex(), ""); 2714 kmovwl(dst, src); 2715 } 2716 } 2717 2718 void MacroAssembler::kmov(Register dst, KRegister src) { 2719 if (VM_Version::supports_avx512bw()) { 2720 kmovql(dst, src); 2721 } else { 2722 assert(VM_Version::supports_evex(), ""); 2723 kmovwl(dst, src); 2724 } 2725 } 2726 2727 void MacroAssembler::kmov(KRegister dst, Register src) { 2728 if (VM_Version::supports_avx512bw()) { 2729 kmovql(dst, src); 2730 } else { 2731 assert(VM_Version::supports_evex(), ""); 2732 kmovwl(dst, src); 2733 } 2734 } 2735 2736 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) { 2737 assert(rscratch != noreg || always_reachable(src), "missing"); 2738 2739 if (reachable(src)) { 2740 kmovql(dst, as_Address(src)); 2741 } else { 2742 lea(rscratch, src); 2743 kmovql(dst, Address(rscratch, 0)); 2744 } 2745 } 2746 2747 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) { 2748 assert(rscratch != noreg || always_reachable(src), "missing"); 2749 2750 if (reachable(src)) { 2751 kmovwl(dst, as_Address(src)); 2752 } else { 2753 lea(rscratch, src); 2754 kmovwl(dst, Address(rscratch, 0)); 2755 } 2756 } 2757 2758 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2759 int vector_len, Register rscratch) { 2760 assert(rscratch != noreg || always_reachable(src), "missing"); 2761 2762 if (reachable(src)) { 2763 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len); 2764 } else { 2765 lea(rscratch, src); 2766 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len); 2767 } 2768 } 2769 2770 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2771 int vector_len, Register rscratch) { 2772 assert(rscratch != noreg || always_reachable(src), "missing"); 2773 2774 if (reachable(src)) { 2775 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len); 2776 } else { 2777 lea(rscratch, src); 2778 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len); 2779 } 2780 } 2781 2782 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2783 assert(rscratch != noreg || always_reachable(src), "missing"); 2784 2785 if (reachable(src)) { 2786 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len); 2787 } else { 2788 lea(rscratch, src); 2789 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len); 2790 } 2791 } 2792 2793 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2794 assert(rscratch != noreg || always_reachable(src), "missing"); 2795 2796 if (reachable(src)) { 2797 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len); 2798 } else { 2799 lea(rscratch, src); 2800 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len); 2801 } 2802 } 2803 2804 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2805 assert(rscratch != noreg || always_reachable(src), "missing"); 2806 2807 if (reachable(src)) { 2808 Assembler::evmovdquq(dst, as_Address(src), vector_len); 2809 } else { 2810 lea(rscratch, src); 2811 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len); 2812 } 2813 } 2814 2815 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2816 assert(rscratch != noreg || always_reachable(src), "missing"); 2817 2818 if (reachable(src)) { 2819 Assembler::movdqa(dst, as_Address(src)); 2820 } else { 2821 lea(rscratch, src); 2822 Assembler::movdqa(dst, Address(rscratch, 0)); 2823 } 2824 } 2825 2826 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2827 assert(rscratch != noreg || always_reachable(src), "missing"); 2828 2829 if (reachable(src)) { 2830 Assembler::movsd(dst, as_Address(src)); 2831 } else { 2832 lea(rscratch, src); 2833 Assembler::movsd(dst, Address(rscratch, 0)); 2834 } 2835 } 2836 2837 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2838 assert(rscratch != noreg || always_reachable(src), "missing"); 2839 2840 if (reachable(src)) { 2841 Assembler::movss(dst, as_Address(src)); 2842 } else { 2843 lea(rscratch, src); 2844 Assembler::movss(dst, Address(rscratch, 0)); 2845 } 2846 } 2847 2848 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) { 2849 assert(rscratch != noreg || always_reachable(src), "missing"); 2850 2851 if (reachable(src)) { 2852 Assembler::movddup(dst, as_Address(src)); 2853 } else { 2854 lea(rscratch, src); 2855 Assembler::movddup(dst, Address(rscratch, 0)); 2856 } 2857 } 2858 2859 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2860 assert(rscratch != noreg || always_reachable(src), "missing"); 2861 2862 if (reachable(src)) { 2863 Assembler::vmovddup(dst, as_Address(src), vector_len); 2864 } else { 2865 lea(rscratch, src); 2866 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len); 2867 } 2868 } 2869 2870 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2871 assert(rscratch != noreg || always_reachable(src), "missing"); 2872 2873 if (reachable(src)) { 2874 Assembler::mulsd(dst, as_Address(src)); 2875 } else { 2876 lea(rscratch, src); 2877 Assembler::mulsd(dst, Address(rscratch, 0)); 2878 } 2879 } 2880 2881 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2882 assert(rscratch != noreg || always_reachable(src), "missing"); 2883 2884 if (reachable(src)) { 2885 Assembler::mulss(dst, as_Address(src)); 2886 } else { 2887 lea(rscratch, src); 2888 Assembler::mulss(dst, Address(rscratch, 0)); 2889 } 2890 } 2891 2892 void MacroAssembler::null_check(Register reg, int offset) { 2893 if (needs_explicit_null_check(offset)) { 2894 // provoke OS null exception if reg is null by 2895 // accessing M[reg] w/o changing any (non-CC) registers 2896 // NOTE: cmpl is plenty here to provoke a segv 2897 cmpptr(rax, Address(reg, 0)); 2898 // Note: should probably use testl(rax, Address(reg, 0)); 2899 // may be shorter code (however, this version of 2900 // testl needs to be implemented first) 2901 } else { 2902 // nothing to do, (later) access of M[reg + offset] 2903 // will provoke OS null exception if reg is null 2904 } 2905 } 2906 2907 void MacroAssembler::os_breakpoint() { 2908 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability 2909 // (e.g., MSVC can't call ps() otherwise) 2910 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); 2911 } 2912 2913 void MacroAssembler::unimplemented(const char* what) { 2914 const char* buf = nullptr; 2915 { 2916 ResourceMark rm; 2917 stringStream ss; 2918 ss.print("unimplemented: %s", what); 2919 buf = code_string(ss.as_string()); 2920 } 2921 stop(buf); 2922 } 2923 2924 #ifdef _LP64 2925 #define XSTATE_BV 0x200 2926 #endif 2927 2928 void MacroAssembler::pop_CPU_state() { 2929 pop_FPU_state(); 2930 pop_IU_state(); 2931 } 2932 2933 void MacroAssembler::pop_FPU_state() { 2934 #ifndef _LP64 2935 frstor(Address(rsp, 0)); 2936 #else 2937 fxrstor(Address(rsp, 0)); 2938 #endif 2939 addptr(rsp, FPUStateSizeInWords * wordSize); 2940 } 2941 2942 void MacroAssembler::pop_IU_state() { 2943 popa(); 2944 LP64_ONLY(addq(rsp, 8)); 2945 popf(); 2946 } 2947 2948 // Save Integer and Float state 2949 // Warning: Stack must be 16 byte aligned (64bit) 2950 void MacroAssembler::push_CPU_state() { 2951 push_IU_state(); 2952 push_FPU_state(); 2953 } 2954 2955 void MacroAssembler::push_FPU_state() { 2956 subptr(rsp, FPUStateSizeInWords * wordSize); 2957 #ifndef _LP64 2958 fnsave(Address(rsp, 0)); 2959 fwait(); 2960 #else 2961 fxsave(Address(rsp, 0)); 2962 #endif // LP64 2963 } 2964 2965 void MacroAssembler::push_IU_state() { 2966 // Push flags first because pusha kills them 2967 pushf(); 2968 // Make sure rsp stays 16-byte aligned 2969 LP64_ONLY(subq(rsp, 8)); 2970 pusha(); 2971 } 2972 2973 void MacroAssembler::push_cont_fastpath() { 2974 if (!Continuations::enabled()) return; 2975 2976 #ifndef _LP64 2977 Register rthread = rax; 2978 Register rrealsp = rbx; 2979 push(rthread); 2980 push(rrealsp); 2981 2982 get_thread(rthread); 2983 2984 // The code below wants the original RSP. 2985 // Move it back after the pushes above. 2986 movptr(rrealsp, rsp); 2987 addptr(rrealsp, 2*wordSize); 2988 #else 2989 Register rthread = r15_thread; 2990 Register rrealsp = rsp; 2991 #endif 2992 2993 Label done; 2994 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 2995 jccb(Assembler::belowEqual, done); 2996 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp); 2997 bind(done); 2998 2999 #ifndef _LP64 3000 pop(rrealsp); 3001 pop(rthread); 3002 #endif 3003 } 3004 3005 void MacroAssembler::pop_cont_fastpath() { 3006 if (!Continuations::enabled()) return; 3007 3008 #ifndef _LP64 3009 Register rthread = rax; 3010 Register rrealsp = rbx; 3011 push(rthread); 3012 push(rrealsp); 3013 3014 get_thread(rthread); 3015 3016 // The code below wants the original RSP. 3017 // Move it back after the pushes above. 3018 movptr(rrealsp, rsp); 3019 addptr(rrealsp, 2*wordSize); 3020 #else 3021 Register rthread = r15_thread; 3022 Register rrealsp = rsp; 3023 #endif 3024 3025 Label done; 3026 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3027 jccb(Assembler::below, done); 3028 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0); 3029 bind(done); 3030 3031 #ifndef _LP64 3032 pop(rrealsp); 3033 pop(rthread); 3034 #endif 3035 } 3036 3037 void MacroAssembler::inc_held_monitor_count() { 3038 #ifndef _LP64 3039 Register thread = rax; 3040 push(thread); 3041 get_thread(thread); 3042 incrementl(Address(thread, JavaThread::held_monitor_count_offset())); 3043 pop(thread); 3044 #else // LP64 3045 incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3046 #endif 3047 } 3048 3049 void MacroAssembler::dec_held_monitor_count() { 3050 #ifndef _LP64 3051 Register thread = rax; 3052 push(thread); 3053 get_thread(thread); 3054 decrementl(Address(thread, JavaThread::held_monitor_count_offset())); 3055 pop(thread); 3056 #else // LP64 3057 decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3058 #endif 3059 } 3060 3061 #ifdef ASSERT 3062 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) { 3063 #ifdef _LP64 3064 Label no_cont; 3065 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset())); 3066 testl(cont, cont); 3067 jcc(Assembler::zero, no_cont); 3068 stop(name); 3069 bind(no_cont); 3070 #else 3071 Unimplemented(); 3072 #endif 3073 } 3074 #endif 3075 3076 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register 3077 if (!java_thread->is_valid()) { 3078 java_thread = rdi; 3079 get_thread(java_thread); 3080 } 3081 // we must set sp to zero to clear frame 3082 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); 3083 // must clear fp, so that compiled frames are not confused; it is 3084 // possible that we need it only for debugging 3085 if (clear_fp) { 3086 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); 3087 } 3088 // Always clear the pc because it could have been set by make_walkable() 3089 movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); 3090 vzeroupper(); 3091 } 3092 3093 void MacroAssembler::restore_rax(Register tmp) { 3094 if (tmp == noreg) pop(rax); 3095 else if (tmp != rax) mov(rax, tmp); 3096 } 3097 3098 void MacroAssembler::round_to(Register reg, int modulus) { 3099 addptr(reg, modulus - 1); 3100 andptr(reg, -modulus); 3101 } 3102 3103 void MacroAssembler::save_rax(Register tmp) { 3104 if (tmp == noreg) push(rax); 3105 else if (tmp != rax) mov(tmp, rax); 3106 } 3107 3108 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod) { 3109 if (at_return) { 3110 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 3111 // we may safely use rsp instead to perform the stack watermark check. 3112 cmpptr(in_nmethod ? rsp : rbp, Address(thread_reg, JavaThread::polling_word_offset())); 3113 jcc(Assembler::above, slow_path); 3114 return; 3115 } 3116 testb(Address(thread_reg, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 3117 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll 3118 } 3119 3120 // Calls to C land 3121 // 3122 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded 3123 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 3124 // has to be reset to 0. This is required to allow proper stack traversal. 3125 void MacroAssembler::set_last_Java_frame(Register java_thread, 3126 Register last_java_sp, 3127 Register last_java_fp, 3128 address last_java_pc, 3129 Register rscratch) { 3130 vzeroupper(); 3131 // determine java_thread register 3132 if (!java_thread->is_valid()) { 3133 java_thread = rdi; 3134 get_thread(java_thread); 3135 } 3136 // determine last_java_sp register 3137 if (!last_java_sp->is_valid()) { 3138 last_java_sp = rsp; 3139 } 3140 // last_java_fp is optional 3141 if (last_java_fp->is_valid()) { 3142 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp); 3143 } 3144 // last_java_pc is optional 3145 if (last_java_pc != nullptr) { 3146 Address java_pc(java_thread, 3147 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); 3148 lea(java_pc, InternalAddress(last_java_pc), rscratch); 3149 } 3150 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp); 3151 } 3152 3153 void MacroAssembler::shlptr(Register dst, int imm8) { 3154 LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8)); 3155 } 3156 3157 void MacroAssembler::shrptr(Register dst, int imm8) { 3158 LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8)); 3159 } 3160 3161 void MacroAssembler::sign_extend_byte(Register reg) { 3162 if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) { 3163 movsbl(reg, reg); // movsxb 3164 } else { 3165 shll(reg, 24); 3166 sarl(reg, 24); 3167 } 3168 } 3169 3170 void MacroAssembler::sign_extend_short(Register reg) { 3171 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 3172 movswl(reg, reg); // movsxw 3173 } else { 3174 shll(reg, 16); 3175 sarl(reg, 16); 3176 } 3177 } 3178 3179 void MacroAssembler::testl(Address dst, int32_t imm32) { 3180 if (imm32 >= 0 && is8bit(imm32)) { 3181 testb(dst, imm32); 3182 } else { 3183 Assembler::testl(dst, imm32); 3184 } 3185 } 3186 3187 void MacroAssembler::testl(Register dst, int32_t imm32) { 3188 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) { 3189 testb(dst, imm32); 3190 } else { 3191 Assembler::testl(dst, imm32); 3192 } 3193 } 3194 3195 void MacroAssembler::testl(Register dst, AddressLiteral src) { 3196 assert(always_reachable(src), "Address should be reachable"); 3197 testl(dst, as_Address(src)); 3198 } 3199 3200 #ifdef _LP64 3201 3202 void MacroAssembler::testq(Address dst, int32_t imm32) { 3203 if (imm32 >= 0) { 3204 testl(dst, imm32); 3205 } else { 3206 Assembler::testq(dst, imm32); 3207 } 3208 } 3209 3210 void MacroAssembler::testq(Register dst, int32_t imm32) { 3211 if (imm32 >= 0) { 3212 testl(dst, imm32); 3213 } else { 3214 Assembler::testq(dst, imm32); 3215 } 3216 } 3217 3218 #endif 3219 3220 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) { 3221 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3222 Assembler::pcmpeqb(dst, src); 3223 } 3224 3225 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) { 3226 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3227 Assembler::pcmpeqw(dst, src); 3228 } 3229 3230 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) { 3231 assert((dst->encoding() < 16),"XMM register should be 0-15"); 3232 Assembler::pcmpestri(dst, src, imm8); 3233 } 3234 3235 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { 3236 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3237 Assembler::pcmpestri(dst, src, imm8); 3238 } 3239 3240 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) { 3241 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3242 Assembler::pmovzxbw(dst, src); 3243 } 3244 3245 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) { 3246 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3247 Assembler::pmovzxbw(dst, src); 3248 } 3249 3250 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) { 3251 assert((src->encoding() < 16),"XMM register should be 0-15"); 3252 Assembler::pmovmskb(dst, src); 3253 } 3254 3255 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) { 3256 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3257 Assembler::ptest(dst, src); 3258 } 3259 3260 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3261 assert(rscratch != noreg || always_reachable(src), "missing"); 3262 3263 if (reachable(src)) { 3264 Assembler::sqrtss(dst, as_Address(src)); 3265 } else { 3266 lea(rscratch, src); 3267 Assembler::sqrtss(dst, Address(rscratch, 0)); 3268 } 3269 } 3270 3271 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3272 assert(rscratch != noreg || always_reachable(src), "missing"); 3273 3274 if (reachable(src)) { 3275 Assembler::subsd(dst, as_Address(src)); 3276 } else { 3277 lea(rscratch, src); 3278 Assembler::subsd(dst, Address(rscratch, 0)); 3279 } 3280 } 3281 3282 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) { 3283 assert(rscratch != noreg || always_reachable(src), "missing"); 3284 3285 if (reachable(src)) { 3286 Assembler::roundsd(dst, as_Address(src), rmode); 3287 } else { 3288 lea(rscratch, src); 3289 Assembler::roundsd(dst, Address(rscratch, 0), rmode); 3290 } 3291 } 3292 3293 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3294 assert(rscratch != noreg || always_reachable(src), "missing"); 3295 3296 if (reachable(src)) { 3297 Assembler::subss(dst, as_Address(src)); 3298 } else { 3299 lea(rscratch, src); 3300 Assembler::subss(dst, Address(rscratch, 0)); 3301 } 3302 } 3303 3304 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3305 assert(rscratch != noreg || always_reachable(src), "missing"); 3306 3307 if (reachable(src)) { 3308 Assembler::ucomisd(dst, as_Address(src)); 3309 } else { 3310 lea(rscratch, src); 3311 Assembler::ucomisd(dst, Address(rscratch, 0)); 3312 } 3313 } 3314 3315 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3316 assert(rscratch != noreg || always_reachable(src), "missing"); 3317 3318 if (reachable(src)) { 3319 Assembler::ucomiss(dst, as_Address(src)); 3320 } else { 3321 lea(rscratch, src); 3322 Assembler::ucomiss(dst, Address(rscratch, 0)); 3323 } 3324 } 3325 3326 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3327 assert(rscratch != noreg || always_reachable(src), "missing"); 3328 3329 // Used in sign-bit flipping with aligned address. 3330 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3331 if (reachable(src)) { 3332 Assembler::xorpd(dst, as_Address(src)); 3333 } else { 3334 lea(rscratch, src); 3335 Assembler::xorpd(dst, Address(rscratch, 0)); 3336 } 3337 } 3338 3339 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) { 3340 if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) { 3341 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3342 } 3343 else { 3344 Assembler::xorpd(dst, src); 3345 } 3346 } 3347 3348 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) { 3349 if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) { 3350 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3351 } else { 3352 Assembler::xorps(dst, src); 3353 } 3354 } 3355 3356 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) { 3357 assert(rscratch != noreg || always_reachable(src), "missing"); 3358 3359 // Used in sign-bit flipping with aligned address. 3360 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3361 if (reachable(src)) { 3362 Assembler::xorps(dst, as_Address(src)); 3363 } else { 3364 lea(rscratch, src); 3365 Assembler::xorps(dst, Address(rscratch, 0)); 3366 } 3367 } 3368 3369 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) { 3370 assert(rscratch != noreg || always_reachable(src), "missing"); 3371 3372 // Used in sign-bit flipping with aligned address. 3373 bool aligned_adr = (((intptr_t)src.target() & 15) == 0); 3374 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes"); 3375 if (reachable(src)) { 3376 Assembler::pshufb(dst, as_Address(src)); 3377 } else { 3378 lea(rscratch, src); 3379 Assembler::pshufb(dst, Address(rscratch, 0)); 3380 } 3381 } 3382 3383 // AVX 3-operands instructions 3384 3385 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3386 assert(rscratch != noreg || always_reachable(src), "missing"); 3387 3388 if (reachable(src)) { 3389 vaddsd(dst, nds, as_Address(src)); 3390 } else { 3391 lea(rscratch, src); 3392 vaddsd(dst, nds, Address(rscratch, 0)); 3393 } 3394 } 3395 3396 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3397 assert(rscratch != noreg || always_reachable(src), "missing"); 3398 3399 if (reachable(src)) { 3400 vaddss(dst, nds, as_Address(src)); 3401 } else { 3402 lea(rscratch, src); 3403 vaddss(dst, nds, Address(rscratch, 0)); 3404 } 3405 } 3406 3407 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3408 assert(UseAVX > 0, "requires some form of AVX"); 3409 assert(rscratch != noreg || always_reachable(src), "missing"); 3410 3411 if (reachable(src)) { 3412 Assembler::vpaddb(dst, nds, as_Address(src), vector_len); 3413 } else { 3414 lea(rscratch, src); 3415 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len); 3416 } 3417 } 3418 3419 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3420 assert(UseAVX > 0, "requires some form of AVX"); 3421 assert(rscratch != noreg || always_reachable(src), "missing"); 3422 3423 if (reachable(src)) { 3424 Assembler::vpaddd(dst, nds, as_Address(src), vector_len); 3425 } else { 3426 lea(rscratch, src); 3427 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len); 3428 } 3429 } 3430 3431 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3432 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3433 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3434 3435 vandps(dst, nds, negate_field, vector_len, rscratch); 3436 } 3437 3438 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3439 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3440 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3441 3442 vandpd(dst, nds, negate_field, vector_len, rscratch); 3443 } 3444 3445 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3446 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3447 Assembler::vpaddb(dst, nds, src, vector_len); 3448 } 3449 3450 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3451 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3452 Assembler::vpaddb(dst, nds, src, vector_len); 3453 } 3454 3455 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3456 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3457 Assembler::vpaddw(dst, nds, src, vector_len); 3458 } 3459 3460 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3461 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3462 Assembler::vpaddw(dst, nds, src, vector_len); 3463 } 3464 3465 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3466 assert(rscratch != noreg || always_reachable(src), "missing"); 3467 3468 if (reachable(src)) { 3469 Assembler::vpand(dst, nds, as_Address(src), vector_len); 3470 } else { 3471 lea(rscratch, src); 3472 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len); 3473 } 3474 } 3475 3476 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3477 assert(rscratch != noreg || always_reachable(src), "missing"); 3478 3479 if (reachable(src)) { 3480 Assembler::vpbroadcastd(dst, as_Address(src), vector_len); 3481 } else { 3482 lea(rscratch, src); 3483 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len); 3484 } 3485 } 3486 3487 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3488 assert(rscratch != noreg || always_reachable(src), "missing"); 3489 3490 if (reachable(src)) { 3491 Assembler::vpbroadcastq(dst, as_Address(src), vector_len); 3492 } else { 3493 lea(rscratch, src); 3494 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len); 3495 } 3496 } 3497 3498 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3499 assert(rscratch != noreg || always_reachable(src), "missing"); 3500 3501 if (reachable(src)) { 3502 Assembler::vbroadcastsd(dst, as_Address(src), vector_len); 3503 } else { 3504 lea(rscratch, src); 3505 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len); 3506 } 3507 } 3508 3509 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3510 assert(rscratch != noreg || always_reachable(src), "missing"); 3511 3512 if (reachable(src)) { 3513 Assembler::vbroadcastss(dst, as_Address(src), vector_len); 3514 } else { 3515 lea(rscratch, src); 3516 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len); 3517 } 3518 } 3519 3520 // Vector float blend 3521 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3522 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3523 // WARN: Allow dst == (src1|src2), mask == scratch 3524 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3525 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst; 3526 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3527 if (blend_emulation && scratch_available && dst_available) { 3528 if (compute_mask) { 3529 vpsrad(scratch, mask, 32, vector_len); 3530 mask = scratch; 3531 } 3532 if (dst == src1) { 3533 vpandn(dst, mask, src1, vector_len); // if mask == 0, src1 3534 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3535 } else { 3536 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3537 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1 3538 } 3539 vpor(dst, dst, scratch, vector_len); 3540 } else { 3541 Assembler::vblendvps(dst, src1, src2, mask, vector_len); 3542 } 3543 } 3544 3545 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3546 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3547 // WARN: Allow dst == (src1|src2), mask == scratch 3548 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3549 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask); 3550 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3551 if (blend_emulation && scratch_available && dst_available) { 3552 if (compute_mask) { 3553 vpxor(scratch, scratch, scratch, vector_len); 3554 vpcmpgtq(scratch, scratch, mask, vector_len); 3555 mask = scratch; 3556 } 3557 if (dst == src1) { 3558 vpandn(dst, mask, src1, vector_len); // if mask == 0, src 3559 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3560 } else { 3561 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3562 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src 3563 } 3564 vpor(dst, dst, scratch, vector_len); 3565 } else { 3566 Assembler::vblendvpd(dst, src1, src2, mask, vector_len); 3567 } 3568 } 3569 3570 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3571 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3572 Assembler::vpcmpeqb(dst, nds, src, vector_len); 3573 } 3574 3575 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) { 3576 assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3577 Assembler::vpcmpeqb(dst, src1, src2, vector_len); 3578 } 3579 3580 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3581 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3582 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3583 } 3584 3585 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3586 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3587 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3588 } 3589 3590 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3591 assert(rscratch != noreg || always_reachable(src), "missing"); 3592 3593 if (reachable(src)) { 3594 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len); 3595 } else { 3596 lea(rscratch, src); 3597 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len); 3598 } 3599 } 3600 3601 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3602 int comparison, bool is_signed, int vector_len, Register rscratch) { 3603 assert(rscratch != noreg || always_reachable(src), "missing"); 3604 3605 if (reachable(src)) { 3606 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3607 } else { 3608 lea(rscratch, src); 3609 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3610 } 3611 } 3612 3613 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3614 int comparison, bool is_signed, int vector_len, Register rscratch) { 3615 assert(rscratch != noreg || always_reachable(src), "missing"); 3616 3617 if (reachable(src)) { 3618 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3619 } else { 3620 lea(rscratch, src); 3621 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3622 } 3623 } 3624 3625 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3626 int comparison, bool is_signed, int vector_len, Register rscratch) { 3627 assert(rscratch != noreg || always_reachable(src), "missing"); 3628 3629 if (reachable(src)) { 3630 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3631 } else { 3632 lea(rscratch, src); 3633 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3634 } 3635 } 3636 3637 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3638 int comparison, bool is_signed, int vector_len, Register rscratch) { 3639 assert(rscratch != noreg || always_reachable(src), "missing"); 3640 3641 if (reachable(src)) { 3642 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3643 } else { 3644 lea(rscratch, src); 3645 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3646 } 3647 } 3648 3649 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) { 3650 if (width == Assembler::Q) { 3651 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len); 3652 } else { 3653 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len); 3654 } 3655 } 3656 3657 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) { 3658 int eq_cond_enc = 0x29; 3659 int gt_cond_enc = 0x37; 3660 if (width != Assembler::Q) { 3661 eq_cond_enc = 0x74 + width; 3662 gt_cond_enc = 0x64 + width; 3663 } 3664 switch (cond) { 3665 case eq: 3666 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3667 break; 3668 case neq: 3669 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3670 vallones(xtmp, vector_len); 3671 vpxor(dst, xtmp, dst, vector_len); 3672 break; 3673 case le: 3674 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3675 vallones(xtmp, vector_len); 3676 vpxor(dst, xtmp, dst, vector_len); 3677 break; 3678 case nlt: 3679 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3680 vallones(xtmp, vector_len); 3681 vpxor(dst, xtmp, dst, vector_len); 3682 break; 3683 case lt: 3684 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3685 break; 3686 case nle: 3687 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3688 break; 3689 default: 3690 assert(false, "Should not reach here"); 3691 } 3692 } 3693 3694 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) { 3695 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3696 Assembler::vpmovzxbw(dst, src, vector_len); 3697 } 3698 3699 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) { 3700 assert((src->encoding() < 16),"XMM register should be 0-15"); 3701 