1 /*
    2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
    3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
    4  *
    5  * This code is free software; you can redistribute it and/or modify it
    6  * under the terms of the GNU General Public License version 2 only, as
    7  * published by the Free Software Foundation.
    8  *
    9  * This code is distributed in the hope that it will be useful, but WITHOUT
   10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   12  * version 2 for more details (a copy is included in the LICENSE file that
   13  * accompanied this code).
   14  *
   15  * You should have received a copy of the GNU General Public License version
   16  * 2 along with this work; if not, write to the Free Software Foundation,
   17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
   18  *
   19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
   20  * or visit www.oracle.com if you need additional information or have any
   21  * questions.
   22  *
   23  */
   24 
   25 #include "precompiled.hpp"
   26 #include "asm/assembler.hpp"
   27 #include "asm/assembler.inline.hpp"
   28 #include "code/SCCache.hpp"
   29 #include "code/compiledIC.hpp"
   30 #include "compiler/compiler_globals.hpp"
   31 #include "compiler/disassembler.hpp"
   32 #include "crc32c.h"
   33 #include "gc/shared/barrierSet.hpp"
   34 #include "gc/shared/barrierSetAssembler.hpp"
   35 #include "gc/shared/collectedHeap.inline.hpp"
   36 #include "gc/shared/tlab_globals.hpp"
   37 #include "interpreter/bytecodeHistogram.hpp"
   38 #include "interpreter/interpreter.hpp"
   39 #include "interpreter/interpreterRuntime.hpp"
   40 #include "jvm.h"
   41 #include "memory/resourceArea.hpp"
   42 #include "memory/universe.hpp"
   43 #include "oops/accessDecorators.hpp"
   44 #include "oops/compressedKlass.inline.hpp"
   45 #include "oops/compressedOops.inline.hpp"
   46 #include "oops/klass.inline.hpp"
   47 #include "prims/methodHandles.hpp"
   48 #include "runtime/continuation.hpp"
   49 #include "runtime/interfaceSupport.inline.hpp"
   50 #include "runtime/javaThread.hpp"
   51 #include "runtime/jniHandles.hpp"
   52 #include "runtime/objectMonitor.hpp"
   53 #include "runtime/os.hpp"
   54 #include "runtime/safepoint.hpp"
   55 #include "runtime/safepointMechanism.hpp"
   56 #include "runtime/sharedRuntime.hpp"
   57 #include "runtime/stubRoutines.hpp"
   58 #include "utilities/checkedCast.hpp"
   59 #include "utilities/macros.hpp"
   60 
   61 #ifdef PRODUCT
   62 #define BLOCK_COMMENT(str) /* nothing */
   63 #define STOP(error) stop(error)
   64 #else
   65 #define BLOCK_COMMENT(str) block_comment(str)
   66 #define STOP(error) block_comment(error); stop(error)
   67 #endif
   68 
   69 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
   70 
   71 #ifdef ASSERT
   72 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
   73 #endif
   74 
   75 static const Assembler::Condition reverse[] = {
   76     Assembler::noOverflow     /* overflow      = 0x0 */ ,
   77     Assembler::overflow       /* noOverflow    = 0x1 */ ,
   78     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
   79     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
   80     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
   81     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
   82     Assembler::above          /* belowEqual    = 0x6 */ ,
   83     Assembler::belowEqual     /* above         = 0x7 */ ,
   84     Assembler::positive       /* negative      = 0x8 */ ,
   85     Assembler::negative       /* positive      = 0x9 */ ,
   86     Assembler::noParity       /* parity        = 0xa */ ,
   87     Assembler::parity         /* noParity      = 0xb */ ,
   88     Assembler::greaterEqual   /* less          = 0xc */ ,
   89     Assembler::less           /* greaterEqual  = 0xd */ ,
   90     Assembler::greater        /* lessEqual     = 0xe */ ,
   91     Assembler::lessEqual      /* greater       = 0xf, */
   92 
   93 };
   94 
   95 
   96 // Implementation of MacroAssembler
   97 
   98 // First all the versions that have distinct versions depending on 32/64 bit
   99 // Unless the difference is trivial (1 line or so).
  100 
  101 #ifndef _LP64
  102 
  103 // 32bit versions
  104 
  105 Address MacroAssembler::as_Address(AddressLiteral adr) {
  106   return Address(adr.target(), adr.rspec());
  107 }
  108 
  109 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) {
  110   assert(rscratch == noreg, "");
  111   return Address::make_array(adr);
  112 }
  113 
  114 void MacroAssembler::call_VM_leaf_base(address entry_point,
  115                                        int number_of_arguments) {
  116   call(RuntimeAddress(entry_point));
  117   increment(rsp, number_of_arguments * wordSize);
  118 }
  119 
  120 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
  121   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  122 }
  123 
  124 
  125 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
  126   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  127 }
  128 
  129 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  130   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  131 }
  132 
  133 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) {
  134   assert(rscratch == noreg, "redundant");
  135   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  136 }
  137 
  138 void MacroAssembler::extend_sign(Register hi, Register lo) {
  139   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  140   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  141     cdql();
  142   } else {
  143     movl(hi, lo);
  144     sarl(hi, 31);
  145   }
  146 }
  147 
  148 void MacroAssembler::jC2(Register tmp, Label& L) {
  149   // set parity bit if FPU flag C2 is set (via rax)
  150   save_rax(tmp);
  151   fwait(); fnstsw_ax();
  152   sahf();
  153   restore_rax(tmp);
  154   // branch
  155   jcc(Assembler::parity, L);
  156 }
  157 
  158 void MacroAssembler::jnC2(Register tmp, Label& L) {
  159   // set parity bit if FPU flag C2 is set (via rax)
  160   save_rax(tmp);
  161   fwait(); fnstsw_ax();
  162   sahf();
  163   restore_rax(tmp);
  164   // branch
  165   jcc(Assembler::noParity, L);
  166 }
  167 
  168 // 32bit can do a case table jump in one instruction but we no longer allow the base
  169 // to be installed in the Address class
  170 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) {
  171   assert(rscratch == noreg, "not needed");
  172   jmp(as_Address(entry, noreg));
  173 }
  174 
  175 // Note: y_lo will be destroyed
  176 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  177   // Long compare for Java (semantics as described in JVM spec.)
  178   Label high, low, done;
  179 
  180   cmpl(x_hi, y_hi);
  181   jcc(Assembler::less, low);
  182   jcc(Assembler::greater, high);
  183   // x_hi is the return register
  184   xorl(x_hi, x_hi);
  185   cmpl(x_lo, y_lo);
  186   jcc(Assembler::below, low);
  187   jcc(Assembler::equal, done);
  188 
  189   bind(high);
  190   xorl(x_hi, x_hi);
  191   increment(x_hi);
  192   jmp(done);
  193 
  194   bind(low);
  195   xorl(x_hi, x_hi);
  196   decrementl(x_hi);
  197 
  198   bind(done);
  199 }
  200 
  201 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  202   mov_literal32(dst, (int32_t)src.target(), src.rspec());
  203 }
  204 
  205 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) {
  206   assert(rscratch == noreg, "not needed");
  207 
  208   // leal(dst, as_Address(adr));
  209   // see note in movl as to why we must use a move
  210   mov_literal32(dst, (int32_t)adr.target(), adr.rspec());
  211 }
  212 
  213 void MacroAssembler::leave() {
  214   mov(rsp, rbp);
  215   pop(rbp);
  216 }
  217 
  218 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  219   // Multiplication of two Java long values stored on the stack
  220   // as illustrated below. Result is in rdx:rax.
  221   //
  222   // rsp ---> [  ??  ] \               \
  223   //            ....    | y_rsp_offset  |
  224   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  225   //          [ y_hi ]                  | (in bytes)
  226   //            ....                    |
  227   //          [ x_lo ]                 /
  228   //          [ x_hi ]
  229   //            ....
  230   //
  231   // Basic idea: lo(result) = lo(x_lo * y_lo)
  232   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  233   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  234   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  235   Label quick;
  236   // load x_hi, y_hi and check if quick
  237   // multiplication is possible
  238   movl(rbx, x_hi);
  239   movl(rcx, y_hi);
  240   movl(rax, rbx);
  241   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  242   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  243   // do full multiplication
  244   // 1st step
  245   mull(y_lo);                                    // x_hi * y_lo
  246   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  247   // 2nd step
  248   movl(rax, x_lo);
  249   mull(rcx);                                     // x_lo * y_hi
  250   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  251   // 3rd step
  252   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  253   movl(rax, x_lo);
  254   mull(y_lo);                                    // x_lo * y_lo
  255   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  256 }
  257 
  258 void MacroAssembler::lneg(Register hi, Register lo) {
  259   negl(lo);
  260   adcl(hi, 0);
  261   negl(hi);
  262 }
  263 
  264 void MacroAssembler::lshl(Register hi, Register lo) {
  265   // Java shift left long support (semantics as described in JVM spec., p.305)
  266   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  267   // shift value is in rcx !
  268   assert(hi != rcx, "must not use rcx");
  269   assert(lo != rcx, "must not use rcx");
  270   const Register s = rcx;                        // shift count
  271   const int      n = BitsPerWord;
  272   Label L;
  273   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  274   cmpl(s, n);                                    // if (s < n)
  275   jcc(Assembler::less, L);                       // else (s >= n)
  276   movl(hi, lo);                                  // x := x << n
  277   xorl(lo, lo);
  278   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  279   bind(L);                                       // s (mod n) < n
  280   shldl(hi, lo);                                 // x := x << s
  281   shll(lo);
  282 }
  283 
  284 
  285 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  286   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  287   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  288   assert(hi != rcx, "must not use rcx");
  289   assert(lo != rcx, "must not use rcx");
  290   const Register s = rcx;                        // shift count
  291   const int      n = BitsPerWord;
  292   Label L;
  293   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  294   cmpl(s, n);                                    // if (s < n)
  295   jcc(Assembler::less, L);                       // else (s >= n)
  296   movl(lo, hi);                                  // x := x >> n
  297   if (sign_extension) sarl(hi, 31);
  298   else                xorl(hi, hi);
  299   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  300   bind(L);                                       // s (mod n) < n
  301   shrdl(lo, hi);                                 // x := x >> s
  302   if (sign_extension) sarl(hi);
  303   else                shrl(hi);
  304 }
  305 
  306 void MacroAssembler::movoop(Register dst, jobject obj) {
  307   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  308 }
  309 
  310 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) {
  311   assert(rscratch == noreg, "redundant");
  312   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  313 }
  314 
  315 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  316   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  317 }
  318 
  319 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) {
  320   assert(rscratch == noreg, "redundant");
  321   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  322 }
  323 
  324 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  325   if (src.is_lval()) {
  326     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  327   } else {
  328     movl(dst, as_Address(src));
  329   }
  330 }
  331 
  332 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) {
  333   assert(rscratch == noreg, "redundant");
  334   movl(as_Address(dst, noreg), src);
  335 }
  336 
  337 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  338   movl(dst, as_Address(src, noreg));
  339 }
  340 
  341 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) {
  342   assert(rscratch == noreg, "redundant");
  343   movl(dst, src);
  344 }
  345 
  346 void MacroAssembler::pushoop(jobject obj, Register rscratch) {
  347   assert(rscratch == noreg, "redundant");
  348   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  349 }
  350 
  351 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) {
  352   assert(rscratch == noreg, "redundant");
  353   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
  354 }
  355 
  356 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) {
  357   assert(rscratch == noreg, "redundant");
  358   if (src.is_lval()) {
  359     push_literal32((int32_t)src.target(), src.rspec());
  360   } else {
  361     pushl(as_Address(src));
  362   }
  363 }
  364 
  365 static void pass_arg0(MacroAssembler* masm, Register arg) {
  366   masm->push(arg);
  367 }
  368 
  369 static void pass_arg1(MacroAssembler* masm, Register arg) {
  370   masm->push(arg);
  371 }
  372 
  373 static void pass_arg2(MacroAssembler* masm, Register arg) {
  374   masm->push(arg);
  375 }
  376 
  377 static void pass_arg3(MacroAssembler* masm, Register arg) {
  378   masm->push(arg);
  379 }
  380 
  381 #ifndef PRODUCT
  382 extern "C" void findpc(intptr_t x);
  383 #endif
  384 
  385 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  386   // In order to get locks to work, we need to fake a in_VM state
  387   JavaThread* thread = JavaThread::current();
  388   JavaThreadState saved_state = thread->thread_state();
  389   thread->set_thread_state(_thread_in_vm);
  390   if (ShowMessageBoxOnError) {
  391     JavaThread* thread = JavaThread::current();
  392     JavaThreadState saved_state = thread->thread_state();
  393     thread->set_thread_state(_thread_in_vm);
  394     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  395       ttyLocker ttyl;
  396       BytecodeCounter::print();
  397     }
  398     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  399     // This is the value of eip which points to where verify_oop will return.
  400     if (os::message_box(msg, "Execution stopped, print registers?")) {
  401       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
  402       BREAKPOINT;
  403     }
  404   }
  405   fatal("DEBUG MESSAGE: %s", msg);
  406 }
  407 
  408 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
  409   ttyLocker ttyl;
  410   DebuggingContext debugging{};
  411   tty->print_cr("eip = 0x%08x", eip);
  412 #ifndef PRODUCT
  413   if ((WizardMode || Verbose) && PrintMiscellaneous) {
  414     tty->cr();
  415     findpc(eip);
  416     tty->cr();
  417   }
  418 #endif
  419 #define PRINT_REG(rax) \
  420   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
  421   PRINT_REG(rax);
  422   PRINT_REG(rbx);
  423   PRINT_REG(rcx);
  424   PRINT_REG(rdx);
  425   PRINT_REG(rdi);
  426   PRINT_REG(rsi);
  427   PRINT_REG(rbp);
  428   PRINT_REG(rsp);
  429 #undef PRINT_REG
  430   // Print some words near top of staack.
  431   int* dump_sp = (int*) rsp;
  432   for (int col1 = 0; col1 < 8; col1++) {
  433     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  434     os::print_location(tty, *dump_sp++);
  435   }
  436   for (int row = 0; row < 16; row++) {
  437     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  438     for (int col = 0; col < 8; col++) {
  439       tty->print(" 0x%08x", *dump_sp++);
  440     }
  441     tty->cr();
  442   }
  443   // Print some instructions around pc:
  444   Disassembler::decode((address)eip-64, (address)eip);
  445   tty->print_cr("--------");
  446   Disassembler::decode((address)eip, (address)eip+32);
  447 }
  448 
  449 void MacroAssembler::stop(const char* msg) {
  450   // push address of message
  451   ExternalAddress message((address)msg);
  452   pushptr(message.addr(), noreg);
  453   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  454   pusha();                                            // push registers
  455   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  456   hlt();
  457 }
  458 
  459 void MacroAssembler::warn(const char* msg) {
  460   push_CPU_state();
  461 
  462   // push address of message
  463   ExternalAddress message((address)msg);
  464   pushptr(message.addr(), noreg);
  465 
  466   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  467   addl(rsp, wordSize);       // discard argument
  468   pop_CPU_state();
  469 }
  470 
  471 void MacroAssembler::print_state() {
  472   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  473   pusha();                                            // push registers
  474 
  475   push_CPU_state();
  476   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
  477   pop_CPU_state();
  478 
  479   popa();
  480   addl(rsp, wordSize);
  481 }
  482 
  483 #else // _LP64
  484 
  485 // 64 bit versions
  486 
  487 Address MacroAssembler::as_Address(AddressLiteral adr) {
  488   // amd64 always does this as a pc-rel
  489   // we can be absolute or disp based on the instruction type
  490   // jmp/call are displacements others are absolute
  491   assert(!adr.is_lval(), "must be rval");
  492   assert(reachable(adr), "must be");
  493   return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc());
  494 
  495 }
  496 
  497 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) {
  498   AddressLiteral base = adr.base();
  499   lea(rscratch, base);
  500   Address index = adr.index();
  501   assert(index._disp == 0, "must not have disp"); // maybe it can?
  502   Address array(rscratch, index._index, index._scale, index._disp);
  503   return array;
  504 }
  505 
  506 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  507   Label L, E;
  508 
  509 #ifdef _WIN64
  510   // Windows always allocates space for it's register args
  511   assert(num_args <= 4, "only register arguments supported");
  512   subq(rsp,  frame::arg_reg_save_area_bytes);
  513 #endif
  514 
  515   // Align stack if necessary
  516   testl(rsp, 15);
  517   jcc(Assembler::zero, L);
  518 
  519   subq(rsp, 8);
  520   call(RuntimeAddress(entry_point));
  521   addq(rsp, 8);
  522   jmp(E);
  523 
  524   bind(L);
  525   call(RuntimeAddress(entry_point));
  526 
  527   bind(E);
  528 
  529 #ifdef _WIN64
  530   // restore stack pointer
  531   addq(rsp, frame::arg_reg_save_area_bytes);
  532 #endif
  533 }
  534 
  535 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) {
  536   assert(!src2.is_lval(), "should use cmpptr");
  537   assert(rscratch != noreg || always_reachable(src2), "missing");
  538 
  539   if (reachable(src2)) {
  540     cmpq(src1, as_Address(src2));
  541   } else {
  542     lea(rscratch, src2);
  543     Assembler::cmpq(src1, Address(rscratch, 0));
  544   }
  545 }
  546 
  547 int MacroAssembler::corrected_idivq(Register reg) {
  548   // Full implementation of Java ldiv and lrem; checks for special
  549   // case as described in JVM spec., p.243 & p.271.  The function
  550   // returns the (pc) offset of the idivl instruction - may be needed
  551   // for implicit exceptions.
  552   //
  553   //         normal case                           special case
  554   //
  555   // input : rax: dividend                         min_long
  556   //         reg: divisor   (may not be eax/edx)   -1
  557   //
  558   // output: rax: quotient  (= rax idiv reg)       min_long
  559   //         rdx: remainder (= rax irem reg)       0
  560   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  561   static const int64_t min_long = 0x8000000000000000;
  562   Label normal_case, special_case;
  563 
  564   // check for special case
  565   cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/);
  566   jcc(Assembler::notEqual, normal_case);
  567   xorl(rdx, rdx); // prepare rdx for possible special case (where
  568                   // remainder = 0)
  569   cmpq(reg, -1);
  570   jcc(Assembler::equal, special_case);
  571 
  572   // handle normal case
  573   bind(normal_case);
  574   cdqq();
  575   int idivq_offset = offset();
  576   idivq(reg);
  577 
  578   // normal and special case exit
  579   bind(special_case);
  580 
  581   return idivq_offset;
  582 }
  583 
  584 void MacroAssembler::decrementq(Register reg, int value) {
  585   if (value == min_jint) { subq(reg, value); return; }
  586   if (value <  0) { incrementq(reg, -value); return; }
  587   if (value == 0) {                        ; return; }
  588   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  589   /* else */      { subq(reg, value)       ; return; }
  590 }
  591 
  592 void MacroAssembler::decrementq(Address dst, int value) {
  593   if (value == min_jint) { subq(dst, value); return; }
  594   if (value <  0) { incrementq(dst, -value); return; }
  595   if (value == 0) {                        ; return; }
  596   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  597   /* else */      { subq(dst, value)       ; return; }
  598 }
  599 
  600 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) {
  601   assert(rscratch != noreg || always_reachable(dst), "missing");
  602 
  603   if (reachable(dst)) {
  604     incrementq(as_Address(dst));
  605   } else {
  606     lea(rscratch, dst);
  607     incrementq(Address(rscratch, 0));
  608   }
  609 }
  610 
  611 void MacroAssembler::incrementq(Register reg, int value) {
  612   if (value == min_jint) { addq(reg, value); return; }
  613   if (value <  0) { decrementq(reg, -value); return; }
  614   if (value == 0) {                        ; return; }
  615   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  616   /* else */      { addq(reg, value)       ; return; }
  617 }
  618 
  619 void MacroAssembler::incrementq(Address dst, int value) {
  620   if (value == min_jint) { addq(dst, value); return; }
  621   if (value <  0) { decrementq(dst, -value); return; }
  622   if (value == 0) {                        ; return; }
  623   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  624   /* else */      { addq(dst, value)       ; return; }
  625 }
  626 
  627 // 32bit can do a case table jump in one instruction but we no longer allow the base
  628 // to be installed in the Address class
  629 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) {
  630   lea(rscratch, entry.base());
  631   Address dispatch = entry.index();
  632   assert(dispatch._base == noreg, "must be");
  633   dispatch._base = rscratch;
  634   jmp(dispatch);
  635 }
  636 
  637 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  638   ShouldNotReachHere(); // 64bit doesn't use two regs
  639   cmpq(x_lo, y_lo);
  640 }
  641 
  642 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  643   mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  644 }
  645 
  646 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) {
  647   lea(rscratch, adr);
  648   movptr(dst, rscratch);
  649 }
  650 
  651 void MacroAssembler::leave() {
  652   // %%% is this really better? Why not on 32bit too?
  653   emit_int8((unsigned char)0xC9); // LEAVE
  654 }
  655 
  656 void MacroAssembler::lneg(Register hi, Register lo) {
  657   ShouldNotReachHere(); // 64bit doesn't use two regs
  658   negq(lo);
  659 }
  660 
  661 void MacroAssembler::movoop(Register dst, jobject obj) {
  662   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  663 }
  664 
  665 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) {
  666   mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  667   movq(dst, rscratch);
  668 }
  669 
  670 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  671   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  672 }
  673 
  674 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) {
  675   mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  676   movq(dst, rscratch);
  677 }
  678 
  679 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  680   if (src.is_lval()) {
  681     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  682   } else {
  683     if (reachable(src)) {
  684       movq(dst, as_Address(src));
  685     } else {
  686       lea(dst, src);
  687       movq(dst, Address(dst, 0));
  688     }
  689   }
  690 }
  691 
  692 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) {
  693   movq(as_Address(dst, rscratch), src);
  694 }
  695 
  696 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  697   movq(dst, as_Address(src, dst /*rscratch*/));
  698 }
  699 
  700 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  701 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) {
  702   if (is_simm32(src)) {
  703     movptr(dst, checked_cast<int32_t>(src));
  704   } else {
  705     mov64(rscratch, src);
  706     movq(dst, rscratch);
  707   }
  708 }
  709 
  710 void MacroAssembler::pushoop(jobject obj, Register rscratch) {
  711   movoop(rscratch, obj);
  712   push(rscratch);
  713 }
  714 
  715 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) {
  716   mov_metadata(rscratch, obj);
  717   push(rscratch);
  718 }
  719 
  720 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) {
  721   lea(rscratch, src);
  722   if (src.is_lval()) {
  723     push(rscratch);
  724   } else {
  725     pushq(Address(rscratch, 0));
  726   }
  727 }
  728 
  729 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
  730   reset_last_Java_frame(r15_thread, clear_fp);
  731 }
  732 
  733 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  734                                          Register last_java_fp,
  735                                          address  last_java_pc,
  736                                          Register rscratch) {
  737   set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, last_java_pc, rscratch);
  738 }
  739 
  740 static void pass_arg0(MacroAssembler* masm, Register arg) {
  741   if (c_rarg0 != arg ) {
  742     masm->mov(c_rarg0, arg);
  743   }
  744 }
  745 
  746 static void pass_arg1(MacroAssembler* masm, Register arg) {
  747   if (c_rarg1 != arg ) {
  748     masm->mov(c_rarg1, arg);
  749   }
  750 }
  751 
  752 static void pass_arg2(MacroAssembler* masm, Register arg) {
  753   if (c_rarg2 != arg ) {
  754     masm->mov(c_rarg2, arg);
  755   }
  756 }
  757 
  758 static void pass_arg3(MacroAssembler* masm, Register arg) {
  759   if (c_rarg3 != arg ) {
  760     masm->mov(c_rarg3, arg);
  761   }
  762 }
  763 
  764 void MacroAssembler::stop(const char* msg) {
  765   if (ShowMessageBoxOnError) {
  766     address rip = pc();
  767     pusha(); // get regs on stack
  768     lea(c_rarg1, InternalAddress(rip));
  769     movq(c_rarg2, rsp); // pass pointer to regs array
  770   }
  771   lea(c_rarg0, ExternalAddress((address) msg));
  772   andq(rsp, -16); // align stack as required by ABI
  773   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  774   hlt();
  775   SCCache::add_C_string(msg);
  776 }
  777 
  778 void MacroAssembler::warn(const char* msg) {
  779   push(rbp);
  780   movq(rbp, rsp);
  781   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  782   push_CPU_state();   // keeps alignment at 16 bytes
  783 
  784   lea(c_rarg0, ExternalAddress((address) msg));
  785   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  786 
  787   pop_CPU_state();
  788   mov(rsp, rbp);
  789   pop(rbp);
  790 }
  791 
  792 void MacroAssembler::print_state() {
  793   address rip = pc();
  794   pusha();            // get regs on stack
  795   push(rbp);
  796   movq(rbp, rsp);
  797   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  798   push_CPU_state();   // keeps alignment at 16 bytes
  799 
  800   lea(c_rarg0, InternalAddress(rip));
  801   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
  802   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
  803 
  804   pop_CPU_state();
  805   mov(rsp, rbp);
  806   pop(rbp);
  807   popa();
  808 }
  809 
  810 #ifndef PRODUCT
  811 extern "C" void findpc(intptr_t x);
  812 #endif
  813 
  814 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  815   // In order to get locks to work, we need to fake a in_VM state
  816   if (ShowMessageBoxOnError) {
  817     JavaThread* thread = JavaThread::current();
  818     JavaThreadState saved_state = thread->thread_state();
  819     thread->set_thread_state(_thread_in_vm);
  820 #ifndef PRODUCT
  821     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  822       ttyLocker ttyl;
  823       BytecodeCounter::print();
  824     }
  825 #endif
  826     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  827     // XXX correct this offset for amd64
  828     // This is the value of eip which points to where verify_oop will return.
  829     if (os::message_box(msg, "Execution stopped, print registers?")) {
  830       print_state64(pc, regs);
  831       BREAKPOINT;
  832     }
  833   }
  834   fatal("DEBUG MESSAGE: %s", msg);
  835 }
  836 
  837 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
  838   ttyLocker ttyl;
  839   DebuggingContext debugging{};
  840   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
  841 #ifndef PRODUCT
  842   tty->cr();
  843   findpc(pc);
  844   tty->cr();
  845 #endif
  846 #define PRINT_REG(rax, value) \
  847   { tty->print("%s = ", #rax); os::print_location(tty, value); }
  848   PRINT_REG(rax, regs[15]);
  849   PRINT_REG(rbx, regs[12]);
  850   PRINT_REG(rcx, regs[14]);
  851   PRINT_REG(rdx, regs[13]);
  852   PRINT_REG(rdi, regs[8]);
  853   PRINT_REG(rsi, regs[9]);
  854   PRINT_REG(rbp, regs[10]);
  855   // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp
  856   PRINT_REG(rsp, (intptr_t)(&regs[16]));
  857   PRINT_REG(r8 , regs[7]);
  858   PRINT_REG(r9 , regs[6]);
  859   PRINT_REG(r10, regs[5]);
  860   PRINT_REG(r11, regs[4]);
  861   PRINT_REG(r12, regs[3]);
  862   PRINT_REG(r13, regs[2]);
  863   PRINT_REG(r14, regs[1]);
  864   PRINT_REG(r15, regs[0]);
  865 #undef PRINT_REG
  866   // Print some words near the top of the stack.
  867   int64_t* rsp = &regs[16];
  868   int64_t* dump_sp = rsp;
  869   for (int col1 = 0; col1 < 8; col1++) {
  870     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  871     os::print_location(tty, *dump_sp++);
  872   }
  873   for (int row = 0; row < 25; row++) {
  874     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  875     for (int col = 0; col < 4; col++) {
  876       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
  877     }
  878     tty->cr();
  879   }
  880   // Print some instructions around pc:
  881   Disassembler::decode((address)pc-64, (address)pc);
  882   tty->print_cr("--------");
  883   Disassembler::decode((address)pc, (address)pc+32);
  884 }
  885 
  886 // The java_calling_convention describes stack locations as ideal slots on
  887 // a frame with no abi restrictions. Since we must observe abi restrictions
  888 // (like the placement of the register window) the slots must be biased by
  889 // the following value.
  890 static int reg2offset_in(VMReg r) {
  891   // Account for saved rbp and return address
  892   // This should really be in_preserve_stack_slots
  893   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
  894 }
  895 
  896 static int reg2offset_out(VMReg r) {
  897   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
  898 }
  899 
  900 // A long move
  901 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  902 
  903   // The calling conventions assures us that each VMregpair is either
  904   // all really one physical register or adjacent stack slots.
  905 
  906   if (src.is_single_phys_reg() ) {
  907     if (dst.is_single_phys_reg()) {
  908       if (dst.first() != src.first()) {
  909         mov(dst.first()->as_Register(), src.first()->as_Register());
  910       }
  911     } else {
  912       assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)",
  913              src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name());
  914       movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register());
  915     }
  916   } else if (dst.is_single_phys_reg()) {
  917     assert(src.is_single_reg(),  "not a stack pair");
  918     movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  919   } else {
  920     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  921     movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  922     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  923   }
  924 }
  925 
  926 // A double move
  927 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  928 
  929   // The calling conventions assures us that each VMregpair is either
  930   // all really one physical register or adjacent stack slots.
  931 
  932   if (src.is_single_phys_reg() ) {
  933     if (dst.is_single_phys_reg()) {
  934       // In theory these overlap but the ordering is such that this is likely a nop
  935       if ( src.first() != dst.first()) {
  936         movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
  937       }
  938     } else {
  939       assert(dst.is_single_reg(), "not a stack pair");
  940       movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister());
  941     }
  942   } else if (dst.is_single_phys_reg()) {
  943     assert(src.is_single_reg(),  "not a stack pair");
  944     movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  945   } else {
  946     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  947     movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  948     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  949   }
  950 }
  951 
  952 
  953 // A float arg may have to do float reg int reg conversion
  954 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  955   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  956 
  957   // The calling conventions assures us that each VMregpair is either
  958   // all really one physical register or adjacent stack slots.
  959 
  960   if (src.first()->is_stack()) {
  961     if (dst.first()->is_stack()) {
  962       movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  963       movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  964     } else {
  965       // stack to reg
  966       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  967       movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  968     }
  969   } else if (dst.first()->is_stack()) {
  970     // reg to stack
  971     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  972     movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister());
  973   } else {
  974     // reg to reg
  975     // In theory these overlap but the ordering is such that this is likely a nop
  976     if ( src.first() != dst.first()) {
  977       movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
  978     }
  979   }
  980 }
  981 
  982 // On 64 bit we will store integer like items to the stack as
  983 // 64 bits items (x86_32/64 abi) even though java would only store
  984 // 32bits for a parameter. On 32bit it will simply be 32 bits
  985 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  986 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  987   if (src.first()->is_stack()) {
  988     if (dst.first()->is_stack()) {
  989       // stack to stack
  990       movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  991       movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  992     } else {
  993       // stack to reg
  994       movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  995     }
  996   } else if (dst.first()->is_stack()) {
  997     // reg to stack
  998     // Do we really have to sign extend???
  999     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
 1000     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register());
 1001   } else {
 1002     // Do we really have to sign extend???
 1003     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
 1004     if (dst.first() != src.first()) {
 1005       movq(dst.first()->as_Register(), src.first()->as_Register());
 1006     }
 1007   }
 1008 }
 1009 
 1010 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) {
 1011   if (src.first()->is_stack()) {
 1012     if (dst.first()->is_stack()) {
 1013       // stack to stack
 1014       movq(rax, Address(rbp, reg2offset_in(src.first())));
 1015       movq(Address(rsp, reg2offset_out(dst.first())), rax);
 1016     } else {
 1017       // stack to reg
 1018       movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
 1019     }
 1020   } else if (dst.first()->is_stack()) {
 1021     // reg to stack
 1022     movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 1023   } else {
 1024     if (dst.first() != src.first()) {
 1025       movq(dst.first()->as_Register(), src.first()->as_Register());
 1026     }
 1027   }
 1028 }
 1029 
 1030 // An oop arg. Must pass a handle not the oop itself
 1031 void MacroAssembler::object_move(OopMap* map,
 1032                         int oop_handle_offset,
 1033                         int framesize_in_slots,
 1034                         VMRegPair src,
 1035                         VMRegPair dst,
 1036                         bool is_receiver,
 1037                         int* receiver_offset) {
 1038 
 1039   // must pass a handle. First figure out the location we use as a handle
 1040 
 1041   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
 1042 
 1043   // See if oop is null if it is we need no handle
 1044 
 1045   if (src.first()->is_stack()) {
 1046 
 1047     // Oop is already on the stack as an argument
 1048     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 1049     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
 1050     if (is_receiver) {
 1051       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
 1052     }
 1053 
 1054     cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD);
 1055     lea(rHandle, Address(rbp, reg2offset_in(src.first())));
 1056     // conditionally move a null
 1057     cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
 1058   } else {
 1059 
 1060     // Oop is in a register we must store it to the space we reserve
 1061     // on the stack for oop_handles and pass a handle if oop is non-null
 1062 
 1063     const Register rOop = src.first()->as_Register();
 1064     int oop_slot;
 1065     if (rOop == j_rarg0)
 1066       oop_slot = 0;
 1067     else if (rOop == j_rarg1)
 1068       oop_slot = 1;
 1069     else if (rOop == j_rarg2)
 1070       oop_slot = 2;
 1071     else if (rOop == j_rarg3)
 1072       oop_slot = 3;
 1073     else if (rOop == j_rarg4)
 1074       oop_slot = 4;
 1075     else {
 1076       assert(rOop == j_rarg5, "wrong register");
 1077       oop_slot = 5;
 1078     }
 1079 
 1080     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
 1081     int offset = oop_slot*VMRegImpl::stack_slot_size;
 1082 
 1083     map->set_oop(VMRegImpl::stack2reg(oop_slot));
 1084     // Store oop in handle area, may be null
 1085     movptr(Address(rsp, offset), rOop);
 1086     if (is_receiver) {
 1087       *receiver_offset = offset;
 1088     }
 1089 
 1090     cmpptr(rOop, NULL_WORD);
 1091     lea(rHandle, Address(rsp, offset));
 1092     // conditionally move a null from the handle area where it was just stored
 1093     cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
 1094   }
 1095 
 1096   // If arg is on the stack then place it otherwise it is already in correct reg.
 1097   if (dst.first()->is_stack()) {
 1098     movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
 1099   }
 1100 }
 1101 
 1102 #endif // _LP64
 1103 
 1104 // Now versions that are common to 32/64 bit
 1105 
 1106 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 1107   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 1108 }
 1109 
 1110 void MacroAssembler::addptr(Register dst, Register src) {
 1111   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 1112 }
 1113 
 1114 void MacroAssembler::addptr(Address dst, Register src) {
 1115   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 1116 }
 1117 
 1118 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1119   assert(rscratch != noreg || always_reachable(src), "missing");
 1120 
 1121   if (reachable(src)) {
 1122     Assembler::addsd(dst, as_Address(src));
 1123   } else {
 1124     lea(rscratch, src);
 1125     Assembler::addsd(dst, Address(rscratch, 0));
 1126   }
 1127 }
 1128 
 1129 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1130   assert(rscratch != noreg || always_reachable(src), "missing");
 1131 
 1132   if (reachable(src)) {
 1133     addss(dst, as_Address(src));
 1134   } else {
 1135     lea(rscratch, src);
 1136     addss(dst, Address(rscratch, 0));
 1137   }
 1138 }
 1139 
 1140 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1141   assert(rscratch != noreg || always_reachable(src), "missing");
 1142 
 1143   if (reachable(src)) {
 1144     Assembler::addpd(dst, as_Address(src));
 1145   } else {
 1146     lea(rscratch, src);
 1147     Assembler::addpd(dst, Address(rscratch, 0));
 1148   }
 1149 }
 1150 
 1151 // See 8273459.  Function for ensuring 64-byte alignment, intended for stubs only.
 1152 // Stub code is generated once and never copied.
 1153 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes.
 1154 void MacroAssembler::align64() {
 1155   align(64, (uint)(uintptr_t)pc());
 1156 }
 1157 
 1158 void MacroAssembler::align32() {
 1159   align(32, (uint)(uintptr_t)pc());
 1160 }
 1161 
 1162 void MacroAssembler::align(uint modulus) {
 1163   // 8273459: Ensure alignment is possible with current segment alignment
 1164   assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment");
 1165   align(modulus, offset());
 1166 }
 1167 
 1168 void MacroAssembler::align(uint modulus, uint target) {
 1169   if (target % modulus != 0) {
 1170     nop(modulus - (target % modulus));
 1171   }
 1172 }
 1173 
 1174 void MacroAssembler::push_f(XMMRegister r) {
 1175   subptr(rsp, wordSize);
 1176   movflt(Address(rsp, 0), r);
 1177 }
 1178 
 1179 void MacroAssembler::pop_f(XMMRegister r) {
 1180   movflt(r, Address(rsp, 0));
 1181   addptr(rsp, wordSize);
 1182 }
 1183 
 1184 void MacroAssembler::push_d(XMMRegister r) {
 1185   subptr(rsp, 2 * wordSize);
 1186   movdbl(Address(rsp, 0), r);
 1187 }
 1188 
 1189 void MacroAssembler::pop_d(XMMRegister r) {
 1190   movdbl(r, Address(rsp, 0));
 1191   addptr(rsp, 2 * Interpreter::stackElementSize);
 1192 }
 1193 
 1194 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1195   // Used in sign-masking with aligned address.
 1196   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 1197   assert(rscratch != noreg || always_reachable(src), "missing");
 1198 
 1199   if (reachable(src)) {
 1200     Assembler::andpd(dst, as_Address(src));
 1201   } else {
 1202     lea(rscratch, src);
 1203     Assembler::andpd(dst, Address(rscratch, 0));
 1204   }
 1205 }
 1206 
 1207 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1208   // Used in sign-masking with aligned address.
 1209   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 1210   assert(rscratch != noreg || always_reachable(src), "missing");
 1211 
 1212   if (reachable(src)) {
 1213     Assembler::andps(dst, as_Address(src));
 1214   } else {
 1215     lea(rscratch, src);
 1216     Assembler::andps(dst, Address(rscratch, 0));
 1217   }
 1218 }
 1219 
 1220 void MacroAssembler::andptr(Register dst, int32_t imm32) {
 1221   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
 1222 }
 1223 
 1224 #ifdef _LP64
 1225 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) {
 1226   assert(rscratch != noreg || always_reachable(src), "missing");
 1227 
 1228   if (reachable(src)) {
 1229     andq(dst, as_Address(src));
 1230   } else {
 1231     lea(rscratch, src);
 1232     andq(dst, Address(rscratch, 0));
 1233   }
 1234 }
 1235 #endif
 1236 
 1237 void MacroAssembler::atomic_incl(Address counter_addr) {
 1238   lock();
 1239   incrementl(counter_addr);
 1240 }
 1241 
 1242 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) {
 1243   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1244 
 1245   if (reachable(counter_addr)) {
 1246     atomic_incl(as_Address(counter_addr));
 1247   } else {
 1248     lea(rscratch, counter_addr);
 1249     atomic_incl(Address(rscratch, 0));
 1250   }
 1251 }
 1252 
 1253 #ifdef _LP64
 1254 void MacroAssembler::atomic_incq(Address counter_addr) {
 1255   lock();
 1256   incrementq(counter_addr);
 1257 }
 1258 
 1259 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) {
 1260   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1261 
 1262   if (reachable(counter_addr)) {
 1263     atomic_incq(as_Address(counter_addr));
 1264   } else {
 1265     lea(rscratch, counter_addr);
 1266     atomic_incq(Address(rscratch, 0));
 1267   }
 1268 }
 1269 #endif
 1270 
 1271 // Writes to stack successive pages until offset reached to check for
 1272 // stack overflow + shadow pages.  This clobbers tmp.
 1273 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
 1274   movptr(tmp, rsp);
 1275   // Bang stack for total size given plus shadow page size.
 1276   // Bang one page at a time because large size can bang beyond yellow and
 1277   // red zones.
 1278   Label loop;
 1279   bind(loop);
 1280   movl(Address(tmp, (-(int)os::vm_page_size())), size );
 1281   subptr(tmp, (int)os::vm_page_size());
 1282   subl(size, (int)os::vm_page_size());
 1283   jcc(Assembler::greater, loop);
 1284 
 1285   // Bang down shadow pages too.
 1286   // At this point, (tmp-0) is the last address touched, so don't
 1287   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
 1288   // was post-decremented.)  Skip this address by starting at i=1, and
 1289   // touch a few more pages below.  N.B.  It is important to touch all
 1290   // the way down including all pages in the shadow zone.
