1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "code/SCCache.hpp" 29 #include "code/compiledIC.hpp" 30 #include "compiler/compiler_globals.hpp" 31 #include "compiler/disassembler.hpp" 32 #include "crc32c.h" 33 #include "gc/shared/barrierSet.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "gc/shared/collectedHeap.inline.hpp" 36 #include "gc/shared/tlab_globals.hpp" 37 #include "interpreter/bytecodeHistogram.hpp" 38 #include "interpreter/interpreter.hpp" 39 #include "interpreter/interpreterRuntime.hpp" 40 #include "jvm.h" 41 #include "memory/resourceArea.hpp" 42 #include "memory/universe.hpp" 43 #include "oops/accessDecorators.hpp" 44 #include "oops/compressedKlass.inline.hpp" 45 #include "oops/compressedOops.inline.hpp" 46 #include "oops/klass.inline.hpp" 47 #include "prims/methodHandles.hpp" 48 #include "runtime/continuation.hpp" 49 #include "runtime/interfaceSupport.inline.hpp" 50 #include "runtime/javaThread.hpp" 51 #include "runtime/jniHandles.hpp" 52 #include "runtime/objectMonitor.hpp" 53 #include "runtime/os.hpp" 54 #include "runtime/safepoint.hpp" 55 #include "runtime/safepointMechanism.hpp" 56 #include "runtime/sharedRuntime.hpp" 57 #include "runtime/stubRoutines.hpp" 58 #include "utilities/checkedCast.hpp" 59 #include "utilities/macros.hpp" 60 61 #ifdef PRODUCT 62 #define BLOCK_COMMENT(str) /* nothing */ 63 #define STOP(error) stop(error) 64 #else 65 #define BLOCK_COMMENT(str) block_comment(str) 66 #define STOP(error) block_comment(error); stop(error) 67 #endif 68 69 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 70 71 #ifdef ASSERT 72 bool AbstractAssembler::pd_check_instruction_mark() { return true; } 73 #endif 74 75 static const Assembler::Condition reverse[] = { 76 Assembler::noOverflow /* overflow = 0x0 */ , 77 Assembler::overflow /* noOverflow = 0x1 */ , 78 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , 79 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , 80 Assembler::notZero /* zero = 0x4, equal = 0x4 */ , 81 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , 82 Assembler::above /* belowEqual = 0x6 */ , 83 Assembler::belowEqual /* above = 0x7 */ , 84 Assembler::positive /* negative = 0x8 */ , 85 Assembler::negative /* positive = 0x9 */ , 86 Assembler::noParity /* parity = 0xa */ , 87 Assembler::parity /* noParity = 0xb */ , 88 Assembler::greaterEqual /* less = 0xc */ , 89 Assembler::less /* greaterEqual = 0xd */ , 90 Assembler::greater /* lessEqual = 0xe */ , 91 Assembler::lessEqual /* greater = 0xf, */ 92 93 }; 94 95 96 // Implementation of MacroAssembler 97 98 // First all the versions that have distinct versions depending on 32/64 bit 99 // Unless the difference is trivial (1 line or so). 100 101 #ifndef _LP64 102 103 // 32bit versions 104 105 Address MacroAssembler::as_Address(AddressLiteral adr) { 106 return Address(adr.target(), adr.rspec()); 107 } 108 109 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 110 assert(rscratch == noreg, ""); 111 return Address::make_array(adr); 112 } 113 114 void MacroAssembler::call_VM_leaf_base(address entry_point, 115 int number_of_arguments) { 116 call(RuntimeAddress(entry_point)); 117 increment(rsp, number_of_arguments * wordSize); 118 } 119 120 void MacroAssembler::cmpklass(Address src1, Metadata* obj) { 121 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 122 } 123 124 125 void MacroAssembler::cmpklass(Register src1, Metadata* obj) { 126 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 127 } 128 129 void MacroAssembler::cmpoop(Address src1, jobject obj) { 130 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 131 } 132 133 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) { 134 assert(rscratch == noreg, "redundant"); 135 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 136 } 137 138 void MacroAssembler::extend_sign(Register hi, Register lo) { 139 // According to Intel Doc. AP-526, "Integer Divide", p.18. 140 if (VM_Version::is_P6() && hi == rdx && lo == rax) { 141 cdql(); 142 } else { 143 movl(hi, lo); 144 sarl(hi, 31); 145 } 146 } 147 148 void MacroAssembler::jC2(Register tmp, Label& L) { 149 // set parity bit if FPU flag C2 is set (via rax) 150 save_rax(tmp); 151 fwait(); fnstsw_ax(); 152 sahf(); 153 restore_rax(tmp); 154 // branch 155 jcc(Assembler::parity, L); 156 } 157 158 void MacroAssembler::jnC2(Register tmp, Label& L) { 159 // set parity bit if FPU flag C2 is set (via rax) 160 save_rax(tmp); 161 fwait(); fnstsw_ax(); 162 sahf(); 163 restore_rax(tmp); 164 // branch 165 jcc(Assembler::noParity, L); 166 } 167 168 // 32bit can do a case table jump in one instruction but we no longer allow the base 169 // to be installed in the Address class 170 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 171 assert(rscratch == noreg, "not needed"); 172 jmp(as_Address(entry, noreg)); 173 } 174 175 // Note: y_lo will be destroyed 176 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 177 // Long compare for Java (semantics as described in JVM spec.) 178 Label high, low, done; 179 180 cmpl(x_hi, y_hi); 181 jcc(Assembler::less, low); 182 jcc(Assembler::greater, high); 183 // x_hi is the return register 184 xorl(x_hi, x_hi); 185 cmpl(x_lo, y_lo); 186 jcc(Assembler::below, low); 187 jcc(Assembler::equal, done); 188 189 bind(high); 190 xorl(x_hi, x_hi); 191 increment(x_hi); 192 jmp(done); 193 194 bind(low); 195 xorl(x_hi, x_hi); 196 decrementl(x_hi); 197 198 bind(done); 199 } 200 201 void MacroAssembler::lea(Register dst, AddressLiteral src) { 202 mov_literal32(dst, (int32_t)src.target(), src.rspec()); 203 } 204 205 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 206 assert(rscratch == noreg, "not needed"); 207 208 // leal(dst, as_Address(adr)); 209 // see note in movl as to why we must use a move 210 mov_literal32(dst, (int32_t)adr.target(), adr.rspec()); 211 } 212 213 void MacroAssembler::leave() { 214 mov(rsp, rbp); 215 pop(rbp); 216 } 217 218 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) { 219 // Multiplication of two Java long values stored on the stack 220 // as illustrated below. Result is in rdx:rax. 221 // 222 // rsp ---> [ ?? ] \ \ 223 // .... | y_rsp_offset | 224 // [ y_lo ] / (in bytes) | x_rsp_offset 225 // [ y_hi ] | (in bytes) 226 // .... | 227 // [ x_lo ] / 228 // [ x_hi ] 229 // .... 230 // 231 // Basic idea: lo(result) = lo(x_lo * y_lo) 232 // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) 233 Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset); 234 Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset); 235 Label quick; 236 // load x_hi, y_hi and check if quick 237 // multiplication is possible 238 movl(rbx, x_hi); 239 movl(rcx, y_hi); 240 movl(rax, rbx); 241 orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0 242 jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply 243 // do full multiplication 244 // 1st step 245 mull(y_lo); // x_hi * y_lo 246 movl(rbx, rax); // save lo(x_hi * y_lo) in rbx, 247 // 2nd step 248 movl(rax, x_lo); 249 mull(rcx); // x_lo * y_hi 250 addl(rbx, rax); // add lo(x_lo * y_hi) to rbx, 251 // 3rd step 252 bind(quick); // note: rbx, = 0 if quick multiply! 253 movl(rax, x_lo); 254 mull(y_lo); // x_lo * y_lo 255 addl(rdx, rbx); // correct hi(x_lo * y_lo) 256 } 257 258 void MacroAssembler::lneg(Register hi, Register lo) { 259 negl(lo); 260 adcl(hi, 0); 261 negl(hi); 262 } 263 264 void MacroAssembler::lshl(Register hi, Register lo) { 265 // Java shift left long support (semantics as described in JVM spec., p.305) 266 // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n)) 267 // shift value is in rcx ! 268 assert(hi != rcx, "must not use rcx"); 269 assert(lo != rcx, "must not use rcx"); 270 const Register s = rcx; // shift count 271 const int n = BitsPerWord; 272 Label L; 273 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 274 cmpl(s, n); // if (s < n) 275 jcc(Assembler::less, L); // else (s >= n) 276 movl(hi, lo); // x := x << n 277 xorl(lo, lo); 278 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 279 bind(L); // s (mod n) < n 280 shldl(hi, lo); // x := x << s 281 shll(lo); 282 } 283 284 285 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) { 286 // Java shift right long support (semantics as described in JVM spec., p.306 & p.310) 287 // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n)) 288 assert(hi != rcx, "must not use rcx"); 289 assert(lo != rcx, "must not use rcx"); 290 const Register s = rcx; // shift count 291 const int n = BitsPerWord; 292 Label L; 293 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 294 cmpl(s, n); // if (s < n) 295 jcc(Assembler::less, L); // else (s >= n) 296 movl(lo, hi); // x := x >> n 297 if (sign_extension) sarl(hi, 31); 298 else xorl(hi, hi); 299 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 300 bind(L); // s (mod n) < n 301 shrdl(lo, hi); // x := x >> s 302 if (sign_extension) sarl(hi); 303 else shrl(hi); 304 } 305 306 void MacroAssembler::movoop(Register dst, jobject obj) { 307 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 308 } 309 310 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 311 assert(rscratch == noreg, "redundant"); 312 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 313 } 314 315 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 316 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 317 } 318 319 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 320 assert(rscratch == noreg, "redundant"); 321 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 322 } 323 324 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 325 if (src.is_lval()) { 326 mov_literal32(dst, (intptr_t)src.target(), src.rspec()); 327 } else { 328 movl(dst, as_Address(src)); 329 } 330 } 331 332 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 333 assert(rscratch == noreg, "redundant"); 334 movl(as_Address(dst, noreg), src); 335 } 336 337 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 338 movl(dst, as_Address(src, noreg)); 339 } 340 341 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 342 assert(rscratch == noreg, "redundant"); 343 movl(dst, src); 344 } 345 346 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 347 assert(rscratch == noreg, "redundant"); 348 push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate()); 349 } 350 351 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 352 assert(rscratch == noreg, "redundant"); 353 push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate()); 354 } 355 356 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 357 assert(rscratch == noreg, "redundant"); 358 if (src.is_lval()) { 359 push_literal32((int32_t)src.target(), src.rspec()); 360 } else { 361 pushl(as_Address(src)); 362 } 363 } 364 365 static void pass_arg0(MacroAssembler* masm, Register arg) { 366 masm->push(arg); 367 } 368 369 static void pass_arg1(MacroAssembler* masm, Register arg) { 370 masm->push(arg); 371 } 372 373 static void pass_arg2(MacroAssembler* masm, Register arg) { 374 masm->push(arg); 375 } 376 377 static void pass_arg3(MacroAssembler* masm, Register arg) { 378 masm->push(arg); 379 } 380 381 #ifndef PRODUCT 382 extern "C" void findpc(intptr_t x); 383 #endif 384 385 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) { 386 // In order to get locks to work, we need to fake a in_VM state 387 JavaThread* thread = JavaThread::current(); 388 JavaThreadState saved_state = thread->thread_state(); 389 thread->set_thread_state(_thread_in_vm); 390 if (ShowMessageBoxOnError) { 391 JavaThread* thread = JavaThread::current(); 392 JavaThreadState saved_state = thread->thread_state(); 393 thread->set_thread_state(_thread_in_vm); 394 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 395 ttyLocker ttyl; 396 BytecodeCounter::print(); 397 } 398 // To see where a verify_oop failed, get $ebx+40/X for this frame. 399 // This is the value of eip which points to where verify_oop will return. 400 if (os::message_box(msg, "Execution stopped, print registers?")) { 401 print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip); 402 BREAKPOINT; 403 } 404 } 405 fatal("DEBUG MESSAGE: %s", msg); 406 } 407 408 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) { 409 ttyLocker ttyl; 410 DebuggingContext debugging{}; 411 tty->print_cr("eip = 0x%08x", eip); 412 #ifndef PRODUCT 413 if ((WizardMode || Verbose) && PrintMiscellaneous) { 414 tty->cr(); 415 findpc(eip); 416 tty->cr(); 417 } 418 #endif 419 #define PRINT_REG(rax) \ 420 { tty->print("%s = ", #rax); os::print_location(tty, rax); } 421 PRINT_REG(rax); 422 PRINT_REG(rbx); 423 PRINT_REG(rcx); 424 PRINT_REG(rdx); 425 PRINT_REG(rdi); 426 PRINT_REG(rsi); 427 PRINT_REG(rbp); 428 PRINT_REG(rsp); 429 #undef PRINT_REG 430 // Print some words near top of staack. 431 int* dump_sp = (int*) rsp; 432 for (int col1 = 0; col1 < 8; col1++) { 433 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 434 os::print_location(tty, *dump_sp++); 435 } 436 for (int row = 0; row < 16; row++) { 437 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 438 for (int col = 0; col < 8; col++) { 439 tty->print(" 0x%08x", *dump_sp++); 440 } 441 tty->cr(); 442 } 443 // Print some instructions around pc: 444 Disassembler::decode((address)eip-64, (address)eip); 445 tty->print_cr("--------"); 446 Disassembler::decode((address)eip, (address)eip+32); 447 } 448 449 void MacroAssembler::stop(const char* msg) { 450 // push address of message 451 ExternalAddress message((address)msg); 452 pushptr(message.addr(), noreg); 453 { Label L; call(L, relocInfo::none); bind(L); } // push eip 454 pusha(); // push registers 455 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32))); 456 hlt(); 457 } 458 459 void MacroAssembler::warn(const char* msg) { 460 push_CPU_state(); 461 462 // push address of message 463 ExternalAddress message((address)msg); 464 pushptr(message.addr(), noreg); 465 466 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 467 addl(rsp, wordSize); // discard argument 468 pop_CPU_state(); 469 } 470 471 void MacroAssembler::print_state() { 472 { Label L; call(L, relocInfo::none); bind(L); } // push eip 473 pusha(); // push registers 474 475 push_CPU_state(); 476 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32))); 477 pop_CPU_state(); 478 479 popa(); 480 addl(rsp, wordSize); 481 } 482 483 #else // _LP64 484 485 // 64 bit versions 486 487 Address MacroAssembler::as_Address(AddressLiteral adr) { 488 // amd64 always does this as a pc-rel 489 // we can be absolute or disp based on the instruction type 490 // jmp/call are displacements others are absolute 491 assert(!adr.is_lval(), "must be rval"); 492 assert(reachable(adr), "must be"); 493 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc()); 494 495 } 496 497 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 498 AddressLiteral base = adr.base(); 499 lea(rscratch, base); 500 Address index = adr.index(); 501 assert(index._disp == 0, "must not have disp"); // maybe it can? 502 Address array(rscratch, index._index, index._scale, index._disp); 503 return array; 504 } 505 506 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { 507 Label L, E; 508 509 #ifdef _WIN64 510 // Windows always allocates space for it's register args 511 assert(num_args <= 4, "only register arguments supported"); 512 subq(rsp, frame::arg_reg_save_area_bytes); 513 #endif 514 515 // Align stack if necessary 516 testl(rsp, 15); 517 jcc(Assembler::zero, L); 518 519 subq(rsp, 8); 520 call(RuntimeAddress(entry_point)); 521 addq(rsp, 8); 522 jmp(E); 523 524 bind(L); 525 call(RuntimeAddress(entry_point)); 526 527 bind(E); 528 529 #ifdef _WIN64 530 // restore stack pointer 531 addq(rsp, frame::arg_reg_save_area_bytes); 532 #endif 533 } 534 535 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) { 536 assert(!src2.is_lval(), "should use cmpptr"); 537 assert(rscratch != noreg || always_reachable(src2), "missing"); 538 539 if (reachable(src2)) { 540 cmpq(src1, as_Address(src2)); 541 } else { 542 lea(rscratch, src2); 543 Assembler::cmpq(src1, Address(rscratch, 0)); 544 } 545 } 546 547 int MacroAssembler::corrected_idivq(Register reg) { 548 // Full implementation of Java ldiv and lrem; checks for special 549 // case as described in JVM spec., p.243 & p.271. The function 550 // returns the (pc) offset of the idivl instruction - may be needed 551 // for implicit exceptions. 552 // 553 // normal case special case 554 // 555 // input : rax: dividend min_long 556 // reg: divisor (may not be eax/edx) -1 557 // 558 // output: rax: quotient (= rax idiv reg) min_long 559 // rdx: remainder (= rax irem reg) 0 560 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); 561 static const int64_t min_long = 0x8000000000000000; 562 Label normal_case, special_case; 563 564 // check for special case 565 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/); 566 jcc(Assembler::notEqual, normal_case); 567 xorl(rdx, rdx); // prepare rdx for possible special case (where 568 // remainder = 0) 569 cmpq(reg, -1); 570 jcc(Assembler::equal, special_case); 571 572 // handle normal case 573 bind(normal_case); 574 cdqq(); 575 int idivq_offset = offset(); 576 idivq(reg); 577 578 // normal and special case exit 579 bind(special_case); 580 581 return idivq_offset; 582 } 583 584 void MacroAssembler::decrementq(Register reg, int value) { 585 if (value == min_jint) { subq(reg, value); return; } 586 if (value < 0) { incrementq(reg, -value); return; } 587 if (value == 0) { ; return; } 588 if (value == 1 && UseIncDec) { decq(reg) ; return; } 589 /* else */ { subq(reg, value) ; return; } 590 } 591 592 void MacroAssembler::decrementq(Address dst, int value) { 593 if (value == min_jint) { subq(dst, value); return; } 594 if (value < 0) { incrementq(dst, -value); return; } 595 if (value == 0) { ; return; } 596 if (value == 1 && UseIncDec) { decq(dst) ; return; } 597 /* else */ { subq(dst, value) ; return; } 598 } 599 600 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) { 601 assert(rscratch != noreg || always_reachable(dst), "missing"); 602 603 if (reachable(dst)) { 604 incrementq(as_Address(dst)); 605 } else { 606 lea(rscratch, dst); 607 incrementq(Address(rscratch, 0)); 608 } 609 } 610 611 void MacroAssembler::incrementq(Register reg, int value) { 612 if (value == min_jint) { addq(reg, value); return; } 613 if (value < 0) { decrementq(reg, -value); return; } 614 if (value == 0) { ; return; } 615 if (value == 1 && UseIncDec) { incq(reg) ; return; } 616 /* else */ { addq(reg, value) ; return; } 617 } 618 619 void MacroAssembler::incrementq(Address dst, int value) { 620 if (value == min_jint) { addq(dst, value); return; } 621 if (value < 0) { decrementq(dst, -value); return; } 622 if (value == 0) { ; return; } 623 if (value == 1 && UseIncDec) { incq(dst) ; return; } 624 /* else */ { addq(dst, value) ; return; } 625 } 626 627 // 32bit can do a case table jump in one instruction but we no longer allow the base 628 // to be installed in the Address class 629 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 630 lea(rscratch, entry.base()); 631 Address dispatch = entry.index(); 632 assert(dispatch._base == noreg, "must be"); 633 dispatch._base = rscratch; 634 jmp(dispatch); 635 } 636 637 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 638 ShouldNotReachHere(); // 64bit doesn't use two regs 639 cmpq(x_lo, y_lo); 640 } 641 642 void MacroAssembler::lea(Register dst, AddressLiteral src) { 643 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 644 } 645 646 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 647 lea(rscratch, adr); 648 movptr(dst, rscratch); 649 } 650 651 void MacroAssembler::leave() { 652 // %%% is this really better? Why not on 32bit too? 653 emit_int8((unsigned char)0xC9); // LEAVE 654 } 655 656 void MacroAssembler::lneg(Register hi, Register lo) { 657 ShouldNotReachHere(); // 64bit doesn't use two regs 658 negq(lo); 659 } 660 661 void MacroAssembler::movoop(Register dst, jobject obj) { 662 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 663 } 664 665 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 666 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 667 movq(dst, rscratch); 668 } 669 670 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 671 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 672 } 673 674 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 675 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 676 movq(dst, rscratch); 677 } 678 679 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 680 if (src.is_lval()) { 681 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 682 } else { 683 if (reachable(src)) { 684 movq(dst, as_Address(src)); 685 } else { 686 lea(dst, src); 687 movq(dst, Address(dst, 0)); 688 } 689 } 690 } 691 692 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 693 movq(as_Address(dst, rscratch), src); 694 } 695 696 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 697 movq(dst, as_Address(src, dst /*rscratch*/)); 698 } 699 700 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 701 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 702 if (is_simm32(src)) { 703 movptr(dst, checked_cast<int32_t>(src)); 704 } else { 705 mov64(rscratch, src); 706 movq(dst, rscratch); 707 } 708 } 709 710 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 711 movoop(rscratch, obj); 712 push(rscratch); 713 } 714 715 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 716 mov_metadata(rscratch, obj); 717 push(rscratch); 718 } 719 720 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 721 lea(rscratch, src); 722 if (src.is_lval()) { 723 push(rscratch); 724 } else { 725 pushq(Address(rscratch, 0)); 726 } 727 } 728 729 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 730 reset_last_Java_frame(r15_thread, clear_fp); 731 } 732 733 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 734 Register last_java_fp, 735 address last_java_pc, 736 Register rscratch) { 737 set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, last_java_pc, rscratch); 738 } 739 740 static void pass_arg0(MacroAssembler* masm, Register arg) { 741 if (c_rarg0 != arg ) { 742 masm->mov(c_rarg0, arg); 743 } 744 } 745 746 static void pass_arg1(MacroAssembler* masm, Register arg) { 747 if (c_rarg1 != arg ) { 748 masm->mov(c_rarg1, arg); 749 } 750 } 751 752 static void pass_arg2(MacroAssembler* masm, Register arg) { 753 if (c_rarg2 != arg ) { 754 masm->mov(c_rarg2, arg); 755 } 756 } 757 758 static void pass_arg3(MacroAssembler* masm, Register arg) { 759 if (c_rarg3 != arg ) { 760 masm->mov(c_rarg3, arg); 761 } 762 } 763 764 void MacroAssembler::stop(const char* msg) { 765 if (ShowMessageBoxOnError) { 766 address rip = pc(); 767 pusha(); // get regs on stack 768 lea(c_rarg1, InternalAddress(rip)); 769 movq(c_rarg2, rsp); // pass pointer to regs array 770 } 771 lea(c_rarg0, ExternalAddress((address) msg)); 772 andq(rsp, -16); // align stack as required by ABI 773 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 774 hlt(); 775 SCCache::add_C_string(msg); 776 } 777 778 void MacroAssembler::warn(const char* msg) { 779 push(rbp); 780 movq(rbp, rsp); 781 andq(rsp, -16); // align stack as required by push_CPU_state and call 782 push_CPU_state(); // keeps alignment at 16 bytes 783 784 lea(c_rarg0, ExternalAddress((address) msg)); 785 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 786 787 pop_CPU_state(); 788 mov(rsp, rbp); 789 pop(rbp); 790 } 791 792 void MacroAssembler::print_state() { 793 address rip = pc(); 794 pusha(); // get regs on stack 795 push(rbp); 796 movq(rbp, rsp); 797 andq(rsp, -16); // align stack as required by push_CPU_state and call 798 push_CPU_state(); // keeps alignment at 16 bytes 799 800 lea(c_rarg0, InternalAddress(rip)); 801 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array 802 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1); 803 804 pop_CPU_state(); 805 mov(rsp, rbp); 806 pop(rbp); 807 popa(); 808 } 809 810 #ifndef PRODUCT 811 extern "C" void findpc(intptr_t x); 812 #endif 813 814 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { 815 // In order to get locks to work, we need to fake a in_VM state 816 if (ShowMessageBoxOnError) { 817 JavaThread* thread = JavaThread::current(); 818 JavaThreadState saved_state = thread->thread_state(); 819 thread->set_thread_state(_thread_in_vm); 820 #ifndef PRODUCT 821 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 822 ttyLocker ttyl; 823 BytecodeCounter::print(); 824 } 825 #endif 826 // To see where a verify_oop failed, get $ebx+40/X for this frame. 827 // XXX correct this offset for amd64 828 // This is the value of eip which points to where verify_oop will return. 829 if (os::message_box(msg, "Execution stopped, print registers?")) { 830 print_state64(pc, regs); 831 BREAKPOINT; 832 } 833 } 834 fatal("DEBUG MESSAGE: %s", msg); 835 } 836 837 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) { 838 ttyLocker ttyl; 839 DebuggingContext debugging{}; 840 tty->print_cr("rip = 0x%016lx", (intptr_t)pc); 841 #ifndef PRODUCT 842 tty->cr(); 843 findpc(pc); 844 tty->cr(); 845 #endif 846 #define PRINT_REG(rax, value) \ 847 { tty->print("%s = ", #rax); os::print_location(tty, value); } 848 PRINT_REG(rax, regs[15]); 849 PRINT_REG(rbx, regs[12]); 850 PRINT_REG(rcx, regs[14]); 851 PRINT_REG(rdx, regs[13]); 852 PRINT_REG(rdi, regs[8]); 853 PRINT_REG(rsi, regs[9]); 854 PRINT_REG(rbp, regs[10]); 855 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp 856 PRINT_REG(rsp, (intptr_t)(®s[16])); 857 PRINT_REG(r8 , regs[7]); 858 PRINT_REG(r9 , regs[6]); 859 PRINT_REG(r10, regs[5]); 860 PRINT_REG(r11, regs[4]); 861 PRINT_REG(r12, regs[3]); 862 PRINT_REG(r13, regs[2]); 863 PRINT_REG(r14, regs[1]); 864 PRINT_REG(r15, regs[0]); 865 #undef PRINT_REG 866 // Print some words near the top of the stack. 867 int64_t* rsp = ®s[16]; 868 int64_t* dump_sp = rsp; 869 for (int col1 = 0; col1 < 8; col1++) { 870 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 871 os::print_location(tty, *dump_sp++); 872 } 873 for (int row = 0; row < 25; row++) { 874 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 875 for (int col = 0; col < 4; col++) { 876 tty->print(" 0x%016lx", (intptr_t)*dump_sp++); 877 } 878 tty->cr(); 879 } 880 // Print some instructions around pc: 881 Disassembler::decode((address)pc-64, (address)pc); 882 tty->print_cr("--------"); 883 Disassembler::decode((address)pc, (address)pc+32); 884 } 885 886 // The java_calling_convention describes stack locations as ideal slots on 887 // a frame with no abi restrictions. Since we must observe abi restrictions 888 // (like the placement of the register window) the slots must be biased by 889 // the following value. 890 static int reg2offset_in(VMReg r) { 891 // Account for saved rbp and return address 892 // This should really be in_preserve_stack_slots 893 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 894 } 895 896 static int reg2offset_out(VMReg r) { 897 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 898 } 899 900 // A long move 901 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 902 903 // The calling conventions assures us that each VMregpair is either 904 // all really one physical register or adjacent stack slots. 905 906 if (src.is_single_phys_reg() ) { 907 if (dst.is_single_phys_reg()) { 908 if (dst.first() != src.first()) { 909 mov(dst.first()->as_Register(), src.first()->as_Register()); 910 } 911 } else { 912 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)", 913 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name()); 914 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 915 } 916 } else if (dst.is_single_phys_reg()) { 917 assert(src.is_single_reg(), "not a stack pair"); 918 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 919 } else { 920 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 921 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 922 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 923 } 924 } 925 926 // A double move 927 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 928 929 // The calling conventions assures us that each VMregpair is either 930 // all really one physical register or adjacent stack slots. 931 932 if (src.is_single_phys_reg() ) { 933 if (dst.is_single_phys_reg()) { 934 // In theory these overlap but the ordering is such that this is likely a nop 935 if ( src.first() != dst.first()) { 936 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 937 } 938 } else { 939 assert(dst.is_single_reg(), "not a stack pair"); 940 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 941 } 942 } else if (dst.is_single_phys_reg()) { 943 assert(src.is_single_reg(), "not a stack pair"); 944 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 945 } else { 946 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 947 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 948 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 949 } 950 } 951 952 953 // A float arg may have to do float reg int reg conversion 954 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 955 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 956 957 // The calling conventions assures us that each VMregpair is either 958 // all really one physical register or adjacent stack slots. 959 960 if (src.first()->is_stack()) { 961 if (dst.first()->is_stack()) { 962 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 963 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 964 } else { 965 // stack to reg 966 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 967 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 968 } 969 } else if (dst.first()->is_stack()) { 970 // reg to stack 971 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 972 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 973 } else { 974 // reg to reg 975 // In theory these overlap but the ordering is such that this is likely a nop 976 if ( src.first() != dst.first()) { 977 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 978 } 979 } 980 } 981 982 // On 64 bit we will store integer like items to the stack as 983 // 64 bits items (x86_32/64 abi) even though java would only store 984 // 32bits for a parameter. On 32bit it will simply be 32 bits 985 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 986 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 987 if (src.first()->is_stack()) { 988 if (dst.first()->is_stack()) { 989 // stack to stack 990 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 991 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 992 } else { 993 // stack to reg 994 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 995 } 996 } else if (dst.first()->is_stack()) { 997 // reg to stack 998 // Do we really have to sign extend??? 999 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 1000 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 1001 } else { 1002 // Do we really have to sign extend??? 1003 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 1004 if (dst.first() != src.first()) { 1005 movq(dst.first()->as_Register(), src.first()->as_Register()); 1006 } 1007 } 1008 } 1009 1010 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) { 1011 if (src.first()->is_stack()) { 1012 if (dst.first()->is_stack()) { 1013 // stack to stack 1014 movq(rax, Address(rbp, reg2offset_in(src.first()))); 1015 movq(Address(rsp, reg2offset_out(dst.first())), rax); 1016 } else { 1017 // stack to reg 1018 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1019 } 1020 } else if (dst.first()->is_stack()) { 1021 // reg to stack 1022 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1023 } else { 1024 if (dst.first() != src.first()) { 1025 movq(dst.first()->as_Register(), src.first()->as_Register()); 1026 } 1027 } 1028 } 1029 1030 // An oop arg. Must pass a handle not the oop itself 1031 void MacroAssembler::object_move(OopMap* map, 1032 int oop_handle_offset, 1033 int framesize_in_slots, 1034 VMRegPair src, 1035 VMRegPair dst, 1036 bool is_receiver, 1037 int* receiver_offset) { 1038 1039 // must pass a handle. First figure out the location we use as a handle 1040 1041 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 1042 1043 // See if oop is null if it is we need no handle 1044 1045 if (src.first()->is_stack()) { 1046 1047 // Oop is already on the stack as an argument 1048 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1049 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1050 if (is_receiver) { 1051 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1052 } 1053 1054 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 1055 lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1056 // conditionally move a null 1057 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 1058 } else { 1059 1060 // Oop is in a register we must store it to the space we reserve 1061 // on the stack for oop_handles and pass a handle if oop is non-null 1062 1063 const Register rOop = src.first()->as_Register(); 1064 int oop_slot; 1065 if (rOop == j_rarg0) 1066 oop_slot = 0; 1067 else if (rOop == j_rarg1) 1068 oop_slot = 1; 1069 else if (rOop == j_rarg2) 1070 oop_slot = 2; 1071 else if (rOop == j_rarg3) 1072 oop_slot = 3; 1073 else if (rOop == j_rarg4) 1074 oop_slot = 4; 1075 else { 1076 assert(rOop == j_rarg5, "wrong register"); 1077 oop_slot = 5; 1078 } 1079 1080 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 1081 int offset = oop_slot*VMRegImpl::stack_slot_size; 1082 1083 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1084 // Store oop in handle area, may be null 1085 movptr(Address(rsp, offset), rOop); 1086 if (is_receiver) { 1087 *receiver_offset = offset; 1088 } 1089 1090 cmpptr(rOop, NULL_WORD); 1091 lea(rHandle, Address(rsp, offset)); 1092 // conditionally move a null from the handle area where it was just stored 1093 cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 1094 } 1095 1096 // If arg is on the stack then place it otherwise it is already in correct reg. 1097 if (dst.first()->is_stack()) { 1098 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1099 } 1100 } 1101 1102 #endif // _LP64 1103 1104 // Now versions that are common to 32/64 bit 1105 1106 void MacroAssembler::addptr(Register dst, int32_t imm32) { 1107 LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32)); 1108 } 1109 1110 void MacroAssembler::addptr(Register dst, Register src) { 1111 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1112 } 1113 1114 void MacroAssembler::addptr(Address dst, Register src) { 1115 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1116 } 1117 1118 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1119 assert(rscratch != noreg || always_reachable(src), "missing"); 1120 1121 if (reachable(src)) { 1122 Assembler::addsd(dst, as_Address(src)); 1123 } else { 1124 lea(rscratch, src); 1125 Assembler::addsd(dst, Address(rscratch, 0)); 1126 } 1127 } 1128 1129 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1130 assert(rscratch != noreg || always_reachable(src), "missing"); 1131 1132 if (reachable(src)) { 1133 addss(dst, as_Address(src)); 1134 } else { 1135 lea(rscratch, src); 1136 addss(dst, Address(rscratch, 0)); 1137 } 1138 } 1139 1140 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1141 assert(rscratch != noreg || always_reachable(src), "missing"); 1142 1143 if (reachable(src)) { 1144 Assembler::addpd(dst, as_Address(src)); 1145 } else { 1146 lea(rscratch, src); 1147 Assembler::addpd(dst, Address(rscratch, 0)); 1148 } 1149 } 1150 1151 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only. 1152 // Stub code is generated once and never copied. 1153 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes. 1154 void MacroAssembler::align64() { 1155 align(64, (uint)(uintptr_t)pc()); 1156 } 1157 1158 void MacroAssembler::align32() { 1159 align(32, (uint)(uintptr_t)pc()); 1160 } 1161 1162 void MacroAssembler::align(uint modulus) { 1163 // 8273459: Ensure alignment is possible with current segment alignment 1164 assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment"); 1165 align(modulus, offset()); 1166 } 1167 1168 void MacroAssembler::align(uint modulus, uint target) { 1169 if (target % modulus != 0) { 1170 nop(modulus - (target % modulus)); 1171 } 1172 } 1173 1174 void MacroAssembler::push_f(XMMRegister r) { 1175 subptr(rsp, wordSize); 1176 movflt(Address(rsp, 0), r); 1177 } 1178 1179 void MacroAssembler::pop_f(XMMRegister r) { 1180 movflt(r, Address(rsp, 0)); 1181 addptr(rsp, wordSize); 1182 } 1183 1184 void MacroAssembler::push_d(XMMRegister r) { 1185 subptr(rsp, 2 * wordSize); 1186 movdbl(Address(rsp, 0), r); 1187 } 1188 1189 void MacroAssembler::pop_d(XMMRegister r) { 1190 movdbl(r, Address(rsp, 0)); 1191 addptr(rsp, 2 * Interpreter::stackElementSize); 1192 } 1193 1194 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1195 // Used in sign-masking with aligned address. 1196 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1197 assert(rscratch != noreg || always_reachable(src), "missing"); 1198 1199 if (UseAVX > 2 && 1200 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 1201 (dst->encoding() >= 16)) { 1202 vpand(dst, dst, src, AVX_512bit, rscratch); 1203 } else if (reachable(src)) { 1204 Assembler::andpd(dst, as_Address(src)); 1205 } else { 1206 lea(rscratch, src); 1207 Assembler::andpd(dst, Address(rscratch, 0)); 1208 } 1209 } 1210 1211 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) { 1212 // Used in sign-masking with aligned address. 1213 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1214 assert(rscratch != noreg || always_reachable(src), "missing"); 1215 1216 if (reachable(src)) { 1217 Assembler::andps(dst, as_Address(src)); 1218 } else { 1219 lea(rscratch, src); 1220 Assembler::andps(dst, Address(rscratch, 0)); 1221 } 1222 } 1223 1224 void MacroAssembler::andptr(Register dst, int32_t imm32) { 1225 LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32)); 1226 } 1227 1228 #ifdef _LP64 1229 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) { 1230 assert(rscratch != noreg || always_reachable(src), "missing"); 1231 1232 if (reachable(src)) { 1233 andq(dst, as_Address(src)); 1234 } else { 1235 lea(rscratch, src); 1236 andq(dst, Address(rscratch, 0)); 1237 } 1238 } 1239 #endif 1240 1241 void MacroAssembler::atomic_incl(Address counter_addr) { 1242 lock(); 1243 incrementl(counter_addr); 1244 } 1245 1246 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) { 1247 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1248 1249 if (reachable(counter_addr)) { 1250 atomic_incl(as_Address(counter_addr)); 1251 } else { 1252 lea(rscratch, counter_addr); 1253 atomic_incl(Address(rscratch, 0)); 1254 } 1255 } 1256 1257 #ifdef _LP64 1258 void MacroAssembler::atomic_incq(Address counter_addr) { 1259 lock(); 1260 incrementq(counter_addr); 1261 } 1262 1263 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) { 1264 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1265 1266 if (reachable(counter_addr)) { 1267 atomic_incq(as_Address(counter_addr)); 1268 } else { 1269 lea(rscratch, counter_addr); 1270 atomic_incq(Address(rscratch, 0)); 1271 } 1272 } 1273 #endif 1274 1275 // Writes to stack successive pages until offset reached to check for 1276 // stack overflow + shadow pages. This clobbers tmp. 1277 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 1278 movptr(tmp, rsp); 1279 // Bang stack for total size given plus shadow page size. 1280 // Bang one page at a time because large size can bang beyond yellow and 1281 // red zones. 1282 Label loop; 1283 bind(loop); 1284 movl(Address(tmp, (-(int)os::vm_page_size())), size ); 1285 subptr(tmp, (int)os::vm_page_size()); 1286 subl(size, (int)os::vm_page_size()); 1287 jcc(Assembler::greater, loop); 1288 1289 // Bang down shadow pages too. 1290 // At this point, (tmp-0) is the last address touched, so don't 1291 // touch it again. (It was touched as (tmp-pagesize) but then tmp 1292 // was post-decremented.) Skip this address by starting at i=1, and 1293 // touch a few more pages below. N.B. It is important to touch all 1294 // the way down including all pages in the shadow zone. 1295 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) { 1296 // this could be any sized move but this is can be a debugging crumb 1297 // so the bigger the better. 1298 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size ); 1299 } 1300 } 1301 1302 void MacroAssembler::reserved_stack_check() { 1303 // testing if reserved zone needs to be enabled 1304 Label no_reserved_zone_enabling; 1305 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 1306 NOT_LP64(get_thread(rsi);) 1307 1308 cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset())); 1309 jcc(Assembler::below, no_reserved_zone_enabling); 1310 1311 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread); 1312 jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 1313 should_not_reach_here(); 1314 1315 bind(no_reserved_zone_enabling); 1316 } 1317 1318 void MacroAssembler::c2bool(Register x) { 1319 // implements x == 0 ? 0 : 1 1320 // note: must only look at least-significant byte of x 1321 // since C-style booleans are stored in one byte 1322 // only! (was bug) 1323 andl(x, 0xFF); 1324 setb(Assembler::notZero, x); 1325 } 1326 1327 // Wouldn't need if AddressLiteral version had new name 1328 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { 1329 Assembler::call(L, rtype); 1330 } 1331 1332 void MacroAssembler::call(Register entry) { 1333 Assembler::call(entry); 1334 } 1335 1336 void MacroAssembler::call(AddressLiteral entry, Register rscratch) { 1337 assert(rscratch != noreg || always_reachable(entry), "missing"); 1338 1339 if (reachable(entry)) { 1340 Assembler::call_literal(entry.target(), entry.rspec()); 1341 } else { 1342 lea(rscratch, entry); 1343 Assembler::call(rscratch); 1344 } 1345 } 1346 1347 void MacroAssembler::ic_call(address entry, jint method_index) { 1348 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1349 #ifdef _LP64 1350 // Needs full 64-bit immediate for later patching. 1351 mov64(rax, (int64_t)Universe::non_oop_word()); 1352 #else 1353 movptr(rax, (intptr_t)Universe::non_oop_word()); 1354 #endif 1355 call(AddressLiteral(entry, rh)); 1356 } 1357 1358 int MacroAssembler::ic_check_size() { 1359 return 1360 LP64_ONLY(UseCompactObjectHeaders ? 