Assembler::vpmovmskb(dst, src, vector_len); 3702 } 3703 3704 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3705 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3706 Assembler::vpmullw(dst, nds, src, vector_len); 3707 } 3708 3709 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3710 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3711 Assembler::vpmullw(dst, nds, src, vector_len); 3712 } 3713 3714 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3715 assert((UseAVX > 0), "AVX support is needed"); 3716 assert(rscratch != noreg || always_reachable(src), "missing"); 3717 3718 if (reachable(src)) { 3719 Assembler::vpmulld(dst, nds, as_Address(src), vector_len); 3720 } else { 3721 lea(rscratch, src); 3722 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len); 3723 } 3724 } 3725 3726 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3727 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3728 Assembler::vpsubb(dst, nds, src, vector_len); 3729 } 3730 3731 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3732 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3733 Assembler::vpsubb(dst, nds, src, vector_len); 3734 } 3735 3736 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3737 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3738 Assembler::vpsubw(dst, nds, src, vector_len); 3739 } 3740 3741 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3742 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3743 Assembler::vpsubw(dst, nds, src, vector_len); 3744 } 3745 3746 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3747 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3748 Assembler::vpsraw(dst, nds, shift, vector_len); 3749 } 3750 3751 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3752 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3753 Assembler::vpsraw(dst, nds, shift, vector_len); 3754 } 3755 3756 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3757 assert(UseAVX > 2,""); 3758 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3759 vector_len = 2; 3760 } 3761 Assembler::evpsraq(dst, nds, shift, vector_len); 3762 } 3763 3764 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3765 assert(UseAVX > 2,""); 3766 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3767 vector_len = 2; 3768 } 3769 Assembler::evpsraq(dst, nds, shift, vector_len); 3770 } 3771 3772 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3773 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3774 Assembler::vpsrlw(dst, nds, shift, vector_len); 3775 } 3776 3777 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3778 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3779 Assembler::vpsrlw(dst, nds, shift, vector_len); 3780 } 3781 3782 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3783 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3784 Assembler::vpsllw(dst, nds, shift, vector_len); 3785 } 3786 3787 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3788 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3789 Assembler::vpsllw(dst, nds, shift, vector_len); 3790 } 3791 3792 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) { 3793 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3794 Assembler::vptest(dst, src); 3795 } 3796 3797 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) { 3798 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3799 Assembler::punpcklbw(dst, src); 3800 } 3801 3802 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) { 3803 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 3804 Assembler::pshufd(dst, src, mode); 3805 } 3806 3807 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { 3808 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3809 Assembler::pshuflw(dst, src, mode); 3810 } 3811 3812 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3813 assert(rscratch != noreg || always_reachable(src), "missing"); 3814 3815 if (reachable(src)) { 3816 vandpd(dst, nds, as_Address(src), vector_len); 3817 } else { 3818 lea(rscratch, src); 3819 vandpd(dst, nds, Address(rscratch, 0), vector_len); 3820 } 3821 } 3822 3823 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3824 assert(rscratch != noreg || always_reachable(src), "missing"); 3825 3826 if (reachable(src)) { 3827 vandps(dst, nds, as_Address(src), vector_len); 3828 } else { 3829 lea(rscratch, src); 3830 vandps(dst, nds, Address(rscratch, 0), vector_len); 3831 } 3832 } 3833 3834 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, 3835 bool merge, int vector_len, Register rscratch) { 3836 assert(rscratch != noreg || always_reachable(src), "missing"); 3837 3838 if (reachable(src)) { 3839 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len); 3840 } else { 3841 lea(rscratch, src); 3842 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 3843 } 3844 } 3845 3846 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3847 assert(rscratch != noreg || always_reachable(src), "missing"); 3848 3849 if (reachable(src)) { 3850 vdivsd(dst, nds, as_Address(src)); 3851 } else { 3852 lea(rscratch, src); 3853 vdivsd(dst, nds, Address(rscratch, 0)); 3854 } 3855 } 3856 3857 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3858 assert(rscratch != noreg || always_reachable(src), "missing"); 3859 3860 if (reachable(src)) { 3861 vdivss(dst, nds, as_Address(src)); 3862 } else { 3863 lea(rscratch, src); 3864 vdivss(dst, nds, Address(rscratch, 0)); 3865 } 3866 } 3867 3868 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3869 assert(rscratch != noreg || always_reachable(src), "missing"); 3870 3871 if (reachable(src)) { 3872 vmulsd(dst, nds, as_Address(src)); 3873 } else { 3874 lea(rscratch, src); 3875 vmulsd(dst, nds, Address(rscratch, 0)); 3876 } 3877 } 3878 3879 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3880 assert(rscratch != noreg || always_reachable(src), "missing"); 3881 3882 if (reachable(src)) { 3883 vmulss(dst, nds, as_Address(src)); 3884 } else { 3885 lea(rscratch, src); 3886 vmulss(dst, nds, Address(rscratch, 0)); 3887 } 3888 } 3889 3890 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3891 assert(rscratch != noreg || always_reachable(src), "missing"); 3892 3893 if (reachable(src)) { 3894 vsubsd(dst, nds, as_Address(src)); 3895 } else { 3896 lea(rscratch, src); 3897 vsubsd(dst, nds, Address(rscratch, 0)); 3898 } 3899 } 3900 3901 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3902 assert(rscratch != noreg || always_reachable(src), "missing"); 3903 3904 if (reachable(src)) { 3905 vsubss(dst, nds, as_Address(src)); 3906 } else { 3907 lea(rscratch, src); 3908 vsubss(dst, nds, Address(rscratch, 0)); 3909 } 3910 } 3911 3912 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3913 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3914 assert(rscratch != noreg || always_reachable(src), "missing"); 3915 3916 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch); 3917 } 3918 3919 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3920 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3921 assert(rscratch != noreg || always_reachable(src), "missing"); 3922 3923 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch); 3924 } 3925 3926 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3927 assert(rscratch != noreg || always_reachable(src), "missing"); 3928 3929 if (reachable(src)) { 3930 vxorpd(dst, nds, as_Address(src), vector_len); 3931 } else { 3932 lea(rscratch, src); 3933 vxorpd(dst, nds, Address(rscratch, 0), vector_len); 3934 } 3935 } 3936 3937 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3938 assert(rscratch != noreg || always_reachable(src), "missing"); 3939 3940 if (reachable(src)) { 3941 vxorps(dst, nds, as_Address(src), vector_len); 3942 } else { 3943 lea(rscratch, src); 3944 vxorps(dst, nds, Address(rscratch, 0), vector_len); 3945 } 3946 } 3947 3948 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3949 assert(rscratch != noreg || always_reachable(src), "missing"); 3950 3951 if (UseAVX > 1 || (vector_len < 1)) { 3952 if (reachable(src)) { 3953 Assembler::vpxor(dst, nds, as_Address(src), vector_len); 3954 } else { 3955 lea(rscratch, src); 3956 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len); 3957 } 3958 } else { 3959 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch); 3960 } 3961 } 3962 3963 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3964 assert(rscratch != noreg || always_reachable(src), "missing"); 3965 3966 if (reachable(src)) { 3967 Assembler::vpermd(dst, nds, as_Address(src), vector_len); 3968 } else { 3969 lea(rscratch, src); 3970 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len); 3971 } 3972 } 3973 3974 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) { 3975 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask); 3976 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code 3977 // The inverted mask is sign-extended 3978 andptr(possibly_non_local, inverted_mask); 3979 } 3980 3981 void MacroAssembler::resolve_jobject(Register value, 3982 Register thread, 3983 Register tmp) { 3984 assert_different_registers(value, thread, tmp); 3985 Label done, tagged, weak_tagged; 3986 testptr(value, value); 3987 jcc(Assembler::zero, done); // Use null as-is. 3988 testptr(value, JNIHandles::tag_mask); // Test for tag. 3989 jcc(Assembler::notZero, tagged); 3990 3991 // Resolve local handle 3992 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread); 3993 verify_oop(value); 3994 jmp(done); 3995 3996 bind(tagged); 3997 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag. 3998 jcc(Assembler::notZero, weak_tagged); 3999 4000 // Resolve global handle 4001 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4002 verify_oop(value); 4003 jmp(done); 4004 4005 bind(weak_tagged); 4006 // Resolve jweak. 4007 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 4008 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread); 4009 verify_oop(value); 4010 4011 bind(done); 4012 } 4013 4014 void MacroAssembler::resolve_global_jobject(Register value, 4015 Register thread, 4016 Register tmp) { 4017 assert_different_registers(value, thread, tmp); 4018 Label done; 4019 4020 testptr(value, value); 4021 jcc(Assembler::zero, done); // Use null as-is. 4022 4023 #ifdef ASSERT 4024 { 4025 Label valid_global_tag; 4026 testptr(value, JNIHandles::TypeTag::global); // Test for global tag. 4027 jcc(Assembler::notZero, valid_global_tag); 4028 stop("non global jobject using resolve_global_jobject"); 4029 bind(valid_global_tag); 4030 } 4031 #endif 4032 4033 // Resolve global handle 4034 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4035 verify_oop(value); 4036 4037 bind(done); 4038 } 4039 4040 void MacroAssembler::subptr(Register dst, int32_t imm32) { 4041 LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32)); 4042 } 4043 4044 // Force generation of a 4 byte immediate value even if it fits into 8bit 4045 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) { 4046 LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32)); 4047 } 4048 4049 void MacroAssembler::subptr(Register dst, Register src) { 4050 LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); 4051 } 4052 4053 // C++ bool manipulation 4054 void MacroAssembler::testbool(Register dst) { 4055 if(sizeof(bool) == 1) 4056 testb(dst, 0xff); 4057 else if(sizeof(bool) == 2) { 4058 // testw implementation needed for two byte bools 4059 ShouldNotReachHere(); 4060 } else if(sizeof(bool) == 4) 4061 testl(dst, dst); 4062 else 4063 // unsupported 4064 ShouldNotReachHere(); 4065 } 4066 4067 void MacroAssembler::testptr(Register dst, Register src) { 4068 LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src)); 4069 } 4070 4071 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4072 void MacroAssembler::tlab_allocate(Register thread, Register obj, 4073 Register var_size_in_bytes, 4074 int con_size_in_bytes, 4075 Register t1, 4076 Register t2, 4077 Label& slow_case) { 4078 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4079 bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4080 } 4081 4082 RegSet MacroAssembler::call_clobbered_gp_registers() { 4083 RegSet regs; 4084 #ifdef _LP64 4085 regs += RegSet::of(rax, rcx, rdx); 4086 #ifndef WINDOWS 4087 regs += RegSet::of(rsi, rdi); 4088 #endif 4089 regs += RegSet::range(r8, r11); 4090 #else 4091 regs += RegSet::of(rax, rcx, rdx); 4092 #endif 4093 #ifdef _LP64 4094 if (UseAPX) { 4095 regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1)); 4096 } 4097 #endif 4098 return regs; 4099 } 4100 4101 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() { 4102 int num_xmm_registers = XMMRegister::available_xmm_registers(); 4103 #if defined(WINDOWS) && defined(_LP64) 4104 XMMRegSet result = XMMRegSet::range(xmm0, xmm5); 4105 if (num_xmm_registers > 16) { 4106 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1)); 4107 } 4108 return result; 4109 #else 4110 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1)); 4111 #endif 4112 } 4113 4114 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor 4115 4116 #ifndef _LP64 4117 static bool use_x87_registers() { return UseSSE < 2; } 4118 #endif 4119 static bool use_xmm_registers() { return UseSSE >= 1; } 4120 4121 // C1 only ever uses the first double/float of the XMM register. 4122 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); } 4123 4124 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4125 if (UseSSE == 1) { 4126 masm->movflt(Address(rsp, offset), reg); 4127 } else { 4128 masm->movdbl(Address(rsp, offset), reg); 4129 } 4130 } 4131 4132 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4133 if (UseSSE == 1) { 4134 masm->movflt(reg, Address(rsp, offset)); 4135 } else { 4136 masm->movdbl(reg, Address(rsp, offset)); 4137 } 4138 } 4139 4140 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers, 4141 bool save_fpu, int& gp_area_size, 4142 int& fp_area_size, int& xmm_area_size) { 4143 4144 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size, 4145 StackAlignmentInBytes); 4146 #ifdef _LP64 4147 fp_area_size = 0; 4148 #else 4149 fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0; 4150 #endif 4151 xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0; 4152 4153 return gp_area_size + fp_area_size + xmm_area_size; 4154 } 4155 4156 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) { 4157 block_comment("push_call_clobbered_registers start"); 4158 // Regular registers 4159 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude; 4160 4161 int gp_area_size; 4162 int fp_area_size; 4163 int xmm_area_size; 4164 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu, 4165 gp_area_size, fp_area_size, xmm_area_size); 4166 subptr(rsp, total_save_size); 4167 4168 push_set(gp_registers_to_push, 0); 4169 4170 #ifndef _LP64 4171 if (save_fpu && use_x87_registers()) { 4172 fnsave(Address(rsp, gp_area_size)); 4173 fwait(); 4174 } 4175 #endif 4176 if (save_fpu && use_xmm_registers()) { 4177 push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4178 } 4179 4180 block_comment("push_call_clobbered_registers end"); 4181 } 4182 4183 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) { 4184 block_comment("pop_call_clobbered_registers start"); 4185 4186 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude; 4187 4188 int gp_area_size; 4189 int fp_area_size; 4190 int xmm_area_size; 4191 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu, 4192 gp_area_size, fp_area_size, xmm_area_size); 4193 4194 if (restore_fpu && use_xmm_registers()) { 4195 pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4196 } 4197 #ifndef _LP64 4198 if (restore_fpu && use_x87_registers()) { 4199 frstor(Address(rsp, gp_area_size)); 4200 } 4201 #endif 4202 4203 pop_set(gp_registers_to_pop, 0); 4204 4205 addptr(rsp, total_save_size); 4206 4207 vzeroupper(); 4208 4209 block_comment("pop_call_clobbered_registers end"); 4210 } 4211 4212 void MacroAssembler::push_set(XMMRegSet set, int offset) { 4213 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be"); 4214 int spill_offset = offset; 4215 4216 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) { 4217 save_xmm_register(this, spill_offset, *it); 4218 spill_offset += xmm_save_size(); 4219 } 4220 } 4221 4222 void MacroAssembler::pop_set(XMMRegSet set, int offset) { 4223 int restore_size = set.size() * xmm_save_size(); 4224 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be"); 4225 4226 int restore_offset = offset + restore_size - xmm_save_size(); 4227 4228 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) { 4229 restore_xmm_register(this, restore_offset, *it); 4230 restore_offset -= xmm_save_size(); 4231 } 4232 } 4233 4234 void MacroAssembler::push_set(RegSet set, int offset) { 4235 int spill_offset; 4236 if (offset == -1) { 4237 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4238 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4239 subptr(rsp, aligned_size); 4240 spill_offset = 0; 4241 } else { 4242 spill_offset = offset; 4243 } 4244 4245 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) { 4246 movptr(Address(rsp, spill_offset), *it); 4247 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4248 } 4249 } 4250 4251 void MacroAssembler::pop_set(RegSet set, int offset) { 4252 4253 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4254 int restore_size = set.size() * gp_reg_size; 4255 int aligned_size = align_up(restore_size, StackAlignmentInBytes); 4256 4257 int restore_offset; 4258 if (offset == -1) { 4259 restore_offset = restore_size - gp_reg_size; 4260 } else { 4261 restore_offset = offset + restore_size - gp_reg_size; 4262 } 4263 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) { 4264 movptr(*it, Address(rsp, restore_offset)); 4265 restore_offset -= gp_reg_size; 4266 } 4267 4268 if (offset == -1) { 4269 addptr(rsp, aligned_size); 4270 } 4271 } 4272 4273 // Preserves the contents of address, destroys the contents length_in_bytes and temp. 4274 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) { 4275 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different"); 4276 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord"); 4277 Label done; 4278 4279 testptr(length_in_bytes, length_in_bytes); 4280 jcc(Assembler::zero, done); 4281 4282 // initialize topmost word, divide index by 2, check if odd and test if zero 4283 // note: for the remaining code to work, index must be a multiple of BytesPerWord 4284 #ifdef ASSERT 4285 { 4286 Label L; 4287 testptr(length_in_bytes, BytesPerWord - 1); 4288 jcc(Assembler::zero, L); 4289 stop("length must be a multiple of BytesPerWord"); 4290 bind(L); 4291 } 4292 #endif 4293 Register index = length_in_bytes; 4294 xorptr(temp, temp); // use _zero reg to clear memory (shorter code) 4295 if (UseIncDec) { 4296 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set 4297 } else { 4298 shrptr(index, 2); // use 2 instructions to avoid partial flag stall 4299 shrptr(index, 1); 4300 } 4301 #ifndef _LP64 4302 // index could have not been a multiple of 8 (i.e., bit 2 was set) 4303 { 4304 Label even; 4305 // note: if index was a multiple of 8, then it cannot 4306 // be 0 now otherwise it must have been 0 before 4307 // => if it is even, we don't need to check for 0 again 4308 jcc(Assembler::carryClear, even); 4309 // clear topmost word (no jump would be needed if conditional assignment worked here) 4310 movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp); 4311 // index could be 0 now, must check again 4312 jcc(Assembler::zero, done); 4313 bind(even); 4314 } 4315 #endif // !_LP64 4316 // initialize remaining object fields: index is a multiple of 2 now 4317 { 4318 Label loop; 4319 bind(loop); 4320 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp); 4321 NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);) 4322 decrement(index); 4323 jcc(Assembler::notZero, loop); 4324 } 4325 4326 bind(done); 4327 } 4328 4329 // Look up the method for a megamorphic invokeinterface call. 4330 // The target method is determined by <intf_klass, itable_index>. 4331 // The receiver klass is in recv_klass. 4332 // On success, the result will be in method_result, and execution falls through. 4333 // On failure, execution transfers to the given label. 4334 void MacroAssembler::lookup_interface_method(Register recv_klass, 4335 Register intf_klass, 4336 RegisterOrConstant itable_index, 4337 Register method_result, 4338 Register scan_temp, 4339 Label& L_no_such_interface, 4340 bool return_method) { 4341 assert_different_registers(recv_klass, intf_klass, scan_temp); 4342 assert_different_registers(method_result, intf_klass, scan_temp); 4343 assert(recv_klass != method_result || !return_method, 4344 "recv_klass can be destroyed when method isn't needed"); 4345 4346 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 4347 "caller must use same register for non-constant itable index as for method"); 4348 4349 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 4350 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4351 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4352 int scan_step = itableOffsetEntry::size() * wordSize; 4353 int vte_size = vtableEntry::size_in_bytes(); 4354 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4355 assert(vte_size == wordSize, "else adjust times_vte_scale"); 4356 4357 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4358 4359 // Could store the aligned, prescaled offset in the klass. 4360 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 4361 4362 if (return_method) { 4363 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 4364 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4365 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 4366 } 4367 4368 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 4369 // if (scan->interface() == intf) { 4370 // result = (klass + scan->offset() + itable_index); 4371 // } 4372 // } 4373 Label search, found_method; 4374 4375 for (int peel = 1; peel >= 0; peel--) { 4376 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 4377 cmpptr(intf_klass, method_result); 4378 4379 if (peel) { 4380 jccb(Assembler::equal, found_method); 4381 } else { 4382 jccb(Assembler::notEqual, search); 4383 // (invert the test to fall through to found_method...) 4384 } 4385 4386 if (!peel) break; 4387 4388 bind(search); 4389 4390 // Check that the previous entry is non-null. A null entry means that 4391 // the receiver class doesn't implement the interface, and wasn't the 4392 // same as when the caller was compiled. 4393 testptr(method_result, method_result); 4394 jcc(Assembler::zero, L_no_such_interface); 4395 addptr(scan_temp, scan_step); 4396 } 4397 4398 bind(found_method); 4399 4400 if (return_method) { 4401 // Got a hit. 4402 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 4403 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); 4404 } 4405 } 4406 4407 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 4408 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 4409 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 4410 // The target method is determined by <holder_klass, itable_index>. 4411 // The receiver klass is in recv_klass. 4412 // On success, the result will be in method_result, and execution falls through. 4413 // On failure, execution transfers to the given label. 4414 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 4415 Register holder_klass, 4416 Register resolved_klass, 4417 Register method_result, 4418 Register scan_temp, 4419 Register temp_reg2, 4420 Register receiver, 4421 int itable_index, 4422 Label& L_no_such_interface) { 4423 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver); 4424 Register temp_itbl_klass = method_result; 4425 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl 4426 4427 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4428 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4429 int scan_step = itableOffsetEntry::size() * wordSize; 4430 int vte_size = vtableEntry::size_in_bytes(); 4431 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 4432 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 4433 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4434 assert(vte_size == wordSize, "adjust times_vte_scale"); 4435 4436 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found; 4437 4438 // temp_itbl_klass = recv_klass.itable[0] 4439 // scan_temp = &recv_klass.itable[0] + step 4440 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4441 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset)); 4442 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step)); 4443 xorptr(temp_reg, temp_reg); 4444 4445 // Initial checks: 4446 // - if (holder_klass != resolved_klass), go to "scan for resolved" 4447 // - if (itable[0] == 0), no such interface 4448 // - if (itable[0] == holder_klass), shortcut to "holder found" 4449 cmpptr(holder_klass, resolved_klass); 4450 jccb(Assembler::notEqual, L_loop_scan_resolved_entry); 4451 testptr(temp_itbl_klass, temp_itbl_klass); 4452 jccb(Assembler::zero, L_no_such_interface); 4453 cmpptr(holder_klass, temp_itbl_klass); 4454 jccb(Assembler::equal, L_holder_found); 4455 4456 // Loop: Look for holder_klass record in itable 4457 // do { 4458 // tmp = itable[index]; 4459 // index += step; 4460 // if (tmp == holder_klass) { 4461 // goto L_holder_found; // Found! 4462 // } 4463 // } while (tmp != 0); 4464 // goto L_no_such_interface // Not found. 4465 Label L_scan_holder; 4466 bind(L_scan_holder); 4467 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4468 addptr(scan_temp, scan_step); 4469 cmpptr(holder_klass, temp_itbl_klass); 4470 jccb(Assembler::equal, L_holder_found); 4471 testptr(temp_itbl_klass, temp_itbl_klass); 4472 jccb(Assembler::notZero, L_scan_holder); 4473 4474 jmpb(L_no_such_interface); 4475 4476 // Loop: Look for resolved_class record in itable 4477 // do { 4478 // tmp = itable[index]; 4479 // index += step; 4480 // if (tmp == holder_klass) { 4481 // // Also check if we have met a holder klass 4482 // holder_tmp = itable[index-step-ioffset]; 4483 // } 4484 // if (tmp == resolved_klass) { 4485 // goto L_resolved_found; // Found! 4486 // } 4487 // } while (tmp != 0); 4488 // goto L_no_such_interface // Not found. 4489 // 4490 Label L_loop_scan_resolved; 4491 bind(L_loop_scan_resolved); 4492 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4493 addptr(scan_temp, scan_step); 4494 bind(L_loop_scan_resolved_entry); 4495 cmpptr(holder_klass, temp_itbl_klass); 4496 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4497 cmpptr(resolved_klass, temp_itbl_klass); 4498 jccb(Assembler::equal, L_resolved_found); 4499 testptr(temp_itbl_klass, temp_itbl_klass); 4500 jccb(Assembler::notZero, L_loop_scan_resolved); 4501 4502 jmpb(L_no_such_interface); 4503 4504 Label L_ready; 4505 4506 // See if we already have a holder klass. If not, go and scan for it. 4507 bind(L_resolved_found); 4508 testptr(temp_reg, temp_reg); 4509 jccb(Assembler::zero, L_scan_holder); 4510 jmpb(L_ready); 4511 4512 bind(L_holder_found); 4513 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4514 4515 // Finally, temp_reg contains holder_klass vtable offset 4516 bind(L_ready); 4517 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4518 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl 4519 load_klass(scan_temp, receiver, noreg); 4520 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4521 } else { 4522 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4523 } 4524 } 4525 4526 4527 // virtual method calling 4528 void MacroAssembler::lookup_virtual_method(Register recv_klass, 4529 RegisterOrConstant vtable_index, 4530 Register method_result) { 4531 const ByteSize base = Klass::vtable_start_offset(); 4532 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below"); 4533 Address vtable_entry_addr(recv_klass, 4534 vtable_index, Address::times_ptr, 4535 base + vtableEntry::method_offset()); 4536 movptr(method_result, vtable_entry_addr); 4537 } 4538 4539 4540 void MacroAssembler::check_klass_subtype(Register sub_klass, 4541 Register super_klass, 4542 Register temp_reg, 4543 Label& L_success) { 4544 Label L_failure; 4545 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 4546 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 4547 bind(L_failure); 4548 } 4549 4550 4551 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 4552 Register super_klass, 4553 Register temp_reg, 4554 Label* L_success, 4555 Label* L_failure, 4556 Label* L_slow_path, 4557 RegisterOrConstant super_check_offset) { 4558 assert_different_registers(sub_klass, super_klass, temp_reg); 4559 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 4560 if (super_check_offset.is_register()) { 4561 assert_different_registers(sub_klass, super_klass, 4562 super_check_offset.as_register()); 4563 } else if (must_load_sco) { 4564 assert(temp_reg != noreg, "supply either a temp or a register offset"); 4565 } 4566 4567 Label L_fallthrough; 4568 int label_nulls = 0; 4569 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4570 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4571 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 4572 assert(label_nulls <= 1, "at most one null in the batch"); 4573 4574 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4575 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 4576 Address super_check_offset_addr(super_klass, sco_offset); 4577 4578 // Hacked jcc, which "knows" that L_fallthrough, at least, is in 4579 // range of a jccb. If this routine grows larger, reconsider at 4580 // least some of these. 4581 #define local_jcc(assembler_cond, label) \ 4582 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ 4583 else jcc( assembler_cond, label) /*omit semi*/ 4584 4585 // Hacked jmp, which may only be used just before L_fallthrough. 4586 #define final_jmp(label) \ 4587 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 4588 else jmp(label) /*omit semi*/ 4589 4590 // If the pointers are equal, we are done (e.g., String[] elements). 4591 // This self-check enables sharing of secondary supertype arrays among 4592 // non-primary types such as array-of-interface. Otherwise, each such 4593 // type would need its own customized SSA. 4594 // We move this check to the front of the fast path because many 4595 // type checks are in fact trivially successful in this manner, 4596 // so we get a nicely predicted branch right at the start of the check. 