 1291   for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) {
 1292     // this could be any sized move but this is can be a debugging crumb
 1293     // so the bigger the better.
 1294     movptr(Address(tmp, (-i*(int)os::vm_page_size())), size );
 1295   }
 1296 }
 1297 
 1298 void MacroAssembler::reserved_stack_check() {
 1299   // testing if reserved zone needs to be enabled
 1300   Label no_reserved_zone_enabling;
 1301   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 1302   NOT_LP64(get_thread(rsi);)
 1303 
 1304   cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
 1305   jcc(Assembler::below, no_reserved_zone_enabling);
 1306 
 1307   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
 1308   jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry()));
 1309   should_not_reach_here();
 1310 
 1311   bind(no_reserved_zone_enabling);
 1312 }
 1313 
 1314 void MacroAssembler::c2bool(Register x) {
 1315   // implements x == 0 ? 0 : 1
 1316   // note: must only look at least-significant byte of x
 1317   //       since C-style booleans are stored in one byte
 1318   //       only! (was bug)
 1319   andl(x, 0xFF);
 1320   setb(Assembler::notZero, x);
 1321 }
 1322 
 1323 // Wouldn't need if AddressLiteral version had new name
 1324 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
 1325   Assembler::call(L, rtype);
 1326 }
 1327 
 1328 void MacroAssembler::call(Register entry) {
 1329   Assembler::call(entry);
 1330 }
 1331 
 1332 void MacroAssembler::call(AddressLiteral entry, Register rscratch) {
 1333   assert(rscratch != noreg || always_reachable(entry), "missing");
 1334 
 1335   if (reachable(entry)) {
 1336     Assembler::call_literal(entry.target(), entry.rspec());
 1337   } else {
 1338     lea(rscratch, entry);
 1339     Assembler::call(rscratch);
 1340   }
 1341 }
 1342 
 1343 void MacroAssembler::ic_call(address entry, jint method_index) {
 1344   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
 1345 #ifdef _LP64
 1346   // Needs full 64-bit immediate for later patching.
 1347   mov64(rax, (int64_t)Universe::non_oop_word());
 1348 #else
 1349   movptr(rax, (intptr_t)Universe::non_oop_word());
 1350 #endif
 1351   call(AddressLiteral(entry, rh));
 1352 }
 1353 
 1354 int MacroAssembler::ic_check_size() {
 1355   return
 1356       LP64_ONLY(UseCompactObjectHeaders ? 17 : 14) NOT_LP64(12);
 1357 }
 1358 
 1359 int MacroAssembler::ic_check(int end_alignment) {
 1360   Register receiver = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
 1361   Register data = rax;
 1362   Register temp = LP64_ONLY(rscratch1) NOT_LP64(rbx);
 1363 
 1364   // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed
 1365   // before the inline cache check, so we don't have to execute any nop instructions when dispatching
 1366   // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align
 1367   // before the inline cache check here, and not after
 1368   align(end_alignment, offset() + ic_check_size());
 1369 
 1370   int uep_offset = offset();
 1371 
 1372 #ifdef _LP64
 1373   if (UseCompactObjectHeaders) {
 1374     load_narrow_klass_compact(temp, receiver);
 1375     cmpl(temp, Address(data, CompiledICData::speculated_klass_offset()));
 1376   } else
 1377 #endif
 1378   if (UseCompressedClassPointers) {
 1379     movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 1380     cmpl(temp, Address(data, CompiledICData::speculated_klass_offset()));
 1381   } else {
 1382     movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 1383     cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset()));
 1384   }
 1385 
 1386   // if inline cache check fails, then jump to runtime routine
 1387   jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 1388   assert((offset() % end_alignment) == 0, "Misaligned verified entry point (%d, %d, %d)", uep_offset, offset(), end_alignment);
 1389 
 1390   return uep_offset;
 1391 }
 1392 
 1393 void MacroAssembler::emit_static_call_stub() {
 1394   // Static stub relocation also tags the Method* in the code-stream.
 1395   mov_metadata(rbx, (Metadata*) nullptr);  // Method is zapped till fixup time.
 1396   // This is recognized as unresolved by relocs/nativeinst/ic code.
 1397   jump(RuntimeAddress(pc()));
 1398 }
 1399 
 1400 // Implementation of call_VM versions
 1401 
 1402 void MacroAssembler::call_VM(Register oop_result,
 1403                              address entry_point,
 1404                              bool check_exceptions) {
 1405   Label C, E;
 1406   call(C, relocInfo::none);
 1407   jmp(E);
 1408 
 1409   bind(C);
 1410   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
 1411   ret(0);
 1412 
 1413   bind(E);
 1414 }
 1415 
 1416 void MacroAssembler::call_VM(Register oop_result,
 1417                              address entry_point,
 1418                              Register arg_1,
 1419                              bool check_exceptions) {
 1420   Label C, E;
 1421   call(C, relocInfo::none);
 1422   jmp(E);
 1423 
 1424   bind(C);
 1425   pass_arg1(this, arg_1);
 1426   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
 1427   ret(0);
 1428 
 1429   bind(E);
 1430 }
 1431 
 1432 void MacroAssembler::call_VM(Register oop_result,
 1433                              address entry_point,
 1434                              Register arg_1,
 1435                              Register arg_2,
 1436                              bool check_exceptions) {
 1437   Label C, E;
 1438   call(C, relocInfo::none);
 1439   jmp(E);
 1440 
 1441   bind(C);
 1442 
 1443   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1444 
 1445   pass_arg2(this, arg_2);
 1446   pass_arg1(this, arg_1);
 1447   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
 1448   ret(0);
 1449 
 1450   bind(E);
 1451 }
 1452 
 1453 void MacroAssembler::call_VM(Register oop_result,
 1454                              address entry_point,
 1455                              Register arg_1,
 1456                              Register arg_2,
 1457                              Register arg_3,
 1458                              bool check_exceptions) {
 1459   Label C, E;
 1460   call(C, relocInfo::none);
 1461   jmp(E);
 1462 
 1463   bind(C);
 1464 
 1465   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1466   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1467   pass_arg3(this, arg_3);
 1468   pass_arg2(this, arg_2);
 1469   pass_arg1(this, arg_1);
 1470   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
 1471   ret(0);
 1472 
 1473   bind(E);
 1474 }
 1475 
 1476 void MacroAssembler::call_VM(Register oop_result,
 1477                              Register last_java_sp,
 1478                              address entry_point,
 1479                              int number_of_arguments,
 1480                              bool check_exceptions) {
 1481   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
 1482   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 1483 }
 1484 
 1485 void MacroAssembler::call_VM(Register oop_result,
 1486                              Register last_java_sp,
 1487                              address entry_point,
 1488                              Register arg_1,
 1489                              bool check_exceptions) {
 1490   pass_arg1(this, arg_1);
 1491   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 1492 }
 1493 
 1494 void MacroAssembler::call_VM(Register oop_result,
 1495                              Register last_java_sp,
 1496                              address entry_point,
 1497                              Register arg_1,
 1498                              Register arg_2,
 1499                              bool check_exceptions) {
 1500 
 1501   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1502   pass_arg2(this, arg_2);
 1503   pass_arg1(this, arg_1);
 1504   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 1505 }
 1506 
 1507 void MacroAssembler::call_VM(Register oop_result,
 1508                              Register last_java_sp,
 1509                              address entry_point,
 1510                              Register arg_1,
 1511                              Register arg_2,
 1512                              Register arg_3,
 1513                              bool check_exceptions) {
 1514   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1515   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1516   pass_arg3(this, arg_3);
 1517   pass_arg2(this, arg_2);
 1518   pass_arg1(this, arg_1);
 1519   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 1520 }
 1521 
 1522 void MacroAssembler::super_call_VM(Register oop_result,
 1523                                    Register last_java_sp,
 1524                                    address entry_point,
 1525                                    int number_of_arguments,
 1526                                    bool check_exceptions) {
 1527   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
 1528   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 1529 }
 1530 
 1531 void MacroAssembler::super_call_VM(Register oop_result,
 1532                                    Register last_java_sp,
 1533                                    address entry_point,
 1534                                    Register arg_1,
 1535                                    bool check_exceptions) {
 1536   pass_arg1(this, arg_1);
 1537   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 1538 }
 1539 
 1540 void MacroAssembler::super_call_VM(Register oop_result,
 1541                                    Register last_java_sp,
 1542                                    address entry_point,
 1543                                    Register arg_1,
 1544                                    Register arg_2,
 1545                                    bool check_exceptions) {
 1546 
 1547   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1548   pass_arg2(this, arg_2);
 1549   pass_arg1(this, arg_1);
 1550   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 1551 }
 1552 
 1553 void MacroAssembler::super_call_VM(Register oop_result,
 1554                                    Register last_java_sp,
 1555                                    address entry_point,
 1556                                    Register arg_1,
 1557                                    Register arg_2,
 1558                                    Register arg_3,
 1559                                    bool check_exceptions) {
 1560   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1561   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1562   pass_arg3(this, arg_3);
 1563   pass_arg2(this, arg_2);
 1564   pass_arg1(this, arg_1);
 1565   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 1566 }
 1567 
 1568 void MacroAssembler::call_VM_base(Register oop_result,
 1569                                   Register java_thread,
 1570                                   Register last_java_sp,
 1571                                   address  entry_point,
 1572                                   int      number_of_arguments,
 1573                                   bool     check_exceptions) {
 1574   // determine java_thread register
 1575   if (!java_thread->is_valid()) {
 1576 #ifdef _LP64
 1577     java_thread = r15_thread;
 1578 #else
 1579     java_thread = rdi;
 1580     get_thread(java_thread);
 1581 #endif // LP64
 1582   }
 1583   // determine last_java_sp register
 1584   if (!last_java_sp->is_valid()) {
 1585     last_java_sp = rsp;
 1586   }
 1587   // debugging support
 1588   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
 1589   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
 1590 #ifdef ASSERT
 1591   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
 1592   // r12 is the heapbase.
 1593   LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
 1594 #endif // ASSERT
 1595 
 1596   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
 1597   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
 1598 
 1599   // push java thread (becomes first argument of C function)
 1600 
 1601   NOT_LP64(push(java_thread); number_of_arguments++);
 1602   LP64_ONLY(mov(c_rarg0, r15_thread));
 1603 
 1604   // set last Java frame before call
 1605   assert(last_java_sp != rbp, "can't use ebp/rbp");
 1606 
 1607   // Only interpreter should have to set fp
 1608   set_last_Java_frame(java_thread, last_java_sp, rbp, nullptr, rscratch1);
 1609 
 1610   // do the call, remove parameters
 1611   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 1612 
 1613   // restore the thread (cannot use the pushed argument since arguments
 1614   // may be overwritten by C code generated by an optimizing compiler);
 1615   // however can use the register value directly if it is callee saved.
 1616   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
 1617     // rdi & rsi (also r15) are callee saved -> nothing to do
 1618 #ifdef ASSERT
 1619     guarantee(java_thread != rax, "change this code");
 1620     push(rax);
 1621     { Label L;
 1622       get_thread(rax);
 1623       cmpptr(java_thread, rax);
 1624       jcc(Assembler::equal, L);
 1625       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
 1626       bind(L);
 1627     }
 1628     pop(rax);
 1629 #endif
 1630   } else {
 1631     get_thread(java_thread);
 1632   }
 1633   // reset last Java frame
 1634   // Only interpreter should have to clear fp
 1635   reset_last_Java_frame(java_thread, true);
 1636 
 1637    // C++ interp handles this in the interpreter
 1638   check_and_handle_popframe(java_thread);
 1639   check_and_handle_earlyret(java_thread);
 1640 
 1641   if (check_exceptions) {
 1642     // check for pending exceptions (java_thread is set upon return)
 1643     cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
 1644 #ifndef _LP64
 1645     jump_cc(Assembler::notEqual,
 1646             RuntimeAddress(StubRoutines::forward_exception_entry()));
 1647 #else
 1648     // This used to conditionally jump to forward_exception however it is
 1649     // possible if we relocate that the branch will not reach. So we must jump
 1650     // around so we can always reach
 1651 
 1652     Label ok;
 1653     jcc(Assembler::equal, ok);
 1654     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 1655     bind(ok);
 1656 #endif // LP64
 1657   }
 1658 
 1659   // get oop result if there is one and reset the value in the thread
 1660   if (oop_result->is_valid()) {
 1661     get_vm_result(oop_result, java_thread);
 1662   }
 1663 }
 1664 
 1665 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
 1666 
 1667   // Calculate the value for last_Java_sp
 1668   // somewhat subtle. call_VM does an intermediate call
 1669   // which places a return address on the stack just under the
 1670   // stack pointer as the user finished with it. This allows
 1671   // use to retrieve last_Java_pc from last_Java_sp[-1].
 1672   // On 32bit we then have to push additional args on the stack to accomplish
 1673   // the actual requested call. On 64bit call_VM only can use register args
 1674   // so the only extra space is the return address that call_VM created.
 1675   // This hopefully explains the calculations here.
 1676 
 1677 #ifdef _LP64
 1678   // We've pushed one address, correct last_Java_sp
 1679   lea(rax, Address(rsp, wordSize));
 1680 #else
 1681   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
 1682 #endif // LP64
 1683 
 1684   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
 1685 
 1686 }
 1687 
 1688 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
 1689 void MacroAssembler::call_VM_leaf0(address entry_point) {
 1690   MacroAssembler::call_VM_leaf_base(entry_point, 0);
 1691 }
 1692 
 1693 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
 1694   call_VM_leaf_base(entry_point, number_of_arguments);
 1695 }
 1696 
 1697 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
 1698   pass_arg0(this, arg_0);
 1699   call_VM_leaf(entry_point, 1);
 1700 }
 1701 
 1702 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
 1703 
 1704   LP64_ONLY(assert_different_registers(arg_0, c_rarg1));
 1705   pass_arg1(this, arg_1);
 1706   pass_arg0(this, arg_0);
 1707   call_VM_leaf(entry_point, 2);
 1708 }
 1709 
 1710 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
 1711   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2));
 1712   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1713   pass_arg2(this, arg_2);
 1714   pass_arg1(this, arg_1);
 1715   pass_arg0(this, arg_0);
 1716   call_VM_leaf(entry_point, 3);
 1717 }
 1718 
 1719 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
 1720   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3));
 1721   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1722   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1723   pass_arg3(this, arg_3);
 1724   pass_arg2(this, arg_2);
 1725   pass_arg1(this, arg_1);
 1726   pass_arg0(this, arg_0);
 1727   call_VM_leaf(entry_point, 3);
 1728 }
 1729 
 1730 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
 1731   pass_arg0(this, arg_0);
 1732   MacroAssembler::call_VM_leaf_base(entry_point, 1);
 1733 }
 1734 
 1735 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
 1736   LP64_ONLY(assert_different_registers(arg_0, c_rarg1));
 1737   pass_arg1(this, arg_1);
 1738   pass_arg0(this, arg_0);
 1739   MacroAssembler::call_VM_leaf_base(entry_point, 2);
 1740 }
 1741 
 1742 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
 1743   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2));
 1744   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1745   pass_arg2(this, arg_2);
 1746   pass_arg1(this, arg_1);
 1747   pass_arg0(this, arg_0);
 1748   MacroAssembler::call_VM_leaf_base(entry_point, 3);
 1749 }
 1750 
 1751 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
 1752   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3));
 1753   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1754   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1755   pass_arg3(this, arg_3);
 1756   pass_arg2(this, arg_2);
 1757   pass_arg1(this, arg_1);
 1758   pass_arg0(this, arg_0);
 1759   MacroAssembler::call_VM_leaf_base(entry_point, 4);
 1760 }
 1761 
 1762 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
 1763   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
 1764   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
 1765   verify_oop_msg(oop_result, "broken oop in call_VM_base");
 1766 }
 1767 
 1768 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
 1769   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
 1770   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 1771 }
 1772 
 1773 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
 1774 }
 1775 
 1776 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
 1777 }
 1778 
 1779 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) {
 1780   assert(rscratch != noreg || always_reachable(src1), "missing");
 1781 
 1782   if (reachable(src1)) {
 1783     cmpl(as_Address(src1), imm);
 1784   } else {
 1785     lea(rscratch, src1);
 1786     cmpl(Address(rscratch, 0), imm);
 1787   }
 1788 }
 1789 
 1790 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) {
 1791   assert(!src2.is_lval(), "use cmpptr");
 1792   assert(rscratch != noreg || always_reachable(src2), "missing");
 1793 
 1794   if (reachable(src2)) {
 1795     cmpl(src1, as_Address(src2));
 1796   } else {
 1797     lea(rscratch, src2);
 1798     cmpl(src1, Address(rscratch, 0));
 1799   }
 1800 }
 1801 
 1802 void MacroAssembler::cmp32(Register src1, int32_t imm) {
 1803   Assembler::cmpl(src1, imm);
 1804 }
 1805 
 1806 void MacroAssembler::cmp32(Register src1, Address src2) {
 1807   Assembler::cmpl(src1, src2);
 1808 }
 1809 
 1810 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
 1811   ucomisd(opr1, opr2);
 1812 
 1813   Label L;
 1814   if (unordered_is_less) {
 1815     movl(dst, -1);
 1816     jcc(Assembler::parity, L);
 1817     jcc(Assembler::below , L);
 1818     movl(dst, 0);
 1819     jcc(Assembler::equal , L);
 1820     increment(dst);
 1821   } else { // unordered is greater
 1822     movl(dst, 1);
 1823     jcc(Assembler::parity, L);
 1824     jcc(Assembler::above , L);
 1825     movl(dst, 0);
 1826     jcc(Assembler::equal , L);
 1827     decrementl(dst);
 1828   }
 1829   bind(L);
 1830 }
 1831 
 1832 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
 1833   ucomiss(opr1, opr2);
 1834 
 1835   Label L;
 1836   if (unordered_is_less) {
 1837     movl(dst, -1);
 1838     jcc(Assembler::parity, L);
 1839     jcc(Assembler::below , L);
 1840     movl(dst, 0);
 1841     jcc(Assembler::equal , L);
 1842     increment(dst);
 1843   } else { // unordered is greater
 1844     movl(dst, 1);
 1845     jcc(Assembler::parity, L);
 1846     jcc(Assembler::above , L);
 1847     movl(dst, 0);
 1848     jcc(Assembler::equal , L);
 1849     decrementl(dst);
 1850   }
 1851   bind(L);
 1852 }
 1853 
 1854 
 1855 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) {
 1856   assert(rscratch != noreg || always_reachable(src1), "missing");
 1857 
 1858   if (reachable(src1)) {
 1859     cmpb(as_Address(src1), imm);
 1860   } else {
 1861     lea(rscratch, src1);
 1862     cmpb(Address(rscratch, 0), imm);
 1863   }
 1864 }
 1865 
 1866 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) {
 1867 #ifdef _LP64
 1868   assert(rscratch != noreg || always_reachable(src2), "missing");
 1869 
 1870   if (src2.is_lval()) {
 1871     movptr(rscratch, src2);
 1872     Assembler::cmpq(src1, rscratch);
 1873   } else if (reachable(src2)) {
 1874     cmpq(src1, as_Address(src2));
 1875   } else {
 1876     lea(rscratch, src2);
 1877     Assembler::cmpq(src1, Address(rscratch, 0));
 1878   }
 1879 #else
 1880   assert(rscratch == noreg, "not needed");
 1881   if (src2.is_lval()) {
 1882     cmp_literal32(src1, (int32_t)src2.target(), src2.rspec());
 1883   } else {
 1884     cmpl(src1, as_Address(src2));
 1885   }
 1886 #endif // _LP64
 1887 }
 1888 
 1889 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) {
 1890   assert(src2.is_lval(), "not a mem-mem compare");
 1891 #ifdef _LP64
 1892   // moves src2's literal address
 1893   movptr(rscratch, src2);
 1894   Assembler::cmpq(src1, rscratch);
 1895 #else
 1896   assert(rscratch == noreg, "not needed");
 1897   cmp_literal32(src1, (int32_t)src2.target(), src2.rspec());
 1898 #endif // _LP64
 1899 }
 1900 
 1901 void MacroAssembler::cmpoop(Register src1, Register src2) {
 1902   cmpptr(src1, src2);
 1903 }
 1904 
 1905 void MacroAssembler::cmpoop(Register src1, Address src2) {
 1906   cmpptr(src1, src2);
 1907 }
 1908 
 1909 #ifdef _LP64
 1910 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) {
 1911   movoop(rscratch, src2);
 1912   cmpptr(src1, rscratch);
 1913 }
 1914 #endif
 1915 
 1916 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) {
 1917   assert(rscratch != noreg || always_reachable(adr), "missing");
 1918 
 1919   if (reachable(adr)) {
 1920     lock();
 1921     cmpxchgptr(reg, as_Address(adr));
 1922   } else {
 1923     lea(rscratch, adr);
 1924     lock();
 1925     cmpxchgptr(reg, Address(rscratch, 0));
 1926   }
 1927 }
 1928 
 1929 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
 1930   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
 1931 }
 1932 
 1933 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1934   assert(rscratch != noreg || always_reachable(src), "missing");
 1935 
 1936   if (reachable(src)) {
 1937     Assembler::comisd(dst, as_Address(src));
 1938   } else {
 1939     lea(rscratch, src);
 1940     Assembler::comisd(dst, Address(rscratch, 0));
 1941   }
 1942 }
 1943 
 1944 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1945   assert(rscratch != noreg || always_reachable(src), "missing");
 1946 
 1947   if (reachable(src)) {
 1948     Assembler::comiss(dst, as_Address(src));
 1949   } else {
 1950     lea(rscratch, src);
 1951     Assembler::comiss(dst, Address(rscratch, 0));
 1952   }
 1953 }
 1954 
 1955 
 1956 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) {
 1957   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1958 
 1959   Condition negated_cond = negate_condition(cond);
 1960   Label L;
 1961   jcc(negated_cond, L);
 1962   pushf(); // Preserve flags
 1963   atomic_incl(counter_addr, rscratch);
 1964   popf();
 1965   bind(L);
 1966 }
 1967 
 1968 int MacroAssembler::corrected_idivl(Register reg) {
 1969   // Full implementation of Java idiv and irem; checks for
 1970   // special case as described in JVM spec., p.243 & p.271.
 1971   // The function returns the (pc) offset of the idivl
 1972   // instruction - may be needed for implicit exceptions.
 1973   //
 1974   //         normal case                           special case
 1975   //
 1976   // input : rax,: dividend                         min_int
 1977   //         reg: divisor   (may not be rax,/rdx)   -1
 1978   //
 1979   // output: rax,: quotient  (= rax, idiv reg)       min_int
 1980   //         rdx: remainder (= rax, irem reg)       0
 1981   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
 1982   const int min_int = 0x80000000;
 1983   Label normal_case, special_case;
 1984 
 1985   // check for special case
 1986   cmpl(rax, min_int);
 1987   jcc(Assembler::notEqual, normal_case);
 1988   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
 1989   cmpl(reg, -1);
 1990   jcc(Assembler::equal, special_case);
 1991 
 1992   // handle normal case
 1993   bind(normal_case);
 1994   cdql();
 1995   int idivl_offset = offset();
 1996   idivl(reg);
 1997 
 1998   // normal and special case exit
 1999   bind(special_case);
 2000 
 2001   return idivl_offset;
 2002 }
 2003 
 2004 
 2005 
 2006 void MacroAssembler::decrementl(Register reg, int value) {
 2007   if (value == min_jint) {subl(reg, value) ; return; }
 2008   if (value <  0) { incrementl(reg, -value); return; }
 2009   if (value == 0) {                        ; return; }
 2010   if (value == 1 && UseIncDec) { decl(reg) ; return; }
 2011   /* else */      { subl(reg, value)       ; return; }
 2012 }
 2013 
 2014 void MacroAssembler::decrementl(Address dst, int value) {
 2015   if (value == min_jint) {subl(dst, value) ; return; }
 2016   if (value <  0) { incrementl(dst, -value); return; }
 2017   if (value == 0) {                        ; return; }
 2018   if (value == 1 && UseIncDec) { decl(dst) ; return; }
 2019   /* else */      { subl(dst, value)       ; return; }
 2020 }
 2021 
 2022 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
 2023   assert(shift_value > 0, "illegal shift value");
 2024   Label _is_positive;
 2025   testl (reg, reg);
 2026   jcc (Assembler::positive, _is_positive);
 2027   int offset = (1 << shift_value) - 1 ;
 2028 
 2029   if (offset == 1) {
 2030     incrementl(reg);
 2031   } else {
 2032     addl(reg, offset);
 2033   }
 2034 
 2035   bind (_is_positive);
 2036   sarl(reg, shift_value);
 2037 }
 2038 
 2039 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2040   assert(rscratch != noreg || always_reachable(src), "missing");
 2041 
 2042   if (reachable(src)) {
 2043     Assembler::divsd(dst, as_Address(src));
 2044   } else {
 2045     lea(rscratch, src);
 2046     Assembler::divsd(dst, Address(rscratch, 0));
 2047   }
 2048 }
 2049 
 2050 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2051   assert(rscratch != noreg || always_reachable(src), "missing");
 2052 
 2053   if (reachable(src)) {
 2054     Assembler::divss(dst, as_Address(src));
 2055   } else {
 2056     lea(rscratch, src);
 2057     Assembler::divss(dst, Address(rscratch, 0));
 2058   }
 2059 }
 2060 
 2061 void MacroAssembler::enter() {
 2062   push(rbp);
 2063   mov(rbp, rsp);
 2064 }
 2065 
 2066 void MacroAssembler::post_call_nop() {
 2067   if (!Continuations::enabled()) {
 2068     return;
 2069   }
 2070   InstructionMark im(this);
 2071   relocate(post_call_nop_Relocation::spec());
 2072   InlineSkippedInstructionsCounter skipCounter(this);
 2073   emit_int8((uint8_t)0x0f);
 2074   emit_int8((uint8_t)0x1f);
 2075   emit_int8((uint8_t)0x84);
 2076   emit_int8((uint8_t)0x00);
 2077   emit_int32(0x00);
 2078 }
 2079 
 2080 // A 5 byte nop that is safe for patching (see patch_verified_entry)
 2081 void MacroAssembler::fat_nop() {
 2082   if (UseAddressNop) {
 2083     addr_nop_5();
 2084   } else {
 2085     emit_int8((uint8_t)0x26); // es:
 2086     emit_int8((uint8_t)0x2e); // cs:
 2087     emit_int8((uint8_t)0x64); // fs:
 2088     emit_int8((uint8_t)0x65); // gs:
 2089     emit_int8((uint8_t)0x90);
 2090   }
 2091 }
 2092 
 2093 #ifndef _LP64
 2094 void MacroAssembler::fcmp(Register tmp) {
 2095   fcmp(tmp, 1, true, true);
 2096 }
 2097 
 2098 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
 2099   assert(!pop_right || pop_left, "usage error");
 2100   if (VM_Version::supports_cmov()) {
 2101     assert(tmp == noreg, "unneeded temp");
 2102     if (pop_left) {
 2103       fucomip(index);
 2104     } else {
 2105       fucomi(index);
 2106     }
 2107     if (pop_right) {
 2108       fpop();
 2109     }
 2110   } else {
 2111     assert(tmp != noreg, "need temp");
 2112     if (pop_left) {
 2113       if (pop_right) {
 2114         fcompp();
 2115       } else {
 2116         fcomp(index);
 2117       }
 2118     } else {
 2119       fcom(index);
 2120     }
 2121     // convert FPU condition into eflags condition via rax,
 2122     save_rax(tmp);
 2123     fwait(); fnstsw_ax();
 2124     sahf();
 2125     restore_rax(tmp);
 2126   }
 2127   // condition codes set as follows:
 2128   //
 2129   // CF (corresponds to C0) if x < y
 2130   // PF (corresponds to C2) if unordered
 2131   // ZF (corresponds to C3) if x = y
 2132 }
 2133 
 2134 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
 2135   fcmp2int(dst, unordered_is_less, 1, true, true);
 2136 }
 2137 
 2138 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
 2139   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
 2140   Label L;
 2141   if (unordered_is_less) {
 2142     movl(dst, -1);
 2143     jcc(Assembler::parity, L);
 2144     jcc(Assembler::below , L);
 2145     movl(dst, 0);
 2146     jcc(Assembler::equal , L);
 2147     increment(dst);
 2148   } else { // unordered is greater
 2149     movl(dst, 1);
 2150     jcc(Assembler::parity, L);
 2151     jcc(Assembler::above , L);
 2152     movl(dst, 0);
 2153     jcc(Assembler::equal , L);
 2154     decrementl(dst);
 2155   }
 2156   bind(L);
 2157 }
 2158 
 2159 void MacroAssembler::fld_d(AddressLiteral src) {
 2160   fld_d(as_Address(src));
 2161 }
 2162 
 2163 void MacroAssembler::fld_s(AddressLiteral src) {
 2164   fld_s(as_Address(src));
 2165 }
 2166 
 2167 void MacroAssembler::fldcw(AddressLiteral src) {
 2168   fldcw(as_Address(src));
 2169 }
 2170 
 2171 void MacroAssembler::fpop() {
 2172   ffree();
 2173   fincstp();
 2174 }
 2175 
 2176 void MacroAssembler::fremr(Register tmp) {
 2177   save_rax(tmp);
 2178   { Label L;
 2179     bind(L);
 2180     fprem();
 2181     fwait(); fnstsw_ax();
 2182     sahf();
 2183     jcc(Assembler::parity, L);
 2184   }
 2185   restore_rax(tmp);
 2186   // Result is in ST0.
 2187   // Note: fxch & fpop to get rid of ST1
 2188   // (otherwise FPU stack could overflow eventually)
 2189   fxch(1);
 2190   fpop();
 2191 }
 2192 
 2193 void MacroAssembler::empty_FPU_stack() {
 2194   if (VM_Version::supports_mmx()) {
 2195     emms();
 2196   } else {
 2197     for (int i = 8; i-- > 0; ) ffree(i);
 2198   }
 2199 }
 2200 #endif // !LP64
 2201 
 2202 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2203   assert(rscratch != noreg || always_reachable(src), "missing");
 2204   if (reachable(src)) {
 2205     Assembler::mulpd(dst, as_Address(src));
 2206   } else {
 2207     lea(rscratch, src);
 2208     Assembler::mulpd(dst, Address(rscratch, 0));
 2209   }
 2210 }
 2211 
 2212 void MacroAssembler::load_float(Address src) {
 2213 #ifdef _LP64
 2214   movflt(xmm0, src);
 2215 #else
 2216   if (UseSSE >= 1) {
 2217     movflt(xmm0, src);
 2218   } else {
 2219     fld_s(src);
 2220   }
 2221 #endif // LP64
 2222 }
 2223 
 2224 void MacroAssembler::store_float(Address dst) {
 2225 #ifdef _LP64
 2226   movflt(dst, xmm0);
 2227 #else
 2228   if (UseSSE >= 1) {
 2229     movflt(dst, xmm0);
 2230   } else {
 2231     fstp_s(dst);
 2232   }
 2233 #endif // LP64
 2234 }
 2235 
 2236 void MacroAssembler::load_double(Address src) {
 2237 #ifdef _LP64
 2238   movdbl(xmm0, src);
 2239 #else
 2240   if (UseSSE >= 2) {
 2241     movdbl(xmm0, src);
 2242   } else {
 2243     fld_d(src);
 2244   }
 2245 #endif // LP64
 2246 }
 2247 
 2248 void MacroAssembler::store_double(Address dst) {
 2249 #ifdef _LP64
 2250   movdbl(dst, xmm0);
 2251 #else
 2252   if (UseSSE >= 2) {
 2253     movdbl(dst, xmm0);
 2254   } else {
 2255     fstp_d(dst);
 2256   }
 2257 #endif // LP64
 2258 }
 2259 
 2260 // dst = c = a * b + c
 2261 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
 2262   Assembler::vfmadd231sd(c, a, b);
 2263   if (dst != c) {
 2264     movdbl(dst, c);
 2265   }
 2266 }
 2267 
 2268 // dst = c = a * b + c
 2269 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
 2270   Assembler::vfmadd231ss(c, a, b);
 2271   if (dst != c) {
 2272     movflt(dst, c);
 2273   }
 2274 }
 2275 
 2276 // dst = c = a * b + c
 2277 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
 2278   Assembler::vfmadd231pd(c, a, b, vector_len);
 2279   if (dst != c) {
 2280     vmovdqu(dst, c);
 2281   }
 2282 }
 2283 
 2284 // dst = c = a * b + c
 2285 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
 2286   Assembler::vfmadd231ps(c, a, b, vector_len);
 2287   if (dst != c) {
 2288     vmovdqu(dst, c);
 2289   }
 2290 }
 2291 
 2292 // dst = c = a * b + c
 2293 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
 2294   Assembler::vfmadd231pd(c, a, b, vector_len);
 2295   if (dst != c) {
 2296     vmovdqu(dst, c);
 2297   }
 2298 }
 2299 
 2300 // dst = c = a * b + c
 2301 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
 2302   Assembler::vfmadd231ps(c, a, b, vector_len);
 2303   if (dst != c) {
 2304     vmovdqu(dst, c);
 2305   }
 2306 }
 2307 
 2308 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) {
 2309   assert(rscratch != noreg || always_reachable(dst), "missing");
 2310 
 2311   if (reachable(dst)) {
 2312     incrementl(as_Address(dst));
 2313   } else {
 2314     lea(rscratch, dst);
 2315     incrementl(Address(rscratch, 0));
 2316   }
 2317 }
 2318 
 2319 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) {
 2320   incrementl(as_Address(dst, rscratch));
 2321 }
 2322 
 2323 void MacroAssembler::incrementl(Register reg, int value) {
 2324   if (value == min_jint) {addl(reg, value) ; return; }
 2325   if (value <  0) { decrementl(reg, -value); return; }
 2326   if (value == 0) {                        ; return; }
 2327   if (value == 1 && UseIncDec) { incl(reg) ; return; }
 2328   /* else */      { addl(reg, value)       ; return; }
 2329 }
 2330 
 2331 void MacroAssembler::incrementl(Address dst, int value) {
 2332   if (value == min_jint) {addl(dst, value) ; return; }
 2333   if (value <  0) { decrementl(dst, -value); return; }
 2334   if (value == 0) {                        ; return; }
 2335   if (value == 1 && UseIncDec) { incl(dst) ; return; }
 2336   /* else */      { addl(dst, value)       ; return; }
 2337 }
 2338 
 2339 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) {
 2340   assert(rscratch != noreg || always_reachable(dst), "missing");
 2341   assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump");
 2342   if (reachable(dst)) {
 2343     jmp_literal(dst.target(), dst.rspec());
 2344   } else {
 2345     lea(rscratch, dst);
 2346     jmp(rscratch);
 2347   }
 2348 }
 2349 
 2350 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) {
 2351   assert(rscratch != noreg || always_reachable(dst), "missing");
 2352   assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc");
 2353   if (reachable(dst)) {
 2354     InstructionMark im(this);
 2355     relocate(dst.reloc());
 2356     const int short_size = 2;
 2357     const int long_size = 6;
 2358     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
 2359     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
 2360       // 0111 tttn #8-bit disp
 2361       emit_int8(0x70 | cc);
 2362       emit_int8((offs - short_size) & 0xFF);
 2363     } else {
 2364       // 0000 1111 1000 tttn #32-bit disp
 2365       emit_int8(0x0F);
 2366       emit_int8((unsigned char)(0x80 | cc));
 2367       emit_int32(offs - long_size);
 2368     }
 2369   } else {
 2370 #ifdef ASSERT
 2371     warning("reversing conditional branch");
 2372 #endif /* ASSERT */
 2373     Label skip;
 2374     jccb(reverse[cc], skip);
 2375     lea(rscratch, dst);
 2376     Assembler::jmp(rscratch);
 2377     bind(skip);
 2378   }
 2379 }
 2380 
 2381 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) {
 2382   assert(rscratch != noreg || always_reachable(src), "missing");
 2383 
 2384   if (reachable(src)) {
 2385     Assembler::ldmxcsr(as_Address(src));
 2386   } else {
 2387     lea(rscratch, src);
 2388     Assembler::ldmxcsr(Address(rscratch, 0));
 2389   }
 2390 }
 2391 
 2392 int MacroAssembler::load_signed_byte(Register dst, Address src) {
 2393   int off;
 2394   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 2395     off = offset();
 2396     movsbl(dst, src); // movsxb
 2397   } else {
 2398     off = load_unsigned_byte(dst, src);
 2399     shll(dst, 24);
 2400     sarl(dst, 24);
 2401   }
 2402   return off;
 2403 }
 2404 
 2405 // Note: load_signed_short used to be called load_signed_word.
 2406 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
 2407 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
 2408 // The term "word" in HotSpot means a 32- or 64-bit machine word.
 2409 int MacroAssembler::load_signed_short(Register dst, Address src) {
 2410   int off;
 2411   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 2412     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
 2413     // version but this is what 64bit has always done. This seems to imply
 2414     // that users are only using 32bits worth.
 2415     off = offset();
 2416     movswl(dst, src); // movsxw
 2417   } else {
 2418     off = load_unsigned_short(dst, src);
 2419     shll(dst, 16);
 2420     sarl(dst, 16);
 2421   }
 2422   return off;
 2423 }
 2424 
 2425 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
 2426   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
 2427   // and "3.9 Partial Register Penalties", p. 22).
 2428   int off;
 2429   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
 2430     off = offset();
 2431     movzbl(dst, src); // movzxb
 2432   } else {
 2433     xorl(dst, dst);
 2434     off = offset();
 2435     movb(dst, src);
 2436   }
 2437   return off;
 2438 }
 2439 
 2440 // Note: load_unsigned_short used to be called load_unsigned_word.
 2441 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
 2442   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
 2443   // and "3.9 Partial Register Penalties", p. 22).