17 : 14) NOT_LP64(12); 1361 } 1362 1363 int MacroAssembler::ic_check(int end_alignment) { 1364 Register receiver = LP64_ONLY(j_rarg0) NOT_LP64(rcx); 1365 Register data = rax; 1366 Register temp = LP64_ONLY(rscratch1) NOT_LP64(rbx); 1367 1368 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1369 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1370 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1371 // before the inline cache check here, and not after 1372 align(end_alignment, offset() + ic_check_size()); 1373 1374 int uep_offset = offset(); 1375 1376 #ifdef _LP64 1377 if (UseCompactObjectHeaders) { 1378 load_narrow_klass_compact(temp, receiver); 1379 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 1380 } else 1381 #endif 1382 if (UseCompressedClassPointers) { 1383 movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1384 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 1385 } else { 1386 movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1387 cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset())); 1388 } 1389 1390 // if inline cache check fails, then jump to runtime routine 1391 jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1392 assert((offset() % end_alignment) == 0, "Misaligned verified entry point (%d, %d, %d)", uep_offset, offset(), end_alignment); 1393 1394 return uep_offset; 1395 } 1396 1397 void MacroAssembler::emit_static_call_stub() { 1398 // Static stub relocation also tags the Method* in the code-stream. 1399 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time. 1400 // This is recognized as unresolved by relocs/nativeinst/ic code. 1401 jump(RuntimeAddress(pc())); 1402 } 1403 1404 // Implementation of call_VM versions 1405 1406 void MacroAssembler::call_VM(Register oop_result, 1407 address entry_point, 1408 bool check_exceptions) { 1409 Label C, E; 1410 call(C, relocInfo::none); 1411 jmp(E); 1412 1413 bind(C); 1414 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1415 ret(0); 1416 1417 bind(E); 1418 } 1419 1420 void MacroAssembler::call_VM(Register oop_result, 1421 address entry_point, 1422 Register arg_1, 1423 bool check_exceptions) { 1424 Label C, E; 1425 call(C, relocInfo::none); 1426 jmp(E); 1427 1428 bind(C); 1429 pass_arg1(this, arg_1); 1430 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1431 ret(0); 1432 1433 bind(E); 1434 } 1435 1436 void MacroAssembler::call_VM(Register oop_result, 1437 address entry_point, 1438 Register arg_1, 1439 Register arg_2, 1440 bool check_exceptions) { 1441 Label C, E; 1442 call(C, relocInfo::none); 1443 jmp(E); 1444 1445 bind(C); 1446 1447 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1448 1449 pass_arg2(this, arg_2); 1450 pass_arg1(this, arg_1); 1451 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1452 ret(0); 1453 1454 bind(E); 1455 } 1456 1457 void MacroAssembler::call_VM(Register oop_result, 1458 address entry_point, 1459 Register arg_1, 1460 Register arg_2, 1461 Register arg_3, 1462 bool check_exceptions) { 1463 Label C, E; 1464 call(C, relocInfo::none); 1465 jmp(E); 1466 1467 bind(C); 1468 1469 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1470 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1471 pass_arg3(this, arg_3); 1472 pass_arg2(this, arg_2); 1473 pass_arg1(this, arg_1); 1474 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1475 ret(0); 1476 1477 bind(E); 1478 } 1479 1480 void MacroAssembler::call_VM(Register oop_result, 1481 Register last_java_sp, 1482 address entry_point, 1483 int number_of_arguments, 1484 bool check_exceptions) { 1485 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1486 call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1487 } 1488 1489 void MacroAssembler::call_VM(Register oop_result, 1490 Register last_java_sp, 1491 address entry_point, 1492 Register arg_1, 1493 bool check_exceptions) { 1494 pass_arg1(this, arg_1); 1495 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1496 } 1497 1498 void MacroAssembler::call_VM(Register oop_result, 1499 Register last_java_sp, 1500 address entry_point, 1501 Register arg_1, 1502 Register arg_2, 1503 bool check_exceptions) { 1504 1505 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1506 pass_arg2(this, arg_2); 1507 pass_arg1(this, arg_1); 1508 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1509 } 1510 1511 void MacroAssembler::call_VM(Register oop_result, 1512 Register last_java_sp, 1513 address entry_point, 1514 Register arg_1, 1515 Register arg_2, 1516 Register arg_3, 1517 bool check_exceptions) { 1518 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1519 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1520 pass_arg3(this, arg_3); 1521 pass_arg2(this, arg_2); 1522 pass_arg1(this, arg_1); 1523 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1524 } 1525 1526 void MacroAssembler::super_call_VM(Register oop_result, 1527 Register last_java_sp, 1528 address entry_point, 1529 int number_of_arguments, 1530 bool check_exceptions) { 1531 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1532 MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1533 } 1534 1535 void MacroAssembler::super_call_VM(Register oop_result, 1536 Register last_java_sp, 1537 address entry_point, 1538 Register arg_1, 1539 bool check_exceptions) { 1540 pass_arg1(this, arg_1); 1541 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1542 } 1543 1544 void MacroAssembler::super_call_VM(Register oop_result, 1545 Register last_java_sp, 1546 address entry_point, 1547 Register arg_1, 1548 Register arg_2, 1549 bool check_exceptions) { 1550 1551 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1552 pass_arg2(this, arg_2); 1553 pass_arg1(this, arg_1); 1554 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1555 } 1556 1557 void MacroAssembler::super_call_VM(Register oop_result, 1558 Register last_java_sp, 1559 address entry_point, 1560 Register arg_1, 1561 Register arg_2, 1562 Register arg_3, 1563 bool check_exceptions) { 1564 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1565 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1566 pass_arg3(this, arg_3); 1567 pass_arg2(this, arg_2); 1568 pass_arg1(this, arg_1); 1569 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1570 } 1571 1572 void MacroAssembler::call_VM_base(Register oop_result, 1573 Register java_thread, 1574 Register last_java_sp, 1575 address entry_point, 1576 int number_of_arguments, 1577 bool check_exceptions) { 1578 // determine java_thread register 1579 if (!java_thread->is_valid()) { 1580 #ifdef _LP64 1581 java_thread = r15_thread; 1582 #else 1583 java_thread = rdi; 1584 get_thread(java_thread); 1585 #endif // LP64 1586 } 1587 // determine last_java_sp register 1588 if (!last_java_sp->is_valid()) { 1589 last_java_sp = rsp; 1590 } 1591 // debugging support 1592 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 1593 LP64_ONLY(assert(java_thread == r15_thread, "unexpected register")); 1594 #ifdef ASSERT 1595 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 1596 // r12 is the heapbase. 1597 LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");) 1598 #endif // ASSERT 1599 1600 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 1601 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 1602 1603 // push java thread (becomes first argument of C function) 1604 1605 NOT_LP64(push(java_thread); number_of_arguments++); 1606 LP64_ONLY(mov(c_rarg0, r15_thread)); 1607 1608 // set last Java frame before call 1609 assert(last_java_sp != rbp, "can't use ebp/rbp"); 1610 1611 // Only interpreter should have to set fp 1612 set_last_Java_frame(java_thread, last_java_sp, rbp, nullptr, rscratch1); 1613 1614 // do the call, remove parameters 1615 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1616 1617 // restore the thread (cannot use the pushed argument since arguments 1618 // may be overwritten by C code generated by an optimizing compiler); 1619 // however can use the register value directly if it is callee saved. 1620 if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) { 1621 // rdi & rsi (also r15) are callee saved -> nothing to do 1622 #ifdef ASSERT 1623 guarantee(java_thread != rax, "change this code"); 1624 push(rax); 1625 { Label L; 1626 get_thread(rax); 1627 cmpptr(java_thread, rax); 1628 jcc(Assembler::equal, L); 1629 STOP("MacroAssembler::call_VM_base: rdi not callee saved?"); 1630 bind(L); 1631 } 1632 pop(rax); 1633 #endif 1634 } else { 1635 get_thread(java_thread); 1636 } 1637 // reset last Java frame 1638 // Only interpreter should have to clear fp 1639 reset_last_Java_frame(java_thread, true); 1640 1641 // C++ interp handles this in the interpreter 1642 check_and_handle_popframe(java_thread); 1643 check_and_handle_earlyret(java_thread); 1644 1645 if (check_exceptions) { 1646 // check for pending exceptions (java_thread is set upon return) 1647 cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD); 1648 #ifndef _LP64 1649 jump_cc(Assembler::notEqual, 1650 RuntimeAddress(StubRoutines::forward_exception_entry())); 1651 #else 1652 // This used to conditionally jump to forward_exception however it is 1653 // possible if we relocate that the branch will not reach. So we must jump 1654 // around so we can always reach 1655 1656 Label ok; 1657 jcc(Assembler::equal, ok); 1658 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1659 bind(ok); 1660 #endif // LP64 1661 } 1662 1663 // get oop result if there is one and reset the value in the thread 1664 if (oop_result->is_valid()) { 1665 get_vm_result(oop_result, java_thread); 1666 } 1667 } 1668 1669 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 1670 1671 // Calculate the value for last_Java_sp 1672 // somewhat subtle. call_VM does an intermediate call 1673 // which places a return address on the stack just under the 1674 // stack pointer as the user finished with it. This allows 1675 // use to retrieve last_Java_pc from last_Java_sp[-1]. 1676 // On 32bit we then have to push additional args on the stack to accomplish 1677 // the actual requested call. On 64bit call_VM only can use register args 1678 // so the only extra space is the return address that call_VM created. 1679 // This hopefully explains the calculations here. 1680 1681 #ifdef _LP64 1682 // We've pushed one address, correct last_Java_sp 1683 lea(rax, Address(rsp, wordSize)); 1684 #else 1685 lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize)); 1686 #endif // LP64 1687 1688 call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions); 1689 1690 } 1691 1692 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter. 1693 void MacroAssembler::call_VM_leaf0(address entry_point) { 1694 MacroAssembler::call_VM_leaf_base(entry_point, 0); 1695 } 1696 1697 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1698 call_VM_leaf_base(entry_point, number_of_arguments); 1699 } 1700 1701 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1702 pass_arg0(this, arg_0); 1703 call_VM_leaf(entry_point, 1); 1704 } 1705 1706 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1707 1708 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1709 pass_arg1(this, arg_1); 1710 pass_arg0(this, arg_0); 1711 call_VM_leaf(entry_point, 2); 1712 } 1713 1714 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1715 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1716 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1717 pass_arg2(this, arg_2); 1718 pass_arg1(this, arg_1); 1719 pass_arg0(this, arg_0); 1720 call_VM_leaf(entry_point, 3); 1721 } 1722 1723 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1724 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1725 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1726 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1727 pass_arg3(this, arg_3); 1728 pass_arg2(this, arg_2); 1729 pass_arg1(this, arg_1); 1730 pass_arg0(this, arg_0); 1731 call_VM_leaf(entry_point, 3); 1732 } 1733 1734 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1735 pass_arg0(this, arg_0); 1736 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1737 } 1738 1739 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1740 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1741 pass_arg1(this, arg_1); 1742 pass_arg0(this, arg_0); 1743 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1744 } 1745 1746 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1747 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1748 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1749 pass_arg2(this, arg_2); 1750 pass_arg1(this, arg_1); 1751 pass_arg0(this, arg_0); 1752 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1753 } 1754 1755 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1756 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1757 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1758 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1759 pass_arg3(this, arg_3); 1760 pass_arg2(this, arg_2); 1761 pass_arg1(this, arg_1); 1762 pass_arg0(this, arg_0); 1763 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1764 } 1765 1766 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1767 movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1768 movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD); 1769 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1770 } 1771 1772 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1773 movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1774 movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD); 1775 } 1776 1777 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { 1778 } 1779 1780 void MacroAssembler::check_and_handle_popframe(Register java_thread) { 1781 } 1782 1783 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) { 1784 assert(rscratch != noreg || always_reachable(src1), "missing"); 1785 1786 if (reachable(src1)) { 1787 cmpl(as_Address(src1), imm); 1788 } else { 1789 lea(rscratch, src1); 1790 cmpl(Address(rscratch, 0), imm); 1791 } 1792 } 1793 1794 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) { 1795 assert(!src2.is_lval(), "use cmpptr"); 1796 assert(rscratch != noreg || always_reachable(src2), "missing"); 1797 1798 if (reachable(src2)) { 1799 cmpl(src1, as_Address(src2)); 1800 } else { 1801 lea(rscratch, src2); 1802 cmpl(src1, Address(rscratch, 0)); 1803 } 1804 } 1805 1806 void MacroAssembler::cmp32(Register src1, int32_t imm) { 1807 Assembler::cmpl(src1, imm); 1808 } 1809 1810 void MacroAssembler::cmp32(Register src1, Address src2) { 1811 Assembler::cmpl(src1, src2); 1812 } 1813 1814 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1815 ucomisd(opr1, opr2); 1816 1817 Label L; 1818 if (unordered_is_less) { 1819 movl(dst, -1); 1820 jcc(Assembler::parity, L); 1821 jcc(Assembler::below , L); 1822 movl(dst, 0); 1823 jcc(Assembler::equal , L); 1824 increment(dst); 1825 } else { // unordered is greater 1826 movl(dst, 1); 1827 jcc(Assembler::parity, L); 1828 jcc(Assembler::above , L); 1829 movl(dst, 0); 1830 jcc(Assembler::equal , L); 1831 decrementl(dst); 1832 } 1833 bind(L); 1834 } 1835 1836 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1837 ucomiss(opr1, opr2); 1838 1839 Label L; 1840 if (unordered_is_less) { 1841 movl(dst, -1); 1842 jcc(Assembler::parity, L); 1843 jcc(Assembler::below , L); 1844 movl(dst, 0); 1845 jcc(Assembler::equal , L); 1846 increment(dst); 1847 } else { // unordered is greater 1848 movl(dst, 1); 1849 jcc(Assembler::parity, L); 1850 jcc(Assembler::above , L); 1851 movl(dst, 0); 1852 jcc(Assembler::equal , L); 1853 decrementl(dst); 1854 } 1855 bind(L); 1856 } 1857 1858 1859 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) { 1860 assert(rscratch != noreg || always_reachable(src1), "missing"); 1861 1862 if (reachable(src1)) { 1863 cmpb(as_Address(src1), imm); 1864 } else { 1865 lea(rscratch, src1); 1866 cmpb(Address(rscratch, 0), imm); 1867 } 1868 } 1869 1870 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) { 1871 #ifdef _LP64 1872 assert(rscratch != noreg || always_reachable(src2), "missing"); 1873 1874 if (src2.is_lval()) { 1875 movptr(rscratch, src2); 1876 Assembler::cmpq(src1, rscratch); 1877 } else if (reachable(src2)) { 1878 cmpq(src1, as_Address(src2)); 1879 } else { 1880 lea(rscratch, src2); 1881 Assembler::cmpq(src1, Address(rscratch, 0)); 1882 } 1883 #else 1884 assert(rscratch == noreg, "not needed"); 1885 if (src2.is_lval()) { 1886 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1887 } else { 1888 cmpl(src1, as_Address(src2)); 1889 } 1890 #endif // _LP64 1891 } 1892 1893 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) { 1894 assert(src2.is_lval(), "not a mem-mem compare"); 1895 #ifdef _LP64 1896 // moves src2's literal address 1897 movptr(rscratch, src2); 1898 Assembler::cmpq(src1, rscratch); 1899 #else 1900 assert(rscratch == noreg, "not needed"); 1901 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1902 #endif // _LP64 1903 } 1904 1905 void MacroAssembler::cmpoop(Register src1, Register src2) { 1906 cmpptr(src1, src2); 1907 } 1908 1909 void MacroAssembler::cmpoop(Register src1, Address src2) { 1910 cmpptr(src1, src2); 1911 } 1912 1913 #ifdef _LP64 1914 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) { 1915 movoop(rscratch, src2); 1916 cmpptr(src1, rscratch); 1917 } 1918 #endif 1919 1920 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) { 1921 assert(rscratch != noreg || always_reachable(adr), "missing"); 1922 1923 if (reachable(adr)) { 1924 lock(); 1925 cmpxchgptr(reg, as_Address(adr)); 1926 } else { 1927 lea(rscratch, adr); 1928 lock(); 1929 cmpxchgptr(reg, Address(rscratch, 0)); 1930 } 1931 } 1932 1933 void MacroAssembler::cmpxchgptr(Register reg, Address adr) { 1934 LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr)); 1935 } 1936 1937 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1938 assert(rscratch != noreg || always_reachable(src), "missing"); 1939 1940 if (reachable(src)) { 1941 Assembler::comisd(dst, as_Address(src)); 1942 } else { 1943 lea(rscratch, src); 1944 Assembler::comisd(dst, Address(rscratch, 0)); 1945 } 1946 } 1947 1948 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1949 assert(rscratch != noreg || always_reachable(src), "missing"); 1950 1951 if (reachable(src)) { 1952 Assembler::comiss(dst, as_Address(src)); 1953 } else { 1954 lea(rscratch, src); 1955 Assembler::comiss(dst, Address(rscratch, 0)); 1956 } 1957 } 1958 1959 1960 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) { 1961 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1962 1963 Condition negated_cond = negate_condition(cond); 1964 Label L; 1965 jcc(negated_cond, L); 1966 pushf(); // Preserve flags 1967 atomic_incl(counter_addr, rscratch); 1968 popf(); 1969 bind(L); 1970 } 1971 1972 int MacroAssembler::corrected_idivl(Register reg) { 1973 // Full implementation of Java idiv and irem; checks for 1974 // special case as described in JVM spec., p.243 & p.271. 1975 // The function returns the (pc) offset of the idivl 1976 // instruction - may be needed for implicit exceptions. 1977 // 1978 // normal case special case 1979 // 1980 // input : rax,: dividend min_int 1981 // reg: divisor (may not be rax,/rdx) -1 1982 // 1983 // output: rax,: quotient (= rax, idiv reg) min_int 1984 // rdx: remainder (= rax, irem reg) 0 1985 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); 1986 const int min_int = 0x80000000; 1987 Label normal_case, special_case; 1988 1989 // check for special case 1990 cmpl(rax, min_int); 1991 jcc(Assembler::notEqual, normal_case); 1992 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) 1993 cmpl(reg, -1); 1994 jcc(Assembler::equal, special_case); 1995 1996 // handle normal case 1997 bind(normal_case); 1998 cdql(); 1999 int idivl_offset = offset(); 2000 idivl(reg); 2001 2002 // normal and special case exit 2003 bind(special_case); 2004 2005 return idivl_offset; 2006 } 2007 2008 2009 2010 void MacroAssembler::decrementl(Register reg, int value) { 2011 if (value == min_jint) {subl(reg, value) ; return; } 2012 if (value < 0) { incrementl(reg, -value); return; } 2013 if (value == 0) { ; return; } 2014 if (value == 1 && UseIncDec) { decl(reg) ; return; } 2015 /* else */ { subl(reg, value) ; return; } 2016 } 2017 2018 void MacroAssembler::decrementl(Address dst, int value) { 2019 if (value == min_jint) {subl(dst, value) ; return; } 2020 if (value < 0) { incrementl(dst, -value); return; } 2021 if (value == 0) { ; return; } 2022 if (value == 1 && UseIncDec) { decl(dst) ; return; } 2023 /* else */ { subl(dst, value) ; return; } 2024 } 2025 2026 void MacroAssembler::division_with_shift (Register reg, int shift_value) { 2027 assert(shift_value > 0, "illegal shift value"); 2028 Label _is_positive; 2029 testl (reg, reg); 2030 jcc (Assembler::positive, _is_positive); 2031 int offset = (1 << shift_value) - 1 ; 2032 2033 if (offset == 1) { 2034 incrementl(reg); 2035 } else { 2036 addl(reg, offset); 2037 } 2038 2039 bind (_is_positive); 2040 sarl(reg, shift_value); 2041 } 2042 2043 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2044 assert(rscratch != noreg || always_reachable(src), "missing"); 2045 2046 if (reachable(src)) { 2047 Assembler::divsd(dst, as_Address(src)); 2048 } else { 2049 lea(rscratch, src); 2050 Assembler::divsd(dst, Address(rscratch, 0)); 2051 } 2052 } 2053 2054 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2055 assert(rscratch != noreg || always_reachable(src), "missing"); 2056 2057 if (reachable(src)) { 2058 Assembler::divss(dst, as_Address(src)); 2059 } else { 2060 lea(rscratch, src); 2061 Assembler::divss(dst, Address(rscratch, 0)); 2062 } 2063 } 2064 2065 void MacroAssembler::enter() { 2066 push(rbp); 2067 mov(rbp, rsp); 2068 } 2069 2070 void MacroAssembler::post_call_nop() { 2071 if (!Continuations::enabled()) { 2072 return; 2073 } 2074 InstructionMark im(this); 2075 relocate(post_call_nop_Relocation::spec()); 2076 InlineSkippedInstructionsCounter skipCounter(this); 2077 emit_int8((uint8_t)0x0f); 2078 emit_int8((uint8_t)0x1f); 2079 emit_int8((uint8_t)0x84); 2080 emit_int8((uint8_t)0x00); 2081 emit_int32(0x00); 2082 } 2083 2084 // A 5 byte nop that is safe for patching (see patch_verified_entry) 2085 void MacroAssembler::fat_nop() { 2086 if (UseAddressNop) { 2087 addr_nop_5(); 2088 } else { 2089 emit_int8((uint8_t)0x26); // es: 2090 emit_int8((uint8_t)0x2e); // cs: 2091 emit_int8((uint8_t)0x64); // fs: 2092 emit_int8((uint8_t)0x65); // gs: 2093 emit_int8((uint8_t)0x90); 2094 } 2095 } 2096 2097 #ifndef _LP64 2098 void MacroAssembler::fcmp(Register tmp) { 2099 fcmp(tmp, 1, true, true); 2100 } 2101 2102 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) { 2103 assert(!pop_right || pop_left, "usage error"); 2104 if (VM_Version::supports_cmov()) { 2105 assert(tmp == noreg, "unneeded temp"); 2106 if (pop_left) { 2107 fucomip(index); 2108 } else { 2109 fucomi(index); 2110 } 2111 if (pop_right) { 2112 fpop(); 2113 } 2114 } else { 2115 assert(tmp != noreg, "need temp"); 2116 if (pop_left) { 2117 if (pop_right) { 2118 fcompp(); 2119 } else { 2120 fcomp(index); 2121 } 2122 } else { 2123 fcom(index); 2124 } 2125 // convert FPU condition into eflags condition via rax, 2126 save_rax(tmp); 2127 fwait(); fnstsw_ax(); 2128 sahf(); 2129 restore_rax(tmp); 2130 } 2131 // condition codes set as follows: 2132 // 2133 // CF (corresponds to C0) if x < y 2134 // PF (corresponds to C2) if unordered 2135 // ZF (corresponds to C3) if x = y 2136 } 2137 2138 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) { 2139 fcmp2int(dst, unordered_is_less, 1, true, true); 2140 } 2141 2142 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) { 2143 fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right); 2144 Label L; 2145 if (unordered_is_less) { 2146 movl(dst, -1); 2147 jcc(Assembler::parity, L); 2148 jcc(Assembler::below , L); 2149 movl(dst, 0); 2150 jcc(Assembler::equal , L); 2151 increment(dst); 2152 } else { // unordered is greater 2153 movl(dst, 1); 2154 jcc(Assembler::parity, L); 2155 jcc(Assembler::above , L); 2156 movl(dst, 0); 2157 jcc(Assembler::equal , L); 2158 decrementl(dst); 2159 } 2160 bind(L); 2161 } 2162 2163 void MacroAssembler::fld_d(AddressLiteral src) { 2164 fld_d(as_Address(src)); 2165 } 2166 2167 void MacroAssembler::fld_s(AddressLiteral src) { 2168 fld_s(as_Address(src)); 2169 } 2170 2171 void MacroAssembler::fldcw(AddressLiteral src) { 2172 fldcw(as_Address(src)); 2173 } 2174 2175 void MacroAssembler::fpop() { 2176 ffree(); 2177 fincstp(); 2178 } 2179 2180 void MacroAssembler::fremr(Register tmp) { 2181 save_rax(tmp); 2182 { Label L; 2183 bind(L); 2184 fprem(); 2185 fwait(); fnstsw_ax(); 2186 sahf(); 2187 jcc(Assembler::parity, L); 2188 } 2189 restore_rax(tmp); 2190 // Result is in ST0. 2191 // Note: fxch & fpop to get rid of ST1 2192 // (otherwise FPU stack could overflow eventually) 2193 fxch(1); 2194 fpop(); 2195 } 2196 2197 void MacroAssembler::empty_FPU_stack() { 2198 if (VM_Version::supports_mmx()) { 2199 emms(); 2200 } else { 2201 for (int i = 8; i-- > 0; ) ffree(i); 2202 } 2203 } 2204 #endif // !LP64 2205 2206 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2207 assert(rscratch != noreg || always_reachable(src), "missing"); 2208 if (reachable(src)) { 2209 Assembler::mulpd(dst, as_Address(src)); 2210 } else { 2211 lea(rscratch, src); 2212 Assembler::mulpd(dst, Address(rscratch, 0)); 2213 } 2214 } 2215 2216 void MacroAssembler::load_float(Address src) { 2217 #ifdef _LP64 2218 movflt(xmm0, src); 2219 #else 2220 if (UseSSE >= 1) { 2221 movflt(xmm0, src); 2222 } else { 2223 fld_s(src); 2224 } 2225 #endif // LP64 2226 } 2227 2228 void MacroAssembler::store_float(Address dst) { 2229 #ifdef _LP64 2230 movflt(dst, xmm0); 2231 #else 2232 if (UseSSE >= 1) { 2233 movflt(dst, xmm0); 2234 } else { 2235 fstp_s(dst); 2236 } 2237 #endif // LP64 2238 } 2239 2240 void MacroAssembler::load_double(Address src) { 2241 #ifdef _LP64 2242 movdbl(xmm0, src); 2243 #else 2244 if (UseSSE >= 2) { 2245 movdbl(xmm0, src); 2246 } else { 2247 fld_d(src); 2248 } 2249 #endif // LP64 2250 } 2251 2252 void MacroAssembler::store_double(Address dst) { 2253 #ifdef _LP64 2254 movdbl(dst, xmm0); 2255 #else 2256 if (UseSSE >= 2) { 2257 movdbl(dst, xmm0); 2258 } else { 2259 fstp_d(dst); 2260 } 2261 #endif // LP64 2262 } 2263 2264 // dst = c = a * b + c 2265 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2266 Assembler::vfmadd231sd(c, a, b); 2267 if (dst != c) { 2268 movdbl(dst, c); 2269 } 2270 } 2271 2272 // dst = c = a * b + c 2273 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2274 Assembler::vfmadd231ss(c, a, b); 2275 if (dst != c) { 2276 movflt(dst, c); 2277 } 2278 } 2279 2280 // dst = c = a * b + c 2281 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2282 Assembler::vfmadd231pd(c, a, b, vector_len); 2283 if (dst != c) { 2284 vmovdqu(dst, c); 2285 } 2286 } 2287 2288 // dst = c = a * b + c 2289 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2290 Assembler::vfmadd231ps(c, a, b, vector_len); 2291 if (dst != c) { 2292 vmovdqu(dst, c); 2293 } 2294 } 2295 2296 // dst = c = a * b + c 2297 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2298 Assembler::vfmadd231pd(c, a, b, vector_len); 2299 if (dst != c) { 2300 vmovdqu(dst, c); 2301 } 2302 } 2303 2304 // dst = c = a * b + c 2305 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2306 Assembler::vfmadd231ps(c, a, b, vector_len); 2307 if (dst != c) { 2308 vmovdqu(dst, c); 2309 } 2310 } 2311 2312 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) { 2313 assert(rscratch != noreg || always_reachable(dst), "missing"); 2314 2315 if (reachable(dst)) { 2316 incrementl(as_Address(dst)); 2317 } else { 2318 lea(rscratch, dst); 2319 incrementl(Address(rscratch, 0)); 2320 } 2321 } 2322 2323 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) { 2324 incrementl(as_Address(dst, rscratch)); 2325 } 2326 2327 void MacroAssembler::incrementl(Register reg, int value) { 2328 if (value == min_jint) {addl(reg, value) ; return; } 2329 if (value < 0) { decrementl(reg, -value); return; } 2330 if (value == 0) { ; return; } 2331 if (value == 1 && UseIncDec) { incl(reg) ; return; } 2332 /* else */ { addl(reg, value) ; return; } 2333 } 2334 2335 void MacroAssembler::incrementl(Address dst, int value) { 2336 if (value == min_jint) {addl(dst, value) ; return; } 2337 if (value < 0) { decrementl(dst, -value); return; } 2338 if (value == 0) { ; return; } 2339 if (value == 1 && UseIncDec) { incl(dst) ; return; } 2340 /* else */ { addl(dst, value) ; return; } 2341 } 2342 2343 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) { 2344 assert(rscratch != noreg || always_reachable(dst), "missing"); 2345 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump"); 2346 if (reachable(dst)) { 2347 jmp_literal(dst.target(), dst.rspec()); 2348 } else { 2349 lea(rscratch, dst); 2350 jmp(rscratch); 2351 } 2352 } 2353 2354 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) { 2355 assert(rscratch != noreg || always_reachable(dst), "missing"); 2356 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc"); 2357 if (reachable(dst)) { 2358 InstructionMark im(this); 2359 relocate(dst.reloc()); 2360 const int short_size = 2; 2361 const int long_size = 6; 2362 int offs = (intptr_t)dst.target() - ((intptr_t)pc()); 2363 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { 2364 // 0111 tttn #8-bit disp 2365 emit_int8(0x70 | cc); 2366 emit_int8((offs - short_size) & 0xFF); 2367 } else { 2368 // 0000 1111 1000 tttn #32-bit disp 2369 emit_int8(0x0F); 2370 emit_int8((unsigned char)(0x80 | cc)); 2371 emit_int32(offs - long_size); 2372 } 2373 } else { 2374 #ifdef ASSERT 2375 warning("reversing conditional branch"); 2376 #endif /* ASSERT */ 2377 Label skip; 2378 jccb(reverse[cc], skip); 2379 lea(rscratch, dst); 2380 Assembler::jmp(rscratch); 2381 bind(skip); 2382 } 2383 } 2384 2385 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) { 2386 assert(rscratch != noreg || always_reachable(src), "missing"); 2387 2388 if (reachable(src)) { 2389 Assembler::ldmxcsr(as_Address(src)); 2390 } else { 2391 lea(rscratch, src); 2392 Assembler::ldmxcsr(Address(rscratch, 0)); 2393 } 2394 } 2395 2396 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2397 int off; 2398 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2399 off = offset(); 2400 movsbl(dst, src); // movsxb 2401 } else { 2402 off = load_unsigned_byte(dst, src); 2403 shll(dst, 24); 2404 sarl(dst, 24); 2405 } 2406 return off; 2407 } 2408 2409 // Note: load_signed_short used to be called load_signed_word. 2410 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler 2411 // manual, which means 16 bits, that usage is found nowhere in HotSpot code. 2412 // The term "word" in HotSpot means a 32- or 64-bit machine word. 2413 int MacroAssembler::load_signed_short(Register dst, Address src) { 2414 int off; 2415 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2416 // This is dubious to me since it seems safe to do a signed 16 => 64 bit 2417 // version but this is what 64bit has always done. This seems to imply 2418 // that users are only using 32bits worth. 2419 off = offset(); 2420 movswl(dst, src); // movsxw 2421 } else { 2422 off = load_unsigned_short(dst, src); 2423 shll(dst, 16); 2424 sarl(dst, 16); 2425 } 2426 return off; 2427 } 2428 2429 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2430 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2431 // and "3.9 Partial Register Penalties", p. 22). 2432 int off; 2433 if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) { 2434 off = offset(); 2435 movzbl(dst, src); // movzxb 2436 } else { 2437 xorl(dst, dst); 2438 off = offset(); 2439 movb(dst, src); 2440 } 2441 return off; 2442 } 2443 2444 // Note: load_unsigned_short used to be called load_unsigned_word. 2445 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2446 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2447 // and "3.9 Partial Register Penalties", p. 22). 2448 int off; 2449 if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) { 2450 off = offset(); 2451 movzwl(dst, src); // movzxw 2452 } else { 2453 xorl(dst, dst); 2454 off = offset(); 2455 movw(dst, src); 2456 } 2457 return off; 2458 } 2459 2460 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 2461 switch (size_in_bytes) { 2462 #ifndef _LP64 2463 case 8: 2464 assert(dst2 != noreg, "second dest register required"); 2465 movl(dst, src); 2466 movl(dst2, src.plus_disp(BytesPerInt)); 2467 break; 2468 #else 2469 case 8: movq(dst, src); break; 2470 #endif 2471 case 4: movl(dst, src); break; 2472 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2473 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2474 default: ShouldNotReachHere(); 2475 } 2476 } 2477 2478 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 2479 switch (size_in_bytes) { 2480 #ifndef _LP64 2481 case 8: 2482 assert(src2 != noreg, "second source register required"); 2483 movl(dst, src); 2484 movl(dst.plus_disp(BytesPerInt), src2); 2485 break; 2486 #else 2487 case 8: movq(dst, src); break; 2488 #endif 2489 case 4: movl(dst, src); break; 2490 case 2: movw(dst, src); break; 2491 case 1: movb(dst, src); break; 2492 default: ShouldNotReachHere(); 2493 } 2494 } 2495 2496 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) { 2497 assert(rscratch != noreg || always_reachable(dst), "missing"); 2498 2499 if (reachable(dst)) { 2500 movl(as_Address(dst), src); 2501 } else { 2502 lea(rscratch, dst); 2503 movl(Address(rscratch, 0), src); 2504 } 2505 } 2506 2507 void MacroAssembler::mov32(Register dst, AddressLiteral src) { 2508 if (reachable(src)) { 2509 movl(dst, as_Address(src)); 2510 } else { 2511 lea(dst, src); 2512 movl(dst, Address(dst, 0)); 2513 } 2514 } 2515 2516 // C++ bool manipulation 2517 2518 void MacroAssembler::movbool(Register dst, Address src) { 2519 if(sizeof(bool) == 1) 2520 movb(dst, src); 2521 else if(sizeof(bool) == 2) 2522 movw(dst, src); 2523 else if(sizeof(bool) == 4) 2524 movl(dst, src); 2525 else 2526 // unsupported 2527 ShouldNotReachHere(); 2528 } 2529 2530 void MacroAssembler::movbool(Address dst, bool boolconst) { 2531 if(sizeof(bool) == 1) 2532 movb(dst, (int) boolconst); 2533 else if(sizeof(bool) == 2) 2534 movw(dst, (int) boolconst); 2535 else if(sizeof(bool) == 4) 2536 movl(dst, (int) boolconst); 2537 else 2538 // unsupported 2539 ShouldNotReachHere(); 2540 } 2541 2542 void MacroAssembler::movbool(Address dst, Register src) { 2543 if(sizeof(bool) == 1) 2544 movb(dst, src); 2545 else if(sizeof(bool) == 2) 2546 movw(dst, src); 2547 else if(sizeof(bool) == 4) 2548 movl(dst, src); 2549 else 2550 // unsupported 2551 ShouldNotReachHere(); 2552 } 2553 2554 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2555 assert(rscratch != noreg || always_reachable(src), "missing"); 2556 2557 if (reachable(src)) { 2558 movdl(dst, as_Address(src)); 2559 } else { 2560 lea(rscratch, src); 2561 movdl(dst, Address(rscratch, 0)); 2562 } 2563 } 2564 2565 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) { 2566 assert(rscratch != noreg || always_reachable(src), "missing"); 2567 2568 if (reachable(src)) { 2569 movq(dst, as_Address(src)); 2570 } else { 2571 lea(rscratch, src); 2572 movq(dst, Address(rscratch, 0)); 2573 } 2574 } 2575 2576 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2577 assert(rscratch != noreg || always_reachable(src), "missing"); 2578 2579 if (reachable(src)) { 2580 if (UseXmmLoadAndClearUpper) { 2581 movsd (dst, as_Address(src)); 2582 } else { 2583 movlpd(dst, as_Address(src)); 2584 } 2585 } else { 2586 lea(rscratch, src); 2587 if (UseXmmLoadAndClearUpper) { 2588 movsd (dst, Address(rscratch, 0)); 2589 } else { 2590 movlpd(dst, Address(rscratch, 0)); 2591 } 2592 } 2593 } 2594 2595 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) { 2596 assert(rscratch != noreg || always_reachable(src), "missing"); 2597 2598 if (reachable(src)) { 2599 movss(dst, as_Address(src)); 2600 } else { 2601 lea(rscratch, src); 2602 movss(dst, Address(rscratch, 0)); 2603 } 2604 } 2605 2606 void MacroAssembler::movptr(Register dst, Register src) { 2607 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2608 } 2609 2610 void MacroAssembler::movptr(Register dst, Address src) { 2611 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2612 } 2613 2614 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 2615 void MacroAssembler::movptr(Register dst, intptr_t src) { 2616 #ifdef _LP64 2617 if (is_uimm32(src)) { 2618 movl(dst, checked_cast<uint32_t>(src)); 2619 } else if (is_simm32(src)) { 2620 movq(dst, checked_cast<int32_t>(src)); 2621 } else { 2622 mov64(dst, src); 2623 } 2624 #else 2625 movl(dst, src); 2626 #endif 2627 } 2628 2629 void MacroAssembler::movptr(Address dst, Register src) { 2630 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2631 } 2632 2633 void MacroAssembler::movptr(Address dst, int32_t src) { 2634 LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); 2635 } 2636 2637 void MacroAssembler::movdqu(Address dst, XMMRegister src) { 2638 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2639 Assembler::movdqu(dst, src); 2640 } 2641 2642 void MacroAssembler::movdqu(XMMRegister dst, Address src) { 2643 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2644 Assembler::movdqu(dst, src); 2645 } 2646 2647 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) { 2648 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2649 Assembler::movdqu(dst, src); 2650 } 2651 2652 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2653 assert(rscratch != noreg || always_reachable(src), "missing"); 2654 2655 if (reachable(src)) { 2656 movdqu(dst, as_Address(src)); 2657 } else { 2658 lea(rscratch, src); 2659 movdqu(dst, Address(rscratch, 0)); 2660 } 2661 } 2662 2663 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) { 2664 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2665 Assembler::vmovdqu(dst, src); 2666 } 2667 2668 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) { 2669 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2670 Assembler::vmovdqu(dst, src); 2671 } 2672 2673 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) { 2674 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2675 Assembler::vmovdqu(dst, src); 2676 } 2677 2678 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2679 assert(rscratch != noreg || always_reachable(src), "missing"); 2680 2681 if (reachable(src)) { 2682 vmovdqu(dst, as_Address(src)); 2683 } 2684 else { 2685 lea(rscratch, src); 2686 vmovdqu(dst, Address(rscratch, 0)); 2687 } 2688 } 2689 2690 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2691 assert(rscratch != noreg || always_reachable(src), "missing"); 2692 2693 if (vector_len == AVX_512bit) { 2694 evmovdquq(dst, src, AVX_512bit, rscratch); 2695 } else if (vector_len == AVX_256bit) { 2696 vmovdqu(dst, src, rscratch); 2697 } else { 2698 movdqu(dst, src, rscratch); 2699 } 2700 } 2701 2702 void MacroAssembler::kmov(KRegister dst, Address src) { 2703 if (VM_Version::supports_avx512bw()) { 2704 kmovql(dst, src); 2705 } else { 2706 assert(VM_Version::supports_evex(), ""); 2707 kmovwl(dst, src); 2708 } 2709 } 2710 2711 void MacroAssembler::kmov(Address dst, KRegister src) { 2712 if (VM_Version::supports_avx512bw()) { 2713 kmovql(dst, src); 2714 } else { 2715 assert(VM_Version::supports_evex(), ""); 2716 kmovwl(dst, src); 2717 } 2718 } 2719 2720 void MacroAssembler::kmov(KRegister dst, KRegister src) { 2721 if (VM_Version::supports_avx512bw()) { 2722 kmovql(dst, src); 2723 } else { 2724 assert(VM_Version::supports_evex(), ""); 2725 kmovwl(dst, src); 2726 } 2727 } 2728 2729 void MacroAssembler::kmov(Register dst, KRegister src) { 2730 if (VM_Version::supports_avx512bw()) { 2731 kmovql(dst, src); 2732 } else { 2733 assert(VM_Version::supports_evex(), ""); 2734 kmovwl(dst, src); 2735 } 2736 } 2737 2738 void MacroAssembler::kmov(KRegister dst, Register src) { 2739 if (VM_Version::supports_avx512bw()) { 2740 kmovql(dst, src); 2741 } else { 2742 assert(VM_Version::supports_evex(), ""); 2743 kmovwl(dst, src); 2744 } 2745 } 2746 2747 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) { 2748 assert(rscratch != noreg || always_reachable(src), "missing"); 2749 2750 if (reachable(src)) { 2751 kmovql(dst, as_Address(src)); 2752 } else { 2753 lea(rscratch, src); 2754 kmovql(dst, Address(rscratch, 0)); 2755 } 2756 } 2757 2758 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) { 2759 assert(rscratch != noreg || always_reachable(src), "missing"); 2760 2761 if (reachable(src)) { 2762 kmovwl(dst, as_Address(src)); 2763 } else { 2764 lea(rscratch, src); 2765 kmovwl(dst, Address(rscratch, 0)); 2766 } 2767 } 2768 2769 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2770 int vector_len, Register rscratch) { 2771 assert(rscratch != noreg || always_reachable(src), "missing"); 2772 2773 if (reachable(src)) { 2774 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len); 2775 } else { 2776 lea(rscratch, src); 2777 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len); 2778 } 2779 } 2780 2781 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2782 int vector_len, Register rscratch) { 2783 assert(rscratch != noreg || always_reachable(src), "missing"); 2784 2785 if (reachable(src)) { 2786 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len); 2787 } else { 2788 lea(rscratch, src); 2789 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len); 2790 } 2791 } 2792 2793 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2794 assert(rscratch != noreg || always_reachable(src), "missing"); 2795 2796 if (reachable(src)) { 2797 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len); 2798 } else { 2799 lea(rscratch, src); 2800 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len); 2801 } 2802 } 2803 2804 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2805 assert(rscratch != noreg || always_reachable(src), "missing"); 2806 2807 if (reachable(src)) { 2808 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len); 2809 } else { 2810 lea(rscratch, src); 2811 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len); 2812 } 2813 } 2814 2815 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2816 assert(rscratch != noreg || always_reachable(src), "missing"); 2817 2818 if (reachable(src)) { 2819 Assembler::evmovdquq(dst, as_Address(src), vector_len); 2820 } else { 2821 lea(rscratch, src); 2822 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len); 2823 } 2824 } 2825 2826 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2827 assert(rscratch != noreg || always_reachable(src), "missing"); 2828 2829 if (reachable(src)) { 2830 Assembler::movdqa(dst, as_Address(src)); 2831 } else { 2832 lea(rscratch, src); 2833 Assembler::movdqa(dst, Address(rscratch, 0)); 2834 } 2835 } 2836 2837 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2838 assert(rscratch != noreg || always_reachable(src), "missing"); 2839 2840 if (reachable(src)) { 2841 Assembler::movsd(dst, as_Address(src)); 2842 } else { 2843 lea(rscratch, src); 2844 Assembler::movsd(dst, Address(rscratch, 0)); 2845 } 2846 } 2847 2848 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2849 assert(rscratch != noreg || always_reachable(src), "missing"); 2850 2851 if (reachable(src)) { 2852 Assembler::movss(dst, as_Address(src)); 2853 } else { 2854 lea(rscratch, src); 2855 Assembler::movss(dst, Address(rscratch, 0)); 2856 } 2857 } 2858 2859 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) { 2860 assert(rscratch != noreg || always_reachable(src), "missing"); 2861 2862 if (reachable(src)) { 2863 Assembler::movddup(dst, as_Address(src)); 2864 } else { 2865 lea(rscratch, src); 2866 Assembler::movddup(dst, Address(rscratch, 0)); 2867 } 2868 } 2869 2870 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2871 assert(rscratch != noreg || always_reachable(src), "missing"); 2872 2873 if (reachable(src)) { 2874 Assembler::vmovddup(dst, as_Address(src), vector_len); 2875 } else { 2876 lea(rscratch, src); 2877 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len); 2878 } 2879 } 2880 2881 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2882 assert(rscratch != noreg || always_reachable(src), "missing"); 2883 2884 if (reachable(src)) { 2885 Assembler::mulsd(dst, as_Address(src)); 2886 } else { 2887 lea(rscratch, src); 2888 Assembler::mulsd(dst, Address(rscratch, 0)); 2889 } 2890 } 2891 2892 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2893 assert(rscratch != noreg || always_reachable(src), "missing"); 2894 2895 if (reachable(src)) { 2896 Assembler::mulss(dst, as_Address(src)); 2897 } else { 2898 lea(rscratch, src); 2899 Assembler::mulss(dst, Address(rscratch, 0)); 2900 } 2901 } 2902 2903 void MacroAssembler::null_check(Register reg, int offset) { 2904 if (needs_explicit_null_check(offset)) { 2905 // provoke OS null exception if reg is null by 2906 // accessing M[reg] w/o changing any (non-CC) registers 2907 // NOTE: cmpl is plenty here to provoke a segv 2908 cmpptr(rax, Address(reg, 0)); 2909 // Note: should probably use testl(rax, Address(reg, 0)); 2910 // may be shorter code (however, this version of 2911 // testl needs to be implemented first) 2912 } else { 2913 // nothing to do, (later) access of M[reg + offset] 2914 // will provoke OS null exception if reg is null 2915 } 2916 } 2917 2918 void MacroAssembler::os_breakpoint() { 2919 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability 2920 // (e.g., MSVC can't call ps() otherwise) 2921 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); 2922 } 2923 2924 void MacroAssembler::unimplemented(const char* what) { 2925 const char* buf = nullptr; 2926 { 2927 ResourceMark rm; 2928 stringStream ss; 2929 ss.print("unimplemented: %s", what); 2930 buf = code_string(ss.as_string()); 2931 } 2932 stop(buf); 2933 } 2934 2935 #ifdef _LP64 2936 #define XSTATE_BV 0x200 2937 #endif 2938 2939 void MacroAssembler::pop_CPU_state() { 2940 pop_FPU_state(); 2941 pop_IU_state(); 2942 } 2943 2944 void MacroAssembler::pop_FPU_state() { 2945 #ifndef _LP64 2946 frstor(Address(rsp, 0)); 2947 #else 2948 fxrstor(Address(rsp, 0)); 2949 #endif 2950 addptr(rsp, FPUStateSizeInWords * wordSize); 2951 } 2952 2953 void MacroAssembler::pop_IU_state() { 2954 popa(); 2955 LP64_ONLY(addq(rsp, 8)); 2956 popf(); 2957 } 2958 2959 // Save Integer and Float state 2960 // Warning: Stack must be 16 byte aligned (64bit) 2961 void MacroAssembler::push_CPU_state() { 2962 push_IU_state(); 2963 push_FPU_state(); 2964 } 2965 2966 void MacroAssembler::push_FPU_state() { 2967 subptr(rsp, FPUStateSizeInWords * wordSize); 2968 #ifndef _LP64 2969 fnsave(Address(rsp, 0)); 2970 fwait(); 2971 #else 2972 fxsave(Address(rsp, 0)); 2973 #endif // LP64 2974 } 2975 2976 void MacroAssembler::push_IU_state() { 2977 // Push flags first because pusha kills them 2978 pushf(); 2979 // Make sure rsp stays 16-byte aligned 2980 LP64_ONLY(subq(rsp, 8)); 2981 pusha(); 2982 } 2983 2984 void MacroAssembler::push_cont_fastpath() { 2985 if (!Continuations::enabled()) return; 2986 2987 #ifndef _LP64 2988 Register rthread = rax; 2989 Register rrealsp = rbx; 2990 push(rthread); 2991 push(rrealsp); 2992 2993 get_thread(rthread); 2994 2995 // The code below wants the original RSP. 2996 // Move it back after the pushes above. 