4597 cmpptr(sub_klass, super_klass); 4598 local_jcc(Assembler::equal, *L_success); 4599 4600 // Check the supertype display: 4601 if (must_load_sco) { 4602 // Positive movl does right thing on LP64. 4603 movl(temp_reg, super_check_offset_addr); 4604 super_check_offset = RegisterOrConstant(temp_reg); 4605 } 4606 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); 4607 cmpptr(super_klass, super_check_addr); // load displayed supertype 4608 4609 // This check has worked decisively for primary supers. 4610 // Secondary supers are sought in the super_cache ('super_cache_addr'). 4611 // (Secondary supers are interfaces and very deeply nested subtypes.) 4612 // This works in the same check above because of a tricky aliasing 4613 // between the super_cache and the primary super display elements. 4614 // (The 'super_check_addr' can address either, as the case requires.) 4615 // Note that the cache is updated below if it does not help us find 4616 // what we need immediately. 4617 // So if it was a primary super, we can just fail immediately. 4618 // Otherwise, it's the slow path for us (no success at this point). 4619 4620 if (super_check_offset.is_register()) { 4621 local_jcc(Assembler::equal, *L_success); 4622 cmpl(super_check_offset.as_register(), sc_offset); 4623 if (L_failure == &L_fallthrough) { 4624 local_jcc(Assembler::equal, *L_slow_path); 4625 } else { 4626 local_jcc(Assembler::notEqual, *L_failure); 4627 final_jmp(*L_slow_path); 4628 } 4629 } else if (super_check_offset.as_constant() == sc_offset) { 4630 // Need a slow path; fast failure is impossible. 4631 if (L_slow_path == &L_fallthrough) { 4632 local_jcc(Assembler::equal, *L_success); 4633 } else { 4634 local_jcc(Assembler::notEqual, *L_slow_path); 4635 final_jmp(*L_success); 4636 } 4637 } else { 4638 // No slow path; it's a fast decision. 4639 if (L_failure == &L_fallthrough) { 4640 local_jcc(Assembler::equal, *L_success); 4641 } else { 4642 local_jcc(Assembler::notEqual, *L_failure); 4643 final_jmp(*L_success); 4644 } 4645 } 4646 4647 bind(L_fallthrough); 4648 4649 #undef local_jcc 4650 #undef final_jmp 4651 } 4652 4653 4654 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4655 Register super_klass, 4656 Register temp_reg, 4657 Register temp2_reg, 4658 Label* L_success, 4659 Label* L_failure, 4660 bool set_cond_codes) { 4661 assert_different_registers(sub_klass, super_klass, temp_reg); 4662 if (temp2_reg != noreg) 4663 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); 4664 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 4665 4666 Label L_fallthrough; 4667 int label_nulls = 0; 4668 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4669 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4670 assert(label_nulls <= 1, "at most one null in the batch"); 4671 4672 // a couple of useful fields in sub_klass: 4673 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 4674 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4675 Address secondary_supers_addr(sub_klass, ss_offset); 4676 Address super_cache_addr( sub_klass, sc_offset); 4677 4678 // Do a linear scan of the secondary super-klass chain. 4679 // This code is rarely used, so simplicity is a virtue here. 4680 // The repne_scan instruction uses fixed registers, which we must spill. 4681 // Don't worry too much about pre-existing connections with the input regs. 4682 4683 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) 4684 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) 4685 4686 // Get super_klass value into rax (even if it was in rdi or rcx). 4687 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; 4688 if (super_klass != rax) { 4689 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } 4690 mov(rax, super_klass); 4691 } 4692 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } 4693 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } 4694 4695 #ifndef PRODUCT 4696 uint* pst_counter = &SharedRuntime::_partial_subtype_ctr; 4697 ExternalAddress pst_counter_addr((address) pst_counter); 4698 NOT_LP64( incrementl(pst_counter_addr) ); 4699 LP64_ONLY( lea(rcx, pst_counter_addr) ); 4700 LP64_ONLY( incrementl(Address(rcx, 0)) ); 4701 #endif //PRODUCT 4702 4703 // We will consult the secondary-super array. 4704 movptr(rdi, secondary_supers_addr); 4705 // Load the array length. (Positive movl does right thing on LP64.) 4706 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes())); 4707 // Skip to start of data. 4708 addptr(rdi, Array<Klass*>::base_offset_in_bytes()); 4709 4710 // Scan RCX words at [RDI] for an occurrence of RAX. 4711 // Set NZ/Z based on last compare. 4712 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does 4713 // not change flags (only scas instruction which is repeated sets flags). 4714 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. 4715 4716 testptr(rax,rax); // Set Z = 0 4717 repne_scan(); 4718 4719 // Unspill the temp. registers: 4720 if (pushed_rdi) pop(rdi); 4721 if (pushed_rcx) pop(rcx); 4722 if (pushed_rax) pop(rax); 4723 4724 if (set_cond_codes) { 4725 // Special hack for the AD files: rdi is guaranteed non-zero. 4726 assert(!pushed_rdi, "rdi must be left non-null"); 4727 // Also, the condition codes are properly set Z/NZ on succeed/failure. 4728 } 4729 4730 if (L_failure == &L_fallthrough) 4731 jccb(Assembler::notEqual, *L_failure); 4732 else jcc(Assembler::notEqual, *L_failure); 4733 4734 // Success. Cache the super we found and proceed in triumph. 4735 movptr(super_cache_addr, super_klass); 4736 4737 if (L_success != &L_fallthrough) { 4738 jmp(*L_success); 4739 } 4740 4741 #undef IS_A_TEMP 4742 4743 bind(L_fallthrough); 4744 } 4745 4746 #ifdef _LP64 4747 4748 // population_count variant for running without the POPCNT 4749 // instruction, which was introduced with SSE4.2 in 2008. 4750 void MacroAssembler::population_count(Register dst, Register src, 4751 Register scratch1, Register scratch2) { 4752 assert_different_registers(src, scratch1, scratch2); 4753 if (UsePopCountInstruction) { 4754 Assembler::popcntq(dst, src); 4755 } else { 4756 assert_different_registers(src, scratch1, scratch2); 4757 assert_different_registers(dst, scratch1, scratch2); 4758 Label loop, done; 4759 4760 mov(scratch1, src); 4761 // dst = 0; 4762 // while(scratch1 != 0) { 4763 // dst++; 4764 // scratch1 &= (scratch1 - 1); 4765 // } 4766 xorl(dst, dst); 4767 testq(scratch1, scratch1); 4768 jccb(Assembler::equal, done); 4769 { 4770 bind(loop); 4771 incq(dst); 4772 movq(scratch2, scratch1); 4773 decq(scratch2); 4774 andq(scratch1, scratch2); 4775 jccb(Assembler::notEqual, loop); 4776 } 4777 bind(done); 4778 } 4779 } 4780 4781 // Ensure that the inline code and the stub are using the same registers. 4782 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 4783 do { \ 4784 assert(r_super_klass == rax, "mismatch"); \ 4785 assert(r_array_base == rbx, "mismatch"); \ 4786 assert(r_array_length == rcx, "mismatch"); \ 4787 assert(r_array_index == rdx, "mismatch"); \ 4788 assert(r_sub_klass == rsi || r_sub_klass == noreg, "mismatch"); \ 4789 assert(r_bitmap == r11 || r_bitmap == noreg, "mismatch"); \ 4790 assert(result == rdi || result == noreg, "mismatch"); \ 4791 } while(0) 4792 4793 void MacroAssembler::lookup_secondary_supers_table(Register r_sub_klass, 4794 Register r_super_klass, 4795 Register temp1, 4796 Register temp2, 4797 Register temp3, 4798 Register temp4, 4799 Register result, 4800 u1 super_klass_slot) { 4801 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 4802 4803 Label L_fallthrough, L_success, L_failure; 4804 4805 BLOCK_COMMENT("lookup_secondary_supers_table {"); 4806 4807 const Register 4808 r_array_index = temp1, 4809 r_array_length = temp2, 4810 r_array_base = temp3, 4811 r_bitmap = temp4; 4812 4813 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 4814 4815 xorq(result, result); // = 0 4816 4817 movq(r_bitmap, Address(r_sub_klass, Klass::bitmap_offset())); 4818 movq(r_array_index, r_bitmap); 4819 4820 // First check the bitmap to see if super_klass might be present. If 4821 // the bit is zero, we are certain that super_klass is not one of 4822 // the secondary supers. 4823 u1 bit = super_klass_slot; 4824 { 4825 // NB: If the count in a x86 shift instruction is 0, the flags are 4826 // not affected, so we do a testq instead. 4827 int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit; 4828 if (shift_count != 0) { 4829 salq(r_array_index, shift_count); 4830 } else { 4831 testq(r_array_index, r_array_index); 4832 } 4833 } 4834 // We test the MSB of r_array_index, i.e. its sign bit 4835 jcc(Assembler::positive, L_failure); 4836 4837 // Get the first array index that can contain super_klass into r_array_index. 4838 if (bit != 0) { 4839 population_count(r_array_index, r_array_index, temp2, temp3); 4840 } else { 4841 movl(r_array_index, 1); 4842 } 4843 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 4844 4845 // We will consult the secondary-super array. 4846 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 4847 4848 // We're asserting that the first word in an Array<Klass*> is the 4849 // length, and the second word is the first word of the data. If 4850 // that ever changes, r_array_base will have to be adjusted here. 4851 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 4852 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 4853 4854 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4855 jccb(Assembler::equal, L_success); 4856 4857 // Is there another entry to check? Consult the bitmap. 4858 btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK); 4859 jccb(Assembler::carryClear, L_failure); 4860 4861 // Linear probe. Rotate the bitmap so that the next bit to test is 4862 // in Bit 1. 4863 if (bit != 0) { 4864 rorq(r_bitmap, bit); 4865 } 4866 4867 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 4868 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 4869 // Kills: r_array_length. 4870 // Returns: result. 4871 call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub())); 4872 // Result (0/1) is in rdi 4873 jmpb(L_fallthrough); 4874 4875 bind(L_failure); 4876 incq(result); // 0 => 1 4877 4878 bind(L_success); 4879 // result = 0; 4880 4881 bind(L_fallthrough); 4882 BLOCK_COMMENT("} lookup_secondary_supers_table"); 4883 4884 if (VerifySecondarySupers) { 4885 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 4886 temp1, temp2, temp3); 4887 } 4888 } 4889 4890 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit, 4891 Label* L_success, Label* L_failure) { 4892 Label L_loop, L_fallthrough; 4893 { 4894 int label_nulls = 0; 4895 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4896 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4897 assert(label_nulls <= 1, "at most one null in the batch"); 4898 } 4899 bind(L_loop); 4900 cmpq(value, Address(addr, count, Address::times_8)); 4901 jcc(Assembler::equal, *L_success); 4902 addl(count, 1); 4903 cmpl(count, limit); 4904 jcc(Assembler::less, L_loop); 4905 4906 if (&L_fallthrough != L_failure) { 4907 jmp(*L_failure); 4908 } 4909 bind(L_fallthrough); 4910 } 4911 4912 // Called by code generated by check_klass_subtype_slow_path 4913 // above. This is called when there is a collision in the hashed 4914 // lookup in the secondary supers array. 4915 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 4916 Register r_array_base, 4917 Register r_array_index, 4918 Register r_bitmap, 4919 Register temp1, 4920 Register temp2, 4921 Label* L_success, 4922 Label* L_failure) { 4923 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2); 4924 4925 const Register 4926 r_array_length = temp1, 4927 r_sub_klass = noreg, 4928 result = noreg; 4929 4930 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 4931 4932 Label L_fallthrough; 4933 int label_nulls = 0; 4934 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4935 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4936 assert(label_nulls <= 1, "at most one null in the batch"); 4937 4938 // Load the array length. 4939 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 4940 // And adjust the array base to point to the data. 4941 // NB! Effectively increments current slot index by 1. 4942 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 4943 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 4944 4945 // Linear probe 4946 Label L_huge; 4947 4948 // The bitmap is full to bursting. 4949 // Implicit invariant: BITMAP_FULL implies (length > 0) 4950 cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2); 4951 jcc(Assembler::greater, L_huge); 4952 4953 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 4954 // current slot (at secondary_supers[r_array_index]) has not yet 4955 // been inspected, and r_array_index may be out of bounds if we 4956 // wrapped around the end of the array. 4957 4958 { // This is conventional linear probing, but instead of terminating 4959 // when a null entry is found in the table, we maintain a bitmap 4960 // in which a 0 indicates missing entries. 4961 // The check above guarantees there are 0s in the bitmap, so the loop 4962 // eventually terminates. 4963 4964 xorl(temp2, temp2); // = 0; 4965 4966 Label L_again; 4967 bind(L_again); 4968 4969 // Check for array wraparound. 4970 cmpl(r_array_index, r_array_length); 4971 cmovl(Assembler::greaterEqual, r_array_index, temp2); 4972 4973 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4974 jcc(Assembler::equal, *L_success); 4975 4976 // If the next bit in bitmap is zero, we're done. 4977 btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now 4978 jcc(Assembler::carryClear, *L_failure); 4979 4980 rorq(r_bitmap, 1); // Bits 1/2 => 0/1 4981 addl(r_array_index, 1); 4982 4983 jmp(L_again); 4984 } 4985 4986 { // Degenerate case: more than 64 secondary supers. 4987 // FIXME: We could do something smarter here, maybe a vectorized 4988 // comparison or a binary search, but is that worth any added 4989 // complexity? 4990 bind(L_huge); 4991 xorl(r_array_index, r_array_index); // = 0 4992 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, 4993 L_success, 4994 (&L_fallthrough != L_failure ? L_failure : nullptr)); 4995 4996 bind(L_fallthrough); 4997 } 4998 } 4999 5000 struct VerifyHelperArguments { 5001 Klass* _super; 5002 Klass* _sub; 5003 intptr_t _linear_result; 5004 intptr_t _table_result; 5005 }; 5006 5007 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) { 5008 Klass::on_secondary_supers_verification_failure(args->_super, 5009 args->_sub, 5010 args->_linear_result, 5011 args->_table_result, 5012 msg); 5013 } 5014 5015 // Make sure that the hashed lookup and a linear scan agree. 5016 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 5017 Register r_super_klass, 5018 Register result, 5019 Register temp1, 5020 Register temp2, 5021 Register temp3) { 5022 const Register 5023 r_array_index = temp1, 5024 r_array_length = temp2, 5025 r_array_base = temp3, 5026 r_bitmap = noreg; 5027 5028 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 5029 5030 BLOCK_COMMENT("verify_secondary_supers_table {"); 5031 5032 Label L_success, L_failure, L_check, L_done; 5033 5034 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5035 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 5036 // And adjust the array base to point to the data. 5037 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 5038 5039 testl(r_array_length, r_array_length); // array_length == 0? 5040 jcc(Assembler::zero, L_failure); 5041 5042 movl(r_array_index, 0); 5043 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success); 5044 // fall through to L_failure 5045 5046 const Register linear_result = r_array_index; // reuse temp1 5047 5048 bind(L_failure); // not present 5049 movl(linear_result, 1); 5050 jmp(L_check); 5051 5052 bind(L_success); // present 5053 movl(linear_result, 0); 5054 5055 bind(L_check); 5056 cmpl(linear_result, result); 5057 jcc(Assembler::equal, L_done); 5058 5059 { // To avoid calling convention issues, build a record on the stack 5060 // and pass the pointer to that instead. 5061 push(result); 5062 push(linear_result); 5063 push(r_sub_klass); 5064 push(r_super_klass); 5065 movptr(c_rarg1, rsp); 5066 movptr(c_rarg0, (uintptr_t) "mismatch"); 5067 call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper))); 5068 should_not_reach_here(); 5069 } 5070 bind(L_done); 5071 5072 BLOCK_COMMENT("} verify_secondary_supers_table"); 5073 } 5074 5075 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS 5076 5077 #endif // LP64 5078 5079 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) { 5080 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 5081 5082 Label L_fallthrough; 5083 if (L_fast_path == nullptr) { 5084 L_fast_path = &L_fallthrough; 5085 } else if (L_slow_path == nullptr) { 5086 L_slow_path = &L_fallthrough; 5087 } 5088 5089 // Fast path check: class is fully initialized. 5090 // init_state needs acquire, but x86 is TSO, and so we are already good. 5091 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 5092 jcc(Assembler::equal, *L_fast_path); 5093 5094 // Fast path check: current thread is initializer thread 5095 cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset())); 5096 if (L_slow_path == &L_fallthrough) { 5097 jcc(Assembler::equal, *L_fast_path); 5098 bind(*L_slow_path); 5099 } else if (L_fast_path == &L_fallthrough) { 5100 jcc(Assembler::notEqual, *L_slow_path); 5101 bind(*L_fast_path); 5102 } else { 5103 Unimplemented(); 5104 } 5105 } 5106 5107 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { 5108 if (VM_Version::supports_cmov()) { 5109 cmovl(cc, dst, src); 5110 } else { 5111 Label L; 5112 jccb(negate_condition(cc), L); 5113 movl(dst, src); 5114 bind(L); 5115 } 5116 } 5117 5118 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { 5119 if (VM_Version::supports_cmov()) { 5120 cmovl(cc, dst, src); 5121 } else { 5122 Label L; 5123 jccb(negate_condition(cc), L); 5124 movl(dst, src); 5125 bind(L); 5126 } 5127 } 5128 5129 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 5130 if (!VerifyOops) return; 5131 5132 BLOCK_COMMENT("verify_oop {"); 5133 #ifdef _LP64 5134 push(rscratch1); 5135 #endif 5136 push(rax); // save rax 5137 push(reg); // pass register argument 5138 5139 // Pass register number to verify_oop_subroutine 5140 const char* b = nullptr; 5141 { 5142 ResourceMark rm; 5143 stringStream ss; 5144 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 5145 b = code_string(ss.as_string()); 5146 } 5147 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 5148 pushptr(buffer.addr(), rscratch1); 5149 5150 // call indirectly to solve generation ordering problem 5151 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5152 call(rax); 5153 // Caller pops the arguments (oop, message) and restores rax, r10 5154 BLOCK_COMMENT("} verify_oop"); 5155 } 5156 5157 void MacroAssembler::vallones(XMMRegister dst, int vector_len) { 5158 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) { 5159 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without 5160 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog 5161 vpternlogd(dst, 0xFF, dst, dst, vector_len); 5162 } else if (VM_Version::supports_avx()) { 5163 vpcmpeqd(dst, dst, dst, vector_len); 5164 } else { 5165 assert(VM_Version::supports_sse2(), ""); 5166 pcmpeqd(dst, dst); 5167 } 5168 } 5169 5170 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 5171 int extra_slot_offset) { 5172 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 5173 int stackElementSize = Interpreter::stackElementSize; 5174 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 5175 #ifdef ASSERT 5176 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 5177 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 5178 #endif 5179 Register scale_reg = noreg; 5180 Address::ScaleFactor scale_factor = Address::no_scale; 5181 if (arg_slot.is_constant()) { 5182 offset += arg_slot.as_constant() * stackElementSize; 5183 } else { 5184 scale_reg = arg_slot.as_register(); 5185 scale_factor = Address::times(stackElementSize); 5186 } 5187 offset += wordSize; // return PC is on stack 5188 return Address(rsp, scale_reg, scale_factor, offset); 5189 } 5190 5191 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 5192 if (!VerifyOops) return; 5193 5194 #ifdef _LP64 5195 push(rscratch1); 5196 #endif 5197 push(rax); // save rax, 5198 // addr may contain rsp so we will have to adjust it based on the push 5199 // we just did (and on 64 bit we do two pushes) 5200 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which 5201 // stores rax into addr which is backwards of what was intended. 5202 if (addr.uses(rsp)) { 5203 lea(rax, addr); 5204 pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord)); 5205 } else { 5206 pushptr(addr); 5207 } 5208 5209 // Pass register number to verify_oop_subroutine 5210 const char* b = nullptr; 5211 { 5212 ResourceMark rm; 5213 stringStream ss; 5214 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 5215 b = code_string(ss.as_string()); 5216 } 5217 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 5218 pushptr(buffer.addr(), rscratch1); 5219 5220 // call indirectly to solve generation ordering problem 5221 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5222 call(rax); 5223 // Caller pops the arguments (addr, message) and restores rax, r10. 5224 } 5225 5226 void MacroAssembler::verify_tlab() { 5227 #ifdef ASSERT 5228 if (UseTLAB && VerifyOops) { 5229 Label next, ok; 5230 Register t1 = rsi; 5231 Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread); 5232 5233 push(t1); 5234 NOT_LP64(push(thread_reg)); 5235 NOT_LP64(get_thread(thread_reg)); 5236 5237 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5238 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset()))); 5239 jcc(Assembler::aboveEqual, next); 5240 STOP("assert(top >= start)"); 5241 should_not_reach_here(); 5242 5243 bind(next); 5244 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); 5245 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5246 jcc(Assembler::aboveEqual, ok); 5247 STOP("assert(top <= end)"); 5248 should_not_reach_here(); 5249 5250 bind(ok); 5251 NOT_LP64(pop(thread_reg)); 5252 pop(t1); 5253 } 5254 #endif 5255 } 5256 5257 class ControlWord { 5258 public: 5259 int32_t _value; 5260 5261 int rounding_control() const { return (_value >> 10) & 3 ; } 5262 int precision_control() const { return (_value >> 8) & 3 ; } 5263 bool precision() const { return ((_value >> 5) & 1) != 0; } 5264 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5265 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5266 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5267 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5268 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5269 5270 void print() const { 5271 // rounding control 5272 const char* rc; 5273 switch (rounding_control()) { 5274 case 0: rc = "round near"; break; 5275 case 1: rc = "round down"; break; 5276 case 2: rc = "round up "; break; 5277 case 3: rc = "chop "; break; 5278 default: 5279 rc = nullptr; // silence compiler warnings 5280 fatal("Unknown rounding control: %d", rounding_control()); 5281 }; 5282 // precision control 5283 const char* pc; 5284 switch (precision_control()) { 5285 case 0: pc = "24 bits "; break; 5286 case 1: pc = "reserved"; break; 5287 case 2: pc = "53 bits "; break; 5288 case 3: pc = "64 bits "; break; 5289 default: 5290 pc = nullptr; // silence compiler warnings 5291 fatal("Unknown precision control: %d", precision_control()); 5292 }; 5293 // flags 5294 char f[9]; 5295 f[0] = ' '; 5296 f[1] = ' '; 5297 f[2] = (precision ()) ? 'P' : 'p'; 5298 f[3] = (underflow ()) ? 'U' : 'u'; 5299 f[4] = (overflow ()) ? 'O' : 'o'; 5300 f[5] = (zero_divide ()) ? 'Z' : 'z'; 5301 f[6] = (denormalized()) ? 'D' : 'd'; 5302 f[7] = (invalid ()) ? 'I' : 'i'; 5303 f[8] = '\x0'; 5304 // output 5305 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); 5306 } 5307 5308 }; 5309 5310 class StatusWord { 5311 public: 5312 int32_t _value; 5313 5314 bool busy() const { return ((_value >> 15) & 1) != 0; } 5315 bool C3() const { return ((_value >> 14) & 1) != 0; } 5316 bool C2() const { return ((_value >> 10) & 1) != 0; } 5317 bool C1() const { return ((_value >> 9) & 1) != 0; } 5318 bool C0() const { return ((_value >> 8) & 1) != 0; } 5319 int top() const { return (_value >> 11) & 7 ; } 5320 bool error_status() const { return ((_value >> 7) & 1) != 0; } 5321 bool stack_fault() const { return ((_value >> 6) & 1) != 0; } 5322 bool precision() const { return ((_value >> 5) & 1) != 0; } 5323 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5324 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5325 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5326 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5327 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5328 5329 void print() const { 5330 // condition codes 5331 char c[5]; 5332 c[0] = (C3()) ? '3' : '-'; 5333 c[1] = (C2()) ? '2' : '-'; 5334 c[2] = (C1()) ? '1' : '-'; 5335 c[3] = (C0()) ? '0' : '-'; 5336 c[4] = '\x0'; 5337 // flags 5338 char f[9]; 5339 f[0] = (error_status()) ? 'E' : '-'; 5340 f[1] = (stack_fault ()) ? 'S' : '-'; 5341 f[2] = (precision ()) ? 'P' : '-'; 5342 f[3] = (underflow ()) ? 'U' : '-'; 5343 f[4] = (overflow ()) ? 'O' : '-'; 5344 f[5] = (zero_divide ()) ? 'Z' : '-'; 5345 f[6] = (denormalized()) ? 'D' : '-'; 5346 f[7] = (invalid ()) ? 'I' : '-'; 5347 f[8] = '\x0'; 5348 // output 5349 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); 5350 } 5351 5352 }; 5353 5354 class TagWord { 5355 public: 5356 int32_t _value; 5357 5358 int tag_at(int i) const { return (_value >> (i*2)) & 3; } 5359 5360 void print() const { 5361 printf("%04x", _value & 0xFFFF); 5362 } 5363 5364 }; 5365 5366 class FPU_Register { 5367 public: 5368 int32_t _m0; 5369 int32_t _m1; 5370 int16_t _ex; 5371 5372 bool is_indefinite() const { 5373 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; 5374 } 5375 5376 void print() const { 5377 char sign = (_ex < 0) ? '-' : '+'; 5378 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; 5379 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); 5380 }; 5381 5382 }; 5383 5384 class FPU_State { 5385 public: 5386 enum { 5387 register_size = 10, 5388 number_of_registers = 8, 5389 register_mask = 7 5390 }; 5391 5392 ControlWord _control_word; 5393 StatusWord _status_word; 5394 TagWord _tag_word; 5395 int32_t _error_offset; 5396 int32_t _error_selector; 5397 int32_t _data_offset; 5398 int32_t _data_selector; 5399 int8_t _register[register_size * number_of_registers]; 5400 5401 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } 5402 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } 5403 5404 const char* tag_as_string(int tag) const { 5405 switch (tag) { 5406 case 0: return "valid"; 5407 case 1: return "zero"; 5408 case 2: return "special"; 5409 case 3: return "empty"; 5410 } 5411 ShouldNotReachHere(); 5412 return nullptr; 5413 } 5414 5415 void print() const { 5416 // print computation registers 5417 { int t = _status_word.top(); 5418 for (int i = 0; i < number_of_registers; i++) { 5419 int j = (i - t) & register_mask; 5420 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); 5421 st(j)->print(); 5422 printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); 5423 } 5424 } 5425 printf("\n"); 5426 // print control registers 5427 printf("ctrl = "); _control_word.print(); printf("\n"); 5428 printf("stat = "); _status_word .print(); printf("\n"); 5429 printf("tags = "); _tag_word .print(); printf("\n"); 5430 } 5431 5432 }; 5433 5434 class Flag_Register { 5435 public: 5436 int32_t _value; 5437 5438 bool overflow() const { return ((_value >> 11) & 1) != 0; } 5439 bool direction() const { return ((_value >> 10) & 1) != 0; } 5440 bool sign() const { return ((_value >> 7) & 1) != 0; } 5441 bool zero() const { return ((_value >> 6) & 1) != 0; } 5442 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } 5443 bool parity() const { return ((_value >> 2) & 1) != 0; } 5444 bool carry() const { return ((_value >> 0) & 1) != 0; } 5445 5446 void print() const { 5447 // flags 5448 char f[8]; 5449 f[0] = (overflow ()) ? 'O' : '-'; 5450 f[1] = (direction ()) ? 'D' : '-'; 5451 f[2] = (sign ()) ? 'S' : '-'; 5452 f[3] = (zero ()) ? 'Z' : '-'; 5453 f[4] = (auxiliary_carry()) ? 'A' : '-'; 5454 f[5] = (parity ()) ? 'P' : '-'; 5455 f[6] = (carry ()) ? 'C' : '-'; 5456 f[7] = '\x0'; 5457 // output 5458 printf("%08x flags = %s", _value, f); 5459 } 5460 5461 }; 5462 5463 class IU_Register { 5464 public: 5465 int32_t _value; 5466 5467 void print() const { 5468 printf("%08x %11d", _value, _value); 5469 } 5470 5471 }; 5472 5473 class IU_State { 5474 public: 5475 Flag_Register _eflags; 5476 IU_Register _rdi; 5477 IU_Register _rsi; 5478 IU_Register _rbp; 5479 IU_Register _rsp; 5480 IU_Register _rbx; 5481 IU_Register _rdx; 5482 IU_Register _rcx; 5483 IU_Register _rax; 5484 5485 void print() const { 5486 // computation registers 5487 printf("rax, = "); _rax.print(); printf("\n"); 5488 printf("rbx, = "); _rbx.print(); printf("\n"); 5489 printf("rcx = "); _rcx.print(); printf("\n"); 5490 printf("rdx = "); _rdx.print(); printf("\n"); 5491 printf("rdi = "); _rdi.print(); printf("\n"); 5492 printf("rsi = "); _rsi.print(); printf("\n"); 5493 printf("rbp, = "); _rbp.print(); printf("\n"); 5494 printf("rsp = "); _rsp.print(); printf("\n"); 5495 printf("\n"); 5496 // control registers 5497 printf("flgs = "); _eflags.print(); printf("\n"); 5498 } 5499 }; 5500 5501 5502 class CPU_State { 5503 public: 5504 FPU_State _fpu_state; 5505 IU_State _iu_state; 5506 5507 void print() const { 5508 printf("--------------------------------------------------\n"); 5509 _iu_state .print(); 5510 printf("\n"); 5511 _fpu_state.print(); 5512 printf("--------------------------------------------------\n"); 5513 } 5514 5515 }; 5516 5517 5518 static void _print_CPU_state(CPU_State* state) { 5519 state->print(); 5520 }; 5521 5522 5523 void MacroAssembler::print_CPU_state() { 5524 push_CPU_state(); 5525 push(rsp); // pass CPU state 5526 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); 5527 addptr(rsp, wordSize); // discard argument 5528 pop_CPU_state(); 5529 } 5530 5531 5532 #ifndef _LP64 5533 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) { 5534 static int counter = 0; 5535 FPU_State* fs = &state->_fpu_state; 5536 counter++; 5537 // For leaf calls, only verify that the top few elements remain empty. 