 2444   int off;
 2445   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
 2446     off = offset();
 2447     movzwl(dst, src); // movzxw
 2448   } else {
 2449     xorl(dst, dst);
 2450     off = offset();
 2451     movw(dst, src);
 2452   }
 2453   return off;
 2454 }
 2455 
 2456 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
 2457   switch (size_in_bytes) {
 2458 #ifndef _LP64
 2459   case  8:
 2460     assert(dst2 != noreg, "second dest register required");
 2461     movl(dst,  src);
 2462     movl(dst2, src.plus_disp(BytesPerInt));
 2463     break;
 2464 #else
 2465   case  8:  movq(dst, src); break;
 2466 #endif
 2467   case  4:  movl(dst, src); break;
 2468   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
 2469   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
 2470   default:  ShouldNotReachHere();
 2471   }
 2472 }
 2473 
 2474 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
 2475   switch (size_in_bytes) {
 2476 #ifndef _LP64
 2477   case  8:
 2478     assert(src2 != noreg, "second source register required");
 2479     movl(dst,                        src);
 2480     movl(dst.plus_disp(BytesPerInt), src2);
 2481     break;
 2482 #else
 2483   case  8:  movq(dst, src); break;
 2484 #endif
 2485   case  4:  movl(dst, src); break;
 2486   case  2:  movw(dst, src); break;
 2487   case  1:  movb(dst, src); break;
 2488   default:  ShouldNotReachHere();
 2489   }
 2490 }
 2491 
 2492 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) {
 2493   assert(rscratch != noreg || always_reachable(dst), "missing");
 2494 
 2495   if (reachable(dst)) {
 2496     movl(as_Address(dst), src);
 2497   } else {
 2498     lea(rscratch, dst);
 2499     movl(Address(rscratch, 0), src);
 2500   }
 2501 }
 2502 
 2503 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
 2504   if (reachable(src)) {
 2505     movl(dst, as_Address(src));
 2506   } else {
 2507     lea(dst, src);
 2508     movl(dst, Address(dst, 0));
 2509   }
 2510 }
 2511 
 2512 // C++ bool manipulation
 2513 
 2514 void MacroAssembler::movbool(Register dst, Address src) {
 2515   if(sizeof(bool) == 1)
 2516     movb(dst, src);
 2517   else if(sizeof(bool) == 2)
 2518     movw(dst, src);
 2519   else if(sizeof(bool) == 4)
 2520     movl(dst, src);
 2521   else
 2522     // unsupported
 2523     ShouldNotReachHere();
 2524 }
 2525 
 2526 void MacroAssembler::movbool(Address dst, bool boolconst) {
 2527   if(sizeof(bool) == 1)
 2528     movb(dst, (int) boolconst);
 2529   else if(sizeof(bool) == 2)
 2530     movw(dst, (int) boolconst);
 2531   else if(sizeof(bool) == 4)
 2532     movl(dst, (int) boolconst);
 2533   else
 2534     // unsupported
 2535     ShouldNotReachHere();
 2536 }
 2537 
 2538 void MacroAssembler::movbool(Address dst, Register src) {
 2539   if(sizeof(bool) == 1)
 2540     movb(dst, src);
 2541   else if(sizeof(bool) == 2)
 2542     movw(dst, src);
 2543   else if(sizeof(bool) == 4)
 2544     movl(dst, src);
 2545   else
 2546     // unsupported
 2547     ShouldNotReachHere();
 2548 }
 2549 
 2550 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2551   assert(rscratch != noreg || always_reachable(src), "missing");
 2552 
 2553   if (reachable(src)) {
 2554     movdl(dst, as_Address(src));
 2555   } else {
 2556     lea(rscratch, src);
 2557     movdl(dst, Address(rscratch, 0));
 2558   }
 2559 }
 2560 
 2561 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2562   assert(rscratch != noreg || always_reachable(src), "missing");
 2563 
 2564   if (reachable(src)) {
 2565     movq(dst, as_Address(src));
 2566   } else {
 2567     lea(rscratch, src);
 2568     movq(dst, Address(rscratch, 0));
 2569   }
 2570 }
 2571 
 2572 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2573   assert(rscratch != noreg || always_reachable(src), "missing");
 2574 
 2575   if (reachable(src)) {
 2576     if (UseXmmLoadAndClearUpper) {
 2577       movsd (dst, as_Address(src));
 2578     } else {
 2579       movlpd(dst, as_Address(src));
 2580     }
 2581   } else {
 2582     lea(rscratch, src);
 2583     if (UseXmmLoadAndClearUpper) {
 2584       movsd (dst, Address(rscratch, 0));
 2585     } else {
 2586       movlpd(dst, Address(rscratch, 0));
 2587     }
 2588   }
 2589 }
 2590 
 2591 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2592   assert(rscratch != noreg || always_reachable(src), "missing");
 2593 
 2594   if (reachable(src)) {
 2595     movss(dst, as_Address(src));
 2596   } else {
 2597     lea(rscratch, src);
 2598     movss(dst, Address(rscratch, 0));
 2599   }
 2600 }
 2601 
 2602 void MacroAssembler::movptr(Register dst, Register src) {
 2603   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2604 }
 2605 
 2606 void MacroAssembler::movptr(Register dst, Address src) {
 2607   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2608 }
 2609 
 2610 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 2611 void MacroAssembler::movptr(Register dst, intptr_t src) {
 2612 #ifdef _LP64
 2613   if (is_uimm32(src)) {
 2614     movl(dst, checked_cast<uint32_t>(src));
 2615   } else if (is_simm32(src)) {
 2616     movq(dst, checked_cast<int32_t>(src));
 2617   } else {
 2618     mov64(dst, src);
 2619   }
 2620 #else
 2621   movl(dst, src);
 2622 #endif
 2623 }
 2624 
 2625 void MacroAssembler::movptr(Address dst, Register src) {
 2626   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2627 }
 2628 
 2629 void MacroAssembler::movptr(Address dst, int32_t src) {
 2630   LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src));
 2631 }
 2632 
 2633 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
 2634   assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2635   Assembler::movdqu(dst, src);
 2636 }
 2637 
 2638 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
 2639   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2640   Assembler::movdqu(dst, src);
 2641 }
 2642 
 2643 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
 2644   assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2645   Assembler::movdqu(dst, src);
 2646 }
 2647 
 2648 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2649   assert(rscratch != noreg || always_reachable(src), "missing");
 2650 
 2651   if (reachable(src)) {
 2652     movdqu(dst, as_Address(src));
 2653   } else {
 2654     lea(rscratch, src);
 2655     movdqu(dst, Address(rscratch, 0));
 2656   }
 2657 }
 2658 
 2659 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
 2660   assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2661   Assembler::vmovdqu(dst, src);
 2662 }
 2663 
 2664 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
 2665   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2666   Assembler::vmovdqu(dst, src);
 2667 }
 2668 
 2669 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
 2670   assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2671   Assembler::vmovdqu(dst, src);
 2672 }
 2673 
 2674 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2675   assert(rscratch != noreg || always_reachable(src), "missing");
 2676 
 2677   if (reachable(src)) {
 2678     vmovdqu(dst, as_Address(src));
 2679   }
 2680   else {
 2681     lea(rscratch, src);
 2682     vmovdqu(dst, Address(rscratch, 0));
 2683   }
 2684 }
 2685 
 2686 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2687   assert(rscratch != noreg || always_reachable(src), "missing");
 2688 
 2689   if (vector_len == AVX_512bit) {
 2690     evmovdquq(dst, src, AVX_512bit, rscratch);
 2691   } else if (vector_len == AVX_256bit) {
 2692     vmovdqu(dst, src, rscratch);
 2693   } else {
 2694     movdqu(dst, src, rscratch);
 2695   }
 2696 }
 2697 
 2698 void MacroAssembler::kmov(KRegister dst, Address src) {
 2699   if (VM_Version::supports_avx512bw()) {
 2700     kmovql(dst, src);
 2701   } else {
 2702     assert(VM_Version::supports_evex(), "");
 2703     kmovwl(dst, src);
 2704   }
 2705 }
 2706 
 2707 void MacroAssembler::kmov(Address dst, KRegister src) {
 2708   if (VM_Version::supports_avx512bw()) {
 2709     kmovql(dst, src);
 2710   } else {
 2711     assert(VM_Version::supports_evex(), "");
 2712     kmovwl(dst, src);
 2713   }
 2714 }
 2715 
 2716 void MacroAssembler::kmov(KRegister dst, KRegister src) {
 2717   if (VM_Version::supports_avx512bw()) {
 2718     kmovql(dst, src);
 2719   } else {
 2720     assert(VM_Version::supports_evex(), "");
 2721     kmovwl(dst, src);
 2722   }
 2723 }
 2724 
 2725 void MacroAssembler::kmov(Register dst, KRegister src) {
 2726   if (VM_Version::supports_avx512bw()) {
 2727     kmovql(dst, src);
 2728   } else {
 2729     assert(VM_Version::supports_evex(), "");
 2730     kmovwl(dst, src);
 2731   }
 2732 }
 2733 
 2734 void MacroAssembler::kmov(KRegister dst, Register src) {
 2735   if (VM_Version::supports_avx512bw()) {
 2736     kmovql(dst, src);
 2737   } else {
 2738     assert(VM_Version::supports_evex(), "");
 2739     kmovwl(dst, src);
 2740   }
 2741 }
 2742 
 2743 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) {
 2744   assert(rscratch != noreg || always_reachable(src), "missing");
 2745 
 2746   if (reachable(src)) {
 2747     kmovql(dst, as_Address(src));
 2748   } else {
 2749     lea(rscratch, src);
 2750     kmovql(dst, Address(rscratch, 0));
 2751   }
 2752 }
 2753 
 2754 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) {
 2755   assert(rscratch != noreg || always_reachable(src), "missing");
 2756 
 2757   if (reachable(src)) {
 2758     kmovwl(dst, as_Address(src));
 2759   } else {
 2760     lea(rscratch, src);
 2761     kmovwl(dst, Address(rscratch, 0));
 2762   }
 2763 }
 2764 
 2765 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge,
 2766                                int vector_len, Register rscratch) {
 2767   assert(rscratch != noreg || always_reachable(src), "missing");
 2768 
 2769   if (reachable(src)) {
 2770     Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len);
 2771   } else {
 2772     lea(rscratch, src);
 2773     Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len);
 2774   }
 2775 }
 2776 
 2777 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge,
 2778                                int vector_len, Register rscratch) {
 2779   assert(rscratch != noreg || always_reachable(src), "missing");
 2780 
 2781   if (reachable(src)) {
 2782     Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len);
 2783   } else {
 2784     lea(rscratch, src);
 2785     Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len);
 2786   }
 2787 }
 2788 
 2789 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
 2790   assert(rscratch != noreg || always_reachable(src), "missing");
 2791 
 2792   if (reachable(src)) {
 2793     Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len);
 2794   } else {
 2795     lea(rscratch, src);
 2796     Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len);
 2797   }
 2798 }
 2799 
 2800 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
 2801   assert(rscratch != noreg || always_reachable(src), "missing");
 2802 
 2803   if (reachable(src)) {
 2804     Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len);
 2805   } else {
 2806     lea(rscratch, src);
 2807     Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len);
 2808   }
 2809 }
 2810 
 2811 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2812   assert(rscratch != noreg || always_reachable(src), "missing");
 2813 
 2814   if (reachable(src)) {
 2815     Assembler::evmovdquq(dst, as_Address(src), vector_len);
 2816   } else {
 2817     lea(rscratch, src);
 2818     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
 2819   }
 2820 }
 2821 
 2822 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2823   assert(rscratch != noreg || always_reachable(src), "missing");
 2824 
 2825   if (reachable(src)) {
 2826     Assembler::movdqa(dst, as_Address(src));
 2827   } else {
 2828     lea(rscratch, src);
 2829     Assembler::movdqa(dst, Address(rscratch, 0));
 2830   }
 2831 }
 2832 
 2833 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2834   assert(rscratch != noreg || always_reachable(src), "missing");
 2835 
 2836   if (reachable(src)) {
 2837     Assembler::movsd(dst, as_Address(src));
 2838   } else {
 2839     lea(rscratch, src);
 2840     Assembler::movsd(dst, Address(rscratch, 0));
 2841   }
 2842 }
 2843 
 2844 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2845   assert(rscratch != noreg || always_reachable(src), "missing");
 2846 
 2847   if (reachable(src)) {
 2848     Assembler::movss(dst, as_Address(src));
 2849   } else {
 2850     lea(rscratch, src);
 2851     Assembler::movss(dst, Address(rscratch, 0));
 2852   }
 2853 }
 2854 
 2855 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2856   assert(rscratch != noreg || always_reachable(src), "missing");
 2857 
 2858   if (reachable(src)) {
 2859     Assembler::movddup(dst, as_Address(src));
 2860   } else {
 2861     lea(rscratch, src);
 2862     Assembler::movddup(dst, Address(rscratch, 0));
 2863   }
 2864 }
 2865 
 2866 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2867   assert(rscratch != noreg || always_reachable(src), "missing");
 2868 
 2869   if (reachable(src)) {
 2870     Assembler::vmovddup(dst, as_Address(src), vector_len);
 2871   } else {
 2872     lea(rscratch, src);
 2873     Assembler::vmovddup(dst, Address(rscratch, 0), vector_len);
 2874   }
 2875 }
 2876 
 2877 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2878   assert(rscratch != noreg || always_reachable(src), "missing");
 2879 
 2880   if (reachable(src)) {
 2881     Assembler::mulsd(dst, as_Address(src));
 2882   } else {
 2883     lea(rscratch, src);
 2884     Assembler::mulsd(dst, Address(rscratch, 0));
 2885   }
 2886 }
 2887 
 2888 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2889   assert(rscratch != noreg || always_reachable(src), "missing");
 2890 
 2891   if (reachable(src)) {
 2892     Assembler::mulss(dst, as_Address(src));
 2893   } else {
 2894     lea(rscratch, src);
 2895     Assembler::mulss(dst, Address(rscratch, 0));
 2896   }
 2897 }
 2898 
 2899 void MacroAssembler::null_check(Register reg, int offset) {
 2900   if (needs_explicit_null_check(offset)) {
 2901     // provoke OS null exception if reg is null by
 2902     // accessing M[reg] w/o changing any (non-CC) registers
 2903     // NOTE: cmpl is plenty here to provoke a segv
 2904     cmpptr(rax, Address(reg, 0));
 2905     // Note: should probably use testl(rax, Address(reg, 0));
 2906     //       may be shorter code (however, this version of
 2907     //       testl needs to be implemented first)
 2908   } else {
 2909     // nothing to do, (later) access of M[reg + offset]
 2910     // will provoke OS null exception if reg is null
 2911   }
 2912 }
 2913 
 2914 void MacroAssembler::os_breakpoint() {
 2915   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
 2916   // (e.g., MSVC can't call ps() otherwise)
 2917   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
 2918 }
 2919 
 2920 void MacroAssembler::unimplemented(const char* what) {
 2921   const char* buf = nullptr;
 2922   {
 2923     ResourceMark rm;
 2924     stringStream ss;
 2925     ss.print("unimplemented: %s", what);
 2926     buf = code_string(ss.as_string());
 2927   }
 2928   stop(buf);
 2929 }
 2930 
 2931 #ifdef _LP64
 2932 #define XSTATE_BV 0x200
 2933 #endif
 2934 
 2935 void MacroAssembler::pop_CPU_state() {
 2936   pop_FPU_state();
 2937   pop_IU_state();
 2938 }
 2939 
 2940 void MacroAssembler::pop_FPU_state() {
 2941 #ifndef _LP64
 2942   frstor(Address(rsp, 0));
 2943 #else
 2944   fxrstor(Address(rsp, 0));
 2945 #endif
 2946   addptr(rsp, FPUStateSizeInWords * wordSize);
 2947 }
 2948 
 2949 void MacroAssembler::pop_IU_state() {
 2950   popa();
 2951   LP64_ONLY(addq(rsp, 8));
 2952   popf();
 2953 }
 2954 
 2955 // Save Integer and Float state
 2956 // Warning: Stack must be 16 byte aligned (64bit)
 2957 void MacroAssembler::push_CPU_state() {
 2958   push_IU_state();
 2959   push_FPU_state();
 2960 }
 2961 
 2962 void MacroAssembler::push_FPU_state() {
 2963   subptr(rsp, FPUStateSizeInWords * wordSize);
 2964 #ifndef _LP64
 2965   fnsave(Address(rsp, 0));
 2966   fwait();
 2967 #else
 2968   fxsave(Address(rsp, 0));
 2969 #endif // LP64
 2970 }
 2971 
 2972 void MacroAssembler::push_IU_state() {
 2973   // Push flags first because pusha kills them
 2974   pushf();
 2975   // Make sure rsp stays 16-byte aligned
 2976   LP64_ONLY(subq(rsp, 8));
 2977   pusha();
 2978 }
 2979 
 2980 void MacroAssembler::push_cont_fastpath() {
 2981   if (!Continuations::enabled()) return;
 2982 
 2983 #ifndef _LP64
 2984   Register rthread = rax;
 2985   Register rrealsp = rbx;
 2986   push(rthread);
 2987   push(rrealsp);
 2988 
 2989   get_thread(rthread);
 2990 
 2991   // The code below wants the original RSP.
 2992   // Move it back after the pushes above.
 2993   movptr(rrealsp, rsp);
 2994   addptr(rrealsp, 2*wordSize);
 2995 #else
 2996   Register rthread = r15_thread;
 2997   Register rrealsp = rsp;
 2998 #endif
 2999 
 3000   Label done;
 3001   cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset()));
 3002   jccb(Assembler::belowEqual, done);
 3003   movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp);
 3004   bind(done);
 3005 
 3006 #ifndef _LP64
 3007   pop(rrealsp);
 3008   pop(rthread);
 3009 #endif
 3010 }
 3011 
 3012 void MacroAssembler::pop_cont_fastpath() {
 3013   if (!Continuations::enabled()) return;
 3014 
 3015 #ifndef _LP64
 3016   Register rthread = rax;
 3017   Register rrealsp = rbx;
 3018   push(rthread);
 3019   push(rrealsp);
 3020 
 3021   get_thread(rthread);
 3022 
 3023   // The code below wants the original RSP.
 3024   // Move it back after the pushes above.
 3025   movptr(rrealsp, rsp);
 3026   addptr(rrealsp, 2*wordSize);
 3027 #else
 3028   Register rthread = r15_thread;
 3029   Register rrealsp = rsp;
 3030 #endif
 3031 
 3032   Label done;
 3033   cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset()));
 3034   jccb(Assembler::below, done);
 3035   movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0);
 3036   bind(done);
 3037 
 3038 #ifndef _LP64
 3039   pop(rrealsp);
 3040   pop(rthread);
 3041 #endif
 3042 }
 3043 
 3044 void MacroAssembler::inc_held_monitor_count() {
 3045 #ifdef _LP64
 3046   incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset()));
 3047 #endif
 3048 }
 3049 
 3050 void MacroAssembler::dec_held_monitor_count() {
 3051 #ifdef _LP64
 3052   decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset()));
 3053 #endif
 3054 }
 3055 
 3056 #ifdef ASSERT
 3057 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) {
 3058 #ifdef _LP64
 3059   Label no_cont;
 3060   movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset()));
 3061   testl(cont, cont);
 3062   jcc(Assembler::zero, no_cont);
 3063   stop(name);
 3064   bind(no_cont);
 3065 #else
 3066   Unimplemented();
 3067 #endif
 3068 }
 3069 #endif
 3070 
 3071 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
 3072   if (!java_thread->is_valid()) {
 3073     java_thread = rdi;
 3074     get_thread(java_thread);
 3075   }
 3076   // we must set sp to zero to clear frame
 3077   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 3078   // must clear fp, so that compiled frames are not confused; it is
 3079   // possible that we need it only for debugging
 3080   if (clear_fp) {
 3081     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 3082   }
 3083   // Always clear the pc because it could have been set by make_walkable()
 3084   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 3085   vzeroupper();
 3086 }
 3087 
 3088 void MacroAssembler::restore_rax(Register tmp) {
 3089   if (tmp == noreg) pop(rax);
 3090   else if (tmp != rax) mov(rax, tmp);
 3091 }
 3092 
 3093 void MacroAssembler::round_to(Register reg, int modulus) {
 3094   addptr(reg, modulus - 1);
 3095   andptr(reg, -modulus);
 3096 }
 3097 
 3098 void MacroAssembler::save_rax(Register tmp) {
 3099   if (tmp == noreg) push(rax);
 3100   else if (tmp != rax) mov(tmp, rax);
 3101 }
 3102 
 3103 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod) {
 3104   if (at_return) {
 3105     // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore,
 3106     // we may safely use rsp instead to perform the stack watermark check.
 3107     cmpptr(in_nmethod ? rsp : rbp, Address(thread_reg, JavaThread::polling_word_offset()));
 3108     jcc(Assembler::above, slow_path);
 3109     return;
 3110   }
 3111   testb(Address(thread_reg, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
 3112   jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
 3113 }
 3114 
 3115 // Calls to C land
 3116 //
 3117 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
 3118 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
 3119 // has to be reset to 0. This is required to allow proper stack traversal.
 3120 void MacroAssembler::set_last_Java_frame(Register java_thread,
 3121                                          Register last_java_sp,
 3122                                          Register last_java_fp,
 3123                                          address  last_java_pc,
 3124                                          Register rscratch) {
 3125   vzeroupper();
 3126   // determine java_thread register
 3127   if (!java_thread->is_valid()) {
 3128     java_thread = rdi;
 3129     get_thread(java_thread);
 3130   }
 3131   // determine last_java_sp register
 3132   if (!last_java_sp->is_valid()) {
 3133     last_java_sp = rsp;
 3134   }
 3135   // last_java_fp is optional
 3136   if (last_java_fp->is_valid()) {
 3137     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
 3138   }
 3139   // last_java_pc is optional
 3140   if (last_java_pc != nullptr) {
 3141     Address java_pc(java_thread,
 3142                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 3143     lea(java_pc, InternalAddress(last_java_pc), rscratch);
 3144   }
 3145   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 3146 }
 3147 
 3148 #ifdef _LP64
 3149 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 3150                                          Register last_java_fp,
 3151                                          Label &L,
 3152                                          Register scratch) {
 3153   lea(scratch, L);
 3154   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), scratch);
 3155   set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, nullptr, scratch);
 3156 }
 3157 #endif
 3158 
 3159 void MacroAssembler::shlptr(Register dst, int imm8) {
 3160   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
 3161 }
 3162 
 3163 void MacroAssembler::shrptr(Register dst, int imm8) {
 3164   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
 3165 }
 3166 
 3167 void MacroAssembler::sign_extend_byte(Register reg) {
 3168   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
 3169     movsbl(reg, reg); // movsxb
 3170   } else {
 3171     shll(reg, 24);
 3172     sarl(reg, 24);
 3173   }
 3174 }
 3175 
 3176 void MacroAssembler::sign_extend_short(Register reg) {
 3177   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 3178     movswl(reg, reg); // movsxw
 3179   } else {
 3180     shll(reg, 16);
 3181     sarl(reg, 16);
 3182   }
 3183 }
 3184 
 3185 void MacroAssembler::testl(Address dst, int32_t imm32) {
 3186   if (imm32 >= 0 && is8bit(imm32)) {
 3187     testb(dst, imm32);
 3188   } else {
 3189     Assembler::testl(dst, imm32);
 3190   }
 3191 }
 3192 
 3193 void MacroAssembler::testl(Register dst, int32_t imm32) {
 3194   if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) {
 3195     testb(dst, imm32);
 3196   } else {
 3197     Assembler::testl(dst, imm32);
 3198   }
 3199 }
 3200 
 3201 void MacroAssembler::testl(Register dst, AddressLiteral src) {
 3202   assert(always_reachable(src), "Address should be reachable");
 3203   testl(dst, as_Address(src));
 3204 }
 3205 
 3206 #ifdef _LP64
 3207 
 3208 void MacroAssembler::testq(Address dst, int32_t imm32) {
 3209   if (imm32 >= 0) {
 3210     testl(dst, imm32);
 3211   } else {
 3212     Assembler::testq(dst, imm32);
 3213   }
 3214 }
 3215 
 3216 void MacroAssembler::testq(Register dst, int32_t imm32) {
 3217   if (imm32 >= 0) {
 3218     testl(dst, imm32);
 3219   } else {
 3220     Assembler::testq(dst, imm32);
 3221   }
 3222 }
 3223 
 3224 #endif
 3225 
 3226 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
 3227   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3228   Assembler::pcmpeqb(dst, src);
 3229 }
 3230 
 3231 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
 3232   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3233   Assembler::pcmpeqw(dst, src);
 3234 }
 3235 
 3236 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
 3237   assert((dst->encoding() < 16),"XMM register should be 0-15");
 3238   Assembler::pcmpestri(dst, src, imm8);
 3239 }
 3240 
 3241 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
 3242   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3243   Assembler::pcmpestri(dst, src, imm8);
 3244 }
 3245 
 3246 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
 3247   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3248   Assembler::pmovzxbw(dst, src);
 3249 }
 3250 
 3251 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
 3252   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3253   Assembler::pmovzxbw(dst, src);
 3254 }
 3255 
 3256 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
 3257   assert((src->encoding() < 16),"XMM register should be 0-15");
 3258   Assembler::pmovmskb(dst, src);
 3259 }
 3260 
 3261 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
 3262   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3263   Assembler::ptest(dst, src);
 3264 }
 3265 
 3266 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3267   assert(rscratch != noreg || always_reachable(src), "missing");
 3268 
 3269   if (reachable(src)) {
 3270     Assembler::sqrtss(dst, as_Address(src));
 3271   } else {
 3272     lea(rscratch, src);
 3273     Assembler::sqrtss(dst, Address(rscratch, 0));
 3274   }
 3275 }
 3276 
 3277 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3278   assert(rscratch != noreg || always_reachable(src), "missing");
 3279 
 3280   if (reachable(src)) {
 3281     Assembler::subsd(dst, as_Address(src));
 3282   } else {
 3283     lea(rscratch, src);
 3284     Assembler::subsd(dst, Address(rscratch, 0));
 3285   }
 3286 }
 3287 
 3288 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) {
 3289   assert(rscratch != noreg || always_reachable(src), "missing");
 3290 
 3291   if (reachable(src)) {
 3292     Assembler::roundsd(dst, as_Address(src), rmode);
 3293   } else {
 3294     lea(rscratch, src);
 3295     Assembler::roundsd(dst, Address(rscratch, 0), rmode);
 3296   }
 3297 }
 3298 
 3299 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3300   assert(rscratch != noreg || always_reachable(src), "missing");
 3301 
 3302   if (reachable(src)) {
 3303     Assembler::subss(dst, as_Address(src));
 3304   } else {
 3305     lea(rscratch, src);
 3306     Assembler::subss(dst, Address(rscratch, 0));
 3307   }
 3308 }
 3309 
 3310 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3311   assert(rscratch != noreg || always_reachable(src), "missing");
 3312 
 3313   if (reachable(src)) {
 3314     Assembler::ucomisd(dst, as_Address(src));
 3315   } else {
 3316     lea(rscratch, src);
 3317     Assembler::ucomisd(dst, Address(rscratch, 0));
 3318   }
 3319 }
 3320 
 3321 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3322   assert(rscratch != noreg || always_reachable(src), "missing");
 3323 
 3324   if (reachable(src)) {
 3325     Assembler::ucomiss(dst, as_Address(src));
 3326   } else {
 3327     lea(rscratch, src);
 3328     Assembler::ucomiss(dst, Address(rscratch, 0));
 3329   }
 3330 }
 3331 
 3332 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3333   assert(rscratch != noreg || always_reachable(src), "missing");
 3334 
 3335   // Used in sign-bit flipping with aligned address.
 3336   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 3337   if (reachable(src)) {
 3338     Assembler::xorpd(dst, as_Address(src));
 3339   } else {
 3340     lea(rscratch, src);
 3341     Assembler::xorpd(dst, Address(rscratch, 0));
 3342   }
 3343 }
 3344 
 3345 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
 3346   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
 3347     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
 3348   }
 3349   else {
 3350     Assembler::xorpd(dst, src);
 3351   }
 3352 }
 3353 
 3354 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
 3355   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
 3356     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
 3357   } else {
 3358     Assembler::xorps(dst, src);
 3359   }
 3360 }
 3361 
 3362 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3363   assert(rscratch != noreg || always_reachable(src), "missing");
 3364 
 3365   // Used in sign-bit flipping with aligned address.
 3366   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 3367   if (reachable(src)) {
 3368     Assembler::xorps(dst, as_Address(src));
 3369   } else {
 3370     lea(rscratch, src);
 3371     Assembler::xorps(dst, Address(rscratch, 0));
 3372   }
 3373 }
 3374 
 3375 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3376   assert(rscratch != noreg || always_reachable(src), "missing");
 3377 
 3378   // Used in sign-bit flipping with aligned address.
 3379   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
 3380   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
 3381   if (reachable(src)) {
 3382     Assembler::pshufb(dst, as_Address(src));
 3383   } else {
 3384     lea(rscratch, src);
 3385     Assembler::pshufb(dst, Address(rscratch, 0));
 3386   }
 3387 }
 3388 
 3389 // AVX 3-operands instructions
 3390 
 3391 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3392   assert(rscratch != noreg || always_reachable(src), "missing");
 3393 
 3394   if (reachable(src)) {
 3395     vaddsd(dst, nds, as_Address(src));
 3396   } else {
 3397     lea(rscratch, src);
 3398     vaddsd(dst, nds, Address(rscratch, 0));
 3399   }
 3400 }
 3401 
 3402 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3403   assert(rscratch != noreg || always_reachable(src), "missing");
 3404 
 3405   if (reachable(src)) {
 3406     vaddss(dst, nds, as_Address(src));
 3407   } else {
 3408     lea(rscratch, src);
 3409     vaddss(dst, nds, Address(rscratch, 0));
 3410   }
 3411 }
 3412 
 3413 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3414   assert(UseAVX > 0, "requires some form of AVX");
 3415   assert(rscratch != noreg || always_reachable(src), "missing");
 3416 
 3417   if (reachable(src)) {
 3418     Assembler::vpaddb(dst, nds, as_Address(src), vector_len);
 3419   } else {
 3420     lea(rscratch, src);
 3421     Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len);
 3422   }
 3423 }
 3424 
 3425 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3426   assert(UseAVX > 0, "requires some form of AVX");
 3427   assert(rscratch != noreg || always_reachable(src), "missing");
 3428 
 3429   if (reachable(src)) {
 3430     Assembler::vpaddd(dst, nds, as_Address(src), vector_len);
 3431   } else {
 3432     lea(rscratch, src);
 3433     Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len);
 3434   }
 3435 }
 3436 
 3437 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) {
 3438   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3439   assert(rscratch != noreg || always_reachable(negate_field), "missing");
 3440 
 3441   vandps(dst, nds, negate_field, vector_len, rscratch);
 3442 }
 3443 
 3444 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) {
 3445   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3446   assert(rscratch != noreg || always_reachable(negate_field), "missing");
 3447 
 3448   vandpd(dst, nds, negate_field, vector_len, rscratch);
 3449 }
 3450 
 3451 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3452   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3453   Assembler::vpaddb(dst, nds, src, vector_len);
 3454 }
 3455 
 3456 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3457   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3458   Assembler::vpaddb(dst, nds, src, vector_len);
 3459 }
 3460 
 3461 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3462   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3463   Assembler::vpaddw(dst, nds, src, vector_len);
 3464 }
 3465 
 3466 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3467   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3468   Assembler::vpaddw(dst, nds, src, vector_len);
 3469 }
 3470 
 3471 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3472   assert(rscratch != noreg || always_reachable(src), "missing");
 3473 
 3474   if (reachable(src)) {
 3475     Assembler::vpand(dst, nds, as_Address(src), vector_len);
 3476   } else {
 3477     lea(rscratch, src);
 3478     Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len);
 3479   }
 3480 }
 3481 
 3482 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3483   assert(rscratch != noreg || always_reachable(src), "missing");
 3484 
 3485   if (reachable(src)) {
 3486     Assembler::vpbroadcastd(dst, as_Address(src), vector_len);
 3487   } else {
 3488     lea(rscratch, src);
 3489     Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len);
 3490   }
 3491 }
 3492 
 3493 void MacroAssembler::vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3494   assert(rscratch != noreg || always_reachable(src), "missing");
 3495 
 3496   if (reachable(src)) {
 3497     Assembler::vbroadcasti128(dst, as_Address(src), vector_len);
 3498   } else {
 3499     lea(rscratch, src);
 3500     Assembler::vbroadcasti128(dst, Address(rscratch, 0), vector_len);
 3501   }
 3502 }
 3503 
 3504 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3505   assert(rscratch != noreg || always_reachable(src), "missing");
 3506 
 3507   if (reachable(src)) {
 3508     Assembler::vpbroadcastq(dst, as_Address(src), vector_len);
 3509   } else {
 3510     lea(rscratch, src);
 3511     Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len);
 3512   }
 3513 }
 3514 
 3515 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3516   assert(rscratch != noreg || always_reachable(src), "missing");
 3517 
 3518   if (reachable(src)) {
 3519     Assembler::vbroadcastsd(dst, as_Address(src), vector_len);
 3520   } else {
 3521     lea(rscratch, src);
 3522     Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len);
 3523   }
 3524 }
 3525 
 3526 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3527   assert(rscratch != noreg || always_reachable(src), "missing");
 3528 
 3529   if (reachable(src)) {
 3530     Assembler::vbroadcastss(dst, as_Address(src), vector_len);
 3531   } else {
 3532     lea(rscratch, src);
 3533     Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len);
 3534   }
 3535 }
 3536 
 3537 // Vector float blend
 3538 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg)
 3539 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) {
 3540   // WARN: Allow dst == (src1|src2), mask == scratch
 3541   bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1;
 3542   bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst;
 3543   bool dst_available = dst != mask && (dst != src1 || dst != src2);
 3544   if (blend_emulation && scratch_available && dst_available) {
 3545     if (compute_mask) {
 3546       vpsrad(scratch, mask, 32, vector_len);
 3547       mask = scratch;
 3548     }
 3549     if (dst == src1) {
 3550       vpandn(dst,     mask, src1, vector_len); // if mask == 0, src1
 3551       vpand (scratch, mask, src2, vector_len); // if mask == 1, src2
 3552     } else {
 3553       vpand (dst,     mask, src2, vector_len); // if mask == 1, src2
 3554       vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1
 3555     }
 3556     vpor(dst, dst, scratch, vector_len);
 3557   } else {
 3558     Assembler::vblendvps(dst, src1, src2, mask, vector_len);
 3559   }
 3560 }
 3561 
 3562 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg)
 3563 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) {
 3564   // WARN: Allow dst == (src1|src2), mask == scratch
 3565   bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1;
 3566   bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask);
 3567   bool dst_available = dst != mask && (dst != src1 || dst != src2);
 3568   if (blend_emulation && scratch_available && dst_available) {
 3569     if (compute_mask) {
 3570       vpxor(scratch, scratch, scratch, vector_len);
 3571       vpcmpgtq(scratch, scratch, mask, vector_len);
 3572       mask = scratch;
 3573     }
 3574     if (dst == src1) {
 3575       vpandn(dst,     mask, src1, vector_len); // if mask == 0, src
 3576       vpand (scratch, mask, src2, vector_len); // if mask == 1, src2
 3577     } else {
 3578       vpand (dst,     mask, src2, vector_len); // if mask == 1, src2
 3579       vpandn(scratch, mask, src1, vector_len); // if mask == 0, src
 3580     }
 3581     vpor(dst, dst, scratch, vector_len);
 3582   } else {
 3583     Assembler::vblendvpd(dst, src1, src2, mask, vector_len);
 3584   }
 3585 }
 3586 
 3587 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3588   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3589   Assembler::vpcmpeqb(dst, nds, src, vector_len);
 3590 }
 3591 
 3592 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
 3593   assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3594   Assembler::vpcmpeqb(dst, src1, src2, vector_len);
 3595 }
 3596 
 3597 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3598   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3599   Assembler::vpcmpeqw(dst, nds, src, vector_len);
 3600 }
 3601 
 3602 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3603   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3604   Assembler::vpcmpeqw(dst, nds, src, vector_len);
 3605 }
 3606 
 3607 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3608   assert(rscratch != noreg || always_reachable(src), "missing");
 3609 
 3610   if (reachable(src)) {
 3611     Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len);
 3612   } else {
 3613     lea(rscratch, src);
 3614     Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len);
 3615   }
 3616 }
 3617 
 3618 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3619                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3620   assert(rscratch != noreg || always_reachable(src), "missing");
 3621 
 3622   if (reachable(src)) {
 3623     Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3624   } else {
 3625     lea(rscratch, src);
 3626     Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3627   }
 3628 }
 3629 
 3630 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3631                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3632   assert(rscratch != noreg || always_reachable(src), "missing");
 3633 
 3634   if (reachable(src)) {
 3635     Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3636   } else {
 3637     lea(rscratch, src);
 3638     Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3639   }
 3640 }
 3641 
 3642 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3643                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3644   assert(rscratch != noreg || always_reachable(src), "missing");
 3645 
 3646   if (reachable(src)) {
 3647     Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3648   } else {
 3649     lea(rscratch, src);
 3650     Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3651   }
 3652 }
 3653 
 3654 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3655                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3656   assert(rscratch != noreg || always_reachable(src), "missing");
 3657 
 3658   if (reachable(src)) {
 3659     Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3660   } else {
 3661     lea(rscratch, src);
 3662     Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3663   }
 3664 }
 3665 
 3666 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) {
 3667   if (width == Assembler::Q) {
 3668     Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len);
 3669   } else {
 3670     Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len);
 3671   }
 3672 }
 3673 
 3674 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) {
 3675   int eq_cond_enc = 0x29;
 3676   int gt_cond_enc = 0x37;
 3677   if (width != Assembler::Q) {
 3678     eq_cond_enc = 0x74 + width;
 3679     gt_cond_enc = 0x64 + width;
 3680   }
 3681   switch (cond) {
 3682   case eq:
 3683     vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len);
 3684     break;
 3685   case neq:
 3686     vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len);
 3687     vallones(xtmp, vector_len);
 3688     vpxor(dst, xtmp, dst, vector_len);
 3689     break;
 3690   case le:
 3691     vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len);
 3692     vallones(xtmp, vector_len);
 3693     vpxor(dst, xtmp, dst, vector_len);
 3694     break;
 3695   case nlt:
 3696     vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len);
 3697     vallones(xtmp, vector_len);
 3698     vpxor(dst, xtmp, dst, vector_len);
 3699     break;
 3700   case lt:
 3701     vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len);
 3702     break;
 3703   case nle:
 3704     vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len);
 3705     break;
 3706   default:
 3707     assert(false, "Should not reach here");
 3708   }
 3709 }
 3710 
 3711 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
 3712   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3713   Assembler::vpmovzxbw(dst, src, vector_len);
 3714 }
 3715 
 3716 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) {
 3717   assert((src->encoding() < 16),"XMM register should be 0-15");
 3718   Assembler::vpmovmskb(dst, src, vector_len);
 3719 }
 3720 
 3721 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3722   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3723   Assembler::vpmullw(dst, nds, src, vector_len);
 3724 }
 3725 
 3726 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3727   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3728   Assembler::vpmullw(dst, nds, src, vector_len);
 3729 }
 3730 
 3731 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3732   assert((UseAVX > 0), "AVX support is needed");
 3733   assert(rscratch != noreg || always_reachable(src), "missing");
 3734 
 3735   if (reachable(src)) {
 3736     Assembler::vpmulld(dst, nds, as_Address(src), vector_len);
 3737   } else {
 3738     lea(rscratch, src);
 3739     Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len);
 3740   }
 3741 }
 3742 
 3743 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3744   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3745   Assembler::vpsubb(dst, nds, src, vector_len);
 3746 }
 3747 
 3748 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3749   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3750   Assembler::vpsubb(dst, nds, src, vector_len);
 3751 }
 3752 
 3753 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3754   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3755   Assembler::vpsubw(dst, nds, src, vector_len);
 3756 }
 3757 
 3758 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3759   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3760   Assembler::vpsubw(dst, nds, src, vector_len);
 3761 }
 3762 
 3763 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3764   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3765   Assembler::vpsraw(dst, nds, shift, vector_len);
 3766 }
 3767 
 3768 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3769   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3770   Assembler::vpsraw(dst, nds, shift, vector_len);
 3771 }
 3772 
 3773 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3774   assert(UseAVX > 2,"");
 3775   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
 3776      vector_len = 2;
 3777   }
 3778   Assembler::evpsraq(dst, nds, shift, vector_len);
 3779 }
 3780 
 3781 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3782   assert(UseAVX > 2,"");
 3783   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
 3784      vector_len = 2;
 3785   }
 3786   Assembler::evpsraq(dst, nds, shift, vector_len);
 3787 }
 3788 
 3789 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3790   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3791   Assembler::vpsrlw(dst, nds, shift, vector_len);
 3792 }
 3793 
 3794 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3795   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3796   Assembler::vpsrlw(dst, nds, shift, vector_len);
 3797 }
 3798 
 3799 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3800   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3801   Assembler::vpsllw(dst, nds, shift, vector_len);
 3802 }
 3803 
 3804 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3805   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3806   Assembler::vpsllw(dst, nds, shift, vector_len);
 3807 }
 3808 
 3809 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
 3810   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3811   Assembler::vptest(dst, src);
 3812 }
 3813 
 3814 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
 3815   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3816   Assembler::punpcklbw(dst, src);
 3817 }
 3818 
 3819 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
 3820   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 3821   Assembler::pshufd(dst, src, mode);
 3822 }
 3823 
 3824 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
 3825   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3826   Assembler::pshuflw(dst, src, mode);
 3827 }
 3828 
 3829 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3830   assert(rscratch != noreg || always_reachable(src), "missing");
 3831 
 3832   if (reachable(src)) {
 3833     vandpd(dst, nds, as_Address(src), vector_len);
 3834   } else {
 3835     lea(rscratch, src);
 3836     vandpd(dst, nds, Address(rscratch, 0), vector_len);
 3837   }
 3838 }
 3839 
 3840 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3841   assert(rscratch != noreg || always_reachable(src), "missing");
 3842 
 3843   if (reachable(src)) {
 3844     vandps(dst, nds, as_Address(src), vector_len);
 3845   } else {
 3846     lea(rscratch, src);
 3847     vandps(dst, nds, Address(rscratch, 0), vector_len);
 3848   }
 3849 }
 3850 
 3851 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3852                             bool merge, int vector_len, Register rscratch) {
 3853   assert(rscratch != noreg || always_reachable(src), "missing");
 3854 
 3855   if (reachable(src)) {
 3856     Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len);
 3857   } else {
 3858     lea(rscratch, src);
 3859     Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len);
 3860   }
 3861 }
 3862 
 3863 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3864   assert(rscratch != noreg || always_reachable(src), "missing");
 3865 
 3866   if (reachable(src)) {
 3867     vdivsd(dst, nds, as_Address(src));
 3868   } else {
 3869     lea(rscratch, src);
 3870     vdivsd(dst, nds, Address(rscratch, 0));
 3871   }
 3872 }
 3873 
 3874 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3875   assert(rscratch != noreg || always_reachable(src), "missing");
 3876 
 3877   if (reachable(src)) {
 3878     vdivss(dst, nds, as_Address(src));
 3879   } else {
 3880     lea(rscratch, src);
 3881     vdivss(dst, nds, Address(rscratch, 0));
 3882   }
 3883 }
 3884 
 3885 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3886   assert(rscratch != noreg || always_reachable(src), "missing");
 3887 
 3888   if (reachable(src)) {
 3889     vmulsd(dst, nds, as_Address(src));
 3890   } else {
 3891     lea(rscratch, src);
 3892     vmulsd(dst, nds, Address(rscratch, 0));
 3893   }
 3894 }
 3895 
 3896 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3897   assert(rscratch != noreg || always_reachable(src), "missing");
 3898 
 3899   if (reachable(src)) {
 3900     vmulss(dst, nds, as_Address(src));
 3901   } else {
 3902     lea(rscratch, src);
 3903     vmulss(dst, nds, Address(rscratch, 0));
 3904   }
 3905 }
 3906 
 3907 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3908   assert(rscratch != noreg || always_reachable(src), "missing");
 3909 
 3910   if (reachable(src)) {
 3911     vsubsd(dst, nds, as_Address(src));
 3912   } else {
 3913     lea(rscratch, src);
 3914     vsubsd(dst, nds, Address(rscratch, 0));
 3915   }
 3916 }
 3917 
 3918 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3919   assert(rscratch != noreg || always_reachable(src), "missing");
 3920 
 3921   if (reachable(src)) {
 3922     vsubss(dst, nds, as_Address(src));
 3923   } else {
 3924     lea(rscratch, src);
 3925     vsubss(dst, nds, Address(rscratch, 0));
 3926   }
 3927 }
 3928 
 3929 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3930   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3931   assert(rscratch != noreg || always_reachable(src), "missing");
 3932 
 3933   vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch);
 3934 }
 3935 
 3936 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3937   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3938   assert(rscratch != noreg || always_reachable(src), "missing");
 3939 
 3940   vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch);
 3941 }
 3942 
 3943 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3944   assert(rscratch != noreg || always_reachable(src), "missing");
 3945 
 3946   if (reachable(src)) {
 3947     vxorpd(dst, nds, as_Address(src), vector_len);
 3948   } else {
 3949     lea(rscratch, src);
 3950     vxorpd(dst, nds, Address(rscratch, 0), vector_len);
 3951   }
 3952 }
 3953 
 3954 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3955   assert(rscratch != noreg || always_reachable(src), "missing");
 3956 
 3957   if (reachable(src)) {
 3958     vxorps(dst, nds, as_Address(src), vector_len);
 3959   } else {
 3960     lea(rscratch, src);
 3961     vxorps(dst, nds, Address(rscratch, 0), vector_len);
 3962   }
 3963 }
 3964 
 3965 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3966   assert(rscratch != noreg || always_reachable(src), "missing");
 3967 
 3968   if (UseAVX > 1 || (vector_len < 1)) {
 3969     if (reachable(src)) {
 3970       Assembler::vpxor(dst, nds, as_Address(src), vector_len);
 3971     } else {
 3972       lea(rscratch, src);
 3973       Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len);
 3974     }
 3975   } else {
 3976     MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch);
 3977   }
 3978 }
 3979 
 3980 void MacroAssembler::vpermd(XMMRegister dst,  XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3981   assert(rscratch != noreg || always_reachable(src), "missing");
 3982 
 3983   if (reachable(src)) {
 3984     Assembler::vpermd(dst, nds, as_Address(src), vector_len);
 3985   } else {
 3986     lea(rscratch, src);
 3987     Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len);
 3988   }
 3989 }
 3990 
 3991 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) {
 3992   const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask);
 3993   STATIC_ASSERT(inverted_mask == -4); // otherwise check this code
 3994   // The inverted mask is sign-extended
 3995   andptr(possibly_non_local, inverted_mask);
 3996 }
 3997 
 3998 void MacroAssembler::resolve_jobject(Register value,
 3999                                      Register thread,
 4000                                      Register tmp) {
 4001   assert_different_registers(value, thread, tmp);
 4002   Label done, tagged, weak_tagged;
 4003   testptr(value, value);
 4004   jcc(Assembler::zero, done);           // Use null as-is.