2997 movptr(rrealsp, rsp); 2998 addptr(rrealsp, 2*wordSize); 2999 #else 3000 Register rthread = r15_thread; 3001 Register rrealsp = rsp; 3002 #endif 3003 3004 Label done; 3005 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3006 jccb(Assembler::belowEqual, done); 3007 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp); 3008 bind(done); 3009 3010 #ifndef _LP64 3011 pop(rrealsp); 3012 pop(rthread); 3013 #endif 3014 } 3015 3016 void MacroAssembler::pop_cont_fastpath() { 3017 if (!Continuations::enabled()) return; 3018 3019 #ifndef _LP64 3020 Register rthread = rax; 3021 Register rrealsp = rbx; 3022 push(rthread); 3023 push(rrealsp); 3024 3025 get_thread(rthread); 3026 3027 // The code below wants the original RSP. 3028 // Move it back after the pushes above. 3029 movptr(rrealsp, rsp); 3030 addptr(rrealsp, 2*wordSize); 3031 #else 3032 Register rthread = r15_thread; 3033 Register rrealsp = rsp; 3034 #endif 3035 3036 Label done; 3037 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3038 jccb(Assembler::below, done); 3039 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0); 3040 bind(done); 3041 3042 #ifndef _LP64 3043 pop(rrealsp); 3044 pop(rthread); 3045 #endif 3046 } 3047 3048 void MacroAssembler::inc_held_monitor_count() { 3049 #ifdef _LP64 3050 incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3051 #endif 3052 } 3053 3054 void MacroAssembler::dec_held_monitor_count() { 3055 #ifdef _LP64 3056 decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3057 #endif 3058 } 3059 3060 #ifdef ASSERT 3061 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) { 3062 #ifdef _LP64 3063 Label no_cont; 3064 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset())); 3065 testl(cont, cont); 3066 jcc(Assembler::zero, no_cont); 3067 stop(name); 3068 bind(no_cont); 3069 #else 3070 Unimplemented(); 3071 #endif 3072 } 3073 #endif 3074 3075 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register 3076 if (!java_thread->is_valid()) { 3077 java_thread = rdi; 3078 get_thread(java_thread); 3079 } 3080 // we must set sp to zero to clear frame 3081 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); 3082 // must clear fp, so that compiled frames are not confused; it is 3083 // possible that we need it only for debugging 3084 if (clear_fp) { 3085 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); 3086 } 3087 // Always clear the pc because it could have been set by make_walkable() 3088 movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); 3089 vzeroupper(); 3090 } 3091 3092 void MacroAssembler::restore_rax(Register tmp) { 3093 if (tmp == noreg) pop(rax); 3094 else if (tmp != rax) mov(rax, tmp); 3095 } 3096 3097 void MacroAssembler::round_to(Register reg, int modulus) { 3098 addptr(reg, modulus - 1); 3099 andptr(reg, -modulus); 3100 } 3101 3102 void MacroAssembler::save_rax(Register tmp) { 3103 if (tmp == noreg) push(rax); 3104 else if (tmp != rax) mov(tmp, rax); 3105 } 3106 3107 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod) { 3108 if (at_return) { 3109 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 3110 // we may safely use rsp instead to perform the stack watermark check. 3111 cmpptr(in_nmethod ? rsp : rbp, Address(thread_reg, JavaThread::polling_word_offset())); 3112 jcc(Assembler::above, slow_path); 3113 return; 3114 } 3115 testb(Address(thread_reg, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 3116 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll 3117 } 3118 3119 // Calls to C land 3120 // 3121 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded 3122 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 3123 // has to be reset to 0. This is required to allow proper stack traversal. 3124 void MacroAssembler::set_last_Java_frame(Register java_thread, 3125 Register last_java_sp, 3126 Register last_java_fp, 3127 address last_java_pc, 3128 Register rscratch) { 3129 vzeroupper(); 3130 // determine java_thread register 3131 if (!java_thread->is_valid()) { 3132 java_thread = rdi; 3133 get_thread(java_thread); 3134 } 3135 // determine last_java_sp register 3136 if (!last_java_sp->is_valid()) { 3137 last_java_sp = rsp; 3138 } 3139 // last_java_fp is optional 3140 if (last_java_fp->is_valid()) { 3141 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp); 3142 } 3143 // last_java_pc is optional 3144 if (last_java_pc != nullptr) { 3145 Address java_pc(java_thread, 3146 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); 3147 lea(java_pc, InternalAddress(last_java_pc), rscratch); 3148 } 3149 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp); 3150 } 3151 3152 #ifdef _LP64 3153 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 3154 Register last_java_fp, 3155 Label &L, 3156 Register scratch) { 3157 lea(scratch, L); 3158 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), scratch); 3159 set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, nullptr, scratch); 3160 } 3161 #endif 3162 3163 void MacroAssembler::shlptr(Register dst, int imm8) { 3164 LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8)); 3165 } 3166 3167 void MacroAssembler::shrptr(Register dst, int imm8) { 3168 LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8)); 3169 } 3170 3171 void MacroAssembler::sign_extend_byte(Register reg) { 3172 if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) { 3173 movsbl(reg, reg); // movsxb 3174 } else { 3175 shll(reg, 24); 3176 sarl(reg, 24); 3177 } 3178 } 3179 3180 void MacroAssembler::sign_extend_short(Register reg) { 3181 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 3182 movswl(reg, reg); // movsxw 3183 } else { 3184 shll(reg, 16); 3185 sarl(reg, 16); 3186 } 3187 } 3188 3189 void MacroAssembler::testl(Address dst, int32_t imm32) { 3190 if (imm32 >= 0 && is8bit(imm32)) { 3191 testb(dst, imm32); 3192 } else { 3193 Assembler::testl(dst, imm32); 3194 } 3195 } 3196 3197 void MacroAssembler::testl(Register dst, int32_t imm32) { 3198 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) { 3199 testb(dst, imm32); 3200 } else { 3201 Assembler::testl(dst, imm32); 3202 } 3203 } 3204 3205 void MacroAssembler::testl(Register dst, AddressLiteral src) { 3206 assert(always_reachable(src), "Address should be reachable"); 3207 testl(dst, as_Address(src)); 3208 } 3209 3210 #ifdef _LP64 3211 3212 void MacroAssembler::testq(Address dst, int32_t imm32) { 3213 if (imm32 >= 0) { 3214 testl(dst, imm32); 3215 } else { 3216 Assembler::testq(dst, imm32); 3217 } 3218 } 3219 3220 void MacroAssembler::testq(Register dst, int32_t imm32) { 3221 if (imm32 >= 0) { 3222 testl(dst, imm32); 3223 } else { 3224 Assembler::testq(dst, imm32); 3225 } 3226 } 3227 3228 #endif 3229 3230 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) { 3231 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3232 Assembler::pcmpeqb(dst, src); 3233 } 3234 3235 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) { 3236 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3237 Assembler::pcmpeqw(dst, src); 3238 } 3239 3240 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) { 3241 assert((dst->encoding() < 16),"XMM register should be 0-15"); 3242 Assembler::pcmpestri(dst, src, imm8); 3243 } 3244 3245 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { 3246 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3247 Assembler::pcmpestri(dst, src, imm8); 3248 } 3249 3250 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) { 3251 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3252 Assembler::pmovzxbw(dst, src); 3253 } 3254 3255 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) { 3256 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3257 Assembler::pmovzxbw(dst, src); 3258 } 3259 3260 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) { 3261 assert((src->encoding() < 16),"XMM register should be 0-15"); 3262 Assembler::pmovmskb(dst, src); 3263 } 3264 3265 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) { 3266 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3267 Assembler::ptest(dst, src); 3268 } 3269 3270 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3271 assert(rscratch != noreg || always_reachable(src), "missing"); 3272 3273 if (reachable(src)) { 3274 Assembler::sqrtss(dst, as_Address(src)); 3275 } else { 3276 lea(rscratch, src); 3277 Assembler::sqrtss(dst, Address(rscratch, 0)); 3278 } 3279 } 3280 3281 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3282 assert(rscratch != noreg || always_reachable(src), "missing"); 3283 3284 if (reachable(src)) { 3285 Assembler::subsd(dst, as_Address(src)); 3286 } else { 3287 lea(rscratch, src); 3288 Assembler::subsd(dst, Address(rscratch, 0)); 3289 } 3290 } 3291 3292 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) { 3293 assert(rscratch != noreg || always_reachable(src), "missing"); 3294 3295 if (reachable(src)) { 3296 Assembler::roundsd(dst, as_Address(src), rmode); 3297 } else { 3298 lea(rscratch, src); 3299 Assembler::roundsd(dst, Address(rscratch, 0), rmode); 3300 } 3301 } 3302 3303 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3304 assert(rscratch != noreg || always_reachable(src), "missing"); 3305 3306 if (reachable(src)) { 3307 Assembler::subss(dst, as_Address(src)); 3308 } else { 3309 lea(rscratch, src); 3310 Assembler::subss(dst, Address(rscratch, 0)); 3311 } 3312 } 3313 3314 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3315 assert(rscratch != noreg || always_reachable(src), "missing"); 3316 3317 if (reachable(src)) { 3318 Assembler::ucomisd(dst, as_Address(src)); 3319 } else { 3320 lea(rscratch, src); 3321 Assembler::ucomisd(dst, Address(rscratch, 0)); 3322 } 3323 } 3324 3325 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3326 assert(rscratch != noreg || always_reachable(src), "missing"); 3327 3328 if (reachable(src)) { 3329 Assembler::ucomiss(dst, as_Address(src)); 3330 } else { 3331 lea(rscratch, src); 3332 Assembler::ucomiss(dst, Address(rscratch, 0)); 3333 } 3334 } 3335 3336 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3337 assert(rscratch != noreg || always_reachable(src), "missing"); 3338 3339 // Used in sign-bit flipping with aligned address. 3340 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3341 3342 if (UseAVX > 2 && 3343 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 3344 (dst->encoding() >= 16)) { 3345 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch); 3346 } else if (reachable(src)) { 3347 Assembler::xorpd(dst, as_Address(src)); 3348 } else { 3349 lea(rscratch, src); 3350 Assembler::xorpd(dst, Address(rscratch, 0)); 3351 } 3352 } 3353 3354 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) { 3355 if (UseAVX > 2 && 3356 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 3357 ((dst->encoding() >= 16) || (src->encoding() >= 16))) { 3358 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3359 } else { 3360 Assembler::xorpd(dst, src); 3361 } 3362 } 3363 3364 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) { 3365 if (UseAVX > 2 && 3366 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 3367 ((dst->encoding() >= 16) || (src->encoding() >= 16))) { 3368 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3369 } else { 3370 Assembler::xorps(dst, src); 3371 } 3372 } 3373 3374 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) { 3375 assert(rscratch != noreg || always_reachable(src), "missing"); 3376 3377 // Used in sign-bit flipping with aligned address. 3378 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3379 3380 if (UseAVX > 2 && 3381 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 3382 (dst->encoding() >= 16)) { 3383 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch); 3384 } else if (reachable(src)) { 3385 Assembler::xorps(dst, as_Address(src)); 3386 } else { 3387 lea(rscratch, src); 3388 Assembler::xorps(dst, Address(rscratch, 0)); 3389 } 3390 } 3391 3392 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) { 3393 assert(rscratch != noreg || always_reachable(src), "missing"); 3394 3395 // Used in sign-bit flipping with aligned address. 3396 bool aligned_adr = (((intptr_t)src.target() & 15) == 0); 3397 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes"); 3398 if (reachable(src)) { 3399 Assembler::pshufb(dst, as_Address(src)); 3400 } else { 3401 lea(rscratch, src); 3402 Assembler::pshufb(dst, Address(rscratch, 0)); 3403 } 3404 } 3405 3406 // AVX 3-operands instructions 3407 3408 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3409 assert(rscratch != noreg || always_reachable(src), "missing"); 3410 3411 if (reachable(src)) { 3412 vaddsd(dst, nds, as_Address(src)); 3413 } else { 3414 lea(rscratch, src); 3415 vaddsd(dst, nds, Address(rscratch, 0)); 3416 } 3417 } 3418 3419 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3420 assert(rscratch != noreg || always_reachable(src), "missing"); 3421 3422 if (reachable(src)) { 3423 vaddss(dst, nds, as_Address(src)); 3424 } else { 3425 lea(rscratch, src); 3426 vaddss(dst, nds, Address(rscratch, 0)); 3427 } 3428 } 3429 3430 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3431 assert(UseAVX > 0, "requires some form of AVX"); 3432 assert(rscratch != noreg || always_reachable(src), "missing"); 3433 3434 if (reachable(src)) { 3435 Assembler::vpaddb(dst, nds, as_Address(src), vector_len); 3436 } else { 3437 lea(rscratch, src); 3438 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len); 3439 } 3440 } 3441 3442 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3443 assert(UseAVX > 0, "requires some form of AVX"); 3444 assert(rscratch != noreg || always_reachable(src), "missing"); 3445 3446 if (reachable(src)) { 3447 Assembler::vpaddd(dst, nds, as_Address(src), vector_len); 3448 } else { 3449 lea(rscratch, src); 3450 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len); 3451 } 3452 } 3453 3454 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3455 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3456 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3457 3458 vandps(dst, nds, negate_field, vector_len, rscratch); 3459 } 3460 3461 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3462 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3463 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3464 3465 vandpd(dst, nds, negate_field, vector_len, rscratch); 3466 } 3467 3468 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3469 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3470 Assembler::vpaddb(dst, nds, src, vector_len); 3471 } 3472 3473 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3474 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3475 Assembler::vpaddb(dst, nds, src, vector_len); 3476 } 3477 3478 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3479 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3480 Assembler::vpaddw(dst, nds, src, vector_len); 3481 } 3482 3483 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3484 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3485 Assembler::vpaddw(dst, nds, src, vector_len); 3486 } 3487 3488 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3489 assert(rscratch != noreg || always_reachable(src), "missing"); 3490 3491 if (reachable(src)) { 3492 Assembler::vpand(dst, nds, as_Address(src), vector_len); 3493 } else { 3494 lea(rscratch, src); 3495 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len); 3496 } 3497 } 3498 3499 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3500 assert(rscratch != noreg || always_reachable(src), "missing"); 3501 3502 if (reachable(src)) { 3503 Assembler::vpbroadcastd(dst, as_Address(src), vector_len); 3504 } else { 3505 lea(rscratch, src); 3506 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len); 3507 } 3508 } 3509 3510 void MacroAssembler::vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3511 assert(rscratch != noreg || always_reachable(src), "missing"); 3512 3513 if (reachable(src)) { 3514 Assembler::vbroadcasti128(dst, as_Address(src), vector_len); 3515 } else { 3516 lea(rscratch, src); 3517 Assembler::vbroadcasti128(dst, Address(rscratch, 0), vector_len); 3518 } 3519 } 3520 3521 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3522 assert(rscratch != noreg || always_reachable(src), "missing"); 3523 3524 if (reachable(src)) { 3525 Assembler::vpbroadcastq(dst, as_Address(src), vector_len); 3526 } else { 3527 lea(rscratch, src); 3528 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len); 3529 } 3530 } 3531 3532 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3533 assert(rscratch != noreg || always_reachable(src), "missing"); 3534 3535 if (reachable(src)) { 3536 Assembler::vbroadcastsd(dst, as_Address(src), vector_len); 3537 } else { 3538 lea(rscratch, src); 3539 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len); 3540 } 3541 } 3542 3543 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3544 assert(rscratch != noreg || always_reachable(src), "missing"); 3545 3546 if (reachable(src)) { 3547 Assembler::vbroadcastss(dst, as_Address(src), vector_len); 3548 } else { 3549 lea(rscratch, src); 3550 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len); 3551 } 3552 } 3553 3554 // Vector float blend 3555 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3556 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3557 // WARN: Allow dst == (src1|src2), mask == scratch 3558 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3559 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst; 3560 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3561 if (blend_emulation && scratch_available && dst_available) { 3562 if (compute_mask) { 3563 vpsrad(scratch, mask, 32, vector_len); 3564 mask = scratch; 3565 } 3566 if (dst == src1) { 3567 vpandn(dst, mask, src1, vector_len); // if mask == 0, src1 3568 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3569 } else { 3570 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3571 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1 3572 } 3573 vpor(dst, dst, scratch, vector_len); 3574 } else { 3575 Assembler::vblendvps(dst, src1, src2, mask, vector_len); 3576 } 3577 } 3578 3579 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3580 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3581 // WARN: Allow dst == (src1|src2), mask == scratch 3582 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3583 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask); 3584 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3585 if (blend_emulation && scratch_available && dst_available) { 3586 if (compute_mask) { 3587 vpxor(scratch, scratch, scratch, vector_len); 3588 vpcmpgtq(scratch, scratch, mask, vector_len); 3589 mask = scratch; 3590 } 3591 if (dst == src1) { 3592 vpandn(dst, mask, src1, vector_len); // if mask == 0, src 3593 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3594 } else { 3595 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3596 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src 3597 } 3598 vpor(dst, dst, scratch, vector_len); 3599 } else { 3600 Assembler::vblendvpd(dst, src1, src2, mask, vector_len); 3601 } 3602 } 3603 3604 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3605 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3606 Assembler::vpcmpeqb(dst, nds, src, vector_len); 3607 } 3608 3609 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) { 3610 assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3611 Assembler::vpcmpeqb(dst, src1, src2, vector_len); 3612 } 3613 3614 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3615 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3616 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3617 } 3618 3619 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3620 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3621 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3622 } 3623 3624 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3625 assert(rscratch != noreg || always_reachable(src), "missing"); 3626 3627 if (reachable(src)) { 3628 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len); 3629 } else { 3630 lea(rscratch, src); 3631 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len); 3632 } 3633 } 3634 3635 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3636 int comparison, bool is_signed, int vector_len, Register rscratch) { 3637 assert(rscratch != noreg || always_reachable(src), "missing"); 3638 3639 if (reachable(src)) { 3640 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3641 } else { 3642 lea(rscratch, src); 3643 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3644 } 3645 } 3646 3647 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3648 int comparison, bool is_signed, int vector_len, Register rscratch) { 3649 assert(rscratch != noreg || always_reachable(src), "missing"); 3650 3651 if (reachable(src)) { 3652 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3653 } else { 3654 lea(rscratch, src); 3655 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3656 } 3657 } 3658 3659 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3660 int comparison, bool is_signed, int vector_len, Register rscratch) { 3661 assert(rscratch != noreg || always_reachable(src), "missing"); 3662 3663 if (reachable(src)) { 3664 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3665 } else { 3666 lea(rscratch, src); 3667 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3668 } 3669 } 3670 3671 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3672 int comparison, bool is_signed, int vector_len, Register rscratch) { 3673 assert(rscratch != noreg || always_reachable(src), "missing"); 3674 3675 if (reachable(src)) { 3676 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3677 } else { 3678 lea(rscratch, src); 3679 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3680 } 3681 } 3682 3683 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) { 3684 if (width == Assembler::Q) { 3685 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len); 3686 } else { 3687 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len); 3688 } 3689 } 3690 3691 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) { 3692 int eq_cond_enc = 0x29; 3693 int gt_cond_enc = 0x37; 3694 if (width != Assembler::Q) { 3695 eq_cond_enc = 0x74 + width; 3696 gt_cond_enc = 0x64 + width; 3697 } 3698 switch (cond) { 3699 case eq: 3700 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3701 break; 3702 case neq: 3703 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3704 vallones(xtmp, vector_len); 3705 vpxor(dst, xtmp, dst, vector_len); 3706 break; 3707 case le: 3708 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3709 vallones(xtmp, vector_len); 3710 vpxor(dst, xtmp, dst, vector_len); 3711 break; 3712 case nlt: 3713 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3714 vallones(xtmp, vector_len); 3715 vpxor(dst, xtmp, dst, vector_len); 3716 break; 3717 case lt: 3718 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3719 break; 3720 case nle: 3721 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3722 break; 3723 default: 3724 assert(false, "Should not reach here"); 3725 } 3726 } 3727 3728 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) { 3729 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3730 Assembler::vpmovzxbw(dst, src, vector_len); 3731 } 3732 3733 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) { 3734 assert((src->encoding() < 16),"XMM register should be 0-15"); 3735 Assembler::vpmovmskb(dst, src, vector_len); 3736 } 3737 3738 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3739 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3740 Assembler::vpmullw(dst, nds, src, vector_len); 3741 } 3742 3743 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3744 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3745 Assembler::vpmullw(dst, nds, src, vector_len); 3746 } 3747 3748 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3749 assert((UseAVX > 0), "AVX support is needed"); 3750 assert(rscratch != noreg || always_reachable(src), "missing"); 3751 3752 if (reachable(src)) { 3753 Assembler::vpmulld(dst, nds, as_Address(src), vector_len); 3754 } else { 3755 lea(rscratch, src); 3756 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len); 3757 } 3758 } 3759 3760 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3761 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3762 Assembler::vpsubb(dst, nds, src, vector_len); 3763 } 3764 3765 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3766 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3767 Assembler::vpsubb(dst, nds, src, vector_len); 3768 } 3769 3770 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3771 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3772 Assembler::vpsubw(dst, nds, src, vector_len); 3773 } 3774 3775 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3776 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3777 Assembler::vpsubw(dst, nds, src, vector_len); 3778 } 3779 3780 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3781 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3782 Assembler::vpsraw(dst, nds, shift, vector_len); 3783 } 3784 3785 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3786 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3787 Assembler::vpsraw(dst, nds, shift, vector_len); 3788 } 3789 3790 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3791 assert(UseAVX > 2,""); 3792 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3793 vector_len = 2; 3794 } 3795 Assembler::evpsraq(dst, nds, shift, vector_len); 3796 } 3797 3798 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3799 assert(UseAVX > 2,""); 3800 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3801 vector_len = 2; 3802 } 3803 Assembler::evpsraq(dst, nds, shift, vector_len); 3804 } 3805 3806 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3807 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3808 Assembler::vpsrlw(dst, nds, shift, vector_len); 3809 } 3810 3811 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3812 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3813 Assembler::vpsrlw(dst, nds, shift, vector_len); 3814 } 3815 3816 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3817 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3818 Assembler::vpsllw(dst, nds, shift, vector_len); 3819 } 3820 3821 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3822 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3823 Assembler::vpsllw(dst, nds, shift, vector_len); 3824 } 3825 3826 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) { 3827 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3828 Assembler::vptest(dst, src); 3829 } 3830 3831 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) { 3832 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3833 Assembler::punpcklbw(dst, src); 3834 } 3835 3836 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) { 3837 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 3838 Assembler::pshufd(dst, src, mode); 3839 } 3840 3841 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { 3842 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3843 Assembler::pshuflw(dst, src, mode); 3844 } 3845 3846 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3847 assert(rscratch != noreg || always_reachable(src), "missing"); 3848 3849 if (reachable(src)) { 3850 vandpd(dst, nds, as_Address(src), vector_len); 3851 } else { 3852 lea(rscratch, src); 3853 vandpd(dst, nds, Address(rscratch, 0), vector_len); 3854 } 3855 } 3856 3857 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3858 assert(rscratch != noreg || always_reachable(src), "missing"); 3859 3860 if (reachable(src)) { 3861 vandps(dst, nds, as_Address(src), vector_len); 3862 } else { 3863 lea(rscratch, src); 3864 vandps(dst, nds, Address(rscratch, 0), vector_len); 3865 } 3866 } 3867 3868 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, 3869 bool merge, int vector_len, Register rscratch) { 3870 assert(rscratch != noreg || always_reachable(src), "missing"); 3871 3872 if (reachable(src)) { 3873 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len); 3874 } else { 3875 lea(rscratch, src); 3876 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 3877 } 3878 } 3879 3880 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3881 assert(rscratch != noreg || always_reachable(src), "missing"); 3882 3883 if (reachable(src)) { 3884 vdivsd(dst, nds, as_Address(src)); 3885 } else { 3886 lea(rscratch, src); 3887 vdivsd(dst, nds, Address(rscratch, 0)); 3888 } 3889 } 3890 3891 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3892 assert(rscratch != noreg || always_reachable(src), "missing"); 3893 3894 if (reachable(src)) { 3895 vdivss(dst, nds, as_Address(src)); 3896 } else { 3897 lea(rscratch, src); 3898 vdivss(dst, nds, Address(rscratch, 0)); 3899 } 3900 } 3901 3902 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3903 assert(rscratch != noreg || always_reachable(src), "missing"); 3904 3905 if (reachable(src)) { 3906 vmulsd(dst, nds, as_Address(src)); 3907 } else { 3908 lea(rscratch, src); 3909 vmulsd(dst, nds, Address(rscratch, 0)); 3910 } 3911 } 3912 3913 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3914 assert(rscratch != noreg || always_reachable(src), "missing"); 3915 3916 if (reachable(src)) { 3917 vmulss(dst, nds, as_Address(src)); 3918 } else { 3919 lea(rscratch, src); 3920 vmulss(dst, nds, Address(rscratch, 0)); 3921 } 3922 } 3923 3924 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3925 assert(rscratch != noreg || always_reachable(src), "missing"); 3926 3927 if (reachable(src)) { 3928 vsubsd(dst, nds, as_Address(src)); 3929 } else { 3930 lea(rscratch, src); 3931 vsubsd(dst, nds, Address(rscratch, 0)); 3932 } 3933 } 3934 3935 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3936 assert(rscratch != noreg || always_reachable(src), "missing"); 3937 3938 if (reachable(src)) { 3939 vsubss(dst, nds, as_Address(src)); 3940 } else { 3941 lea(rscratch, src); 3942 vsubss(dst, nds, Address(rscratch, 0)); 3943 } 3944 } 3945 3946 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3947 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3948 assert(rscratch != noreg || always_reachable(src), "missing"); 3949 3950 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch); 3951 } 3952 3953 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3954 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3955 assert(rscratch != noreg || always_reachable(src), "missing"); 3956 3957 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch); 3958 } 3959 3960 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3961 assert(rscratch != noreg || always_reachable(src), "missing"); 3962 3963 if (reachable(src)) { 3964 vxorpd(dst, nds, as_Address(src), vector_len); 3965 } else { 3966 lea(rscratch, src); 3967 vxorpd(dst, nds, Address(rscratch, 0), vector_len); 3968 } 3969 } 3970 3971 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3972 assert(rscratch != noreg || always_reachable(src), "missing"); 3973 3974 if (reachable(src)) { 3975 vxorps(dst, nds, as_Address(src), vector_len); 3976 } else { 3977 lea(rscratch, src); 3978 vxorps(dst, nds, Address(rscratch, 0), vector_len); 3979 } 3980 } 3981 3982 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3983 assert(rscratch != noreg || always_reachable(src), "missing"); 3984 3985 if (UseAVX > 1 || (vector_len < 1)) { 3986 if (reachable(src)) { 3987 Assembler::vpxor(dst, nds, as_Address(src), vector_len); 3988 } else { 3989 lea(rscratch, src); 3990 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len); 3991 } 3992 } else { 3993 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch); 3994 } 3995 } 3996 3997 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3998 assert(rscratch != noreg || always_reachable(src), "missing"); 3999 4000 if (reachable(src)) { 4001 Assembler::vpermd(dst, nds, as_Address(src), vector_len); 4002 } else { 4003 lea(rscratch, src); 4004 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len); 4005 } 4006 } 4007 4008 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) { 4009 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask); 4010 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code 4011 // The inverted mask is sign-extended 4012 andptr(possibly_non_local, inverted_mask); 4013 } 4014 4015 void MacroAssembler::resolve_jobject(Register value, 4016 Register thread, 4017 Register tmp) { 4018 assert_different_registers(value, thread, tmp); 4019 Label done, tagged, weak_tagged; 4020 testptr(value, value); 4021 jcc(Assembler::zero, done); // Use null as-is. 4022 testptr(value, JNIHandles::tag_mask); // Test for tag. 4023 jcc(Assembler::notZero, tagged); 4024 4025 // Resolve local handle 4026 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread); 4027 verify_oop(value); 4028 jmp(done); 4029 4030 bind(tagged); 4031 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag. 4032 jcc(Assembler::notZero, weak_tagged); 4033 4034 // Resolve global handle 4035 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4036 verify_oop(value); 4037 jmp(done); 4038 4039 bind(weak_tagged); 4040 // Resolve jweak. 4041 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 4042 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread); 4043 verify_oop(value); 4044 4045 bind(done); 4046 } 4047 4048 void MacroAssembler::resolve_global_jobject(Register value, 4049 Register thread, 4050 Register tmp) { 4051 assert_different_registers(value, thread, tmp); 4052 Label done; 4053 4054 testptr(value, value); 4055 jcc(Assembler::zero, done); // Use null as-is. 4056 4057 #ifdef ASSERT 4058 { 4059 Label valid_global_tag; 4060 testptr(value, JNIHandles::TypeTag::global); // Test for global tag. 4061 jcc(Assembler::notZero, valid_global_tag); 4062 stop("non global jobject using resolve_global_jobject"); 4063 bind(valid_global_tag); 4064 } 4065 #endif 4066 4067 // Resolve global handle 4068 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4069 verify_oop(value); 4070 4071 bind(done); 4072 } 4073 4074 void MacroAssembler::subptr(Register dst, int32_t imm32) { 4075 LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32)); 4076 } 4077 4078 // Force generation of a 4 byte immediate value even if it fits into 8bit 4079 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) { 4080 LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32)); 4081 } 4082 4083 void MacroAssembler::subptr(Register dst, Register src) { 4084 LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); 4085 } 4086 4087 // C++ bool manipulation 4088 void MacroAssembler::testbool(Register dst) { 4089 if(sizeof(bool) == 1) 4090 testb(dst, 0xff); 4091 else if(sizeof(bool) == 2) { 4092 // testw implementation needed for two byte bools 4093 ShouldNotReachHere(); 4094 } else if(sizeof(bool) == 4) 4095 testl(dst, dst); 4096 else 4097 // unsupported 4098 ShouldNotReachHere(); 4099 } 4100 4101 void MacroAssembler::testptr(Register dst, Register src) { 4102 LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src)); 4103 } 4104 4105 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4106 void MacroAssembler::tlab_allocate(Register thread, Register obj, 4107 Register var_size_in_bytes, 4108 int con_size_in_bytes, 4109 Register t1, 4110 Register t2, 4111 Label& slow_case) { 4112 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4113 bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4114 } 4115 4116 RegSet MacroAssembler::call_clobbered_gp_registers() { 4117 RegSet regs; 4118 #ifdef _LP64 4119 regs += RegSet::of(rax, rcx, rdx); 4120 #ifndef _WINDOWS 4121 regs += RegSet::of(rsi, rdi); 4122 #endif 4123 regs += RegSet::range(r8, r11); 4124 #else 4125 regs += RegSet::of(rax, rcx, rdx); 4126 #endif 4127 #ifdef _LP64 4128 if (UseAPX) { 4129 regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1)); 4130 } 4131 #endif 4132 return regs; 4133 } 4134 4135 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() { 4136 int num_xmm_registers = XMMRegister::available_xmm_registers(); 4137 #if defined(_WINDOWS) 4138 XMMRegSet result = XMMRegSet::range(xmm0, xmm5); 4139 if (num_xmm_registers > 16) { 4140 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1)); 4141 } 4142 return result; 4143 #else 4144 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1)); 4145 #endif 4146 } 4147 4148 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor 4149 4150 #ifndef _LP64 4151 static bool use_x87_registers() { return UseSSE < 2; } 4152 #endif 4153 static bool use_xmm_registers() { return UseSSE >= 1; } 4154 4155 // C1 only ever uses the first double/float of the XMM register. 