5538 // We only need 1 empty at the top for C2 code. 5539 if( stack_depth < 0 ) { 5540 if( fs->tag_for_st(7) != 3 ) { 5541 printf("FPR7 not empty\n"); 5542 state->print(); 5543 assert(false, "error"); 5544 return false; 5545 } 5546 return true; // All other stack states do not matter 5547 } 5548 5549 assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(), 5550 "bad FPU control word"); 5551 5552 // compute stack depth 5553 int i = 0; 5554 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++; 5555 int d = i; 5556 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++; 5557 // verify findings 5558 if (i != FPU_State::number_of_registers) { 5559 // stack not contiguous 5560 printf("%s: stack not contiguous at ST%d\n", s, i); 5561 state->print(); 5562 assert(false, "error"); 5563 return false; 5564 } 5565 // check if computed stack depth corresponds to expected stack depth 5566 if (stack_depth < 0) { 5567 // expected stack depth is -stack_depth or less 5568 if (d > -stack_depth) { 5569 // too many elements on the stack 5570 printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d); 5571 state->print(); 5572 assert(false, "error"); 5573 return false; 5574 } 5575 } else { 5576 // expected stack depth is stack_depth 5577 if (d != stack_depth) { 5578 // wrong stack depth 5579 printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d); 5580 state->print(); 5581 assert(false, "error"); 5582 return false; 5583 } 5584 } 5585 // everything is cool 5586 return true; 5587 } 5588 5589 void MacroAssembler::verify_FPU(int stack_depth, const char* s) { 5590 if (!VerifyFPU) return; 5591 push_CPU_state(); 5592 push(rsp); // pass CPU state 5593 ExternalAddress msg((address) s); 5594 // pass message string s 5595 pushptr(msg.addr(), noreg); 5596 push(stack_depth); // pass stack depth 5597 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU))); 5598 addptr(rsp, 3 * wordSize); // discard arguments 5599 // check for error 5600 { Label L; 5601 testl(rax, rax); 5602 jcc(Assembler::notZero, L); 5603 int3(); // break if error condition 5604 bind(L); 5605 } 5606 pop_CPU_state(); 5607 } 5608 #endif // _LP64 5609 5610 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) { 5611 // Either restore the MXCSR register after returning from the JNI Call 5612 // or verify that it wasn't changed (with -Xcheck:jni flag). 5613 if (VM_Version::supports_sse()) { 5614 if (RestoreMXCSROnJNICalls) { 5615 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch); 5616 } else if (CheckJNICalls) { 5617 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry())); 5618 } 5619 } 5620 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty. 5621 vzeroupper(); 5622 5623 #ifndef _LP64 5624 // Either restore the x87 floating pointer control word after returning 5625 // from the JNI call or verify that it wasn't changed. 5626 if (CheckJNICalls) { 5627 call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry())); 5628 } 5629 #endif // _LP64 5630 } 5631 5632 // ((OopHandle)result).resolve(); 5633 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 5634 assert_different_registers(result, tmp); 5635 5636 // Only 64 bit platforms support GCs that require a tmp register 5637 // Only IN_HEAP loads require a thread_tmp register 5638 // OopHandle::resolve is an indirection like jobject. 5639 access_load_at(T_OBJECT, IN_NATIVE, 5640 result, Address(result, 0), tmp, /*tmp_thread*/noreg); 5641 } 5642 5643 // ((WeakHandle)result).resolve(); 5644 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 5645 assert_different_registers(rresult, rtmp); 5646 Label resolved; 5647 5648 // A null weak handle resolves to null. 5649 cmpptr(rresult, 0); 5650 jcc(Assembler::equal, resolved); 5651 5652 // Only 64 bit platforms support GCs that require a tmp register 5653 // Only IN_HEAP loads require a thread_tmp register 5654 // WeakHandle::resolve is an indirection like jweak. 5655 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5656 rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg); 5657 bind(resolved); 5658 } 5659 5660 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) { 5661 // get mirror 5662 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5663 load_method_holder(mirror, method); 5664 movptr(mirror, Address(mirror, mirror_offset)); 5665 resolve_oop_handle(mirror, tmp); 5666 } 5667 5668 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5669 load_method_holder(rresult, rmethod); 5670 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5671 } 5672 5673 void MacroAssembler::load_method_holder(Register holder, Register method) { 5674 movptr(holder, Address(method, Method::const_offset())); // ConstMethod* 5675 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5676 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5677 } 5678 5679 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) { 5680 assert_different_registers(src, tmp); 5681 assert_different_registers(dst, tmp); 5682 #ifdef _LP64 5683 if (UseCompressedClassPointers) { 5684 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5685 decode_klass_not_null(dst, tmp); 5686 } else 5687 #endif 5688 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5689 } 5690 5691 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) { 5692 assert_different_registers(src, tmp); 5693 assert_different_registers(dst, tmp); 5694 #ifdef _LP64 5695 if (UseCompressedClassPointers) { 5696 encode_klass_not_null(src, tmp); 5697 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5698 } else 5699 #endif 5700 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5701 } 5702 5703 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 5704 Register tmp1, Register thread_tmp) { 5705 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5706 decorators = AccessInternal::decorator_fixup(decorators, type); 5707 bool as_raw = (decorators & AS_RAW) != 0; 5708 if (as_raw) { 5709 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 5710 } else { 5711 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 5712 } 5713 } 5714 5715 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 5716 Register tmp1, Register tmp2, Register tmp3) { 5717 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5718 decorators = AccessInternal::decorator_fixup(decorators, type); 5719 bool as_raw = (decorators & AS_RAW) != 0; 5720 if (as_raw) { 5721 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5722 } else { 5723 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5724 } 5725 } 5726 5727 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5728 Register thread_tmp, DecoratorSet decorators) { 5729 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 5730 } 5731 5732 // Doesn't do verification, generates fixed size code 5733 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5734 Register thread_tmp, DecoratorSet decorators) { 5735 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); 5736 } 5737 5738 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5739 Register tmp2, Register tmp3, DecoratorSet decorators) { 5740 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5741 } 5742 5743 // Used for storing nulls. 5744 void MacroAssembler::store_heap_oop_null(Address dst) { 5745 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5746 } 5747 5748 #ifdef _LP64 5749 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5750 if (UseCompressedClassPointers) { 5751 // Store to klass gap in destination 5752 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); 5753 } 5754 } 5755 5756 #ifdef ASSERT 5757 void MacroAssembler::verify_heapbase(const char* msg) { 5758 assert (UseCompressedOops, "should be compressed"); 5759 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5760 if (CheckCompressedOops) { 5761 Label ok; 5762 ExternalAddress src2(CompressedOops::base_addr()); 5763 const bool is_src2_reachable = reachable(src2); 5764 if (!is_src2_reachable) { 5765 push(rscratch1); // cmpptr trashes rscratch1 5766 } 5767 cmpptr(r12_heapbase, src2, rscratch1); 5768 jcc(Assembler::equal, ok); 5769 STOP(msg); 5770 bind(ok); 5771 if (!is_src2_reachable) { 5772 pop(rscratch1); 5773 } 5774 } 5775 } 5776 #endif 5777 5778 // Algorithm must match oop.inline.hpp encode_heap_oop. 5779 void MacroAssembler::encode_heap_oop(Register r) { 5780 #ifdef ASSERT 5781 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5782 #endif 5783 verify_oop_msg(r, "broken oop in encode_heap_oop"); 5784 if (CompressedOops::base() == nullptr) { 5785 if (CompressedOops::shift() != 0) { 5786 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5787 shrq(r, LogMinObjAlignmentInBytes); 5788 } 5789 return; 5790 } 5791 testq(r, r); 5792 cmovq(Assembler::equal, r, r12_heapbase); 5793 subq(r, r12_heapbase); 5794 shrq(r, LogMinObjAlignmentInBytes); 5795 } 5796 5797 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5798 #ifdef ASSERT 5799 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5800 if (CheckCompressedOops) { 5801 Label ok; 5802 testq(r, r); 5803 jcc(Assembler::notEqual, ok); 5804 STOP("null oop passed to encode_heap_oop_not_null"); 5805 bind(ok); 5806 } 5807 #endif 5808 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5809 if (CompressedOops::base() != nullptr) { 5810 subq(r, r12_heapbase); 5811 } 5812 if (CompressedOops::shift() != 0) { 5813 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5814 shrq(r, LogMinObjAlignmentInBytes); 5815 } 5816 } 5817 5818 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5819 #ifdef ASSERT 5820 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5821 if (CheckCompressedOops) { 5822 Label ok; 5823 testq(src, src); 5824 jcc(Assembler::notEqual, ok); 5825 STOP("null oop passed to encode_heap_oop_not_null2"); 5826 bind(ok); 5827 } 5828 #endif 5829 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5830 if (dst != src) { 5831 movq(dst, src); 5832 } 5833 if (CompressedOops::base() != nullptr) { 5834 subq(dst, r12_heapbase); 5835 } 5836 if (CompressedOops::shift() != 0) { 5837 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5838 shrq(dst, LogMinObjAlignmentInBytes); 5839 } 5840 } 5841 5842 void MacroAssembler::decode_heap_oop(Register r) { 5843 #ifdef ASSERT 5844 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5845 #endif 5846 if (CompressedOops::base() == nullptr) { 5847 if (CompressedOops::shift() != 0) { 5848 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5849 shlq(r, LogMinObjAlignmentInBytes); 5850 } 5851 } else { 5852 Label done; 5853 shlq(r, LogMinObjAlignmentInBytes); 5854 jccb(Assembler::equal, done); 5855 addq(r, r12_heapbase); 5856 bind(done); 5857 } 5858 verify_oop_msg(r, "broken oop in decode_heap_oop"); 5859 } 5860 5861 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5862 // Note: it will change flags 5863 assert (UseCompressedOops, "should only be used for compressed headers"); 5864 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5865 // Cannot assert, unverified entry point counts instructions (see .ad file) 5866 // vtableStubs also counts instructions in pd_code_size_limit. 5867 // Also do not verify_oop as this is called by verify_oop. 5868 if (CompressedOops::shift() != 0) { 5869 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5870 shlq(r, LogMinObjAlignmentInBytes); 5871 if (CompressedOops::base() != nullptr) { 5872 addq(r, r12_heapbase); 5873 } 5874 } else { 5875 assert (CompressedOops::base() == nullptr, "sanity"); 5876 } 5877 } 5878 5879 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5880 // Note: it will change flags 5881 assert (UseCompressedOops, "should only be used for compressed headers"); 5882 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5883 // Cannot assert, unverified entry point counts instructions (see .ad file) 5884 // vtableStubs also counts instructions in pd_code_size_limit. 5885 // Also do not verify_oop as this is called by verify_oop. 5886 if (CompressedOops::shift() != 0) { 5887 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5888 if (LogMinObjAlignmentInBytes == Address::times_8) { 5889 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); 5890 } else { 5891 if (dst != src) { 5892 movq(dst, src); 5893 } 5894 shlq(dst, LogMinObjAlignmentInBytes); 5895 if (CompressedOops::base() != nullptr) { 5896 addq(dst, r12_heapbase); 5897 } 5898 } 5899 } else { 5900 assert (CompressedOops::base() == nullptr, "sanity"); 5901 if (dst != src) { 5902 movq(dst, src); 5903 } 5904 } 5905 } 5906 5907 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) { 5908 assert_different_registers(r, tmp); 5909 if (CompressedKlassPointers::base() != nullptr) { 5910 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 5911 subq(r, tmp); 5912 } 5913 if (CompressedKlassPointers::shift() != 0) { 5914 assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 5915 shrq(r, LogKlassAlignmentInBytes); 5916 } 5917 } 5918 5919 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) { 5920 assert_different_registers(src, dst); 5921 if (CompressedKlassPointers::base() != nullptr) { 5922 mov64(dst, -(int64_t)CompressedKlassPointers::base()); 5923 addq(dst, src); 5924 } else { 5925 movptr(dst, src); 5926 } 5927 if (CompressedKlassPointers::shift() != 0) { 5928 assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 5929 shrq(dst, LogKlassAlignmentInBytes); 5930 } 5931 } 5932 5933 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) { 5934 assert_different_registers(r, tmp); 5935 // Note: it will change flags 5936 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 5937 // Cannot assert, unverified entry point counts instructions (see .ad file) 5938 // vtableStubs also counts instructions in pd_code_size_limit. 5939 // Also do not verify_oop as this is called by verify_oop. 5940 if (CompressedKlassPointers::shift() != 0) { 5941 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 5942 shlq(r, LogKlassAlignmentInBytes); 5943 } 5944 if (CompressedKlassPointers::base() != nullptr) { 5945 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 5946 addq(r, tmp); 5947 } 5948 } 5949 5950 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) { 5951 assert_different_registers(src, dst); 5952 // Note: it will change flags 5953 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5954 // Cannot assert, unverified entry point counts instructions (see .ad file) 5955 // vtableStubs also counts instructions in pd_code_size_limit. 5956 // Also do not verify_oop as this is called by verify_oop. 5957 5958 if (CompressedKlassPointers::base() == nullptr && 5959 CompressedKlassPointers::shift() == 0) { 5960 // The best case scenario is that there is no base or shift. Then it is already 5961 // a pointer that needs nothing but a register rename. 5962 movl(dst, src); 5963 } else { 5964 if (CompressedKlassPointers::base() != nullptr) { 5965 mov64(dst, (int64_t)CompressedKlassPointers::base()); 5966 } else { 5967 xorq(dst, dst); 5968 } 5969 if (CompressedKlassPointers::shift() != 0) { 5970 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 5971 assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?"); 5972 leaq(dst, Address(dst, src, Address::times_8, 0)); 5973 } else { 5974 addq(dst, src); 5975 } 5976 } 5977 } 5978 5979 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5980 assert (UseCompressedOops, "should only be used for compressed headers"); 5981 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5982 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5983 int oop_index = oop_recorder()->find_index(obj); 5984 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5985 mov_narrow_oop(dst, oop_index, rspec); 5986 } 5987 5988 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { 5989 assert (UseCompressedOops, "should only be used for compressed headers"); 5990 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5991 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5992 int oop_index = oop_recorder()->find_index(obj); 5993 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5994 mov_narrow_oop(dst, oop_index, rspec); 5995 } 5996 5997 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5998 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5999 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6000 int klass_index = oop_recorder()->find_index(k); 6001 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6002 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6003 } 6004 6005 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) { 6006 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6007 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6008 int klass_index = oop_recorder()->find_index(k); 6009 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6010 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6011 } 6012 6013 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { 6014 assert (UseCompressedOops, "should only be used for compressed headers"); 6015 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6016 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6017 int oop_index = oop_recorder()->find_index(obj); 6018 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6019 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6020 } 6021 6022 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { 6023 assert (UseCompressedOops, "should only be used for compressed headers"); 6024 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6025 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6026 int oop_index = oop_recorder()->find_index(obj); 6027 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6028 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6029 } 6030 6031 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) { 6032 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6033 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6034 int klass_index = oop_recorder()->find_index(k); 6035 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6036 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6037 } 6038 6039 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) { 6040 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6041 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6042 int klass_index = oop_recorder()->find_index(k); 6043 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6044 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6045 } 6046 6047 void MacroAssembler::reinit_heapbase() { 6048 if (UseCompressedOops) { 6049 if (Universe::heap() != nullptr) { 6050 if (CompressedOops::base() == nullptr) { 6051 MacroAssembler::xorptr(r12_heapbase, r12_heapbase); 6052 } else { 6053 mov64(r12_heapbase, (int64_t)CompressedOops::base()); 6054 } 6055 } else { 6056 movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr())); 6057 } 6058 } 6059 } 6060 6061 #endif // _LP64 6062 6063 #if COMPILER2_OR_JVMCI 6064 6065 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers 6066 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6067 // cnt - number of qwords (8-byte words). 6068 // base - start address, qword aligned. 6069 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end; 6070 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0); 6071 if (use64byteVector) { 6072 vpxor(xtmp, xtmp, xtmp, AVX_512bit); 6073 } else if (MaxVectorSize >= 32) { 6074 vpxor(xtmp, xtmp, xtmp, AVX_256bit); 6075 } else { 6076 pxor(xtmp, xtmp); 6077 } 6078 jmp(L_zero_64_bytes); 6079 6080 BIND(L_loop); 6081 if (MaxVectorSize >= 32) { 6082 fill64(base, 0, xtmp, use64byteVector); 6083 } else { 6084 movdqu(Address(base, 0), xtmp); 6085 movdqu(Address(base, 16), xtmp); 6086 movdqu(Address(base, 32), xtmp); 6087 movdqu(Address(base, 48), xtmp); 6088 } 6089 addptr(base, 64); 6090 6091 BIND(L_zero_64_bytes); 6092 subptr(cnt, 8); 6093 jccb(Assembler::greaterEqual, L_loop); 6094 6095 // Copy trailing 64 bytes 6096 if (use64byteVector) { 6097 addptr(cnt, 8); 6098 jccb(Assembler::equal, L_end); 6099 fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true); 6100 jmp(L_end); 6101 } else { 6102 addptr(cnt, 4); 6103 jccb(Assembler::less, L_tail); 6104 if (MaxVectorSize >= 32) { 6105 vmovdqu(Address(base, 0), xtmp); 6106 } else { 6107 movdqu(Address(base, 0), xtmp); 6108 movdqu(Address(base, 16), xtmp); 6109 } 6110 } 6111 addptr(base, 32); 6112 subptr(cnt, 4); 6113 6114 BIND(L_tail); 6115 addptr(cnt, 4); 6116 jccb(Assembler::lessEqual, L_end); 6117 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) { 6118 fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp); 6119 } else { 6120 decrement(cnt); 6121 6122 BIND(L_sloop); 6123 movq(Address(base, 0), xtmp); 6124 addptr(base, 8); 6125 decrement(cnt); 6126 jccb(Assembler::greaterEqual, L_sloop); 6127 } 6128 BIND(L_end); 6129 } 6130 6131 // Clearing constant sized memory using YMM/ZMM registers. 6132 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6133 assert(UseAVX > 2 && VM_Version::supports_avx512vl(), ""); 6134 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0); 6135 6136 int vector64_count = (cnt & (~0x7)) >> 3; 6137 cnt = cnt & 0x7; 6138 const int fill64_per_loop = 4; 6139 const int max_unrolled_fill64 = 8; 6140 6141 // 64 byte initialization loop. 6142 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit); 6143 int start64 = 0; 6144 if (vector64_count > max_unrolled_fill64) { 6145 Label LOOP; 6146 Register index = rtmp; 6147 6148 start64 = vector64_count - (vector64_count % fill64_per_loop); 6149 6150 movl(index, 0); 6151 BIND(LOOP); 6152 for (int i = 0; i < fill64_per_loop; i++) { 6153 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector); 6154 } 6155 addl(index, fill64_per_loop * 64); 6156 cmpl(index, start64 * 64); 6157 jccb(Assembler::less, LOOP); 6158 } 6159 for (int i = start64; i < vector64_count; i++) { 6160 fill64(base, i * 64, xtmp, use64byteVector); 6161 } 6162 6163 // Clear remaining 64 byte tail. 6164 int disp = vector64_count * 64; 6165 if (cnt) { 6166 switch (cnt) { 6167 case 1: 6168 movq(Address(base, disp), xtmp); 6169 break; 6170 case 2: 6171 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit); 6172 break; 6173 case 3: 6174 movl(rtmp, 0x7); 6175 kmovwl(mask, rtmp); 6176 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit); 6177 break; 6178 case 4: 6179 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6180 break; 6181 case 5: 6182 if (use64byteVector) { 6183 movl(rtmp, 0x1F); 6184 kmovwl(mask, rtmp); 6185 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6186 } else { 6187 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6188 movq(Address(base, disp + 32), xtmp); 6189 } 6190 break; 6191 case 6: 6192 if (use64byteVector) { 6193 movl(rtmp, 0x3F); 6194 kmovwl(mask, rtmp); 6195 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6196 } else { 6197 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6198 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit); 6199 } 6200 break; 6201 case 7: 6202 if (use64byteVector) { 6203 movl(rtmp, 0x7F); 6204 kmovwl(mask, rtmp); 6205 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6206 } else { 6207 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6208 movl(rtmp, 0x7); 6209 kmovwl(mask, rtmp); 6210 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit); 6211 } 6212 break; 6213 default: 6214 fatal("Unexpected length : %d\n",cnt); 6215 break; 6216 } 6217 } 6218 } 6219 6220 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, 6221 bool is_large, KRegister mask) { 6222 // cnt - number of qwords (8-byte words). 6223 // base - start address, qword aligned. 6224 // is_large - if optimizers know cnt is larger than InitArrayShortSize 6225 assert(base==rdi, "base register must be edi for rep stos"); 6226 assert(tmp==rax, "tmp register must be eax for rep stos"); 6227 assert(cnt==rcx, "cnt register must be ecx for rep stos"); 6228 assert(InitArrayShortSize % BytesPerLong == 0, 6229 "InitArrayShortSize should be the multiple of BytesPerLong"); 6230 6231 Label DONE; 6232 if (!is_large || !UseXMMForObjInit) { 6233 xorptr(tmp, tmp); 6234 } 6235 6236 if (!is_large) { 6237 Label LOOP, LONG; 6238 cmpptr(cnt, InitArrayShortSize/BytesPerLong); 6239 jccb(Assembler::greater, LONG); 6240 6241 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 6242 6243 decrement(cnt); 6244 jccb(Assembler::negative, DONE); // Zero length 6245 6246 // Use individual pointer-sized stores for small counts: 6247 BIND(LOOP); 6248 movptr(Address(base, cnt, Address::times_ptr), tmp); 6249 decrement(cnt); 6250 jccb(Assembler::greaterEqual, LOOP); 6251 jmpb(DONE); 6252 6253 BIND(LONG); 6254 } 6255 6256 // Use longer rep-prefixed ops for non-small counts: 6257 if (UseFastStosb) { 6258 shlptr(cnt, 3); // convert to number of bytes 6259 rep_stosb(); 6260 } else if (UseXMMForObjInit) { 6261 xmm_clear_mem(base, cnt, tmp, xtmp, mask); 6262 } else { 6263 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 6264 rep_stos(); 6265 } 6266 6267 BIND(DONE); 6268 } 6269 6270 #endif //COMPILER2_OR_JVMCI 6271 6272 6273 void MacroAssembler::generate_fill(BasicType t, bool aligned, 6274 Register to, Register value, Register count, 6275 Register rtmp, XMMRegister xtmp) { 6276 ShortBranchVerifier sbv(this); 6277 assert_different_registers(to, value, count, rtmp); 6278 Label L_exit; 6279 Label L_fill_2_bytes, L_fill_4_bytes; 6280 6281 #if defined(COMPILER2) && defined(_LP64) 6282 if(MaxVectorSize >=32 && 6283 VM_Version::supports_avx512vlbw() && 6284 VM_Version::supports_bmi2()) { 6285 generate_fill_avx3(t, to, value, count, rtmp, xtmp); 6286 return; 6287 } 6288 #endif 6289 6290 int shift = -1; 6291 switch (t) { 6292 case T_BYTE: 6293 shift = 2; 6294 break; 6295 case T_SHORT: 6296 shift = 1; 6297 break; 6298 case T_INT: 6299 shift = 0; 6300 break; 6301 default: ShouldNotReachHere(); 6302 } 6303 6304 if (t == T_BYTE) { 6305 andl(value, 0xff); 6306 movl(rtmp, value); 6307 shll(rtmp, 8); 6308 orl(value, rtmp); 6309 } 6310 if (t == T_SHORT) { 6311 andl(value, 0xffff); 6312 } 6313 if (t == T_BYTE || t == T_SHORT) { 6314 movl(rtmp, value); 6315 shll(rtmp, 16); 6316 orl(value, rtmp); 6317 } 6318 6319 cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element 6320 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp 6321 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) { 6322 Label L_skip_align2; 6323 // align source address at 4 bytes address boundary 6324 if (t == T_BYTE) { 6325 Label L_skip_align1; 6326 // One byte misalignment happens only for byte arrays 6327 testptr(to, 1); 6328 jccb(Assembler::zero, L_skip_align1); 6329 movb(Address(to, 0), value); 6330 increment(to); 6331 decrement(count); 6332 BIND(L_skip_align1); 6333 } 6334 // Two bytes misalignment happens only for byte and short (char) arrays 6335 testptr(to, 2); 6336 jccb(Assembler::zero, L_skip_align2); 6337 movw(Address(to, 0), value); 6338 addptr(to, 2); 6339 subptr(count, 1<<(shift-1)); 6340 BIND(L_skip_align2); 6341 } 6342 if (UseSSE < 2) { 6343 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6344 // Fill 32-byte chunks 6345 subptr(count, 8 << shift); 6346 jcc(Assembler::less, L_check_fill_8_bytes); 6347 align(16); 6348 6349 BIND(L_fill_32_bytes_loop); 6350 6351 for (int i = 0; i < 32; i += 4) { 6352 movl(Address(to, i), value); 6353 } 6354 6355 addptr(to, 32); 6356 subptr(count, 8 << shift); 6357 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6358 BIND(L_check_fill_8_bytes); 6359 addptr(count, 8 << shift); 6360 jccb(Assembler::zero, L_exit); 6361 jmpb(L_fill_8_bytes); 6362 6363 // 6364 // length is too short, just fill qwords 6365 // 6366 BIND(L_fill_8_bytes_loop); 6367 movl(Address(to, 0), value); 6368 movl(Address(to, 4), value); 6369 addptr(to, 8); 6370 BIND(L_fill_8_bytes); 6371 subptr(count, 1 << (shift + 1)); 6372 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6373 // fall through to fill 4 bytes 6374 } else { 6375 Label L_fill_32_bytes; 6376 if (!UseUnalignedLoadStores) { 6377 // align to 8 bytes, we know we are 4 byte aligned to start 6378 testptr(to, 4); 6379 jccb(Assembler::zero, L_fill_32_bytes); 6380 movl(Address(to, 0), value); 6381 addptr(to, 4); 6382 subptr(count, 1<<shift); 6383 } 6384 BIND(L_fill_32_bytes); 6385 { 6386 assert( UseSSE >= 2, "supported cpu only" ); 6387 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6388 movdl(xtmp, value); 6389 if (UseAVX >= 2 && UseUnalignedLoadStores) { 6390 Label L_check_fill_32_bytes; 6391 if (UseAVX > 2) { 6392 // Fill 64-byte chunks 6393 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2; 6394 6395 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2 6396 cmpptr(count, VM_Version::avx3_threshold()); 6397 jccb(Assembler::below, L_check_fill_64_bytes_avx2); 6398 6399 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit); 6400 6401 subptr(count, 16 << shift); 6402 jccb(Assembler::less, L_check_fill_32_bytes); 6403 align(16); 6404 6405 BIND(L_fill_64_bytes_loop_avx3); 6406 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit); 6407 addptr(to, 64); 6408 subptr(count, 16 << shift); 6409 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3); 6410 jmpb(L_check_fill_32_bytes); 6411 6412 BIND(L_check_fill_64_bytes_avx2); 6413 } 6414 // Fill 64-byte chunks 6415 Label L_fill_64_bytes_loop; 6416 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit); 6417 6418 subptr(count, 16 << shift); 6419 jcc(Assembler::less, L_check_fill_32_bytes); 6420 align(16); 6421 6422 BIND(L_fill_64_bytes_loop); 6423 vmovdqu(Address(to, 0), xtmp); 6424 vmovdqu(Address(to, 32), xtmp); 6425 addptr(to, 64); 6426 subptr(count, 16 << shift); 6427 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop); 6428 6429 BIND(L_check_fill_32_bytes); 6430 addptr(count, 8 << shift); 6431 jccb(Assembler::less, L_check_fill_8_bytes); 6432 vmovdqu(Address(to, 0), xtmp); 6433 addptr(to, 32); 6434 subptr(count, 8 << shift); 6435 6436 BIND(L_check_fill_8_bytes); 6437 // clean upper bits of YMM registers 6438 movdl(xtmp, value); 6439 pshufd(xtmp, xtmp, 0); 6440 } else { 6441 // Fill 32-byte chunks 6442 pshufd(xtmp, xtmp, 0); 6443 6444 subptr(count, 8 << shift); 6445 jcc(Assembler::less, L_check_fill_8_bytes); 6446 align(16); 6447 6448 BIND(L_fill_32_bytes_loop); 6449 6450 if (UseUnalignedLoadStores) { 6451 movdqu(Address(to, 0), xtmp); 6452 movdqu(Address(to, 16), xtmp); 6453 } else { 6454 movq(Address(to, 0), xtmp); 6455 movq(Address(to, 8), xtmp); 6456 movq(Address(to, 16), xtmp); 6457 movq(Address(to, 24), xtmp); 6458 } 6459 6460 addptr(to, 32); 6461 subptr(count, 8 << shift); 6462 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6463 6464 BIND(L_check_fill_8_bytes); 6465 } 6466 addptr(count, 8 << shift); 6467 jccb(Assembler::zero, L_exit); 6468 jmpb(L_fill_8_bytes); 6469 6470 // 6471 // length is too short, just fill qwords 6472 // 6473 BIND(L_fill_8_bytes_loop); 6474 movq(Address(to, 0), xtmp); 6475 addptr(to, 8); 6476 BIND(L_fill_8_bytes); 6477 subptr(count, 1 << (shift + 1)); 6478 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6479 } 6480 } 6481 // fill trailing 4 bytes 6482 BIND(L_fill_4_bytes); 6483 testl(count, 1<<shift); 6484 jccb(Assembler::zero, L_fill_2_bytes); 6485 movl(Address(to, 0), value); 6486 if (t == T_BYTE || t == T_SHORT) { 6487 Label L_fill_byte; 6488 addptr(to, 4); 6489 BIND(L_fill_2_bytes); 6490 // fill trailing 2 bytes 6491 testl(count, 1<<(shift-1)); 6492 jccb(Assembler::zero, L_fill_byte); 6493 movw(Address(to, 0), value); 6494 if (t == T_BYTE) { 6495 addptr(to, 2); 6496 BIND(L_fill_byte); 6497 // fill trailing byte 6498 testl(count, 1); 6499 jccb(Assembler::zero, L_exit); 6500 movb(Address(to, 0), value); 6501 } else { 6502 BIND(L_fill_byte); 6503 } 6504 } else { 6505 BIND(L_fill_2_bytes); 6506 } 6507 BIND(L_exit); 6508 } 6509 6510 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) { 6511 switch(type) { 6512 case T_BYTE: 6513 case T_BOOLEAN: 6514 evpbroadcastb(dst, src, vector_len); 6515 break; 6516 case T_SHORT: 6517 case T_CHAR: 6518 evpbroadcastw(dst, src, vector_len); 6519 break; 6520 case T_INT: 6521 case T_FLOAT: 6522 evpbroadcastd(dst, src, vector_len); 6523 break; 6524 case T_LONG: 6525 case T_DOUBLE: 6526 evpbroadcastq(dst, src, vector_len); 6527 break; 6528 default: 6529 fatal("Unhandled type : %s", type2name(type)); 6530 break; 6531 } 6532 } 6533 6534 // encode char[] to byte[] in ISO_8859_1 or ASCII 6535 //@IntrinsicCandidate 6536 //private static int implEncodeISOArray(byte[] sa, int sp, 6537 //byte[] da, int dp, int len) { 6538 // int i = 0; 6539 // for (; i < len; i++) { 6540 // char c = StringUTF16.getChar(sa, sp++); 6541 // if (c > '\u00FF') 6542 // break; 6543 // da[dp++] = (byte)c; 6544 // } 6545 // return i; 6546 //} 6547 // 6548 //@IntrinsicCandidate 6549 //private static int implEncodeAsciiArray(char[] sa, int sp, 6550 // byte[] da, int dp, int len) { 6551 // int i = 0; 6552 // for (; i < len; i++) { 6553 // char c = sa[sp++]; 6554 // if (c >= '\u0080') 6555 // break; 6556 // da[dp++] = (byte)c; 6557 // } 6558 // return i; 6559 //} 6560 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, 6561 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 6562 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 6563 Register tmp5, Register result, bool ascii) { 6564 6565 // rsi: src 6566 // rdi: dst 6567 // rdx: len 6568 // rcx: tmp5 6569 // rax: result 6570 ShortBranchVerifier sbv(this); 6571 assert_different_registers(src, dst, len, tmp5, result); 6572 Label L_done, L_copy_1_char, L_copy_1_char_exit; 6573 6574 int mask = ascii ? 