 4005   testptr(value, JNIHandles::tag_mask); // Test for tag.
 4006   jcc(Assembler::notZero, tagged);
 4007 
 4008   // Resolve local handle
 4009   access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread);
 4010   verify_oop(value);
 4011   jmp(done);
 4012 
 4013   bind(tagged);
 4014   testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag.
 4015   jcc(Assembler::notZero, weak_tagged);
 4016 
 4017   // Resolve global handle
 4018   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread);
 4019   verify_oop(value);
 4020   jmp(done);
 4021 
 4022   bind(weak_tagged);
 4023   // Resolve jweak.
 4024   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
 4025                  value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread);
 4026   verify_oop(value);
 4027 
 4028   bind(done);
 4029 }
 4030 
 4031 void MacroAssembler::resolve_global_jobject(Register value,
 4032                                             Register thread,
 4033                                             Register tmp) {
 4034   assert_different_registers(value, thread, tmp);
 4035   Label done;
 4036 
 4037   testptr(value, value);
 4038   jcc(Assembler::zero, done);           // Use null as-is.
 4039 
 4040 #ifdef ASSERT
 4041   {
 4042     Label valid_global_tag;
 4043     testptr(value, JNIHandles::TypeTag::global); // Test for global tag.
 4044     jcc(Assembler::notZero, valid_global_tag);
 4045     stop("non global jobject using resolve_global_jobject");
 4046     bind(valid_global_tag);
 4047   }
 4048 #endif
 4049 
 4050   // Resolve global handle
 4051   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread);
 4052   verify_oop(value);
 4053 
 4054   bind(done);
 4055 }
 4056 
 4057 void MacroAssembler::subptr(Register dst, int32_t imm32) {
 4058   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
 4059 }
 4060 
 4061 // Force generation of a 4 byte immediate value even if it fits into 8bit
 4062 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
 4063   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
 4064 }
 4065 
 4066 void MacroAssembler::subptr(Register dst, Register src) {
 4067   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
 4068 }
 4069 
 4070 // C++ bool manipulation
 4071 void MacroAssembler::testbool(Register dst) {
 4072   if(sizeof(bool) == 1)
 4073     testb(dst, 0xff);
 4074   else if(sizeof(bool) == 2) {
 4075     // testw implementation needed for two byte bools
 4076     ShouldNotReachHere();
 4077   } else if(sizeof(bool) == 4)
 4078     testl(dst, dst);
 4079   else
 4080     // unsupported
 4081     ShouldNotReachHere();
 4082 }
 4083 
 4084 void MacroAssembler::testptr(Register dst, Register src) {
 4085   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
 4086 }
 4087 
 4088 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
 4089 void MacroAssembler::tlab_allocate(Register thread, Register obj,
 4090                                    Register var_size_in_bytes,
 4091                                    int con_size_in_bytes,
 4092                                    Register t1,
 4093                                    Register t2,
 4094                                    Label& slow_case) {
 4095   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 4096   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
 4097 }
 4098 
 4099 RegSet MacroAssembler::call_clobbered_gp_registers() {
 4100   RegSet regs;
 4101 #ifdef _LP64
 4102   regs += RegSet::of(rax, rcx, rdx);
 4103 #ifndef _WINDOWS
 4104   regs += RegSet::of(rsi, rdi);
 4105 #endif
 4106   regs += RegSet::range(r8, r11);
 4107 #else
 4108   regs += RegSet::of(rax, rcx, rdx);
 4109 #endif
 4110 #ifdef _LP64
 4111   if (UseAPX) {
 4112     regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1));
 4113   }
 4114 #endif
 4115   return regs;
 4116 }
 4117 
 4118 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() {
 4119   int num_xmm_registers = XMMRegister::available_xmm_registers();
 4120 #if defined(_WINDOWS)
 4121   XMMRegSet result = XMMRegSet::range(xmm0, xmm5);
 4122   if (num_xmm_registers > 16) {
 4123      result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1));
 4124   }
 4125   return result;
 4126 #else
 4127   return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1));
 4128 #endif
 4129 }
 4130 
 4131 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor
 4132 
 4133 #ifndef _LP64
 4134 static bool use_x87_registers() { return UseSSE < 2; }
 4135 #endif
 4136 static bool use_xmm_registers() { return UseSSE >= 1; }
 4137 
 4138 // C1 only ever uses the first double/float of the XMM register.
 4139 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); }
 4140 
 4141 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) {
 4142   if (UseSSE == 1) {
 4143     masm->movflt(Address(rsp, offset), reg);
 4144   } else {
 4145     masm->movdbl(Address(rsp, offset), reg);
 4146   }
 4147 }
 4148 
 4149 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) {
 4150   if (UseSSE == 1) {
 4151     masm->movflt(reg, Address(rsp, offset));
 4152   } else {
 4153     masm->movdbl(reg, Address(rsp, offset));
 4154   }
 4155 }
 4156 
 4157 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers,
 4158                                   bool save_fpu, int& gp_area_size,
 4159                                   int& fp_area_size, int& xmm_area_size) {
 4160 
 4161   gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size,
 4162                          StackAlignmentInBytes);
 4163 #ifdef _LP64
 4164   fp_area_size = 0;
 4165 #else
 4166   fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0;
 4167 #endif
 4168   xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0;
 4169 
 4170   return gp_area_size + fp_area_size + xmm_area_size;
 4171 }
 4172 
 4173 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) {
 4174   block_comment("push_call_clobbered_registers start");
 4175   // Regular registers
 4176   RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude;
 4177 
 4178   int gp_area_size;
 4179   int fp_area_size;
 4180   int xmm_area_size;
 4181   int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu,
 4182                                                gp_area_size, fp_area_size, xmm_area_size);
 4183   subptr(rsp, total_save_size);
 4184 
 4185   push_set(gp_registers_to_push, 0);
 4186 
 4187 #ifndef _LP64
 4188   if (save_fpu && use_x87_registers()) {
 4189     fnsave(Address(rsp, gp_area_size));
 4190     fwait();
 4191   }
 4192 #endif
 4193   if (save_fpu && use_xmm_registers()) {
 4194     push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size);
 4195   }
 4196 
 4197   block_comment("push_call_clobbered_registers end");
 4198 }
 4199 
 4200 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) {
 4201   block_comment("pop_call_clobbered_registers start");
 4202 
 4203   RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude;
 4204 
 4205   int gp_area_size;
 4206   int fp_area_size;
 4207   int xmm_area_size;
 4208   int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu,
 4209                                                gp_area_size, fp_area_size, xmm_area_size);
 4210 
 4211   if (restore_fpu && use_xmm_registers()) {
 4212     pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size);
 4213   }
 4214 #ifndef _LP64
 4215   if (restore_fpu && use_x87_registers()) {
 4216     frstor(Address(rsp, gp_area_size));
 4217   }
 4218 #endif
 4219 
 4220   pop_set(gp_registers_to_pop, 0);
 4221 
 4222   addptr(rsp, total_save_size);
 4223 
 4224   vzeroupper();
 4225 
 4226   block_comment("pop_call_clobbered_registers end");
 4227 }
 4228 
 4229 void MacroAssembler::push_set(XMMRegSet set, int offset) {
 4230   assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be");
 4231   int spill_offset = offset;
 4232 
 4233   for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) {
 4234     save_xmm_register(this, spill_offset, *it);
 4235     spill_offset += xmm_save_size();
 4236   }
 4237 }
 4238 
 4239 void MacroAssembler::pop_set(XMMRegSet set, int offset) {
 4240   int restore_size = set.size() * xmm_save_size();
 4241   assert(is_aligned(restore_size, StackAlignmentInBytes), "must be");
 4242 
 4243   int restore_offset = offset + restore_size - xmm_save_size();
 4244 
 4245   for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) {
 4246     restore_xmm_register(this, restore_offset, *it);
 4247     restore_offset -= xmm_save_size();
 4248   }
 4249 }
 4250 
 4251 void MacroAssembler::push_set(RegSet set, int offset) {
 4252   int spill_offset;
 4253   if (offset == -1) {
 4254     int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4255     int aligned_size = align_up(register_push_size, StackAlignmentInBytes);
 4256     subptr(rsp, aligned_size);
 4257     spill_offset = 0;
 4258   } else {
 4259     spill_offset = offset;
 4260   }
 4261 
 4262   for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) {
 4263     movptr(Address(rsp, spill_offset), *it);
 4264     spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4265   }
 4266 }
 4267 
 4268 void MacroAssembler::pop_set(RegSet set, int offset) {
 4269 
 4270   int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4271   int restore_size = set.size() * gp_reg_size;
 4272   int aligned_size = align_up(restore_size, StackAlignmentInBytes);
 4273 
 4274   int restore_offset;
 4275   if (offset == -1) {
 4276     restore_offset = restore_size - gp_reg_size;
 4277   } else {
 4278     restore_offset = offset + restore_size - gp_reg_size;
 4279   }
 4280   for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) {
 4281     movptr(*it, Address(rsp, restore_offset));
 4282     restore_offset -= gp_reg_size;
 4283   }
 4284 
 4285   if (offset == -1) {
 4286     addptr(rsp, aligned_size);
 4287   }
 4288 }
 4289 
 4290 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
 4291 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
 4292   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
 4293   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
 4294   Label done;
 4295 
 4296   testptr(length_in_bytes, length_in_bytes);
 4297   jcc(Assembler::zero, done);
 4298 
 4299   // initialize topmost word, divide index by 2, check if odd and test if zero
 4300   // note: for the remaining code to work, index must be a multiple of BytesPerWord
 4301 #ifdef ASSERT
 4302   {
 4303     Label L;
 4304     testptr(length_in_bytes, BytesPerWord - 1);
 4305     jcc(Assembler::zero, L);
 4306     stop("length must be a multiple of BytesPerWord");
 4307     bind(L);
 4308   }
 4309 #endif
 4310   Register index = length_in_bytes;
 4311   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
 4312   if (UseIncDec) {
 4313     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
 4314   } else {
 4315     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
 4316     shrptr(index, 1);
 4317   }
 4318 #ifndef _LP64
 4319   // index could have not been a multiple of 8 (i.e., bit 2 was set)
 4320   {
 4321     Label even;
 4322     // note: if index was a multiple of 8, then it cannot
 4323     //       be 0 now otherwise it must have been 0 before
 4324     //       => if it is even, we don't need to check for 0 again
 4325     jcc(Assembler::carryClear, even);
 4326     // clear topmost word (no jump would be needed if conditional assignment worked here)
 4327     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
 4328     // index could be 0 now, must check again
 4329     jcc(Assembler::zero, done);
 4330     bind(even);
 4331   }
 4332 #endif // !_LP64
 4333   // initialize remaining object fields: index is a multiple of 2 now
 4334   {
 4335     Label loop;
 4336     bind(loop);
 4337     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
 4338     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
 4339     decrement(index);
 4340     jcc(Assembler::notZero, loop);
 4341   }
 4342 
 4343   bind(done);
 4344 }
 4345 
 4346 // Look up the method for a megamorphic invokeinterface call.
 4347 // The target method is determined by <intf_klass, itable_index>.
 4348 // The receiver klass is in recv_klass.
 4349 // On success, the result will be in method_result, and execution falls through.
 4350 // On failure, execution transfers to the given label.
 4351 void MacroAssembler::lookup_interface_method(Register recv_klass,
 4352                                              Register intf_klass,
 4353                                              RegisterOrConstant itable_index,
 4354                                              Register method_result,
 4355                                              Register scan_temp,
 4356                                              Label& L_no_such_interface,
 4357                                              bool return_method) {
 4358   assert_different_registers(recv_klass, intf_klass, scan_temp);
 4359   assert_different_registers(method_result, intf_klass, scan_temp);
 4360   assert(recv_klass != method_result || !return_method,
 4361          "recv_klass can be destroyed when method isn't needed");
 4362 
 4363   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
 4364          "caller must use same register for non-constant itable index as for method");
 4365 
 4366   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
 4367   int vtable_base = in_bytes(Klass::vtable_start_offset());
 4368   int itentry_off = in_bytes(itableMethodEntry::method_offset());
 4369   int scan_step   = itableOffsetEntry::size() * wordSize;
 4370   int vte_size    = vtableEntry::size_in_bytes();
 4371   Address::ScaleFactor times_vte_scale = Address::times_ptr;
 4372   assert(vte_size == wordSize, "else adjust times_vte_scale");
 4373 
 4374   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
 4375 
 4376   // Could store the aligned, prescaled offset in the klass.
 4377   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
 4378 
 4379   if (return_method) {
 4380     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
 4381     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 4382     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
 4383   }
 4384 
 4385   // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) {
 4386   //   if (scan->interface() == intf) {
 4387   //     result = (klass + scan->offset() + itable_index);
 4388   //   }
 4389   // }
 4390   Label search, found_method;
 4391 
 4392   for (int peel = 1; peel >= 0; peel--) {
 4393     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
 4394     cmpptr(intf_klass, method_result);
 4395 
 4396     if (peel) {
 4397       jccb(Assembler::equal, found_method);
 4398     } else {
 4399       jccb(Assembler::notEqual, search);
 4400       // (invert the test to fall through to found_method...)
 4401     }
 4402 
 4403     if (!peel)  break;
 4404 
 4405     bind(search);
 4406 
 4407     // Check that the previous entry is non-null.  A null entry means that
 4408     // the receiver class doesn't implement the interface, and wasn't the
 4409     // same as when the caller was compiled.
 4410     testptr(method_result, method_result);
 4411     jcc(Assembler::zero, L_no_such_interface);
 4412     addptr(scan_temp, scan_step);
 4413   }
 4414 
 4415   bind(found_method);
 4416 
 4417   if (return_method) {
 4418     // Got a hit.
 4419     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset()));
 4420     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
 4421   }
 4422 }
 4423 
 4424 // Look up the method for a megamorphic invokeinterface call in a single pass over itable:
 4425 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData
 4426 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index
 4427 // The target method is determined by <holder_klass, itable_index>.
 4428 // The receiver klass is in recv_klass.
 4429 // On success, the result will be in method_result, and execution falls through.
 4430 // On failure, execution transfers to the given label.
 4431 void MacroAssembler::lookup_interface_method_stub(Register recv_klass,
 4432                                                   Register holder_klass,
 4433                                                   Register resolved_klass,
 4434                                                   Register method_result,
 4435                                                   Register scan_temp,
 4436                                                   Register temp_reg2,
 4437                                                   Register receiver,
 4438                                                   int itable_index,
 4439                                                   Label& L_no_such_interface) {
 4440   assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver);
 4441   Register temp_itbl_klass = method_result;
 4442   Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl
 4443 
 4444   int vtable_base = in_bytes(Klass::vtable_start_offset());
 4445   int itentry_off = in_bytes(itableMethodEntry::method_offset());
 4446   int scan_step = itableOffsetEntry::size() * wordSize;
 4447   int vte_size = vtableEntry::size_in_bytes();
 4448   int ioffset = in_bytes(itableOffsetEntry::interface_offset());
 4449   int ooffset = in_bytes(itableOffsetEntry::offset_offset());
 4450   Address::ScaleFactor times_vte_scale = Address::times_ptr;
 4451   assert(vte_size == wordSize, "adjust times_vte_scale");
 4452 
 4453   Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found;
 4454 
 4455   // temp_itbl_klass = recv_klass.itable[0]
 4456   // scan_temp = &recv_klass.itable[0] + step
 4457   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
 4458   movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset));
 4459   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step));
 4460   xorptr(temp_reg, temp_reg);
 4461 
 4462   // Initial checks:
 4463   //   - if (holder_klass != resolved_klass), go to "scan for resolved"
 4464   //   - if (itable[0] == 0), no such interface
 4465   //   - if (itable[0] == holder_klass), shortcut to "holder found"
 4466   cmpptr(holder_klass, resolved_klass);
 4467   jccb(Assembler::notEqual, L_loop_scan_resolved_entry);
 4468   testptr(temp_itbl_klass, temp_itbl_klass);
 4469   jccb(Assembler::zero, L_no_such_interface);
 4470   cmpptr(holder_klass, temp_itbl_klass);
 4471   jccb(Assembler::equal, L_holder_found);
 4472 
 4473   // Loop: Look for holder_klass record in itable
 4474   //   do {
 4475   //     tmp = itable[index];
 4476   //     index += step;
 4477   //     if (tmp == holder_klass) {
 4478   //       goto L_holder_found; // Found!
 4479   //     }
 4480   //   } while (tmp != 0);
 4481   //   goto L_no_such_interface // Not found.
 4482   Label L_scan_holder;
 4483   bind(L_scan_holder);
 4484     movptr(temp_itbl_klass, Address(scan_temp, 0));
 4485     addptr(scan_temp, scan_step);
 4486     cmpptr(holder_klass, temp_itbl_klass);
 4487     jccb(Assembler::equal, L_holder_found);
 4488     testptr(temp_itbl_klass, temp_itbl_klass);
 4489     jccb(Assembler::notZero, L_scan_holder);
 4490 
 4491   jmpb(L_no_such_interface);
 4492 
 4493   // Loop: Look for resolved_class record in itable
 4494   //   do {
 4495   //     tmp = itable[index];
 4496   //     index += step;
 4497   //     if (tmp == holder_klass) {
 4498   //        // Also check if we have met a holder klass
 4499   //        holder_tmp = itable[index-step-ioffset];
 4500   //     }
 4501   //     if (tmp == resolved_klass) {
 4502   //        goto L_resolved_found;  // Found!
 4503   //     }
 4504   //   } while (tmp != 0);
 4505   //   goto L_no_such_interface // Not found.
 4506   //
 4507   Label L_loop_scan_resolved;
 4508   bind(L_loop_scan_resolved);
 4509     movptr(temp_itbl_klass, Address(scan_temp, 0));
 4510     addptr(scan_temp, scan_step);
 4511     bind(L_loop_scan_resolved_entry);
 4512     cmpptr(holder_klass, temp_itbl_klass);
 4513     cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step));
 4514     cmpptr(resolved_klass, temp_itbl_klass);
 4515     jccb(Assembler::equal, L_resolved_found);
 4516     testptr(temp_itbl_klass, temp_itbl_klass);
 4517     jccb(Assembler::notZero, L_loop_scan_resolved);
 4518 
 4519   jmpb(L_no_such_interface);
 4520 
 4521   Label L_ready;
 4522 
 4523   // See if we already have a holder klass. If not, go and scan for it.
 4524   bind(L_resolved_found);
 4525   testptr(temp_reg, temp_reg);
 4526   jccb(Assembler::zero, L_scan_holder);
 4527   jmpb(L_ready);
 4528 
 4529   bind(L_holder_found);
 4530   movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step));
 4531 
 4532   // Finally, temp_reg contains holder_klass vtable offset
 4533   bind(L_ready);
 4534   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 4535   if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl
 4536     load_klass(scan_temp, receiver, noreg);
 4537     movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off));
 4538   } else {
 4539     movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off));
 4540   }
 4541 }
 4542 
 4543 
 4544 // virtual method calling
 4545 void MacroAssembler::lookup_virtual_method(Register recv_klass,
 4546                                            RegisterOrConstant vtable_index,
 4547                                            Register method_result) {
 4548   const ByteSize base = Klass::vtable_start_offset();
 4549   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
 4550   Address vtable_entry_addr(recv_klass,
 4551                             vtable_index, Address::times_ptr,
 4552                             base + vtableEntry::method_offset());
 4553   movptr(method_result, vtable_entry_addr);
 4554 }
 4555 
 4556 
 4557 void MacroAssembler::check_klass_subtype(Register sub_klass,
 4558                            Register super_klass,
 4559                            Register temp_reg,
 4560                            Label& L_success) {
 4561   Label L_failure;
 4562   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, nullptr);
 4563   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr);
 4564   bind(L_failure);
 4565 }
 4566 
 4567 
 4568 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
 4569                                                    Register super_klass,
 4570                                                    Register temp_reg,
 4571                                                    Label* L_success,
 4572                                                    Label* L_failure,
 4573                                                    Label* L_slow_path,
 4574                                         RegisterOrConstant super_check_offset) {
 4575   assert_different_registers(sub_klass, super_klass, temp_reg);
 4576   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
 4577   if (super_check_offset.is_register()) {
 4578     assert_different_registers(sub_klass, super_klass,
 4579                                super_check_offset.as_register());
 4580   } else if (must_load_sco) {
 4581     assert(temp_reg != noreg, "supply either a temp or a register offset");
 4582   }
 4583 
 4584   Label L_fallthrough;
 4585   int label_nulls = 0;
 4586   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 4587   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 4588   if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
 4589   assert(label_nulls <= 1, "at most one null in the batch");
 4590 
 4591   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
 4592   int sco_offset = in_bytes(Klass::super_check_offset_offset());
 4593   Address super_check_offset_addr(super_klass, sco_offset);
 4594 
 4595   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
 4596   // range of a jccb.  If this routine grows larger, reconsider at
 4597   // least some of these.
 4598 #define local_jcc(assembler_cond, label)                                \
 4599   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
 4600   else                             jcc( assembler_cond, label) /*omit semi*/
 4601 
 4602   // Hacked jmp, which may only be used just before L_fallthrough.
 4603 #define final_jmp(label)                                                \
 4604   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
 4605   else                            jmp(label)                /*omit semi*/
 4606 
 4607   // If the pointers are equal, we are done (e.g., String[] elements).
 4608   // This self-check enables sharing of secondary supertype arrays among
 4609   // non-primary types such as array-of-interface.  Otherwise, each such
 4610   // type would need its own customized SSA.
 4611   // We move this check to the front of the fast path because many
 4612   // type checks are in fact trivially successful in this manner,
 4613   // so we get a nicely predicted branch right at the start of the check.
 4614   cmpptr(sub_klass, super_klass);
 4615   local_jcc(Assembler::equal, *L_success);
 4616 
 4617   // Check the supertype display:
 4618   if (must_load_sco) {
 4619     // Positive movl does right thing on LP64.
 4620     movl(temp_reg, super_check_offset_addr);
 4621     super_check_offset = RegisterOrConstant(temp_reg);
 4622   }
 4623   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
 4624   cmpptr(super_klass, super_check_addr); // load displayed supertype
 4625 
 4626   // This check has worked decisively for primary supers.
 4627   // Secondary supers are sought in the super_cache ('super_cache_addr').
 4628   // (Secondary supers are interfaces and very deeply nested subtypes.)
 4629   // This works in the same check above because of a tricky aliasing
 4630   // between the super_cache and the primary super display elements.
 4631   // (The 'super_check_addr' can address either, as the case requires.)
 4632   // Note that the cache is updated below if it does not help us find
 4633   // what we need immediately.
 4634   // So if it was a primary super, we can just fail immediately.
 4635   // Otherwise, it's the slow path for us (no success at this point).
 4636 
 4637   if (super_check_offset.is_register()) {
 4638     local_jcc(Assembler::equal, *L_success);
 4639     cmpl(super_check_offset.as_register(), sc_offset);
 4640     if (L_failure == &L_fallthrough) {
 4641       local_jcc(Assembler::equal, *L_slow_path);
 4642     } else {
 4643       local_jcc(Assembler::notEqual, *L_failure);
 4644       final_jmp(*L_slow_path);
 4645     }
 4646   } else if (super_check_offset.as_constant() == sc_offset) {
 4647     // Need a slow path; fast failure is impossible.
 4648     if (L_slow_path == &L_fallthrough) {
 4649       local_jcc(Assembler::equal, *L_success);
 4650     } else {
 4651       local_jcc(Assembler::notEqual, *L_slow_path);
 4652       final_jmp(*L_success);
 4653     }
 4654   } else {
 4655     // No slow path; it's a fast decision.
 4656     if (L_failure == &L_fallthrough) {
 4657       local_jcc(Assembler::equal, *L_success);
 4658     } else {
 4659       local_jcc(Assembler::notEqual, *L_failure);
 4660       final_jmp(*L_success);
 4661     }
 4662   }
 4663 
 4664   bind(L_fallthrough);
 4665 
 4666 #undef local_jcc
 4667 #undef final_jmp
 4668 }
 4669 
 4670 
 4671 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass,
 4672                                                           Register super_klass,
 4673                                                           Register temp_reg,
 4674                                                           Register temp2_reg,
 4675                                                           Label* L_success,
 4676                                                           Label* L_failure,
 4677                                                           bool set_cond_codes) {
 4678   assert_different_registers(sub_klass, super_klass, temp_reg);
 4679   if (temp2_reg != noreg)
 4680     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
 4681 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
 4682 
 4683   Label L_fallthrough;
 4684   int label_nulls = 0;
 4685   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 4686   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 4687   assert(label_nulls <= 1, "at most one null in the batch");
 4688 
 4689   // a couple of useful fields in sub_klass:
 4690   int ss_offset = in_bytes(Klass::secondary_supers_offset());
 4691   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
 4692   Address secondary_supers_addr(sub_klass, ss_offset);
 4693   Address super_cache_addr(     sub_klass, sc_offset);
 4694 
 4695   // Do a linear scan of the secondary super-klass chain.
 4696   // This code is rarely used, so simplicity is a virtue here.
 4697   // The repne_scan instruction uses fixed registers, which we must spill.
 4698   // Don't worry too much about pre-existing connections with the input regs.
 4699 
 4700   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
 4701   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
 4702 
 4703   // Get super_klass value into rax (even if it was in rdi or rcx).
 4704   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
 4705   if (super_klass != rax) {
 4706     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
 4707     mov(rax, super_klass);
 4708   }
 4709   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
 4710   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
 4711 
 4712 #ifndef PRODUCT
 4713   uint* pst_counter = &SharedRuntime::_partial_subtype_ctr;
 4714   ExternalAddress pst_counter_addr((address) pst_counter);
 4715   NOT_LP64(  incrementl(pst_counter_addr) );
 4716   LP64_ONLY( lea(rcx, pst_counter_addr) );
 4717   LP64_ONLY( incrementl(Address(rcx, 0)) );
 4718 #endif //PRODUCT
 4719 
 4720   // We will consult the secondary-super array.
 4721   movptr(rdi, secondary_supers_addr);
 4722   // Load the array length.  (Positive movl does right thing on LP64.)
 4723   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
 4724   // Skip to start of data.
 4725   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
 4726 
 4727   // Scan RCX words at [RDI] for an occurrence of RAX.
 4728   // Set NZ/Z based on last compare.
 4729   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
 4730   // not change flags (only scas instruction which is repeated sets flags).
 4731   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
 4732 
 4733     testptr(rax,rax); // Set Z = 0
 4734     repne_scan();
 4735 
 4736   // Unspill the temp. registers:
 4737   if (pushed_rdi)  pop(rdi);
 4738   if (pushed_rcx)  pop(rcx);
 4739   if (pushed_rax)  pop(rax);
 4740 
 4741   if (set_cond_codes) {
 4742     // Special hack for the AD files:  rdi is guaranteed non-zero.
 4743     assert(!pushed_rdi, "rdi must be left non-null");
 4744     // Also, the condition codes are properly set Z/NZ on succeed/failure.
 4745   }
 4746 
 4747   if (L_failure == &L_fallthrough)
 4748         jccb(Assembler::notEqual, *L_failure);
 4749   else  jcc(Assembler::notEqual, *L_failure);
 4750 
 4751   // Success.  Cache the super we found and proceed in triumph.
 4752   movptr(super_cache_addr, super_klass);
 4753 
 4754   if (L_success != &L_fallthrough) {
 4755     jmp(*L_success);
 4756   }
 4757 
 4758 #undef IS_A_TEMP
 4759 
 4760   bind(L_fallthrough);
 4761 }
 4762 
 4763 #ifndef _LP64
 4764 
 4765 // 32-bit x86 only: always use the linear search.
 4766 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
 4767                                                    Register super_klass,
 4768                                                    Register temp_reg,
 4769                                                    Register temp2_reg,
 4770                                                    Label* L_success,
 4771                                                    Label* L_failure,
 4772                                                    bool set_cond_codes) {
 4773   check_klass_subtype_slow_path_linear
 4774     (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes);
 4775 }
 4776 
 4777 #else // _LP64
 4778 
 4779 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
 4780                                                    Register super_klass,
 4781                                                    Register temp_reg,
 4782                                                    Register temp2_reg,
 4783                                                    Label* L_success,
 4784                                                    Label* L_failure,
 4785                                                    bool set_cond_codes) {
 4786   assert(set_cond_codes == false, "must be false on 64-bit x86");
 4787   check_klass_subtype_slow_path
 4788     (sub_klass, super_klass, temp_reg, temp2_reg, noreg, noreg,
 4789      L_success, L_failure);
 4790 }
 4791 
 4792 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
 4793                                                    Register super_klass,
 4794                                                    Register temp_reg,
 4795                                                    Register temp2_reg,
 4796                                                    Register temp3_reg,
 4797                                                    Register temp4_reg,
 4798                                                    Label* L_success,
 4799                                                    Label* L_failure) {
 4800   if (UseSecondarySupersTable) {
 4801     check_klass_subtype_slow_path_table
 4802       (sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, temp4_reg,
 4803        L_success, L_failure);
 4804   } else {
 4805     check_klass_subtype_slow_path_linear
 4806       (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, /*set_cond_codes*/false);
 4807   }
 4808 }
 4809 
 4810 Register MacroAssembler::allocate_if_noreg(Register r,
 4811                                   RegSetIterator<Register> &available_regs,
 4812                                   RegSet &regs_to_push) {
 4813   if (!r->is_valid()) {
 4814     r = *available_regs++;
 4815     regs_to_push += r;
 4816   }
 4817   return r;
 4818 }
 4819 
 4820 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass,
 4821                                                          Register super_klass,
 4822                                                          Register temp_reg,
 4823                                                          Register temp2_reg,
 4824                                                          Register temp3_reg,
 4825                                                          Register result_reg,
 4826                                                          Label* L_success,
 4827                                                          Label* L_failure) {
 4828   // NB! Callers may assume that, when temp2_reg is a valid register,
 4829   // this code sets it to a nonzero value.
 4830   bool temp2_reg_was_valid = temp2_reg->is_valid();
 4831 
 4832   RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg);
 4833 
 4834   Label L_fallthrough;
 4835   int label_nulls = 0;
 4836   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 4837   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 4838   assert(label_nulls <= 1, "at most one null in the batch");
 4839 
 4840   BLOCK_COMMENT("check_klass_subtype_slow_path_table");
 4841 
 4842   RegSetIterator<Register> available_regs
 4843     = (RegSet::of(rax, rcx, rdx, r8) + r9 + r10 + r11 + r12 - temps - sub_klass - super_klass).begin();
 4844 
 4845   RegSet pushed_regs;
 4846 
 4847   temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs);
 4848   temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs);
 4849   temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs);
 4850   result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs);
 4851   Register temp4_reg = allocate_if_noreg(noreg, available_regs, pushed_regs);
 4852 
 4853   assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, result_reg);
 4854 
 4855   {
 4856 
 4857     int register_push_size = pushed_regs.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4858     int aligned_size = align_up(register_push_size, StackAlignmentInBytes);
 4859     subptr(rsp, aligned_size);
 4860     push_set(pushed_regs, 0);
 4861 
 4862     lookup_secondary_supers_table_var(sub_klass,
 4863                                       super_klass,
 4864                                       temp_reg, temp2_reg, temp3_reg, temp4_reg, result_reg);
 4865     cmpq(result_reg, 0);
 4866 
 4867     // Unspill the temp. registers:
 4868     pop_set(pushed_regs, 0);
 4869     // Increment SP but do not clobber flags.
 4870     lea(rsp, Address(rsp, aligned_size));
 4871   }
 4872 
 4873   if (temp2_reg_was_valid) {
 4874     movq(temp2_reg, 1);
 4875   }
 4876 
 4877   jcc(Assembler::notEqual, *L_failure);
 4878 
 4879   if (L_success != &L_fallthrough) {
 4880     jmp(*L_success);
 4881   }
 4882 
 4883   bind(L_fallthrough);
 4884 }
 4885 
 4886 // population_count variant for running without the POPCNT
 4887 // instruction, which was introduced with SSE4.2 in 2008.
 4888 void MacroAssembler::population_count(Register dst, Register src,
 4889                                       Register scratch1, Register scratch2) {
 4890   assert_different_registers(src, scratch1, scratch2);
 4891   if (UsePopCountInstruction) {
 4892     Assembler::popcntq(dst, src);
 4893   } else {
 4894     assert_different_registers(src, scratch1, scratch2);
 4895     assert_different_registers(dst, scratch1, scratch2);
 4896     Label loop, done;
 4897 
 4898     mov(scratch1, src);
 4899     // dst = 0;
 4900     // while(scratch1 != 0) {
 4901     //   dst++;
 4902     //   scratch1 &= (scratch1 - 1);
 4903     // }
 4904     xorl(dst, dst);
 4905     testq(scratch1, scratch1);
 4906     jccb(Assembler::equal, done);
 4907     {
 4908       bind(loop);
 4909       incq(dst);
 4910       movq(scratch2, scratch1);
 4911       decq(scratch2);
 4912       andq(scratch1, scratch2);
 4913       jccb(Assembler::notEqual, loop);
 4914     }
 4915     bind(done);
 4916   }
 4917 }
 4918 
 4919 // Ensure that the inline code and the stub are using the same registers.
 4920 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS                      \
 4921 do {                                                                 \
 4922   assert(r_super_klass  == rax, "mismatch");                         \
 4923   assert(r_array_base   == rbx, "mismatch");                         \
 4924   assert(r_array_length == rcx, "mismatch");                         \
 4925   assert(r_array_index  == rdx, "mismatch");                         \
 4926   assert(r_sub_klass    == rsi || r_sub_klass == noreg, "mismatch"); \
 4927   assert(r_bitmap       == r11 || r_bitmap    == noreg, "mismatch"); \
 4928   assert(result         == rdi || result      == noreg, "mismatch"); \
 4929 } while(0)
 4930 
 4931 // Versions of salq and rorq that don't need count to be in rcx
 4932 
 4933 void MacroAssembler::salq(Register dest, Register count) {
 4934   if (count == rcx) {
 4935     Assembler::salq(dest);
 4936   } else {
 4937     assert_different_registers(rcx, dest);
 4938     xchgq(rcx, count);
 4939     Assembler::salq(dest);
 4940     xchgq(rcx, count);
 4941   }
 4942 }
 4943 
 4944 void MacroAssembler::rorq(Register dest, Register count) {
 4945   if (count == rcx) {
 4946     Assembler::rorq(dest);
 4947   } else {
 4948     assert_different_registers(rcx, dest);
 4949     xchgq(rcx, count);
 4950     Assembler::rorq(dest);
 4951     xchgq(rcx, count);
 4952   }
 4953 }
 4954 
 4955 // Return true: we succeeded in generating this code
 4956 //
 4957 // At runtime, return 0 in result if r_super_klass is a superclass of
 4958 // r_sub_klass, otherwise return nonzero. Use this if you know the
 4959 // super_klass_slot of the class you're looking for. This is always
 4960 // the case for instanceof and checkcast.
 4961 void MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass,
 4962                                                          Register r_super_klass,
 4963                                                          Register temp1,
 4964                                                          Register temp2,
 4965                                                          Register temp3,
 4966                                                          Register temp4,
 4967                                                          Register result,
 4968                                                          u1 super_klass_slot) {
 4969   assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result);
 4970 
 4971   Label L_fallthrough, L_success, L_failure;
 4972 
 4973   BLOCK_COMMENT("lookup_secondary_supers_table {");
 4974 
 4975   const Register
 4976     r_array_index  = temp1,
 4977     r_array_length = temp2,
 4978     r_array_base   = temp3,
 4979     r_bitmap       = temp4;
 4980 
 4981   LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
 4982 
 4983   xorq(result, result); // = 0
 4984 
 4985   movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
 4986   movq(r_array_index, r_bitmap);
 4987 
 4988   // First check the bitmap to see if super_klass might be present. If
 4989   // the bit is zero, we are certain that super_klass is not one of
 4990   // the secondary supers.
 4991   u1 bit = super_klass_slot;
 4992   {
 4993     // NB: If the count in a x86 shift instruction is 0, the flags are
 4994     // not affected, so we do a testq instead.
 4995     int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit;
 4996     if (shift_count != 0) {
 4997       salq(r_array_index, shift_count);
 4998     } else {
 4999       testq(r_array_index, r_array_index);
 5000     }
 5001   }
 5002   // We test the MSB of r_array_index, i.e. its sign bit
 5003   jcc(Assembler::positive, L_failure);
 5004 
 5005   // Get the first array index that can contain super_klass into r_array_index.
 5006   if (bit != 0) {
 5007     population_count(r_array_index, r_array_index, temp2, temp3);
 5008   } else {
 5009     movl(r_array_index, 1);
 5010   }
 5011   // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
 5012 
 5013   // We will consult the secondary-super array.
 5014   movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
 5015 
 5016   // We're asserting that the first word in an Array<Klass*> is the
 5017   // length, and the second word is the first word of the data. If
 5018   // that ever changes, r_array_base will have to be adjusted here.
 5019   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
 5020   assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
 5021 
 5022   cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
 5023   jccb(Assembler::equal, L_success);
 5024 
 5025   // Is there another entry to check? Consult the bitmap.