4156 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); } 4157 4158 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4159 if (UseSSE == 1) { 4160 masm->movflt(Address(rsp, offset), reg); 4161 } else { 4162 masm->movdbl(Address(rsp, offset), reg); 4163 } 4164 } 4165 4166 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4167 if (UseSSE == 1) { 4168 masm->movflt(reg, Address(rsp, offset)); 4169 } else { 4170 masm->movdbl(reg, Address(rsp, offset)); 4171 } 4172 } 4173 4174 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers, 4175 bool save_fpu, int& gp_area_size, 4176 int& fp_area_size, int& xmm_area_size) { 4177 4178 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size, 4179 StackAlignmentInBytes); 4180 #ifdef _LP64 4181 fp_area_size = 0; 4182 #else 4183 fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0; 4184 #endif 4185 xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0; 4186 4187 return gp_area_size + fp_area_size + xmm_area_size; 4188 } 4189 4190 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) { 4191 block_comment("push_call_clobbered_registers start"); 4192 // Regular registers 4193 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude; 4194 4195 int gp_area_size; 4196 int fp_area_size; 4197 int xmm_area_size; 4198 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu, 4199 gp_area_size, fp_area_size, xmm_area_size); 4200 subptr(rsp, total_save_size); 4201 4202 push_set(gp_registers_to_push, 0); 4203 4204 #ifndef _LP64 4205 if (save_fpu && use_x87_registers()) { 4206 fnsave(Address(rsp, gp_area_size)); 4207 fwait(); 4208 } 4209 #endif 4210 if (save_fpu && use_xmm_registers()) { 4211 push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4212 } 4213 4214 block_comment("push_call_clobbered_registers end"); 4215 } 4216 4217 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) { 4218 block_comment("pop_call_clobbered_registers start"); 4219 4220 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude; 4221 4222 int gp_area_size; 4223 int fp_area_size; 4224 int xmm_area_size; 4225 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu, 4226 gp_area_size, fp_area_size, xmm_area_size); 4227 4228 if (restore_fpu && use_xmm_registers()) { 4229 pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4230 } 4231 #ifndef _LP64 4232 if (restore_fpu && use_x87_registers()) { 4233 frstor(Address(rsp, gp_area_size)); 4234 } 4235 #endif 4236 4237 pop_set(gp_registers_to_pop, 0); 4238 4239 addptr(rsp, total_save_size); 4240 4241 vzeroupper(); 4242 4243 block_comment("pop_call_clobbered_registers end"); 4244 } 4245 4246 void MacroAssembler::push_set(XMMRegSet set, int offset) { 4247 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be"); 4248 int spill_offset = offset; 4249 4250 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) { 4251 save_xmm_register(this, spill_offset, *it); 4252 spill_offset += xmm_save_size(); 4253 } 4254 } 4255 4256 void MacroAssembler::pop_set(XMMRegSet set, int offset) { 4257 int restore_size = set.size() * xmm_save_size(); 4258 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be"); 4259 4260 int restore_offset = offset + restore_size - xmm_save_size(); 4261 4262 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) { 4263 restore_xmm_register(this, restore_offset, *it); 4264 restore_offset -= xmm_save_size(); 4265 } 4266 } 4267 4268 void MacroAssembler::push_set(RegSet set, int offset) { 4269 int spill_offset; 4270 if (offset == -1) { 4271 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4272 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4273 subptr(rsp, aligned_size); 4274 spill_offset = 0; 4275 } else { 4276 spill_offset = offset; 4277 } 4278 4279 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) { 4280 movptr(Address(rsp, spill_offset), *it); 4281 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4282 } 4283 } 4284 4285 void MacroAssembler::pop_set(RegSet set, int offset) { 4286 4287 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4288 int restore_size = set.size() * gp_reg_size; 4289 int aligned_size = align_up(restore_size, StackAlignmentInBytes); 4290 4291 int restore_offset; 4292 if (offset == -1) { 4293 restore_offset = restore_size - gp_reg_size; 4294 } else { 4295 restore_offset = offset + restore_size - gp_reg_size; 4296 } 4297 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) { 4298 movptr(*it, Address(rsp, restore_offset)); 4299 restore_offset -= gp_reg_size; 4300 } 4301 4302 if (offset == -1) { 4303 addptr(rsp, aligned_size); 4304 } 4305 } 4306 4307 // Preserves the contents of address, destroys the contents length_in_bytes and temp. 4308 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) { 4309 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different"); 4310 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord"); 4311 Label done; 4312 4313 testptr(length_in_bytes, length_in_bytes); 4314 jcc(Assembler::zero, done); 4315 4316 // initialize topmost word, divide index by 2, check if odd and test if zero 4317 // note: for the remaining code to work, index must be a multiple of BytesPerWord 4318 #ifdef ASSERT 4319 { 4320 Label L; 4321 testptr(length_in_bytes, BytesPerWord - 1); 4322 jcc(Assembler::zero, L); 4323 stop("length must be a multiple of BytesPerWord"); 4324 bind(L); 4325 } 4326 #endif 4327 Register index = length_in_bytes; 4328 xorptr(temp, temp); // use _zero reg to clear memory (shorter code) 4329 if (UseIncDec) { 4330 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set 4331 } else { 4332 shrptr(index, 2); // use 2 instructions to avoid partial flag stall 4333 shrptr(index, 1); 4334 } 4335 #ifndef _LP64 4336 // index could have not been a multiple of 8 (i.e., bit 2 was set) 4337 { 4338 Label even; 4339 // note: if index was a multiple of 8, then it cannot 4340 // be 0 now otherwise it must have been 0 before 4341 // => if it is even, we don't need to check for 0 again 4342 jcc(Assembler::carryClear, even); 4343 // clear topmost word (no jump would be needed if conditional assignment worked here) 4344 movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp); 4345 // index could be 0 now, must check again 4346 jcc(Assembler::zero, done); 4347 bind(even); 4348 } 4349 #endif // !_LP64 4350 // initialize remaining object fields: index is a multiple of 2 now 4351 { 4352 Label loop; 4353 bind(loop); 4354 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp); 4355 NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);) 4356 decrement(index); 4357 jcc(Assembler::notZero, loop); 4358 } 4359 4360 bind(done); 4361 } 4362 4363 // Look up the method for a megamorphic invokeinterface call. 4364 // The target method is determined by <intf_klass, itable_index>. 4365 // The receiver klass is in recv_klass. 4366 // On success, the result will be in method_result, and execution falls through. 4367 // On failure, execution transfers to the given label. 4368 void MacroAssembler::lookup_interface_method(Register recv_klass, 4369 Register intf_klass, 4370 RegisterOrConstant itable_index, 4371 Register method_result, 4372 Register scan_temp, 4373 Label& L_no_such_interface, 4374 bool return_method) { 4375 assert_different_registers(recv_klass, intf_klass, scan_temp); 4376 assert_different_registers(method_result, intf_klass, scan_temp); 4377 assert(recv_klass != method_result || !return_method, 4378 "recv_klass can be destroyed when method isn't needed"); 4379 4380 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 4381 "caller must use same register for non-constant itable index as for method"); 4382 4383 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 4384 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4385 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4386 int scan_step = itableOffsetEntry::size() * wordSize; 4387 int vte_size = vtableEntry::size_in_bytes(); 4388 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4389 assert(vte_size == wordSize, "else adjust times_vte_scale"); 4390 4391 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4392 4393 // Could store the aligned, prescaled offset in the klass. 4394 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 4395 4396 if (return_method) { 4397 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 4398 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4399 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 4400 } 4401 4402 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 4403 // if (scan->interface() == intf) { 4404 // result = (klass + scan->offset() + itable_index); 4405 // } 4406 // } 4407 Label search, found_method; 4408 4409 for (int peel = 1; peel >= 0; peel--) { 4410 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 4411 cmpptr(intf_klass, method_result); 4412 4413 if (peel) { 4414 jccb(Assembler::equal, found_method); 4415 } else { 4416 jccb(Assembler::notEqual, search); 4417 // (invert the test to fall through to found_method...) 4418 } 4419 4420 if (!peel) break; 4421 4422 bind(search); 4423 4424 // Check that the previous entry is non-null. A null entry means that 4425 // the receiver class doesn't implement the interface, and wasn't the 4426 // same as when the caller was compiled. 4427 testptr(method_result, method_result); 4428 jcc(Assembler::zero, L_no_such_interface); 4429 addptr(scan_temp, scan_step); 4430 } 4431 4432 bind(found_method); 4433 4434 if (return_method) { 4435 // Got a hit. 4436 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 4437 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); 4438 } 4439 } 4440 4441 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 4442 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 4443 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 4444 // The target method is determined by <holder_klass, itable_index>. 4445 // The receiver klass is in recv_klass. 4446 // On success, the result will be in method_result, and execution falls through. 4447 // On failure, execution transfers to the given label. 4448 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 4449 Register holder_klass, 4450 Register resolved_klass, 4451 Register method_result, 4452 Register scan_temp, 4453 Register temp_reg2, 4454 Register receiver, 4455 int itable_index, 4456 Label& L_no_such_interface) { 4457 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver); 4458 Register temp_itbl_klass = method_result; 4459 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl 4460 4461 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4462 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4463 int scan_step = itableOffsetEntry::size() * wordSize; 4464 int vte_size = vtableEntry::size_in_bytes(); 4465 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 4466 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 4467 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4468 assert(vte_size == wordSize, "adjust times_vte_scale"); 4469 4470 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found; 4471 4472 // temp_itbl_klass = recv_klass.itable[0] 4473 // scan_temp = &recv_klass.itable[0] + step 4474 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4475 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset)); 4476 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step)); 4477 xorptr(temp_reg, temp_reg); 4478 4479 // Initial checks: 4480 // - if (holder_klass != resolved_klass), go to "scan for resolved" 4481 // - if (itable[0] == 0), no such interface 4482 // - if (itable[0] == holder_klass), shortcut to "holder found" 4483 cmpptr(holder_klass, resolved_klass); 4484 jccb(Assembler::notEqual, L_loop_scan_resolved_entry); 4485 testptr(temp_itbl_klass, temp_itbl_klass); 4486 jccb(Assembler::zero, L_no_such_interface); 4487 cmpptr(holder_klass, temp_itbl_klass); 4488 jccb(Assembler::equal, L_holder_found); 4489 4490 // Loop: Look for holder_klass record in itable 4491 // do { 4492 // tmp = itable[index]; 4493 // index += step; 4494 // if (tmp == holder_klass) { 4495 // goto L_holder_found; // Found! 4496 // } 4497 // } while (tmp != 0); 4498 // goto L_no_such_interface // Not found. 4499 Label L_scan_holder; 4500 bind(L_scan_holder); 4501 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4502 addptr(scan_temp, scan_step); 4503 cmpptr(holder_klass, temp_itbl_klass); 4504 jccb(Assembler::equal, L_holder_found); 4505 testptr(temp_itbl_klass, temp_itbl_klass); 4506 jccb(Assembler::notZero, L_scan_holder); 4507 4508 jmpb(L_no_such_interface); 4509 4510 // Loop: Look for resolved_class record in itable 4511 // do { 4512 // tmp = itable[index]; 4513 // index += step; 4514 // if (tmp == holder_klass) { 4515 // // Also check if we have met a holder klass 4516 // holder_tmp = itable[index-step-ioffset]; 4517 // } 4518 // if (tmp == resolved_klass) { 4519 // goto L_resolved_found; // Found! 4520 // } 4521 // } while (tmp != 0); 4522 // goto L_no_such_interface // Not found. 4523 // 4524 Label L_loop_scan_resolved; 4525 bind(L_loop_scan_resolved); 4526 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4527 addptr(scan_temp, scan_step); 4528 bind(L_loop_scan_resolved_entry); 4529 cmpptr(holder_klass, temp_itbl_klass); 4530 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4531 cmpptr(resolved_klass, temp_itbl_klass); 4532 jccb(Assembler::equal, L_resolved_found); 4533 testptr(temp_itbl_klass, temp_itbl_klass); 4534 jccb(Assembler::notZero, L_loop_scan_resolved); 4535 4536 jmpb(L_no_such_interface); 4537 4538 Label L_ready; 4539 4540 // See if we already have a holder klass. If not, go and scan for it. 4541 bind(L_resolved_found); 4542 testptr(temp_reg, temp_reg); 4543 jccb(Assembler::zero, L_scan_holder); 4544 jmpb(L_ready); 4545 4546 bind(L_holder_found); 4547 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4548 4549 // Finally, temp_reg contains holder_klass vtable offset 4550 bind(L_ready); 4551 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4552 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl 4553 load_klass(scan_temp, receiver, noreg); 4554 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4555 } else { 4556 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4557 } 4558 } 4559 4560 4561 // virtual method calling 4562 void MacroAssembler::lookup_virtual_method(Register recv_klass, 4563 RegisterOrConstant vtable_index, 4564 Register method_result) { 4565 const ByteSize base = Klass::vtable_start_offset(); 4566 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below"); 4567 Address vtable_entry_addr(recv_klass, 4568 vtable_index, Address::times_ptr, 4569 base + vtableEntry::method_offset()); 4570 movptr(method_result, vtable_entry_addr); 4571 } 4572 4573 4574 void MacroAssembler::check_klass_subtype(Register sub_klass, 4575 Register super_klass, 4576 Register temp_reg, 4577 Label& L_success) { 4578 Label L_failure; 4579 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 4580 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 4581 bind(L_failure); 4582 } 4583 4584 4585 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 4586 Register super_klass, 4587 Register temp_reg, 4588 Label* L_success, 4589 Label* L_failure, 4590 Label* L_slow_path, 4591 RegisterOrConstant super_check_offset) { 4592 assert_different_registers(sub_klass, super_klass, temp_reg); 4593 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 4594 if (super_check_offset.is_register()) { 4595 assert_different_registers(sub_klass, super_klass, 4596 super_check_offset.as_register()); 4597 } else if (must_load_sco) { 4598 assert(temp_reg != noreg, "supply either a temp or a register offset"); 4599 } 4600 4601 Label L_fallthrough; 4602 int label_nulls = 0; 4603 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4604 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4605 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 4606 assert(label_nulls <= 1, "at most one null in the batch"); 4607 4608 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4609 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 4610 Address super_check_offset_addr(super_klass, sco_offset); 4611 4612 // Hacked jcc, which "knows" that L_fallthrough, at least, is in 4613 // range of a jccb. If this routine grows larger, reconsider at 4614 // least some of these. 4615 #define local_jcc(assembler_cond, label) \ 4616 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ 4617 else jcc( assembler_cond, label) /*omit semi*/ 4618 4619 // Hacked jmp, which may only be used just before L_fallthrough. 4620 #define final_jmp(label) \ 4621 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 4622 else jmp(label) /*omit semi*/ 4623 4624 // If the pointers are equal, we are done (e.g., String[] elements). 4625 // This self-check enables sharing of secondary supertype arrays among 4626 // non-primary types such as array-of-interface. Otherwise, each such 4627 // type would need its own customized SSA. 4628 // We move this check to the front of the fast path because many 4629 // type checks are in fact trivially successful in this manner, 4630 // so we get a nicely predicted branch right at the start of the check. 4631 cmpptr(sub_klass, super_klass); 4632 local_jcc(Assembler::equal, *L_success); 4633 4634 // Check the supertype display: 4635 if (must_load_sco) { 4636 // Positive movl does right thing on LP64. 4637 movl(temp_reg, super_check_offset_addr); 4638 super_check_offset = RegisterOrConstant(temp_reg); 4639 } 4640 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); 4641 cmpptr(super_klass, super_check_addr); // load displayed supertype 4642 4643 // This check has worked decisively for primary supers. 4644 // Secondary supers are sought in the super_cache ('super_cache_addr'). 4645 // (Secondary supers are interfaces and very deeply nested subtypes.) 4646 // This works in the same check above because of a tricky aliasing 4647 // between the super_cache and the primary super display elements. 4648 // (The 'super_check_addr' can address either, as the case requires.) 4649 // Note that the cache is updated below if it does not help us find 4650 // what we need immediately. 4651 // So if it was a primary super, we can just fail immediately. 4652 // Otherwise, it's the slow path for us (no success at this point). 4653 4654 if (super_check_offset.is_register()) { 4655 local_jcc(Assembler::equal, *L_success); 4656 cmpl(super_check_offset.as_register(), sc_offset); 4657 if (L_failure == &L_fallthrough) { 4658 local_jcc(Assembler::equal, *L_slow_path); 4659 } else { 4660 local_jcc(Assembler::notEqual, *L_failure); 4661 final_jmp(*L_slow_path); 4662 } 4663 } else if (super_check_offset.as_constant() == sc_offset) { 4664 // Need a slow path; fast failure is impossible. 4665 if (L_slow_path == &L_fallthrough) { 4666 local_jcc(Assembler::equal, *L_success); 4667 } else { 4668 local_jcc(Assembler::notEqual, *L_slow_path); 4669 final_jmp(*L_success); 4670 } 4671 } else { 4672 // No slow path; it's a fast decision. 4673 if (L_failure == &L_fallthrough) { 4674 local_jcc(Assembler::equal, *L_success); 4675 } else { 4676 local_jcc(Assembler::notEqual, *L_failure); 4677 final_jmp(*L_success); 4678 } 4679 } 4680 4681 bind(L_fallthrough); 4682 4683 #undef local_jcc 4684 #undef final_jmp 4685 } 4686 4687 4688 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 4689 Register super_klass, 4690 Register temp_reg, 4691 Register temp2_reg, 4692 Label* L_success, 4693 Label* L_failure, 4694 bool set_cond_codes) { 4695 assert_different_registers(sub_klass, super_klass, temp_reg); 4696 if (temp2_reg != noreg) 4697 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); 4698 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 4699 4700 Label L_fallthrough; 4701 int label_nulls = 0; 4702 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4703 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4704 assert(label_nulls <= 1, "at most one null in the batch"); 4705 4706 // a couple of useful fields in sub_klass: 4707 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 4708 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4709 Address secondary_supers_addr(sub_klass, ss_offset); 4710 Address super_cache_addr( sub_klass, sc_offset); 4711 4712 // Do a linear scan of the secondary super-klass chain. 4713 // This code is rarely used, so simplicity is a virtue here. 4714 // The repne_scan instruction uses fixed registers, which we must spill. 4715 // Don't worry too much about pre-existing connections with the input regs. 4716 4717 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) 4718 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) 4719 4720 // Get super_klass value into rax (even if it was in rdi or rcx). 4721 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; 4722 if (super_klass != rax) { 4723 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } 4724 mov(rax, super_klass); 4725 } 4726 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } 4727 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } 4728 4729 #ifndef PRODUCT 4730 uint* pst_counter = &SharedRuntime::_partial_subtype_ctr; 4731 ExternalAddress pst_counter_addr((address) pst_counter); 4732 NOT_LP64( incrementl(pst_counter_addr) ); 4733 LP64_ONLY( lea(rcx, pst_counter_addr) ); 4734 LP64_ONLY( incrementl(Address(rcx, 0)) ); 4735 #endif //PRODUCT 4736 4737 // We will consult the secondary-super array. 4738 movptr(rdi, secondary_supers_addr); 4739 // Load the array length. (Positive movl does right thing on LP64.) 4740 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes())); 4741 // Skip to start of data. 4742 addptr(rdi, Array<Klass*>::base_offset_in_bytes()); 4743 4744 // Scan RCX words at [RDI] for an occurrence of RAX. 4745 // Set NZ/Z based on last compare. 4746 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does 4747 // not change flags (only scas instruction which is repeated sets flags). 4748 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. 4749 4750 testptr(rax,rax); // Set Z = 0 4751 repne_scan(); 4752 4753 // Unspill the temp. registers: 4754 if (pushed_rdi) pop(rdi); 4755 if (pushed_rcx) pop(rcx); 4756 if (pushed_rax) pop(rax); 4757 4758 if (set_cond_codes) { 4759 // Special hack for the AD files: rdi is guaranteed non-zero. 4760 assert(!pushed_rdi, "rdi must be left non-null"); 4761 // Also, the condition codes are properly set Z/NZ on succeed/failure. 4762 } 4763 4764 if (L_failure == &L_fallthrough) 4765 jccb(Assembler::notEqual, *L_failure); 4766 else jcc(Assembler::notEqual, *L_failure); 4767 4768 // Success. Cache the super we found and proceed in triumph. 4769 movptr(super_cache_addr, super_klass); 4770 4771 if (L_success != &L_fallthrough) { 4772 jmp(*L_success); 4773 } 4774 4775 #undef IS_A_TEMP 4776 4777 bind(L_fallthrough); 4778 } 4779 4780 #ifndef _LP64 4781 4782 // 32-bit x86 only: always use the linear search. 4783 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4784 Register super_klass, 4785 Register temp_reg, 4786 Register temp2_reg, 4787 Label* L_success, 4788 Label* L_failure, 4789 bool set_cond_codes) { 4790 check_klass_subtype_slow_path_linear 4791 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 4792 } 4793 4794 #else // _LP64 4795 4796 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4797 Register super_klass, 4798 Register temp_reg, 4799 Register temp2_reg, 4800 Label* L_success, 4801 Label* L_failure, 4802 bool set_cond_codes) { 4803 assert(set_cond_codes == false, "must be false on 64-bit x86"); 4804 check_klass_subtype_slow_path 4805 (sub_klass, super_klass, temp_reg, temp2_reg, noreg, noreg, 4806 L_success, L_failure); 4807 } 4808 4809 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4810 Register super_klass, 4811 Register temp_reg, 4812 Register temp2_reg, 4813 Register temp3_reg, 4814 Register temp4_reg, 4815 Label* L_success, 4816 Label* L_failure) { 4817 if (UseSecondarySupersTable) { 4818 check_klass_subtype_slow_path_table 4819 (sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, temp4_reg, 4820 L_success, L_failure); 4821 } else { 4822 check_klass_subtype_slow_path_linear 4823 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, /*set_cond_codes*/false); 4824 } 4825 } 4826 4827 Register MacroAssembler::allocate_if_noreg(Register r, 4828 RegSetIterator<Register> &available_regs, 4829 RegSet ®s_to_push) { 4830 if (!r->is_valid()) { 4831 r = *available_regs++; 4832 regs_to_push += r; 4833 } 4834 return r; 4835 } 4836 4837 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 4838 Register super_klass, 4839 Register temp_reg, 4840 Register temp2_reg, 4841 Register temp3_reg, 4842 Register result_reg, 4843 Label* L_success, 4844 Label* L_failure) { 4845 // NB! Callers may assume that, when temp2_reg is a valid register, 4846 // this code sets it to a nonzero value. 4847 bool temp2_reg_was_valid = temp2_reg->is_valid(); 4848 4849 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 4850 4851 Label L_fallthrough; 4852 int label_nulls = 0; 4853 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4854 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4855 assert(label_nulls <= 1, "at most one null in the batch"); 4856 4857 BLOCK_COMMENT("check_klass_subtype_slow_path_table"); 4858 4859 RegSetIterator<Register> available_regs 4860 = (RegSet::of(rax, rcx, rdx, r8) + r9 + r10 + r11 + r12 - temps - sub_klass - super_klass).begin(); 4861 4862 RegSet pushed_regs; 4863 4864 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 4865 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 4866 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 4867 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 4868 Register temp4_reg = allocate_if_noreg(noreg, available_regs, pushed_regs); 4869 4870 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, result_reg); 4871 4872 { 4873 4874 int register_push_size = pushed_regs.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4875 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4876 subptr(rsp, aligned_size); 4877 push_set(pushed_regs, 0); 4878 4879 lookup_secondary_supers_table_var(sub_klass, 4880 super_klass, 4881 temp_reg, temp2_reg, temp3_reg, temp4_reg, result_reg); 4882 cmpq(result_reg, 0); 4883 4884 // Unspill the temp. registers: 4885 pop_set(pushed_regs, 0); 4886 // Increment SP but do not clobber flags. 4887 lea(rsp, Address(rsp, aligned_size)); 4888 } 4889 4890 if (temp2_reg_was_valid) { 4891 movq(temp2_reg, 1); 4892 } 4893 4894 jcc(Assembler::notEqual, *L_failure); 4895 4896 if (L_success != &L_fallthrough) { 4897 jmp(*L_success); 4898 } 4899 4900 bind(L_fallthrough); 4901 } 4902 4903 // population_count variant for running without the POPCNT 4904 // instruction, which was introduced with SSE4.2 in 2008. 4905 void MacroAssembler::population_count(Register dst, Register src, 4906 Register scratch1, Register scratch2) { 4907 assert_different_registers(src, scratch1, scratch2); 4908 if (UsePopCountInstruction) { 4909 Assembler::popcntq(dst, src); 4910 } else { 4911 assert_different_registers(src, scratch1, scratch2); 4912 assert_different_registers(dst, scratch1, scratch2); 4913 Label loop, done; 4914 4915 mov(scratch1, src); 4916 // dst = 0; 4917 // while(scratch1 != 0) { 4918 // dst++; 4919 // scratch1 &= (scratch1 - 1); 4920 // } 4921 xorl(dst, dst); 4922 testq(scratch1, scratch1); 4923 jccb(Assembler::equal, done); 4924 { 4925 bind(loop); 4926 incq(dst); 4927 movq(scratch2, scratch1); 4928 decq(scratch2); 4929 andq(scratch1, scratch2); 4930 jccb(Assembler::notEqual, loop); 4931 } 4932 bind(done); 4933 } 4934 #ifdef ASSERT 4935 mov64(scratch1, 0xCafeBabeDeadBeef); 4936 movq(scratch2, scratch1); 4937 #endif 4938 } 4939 4940 // Ensure that the inline code and the stub are using the same registers. 4941 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 4942 do { \ 4943 assert(r_super_klass == rax, "mismatch"); \ 4944 assert(r_array_base == rbx, "mismatch"); \ 4945 assert(r_array_length == rcx, "mismatch"); \ 4946 assert(r_array_index == rdx, "mismatch"); \ 4947 assert(r_sub_klass == rsi || r_sub_klass == noreg, "mismatch"); \ 4948 assert(r_bitmap == r11 || r_bitmap == noreg, "mismatch"); \ 4949 assert(result == rdi || result == noreg, "mismatch"); \ 4950 } while(0) 4951 4952 // Versions of salq and rorq that don't need count to be in rcx 4953 4954 void MacroAssembler::salq(Register dest, Register count) { 4955 if (count == rcx) { 4956 Assembler::salq(dest); 4957 } else { 4958 assert_different_registers(rcx, dest); 4959 xchgq(rcx, count); 4960 Assembler::salq(dest); 4961 xchgq(rcx, count); 4962 } 4963 } 4964 4965 void MacroAssembler::rorq(Register dest, Register count) { 4966 if (count == rcx) { 4967 Assembler::rorq(dest); 4968 } else { 4969 assert_different_registers(rcx, dest); 4970 xchgq(rcx, count); 4971 Assembler::rorq(dest); 4972 xchgq(rcx, count); 4973 } 4974 } 4975 4976 // Return true: we succeeded in generating this code 4977 // 4978 // At runtime, return 0 in result if r_super_klass is a superclass of 4979 // r_sub_klass, otherwise return nonzero. Use this if you know the 4980 // super_klass_slot of the class you're looking for. This is always 4981 // the case for instanceof and checkcast. 4982 void MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 4983 Register r_super_klass, 4984 Register temp1, 4985 Register temp2, 4986 Register temp3, 4987 Register temp4, 4988 Register result, 4989 u1 super_klass_slot) { 4990 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 4991 4992 Label L_fallthrough, L_success, L_failure; 4993 4994 BLOCK_COMMENT("lookup_secondary_supers_table {"); 4995 4996 const Register 4997 r_array_index = temp1, 4998 r_array_length = temp2, 4999 r_array_base = temp3, 5000 r_bitmap = temp4; 5001 5002 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 5003 5004 xorq(result, result); // = 0 5005 5006 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 5007 movq(r_array_index, r_bitmap); 5008 5009 // First check the bitmap to see if super_klass might be present. If 5010 // the bit is zero, we are certain that super_klass is not one of 5011 // the secondary supers. 5012 u1 bit = super_klass_slot; 5013 { 5014 // NB: If the count in a x86 shift instruction is 0, the flags are 5015 // not affected, so we do a testq instead. 5016 int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit; 5017 if (shift_count != 0) { 5018 salq(r_array_index, shift_count); 5019 } else { 5020 testq(r_array_index, r_array_index); 5021 } 5022 } 5023 // We test the MSB of r_array_index, i.e. its sign bit 5024 jcc(Assembler::positive, L_failure); 5025 5026 // Get the first array index that can contain super_klass into r_array_index. 5027 if (bit != 0) { 5028 population_count(r_array_index, r_array_index, temp2, temp3); 5029 } else { 5030 movl(r_array_index, 1); 5031 } 5032 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 5033 5034 // We will consult the secondary-super array. 5035 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5036 5037 // We're asserting that the first word in an Array<Klass*> is the 5038 // length, and the second word is the first word of the data. If 5039 // that ever changes, r_array_base will have to be adjusted here. 5040 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 5041 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 5042 5043 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5044 jccb(Assembler::equal, L_success); 5045 5046 // Is there another entry to check? Consult the bitmap. 5047 btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK); 5048 jccb(Assembler::carryClear, L_failure); 5049 5050 // Linear probe. Rotate the bitmap so that the next bit to test is 5051 // in Bit 1. 5052 if (bit != 0) { 5053 rorq(r_bitmap, bit); 5054 } 5055 5056 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 5057 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 5058 // Kills: r_array_length. 5059 // Returns: result. 5060 call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub())); 5061 // Result (0/1) is in rdi 5062 jmpb(L_fallthrough); 5063 5064 bind(L_failure); 5065 incq(result); // 0 => 1 5066 5067 bind(L_success); 5068 // result = 0; 5069 5070 bind(L_fallthrough); 5071 BLOCK_COMMENT("} lookup_secondary_supers_table"); 5072 5073 if (VerifySecondarySupers) { 5074 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 5075 temp1, temp2, temp3); 5076 } 5077 } 5078 5079 // At runtime, return 0 in result if r_super_klass is a superclass of 5080 // r_sub_klass, otherwise return nonzero. Use this version of 5081 // lookup_secondary_supers_table() if you don't know ahead of time 5082 // which superclass will be searched for. Used by interpreter and 5083 // runtime stubs. It is larger and has somewhat greater latency than 5084 // the version above, which takes a constant super_klass_slot. 5085 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 5086 Register r_super_klass, 5087 Register temp1, 5088 Register temp2, 5089 Register temp3, 5090 Register temp4, 5091 Register result) { 5092 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 5093 assert_different_registers(r_sub_klass, r_super_klass, rcx); 5094 RegSet temps = RegSet::of(temp1, temp2, temp3, temp4); 5095 5096 Label L_fallthrough, L_success, L_failure; 5097 5098 BLOCK_COMMENT("lookup_secondary_supers_table {"); 5099 5100 RegSetIterator<Register> available_regs = (temps - rcx).begin(); 5101 5102 // FIXME. Once we are sure that all paths reaching this point really 5103 // do pass rcx as one of our temps we can get rid of the following 5104 // workaround. 5105 assert(temps.contains(rcx), "fix this code"); 5106 5107 // We prefer to have our shift count in rcx. If rcx is one of our 5108 // temps, use it for slot. If not, pick any of our temps. 5109 Register slot; 5110 if (!temps.contains(rcx)) { 5111 slot = *available_regs++; 5112 } else { 5113 slot = rcx; 5114 } 5115 5116 const Register r_array_index = *available_regs++; 5117 const Register r_bitmap = *available_regs++; 5118 5119 // The logic above guarantees this property, but we state it here. 5120 assert_different_registers(r_array_index, r_bitmap, rcx); 5121 5122 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 5123 movq(r_array_index, r_bitmap); 5124 5125 // First check the bitmap to see if super_klass might be present. If 5126 // the bit is zero, we are certain that super_klass is not one of 5127 // the secondary supers. 5128 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 5129 xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64) 5130 salq(r_array_index, slot); 5131 5132 testq(r_array_index, r_array_index); 5133 // We test the MSB of r_array_index, i.e. its sign bit 5134 jcc(Assembler::positive, L_failure); 5135 5136 const Register r_array_base = *available_regs++; 5137 5138 // Get the first array index that can contain super_klass into r_array_index. 5139 // Note: Clobbers r_array_base and slot. 5140 population_count(r_array_index, r_array_index, /*temp2*/r_array_base, /*temp3*/slot); 5141 5142 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 5143 5144 // We will consult the secondary-super array. 5145 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5146 5147 // We're asserting that the first word in an Array<Klass*> is the 5148 // length, and the second word is the first word of the data. If 5149 // that ever changes, r_array_base will have to be adjusted here. 5150 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 5151 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 5152 5153 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5154 jccb(Assembler::equal, L_success); 5155 5156 // Restore slot to its true value 5157 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 5158 5159 // Linear probe. Rotate the bitmap so that the next bit to test is 5160 // in Bit 1. 5161 rorq(r_bitmap, slot); 5162 5163 // Is there another entry to check? Consult the bitmap. 5164 btq(r_bitmap, 1); 5165 jccb(Assembler::carryClear, L_failure); 5166 5167 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 5168 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 5169 // Kills: r_array_length. 5170 // Returns: result. 5171 lookup_secondary_supers_table_slow_path(r_super_klass, 5172 r_array_base, 5173 r_array_index, 5174 r_bitmap, 5175 /*temp1*/result, 5176 /*temp2*/slot, 5177 &L_success, 5178 nullptr); 5179 5180 bind(L_failure); 5181 movq(result, 1); 5182 jmpb(L_fallthrough); 5183 5184 bind(L_success); 5185 xorq(result, result); // = 0 5186 5187 bind(L_fallthrough); 5188 BLOCK_COMMENT("} lookup_secondary_supers_table"); 5189 5190 if (VerifySecondarySupers) { 5191 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 5192 temp1, temp2, temp3); 5193 } 5194 } 5195 5196 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit, 5197 Label* L_success, Label* L_failure) { 5198 Label L_loop, L_fallthrough; 5199 { 5200 int label_nulls = 0; 5201 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 5202 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 5203 assert(label_nulls <= 1, "at most one null in the batch"); 5204 } 5205 bind(L_loop); 5206 cmpq(value, Address(addr, count, Address::times_8)); 5207 jcc(Assembler::equal, *L_success); 5208 addl(count, 1); 5209 cmpl(count, limit); 5210 jcc(Assembler::less, L_loop); 5211 5212 if (&L_fallthrough != L_failure) { 5213 jmp(*L_failure); 5214 } 5215 bind(L_fallthrough); 5216 } 5217 5218 // Called by code generated by check_klass_subtype_slow_path 5219 // above. This is called when there is a collision in the hashed 5220 // lookup in the secondary supers array. 5221 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 5222 Register r_array_base, 5223 Register r_array_index, 5224 Register r_bitmap, 5225 Register temp1, 5226 Register temp2, 5227 Label* L_success, 5228 Label* L_failure) { 5229 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2); 5230 5231 const Register 5232 r_array_length = temp1, 5233 r_sub_klass = noreg, 5234 result = noreg; 5235 5236 Label L_fallthrough; 5237 int label_nulls = 0; 5238 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 5239 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 5240 assert(label_nulls <= 1, "at most one null in the batch"); 5241 5242 // Load the array length. 5243 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 5244 // And adjust the array base to point to the data. 5245 // NB! Effectively increments current slot index by 1. 5246 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 5247 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 5248 5249 // Linear probe 5250 Label L_huge; 5251 5252 // The bitmap is full to bursting. 5253 // Implicit invariant: BITMAP_FULL implies (length > 0) 5254 cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2); 5255 jcc(Assembler::greater, L_huge); 5256 5257 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 5258 // current slot (at secondary_supers[r_array_index]) has not yet 5259 // been inspected, and r_array_index may be out of bounds if we 5260 // wrapped around the end of the array. 5261 5262 { // This is conventional linear probing, but instead of terminating 5263 // when a null entry is found in the table, we maintain a bitmap 5264 // in which a 0 indicates missing entries. 5265 // The check above guarantees there are 0s in the bitmap, so the loop 5266 // eventually terminates. 5267 5268 xorl(temp2, temp2); // = 0; 5269 5270 Label L_again; 5271 bind(L_again); 5272 5273 // Check for array wraparound. 5274 cmpl(r_array_index, r_array_length); 5275 cmovl(Assembler::greaterEqual, r_array_index, temp2); 5276 5277 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5278 jcc(Assembler::equal, *L_success); 5279 5280 // If the next bit in bitmap is zero, we're done. 5281 btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now 5282 jcc(Assembler::carryClear, *L_failure); 5283 5284 rorq(r_bitmap, 1); // Bits 1/2 => 0/1 5285 addl(r_array_index, 1); 5286 5287 jmp(L_again); 5288 } 5289 5290 { // Degenerate case: more than 64 secondary supers. 5291 // FIXME: We could do something smarter here, maybe a vectorized 5292 // comparison or a binary search, but is that worth any added 5293 // complexity? 5294 bind(L_huge); 5295 xorl(r_array_index, r_array_index); // = 0 5296 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, 5297 L_success, 5298 (&L_fallthrough != L_failure ? L_failure : nullptr)); 5299 5300 bind(L_fallthrough); 5301 } 5302 } 5303 5304 struct VerifyHelperArguments { 5305 Klass* _super; 5306 Klass* _sub; 5307 intptr_t _linear_result; 5308 intptr_t _table_result; 5309 }; 5310 5311 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) { 5312 Klass::on_secondary_supers_verification_failure(args->_super, 5313 args->_sub, 5314 args->_linear_result, 5315 args->_table_result, 5316 msg); 5317 } 5318 5319 // Make sure that the hashed lookup and a linear scan agree. 5320 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 5321 Register r_super_klass, 5322 Register result, 5323 Register temp1, 5324 Register temp2, 5325 Register temp3) { 5326 const Register 5327 r_array_index = temp1, 5328 r_array_length = temp2, 5329 r_array_base = temp3, 5330 r_bitmap = noreg; 5331 5332 BLOCK_COMMENT("verify_secondary_supers_table {"); 5333 5334 Label L_success, L_failure, L_check, L_done; 5335 5336 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5337 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 5338 // And adjust the array base to point to the data. 5339 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 5340 5341 testl(r_array_length, r_array_length); // array_length == 0? 5342 jcc(Assembler::zero, L_failure); 5343 5344 movl(r_array_index, 0); 5345 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success); 5346 // fall through to L_failure 5347 5348 const Register linear_result = r_array_index; // reuse temp1 5349 5350 bind(L_failure); // not present 5351 movl(linear_result, 1); 5352 jmp(L_check); 5353 5354 bind(L_success); // present 5355 movl(linear_result, 0); 5356 5357 bind(L_check); 5358 cmpl(linear_result, result); 5359 jcc(Assembler::equal, L_done); 5360 5361 { // To avoid calling convention issues, build a record on the stack 5362 // and pass the pointer to that instead. 5363 push(result); 5364 push(linear_result); 5365 push(r_sub_klass); 5366 push(r_super_klass); 5367 movptr(c_rarg1, rsp); 5368 movptr(c_rarg0, (uintptr_t) "mismatch"); 5369 call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper))); 5370 should_not_reach_here(); 5371 } 5372 bind(L_done); 5373 5374 BLOCK_COMMENT("} verify_secondary_supers_table"); 5375 } 5376 5377 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS 5378 5379 #endif // LP64 5380 5381 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) { 5382 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 5383 5384 Label L_fallthrough; 5385 if (L_fast_path == nullptr) { 5386 L_fast_path = &L_fallthrough; 5387 } else if (L_slow_path == nullptr) { 5388 L_slow_path = &L_fallthrough; 5389 } 5390 5391 // Fast path check: class is fully initialized. 