0xff80ff80 : 0xff00ff00; 6575 int short_mask = ascii ? 0xff80 : 0xff00; 6576 6577 // set result 6578 xorl(result, result); 6579 // check for zero length 6580 testl(len, len); 6581 jcc(Assembler::zero, L_done); 6582 6583 movl(result, len); 6584 6585 // Setup pointers 6586 lea(src, Address(src, len, Address::times_2)); // char[] 6587 lea(dst, Address(dst, len, Address::times_1)); // byte[] 6588 negptr(len); 6589 6590 if (UseSSE42Intrinsics || UseAVX >= 2) { 6591 Label L_copy_8_chars, L_copy_8_chars_exit; 6592 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit; 6593 6594 if (UseAVX >= 2) { 6595 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit; 6596 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6597 movdl(tmp1Reg, tmp5); 6598 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit); 6599 jmp(L_chars_32_check); 6600 6601 bind(L_copy_32_chars); 6602 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64)); 6603 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32)); 6604 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6605 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6606 jccb(Assembler::notZero, L_copy_32_chars_exit); 6607 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6608 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1); 6609 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg); 6610 6611 bind(L_chars_32_check); 6612 addptr(len, 32); 6613 jcc(Assembler::lessEqual, L_copy_32_chars); 6614 6615 bind(L_copy_32_chars_exit); 6616 subptr(len, 16); 6617 jccb(Assembler::greater, L_copy_16_chars_exit); 6618 6619 } else if (UseSSE42Intrinsics) { 6620 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6621 movdl(tmp1Reg, tmp5); 6622 pshufd(tmp1Reg, tmp1Reg, 0); 6623 jmpb(L_chars_16_check); 6624 } 6625 6626 bind(L_copy_16_chars); 6627 if (UseAVX >= 2) { 6628 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32)); 6629 vptest(tmp2Reg, tmp1Reg); 6630 jcc(Assembler::notZero, L_copy_16_chars_exit); 6631 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1); 6632 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1); 6633 } else { 6634 if (UseAVX > 0) { 6635 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6636 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6637 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0); 6638 } else { 6639 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6640 por(tmp2Reg, tmp3Reg); 6641 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6642 por(tmp2Reg, tmp4Reg); 6643 } 6644 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6645 jccb(Assembler::notZero, L_copy_16_chars_exit); 6646 packuswb(tmp3Reg, tmp4Reg); 6647 } 6648 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg); 6649 6650 bind(L_chars_16_check); 6651 addptr(len, 16); 6652 jcc(Assembler::lessEqual, L_copy_16_chars); 6653 6654 bind(L_copy_16_chars_exit); 6655 if (UseAVX >= 2) { 6656 // clean upper bits of YMM registers 6657 vpxor(tmp2Reg, tmp2Reg); 6658 vpxor(tmp3Reg, tmp3Reg); 6659 vpxor(tmp4Reg, tmp4Reg); 6660 movdl(tmp1Reg, tmp5); 6661 pshufd(tmp1Reg, tmp1Reg, 0); 6662 } 6663 subptr(len, 8); 6664 jccb(Assembler::greater, L_copy_8_chars_exit); 6665 6666 bind(L_copy_8_chars); 6667 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16)); 6668 ptest(tmp3Reg, tmp1Reg); 6669 jccb(Assembler::notZero, L_copy_8_chars_exit); 6670 packuswb(tmp3Reg, tmp1Reg); 6671 movq(Address(dst, len, Address::times_1, -8), tmp3Reg); 6672 addptr(len, 8); 6673 jccb(Assembler::lessEqual, L_copy_8_chars); 6674 6675 bind(L_copy_8_chars_exit); 6676 subptr(len, 8); 6677 jccb(Assembler::zero, L_done); 6678 } 6679 6680 bind(L_copy_1_char); 6681 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0)); 6682 testl(tmp5, short_mask); // check if Unicode or non-ASCII char 6683 jccb(Assembler::notZero, L_copy_1_char_exit); 6684 movb(Address(dst, len, Address::times_1, 0), tmp5); 6685 addptr(len, 1); 6686 jccb(Assembler::less, L_copy_1_char); 6687 6688 bind(L_copy_1_char_exit); 6689 addptr(result, len); // len is negative count of not processed elements 6690 6691 bind(L_done); 6692 } 6693 6694 #ifdef _LP64 6695 /** 6696 * Helper for multiply_to_len(). 6697 */ 6698 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 6699 addq(dest_lo, src1); 6700 adcq(dest_hi, 0); 6701 addq(dest_lo, src2); 6702 adcq(dest_hi, 0); 6703 } 6704 6705 /** 6706 * Multiply 64 bit by 64 bit first loop. 6707 */ 6708 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 6709 Register y, Register y_idx, Register z, 6710 Register carry, Register product, 6711 Register idx, Register kdx) { 6712 // 6713 // jlong carry, x[], y[], z[]; 6714 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 6715 // huge_128 product = y[idx] * x[xstart] + carry; 6716 // z[kdx] = (jlong)product; 6717 // carry = (jlong)(product >>> 64); 6718 // } 6719 // z[xstart] = carry; 6720 // 6721 6722 Label L_first_loop, L_first_loop_exit; 6723 Label L_one_x, L_one_y, L_multiply; 6724 6725 decrementl(xstart); 6726 jcc(Assembler::negative, L_one_x); 6727 6728 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 6729 rorq(x_xstart, 32); // convert big-endian to little-endian 6730 6731 bind(L_first_loop); 6732 decrementl(idx); 6733 jcc(Assembler::negative, L_first_loop_exit); 6734 decrementl(idx); 6735 jcc(Assembler::negative, L_one_y); 6736 movq(y_idx, Address(y, idx, Address::times_4, 0)); 6737 rorq(y_idx, 32); // convert big-endian to little-endian 6738 bind(L_multiply); 6739 movq(product, x_xstart); 6740 mulq(y_idx); // product(rax) * y_idx -> rdx:rax 6741 addq(product, carry); 6742 adcq(rdx, 0); 6743 subl(kdx, 2); 6744 movl(Address(z, kdx, Address::times_4, 4), product); 6745 shrq(product, 32); 6746 movl(Address(z, kdx, Address::times_4, 0), product); 6747 movq(carry, rdx); 6748 jmp(L_first_loop); 6749 6750 bind(L_one_y); 6751 movl(y_idx, Address(y, 0)); 6752 jmp(L_multiply); 6753 6754 bind(L_one_x); 6755 movl(x_xstart, Address(x, 0)); 6756 jmp(L_first_loop); 6757 6758 bind(L_first_loop_exit); 6759 } 6760 6761 /** 6762 * Multiply 64 bit by 64 bit and add 128 bit. 6763 */ 6764 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, 6765 Register yz_idx, Register idx, 6766 Register carry, Register product, int offset) { 6767 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; 6768 // z[kdx] = (jlong)product; 6769 6770 movq(yz_idx, Address(y, idx, Address::times_4, offset)); 6771 rorq(yz_idx, 32); // convert big-endian to little-endian 6772 movq(product, x_xstart); 6773 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 6774 movq(yz_idx, Address(z, idx, Address::times_4, offset)); 6775 rorq(yz_idx, 32); // convert big-endian to little-endian 6776 6777 add2_with_carry(rdx, product, carry, yz_idx); 6778 6779 movl(Address(z, idx, Address::times_4, offset+4), product); 6780 shrq(product, 32); 6781 movl(Address(z, idx, Address::times_4, offset), product); 6782 6783 } 6784 6785 /** 6786 * Multiply 128 bit by 128 bit. Unrolled inner loop. 6787 */ 6788 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 6789 Register yz_idx, Register idx, Register jdx, 6790 Register carry, Register product, 6791 Register carry2) { 6792 // jlong carry, x[], y[], z[]; 6793 // int kdx = ystart+1; 6794 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 6795 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; 6796 // z[kdx+idx+1] = (jlong)product; 6797 // jlong carry2 = (jlong)(product >>> 64); 6798 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; 6799 // z[kdx+idx] = (jlong)product; 6800 // carry = (jlong)(product >>> 64); 6801 // } 6802 // idx += 2; 6803 // if (idx > 0) { 6804 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; 6805 // z[kdx+idx] = (jlong)product; 6806 // carry = (jlong)(product >>> 64); 6807 // } 6808 // 6809 6810 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 6811 6812 movl(jdx, idx); 6813 andl(jdx, 0xFFFFFFFC); 6814 shrl(jdx, 2); 6815 6816 bind(L_third_loop); 6817 subl(jdx, 1); 6818 jcc(Assembler::negative, L_third_loop_exit); 6819 subl(idx, 4); 6820 6821 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8); 6822 movq(carry2, rdx); 6823 6824 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0); 6825 movq(carry, rdx); 6826 jmp(L_third_loop); 6827 6828 bind (L_third_loop_exit); 6829 6830 andl (idx, 0x3); 6831 jcc(Assembler::zero, L_post_third_loop_done); 6832 6833 Label L_check_1; 6834 subl(idx, 2); 6835 jcc(Assembler::negative, L_check_1); 6836 6837 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0); 6838 movq(carry, rdx); 6839 6840 bind (L_check_1); 6841 addl (idx, 0x2); 6842 andl (idx, 0x1); 6843 subl(idx, 1); 6844 jcc(Assembler::negative, L_post_third_loop_done); 6845 6846 movl(yz_idx, Address(y, idx, Address::times_4, 0)); 6847 movq(product, x_xstart); 6848 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 6849 movl(yz_idx, Address(z, idx, Address::times_4, 0)); 6850 6851 add2_with_carry(rdx, product, yz_idx, carry); 6852 6853 movl(Address(z, idx, Address::times_4, 0), product); 6854 shrq(product, 32); 6855 6856 shlq(rdx, 32); 6857 orq(product, rdx); 6858 movq(carry, product); 6859 6860 bind(L_post_third_loop_done); 6861 } 6862 6863 /** 6864 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop. 6865 * 6866 */ 6867 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z, 6868 Register carry, Register carry2, 6869 Register idx, Register jdx, 6870 Register yz_idx1, Register yz_idx2, 6871 Register tmp, Register tmp3, Register tmp4) { 6872 assert(UseBMI2Instructions, "should be used only when BMI2 is available"); 6873 6874 // jlong carry, x[], y[], z[]; 6875 // int kdx = ystart+1; 6876 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 6877 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry; 6878 // jlong carry2 = (jlong)(tmp3 >>> 64); 6879 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2; 6880 // carry = (jlong)(tmp4 >>> 64); 6881 // z[kdx+idx+1] = (jlong)tmp3; 6882 // z[kdx+idx] = (jlong)tmp4; 6883 // } 6884 // idx += 2; 6885 // if (idx > 0) { 6886 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry; 6887 // z[kdx+idx] = (jlong)yz_idx1; 6888 // carry = (jlong)(yz_idx1 >>> 64); 6889 // } 6890 // 6891 6892 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 6893 6894 movl(jdx, idx); 6895 andl(jdx, 0xFFFFFFFC); 6896 shrl(jdx, 2); 6897 6898 bind(L_third_loop); 6899 subl(jdx, 1); 6900 jcc(Assembler::negative, L_third_loop_exit); 6901 subl(idx, 4); 6902 6903 movq(yz_idx1, Address(y, idx, Address::times_4, 8)); 6904 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 6905 movq(yz_idx2, Address(y, idx, Address::times_4, 0)); 6906 rorxq(yz_idx2, yz_idx2, 32); 6907 6908 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 6909 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp 6910 6911 movq(yz_idx1, Address(z, idx, Address::times_4, 8)); 6912 rorxq(yz_idx1, yz_idx1, 32); 6913 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 6914 rorxq(yz_idx2, yz_idx2, 32); 6915 6916 if (VM_Version::supports_adx()) { 6917 adcxq(tmp3, carry); 6918 adoxq(tmp3, yz_idx1); 6919 6920 adcxq(tmp4, tmp); 6921 adoxq(tmp4, yz_idx2); 6922 6923 movl(carry, 0); // does not affect flags 6924 adcxq(carry2, carry); 6925 adoxq(carry2, carry); 6926 } else { 6927 add2_with_carry(tmp4, tmp3, carry, yz_idx1); 6928 add2_with_carry(carry2, tmp4, tmp, yz_idx2); 6929 } 6930 movq(carry, carry2); 6931 6932 movl(Address(z, idx, Address::times_4, 12), tmp3); 6933 shrq(tmp3, 32); 6934 movl(Address(z, idx, Address::times_4, 8), tmp3); 6935 6936 movl(Address(z, idx, Address::times_4, 4), tmp4); 6937 shrq(tmp4, 32); 6938 movl(Address(z, idx, Address::times_4, 0), tmp4); 6939 6940 jmp(L_third_loop); 6941 6942 bind (L_third_loop_exit); 6943 6944 andl (idx, 0x3); 6945 jcc(Assembler::zero, L_post_third_loop_done); 6946 6947 Label L_check_1; 6948 subl(idx, 2); 6949 jcc(Assembler::negative, L_check_1); 6950 6951 movq(yz_idx1, Address(y, idx, Address::times_4, 0)); 6952 rorxq(yz_idx1, yz_idx1, 32); 6953 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 6954 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 6955 rorxq(yz_idx2, yz_idx2, 32); 6956 6957 add2_with_carry(tmp4, tmp3, carry, yz_idx2); 6958 6959 movl(Address(z, idx, Address::times_4, 4), tmp3); 6960 shrq(tmp3, 32); 6961 movl(Address(z, idx, Address::times_4, 0), tmp3); 6962 movq(carry, tmp4); 6963 6964 bind (L_check_1); 6965 addl (idx, 0x2); 6966 andl (idx, 0x1); 6967 subl(idx, 1); 6968 jcc(Assembler::negative, L_post_third_loop_done); 6969 movl(tmp4, Address(y, idx, Address::times_4, 0)); 6970 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3 6971 movl(tmp4, Address(z, idx, Address::times_4, 0)); 6972 6973 add2_with_carry(carry2, tmp3, tmp4, carry); 6974 6975 movl(Address(z, idx, Address::times_4, 0), tmp3); 6976 shrq(tmp3, 32); 6977 6978 shlq(carry2, 32); 6979 orq(tmp3, carry2); 6980 movq(carry, tmp3); 6981 6982 bind(L_post_third_loop_done); 6983 } 6984 6985 /** 6986 * Code for BigInteger::multiplyToLen() intrinsic. 6987 * 6988 * rdi: x 6989 * rax: xlen 6990 * rsi: y 6991 * rcx: ylen 6992 * r8: z 6993 * r11: tmp0 6994 * r12: tmp1 6995 * r13: tmp2 6996 * r14: tmp3 6997 * r15: tmp4 6998 * rbx: tmp5 6999 * 7000 */ 7001 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0, 7002 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) { 7003 ShortBranchVerifier sbv(this); 7004 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx); 7005 7006 push(tmp0); 7007 push(tmp1); 7008 push(tmp2); 7009 push(tmp3); 7010 push(tmp4); 7011 push(tmp5); 7012 7013 push(xlen); 7014 7015 const Register idx = tmp1; 7016 const Register kdx = tmp2; 7017 const Register xstart = tmp3; 7018 7019 const Register y_idx = tmp4; 7020 const Register carry = tmp5; 7021 const Register product = xlen; 7022 const Register x_xstart = tmp0; 7023 7024 // First Loop. 7025 // 7026 // final static long LONG_MASK = 0xffffffffL; 7027 // int xstart = xlen - 1; 7028 // int ystart = ylen - 1; 7029 // long carry = 0; 7030 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 7031 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 7032 // z[kdx] = (int)product; 7033 // carry = product >>> 32; 7034 // } 7035 // z[xstart] = (int)carry; 7036 // 7037 7038 movl(idx, ylen); // idx = ylen; 7039 lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen; 7040 xorq(carry, carry); // carry = 0; 7041 7042 Label L_done; 7043 7044 movl(xstart, xlen); 7045 decrementl(xstart); 7046 jcc(Assembler::negative, L_done); 7047 7048 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 7049 7050 Label L_second_loop; 7051 testl(kdx, kdx); 7052 jcc(Assembler::zero, L_second_loop); 7053 7054 Label L_carry; 7055 subl(kdx, 1); 7056 jcc(Assembler::zero, L_carry); 7057 7058 movl(Address(z, kdx, Address::times_4, 0), carry); 7059 shrq(carry, 32); 7060 subl(kdx, 1); 7061 7062 bind(L_carry); 7063 movl(Address(z, kdx, Address::times_4, 0), carry); 7064 7065 // Second and third (nested) loops. 7066 // 7067 // for (int i = xstart-1; i >= 0; i--) { // Second loop 7068 // carry = 0; 7069 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 7070 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 7071 // (z[k] & LONG_MASK) + carry; 7072 // z[k] = (int)product; 7073 // carry = product >>> 32; 7074 // } 7075 // z[i] = (int)carry; 7076 // } 7077 // 7078 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx 7079 7080 const Register jdx = tmp1; 7081 7082 bind(L_second_loop); 7083 xorl(carry, carry); // carry = 0; 7084 movl(jdx, ylen); // j = ystart+1 7085 7086 subl(xstart, 1); // i = xstart-1; 7087 jcc(Assembler::negative, L_done); 7088 7089 push (z); 7090 7091 Label L_last_x; 7092 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j 7093 subl(xstart, 1); // i = xstart-1; 7094 jcc(Assembler::negative, L_last_x); 7095 7096 if (UseBMI2Instructions) { 7097 movq(rdx, Address(x, xstart, Address::times_4, 0)); 7098 rorxq(rdx, rdx, 32); // convert big-endian to little-endian 7099 } else { 7100 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7101 rorq(x_xstart, 32); // convert big-endian to little-endian 7102 } 7103 7104 Label L_third_loop_prologue; 7105 bind(L_third_loop_prologue); 7106 7107 push (x); 7108 push (xstart); 7109 push (ylen); 7110 7111 7112 if (UseBMI2Instructions) { 7113 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4); 7114 } else { // !UseBMI2Instructions 7115 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x); 7116 } 7117 7118 pop(ylen); 7119 pop(xlen); 7120 pop(x); 7121 pop(z); 7122 7123 movl(tmp3, xlen); 7124 addl(tmp3, 1); 7125 movl(Address(z, tmp3, Address::times_4, 0), carry); 7126 subl(tmp3, 1); 7127 jccb(Assembler::negative, L_done); 7128 7129 shrq(carry, 32); 7130 movl(Address(z, tmp3, Address::times_4, 0), carry); 7131 jmp(L_second_loop); 7132 7133 // Next infrequent code is moved outside loops. 7134 bind(L_last_x); 7135 if (UseBMI2Instructions) { 7136 movl(rdx, Address(x, 0)); 7137 } else { 7138 movl(x_xstart, Address(x, 0)); 7139 } 7140 jmp(L_third_loop_prologue); 7141 7142 bind(L_done); 7143 7144 pop(xlen); 7145 7146 pop(tmp5); 7147 pop(tmp4); 7148 pop(tmp3); 7149 pop(tmp2); 7150 pop(tmp1); 7151 pop(tmp0); 7152 } 7153 7154 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 7155 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){ 7156 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled."); 7157 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP; 7158 Label VECTOR8_TAIL, VECTOR4_TAIL; 7159 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL; 7160 Label SAME_TILL_END, DONE; 7161 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL; 7162 7163 //scale is in rcx in both Win64 and Unix 7164 ShortBranchVerifier sbv(this); 7165 7166 shlq(length); 7167 xorq(result, result); 7168 7169 if ((AVX3Threshold == 0) && (UseAVX > 2) && 7170 VM_Version::supports_avx512vlbw()) { 7171 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL; 7172 7173 cmpq(length, 64); 7174 jcc(Assembler::less, VECTOR32_TAIL); 7175 7176 movq(tmp1, length); 7177 andq(tmp1, 0x3F); // tail count 7178 andq(length, ~(0x3F)); //vector count 7179 7180 bind(VECTOR64_LOOP); 7181 // AVX512 code to compare 64 byte vectors. 7182 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit); 7183 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit); 7184 kortestql(k7, k7); 7185 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch 7186 addq(result, 64); 7187 subq(length, 64); 7188 jccb(Assembler::notZero, VECTOR64_LOOP); 7189 7190 //bind(VECTOR64_TAIL); 7191 testq(tmp1, tmp1); 7192 jcc(Assembler::zero, SAME_TILL_END); 7193 7194 //bind(VECTOR64_TAIL); 7195 // AVX512 code to compare up to 63 byte vectors. 7196 mov64(tmp2, 0xFFFFFFFFFFFFFFFF); 7197 shlxq(tmp2, tmp2, tmp1); 7198 notq(tmp2); 7199 kmovql(k3, tmp2); 7200 7201 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit); 7202 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit); 7203 7204 ktestql(k7, k3); 7205 jcc(Assembler::below, SAME_TILL_END); // not mismatch 7206 7207 bind(VECTOR64_NOT_EQUAL); 7208 kmovql(tmp1, k7); 7209 notq(tmp1); 7210 tzcntq(tmp1, tmp1); 7211 addq(result, tmp1); 7212 shrq(result); 7213 jmp(DONE); 7214 bind(VECTOR32_TAIL); 7215 } 7216 7217 cmpq(length, 8); 7218 jcc(Assembler::equal, VECTOR8_LOOP); 7219 jcc(Assembler::less, VECTOR4_TAIL); 7220 7221 if (UseAVX >= 2) { 7222 Label VECTOR16_TAIL, VECTOR32_LOOP; 7223 7224 cmpq(length, 16); 7225 jcc(Assembler::equal, VECTOR16_LOOP); 7226 jcc(Assembler::less, VECTOR8_LOOP); 7227 7228 cmpq(length, 32); 7229 jccb(Assembler::less, VECTOR16_TAIL); 7230 7231 subq(length, 32); 7232 bind(VECTOR32_LOOP); 7233 vmovdqu(rymm0, Address(obja, result)); 7234 vmovdqu(rymm1, Address(objb, result)); 7235 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit); 7236 vptest(rymm2, rymm2); 7237 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found 7238 addq(result, 32); 7239 subq(length, 32); 7240 jcc(Assembler::greaterEqual, VECTOR32_LOOP); 7241 addq(length, 32); 7242 jcc(Assembler::equal, SAME_TILL_END); 7243 //falling through if less than 32 bytes left //close the branch here. 7244 7245 bind(VECTOR16_TAIL); 7246 cmpq(length, 16); 7247 jccb(Assembler::less, VECTOR8_TAIL); 7248 bind(VECTOR16_LOOP); 7249 movdqu(rymm0, Address(obja, result)); 7250 movdqu(rymm1, Address(objb, result)); 7251 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit); 7252 ptest(rymm2, rymm2); 7253 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7254 addq(result, 16); 7255 subq(length, 16); 7256 jcc(Assembler::equal, SAME_TILL_END); 7257 //falling through if less than 16 bytes left 7258 } else {//regular intrinsics 7259 7260 cmpq(length, 16); 7261 jccb(Assembler::less, VECTOR8_TAIL); 7262 7263 subq(length, 16); 7264 bind(VECTOR16_LOOP); 7265 movdqu(rymm0, Address(obja, result)); 7266 movdqu(rymm1, Address(objb, result)); 7267 pxor(rymm0, rymm1); 7268 ptest(rymm0, rymm0); 7269 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7270 addq(result, 16); 7271 subq(length, 16); 7272 jccb(Assembler::greaterEqual, VECTOR16_LOOP); 7273 addq(length, 16); 7274 jcc(Assembler::equal, SAME_TILL_END); 7275 //falling through if less than 16 bytes left 7276 } 7277 7278 bind(VECTOR8_TAIL); 7279 cmpq(length, 8); 7280 jccb(Assembler::less, VECTOR4_TAIL); 7281 bind(VECTOR8_LOOP); 7282 movq(tmp1, Address(obja, result)); 7283 movq(tmp2, Address(objb, result)); 7284 xorq(tmp1, tmp2); 7285 testq(tmp1, tmp1); 7286 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found 7287 addq(result, 8); 7288 subq(length, 8); 7289 jcc(Assembler::equal, SAME_TILL_END); 7290 //falling through if less than 8 bytes left 7291 7292 bind(VECTOR4_TAIL); 7293 cmpq(length, 4); 7294 jccb(Assembler::less, BYTES_TAIL); 7295 bind(VECTOR4_LOOP); 7296 movl(tmp1, Address(obja, result)); 7297 xorl(tmp1, Address(objb, result)); 7298 testl(tmp1, tmp1); 7299 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found 7300 addq(result, 4); 7301 subq(length, 4); 7302 jcc(Assembler::equal, SAME_TILL_END); 7303 //falling through if less than 4 bytes left 7304 7305 bind(BYTES_TAIL); 7306 bind(BYTES_LOOP); 7307 load_unsigned_byte(tmp1, Address(obja, result)); 7308 load_unsigned_byte(tmp2, Address(objb, result)); 7309 xorl(tmp1, tmp2); 7310 testl(tmp1, tmp1); 7311 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7312 decq(length); 7313 jcc(Assembler::zero, SAME_TILL_END); 7314 incq(result); 7315 load_unsigned_byte(tmp1, Address(obja, result)); 7316 load_unsigned_byte(tmp2, Address(objb, result)); 7317 xorl(tmp1, tmp2); 7318 testl(tmp1, tmp1); 7319 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7320 decq(length); 7321 jcc(Assembler::zero, SAME_TILL_END); 7322 incq(result); 7323 load_unsigned_byte(tmp1, Address(obja, result)); 7324 load_unsigned_byte(tmp2, Address(objb, result)); 7325 xorl(tmp1, tmp2); 7326 testl(tmp1, tmp1); 7327 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7328 jmp(SAME_TILL_END); 7329 7330 if (UseAVX >= 2) { 7331 bind(VECTOR32_NOT_EQUAL); 7332 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit); 7333 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit); 7334 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit); 7335 vpmovmskb(tmp1, rymm0); 7336 bsfq(tmp1, tmp1); 7337 addq(result, tmp1); 7338 shrq(result); 7339 jmp(DONE); 7340 } 7341 7342 bind(VECTOR16_NOT_EQUAL); 7343 if (UseAVX >= 2) { 7344 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit); 7345 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit); 7346 pxor(rymm0, rymm2); 7347 } else { 7348 pcmpeqb(rymm2, rymm2); 7349 pxor(rymm0, rymm1); 7350 pcmpeqb(rymm0, rymm1); 7351 pxor(rymm0, rymm2); 7352 } 7353 pmovmskb(tmp1, rymm0); 7354 bsfq(tmp1, tmp1); 7355 addq(result, tmp1); 7356 shrq(result); 7357 jmpb(DONE); 7358 7359 bind(VECTOR8_NOT_EQUAL); 7360 bind(VECTOR4_NOT_EQUAL); 7361 bsfq(tmp1, tmp1); 7362 shrq(tmp1, 3); 7363 addq(result, tmp1); 7364 bind(BYTES_NOT_EQUAL); 7365 shrq(result); 7366 jmpb(DONE); 7367 7368 bind(SAME_TILL_END); 7369 mov64(result, -1); 7370 7371 bind(DONE); 7372 } 7373 7374 //Helper functions for square_to_len() 7375 7376 /** 7377 * Store the squares of x[], right shifted one bit (divided by 2) into z[] 7378 * Preserves x and z and modifies rest of the registers. 7379 */ 7380 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7381 // Perform square and right shift by 1 7382 // Handle odd xlen case first, then for even xlen do the following 7383 // jlong carry = 0; 7384 // for (int j=0, i=0; j < xlen; j+=2, i+=4) { 7385 // huge_128 product = x[j:j+1] * x[j:j+1]; 7386 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65); 7387 // z[i+2:i+3] = (jlong)(product >>> 1); 7388 // carry = (jlong)product; 7389 // } 7390 7391 xorq(tmp5, tmp5); // carry 7392 xorq(rdxReg, rdxReg); 7393 xorl(tmp1, tmp1); // index for x 7394 xorl(tmp4, tmp4); // index for z 7395 7396 Label L_first_loop, L_first_loop_exit; 7397 7398 testl(xlen, 1); 7399 jccb(Assembler::zero, L_first_loop); //jump if xlen is even 7400 7401 // Square and right shift by 1 the odd element using 32 bit multiply 7402 movl(raxReg, Address(x, tmp1, Address::times_4, 0)); 7403 imulq(raxReg, raxReg); 7404 shrq(raxReg, 1); 7405 adcq(tmp5, 0); 7406 movq(Address(z, tmp4, Address::times_4, 0), raxReg); 7407 incrementl(tmp1); 7408 addl(tmp4, 2); 7409 7410 // Square and right shift by 1 the rest using 64 bit multiply 7411 bind(L_first_loop); 7412 cmpptr(tmp1, xlen); 7413 jccb(Assembler::equal, L_first_loop_exit); 7414 7415 // Square 7416 movq(raxReg, Address(x, tmp1, Address::times_4, 0)); 7417 rorq(raxReg, 32); // convert big-endian to little-endian 7418 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax 7419 7420 // Right shift by 1 and save carry 7421 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1 7422 rcrq(rdxReg, 1); 7423 rcrq(raxReg, 1); 7424 adcq(tmp5, 0); 7425 7426 // Store result in z 7427 movq(Address(z, tmp4, Address::times_4, 0), rdxReg); 7428 movq(Address(z, tmp4, Address::times_4, 8), raxReg); 7429 7430 // Update indices for x and z 7431 addl(tmp1, 2); 7432 addl(tmp4, 4); 7433 jmp(L_first_loop); 7434 7435 bind(L_first_loop_exit); 7436 } 7437 7438 7439 /** 7440 * Perform the following multiply add operation using BMI2 instructions 7441 * carry:sum = sum + op1*op2 + carry 7442 * op2 should be in rdx 7443 * op2 is preserved, all other registers are modified 7444 */ 7445 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) { 7446 // assert op2 is rdx 7447 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1 7448 addq(sum, carry); 7449 adcq(tmp2, 0); 7450 addq(sum, op1); 7451 adcq(tmp2, 0); 7452 movq(carry, tmp2); 7453 } 7454 7455 /** 7456 * Perform the following multiply add operation: 7457 * carry:sum = sum + op1*op2 + carry 7458 * Preserves op1, op2 and modifies rest of registers 7459 */ 7460 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) { 7461 // rdx:rax = op1 * op2 7462 movq(raxReg, op2); 7463 mulq(op1); 7464 7465 // rdx:rax = sum + carry + rdx:rax 7466 addq(sum, carry); 7467 adcq(rdxReg, 0); 7468 addq(sum, raxReg); 7469 adcq(rdxReg, 0); 7470 7471 // carry:sum = rdx:sum 7472 movq(carry, rdxReg); 7473 } 7474 7475 /** 7476 * Add 64 bit long carry into z[] with carry propagation. 