 5026   btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK);
 5027   jccb(Assembler::carryClear, L_failure);
 5028 
 5029   // Linear probe. Rotate the bitmap so that the next bit to test is
 5030   // in Bit 1.
 5031   if (bit != 0) {
 5032     rorq(r_bitmap, bit);
 5033   }
 5034 
 5035   // Calls into the stub generated by lookup_secondary_supers_table_slow_path.
 5036   // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap.
 5037   // Kills: r_array_length.
 5038   // Returns: result.
 5039   call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()));
 5040   // Result (0/1) is in rdi
 5041   jmpb(L_fallthrough);
 5042 
 5043   bind(L_failure);
 5044   incq(result); // 0 => 1
 5045 
 5046   bind(L_success);
 5047   // result = 0;
 5048 
 5049   bind(L_fallthrough);
 5050   BLOCK_COMMENT("} lookup_secondary_supers_table");
 5051 
 5052   if (VerifySecondarySupers) {
 5053     verify_secondary_supers_table(r_sub_klass, r_super_klass, result,
 5054                                   temp1, temp2, temp3);
 5055   }
 5056 }
 5057 
 5058 // At runtime, return 0 in result if r_super_klass is a superclass of
 5059 // r_sub_klass, otherwise return nonzero. Use this version of
 5060 // lookup_secondary_supers_table() if you don't know ahead of time
 5061 // which superclass will be searched for. Used by interpreter and
 5062 // runtime stubs. It is larger and has somewhat greater latency than
 5063 // the version above, which takes a constant super_klass_slot.
 5064 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass,
 5065                                                        Register r_super_klass,
 5066                                                        Register temp1,
 5067                                                        Register temp2,
 5068                                                        Register temp3,
 5069                                                        Register temp4,
 5070                                                        Register result) {
 5071   assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result);
 5072   assert_different_registers(r_sub_klass, r_super_klass, rcx);
 5073   RegSet temps = RegSet::of(temp1, temp2, temp3, temp4);
 5074 
 5075   Label L_fallthrough, L_success, L_failure;
 5076 
 5077   BLOCK_COMMENT("lookup_secondary_supers_table {");
 5078 
 5079   RegSetIterator<Register> available_regs = (temps - rcx).begin();
 5080 
 5081   // FIXME. Once we are sure that all paths reaching this point really
 5082   // do pass rcx as one of our temps we can get rid of the following
 5083   // workaround.
 5084   assert(temps.contains(rcx), "fix this code");
 5085 
 5086   // We prefer to have our shift count in rcx. If rcx is one of our
 5087   // temps, use it for slot. If not, pick any of our temps.
 5088   Register slot;
 5089   if (!temps.contains(rcx)) {
 5090     slot = *available_regs++;
 5091   } else {
 5092     slot = rcx;
 5093   }
 5094 
 5095   const Register r_array_index = *available_regs++;
 5096   const Register r_bitmap      = *available_regs++;
 5097 
 5098   // The logic above guarantees this property, but we state it here.
 5099   assert_different_registers(r_array_index, r_bitmap, rcx);
 5100 
 5101   movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
 5102   movq(r_array_index, r_bitmap);
 5103 
 5104   // First check the bitmap to see if super_klass might be present. If
 5105   // the bit is zero, we are certain that super_klass is not one of
 5106   // the secondary supers.
 5107   movb(slot, Address(r_super_klass, Klass::hash_slot_offset()));
 5108   xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64)
 5109   salq(r_array_index, slot);
 5110 
 5111   testq(r_array_index, r_array_index);
 5112   // We test the MSB of r_array_index, i.e. its sign bit
 5113   jcc(Assembler::positive, L_failure);
 5114 
 5115   const Register r_array_base = *available_regs++;
 5116 
 5117   // Get the first array index that can contain super_klass into r_array_index.
 5118   population_count(r_array_index, r_array_index, /*temp2*/r_array_base, /*temp3*/slot);
 5119 
 5120   // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
 5121 
 5122   // We will consult the secondary-super array.
 5123   movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
 5124 
 5125   // We're asserting that the first word in an Array<Klass*> is the
 5126   // length, and the second word is the first word of the data. If
 5127   // that ever changes, r_array_base will have to be adjusted here.
 5128   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
 5129   assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
 5130 
 5131   cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
 5132   jccb(Assembler::equal, L_success);
 5133 
 5134   // Restore slot to its true value
 5135   xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64)
 5136 
 5137   // Linear probe. Rotate the bitmap so that the next bit to test is
 5138   // in Bit 1.
 5139   rorq(r_bitmap, slot);
 5140 
 5141   // Is there another entry to check? Consult the bitmap.
 5142   btq(r_bitmap, 1);
 5143   jccb(Assembler::carryClear, L_failure);
 5144 
 5145   // Calls into the stub generated by lookup_secondary_supers_table_slow_path.
 5146   // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap.
 5147   // Kills: r_array_length.
 5148   // Returns: result.
 5149   lookup_secondary_supers_table_slow_path(r_super_klass,
 5150                                           r_array_base,
 5151                                           r_array_index,
 5152                                           r_bitmap,
 5153                                           /*temp1*/result,
 5154                                           /*temp2*/slot,
 5155                                           &L_success,
 5156                                           nullptr);
 5157 
 5158   bind(L_failure);
 5159   movq(result, 1);
 5160   jmpb(L_fallthrough);
 5161 
 5162   bind(L_success);
 5163   xorq(result, result); // = 0
 5164 
 5165   bind(L_fallthrough);
 5166   BLOCK_COMMENT("} lookup_secondary_supers_table");
 5167 
 5168   if (VerifySecondarySupers) {
 5169     verify_secondary_supers_table(r_sub_klass, r_super_klass, result,
 5170                                   temp1, temp2, temp3);
 5171   }
 5172 }
 5173 
 5174 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit,
 5175                                  Label* L_success, Label* L_failure) {
 5176   Label L_loop, L_fallthrough;
 5177   {
 5178     int label_nulls = 0;
 5179     if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
 5180     if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
 5181     assert(label_nulls <= 1, "at most one null in the batch");
 5182   }
 5183   bind(L_loop);
 5184   cmpq(value, Address(addr, count, Address::times_8));
 5185   jcc(Assembler::equal, *L_success);
 5186   addl(count, 1);
 5187   cmpl(count, limit);
 5188   jcc(Assembler::less, L_loop);
 5189 
 5190   if (&L_fallthrough != L_failure) {
 5191     jmp(*L_failure);
 5192   }
 5193   bind(L_fallthrough);
 5194 }
 5195 
 5196 // Called by code generated by check_klass_subtype_slow_path
 5197 // above. This is called when there is a collision in the hashed
 5198 // lookup in the secondary supers array.
 5199 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass,
 5200                                                              Register r_array_base,
 5201                                                              Register r_array_index,
 5202                                                              Register r_bitmap,
 5203                                                              Register temp1,
 5204                                                              Register temp2,
 5205                                                              Label* L_success,
 5206                                                              Label* L_failure) {
 5207   assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2);
 5208 
 5209   const Register
 5210     r_array_length = temp1,
 5211     r_sub_klass    = noreg,
 5212     result         = noreg;
 5213 
 5214   Label L_fallthrough;
 5215   int label_nulls = 0;
 5216   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 5217   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 5218   assert(label_nulls <= 1, "at most one null in the batch");
 5219 
 5220   // Load the array length.
 5221   movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
 5222   // And adjust the array base to point to the data.
 5223   // NB! Effectively increments current slot index by 1.
 5224   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "");
 5225   addptr(r_array_base, Array<Klass*>::base_offset_in_bytes());
 5226 
 5227   // Linear probe
 5228   Label L_huge;
 5229 
 5230   // The bitmap is full to bursting.
 5231   // Implicit invariant: BITMAP_FULL implies (length > 0)
 5232   cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2);
 5233   jcc(Assembler::greater, L_huge);
 5234 
 5235   // NB! Our caller has checked bits 0 and 1 in the bitmap. The
 5236   // current slot (at secondary_supers[r_array_index]) has not yet
 5237   // been inspected, and r_array_index may be out of bounds if we
 5238   // wrapped around the end of the array.
 5239 
 5240   { // This is conventional linear probing, but instead of terminating
 5241     // when a null entry is found in the table, we maintain a bitmap
 5242     // in which a 0 indicates missing entries.
 5243     // The check above guarantees there are 0s in the bitmap, so the loop
 5244     // eventually terminates.
 5245 
 5246     xorl(temp2, temp2); // = 0;
 5247 
 5248     Label L_again;
 5249     bind(L_again);
 5250 
 5251     // Check for array wraparound.
 5252     cmpl(r_array_index, r_array_length);
 5253     cmovl(Assembler::greaterEqual, r_array_index, temp2);
 5254 
 5255     cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
 5256     jcc(Assembler::equal, *L_success);
 5257 
 5258     // If the next bit in bitmap is zero, we're done.
 5259     btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now
 5260     jcc(Assembler::carryClear, *L_failure);
 5261 
 5262     rorq(r_bitmap, 1); // Bits 1/2 => 0/1
 5263     addl(r_array_index, 1);
 5264 
 5265     jmp(L_again);
 5266   }
 5267 
 5268   { // Degenerate case: more than 64 secondary supers.
 5269     // FIXME: We could do something smarter here, maybe a vectorized
 5270     // comparison or a binary search, but is that worth any added
 5271     // complexity?
 5272     bind(L_huge);
 5273     xorl(r_array_index, r_array_index); // = 0
 5274     repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length,
 5275                 L_success,
 5276                 (&L_fallthrough != L_failure ? L_failure : nullptr));
 5277 
 5278     bind(L_fallthrough);
 5279   }
 5280 }
 5281 
 5282 struct VerifyHelperArguments {
 5283   Klass* _super;
 5284   Klass* _sub;
 5285   intptr_t _linear_result;
 5286   intptr_t _table_result;
 5287 };
 5288 
 5289 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) {
 5290   Klass::on_secondary_supers_verification_failure(args->_super,
 5291                                                   args->_sub,
 5292                                                   args->_linear_result,
 5293                                                   args->_table_result,
 5294                                                   msg);
 5295 }
 5296 
 5297 // Make sure that the hashed lookup and a linear scan agree.
 5298 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass,
 5299                                                    Register r_super_klass,
 5300                                                    Register result,
 5301                                                    Register temp1,
 5302                                                    Register temp2,
 5303                                                    Register temp3) {
 5304   const Register
 5305       r_array_index  = temp1,
 5306       r_array_length = temp2,
 5307       r_array_base   = temp3,
 5308       r_bitmap       = noreg;
 5309 
 5310   BLOCK_COMMENT("verify_secondary_supers_table {");
 5311 
 5312   Label L_success, L_failure, L_check, L_done;
 5313 
 5314   movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
 5315   movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
 5316   // And adjust the array base to point to the data.
 5317   addptr(r_array_base, Array<Klass*>::base_offset_in_bytes());
 5318 
 5319   testl(r_array_length, r_array_length); // array_length == 0?
 5320   jcc(Assembler::zero, L_failure);
 5321 
 5322   movl(r_array_index, 0);
 5323   repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success);
 5324   // fall through to L_failure
 5325 
 5326   const Register linear_result = r_array_index; // reuse temp1
 5327 
 5328   bind(L_failure); // not present
 5329   movl(linear_result, 1);
 5330   jmp(L_check);
 5331 
 5332   bind(L_success); // present
 5333   movl(linear_result, 0);
 5334 
 5335   bind(L_check);
 5336   cmpl(linear_result, result);
 5337   jcc(Assembler::equal, L_done);
 5338 
 5339   { // To avoid calling convention issues, build a record on the stack
 5340     // and pass the pointer to that instead.
 5341     push(result);
 5342     push(linear_result);
 5343     push(r_sub_klass);
 5344     push(r_super_klass);
 5345     movptr(c_rarg1, rsp);
 5346     movptr(c_rarg0, (uintptr_t) "mismatch");
 5347     call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper)));
 5348     should_not_reach_here();
 5349   }
 5350   bind(L_done);
 5351 
 5352   BLOCK_COMMENT("} verify_secondary_supers_table");
 5353 }
 5354 
 5355 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS
 5356 
 5357 #endif // LP64
 5358 
 5359 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
 5360   assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
 5361 
 5362   Label L_fallthrough;
 5363   if (L_fast_path == nullptr) {
 5364     L_fast_path = &L_fallthrough;
 5365   } else if (L_slow_path == nullptr) {
 5366     L_slow_path = &L_fallthrough;
 5367   }
 5368 
 5369   // Fast path check: class is fully initialized.
 5370   // init_state needs acquire, but x86 is TSO, and so we are already good.
 5371   cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
 5372   jcc(Assembler::equal, *L_fast_path);
 5373 
 5374   // Fast path check: current thread is initializer thread
 5375   cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset()));
 5376   if (L_slow_path == &L_fallthrough) {
 5377     jcc(Assembler::equal, *L_fast_path);
 5378     bind(*L_slow_path);
 5379   } else if (L_fast_path == &L_fallthrough) {
 5380     jcc(Assembler::notEqual, *L_slow_path);
 5381     bind(*L_fast_path);
 5382   } else {
 5383     Unimplemented();
 5384   }
 5385 }
 5386 
 5387 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
 5388   if (VM_Version::supports_cmov()) {
 5389     cmovl(cc, dst, src);
 5390   } else {
 5391     Label L;
 5392     jccb(negate_condition(cc), L);
 5393     movl(dst, src);
 5394     bind(L);
 5395   }
 5396 }
 5397 
 5398 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
 5399   if (VM_Version::supports_cmov()) {
 5400     cmovl(cc, dst, src);
 5401   } else {
 5402     Label L;
 5403     jccb(negate_condition(cc), L);
 5404     movl(dst, src);
 5405     bind(L);
 5406   }
 5407 }
 5408 
 5409 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
 5410   if (!VerifyOops) return;
 5411 
 5412   BLOCK_COMMENT("verify_oop {");
 5413 #ifdef _LP64
 5414   push(rscratch1);
 5415 #endif
 5416   push(rax);                          // save rax
 5417   push(reg);                          // pass register argument
 5418 
 5419   // Pass register number to verify_oop_subroutine
 5420   const char* b = nullptr;
 5421   {
 5422     ResourceMark rm;
 5423     stringStream ss;
 5424     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
 5425     b = code_string(ss.as_string());
 5426   }
 5427   AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate());
 5428   pushptr(buffer.addr(), rscratch1);
 5429 
 5430   // call indirectly to solve generation ordering problem
 5431   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
 5432   call(rax);
 5433   // Caller pops the arguments (oop, message) and restores rax, r10
 5434   BLOCK_COMMENT("} verify_oop");
 5435 }
 5436 
 5437 void MacroAssembler::vallones(XMMRegister dst, int vector_len) {
 5438   if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) {
 5439     // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without
 5440     // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog
 5441     vpternlogd(dst, 0xFF, dst, dst, vector_len);
 5442   } else if (VM_Version::supports_avx()) {
 5443     vpcmpeqd(dst, dst, dst, vector_len);
 5444   } else {
 5445     assert(VM_Version::supports_sse2(), "");
 5446     pcmpeqd(dst, dst);
 5447   }
 5448 }
 5449 
 5450 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
 5451                                          int extra_slot_offset) {
 5452   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
 5453   int stackElementSize = Interpreter::stackElementSize;
 5454   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
 5455 #ifdef ASSERT
 5456   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
 5457   assert(offset1 - offset == stackElementSize, "correct arithmetic");
 5458 #endif
 5459   Register             scale_reg    = noreg;
 5460   Address::ScaleFactor scale_factor = Address::no_scale;
 5461   if (arg_slot.is_constant()) {
 5462     offset += arg_slot.as_constant() * stackElementSize;
 5463   } else {
 5464     scale_reg    = arg_slot.as_register();
 5465     scale_factor = Address::times(stackElementSize);
 5466   }
 5467   offset += wordSize;           // return PC is on stack
 5468   return Address(rsp, scale_reg, scale_factor, offset);
 5469 }
 5470 
 5471 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
 5472   if (!VerifyOops) return;
 5473 
 5474 #ifdef _LP64
 5475   push(rscratch1);
 5476 #endif
 5477   push(rax); // save rax,
 5478   // addr may contain rsp so we will have to adjust it based on the push
 5479   // we just did (and on 64 bit we do two pushes)
 5480   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
 5481   // stores rax into addr which is backwards of what was intended.
 5482   if (addr.uses(rsp)) {
 5483     lea(rax, addr);
 5484     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
 5485   } else {
 5486     pushptr(addr);
 5487   }
 5488 
 5489   // Pass register number to verify_oop_subroutine
 5490   const char* b = nullptr;
 5491   {
 5492     ResourceMark rm;
 5493     stringStream ss;
 5494     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
 5495     b = code_string(ss.as_string());
 5496   }
 5497   AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate());
 5498   pushptr(buffer.addr(), rscratch1);
 5499 
 5500   // call indirectly to solve generation ordering problem
 5501   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
 5502   call(rax);
 5503   // Caller pops the arguments (addr, message) and restores rax, r10.
 5504 }
 5505 
 5506 void MacroAssembler::verify_tlab() {
 5507 #ifdef ASSERT
 5508   if (UseTLAB && VerifyOops) {
 5509     Label next, ok;
 5510     Register t1 = rsi;
 5511     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
 5512 
 5513     push(t1);
 5514     NOT_LP64(push(thread_reg));
 5515     NOT_LP64(get_thread(thread_reg));
 5516 
 5517     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
 5518     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
 5519     jcc(Assembler::aboveEqual, next);
 5520     STOP("assert(top >= start)");
 5521     should_not_reach_here();
 5522 
 5523     bind(next);
 5524     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
 5525     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
 5526     jcc(Assembler::aboveEqual, ok);
 5527     STOP("assert(top <= end)");
 5528     should_not_reach_here();
 5529 
 5530     bind(ok);
 5531     NOT_LP64(pop(thread_reg));
 5532     pop(t1);
 5533   }
 5534 #endif
 5535 }
 5536 
 5537 class ControlWord {
 5538  public:
 5539   int32_t _value;
 5540 
 5541   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
 5542   int  precision_control() const       { return  (_value >>  8) & 3      ; }
 5543   bool precision() const               { return ((_value >>  5) & 1) != 0; }
 5544   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
 5545   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
 5546   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
 5547   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
 5548   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
 5549 
 5550   void print() const {
 5551     // rounding control
 5552     const char* rc;
 5553     switch (rounding_control()) {
 5554       case 0: rc = "round near"; break;
 5555       case 1: rc = "round down"; break;
 5556       case 2: rc = "round up  "; break;
 5557       case 3: rc = "chop      "; break;
 5558       default:
 5559         rc = nullptr; // silence compiler warnings
 5560         fatal("Unknown rounding control: %d", rounding_control());
 5561     };
 5562     // precision control
 5563     const char* pc;
 5564     switch (precision_control()) {
 5565       case 0: pc = "24 bits "; break;
 5566       case 1: pc = "reserved"; break;
 5567       case 2: pc = "53 bits "; break;
 5568       case 3: pc = "64 bits "; break;
 5569       default:
 5570         pc = nullptr; // silence compiler warnings
 5571         fatal("Unknown precision control: %d", precision_control());
 5572     };
 5573     // flags
 5574     char f[9];
 5575     f[0] = ' ';
 5576     f[1] = ' ';
 5577     f[2] = (precision   ()) ? 'P' : 'p';
 5578     f[3] = (underflow   ()) ? 'U' : 'u';
 5579     f[4] = (overflow    ()) ? 'O' : 'o';
 5580     f[5] = (zero_divide ()) ? 'Z' : 'z';
 5581     f[6] = (denormalized()) ? 'D' : 'd';
 5582     f[7] = (invalid     ()) ? 'I' : 'i';
 5583     f[8] = '\x0';
 5584     // output
 5585     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
 5586   }
 5587 
 5588 };
 5589 
 5590 class StatusWord {
 5591  public:
 5592   int32_t _value;
 5593 
 5594   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
 5595   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
 5596   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
 5597   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
 5598   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
 5599   int  top() const                     { return  (_value >> 11) & 7      ; }
 5600   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
 5601   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
 5602   bool precision() const               { return ((_value >>  5) & 1) != 0; }
 5603   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
 5604   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
 5605   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
 5606   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
 5607   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
 5608 
 5609   void print() const {
 5610     // condition codes
 5611     char c[5];
 5612     c[0] = (C3()) ? '3' : '-';
 5613     c[1] = (C2()) ? '2' : '-';
 5614     c[2] = (C1()) ? '1' : '-';
 5615     c[3] = (C0()) ? '0' : '-';
 5616     c[4] = '\x0';
 5617     // flags
 5618     char f[9];
 5619     f[0] = (error_status()) ? 'E' : '-';
 5620     f[1] = (stack_fault ()) ? 'S' : '-';
 5621     f[2] = (precision   ()) ? 'P' : '-';
 5622     f[3] = (underflow   ()) ? 'U' : '-';
 5623     f[4] = (overflow    ()) ? 'O' : '-';
 5624     f[5] = (zero_divide ()) ? 'Z' : '-';
 5625     f[6] = (denormalized()) ? 'D' : '-';
 5626     f[7] = (invalid     ()) ? 'I' : '-';
 5627     f[8] = '\x0';
 5628     // output
 5629     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
 5630   }
 5631 
 5632 };
 5633 
 5634 class TagWord {
 5635  public:
 5636   int32_t _value;
 5637 
 5638   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
 5639 
 5640   void print() const {
 5641     printf("%04x", _value & 0xFFFF);
 5642   }
 5643 
 5644 };
 5645 
 5646 class FPU_Register {
 5647  public:
 5648   int32_t _m0;
 5649   int32_t _m1;
 5650   int16_t _ex;
 5651 
 5652   bool is_indefinite() const           {
 5653     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
 5654   }
 5655 
 5656   void print() const {
 5657     char  sign = (_ex < 0) ? '-' : '+';
 5658     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
 5659     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
 5660   };
 5661 
 5662 };
 5663 
 5664 class FPU_State {
 5665  public:
 5666   enum {
 5667     register_size       = 10,
 5668     number_of_registers =  8,
 5669     register_mask       =  7
 5670   };
 5671 
 5672   ControlWord  _control_word;
 5673   StatusWord   _status_word;
 5674   TagWord      _tag_word;
 5675   int32_t      _error_offset;
 5676   int32_t      _error_selector;
 5677   int32_t      _data_offset;
 5678   int32_t      _data_selector;
 5679   int8_t       _register[register_size * number_of_registers];
 5680 
 5681   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
 5682   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
 5683 
 5684   const char* tag_as_string(int tag) const {
 5685     switch (tag) {
 5686       case 0: return "valid";
 5687       case 1: return "zero";
 5688       case 2: return "special";
 5689       case 3: return "empty";
 5690     }
 5691     ShouldNotReachHere();
 5692     return nullptr;
 5693   }
 5694 
 5695   void print() const {
 5696     // print computation registers
 5697     { int t = _status_word.top();
 5698       for (int i = 0; i < number_of_registers; i++) {
 5699         int j = (i - t) & register_mask;
 5700         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
 5701         st(j)->print();
 5702         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
 5703       }
 5704     }
 5705     printf("\n");
 5706     // print control registers
 5707     printf("ctrl = "); _control_word.print(); printf("\n");
 5708     printf("stat = "); _status_word .print(); printf("\n");
 5709     printf("tags = "); _tag_word    .print(); printf("\n");
 5710   }
 5711 
 5712 };
 5713 
 5714 class Flag_Register {
 5715  public:
 5716   int32_t _value;
 5717 
 5718   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
 5719   bool direction() const               { return ((_value >> 10) & 1) != 0; }
 5720   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
 5721   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
 5722   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
 5723   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
 5724   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
 5725 
 5726   void print() const {
 5727     // flags
 5728     char f[8];
 5729     f[0] = (overflow       ()) ? 'O' : '-';
 5730     f[1] = (direction      ()) ? 'D' : '-';
 5731     f[2] = (sign           ()) ? 'S' : '-';
 5732     f[3] = (zero           ()) ? 'Z' : '-';
 5733     f[4] = (auxiliary_carry()) ? 'A' : '-';
 5734     f[5] = (parity         ()) ? 'P' : '-';
 5735     f[6] = (carry          ()) ? 'C' : '-';
 5736     f[7] = '\x0';
 5737     // output
 5738     printf("%08x  flags = %s", _value, f);
 5739   }
 5740 
 5741 };
 5742 
 5743 class IU_Register {
 5744  public:
 5745   int32_t _value;
 5746 
 5747   void print() const {
 5748     printf("%08x  %11d", _value, _value);
 5749   }
 5750 
 5751 };
 5752 
 5753 class IU_State {
 5754  public:
 5755   Flag_Register _eflags;
 5756   IU_Register   _rdi;
 5757   IU_Register   _rsi;
 5758   IU_Register   _rbp;
 5759   IU_Register   _rsp;
 5760   IU_Register   _rbx;
 5761   IU_Register   _rdx;
 5762   IU_Register   _rcx;
 5763   IU_Register   _rax;
 5764 
 5765   void print() const {
 5766     // computation registers
 5767     printf("rax,  = "); _rax.print(); printf("\n");
 5768     printf("rbx,  = "); _rbx.print(); printf("\n");
 5769     printf("rcx  = "); _rcx.print(); printf("\n");
 5770     printf("rdx  = "); _rdx.print(); printf("\n");
 5771     printf("rdi  = "); _rdi.print(); printf("\n");
 5772     printf("rsi  = "); _rsi.print(); printf("\n");
 5773     printf("rbp,  = "); _rbp.print(); printf("\n");
 5774     printf("rsp  = "); _rsp.print(); printf("\n");
 5775     printf("\n");
 5776     // control registers
 5777     printf("flgs = "); _eflags.print(); printf("\n");
 5778   }
 5779 };
 5780 
 5781 
 5782 class CPU_State {
 5783  public:
 5784   FPU_State _fpu_state;
 5785   IU_State  _iu_state;
 5786 
 5787   void print() const {
 5788     printf("--------------------------------------------------\n");
 5789     _iu_state .print();
 5790     printf("\n");
 5791     _fpu_state.print();
 5792     printf("--------------------------------------------------\n");
 5793   }
 5794 
 5795 };
 5796 
 5797 
 5798 static void _print_CPU_state(CPU_State* state) {
 5799   state->print();
 5800 };
 5801 
 5802 
 5803 void MacroAssembler::print_CPU_state() {
 5804   push_CPU_state();
 5805   push(rsp);                // pass CPU state
 5806   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
 5807   addptr(rsp, wordSize);       // discard argument
 5808   pop_CPU_state();
 5809 }
 5810 
 5811 
 5812 #ifndef _LP64
 5813 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
 5814   static int counter = 0;
 5815   FPU_State* fs = &state->_fpu_state;
 5816   counter++;
 5817   // For leaf calls, only verify that the top few elements remain empty.
 5818   // We only need 1 empty at the top for C2 code.
 5819   if( stack_depth < 0 ) {
 5820     if( fs->tag_for_st(7) != 3 ) {
 5821       printf("FPR7 not empty\n");
 5822       state->print();
 5823       assert(false, "error");
 5824       return false;
 5825     }
 5826     return true;                // All other stack states do not matter
 5827   }
 5828 
 5829   assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(),
 5830          "bad FPU control word");
 5831 
 5832   // compute stack depth
 5833   int i = 0;
 5834   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
 5835   int d = i;
 5836   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
 5837   // verify findings
 5838   if (i != FPU_State::number_of_registers) {
 5839     // stack not contiguous
 5840     printf("%s: stack not contiguous at ST%d\n", s, i);
 5841     state->print();
 5842     assert(false, "error");
 5843     return false;
 5844   }
 5845   // check if computed stack depth corresponds to expected stack depth
 5846   if (stack_depth < 0) {
 5847     // expected stack depth is -stack_depth or less
 5848     if (d > -stack_depth) {
 5849       // too many elements on the stack
 5850       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
 5851       state->print();
 5852       assert(false, "error");
 5853       return false;
 5854     }
 5855   } else {
 5856     // expected stack depth is stack_depth
 5857     if (d != stack_depth) {
 5858       // wrong stack depth
 5859       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
 5860       state->print();
 5861       assert(false, "error");
 5862       return false;
 5863     }
 5864   }
 5865   // everything is cool
 5866   return true;
 5867 }
 5868 
 5869 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
 5870   if (!VerifyFPU) return;
 5871   push_CPU_state();
 5872   push(rsp);                // pass CPU state
 5873   ExternalAddress msg((address) s);
 5874   // pass message string s
 5875   pushptr(msg.addr(), noreg);
 5876   push(stack_depth);        // pass stack depth
 5877   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
 5878   addptr(rsp, 3 * wordSize);   // discard arguments
 5879   // check for error
 5880   { Label L;
 5881     testl(rax, rax);
 5882     jcc(Assembler::notZero, L);
 5883     int3();                  // break if error condition
 5884     bind(L);
 5885   }
 5886   pop_CPU_state();
 5887 }
 5888 #endif // _LP64
 5889 
 5890 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) {
 5891   // Either restore the MXCSR register after returning from the JNI Call
 5892   // or verify that it wasn't changed (with -Xcheck:jni flag).
 5893   if (VM_Version::supports_sse()) {
 5894     if (RestoreMXCSROnJNICalls) {
 5895       ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch);
 5896     } else if (CheckJNICalls) {
 5897       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
 5898     }
 5899   }
 5900   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
 5901   vzeroupper();
 5902 
 5903 #ifndef _LP64
 5904   // Either restore the x87 floating pointer control word after returning
 5905   // from the JNI call or verify that it wasn't changed.
 5906   if (CheckJNICalls) {
 5907     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
 5908   }
 5909 #endif // _LP64
 5910 }
 5911 
 5912 // ((OopHandle)result).resolve();
 5913 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
 5914   assert_different_registers(result, tmp);
 5915 
 5916   // Only 64 bit platforms support GCs that require a tmp register
 5917   // Only IN_HEAP loads require a thread_tmp register
 5918   // OopHandle::resolve is an indirection like jobject.
 5919   access_load_at(T_OBJECT, IN_NATIVE,
 5920                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
 5921 }
 5922 
 5923 // ((WeakHandle)result).resolve();
 5924 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) {
 5925   assert_different_registers(rresult, rtmp);
 5926   Label resolved;
 5927 
 5928   // A null weak handle resolves to null.
 5929   cmpptr(rresult, 0);
 5930   jcc(Assembler::equal, resolved);
 5931 
 5932   // Only 64 bit platforms support GCs that require a tmp register
 5933   // Only IN_HEAP loads require a thread_tmp register
 5934   // WeakHandle::resolve is an indirection like jweak.
 5935   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
 5936                  rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg);
 5937   bind(resolved);
 5938 }
 5939 
 5940 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
 5941   // get mirror
 5942   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 5943   load_method_holder(mirror, method);
 5944   movptr(mirror, Address(mirror, mirror_offset));
 5945   resolve_oop_handle(mirror, tmp);
 5946 }
 5947 
 5948 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
 5949   load_method_holder(rresult, rmethod);
 5950   movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
 5951 }
 5952 
 5953 void MacroAssembler::load_method_holder(Register holder, Register method) {
 5954   movptr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
 5955   movptr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
 5956   movptr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
 5957 }
 5958 
 5959 #ifdef _LP64
 5960 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) {
 5961   assert(UseCompactObjectHeaders, "expect compact object headers");
 5962   movq(dst, Address(src, oopDesc::mark_offset_in_bytes()));
 5963   shrq(dst, markWord::klass_shift);
 5964 }
 5965 #endif
 5966 
 5967 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) {
 5968   assert_different_registers(src, tmp);
 5969   assert_different_registers(dst, tmp);
 5970 #ifdef _LP64
 5971   if (UseCompactObjectHeaders) {
 5972     load_narrow_klass_compact(dst, src);
 5973     decode_klass_not_null(dst, tmp);
 5974   } else if (UseCompressedClassPointers) {
 5975     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 5976     decode_klass_not_null(dst, tmp);
 5977   } else
 5978 #endif
 5979   {
 5980     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 5981   }
 5982 }
 5983 
 5984 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) {
 5985   assert(!UseCompactObjectHeaders, "not with compact headers");
 5986   assert_different_registers(src, tmp);
 5987   assert_different_registers(dst, tmp);
 5988 #ifdef _LP64
 5989   if (UseCompressedClassPointers) {
 5990     encode_klass_not_null(src, tmp);
 5991     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 5992   } else
 5993 #endif
 5994     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 5995 }
 5996 
 5997 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) {
 5998 #ifdef _LP64
 5999   if (UseCompactObjectHeaders) {
 6000     assert(tmp != noreg, "need tmp");
 6001     assert_different_registers(klass, obj, tmp);
 6002     load_narrow_klass_compact(tmp, obj);
 6003     cmpl(klass, tmp);
 6004   } else if (UseCompressedClassPointers) {
 6005     cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes()));
 6006   } else
 6007 #endif
 6008   {
 6009     cmpptr(klass, Address(obj, oopDesc::klass_offset_in_bytes()));
 6010   }
 6011 }
 6012 
 6013 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) {
 6014 #ifdef _LP64
 6015   if (UseCompactObjectHeaders) {
 6016     assert(tmp2 != noreg, "need tmp2");
 6017     assert_different_registers(obj1, obj2, tmp1, tmp2);
 6018     load_narrow_klass_compact(tmp1, obj1);
 6019     load_narrow_klass_compact(tmp2, obj2);
 6020     cmpl(tmp1, tmp2);
 6021   } else if (UseCompressedClassPointers) {
 6022     movl(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes()));
 6023     cmpl(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes()));
 6024   } else
 6025 #endif
 6026   {
 6027     movptr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes()));
 6028     cmpptr(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes()));
 6029   }
 6030 }
 6031 
 6032 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 6033                                     Register tmp1, Register thread_tmp) {
 6034   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 6035   decorators = AccessInternal::decorator_fixup(decorators, type);
 6036   bool as_raw = (decorators & AS_RAW) != 0;
 6037   if (as_raw) {
 6038     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
 6039   } else {
 6040     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
 6041   }
 6042 }
 6043 
 6044 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 6045                                      Register tmp1, Register tmp2, Register tmp3) {
 6046   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 6047   decorators = AccessInternal::decorator_fixup(decorators, type);
 6048   bool as_raw = (decorators & AS_RAW) != 0;
 6049   if (as_raw) {
 6050     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
 6051   } else {
 6052     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
 6053   }
 6054 }
 6055 
 6056 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
 6057                                    Register thread_tmp, DecoratorSet decorators) {
 6058   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
 6059 }
 6060 
 6061 // Doesn't do verification, generates fixed size code
 6062 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 6063                                             Register thread_tmp, DecoratorSet decorators) {
 6064   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
 6065 }
 6066 
 6067 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
 6068                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
 6069   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
 6070 }
 6071 
 6072 // Used for storing nulls.
 6073 void MacroAssembler::store_heap_oop_null(Address dst) {
 6074   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
 6075 }
 6076 
 6077 #ifdef _LP64
 6078 void MacroAssembler::store_klass_gap(Register dst, Register src) {
 6079   assert(!UseCompactObjectHeaders, "Don't use with compact headers");
 6080   if (UseCompressedClassPointers) {
 6081     // Store to klass gap in destination
 6082     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
 6083   }
 6084 }
 6085 
 6086 #ifdef ASSERT
 6087 void MacroAssembler::verify_heapbase(const char* msg) {
 6088   assert (UseCompressedOops, "should be compressed");
 6089   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6090   if (CheckCompressedOops) {
 6091     Label ok;
 6092     ExternalAddress src2(CompressedOops::base_addr());
 6093     const bool is_src2_reachable = reachable(src2);
 6094     if (!is_src2_reachable) {
 6095       push(rscratch1);  // cmpptr trashes rscratch1
 6096     }
 6097     cmpptr(r12_heapbase, src2, rscratch1);
 6098     jcc(Assembler::equal, ok);
 6099     STOP(msg);
 6100     bind(ok);
 6101     if (!is_src2_reachable) {
 6102       pop(rscratch1);
 6103     }
 6104   }
 6105 }
 6106 #endif
 6107 
 6108 // Algorithm must match oop.inline.hpp encode_heap_oop.
 6109 void MacroAssembler::encode_heap_oop(Register r) {
 6110 #ifdef ASSERT
 6111   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
 6112 #endif
 6113   verify_oop_msg(r, "broken oop in encode_heap_oop");
 6114   if (CompressedOops::base() == nullptr) {
 6115     if (CompressedOops::shift() != 0) {
 6116       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6117       shrq(r, LogMinObjAlignmentInBytes);
 6118     }
 6119     return;
 6120   }
 6121   testq(r, r);
 6122   cmovq(Assembler::equal, r, r12_heapbase);
 6123   subq(r, r12_heapbase);
 6124   shrq(r, LogMinObjAlignmentInBytes);
 6125 }
 6126 
 6127 void MacroAssembler::encode_heap_oop_not_null(Register r) {
 6128 #ifdef ASSERT
 6129   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
 6130   if (CheckCompressedOops) {
 6131     Label ok;
 6132     testq(r, r);
 6133     jcc(Assembler::notEqual, ok);
 6134     STOP("null oop passed to encode_heap_oop_not_null");
 6135     bind(ok);
 6136   }
 6137 #endif
 6138   verify_oop_msg(r, "broken oop in encode_heap_oop_not_null");
 6139   if (CompressedOops::base() != nullptr) {
 6140     subq(r, r12_heapbase);
 6141   }
 6142   if (CompressedOops::shift() != 0) {
 6143     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6144     shrq(r, LogMinObjAlignmentInBytes);
 6145   }
 6146 }
 6147 
 6148 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
 6149 #ifdef ASSERT
 6150   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
 6151   if (CheckCompressedOops) {
 6152     Label ok;
 6153     testq(src, src);
 6154     jcc(Assembler::notEqual, ok);
 6155     STOP("null oop passed to encode_heap_oop_not_null2");
 6156     bind(ok);
 6157   }
 6158 #endif
 6159   verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2");
 6160   if (dst != src) {
 6161     movq(dst, src);
 6162   }
 6163   if (CompressedOops::base() != nullptr) {
 6164     subq(dst, r12_heapbase);
 6165   }
 6166   if (CompressedOops::shift() != 0) {
 6167     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6168     shrq(dst, LogMinObjAlignmentInBytes);
 6169   }
 6170 }
 6171 
 6172 void  MacroAssembler::decode_heap_oop(Register r) {
 6173 #ifdef ASSERT
 6174   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
 6175 #endif
 6176   if (CompressedOops::base() == nullptr) {
 6177     if (CompressedOops::shift() != 0) {
 6178       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6179       shlq(r, LogMinObjAlignmentInBytes);
 6180     }
 6181   } else {
 6182     Label done;
 6183     shlq(r, LogMinObjAlignmentInBytes);
 6184     jccb(Assembler::equal, done);
 6185     addq(r, r12_heapbase);
 6186     bind(done);
 6187   }
 6188   verify_oop_msg(r, "broken oop in decode_heap_oop");
 6189 }
 6190 
 6191 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
 6192   // Note: it will change flags
 6193   assert (UseCompressedOops, "should only be used for compressed headers");
 6194   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6195   // Cannot assert, unverified entry point counts instructions (see .ad file)
 6196   // vtableStubs also counts instructions in pd_code_size_limit.
 6197   // Also do not verify_oop as this is called by verify_oop.
 6198   if (CompressedOops::shift() != 0) {
 6199     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6200     shlq(r, LogMinObjAlignmentInBytes);
 6201     if (CompressedOops::base() != nullptr) {
 6202       addq(r, r12_heapbase);
 6203     }
 6204   } else {
 6205     assert (CompressedOops::base() == nullptr, "sanity");
 6206   }
 6207 }
 6208 
 6209 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
 6210   // Note: it will change flags
 6211   assert (UseCompressedOops, "should only be used for compressed headers");
 6212   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6213   // Cannot assert, unverified entry point counts instructions (see .ad file)
 6214   // vtableStubs also counts instructions in pd_code_size_limit.
 6215   // Also do not verify_oop as this is called by verify_oop.