5392 // init_state needs acquire, but x86 is TSO, and so we are already good. 5393 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 5394 jcc(Assembler::equal, *L_fast_path); 5395 5396 // Fast path check: current thread is initializer thread 5397 cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset())); 5398 if (L_slow_path == &L_fallthrough) { 5399 jcc(Assembler::equal, *L_fast_path); 5400 bind(*L_slow_path); 5401 } else if (L_fast_path == &L_fallthrough) { 5402 jcc(Assembler::notEqual, *L_slow_path); 5403 bind(*L_fast_path); 5404 } else { 5405 Unimplemented(); 5406 } 5407 } 5408 5409 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { 5410 if (VM_Version::supports_cmov()) { 5411 cmovl(cc, dst, src); 5412 } else { 5413 Label L; 5414 jccb(negate_condition(cc), L); 5415 movl(dst, src); 5416 bind(L); 5417 } 5418 } 5419 5420 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { 5421 if (VM_Version::supports_cmov()) { 5422 cmovl(cc, dst, src); 5423 } else { 5424 Label L; 5425 jccb(negate_condition(cc), L); 5426 movl(dst, src); 5427 bind(L); 5428 } 5429 } 5430 5431 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 5432 if (!VerifyOops) return; 5433 5434 BLOCK_COMMENT("verify_oop {"); 5435 #ifdef _LP64 5436 push(rscratch1); 5437 #endif 5438 push(rax); // save rax 5439 push(reg); // pass register argument 5440 5441 // Pass register number to verify_oop_subroutine 5442 const char* b = nullptr; 5443 { 5444 ResourceMark rm; 5445 stringStream ss; 5446 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 5447 b = code_string(ss.as_string()); 5448 } 5449 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 5450 pushptr(buffer.addr(), rscratch1); 5451 5452 // call indirectly to solve generation ordering problem 5453 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5454 call(rax); 5455 // Caller pops the arguments (oop, message) and restores rax, r10 5456 BLOCK_COMMENT("} verify_oop"); 5457 } 5458 5459 void MacroAssembler::vallones(XMMRegister dst, int vector_len) { 5460 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) { 5461 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without 5462 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog 5463 vpternlogd(dst, 0xFF, dst, dst, vector_len); 5464 } else if (VM_Version::supports_avx()) { 5465 vpcmpeqd(dst, dst, dst, vector_len); 5466 } else { 5467 pcmpeqd(dst, dst); 5468 } 5469 } 5470 5471 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 5472 int extra_slot_offset) { 5473 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 5474 int stackElementSize = Interpreter::stackElementSize; 5475 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 5476 #ifdef ASSERT 5477 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 5478 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 5479 #endif 5480 Register scale_reg = noreg; 5481 Address::ScaleFactor scale_factor = Address::no_scale; 5482 if (arg_slot.is_constant()) { 5483 offset += arg_slot.as_constant() * stackElementSize; 5484 } else { 5485 scale_reg = arg_slot.as_register(); 5486 scale_factor = Address::times(stackElementSize); 5487 } 5488 offset += wordSize; // return PC is on stack 5489 return Address(rsp, scale_reg, scale_factor, offset); 5490 } 5491 5492 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 5493 if (!VerifyOops) return; 5494 5495 #ifdef _LP64 5496 push(rscratch1); 5497 #endif 5498 push(rax); // save rax, 5499 // addr may contain rsp so we will have to adjust it based on the push 5500 // we just did (and on 64 bit we do two pushes) 5501 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which 5502 // stores rax into addr which is backwards of what was intended. 5503 if (addr.uses(rsp)) { 5504 lea(rax, addr); 5505 pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord)); 5506 } else { 5507 pushptr(addr); 5508 } 5509 5510 // Pass register number to verify_oop_subroutine 5511 const char* b = nullptr; 5512 { 5513 ResourceMark rm; 5514 stringStream ss; 5515 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 5516 b = code_string(ss.as_string()); 5517 } 5518 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 5519 pushptr(buffer.addr(), rscratch1); 5520 5521 // call indirectly to solve generation ordering problem 5522 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5523 call(rax); 5524 // Caller pops the arguments (addr, message) and restores rax, r10. 5525 } 5526 5527 void MacroAssembler::verify_tlab() { 5528 #ifdef ASSERT 5529 if (UseTLAB && VerifyOops) { 5530 Label next, ok; 5531 Register t1 = rsi; 5532 Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread); 5533 5534 push(t1); 5535 NOT_LP64(push(thread_reg)); 5536 NOT_LP64(get_thread(thread_reg)); 5537 5538 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5539 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset()))); 5540 jcc(Assembler::aboveEqual, next); 5541 STOP("assert(top >= start)"); 5542 should_not_reach_here(); 5543 5544 bind(next); 5545 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); 5546 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5547 jcc(Assembler::aboveEqual, ok); 5548 STOP("assert(top <= end)"); 5549 should_not_reach_here(); 5550 5551 bind(ok); 5552 NOT_LP64(pop(thread_reg)); 5553 pop(t1); 5554 } 5555 #endif 5556 } 5557 5558 class ControlWord { 5559 public: 5560 int32_t _value; 5561 5562 int rounding_control() const { return (_value >> 10) & 3 ; } 5563 int precision_control() const { return (_value >> 8) & 3 ; } 5564 bool precision() const { return ((_value >> 5) & 1) != 0; } 5565 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5566 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5567 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5568 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5569 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5570 5571 void print() const { 5572 // rounding control 5573 const char* rc; 5574 switch (rounding_control()) { 5575 case 0: rc = "round near"; break; 5576 case 1: rc = "round down"; break; 5577 case 2: rc = "round up "; break; 5578 case 3: rc = "chop "; break; 5579 default: 5580 rc = nullptr; // silence compiler warnings 5581 fatal("Unknown rounding control: %d", rounding_control()); 5582 }; 5583 // precision control 5584 const char* pc; 5585 switch (precision_control()) { 5586 case 0: pc = "24 bits "; break; 5587 case 1: pc = "reserved"; break; 5588 case 2: pc = "53 bits "; break; 5589 case 3: pc = "64 bits "; break; 5590 default: 5591 pc = nullptr; // silence compiler warnings 5592 fatal("Unknown precision control: %d", precision_control()); 5593 }; 5594 // flags 5595 char f[9]; 5596 f[0] = ' '; 5597 f[1] = ' '; 5598 f[2] = (precision ()) ? 'P' : 'p'; 5599 f[3] = (underflow ()) ? 'U' : 'u'; 5600 f[4] = (overflow ()) ? 'O' : 'o'; 5601 f[5] = (zero_divide ()) ? 'Z' : 'z'; 5602 f[6] = (denormalized()) ? 'D' : 'd'; 5603 f[7] = (invalid ()) ? 'I' : 'i'; 5604 f[8] = '\x0'; 5605 // output 5606 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); 5607 } 5608 5609 }; 5610 5611 class StatusWord { 5612 public: 5613 int32_t _value; 5614 5615 bool busy() const { return ((_value >> 15) & 1) != 0; } 5616 bool C3() const { return ((_value >> 14) & 1) != 0; } 5617 bool C2() const { return ((_value >> 10) & 1) != 0; } 5618 bool C1() const { return ((_value >> 9) & 1) != 0; } 5619 bool C0() const { return ((_value >> 8) & 1) != 0; } 5620 int top() const { return (_value >> 11) & 7 ; } 5621 bool error_status() const { return ((_value >> 7) & 1) != 0; } 5622 bool stack_fault() const { return ((_value >> 6) & 1) != 0; } 5623 bool precision() const { return ((_value >> 5) & 1) != 0; } 5624 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5625 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5626 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5627 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5628 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5629 5630 void print() const { 5631 // condition codes 5632 char c[5]; 5633 c[0] = (C3()) ? '3' : '-'; 5634 c[1] = (C2()) ? '2' : '-'; 5635 c[2] = (C1()) ? '1' : '-'; 5636 c[3] = (C0()) ? '0' : '-'; 5637 c[4] = '\x0'; 5638 // flags 5639 char f[9]; 5640 f[0] = (error_status()) ? 'E' : '-'; 5641 f[1] = (stack_fault ()) ? 'S' : '-'; 5642 f[2] = (precision ()) ? 'P' : '-'; 5643 f[3] = (underflow ()) ? 'U' : '-'; 5644 f[4] = (overflow ()) ? 'O' : '-'; 5645 f[5] = (zero_divide ()) ? 'Z' : '-'; 5646 f[6] = (denormalized()) ? 'D' : '-'; 5647 f[7] = (invalid ()) ? 'I' : '-'; 5648 f[8] = '\x0'; 5649 // output 5650 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); 5651 } 5652 5653 }; 5654 5655 class TagWord { 5656 public: 5657 int32_t _value; 5658 5659 int tag_at(int i) const { return (_value >> (i*2)) & 3; } 5660 5661 void print() const { 5662 printf("%04x", _value & 0xFFFF); 5663 } 5664 5665 }; 5666 5667 class FPU_Register { 5668 public: 5669 int32_t _m0; 5670 int32_t _m1; 5671 int16_t _ex; 5672 5673 bool is_indefinite() const { 5674 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; 5675 } 5676 5677 void print() const { 5678 char sign = (_ex < 0) ? '-' : '+'; 5679 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; 5680 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); 5681 }; 5682 5683 }; 5684 5685 class FPU_State { 5686 public: 5687 enum { 5688 register_size = 10, 5689 number_of_registers = 8, 5690 register_mask = 7 5691 }; 5692 5693 ControlWord _control_word; 5694 StatusWord _status_word; 5695 TagWord _tag_word; 5696 int32_t _error_offset; 5697 int32_t _error_selector; 5698 int32_t _data_offset; 5699 int32_t _data_selector; 5700 int8_t _register[register_size * number_of_registers]; 5701 5702 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } 5703 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } 5704 5705 const char* tag_as_string(int tag) const { 5706 switch (tag) { 5707 case 0: return "valid"; 5708 case 1: return "zero"; 5709 case 2: return "special"; 5710 case 3: return "empty"; 5711 } 5712 ShouldNotReachHere(); 5713 return nullptr; 5714 } 5715 5716 void print() const { 5717 // print computation registers 5718 { int t = _status_word.top(); 5719 for (int i = 0; i < number_of_registers; i++) { 5720 int j = (i - t) & register_mask; 5721 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); 5722 st(j)->print(); 5723 printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); 5724 } 5725 } 5726 printf("\n"); 5727 // print control registers 5728 printf("ctrl = "); _control_word.print(); printf("\n"); 5729 printf("stat = "); _status_word .print(); printf("\n"); 5730 printf("tags = "); _tag_word .print(); printf("\n"); 5731 } 5732 5733 }; 5734 5735 class Flag_Register { 5736 public: 5737 int32_t _value; 5738 5739 bool overflow() const { return ((_value >> 11) & 1) != 0; } 5740 bool direction() const { return ((_value >> 10) & 1) != 0; } 5741 bool sign() const { return ((_value >> 7) & 1) != 0; } 5742 bool zero() const { return ((_value >> 6) & 1) != 0; } 5743 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } 5744 bool parity() const { return ((_value >> 2) & 1) != 0; } 5745 bool carry() const { return ((_value >> 0) & 1) != 0; } 5746 5747 void print() const { 5748 // flags 5749 char f[8]; 5750 f[0] = (overflow ()) ? 'O' : '-'; 5751 f[1] = (direction ()) ? 'D' : '-'; 5752 f[2] = (sign ()) ? 'S' : '-'; 5753 f[3] = (zero ()) ? 'Z' : '-'; 5754 f[4] = (auxiliary_carry()) ? 'A' : '-'; 5755 f[5] = (parity ()) ? 'P' : '-'; 5756 f[6] = (carry ()) ? 'C' : '-'; 5757 f[7] = '\x0'; 5758 // output 5759 printf("%08x flags = %s", _value, f); 5760 } 5761 5762 }; 5763 5764 class IU_Register { 5765 public: 5766 int32_t _value; 5767 5768 void print() const { 5769 printf("%08x %11d", _value, _value); 5770 } 5771 5772 }; 5773 5774 class IU_State { 5775 public: 5776 Flag_Register _eflags; 5777 IU_Register _rdi; 5778 IU_Register _rsi; 5779 IU_Register _rbp; 5780 IU_Register _rsp; 5781 IU_Register _rbx; 5782 IU_Register _rdx; 5783 IU_Register _rcx; 5784 IU_Register _rax; 5785 5786 void print() const { 5787 // computation registers 5788 printf("rax, = "); _rax.print(); printf("\n"); 5789 printf("rbx, = "); _rbx.print(); printf("\n"); 5790 printf("rcx = "); _rcx.print(); printf("\n"); 5791 printf("rdx = "); _rdx.print(); printf("\n"); 5792 printf("rdi = "); _rdi.print(); printf("\n"); 5793 printf("rsi = "); _rsi.print(); printf("\n"); 5794 printf("rbp, = "); _rbp.print(); printf("\n"); 5795 printf("rsp = "); _rsp.print(); printf("\n"); 5796 printf("\n"); 5797 // control registers 5798 printf("flgs = "); _eflags.print(); printf("\n"); 5799 } 5800 }; 5801 5802 5803 class CPU_State { 5804 public: 5805 FPU_State _fpu_state; 5806 IU_State _iu_state; 5807 5808 void print() const { 5809 printf("--------------------------------------------------\n"); 5810 _iu_state .print(); 5811 printf("\n"); 5812 _fpu_state.print(); 5813 printf("--------------------------------------------------\n"); 5814 } 5815 5816 }; 5817 5818 5819 static void _print_CPU_state(CPU_State* state) { 5820 state->print(); 5821 }; 5822 5823 5824 void MacroAssembler::print_CPU_state() { 5825 push_CPU_state(); 5826 push(rsp); // pass CPU state 5827 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); 5828 addptr(rsp, wordSize); // discard argument 5829 pop_CPU_state(); 5830 } 5831 5832 5833 #ifndef _LP64 5834 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) { 5835 static int counter = 0; 5836 FPU_State* fs = &state->_fpu_state; 5837 counter++; 5838 // For leaf calls, only verify that the top few elements remain empty. 5839 // We only need 1 empty at the top for C2 code. 5840 if( stack_depth < 0 ) { 5841 if( fs->tag_for_st(7) != 3 ) { 5842 printf("FPR7 not empty\n"); 5843 state->print(); 5844 assert(false, "error"); 5845 return false; 5846 } 5847 return true; // All other stack states do not matter 5848 } 5849 5850 assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(), 5851 "bad FPU control word"); 5852 5853 // compute stack depth 5854 int i = 0; 5855 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++; 5856 int d = i; 5857 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++; 5858 // verify findings 5859 if (i != FPU_State::number_of_registers) { 5860 // stack not contiguous 5861 printf("%s: stack not contiguous at ST%d\n", s, i); 5862 state->print(); 5863 assert(false, "error"); 5864 return false; 5865 } 5866 // check if computed stack depth corresponds to expected stack depth 5867 if (stack_depth < 0) { 5868 // expected stack depth is -stack_depth or less 5869 if (d > -stack_depth) { 5870 // too many elements on the stack 5871 printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d); 5872 state->print(); 5873 assert(false, "error"); 5874 return false; 5875 } 5876 } else { 5877 // expected stack depth is stack_depth 5878 if (d != stack_depth) { 5879 // wrong stack depth 5880 printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d); 5881 state->print(); 5882 assert(false, "error"); 5883 return false; 5884 } 5885 } 5886 // everything is cool 5887 return true; 5888 } 5889 5890 void MacroAssembler::verify_FPU(int stack_depth, const char* s) { 5891 if (!VerifyFPU) return; 5892 push_CPU_state(); 5893 push(rsp); // pass CPU state 5894 ExternalAddress msg((address) s); 5895 // pass message string s 5896 pushptr(msg.addr(), noreg); 5897 push(stack_depth); // pass stack depth 5898 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU))); 5899 addptr(rsp, 3 * wordSize); // discard arguments 5900 // check for error 5901 { Label L; 5902 testl(rax, rax); 5903 jcc(Assembler::notZero, L); 5904 int3(); // break if error condition 5905 bind(L); 5906 } 5907 pop_CPU_state(); 5908 } 5909 #endif // _LP64 5910 5911 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) { 5912 // Either restore the MXCSR register after returning from the JNI Call 5913 // or verify that it wasn't changed (with -Xcheck:jni flag). 5914 if (VM_Version::supports_sse()) { 5915 if (RestoreMXCSROnJNICalls) { 5916 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch); 5917 } else if (CheckJNICalls) { 5918 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry())); 5919 } 5920 } 5921 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty. 5922 vzeroupper(); 5923 5924 #ifndef _LP64 5925 // Either restore the x87 floating pointer control word after returning 5926 // from the JNI call or verify that it wasn't changed. 5927 if (CheckJNICalls) { 5928 call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry())); 5929 } 5930 #endif // _LP64 5931 } 5932 5933 // ((OopHandle)result).resolve(); 5934 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 5935 assert_different_registers(result, tmp); 5936 5937 // Only 64 bit platforms support GCs that require a tmp register 5938 // Only IN_HEAP loads require a thread_tmp register 5939 // OopHandle::resolve is an indirection like jobject. 5940 access_load_at(T_OBJECT, IN_NATIVE, 5941 result, Address(result, 0), tmp, /*tmp_thread*/noreg); 5942 } 5943 5944 // ((WeakHandle)result).resolve(); 5945 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 5946 assert_different_registers(rresult, rtmp); 5947 Label resolved; 5948 5949 // A null weak handle resolves to null. 5950 cmpptr(rresult, 0); 5951 jcc(Assembler::equal, resolved); 5952 5953 // Only 64 bit platforms support GCs that require a tmp register 5954 // Only IN_HEAP loads require a thread_tmp register 5955 // WeakHandle::resolve is an indirection like jweak. 5956 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5957 rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg); 5958 bind(resolved); 5959 } 5960 5961 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) { 5962 // get mirror 5963 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5964 load_method_holder(mirror, method); 5965 movptr(mirror, Address(mirror, mirror_offset)); 5966 resolve_oop_handle(mirror, tmp); 5967 } 5968 5969 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5970 load_method_holder(rresult, rmethod); 5971 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5972 } 5973 5974 void MacroAssembler::load_method_holder(Register holder, Register method) { 5975 movptr(holder, Address(method, Method::const_offset())); // ConstMethod* 5976 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5977 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5978 } 5979 5980 #ifdef _LP64 5981 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5982 assert(UseCompactObjectHeaders, "expect compact object headers"); 5983 movq(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5984 shrq(dst, markWord::klass_shift); 5985 } 5986 #endif 5987 5988 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) { 5989 assert_different_registers(src, tmp); 5990 assert_different_registers(dst, tmp); 5991 #ifdef _LP64 5992 if (UseCompactObjectHeaders) { 5993 load_narrow_klass_compact(dst, src); 5994 decode_klass_not_null(dst, tmp); 5995 } else if (UseCompressedClassPointers) { 5996 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5997 decode_klass_not_null(dst, tmp); 5998 } else 5999 #endif 6000 { 6001 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 6002 } 6003 } 6004 6005 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) { 6006 assert(!UseCompactObjectHeaders, "not with compact headers"); 6007 assert_different_registers(src, tmp); 6008 assert_different_registers(dst, tmp); 6009 #ifdef _LP64 6010 if (UseCompressedClassPointers) { 6011 encode_klass_not_null(src, tmp); 6012 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); 6013 } else 6014 #endif 6015 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); 6016 } 6017 6018 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) { 6019 #ifdef _LP64 6020 if (UseCompactObjectHeaders) { 6021 assert(tmp != noreg, "need tmp"); 6022 assert_different_registers(klass, obj, tmp); 6023 load_narrow_klass_compact(tmp, obj); 6024 cmpl(klass, tmp); 6025 } else if (UseCompressedClassPointers) { 6026 cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 6027 } else 6028 #endif 6029 { 6030 cmpptr(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 6031 } 6032 } 6033 6034 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 6035 #ifdef _LP64 6036 if (UseCompactObjectHeaders) { 6037 assert(tmp2 != noreg, "need tmp2"); 6038 assert_different_registers(obj1, obj2, tmp1, tmp2); 6039 load_narrow_klass_compact(tmp1, obj1); 6040 load_narrow_klass_compact(tmp2, obj2); 6041 cmpl(tmp1, tmp2); 6042 } else if (UseCompressedClassPointers) { 6043 movl(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 6044 cmpl(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes())); 6045 } else 6046 #endif 6047 { 6048 movptr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 6049 cmpptr(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes())); 6050 } 6051 } 6052 6053 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 6054 Register tmp1, Register thread_tmp) { 6055 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 6056 decorators = AccessInternal::decorator_fixup(decorators, type); 6057 bool as_raw = (decorators & AS_RAW) != 0; 6058 if (as_raw) { 6059 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 6060 } else { 6061 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 6062 } 6063 } 6064 6065 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 6066 Register tmp1, Register tmp2, Register tmp3) { 6067 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 6068 decorators = AccessInternal::decorator_fixup(decorators, type); 6069 bool as_raw = (decorators & AS_RAW) != 0; 6070 if (as_raw) { 6071 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 6072 } else { 6073 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 6074 } 6075 } 6076 6077 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 6078 Register thread_tmp, DecoratorSet decorators) { 6079 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 6080 } 6081 6082 // Doesn't do verification, generates fixed size code 6083 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 6084 Register thread_tmp, DecoratorSet decorators) { 6085 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); 6086 } 6087 6088 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 6089 Register tmp2, Register tmp3, DecoratorSet decorators) { 6090 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 6091 } 6092 6093 // Used for storing nulls. 6094 void MacroAssembler::store_heap_oop_null(Address dst) { 6095 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 6096 } 6097 6098 #ifdef _LP64 6099 void MacroAssembler::store_klass_gap(Register dst, Register src) { 6100 assert(!UseCompactObjectHeaders, "Don't use with compact headers"); 6101 if (UseCompressedClassPointers) { 6102 // Store to klass gap in destination 6103 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); 6104 } 6105 } 6106 6107 #ifdef ASSERT 6108 void MacroAssembler::verify_heapbase(const char* msg) { 6109 assert (UseCompressedOops, "should be compressed"); 6110 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6111 if (CheckCompressedOops) { 6112 Label ok; 6113 ExternalAddress src2(CompressedOops::base_addr()); 6114 const bool is_src2_reachable = reachable(src2); 6115 if (!is_src2_reachable) { 6116 push(rscratch1); // cmpptr trashes rscratch1 6117 } 6118 cmpptr(r12_heapbase, src2, rscratch1); 6119 jcc(Assembler::equal, ok); 6120 STOP(msg); 6121 bind(ok); 6122 if (!is_src2_reachable) { 6123 pop(rscratch1); 6124 } 6125 } 6126 } 6127 #endif 6128 6129 // Algorithm must match oop.inline.hpp encode_heap_oop. 6130 void MacroAssembler::encode_heap_oop(Register r) { 6131 #ifdef ASSERT 6132 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 6133 #endif 6134 verify_oop_msg(r, "broken oop in encode_heap_oop"); 6135 if (CompressedOops::base() == nullptr) { 6136 if (CompressedOops::shift() != 0) { 6137 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6138 shrq(r, LogMinObjAlignmentInBytes); 6139 } 6140 return; 6141 } 6142 testq(r, r); 6143 cmovq(Assembler::equal, r, r12_heapbase); 6144 subq(r, r12_heapbase); 6145 shrq(r, LogMinObjAlignmentInBytes); 6146 } 6147 6148 void MacroAssembler::encode_heap_oop_not_null(Register r) { 6149 #ifdef ASSERT 6150 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 6151 if (CheckCompressedOops) { 6152 Label ok; 6153 testq(r, r); 6154 jcc(Assembler::notEqual, ok); 6155 STOP("null oop passed to encode_heap_oop_not_null"); 6156 bind(ok); 6157 } 6158 #endif 6159 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 6160 if (CompressedOops::base() != nullptr) { 6161 subq(r, r12_heapbase); 6162 } 6163 if (CompressedOops::shift() != 0) { 6164 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6165 shrq(r, LogMinObjAlignmentInBytes); 6166 } 6167 } 6168 6169 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 6170 #ifdef ASSERT 6171 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 6172 if (CheckCompressedOops) { 6173 Label ok; 6174 testq(src, src); 6175 jcc(Assembler::notEqual, ok); 6176 STOP("null oop passed to encode_heap_oop_not_null2"); 6177 bind(ok); 6178 } 6179 #endif 6180 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 6181 if (dst != src) { 6182 movq(dst, src); 6183 } 6184 if (CompressedOops::base() != nullptr) { 6185 subq(dst, r12_heapbase); 6186 } 6187 if (CompressedOops::shift() != 0) { 6188 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6189 shrq(dst, LogMinObjAlignmentInBytes); 6190 } 6191 } 6192 6193 void MacroAssembler::decode_heap_oop(Register r) { 6194 #ifdef ASSERT 6195 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 6196 #endif 6197 if (CompressedOops::base() == nullptr) { 6198 if (CompressedOops::shift() != 0) { 6199 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6200 shlq(r, LogMinObjAlignmentInBytes); 6201 } 6202 } else { 6203 Label done; 6204 shlq(r, LogMinObjAlignmentInBytes); 6205 jccb(Assembler::equal, done); 6206 addq(r, r12_heapbase); 6207 bind(done); 6208 } 6209 verify_oop_msg(r, "broken oop in decode_heap_oop"); 6210 } 6211 6212 void MacroAssembler::decode_heap_oop_not_null(Register r) { 6213 // Note: it will change flags 6214 assert (UseCompressedOops, "should only be used for compressed headers"); 6215 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6216 // Cannot assert, unverified entry point counts instructions (see .ad file) 6217 // vtableStubs also counts instructions in pd_code_size_limit. 6218 // Also do not verify_oop as this is called by verify_oop. 6219 if (CompressedOops::shift() != 0) { 6220 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6221 shlq(r, LogMinObjAlignmentInBytes); 6222 if (CompressedOops::base() != nullptr) { 6223 addq(r, r12_heapbase); 6224 } 6225 } else { 6226 assert (CompressedOops::base() == nullptr, "sanity"); 6227 } 6228 } 6229 6230 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 6231 // Note: it will change flags 6232 assert (UseCompressedOops, "should only be used for compressed headers"); 6233 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6234 // Cannot assert, unverified entry point counts instructions (see .ad file) 6235 // vtableStubs also counts instructions in pd_code_size_limit. 6236 // Also do not verify_oop as this is called by verify_oop. 6237 if (CompressedOops::shift() != 0) { 6238 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6239 if (LogMinObjAlignmentInBytes == Address::times_8) { 6240 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); 6241 } else { 6242 if (dst != src) { 6243 movq(dst, src); 6244 } 6245 shlq(dst, LogMinObjAlignmentInBytes); 6246 if (CompressedOops::base() != nullptr) { 6247 addq(dst, r12_heapbase); 6248 } 6249 } 6250 } else { 6251 assert (CompressedOops::base() == nullptr, "sanity"); 6252 if (dst != src) { 6253 movq(dst, src); 6254 } 6255 } 6256 } 6257 6258 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) { 6259 assert_different_registers(r, tmp); 6260 if (CompressedKlassPointers::base() != nullptr) { 6261 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 6262 subq(r, tmp); 6263 } 6264 if (CompressedKlassPointers::shift() != 0) { 6265 shrq(r, CompressedKlassPointers::shift()); 6266 } 6267 } 6268 6269 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) { 6270 assert_different_registers(src, dst); 6271 if (CompressedKlassPointers::base() != nullptr) { 6272 mov64(dst, -(int64_t)CompressedKlassPointers::base()); 6273 addq(dst, src); 6274 } else { 6275 movptr(dst, src); 6276 } 6277 if (CompressedKlassPointers::shift() != 0) { 6278 shrq(dst, CompressedKlassPointers::shift()); 6279 } 6280 } 6281 6282 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) { 6283 assert_different_registers(r, tmp); 6284 // Note: it will change flags 6285 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 6286 // Cannot assert, unverified entry point counts instructions (see .ad file) 6287 // vtableStubs also counts instructions in pd_code_size_limit. 6288 // Also do not verify_oop as this is called by verify_oop. 6289 if (CompressedKlassPointers::shift() != 0) { 6290 shlq(r, CompressedKlassPointers::shift()); 6291 } 6292 if (CompressedKlassPointers::base() != nullptr) { 6293 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 6294 addq(r, tmp); 6295 } 6296 } 6297 6298 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) { 6299 assert_different_registers(src, dst); 6300 // Note: it will change flags 6301 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6302 // Cannot assert, unverified entry point counts instructions (see .ad file) 6303 // vtableStubs also counts instructions in pd_code_size_limit. 6304 // Also do not verify_oop as this is called by verify_oop. 6305 6306 if (CompressedKlassPointers::base() == nullptr && 6307 CompressedKlassPointers::shift() == 0) { 6308 // The best case scenario is that there is no base or shift. Then it is already 6309 // a pointer that needs nothing but a register rename. 6310 movl(dst, src); 6311 } else { 6312 if (CompressedKlassPointers::shift() <= Address::times_8) { 6313 if (CompressedKlassPointers::base() != nullptr) { 6314 mov64(dst, (int64_t)CompressedKlassPointers::base()); 6315 } else { 6316 xorq(dst, dst); 6317 } 6318 if (CompressedKlassPointers::shift() != 0) { 6319 assert(CompressedKlassPointers::shift() == Address::times_8, "klass not aligned on 64bits?"); 6320 leaq(dst, Address(dst, src, Address::times_8, 0)); 6321 } else { 6322 addq(dst, src); 6323 } 6324 } else { 6325 if (CompressedKlassPointers::base() != nullptr) { 6326 const uint64_t base_right_shifted = 6327 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 6328 mov64(dst, base_right_shifted); 6329 } else { 6330 xorq(dst, dst); 6331 } 6332 addq(dst, src); 6333 shlq(dst, CompressedKlassPointers::shift()); 6334 } 6335 } 6336 } 6337 6338 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 6339 assert (UseCompressedOops, "should only be used for compressed headers"); 6340 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6341 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6342 int oop_index = oop_recorder()->find_index(obj); 6343 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6344 mov_narrow_oop(dst, oop_index, rspec); 6345 } 6346 6347 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { 6348 assert (UseCompressedOops, "should only be used for compressed headers"); 6349 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6350 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6351 int oop_index = oop_recorder()->find_index(obj); 6352 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6353 mov_narrow_oop(dst, oop_index, rspec); 6354 } 6355 6356 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 6357 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6358 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6359 int klass_index = oop_recorder()->find_index(k); 6360 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6361 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6362 } 6363 6364 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) { 6365 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6366 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6367 int klass_index = oop_recorder()->find_index(k); 6368 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6369 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6370 } 6371 6372 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { 6373 assert (UseCompressedOops, "should only be used for compressed headers"); 6374 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6375 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6376 int oop_index = oop_recorder()->find_index(obj); 6377 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6378 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6379 } 6380 6381 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { 6382 assert (UseCompressedOops, "should only be used for compressed headers"); 6383 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6384 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6385 int oop_index = oop_recorder()->find_index(obj); 6386 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6387 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6388 } 6389 6390 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) { 6391 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6392 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6393 int klass_index = oop_recorder()->find_index(k); 6394 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6395 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6396 } 6397 6398 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) { 6399 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6400 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6401 int klass_index = oop_recorder()->find_index(k); 6402 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6403 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6404 } 6405 6406 void MacroAssembler::reinit_heapbase() { 6407 if (UseCompressedOops) { 6408 if (Universe::heap() != nullptr) { 6409 if (CompressedOops::base() == nullptr) { 6410 MacroAssembler::xorptr(r12_heapbase, r12_heapbase); 6411 } else { 6412 mov64(r12_heapbase, (int64_t)CompressedOops::base()); 6413 } 6414 } else { 6415 movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr())); 6416 } 6417 } 6418 } 6419 6420 #endif // _LP64 6421 6422 #if COMPILER2_OR_JVMCI 6423 6424 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers 6425 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6426 // cnt - number of qwords (8-byte words). 6427 // base - start address, qword aligned. 6428 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end; 6429 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0); 6430 if (use64byteVector) { 6431 vpxor(xtmp, xtmp, xtmp, AVX_512bit); 6432 } else if (MaxVectorSize >= 32) { 6433 vpxor(xtmp, xtmp, xtmp, AVX_256bit); 6434 } else { 6435 pxor(xtmp, xtmp); 6436 } 6437 jmp(L_zero_64_bytes); 6438 6439 BIND(L_loop); 6440 if (MaxVectorSize >= 32) { 6441 fill64(base, 0, xtmp, use64byteVector); 6442 } else { 6443 movdqu(Address(base, 0), xtmp); 6444 movdqu(Address(base, 16), xtmp); 6445 movdqu(Address(base, 32), xtmp); 6446 movdqu(Address(base, 48), xtmp); 6447 } 6448 addptr(base, 64); 6449 6450 BIND(L_zero_64_bytes); 6451 subptr(cnt, 8); 6452 jccb(Assembler::greaterEqual, L_loop); 6453 6454 // Copy trailing 64 bytes 6455 if (use64byteVector) { 6456 addptr(cnt, 8); 6457 jccb(Assembler::equal, L_end); 6458 fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true); 6459 jmp(L_end); 6460 } else { 6461 addptr(cnt, 4); 6462 jccb(Assembler::less, L_tail); 6463 if (MaxVectorSize >= 32) { 6464 vmovdqu(Address(base, 0), xtmp); 6465 } else { 6466 movdqu(Address(base, 0), xtmp); 6467 movdqu(Address(base, 16), xtmp); 6468 } 6469 } 6470 addptr(base, 32); 6471 subptr(cnt, 4); 6472 6473 BIND(L_tail); 6474 addptr(cnt, 4); 6475 jccb(Assembler::lessEqual, L_end); 6476 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) { 6477 fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp); 6478 } else { 6479 decrement(cnt); 6480 6481 BIND(L_sloop); 6482 movq(Address(base, 0), xtmp); 6483 addptr(base, 8); 6484 decrement(cnt); 6485 jccb(Assembler::greaterEqual, L_sloop); 6486 } 6487 BIND(L_end); 6488 } 6489 6490 // Clearing constant sized memory using YMM/ZMM registers. 6491 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6492 assert(UseAVX > 2 && VM_Version::supports_avx512vl(), ""); 6493 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0); 6494 6495 int vector64_count = (cnt & (~0x7)) >> 3; 6496 cnt = cnt & 0x7; 6497 const int fill64_per_loop = 4; 6498 const int max_unrolled_fill64 = 8; 6499 6500 // 64 byte initialization loop. 6501 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit); 6502 int start64 = 0; 6503 if (vector64_count > max_unrolled_fill64) { 6504 Label LOOP; 6505 Register index = rtmp; 6506 6507 start64 = vector64_count - (vector64_count % fill64_per_loop); 6508 6509 movl(index, 0); 6510 BIND(LOOP); 6511 for (int i = 0; i < fill64_per_loop; i++) { 6512 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector); 6513 } 6514 addl(index, fill64_per_loop * 64); 6515 cmpl(index, start64 * 64); 6516 jccb(Assembler::less, LOOP); 6517 } 6518 for (int i = start64; i < vector64_count; i++) { 6519 fill64(base, i * 64, xtmp, use64byteVector); 6520 } 6521 6522 // Clear remaining 64 byte tail. 6523 int disp = vector64_count * 64; 6524 if (cnt) { 6525 switch (cnt) { 6526 case 1: 6527 movq(Address(base, disp), xtmp); 6528 break; 6529 case 2: 6530 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit); 6531 break; 6532 case 3: 6533 movl(rtmp, 0x7); 6534 kmovwl(mask, rtmp); 6535 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit); 6536 break; 6537 case 4: 6538 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6539 break; 6540 case 5: 6541 if (use64byteVector) { 6542 movl(rtmp, 0x1F); 6543 kmovwl(mask, rtmp); 6544 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6545 } else { 6546 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6547 movq(Address(base, disp + 32), xtmp); 6548 } 6549 break; 6550 case 6: 6551 if (use64byteVector) { 6552 movl(rtmp, 0x3F); 6553 kmovwl(mask, rtmp); 6554 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6555 } else { 6556 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6557 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit); 6558 } 6559 break; 6560 case 7: 6561 if (use64byteVector) { 6562 movl(rtmp, 0x7F); 6563 kmovwl(mask, rtmp); 6564 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6565 } else { 6566 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6567 movl(rtmp, 0x7); 6568 kmovwl(mask, rtmp); 6569 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit); 6570 } 6571 break; 6572 default: 6573 fatal("Unexpected length : %d\n",cnt); 6574 break; 6575 } 6576 } 6577 } 6578 6579 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, 6580 bool is_large, KRegister mask) { 6581 // cnt - number of qwords (8-byte words). 6582 // base - start address, qword aligned. 