7477 * Preserves z and carry register values and modifies rest of registers. 7478 * 7479 */ 7480 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) { 7481 Label L_fourth_loop, L_fourth_loop_exit; 7482 7483 movl(tmp1, 1); 7484 subl(zlen, 2); 7485 addq(Address(z, zlen, Address::times_4, 0), carry); 7486 7487 bind(L_fourth_loop); 7488 jccb(Assembler::carryClear, L_fourth_loop_exit); 7489 subl(zlen, 2); 7490 jccb(Assembler::negative, L_fourth_loop_exit); 7491 addq(Address(z, zlen, Address::times_4, 0), tmp1); 7492 jmp(L_fourth_loop); 7493 bind(L_fourth_loop_exit); 7494 } 7495 7496 /** 7497 * Shift z[] left by 1 bit. 7498 * Preserves x, len, z and zlen registers and modifies rest of the registers. 7499 * 7500 */ 7501 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { 7502 7503 Label L_fifth_loop, L_fifth_loop_exit; 7504 7505 // Fifth loop 7506 // Perform primitiveLeftShift(z, zlen, 1) 7507 7508 const Register prev_carry = tmp1; 7509 const Register new_carry = tmp4; 7510 const Register value = tmp2; 7511 const Register zidx = tmp3; 7512 7513 // int zidx, carry; 7514 // long value; 7515 // carry = 0; 7516 // for (zidx = zlen-2; zidx >=0; zidx -= 2) { 7517 // (carry:value) = (z[i] << 1) | carry ; 7518 // z[i] = value; 7519 // } 7520 7521 movl(zidx, zlen); 7522 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register 7523 7524 bind(L_fifth_loop); 7525 decl(zidx); // Use decl to preserve carry flag 7526 decl(zidx); 7527 jccb(Assembler::negative, L_fifth_loop_exit); 7528 7529 if (UseBMI2Instructions) { 7530 movq(value, Address(z, zidx, Address::times_4, 0)); 7531 rclq(value, 1); 7532 rorxq(value, value, 32); 7533 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7534 } 7535 else { 7536 // clear new_carry 7537 xorl(new_carry, new_carry); 7538 7539 // Shift z[i] by 1, or in previous carry and save new carry 7540 movq(value, Address(z, zidx, Address::times_4, 0)); 7541 shlq(value, 1); 7542 adcl(new_carry, 0); 7543 7544 orq(value, prev_carry); 7545 rorq(value, 0x20); 7546 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7547 7548 // Set previous carry = new carry 7549 movl(prev_carry, new_carry); 7550 } 7551 jmp(L_fifth_loop); 7552 7553 bind(L_fifth_loop_exit); 7554 } 7555 7556 7557 /** 7558 * Code for BigInteger::squareToLen() intrinsic 7559 * 7560 * rdi: x 7561 * rsi: len 7562 * r8: z 7563 * rcx: zlen 7564 * r12: tmp1 7565 * r13: tmp2 7566 * r14: tmp3 7567 * r15: tmp4 7568 * rbx: tmp5 7569 * 7570 */ 7571 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7572 7573 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply; 7574 push(tmp1); 7575 push(tmp2); 7576 push(tmp3); 7577 push(tmp4); 7578 push(tmp5); 7579 7580 // First loop 7581 // Store the squares, right shifted one bit (i.e., divided by 2). 7582 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg); 7583 7584 // Add in off-diagonal sums. 7585 // 7586 // Second, third (nested) and fourth loops. 7587 // zlen +=2; 7588 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) { 7589 // carry = 0; 7590 // long op2 = x[xidx:xidx+1]; 7591 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) { 7592 // k -= 2; 7593 // long op1 = x[j:j+1]; 7594 // long sum = z[k:k+1]; 7595 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs); 7596 // z[k:k+1] = sum; 7597 // } 7598 // add_one_64(z, k, carry, tmp_regs); 7599 // } 7600 7601 const Register carry = tmp5; 7602 const Register sum = tmp3; 7603 const Register op1 = tmp4; 7604 Register op2 = tmp2; 7605 7606 push(zlen); 7607 push(len); 7608 addl(zlen,2); 7609 bind(L_second_loop); 7610 xorq(carry, carry); 7611 subl(zlen, 4); 7612 subl(len, 2); 7613 push(zlen); 7614 push(len); 7615 cmpl(len, 0); 7616 jccb(Assembler::lessEqual, L_second_loop_exit); 7617 7618 // Multiply an array by one 64 bit long. 7619 if (UseBMI2Instructions) { 7620 op2 = rdxReg; 7621 movq(op2, Address(x, len, Address::times_4, 0)); 7622 rorxq(op2, op2, 32); 7623 } 7624 else { 7625 movq(op2, Address(x, len, Address::times_4, 0)); 7626 rorq(op2, 32); 7627 } 7628 7629 bind(L_third_loop); 7630 decrementl(len); 7631 jccb(Assembler::negative, L_third_loop_exit); 7632 decrementl(len); 7633 jccb(Assembler::negative, L_last_x); 7634 7635 movq(op1, Address(x, len, Address::times_4, 0)); 7636 rorq(op1, 32); 7637 7638 bind(L_multiply); 7639 subl(zlen, 2); 7640 movq(sum, Address(z, zlen, Address::times_4, 0)); 7641 7642 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry. 7643 if (UseBMI2Instructions) { 7644 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2); 7645 } 7646 else { 7647 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7648 } 7649 7650 movq(Address(z, zlen, Address::times_4, 0), sum); 7651 7652 jmp(L_third_loop); 7653 bind(L_third_loop_exit); 7654 7655 // Fourth loop 7656 // Add 64 bit long carry into z with carry propagation. 7657 // Uses offsetted zlen. 7658 add_one_64(z, zlen, carry, tmp1); 7659 7660 pop(len); 7661 pop(zlen); 7662 jmp(L_second_loop); 7663 7664 // Next infrequent code is moved outside loops. 7665 bind(L_last_x); 7666 movl(op1, Address(x, 0)); 7667 jmp(L_multiply); 7668 7669 bind(L_second_loop_exit); 7670 pop(len); 7671 pop(zlen); 7672 pop(len); 7673 pop(zlen); 7674 7675 // Fifth loop 7676 // Shift z left 1 bit. 7677 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4); 7678 7679 // z[zlen-1] |= x[len-1] & 1; 7680 movl(tmp3, Address(x, len, Address::times_4, -4)); 7681 andl(tmp3, 1); 7682 orl(Address(z, zlen, Address::times_4, -4), tmp3); 7683 7684 pop(tmp5); 7685 pop(tmp4); 7686 pop(tmp3); 7687 pop(tmp2); 7688 pop(tmp1); 7689 } 7690 7691 /** 7692 * Helper function for mul_add() 7693 * Multiply the in[] by int k and add to out[] starting at offset offs using 7694 * 128 bit by 32 bit multiply and return the carry in tmp5. 7695 * Only quad int aligned length of in[] is operated on in this function. 7696 * k is in rdxReg for BMI2Instructions, for others it is in tmp2. 7697 * This function preserves out, in and k registers. 7698 * len and offset point to the appropriate index in "in" & "out" correspondingly 7699 * tmp5 has the carry. 7700 * other registers are temporary and are modified. 7701 * 7702 */ 7703 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in, 7704 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, 7705 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7706 7707 Label L_first_loop, L_first_loop_exit; 7708 7709 movl(tmp1, len); 7710 shrl(tmp1, 2); 7711 7712 bind(L_first_loop); 7713 subl(tmp1, 1); 7714 jccb(Assembler::negative, L_first_loop_exit); 7715 7716 subl(len, 4); 7717 subl(offset, 4); 7718 7719 Register op2 = tmp2; 7720 const Register sum = tmp3; 7721 const Register op1 = tmp4; 7722 const Register carry = tmp5; 7723 7724 if (UseBMI2Instructions) { 7725 op2 = rdxReg; 7726 } 7727 7728 movq(op1, Address(in, len, Address::times_4, 8)); 7729 rorq(op1, 32); 7730 movq(sum, Address(out, offset, Address::times_4, 8)); 7731 rorq(sum, 32); 7732 if (UseBMI2Instructions) { 7733 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7734 } 7735 else { 7736 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7737 } 7738 // Store back in big endian from little endian 7739 rorq(sum, 0x20); 7740 movq(Address(out, offset, Address::times_4, 8), sum); 7741 7742 movq(op1, Address(in, len, Address::times_4, 0)); 7743 rorq(op1, 32); 7744 movq(sum, Address(out, offset, Address::times_4, 0)); 7745 rorq(sum, 32); 7746 if (UseBMI2Instructions) { 7747 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7748 } 7749 else { 7750 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7751 } 7752 // Store back in big endian from little endian 7753 rorq(sum, 0x20); 7754 movq(Address(out, offset, Address::times_4, 0), sum); 7755 7756 jmp(L_first_loop); 7757 bind(L_first_loop_exit); 7758 } 7759 7760 /** 7761 * Code for BigInteger::mulAdd() intrinsic 7762 * 7763 * rdi: out 7764 * rsi: in 7765 * r11: offs (out.length - offset) 7766 * rcx: len 7767 * r8: k 7768 * r12: tmp1 7769 * r13: tmp2 7770 * r14: tmp3 7771 * r15: tmp4 7772 * rbx: tmp5 7773 * Multiply the in[] by word k and add to out[], return the carry in rax 7774 */ 7775 void MacroAssembler::mul_add(Register out, Register in, Register offs, 7776 Register len, Register k, Register tmp1, Register tmp2, Register tmp3, 7777 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7778 7779 Label L_carry, L_last_in, L_done; 7780 7781 // carry = 0; 7782 // for (int j=len-1; j >= 0; j--) { 7783 // long product = (in[j] & LONG_MASK) * kLong + 7784 // (out[offs] & LONG_MASK) + carry; 7785 // out[offs--] = (int)product; 7786 // carry = product >>> 32; 7787 // } 7788 // 7789 push(tmp1); 7790 push(tmp2); 7791 push(tmp3); 7792 push(tmp4); 7793 push(tmp5); 7794 7795 Register op2 = tmp2; 7796 const Register sum = tmp3; 7797 const Register op1 = tmp4; 7798 const Register carry = tmp5; 7799 7800 if (UseBMI2Instructions) { 7801 op2 = rdxReg; 7802 movl(op2, k); 7803 } 7804 else { 7805 movl(op2, k); 7806 } 7807 7808 xorq(carry, carry); 7809 7810 //First loop 7811 7812 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply 7813 //The carry is in tmp5 7814 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg); 7815 7816 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any 7817 decrementl(len); 7818 jccb(Assembler::negative, L_carry); 7819 decrementl(len); 7820 jccb(Assembler::negative, L_last_in); 7821 7822 movq(op1, Address(in, len, Address::times_4, 0)); 7823 rorq(op1, 32); 7824 7825 subl(offs, 2); 7826 movq(sum, Address(out, offs, Address::times_4, 0)); 7827 rorq(sum, 32); 7828 7829 if (UseBMI2Instructions) { 7830 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7831 } 7832 else { 7833 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7834 } 7835 7836 // Store back in big endian from little endian 7837 rorq(sum, 0x20); 7838 movq(Address(out, offs, Address::times_4, 0), sum); 7839 7840 testl(len, len); 7841 jccb(Assembler::zero, L_carry); 7842 7843 //Multiply the last in[] entry, if any 7844 bind(L_last_in); 7845 movl(op1, Address(in, 0)); 7846 movl(sum, Address(out, offs, Address::times_4, -4)); 7847 7848 movl(raxReg, k); 7849 mull(op1); //tmp4 * eax -> edx:eax 7850 addl(sum, carry); 7851 adcl(rdxReg, 0); 7852 addl(sum, raxReg); 7853 adcl(rdxReg, 0); 7854 movl(carry, rdxReg); 7855 7856 movl(Address(out, offs, Address::times_4, -4), sum); 7857 7858 bind(L_carry); 7859 //return tmp5/carry as carry in rax 7860 movl(rax, carry); 7861 7862 bind(L_done); 7863 pop(tmp5); 7864 pop(tmp4); 7865 pop(tmp3); 7866 pop(tmp2); 7867 pop(tmp1); 7868 } 7869 #endif 7870 7871 /** 7872 * Emits code to update CRC-32 with a byte value according to constants in table 7873 * 7874 * @param [in,out]crc Register containing the crc. 7875 * @param [in]val Register containing the byte to fold into the CRC. 7876 * @param [in]table Register containing the table of crc constants. 7877 * 7878 * uint32_t crc; 7879 * val = crc_table[(val ^ crc) & 0xFF]; 7880 * crc = val ^ (crc >> 8); 7881 * 7882 */ 7883 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 7884 xorl(val, crc); 7885 andl(val, 0xFF); 7886 shrl(crc, 8); // unsigned shift 7887 xorl(crc, Address(table, val, Address::times_4, 0)); 7888 } 7889 7890 /** 7891 * Fold 128-bit data chunk 7892 */ 7893 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { 7894 if (UseAVX > 0) { 7895 vpclmulhdq(xtmp, xK, xcrc); // [123:64] 7896 vpclmulldq(xcrc, xK, xcrc); // [63:0] 7897 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */); 7898 pxor(xcrc, xtmp); 7899 } else { 7900 movdqa(xtmp, xcrc); 7901 pclmulhdq(xtmp, xK); // [123:64] 7902 pclmulldq(xcrc, xK); // [63:0] 7903 pxor(xcrc, xtmp); 7904 movdqu(xtmp, Address(buf, offset)); 7905 pxor(xcrc, xtmp); 7906 } 7907 } 7908 7909 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) { 7910 if (UseAVX > 0) { 7911 vpclmulhdq(xtmp, xK, xcrc); 7912 vpclmulldq(xcrc, xK, xcrc); 7913 pxor(xcrc, xbuf); 7914 pxor(xcrc, xtmp); 7915 } else { 7916 movdqa(xtmp, xcrc); 7917 pclmulhdq(xtmp, xK); 7918 pclmulldq(xcrc, xK); 7919 pxor(xcrc, xbuf); 7920 pxor(xcrc, xtmp); 7921 } 7922 } 7923 7924 /** 7925 * 8-bit folds to compute 32-bit CRC 7926 * 7927 * uint64_t xcrc; 7928 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8); 7929 */ 7930 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) { 7931 movdl(tmp, xcrc); 7932 andl(tmp, 0xFF); 7933 movdl(xtmp, Address(table, tmp, Address::times_4, 0)); 7934 psrldq(xcrc, 1); // unsigned shift one byte 7935 pxor(xcrc, xtmp); 7936 } 7937 7938 /** 7939 * uint32_t crc; 7940 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); 7941 */ 7942 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { 7943 movl(tmp, crc); 7944 andl(tmp, 0xFF); 7945 shrl(crc, 8); 7946 xorl(crc, Address(table, tmp, Address::times_4, 0)); 7947 } 7948 7949 /** 7950 * @param crc register containing existing CRC (32-bit) 7951 * @param buf register pointing to input byte buffer (byte*) 7952 * @param len register containing number of bytes 7953 * @param table register that will contain address of CRC table 7954 * @param tmp scratch register 7955 */ 7956 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) { 7957 assert_different_registers(crc, buf, len, table, tmp, rax); 7958 7959 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 7960 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 7961 7962 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 7963 // context for the registers used, where all instructions below are using 128-bit mode 7964 // On EVEX without VL and BW, these instructions will all be AVX. 7965 lea(table, ExternalAddress(StubRoutines::crc_table_addr())); 7966 notl(crc); // ~crc 7967 cmpl(len, 16); 7968 jcc(Assembler::less, L_tail); 7969 7970 // Align buffer to 16 bytes 7971 movl(tmp, buf); 7972 andl(tmp, 0xF); 7973 jccb(Assembler::zero, L_aligned); 7974 subl(tmp, 16); 7975 addl(len, tmp); 7976 7977 align(4); 7978 BIND(L_align_loop); 7979 movsbl(rax, Address(buf, 0)); // load byte with sign extension 7980 update_byte_crc32(crc, rax, table); 7981 increment(buf); 7982 incrementl(tmp); 7983 jccb(Assembler::less, L_align_loop); 7984 7985 BIND(L_aligned); 7986 movl(tmp, len); // save 7987 shrl(len, 4); 7988 jcc(Assembler::zero, L_tail_restore); 7989 7990 // Fold crc into first bytes of vector 7991 movdqa(xmm1, Address(buf, 0)); 7992 movdl(rax, xmm1); 7993 xorl(crc, rax); 7994 if (VM_Version::supports_sse4_1()) { 7995 pinsrd(xmm1, crc, 0); 7996 } else { 7997 pinsrw(xmm1, crc, 0); 7998 shrl(crc, 16); 7999 pinsrw(xmm1, crc, 1); 8000 } 8001 addptr(buf, 16); 8002 subl(len, 4); // len > 0 8003 jcc(Assembler::less, L_fold_tail); 8004 8005 movdqa(xmm2, Address(buf, 0)); 8006 movdqa(xmm3, Address(buf, 16)); 8007 movdqa(xmm4, Address(buf, 32)); 8008 addptr(buf, 48); 8009 subl(len, 3); 8010 jcc(Assembler::lessEqual, L_fold_512b); 8011 8012 // Fold total 512 bits of polynomial on each iteration, 8013 // 128 bits per each of 4 parallel streams. 8014 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1); 8015 8016 align32(); 8017 BIND(L_fold_512b_loop); 8018 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8019 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16); 8020 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32); 8021 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48); 8022 addptr(buf, 64); 8023 subl(len, 4); 8024 jcc(Assembler::greater, L_fold_512b_loop); 8025 8026 // Fold 512 bits to 128 bits. 8027 BIND(L_fold_512b); 8028 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8029 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2); 8030 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3); 8031 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4); 8032 8033 // Fold the rest of 128 bits data chunks 8034 BIND(L_fold_tail); 8035 addl(len, 3); 8036 jccb(Assembler::lessEqual, L_fold_128b); 8037 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8038 8039 BIND(L_fold_tail_loop); 8040 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8041 addptr(buf, 16); 8042 decrementl(len); 8043 jccb(Assembler::greater, L_fold_tail_loop); 8044 8045 // Fold 128 bits in xmm1 down into 32 bits in crc register. 8046 BIND(L_fold_128b); 8047 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1); 8048 if (UseAVX > 0) { 8049 vpclmulqdq(xmm2, xmm0, xmm1, 0x1); 8050 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */); 8051 vpclmulqdq(xmm0, xmm0, xmm3, 0x1); 8052 } else { 8053 movdqa(xmm2, xmm0); 8054 pclmulqdq(xmm2, xmm1, 0x1); 8055 movdqa(xmm3, xmm0); 8056 pand(xmm3, xmm2); 8057 pclmulqdq(xmm0, xmm3, 0x1); 8058 } 8059 psrldq(xmm1, 8); 8060 psrldq(xmm2, 4); 8061 pxor(xmm0, xmm1); 8062 pxor(xmm0, xmm2); 8063 8064 // 8 8-bit folds to compute 32-bit CRC. 8065 for (int j = 0; j < 4; j++) { 8066 fold_8bit_crc32(xmm0, table, xmm1, rax); 8067 } 8068 movdl(crc, xmm0); // mov 32 bits to general register 8069 for (int j = 0; j < 4; j++) { 8070 fold_8bit_crc32(crc, table, rax); 8071 } 8072 8073 BIND(L_tail_restore); 8074 movl(len, tmp); // restore 8075 BIND(L_tail); 8076 andl(len, 0xf); 8077 jccb(Assembler::zero, L_exit); 8078 8079 // Fold the rest of bytes 8080 align(4); 8081 BIND(L_tail_loop); 8082 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8083 update_byte_crc32(crc, rax, table); 8084 increment(buf); 8085 decrementl(len); 8086 jccb(Assembler::greater, L_tail_loop); 8087 8088 BIND(L_exit); 8089 notl(crc); // ~c 8090 } 8091 8092 #ifdef _LP64 8093 // Helper function for AVX 512 CRC32 8094 // Fold 512-bit data chunks 8095 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, 8096 Register pos, int offset) { 8097 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit); 8098 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64] 8099 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0] 8100 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */); 8101 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */); 8102 } 8103 8104 // Helper function for AVX 512 CRC32 8105 // Compute CRC32 for < 256B buffers 8106 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos, 8107 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 8108 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) { 8109 8110 Label L_less_than_32, L_exact_16_left, L_less_than_16_left; 8111 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left; 8112 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2; 8113 8114 // check if there is enough buffer to be able to fold 16B at a time 8115 cmpl(len, 32); 8116 jcc(Assembler::less, L_less_than_32); 8117 8118 // if there is, load the constants 8119 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10 8120 movdl(xmm0, crc); // get the initial crc value 8121 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8122 pxor(xmm7, xmm0); 8123 8124 // update the buffer pointer 8125 addl(pos, 16); 8126 //update the counter.subtract 32 instead of 16 to save one instruction from the loop 8127 subl(len, 32); 8128 jmp(L_16B_reduction_loop); 8129 8130 bind(L_less_than_32); 8131 //mov initial crc to the return value. this is necessary for zero - length buffers. 8132 movl(rax, crc); 8133 testl(len, len); 8134 jcc(Assembler::equal, L_cleanup); 8135 8136 movdl(xmm0, crc); //get the initial crc value 8137 8138 cmpl(len, 16); 8139 jcc(Assembler::equal, L_exact_16_left); 8140 jcc(Assembler::less, L_less_than_16_left); 8141 8142 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8143 pxor(xmm7, xmm0); //xor the initial crc value 8144 addl(pos, 16); 8145 subl(len, 16); 8146 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10 8147 jmp(L_get_last_two_xmms); 8148 8149 bind(L_less_than_16_left); 8150 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first. 8151 pxor(xmm1, xmm1); 8152 movptr(tmp1, rsp); 8153 movdqu(Address(tmp1, 0 * 16), xmm1); 8154 8155 cmpl(len, 4); 8156 jcc(Assembler::less, L_only_less_than_4); 8157 8158 //backup the counter value 8159 movl(tmp2, len); 8160 cmpl(len, 8); 8161 jcc(Assembler::less, L_less_than_8_left); 8162 8163 //load 8 Bytes 8164 movq(rax, Address(buf, pos, Address::times_1, 0 * 16)); 8165 movq(Address(tmp1, 0 * 16), rax); 8166 addptr(tmp1, 8); 8167 subl(len, 8); 8168 addl(pos, 8); 8169 8170 bind(L_less_than_8_left); 8171 cmpl(len, 4); 8172 jcc(Assembler::less, L_less_than_4_left); 8173 8174 //load 4 Bytes 8175 movl(rax, Address(buf, pos, Address::times_1, 0)); 8176 movl(Address(tmp1, 0 * 16), rax); 8177 addptr(tmp1, 4); 8178 subl(len, 4); 8179 addl(pos, 4); 8180 8181 bind(L_less_than_4_left); 8182 cmpl(len, 2); 8183 jcc(Assembler::less, L_less_than_2_left); 8184 8185 // load 2 Bytes 8186 movw(rax, Address(buf, pos, Address::times_1, 0)); 8187 movl(Address(tmp1, 0 * 16), rax); 8188 addptr(tmp1, 2); 8189 subl(len, 2); 8190 addl(pos, 2); 8191 8192 bind(L_less_than_2_left); 8193 cmpl(len, 1); 8194 jcc(Assembler::less, L_zero_left); 8195 8196 // load 1 Byte 8197 movb(rax, Address(buf, pos, Address::times_1, 0)); 8198 movb(Address(tmp1, 0 * 16), rax); 8199 8200 bind(L_zero_left); 8201 movdqu(xmm7, Address(rsp, 0)); 8202 pxor(xmm7, xmm0); //xor the initial crc value 8203 8204 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8205 movdqu(xmm0, Address(rax, tmp2)); 8206 pshufb(xmm7, xmm0); 8207 jmp(L_128_done); 8208 8209 bind(L_exact_16_left); 8210 movdqu(xmm7, Address(buf, pos, Address::times_1, 0)); 8211 pxor(xmm7, xmm0); //xor the initial crc value 8212 jmp(L_128_done); 8213 8214 bind(L_only_less_than_4); 8215 cmpl(len, 3); 8216 jcc(Assembler::less, L_only_less_than_3); 8217 8218 // load 3 Bytes 8219 movb(rax, Address(buf, pos, Address::times_1, 0)); 8220 movb(Address(tmp1, 0), rax); 8221 8222 movb(rax, Address(buf, pos, Address::times_1, 1)); 8223 movb(Address(tmp1, 1), rax); 8224 8225 movb(rax, Address(buf, pos, Address::times_1, 2)); 8226 movb(Address(tmp1, 2), rax); 8227 8228 movdqu(xmm7, Address(rsp, 0)); 8229 pxor(xmm7, xmm0); //xor the initial crc value 8230 8231 pslldq(xmm7, 0x5); 8232 jmp(L_barrett); 8233 bind(L_only_less_than_3); 8234 cmpl(len, 2); 8235 jcc(Assembler::less, L_only_less_than_2); 8236 8237 // load 2 Bytes 8238 movb(rax, Address(buf, pos, Address::times_1, 0)); 8239 movb(Address(tmp1, 0), rax); 8240 8241 movb(rax, Address(buf, pos, Address::times_1, 1)); 8242 movb(Address(tmp1, 1), rax); 8243 8244 movdqu(xmm7, Address(rsp, 0)); 8245 pxor(xmm7, xmm0); //xor the initial crc value 8246 8247 pslldq(xmm7, 0x6); 8248 jmp(L_barrett); 8249 8250 bind(L_only_less_than_2); 8251 //load 1 Byte 8252 movb(rax, Address(buf, pos, Address::times_1, 0)); 8253 movb(Address(tmp1, 0), rax); 8254 8255 movdqu(xmm7, Address(rsp, 0)); 8256 pxor(xmm7, xmm0); //xor the initial crc value 8257 8258 pslldq(xmm7, 0x7); 8259 } 8260 8261 /** 8262 * Compute CRC32 using AVX512 instructions 8263 * param crc register containing existing CRC (32-bit) 8264 * param buf register pointing to input byte buffer (byte*) 8265 * param len register containing number of bytes 8266 * param table address of crc or crc32c table 8267 * param tmp1 scratch register 8268 * param tmp2 scratch register 8269 * return rax result register 8270 * 8271 * This routine is identical for crc32c with the exception of the precomputed constant 8272 * table which will be passed as the table argument. The calculation steps are 8273 * the same for both variants. 8274 */ 8275 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) { 8276 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12); 8277 8278 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8279 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8280 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop; 8281 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop; 8282 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup; 8283 8284 const Register pos = r12; 8285 push(r12); 8286 subptr(rsp, 16 * 2 + 8); 8287 8288 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8289 // context for the registers used, where all instructions below are using 128-bit mode 8290 // On EVEX without VL and BW, these instructions will all be AVX. 8291 movl(pos, 0); 8292 8293 // check if smaller than 256B 8294 cmpl(len, 256); 8295 jcc(Assembler::less, L_less_than_256); 8296 8297 // load the initial crc value 8298 movdl(xmm10, crc); 8299 8300 // receive the initial 64B data, xor the initial crc value 8301 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); 8302 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); 8303 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit); 8304 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4 8305 8306 subl(len, 256); 8307 cmpl(len, 256); 8308 jcc(Assembler::less, L_fold_128_B_loop); 8309 8310 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); 8311 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); 8312 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2 8313 subl(len, 256); 8314 8315 bind(L_fold_256_B_loop); 8316 addl(pos, 256); 8317 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64); 8318 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64); 8319 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64); 8320 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64); 8321 8322 subl(len, 256); 8323 jcc(Assembler::greaterEqual, L_fold_256_B_loop); 8324 8325 // Fold 256 into 128 8326 addl(pos, 256); 8327 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit); 8328 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit); 8329 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC 8330 8331 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit); 8332 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit); 8333 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC 8334 8335 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit); 8336 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit); 8337 8338 addl(len, 128); 8339 jmp(L_fold_128_B_register); 8340 8341 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop 8342 // loop will fold 128B at a time until we have 128 + y Bytes of buffer 8343 8344 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel 8345 bind(L_fold_128_B_loop); 8346 addl(pos, 128); 8347 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64); 8348 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64); 8349 8350 subl(len, 128); 8351 jcc(Assembler::greaterEqual, L_fold_128_B_loop); 8352 8353 addl(pos, 128); 8354 8355 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 8356 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 8357 bind(L_fold_128_B_register); 8358 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16 8359 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0 8360 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit); 8361 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit); 8362 // save last that has no multiplicand 8363 vextracti64x2(xmm7, xmm4, 3); 8364 8365 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit); 8366 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit); 8367 // Needed later in reduction loop 8368 movdqu(xmm10, Address(table, 1 * 16)); 8369 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC 8370 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC 8371 8372 // Swap 1,0,3,2 - 01 00 11 10 8373 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit); 8374 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit); 8375 vextracti128(xmm5, xmm8, 1); 8376 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit); 8377 8378 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop 8379 // instead of a cmp instruction, we use the negative flag with the jl instruction 8380 addl(len, 128 - 16); 8381 jcc(Assembler::less, L_final_reduction_for_128); 8382 8383 bind(L_16B_reduction_loop); 8384 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8385 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8386 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8387 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16)); 8388 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8389 addl(pos, 16); 8390 subl(len, 16); 8391 jcc(Assembler::greaterEqual, L_16B_reduction_loop); 8392 8393 bind(L_final_reduction_for_128); 8394 addl(len, 16); 8395 jcc(Assembler::equal, L_128_done); 8396 8397 bind(L_get_last_two_xmms); 8398 movdqu(xmm2, xmm7); 8399 addl(pos, len); 8400 movdqu(xmm1, Address(buf, pos, Address::times_1, -16)); 8401 subl(pos, len); 8402 8403 // get rid of the extra data that was loaded before 8404 // load the shift constant 8405 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8406 movdqu(xmm0, Address(rax, len)); 8407 addl(rax, len); 8408 8409 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8410 //Change mask to 512 8411 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2); 8412 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit); 8413 8414 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit); 8415 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8416 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8417 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8418 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit); 8419 8420 bind(L_128_done); 8421 // compute crc of a 128-bit value 8422 movdqu(xmm10, Address(table, 3 * 16)); 8423 movdqu(xmm0, xmm7); 8424 8425 // 64b fold 8426 vpclmulqdq(xmm7, xmm7, xmm10, 0x0); 8427 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit); 8428 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8429 8430 // 32b fold 8431 movdqu(xmm0, xmm7); 8432 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit); 8433 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8434 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8435 jmp(L_barrett); 8436 8437 bind(L_less_than_256); 8438 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup); 8439 8440 //barrett reduction 8441 bind(L_barrett); 8442 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2); 8443 movdqu(xmm1, xmm7); 8444 movdqu(xmm2, xmm7); 8445 movdqu(xmm10, Address(table, 4 * 16)); 8446 8447 pclmulqdq(xmm7, xmm10, 0x0); 8448 pxor(xmm7, xmm2); 8449 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2); 8450 movdqu(xmm2, xmm7); 8451 pclmulqdq(xmm7, xmm10, 0x10); 8452 pxor(xmm7, xmm2); 8453 pxor(xmm7, xmm1); 8454 pextrd(crc, xmm7, 2); 8455 8456 bind(L_cleanup); 8457 addptr(rsp, 16 * 2 + 8); 8458 pop(r12); 8459 } 8460 8461 // S. Gueron / Information Processing Letters 112 (2012) 184 8462 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table. 