 6216   if (CompressedOops::shift() != 0) {
 6217     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6218     if (LogMinObjAlignmentInBytes == Address::times_8) {
 6219       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
 6220     } else {
 6221       if (dst != src) {
 6222         movq(dst, src);
 6223       }
 6224       shlq(dst, LogMinObjAlignmentInBytes);
 6225       if (CompressedOops::base() != nullptr) {
 6226         addq(dst, r12_heapbase);
 6227       }
 6228     }
 6229   } else {
 6230     assert (CompressedOops::base() == nullptr, "sanity");
 6231     if (dst != src) {
 6232       movq(dst, src);
 6233     }
 6234   }
 6235 }
 6236 
 6237 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) {
 6238   assert_different_registers(r, tmp);
 6239   if (CompressedKlassPointers::base() != nullptr) {
 6240     mov64(tmp, (int64_t)CompressedKlassPointers::base());
 6241     subq(r, tmp);
 6242   }
 6243   if (CompressedKlassPointers::shift() != 0) {
 6244     shrq(r, CompressedKlassPointers::shift());
 6245   }
 6246 }
 6247 
 6248 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) {
 6249   assert_different_registers(src, dst);
 6250   if (CompressedKlassPointers::base() != nullptr) {
 6251     mov64(dst, -(int64_t)CompressedKlassPointers::base());
 6252     addq(dst, src);
 6253   } else {
 6254     movptr(dst, src);
 6255   }
 6256   if (CompressedKlassPointers::shift() != 0) {
 6257     shrq(dst, CompressedKlassPointers::shift());
 6258   }
 6259 }
 6260 
 6261 void  MacroAssembler::decode_klass_not_null(Register r, Register tmp) {
 6262   assert_different_registers(r, tmp);
 6263   // Note: it will change flags
 6264   assert(UseCompressedClassPointers, "should only be used for compressed headers");
 6265   // Cannot assert, unverified entry point counts instructions (see .ad file)
 6266   // vtableStubs also counts instructions in pd_code_size_limit.
 6267   // Also do not verify_oop as this is called by verify_oop.
 6268   if (CompressedKlassPointers::shift() != 0) {
 6269     shlq(r, CompressedKlassPointers::shift());
 6270   }
 6271   if (CompressedKlassPointers::base() != nullptr) {
 6272     mov64(tmp, (int64_t)CompressedKlassPointers::base());
 6273     addq(r, tmp);
 6274   }
 6275 }
 6276 
 6277 void  MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) {
 6278   assert_different_registers(src, dst);
 6279   // Note: it will change flags
 6280   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6281   // Cannot assert, unverified entry point counts instructions (see .ad file)
 6282   // vtableStubs also counts instructions in pd_code_size_limit.
 6283   // Also do not verify_oop as this is called by verify_oop.
 6284 
 6285   if (CompressedKlassPointers::base() == nullptr &&
 6286       CompressedKlassPointers::shift() == 0) {
 6287     // The best case scenario is that there is no base or shift. Then it is already
 6288     // a pointer that needs nothing but a register rename.
 6289     movl(dst, src);
 6290   } else {
 6291     if (CompressedKlassPointers::shift() <= Address::times_8) {
 6292       if (CompressedKlassPointers::base() != nullptr) {
 6293         mov64(dst, (int64_t)CompressedKlassPointers::base());
 6294       } else {
 6295         xorq(dst, dst);
 6296       }
 6297       if (CompressedKlassPointers::shift() != 0) {
 6298         assert(CompressedKlassPointers::shift() == Address::times_8, "klass not aligned on 64bits?");
 6299         leaq(dst, Address(dst, src, Address::times_8, 0));
 6300       } else {
 6301         addq(dst, src);
 6302       }
 6303     } else {
 6304       if (CompressedKlassPointers::base() != nullptr) {
 6305         const uint64_t base_right_shifted =
 6306             (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift();
 6307         mov64(dst, base_right_shifted);
 6308       } else {
 6309         xorq(dst, dst);
 6310       }
 6311       addq(dst, src);
 6312       shlq(dst, CompressedKlassPointers::shift());
 6313     }
 6314   }
 6315 }
 6316 
 6317 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
 6318   assert (UseCompressedOops, "should only be used for compressed headers");
 6319   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6320   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6321   int oop_index = oop_recorder()->find_index(obj);
 6322   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6323   mov_narrow_oop(dst, oop_index, rspec);
 6324 }
 6325 
 6326 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
 6327   assert (UseCompressedOops, "should only be used for compressed headers");
 6328   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6329   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6330   int oop_index = oop_recorder()->find_index(obj);
 6331   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6332   mov_narrow_oop(dst, oop_index, rspec);
 6333 }
 6334 
 6335 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
 6336   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6337   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6338   int klass_index = oop_recorder()->find_index(k);
 6339   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6340   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6341 }
 6342 
 6343 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
 6344   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6345   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6346   int klass_index = oop_recorder()->find_index(k);
 6347   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6348   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6349 }
 6350 
 6351 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
 6352   assert (UseCompressedOops, "should only be used for compressed headers");
 6353   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6354   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6355   int oop_index = oop_recorder()->find_index(obj);
 6356   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6357   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 6358 }
 6359 
 6360 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
 6361   assert (UseCompressedOops, "should only be used for compressed headers");
 6362   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6363   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6364   int oop_index = oop_recorder()->find_index(obj);
 6365   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6366   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 6367 }
 6368 
 6369 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
 6370   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6371   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6372   int klass_index = oop_recorder()->find_index(k);
 6373   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6374   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6375 }
 6376 
 6377 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
 6378   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6379   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6380   int klass_index = oop_recorder()->find_index(k);
 6381   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6382   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6383 }
 6384 
 6385 void MacroAssembler::reinit_heapbase() {
 6386   if (UseCompressedOops) {
 6387     if (Universe::heap() != nullptr) {
 6388       if (CompressedOops::base() == nullptr) {
 6389         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
 6390       } else {
 6391         mov64(r12_heapbase, (int64_t)CompressedOops::base());
 6392       }
 6393     } else {
 6394       movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr()));
 6395     }
 6396   }
 6397 }
 6398 
 6399 #endif // _LP64
 6400 
 6401 #if COMPILER2_OR_JVMCI
 6402 
 6403 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers
 6404 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
 6405   // cnt - number of qwords (8-byte words).
 6406   // base - start address, qword aligned.
 6407   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
 6408   bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0);
 6409   if (use64byteVector) {
 6410     vpxor(xtmp, xtmp, xtmp, AVX_512bit);
 6411   } else if (MaxVectorSize >= 32) {
 6412     vpxor(xtmp, xtmp, xtmp, AVX_256bit);
 6413   } else {
 6414     pxor(xtmp, xtmp);
 6415   }
 6416   jmp(L_zero_64_bytes);
 6417 
 6418   BIND(L_loop);
 6419   if (MaxVectorSize >= 32) {
 6420     fill64(base, 0, xtmp, use64byteVector);
 6421   } else {
 6422     movdqu(Address(base,  0), xtmp);
 6423     movdqu(Address(base, 16), xtmp);
 6424     movdqu(Address(base, 32), xtmp);
 6425     movdqu(Address(base, 48), xtmp);
 6426   }
 6427   addptr(base, 64);
 6428 
 6429   BIND(L_zero_64_bytes);
 6430   subptr(cnt, 8);
 6431   jccb(Assembler::greaterEqual, L_loop);
 6432 
 6433   // Copy trailing 64 bytes
 6434   if (use64byteVector) {
 6435     addptr(cnt, 8);
 6436     jccb(Assembler::equal, L_end);
 6437     fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true);
 6438     jmp(L_end);
 6439   } else {
 6440     addptr(cnt, 4);
 6441     jccb(Assembler::less, L_tail);
 6442     if (MaxVectorSize >= 32) {
 6443       vmovdqu(Address(base, 0), xtmp);
 6444     } else {
 6445       movdqu(Address(base,  0), xtmp);
 6446       movdqu(Address(base, 16), xtmp);
 6447     }
 6448   }
 6449   addptr(base, 32);
 6450   subptr(cnt, 4);
 6451 
 6452   BIND(L_tail);
 6453   addptr(cnt, 4);
 6454   jccb(Assembler::lessEqual, L_end);
 6455   if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) {
 6456     fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp);
 6457   } else {
 6458     decrement(cnt);
 6459 
 6460     BIND(L_sloop);
 6461     movq(Address(base, 0), xtmp);
 6462     addptr(base, 8);
 6463     decrement(cnt);
 6464     jccb(Assembler::greaterEqual, L_sloop);
 6465   }
 6466   BIND(L_end);
 6467 }
 6468 
 6469 // Clearing constant sized memory using YMM/ZMM registers.
 6470 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
 6471   assert(UseAVX > 2 && VM_Version::supports_avx512vl(), "");
 6472   bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0);
 6473 
 6474   int vector64_count = (cnt & (~0x7)) >> 3;
 6475   cnt = cnt & 0x7;
 6476   const int fill64_per_loop = 4;
 6477   const int max_unrolled_fill64 = 8;
 6478 
 6479   // 64 byte initialization loop.
 6480   vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit);
 6481   int start64 = 0;
 6482   if (vector64_count > max_unrolled_fill64) {
 6483     Label LOOP;
 6484     Register index = rtmp;
 6485 
 6486     start64 = vector64_count - (vector64_count % fill64_per_loop);
 6487 
 6488     movl(index, 0);
 6489     BIND(LOOP);
 6490     for (int i = 0; i < fill64_per_loop; i++) {
 6491       fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector);
 6492     }
 6493     addl(index, fill64_per_loop * 64);
 6494     cmpl(index, start64 * 64);
 6495     jccb(Assembler::less, LOOP);
 6496   }
 6497   for (int i = start64; i < vector64_count; i++) {
 6498     fill64(base, i * 64, xtmp, use64byteVector);
 6499   }
 6500 
 6501   // Clear remaining 64 byte tail.
 6502   int disp = vector64_count * 64;
 6503   if (cnt) {
 6504     switch (cnt) {
 6505       case 1:
 6506         movq(Address(base, disp), xtmp);
 6507         break;
 6508       case 2:
 6509         evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit);
 6510         break;
 6511       case 3:
 6512         movl(rtmp, 0x7);
 6513         kmovwl(mask, rtmp);
 6514         evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit);
 6515         break;
 6516       case 4:
 6517         evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6518         break;
 6519       case 5:
 6520         if (use64byteVector) {
 6521           movl(rtmp, 0x1F);
 6522           kmovwl(mask, rtmp);
 6523           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 6524         } else {
 6525           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6526           movq(Address(base, disp + 32), xtmp);
 6527         }
 6528         break;
 6529       case 6:
 6530         if (use64byteVector) {
 6531           movl(rtmp, 0x3F);
 6532           kmovwl(mask, rtmp);
 6533           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 6534         } else {
 6535           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6536           evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit);
 6537         }
 6538         break;
 6539       case 7:
 6540         if (use64byteVector) {
 6541           movl(rtmp, 0x7F);
 6542           kmovwl(mask, rtmp);
 6543           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 6544         } else {
 6545           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6546           movl(rtmp, 0x7);
 6547           kmovwl(mask, rtmp);
 6548           evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit);
 6549         }
 6550         break;
 6551       default:
 6552         fatal("Unexpected length : %d\n",cnt);
 6553         break;
 6554     }
 6555   }
 6556 }
 6557 
 6558 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp,
 6559                                bool is_large, KRegister mask) {
 6560   // cnt      - number of qwords (8-byte words).
 6561   // base     - start address, qword aligned.
 6562   // is_large - if optimizers know cnt is larger than InitArrayShortSize
 6563   assert(base==rdi, "base register must be edi for rep stos");
 6564   assert(tmp==rax,   "tmp register must be eax for rep stos");
 6565   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
 6566   assert(InitArrayShortSize % BytesPerLong == 0,
 6567     "InitArrayShortSize should be the multiple of BytesPerLong");
 6568 
 6569   Label DONE;
 6570   if (!is_large || !UseXMMForObjInit) {
 6571     xorptr(tmp, tmp);
 6572   }
 6573 
 6574   if (!is_large) {
 6575     Label LOOP, LONG;
 6576     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
 6577     jccb(Assembler::greater, LONG);
 6578 
 6579     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
 6580 
 6581     decrement(cnt);
 6582     jccb(Assembler::negative, DONE); // Zero length
 6583 
 6584     // Use individual pointer-sized stores for small counts:
 6585     BIND(LOOP);
 6586     movptr(Address(base, cnt, Address::times_ptr), tmp);
 6587     decrement(cnt);
 6588     jccb(Assembler::greaterEqual, LOOP);
 6589     jmpb(DONE);
 6590 
 6591     BIND(LONG);
 6592   }
 6593 
 6594   // Use longer rep-prefixed ops for non-small counts:
 6595   if (UseFastStosb) {
 6596     shlptr(cnt, 3); // convert to number of bytes
 6597     rep_stosb();
 6598   } else if (UseXMMForObjInit) {
 6599     xmm_clear_mem(base, cnt, tmp, xtmp, mask);
 6600   } else {
 6601     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
 6602     rep_stos();
 6603   }
 6604 
 6605   BIND(DONE);
 6606 }
 6607 
 6608 #endif //COMPILER2_OR_JVMCI
 6609 
 6610 
 6611 void MacroAssembler::generate_fill(BasicType t, bool aligned,
 6612                                    Register to, Register value, Register count,
 6613                                    Register rtmp, XMMRegister xtmp) {
 6614   ShortBranchVerifier sbv(this);
 6615   assert_different_registers(to, value, count, rtmp);
 6616   Label L_exit;
 6617   Label L_fill_2_bytes, L_fill_4_bytes;
 6618 
 6619 #if defined(COMPILER2) && defined(_LP64)
 6620   if(MaxVectorSize >=32 &&
 6621      VM_Version::supports_avx512vlbw() &&
 6622      VM_Version::supports_bmi2()) {
 6623     generate_fill_avx3(t, to, value, count, rtmp, xtmp);
 6624     return;
 6625   }
 6626 #endif
 6627 
 6628   int shift = -1;
 6629   switch (t) {
 6630     case T_BYTE:
 6631       shift = 2;
 6632       break;
 6633     case T_SHORT:
 6634       shift = 1;
 6635       break;
 6636     case T_INT:
 6637       shift = 0;
 6638       break;
 6639     default: ShouldNotReachHere();
 6640   }
 6641 
 6642   if (t == T_BYTE) {
 6643     andl(value, 0xff);
 6644     movl(rtmp, value);
 6645     shll(rtmp, 8);
 6646     orl(value, rtmp);
 6647   }
 6648   if (t == T_SHORT) {
 6649     andl(value, 0xffff);
 6650   }
 6651   if (t == T_BYTE || t == T_SHORT) {
 6652     movl(rtmp, value);
 6653     shll(rtmp, 16);
 6654     orl(value, rtmp);
 6655   }
 6656 
 6657   cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
 6658   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
 6659   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 6660     Label L_skip_align2;
 6661     // align source address at 4 bytes address boundary
 6662     if (t == T_BYTE) {
 6663       Label L_skip_align1;
 6664       // One byte misalignment happens only for byte arrays
 6665       testptr(to, 1);
 6666       jccb(Assembler::zero, L_skip_align1);
 6667       movb(Address(to, 0), value);
 6668       increment(to);
 6669       decrement(count);
 6670       BIND(L_skip_align1);
 6671     }
 6672     // Two bytes misalignment happens only for byte and short (char) arrays
 6673     testptr(to, 2);
 6674     jccb(Assembler::zero, L_skip_align2);
 6675     movw(Address(to, 0), value);
 6676     addptr(to, 2);
 6677     subptr(count, 1<<(shift-1));
 6678     BIND(L_skip_align2);
 6679   }
 6680   if (UseSSE < 2) {
 6681     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 6682     // Fill 32-byte chunks
 6683     subptr(count, 8 << shift);
 6684     jcc(Assembler::less, L_check_fill_8_bytes);
 6685     align(16);
 6686 
 6687     BIND(L_fill_32_bytes_loop);
 6688 
 6689     for (int i = 0; i < 32; i += 4) {
 6690       movl(Address(to, i), value);
 6691     }
 6692 
 6693     addptr(to, 32);
 6694     subptr(count, 8 << shift);
 6695     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 6696     BIND(L_check_fill_8_bytes);
 6697     addptr(count, 8 << shift);
 6698     jccb(Assembler::zero, L_exit);
 6699     jmpb(L_fill_8_bytes);
 6700 
 6701     //
 6702     // length is too short, just fill qwords
 6703     //
 6704     BIND(L_fill_8_bytes_loop);
 6705     movl(Address(to, 0), value);
 6706     movl(Address(to, 4), value);
 6707     addptr(to, 8);
 6708     BIND(L_fill_8_bytes);
 6709     subptr(count, 1 << (shift + 1));
 6710     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 6711     // fall through to fill 4 bytes
 6712   } else {
 6713     Label L_fill_32_bytes;
 6714     if (!UseUnalignedLoadStores) {
 6715       // align to 8 bytes, we know we are 4 byte aligned to start
 6716       testptr(to, 4);
 6717       jccb(Assembler::zero, L_fill_32_bytes);
 6718       movl(Address(to, 0), value);
 6719       addptr(to, 4);
 6720       subptr(count, 1<<shift);
 6721     }
 6722     BIND(L_fill_32_bytes);
 6723     {
 6724       assert( UseSSE >= 2, "supported cpu only" );
 6725       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 6726       movdl(xtmp, value);
 6727       if (UseAVX >= 2 && UseUnalignedLoadStores) {
 6728         Label L_check_fill_32_bytes;
 6729         if (UseAVX > 2) {
 6730           // Fill 64-byte chunks
 6731           Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2;
 6732 
 6733           // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2
 6734           cmpptr(count, VM_Version::avx3_threshold());
 6735           jccb(Assembler::below, L_check_fill_64_bytes_avx2);
 6736 
 6737           vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
 6738 
 6739           subptr(count, 16 << shift);
 6740           jccb(Assembler::less, L_check_fill_32_bytes);
 6741           align(16);
 6742 
 6743           BIND(L_fill_64_bytes_loop_avx3);
 6744           evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
 6745           addptr(to, 64);
 6746           subptr(count, 16 << shift);
 6747           jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3);
 6748           jmpb(L_check_fill_32_bytes);
 6749 
 6750           BIND(L_check_fill_64_bytes_avx2);
 6751         }
 6752         // Fill 64-byte chunks
 6753         Label L_fill_64_bytes_loop;
 6754         vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
 6755 
 6756         subptr(count, 16 << shift);
 6757         jcc(Assembler::less, L_check_fill_32_bytes);
 6758         align(16);
 6759 
 6760         BIND(L_fill_64_bytes_loop);
 6761         vmovdqu(Address(to, 0), xtmp);
 6762         vmovdqu(Address(to, 32), xtmp);
 6763         addptr(to, 64);
 6764         subptr(count, 16 << shift);
 6765         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
 6766 
 6767         BIND(L_check_fill_32_bytes);
 6768         addptr(count, 8 << shift);
 6769         jccb(Assembler::less, L_check_fill_8_bytes);
 6770         vmovdqu(Address(to, 0), xtmp);
 6771         addptr(to, 32);
 6772         subptr(count, 8 << shift);
 6773 
 6774         BIND(L_check_fill_8_bytes);
 6775         // clean upper bits of YMM registers
 6776         movdl(xtmp, value);
 6777         pshufd(xtmp, xtmp, 0);
 6778       } else {
 6779         // Fill 32-byte chunks
 6780         pshufd(xtmp, xtmp, 0);
 6781 
 6782         subptr(count, 8 << shift);
 6783         jcc(Assembler::less, L_check_fill_8_bytes);
 6784         align(16);
 6785 
 6786         BIND(L_fill_32_bytes_loop);
 6787 
 6788         if (UseUnalignedLoadStores) {
 6789           movdqu(Address(to, 0), xtmp);
 6790           movdqu(Address(to, 16), xtmp);
 6791         } else {
 6792           movq(Address(to, 0), xtmp);
 6793           movq(Address(to, 8), xtmp);
 6794           movq(Address(to, 16), xtmp);
 6795           movq(Address(to, 24), xtmp);
 6796         }
 6797 
 6798         addptr(to, 32);
 6799         subptr(count, 8 << shift);
 6800         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 6801 
 6802         BIND(L_check_fill_8_bytes);
 6803       }
 6804       addptr(count, 8 << shift);
 6805       jccb(Assembler::zero, L_exit);
 6806       jmpb(L_fill_8_bytes);
 6807 
 6808       //
 6809       // length is too short, just fill qwords
 6810       //
 6811       BIND(L_fill_8_bytes_loop);
 6812       movq(Address(to, 0), xtmp);
 6813       addptr(to, 8);
 6814       BIND(L_fill_8_bytes);
 6815       subptr(count, 1 << (shift + 1));
 6816       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 6817     }
 6818   }
 6819   // fill trailing 4 bytes
 6820   BIND(L_fill_4_bytes);
 6821   testl(count, 1<<shift);
 6822   jccb(Assembler::zero, L_fill_2_bytes);
 6823   movl(Address(to, 0), value);
 6824   if (t == T_BYTE || t == T_SHORT) {
 6825     Label L_fill_byte;
 6826     addptr(to, 4);
 6827     BIND(L_fill_2_bytes);
 6828     // fill trailing 2 bytes
 6829     testl(count, 1<<(shift-1));
 6830     jccb(Assembler::zero, L_fill_byte);
 6831     movw(Address(to, 0), value);
 6832     if (t == T_BYTE) {
 6833       addptr(to, 2);
 6834       BIND(L_fill_byte);
 6835       // fill trailing byte
 6836       testl(count, 1);
 6837       jccb(Assembler::zero, L_exit);
 6838       movb(Address(to, 0), value);
 6839     } else {
 6840       BIND(L_fill_byte);
 6841     }
 6842   } else {
 6843     BIND(L_fill_2_bytes);
 6844   }
 6845   BIND(L_exit);
 6846 }
 6847 
 6848 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) {
 6849   switch(type) {
 6850     case T_BYTE:
 6851     case T_BOOLEAN:
 6852       evpbroadcastb(dst, src, vector_len);
 6853       break;
 6854     case T_SHORT:
 6855     case T_CHAR:
 6856       evpbroadcastw(dst, src, vector_len);
 6857       break;
 6858     case T_INT:
 6859     case T_FLOAT:
 6860       evpbroadcastd(dst, src, vector_len);
 6861       break;
 6862     case T_LONG:
 6863     case T_DOUBLE:
 6864       evpbroadcastq(dst, src, vector_len);
 6865       break;
 6866     default:
 6867       fatal("Unhandled type : %s", type2name(type));
 6868       break;
 6869   }
 6870 }
 6871 
 6872 // encode char[] to byte[] in ISO_8859_1 or ASCII
 6873    //@IntrinsicCandidate
 6874    //private static int implEncodeISOArray(byte[] sa, int sp,
 6875    //byte[] da, int dp, int len) {
 6876    //  int i = 0;
 6877    //  for (; i < len; i++) {
 6878    //    char c = StringUTF16.getChar(sa, sp++);
 6879    //    if (c > '\u00FF')
 6880    //      break;
 6881    //    da[dp++] = (byte)c;
 6882    //  }
 6883    //  return i;
 6884    //}
 6885    //
 6886    //@IntrinsicCandidate
 6887    //private static int implEncodeAsciiArray(char[] sa, int sp,
 6888    //    byte[] da, int dp, int len) {
 6889    //  int i = 0;
 6890    //  for (; i < len; i++) {
 6891    //    char c = sa[sp++];
 6892    //    if (c >= '\u0080')
 6893    //      break;
 6894    //    da[dp++] = (byte)c;
 6895    //  }
 6896    //  return i;
 6897    //}
 6898 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
 6899   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
 6900   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
 6901   Register tmp5, Register result, bool ascii) {
 6902 
 6903   // rsi: src
 6904   // rdi: dst
 6905   // rdx: len
 6906   // rcx: tmp5
 6907   // rax: result
 6908   ShortBranchVerifier sbv(this);
 6909   assert_different_registers(src, dst, len, tmp5, result);
 6910   Label L_done, L_copy_1_char, L_copy_1_char_exit;
 6911 
 6912   int mask = ascii ? 0xff80ff80 : 0xff00ff00;
 6913   int short_mask = ascii ? 0xff80 : 0xff00;
 6914 
 6915   // set result
 6916   xorl(result, result);
 6917   // check for zero length
 6918   testl(len, len);
 6919   jcc(Assembler::zero, L_done);
 6920 
 6921   movl(result, len);
 6922 
 6923   // Setup pointers
 6924   lea(src, Address(src, len, Address::times_2)); // char[]
 6925   lea(dst, Address(dst, len, Address::times_1)); // byte[]
 6926   negptr(len);
 6927 
 6928   if (UseSSE42Intrinsics || UseAVX >= 2) {
 6929     Label L_copy_8_chars, L_copy_8_chars_exit;
 6930     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
 6931 
 6932     if (UseAVX >= 2) {
 6933       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
 6934       movl(tmp5, mask);   // create mask to test for Unicode or non-ASCII chars in vector
 6935       movdl(tmp1Reg, tmp5);
 6936       vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
 6937       jmp(L_chars_32_check);
 6938 
 6939       bind(L_copy_32_chars);
 6940       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
 6941       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
 6942       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
 6943       vptest(tmp2Reg, tmp1Reg);       // check for Unicode or non-ASCII chars in vector
 6944       jccb(Assembler::notZero, L_copy_32_chars_exit);
 6945       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
 6946       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
 6947       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
 6948 
 6949       bind(L_chars_32_check);
 6950       addptr(len, 32);
 6951       jcc(Assembler::lessEqual, L_copy_32_chars);
 6952 
 6953       bind(L_copy_32_chars_exit);
 6954       subptr(len, 16);
 6955       jccb(Assembler::greater, L_copy_16_chars_exit);
 6956 
 6957     } else if (UseSSE42Intrinsics) {
 6958       movl(tmp5, mask);   // create mask to test for Unicode or non-ASCII chars in vector
 6959       movdl(tmp1Reg, tmp5);
 6960       pshufd(tmp1Reg, tmp1Reg, 0);
 6961       jmpb(L_chars_16_check);
 6962     }
 6963 
 6964     bind(L_copy_16_chars);
 6965     if (UseAVX >= 2) {
 6966       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
 6967       vptest(tmp2Reg, tmp1Reg);
 6968       jcc(Assembler::notZero, L_copy_16_chars_exit);
 6969       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
 6970       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
 6971     } else {
 6972       if (UseAVX > 0) {
 6973         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
 6974         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
 6975         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
 6976       } else {
 6977         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
 6978         por(tmp2Reg, tmp3Reg);
 6979         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
 6980         por(tmp2Reg, tmp4Reg);
 6981       }
 6982       ptest(tmp2Reg, tmp1Reg);       // check for Unicode or non-ASCII chars in vector
 6983       jccb(Assembler::notZero, L_copy_16_chars_exit);
 6984       packuswb(tmp3Reg, tmp4Reg);
 6985     }
 6986     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
 6987 
 6988     bind(L_chars_16_check);
 6989     addptr(len, 16);
 6990     jcc(Assembler::lessEqual, L_copy_16_chars);
 6991 
 6992     bind(L_copy_16_chars_exit);
 6993     if (UseAVX >= 2) {
 6994       // clean upper bits of YMM registers
 6995       vpxor(tmp2Reg, tmp2Reg);
 6996       vpxor(tmp3Reg, tmp3Reg);
 6997       vpxor(tmp4Reg, tmp4Reg);
 6998       movdl(tmp1Reg, tmp5);
 6999       pshufd(tmp1Reg, tmp1Reg, 0);
 7000     }
 7001     subptr(len, 8);
 7002     jccb(Assembler::greater, L_copy_8_chars_exit);
 7003 
 7004     bind(L_copy_8_chars);
 7005     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
 7006     ptest(tmp3Reg, tmp1Reg);
 7007     jccb(Assembler::notZero, L_copy_8_chars_exit);
 7008     packuswb(tmp3Reg, tmp1Reg);
 7009     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
 7010     addptr(len, 8);
 7011     jccb(Assembler::lessEqual, L_copy_8_chars);
 7012 
 7013     bind(L_copy_8_chars_exit);
 7014     subptr(len, 8);
 7015     jccb(Assembler::zero, L_done);
 7016   }
 7017 
 7018   bind(L_copy_1_char);
 7019   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
 7020   testl(tmp5, short_mask);      // check if Unicode or non-ASCII char
 7021   jccb(Assembler::notZero, L_copy_1_char_exit);
 7022   movb(Address(dst, len, Address::times_1, 0), tmp5);
 7023   addptr(len, 1);
 7024   jccb(Assembler::less, L_copy_1_char);
 7025 
 7026   bind(L_copy_1_char_exit);
 7027   addptr(result, len); // len is negative count of not processed elements
 7028 
 7029   bind(L_done);
 7030 }
 7031 
 7032 #ifdef _LP64
 7033 /**
 7034  * Helper for multiply_to_len().
 7035  */
 7036 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
 7037   addq(dest_lo, src1);
 7038   adcq(dest_hi, 0);
 7039   addq(dest_lo, src2);
 7040   adcq(dest_hi, 0);
 7041 }
 7042 
 7043 /**
 7044  * Multiply 64 bit by 64 bit first loop.
 7045  */
 7046 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
 7047                                            Register y, Register y_idx, Register z,
 7048                                            Register carry, Register product,
 7049                                            Register idx, Register kdx) {
 7050   //
 7051   //  jlong carry, x[], y[], z[];
 7052   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
 7053   //    huge_128 product = y[idx] * x[xstart] + carry;
 7054   //    z[kdx] = (jlong)product;
 7055   //    carry  = (jlong)(product >>> 64);
 7056   //  }
 7057   //  z[xstart] = carry;
 7058   //
 7059 
 7060   Label L_first_loop, L_first_loop_exit;
 7061   Label L_one_x, L_one_y, L_multiply;
 7062 
 7063   decrementl(xstart);
 7064   jcc(Assembler::negative, L_one_x);
 7065 
 7066   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
 7067   rorq(x_xstart, 32); // convert big-endian to little-endian
 7068 
 7069   bind(L_first_loop);
 7070   decrementl(idx);
 7071   jcc(Assembler::negative, L_first_loop_exit);
 7072   decrementl(idx);
 7073   jcc(Assembler::negative, L_one_y);
 7074   movq(y_idx, Address(y, idx, Address::times_4,  0));
 7075   rorq(y_idx, 32); // convert big-endian to little-endian
 7076   bind(L_multiply);
 7077   movq(product, x_xstart);
 7078   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
 7079   addq(product, carry);
 7080   adcq(rdx, 0);
 7081   subl(kdx, 2);
 7082   movl(Address(z, kdx, Address::times_4,  4), product);
 7083   shrq(product, 32);
 7084   movl(Address(z, kdx, Address::times_4,  0), product);
 7085   movq(carry, rdx);
 7086   jmp(L_first_loop);
 7087 
 7088   bind(L_one_y);
 7089   movl(y_idx, Address(y,  0));
 7090   jmp(L_multiply);
 7091 
 7092   bind(L_one_x);
 7093   movl(x_xstart, Address(x,  0));
 7094   jmp(L_first_loop);
 7095 
 7096   bind(L_first_loop_exit);
 7097 }
 7098 
 7099 /**
 7100  * Multiply 64 bit by 64 bit and add 128 bit.
 7101  */
 7102 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
 7103                                             Register yz_idx, Register idx,
 7104                                             Register carry, Register product, int offset) {
 7105   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
 7106   //     z[kdx] = (jlong)product;
 7107 
 7108   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
 7109   rorq(yz_idx, 32); // convert big-endian to little-endian
 7110   movq(product, x_xstart);
 7111   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
 7112   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
 7113   rorq(yz_idx, 32); // convert big-endian to little-endian
 7114 
 7115   add2_with_carry(rdx, product, carry, yz_idx);
 7116 
 7117   movl(Address(z, idx, Address::times_4,  offset+4), product);
 7118   shrq(product, 32);
 7119   movl(Address(z, idx, Address::times_4,  offset), product);
 7120 
 7121 }
 7122 
 7123 /**
 7124  * Multiply 128 bit by 128 bit. Unrolled inner loop.
 7125  */
 7126 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
 7127                                              Register yz_idx, Register idx, Register jdx,
 7128                                              Register carry, Register product,
 7129                                              Register carry2) {
 7130   //   jlong carry, x[], y[], z[];
 7131   //   int kdx = ystart+1;
 7132   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
 7133   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
 7134   //     z[kdx+idx+1] = (jlong)product;
 7135   //     jlong carry2  = (jlong)(product >>> 64);
 7136   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
 7137   //     z[kdx+idx] = (jlong)product;
 7138   //     carry  = (jlong)(product >>> 64);
 7139   //   }
 7140   //   idx += 2;
 7141   //   if (idx > 0) {
 7142   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
 7143   //     z[kdx+idx] = (jlong)product;
 7144   //     carry  = (jlong)(product >>> 64);
 7145   //   }
 7146   //
 7147 
 7148   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
 7149 
 7150   movl(jdx, idx);
 7151   andl(jdx, 0xFFFFFFFC);
 7152   shrl(jdx, 2);
 7153 
 7154   bind(L_third_loop);
 7155   subl(jdx, 1);
 7156   jcc(Assembler::negative, L_third_loop_exit);
 7157   subl(idx, 4);
 7158 
 7159   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
 7160   movq(carry2, rdx);
 7161 
 7162   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
 7163   movq(carry, rdx);
 7164   jmp(L_third_loop);
 7165 
 7166   bind (L_third_loop_exit);
 7167 
 7168   andl (idx, 0x3);
 7169   jcc(Assembler::zero, L_post_third_loop_done);
 7170 
 7171   Label L_check_1;
 7172   subl(idx, 2);
 7173   jcc(Assembler::negative, L_check_1);
 7174 
 7175   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
 7176   movq(carry, rdx);
 7177 
 7178   bind (L_check_1);
 7179   addl (idx, 0x2);
 7180   andl (idx, 0x1);
 7181   subl(idx, 1);
 7182   jcc(Assembler::negative, L_post_third_loop_done);
 7183 
 7184   movl(yz_idx, Address(y, idx, Address::times_4,  0));
 7185   movq(product, x_xstart);
 7186   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
 7187   movl(yz_idx, Address(z, idx, Address::times_4,  0));
 7188 
 7189   add2_with_carry(rdx, product, yz_idx, carry);
 7190 
 7191   movl(Address(z, idx, Address::times_4,  0), product);
 7192   shrq(product, 32);
 7193 
 7194   shlq(rdx, 32);
 7195   orq(product, rdx);
 7196   movq(carry, product);
 7197 
 7198   bind(L_post_third_loop_done);
 7199 }
 7200 
 7201 /**
 7202  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
 7203  *
 7204  */
 7205 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
 7206                                                   Register carry, Register carry2,
 7207                                                   Register idx, Register jdx,
 7208                                                   Register yz_idx1, Register yz_idx2,
 7209                                                   Register tmp, Register tmp3, Register tmp4) {
 7210   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
 7211 
 7212   //   jlong carry, x[], y[], z[];
 7213   //   int kdx = ystart+1;
 7214   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
 7215   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
 7216   //     jlong carry2  = (jlong)(tmp3 >>> 64);
 7217   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
 7218   //     carry  = (jlong)(tmp4 >>> 64);
 7219   //     z[kdx+idx+1] = (jlong)tmp3;
 7220   //     z[kdx+idx] = (jlong)tmp4;
 7221   //   }
 7222   //   idx += 2;
 7223   //   if (idx > 0) {
 7224   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
 7225   //     z[kdx+idx] = (jlong)yz_idx1;
 7226   //     carry  = (jlong)(yz_idx1 >>> 64);
 7227   //   }
 7228   //
 7229 
 7230   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
 7231 
 7232   movl(jdx, idx);
 7233   andl(jdx, 0xFFFFFFFC);
 7234   shrl(jdx, 2);
 7235 
 7236   bind(L_third_loop);
 7237   subl(jdx, 1);
 7238   jcc(Assembler::negative, L_third_loop_exit);
 7239   subl(idx, 4);
 7240 
 7241   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
 7242   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
 7243   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
 7244   rorxq(yz_idx2, yz_idx2, 32);
 7245 
 7246   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
 7247   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
 7248 
 7249   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
 7250   rorxq(yz_idx1, yz_idx1, 32);
 7251   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
 7252   rorxq(yz_idx2, yz_idx2, 32);
 7253 
 7254   if (VM_Version::supports_adx()) {
 7255     adcxq(tmp3, carry);
 7256     adoxq(tmp3, yz_idx1);
 7257 
 7258     adcxq(tmp4, tmp);
 7259     adoxq(tmp4, yz_idx2);
 7260 
 7261     movl(carry, 0); // does not affect flags
 7262     adcxq(carry2, carry);
 7263     adoxq(carry2, carry);
 7264   } else {
 7265     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
 7266     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
 7267   }
 7268   movq(carry, carry2);
 7269 
 7270   movl(Address(z, idx, Address::times_4, 12), tmp3);
 7271   shrq(tmp3, 32);
 7272   movl(Address(z, idx, Address::times_4,  8), tmp3);
 7273 
 7274   movl(Address(z, idx, Address::times_4,  4), tmp4);
 7275   shrq(tmp4, 32);
 7276   movl(Address(z, idx, Address::times_4,  0), tmp4);
 7277 
 7278   jmp(L_third_loop);
 7279 
 7280   bind (L_third_loop_exit);
 7281 
 7282   andl (idx, 0x3);
 7283   jcc(Assembler::zero, L_post_third_loop_done);
 7284 
 7285   Label L_check_1;
 7286   subl(idx, 2);
 7287   jcc(Assembler::negative, L_check_1);
 7288 
 7289   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
 7290   rorxq(yz_idx1, yz_idx1, 32);
 7291   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
 7292   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
 7293   rorxq(yz_idx2, yz_idx2, 32);
 7294 
 7295   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
 7296 
 7297   movl(Address(z, idx, Address::times_4,  4), tmp3);
 7298   shrq(tmp3, 32);
 7299   movl(Address(z, idx, Address::times_4,  0), tmp3);
 7300   movq(carry, tmp4);
 7301 
 7302   bind (L_check_1);
 7303   addl (idx, 0x2);
 7304   andl (idx, 0x1);
 7305   subl(idx, 1);
 7306   jcc(Assembler::negative, L_post_third_loop_done);
 7307   movl(tmp4, Address(y, idx, Address::times_4,  0));
 7308   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
 7309   movl(tmp4, Address(z, idx, Address::times_4,  0));
 7310 
 7311   add2_with_carry(carry2, tmp3, tmp4, carry);
 7312 
 7313   movl(Address(z, idx, Address::times_4,  0), tmp3);
 7314   shrq(tmp3, 32);
 7315 
 7316   shlq(carry2, 32);
 7317   orq(tmp3, carry2);
 7318   movq(carry, tmp3);
 7319 
 7320   bind(L_post_third_loop_done);
 7321 }
 7322 
 7323 /**
 7324  * Code for BigInteger::multiplyToLen() intrinsic.
 7325  *
 7326  * rdi: x
 7327  * rax: xlen
 7328  * rsi: y
 7329  * rcx: ylen
 7330  * r8:  z
 7331  * r11: tmp0
 7332  * r12: tmp1
 7333  * r13: tmp2
 7334  * r14: tmp3
 7335  * r15: tmp4
 7336  * rbx: tmp5
 7337  *
 7338  */
 7339 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0,
 7340                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
 7341   ShortBranchVerifier sbv(this);
 7342   assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
 7343 
 7344   push(tmp0);
 7345   push(tmp1);
 7346   push(tmp2);
 7347   push(tmp3);
 7348   push(tmp4);
 7349   push(tmp5);
 7350 
 7351   push(xlen);
 7352 
 7353   const Register idx = tmp1;
 7354   const Register kdx = tmp2;
 7355   const Register xstart = tmp3;
 7356 
 7357   const Register y_idx = tmp4;
 7358   const Register carry = tmp5;
 7359   const Register product  = xlen;
 7360   const Register x_xstart = tmp0;
 7361 
 7362   // First Loop.
 7363   //
 7364   //  final static long LONG_MASK = 0xffffffffL;
 7365   //  int xstart = xlen - 1;
 7366   //  int ystart = ylen - 1;
 7367   //  long carry = 0;
 7368   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
 7369   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
 7370   //    z[kdx] = (int)product;
 7371   //    carry = product >>> 32;
 7372   //  }
 7373   //  z[xstart] = (int)carry;
 7374   //
 7375 
 7376   movl(idx, ylen);               // idx = ylen;
 7377   lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen;
 7378   xorq(carry, carry);            // carry = 0;
 7379 
 7380   Label L_done;
 7381 
 7382   movl(xstart, xlen);
 7383   decrementl(xstart);
 7384   jcc(Assembler::negative, L_done);
 7385 
 7386   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
 7387 
 7388   Label L_second_loop;
 7389   testl(kdx, kdx);
 7390   jcc(Assembler::zero, L_second_loop);
 7391 
 7392   Label L_carry;
 7393   subl(kdx, 1);
 7394   jcc(Assembler::zero, L_carry);
 7395 
 7396   movl(Address(z, kdx, Address::times_4,  0), carry);
 7397   shrq(carry, 32);
 7398   subl(kdx, 1);
 7399 
 7400   bind(L_carry);
 7401   movl(Address(z, kdx, Address::times_4,  0), carry);
 7402 
 7403   // Second and third (nested) loops.