6583 // is_large - if optimizers know cnt is larger than InitArrayShortSize 6584 assert(base==rdi, "base register must be edi for rep stos"); 6585 assert(tmp==rax, "tmp register must be eax for rep stos"); 6586 assert(cnt==rcx, "cnt register must be ecx for rep stos"); 6587 assert(InitArrayShortSize % BytesPerLong == 0, 6588 "InitArrayShortSize should be the multiple of BytesPerLong"); 6589 6590 Label DONE; 6591 if (!is_large || !UseXMMForObjInit) { 6592 xorptr(tmp, tmp); 6593 } 6594 6595 if (!is_large) { 6596 Label LOOP, LONG; 6597 cmpptr(cnt, InitArrayShortSize/BytesPerLong); 6598 jccb(Assembler::greater, LONG); 6599 6600 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 6601 6602 decrement(cnt); 6603 jccb(Assembler::negative, DONE); // Zero length 6604 6605 // Use individual pointer-sized stores for small counts: 6606 BIND(LOOP); 6607 movptr(Address(base, cnt, Address::times_ptr), tmp); 6608 decrement(cnt); 6609 jccb(Assembler::greaterEqual, LOOP); 6610 jmpb(DONE); 6611 6612 BIND(LONG); 6613 } 6614 6615 // Use longer rep-prefixed ops for non-small counts: 6616 if (UseFastStosb) { 6617 shlptr(cnt, 3); // convert to number of bytes 6618 rep_stosb(); 6619 } else if (UseXMMForObjInit) { 6620 xmm_clear_mem(base, cnt, tmp, xtmp, mask); 6621 } else { 6622 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 6623 rep_stos(); 6624 } 6625 6626 BIND(DONE); 6627 } 6628 6629 #endif //COMPILER2_OR_JVMCI 6630 6631 6632 void MacroAssembler::generate_fill(BasicType t, bool aligned, 6633 Register to, Register value, Register count, 6634 Register rtmp, XMMRegister xtmp) { 6635 ShortBranchVerifier sbv(this); 6636 assert_different_registers(to, value, count, rtmp); 6637 Label L_exit; 6638 Label L_fill_2_bytes, L_fill_4_bytes; 6639 6640 #if defined(COMPILER2) && defined(_LP64) 6641 if(MaxVectorSize >=32 && 6642 VM_Version::supports_avx512vlbw() && 6643 VM_Version::supports_bmi2()) { 6644 generate_fill_avx3(t, to, value, count, rtmp, xtmp); 6645 return; 6646 } 6647 #endif 6648 6649 int shift = -1; 6650 switch (t) { 6651 case T_BYTE: 6652 shift = 2; 6653 break; 6654 case T_SHORT: 6655 shift = 1; 6656 break; 6657 case T_INT: 6658 shift = 0; 6659 break; 6660 default: ShouldNotReachHere(); 6661 } 6662 6663 if (t == T_BYTE) { 6664 andl(value, 0xff); 6665 movl(rtmp, value); 6666 shll(rtmp, 8); 6667 orl(value, rtmp); 6668 } 6669 if (t == T_SHORT) { 6670 andl(value, 0xffff); 6671 } 6672 if (t == T_BYTE || t == T_SHORT) { 6673 movl(rtmp, value); 6674 shll(rtmp, 16); 6675 orl(value, rtmp); 6676 } 6677 6678 cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element 6679 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp 6680 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) { 6681 Label L_skip_align2; 6682 // align source address at 4 bytes address boundary 6683 if (t == T_BYTE) { 6684 Label L_skip_align1; 6685 // One byte misalignment happens only for byte arrays 6686 testptr(to, 1); 6687 jccb(Assembler::zero, L_skip_align1); 6688 movb(Address(to, 0), value); 6689 increment(to); 6690 decrement(count); 6691 BIND(L_skip_align1); 6692 } 6693 // Two bytes misalignment happens only for byte and short (char) arrays 6694 testptr(to, 2); 6695 jccb(Assembler::zero, L_skip_align2); 6696 movw(Address(to, 0), value); 6697 addptr(to, 2); 6698 subptr(count, 1<<(shift-1)); 6699 BIND(L_skip_align2); 6700 } 6701 if (UseSSE < 2) { 6702 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6703 // Fill 32-byte chunks 6704 subptr(count, 8 << shift); 6705 jcc(Assembler::less, L_check_fill_8_bytes); 6706 align(16); 6707 6708 BIND(L_fill_32_bytes_loop); 6709 6710 for (int i = 0; i < 32; i += 4) { 6711 movl(Address(to, i), value); 6712 } 6713 6714 addptr(to, 32); 6715 subptr(count, 8 << shift); 6716 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6717 BIND(L_check_fill_8_bytes); 6718 addptr(count, 8 << shift); 6719 jccb(Assembler::zero, L_exit); 6720 jmpb(L_fill_8_bytes); 6721 6722 // 6723 // length is too short, just fill qwords 6724 // 6725 BIND(L_fill_8_bytes_loop); 6726 movl(Address(to, 0), value); 6727 movl(Address(to, 4), value); 6728 addptr(to, 8); 6729 BIND(L_fill_8_bytes); 6730 subptr(count, 1 << (shift + 1)); 6731 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6732 // fall through to fill 4 bytes 6733 } else { 6734 Label L_fill_32_bytes; 6735 if (!UseUnalignedLoadStores) { 6736 // align to 8 bytes, we know we are 4 byte aligned to start 6737 testptr(to, 4); 6738 jccb(Assembler::zero, L_fill_32_bytes); 6739 movl(Address(to, 0), value); 6740 addptr(to, 4); 6741 subptr(count, 1<<shift); 6742 } 6743 BIND(L_fill_32_bytes); 6744 { 6745 assert( UseSSE >= 2, "supported cpu only" ); 6746 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6747 movdl(xtmp, value); 6748 if (UseAVX >= 2 && UseUnalignedLoadStores) { 6749 Label L_check_fill_32_bytes; 6750 if (UseAVX > 2) { 6751 // Fill 64-byte chunks 6752 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2; 6753 6754 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2 6755 cmpptr(count, VM_Version::avx3_threshold()); 6756 jccb(Assembler::below, L_check_fill_64_bytes_avx2); 6757 6758 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit); 6759 6760 subptr(count, 16 << shift); 6761 jccb(Assembler::less, L_check_fill_32_bytes); 6762 align(16); 6763 6764 BIND(L_fill_64_bytes_loop_avx3); 6765 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit); 6766 addptr(to, 64); 6767 subptr(count, 16 << shift); 6768 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3); 6769 jmpb(L_check_fill_32_bytes); 6770 6771 BIND(L_check_fill_64_bytes_avx2); 6772 } 6773 // Fill 64-byte chunks 6774 Label L_fill_64_bytes_loop; 6775 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit); 6776 6777 subptr(count, 16 << shift); 6778 jcc(Assembler::less, L_check_fill_32_bytes); 6779 align(16); 6780 6781 BIND(L_fill_64_bytes_loop); 6782 vmovdqu(Address(to, 0), xtmp); 6783 vmovdqu(Address(to, 32), xtmp); 6784 addptr(to, 64); 6785 subptr(count, 16 << shift); 6786 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop); 6787 6788 BIND(L_check_fill_32_bytes); 6789 addptr(count, 8 << shift); 6790 jccb(Assembler::less, L_check_fill_8_bytes); 6791 vmovdqu(Address(to, 0), xtmp); 6792 addptr(to, 32); 6793 subptr(count, 8 << shift); 6794 6795 BIND(L_check_fill_8_bytes); 6796 // clean upper bits of YMM registers 6797 movdl(xtmp, value); 6798 pshufd(xtmp, xtmp, 0); 6799 } else { 6800 // Fill 32-byte chunks 6801 pshufd(xtmp, xtmp, 0); 6802 6803 subptr(count, 8 << shift); 6804 jcc(Assembler::less, L_check_fill_8_bytes); 6805 align(16); 6806 6807 BIND(L_fill_32_bytes_loop); 6808 6809 if (UseUnalignedLoadStores) { 6810 movdqu(Address(to, 0), xtmp); 6811 movdqu(Address(to, 16), xtmp); 6812 } else { 6813 movq(Address(to, 0), xtmp); 6814 movq(Address(to, 8), xtmp); 6815 movq(Address(to, 16), xtmp); 6816 movq(Address(to, 24), xtmp); 6817 } 6818 6819 addptr(to, 32); 6820 subptr(count, 8 << shift); 6821 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6822 6823 BIND(L_check_fill_8_bytes); 6824 } 6825 addptr(count, 8 << shift); 6826 jccb(Assembler::zero, L_exit); 6827 jmpb(L_fill_8_bytes); 6828 6829 // 6830 // length is too short, just fill qwords 6831 // 6832 BIND(L_fill_8_bytes_loop); 6833 movq(Address(to, 0), xtmp); 6834 addptr(to, 8); 6835 BIND(L_fill_8_bytes); 6836 subptr(count, 1 << (shift + 1)); 6837 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6838 } 6839 } 6840 // fill trailing 4 bytes 6841 BIND(L_fill_4_bytes); 6842 testl(count, 1<<shift); 6843 jccb(Assembler::zero, L_fill_2_bytes); 6844 movl(Address(to, 0), value); 6845 if (t == T_BYTE || t == T_SHORT) { 6846 Label L_fill_byte; 6847 addptr(to, 4); 6848 BIND(L_fill_2_bytes); 6849 // fill trailing 2 bytes 6850 testl(count, 1<<(shift-1)); 6851 jccb(Assembler::zero, L_fill_byte); 6852 movw(Address(to, 0), value); 6853 if (t == T_BYTE) { 6854 addptr(to, 2); 6855 BIND(L_fill_byte); 6856 // fill trailing byte 6857 testl(count, 1); 6858 jccb(Assembler::zero, L_exit); 6859 movb(Address(to, 0), value); 6860 } else { 6861 BIND(L_fill_byte); 6862 } 6863 } else { 6864 BIND(L_fill_2_bytes); 6865 } 6866 BIND(L_exit); 6867 } 6868 6869 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) { 6870 switch(type) { 6871 case T_BYTE: 6872 case T_BOOLEAN: 6873 evpbroadcastb(dst, src, vector_len); 6874 break; 6875 case T_SHORT: 6876 case T_CHAR: 6877 evpbroadcastw(dst, src, vector_len); 6878 break; 6879 case T_INT: 6880 case T_FLOAT: 6881 evpbroadcastd(dst, src, vector_len); 6882 break; 6883 case T_LONG: 6884 case T_DOUBLE: 6885 evpbroadcastq(dst, src, vector_len); 6886 break; 6887 default: 6888 fatal("Unhandled type : %s", type2name(type)); 6889 break; 6890 } 6891 } 6892 6893 // encode char[] to byte[] in ISO_8859_1 or ASCII 6894 //@IntrinsicCandidate 6895 //private static int implEncodeISOArray(byte[] sa, int sp, 6896 //byte[] da, int dp, int len) { 6897 // int i = 0; 6898 // for (; i < len; i++) { 6899 // char c = StringUTF16.getChar(sa, sp++); 6900 // if (c > '\u00FF') 6901 // break; 6902 // da[dp++] = (byte)c; 6903 // } 6904 // return i; 6905 //} 6906 // 6907 //@IntrinsicCandidate 6908 //private static int implEncodeAsciiArray(char[] sa, int sp, 6909 // byte[] da, int dp, int len) { 6910 // int i = 0; 6911 // for (; i < len; i++) { 6912 // char c = sa[sp++]; 6913 // if (c >= '\u0080') 6914 // break; 6915 // da[dp++] = (byte)c; 6916 // } 6917 // return i; 6918 //} 6919 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, 6920 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 6921 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 6922 Register tmp5, Register result, bool ascii) { 6923 6924 // rsi: src 6925 // rdi: dst 6926 // rdx: len 6927 // rcx: tmp5 6928 // rax: result 6929 ShortBranchVerifier sbv(this); 6930 assert_different_registers(src, dst, len, tmp5, result); 6931 Label L_done, L_copy_1_char, L_copy_1_char_exit; 6932 6933 int mask = ascii ? 0xff80ff80 : 0xff00ff00; 6934 int short_mask = ascii ? 0xff80 : 0xff00; 6935 6936 // set result 6937 xorl(result, result); 6938 // check for zero length 6939 testl(len, len); 6940 jcc(Assembler::zero, L_done); 6941 6942 movl(result, len); 6943 6944 // Setup pointers 6945 lea(src, Address(src, len, Address::times_2)); // char[] 6946 lea(dst, Address(dst, len, Address::times_1)); // byte[] 6947 negptr(len); 6948 6949 if (UseSSE42Intrinsics || UseAVX >= 2) { 6950 Label L_copy_8_chars, L_copy_8_chars_exit; 6951 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit; 6952 6953 if (UseAVX >= 2) { 6954 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit; 6955 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6956 movdl(tmp1Reg, tmp5); 6957 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit); 6958 jmp(L_chars_32_check); 6959 6960 bind(L_copy_32_chars); 6961 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64)); 6962 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32)); 6963 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6964 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6965 jccb(Assembler::notZero, L_copy_32_chars_exit); 6966 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6967 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1); 6968 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg); 6969 6970 bind(L_chars_32_check); 6971 addptr(len, 32); 6972 jcc(Assembler::lessEqual, L_copy_32_chars); 6973 6974 bind(L_copy_32_chars_exit); 6975 subptr(len, 16); 6976 jccb(Assembler::greater, L_copy_16_chars_exit); 6977 6978 } else if (UseSSE42Intrinsics) { 6979 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6980 movdl(tmp1Reg, tmp5); 6981 pshufd(tmp1Reg, tmp1Reg, 0); 6982 jmpb(L_chars_16_check); 6983 } 6984 6985 bind(L_copy_16_chars); 6986 if (UseAVX >= 2) { 6987 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32)); 6988 vptest(tmp2Reg, tmp1Reg); 6989 jcc(Assembler::notZero, L_copy_16_chars_exit); 6990 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1); 6991 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1); 6992 } else { 6993 if (UseAVX > 0) { 6994 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6995 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6996 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0); 6997 } else { 6998 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6999 por(tmp2Reg, tmp3Reg); 7000 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 7001 por(tmp2Reg, tmp4Reg); 7002 } 7003 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 7004 jccb(Assembler::notZero, L_copy_16_chars_exit); 7005 packuswb(tmp3Reg, tmp4Reg); 7006 } 7007 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg); 7008 7009 bind(L_chars_16_check); 7010 addptr(len, 16); 7011 jcc(Assembler::lessEqual, L_copy_16_chars); 7012 7013 bind(L_copy_16_chars_exit); 7014 if (UseAVX >= 2) { 7015 // clean upper bits of YMM registers 7016 vpxor(tmp2Reg, tmp2Reg); 7017 vpxor(tmp3Reg, tmp3Reg); 7018 vpxor(tmp4Reg, tmp4Reg); 7019 movdl(tmp1Reg, tmp5); 7020 pshufd(tmp1Reg, tmp1Reg, 0); 7021 } 7022 subptr(len, 8); 7023 jccb(Assembler::greater, L_copy_8_chars_exit); 7024 7025 bind(L_copy_8_chars); 7026 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16)); 7027 ptest(tmp3Reg, tmp1Reg); 7028 jccb(Assembler::notZero, L_copy_8_chars_exit); 7029 packuswb(tmp3Reg, tmp1Reg); 7030 movq(Address(dst, len, Address::times_1, -8), tmp3Reg); 7031 addptr(len, 8); 7032 jccb(Assembler::lessEqual, L_copy_8_chars); 7033 7034 bind(L_copy_8_chars_exit); 7035 subptr(len, 8); 7036 jccb(Assembler::zero, L_done); 7037 } 7038 7039 bind(L_copy_1_char); 7040 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0)); 7041 testl(tmp5, short_mask); // check if Unicode or non-ASCII char 7042 jccb(Assembler::notZero, L_copy_1_char_exit); 7043 movb(Address(dst, len, Address::times_1, 0), tmp5); 7044 addptr(len, 1); 7045 jccb(Assembler::less, L_copy_1_char); 7046 7047 bind(L_copy_1_char_exit); 7048 addptr(result, len); // len is negative count of not processed elements 7049 7050 bind(L_done); 7051 } 7052 7053 #ifdef _LP64 7054 /** 7055 * Helper for multiply_to_len(). 7056 */ 7057 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 7058 addq(dest_lo, src1); 7059 adcq(dest_hi, 0); 7060 addq(dest_lo, src2); 7061 adcq(dest_hi, 0); 7062 } 7063 7064 /** 7065 * Multiply 64 bit by 64 bit first loop. 7066 */ 7067 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 7068 Register y, Register y_idx, Register z, 7069 Register carry, Register product, 7070 Register idx, Register kdx) { 7071 // 7072 // jlong carry, x[], y[], z[]; 7073 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 7074 // huge_128 product = y[idx] * x[xstart] + carry; 7075 // z[kdx] = (jlong)product; 7076 // carry = (jlong)(product >>> 64); 7077 // } 7078 // z[xstart] = carry; 7079 // 7080 7081 Label L_first_loop, L_first_loop_exit; 7082 Label L_one_x, L_one_y, L_multiply; 7083 7084 decrementl(xstart); 7085 jcc(Assembler::negative, L_one_x); 7086 7087 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7088 rorq(x_xstart, 32); // convert big-endian to little-endian 7089 7090 bind(L_first_loop); 7091 decrementl(idx); 7092 jcc(Assembler::negative, L_first_loop_exit); 7093 decrementl(idx); 7094 jcc(Assembler::negative, L_one_y); 7095 movq(y_idx, Address(y, idx, Address::times_4, 0)); 7096 rorq(y_idx, 32); // convert big-endian to little-endian 7097 bind(L_multiply); 7098 movq(product, x_xstart); 7099 mulq(y_idx); // product(rax) * y_idx -> rdx:rax 7100 addq(product, carry); 7101 adcq(rdx, 0); 7102 subl(kdx, 2); 7103 movl(Address(z, kdx, Address::times_4, 4), product); 7104 shrq(product, 32); 7105 movl(Address(z, kdx, Address::times_4, 0), product); 7106 movq(carry, rdx); 7107 jmp(L_first_loop); 7108 7109 bind(L_one_y); 7110 movl(y_idx, Address(y, 0)); 7111 jmp(L_multiply); 7112 7113 bind(L_one_x); 7114 movl(x_xstart, Address(x, 0)); 7115 jmp(L_first_loop); 7116 7117 bind(L_first_loop_exit); 7118 } 7119 7120 /** 7121 * Multiply 64 bit by 64 bit and add 128 bit. 7122 */ 7123 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, 7124 Register yz_idx, Register idx, 7125 Register carry, Register product, int offset) { 7126 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; 7127 // z[kdx] = (jlong)product; 7128 7129 movq(yz_idx, Address(y, idx, Address::times_4, offset)); 7130 rorq(yz_idx, 32); // convert big-endian to little-endian 7131 movq(product, x_xstart); 7132 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 7133 movq(yz_idx, Address(z, idx, Address::times_4, offset)); 7134 rorq(yz_idx, 32); // convert big-endian to little-endian 7135 7136 add2_with_carry(rdx, product, carry, yz_idx); 7137 7138 movl(Address(z, idx, Address::times_4, offset+4), product); 7139 shrq(product, 32); 7140 movl(Address(z, idx, Address::times_4, offset), product); 7141 7142 } 7143 7144 /** 7145 * Multiply 128 bit by 128 bit. Unrolled inner loop. 7146 */ 7147 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 7148 Register yz_idx, Register idx, Register jdx, 7149 Register carry, Register product, 7150 Register carry2) { 7151 // jlong carry, x[], y[], z[]; 7152 // int kdx = ystart+1; 7153 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 7154 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; 7155 // z[kdx+idx+1] = (jlong)product; 7156 // jlong carry2 = (jlong)(product >>> 64); 7157 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; 7158 // z[kdx+idx] = (jlong)product; 7159 // carry = (jlong)(product >>> 64); 7160 // } 7161 // idx += 2; 7162 // if (idx > 0) { 7163 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; 7164 // z[kdx+idx] = (jlong)product; 7165 // carry = (jlong)(product >>> 64); 7166 // } 7167 // 7168 7169 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 7170 7171 movl(jdx, idx); 7172 andl(jdx, 0xFFFFFFFC); 7173 shrl(jdx, 2); 7174 7175 bind(L_third_loop); 7176 subl(jdx, 1); 7177 jcc(Assembler::negative, L_third_loop_exit); 7178 subl(idx, 4); 7179 7180 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8); 7181 movq(carry2, rdx); 7182 7183 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0); 7184 movq(carry, rdx); 7185 jmp(L_third_loop); 7186 7187 bind (L_third_loop_exit); 7188 7189 andl (idx, 0x3); 7190 jcc(Assembler::zero, L_post_third_loop_done); 7191 7192 Label L_check_1; 7193 subl(idx, 2); 7194 jcc(Assembler::negative, L_check_1); 7195 7196 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0); 7197 movq(carry, rdx); 7198 7199 bind (L_check_1); 7200 addl (idx, 0x2); 7201 andl (idx, 0x1); 7202 subl(idx, 1); 7203 jcc(Assembler::negative, L_post_third_loop_done); 7204 7205 movl(yz_idx, Address(y, idx, Address::times_4, 0)); 7206 movq(product, x_xstart); 7207 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 7208 movl(yz_idx, Address(z, idx, Address::times_4, 0)); 7209 7210 add2_with_carry(rdx, product, yz_idx, carry); 7211 7212 movl(Address(z, idx, Address::times_4, 0), product); 7213 shrq(product, 32); 7214 7215 shlq(rdx, 32); 7216 orq(product, rdx); 7217 movq(carry, product); 7218 7219 bind(L_post_third_loop_done); 7220 } 7221 7222 /** 7223 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop. 7224 * 7225 */ 7226 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z, 7227 Register carry, Register carry2, 7228 Register idx, Register jdx, 7229 Register yz_idx1, Register yz_idx2, 7230 Register tmp, Register tmp3, Register tmp4) { 7231 assert(UseBMI2Instructions, "should be used only when BMI2 is available"); 7232 7233 // jlong carry, x[], y[], z[]; 7234 // int kdx = ystart+1; 7235 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 7236 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry; 7237 // jlong carry2 = (jlong)(tmp3 >>> 64); 7238 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2; 7239 // carry = (jlong)(tmp4 >>> 64); 7240 // z[kdx+idx+1] = (jlong)tmp3; 7241 // z[kdx+idx] = (jlong)tmp4; 7242 // } 7243 // idx += 2; 7244 // if (idx > 0) { 7245 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry; 7246 // z[kdx+idx] = (jlong)yz_idx1; 7247 // carry = (jlong)(yz_idx1 >>> 64); 7248 // } 7249 // 7250 7251 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 7252 7253 movl(jdx, idx); 7254 andl(jdx, 0xFFFFFFFC); 7255 shrl(jdx, 2); 7256 7257 bind(L_third_loop); 7258 subl(jdx, 1); 7259 jcc(Assembler::negative, L_third_loop_exit); 7260 subl(idx, 4); 7261 7262 movq(yz_idx1, Address(y, idx, Address::times_4, 8)); 7263 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 7264 movq(yz_idx2, Address(y, idx, Address::times_4, 0)); 7265 rorxq(yz_idx2, yz_idx2, 32); 7266 7267 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7268 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp 7269 7270 movq(yz_idx1, Address(z, idx, Address::times_4, 8)); 7271 rorxq(yz_idx1, yz_idx1, 32); 7272 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7273 rorxq(yz_idx2, yz_idx2, 32); 7274 7275 if (VM_Version::supports_adx()) { 7276 adcxq(tmp3, carry); 7277 adoxq(tmp3, yz_idx1); 7278 7279 adcxq(tmp4, tmp); 7280 adoxq(tmp4, yz_idx2); 7281 7282 movl(carry, 0); // does not affect flags 7283 adcxq(carry2, carry); 7284 adoxq(carry2, carry); 7285 } else { 7286 add2_with_carry(tmp4, tmp3, carry, yz_idx1); 7287 add2_with_carry(carry2, tmp4, tmp, yz_idx2); 7288 } 7289 movq(carry, carry2); 7290 7291 movl(Address(z, idx, Address::times_4, 12), tmp3); 7292 shrq(tmp3, 32); 7293 movl(Address(z, idx, Address::times_4, 8), tmp3); 7294 7295 movl(Address(z, idx, Address::times_4, 4), tmp4); 7296 shrq(tmp4, 32); 7297 movl(Address(z, idx, Address::times_4, 0), tmp4); 7298 7299 jmp(L_third_loop); 7300 7301 bind (L_third_loop_exit); 7302 7303 andl (idx, 0x3); 7304 jcc(Assembler::zero, L_post_third_loop_done); 7305 7306 Label L_check_1; 7307 subl(idx, 2); 7308 jcc(Assembler::negative, L_check_1); 7309 7310 movq(yz_idx1, Address(y, idx, Address::times_4, 0)); 7311 rorxq(yz_idx1, yz_idx1, 32); 7312 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7313 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7314 rorxq(yz_idx2, yz_idx2, 32); 7315 7316 add2_with_carry(tmp4, tmp3, carry, yz_idx2); 7317 7318 movl(Address(z, idx, Address::times_4, 4), tmp3); 7319 shrq(tmp3, 32); 7320 movl(Address(z, idx, Address::times_4, 0), tmp3); 7321 movq(carry, tmp4); 7322 7323 bind (L_check_1); 7324 addl (idx, 0x2); 7325 andl (idx, 0x1); 7326 subl(idx, 1); 7327 jcc(Assembler::negative, L_post_third_loop_done); 7328 movl(tmp4, Address(y, idx, Address::times_4, 0)); 7329 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3 7330 movl(tmp4, Address(z, idx, Address::times_4, 0)); 7331 7332 add2_with_carry(carry2, tmp3, tmp4, carry); 7333 7334 movl(Address(z, idx, Address::times_4, 0), tmp3); 7335 shrq(tmp3, 32); 7336 7337 shlq(carry2, 32); 7338 orq(tmp3, carry2); 7339 movq(carry, tmp3); 7340 7341 bind(L_post_third_loop_done); 7342 } 7343 7344 /** 7345 * Code for BigInteger::multiplyToLen() intrinsic. 7346 * 7347 * rdi: x 7348 * rax: xlen 7349 * rsi: y 7350 * rcx: ylen 7351 * r8: z 7352 * r11: tmp0 7353 * r12: tmp1 7354 * r13: tmp2 7355 * r14: tmp3 7356 * r15: tmp4 7357 * rbx: tmp5 7358 * 7359 */ 7360 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0, 7361 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) { 7362 ShortBranchVerifier sbv(this); 7363 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx); 7364 7365 push(tmp0); 7366 push(tmp1); 7367 push(tmp2); 7368 push(tmp3); 7369 push(tmp4); 7370 push(tmp5); 7371 7372 push(xlen); 7373 7374 const Register idx = tmp1; 7375 const Register kdx = tmp2; 7376 const Register xstart = tmp3; 7377 7378 const Register y_idx = tmp4; 7379 const Register carry = tmp5; 7380 const Register product = xlen; 7381 const Register x_xstart = tmp0; 7382 7383 // First Loop. 7384 // 7385 // final static long LONG_MASK = 0xffffffffL; 7386 // int xstart = xlen - 1; 7387 // int ystart = ylen - 1; 7388 // long carry = 0; 7389 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 7390 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 7391 // z[kdx] = (int)product; 7392 // carry = product >>> 32; 7393 // } 7394 // z[xstart] = (int)carry; 7395 // 7396 7397 movl(idx, ylen); // idx = ylen; 7398 lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen; 7399 xorq(carry, carry); // carry = 0; 7400 7401 Label L_done; 7402 7403 movl(xstart, xlen); 7404 decrementl(xstart); 7405 jcc(Assembler::negative, L_done); 7406 7407 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 7408 7409 Label L_second_loop; 7410 testl(kdx, kdx); 7411 jcc(Assembler::zero, L_second_loop); 7412 7413 Label L_carry; 7414 subl(kdx, 1); 7415 jcc(Assembler::zero, L_carry); 7416 7417 movl(Address(z, kdx, Address::times_4, 0), carry); 7418 shrq(carry, 32); 7419 subl(kdx, 1); 7420 7421 bind(L_carry); 7422 movl(Address(z, kdx, Address::times_4, 0), carry); 7423 7424 // Second and third (nested) loops. 7425 // 7426 // for (int i = xstart-1; i >= 0; i--) { // Second loop 7427 // carry = 0; 7428 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 7429 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 7430 // (z[k] & LONG_MASK) + carry; 7431 // z[k] = (int)product; 7432 // carry = product >>> 32; 7433 // } 7434 // z[i] = (int)carry; 7435 // } 7436 // 7437 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx 7438 7439 const Register jdx = tmp1; 7440 7441 bind(L_second_loop); 7442 xorl(carry, carry); // carry = 0; 7443 movl(jdx, ylen); // j = ystart+1 7444 7445 subl(xstart, 1); // i = xstart-1; 7446 jcc(Assembler::negative, L_done); 7447 7448 push (z); 7449 7450 Label L_last_x; 7451 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j 7452 subl(xstart, 1); // i = xstart-1; 7453 jcc(Assembler::negative, L_last_x); 7454 7455 if (UseBMI2Instructions) { 7456 movq(rdx, Address(x, xstart, Address::times_4, 0)); 7457 rorxq(rdx, rdx, 32); // convert big-endian to little-endian 7458 } else { 7459 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7460 rorq(x_xstart, 32); // convert big-endian to little-endian 7461 } 7462 7463 Label L_third_loop_prologue; 7464 bind(L_third_loop_prologue); 7465 7466 push (x); 7467 push (xstart); 7468 push (ylen); 7469 7470 7471 if (UseBMI2Instructions) { 7472 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4); 7473 } else { // !UseBMI2Instructions 7474 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x); 7475 } 7476 7477 pop(ylen); 7478 pop(xlen); 7479 pop(x); 7480 pop(z); 7481 7482 movl(tmp3, xlen); 7483 addl(tmp3, 1); 7484 movl(Address(z, tmp3, Address::times_4, 0), carry); 7485 subl(tmp3, 1); 7486 jccb(Assembler::negative, L_done); 7487 7488 shrq(carry, 32); 7489 movl(Address(z, tmp3, Address::times_4, 0), carry); 7490 jmp(L_second_loop); 7491 7492 // Next infrequent code is moved outside loops. 7493 bind(L_last_x); 7494 if (UseBMI2Instructions) { 7495 movl(rdx, Address(x, 0)); 7496 } else { 7497 movl(x_xstart, Address(x, 0)); 7498 } 7499 jmp(L_third_loop_prologue); 7500 7501 bind(L_done); 7502 7503 pop(xlen); 7504 7505 pop(tmp5); 7506 pop(tmp4); 7507 pop(tmp3); 7508 pop(tmp2); 7509 pop(tmp1); 7510 pop(tmp0); 7511 } 7512 7513 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 7514 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){ 7515 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled."); 7516 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP; 7517 Label VECTOR8_TAIL, VECTOR4_TAIL; 7518 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL; 7519 Label SAME_TILL_END, DONE; 7520 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL; 7521 7522 //scale is in rcx in both Win64 and Unix 7523 ShortBranchVerifier sbv(this); 7524 7525 shlq(length); 7526 xorq(result, result); 7527 7528 if ((AVX3Threshold == 0) && (UseAVX > 2) && 7529 VM_Version::supports_avx512vlbw()) { 7530 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL; 7531 7532 cmpq(length, 64); 7533 jcc(Assembler::less, VECTOR32_TAIL); 7534 7535 movq(tmp1, length); 7536 andq(tmp1, 0x3F); // tail count 7537 andq(length, ~(0x3F)); //vector count 7538 7539 bind(VECTOR64_LOOP); 7540 // AVX512 code to compare 64 byte vectors. 7541 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit); 7542 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit); 7543 kortestql(k7, k7); 7544 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch 7545 addq(result, 64); 7546 subq(length, 64); 7547 jccb(Assembler::notZero, VECTOR64_LOOP); 7548 7549 //bind(VECTOR64_TAIL); 7550 testq(tmp1, tmp1); 7551 jcc(Assembler::zero, SAME_TILL_END); 7552 7553 //bind(VECTOR64_TAIL); 7554 // AVX512 code to compare up to 63 byte vectors. 7555 mov64(tmp2, 0xFFFFFFFFFFFFFFFF); 7556 shlxq(tmp2, tmp2, tmp1); 7557 notq(tmp2); 7558 kmovql(k3, tmp2); 7559 7560 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit); 7561 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit); 7562 7563 ktestql(k7, k3); 7564 jcc(Assembler::below, SAME_TILL_END); // not mismatch 7565 7566 bind(VECTOR64_NOT_EQUAL); 7567 kmovql(tmp1, k7); 7568 notq(tmp1); 7569 tzcntq(tmp1, tmp1); 7570 addq(result, tmp1); 7571 shrq(result); 7572 jmp(DONE); 7573 bind(VECTOR32_TAIL); 7574 } 7575 7576 cmpq(length, 8); 7577 jcc(Assembler::equal, VECTOR8_LOOP); 7578 jcc(Assembler::less, VECTOR4_TAIL); 7579 7580 if (UseAVX >= 2) { 7581 Label VECTOR16_TAIL, VECTOR32_LOOP; 7582 7583 cmpq(length, 16); 7584 jcc(Assembler::equal, VECTOR16_LOOP); 7585 jcc(Assembler::less, VECTOR8_LOOP); 7586 7587 cmpq(length, 32); 7588 jccb(Assembler::less, VECTOR16_TAIL); 7589 7590 subq(length, 32); 7591 bind(VECTOR32_LOOP); 7592 vmovdqu(rymm0, Address(obja, result)); 7593 vmovdqu(rymm1, Address(objb, result)); 7594 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit); 7595 vptest(rymm2, rymm2); 7596 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found 7597 addq(result, 32); 7598 subq(length, 32); 7599 jcc(Assembler::greaterEqual, VECTOR32_LOOP); 7600 addq(length, 32); 7601 jcc(Assembler::equal, SAME_TILL_END); 7602 //falling through if less than 32 bytes left //close the branch here. 7603 7604 bind(VECTOR16_TAIL); 7605 cmpq(length, 16); 7606 jccb(Assembler::less, VECTOR8_TAIL); 7607 bind(VECTOR16_LOOP); 7608 movdqu(rymm0, Address(obja, result)); 7609 movdqu(rymm1, Address(objb, result)); 7610 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit); 7611 ptest(rymm2, rymm2); 7612 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7613 addq(result, 16); 7614 subq(length, 16); 7615 jcc(Assembler::equal, SAME_TILL_END); 7616 //falling through if less than 16 bytes left 7617 } else {//regular intrinsics 7618 7619 cmpq(length, 16); 7620 jccb(Assembler::less, VECTOR8_TAIL); 7621 7622 subq(length, 16); 7623 bind(VECTOR16_LOOP); 7624 movdqu(rymm0, Address(obja, result)); 7625 movdqu(rymm1, Address(objb, result)); 7626 pxor(rymm0, rymm1); 7627 ptest(rymm0, rymm0); 7628 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7629 addq(result, 16); 7630 subq(length, 16); 7631 jccb(Assembler::greaterEqual, VECTOR16_LOOP); 7632 addq(length, 16); 7633 jcc(Assembler::equal, SAME_TILL_END); 7634 //falling through if less than 16 bytes left 7635 } 7636 7637 bind(VECTOR8_TAIL); 7638 cmpq(length, 8); 7639 jccb(Assembler::less, VECTOR4_TAIL); 7640 bind(VECTOR8_LOOP); 7641 movq(tmp1, Address(obja, result)); 7642 movq(tmp2, Address(objb, result)); 7643 xorq(tmp1, tmp2); 7644 testq(tmp1, tmp1); 7645 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found 7646 addq(result, 8); 7647 subq(length, 8); 7648 jcc(Assembler::equal, SAME_TILL_END); 7649 //falling through if less than 8 bytes left 7650 7651 bind(VECTOR4_TAIL); 7652 cmpq(length, 4); 7653 jccb(Assembler::less, BYTES_TAIL); 7654 bind(VECTOR4_LOOP); 7655 movl(tmp1, Address(obja, result)); 7656 xorl(tmp1, Address(objb, result)); 7657 testl(tmp1, tmp1); 7658 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found 7659 addq(result, 4); 7660 subq(length, 4); 7661 jcc(Assembler::equal, SAME_TILL_END); 7662 //falling through if less than 4 bytes left 7663 7664 bind(BYTES_TAIL); 7665 bind(BYTES_LOOP); 7666 load_unsigned_byte(tmp1, Address(obja, result)); 7667 load_unsigned_byte(tmp2, Address(objb, result)); 7668 xorl(tmp1, tmp2); 7669 testl(tmp1, tmp1); 7670 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7671 decq(length); 7672 jcc(Assembler::zero, SAME_TILL_END); 7673 incq(result); 7674 load_unsigned_byte(tmp1, Address(obja, result)); 7675 load_unsigned_byte(tmp2, Address(objb, result)); 7676 xorl(tmp1, tmp2); 7677 testl(tmp1, tmp1); 7678 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7679 decq(length); 7680 jcc(Assembler::zero, SAME_TILL_END); 7681 incq(result); 7682 load_unsigned_byte(tmp1, Address(obja, result)); 7683 load_unsigned_byte(tmp2, Address(objb, result)); 7684 xorl(tmp1, tmp2); 7685 testl(tmp1, tmp1); 7686 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7687 jmp(SAME_TILL_END); 7688 7689 if (UseAVX >= 2) { 7690 bind(VECTOR32_NOT_EQUAL); 7691 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit); 7692 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit); 7693 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit); 7694 vpmovmskb(tmp1, rymm0); 7695 bsfq(tmp1, tmp1); 7696 addq(result, tmp1); 7697 shrq(result); 7698 jmp(DONE); 7699 } 7700 7701 bind(VECTOR16_NOT_EQUAL); 7702 if (UseAVX >= 2) { 7703 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit); 7704 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit); 7705 pxor(rymm0, rymm2); 7706 } else { 7707 pcmpeqb(rymm2, rymm2); 7708 pxor(rymm0, rymm1); 7709 pcmpeqb(rymm0, rymm1); 7710 pxor(rymm0, rymm2); 7711 } 7712 pmovmskb(tmp1, rymm0); 7713 bsfq(tmp1, tmp1); 7714 addq(result, tmp1); 7715 shrq(result); 7716 jmpb(DONE); 7717 7718 bind(VECTOR8_NOT_EQUAL); 7719 bind(VECTOR4_NOT_EQUAL); 7720 bsfq(tmp1, tmp1); 7721 shrq(tmp1, 3); 7722 addq(result, tmp1); 7723 bind(BYTES_NOT_EQUAL); 7724 shrq(result); 7725 jmpb(DONE); 7726 7727 bind(SAME_TILL_END); 7728 mov64(result, -1); 7729 7730 bind(DONE); 7731 } 7732 7733 //Helper functions for square_to_len() 7734 7735 /** 7736 * Store the squares of x[], right shifted one bit (divided by 2) into z[] 7737 * Preserves x and z and modifies rest of the registers. 7738 */ 7739 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7740 // Perform square and right shift by 1 7741 // Handle odd xlen case first, then for even xlen do the following 7742 // jlong carry = 0; 7743 // for (int j=0, i=0; j < xlen; j+=2, i+=4) { 7744 // huge_128 product = x[j:j+1] * x[j:j+1]; 7745 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65); 7746 // z[i+2:i+3] = (jlong)(product >>> 1); 7747 // carry = (jlong)product; 7748 // } 7749 7750 xorq(tmp5, tmp5); // carry 7751 xorq(rdxReg, rdxReg); 7752 xorl(tmp1, tmp1); // index for x 7753 xorl(tmp4, tmp4); // index for z 7754 7755 Label L_first_loop, L_first_loop_exit; 7756 7757 testl(xlen, 1); 7758 jccb(Assembler::zero, L_first_loop); //jump if xlen is even 7759 7760 // Square and right shift by 1 the odd element using 32 bit multiply 7761 movl(raxReg, Address(x, tmp1, Address::times_4, 0)); 7762 imulq(raxReg, raxReg); 7763 shrq(raxReg, 1); 7764 adcq(tmp5, 0); 7765 movq(Address(z, tmp4, Address::times_4, 0), raxReg); 7766 incrementl(tmp1); 7767 addl(tmp4, 2); 7768 7769 // Square and right shift by 1 the rest using 64 bit multiply 7770 bind(L_first_loop); 7771 cmpptr(tmp1, xlen); 7772 jccb(Assembler::equal, L_first_loop_exit); 7773 7774 // Square 7775 movq(raxReg, Address(x, tmp1, Address::times_4, 0)); 7776 rorq(raxReg, 32); // convert big-endian to little-endian 7777 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax 7778 7779 // Right shift by 1 and save carry 7780 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1 7781 rcrq(rdxReg, 1); 7782 rcrq(raxReg, 1); 7783 adcq(tmp5, 0); 7784 7785 // Store result in z 7786 movq(Address(z, tmp4, Address::times_4, 0), rdxReg); 7787 movq(Address(z, tmp4, Address::times_4, 8), raxReg); 7788 7789 // Update indices for x and z 7790 addl(tmp1, 2); 7791 addl(tmp4, 4); 7792 jmp(L_first_loop); 7793 7794 bind(L_first_loop_exit); 7795 } 7796 7797 7798 /** 7799 * Perform the following multiply add operation using BMI2 instructions 7800 * carry:sum = sum + op1*op2 + carry 7801 * op2 should be in rdx 7802 * op2 is preserved, all other registers are modified 7803 */ 7804 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) { 7805 // assert op2 is rdx 7806 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1 7807 addq(sum, carry); 7808 adcq(tmp2, 0); 7809 addq(sum, op1); 7810 adcq(tmp2, 0); 7811 movq(carry, tmp2); 7812 } 7813 7814 /** 7815 * Perform the following multiply add operation: 7816 * carry:sum = sum + op1*op2 + carry 7817 * Preserves op1, op2 and modifies rest of registers 7818 */ 7819 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) { 7820 // rdx:rax = op1 * op2 7821 movq(raxReg, op2); 7822 mulq(op1); 7823 7824 // rdx:rax = sum + carry + rdx:rax 7825 addq(sum, carry); 7826 adcq(rdxReg, 0); 7827 addq(sum, raxReg); 7828 adcq(rdxReg, 0); 7829 7830 // carry:sum = rdx:sum 7831 movq(carry, rdxReg); 7832 } 7833 7834 /** 7835 * Add 64 bit long carry into z[] with carry propagation. 7836 * Preserves z and carry register values and modifies rest of registers. 7837 * 7838 */ 7839 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) { 7840 Label L_fourth_loop, L_fourth_loop_exit; 7841 7842 movl(tmp1, 1); 7843 subl(zlen, 2); 7844 addq(Address(z, zlen, Address::times_4, 0), carry); 7845 7846 bind(L_fourth_loop); 7847 jccb(Assembler::carryClear, L_fourth_loop_exit); 7848 subl(zlen, 2); 7849 jccb(Assembler::negative, L_fourth_loop_exit); 7850 addq(Address(z, zlen, Address::times_4, 0), tmp1); 7851 jmp(L_fourth_loop); 7852 bind(L_fourth_loop_exit); 7853 } 7854 7855 /** 7856 * Shift z[] left by 1 bit. 7857 * Preserves x, len, z and zlen registers and modifies rest of the registers. 7858 * 7859 */ 7860 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { 7861 7862 Label L_fifth_loop, L_fifth_loop_exit; 7863 7864 // Fifth loop 7865 // Perform primitiveLeftShift(z, zlen, 1) 7866 7867 const Register prev_carry = tmp1; 7868 const Register new_carry = tmp4; 7869 const Register value = tmp2; 7870 const Register zidx = tmp3; 7871 7872 // int zidx, carry; 7873 // long value; 7874 // carry = 0; 7875 // for (zidx = zlen-2; zidx >=0; zidx -= 2) { 7876 // (carry:value) = (z[i] << 1) | carry ; 7877 // z[i] = value; 7878 // } 7879 7880 movl(zidx, zlen); 7881 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register 7882 7883 bind(L_fifth_loop); 7884 decl(zidx); // Use decl to preserve carry flag 7885 decl(zidx); 7886 jccb(Assembler::negative, L_fifth_loop_exit); 7887 7888 if (UseBMI2Instructions) { 7889 movq(value, Address(z, zidx, Address::times_4, 0)); 7890 rclq(value, 1); 7891 rorxq(value, value, 32); 7892 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7893 } 7894 else { 7895 // clear new_carry 7896 xorl(new_carry, new_carry); 7897 7898 // Shift z[i] by 1, or in previous carry and save new carry 7899 movq(value, Address(z, zidx, Address::times_4, 0)); 7900 shlq(value, 1); 7901 adcl(new_carry, 0); 7902 7903 orq(value, prev_carry); 7904 rorq(value, 0x20); 7905 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7906 7907 // Set previous carry = new carry 7908 movl(prev_carry, new_carry); 7909 } 7910 jmp(L_fifth_loop); 7911 7912 bind(L_fifth_loop_exit); 7913 } 7914 7915 7916 /** 7917 * Code for BigInteger::squareToLen() intrinsic 7918 * 7919 * rdi: x 7920 * rsi: len 7921 * r8: z 7922 * rcx: zlen 7923 * r12: tmp1 7924 * r13: tmp2 7925 * r14: tmp3 7926 * r15: tmp4 7927 * rbx: tmp5 7928 * 7929 */ 7930 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7931 7932 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply; 7933 push(tmp1); 7934 push(tmp2); 7935 push(tmp3); 7936 push(tmp4); 7937 push(tmp5); 7938 7939 // First loop 7940 // Store the squares, right shifted one bit (i.e., divided by 2). 7941 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg); 7942 7943 // Add in off-diagonal sums. 7944 // 7945 // Second, third (nested) and fourth loops. 7946 // zlen +=2; 7947 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) { 7948 // carry = 0; 7949 // long op2 = x[xidx:xidx+1]; 7950 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) { 7951 // k -= 2; 7952 // long op1 = x[j:j+1]; 7953 // long sum = z[k:k+1]; 7954 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs); 7955 // z[k:k+1] = sum; 7956 // } 7957 // add_one_64(z, k, carry, tmp_regs); 7958 // } 7959 7960 const Register carry = tmp5; 7961 const Register sum = tmp3; 7962 const Register op1 = tmp4; 7963 Register op2 = tmp2; 7964 7965 push(zlen); 7966 push(len); 7967 addl(zlen,2); 7968 bind(L_second_loop); 7969 xorq(carry, carry); 7970 subl(zlen, 4); 7971 subl(len, 2); 7972 push(zlen); 7973 push(len); 7974 cmpl(len, 0); 7975 jccb(Assembler::lessEqual, L_second_loop_exit); 7976 7977 // Multiply an array by one 64 bit long. 7978 if (UseBMI2Instructions) { 7979 op2 = rdxReg; 7980 movq(op2, Address(x, len, Address::times_4, 0)); 7981 rorxq(op2, op2, 32); 7982 } 7983 else { 7984 movq(op2, Address(x, len, Address::times_4, 0)); 7985 rorq(op2, 32); 7986 } 7987 7988 bind(L_third_loop); 7989 decrementl(len); 7990 jccb(Assembler::negative, L_third_loop_exit); 7991 decrementl(len); 7992 jccb(Assembler::negative, L_last_x); 7993 7994 movq(op1, Address(x, len, Address::times_4, 0)); 7995 rorq(op1, 32); 7996 7997 bind(L_multiply); 7998 subl(zlen, 2); 7999 movq(sum, Address(z, zlen, Address::times_4, 0)); 8000 8001 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry. 8002 if (UseBMI2Instructions) { 8003 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2); 8004 } 8005 else { 8006 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8007 } 8008 8009 movq(Address(z, zlen, Address::times_4, 0), sum); 8010 8011 jmp(L_third_loop); 8012 bind(L_third_loop_exit); 8013 8014 // Fourth loop 8015 // Add 64 bit long carry into z with carry propagation. 8016 // Uses offsetted zlen. 8017 add_one_64(z, zlen, carry, tmp1); 8018 8019 pop(len); 8020 pop(zlen); 8021 jmp(L_second_loop); 8022 8023 // Next infrequent code is moved outside loops. 8024 bind(L_last_x); 8025 movl(op1, Address(x, 0)); 8026 jmp(L_multiply); 8027 8028 bind(L_second_loop_exit); 8029 pop(len); 8030 pop(zlen); 8031 pop(len); 8032 pop(zlen); 8033 8034 // Fifth loop 8035 // Shift z left 1 bit. 8036 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4); 8037 8038 // z[zlen-1] |= x[len-1] & 1; 8039 movl(tmp3, Address(x, len, Address::times_4, -4)); 8040 andl(tmp3, 1); 8041 orl(Address(z, zlen, Address::times_4, -4), tmp3); 8042 8043 pop(tmp5); 8044 pop(tmp4); 8045 pop(tmp3); 8046 pop(tmp2); 8047 pop(tmp1); 8048 } 8049 8050 /** 8051 * Helper function for mul_add() 8052 * Multiply the in[] by int k and add to out[] starting at offset offs using 8053 * 128 bit by 32 bit multiply and return the carry in tmp5. 8054 * Only quad int aligned length of in[] is operated on in this function. 8055 * k is in rdxReg for BMI2Instructions, for others it is in tmp2. 8056 * This function preserves out, in and k registers. 8057 * len and offset point to the appropriate index in "in" & "out" correspondingly 8058 * tmp5 has the carry. 8059 * other registers are temporary and are modified. 8060 * 8061 */ 8062 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in, 8063 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, 8064 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 8065 8066 Label L_first_loop, L_first_loop_exit; 8067 8068 movl(tmp1, len); 8069 shrl(tmp1, 2); 8070 8071 bind(L_first_loop); 8072 subl(tmp1, 1); 8073 jccb(Assembler::negative, L_first_loop_exit); 8074 8075 subl(len, 4); 8076 subl(offset, 4); 8077 8078 Register op2 = tmp2; 8079 const Register sum = tmp3; 8080 const Register op1 = tmp4; 8081 const Register carry = tmp5; 8082 8083 if (UseBMI2Instructions) { 8084 op2 = rdxReg; 8085 } 8086 8087 movq(op1, Address(in, len, Address::times_4, 8)); 8088 rorq(op1, 32); 8089 movq(sum, Address(out, offset, Address::times_4, 8)); 8090 rorq(sum, 32); 8091 if (UseBMI2Instructions) { 8092 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8093 } 8094 else { 8095 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8096 } 8097 // Store back in big endian from little endian 8098 rorq(sum, 0x20); 8099 movq(Address(out, offset, Address::times_4, 8), sum); 8100 8101 movq(op1, Address(in, len, Address::times_4, 0)); 8102 rorq(op1, 32); 8103 movq(sum, Address(out, offset, Address::times_4, 0)); 8104 rorq(sum, 32); 8105 if (UseBMI2Instructions) { 8106 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8107 } 8108 else { 8109 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8110 } 8111 // Store back in big endian from little endian 8112 rorq(sum, 0x20); 8113 movq(Address(out, offset, Address::times_4, 0), sum); 8114 8115 jmp(L_first_loop); 8116 bind(L_first_loop_exit); 8117 } 8118 8119 /** 8120 * Code for BigInteger::mulAdd() intrinsic 8121 * 8122 * rdi: out 8123 * rsi: in 8124 * r11: offs (out.length - offset) 8125 * rcx: len 8126 * r8: k 8127 * r12: tmp1 8128 * r13: tmp2 8129 * r14: tmp3 8130 * r15: tmp4 8131 * rbx: tmp5 8132 * Multiply the in[] by word k and add to out[], return the carry in rax 8133 */ 8134 void MacroAssembler::mul_add(Register out, Register in, Register offs, 8135 Register len, Register k, Register tmp1, Register tmp2, Register tmp3, 8136 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 8137 8138 Label L_carry, L_last_in, L_done; 8139 8140 // carry = 0; 8141 // for (int j=len-1; j >= 0; j--) { 8142 // long product = (in[j] & LONG_MASK) * kLong + 8143 // (out[offs] & LONG_MASK) + carry; 8144 // out[offs--] = (int)product; 8145 // carry = product >>> 32; 8146 // } 8147 // 8148 push(tmp1); 8149 push(tmp2); 8150 push(tmp3); 8151 push(tmp4); 8152 push(tmp5); 8153 8154 Register op2 = tmp2; 8155 const Register sum = tmp3; 8156 const Register op1 = tmp4; 8157 const Register carry = tmp5; 8158 8159 if (UseBMI2Instructions) { 8160 op2 = rdxReg; 8161 movl(op2, k); 8162 } 8163 else { 8164 movl(op2, k); 8165 } 8166 8167 xorq(carry, carry); 8168 8169 //First loop 8170 8171 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply 8172 //The carry is in tmp5 8173 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg); 8174 8175 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any 8176 decrementl(len); 8177 jccb(Assembler::negative, L_carry); 8178 decrementl(len); 8179 jccb(Assembler::negative, L_last_in); 8180 8181 movq(op1, Address(in, len, Address::times_4, 0)); 8182 rorq(op1, 32); 8183 8184 subl(offs, 2); 8185 movq(sum, Address(out, offs, Address::times_4, 0)); 8186 rorq(sum, 32); 8187 8188 if (UseBMI2Instructions) { 8189 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8190 } 8191 else { 8192 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8193 } 8194 8195 // Store back in big endian from little endian 8196 rorq(sum, 0x20); 8197 movq(Address(out, offs, Address::times_4, 0), sum); 8198 8199 testl(len, len); 8200 jccb(Assembler::zero, L_carry); 8201 8202 //Multiply the last in[] entry, if any 8203 bind(L_last_in); 8204 movl(op1, Address(in, 0)); 8205 movl(sum, Address(out, offs, Address::times_4, -4)); 8206 8207 movl(raxReg, k); 8208 mull(op1); //tmp4 * eax -> edx:eax 8209 addl(sum, carry); 8210 adcl(rdxReg, 0); 8211 addl(sum, raxReg); 8212 adcl(rdxReg, 0); 8213 movl(carry, rdxReg); 8214 8215 movl(Address(out, offs, Address::times_4, -4), sum); 8216 8217 bind(L_carry); 8218 //return tmp5/carry as carry in rax 8219 movl(rax, carry); 8220 8221 bind(L_done); 8222 pop(tmp5); 8223 pop(tmp4); 8224 pop(tmp3); 8225 pop(tmp2); 8226 pop(tmp1); 8227 } 8228 #endif 8229 8230 /** 8231 * Emits code to update CRC-32 with a byte value according to constants in table 8232 * 8233 * @param [in,out]crc Register containing the crc. 8234 * @param [in]val Register containing the byte to fold into the CRC. 8235 * @param [in]table Register containing the table of crc constants. 