8463 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0]. 8464 // Output: the 64-bit carry-less product of B * CONST 8465 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n, 8466 Register tmp1, Register tmp2, Register tmp3) { 8467 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8468 if (n > 0) { 8469 addq(tmp3, n * 256 * 8); 8470 } 8471 // Q1 = TABLEExt[n][B & 0xFF]; 8472 movl(tmp1, in); 8473 andl(tmp1, 0x000000FF); 8474 shll(tmp1, 3); 8475 addq(tmp1, tmp3); 8476 movq(tmp1, Address(tmp1, 0)); 8477 8478 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8479 movl(tmp2, in); 8480 shrl(tmp2, 8); 8481 andl(tmp2, 0x000000FF); 8482 shll(tmp2, 3); 8483 addq(tmp2, tmp3); 8484 movq(tmp2, Address(tmp2, 0)); 8485 8486 shlq(tmp2, 8); 8487 xorq(tmp1, tmp2); 8488 8489 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8490 movl(tmp2, in); 8491 shrl(tmp2, 16); 8492 andl(tmp2, 0x000000FF); 8493 shll(tmp2, 3); 8494 addq(tmp2, tmp3); 8495 movq(tmp2, Address(tmp2, 0)); 8496 8497 shlq(tmp2, 16); 8498 xorq(tmp1, tmp2); 8499 8500 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8501 shrl(in, 24); 8502 andl(in, 0x000000FF); 8503 shll(in, 3); 8504 addq(in, tmp3); 8505 movq(in, Address(in, 0)); 8506 8507 shlq(in, 24); 8508 xorq(in, tmp1); 8509 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8510 } 8511 8512 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8513 Register in_out, 8514 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8515 XMMRegister w_xtmp2, 8516 Register tmp1, 8517 Register n_tmp2, Register n_tmp3) { 8518 if (is_pclmulqdq_supported) { 8519 movdl(w_xtmp1, in_out); // modified blindly 8520 8521 movl(tmp1, const_or_pre_comp_const_index); 8522 movdl(w_xtmp2, tmp1); 8523 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8524 8525 movdq(in_out, w_xtmp1); 8526 } else { 8527 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3); 8528 } 8529 } 8530 8531 // Recombination Alternative 2: No bit-reflections 8532 // T1 = (CRC_A * U1) << 1 8533 // T2 = (CRC_B * U2) << 1 8534 // C1 = T1 >> 32 8535 // C2 = T2 >> 32 8536 // T1 = T1 & 0xFFFFFFFF 8537 // T2 = T2 & 0xFFFFFFFF 8538 // T1 = CRC32(0, T1) 8539 // T2 = CRC32(0, T2) 8540 // C1 = C1 ^ T1 8541 // C2 = C2 ^ T2 8542 // CRC = C1 ^ C2 ^ CRC_C 8543 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8544 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8545 Register tmp1, Register tmp2, 8546 Register n_tmp3) { 8547 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8548 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8549 shlq(in_out, 1); 8550 movl(tmp1, in_out); 8551 shrq(in_out, 32); 8552 xorl(tmp2, tmp2); 8553 crc32(tmp2, tmp1, 4); 8554 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here 8555 shlq(in1, 1); 8556 movl(tmp1, in1); 8557 shrq(in1, 32); 8558 xorl(tmp2, tmp2); 8559 crc32(tmp2, tmp1, 4); 8560 xorl(in1, tmp2); 8561 xorl(in_out, in1); 8562 xorl(in_out, in2); 8563 } 8564 8565 // Set N to predefined value 8566 // Subtract from a length of a buffer 8567 // execute in a loop: 8568 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0 8569 // for i = 1 to N do 8570 // CRC_A = CRC32(CRC_A, A[i]) 8571 // CRC_B = CRC32(CRC_B, B[i]) 8572 // CRC_C = CRC32(CRC_C, C[i]) 8573 // end for 8574 // Recombine 8575 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8576 Register in_out1, Register in_out2, Register in_out3, 8577 Register tmp1, Register tmp2, Register tmp3, 8578 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8579 Register tmp4, Register tmp5, 8580 Register n_tmp6) { 8581 Label L_processPartitions; 8582 Label L_processPartition; 8583 Label L_exit; 8584 8585 bind(L_processPartitions); 8586 cmpl(in_out1, 3 * size); 8587 jcc(Assembler::less, L_exit); 8588 xorl(tmp1, tmp1); 8589 xorl(tmp2, tmp2); 8590 movq(tmp3, in_out2); 8591 addq(tmp3, size); 8592 8593 bind(L_processPartition); 8594 crc32(in_out3, Address(in_out2, 0), 8); 8595 crc32(tmp1, Address(in_out2, size), 8); 8596 crc32(tmp2, Address(in_out2, size * 2), 8); 8597 addq(in_out2, 8); 8598 cmpq(in_out2, tmp3); 8599 jcc(Assembler::less, L_processPartition); 8600 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8601 w_xtmp1, w_xtmp2, w_xtmp3, 8602 tmp4, tmp5, 8603 n_tmp6); 8604 addq(in_out2, 2 * size); 8605 subl(in_out1, 3 * size); 8606 jmp(L_processPartitions); 8607 8608 bind(L_exit); 8609 } 8610 #else 8611 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n, 8612 Register tmp1, Register tmp2, Register tmp3, 8613 XMMRegister xtmp1, XMMRegister xtmp2) { 8614 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8615 if (n > 0) { 8616 addl(tmp3, n * 256 * 8); 8617 } 8618 // Q1 = TABLEExt[n][B & 0xFF]; 8619 movl(tmp1, in_out); 8620 andl(tmp1, 0x000000FF); 8621 shll(tmp1, 3); 8622 addl(tmp1, tmp3); 8623 movq(xtmp1, Address(tmp1, 0)); 8624 8625 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8626 movl(tmp2, in_out); 8627 shrl(tmp2, 8); 8628 andl(tmp2, 0x000000FF); 8629 shll(tmp2, 3); 8630 addl(tmp2, tmp3); 8631 movq(xtmp2, Address(tmp2, 0)); 8632 8633 psllq(xtmp2, 8); 8634 pxor(xtmp1, xtmp2); 8635 8636 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8637 movl(tmp2, in_out); 8638 shrl(tmp2, 16); 8639 andl(tmp2, 0x000000FF); 8640 shll(tmp2, 3); 8641 addl(tmp2, tmp3); 8642 movq(xtmp2, Address(tmp2, 0)); 8643 8644 psllq(xtmp2, 16); 8645 pxor(xtmp1, xtmp2); 8646 8647 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8648 shrl(in_out, 24); 8649 andl(in_out, 0x000000FF); 8650 shll(in_out, 3); 8651 addl(in_out, tmp3); 8652 movq(xtmp2, Address(in_out, 0)); 8653 8654 psllq(xtmp2, 24); 8655 pxor(xtmp1, xtmp2); // Result in CXMM 8656 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8657 } 8658 8659 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8660 Register in_out, 8661 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8662 XMMRegister w_xtmp2, 8663 Register tmp1, 8664 Register n_tmp2, Register n_tmp3) { 8665 if (is_pclmulqdq_supported) { 8666 movdl(w_xtmp1, in_out); 8667 8668 movl(tmp1, const_or_pre_comp_const_index); 8669 movdl(w_xtmp2, tmp1); 8670 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8671 // Keep result in XMM since GPR is 32 bit in length 8672 } else { 8673 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2); 8674 } 8675 } 8676 8677 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8678 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8679 Register tmp1, Register tmp2, 8680 Register n_tmp3) { 8681 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8682 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8683 8684 psllq(w_xtmp1, 1); 8685 movdl(tmp1, w_xtmp1); 8686 psrlq(w_xtmp1, 32); 8687 movdl(in_out, w_xtmp1); 8688 8689 xorl(tmp2, tmp2); 8690 crc32(tmp2, tmp1, 4); 8691 xorl(in_out, tmp2); 8692 8693 psllq(w_xtmp2, 1); 8694 movdl(tmp1, w_xtmp2); 8695 psrlq(w_xtmp2, 32); 8696 movdl(in1, w_xtmp2); 8697 8698 xorl(tmp2, tmp2); 8699 crc32(tmp2, tmp1, 4); 8700 xorl(in1, tmp2); 8701 xorl(in_out, in1); 8702 xorl(in_out, in2); 8703 } 8704 8705 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8706 Register in_out1, Register in_out2, Register in_out3, 8707 Register tmp1, Register tmp2, Register tmp3, 8708 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8709 Register tmp4, Register tmp5, 8710 Register n_tmp6) { 8711 Label L_processPartitions; 8712 Label L_processPartition; 8713 Label L_exit; 8714 8715 bind(L_processPartitions); 8716 cmpl(in_out1, 3 * size); 8717 jcc(Assembler::less, L_exit); 8718 xorl(tmp1, tmp1); 8719 xorl(tmp2, tmp2); 8720 movl(tmp3, in_out2); 8721 addl(tmp3, size); 8722 8723 bind(L_processPartition); 8724 crc32(in_out3, Address(in_out2, 0), 4); 8725 crc32(tmp1, Address(in_out2, size), 4); 8726 crc32(tmp2, Address(in_out2, size*2), 4); 8727 crc32(in_out3, Address(in_out2, 0+4), 4); 8728 crc32(tmp1, Address(in_out2, size+4), 4); 8729 crc32(tmp2, Address(in_out2, size*2+4), 4); 8730 addl(in_out2, 8); 8731 cmpl(in_out2, tmp3); 8732 jcc(Assembler::less, L_processPartition); 8733 8734 push(tmp3); 8735 push(in_out1); 8736 push(in_out2); 8737 tmp4 = tmp3; 8738 tmp5 = in_out1; 8739 n_tmp6 = in_out2; 8740 8741 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8742 w_xtmp1, w_xtmp2, w_xtmp3, 8743 tmp4, tmp5, 8744 n_tmp6); 8745 8746 pop(in_out2); 8747 pop(in_out1); 8748 pop(tmp3); 8749 8750 addl(in_out2, 2 * size); 8751 subl(in_out1, 3 * size); 8752 jmp(L_processPartitions); 8753 8754 bind(L_exit); 8755 } 8756 #endif //LP64 8757 8758 #ifdef _LP64 8759 // Algorithm 2: Pipelined usage of the CRC32 instruction. 8760 // Input: A buffer I of L bytes. 8761 // Output: the CRC32C value of the buffer. 8762 // Notations: 8763 // Write L = 24N + r, with N = floor (L/24). 8764 // r = L mod 24 (0 <= r < 24). 8765 // Consider I as the concatenation of A|B|C|R, where A, B, C, each, 8766 // N quadwords, and R consists of r bytes. 8767 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1 8768 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1 8769 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1 8770 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1 8771 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 8772 Register tmp1, Register tmp2, Register tmp3, 8773 Register tmp4, Register tmp5, Register tmp6, 8774 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8775 bool is_pclmulqdq_supported) { 8776 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 8777 Label L_wordByWord; 8778 Label L_byteByByteProlog; 8779 Label L_byteByByte; 8780 Label L_exit; 8781 8782 if (is_pclmulqdq_supported ) { 8783 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; 8784 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1); 8785 8786 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); 8787 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); 8788 8789 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); 8790 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); 8791 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\""); 8792 } else { 8793 const_or_pre_comp_const_index[0] = 1; 8794 const_or_pre_comp_const_index[1] = 0; 8795 8796 const_or_pre_comp_const_index[2] = 3; 8797 const_or_pre_comp_const_index[3] = 2; 8798 8799 const_or_pre_comp_const_index[4] = 5; 8800 const_or_pre_comp_const_index[5] = 4; 8801 } 8802 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 8803 in2, in1, in_out, 8804 tmp1, tmp2, tmp3, 8805 w_xtmp1, w_xtmp2, w_xtmp3, 8806 tmp4, tmp5, 8807 tmp6); 8808 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 8809 in2, in1, in_out, 8810 tmp1, tmp2, tmp3, 8811 w_xtmp1, w_xtmp2, w_xtmp3, 8812 tmp4, tmp5, 8813 tmp6); 8814 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 8815 in2, in1, in_out, 8816 tmp1, tmp2, tmp3, 8817 w_xtmp1, w_xtmp2, w_xtmp3, 8818 tmp4, tmp5, 8819 tmp6); 8820 movl(tmp1, in2); 8821 andl(tmp1, 0x00000007); 8822 negl(tmp1); 8823 addl(tmp1, in2); 8824 addq(tmp1, in1); 8825 8826 cmpq(in1, tmp1); 8827 jccb(Assembler::greaterEqual, L_byteByByteProlog); 8828 align(16); 8829 BIND(L_wordByWord); 8830 crc32(in_out, Address(in1, 0), 8); 8831 addq(in1, 8); 8832 cmpq(in1, tmp1); 8833 jcc(Assembler::less, L_wordByWord); 8834 8835 BIND(L_byteByByteProlog); 8836 andl(in2, 0x00000007); 8837 movl(tmp2, 1); 8838 8839 cmpl(tmp2, in2); 8840 jccb(Assembler::greater, L_exit); 8841 BIND(L_byteByByte); 8842 crc32(in_out, Address(in1, 0), 1); 8843 incq(in1); 8844 incl(tmp2); 8845 cmpl(tmp2, in2); 8846 jcc(Assembler::lessEqual, L_byteByByte); 8847 8848 BIND(L_exit); 8849 } 8850 #else 8851 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 8852 Register tmp1, Register tmp2, Register tmp3, 8853 Register tmp4, Register tmp5, Register tmp6, 8854 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8855 bool is_pclmulqdq_supported) { 8856 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 8857 Label L_wordByWord; 8858 Label L_byteByByteProlog; 8859 Label L_byteByByte; 8860 Label L_exit; 8861 8862 if (is_pclmulqdq_supported) { 8863 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; 8864 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1); 8865 8866 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); 8867 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); 8868 8869 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); 8870 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); 8871 } else { 8872 const_or_pre_comp_const_index[0] = 1; 8873 const_or_pre_comp_const_index[1] = 0; 8874 8875 const_or_pre_comp_const_index[2] = 3; 8876 const_or_pre_comp_const_index[3] = 2; 8877 8878 const_or_pre_comp_const_index[4] = 5; 8879 const_or_pre_comp_const_index[5] = 4; 8880 } 8881 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 8882 in2, in1, in_out, 8883 tmp1, tmp2, tmp3, 8884 w_xtmp1, w_xtmp2, w_xtmp3, 8885 tmp4, tmp5, 8886 tmp6); 8887 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 8888 in2, in1, in_out, 8889 tmp1, tmp2, tmp3, 8890 w_xtmp1, w_xtmp2, w_xtmp3, 8891 tmp4, tmp5, 8892 tmp6); 8893 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 8894 in2, in1, in_out, 8895 tmp1, tmp2, tmp3, 8896 w_xtmp1, w_xtmp2, w_xtmp3, 8897 tmp4, tmp5, 8898 tmp6); 8899 movl(tmp1, in2); 8900 andl(tmp1, 0x00000007); 8901 negl(tmp1); 8902 addl(tmp1, in2); 8903 addl(tmp1, in1); 8904 8905 BIND(L_wordByWord); 8906 cmpl(in1, tmp1); 8907 jcc(Assembler::greaterEqual, L_byteByByteProlog); 8908 crc32(in_out, Address(in1,0), 4); 8909 addl(in1, 4); 8910 jmp(L_wordByWord); 8911 8912 BIND(L_byteByByteProlog); 8913 andl(in2, 0x00000007); 8914 movl(tmp2, 1); 8915 8916 BIND(L_byteByByte); 8917 cmpl(tmp2, in2); 8918 jccb(Assembler::greater, L_exit); 8919 movb(tmp1, Address(in1, 0)); 8920 crc32(in_out, tmp1, 1); 8921 incl(in1); 8922 incl(tmp2); 8923 jmp(L_byteByByte); 8924 8925 BIND(L_exit); 8926 } 8927 #endif // LP64 8928 #undef BIND 8929 #undef BLOCK_COMMENT 8930 8931 // Compress char[] array to byte[]. 8932 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 8933 // Return the array length if every element in array can be encoded, 8934 // otherwise, the index of first non-latin1 (> 0xff) character. 8935 // @IntrinsicCandidate 8936 // public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) { 8937 // for (int i = 0; i < len; i++) { 8938 // char c = src[srcOff]; 8939 // if (c > 0xff) { 8940 // return i; // return index of non-latin1 char 8941 // } 8942 // dst[dstOff] = (byte)c; 8943 // srcOff++; 8944 // dstOff++; 8945 // } 8946 // return len; 8947 // } 8948 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 8949 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 8950 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 8951 Register tmp5, Register result, KRegister mask1, KRegister mask2) { 8952 Label copy_chars_loop, done, reset_sp, copy_tail; 8953 8954 // rsi: src 8955 // rdi: dst 8956 // rdx: len 8957 // rcx: tmp5 8958 // rax: result 8959 8960 // rsi holds start addr of source char[] to be compressed 8961 // rdi holds start addr of destination byte[] 8962 // rdx holds length 8963 8964 assert(len != result, ""); 8965 8966 // save length for return 8967 movl(result, len); 8968 8969 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 8970 VM_Version::supports_avx512vlbw() && 8971 VM_Version::supports_bmi2()) { 8972 8973 Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail; 8974 8975 // alignment 8976 Label post_alignment; 8977 8978 // if length of the string is less than 32, handle it the old fashioned way 8979 testl(len, -32); 8980 jcc(Assembler::zero, below_threshold); 8981 8982 // First check whether a character is compressible ( <= 0xFF). 8983 // Create mask to test for Unicode chars inside zmm vector 8984 movl(tmp5, 0x00FF); 8985 evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit); 8986 8987 testl(len, -64); 8988 jccb(Assembler::zero, post_alignment); 8989 8990 movl(tmp5, dst); 8991 andl(tmp5, (32 - 1)); 8992 negl(tmp5); 8993 andl(tmp5, (32 - 1)); 8994 8995 // bail out when there is nothing to be done 8996 testl(tmp5, 0xFFFFFFFF); 8997 jccb(Assembler::zero, post_alignment); 8998 8999 // ~(~0 << len), where len is the # of remaining elements to process 9000 movl(len, 0xFFFFFFFF); 9001 shlxl(len, len, tmp5); 9002 notl(len); 9003 kmovdl(mask2, len); 9004 movl(len, result); 9005 9006 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9007 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9008 ktestd(mask1, mask2); 9009 jcc(Assembler::carryClear, copy_tail); 9010 9011 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9012 9013 addptr(src, tmp5); 9014 addptr(src, tmp5); 9015 addptr(dst, tmp5); 9016 subl(len, tmp5); 9017 9018 bind(post_alignment); 9019 // end of alignment 9020 9021 movl(tmp5, len); 9022 andl(tmp5, (32 - 1)); // tail count (in chars) 9023 andl(len, ~(32 - 1)); // vector count (in chars) 9024 jccb(Assembler::zero, copy_loop_tail); 9025 9026 lea(src, Address(src, len, Address::times_2)); 9027 lea(dst, Address(dst, len, Address::times_1)); 9028 negptr(len); 9029 9030 bind(copy_32_loop); 9031 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit); 9032 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); 9033 kortestdl(mask1, mask1); 9034 jccb(Assembler::carryClear, reset_for_copy_tail); 9035 9036 // All elements in current processed chunk are valid candidates for 9037 // compression. Write a truncated byte elements to the memory. 9038 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit); 9039 addptr(len, 32); 9040 jccb(Assembler::notZero, copy_32_loop); 9041 9042 bind(copy_loop_tail); 9043 // bail out when there is nothing to be done 9044 testl(tmp5, 0xFFFFFFFF); 9045 jcc(Assembler::zero, done); 9046 9047 movl(len, tmp5); 9048 9049 // ~(~0 << len), where len is the # of remaining elements to process 9050 movl(tmp5, 0xFFFFFFFF); 9051 shlxl(tmp5, tmp5, len); 9052 notl(tmp5); 9053 9054 kmovdl(mask2, tmp5); 9055 9056 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9057 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9058 ktestd(mask1, mask2); 9059 jcc(Assembler::carryClear, copy_tail); 9060 9061 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9062 jmp(done); 9063 9064 bind(reset_for_copy_tail); 9065 lea(src, Address(src, tmp5, Address::times_2)); 9066 lea(dst, Address(dst, tmp5, Address::times_1)); 9067 subptr(len, tmp5); 9068 jmp(copy_chars_loop); 9069 9070 bind(below_threshold); 9071 } 9072 9073 if (UseSSE42Intrinsics) { 9074 Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail; 9075 9076 // vectored compression 9077 testl(len, 0xfffffff8); 9078 jcc(Assembler::zero, copy_tail); 9079 9080 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors 9081 movdl(tmp1Reg, tmp5); 9082 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 9083 9084 andl(len, 0xfffffff0); 9085 jccb(Assembler::zero, copy_16); 9086 9087 // compress 16 chars per iter 9088 pxor(tmp4Reg, tmp4Reg); 9089 9090 lea(src, Address(src, len, Address::times_2)); 9091 lea(dst, Address(dst, len, Address::times_1)); 9092 negptr(len); 9093 9094 bind(copy_32_loop); 9095 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters 9096 por(tmp4Reg, tmp2Reg); 9097 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters 9098 por(tmp4Reg, tmp3Reg); 9099 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector 9100 jccb(Assembler::notZero, reset_for_copy_tail); 9101 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte 9102 movdqu(Address(dst, len, Address::times_1), tmp2Reg); 9103 addptr(len, 16); 9104 jccb(Assembler::notZero, copy_32_loop); 9105 9106 // compress next vector of 8 chars (if any) 9107 bind(copy_16); 9108 // len = 0 9109 testl(result, 0x00000008); // check if there's a block of 8 chars to compress 9110 jccb(Assembler::zero, copy_tail_sse); 9111 9112 pxor(tmp3Reg, tmp3Reg); 9113 9114 movdqu(tmp2Reg, Address(src, 0)); 9115 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector 9116 jccb(Assembler::notZero, reset_for_copy_tail); 9117 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte 9118 movq(Address(dst, 0), tmp2Reg); 9119 addptr(src, 16); 9120 addptr(dst, 8); 9121 jmpb(copy_tail_sse); 9122 9123 bind(reset_for_copy_tail); 9124 movl(tmp5, result); 9125 andl(tmp5, 0x0000000f); 9126 lea(src, Address(src, tmp5, Address::times_2)); 9127 lea(dst, Address(dst, tmp5, Address::times_1)); 9128 subptr(len, tmp5); 9129 jmpb(copy_chars_loop); 9130 9131 bind(copy_tail_sse); 9132 movl(len, result); 9133 andl(len, 0x00000007); // tail count (in chars) 9134 } 9135 // compress 1 char per iter 9136 bind(copy_tail); 9137 testl(len, len); 9138 jccb(Assembler::zero, done); 9139 lea(src, Address(src, len, Address::times_2)); 9140 lea(dst, Address(dst, len, Address::times_1)); 9141 negptr(len); 9142 9143 bind(copy_chars_loop); 9144 load_unsigned_short(tmp5, Address(src, len, Address::times_2)); 9145 testl(tmp5, 0xff00); // check if Unicode char 9146 jccb(Assembler::notZero, reset_sp); 9147 movb(Address(dst, len, Address::times_1), tmp5); // ASCII char; compress to 1 byte 9148 increment(len); 9149 jccb(Assembler::notZero, copy_chars_loop); 9150 9151 // add len then return (len will be zero if compress succeeded, otherwise negative) 9152 bind(reset_sp); 9153 addl(result, len); 9154 9155 bind(done); 9156 } 9157 9158 // Inflate byte[] array to char[]. 9159 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java 9160 // @IntrinsicCandidate 9161 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) { 9162 // for (int i = 0; i < len; i++) { 9163 // dst[dstOff++] = (char)(src[srcOff++] & 0xff); 9164 // } 9165 // } 9166 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 9167 XMMRegister tmp1, Register tmp2, KRegister mask) { 9168 Label copy_chars_loop, done, below_threshold, avx3_threshold; 9169 // rsi: src 9170 // rdi: dst 9171 // rdx: len 9172 // rcx: tmp2 9173 9174 // rsi holds start addr of source byte[] to be inflated 9175 // rdi holds start addr of destination char[] 9176 // rdx holds length 9177 assert_different_registers(src, dst, len, tmp2); 9178 movl(tmp2, len); 9179 if ((UseAVX > 2) && // AVX512 9180 VM_Version::supports_avx512vlbw() && 9181 VM_Version::supports_bmi2()) { 9182 9183 Label copy_32_loop, copy_tail; 9184 Register tmp3_aliased = len; 9185 9186 // if length of the string is less than 16, handle it in an old fashioned way 9187 testl(len, -16); 9188 jcc(Assembler::zero, below_threshold); 9189 9190 testl(len, -1 * AVX3Threshold); 9191 jcc(Assembler::zero, avx3_threshold); 9192 9193 // In order to use only one arithmetic operation for the main loop we use 9194 // this pre-calculation 9195 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop 9196 andl(len, -32); // vector count 9197 jccb(Assembler::zero, copy_tail); 9198 9199 lea(src, Address(src, len, Address::times_1)); 9200 lea(dst, Address(dst, len, Address::times_2)); 9201 negptr(len); 9202 9203 9204 // inflate 32 chars per iter 9205 bind(copy_32_loop); 9206 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit); 9207 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit); 9208 addptr(len, 32); 9209 jcc(Assembler::notZero, copy_32_loop); 9210 9211 bind(copy_tail); 9212 // bail out when there is nothing to be done 9213 testl(tmp2, -1); // we don't destroy the contents of tmp2 here 9214 jcc(Assembler::zero, done); 9215 9216 // ~(~0 << length), where length is the # of remaining elements to process 9217 movl(tmp3_aliased, -1); 9218 shlxl(tmp3_aliased, tmp3_aliased, tmp2); 9219 notl(tmp3_aliased); 9220 kmovdl(mask, tmp3_aliased); 9221 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit); 9222 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit); 9223 9224 jmp(done); 9225 bind(avx3_threshold); 9226 } 9227 if (UseSSE42Intrinsics) { 9228 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail; 9229 9230 if (UseAVX > 1) { 9231 andl(tmp2, (16 - 1)); 9232 andl(len, -16); 9233 jccb(Assembler::zero, copy_new_tail); 9234 } else { 9235 andl(tmp2, 0x00000007); // tail count (in chars) 9236 andl(len, 0xfffffff8); // vector count (in chars) 9237 jccb(Assembler::zero, copy_tail); 9238 } 9239 9240 // vectored inflation 9241 lea(src, Address(src, len, Address::times_1)); 9242 lea(dst, Address(dst, len, Address::times_2)); 9243 negptr(len); 9244 9245 if (UseAVX > 1) { 9246 bind(copy_16_loop); 9247 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit); 9248 vmovdqu(Address(dst, len, Address::times_2), tmp1); 9249 addptr(len, 16); 9250 jcc(Assembler::notZero, copy_16_loop); 9251 9252 bind(below_threshold); 9253 bind(copy_new_tail); 9254 movl(len, tmp2); 9255 andl(tmp2, 0x00000007); 9256 andl(len, 0xFFFFFFF8); 9257 jccb(Assembler::zero, copy_tail); 9258 9259 pmovzxbw(tmp1, Address(src, 0)); 9260 movdqu(Address(dst, 0), tmp1); 9261 addptr(src, 8); 9262 addptr(dst, 2 * 8); 9263 9264 jmp(copy_tail, true); 9265 } 9266 9267 // inflate 8 chars per iter 9268 bind(copy_8_loop); 9269 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words 9270 movdqu(Address(dst, len, Address::times_2), tmp1); 9271 addptr(len, 8); 9272 jcc(Assembler::notZero, copy_8_loop); 9273 9274 bind(copy_tail); 9275 movl(len, tmp2); 9276 9277 cmpl(len, 4); 9278 jccb(Assembler::less, copy_bytes); 9279 9280 movdl(tmp1, Address(src, 0)); // load 4 byte chars 9281 pmovzxbw(tmp1, tmp1); 9282 movq(Address(dst, 0), tmp1); 9283 subptr(len, 4); 9284 addptr(src, 4); 9285 addptr(dst, 8); 9286 9287 bind(copy_bytes); 9288 } else { 9289 bind(below_threshold); 9290 } 9291 9292 testl(len, len); 9293 jccb(Assembler::zero, done); 9294 lea(src, Address(src, len, Address::times_1)); 9295 lea(dst, Address(dst, len, Address::times_2)); 9296 negptr(len); 9297 9298 // inflate 1 char per iter 9299 bind(copy_chars_loop); 9300 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char 9301 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word 9302 increment(len); 9303 jcc(Assembler::notZero, copy_chars_loop); 9304 9305 bind(done); 9306 } 9307 9308 9309 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) { 9310 switch(type) { 9311 case T_BYTE: 9312 case T_BOOLEAN: 9313 evmovdqub(dst, kmask, src, merge, vector_len); 9314 break; 9315 case T_CHAR: 9316 case T_SHORT: 9317 evmovdquw(dst, kmask, src, merge, vector_len); 9318 break; 9319 case T_INT: 9320 case T_FLOAT: 9321 evmovdqul(dst, kmask, src, merge, vector_len); 9322 break; 9323 case T_LONG: 9324 case T_DOUBLE: 9325 evmovdquq(dst, kmask, src, merge, vector_len); 9326 break; 9327 default: 9328 fatal("Unexpected type argument %s", type2name(type)); 9329 break; 9330 } 9331 } 9332 9333 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) { 9334 switch(type) { 9335 case T_BYTE: 9336 case T_BOOLEAN: 9337 evmovdqub(dst, kmask, src, merge, vector_len); 9338 break; 9339 case T_CHAR: 9340 case T_SHORT: 9341 evmovdquw(dst, kmask, src, merge, vector_len); 9342 break; 9343 case T_INT: 9344 case T_FLOAT: 9345 evmovdqul(dst, kmask, src, merge, vector_len); 9346 break; 9347 case T_LONG: 9348 case T_DOUBLE: 9349 evmovdquq(dst, kmask, src, merge, vector_len); 9350 break; 9351 default: 9352 fatal("Unexpected type argument %s", type2name(type)); 9353 break; 9354 } 9355 } 9356 9357 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) { 9358 switch(masklen) { 9359 case 2: 9360 knotbl(dst, src); 9361 movl(rtmp, 3); 9362 kmovbl(ktmp, rtmp); 9363 kandbl(dst, ktmp, dst); 9364 break; 9365 case 4: 9366 knotbl(dst, src); 9367 movl(rtmp, 15); 9368 kmovbl(ktmp, rtmp); 9369 kandbl(dst, ktmp, dst); 9370 break; 9371 case 8: 9372 knotbl(dst, src); 9373 break; 9374 case 16: 9375 knotwl(dst, src); 9376 break; 9377 case 32: 9378 knotdl(dst, src); 9379 break; 9380 case 64: 9381 knotql(dst, src); 9382 break; 9383 default: 9384 fatal("Unexpected vector length %d", masklen); 9385 break; 9386 } 9387 } 9388 9389 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9390 switch(type) { 9391 case T_BOOLEAN: 9392 case T_BYTE: 9393 kandbl(dst, src1, src2); 9394 break; 9395 case T_CHAR: 9396 case T_SHORT: 9397 kandwl(dst, src1, src2); 9398 break; 9399 case T_INT: 9400 case T_FLOAT: 9401 kanddl(dst, src1, src2); 9402 break; 9403 case T_LONG: 9404 case T_DOUBLE: 9405 kandql(dst, src1, src2); 9406 break; 9407 default: 9408 fatal("Unexpected type argument %s", type2name(type)); 9409 break; 9410 } 9411 } 9412 9413 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9414 switch(type) { 9415 case T_BOOLEAN: 9416 case T_BYTE: 9417 korbl(dst, src1, src2); 9418 break; 9419 case T_CHAR: 9420 case T_SHORT: 9421 korwl(dst, src1, src2); 9422 break; 9423 case T_INT: 9424 case T_FLOAT: 9425 kordl(dst, src1, src2); 9426 break; 9427 case T_LONG: 9428 case T_DOUBLE: 9429 korql(dst, src1, src2); 9430 break; 9431 default: 9432 fatal("Unexpected type argument %s", type2name(type)); 9433 break; 9434 } 9435 } 9436 9437 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9438 switch(type) { 9439 case T_BOOLEAN: 9440 case T_BYTE: 9441 kxorbl(dst, src1, src2); 9442 break; 9443 case T_CHAR: 9444 case T_SHORT: 9445 kxorwl(dst, src1, src2); 9446 break; 9447 case T_INT: 9448 case T_FLOAT: 9449 kxordl(dst, src1, src2); 9450 break; 9451 case T_LONG: 9452 case T_DOUBLE: 9453 kxorql(dst, src1, src2); 9454 break; 9455 default: 9456 fatal("Unexpected type argument %s", type2name(type)); 9457 break; 9458 } 9459 } 9460 9461 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9462 switch(type) { 9463 case T_BOOLEAN: 9464 case T_BYTE: 9465 evpermb(dst, mask, nds, src, merge, vector_len); break; 9466 case T_CHAR: 9467 case T_SHORT: 9468 evpermw(dst, mask, nds, src, merge, vector_len); break; 9469 case T_INT: 9470 case T_FLOAT: 9471 evpermd(dst, mask, nds, src, merge, vector_len); break; 9472 case T_LONG: 9473 case T_DOUBLE: 9474 evpermq(dst, mask, nds, src, merge, vector_len); break; 9475 default: 9476 fatal("Unexpected type argument %s", type2name(type)); break; 9477 } 9478 } 9479 9480 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9481 switch(type) { 9482 case T_BOOLEAN: 9483 case T_BYTE: 9484 evpermb(dst, mask, nds, src, merge, vector_len); break; 9485 case T_CHAR: 9486 case T_SHORT: 9487 evpermw(dst, mask, nds, src, merge, vector_len); break; 9488 case T_INT: 9489 case T_FLOAT: 9490 evpermd(dst, mask, nds, src, merge, vector_len); break; 9491 case T_LONG: 9492 case