 7404   //
 7405   // for (int i = xstart-1; i >= 0; i--) { // Second loop
 7406   //   carry = 0;
 7407   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
 7408   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
 7409   //                    (z[k] & LONG_MASK) + carry;
 7410   //     z[k] = (int)product;
 7411   //     carry = product >>> 32;
 7412   //   }
 7413   //   z[i] = (int)carry;
 7414   // }
 7415   //
 7416   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
 7417 
 7418   const Register jdx = tmp1;
 7419 
 7420   bind(L_second_loop);
 7421   xorl(carry, carry);    // carry = 0;
 7422   movl(jdx, ylen);       // j = ystart+1
 7423 
 7424   subl(xstart, 1);       // i = xstart-1;
 7425   jcc(Assembler::negative, L_done);
 7426 
 7427   push (z);
 7428 
 7429   Label L_last_x;
 7430   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
 7431   subl(xstart, 1);       // i = xstart-1;
 7432   jcc(Assembler::negative, L_last_x);
 7433 
 7434   if (UseBMI2Instructions) {
 7435     movq(rdx,  Address(x, xstart, Address::times_4,  0));
 7436     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
 7437   } else {
 7438     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
 7439     rorq(x_xstart, 32);  // convert big-endian to little-endian
 7440   }
 7441 
 7442   Label L_third_loop_prologue;
 7443   bind(L_third_loop_prologue);
 7444 
 7445   push (x);
 7446   push (xstart);
 7447   push (ylen);
 7448 
 7449 
 7450   if (UseBMI2Instructions) {
 7451     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
 7452   } else { // !UseBMI2Instructions
 7453     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
 7454   }
 7455 
 7456   pop(ylen);
 7457   pop(xlen);
 7458   pop(x);
 7459   pop(z);
 7460 
 7461   movl(tmp3, xlen);
 7462   addl(tmp3, 1);
 7463   movl(Address(z, tmp3, Address::times_4,  0), carry);
 7464   subl(tmp3, 1);
 7465   jccb(Assembler::negative, L_done);
 7466 
 7467   shrq(carry, 32);
 7468   movl(Address(z, tmp3, Address::times_4,  0), carry);
 7469   jmp(L_second_loop);
 7470 
 7471   // Next infrequent code is moved outside loops.
 7472   bind(L_last_x);
 7473   if (UseBMI2Instructions) {
 7474     movl(rdx, Address(x,  0));
 7475   } else {
 7476     movl(x_xstart, Address(x,  0));
 7477   }
 7478   jmp(L_third_loop_prologue);
 7479 
 7480   bind(L_done);
 7481 
 7482   pop(xlen);
 7483 
 7484   pop(tmp5);
 7485   pop(tmp4);
 7486   pop(tmp3);
 7487   pop(tmp2);
 7488   pop(tmp1);
 7489   pop(tmp0);
 7490 }
 7491 
 7492 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
 7493   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
 7494   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
 7495   Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
 7496   Label VECTOR8_TAIL, VECTOR4_TAIL;
 7497   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
 7498   Label SAME_TILL_END, DONE;
 7499   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
 7500 
 7501   //scale is in rcx in both Win64 and Unix
 7502   ShortBranchVerifier sbv(this);
 7503 
 7504   shlq(length);
 7505   xorq(result, result);
 7506 
 7507   if ((AVX3Threshold == 0) && (UseAVX > 2) &&
 7508       VM_Version::supports_avx512vlbw()) {
 7509     Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
 7510 
 7511     cmpq(length, 64);
 7512     jcc(Assembler::less, VECTOR32_TAIL);
 7513 
 7514     movq(tmp1, length);
 7515     andq(tmp1, 0x3F);      // tail count
 7516     andq(length, ~(0x3F)); //vector count
 7517 
 7518     bind(VECTOR64_LOOP);
 7519     // AVX512 code to compare 64 byte vectors.
 7520     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
 7521     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
 7522     kortestql(k7, k7);
 7523     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
 7524     addq(result, 64);
 7525     subq(length, 64);
 7526     jccb(Assembler::notZero, VECTOR64_LOOP);
 7527 
 7528     //bind(VECTOR64_TAIL);
 7529     testq(tmp1, tmp1);
 7530     jcc(Assembler::zero, SAME_TILL_END);
 7531 
 7532     //bind(VECTOR64_TAIL);
 7533     // AVX512 code to compare up to 63 byte vectors.
 7534     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
 7535     shlxq(tmp2, tmp2, tmp1);
 7536     notq(tmp2);
 7537     kmovql(k3, tmp2);
 7538 
 7539     evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit);
 7540     evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
 7541 
 7542     ktestql(k7, k3);
 7543     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
 7544 
 7545     bind(VECTOR64_NOT_EQUAL);
 7546     kmovql(tmp1, k7);
 7547     notq(tmp1);
 7548     tzcntq(tmp1, tmp1);
 7549     addq(result, tmp1);
 7550     shrq(result);
 7551     jmp(DONE);
 7552     bind(VECTOR32_TAIL);
 7553   }
 7554 
 7555   cmpq(length, 8);
 7556   jcc(Assembler::equal, VECTOR8_LOOP);
 7557   jcc(Assembler::less, VECTOR4_TAIL);
 7558 
 7559   if (UseAVX >= 2) {
 7560     Label VECTOR16_TAIL, VECTOR32_LOOP;
 7561 
 7562     cmpq(length, 16);
 7563     jcc(Assembler::equal, VECTOR16_LOOP);
 7564     jcc(Assembler::less, VECTOR8_LOOP);
 7565 
 7566     cmpq(length, 32);
 7567     jccb(Assembler::less, VECTOR16_TAIL);
 7568 
 7569     subq(length, 32);
 7570     bind(VECTOR32_LOOP);
 7571     vmovdqu(rymm0, Address(obja, result));
 7572     vmovdqu(rymm1, Address(objb, result));
 7573     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
 7574     vptest(rymm2, rymm2);
 7575     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
 7576     addq(result, 32);
 7577     subq(length, 32);
 7578     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
 7579     addq(length, 32);
 7580     jcc(Assembler::equal, SAME_TILL_END);
 7581     //falling through if less than 32 bytes left //close the branch here.
 7582 
 7583     bind(VECTOR16_TAIL);
 7584     cmpq(length, 16);
 7585     jccb(Assembler::less, VECTOR8_TAIL);
 7586     bind(VECTOR16_LOOP);
 7587     movdqu(rymm0, Address(obja, result));
 7588     movdqu(rymm1, Address(objb, result));
 7589     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
 7590     ptest(rymm2, rymm2);
 7591     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
 7592     addq(result, 16);
 7593     subq(length, 16);
 7594     jcc(Assembler::equal, SAME_TILL_END);
 7595     //falling through if less than 16 bytes left
 7596   } else {//regular intrinsics
 7597 
 7598     cmpq(length, 16);
 7599     jccb(Assembler::less, VECTOR8_TAIL);
 7600 
 7601     subq(length, 16);
 7602     bind(VECTOR16_LOOP);
 7603     movdqu(rymm0, Address(obja, result));
 7604     movdqu(rymm1, Address(objb, result));
 7605     pxor(rymm0, rymm1);
 7606     ptest(rymm0, rymm0);
 7607     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
 7608     addq(result, 16);
 7609     subq(length, 16);
 7610     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
 7611     addq(length, 16);
 7612     jcc(Assembler::equal, SAME_TILL_END);
 7613     //falling through if less than 16 bytes left
 7614   }
 7615 
 7616   bind(VECTOR8_TAIL);
 7617   cmpq(length, 8);
 7618   jccb(Assembler::less, VECTOR4_TAIL);
 7619   bind(VECTOR8_LOOP);
 7620   movq(tmp1, Address(obja, result));
 7621   movq(tmp2, Address(objb, result));
 7622   xorq(tmp1, tmp2);
 7623   testq(tmp1, tmp1);
 7624   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
 7625   addq(result, 8);
 7626   subq(length, 8);
 7627   jcc(Assembler::equal, SAME_TILL_END);
 7628   //falling through if less than 8 bytes left
 7629 
 7630   bind(VECTOR4_TAIL);
 7631   cmpq(length, 4);
 7632   jccb(Assembler::less, BYTES_TAIL);
 7633   bind(VECTOR4_LOOP);
 7634   movl(tmp1, Address(obja, result));
 7635   xorl(tmp1, Address(objb, result));
 7636   testl(tmp1, tmp1);
 7637   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
 7638   addq(result, 4);
 7639   subq(length, 4);
 7640   jcc(Assembler::equal, SAME_TILL_END);
 7641   //falling through if less than 4 bytes left
 7642 
 7643   bind(BYTES_TAIL);
 7644   bind(BYTES_LOOP);
 7645   load_unsigned_byte(tmp1, Address(obja, result));
 7646   load_unsigned_byte(tmp2, Address(objb, result));
 7647   xorl(tmp1, tmp2);
 7648   testl(tmp1, tmp1);
 7649   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 7650   decq(length);
 7651   jcc(Assembler::zero, SAME_TILL_END);
 7652   incq(result);
 7653   load_unsigned_byte(tmp1, Address(obja, result));
 7654   load_unsigned_byte(tmp2, Address(objb, result));
 7655   xorl(tmp1, tmp2);
 7656   testl(tmp1, tmp1);
 7657   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 7658   decq(length);
 7659   jcc(Assembler::zero, SAME_TILL_END);
 7660   incq(result);
 7661   load_unsigned_byte(tmp1, Address(obja, result));
 7662   load_unsigned_byte(tmp2, Address(objb, result));
 7663   xorl(tmp1, tmp2);
 7664   testl(tmp1, tmp1);
 7665   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 7666   jmp(SAME_TILL_END);
 7667 
 7668   if (UseAVX >= 2) {
 7669     bind(VECTOR32_NOT_EQUAL);
 7670     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
 7671     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
 7672     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
 7673     vpmovmskb(tmp1, rymm0);
 7674     bsfq(tmp1, tmp1);
 7675     addq(result, tmp1);
 7676     shrq(result);
 7677     jmp(DONE);
 7678   }
 7679 
 7680   bind(VECTOR16_NOT_EQUAL);
 7681   if (UseAVX >= 2) {
 7682     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
 7683     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
 7684     pxor(rymm0, rymm2);
 7685   } else {
 7686     pcmpeqb(rymm2, rymm2);
 7687     pxor(rymm0, rymm1);
 7688     pcmpeqb(rymm0, rymm1);
 7689     pxor(rymm0, rymm2);
 7690   }
 7691   pmovmskb(tmp1, rymm0);
 7692   bsfq(tmp1, tmp1);
 7693   addq(result, tmp1);
 7694   shrq(result);
 7695   jmpb(DONE);
 7696 
 7697   bind(VECTOR8_NOT_EQUAL);
 7698   bind(VECTOR4_NOT_EQUAL);
 7699   bsfq(tmp1, tmp1);
 7700   shrq(tmp1, 3);
 7701   addq(result, tmp1);
 7702   bind(BYTES_NOT_EQUAL);
 7703   shrq(result);
 7704   jmpb(DONE);
 7705 
 7706   bind(SAME_TILL_END);
 7707   mov64(result, -1);
 7708 
 7709   bind(DONE);
 7710 }
 7711 
 7712 //Helper functions for square_to_len()
 7713 
 7714 /**
 7715  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
 7716  * Preserves x and z and modifies rest of the registers.
 7717  */
 7718 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 7719   // Perform square and right shift by 1
 7720   // Handle odd xlen case first, then for even xlen do the following
 7721   // jlong carry = 0;
 7722   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
 7723   //     huge_128 product = x[j:j+1] * x[j:j+1];
 7724   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
 7725   //     z[i+2:i+3] = (jlong)(product >>> 1);
 7726   //     carry = (jlong)product;
 7727   // }
 7728 
 7729   xorq(tmp5, tmp5);     // carry
 7730   xorq(rdxReg, rdxReg);
 7731   xorl(tmp1, tmp1);     // index for x
 7732   xorl(tmp4, tmp4);     // index for z
 7733 
 7734   Label L_first_loop, L_first_loop_exit;
 7735 
 7736   testl(xlen, 1);
 7737   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
 7738 
 7739   // Square and right shift by 1 the odd element using 32 bit multiply
 7740   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
 7741   imulq(raxReg, raxReg);
 7742   shrq(raxReg, 1);
 7743   adcq(tmp5, 0);
 7744   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
 7745   incrementl(tmp1);
 7746   addl(tmp4, 2);
 7747 
 7748   // Square and  right shift by 1 the rest using 64 bit multiply
 7749   bind(L_first_loop);
 7750   cmpptr(tmp1, xlen);
 7751   jccb(Assembler::equal, L_first_loop_exit);
 7752 
 7753   // Square
 7754   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
 7755   rorq(raxReg, 32);    // convert big-endian to little-endian
 7756   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
 7757 
 7758   // Right shift by 1 and save carry
 7759   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
 7760   rcrq(rdxReg, 1);
 7761   rcrq(raxReg, 1);
 7762   adcq(tmp5, 0);
 7763 
 7764   // Store result in z
 7765   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
 7766   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
 7767 
 7768   // Update indices for x and z
 7769   addl(tmp1, 2);
 7770   addl(tmp4, 4);
 7771   jmp(L_first_loop);
 7772 
 7773   bind(L_first_loop_exit);
 7774 }
 7775 
 7776 
 7777 /**
 7778  * Perform the following multiply add operation using BMI2 instructions
 7779  * carry:sum = sum + op1*op2 + carry
 7780  * op2 should be in rdx
 7781  * op2 is preserved, all other registers are modified
 7782  */
 7783 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
 7784   // assert op2 is rdx
 7785   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
 7786   addq(sum, carry);
 7787   adcq(tmp2, 0);
 7788   addq(sum, op1);
 7789   adcq(tmp2, 0);
 7790   movq(carry, tmp2);
 7791 }
 7792 
 7793 /**
 7794  * Perform the following multiply add operation:
 7795  * carry:sum = sum + op1*op2 + carry
 7796  * Preserves op1, op2 and modifies rest of registers
 7797  */
 7798 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
 7799   // rdx:rax = op1 * op2
 7800   movq(raxReg, op2);
 7801   mulq(op1);
 7802 
 7803   //  rdx:rax = sum + carry + rdx:rax
 7804   addq(sum, carry);
 7805   adcq(rdxReg, 0);
 7806   addq(sum, raxReg);
 7807   adcq(rdxReg, 0);
 7808 
 7809   // carry:sum = rdx:sum
 7810   movq(carry, rdxReg);
 7811 }
 7812 
 7813 /**
 7814  * Add 64 bit long carry into z[] with carry propagation.
 7815  * Preserves z and carry register values and modifies rest of registers.
 7816  *
 7817  */
 7818 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
 7819   Label L_fourth_loop, L_fourth_loop_exit;
 7820 
 7821   movl(tmp1, 1);
 7822   subl(zlen, 2);
 7823   addq(Address(z, zlen, Address::times_4, 0), carry);
 7824 
 7825   bind(L_fourth_loop);
 7826   jccb(Assembler::carryClear, L_fourth_loop_exit);
 7827   subl(zlen, 2);
 7828   jccb(Assembler::negative, L_fourth_loop_exit);
 7829   addq(Address(z, zlen, Address::times_4, 0), tmp1);
 7830   jmp(L_fourth_loop);
 7831   bind(L_fourth_loop_exit);
 7832 }
 7833 
 7834 /**
 7835  * Shift z[] left by 1 bit.
 7836  * Preserves x, len, z and zlen registers and modifies rest of the registers.
 7837  *
 7838  */
 7839 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
 7840 
 7841   Label L_fifth_loop, L_fifth_loop_exit;
 7842 
 7843   // Fifth loop
 7844   // Perform primitiveLeftShift(z, zlen, 1)
 7845 
 7846   const Register prev_carry = tmp1;
 7847   const Register new_carry = tmp4;
 7848   const Register value = tmp2;
 7849   const Register zidx = tmp3;
 7850 
 7851   // int zidx, carry;
 7852   // long value;
 7853   // carry = 0;
 7854   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
 7855   //    (carry:value)  = (z[i] << 1) | carry ;
 7856   //    z[i] = value;
 7857   // }
 7858 
 7859   movl(zidx, zlen);
 7860   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
 7861 
 7862   bind(L_fifth_loop);
 7863   decl(zidx);  // Use decl to preserve carry flag
 7864   decl(zidx);
 7865   jccb(Assembler::negative, L_fifth_loop_exit);
 7866 
 7867   if (UseBMI2Instructions) {
 7868      movq(value, Address(z, zidx, Address::times_4, 0));
 7869      rclq(value, 1);
 7870      rorxq(value, value, 32);
 7871      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
 7872   }
 7873   else {
 7874     // clear new_carry
 7875     xorl(new_carry, new_carry);
 7876 
 7877     // Shift z[i] by 1, or in previous carry and save new carry
 7878     movq(value, Address(z, zidx, Address::times_4, 0));
 7879     shlq(value, 1);
 7880     adcl(new_carry, 0);
 7881 
 7882     orq(value, prev_carry);
 7883     rorq(value, 0x20);
 7884     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
 7885 
 7886     // Set previous carry = new carry
 7887     movl(prev_carry, new_carry);
 7888   }
 7889   jmp(L_fifth_loop);
 7890 
 7891   bind(L_fifth_loop_exit);
 7892 }
 7893 
 7894 
 7895 /**
 7896  * Code for BigInteger::squareToLen() intrinsic
 7897  *
 7898  * rdi: x
 7899  * rsi: len
 7900  * r8:  z
 7901  * rcx: zlen
 7902  * r12: tmp1
 7903  * r13: tmp2
 7904  * r14: tmp3
 7905  * r15: tmp4
 7906  * rbx: tmp5
 7907  *
 7908  */
 7909 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 7910 
 7911   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
 7912   push(tmp1);
 7913   push(tmp2);
 7914   push(tmp3);
 7915   push(tmp4);
 7916   push(tmp5);
 7917 
 7918   // First loop
 7919   // Store the squares, right shifted one bit (i.e., divided by 2).
 7920   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
 7921 
 7922   // Add in off-diagonal sums.
 7923   //
 7924   // Second, third (nested) and fourth loops.
 7925   // zlen +=2;
 7926   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
 7927   //    carry = 0;
 7928   //    long op2 = x[xidx:xidx+1];
 7929   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
 7930   //       k -= 2;
 7931   //       long op1 = x[j:j+1];
 7932   //       long sum = z[k:k+1];
 7933   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
 7934   //       z[k:k+1] = sum;
 7935   //    }
 7936   //    add_one_64(z, k, carry, tmp_regs);
 7937   // }
 7938 
 7939   const Register carry = tmp5;
 7940   const Register sum = tmp3;
 7941   const Register op1 = tmp4;
 7942   Register op2 = tmp2;
 7943 
 7944   push(zlen);
 7945   push(len);
 7946   addl(zlen,2);
 7947   bind(L_second_loop);
 7948   xorq(carry, carry);
 7949   subl(zlen, 4);
 7950   subl(len, 2);
 7951   push(zlen);
 7952   push(len);
 7953   cmpl(len, 0);
 7954   jccb(Assembler::lessEqual, L_second_loop_exit);
 7955 
 7956   // Multiply an array by one 64 bit long.
 7957   if (UseBMI2Instructions) {
 7958     op2 = rdxReg;
 7959     movq(op2, Address(x, len, Address::times_4,  0));
 7960     rorxq(op2, op2, 32);
 7961   }
 7962   else {
 7963     movq(op2, Address(x, len, Address::times_4,  0));
 7964     rorq(op2, 32);
 7965   }
 7966 
 7967   bind(L_third_loop);
 7968   decrementl(len);
 7969   jccb(Assembler::negative, L_third_loop_exit);
 7970   decrementl(len);
 7971   jccb(Assembler::negative, L_last_x);
 7972 
 7973   movq(op1, Address(x, len, Address::times_4,  0));
 7974   rorq(op1, 32);
 7975 
 7976   bind(L_multiply);
 7977   subl(zlen, 2);
 7978   movq(sum, Address(z, zlen, Address::times_4,  0));
 7979 
 7980   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
 7981   if (UseBMI2Instructions) {
 7982     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
 7983   }
 7984   else {
 7985     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 7986   }
 7987 
 7988   movq(Address(z, zlen, Address::times_4, 0), sum);
 7989 
 7990   jmp(L_third_loop);
 7991   bind(L_third_loop_exit);
 7992 
 7993   // Fourth loop
 7994   // Add 64 bit long carry into z with carry propagation.
 7995   // Uses offsetted zlen.
 7996   add_one_64(z, zlen, carry, tmp1);
 7997 
 7998   pop(len);
 7999   pop(zlen);
 8000   jmp(L_second_loop);
 8001 
 8002   // Next infrequent code is moved outside loops.
 8003   bind(L_last_x);
 8004   movl(op1, Address(x, 0));
 8005   jmp(L_multiply);
 8006 
 8007   bind(L_second_loop_exit);
 8008   pop(len);
 8009   pop(zlen);
 8010   pop(len);
 8011   pop(zlen);
 8012 
 8013   // Fifth loop
 8014   // Shift z left 1 bit.
 8015   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
 8016 
 8017   // z[zlen-1] |= x[len-1] & 1;
 8018   movl(tmp3, Address(x, len, Address::times_4, -4));
 8019   andl(tmp3, 1);
 8020   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
 8021 
 8022   pop(tmp5);
 8023   pop(tmp4);
 8024   pop(tmp3);
 8025   pop(tmp2);
 8026   pop(tmp1);
 8027 }
 8028 
 8029 /**
 8030  * Helper function for mul_add()
 8031  * Multiply the in[] by int k and add to out[] starting at offset offs using
 8032  * 128 bit by 32 bit multiply and return the carry in tmp5.
 8033  * Only quad int aligned length of in[] is operated on in this function.
 8034  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
 8035  * This function preserves out, in and k registers.
 8036  * len and offset point to the appropriate index in "in" & "out" correspondingly
 8037  * tmp5 has the carry.
 8038  * other registers are temporary and are modified.
 8039  *
 8040  */
 8041 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
 8042   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
 8043   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 8044 
 8045   Label L_first_loop, L_first_loop_exit;
 8046 
 8047   movl(tmp1, len);
 8048   shrl(tmp1, 2);
 8049 
 8050   bind(L_first_loop);
 8051   subl(tmp1, 1);
 8052   jccb(Assembler::negative, L_first_loop_exit);
 8053 
 8054   subl(len, 4);
 8055   subl(offset, 4);
 8056 
 8057   Register op2 = tmp2;
 8058   const Register sum = tmp3;
 8059   const Register op1 = tmp4;
 8060   const Register carry = tmp5;
 8061 
 8062   if (UseBMI2Instructions) {
 8063     op2 = rdxReg;
 8064   }
 8065 
 8066   movq(op1, Address(in, len, Address::times_4,  8));
 8067   rorq(op1, 32);
 8068   movq(sum, Address(out, offset, Address::times_4,  8));
 8069   rorq(sum, 32);
 8070   if (UseBMI2Instructions) {
 8071     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 8072   }
 8073   else {
 8074     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 8075   }
 8076   // Store back in big endian from little endian
 8077   rorq(sum, 0x20);
 8078   movq(Address(out, offset, Address::times_4,  8), sum);
 8079 
 8080   movq(op1, Address(in, len, Address::times_4,  0));
 8081   rorq(op1, 32);
 8082   movq(sum, Address(out, offset, Address::times_4,  0));
 8083   rorq(sum, 32);
 8084   if (UseBMI2Instructions) {
 8085     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 8086   }
 8087   else {
 8088     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 8089   }
 8090   // Store back in big endian from little endian
 8091   rorq(sum, 0x20);
 8092   movq(Address(out, offset, Address::times_4,  0), sum);
 8093 
 8094   jmp(L_first_loop);
 8095   bind(L_first_loop_exit);
 8096 }
 8097 
 8098 /**
 8099  * Code for BigInteger::mulAdd() intrinsic
 8100  *
 8101  * rdi: out
 8102  * rsi: in
 8103  * r11: offs (out.length - offset)
 8104  * rcx: len
 8105  * r8:  k
 8106  * r12: tmp1
 8107  * r13: tmp2
 8108  * r14: tmp3
 8109  * r15: tmp4
 8110  * rbx: tmp5
 8111  * Multiply the in[] by word k and add to out[], return the carry in rax
 8112  */
 8113 void MacroAssembler::mul_add(Register out, Register in, Register offs,
 8114    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
 8115    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 8116 
 8117   Label L_carry, L_last_in, L_done;
 8118 
 8119 // carry = 0;
 8120 // for (int j=len-1; j >= 0; j--) {
 8121 //    long product = (in[j] & LONG_MASK) * kLong +
 8122 //                   (out[offs] & LONG_MASK) + carry;
 8123 //    out[offs--] = (int)product;
 8124 //    carry = product >>> 32;
 8125 // }
 8126 //
 8127   push(tmp1);
 8128   push(tmp2);
 8129   push(tmp3);
 8130   push(tmp4);
 8131   push(tmp5);
 8132 
 8133   Register op2 = tmp2;
 8134   const Register sum = tmp3;
 8135   const Register op1 = tmp4;
 8136   const Register carry =  tmp5;
 8137 
 8138   if (UseBMI2Instructions) {
 8139     op2 = rdxReg;
 8140     movl(op2, k);
 8141   }
 8142   else {
 8143     movl(op2, k);
 8144   }
 8145 
 8146   xorq(carry, carry);
 8147 
 8148   //First loop
 8149 
 8150   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
 8151   //The carry is in tmp5
 8152   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
 8153 
 8154   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
 8155   decrementl(len);
 8156   jccb(Assembler::negative, L_carry);
 8157   decrementl(len);
 8158   jccb(Assembler::negative, L_last_in);
 8159 
 8160   movq(op1, Address(in, len, Address::times_4,  0));
 8161   rorq(op1, 32);
 8162 
 8163   subl(offs, 2);
 8164   movq(sum, Address(out, offs, Address::times_4,  0));
 8165   rorq(sum, 32);
 8166 
 8167   if (UseBMI2Instructions) {
 8168     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 8169   }
 8170   else {
 8171     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 8172   }
 8173 
 8174   // Store back in big endian from little endian
 8175   rorq(sum, 0x20);
 8176   movq(Address(out, offs, Address::times_4,  0), sum);
 8177 
 8178   testl(len, len);
 8179   jccb(Assembler::zero, L_carry);
 8180 
 8181   //Multiply the last in[] entry, if any
 8182   bind(L_last_in);
 8183   movl(op1, Address(in, 0));
 8184   movl(sum, Address(out, offs, Address::times_4,  -4));
 8185 
 8186   movl(raxReg, k);
 8187   mull(op1); //tmp4 * eax -> edx:eax
 8188   addl(sum, carry);
 8189   adcl(rdxReg, 0);
 8190   addl(sum, raxReg);
 8191   adcl(rdxReg, 0);
 8192   movl(carry, rdxReg);
 8193 
 8194   movl(Address(out, offs, Address::times_4,  -4), sum);
 8195 
 8196   bind(L_carry);
 8197   //return tmp5/carry as carry in rax
 8198   movl(rax, carry);
 8199 
 8200   bind(L_done);
 8201   pop(tmp5);
 8202   pop(tmp4);
 8203   pop(tmp3);
 8204   pop(tmp2);
 8205   pop(tmp1);
 8206 }
 8207 #endif
 8208 
 8209 /**
 8210  * Emits code to update CRC-32 with a byte value according to constants in table
 8211  *
 8212  * @param [in,out]crc   Register containing the crc.
 8213  * @param [in]val       Register containing the byte to fold into the CRC.
 8214  * @param [in]table     Register containing the table of crc constants.
 8215  *
 8216  * uint32_t crc;
 8217  * val = crc_table[(val ^ crc) & 0xFF];
 8218  * crc = val ^ (crc >> 8);
 8219  *
 8220  */
 8221 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
 8222   xorl(val, crc);
 8223   andl(val, 0xFF);
 8224   shrl(crc, 8); // unsigned shift
 8225   xorl(crc, Address(table, val, Address::times_4, 0));
 8226 }
 8227 
 8228 /**
 8229  * Fold 128-bit data chunk
 8230  */
 8231 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
 8232   if (UseAVX > 0) {
 8233     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
 8234     vpclmulldq(xcrc, xK, xcrc); // [63:0]
 8235     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
 8236     pxor(xcrc, xtmp);
 8237   } else {
 8238     movdqa(xtmp, xcrc);
 8239     pclmulhdq(xtmp, xK);   // [123:64]
 8240     pclmulldq(xcrc, xK);   // [63:0]
 8241     pxor(xcrc, xtmp);
 8242     movdqu(xtmp, Address(buf, offset));
 8243     pxor(xcrc, xtmp);
 8244   }
 8245 }
 8246 
 8247 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
 8248   if (UseAVX > 0) {
 8249     vpclmulhdq(xtmp, xK, xcrc);
 8250     vpclmulldq(xcrc, xK, xcrc);
 8251     pxor(xcrc, xbuf);
 8252     pxor(xcrc, xtmp);
 8253   } else {
 8254     movdqa(xtmp, xcrc);
 8255     pclmulhdq(xtmp, xK);
 8256     pclmulldq(xcrc, xK);
 8257     pxor(xcrc, xbuf);
 8258     pxor(xcrc, xtmp);
 8259   }
 8260 }
 8261 
 8262 /**
 8263  * 8-bit folds to compute 32-bit CRC
 8264  *
 8265  * uint64_t xcrc;
 8266  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
 8267  */
 8268 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
 8269   movdl(tmp, xcrc);
 8270   andl(tmp, 0xFF);
 8271   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
 8272   psrldq(xcrc, 1); // unsigned shift one byte
 8273   pxor(xcrc, xtmp);
 8274 }
 8275 
 8276 /**
 8277  * uint32_t crc;
 8278  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
 8279  */
 8280 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
 8281   movl(tmp, crc);
 8282   andl(tmp, 0xFF);
 8283   shrl(crc, 8);
 8284   xorl(crc, Address(table, tmp, Address::times_4, 0));
 8285 }
 8286 
 8287 /**
 8288  * @param crc   register containing existing CRC (32-bit)
 8289  * @param buf   register pointing to input byte buffer (byte*)
 8290  * @param len   register containing number of bytes
 8291  * @param table register that will contain address of CRC table
 8292  * @param tmp   scratch register
 8293  */
 8294 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
 8295   assert_different_registers(crc, buf, len, table, tmp, rax);
 8296 
 8297   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
 8298   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
 8299 
 8300   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
 8301   // context for the registers used, where all instructions below are using 128-bit mode
 8302   // On EVEX without VL and BW, these instructions will all be AVX.
 8303   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
 8304   notl(crc); // ~crc
 8305   cmpl(len, 16);
 8306   jcc(Assembler::less, L_tail);
 8307 
 8308   // Align buffer to 16 bytes
 8309   movl(tmp, buf);
 8310   andl(tmp, 0xF);
 8311   jccb(Assembler::zero, L_aligned);
 8312   subl(tmp,  16);
 8313   addl(len, tmp);
 8314 
 8315   align(4);
 8316   BIND(L_align_loop);
 8317   movsbl(rax, Address(buf, 0)); // load byte with sign extension
 8318   update_byte_crc32(crc, rax, table);
 8319   increment(buf);
 8320   incrementl(tmp);
 8321   jccb(Assembler::less, L_align_loop);
 8322 
 8323   BIND(L_aligned);
 8324   movl(tmp, len); // save
 8325   shrl(len, 4);
 8326   jcc(Assembler::zero, L_tail_restore);
 8327 
 8328   // Fold crc into first bytes of vector
 8329   movdqa(xmm1, Address(buf, 0));
 8330   movdl(rax, xmm1);
 8331   xorl(crc, rax);
 8332   if (VM_Version::supports_sse4_1()) {
 8333     pinsrd(xmm1, crc, 0);
 8334   } else {
 8335     pinsrw(xmm1, crc, 0);
 8336     shrl(crc, 16);
 8337     pinsrw(xmm1, crc, 1);
 8338   }
 8339   addptr(buf, 16);
 8340   subl(len, 4); // len > 0
 8341   jcc(Assembler::less, L_fold_tail);
 8342 
 8343   movdqa(xmm2, Address(buf,  0));
 8344   movdqa(xmm3, Address(buf, 16));
 8345   movdqa(xmm4, Address(buf, 32));
 8346   addptr(buf, 48);
 8347   subl(len, 3);
 8348   jcc(Assembler::lessEqual, L_fold_512b);
 8349 
 8350   // Fold total 512 bits of polynomial on each iteration,
 8351   // 128 bits per each of 4 parallel streams.
 8352   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1);
 8353 
 8354   align32();
 8355   BIND(L_fold_512b_loop);
 8356   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
 8357   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
 8358   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
 8359   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
 8360   addptr(buf, 64);
 8361   subl(len, 4);
 8362   jcc(Assembler::greater, L_fold_512b_loop);
 8363 
 8364   // Fold 512 bits to 128 bits.
 8365   BIND(L_fold_512b);
 8366   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1);
 8367   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
 8368   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
 8369   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
 8370 
 8371   // Fold the rest of 128 bits data chunks
 8372   BIND(L_fold_tail);
 8373   addl(len, 3);
 8374   jccb(Assembler::lessEqual, L_fold_128b);
 8375   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1);
 8376 
 8377   BIND(L_fold_tail_loop);
 8378   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
 8379   addptr(buf, 16);
 8380   decrementl(len);
 8381   jccb(Assembler::greater, L_fold_tail_loop);
 8382 
 8383   // Fold 128 bits in xmm1 down into 32 bits in crc register.
 8384   BIND(L_fold_128b);
 8385   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1);
 8386   if (UseAVX > 0) {
 8387     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
 8388     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
 8389     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
 8390   } else {
 8391     movdqa(xmm2, xmm0);
 8392     pclmulqdq(xmm2, xmm1, 0x1);
 8393     movdqa(xmm3, xmm0);
 8394     pand(xmm3, xmm2);
 8395     pclmulqdq(xmm0, xmm3, 0x1);
 8396   }
 8397   psrldq(xmm1, 8);
 8398   psrldq(xmm2, 4);
 8399   pxor(xmm0, xmm1);
 8400   pxor(xmm0, xmm2);
 8401 
 8402   // 8 8-bit folds to compute 32-bit CRC.
 8403   for (int j = 0; j < 4; j++) {
 8404     fold_8bit_crc32(xmm0, table, xmm1, rax);
 8405   }
 8406   movdl(crc, xmm0); // mov 32 bits to general register
 8407   for (int j = 0; j < 4; j++) {
 8408     fold_8bit_crc32(crc, table, rax);
 8409   }
 8410 
 8411   BIND(L_tail_restore);
 8412   movl(len, tmp); // restore
 8413   BIND(L_tail);
 8414   andl(len, 0xf);
 8415   jccb(Assembler::zero, L_exit);
 8416 
 8417   // Fold the rest of bytes
 8418   align(4);
 8419   BIND(L_tail_loop);
 8420   movsbl(rax, Address(buf, 0)); // load byte with sign extension
 8421   update_byte_crc32(crc, rax, table);
 8422   increment(buf);
 8423   decrementl(len);
 8424   jccb(Assembler::greater, L_tail_loop);
 8425 
 8426   BIND(L_exit);
 8427   notl(crc); // ~c
 8428 }
 8429 
 8430 #ifdef _LP64
 8431 // Helper function for AVX 512 CRC32
 8432 // Fold 512-bit data chunks
 8433 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf,
 8434                                              Register pos, int offset) {
 8435   evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit);
 8436   evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64]
 8437   evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0]
 8438   evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */);
 8439   evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */);
 8440 }
 8441 
 8442 // Helper function for AVX 512 CRC32
 8443 // Compute CRC32 for < 256B buffers
 8444 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos,
 8445                                               Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
 8446                                               Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) {
 8447 
 8448   Label L_less_than_32, L_exact_16_left, L_less_than_16_left;
 8449   Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left;
 8450   Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2;
 8451 
 8452   // check if there is enough buffer to be able to fold 16B at a time
 8453   cmpl(len, 32);
 8454   jcc(Assembler::less, L_less_than_32);
 8455 
 8456   // if there is, load the constants
 8457   movdqu(xmm10, Address(table, 1 * 16));    //rk1 and rk2 in xmm10
 8458   movdl(xmm0, crc);                        // get the initial crc value
 8459   movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext
 8460   pxor(xmm7, xmm0);
 8461 
 8462   // update the buffer pointer
 8463   addl(pos, 16);
 8464   //update the counter.subtract 32 instead of 16 to save one instruction from the loop
 8465   subl(len, 32);
 8466   jmp(L_16B_reduction_loop);
 8467 
 8468   bind(L_less_than_32);
 8469   //mov initial crc to the return value. this is necessary for zero - length buffers.
 8470   movl(rax, crc);
 8471   testl(len, len);
 8472   jcc(Assembler::equal, L_cleanup);
 8473 
 8474   movdl(xmm0, crc);                        //get the initial crc value
 8475 
 8476   cmpl(len, 16);
 8477   jcc(Assembler::equal, L_exact_16_left);
 8478   jcc(Assembler::less, L_less_than_16_left);
 8479 
 8480   movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext
 8481   pxor(xmm7, xmm0);                       //xor the initial crc value
 8482   addl(pos, 16);
 8483   subl(len, 16);
 8484   movdqu(xmm10, Address(table, 1 * 16));    // rk1 and rk2 in xmm10
 8485   jmp(L_get_last_two_xmms);
 8486 
 8487   bind(L_less_than_16_left);
 8488   //use stack space to load data less than 16 bytes, zero - out the 16B in memory first.
 8489   pxor(xmm1, xmm1);
 8490   movptr(tmp1, rsp);
 8491   movdqu(Address(tmp1, 0 * 16), xmm1);
 8492 
 8493   cmpl(len, 4);
 8494   jcc(Assembler::less, L_only_less_than_4);
 8495 
 8496   //backup the counter value
 8497   movl(tmp2, len);
 8498   cmpl(len, 8);
 8499   jcc(Assembler::less, L_less_than_8_left);
 8500 
 8501   //load 8 Bytes
 8502   movq(rax, Address(buf, pos, Address::times_1, 0 * 16));
 8503   movq(Address(tmp1, 0 * 16), rax);
 8504   addptr(tmp1, 8);
 8505   subl(len, 8);
 8506   addl(pos, 8);
 8507 
 8508   bind(L_less_than_8_left);
 8509   cmpl(len, 4);
 8510   jcc(Assembler::less, L_less_than_4_left);
 8511 
 8512   //load 4 Bytes
 8513   movl(rax, Address(buf, pos, Address::times_1, 0));
 8514   movl(Address(tmp1, 0 * 16), rax);
 8515   addptr(tmp1, 4);
 8516   subl(len, 4);
 8517   addl(pos, 4);
 8518 
 8519   bind(L_less_than_4_left);
 8520   cmpl(len, 2);
 8521   jcc(Assembler::less, L_less_than_2_left);
 8522 
 8523   // load 2 Bytes
 8524   movw(rax, Address(buf, pos, Address::times_1, 0));
 8525   movl(Address(tmp1, 0 * 16), rax);
 8526   addptr(tmp1, 2);
 8527   subl(len, 2);
 8528   addl(pos, 2);
 8529 
 8530   bind(L_less_than_2_left);
 8531   cmpl(len, 1);
 8532   jcc(Assembler::less, L_zero_left);
 8533 
 8534   // load 1 Byte
 8535   movb(rax, Address(buf, pos, Address::times_1, 0));
 8536   movb(Address(tmp1, 0 * 16), rax);
 8537 
 8538   bind(L_zero_left);
 8539   movdqu(xmm7, Address(rsp, 0));
 8540   pxor(xmm7, xmm0);                       //xor the initial crc value
 8541 
 8542   lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr()));
 8543   movdqu(xmm0, Address(rax, tmp2));
 8544   pshufb(xmm7, xmm0);
 8545   jmp(L_128_done);
 8546 
 8547   bind(L_exact_16_left);
 8548   movdqu(xmm7, Address(buf, pos, Address::times_1, 0));
 8549   pxor(xmm7, xmm0);                       //xor the initial crc value
 8550   jmp(L_128_done);
 8551 
 8552   bind(L_only_less_than_4);
 8553   cmpl(len, 3);
 8554   jcc(Assembler::less, L_only_less_than_3);
 8555 
 8556   // load 3 Bytes
 8557   movb(rax, Address(buf, pos, Address::times_1, 0));
 8558   movb(Address(tmp1, 0), rax);
 8559 
 8560   movb(rax, Address(buf, pos, Address::times_1, 1));
 8561   movb(Address(tmp1, 1), rax);
 8562 
 8563   movb(rax, Address(buf, pos, Address::times_1, 2));
 8564   movb(Address(tmp1, 2), rax);
 8565 
 8566   movdqu(xmm7, Address(rsp, 0));
 8567   pxor(xmm7, xmm0);                     //xor the initial crc value
 8568 
 8569   pslldq(xmm7, 0x5);
 8570   jmp(L_barrett);
 8571   bind(L_only_less_than_3);
 8572   cmpl(len, 2);
 8573   jcc(Assembler::less, L_only_less_than_2);
 8574 
 8575   // load 2 Bytes
 8576   movb(rax, Address(buf, pos, Address::times_1, 0));
 8577   movb(Address(tmp1, 0), rax);
 8578 
 8579   movb(rax, Address(buf, pos, Address::times_1, 1));
 8580   movb(Address(tmp1, 1), rax);
 8581 
 8582   movdqu(xmm7, Address(rsp, 0));
 8583   pxor(xmm7, xmm0);                     //xor the initial crc value
 8584 
 8585   pslldq(xmm7, 0x6);
 8586   jmp(L_barrett);
 8587 
 8588   bind(L_only_less_than_2);
 8589   //load 1 Byte
 8590   movb(rax, Address(buf, pos, Address::times_1, 0));
 8591   movb(Address(tmp1, 0), rax);
 8592 
 8593   movdqu(xmm7, Address(rsp, 0));
 8594   pxor(xmm7, xmm0);                     //xor the initial crc value
 8595 
 8596   pslldq(xmm7, 0x7);
 8597 }
 8598 
 8599 /**
 8600 * Compute CRC32 using AVX512 instructions
 8601 * param crc   register containing existing CRC (32-bit)
 8602 * param buf   register pointing to input byte buffer (byte*)
 8603 * param len   register containing number of bytes
 8604 * param table address of crc or crc32c table
 8605 * param tmp1  scratch register
 8606 * param tmp2  scratch register
 8607 * return rax  result register
 8608 *
 8609 * This routine is identical for crc32c with the exception of the precomputed constant
 8610 * table which will be passed as the table argument.  The calculation steps are
 8611 * the same for both variants.