8236 * 8237 * uint32_t crc; 8238 * val = crc_table[(val ^ crc) & 0xFF]; 8239 * crc = val ^ (crc >> 8); 8240 * 8241 */ 8242 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 8243 xorl(val, crc); 8244 andl(val, 0xFF); 8245 shrl(crc, 8); // unsigned shift 8246 xorl(crc, Address(table, val, Address::times_4, 0)); 8247 } 8248 8249 /** 8250 * Fold 128-bit data chunk 8251 */ 8252 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { 8253 if (UseAVX > 0) { 8254 vpclmulhdq(xtmp, xK, xcrc); // [123:64] 8255 vpclmulldq(xcrc, xK, xcrc); // [63:0] 8256 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */); 8257 pxor(xcrc, xtmp); 8258 } else { 8259 movdqa(xtmp, xcrc); 8260 pclmulhdq(xtmp, xK); // [123:64] 8261 pclmulldq(xcrc, xK); // [63:0] 8262 pxor(xcrc, xtmp); 8263 movdqu(xtmp, Address(buf, offset)); 8264 pxor(xcrc, xtmp); 8265 } 8266 } 8267 8268 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) { 8269 if (UseAVX > 0) { 8270 vpclmulhdq(xtmp, xK, xcrc); 8271 vpclmulldq(xcrc, xK, xcrc); 8272 pxor(xcrc, xbuf); 8273 pxor(xcrc, xtmp); 8274 } else { 8275 movdqa(xtmp, xcrc); 8276 pclmulhdq(xtmp, xK); 8277 pclmulldq(xcrc, xK); 8278 pxor(xcrc, xbuf); 8279 pxor(xcrc, xtmp); 8280 } 8281 } 8282 8283 /** 8284 * 8-bit folds to compute 32-bit CRC 8285 * 8286 * uint64_t xcrc; 8287 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8); 8288 */ 8289 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) { 8290 movdl(tmp, xcrc); 8291 andl(tmp, 0xFF); 8292 movdl(xtmp, Address(table, tmp, Address::times_4, 0)); 8293 psrldq(xcrc, 1); // unsigned shift one byte 8294 pxor(xcrc, xtmp); 8295 } 8296 8297 /** 8298 * uint32_t crc; 8299 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); 8300 */ 8301 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { 8302 movl(tmp, crc); 8303 andl(tmp, 0xFF); 8304 shrl(crc, 8); 8305 xorl(crc, Address(table, tmp, Address::times_4, 0)); 8306 } 8307 8308 /** 8309 * @param crc register containing existing CRC (32-bit) 8310 * @param buf register pointing to input byte buffer (byte*) 8311 * @param len register containing number of bytes 8312 * @param table register that will contain address of CRC table 8313 * @param tmp scratch register 8314 */ 8315 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) { 8316 assert_different_registers(crc, buf, len, table, tmp, rax); 8317 8318 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8319 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8320 8321 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8322 // context for the registers used, where all instructions below are using 128-bit mode 8323 // On EVEX without VL and BW, these instructions will all be AVX. 8324 lea(table, ExternalAddress(StubRoutines::crc_table_addr())); 8325 notl(crc); // ~crc 8326 cmpl(len, 16); 8327 jcc(Assembler::less, L_tail); 8328 8329 // Align buffer to 16 bytes 8330 movl(tmp, buf); 8331 andl(tmp, 0xF); 8332 jccb(Assembler::zero, L_aligned); 8333 subl(tmp, 16); 8334 addl(len, tmp); 8335 8336 align(4); 8337 BIND(L_align_loop); 8338 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8339 update_byte_crc32(crc, rax, table); 8340 increment(buf); 8341 incrementl(tmp); 8342 jccb(Assembler::less, L_align_loop); 8343 8344 BIND(L_aligned); 8345 movl(tmp, len); // save 8346 shrl(len, 4); 8347 jcc(Assembler::zero, L_tail_restore); 8348 8349 // Fold crc into first bytes of vector 8350 movdqa(xmm1, Address(buf, 0)); 8351 movdl(rax, xmm1); 8352 xorl(crc, rax); 8353 if (VM_Version::supports_sse4_1()) { 8354 pinsrd(xmm1, crc, 0); 8355 } else { 8356 pinsrw(xmm1, crc, 0); 8357 shrl(crc, 16); 8358 pinsrw(xmm1, crc, 1); 8359 } 8360 addptr(buf, 16); 8361 subl(len, 4); // len > 0 8362 jcc(Assembler::less, L_fold_tail); 8363 8364 movdqa(xmm2, Address(buf, 0)); 8365 movdqa(xmm3, Address(buf, 16)); 8366 movdqa(xmm4, Address(buf, 32)); 8367 addptr(buf, 48); 8368 subl(len, 3); 8369 jcc(Assembler::lessEqual, L_fold_512b); 8370 8371 // Fold total 512 bits of polynomial on each iteration, 8372 // 128 bits per each of 4 parallel streams. 8373 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1); 8374 8375 align32(); 8376 BIND(L_fold_512b_loop); 8377 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8378 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16); 8379 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32); 8380 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48); 8381 addptr(buf, 64); 8382 subl(len, 4); 8383 jcc(Assembler::greater, L_fold_512b_loop); 8384 8385 // Fold 512 bits to 128 bits. 8386 BIND(L_fold_512b); 8387 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8388 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2); 8389 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3); 8390 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4); 8391 8392 // Fold the rest of 128 bits data chunks 8393 BIND(L_fold_tail); 8394 addl(len, 3); 8395 jccb(Assembler::lessEqual, L_fold_128b); 8396 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8397 8398 BIND(L_fold_tail_loop); 8399 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8400 addptr(buf, 16); 8401 decrementl(len); 8402 jccb(Assembler::greater, L_fold_tail_loop); 8403 8404 // Fold 128 bits in xmm1 down into 32 bits in crc register. 8405 BIND(L_fold_128b); 8406 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1); 8407 if (UseAVX > 0) { 8408 vpclmulqdq(xmm2, xmm0, xmm1, 0x1); 8409 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */); 8410 vpclmulqdq(xmm0, xmm0, xmm3, 0x1); 8411 } else { 8412 movdqa(xmm2, xmm0); 8413 pclmulqdq(xmm2, xmm1, 0x1); 8414 movdqa(xmm3, xmm0); 8415 pand(xmm3, xmm2); 8416 pclmulqdq(xmm0, xmm3, 0x1); 8417 } 8418 psrldq(xmm1, 8); 8419 psrldq(xmm2, 4); 8420 pxor(xmm0, xmm1); 8421 pxor(xmm0, xmm2); 8422 8423 // 8 8-bit folds to compute 32-bit CRC. 8424 for (int j = 0; j < 4; j++) { 8425 fold_8bit_crc32(xmm0, table, xmm1, rax); 8426 } 8427 movdl(crc, xmm0); // mov 32 bits to general register 8428 for (int j = 0; j < 4; j++) { 8429 fold_8bit_crc32(crc, table, rax); 8430 } 8431 8432 BIND(L_tail_restore); 8433 movl(len, tmp); // restore 8434 BIND(L_tail); 8435 andl(len, 0xf); 8436 jccb(Assembler::zero, L_exit); 8437 8438 // Fold the rest of bytes 8439 align(4); 8440 BIND(L_tail_loop); 8441 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8442 update_byte_crc32(crc, rax, table); 8443 increment(buf); 8444 decrementl(len); 8445 jccb(Assembler::greater, L_tail_loop); 8446 8447 BIND(L_exit); 8448 notl(crc); // ~c 8449 } 8450 8451 #ifdef _LP64 8452 // Helper function for AVX 512 CRC32 8453 // Fold 512-bit data chunks 8454 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, 8455 Register pos, int offset) { 8456 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit); 8457 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64] 8458 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0] 8459 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */); 8460 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */); 8461 } 8462 8463 // Helper function for AVX 512 CRC32 8464 // Compute CRC32 for < 256B buffers 8465 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos, 8466 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 8467 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) { 8468 8469 Label L_less_than_32, L_exact_16_left, L_less_than_16_left; 8470 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left; 8471 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2; 8472 8473 // check if there is enough buffer to be able to fold 16B at a time 8474 cmpl(len, 32); 8475 jcc(Assembler::less, L_less_than_32); 8476 8477 // if there is, load the constants 8478 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10 8479 movdl(xmm0, crc); // get the initial crc value 8480 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8481 pxor(xmm7, xmm0); 8482 8483 // update the buffer pointer 8484 addl(pos, 16); 8485 //update the counter.subtract 32 instead of 16 to save one instruction from the loop 8486 subl(len, 32); 8487 jmp(L_16B_reduction_loop); 8488 8489 bind(L_less_than_32); 8490 //mov initial crc to the return value. this is necessary for zero - length buffers. 8491 movl(rax, crc); 8492 testl(len, len); 8493 jcc(Assembler::equal, L_cleanup); 8494 8495 movdl(xmm0, crc); //get the initial crc value 8496 8497 cmpl(len, 16); 8498 jcc(Assembler::equal, L_exact_16_left); 8499 jcc(Assembler::less, L_less_than_16_left); 8500 8501 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8502 pxor(xmm7, xmm0); //xor the initial crc value 8503 addl(pos, 16); 8504 subl(len, 16); 8505 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10 8506 jmp(L_get_last_two_xmms); 8507 8508 bind(L_less_than_16_left); 8509 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first. 8510 pxor(xmm1, xmm1); 8511 movptr(tmp1, rsp); 8512 movdqu(Address(tmp1, 0 * 16), xmm1); 8513 8514 cmpl(len, 4); 8515 jcc(Assembler::less, L_only_less_than_4); 8516 8517 //backup the counter value 8518 movl(tmp2, len); 8519 cmpl(len, 8); 8520 jcc(Assembler::less, L_less_than_8_left); 8521 8522 //load 8 Bytes 8523 movq(rax, Address(buf, pos, Address::times_1, 0 * 16)); 8524 movq(Address(tmp1, 0 * 16), rax); 8525 addptr(tmp1, 8); 8526 subl(len, 8); 8527 addl(pos, 8); 8528 8529 bind(L_less_than_8_left); 8530 cmpl(len, 4); 8531 jcc(Assembler::less, L_less_than_4_left); 8532 8533 //load 4 Bytes 8534 movl(rax, Address(buf, pos, Address::times_1, 0)); 8535 movl(Address(tmp1, 0 * 16), rax); 8536 addptr(tmp1, 4); 8537 subl(len, 4); 8538 addl(pos, 4); 8539 8540 bind(L_less_than_4_left); 8541 cmpl(len, 2); 8542 jcc(Assembler::less, L_less_than_2_left); 8543 8544 // load 2 Bytes 8545 movw(rax, Address(buf, pos, Address::times_1, 0)); 8546 movl(Address(tmp1, 0 * 16), rax); 8547 addptr(tmp1, 2); 8548 subl(len, 2); 8549 addl(pos, 2); 8550 8551 bind(L_less_than_2_left); 8552 cmpl(len, 1); 8553 jcc(Assembler::less, L_zero_left); 8554 8555 // load 1 Byte 8556 movb(rax, Address(buf, pos, Address::times_1, 0)); 8557 movb(Address(tmp1, 0 * 16), rax); 8558 8559 bind(L_zero_left); 8560 movdqu(xmm7, Address(rsp, 0)); 8561 pxor(xmm7, xmm0); //xor the initial crc value 8562 8563 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8564 movdqu(xmm0, Address(rax, tmp2)); 8565 pshufb(xmm7, xmm0); 8566 jmp(L_128_done); 8567 8568 bind(L_exact_16_left); 8569 movdqu(xmm7, Address(buf, pos, Address::times_1, 0)); 8570 pxor(xmm7, xmm0); //xor the initial crc value 8571 jmp(L_128_done); 8572 8573 bind(L_only_less_than_4); 8574 cmpl(len, 3); 8575 jcc(Assembler::less, L_only_less_than_3); 8576 8577 // load 3 Bytes 8578 movb(rax, Address(buf, pos, Address::times_1, 0)); 8579 movb(Address(tmp1, 0), rax); 8580 8581 movb(rax, Address(buf, pos, Address::times_1, 1)); 8582 movb(Address(tmp1, 1), rax); 8583 8584 movb(rax, Address(buf, pos, Address::times_1, 2)); 8585 movb(Address(tmp1, 2), rax); 8586 8587 movdqu(xmm7, Address(rsp, 0)); 8588 pxor(xmm7, xmm0); //xor the initial crc value 8589 8590 pslldq(xmm7, 0x5); 8591 jmp(L_barrett); 8592 bind(L_only_less_than_3); 8593 cmpl(len, 2); 8594 jcc(Assembler::less, L_only_less_than_2); 8595 8596 // load 2 Bytes 8597 movb(rax, Address(buf, pos, Address::times_1, 0)); 8598 movb(Address(tmp1, 0), rax); 8599 8600 movb(rax, Address(buf, pos, Address::times_1, 1)); 8601 movb(Address(tmp1, 1), rax); 8602 8603 movdqu(xmm7, Address(rsp, 0)); 8604 pxor(xmm7, xmm0); //xor the initial crc value 8605 8606 pslldq(xmm7, 0x6); 8607 jmp(L_barrett); 8608 8609 bind(L_only_less_than_2); 8610 //load 1 Byte 8611 movb(rax, Address(buf, pos, Address::times_1, 0)); 8612 movb(Address(tmp1, 0), rax); 8613 8614 movdqu(xmm7, Address(rsp, 0)); 8615 pxor(xmm7, xmm0); //xor the initial crc value 8616 8617 pslldq(xmm7, 0x7); 8618 } 8619 8620 /** 8621 * Compute CRC32 using AVX512 instructions 8622 * param crc register containing existing CRC (32-bit) 8623 * param buf register pointing to input byte buffer (byte*) 8624 * param len register containing number of bytes 8625 * param table address of crc or crc32c table 8626 * param tmp1 scratch register 8627 * param tmp2 scratch register 8628 * return rax result register 8629 * 8630 * This routine is identical for crc32c with the exception of the precomputed constant 8631 * table which will be passed as the table argument. The calculation steps are 8632 * the same for both variants. 8633 */ 8634 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) { 8635 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12); 8636 8637 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8638 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8639 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop; 8640 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop; 8641 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup; 8642 8643 const Register pos = r12; 8644 push(r12); 8645 subptr(rsp, 16 * 2 + 8); 8646 8647 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8648 // context for the registers used, where all instructions below are using 128-bit mode 8649 // On EVEX without VL and BW, these instructions will all be AVX. 8650 movl(pos, 0); 8651 8652 // check if smaller than 256B 8653 cmpl(len, 256); 8654 jcc(Assembler::less, L_less_than_256); 8655 8656 // load the initial crc value 8657 movdl(xmm10, crc); 8658 8659 // receive the initial 64B data, xor the initial crc value 8660 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); 8661 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); 8662 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit); 8663 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4 8664 8665 subl(len, 256); 8666 cmpl(len, 256); 8667 jcc(Assembler::less, L_fold_128_B_loop); 8668 8669 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); 8670 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); 8671 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2 8672 subl(len, 256); 8673 8674 bind(L_fold_256_B_loop); 8675 addl(pos, 256); 8676 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64); 8677 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64); 8678 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64); 8679 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64); 8680 8681 subl(len, 256); 8682 jcc(Assembler::greaterEqual, L_fold_256_B_loop); 8683 8684 // Fold 256 into 128 8685 addl(pos, 256); 8686 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit); 8687 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit); 8688 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC 8689 8690 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit); 8691 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit); 8692 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC 8693 8694 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit); 8695 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit); 8696 8697 addl(len, 128); 8698 jmp(L_fold_128_B_register); 8699 8700 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop 8701 // loop will fold 128B at a time until we have 128 + y Bytes of buffer 8702 8703 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel 8704 bind(L_fold_128_B_loop); 8705 addl(pos, 128); 8706 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64); 8707 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64); 8708 8709 subl(len, 128); 8710 jcc(Assembler::greaterEqual, L_fold_128_B_loop); 8711 8712 addl(pos, 128); 8713 8714 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 8715 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 8716 bind(L_fold_128_B_register); 8717 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16 8718 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0 8719 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit); 8720 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit); 8721 // save last that has no multiplicand 8722 vextracti64x2(xmm7, xmm4, 3); 8723 8724 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit); 8725 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit); 8726 // Needed later in reduction loop 8727 movdqu(xmm10, Address(table, 1 * 16)); 8728 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC 8729 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC 8730 8731 // Swap 1,0,3,2 - 01 00 11 10 8732 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit); 8733 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit); 8734 vextracti128(xmm5, xmm8, 1); 8735 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit); 8736 8737 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop 8738 // instead of a cmp instruction, we use the negative flag with the jl instruction 8739 addl(len, 128 - 16); 8740 jcc(Assembler::less, L_final_reduction_for_128); 8741 8742 bind(L_16B_reduction_loop); 8743 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8744 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8745 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8746 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16)); 8747 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8748 addl(pos, 16); 8749 subl(len, 16); 8750 jcc(Assembler::greaterEqual, L_16B_reduction_loop); 8751 8752 bind(L_final_reduction_for_128); 8753 addl(len, 16); 8754 jcc(Assembler::equal, L_128_done); 8755 8756 bind(L_get_last_two_xmms); 8757 movdqu(xmm2, xmm7); 8758 addl(pos, len); 8759 movdqu(xmm1, Address(buf, pos, Address::times_1, -16)); 8760 subl(pos, len); 8761 8762 // get rid of the extra data that was loaded before 8763 // load the shift constant 8764 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8765 movdqu(xmm0, Address(rax, len)); 8766 addl(rax, len); 8767 8768 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8769 //Change mask to 512 8770 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2); 8771 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit); 8772 8773 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit); 8774 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8775 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8776 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8777 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit); 8778 8779 bind(L_128_done); 8780 // compute crc of a 128-bit value 8781 movdqu(xmm10, Address(table, 3 * 16)); 8782 movdqu(xmm0, xmm7); 8783 8784 // 64b fold 8785 vpclmulqdq(xmm7, xmm7, xmm10, 0x0); 8786 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit); 8787 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8788 8789 // 32b fold 8790 movdqu(xmm0, xmm7); 8791 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit); 8792 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8793 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8794 jmp(L_barrett); 8795 8796 bind(L_less_than_256); 8797 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup); 8798 8799 //barrett reduction 8800 bind(L_barrett); 8801 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2); 8802 movdqu(xmm1, xmm7); 8803 movdqu(xmm2, xmm7); 8804 movdqu(xmm10, Address(table, 4 * 16)); 8805 8806 pclmulqdq(xmm7, xmm10, 0x0); 8807 pxor(xmm7, xmm2); 8808 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2); 8809 movdqu(xmm2, xmm7); 8810 pclmulqdq(xmm7, xmm10, 0x10); 8811 pxor(xmm7, xmm2); 8812 pxor(xmm7, xmm1); 8813 pextrd(crc, xmm7, 2); 8814 8815 bind(L_cleanup); 8816 addptr(rsp, 16 * 2 + 8); 8817 pop(r12); 8818 } 8819 8820 // S. Gueron / Information Processing Letters 112 (2012) 184 8821 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table. 8822 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0]. 8823 // Output: the 64-bit carry-less product of B * CONST 8824 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n, 8825 Register tmp1, Register tmp2, Register tmp3) { 8826 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8827 if (n > 0) { 8828 addq(tmp3, n * 256 * 8); 8829 } 8830 // Q1 = TABLEExt[n][B & 0xFF]; 8831 movl(tmp1, in); 8832 andl(tmp1, 0x000000FF); 8833 shll(tmp1, 3); 8834 addq(tmp1, tmp3); 8835 movq(tmp1, Address(tmp1, 0)); 8836 8837 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8838 movl(tmp2, in); 8839 shrl(tmp2, 8); 8840 andl(tmp2, 0x000000FF); 8841 shll(tmp2, 3); 8842 addq(tmp2, tmp3); 8843 movq(tmp2, Address(tmp2, 0)); 8844 8845 shlq(tmp2, 8); 8846 xorq(tmp1, tmp2); 8847 8848 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8849 movl(tmp2, in); 8850 shrl(tmp2, 16); 8851 andl(tmp2, 0x000000FF); 8852 shll(tmp2, 3); 8853 addq(tmp2, tmp3); 8854 movq(tmp2, Address(tmp2, 0)); 8855 8856 shlq(tmp2, 16); 8857 xorq(tmp1, tmp2); 8858 8859 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8860 shrl(in, 24); 8861 andl(in, 0x000000FF); 8862 shll(in, 3); 8863 addq(in, tmp3); 8864 movq(in, Address(in, 0)); 8865 8866 shlq(in, 24); 8867 xorq(in, tmp1); 8868 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8869 } 8870 8871 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8872 Register in_out, 8873 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8874 XMMRegister w_xtmp2, 8875 Register tmp1, 8876 Register n_tmp2, Register n_tmp3) { 8877 if (is_pclmulqdq_supported) { 8878 movdl(w_xtmp1, in_out); // modified blindly 8879 8880 movl(tmp1, const_or_pre_comp_const_index); 8881 movdl(w_xtmp2, tmp1); 8882 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8883 8884 movdq(in_out, w_xtmp1); 8885 } else { 8886 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3); 8887 } 8888 } 8889 8890 // Recombination Alternative 2: No bit-reflections 8891 // T1 = (CRC_A * U1) << 1 8892 // T2 = (CRC_B * U2) << 1 8893 // C1 = T1 >> 32 8894 // C2 = T2 >> 32 8895 // T1 = T1 & 0xFFFFFFFF 8896 // T2 = T2 & 0xFFFFFFFF 8897 // T1 = CRC32(0, T1) 8898 // T2 = CRC32(0, T2) 8899 // C1 = C1 ^ T1 8900 // C2 = C2 ^ T2 8901 // CRC = C1 ^ C2 ^ CRC_C 8902 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8903 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8904 Register tmp1, Register tmp2, 8905 Register n_tmp3) { 8906 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8907 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8908 shlq(in_out, 1); 8909 movl(tmp1, in_out); 8910 shrq(in_out, 32); 8911 xorl(tmp2, tmp2); 8912 crc32(tmp2, tmp1, 4); 8913 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here 8914 shlq(in1, 1); 8915 movl(tmp1, in1); 8916 shrq(in1, 32); 8917 xorl(tmp2, tmp2); 8918 crc32(tmp2, tmp1, 4); 8919 xorl(in1, tmp2); 8920 xorl(in_out, in1); 8921 xorl(in_out, in2); 8922 } 8923 8924 // Set N to predefined value 8925 // Subtract from a length of a buffer 8926 // execute in a loop: 8927 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0 8928 // for i = 1 to N do 8929 // CRC_A = CRC32(CRC_A, A[i]) 8930 // CRC_B = CRC32(CRC_B, B[i]) 8931 // CRC_C = CRC32(CRC_C, C[i]) 8932 // end for 8933 // Recombine 8934 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8935 Register in_out1, Register in_out2, Register in_out3, 8936 Register tmp1, Register tmp2, Register tmp3, 8937 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8938 Register tmp4, Register tmp5, 8939 Register n_tmp6) { 8940 Label L_processPartitions; 8941 Label L_processPartition; 8942 Label L_exit; 8943 8944 bind(L_processPartitions); 8945 cmpl(in_out1, 3 * size); 8946 jcc(Assembler::less, L_exit); 8947 xorl(tmp1, tmp1); 8948 xorl(tmp2, tmp2); 8949 movq(tmp3, in_out2); 8950 addq(tmp3, size); 8951 8952 bind(L_processPartition); 8953 crc32(in_out3, Address(in_out2, 0), 8); 8954 crc32(tmp1, Address(in_out2, size), 8); 8955 crc32(tmp2, Address(in_out2, size * 2), 8); 8956 addq(in_out2, 8); 8957 cmpq(in_out2, tmp3); 8958 jcc(Assembler::less, L_processPartition); 8959 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8960 w_xtmp1, w_xtmp2, w_xtmp3, 8961 tmp4, tmp5, 8962 n_tmp6); 8963 addq(in_out2, 2 * size); 8964 subl(in_out1, 3 * size); 8965 jmp(L_processPartitions); 8966 8967 bind(L_exit); 8968 } 8969 #else 8970 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n, 8971 Register tmp1, Register tmp2, Register tmp3, 8972 XMMRegister xtmp1, XMMRegister xtmp2) { 8973 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8974 if (n > 0) { 8975 addl(tmp3, n * 256 * 8); 8976 } 8977 // Q1 = TABLEExt[n][B & 0xFF]; 8978 movl(tmp1, in_out); 8979 andl(tmp1, 0x000000FF); 8980 shll(tmp1, 3); 8981 addl(tmp1, tmp3); 8982 movq(xtmp1, Address(tmp1, 0)); 8983 8984 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8985 movl(tmp2, in_out); 8986 shrl(tmp2, 8); 8987 andl(tmp2, 0x000000FF); 8988 shll(tmp2, 3); 8989 addl(tmp2, tmp3); 8990 movq(xtmp2, Address(tmp2, 0)); 8991 8992 psllq(xtmp2, 8); 8993 pxor(xtmp1, xtmp2); 8994 8995 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8996 movl(tmp2, in_out); 8997 shrl(tmp2, 16); 8998 andl(tmp2, 0x000000FF); 8999 shll(tmp2, 3); 9000 addl(tmp2, tmp3); 9001 movq(xtmp2, Address(tmp2, 0)); 9002 9003 psllq(xtmp2, 16); 9004 pxor(xtmp1, xtmp2); 9005 9006 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 9007 shrl(in_out, 24); 9008 andl(in_out, 0x000000FF); 9009 shll(in_out, 3); 9010 addl(in_out, tmp3); 9011 movq(xtmp2, Address(in_out, 0)); 9012 9013 psllq(xtmp2, 24); 9014 pxor(xtmp1, xtmp2); // Result in CXMM 9015 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 9016 } 9017 9018 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 9019 Register in_out, 9020 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 9021 XMMRegister w_xtmp2, 9022 Register tmp1, 9023 Register n_tmp2, Register n_tmp3) { 9024 if (is_pclmulqdq_supported) { 9025 movdl(w_xtmp1, in_out); 9026 9027 movl(tmp1, const_or_pre_comp_const_index); 9028 movdl(w_xtmp2, tmp1); 9029 pclmulqdq(w_xtmp1, w_xtmp2, 0); 9030 // Keep result in XMM since GPR is 32 bit in length 9031 } else { 9032 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2); 9033 } 9034 } 9035 9036 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 9037 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9038 Register tmp1, Register tmp2, 9039 Register n_tmp3) { 9040 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 9041 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 9042 9043 psllq(w_xtmp1, 1); 9044 movdl(tmp1, w_xtmp1); 9045 psrlq(w_xtmp1, 32); 9046 movdl(in_out, w_xtmp1); 9047 9048 xorl(tmp2, tmp2); 9049 crc32(tmp2, tmp1, 4); 9050 xorl(in_out, tmp2); 9051 9052 psllq(w_xtmp2, 1); 9053 movdl(tmp1, w_xtmp2); 9054 psrlq(w_xtmp2, 32); 9055 movdl(in1, w_xtmp2); 9056 9057 xorl(tmp2, tmp2); 9058 crc32(tmp2, tmp1, 4); 9059 xorl(in1, tmp2); 9060 xorl(in_out, in1); 9061 xorl(in_out, in2); 9062 } 9063 9064 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 9065 Register in_out1, Register in_out2, Register in_out3, 9066 Register tmp1, Register tmp2, Register tmp3, 9067 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9068 Register tmp4, Register tmp5, 9069 Register n_tmp6) { 9070 Label L_processPartitions; 9071 Label L_processPartition; 9072 Label L_exit; 9073 9074 bind(L_processPartitions); 9075 cmpl(in_out1, 3 * size); 9076 jcc(Assembler::less, L_exit); 9077 xorl(tmp1, tmp1); 9078 xorl(tmp2, tmp2); 9079 movl(tmp3, in_out2); 9080 addl(tmp3, size); 9081 9082 bind(L_processPartition); 9083 crc32(in_out3, Address(in_out2, 0), 4); 9084 crc32(tmp1, Address(in_out2, size), 4); 9085 crc32(tmp2, Address(in_out2, size*2), 4); 9086 crc32(in_out3, Address(in_out2, 0+4), 4); 9087 crc32(tmp1, Address(in_out2, size+4), 4); 9088 crc32(tmp2, Address(in_out2, size*2+4), 4); 9089 addl(in_out2, 8); 9090 cmpl(in_out2, tmp3); 9091 jcc(Assembler::less, L_processPartition); 9092 9093 push(tmp3); 9094 push(in_out1); 9095 push(in_out2); 9096 tmp4 = tmp3; 9097 tmp5 = in_out1; 9098 n_tmp6 = in_out2; 9099 9100 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 9101 w_xtmp1, w_xtmp2, w_xtmp3, 9102 tmp4, tmp5, 9103 n_tmp6); 9104 9105 pop(in_out2); 9106 pop(in_out1); 9107 pop(tmp3); 9108 9109 addl(in_out2, 2 * size); 9110 subl(in_out1, 3 * size); 9111 jmp(L_processPartitions); 9112 9113 bind(L_exit); 9114 } 9115 #endif //LP64 9116 9117 #ifdef _LP64 9118 // Algorithm 2: Pipelined usage of the CRC32 instruction. 9119 // Input: A buffer I of L bytes. 9120 // Output: the CRC32C value of the buffer. 9121 // Notations: 9122 // Write L = 24N + r, with N = floor (L/24). 9123 // r = L mod 24 (0 <= r < 24). 9124 // Consider I as the concatenation of A|B|C|R, where A, B, C, each, 9125 // N quadwords, and R consists of r bytes. 9126 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1 9127 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1 9128 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1 9129 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1 9130 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 9131 Register tmp1, Register tmp2, Register tmp3, 9132 Register tmp4, Register tmp5, Register tmp6, 9133 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9134 bool is_pclmulqdq_supported) { 9135 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 9136 Label L_wordByWord; 9137 Label L_byteByByteProlog; 9138 Label L_byteByByte; 9139 Label L_exit; 9140 9141 if (is_pclmulqdq_supported ) { 9142 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; 9143 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1); 9144 9145 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); 9146 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); 9147 9148 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); 9149 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); 9150 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\""); 9151 } else { 9152 const_or_pre_comp_const_index[0] = 1; 9153 const_or_pre_comp_const_index[1] = 0; 9154 9155 const_or_pre_comp_const_index[2] = 3; 9156 const_or_pre_comp_const_index[3] = 2; 9157 9158 const_or_pre_comp_const_index[4] = 5; 9159 const_or_pre_comp_const_index[5] = 4; 9160 } 9161 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 9162 in2, in1, in_out, 9163 tmp1, tmp2, tmp3, 9164 w_xtmp1, w_xtmp2, w_xtmp3, 9165 tmp4, tmp5, 9166 tmp6); 9167 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 9168 in2, in1, in_out, 9169 tmp1, tmp2, tmp3, 9170 w_xtmp1, w_xtmp2, w_xtmp3, 9171 tmp4, tmp5, 9172 tmp6); 9173 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 9174 in2, in1, in_out, 9175 tmp1, tmp2, tmp3, 9176 w_xtmp1, w_xtmp2, w_xtmp3, 9177 tmp4, tmp5, 9178 tmp6); 9179 movl(tmp1, in2); 9180 andl(tmp1, 0x00000007); 9181 negl(tmp1); 9182 addl(tmp1, in2); 9183 addq(tmp1, in1); 9184 9185 cmpq(in1, tmp1); 9186 jccb(Assembler::greaterEqual, L_byteByByteProlog); 9187 align(16); 9188 BIND(L_wordByWord); 9189 crc32(in_out, Address(in1, 0), 8); 9190 addq(in1, 8); 9191 cmpq(in1, tmp1); 9192 jcc(Assembler::less, L_wordByWord); 9193 9194 BIND(L_byteByByteProlog); 9195 andl(in2, 0x00000007); 9196 movl(tmp2, 1); 9197 9198 cmpl(tmp2, in2); 9199 jccb(Assembler::greater, L_exit); 9200 BIND(L_byteByByte); 9201 crc32(in_out, Address(in1, 0), 1); 9202 incq(in1); 9203 incl(tmp2); 9204 cmpl(tmp2, in2); 9205 jcc(Assembler::lessEqual, L_byteByByte); 9206 9207 BIND(L_exit); 9208 } 9209 #else 9210 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 9211 Register tmp1, Register tmp2, Register tmp3, 9212 Register tmp4, Register tmp5, Register tmp6, 9213 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9214 bool is_pclmulqdq_supported) { 9215 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 9216 Label L_wordByWord; 9217 Label L_byteByByteProlog; 9218 Label L_byteByByte; 9219 Label L_exit; 9220 9221 if (is_pclmulqdq_supported) { 9222 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; 9223 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1); 9224 9225 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); 9226 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); 9227 9228 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); 9229 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); 9230 } else { 9231 const_or_pre_comp_const_index[0] = 1; 9232 const_or_pre_comp_const_index[1] = 0; 9233 9234 const_or_pre_comp_const_index[2] = 3; 9235 const_or_pre_comp_const_index[3] = 2; 9236 9237 const_or_pre_comp_const_index[4] = 5; 9238 const_or_pre_comp_const_index[5] = 4; 9239 } 9240 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 9241 in2, in1, in_out, 9242 tmp1, tmp2, tmp3, 9243 w_xtmp1, w_xtmp2, w_xtmp3, 9244 tmp4, tmp5, 9245 tmp6); 9246 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 9247 in2, in1, in_out, 9248 tmp1, tmp2, tmp3, 9249 w_xtmp1, w_xtmp2, w_xtmp3, 9250 tmp4, tmp5, 9251 tmp6); 9252 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 9253 in2, in1, in_out, 9254 tmp1, tmp2, tmp3, 9255 w_xtmp1, w_xtmp2, w_xtmp3, 9256 tmp4, tmp5, 9257 tmp6); 9258 movl(tmp1, in2); 9259 andl(tmp1, 0x00000007); 9260 negl(tmp1); 9261 addl(tmp1, in2); 9262 addl(tmp1, in1); 9263 9264 BIND(L_wordByWord); 9265 cmpl(in1, tmp1); 9266 jcc(Assembler::greaterEqual, L_byteByByteProlog); 9267 crc32(in_out, Address(in1,0), 4); 9268 addl(in1, 4); 9269 jmp(L_wordByWord); 9270 9271 BIND(L_byteByByteProlog); 9272 andl(in2, 0x00000007); 9273 movl(tmp2, 1); 9274 9275 BIND(L_byteByByte); 9276 cmpl(tmp2, in2); 9277 jccb(Assembler::greater, L_exit); 9278 movb(tmp1, Address(in1, 0)); 9279 crc32(in_out, tmp1, 1); 9280 incl(in1); 9281 incl(tmp2); 9282 jmp(L_byteByByte); 9283 9284 BIND(L_exit); 9285 } 9286 #endif // LP64 9287 #undef BIND 9288 #undef BLOCK_COMMENT 9289 9290 // Compress char[] array to byte[]. 9291 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 9292 // Return the array length if every element in array can be encoded, 9293 // otherwise, the index of first non-latin1 (> 0xff) character. 9294 // @IntrinsicCandidate 9295 // public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) { 9296 // for (int i = 0; i < len; i++) { 9297 // char c = src[srcOff]; 9298 // if (c > 0xff) { 9299 // return i; // return index of non-latin1 char 9300 // } 9301 // dst[dstOff] = (byte)c; 9302 // srcOff++; 9303 // dstOff++; 9304 // } 9305 // return len; 9306 // } 9307 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 9308 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 9309 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 9310 Register tmp5, Register result, KRegister mask1, KRegister mask2) { 9311 Label copy_chars_loop, done, reset_sp, copy_tail; 9312 9313 // rsi: src 9314 // rdi: dst 9315 // rdx: len 9316 // rcx: tmp5 9317 // rax: result 9318 9319 // rsi holds start addr of source char[] to be compressed 9320 // rdi holds start addr of destination byte[] 9321 // rdx holds length 9322 9323 assert(len != result, ""); 9324 9325 // save length for return 9326 movl(result, len); 9327 9328 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 9329 VM_Version::supports_avx512vlbw() && 9330 VM_Version::supports_bmi2()) { 9331 9332 Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail; 9333 9334 // alignment 9335 Label post_alignment; 9336 9337 // if length of the string is less than 32, handle it the old fashioned way 9338 testl(len, -32); 9339 jcc(Assembler::zero, below_threshold); 9340 9341 // First check whether a character is compressible ( <= 0xFF). 9342 // Create mask to test for Unicode chars inside zmm vector 9343 movl(tmp5, 0x00FF); 9344 evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit); 9345 9346 testl(len, -64); 9347 jccb(Assembler::zero, post_alignment); 9348 9349 movl(tmp5, dst); 9350 andl(tmp5, (32 - 1)); 9351 negl(tmp5); 9352 andl(tmp5, (32 - 1)); 9353 9354 // bail out when there is nothing to be done 9355 testl(tmp5, 0xFFFFFFFF); 9356 jccb(Assembler::zero, post_alignment); 9357 9358 // ~(~0 << len), where len is the # of remaining elements to process 9359 movl(len, 0xFFFFFFFF); 9360 shlxl(len, len, tmp5); 9361 notl(len); 9362 kmovdl(mask2, len); 9363 movl(len, result); 9364 9365 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9366 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9367 ktestd(mask1, mask2); 9368 jcc(Assembler::carryClear, copy_tail); 9369 9370 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9371 9372 addptr(src, tmp5); 9373 addptr(src, tmp5); 9374 addptr(dst, tmp5); 9375 subl(len, tmp5); 9376 9377 bind(post_alignment); 9378 // end of alignment 9379 9380 movl(tmp5, len); 9381 andl(tmp5, (32 - 1)); // tail count (in chars) 9382 andl(len, ~(32 - 1)); // vector count (in chars) 9383 jccb(Assembler::zero, copy_loop_tail); 9384 9385 lea(src, Address(src, len, Address::times_2)); 9386 lea(dst, Address(dst, len, Address::times_1)); 9387 negptr(len); 9388 9389 bind(copy_32_loop); 9390 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit); 9391 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); 9392 kortestdl(mask1, mask1); 9393 jccb(Assembler::carryClear, reset_for_copy_tail); 9394 9395 // All elements in current processed chunk are valid candidates for 9396 // compression. Write a truncated byte elements to the memory. 9397 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit); 9398 addptr(len, 32); 9399 jccb(Assembler::notZero, copy_32_loop); 9400 9401 bind(copy_loop_tail); 9402 // bail out when there is nothing to be done 9403 testl(tmp5, 0xFFFFFFFF); 9404 jcc(Assembler::zero, done); 9405 9406 movl(len, tmp5); 9407 9408 // ~(~0 << len), where len is the # of remaining elements to process 9409 movl(tmp5, 0xFFFFFFFF); 9410 shlxl(tmp5, tmp5, len); 9411 notl(tmp5); 9412 9413 kmovdl(mask2, tmp5); 9414 9415 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9416 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9417 ktestd(mask1, mask2); 9418 jcc(Assembler::carryClear, copy_tail); 9419 9420 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9421 jmp(done); 9422 9423 bind(reset_for_copy_tail); 9424 lea(src, Address(src, tmp5, Address::times_2)); 9425 lea(dst, Address(dst, tmp5, Address::times_1)); 9426 subptr(len, tmp5); 9427 jmp(copy_chars_loop); 9428 9429 bind(below_threshold); 9430 } 9431 9432 if (UseSSE42Intrinsics) { 9433 Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail; 9434 9435 // vectored compression 9436 testl(len, 0xfffffff8); 9437 jcc(Assembler::zero, copy_tail); 9438 9439 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors 9440 movdl(tmp1Reg, tmp5); 9441 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 9442 9443 andl(len, 0xfffffff0); 9444 jccb(Assembler::zero, copy_16); 9445 9446 // compress 16 chars per iter 9447 pxor(tmp4Reg, tmp4Reg); 9448 9449 lea(src, Address(src, len, Address::times_2)); 9450 lea(dst, Address(dst, len, Address::times_1)); 9451 negptr(len); 9452 9453 bind(copy_32_loop); 9454 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters 9455 por(tmp4Reg, tmp2Reg); 9456 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters 9457 por(tmp4Reg, tmp3Reg); 9458 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector 9459 jccb(Assembler::notZero, reset_for_copy_tail); 9460 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte 9461 movdqu(Address(dst, len, Address::times_1), tmp2Reg); 9462 addptr(len, 16); 9463 jccb(Assembler::notZero, copy_32_loop); 9464 9465 // compress next vector of 8 chars (if any) 9466 bind(copy_16); 9467 // len = 0 9468 testl(result, 0x00000008); // check if there's a block of 8 chars to compress 9469 jccb(Assembler::zero, copy_tail_sse); 9470 9471 pxor(tmp3Reg, tmp3Reg); 9472 9473 movdqu(tmp2Reg, Address(src, 0)); 9474 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector 9475 jccb(Assembler::notZero, reset_for_copy_tail); 9476 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte 9477 movq(Address(dst, 0), tmp2Reg); 9478 addptr(src, 16); 9479 addptr(dst, 8); 9480 jmpb(copy_tail_sse); 9481 9482 bind(reset_for_copy_tail); 9483 movl(tmp5, result); 9484 andl(tmp5, 0x0000000f); 9485 lea(src, Address(src, tmp5, Address::times_2)); 9486 lea(dst, Address(dst, tmp5, Address::times_1)); 9487 subptr(len, tmp5); 9488 jmpb(copy_chars_loop); 9489 9490 bind(copy_tail_sse); 9491 movl(len, result); 9492 andl(len, 0x00000007); // tail count (in chars) 9493 } 9494 // compress 1 char per iter 9495 bind(copy_tail); 9496 testl(len, len); 9497 jccb(Assembler::zero, done); 9498 lea(src, Address(src, len, Address::times_2)); 9499 lea(dst, Address(dst, len, Address::times_1)); 9500 negptr(len); 9501 9502 bind(copy_chars_loop); 9503 load_unsigned_short(tmp5, Address(src, len, Address::times_2)); 9504 testl(tmp5, 0xff00); // check if Unicode char 9505 jccb(Assembler::notZero, reset_sp); 9506 movb(Address(dst, len, Address::times_1), tmp5); // ASCII char; compress to 1 byte 9507 increment(len); 9508 jccb(Assembler::notZero, copy_chars_loop); 9509 9510 // add len then return (len will be zero if compress succeeded, otherwise negative) 9511 bind(reset_sp); 9512 addl(result, len); 9513 9514 bind(done); 9515 } 9516 9517 // Inflate byte[] array to char[]. 