T_DOUBLE: 9493 evpermq(dst, mask, nds, src, merge, vector_len); break; 9494 default: 9495 fatal("Unexpected type argument %s", type2name(type)); break; 9496 } 9497 } 9498 9499 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9500 switch(type) { 9501 case T_BYTE: 9502 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9503 case T_SHORT: 9504 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9505 case T_INT: 9506 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9507 case T_LONG: 9508 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9509 default: 9510 fatal("Unexpected type argument %s", type2name(type)); break; 9511 } 9512 } 9513 9514 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9515 switch(type) { 9516 case T_BYTE: 9517 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9518 case T_SHORT: 9519 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9520 case T_INT: 9521 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9522 case T_LONG: 9523 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9524 default: 9525 fatal("Unexpected type argument %s", type2name(type)); break; 9526 } 9527 } 9528 9529 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9530 switch(type) { 9531 case T_BYTE: 9532 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9533 case T_SHORT: 9534 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9535 case T_INT: 9536 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9537 case T_LONG: 9538 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9539 default: 9540 fatal("Unexpected type argument %s", type2name(type)); break; 9541 } 9542 } 9543 9544 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9545 switch(type) { 9546 case T_BYTE: 9547 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9548 case T_SHORT: 9549 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9550 case T_INT: 9551 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9552 case T_LONG: 9553 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9554 default: 9555 fatal("Unexpected type argument %s", type2name(type)); break; 9556 } 9557 } 9558 9559 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9560 switch(type) { 9561 case T_INT: 9562 evpxord(dst, mask, nds, src, merge, vector_len); break; 9563 case T_LONG: 9564 evpxorq(dst, mask, nds, src, merge, vector_len); break; 9565 default: 9566 fatal("Unexpected type argument %s", type2name(type)); break; 9567 } 9568 } 9569 9570 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9571 switch(type) { 9572 case T_INT: 9573 evpxord(dst, mask, nds, src, merge, vector_len); break; 9574 case T_LONG: 9575 evpxorq(dst, mask, nds, src, merge, vector_len); break; 9576 default: 9577 fatal("Unexpected type argument %s", type2name(type)); break; 9578 } 9579 } 9580 9581 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9582 switch(type) { 9583 case T_INT: 9584 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9585 case T_LONG: 9586 evporq(dst, mask, nds, src, merge, vector_len); break; 9587 default: 9588 fatal("Unexpected type argument %s", type2name(type)); break; 9589 } 9590 } 9591 9592 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9593 switch(type) { 9594 case T_INT: 9595 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9596 case T_LONG: 9597 evporq(dst, mask, nds, src, merge, vector_len); break; 9598 default: 9599 fatal("Unexpected type argument %s", type2name(type)); break; 9600 } 9601 } 9602 9603 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9604 switch(type) { 9605 case T_INT: 9606 evpandd(dst, mask, nds, src, merge, vector_len); break; 9607 case T_LONG: 9608 evpandq(dst, mask, nds, src, merge, vector_len); break; 9609 default: 9610 fatal("Unexpected type argument %s", type2name(type)); break; 9611 } 9612 } 9613 9614 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9615 switch(type) { 9616 case T_INT: 9617 evpandd(dst, mask, nds, src, merge, vector_len); break; 9618 case T_LONG: 9619 evpandq(dst, mask, nds, src, merge, vector_len); break; 9620 default: 9621 fatal("Unexpected type argument %s", type2name(type)); break; 9622 } 9623 } 9624 9625 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) { 9626 switch(masklen) { 9627 case 8: 9628 kortestbl(src1, src2); 9629 break; 9630 case 16: 9631 kortestwl(src1, src2); 9632 break; 9633 case 32: 9634 kortestdl(src1, src2); 9635 break; 9636 case 64: 9637 kortestql(src1, src2); 9638 break; 9639 default: 9640 fatal("Unexpected mask length %d", masklen); 9641 break; 9642 } 9643 } 9644 9645 9646 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) { 9647 switch(masklen) { 9648 case 8: 9649 ktestbl(src1, src2); 9650 break; 9651 case 16: 9652 ktestwl(src1, src2); 9653 break; 9654 case 32: 9655 ktestdl(src1, src2); 9656 break; 9657 case 64: 9658 ktestql(src1, src2); 9659 break; 9660 default: 9661 fatal("Unexpected mask length %d", masklen); 9662 break; 9663 } 9664 } 9665 9666 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9667 switch(type) { 9668 case T_INT: 9669 evprold(dst, mask, src, shift, merge, vlen_enc); break; 9670 case T_LONG: 9671 evprolq(dst, mask, src, shift, merge, vlen_enc); break; 9672 default: 9673 fatal("Unexpected type argument %s", type2name(type)); break; 9674 break; 9675 } 9676 } 9677 9678 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9679 switch(type) { 9680 case T_INT: 9681 evprord(dst, mask, src, shift, merge, vlen_enc); break; 9682 case T_LONG: 9683 evprorq(dst, mask, src, shift, merge, vlen_enc); break; 9684 default: 9685 fatal("Unexpected type argument %s", type2name(type)); break; 9686 } 9687 } 9688 9689 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9690 switch(type) { 9691 case T_INT: 9692 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break; 9693 case T_LONG: 9694 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break; 9695 default: 9696 fatal("Unexpected type argument %s", type2name(type)); break; 9697 } 9698 } 9699 9700 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9701 switch(type) { 9702 case T_INT: 9703 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break; 9704 case T_LONG: 9705 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break; 9706 default: 9707 fatal("Unexpected type argument %s", type2name(type)); break; 9708 } 9709 } 9710 9711 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9712 assert(rscratch != noreg || always_reachable(src), "missing"); 9713 9714 if (reachable(src)) { 9715 evpandq(dst, nds, as_Address(src), vector_len); 9716 } else { 9717 lea(rscratch, src); 9718 evpandq(dst, nds, Address(rscratch, 0), vector_len); 9719 } 9720 } 9721 9722 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 9723 assert(rscratch != noreg || always_reachable(src), "missing"); 9724 9725 if (reachable(src)) { 9726 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len); 9727 } else { 9728 lea(rscratch, src); 9729 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 9730 } 9731 } 9732 9733 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9734 assert(rscratch != noreg || always_reachable(src), "missing"); 9735 9736 if (reachable(src)) { 9737 evporq(dst, nds, as_Address(src), vector_len); 9738 } else { 9739 lea(rscratch, src); 9740 evporq(dst, nds, Address(rscratch, 0), vector_len); 9741 } 9742 } 9743 9744 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9745 assert(rscratch != noreg || always_reachable(src), "missing"); 9746 9747 if (reachable(src)) { 9748 vpshufb(dst, nds, as_Address(src), vector_len); 9749 } else { 9750 lea(rscratch, src); 9751 vpshufb(dst, nds, Address(rscratch, 0), vector_len); 9752 } 9753 } 9754 9755 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9756 assert(rscratch != noreg || always_reachable(src), "missing"); 9757 9758 if (reachable(src)) { 9759 Assembler::vpor(dst, nds, as_Address(src), vector_len); 9760 } else { 9761 lea(rscratch, src); 9762 Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len); 9763 } 9764 } 9765 9766 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) { 9767 assert(rscratch != noreg || always_reachable(src3), "missing"); 9768 9769 if (reachable(src3)) { 9770 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len); 9771 } else { 9772 lea(rscratch, src3); 9773 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len); 9774 } 9775 } 9776 9777 #if COMPILER2_OR_JVMCI 9778 9779 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 9780 Register length, Register temp, int vec_enc) { 9781 // Computing mask for predicated vector store. 9782 movptr(temp, -1); 9783 bzhiq(temp, temp, length); 9784 kmov(mask, temp); 9785 evmovdqu(bt, mask, dst, xmm, true, vec_enc); 9786 } 9787 9788 // Set memory operation for length "less than" 64 bytes. 9789 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp, 9790 XMMRegister xmm, KRegister mask, Register length, 9791 Register temp, bool use64byteVector) { 9792 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9793 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9794 if (!use64byteVector) { 9795 fill32(dst, disp, xmm); 9796 subptr(length, 32 >> shift); 9797 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp); 9798 } else { 9799 assert(MaxVectorSize == 64, "vector length != 64"); 9800 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit); 9801 } 9802 } 9803 9804 9805 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp, 9806 XMMRegister xmm, KRegister mask, Register length, 9807 Register temp) { 9808 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9809 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9810 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit); 9811 } 9812 9813 9814 void MacroAssembler::fill32(Address dst, XMMRegister xmm) { 9815 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9816 vmovdqu(dst, xmm); 9817 } 9818 9819 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) { 9820 fill32(Address(dst, disp), xmm); 9821 } 9822 9823 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) { 9824 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9825 if (!use64byteVector) { 9826 fill32(dst, xmm); 9827 fill32(dst.plus_disp(32), xmm); 9828 } else { 9829 evmovdquq(dst, xmm, Assembler::AVX_512bit); 9830 } 9831 } 9832 9833 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) { 9834 fill64(Address(dst, disp), xmm, use64byteVector); 9835 } 9836 9837 #ifdef _LP64 9838 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value, 9839 Register count, Register rtmp, XMMRegister xtmp) { 9840 Label L_exit; 9841 Label L_fill_start; 9842 Label L_fill_64_bytes; 9843 Label L_fill_96_bytes; 9844 Label L_fill_128_bytes; 9845 Label L_fill_128_bytes_loop; 9846 Label L_fill_128_loop_header; 9847 Label L_fill_128_bytes_loop_header; 9848 Label L_fill_128_bytes_loop_pre_header; 9849 Label L_fill_zmm_sequence; 9850 9851 int shift = -1; 9852 int avx3threshold = VM_Version::avx3_threshold(); 9853 switch(type) { 9854 case T_BYTE: shift = 0; 9855 break; 9856 case T_SHORT: shift = 1; 9857 break; 9858 case T_INT: shift = 2; 9859 break; 9860 /* Uncomment when LONG fill stubs are supported. 9861 case T_LONG: shift = 3; 9862 break; 9863 */ 9864 default: 9865 fatal("Unhandled type: %s\n", type2name(type)); 9866 } 9867 9868 if ((avx3threshold != 0) || (MaxVectorSize == 32)) { 9869 9870 if (MaxVectorSize == 64) { 9871 cmpq(count, avx3threshold >> shift); 9872 jcc(Assembler::greater, L_fill_zmm_sequence); 9873 } 9874 9875 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit); 9876 9877 bind(L_fill_start); 9878 9879 cmpq(count, 32 >> shift); 9880 jccb(Assembler::greater, L_fill_64_bytes); 9881 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp); 9882 jmp(L_exit); 9883 9884 bind(L_fill_64_bytes); 9885 cmpq(count, 64 >> shift); 9886 jccb(Assembler::greater, L_fill_96_bytes); 9887 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp); 9888 jmp(L_exit); 9889 9890 bind(L_fill_96_bytes); 9891 cmpq(count, 96 >> shift); 9892 jccb(Assembler::greater, L_fill_128_bytes); 9893 fill64(to, 0, xtmp); 9894 subq(count, 64 >> shift); 9895 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp); 9896 jmp(L_exit); 9897 9898 bind(L_fill_128_bytes); 9899 cmpq(count, 128 >> shift); 9900 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header); 9901 fill64(to, 0, xtmp); 9902 fill32(to, 64, xtmp); 9903 subq(count, 96 >> shift); 9904 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp); 9905 jmp(L_exit); 9906 9907 bind(L_fill_128_bytes_loop_pre_header); 9908 { 9909 mov(rtmp, to); 9910 andq(rtmp, 31); 9911 jccb(Assembler::zero, L_fill_128_bytes_loop_header); 9912 negq(rtmp); 9913 addq(rtmp, 32); 9914 mov64(r8, -1L); 9915 bzhiq(r8, r8, rtmp); 9916 kmovql(k2, r8); 9917 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit); 9918 addq(to, rtmp); 9919 shrq(rtmp, shift); 9920 subq(count, rtmp); 9921 } 9922 9923 cmpq(count, 128 >> shift); 9924 jcc(Assembler::less, L_fill_start); 9925 9926 bind(L_fill_128_bytes_loop_header); 9927 subq(count, 128 >> shift); 9928 9929 align32(); 9930 bind(L_fill_128_bytes_loop); 9931 fill64(to, 0, xtmp); 9932 fill64(to, 64, xtmp); 9933 addq(to, 128); 9934 subq(count, 128 >> shift); 9935 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop); 9936 9937 addq(count, 128 >> shift); 9938 jcc(Assembler::zero, L_exit); 9939 jmp(L_fill_start); 9940 } 9941 9942 if (MaxVectorSize == 64) { 9943 // Sequence using 64 byte ZMM register. 9944 Label L_fill_128_bytes_zmm; 9945 Label L_fill_192_bytes_zmm; 9946 Label L_fill_192_bytes_loop_zmm; 9947 Label L_fill_192_bytes_loop_header_zmm; 9948 Label L_fill_192_bytes_loop_pre_header_zmm; 9949 Label L_fill_start_zmm_sequence; 9950 9951 bind(L_fill_zmm_sequence); 9952 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit); 9953 9954 bind(L_fill_start_zmm_sequence); 9955 cmpq(count, 64 >> shift); 9956 jccb(Assembler::greater, L_fill_128_bytes_zmm); 9957 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true); 9958 jmp(L_exit); 9959 9960 bind(L_fill_128_bytes_zmm); 9961 cmpq(count, 128 >> shift); 9962 jccb(Assembler::greater, L_fill_192_bytes_zmm); 9963 fill64(to, 0, xtmp, true); 9964 subq(count, 64 >> shift); 9965 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true); 9966 jmp(L_exit); 9967 9968 bind(L_fill_192_bytes_zmm); 9969 cmpq(count, 192 >> shift); 9970 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm); 9971 fill64(to, 0, xtmp, true); 9972 fill64(to, 64, xtmp, true); 9973 subq(count, 128 >> shift); 9974 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true); 9975 jmp(L_exit); 9976 9977 bind(L_fill_192_bytes_loop_pre_header_zmm); 9978 { 9979 movq(rtmp, to); 9980 andq(rtmp, 63); 9981 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm); 9982 negq(rtmp); 9983 addq(rtmp, 64); 9984 mov64(r8, -1L); 9985 bzhiq(r8, r8, rtmp); 9986 kmovql(k2, r8); 9987 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit); 9988 addq(to, rtmp); 9989 shrq(rtmp, shift); 9990 subq(count, rtmp); 9991 } 9992 9993 cmpq(count, 192 >> shift); 9994 jcc(Assembler::less, L_fill_start_zmm_sequence); 9995 9996 bind(L_fill_192_bytes_loop_header_zmm); 9997 subq(count, 192 >> shift); 9998 9999 align32(); 10000 bind(L_fill_192_bytes_loop_zmm); 10001 fill64(to, 0, xtmp, true); 10002 fill64(to, 64, xtmp, true); 10003 fill64(to, 128, xtmp, true); 10004 addq(to, 192); 10005 subq(count, 192 >> shift); 10006 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm); 10007 10008 addq(count, 192 >> shift); 10009 jcc(Assembler::zero, L_exit); 10010 jmp(L_fill_start_zmm_sequence); 10011 } 10012 bind(L_exit); 10013 } 10014 #endif 10015 #endif //COMPILER2_OR_JVMCI 10016 10017 10018 #ifdef _LP64 10019 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) { 10020 Label done; 10021 cvttss2sil(dst, src); 10022 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10023 cmpl(dst, 0x80000000); // float_sign_flip 10024 jccb(Assembler::notEqual, done); 10025 subptr(rsp, 8); 10026 movflt(Address(rsp, 0), src); 10027 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup()))); 10028 pop(dst); 10029 bind(done); 10030 } 10031 10032 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) { 10033 Label done; 10034 cvttsd2sil(dst, src); 10035 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10036 cmpl(dst, 0x80000000); // float_sign_flip 10037 jccb(Assembler::notEqual, done); 10038 subptr(rsp, 8); 10039 movdbl(Address(rsp, 0), src); 10040 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup()))); 10041 pop(dst); 10042 bind(done); 10043 } 10044 10045 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) { 10046 Label done; 10047 cvttss2siq(dst, src); 10048 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10049 jccb(Assembler::notEqual, done); 10050 subptr(rsp, 8); 10051 movflt(Address(rsp, 0), src); 10052 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup()))); 10053 pop(dst); 10054 bind(done); 10055 } 10056 10057 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10058 // Following code is line by line assembly translation rounding algorithm. 10059 // Please refer to java.lang.Math.round(float) algorithm for details. 10060 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000; 10061 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24; 10062 const int32_t FloatConsts_EXP_BIAS = 127; 10063 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF; 10064 const int32_t MINUS_32 = 0xFFFFFFE0; 10065 Label L_special_case, L_block1, L_exit; 10066 movl(rtmp, FloatConsts_EXP_BIT_MASK); 10067 movdl(dst, src); 10068 andl(dst, rtmp); 10069 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1); 10070 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS); 10071 subl(rtmp, dst); 10072 movl(rcx, rtmp); 10073 movl(dst, MINUS_32); 10074 testl(rtmp, dst); 10075 jccb(Assembler::notEqual, L_special_case); 10076 movdl(dst, src); 10077 andl(dst, FloatConsts_SIGNIF_BIT_MASK); 10078 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1); 10079 movdl(rtmp, src); 10080 testl(rtmp, rtmp); 10081 jccb(Assembler::greaterEqual, L_block1); 10082 negl(dst); 10083 bind(L_block1); 10084 sarl(dst); 10085 addl(dst, 0x1); 10086 sarl(dst, 0x1); 10087 jmp(L_exit); 10088 bind(L_special_case); 10089 convert_f2i(dst, src); 10090 bind(L_exit); 10091 } 10092 10093 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10094 // Following code is line by line assembly translation rounding algorithm. 10095 // Please refer to java.lang.Math.round(double) algorithm for details. 10096 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L; 10097 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53; 10098 const int64_t DoubleConsts_EXP_BIAS = 1023; 10099 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL; 10100 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L; 10101 Label L_special_case, L_block1, L_exit; 10102 mov64(rtmp, DoubleConsts_EXP_BIT_MASK); 10103 movq(dst, src); 10104 andq(dst, rtmp); 10105 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1); 10106 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS); 10107 subq(rtmp, dst); 10108 movq(rcx, rtmp); 10109 mov64(dst, MINUS_64); 10110 testq(rtmp, dst); 10111 jccb(Assembler::notEqual, L_special_case); 10112 movq(dst, src); 10113 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK); 10114 andq(dst, rtmp); 10115 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1); 10116 orq(dst, rtmp); 10117 movq(rtmp, src); 10118 testq(rtmp, rtmp); 10119 jccb(Assembler::greaterEqual, L_block1); 10120 negq(dst); 10121 bind(L_block1); 10122 sarq(dst); 10123 addq(dst, 0x1); 10124 sarq(dst, 0x1); 10125 jmp(L_exit); 10126 bind(L_special_case); 10127 convert_d2l(dst, src); 10128 bind(L_exit); 10129 } 10130 10131 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) { 10132 Label done; 10133 cvttsd2siq(dst, src); 10134 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10135 jccb(Assembler::notEqual, done); 10136 subptr(rsp, 8); 10137 movdbl(Address(rsp, 0), src); 10138 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 10139 pop(dst); 10140 bind(done); 10141 } 10142 10143 void MacroAssembler::cache_wb(Address line) 10144 { 10145 // 64 bit cpus always support clflush 10146 assert(VM_Version::supports_clflush(), "clflush should be available"); 10147 bool optimized = VM_Version::supports_clflushopt(); 10148 bool no_evict = VM_Version::supports_clwb(); 10149 10150 // prefer clwb (writeback without evict) otherwise 10151 // prefer clflushopt (potentially parallel writeback with evict) 10152 // otherwise fallback on clflush (serial writeback with evict) 10153 10154 if (optimized) { 10155 if (no_evict) { 10156 clwb(line); 10157 } else { 10158 clflushopt(line); 10159 } 10160 } else { 10161 // no need for fence when using CLFLUSH 10162 clflush(line); 10163 } 10164 } 10165 10166 void MacroAssembler::cache_wbsync(bool is_pre) 10167 { 10168 assert(VM_Version::supports_clflush(), "clflush should be available"); 10169 bool optimized = VM_Version::supports_clflushopt(); 10170 bool no_evict = VM_Version::supports_clwb(); 10171 10172 // pick the correct implementation 10173 10174 if (!is_pre && (optimized || no_evict)) { 10175 // need an sfence for post flush when using clflushopt or clwb 10176 // otherwise no no need for any synchroniaztion 10177 10178 sfence(); 10179 } 10180 } 10181 10182 #endif // _LP64 10183 10184 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { 10185 switch (cond) { 10186 // Note some conditions are synonyms for others 10187 case Assembler::zero: return Assembler::notZero; 10188 case Assembler::notZero: return Assembler::zero; 10189 case Assembler::less: return Assembler::greaterEqual; 10190 case Assembler::lessEqual: return Assembler::greater; 10191 case Assembler::greater: return Assembler::lessEqual; 10192 case Assembler::greaterEqual: return Assembler::less; 10193 case Assembler::below: return Assembler::aboveEqual; 10194 case Assembler::belowEqual: return Assembler::above; 10195 case Assembler::above: return Assembler::belowEqual; 10196 case Assembler::aboveEqual: return Assembler::below; 10197 case Assembler::overflow: return Assembler::noOverflow; 10198 case Assembler::noOverflow: return Assembler::overflow; 10199 case Assembler::negative: return Assembler::positive; 10200 case Assembler::positive: return Assembler::negative; 10201 case Assembler::parity: return Assembler::noParity; 10202 case Assembler::noParity: return Assembler::parity; 10203 } 10204 ShouldNotReachHere(); return Assembler::overflow; 10205 } 10206 10207 SkipIfEqual::SkipIfEqual( 10208 MacroAssembler* masm, const bool* flag_addr, bool value, Register rscratch) { 10209 _masm = masm; 10210 _masm->cmp8(ExternalAddress((address)flag_addr), value, rscratch); 10211 _masm->jcc(Assembler::equal, _label); 10212 } 10213 10214 SkipIfEqual::~SkipIfEqual() { 10215 _masm->bind(_label); 10216 } 10217 10218 // 32-bit Windows has its own fast-path implementation 10219 // of get_thread 10220 #if !defined(WIN32) || defined(_LP64) 10221 10222 // This is simply a call to Thread::current() 10223 void MacroAssembler::get_thread(Register thread) { 10224 if (thread != rax) { 10225 push(rax); 10226 } 10227 LP64_ONLY(push(rdi);) 10228 LP64_ONLY(push(rsi);) 10229 push(rdx); 10230 push(rcx); 10231 #ifdef _LP64 10232 push(r8); 10233 push(r9); 10234 push(r10); 10235 push(r11); 10236 #endif 10237 10238 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0); 10239 10240 #ifdef _LP64 10241 pop(r11); 10242 pop(r10); 10243 pop(r9); 10244 pop(r8); 10245 #endif 10246 pop(rcx); 10247 pop(rdx); 10248 LP64_ONLY(pop(rsi);) 10249 LP64_ONLY(pop(rdi);) 10250 if (thread != rax) { 10251 mov(thread, rax); 10252 pop(rax); 10253 } 10254 } 10255 10256 10257 #endif // !WIN32 || _LP64 10258 10259 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) { 10260 Label L_stack_ok; 10261 if (bias == 0) { 10262 testptr(sp, 2 * wordSize - 1); 10263 } else { 10264 // lea(tmp, Address(rsp, bias); 10265 mov(tmp, sp); 10266 addptr(tmp, bias); 10267 testptr(tmp, 2 * wordSize - 1); 10268 } 10269 jcc(Assembler::equal, L_stack_ok); 10270 block_comment(msg); 10271 stop(msg); 10272 bind(L_stack_ok); 10273 } 10274 10275 // Implements lightweight-locking. 10276 // 10277 // obj: the object to be locked 10278 // reg_rax: rax 10279 // thread: the thread which attempts to lock obj 10280 // tmp: a temporary register 10281 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 10282 assert(reg_rax == rax, ""); 10283 assert_different_registers(basic_lock, obj, reg_rax, thread, tmp); 10284 10285 Label push; 10286 const Register top = tmp; 10287 10288 // Preload the markWord. It is important that this is the first 10289 // instruction emitted as it is part of C1's null check semantics. 10290 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10291 10292 if (UseObjectMonitorTable) { 10293 // Clear cache in case fast locking succeeds. 10294 movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0); 10295 } 10296 10297 // Load top. 10298 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10299 10300 // Check if the lock-stack is full. 10301 cmpl(top, LockStack::end_offset()); 10302 jcc(Assembler::greaterEqual, slow); 10303 10304 // Check for recursion. 10305 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10306 jcc(Assembler::equal, push); 10307 10308 // Check header for monitor (0b10). 10309 testptr(reg_rax, markWord::monitor_value); 10310 jcc(Assembler::notZero, slow); 10311 10312 // Try to lock. Transition lock bits 0b01 => 0b00 10313 movptr(tmp, reg_rax); 10314 andptr(tmp, ~(int32_t)markWord::unlocked_value); 10315 orptr(reg_rax, markWord::unlocked_value); 10316 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10317 jcc(Assembler::notEqual, slow); 10318 10319 // Restore top, CAS clobbers register. 10320 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10321 10322 bind(push); 10323 // After successful lock, push object on lock-stack. 10324 movptr(Address(thread, top), obj); 10325 incrementl(top, oopSize); 10326 movl(Address(thread, JavaThread::lock_stack_top_offset()), top); 10327 } 10328 10329 // Implements lightweight-unlocking. 10330 // 10331 // obj: the object to be unlocked 10332 // reg_rax: rax 10333 // thread: the thread 10334 // tmp: a temporary register 10335 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 10336 assert(reg_rax == rax, ""); 10337 assert_different_registers(obj, reg_rax, thread, tmp); 10338 10339 Label unlocked, push_and_slow; 10340 const Register top = tmp; 10341 10342 // Check if obj is top of lock-stack. 10343 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10344 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10345 jcc(Assembler::notEqual, slow); 10346 10347 // Pop lock-stack. 10348 DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);) 10349 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10350 10351 // Check if recursive. 10352 cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize)); 10353 jcc(Assembler::equal, unlocked); 10354 10355 // Not recursive. Check header for monitor (0b10). 10356 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10357 testptr(reg_rax, markWord::monitor_value); 10358 jcc(Assembler::notZero, push_and_slow); 10359 10360 #ifdef ASSERT 10361 // Check header not unlocked (0b01). 10362 Label not_unlocked; 10363 testptr(reg_rax, markWord::unlocked_value); 10364 jcc(Assembler::zero, not_unlocked); 10365 stop("lightweight_unlock already unlocked"); 10366 bind(not_unlocked); 10367 #endif 10368 10369 // Try to unlock. Transition lock bits 0b00 => 0b01 10370 movptr(tmp, reg_rax); 10371 orptr(tmp, markWord::unlocked_value); 10372 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10373 jcc(Assembler::equal, unlocked); 10374 10375 bind(push_and_slow); 10376 // Restore lock-stack and handle the unlock in runtime. 10377 #ifdef ASSERT 10378 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10379 movptr(Address(thread, top), obj); 10380 #endif 10381 addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10382 jmp(slow); 10383 10384 bind(unlocked); 10385 } 10386 10387 #ifdef _LP64 10388 // Saves legacy GPRs state on stack. 10389 void MacroAssembler::save_legacy_gprs() { 10390 subq(rsp, 16 * wordSize); 10391 movq(Address(rsp, 15 * wordSize), rax); 10392 movq(Address(rsp, 14 * wordSize), rcx); 10393 movq(Address(rsp, 13 * wordSize), rdx); 10394 movq(Address(rsp, 12 * wordSize), rbx); 10395 movq(Address(rsp, 10 * wordSize), rbp); 10396 movq(Address(rsp, 9 * wordSize), rsi); 10397 movq(Address(rsp, 8 * wordSize), rdi); 10398 movq(Address(rsp, 7 * wordSize), r8); 10399 movq(Address(rsp, 6 * wordSize), r9); 10400 movq(Address(rsp, 5 * wordSize), r10); 10401 movq(Address(rsp, 4 * wordSize), r11); 10402 movq(Address(rsp, 3 * wordSize), r12); 10403 movq(Address(rsp, 2 * wordSize), r13); 10404 movq(Address(rsp, wordSize), r14); 10405 movq(Address(rsp, 0), r15); 10406 } 10407 10408 // Resotres back legacy GPRs state from stack. 10409 void MacroAssembler::restore_legacy_gprs() { 10410 movq(r15, Address(rsp, 0)); 10411 movq(r14, Address(rsp, wordSize)); 10412 movq(r13, Address(rsp, 2 * wordSize)); 10413 movq(r12, Address(rsp, 3 * wordSize)); 10414 movq(r11, Address(rsp, 4 * wordSize)); 10415 movq(r10, Address(rsp, 5 * wordSize)); 10416 movq(r9, Address(rsp, 6 * wordSize)); 10417 movq(r8, Address(rsp, 7 * wordSize)); 10418 movq(rdi, Address(rsp, 8 * wordSize)); 10419 movq(rsi, Address(rsp, 9 * wordSize)); 10420 movq(rbp, Address(rsp, 10 * wordSize)); 10421 movq(rbx, Address(rsp, 12 * wordSize)); 10422 movq(rdx, Address(rsp, 13 * wordSize)); 10423 movq(rcx, Address(rsp, 14 * wordSize)); 10424 movq(rax, Address(rsp, 15 * wordSize)); 10425 addq(rsp, 16 * wordSize); 10426 } 10427 10428 void MacroAssembler::load_aotrc_address(Register reg, address a) { 10429 #if INCLUDE_CDS 10430 assert(AOTRuntimeConstants::contains(a), "address out of range for data area"); 10431 if (SCCache::is_on_for_write()) { 10432 // all aotrc field addresses should be registered in the SCC address table 10433 lea(reg, ExternalAddress(a)); 10434 } else { 10435 mov64(reg, (uint64_t)a); 10436 } 10437 #else 10438 ShouldNotReachHere(); 10439 #endif 10440 } 10441 10442 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) { 10443 if (VM_Version::supports_apx_f()) { 10444 esetzucc(comparison, dst); 10445 } else { 10446 setb(comparison, dst); 10447 movzbl(dst, dst); 10448 } 10449 } 10450 10451 #endif