9518 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java 9519 // @IntrinsicCandidate 9520 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) { 9521 // for (int i = 0; i < len; i++) { 9522 // dst[dstOff++] = (char)(src[srcOff++] & 0xff); 9523 // } 9524 // } 9525 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 9526 XMMRegister tmp1, Register tmp2, KRegister mask) { 9527 Label copy_chars_loop, done, below_threshold, avx3_threshold; 9528 // rsi: src 9529 // rdi: dst 9530 // rdx: len 9531 // rcx: tmp2 9532 9533 // rsi holds start addr of source byte[] to be inflated 9534 // rdi holds start addr of destination char[] 9535 // rdx holds length 9536 assert_different_registers(src, dst, len, tmp2); 9537 movl(tmp2, len); 9538 if ((UseAVX > 2) && // AVX512 9539 VM_Version::supports_avx512vlbw() && 9540 VM_Version::supports_bmi2()) { 9541 9542 Label copy_32_loop, copy_tail; 9543 Register tmp3_aliased = len; 9544 9545 // if length of the string is less than 16, handle it in an old fashioned way 9546 testl(len, -16); 9547 jcc(Assembler::zero, below_threshold); 9548 9549 testl(len, -1 * AVX3Threshold); 9550 jcc(Assembler::zero, avx3_threshold); 9551 9552 // In order to use only one arithmetic operation for the main loop we use 9553 // this pre-calculation 9554 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop 9555 andl(len, -32); // vector count 9556 jccb(Assembler::zero, copy_tail); 9557 9558 lea(src, Address(src, len, Address::times_1)); 9559 lea(dst, Address(dst, len, Address::times_2)); 9560 negptr(len); 9561 9562 9563 // inflate 32 chars per iter 9564 bind(copy_32_loop); 9565 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit); 9566 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit); 9567 addptr(len, 32); 9568 jcc(Assembler::notZero, copy_32_loop); 9569 9570 bind(copy_tail); 9571 // bail out when there is nothing to be done 9572 testl(tmp2, -1); // we don't destroy the contents of tmp2 here 9573 jcc(Assembler::zero, done); 9574 9575 // ~(~0 << length), where length is the # of remaining elements to process 9576 movl(tmp3_aliased, -1); 9577 shlxl(tmp3_aliased, tmp3_aliased, tmp2); 9578 notl(tmp3_aliased); 9579 kmovdl(mask, tmp3_aliased); 9580 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit); 9581 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit); 9582 9583 jmp(done); 9584 bind(avx3_threshold); 9585 } 9586 if (UseSSE42Intrinsics) { 9587 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail; 9588 9589 if (UseAVX > 1) { 9590 andl(tmp2, (16 - 1)); 9591 andl(len, -16); 9592 jccb(Assembler::zero, copy_new_tail); 9593 } else { 9594 andl(tmp2, 0x00000007); // tail count (in chars) 9595 andl(len, 0xfffffff8); // vector count (in chars) 9596 jccb(Assembler::zero, copy_tail); 9597 } 9598 9599 // vectored inflation 9600 lea(src, Address(src, len, Address::times_1)); 9601 lea(dst, Address(dst, len, Address::times_2)); 9602 negptr(len); 9603 9604 if (UseAVX > 1) { 9605 bind(copy_16_loop); 9606 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit); 9607 vmovdqu(Address(dst, len, Address::times_2), tmp1); 9608 addptr(len, 16); 9609 jcc(Assembler::notZero, copy_16_loop); 9610 9611 bind(below_threshold); 9612 bind(copy_new_tail); 9613 movl(len, tmp2); 9614 andl(tmp2, 0x00000007); 9615 andl(len, 0xFFFFFFF8); 9616 jccb(Assembler::zero, copy_tail); 9617 9618 pmovzxbw(tmp1, Address(src, 0)); 9619 movdqu(Address(dst, 0), tmp1); 9620 addptr(src, 8); 9621 addptr(dst, 2 * 8); 9622 9623 jmp(copy_tail, true); 9624 } 9625 9626 // inflate 8 chars per iter 9627 bind(copy_8_loop); 9628 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words 9629 movdqu(Address(dst, len, Address::times_2), tmp1); 9630 addptr(len, 8); 9631 jcc(Assembler::notZero, copy_8_loop); 9632 9633 bind(copy_tail); 9634 movl(len, tmp2); 9635 9636 cmpl(len, 4); 9637 jccb(Assembler::less, copy_bytes); 9638 9639 movdl(tmp1, Address(src, 0)); // load 4 byte chars 9640 pmovzxbw(tmp1, tmp1); 9641 movq(Address(dst, 0), tmp1); 9642 subptr(len, 4); 9643 addptr(src, 4); 9644 addptr(dst, 8); 9645 9646 bind(copy_bytes); 9647 } else { 9648 bind(below_threshold); 9649 } 9650 9651 testl(len, len); 9652 jccb(Assembler::zero, done); 9653 lea(src, Address(src, len, Address::times_1)); 9654 lea(dst, Address(dst, len, Address::times_2)); 9655 negptr(len); 9656 9657 // inflate 1 char per iter 9658 bind(copy_chars_loop); 9659 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char 9660 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word 9661 increment(len); 9662 jcc(Assembler::notZero, copy_chars_loop); 9663 9664 bind(done); 9665 } 9666 9667 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len) { 9668 switch(type) { 9669 case T_BYTE: 9670 case T_BOOLEAN: 9671 evmovdqub(dst, kmask, src, merge, vector_len); 9672 break; 9673 case T_CHAR: 9674 case T_SHORT: 9675 evmovdquw(dst, kmask, src, merge, vector_len); 9676 break; 9677 case T_INT: 9678 case T_FLOAT: 9679 evmovdqul(dst, kmask, src, merge, vector_len); 9680 break; 9681 case T_LONG: 9682 case T_DOUBLE: 9683 evmovdquq(dst, kmask, src, merge, vector_len); 9684 break; 9685 default: 9686 fatal("Unexpected type argument %s", type2name(type)); 9687 break; 9688 } 9689 } 9690 9691 9692 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) { 9693 switch(type) { 9694 case T_BYTE: 9695 case T_BOOLEAN: 9696 evmovdqub(dst, kmask, src, merge, vector_len); 9697 break; 9698 case T_CHAR: 9699 case T_SHORT: 9700 evmovdquw(dst, kmask, src, merge, vector_len); 9701 break; 9702 case T_INT: 9703 case T_FLOAT: 9704 evmovdqul(dst, kmask, src, merge, vector_len); 9705 break; 9706 case T_LONG: 9707 case T_DOUBLE: 9708 evmovdquq(dst, kmask, src, merge, vector_len); 9709 break; 9710 default: 9711 fatal("Unexpected type argument %s", type2name(type)); 9712 break; 9713 } 9714 } 9715 9716 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) { 9717 switch(type) { 9718 case T_BYTE: 9719 case T_BOOLEAN: 9720 evmovdqub(dst, kmask, src, merge, vector_len); 9721 break; 9722 case T_CHAR: 9723 case T_SHORT: 9724 evmovdquw(dst, kmask, src, merge, vector_len); 9725 break; 9726 case T_INT: 9727 case T_FLOAT: 9728 evmovdqul(dst, kmask, src, merge, vector_len); 9729 break; 9730 case T_LONG: 9731 case T_DOUBLE: 9732 evmovdquq(dst, kmask, src, merge, vector_len); 9733 break; 9734 default: 9735 fatal("Unexpected type argument %s", type2name(type)); 9736 break; 9737 } 9738 } 9739 9740 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) { 9741 switch(masklen) { 9742 case 2: 9743 knotbl(dst, src); 9744 movl(rtmp, 3); 9745 kmovbl(ktmp, rtmp); 9746 kandbl(dst, ktmp, dst); 9747 break; 9748 case 4: 9749 knotbl(dst, src); 9750 movl(rtmp, 15); 9751 kmovbl(ktmp, rtmp); 9752 kandbl(dst, ktmp, dst); 9753 break; 9754 case 8: 9755 knotbl(dst, src); 9756 break; 9757 case 16: 9758 knotwl(dst, src); 9759 break; 9760 case 32: 9761 knotdl(dst, src); 9762 break; 9763 case 64: 9764 knotql(dst, src); 9765 break; 9766 default: 9767 fatal("Unexpected vector length %d", masklen); 9768 break; 9769 } 9770 } 9771 9772 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9773 switch(type) { 9774 case T_BOOLEAN: 9775 case T_BYTE: 9776 kandbl(dst, src1, src2); 9777 break; 9778 case T_CHAR: 9779 case T_SHORT: 9780 kandwl(dst, src1, src2); 9781 break; 9782 case T_INT: 9783 case T_FLOAT: 9784 kanddl(dst, src1, src2); 9785 break; 9786 case T_LONG: 9787 case T_DOUBLE: 9788 kandql(dst, src1, src2); 9789 break; 9790 default: 9791 fatal("Unexpected type argument %s", type2name(type)); 9792 break; 9793 } 9794 } 9795 9796 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9797 switch(type) { 9798 case T_BOOLEAN: 9799 case T_BYTE: 9800 korbl(dst, src1, src2); 9801 break; 9802 case T_CHAR: 9803 case T_SHORT: 9804 korwl(dst, src1, src2); 9805 break; 9806 case T_INT: 9807 case T_FLOAT: 9808 kordl(dst, src1, src2); 9809 break; 9810 case T_LONG: 9811 case T_DOUBLE: 9812 korql(dst, src1, src2); 9813 break; 9814 default: 9815 fatal("Unexpected type argument %s", type2name(type)); 9816 break; 9817 } 9818 } 9819 9820 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9821 switch(type) { 9822 case T_BOOLEAN: 9823 case T_BYTE: 9824 kxorbl(dst, src1, src2); 9825 break; 9826 case T_CHAR: 9827 case T_SHORT: 9828 kxorwl(dst, src1, src2); 9829 break; 9830 case T_INT: 9831 case T_FLOAT: 9832 kxordl(dst, src1, src2); 9833 break; 9834 case T_LONG: 9835 case T_DOUBLE: 9836 kxorql(dst, src1, src2); 9837 break; 9838 default: 9839 fatal("Unexpected type argument %s", type2name(type)); 9840 break; 9841 } 9842 } 9843 9844 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9845 switch(type) { 9846 case T_BOOLEAN: 9847 case T_BYTE: 9848 evpermb(dst, mask, nds, src, merge, vector_len); break; 9849 case T_CHAR: 9850 case T_SHORT: 9851 evpermw(dst, mask, nds, src, merge, vector_len); break; 9852 case T_INT: 9853 case T_FLOAT: 9854 evpermd(dst, mask, nds, src, merge, vector_len); break; 9855 case T_LONG: 9856 case T_DOUBLE: 9857 evpermq(dst, mask, nds, src, merge, vector_len); break; 9858 default: 9859 fatal("Unexpected type argument %s", type2name(type)); break; 9860 } 9861 } 9862 9863 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9864 switch(type) { 9865 case T_BOOLEAN: 9866 case T_BYTE: 9867 evpermb(dst, mask, nds, src, merge, vector_len); break; 9868 case T_CHAR: 9869 case T_SHORT: 9870 evpermw(dst, mask, nds, src, merge, vector_len); break; 9871 case T_INT: 9872 case T_FLOAT: 9873 evpermd(dst, mask, nds, src, merge, vector_len); break; 9874 case T_LONG: 9875 case T_DOUBLE: 9876 evpermq(dst, mask, nds, src, merge, vector_len); break; 9877 default: 9878 fatal("Unexpected type argument %s", type2name(type)); break; 9879 } 9880 } 9881 9882 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9883 switch(type) { 9884 case T_BYTE: 9885 evpminub(dst, mask, nds, src, merge, vector_len); break; 9886 case T_SHORT: 9887 evpminuw(dst, mask, nds, src, merge, vector_len); break; 9888 case T_INT: 9889 evpminud(dst, mask, nds, src, merge, vector_len); break; 9890 case T_LONG: 9891 evpminuq(dst, mask, nds, src, merge, vector_len); break; 9892 default: 9893 fatal("Unexpected type argument %s", type2name(type)); break; 9894 } 9895 } 9896 9897 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9898 switch(type) { 9899 case T_BYTE: 9900 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 9901 case T_SHORT: 9902 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 9903 case T_INT: 9904 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 9905 case T_LONG: 9906 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 9907 default: 9908 fatal("Unexpected type argument %s", type2name(type)); break; 9909 } 9910 } 9911 9912 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9913 switch(type) { 9914 case T_BYTE: 9915 evpminub(dst, mask, nds, src, merge, vector_len); break; 9916 case T_SHORT: 9917 evpminuw(dst, mask, nds, src, merge, vector_len); break; 9918 case T_INT: 9919 evpminud(dst, mask, nds, src, merge, vector_len); break; 9920 case T_LONG: 9921 evpminuq(dst, mask, nds, src, merge, vector_len); break; 9922 default: 9923 fatal("Unexpected type argument %s", type2name(type)); break; 9924 } 9925 } 9926 9927 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9928 switch(type) { 9929 case T_BYTE: 9930 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 9931 case T_SHORT: 9932 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 9933 case T_INT: 9934 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 9935 case T_LONG: 9936 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 9937 default: 9938 fatal("Unexpected type argument %s", type2name(type)); break; 9939 } 9940 } 9941 9942 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9943 switch(type) { 9944 case T_BYTE: 9945 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9946 case T_SHORT: 9947 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9948 case T_INT: 9949 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9950 case T_LONG: 9951 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9952 default: 9953 fatal("Unexpected type argument %s", type2name(type)); break; 9954 } 9955 } 9956 9957 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9958 switch(type) { 9959 case T_BYTE: 9960 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9961 case T_SHORT: 9962 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9963 case T_INT: 9964 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9965 case T_LONG: 9966 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9967 default: 9968 fatal("Unexpected type argument %s", type2name(type)); break; 9969 } 9970 } 9971 9972 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9973 switch(type) { 9974 case T_BYTE: 9975 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9976 case T_SHORT: 9977 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9978 case T_INT: 9979 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9980 case T_LONG: 9981 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9982 default: 9983 fatal("Unexpected type argument %s", type2name(type)); break; 9984 } 9985 } 9986 9987 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9988 switch(type) { 9989 case T_BYTE: 9990 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9991 case T_SHORT: 9992 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9993 case T_INT: 9994 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9995 case T_LONG: 9996 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9997 default: 9998 fatal("Unexpected type argument %s", type2name(type)); break; 9999 } 10000 } 10001 10002 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10003 switch(type) { 10004 case T_INT: 10005 evpxord(dst, mask, nds, src, merge, vector_len); break; 10006 case T_LONG: 10007 evpxorq(dst, mask, nds, src, merge, vector_len); break; 10008 default: 10009 fatal("Unexpected type argument %s", type2name(type)); break; 10010 } 10011 } 10012 10013 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10014 switch(type) { 10015 case T_INT: 10016 evpxord(dst, mask, nds, src, merge, vector_len); break; 10017 case T_LONG: 10018 evpxorq(dst, mask, nds, src, merge, vector_len); break; 10019 default: 10020 fatal("Unexpected type argument %s", type2name(type)); break; 10021 } 10022 } 10023 10024 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10025 switch(type) { 10026 case T_INT: 10027 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 10028 case T_LONG: 10029 evporq(dst, mask, nds, src, merge, vector_len); break; 10030 default: 10031 fatal("Unexpected type argument %s", type2name(type)); break; 10032 } 10033 } 10034 10035 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10036 switch(type) { 10037 case T_INT: 10038 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 10039 case T_LONG: 10040 evporq(dst, mask, nds, src, merge, vector_len); break; 10041 default: 10042 fatal("Unexpected type argument %s", type2name(type)); break; 10043 } 10044 } 10045 10046 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10047 switch(type) { 10048 case T_INT: 10049 evpandd(dst, mask, nds, src, merge, vector_len); break; 10050 case T_LONG: 10051 evpandq(dst, mask, nds, src, merge, vector_len); break; 10052 default: 10053 fatal("Unexpected type argument %s", type2name(type)); break; 10054 } 10055 } 10056 10057 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10058 switch(type) { 10059 case T_INT: 10060 evpandd(dst, mask, nds, src, merge, vector_len); break; 10061 case T_LONG: 10062 evpandq(dst, mask, nds, src, merge, vector_len); break; 10063 default: 10064 fatal("Unexpected type argument %s", type2name(type)); break; 10065 } 10066 } 10067 10068 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) { 10069 switch(masklen) { 10070 case 8: 10071 kortestbl(src1, src2); 10072 break; 10073 case 16: 10074 kortestwl(src1, src2); 10075 break; 10076 case 32: 10077 kortestdl(src1, src2); 10078 break; 10079 case 64: 10080 kortestql(src1, src2); 10081 break; 10082 default: 10083 fatal("Unexpected mask length %d", masklen); 10084 break; 10085 } 10086 } 10087 10088 10089 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) { 10090 switch(masklen) { 10091 case 8: 10092 ktestbl(src1, src2); 10093 break; 10094 case 16: 10095 ktestwl(src1, src2); 10096 break; 10097 case 32: 10098 ktestdl(src1, src2); 10099 break; 10100 case 64: 10101 ktestql(src1, src2); 10102 break; 10103 default: 10104 fatal("Unexpected mask length %d", masklen); 10105 break; 10106 } 10107 } 10108 10109 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 10110 switch(type) { 10111 case T_INT: 10112 evprold(dst, mask, src, shift, merge, vlen_enc); break; 10113 case T_LONG: 10114 evprolq(dst, mask, src, shift, merge, vlen_enc); break; 10115 default: 10116 fatal("Unexpected type argument %s", type2name(type)); break; 10117 break; 10118 } 10119 } 10120 10121 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 10122 switch(type) { 10123 case T_INT: 10124 evprord(dst, mask, src, shift, merge, vlen_enc); break; 10125 case T_LONG: 10126 evprorq(dst, mask, src, shift, merge, vlen_enc); break; 10127 default: 10128 fatal("Unexpected type argument %s", type2name(type)); break; 10129 } 10130 } 10131 10132 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 10133 switch(type) { 10134 case T_INT: 10135 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break; 10136 case T_LONG: 10137 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break; 10138 default: 10139 fatal("Unexpected type argument %s", type2name(type)); break; 10140 } 10141 } 10142 10143 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 10144 switch(type) { 10145 case T_INT: 10146 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break; 10147 case T_LONG: 10148 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break; 10149 default: 10150 fatal("Unexpected type argument %s", type2name(type)); break; 10151 } 10152 } 10153 10154 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10155 assert(rscratch != noreg || always_reachable(src), "missing"); 10156 10157 if (reachable(src)) { 10158 evpandq(dst, nds, as_Address(src), vector_len); 10159 } else { 10160 lea(rscratch, src); 10161 evpandq(dst, nds, Address(rscratch, 0), vector_len); 10162 } 10163 } 10164 10165 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 10166 assert(rscratch != noreg || always_reachable(src), "missing"); 10167 10168 if (reachable(src)) { 10169 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len); 10170 } else { 10171 lea(rscratch, src); 10172 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 10173 } 10174 } 10175 10176 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10177 assert(rscratch != noreg || always_reachable(src), "missing"); 10178 10179 if (reachable(src)) { 10180 evporq(dst, nds, as_Address(src), vector_len); 10181 } else { 10182 lea(rscratch, src); 10183 evporq(dst, nds, Address(rscratch, 0), vector_len); 10184 } 10185 } 10186 10187 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10188 assert(rscratch != noreg || always_reachable(src), "missing"); 10189 10190 if (reachable(src)) { 10191 vpshufb(dst, nds, as_Address(src), vector_len); 10192 } else { 10193 lea(rscratch, src); 10194 vpshufb(dst, nds, Address(rscratch, 0), vector_len); 10195 } 10196 } 10197 10198 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10199 assert(rscratch != noreg || always_reachable(src), "missing"); 10200 10201 if (reachable(src)) { 10202 Assembler::vpor(dst, nds, as_Address(src), vector_len); 10203 } else { 10204 lea(rscratch, src); 10205 Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len); 10206 } 10207 } 10208 10209 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) { 10210 assert(rscratch != noreg || always_reachable(src3), "missing"); 10211 10212 if (reachable(src3)) { 10213 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len); 10214 } else { 10215 lea(rscratch, src3); 10216 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len); 10217 } 10218 } 10219 10220 #if COMPILER2_OR_JVMCI 10221 10222 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 10223 Register length, Register temp, int vec_enc) { 10224 // Computing mask for predicated vector store. 10225 movptr(temp, -1); 10226 bzhiq(temp, temp, length); 10227 kmov(mask, temp); 10228 evmovdqu(bt, mask, dst, xmm, true, vec_enc); 10229 } 10230 10231 // Set memory operation for length "less than" 64 bytes. 10232 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp, 10233 XMMRegister xmm, KRegister mask, Register length, 10234 Register temp, bool use64byteVector) { 10235 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10236 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 10237 if (!use64byteVector) { 10238 fill32(dst, disp, xmm); 10239 subptr(length, 32 >> shift); 10240 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp); 10241 } else { 10242 assert(MaxVectorSize == 64, "vector length != 64"); 10243 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit); 10244 } 10245 } 10246 10247 10248 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp, 10249 XMMRegister xmm, KRegister mask, Register length, 10250 Register temp) { 10251 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10252 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 10253 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit); 10254 } 10255 10256 10257 void MacroAssembler::fill32(Address dst, XMMRegister xmm) { 10258 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10259 vmovdqu(dst, xmm); 10260 } 10261 10262 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) { 10263 fill32(Address(dst, disp), xmm); 10264 } 10265 10266 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) { 10267 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10268 if (!use64byteVector) { 10269 fill32(dst, xmm); 10270 fill32(dst.plus_disp(32), xmm); 10271 } else { 10272 evmovdquq(dst, xmm, Assembler::AVX_512bit); 10273 } 10274 } 10275 10276 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) { 10277 fill64(Address(dst, disp), xmm, use64byteVector); 10278 } 10279 10280 #ifdef _LP64 10281 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value, 10282 Register count, Register rtmp, XMMRegister xtmp) { 10283 Label L_exit; 10284 Label L_fill_start; 10285 Label L_fill_64_bytes; 10286 Label L_fill_96_bytes; 10287 Label L_fill_128_bytes; 10288 Label L_fill_128_bytes_loop; 10289 Label L_fill_128_loop_header; 10290 Label L_fill_128_bytes_loop_header; 10291 Label L_fill_128_bytes_loop_pre_header; 10292 Label L_fill_zmm_sequence; 10293 10294 int shift = -1; 10295 int avx3threshold = VM_Version::avx3_threshold(); 10296 switch(type) { 10297 case T_BYTE: shift = 0; 10298 break; 10299 case T_SHORT: shift = 1; 10300 break; 10301 case T_INT: shift = 2; 10302 break; 10303 /* Uncomment when LONG fill stubs are supported. 10304 case T_LONG: shift = 3; 10305 break; 10306 */ 10307 default: 10308 fatal("Unhandled type: %s\n", type2name(type)); 10309 } 10310 10311 if ((avx3threshold != 0) || (MaxVectorSize == 32)) { 10312 10313 if (MaxVectorSize == 64) { 10314 cmpq(count, avx3threshold >> shift); 10315 jcc(Assembler::greater, L_fill_zmm_sequence); 10316 } 10317 10318 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit); 10319 10320 bind(L_fill_start); 10321 10322 cmpq(count, 32 >> shift); 10323 jccb(Assembler::greater, L_fill_64_bytes); 10324 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp); 10325 jmp(L_exit); 10326 10327 bind(L_fill_64_bytes); 10328 cmpq(count, 64 >> shift); 10329 jccb(Assembler::greater, L_fill_96_bytes); 10330 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp); 10331 jmp(L_exit); 10332 10333 bind(L_fill_96_bytes); 10334 cmpq(count, 96 >> shift); 10335 jccb(Assembler::greater, L_fill_128_bytes); 10336 fill64(to, 0, xtmp); 10337 subq(count, 64 >> shift); 10338 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp); 10339 jmp(L_exit); 10340 10341 bind(L_fill_128_bytes); 10342 cmpq(count, 128 >> shift); 10343 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header); 10344 fill64(to, 0, xtmp); 10345 fill32(to, 64, xtmp); 10346 subq(count, 96 >> shift); 10347 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp); 10348 jmp(L_exit); 10349 10350 bind(L_fill_128_bytes_loop_pre_header); 10351 { 10352 mov(rtmp, to); 10353 andq(rtmp, 31); 10354 jccb(Assembler::zero, L_fill_128_bytes_loop_header); 10355 negq(rtmp); 10356 addq(rtmp, 32); 10357 mov64(r8, -1L); 10358 bzhiq(r8, r8, rtmp); 10359 kmovql(k2, r8); 10360 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit); 10361 addq(to, rtmp); 10362 shrq(rtmp, shift); 10363 subq(count, rtmp); 10364 } 10365 10366 cmpq(count, 128 >> shift); 10367 jcc(Assembler::less, L_fill_start); 10368 10369 bind(L_fill_128_bytes_loop_header); 10370 subq(count, 128 >> shift); 10371 10372 align32(); 10373 bind(L_fill_128_bytes_loop); 10374 fill64(to, 0, xtmp); 10375 fill64(to, 64, xtmp); 10376 addq(to, 128); 10377 subq(count, 128 >> shift); 10378 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop); 10379 10380 addq(count, 128 >> shift); 10381 jcc(Assembler::zero, L_exit); 10382 jmp(L_fill_start); 10383 } 10384 10385 if (MaxVectorSize == 64) { 10386 // Sequence using 64 byte ZMM register. 10387 Label L_fill_128_bytes_zmm; 10388 Label L_fill_192_bytes_zmm; 10389 Label L_fill_192_bytes_loop_zmm; 10390 Label L_fill_192_bytes_loop_header_zmm; 10391 Label L_fill_192_bytes_loop_pre_header_zmm; 10392 Label L_fill_start_zmm_sequence; 10393 10394 bind(L_fill_zmm_sequence); 10395 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit); 10396 10397 bind(L_fill_start_zmm_sequence); 10398 cmpq(count, 64 >> shift); 10399 jccb(Assembler::greater, L_fill_128_bytes_zmm); 10400 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true); 10401 jmp(L_exit); 10402 10403 bind(L_fill_128_bytes_zmm); 10404 cmpq(count, 128 >> shift); 10405 jccb(Assembler::greater, L_fill_192_bytes_zmm); 10406 fill64(to, 0, xtmp, true); 10407 subq(count, 64 >> shift); 10408 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true); 10409 jmp(L_exit); 10410 10411 bind(L_fill_192_bytes_zmm); 10412 cmpq(count, 192 >> shift); 10413 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm); 10414 fill64(to, 0, xtmp, true); 10415 fill64(to, 64, xtmp, true); 10416 subq(count, 128 >> shift); 10417 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true); 10418 jmp(L_exit); 10419 10420 bind(L_fill_192_bytes_loop_pre_header_zmm); 10421 { 10422 movq(rtmp, to); 10423 andq(rtmp, 63); 10424 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm); 10425 negq(rtmp); 10426 addq(rtmp, 64); 10427 mov64(r8, -1L); 10428 bzhiq(r8, r8, rtmp); 10429 kmovql(k2, r8); 10430 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit); 10431 addq(to, rtmp); 10432 shrq(rtmp, shift); 10433 subq(count, rtmp); 10434 } 10435 10436 cmpq(count, 192 >> shift); 10437 jcc(Assembler::less, L_fill_start_zmm_sequence); 10438 10439 bind(L_fill_192_bytes_loop_header_zmm); 10440 subq(count, 192 >> shift); 10441 10442 align32(); 10443 bind(L_fill_192_bytes_loop_zmm); 10444 fill64(to, 0, xtmp, true); 10445 fill64(to, 64, xtmp, true); 10446 fill64(to, 128, xtmp, true); 10447 addq(to, 192); 10448 subq(count, 192 >> shift); 10449 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm); 10450 10451 addq(count, 192 >> shift); 10452 jcc(Assembler::zero, L_exit); 10453 jmp(L_fill_start_zmm_sequence); 10454 } 10455 bind(L_exit); 10456 } 10457 #endif 10458 #endif //COMPILER2_OR_JVMCI 10459 10460 10461 #ifdef _LP64 10462 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) { 10463 Label done; 10464 cvttss2sil(dst, src); 10465 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10466 cmpl(dst, 0x80000000); // float_sign_flip 10467 jccb(Assembler::notEqual, done); 10468 subptr(rsp, 8); 10469 movflt(Address(rsp, 0), src); 10470 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup()))); 10471 pop(dst); 10472 bind(done); 10473 } 10474 10475 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) { 10476 Label done; 10477 cvttsd2sil(dst, src); 10478 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10479 cmpl(dst, 0x80000000); // float_sign_flip 10480 jccb(Assembler::notEqual, done); 10481 subptr(rsp, 8); 10482 movdbl(Address(rsp, 0), src); 10483 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup()))); 10484 pop(dst); 10485 bind(done); 10486 } 10487 10488 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) { 10489 Label done; 10490 cvttss2siq(dst, src); 10491 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10492 jccb(Assembler::notEqual, done); 10493 subptr(rsp, 8); 10494 movflt(Address(rsp, 0), src); 10495 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup()))); 10496 pop(dst); 10497 bind(done); 10498 } 10499 10500 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10501 // Following code is line by line assembly translation rounding algorithm. 10502 // Please refer to java.lang.Math.round(float) algorithm for details. 10503 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000; 10504 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24; 10505 const int32_t FloatConsts_EXP_BIAS = 127; 10506 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF; 10507 const int32_t MINUS_32 = 0xFFFFFFE0; 10508 Label L_special_case, L_block1, L_exit; 10509 movl(rtmp, FloatConsts_EXP_BIT_MASK); 10510 movdl(dst, src); 10511 andl(dst, rtmp); 10512 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1); 10513 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS); 10514 subl(rtmp, dst); 10515 movl(rcx, rtmp); 10516 movl(dst, MINUS_32); 10517 testl(rtmp, dst); 10518 jccb(Assembler::notEqual, L_special_case); 10519 movdl(dst, src); 10520 andl(dst, FloatConsts_SIGNIF_BIT_MASK); 10521 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1); 10522 movdl(rtmp, src); 10523 testl(rtmp, rtmp); 10524 jccb(Assembler::greaterEqual, L_block1); 10525 negl(dst); 10526 bind(L_block1); 10527 sarl(dst); 10528 addl(dst, 0x1); 10529 sarl(dst, 0x1); 10530 jmp(L_exit); 10531 bind(L_special_case); 10532 convert_f2i(dst, src); 10533 bind(L_exit); 10534 } 10535 10536 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10537 // Following code is line by line assembly translation rounding algorithm. 10538 // Please refer to java.lang.Math.round(double) algorithm for details. 10539 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L; 10540 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53; 10541 const int64_t DoubleConsts_EXP_BIAS = 1023; 10542 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL; 10543 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L; 10544 Label L_special_case, L_block1, L_exit; 10545 mov64(rtmp, DoubleConsts_EXP_BIT_MASK); 10546 movq(dst, src); 10547 andq(dst, rtmp); 10548 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1); 10549 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS); 10550 subq(rtmp, dst); 10551 movq(rcx, rtmp); 10552 mov64(dst, MINUS_64); 10553 testq(rtmp, dst); 10554 jccb(Assembler::notEqual, L_special_case); 10555 movq(dst, src); 10556 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK); 10557 andq(dst, rtmp); 10558 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1); 10559 orq(dst, rtmp); 10560 movq(rtmp, src); 10561 testq(rtmp, rtmp); 10562 jccb(Assembler::greaterEqual, L_block1); 10563 negq(dst); 10564 bind(L_block1); 10565 sarq(dst); 10566 addq(dst, 0x1); 10567 sarq(dst, 0x1); 10568 jmp(L_exit); 10569 bind(L_special_case); 10570 convert_d2l(dst, src); 10571 bind(L_exit); 10572 } 10573 10574 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) { 10575 Label done; 10576 cvttsd2siq(dst, src); 10577 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10578 jccb(Assembler::notEqual, done); 10579 subptr(rsp, 8); 10580 movdbl(Address(rsp, 0), src); 10581 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 10582 pop(dst); 10583 bind(done); 10584 } 10585 10586 void MacroAssembler::cache_wb(Address line) 10587 { 10588 // 64 bit cpus always support clflush 10589 assert(VM_Version::supports_clflush(), "clflush should be available"); 10590 bool optimized = VM_Version::supports_clflushopt(); 10591 bool no_evict = VM_Version::supports_clwb(); 10592 10593 // prefer clwb (writeback without evict) otherwise 10594 // prefer clflushopt (potentially parallel writeback with evict) 10595 // otherwise fallback on clflush (serial writeback with evict) 10596 10597 if (optimized) { 10598 if (no_evict) { 10599 clwb(line); 10600 } else { 10601 clflushopt(line); 10602 } 10603 } else { 10604 // no need for fence when using CLFLUSH 10605 clflush(line); 10606 } 10607 } 10608 10609 void MacroAssembler::cache_wbsync(bool is_pre) 10610 { 10611 assert(VM_Version::supports_clflush(), "clflush should be available"); 10612 bool optimized = VM_Version::supports_clflushopt(); 10613 bool no_evict = VM_Version::supports_clwb(); 10614 10615 // pick the correct implementation 10616 10617 if (!is_pre && (optimized || no_evict)) { 10618 // need an sfence for post flush when using clflushopt or clwb 10619 // otherwise no no need for any synchroniaztion 10620 10621 sfence(); 10622 } 10623 } 10624 10625 #endif // _LP64 10626 10627 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { 10628 switch (cond) { 10629 // Note some conditions are synonyms for others 10630 case Assembler::zero: return Assembler::notZero; 10631 case Assembler::notZero: return Assembler::zero; 10632 case Assembler::less: return Assembler::greaterEqual; 10633 case Assembler::lessEqual: return Assembler::greater; 10634 case Assembler::greater: return Assembler::lessEqual; 10635 case Assembler::greaterEqual: return Assembler::less; 10636 case Assembler::below: return Assembler::aboveEqual; 10637 case Assembler::belowEqual: return Assembler::above; 10638 case Assembler::above: return Assembler::belowEqual; 10639 case Assembler::aboveEqual: return Assembler::below; 10640 case Assembler::overflow: return Assembler::noOverflow; 10641 case Assembler::noOverflow: return Assembler::overflow; 10642 case Assembler::negative: return Assembler::positive; 10643 case Assembler::positive: return Assembler::negative; 10644 case Assembler::parity: return Assembler::noParity; 10645 case Assembler::noParity: return Assembler::parity; 10646 } 10647 ShouldNotReachHere(); return Assembler::overflow; 10648 } 10649 10650 // This is simply a call to Thread::current() 10651 void MacroAssembler::get_thread(Register thread) { 10652 if (thread != rax) { 10653 push(rax); 10654 } 10655 LP64_ONLY(push(rdi);) 10656 LP64_ONLY(push(rsi);) 10657 push(rdx); 10658 push(rcx); 10659 #ifdef _LP64 10660 push(r8); 10661 push(r9); 10662 push(r10); 10663 push(r11); 10664 #endif 10665 10666 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0); 10667 10668 #ifdef _LP64 10669 pop(r11); 10670 pop(r10); 10671 pop(r9); 10672 pop(r8); 10673 #endif 10674 pop(rcx); 10675 pop(rdx); 10676 LP64_ONLY(pop(rsi);) 10677 LP64_ONLY(pop(rdi);) 10678 if (thread != rax) { 10679 mov(thread, rax); 10680 pop(rax); 10681 } 10682 } 10683 10684 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) { 10685 Label L_stack_ok; 10686 if (bias == 0) { 10687 testptr(sp, 2 * wordSize - 1); 10688 } else { 10689 // lea(tmp, Address(rsp, bias); 10690 mov(tmp, sp); 10691 addptr(tmp, bias); 10692 testptr(tmp, 2 * wordSize - 1); 10693 } 10694 jcc(Assembler::equal, L_stack_ok); 10695 block_comment(msg); 10696 stop(msg); 10697 bind(L_stack_ok); 10698 } 10699 10700 // Implements lightweight-locking. 10701 // 10702 // obj: the object to be locked 10703 // reg_rax: rax 10704 // thread: the thread which attempts to lock obj 10705 // tmp: a temporary register 10706 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 10707 assert(reg_rax == rax, ""); 10708 assert_different_registers(basic_lock, obj, reg_rax, thread, tmp); 10709 10710 Label push; 10711 const Register top = tmp; 10712 10713 // Preload the markWord. It is important that this is the first 10714 // instruction emitted as it is part of C1's null check semantics. 10715 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10716 10717 if (UseObjectMonitorTable) { 10718 // Clear cache in case fast locking succeeds. 10719 movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0); 10720 } 10721 10722 // Load top. 10723 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10724 10725 // Check if the lock-stack is full. 10726 cmpl(top, LockStack::end_offset()); 10727 jcc(Assembler::greaterEqual, slow); 10728 10729 // Check for recursion. 10730 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10731 jcc(Assembler::equal, push); 10732 10733 // Check header for monitor (0b10). 10734 testptr(reg_rax, markWord::monitor_value); 10735 jcc(Assembler::notZero, slow); 10736 10737 // Try to lock. Transition lock bits 0b01 => 0b00 10738 movptr(tmp, reg_rax); 10739 andptr(tmp, ~(int32_t)markWord::unlocked_value); 10740 orptr(reg_rax, markWord::unlocked_value); 10741 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10742 jcc(Assembler::notEqual, slow); 10743 10744 // Restore top, CAS clobbers register. 10745 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10746 10747 bind(push); 10748 // After successful lock, push object on lock-stack. 10749 movptr(Address(thread, top), obj); 10750 incrementl(top, oopSize); 10751 movl(Address(thread, JavaThread::lock_stack_top_offset()), top); 10752 } 10753 10754 // Implements lightweight-unlocking. 10755 // 10756 // obj: the object to be unlocked 10757 // reg_rax: rax 10758 // thread: the thread 10759 // tmp: a temporary register 10760 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 10761 assert(reg_rax == rax, ""); 10762 assert_different_registers(obj, reg_rax, thread, tmp); 10763 10764 Label unlocked, push_and_slow; 10765 const Register top = tmp; 10766 10767 // Check if obj is top of lock-stack. 10768 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10769 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10770 jcc(Assembler::notEqual, slow); 10771 10772 // Pop lock-stack. 10773 DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);) 10774 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10775 10776 // Check if recursive. 10777 cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize)); 10778 jcc(Assembler::equal, unlocked); 10779 10780 // Not recursive. Check header for monitor (0b10). 10781 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10782 testptr(reg_rax, markWord::monitor_value); 10783 jcc(Assembler::notZero, push_and_slow); 10784 10785 #ifdef ASSERT 10786 // Check header not unlocked (0b01). 10787 Label not_unlocked; 10788 testptr(reg_rax, markWord::unlocked_value); 10789 jcc(Assembler::zero, not_unlocked); 10790 stop("lightweight_unlock already unlocked"); 10791 bind(not_unlocked); 10792 #endif 10793 10794 // Try to unlock. Transition lock bits 0b00 => 0b01 10795 movptr(tmp, reg_rax); 10796 orptr(tmp, markWord::unlocked_value); 10797 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10798 jcc(Assembler::equal, unlocked); 10799 10800 bind(push_and_slow); 10801 // Restore lock-stack and handle the unlock in runtime. 10802 #ifdef ASSERT 10803 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10804 movptr(Address(thread, top), obj); 10805 #endif 10806 addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10807 jmp(slow); 10808 10809 bind(unlocked); 10810 } 10811 10812 #ifdef _LP64 10813 // Saves legacy GPRs state on stack. 10814 void MacroAssembler::save_legacy_gprs() { 10815 subq(rsp, 16 * wordSize); 10816 movq(Address(rsp, 15 * wordSize), rax); 10817 movq(Address(rsp, 14 * wordSize), rcx); 10818 movq(Address(rsp, 13 * wordSize), rdx); 10819 movq(Address(rsp, 12 * wordSize), rbx); 10820 movq(Address(rsp, 10 * wordSize), rbp); 10821 movq(Address(rsp, 9 * wordSize), rsi); 10822 movq(Address(rsp, 8 * wordSize), rdi); 10823 movq(Address(rsp, 7 * wordSize), r8); 10824 movq(Address(rsp, 6 * wordSize), r9); 10825 movq(Address(rsp, 5 * wordSize), r10); 10826 movq(Address(rsp, 4 * wordSize), r11); 10827 movq(Address(rsp, 3 * wordSize), r12); 10828 movq(Address(rsp, 2 * wordSize), r13); 10829 movq(Address(rsp, wordSize), r14); 10830 movq(Address(rsp, 0), r15); 10831 } 10832 10833 // Resotres back legacy GPRs state from stack. 10834 void MacroAssembler::restore_legacy_gprs() { 10835 movq(r15, Address(rsp, 0)); 10836 movq(r14, Address(rsp, wordSize)); 10837 movq(r13, Address(rsp, 2 * wordSize)); 10838 movq(r12, Address(rsp, 3 * wordSize)); 10839 movq(r11, Address(rsp, 4 * wordSize)); 10840 movq(r10, Address(rsp, 5 * wordSize)); 10841 movq(r9, Address(rsp, 6 * wordSize)); 10842 movq(r8, Address(rsp, 7 * wordSize)); 10843 movq(rdi, Address(rsp, 8 * wordSize)); 10844 movq(rsi, Address(rsp, 9 * wordSize)); 10845 movq(rbp, Address(rsp, 10 * wordSize)); 10846 movq(rbx, Address(rsp, 12 * wordSize)); 10847 movq(rdx, Address(rsp, 13 * wordSize)); 10848 movq(rcx, Address(rsp, 14 * wordSize)); 10849 movq(rax, Address(rsp, 15 * wordSize)); 10850 addq(rsp, 16 * wordSize); 10851 } 10852 10853 void MacroAssembler::load_aotrc_address(Register reg, address a) { 10854 #if INCLUDE_CDS 10855 assert(AOTRuntimeConstants::contains(a), "address out of range for data area"); 10856 if (SCCache::is_on_for_write()) { 10857 // all aotrc field addresses should be registered in the SCC address table 10858 lea(reg, ExternalAddress(a)); 10859 } else { 10860 mov64(reg, (uint64_t)a); 10861 } 10862 #else 10863 ShouldNotReachHere(); 10864 #endif 10865 } 10866 10867 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) { 10868 if (VM_Version::supports_apx_f()) { 10869 esetzucc(comparison, dst); 10870 } else { 10871 setb(comparison, dst); 10872 movzbl(dst, dst); 10873 } 10874 } 10875 10876 #endif