 8612 */
 8613 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) {
 8614   assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12);
 8615 
 8616   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
 8617   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
 8618   Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop;
 8619   Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop;
 8620   Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup;
 8621 
 8622   const Register pos = r12;
 8623   push(r12);
 8624   subptr(rsp, 16 * 2 + 8);
 8625 
 8626   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
 8627   // context for the registers used, where all instructions below are using 128-bit mode
 8628   // On EVEX without VL and BW, these instructions will all be AVX.
 8629   movl(pos, 0);
 8630 
 8631   // check if smaller than 256B
 8632   cmpl(len, 256);
 8633   jcc(Assembler::less, L_less_than_256);
 8634 
 8635   // load the initial crc value
 8636   movdl(xmm10, crc);
 8637 
 8638   // receive the initial 64B data, xor the initial crc value
 8639   evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit);
 8640   evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit);
 8641   evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit);
 8642   evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4
 8643 
 8644   subl(len, 256);
 8645   cmpl(len, 256);
 8646   jcc(Assembler::less, L_fold_128_B_loop);
 8647 
 8648   evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit);
 8649   evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit);
 8650   evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2
 8651   subl(len, 256);
 8652 
 8653   bind(L_fold_256_B_loop);
 8654   addl(pos, 256);
 8655   fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64);
 8656   fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64);
 8657   fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64);
 8658   fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64);
 8659 
 8660   subl(len, 256);
 8661   jcc(Assembler::greaterEqual, L_fold_256_B_loop);
 8662 
 8663   // Fold 256 into 128
 8664   addl(pos, 256);
 8665   evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit);
 8666   evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit);
 8667   vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC
 8668 
 8669   evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit);
 8670   evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit);
 8671   vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC
 8672 
 8673   evmovdquq(xmm0, xmm7, Assembler::AVX_512bit);
 8674   evmovdquq(xmm4, xmm8, Assembler::AVX_512bit);
 8675 
 8676   addl(len, 128);
 8677   jmp(L_fold_128_B_register);
 8678 
 8679   // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop
 8680   // loop will fold 128B at a time until we have 128 + y Bytes of buffer
 8681 
 8682   // fold 128B at a time.This section of the code folds 8 xmm registers in parallel
 8683   bind(L_fold_128_B_loop);
 8684   addl(pos, 128);
 8685   fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64);
 8686   fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64);
 8687 
 8688   subl(len, 128);
 8689   jcc(Assembler::greaterEqual, L_fold_128_B_loop);
 8690 
 8691   addl(pos, 128);
 8692 
 8693   // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
 8694   // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7
 8695   bind(L_fold_128_B_register);
 8696   evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16
 8697   evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0
 8698   evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit);
 8699   evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit);
 8700   // save last that has no multiplicand
 8701   vextracti64x2(xmm7, xmm4, 3);
 8702 
 8703   evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit);
 8704   evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit);
 8705   // Needed later in reduction loop
 8706   movdqu(xmm10, Address(table, 1 * 16));
 8707   vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC
 8708   vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC
 8709 
 8710   // Swap 1,0,3,2 - 01 00 11 10
 8711   evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit);
 8712   evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit);
 8713   vextracti128(xmm5, xmm8, 1);
 8714   evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit);
 8715 
 8716   // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop
 8717   // instead of a cmp instruction, we use the negative flag with the jl instruction
 8718   addl(len, 128 - 16);
 8719   jcc(Assembler::less, L_final_reduction_for_128);
 8720 
 8721   bind(L_16B_reduction_loop);
 8722   vpclmulqdq(xmm8, xmm7, xmm10, 0x01);
 8723   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 8724   vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit);
 8725   movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16));
 8726   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8727   addl(pos, 16);
 8728   subl(len, 16);
 8729   jcc(Assembler::greaterEqual, L_16B_reduction_loop);
 8730 
 8731   bind(L_final_reduction_for_128);
 8732   addl(len, 16);
 8733   jcc(Assembler::equal, L_128_done);
 8734 
 8735   bind(L_get_last_two_xmms);
 8736   movdqu(xmm2, xmm7);
 8737   addl(pos, len);
 8738   movdqu(xmm1, Address(buf, pos, Address::times_1, -16));
 8739   subl(pos, len);
 8740 
 8741   // get rid of the extra data that was loaded before
 8742   // load the shift constant
 8743   lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr()));
 8744   movdqu(xmm0, Address(rax, len));
 8745   addl(rax, len);
 8746 
 8747   vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8748   //Change mask to 512
 8749   vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2);
 8750   vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit);
 8751 
 8752   blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit);
 8753   vpclmulqdq(xmm8, xmm7, xmm10, 0x01);
 8754   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 8755   vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit);
 8756   vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit);
 8757 
 8758   bind(L_128_done);
 8759   // compute crc of a 128-bit value
 8760   movdqu(xmm10, Address(table, 3 * 16));
 8761   movdqu(xmm0, xmm7);
 8762 
 8763   // 64b fold
 8764   vpclmulqdq(xmm7, xmm7, xmm10, 0x0);
 8765   vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit);
 8766   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8767 
 8768   // 32b fold
 8769   movdqu(xmm0, xmm7);
 8770   vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit);
 8771   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 8772   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8773   jmp(L_barrett);
 8774 
 8775   bind(L_less_than_256);
 8776   kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup);
 8777 
 8778   //barrett reduction
 8779   bind(L_barrett);
 8780   vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2);
 8781   movdqu(xmm1, xmm7);
 8782   movdqu(xmm2, xmm7);
 8783   movdqu(xmm10, Address(table, 4 * 16));
 8784 
 8785   pclmulqdq(xmm7, xmm10, 0x0);
 8786   pxor(xmm7, xmm2);
 8787   vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2);
 8788   movdqu(xmm2, xmm7);
 8789   pclmulqdq(xmm7, xmm10, 0x10);
 8790   pxor(xmm7, xmm2);
 8791   pxor(xmm7, xmm1);
 8792   pextrd(crc, xmm7, 2);
 8793 
 8794   bind(L_cleanup);
 8795   addptr(rsp, 16 * 2 + 8);
 8796   pop(r12);
 8797 }
 8798 
 8799 // S. Gueron / Information Processing Letters 112 (2012) 184
 8800 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
 8801 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
 8802 // Output: the 64-bit carry-less product of B * CONST
 8803 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
 8804                                      Register tmp1, Register tmp2, Register tmp3) {
 8805   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
 8806   if (n > 0) {
 8807     addq(tmp3, n * 256 * 8);
 8808   }
 8809   //    Q1 = TABLEExt[n][B & 0xFF];
 8810   movl(tmp1, in);
 8811   andl(tmp1, 0x000000FF);
 8812   shll(tmp1, 3);
 8813   addq(tmp1, tmp3);
 8814   movq(tmp1, Address(tmp1, 0));
 8815 
 8816   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
 8817   movl(tmp2, in);
 8818   shrl(tmp2, 8);
 8819   andl(tmp2, 0x000000FF);
 8820   shll(tmp2, 3);
 8821   addq(tmp2, tmp3);
 8822   movq(tmp2, Address(tmp2, 0));
 8823 
 8824   shlq(tmp2, 8);
 8825   xorq(tmp1, tmp2);
 8826 
 8827   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
 8828   movl(tmp2, in);
 8829   shrl(tmp2, 16);
 8830   andl(tmp2, 0x000000FF);
 8831   shll(tmp2, 3);
 8832   addq(tmp2, tmp3);
 8833   movq(tmp2, Address(tmp2, 0));
 8834 
 8835   shlq(tmp2, 16);
 8836   xorq(tmp1, tmp2);
 8837 
 8838   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
 8839   shrl(in, 24);
 8840   andl(in, 0x000000FF);
 8841   shll(in, 3);
 8842   addq(in, tmp3);
 8843   movq(in, Address(in, 0));
 8844 
 8845   shlq(in, 24);
 8846   xorq(in, tmp1);
 8847   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
 8848 }
 8849 
 8850 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
 8851                                       Register in_out,
 8852                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
 8853                                       XMMRegister w_xtmp2,
 8854                                       Register tmp1,
 8855                                       Register n_tmp2, Register n_tmp3) {
 8856   if (is_pclmulqdq_supported) {
 8857     movdl(w_xtmp1, in_out); // modified blindly
 8858 
 8859     movl(tmp1, const_or_pre_comp_const_index);
 8860     movdl(w_xtmp2, tmp1);
 8861     pclmulqdq(w_xtmp1, w_xtmp2, 0);
 8862 
 8863     movdq(in_out, w_xtmp1);
 8864   } else {
 8865     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
 8866   }
 8867 }
 8868 
 8869 // Recombination Alternative 2: No bit-reflections
 8870 // T1 = (CRC_A * U1) << 1
 8871 // T2 = (CRC_B * U2) << 1
 8872 // C1 = T1 >> 32
 8873 // C2 = T2 >> 32
 8874 // T1 = T1 & 0xFFFFFFFF
 8875 // T2 = T2 & 0xFFFFFFFF
 8876 // T1 = CRC32(0, T1)
 8877 // T2 = CRC32(0, T2)
 8878 // C1 = C1 ^ T1
 8879 // C2 = C2 ^ T2
 8880 // CRC = C1 ^ C2 ^ CRC_C
 8881 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
 8882                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8883                                      Register tmp1, Register tmp2,
 8884                                      Register n_tmp3) {
 8885   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 8886   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 8887   shlq(in_out, 1);
 8888   movl(tmp1, in_out);
 8889   shrq(in_out, 32);
 8890   xorl(tmp2, tmp2);
 8891   crc32(tmp2, tmp1, 4);
 8892   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
 8893   shlq(in1, 1);
 8894   movl(tmp1, in1);
 8895   shrq(in1, 32);
 8896   xorl(tmp2, tmp2);
 8897   crc32(tmp2, tmp1, 4);
 8898   xorl(in1, tmp2);
 8899   xorl(in_out, in1);
 8900   xorl(in_out, in2);
 8901 }
 8902 
 8903 // Set N to predefined value
 8904 // Subtract from a length of a buffer
 8905 // execute in a loop:
 8906 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
 8907 // for i = 1 to N do
 8908 //  CRC_A = CRC32(CRC_A, A[i])
 8909 //  CRC_B = CRC32(CRC_B, B[i])
 8910 //  CRC_C = CRC32(CRC_C, C[i])
 8911 // end for
 8912 // Recombine
 8913 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
 8914                                        Register in_out1, Register in_out2, Register in_out3,
 8915                                        Register tmp1, Register tmp2, Register tmp3,
 8916                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8917                                        Register tmp4, Register tmp5,
 8918                                        Register n_tmp6) {
 8919   Label L_processPartitions;
 8920   Label L_processPartition;
 8921   Label L_exit;
 8922 
 8923   bind(L_processPartitions);
 8924   cmpl(in_out1, 3 * size);
 8925   jcc(Assembler::less, L_exit);
 8926     xorl(tmp1, tmp1);
 8927     xorl(tmp2, tmp2);
 8928     movq(tmp3, in_out2);
 8929     addq(tmp3, size);
 8930 
 8931     bind(L_processPartition);
 8932       crc32(in_out3, Address(in_out2, 0), 8);
 8933       crc32(tmp1, Address(in_out2, size), 8);
 8934       crc32(tmp2, Address(in_out2, size * 2), 8);
 8935       addq(in_out2, 8);
 8936       cmpq(in_out2, tmp3);
 8937       jcc(Assembler::less, L_processPartition);
 8938     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
 8939             w_xtmp1, w_xtmp2, w_xtmp3,
 8940             tmp4, tmp5,
 8941             n_tmp6);
 8942     addq(in_out2, 2 * size);
 8943     subl(in_out1, 3 * size);
 8944     jmp(L_processPartitions);
 8945 
 8946   bind(L_exit);
 8947 }
 8948 #else
 8949 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
 8950                                      Register tmp1, Register tmp2, Register tmp3,
 8951                                      XMMRegister xtmp1, XMMRegister xtmp2) {
 8952   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
 8953   if (n > 0) {
 8954     addl(tmp3, n * 256 * 8);
 8955   }
 8956   //    Q1 = TABLEExt[n][B & 0xFF];
 8957   movl(tmp1, in_out);
 8958   andl(tmp1, 0x000000FF);
 8959   shll(tmp1, 3);
 8960   addl(tmp1, tmp3);
 8961   movq(xtmp1, Address(tmp1, 0));
 8962 
 8963   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
 8964   movl(tmp2, in_out);
 8965   shrl(tmp2, 8);
 8966   andl(tmp2, 0x000000FF);
 8967   shll(tmp2, 3);
 8968   addl(tmp2, tmp3);
 8969   movq(xtmp2, Address(tmp2, 0));
 8970 
 8971   psllq(xtmp2, 8);
 8972   pxor(xtmp1, xtmp2);
 8973 
 8974   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
 8975   movl(tmp2, in_out);
 8976   shrl(tmp2, 16);
 8977   andl(tmp2, 0x000000FF);
 8978   shll(tmp2, 3);
 8979   addl(tmp2, tmp3);
 8980   movq(xtmp2, Address(tmp2, 0));
 8981 
 8982   psllq(xtmp2, 16);
 8983   pxor(xtmp1, xtmp2);
 8984 
 8985   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
 8986   shrl(in_out, 24);
 8987   andl(in_out, 0x000000FF);
 8988   shll(in_out, 3);
 8989   addl(in_out, tmp3);
 8990   movq(xtmp2, Address(in_out, 0));
 8991 
 8992   psllq(xtmp2, 24);
 8993   pxor(xtmp1, xtmp2); // Result in CXMM
 8994   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
 8995 }
 8996 
 8997 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
 8998                                       Register in_out,
 8999                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
 9000                                       XMMRegister w_xtmp2,
 9001                                       Register tmp1,
 9002                                       Register n_tmp2, Register n_tmp3) {
 9003   if (is_pclmulqdq_supported) {
 9004     movdl(w_xtmp1, in_out);
 9005 
 9006     movl(tmp1, const_or_pre_comp_const_index);
 9007     movdl(w_xtmp2, tmp1);
 9008     pclmulqdq(w_xtmp1, w_xtmp2, 0);
 9009     // Keep result in XMM since GPR is 32 bit in length
 9010   } else {
 9011     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
 9012   }
 9013 }
 9014 
 9015 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
 9016                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9017                                      Register tmp1, Register tmp2,
 9018                                      Register n_tmp3) {
 9019   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 9020   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 9021 
 9022   psllq(w_xtmp1, 1);
 9023   movdl(tmp1, w_xtmp1);
 9024   psrlq(w_xtmp1, 32);
 9025   movdl(in_out, w_xtmp1);
 9026 
 9027   xorl(tmp2, tmp2);
 9028   crc32(tmp2, tmp1, 4);
 9029   xorl(in_out, tmp2);
 9030 
 9031   psllq(w_xtmp2, 1);
 9032   movdl(tmp1, w_xtmp2);
 9033   psrlq(w_xtmp2, 32);
 9034   movdl(in1, w_xtmp2);
 9035 
 9036   xorl(tmp2, tmp2);
 9037   crc32(tmp2, tmp1, 4);
 9038   xorl(in1, tmp2);
 9039   xorl(in_out, in1);
 9040   xorl(in_out, in2);
 9041 }
 9042 
 9043 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
 9044                                        Register in_out1, Register in_out2, Register in_out3,
 9045                                        Register tmp1, Register tmp2, Register tmp3,
 9046                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9047                                        Register tmp4, Register tmp5,
 9048                                        Register n_tmp6) {
 9049   Label L_processPartitions;
 9050   Label L_processPartition;
 9051   Label L_exit;
 9052 
 9053   bind(L_processPartitions);
 9054   cmpl(in_out1, 3 * size);
 9055   jcc(Assembler::less, L_exit);
 9056     xorl(tmp1, tmp1);
 9057     xorl(tmp2, tmp2);
 9058     movl(tmp3, in_out2);
 9059     addl(tmp3, size);
 9060 
 9061     bind(L_processPartition);
 9062       crc32(in_out3, Address(in_out2, 0), 4);
 9063       crc32(tmp1, Address(in_out2, size), 4);
 9064       crc32(tmp2, Address(in_out2, size*2), 4);
 9065       crc32(in_out3, Address(in_out2, 0+4), 4);
 9066       crc32(tmp1, Address(in_out2, size+4), 4);
 9067       crc32(tmp2, Address(in_out2, size*2+4), 4);
 9068       addl(in_out2, 8);
 9069       cmpl(in_out2, tmp3);
 9070       jcc(Assembler::less, L_processPartition);
 9071 
 9072         push(tmp3);
 9073         push(in_out1);
 9074         push(in_out2);
 9075         tmp4 = tmp3;
 9076         tmp5 = in_out1;
 9077         n_tmp6 = in_out2;
 9078 
 9079       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
 9080             w_xtmp1, w_xtmp2, w_xtmp3,
 9081             tmp4, tmp5,
 9082             n_tmp6);
 9083 
 9084         pop(in_out2);
 9085         pop(in_out1);
 9086         pop(tmp3);
 9087 
 9088     addl(in_out2, 2 * size);
 9089     subl(in_out1, 3 * size);
 9090     jmp(L_processPartitions);
 9091 
 9092   bind(L_exit);
 9093 }
 9094 #endif //LP64
 9095 
 9096 #ifdef _LP64
 9097 // Algorithm 2: Pipelined usage of the CRC32 instruction.
 9098 // Input: A buffer I of L bytes.
 9099 // Output: the CRC32C value of the buffer.
 9100 // Notations:
 9101 // Write L = 24N + r, with N = floor (L/24).
 9102 // r = L mod 24 (0 <= r < 24).
 9103 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
 9104 // N quadwords, and R consists of r bytes.
 9105 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
 9106 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
 9107 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
 9108 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
 9109 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
 9110                                           Register tmp1, Register tmp2, Register tmp3,
 9111                                           Register tmp4, Register tmp5, Register tmp6,
 9112                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9113                                           bool is_pclmulqdq_supported) {
 9114   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
 9115   Label L_wordByWord;
 9116   Label L_byteByByteProlog;
 9117   Label L_byteByByte;
 9118   Label L_exit;
 9119 
 9120   if (is_pclmulqdq_supported ) {
 9121     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
 9122     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
 9123 
 9124     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
 9125     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
 9126 
 9127     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
 9128     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
 9129     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
 9130   } else {
 9131     const_or_pre_comp_const_index[0] = 1;
 9132     const_or_pre_comp_const_index[1] = 0;
 9133 
 9134     const_or_pre_comp_const_index[2] = 3;
 9135     const_or_pre_comp_const_index[3] = 2;
 9136 
 9137     const_or_pre_comp_const_index[4] = 5;
 9138     const_or_pre_comp_const_index[5] = 4;
 9139    }
 9140   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
 9141                     in2, in1, in_out,
 9142                     tmp1, tmp2, tmp3,
 9143                     w_xtmp1, w_xtmp2, w_xtmp3,
 9144                     tmp4, tmp5,
 9145                     tmp6);
 9146   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
 9147                     in2, in1, in_out,
 9148                     tmp1, tmp2, tmp3,
 9149                     w_xtmp1, w_xtmp2, w_xtmp3,
 9150                     tmp4, tmp5,
 9151                     tmp6);
 9152   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
 9153                     in2, in1, in_out,
 9154                     tmp1, tmp2, tmp3,
 9155                     w_xtmp1, w_xtmp2, w_xtmp3,
 9156                     tmp4, tmp5,
 9157                     tmp6);
 9158   movl(tmp1, in2);
 9159   andl(tmp1, 0x00000007);
 9160   negl(tmp1);
 9161   addl(tmp1, in2);
 9162   addq(tmp1, in1);
 9163 
 9164   cmpq(in1, tmp1);
 9165   jccb(Assembler::greaterEqual, L_byteByByteProlog);
 9166   align(16);
 9167   BIND(L_wordByWord);
 9168     crc32(in_out, Address(in1, 0), 8);
 9169     addq(in1, 8);
 9170     cmpq(in1, tmp1);
 9171     jcc(Assembler::less, L_wordByWord);
 9172 
 9173   BIND(L_byteByByteProlog);
 9174   andl(in2, 0x00000007);
 9175   movl(tmp2, 1);
 9176 
 9177   cmpl(tmp2, in2);
 9178   jccb(Assembler::greater, L_exit);
 9179   BIND(L_byteByByte);
 9180     crc32(in_out, Address(in1, 0), 1);
 9181     incq(in1);
 9182     incl(tmp2);
 9183     cmpl(tmp2, in2);
 9184     jcc(Assembler::lessEqual, L_byteByByte);
 9185 
 9186   BIND(L_exit);
 9187 }
 9188 #else
 9189 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
 9190                                           Register tmp1, Register  tmp2, Register tmp3,
 9191                                           Register tmp4, Register  tmp5, Register tmp6,
 9192                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9193                                           bool is_pclmulqdq_supported) {
 9194   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
 9195   Label L_wordByWord;
 9196   Label L_byteByByteProlog;
 9197   Label L_byteByByte;
 9198   Label L_exit;
 9199 
 9200   if (is_pclmulqdq_supported) {
 9201     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
 9202     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
 9203 
 9204     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
 9205     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
 9206 
 9207     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
 9208     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
 9209   } else {
 9210     const_or_pre_comp_const_index[0] = 1;
 9211     const_or_pre_comp_const_index[1] = 0;
 9212 
 9213     const_or_pre_comp_const_index[2] = 3;
 9214     const_or_pre_comp_const_index[3] = 2;
 9215 
 9216     const_or_pre_comp_const_index[4] = 5;
 9217     const_or_pre_comp_const_index[5] = 4;
 9218   }
 9219   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
 9220                     in2, in1, in_out,
 9221                     tmp1, tmp2, tmp3,
 9222                     w_xtmp1, w_xtmp2, w_xtmp3,
 9223                     tmp4, tmp5,
 9224                     tmp6);
 9225   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
 9226                     in2, in1, in_out,
 9227                     tmp1, tmp2, tmp3,
 9228                     w_xtmp1, w_xtmp2, w_xtmp3,
 9229                     tmp4, tmp5,
 9230                     tmp6);
 9231   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
 9232                     in2, in1, in_out,
 9233                     tmp1, tmp2, tmp3,
 9234                     w_xtmp1, w_xtmp2, w_xtmp3,
 9235                     tmp4, tmp5,
 9236                     tmp6);
 9237   movl(tmp1, in2);
 9238   andl(tmp1, 0x00000007);
 9239   negl(tmp1);
 9240   addl(tmp1, in2);
 9241   addl(tmp1, in1);
 9242 
 9243   BIND(L_wordByWord);
 9244   cmpl(in1, tmp1);
 9245   jcc(Assembler::greaterEqual, L_byteByByteProlog);
 9246     crc32(in_out, Address(in1,0), 4);
 9247     addl(in1, 4);
 9248     jmp(L_wordByWord);
 9249 
 9250   BIND(L_byteByByteProlog);
 9251   andl(in2, 0x00000007);
 9252   movl(tmp2, 1);
 9253 
 9254   BIND(L_byteByByte);
 9255   cmpl(tmp2, in2);
 9256   jccb(Assembler::greater, L_exit);
 9257     movb(tmp1, Address(in1, 0));
 9258     crc32(in_out, tmp1, 1);
 9259     incl(in1);
 9260     incl(tmp2);
 9261     jmp(L_byteByByte);
 9262 
 9263   BIND(L_exit);
 9264 }
 9265 #endif // LP64
 9266 #undef BIND
 9267 #undef BLOCK_COMMENT
 9268 
 9269 // Compress char[] array to byte[].
 9270 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
 9271 // Return the array length if every element in array can be encoded,
 9272 // otherwise, the index of first non-latin1 (> 0xff) character.
 9273 //   @IntrinsicCandidate
 9274 //   public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
 9275 //     for (int i = 0; i < len; i++) {
 9276 //       char c = src[srcOff];
 9277 //       if (c > 0xff) {
 9278 //           return i;  // return index of non-latin1 char
 9279 //       }
 9280 //       dst[dstOff] = (byte)c;
 9281 //       srcOff++;
 9282 //       dstOff++;
 9283 //     }
 9284 //     return len;
 9285 //   }
 9286 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
 9287   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
 9288   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
 9289   Register tmp5, Register result, KRegister mask1, KRegister mask2) {
 9290   Label copy_chars_loop, done, reset_sp, copy_tail;
 9291 
 9292   // rsi: src
 9293   // rdi: dst
 9294   // rdx: len
 9295   // rcx: tmp5
 9296   // rax: result
 9297 
 9298   // rsi holds start addr of source char[] to be compressed
 9299   // rdi holds start addr of destination byte[]
 9300   // rdx holds length
 9301 
 9302   assert(len != result, "");
 9303 
 9304   // save length for return
 9305   movl(result, len);
 9306 
 9307   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
 9308     VM_Version::supports_avx512vlbw() &&
 9309     VM_Version::supports_bmi2()) {
 9310 
 9311     Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail;
 9312 
 9313     // alignment
 9314     Label post_alignment;
 9315 
 9316     // if length of the string is less than 32, handle it the old fashioned way
 9317     testl(len, -32);
 9318     jcc(Assembler::zero, below_threshold);
 9319 
 9320     // First check whether a character is compressible ( <= 0xFF).
 9321     // Create mask to test for Unicode chars inside zmm vector
 9322     movl(tmp5, 0x00FF);
 9323     evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit);
 9324 
 9325     testl(len, -64);
 9326     jccb(Assembler::zero, post_alignment);
 9327 
 9328     movl(tmp5, dst);
 9329     andl(tmp5, (32 - 1));
 9330     negl(tmp5);
 9331     andl(tmp5, (32 - 1));
 9332 
 9333     // bail out when there is nothing to be done
 9334     testl(tmp5, 0xFFFFFFFF);
 9335     jccb(Assembler::zero, post_alignment);
 9336 
 9337     // ~(~0 << len), where len is the # of remaining elements to process
 9338     movl(len, 0xFFFFFFFF);
 9339     shlxl(len, len, tmp5);
 9340     notl(len);
 9341     kmovdl(mask2, len);
 9342     movl(len, result);
 9343 
 9344     evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit);
 9345     evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit);
 9346     ktestd(mask1, mask2);
 9347     jcc(Assembler::carryClear, copy_tail);
 9348 
 9349     evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit);
 9350 
 9351     addptr(src, tmp5);
 9352     addptr(src, tmp5);
 9353     addptr(dst, tmp5);
 9354     subl(len, tmp5);
 9355 
 9356     bind(post_alignment);
 9357     // end of alignment
 9358 
 9359     movl(tmp5, len);
 9360     andl(tmp5, (32 - 1));    // tail count (in chars)
 9361     andl(len, ~(32 - 1));    // vector count (in chars)
 9362     jccb(Assembler::zero, copy_loop_tail);
 9363 
 9364     lea(src, Address(src, len, Address::times_2));
 9365     lea(dst, Address(dst, len, Address::times_1));
 9366     negptr(len);
 9367 
 9368     bind(copy_32_loop);
 9369     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
 9370     evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
 9371     kortestdl(mask1, mask1);
 9372     jccb(Assembler::carryClear, reset_for_copy_tail);
 9373 
 9374     // All elements in current processed chunk are valid candidates for
 9375     // compression. Write a truncated byte elements to the memory.
 9376     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
 9377     addptr(len, 32);
 9378     jccb(Assembler::notZero, copy_32_loop);
 9379 
 9380     bind(copy_loop_tail);
 9381     // bail out when there is nothing to be done
 9382     testl(tmp5, 0xFFFFFFFF);
 9383     jcc(Assembler::zero, done);
 9384 
 9385     movl(len, tmp5);
 9386 
 9387     // ~(~0 << len), where len is the # of remaining elements to process
 9388     movl(tmp5, 0xFFFFFFFF);
 9389     shlxl(tmp5, tmp5, len);
 9390     notl(tmp5);
 9391 
 9392     kmovdl(mask2, tmp5);
 9393 
 9394     evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit);
 9395     evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit);
 9396     ktestd(mask1, mask2);
 9397     jcc(Assembler::carryClear, copy_tail);
 9398 
 9399     evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit);
 9400     jmp(done);
 9401 
 9402     bind(reset_for_copy_tail);
 9403     lea(src, Address(src, tmp5, Address::times_2));
 9404     lea(dst, Address(dst, tmp5, Address::times_1));
 9405     subptr(len, tmp5);
 9406     jmp(copy_chars_loop);
 9407 
 9408     bind(below_threshold);
 9409   }
 9410 
 9411   if (UseSSE42Intrinsics) {
 9412     Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail;
 9413 
 9414     // vectored compression
 9415     testl(len, 0xfffffff8);
 9416     jcc(Assembler::zero, copy_tail);
 9417 
 9418     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
 9419     movdl(tmp1Reg, tmp5);
 9420     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
 9421 
 9422     andl(len, 0xfffffff0);
 9423     jccb(Assembler::zero, copy_16);
 9424 
 9425     // compress 16 chars per iter
 9426     pxor(tmp4Reg, tmp4Reg);
 9427 
 9428     lea(src, Address(src, len, Address::times_2));
 9429     lea(dst, Address(dst, len, Address::times_1));
 9430     negptr(len);
 9431 
 9432     bind(copy_32_loop);
 9433     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
 9434     por(tmp4Reg, tmp2Reg);
 9435     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
 9436     por(tmp4Reg, tmp3Reg);
 9437     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
 9438     jccb(Assembler::notZero, reset_for_copy_tail);
 9439     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
 9440     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
 9441     addptr(len, 16);
 9442     jccb(Assembler::notZero, copy_32_loop);
 9443 
 9444     // compress next vector of 8 chars (if any)
 9445     bind(copy_16);
 9446     // len = 0
 9447     testl(result, 0x00000008);     // check if there's a block of 8 chars to compress
 9448     jccb(Assembler::zero, copy_tail_sse);
 9449 
 9450     pxor(tmp3Reg, tmp3Reg);
 9451 
 9452     movdqu(tmp2Reg, Address(src, 0));
 9453     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
 9454     jccb(Assembler::notZero, reset_for_copy_tail);
 9455     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
 9456     movq(Address(dst, 0), tmp2Reg);
 9457     addptr(src, 16);
 9458     addptr(dst, 8);
 9459     jmpb(copy_tail_sse);
 9460 
 9461     bind(reset_for_copy_tail);
 9462     movl(tmp5, result);
 9463     andl(tmp5, 0x0000000f);
 9464     lea(src, Address(src, tmp5, Address::times_2));
 9465     lea(dst, Address(dst, tmp5, Address::times_1));
 9466     subptr(len, tmp5);
 9467     jmpb(copy_chars_loop);
 9468 
 9469     bind(copy_tail_sse);
 9470     movl(len, result);
 9471     andl(len, 0x00000007);    // tail count (in chars)
 9472   }
 9473   // compress 1 char per iter
 9474   bind(copy_tail);
 9475   testl(len, len);
 9476   jccb(Assembler::zero, done);
 9477   lea(src, Address(src, len, Address::times_2));
 9478   lea(dst, Address(dst, len, Address::times_1));
 9479   negptr(len);
 9480 
 9481   bind(copy_chars_loop);
 9482   load_unsigned_short(tmp5, Address(src, len, Address::times_2));
 9483   testl(tmp5, 0xff00);      // check if Unicode char
 9484   jccb(Assembler::notZero, reset_sp);
 9485   movb(Address(dst, len, Address::times_1), tmp5);  // ASCII char; compress to 1 byte
 9486   increment(len);
 9487   jccb(Assembler::notZero, copy_chars_loop);
 9488 
 9489   // add len then return (len will be zero if compress succeeded, otherwise negative)
 9490   bind(reset_sp);
 9491   addl(result, len);
 9492 
 9493   bind(done);
 9494 }
 9495 
 9496 // Inflate byte[] array to char[].
 9497 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
 9498 //   @IntrinsicCandidate
 9499 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
 9500 //     for (int i = 0; i < len; i++) {
 9501 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
 9502 //     }
 9503 //   }
 9504 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
 9505   XMMRegister tmp1, Register tmp2, KRegister mask) {
 9506   Label copy_chars_loop, done, below_threshold, avx3_threshold;
 9507   // rsi: src
 9508   // rdi: dst
 9509   // rdx: len
 9510   // rcx: tmp2
 9511 
 9512   // rsi holds start addr of source byte[] to be inflated
 9513   // rdi holds start addr of destination char[]
 9514   // rdx holds length
 9515   assert_different_registers(src, dst, len, tmp2);
 9516   movl(tmp2, len);
 9517   if ((UseAVX > 2) && // AVX512
 9518     VM_Version::supports_avx512vlbw() &&
 9519     VM_Version::supports_bmi2()) {
 9520 
 9521     Label copy_32_loop, copy_tail;
 9522     Register tmp3_aliased = len;
 9523 
 9524     // if length of the string is less than 16, handle it in an old fashioned way
 9525     testl(len, -16);
 9526     jcc(Assembler::zero, below_threshold);
 9527 
 9528     testl(len, -1 * AVX3Threshold);
 9529     jcc(Assembler::zero, avx3_threshold);
 9530 
 9531     // In order to use only one arithmetic operation for the main loop we use
 9532     // this pre-calculation
 9533     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
 9534     andl(len, -32);     // vector count
 9535     jccb(Assembler::zero, copy_tail);
 9536 
 9537     lea(src, Address(src, len, Address::times_1));
 9538     lea(dst, Address(dst, len, Address::times_2));
 9539     negptr(len);
 9540 
 9541 
 9542     // inflate 32 chars per iter
 9543     bind(copy_32_loop);
 9544     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
 9545     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
 9546     addptr(len, 32);
 9547     jcc(Assembler::notZero, copy_32_loop);
 9548 
 9549     bind(copy_tail);
 9550     // bail out when there is nothing to be done
 9551     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
 9552     jcc(Assembler::zero, done);
 9553 
 9554     // ~(~0 << length), where length is the # of remaining elements to process
 9555     movl(tmp3_aliased, -1);
 9556     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
 9557     notl(tmp3_aliased);
 9558     kmovdl(mask, tmp3_aliased);
 9559     evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit);
 9560     evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit);
 9561 
 9562     jmp(done);
 9563     bind(avx3_threshold);
 9564   }
 9565   if (UseSSE42Intrinsics) {
 9566     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
 9567 
 9568     if (UseAVX > 1) {
 9569       andl(tmp2, (16 - 1));
 9570       andl(len, -16);
 9571       jccb(Assembler::zero, copy_new_tail);
 9572     } else {
 9573       andl(tmp2, 0x00000007);   // tail count (in chars)
 9574       andl(len, 0xfffffff8);    // vector count (in chars)
 9575       jccb(Assembler::zero, copy_tail);
 9576     }
 9577 
 9578     // vectored inflation
 9579     lea(src, Address(src, len, Address::times_1));
 9580     lea(dst, Address(dst, len, Address::times_2));
 9581     negptr(len);
 9582 
 9583     if (UseAVX > 1) {
 9584       bind(copy_16_loop);
 9585       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
 9586       vmovdqu(Address(dst, len, Address::times_2), tmp1);
 9587       addptr(len, 16);
 9588       jcc(Assembler::notZero, copy_16_loop);
 9589 
 9590       bind(below_threshold);
 9591       bind(copy_new_tail);
 9592       movl(len, tmp2);
 9593       andl(tmp2, 0x00000007);
 9594       andl(len, 0xFFFFFFF8);
 9595       jccb(Assembler::zero, copy_tail);
 9596 
 9597       pmovzxbw(tmp1, Address(src, 0));
 9598       movdqu(Address(dst, 0), tmp1);
 9599       addptr(src, 8);
 9600       addptr(dst, 2 * 8);
 9601 
 9602       jmp(copy_tail, true);
 9603     }
 9604 
 9605     // inflate 8 chars per iter
 9606     bind(copy_8_loop);
 9607     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
 9608     movdqu(Address(dst, len, Address::times_2), tmp1);
 9609     addptr(len, 8);
 9610     jcc(Assembler::notZero, copy_8_loop);
 9611 
 9612     bind(copy_tail);
 9613     movl(len, tmp2);
 9614 
 9615     cmpl(len, 4);
 9616     jccb(Assembler::less, copy_bytes);
 9617 
 9618     movdl(tmp1, Address(src, 0));  // load 4 byte chars
 9619     pmovzxbw(tmp1, tmp1);
 9620     movq(Address(dst, 0), tmp1);
 9621     subptr(len, 4);
 9622     addptr(src, 4);
 9623     addptr(dst, 8);
 9624 
 9625     bind(copy_bytes);
 9626   } else {
 9627     bind(below_threshold);
 9628   }
 9629 
 9630   testl(len, len);
 9631   jccb(Assembler::zero, done);
 9632   lea(src, Address(src, len, Address::times_1));
 9633   lea(dst, Address(dst, len, Address::times_2));
 9634   negptr(len);
 9635 
 9636   // inflate 1 char per iter
 9637   bind(copy_chars_loop);
 9638   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
 9639   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
 9640   increment(len);
 9641   jcc(Assembler::notZero, copy_chars_loop);
 9642 
 9643   bind(done);
 9644 }
 9645 
 9646 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len) {
 9647   switch(type) {
 9648     case T_BYTE:
 9649     case T_BOOLEAN:
 9650       evmovdqub(dst, kmask, src, merge, vector_len);
 9651       break;
 9652     case T_CHAR:
 9653     case T_SHORT:
 9654       evmovdquw(dst, kmask, src, merge, vector_len);
 9655       break;
 9656     case T_INT:
 9657     case T_FLOAT:
 9658       evmovdqul(dst, kmask, src, merge, vector_len);
 9659       break;
 9660     case T_LONG:
 9661     case T_DOUBLE:
 9662       evmovdquq(dst, kmask, src, merge, vector_len);
 9663       break;
 9664     default:
 9665       fatal("Unexpected type argument %s", type2name(type));
 9666       break;
 9667   }
 9668 }
 9669 
 9670 
 9671 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) {
 9672   switch(type) {
 9673     case T_BYTE:
 9674     case T_BOOLEAN:
 9675       evmovdqub(dst, kmask, src, merge, vector_len);
 9676       break;
 9677     case T_CHAR:
 9678     case T_SHORT:
 9679       evmovdquw(dst, kmask, src, merge, vector_len);
 9680       break;
 9681     case T_INT:
 9682     case T_FLOAT:
 9683       evmovdqul(dst, kmask, src, merge, vector_len);
 9684       break;
 9685     case T_LONG:
 9686     case T_DOUBLE:
 9687       evmovdquq(dst, kmask, src, merge, vector_len);
 9688       break;
 9689     default:
 9690       fatal("Unexpected type argument %s", type2name(type));
 9691       break;
 9692   }
 9693 }
 9694 
 9695 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) {
 9696   switch(type) {
 9697     case T_BYTE:
 9698     case T_BOOLEAN:
 9699       evmovdqub(dst, kmask, src, merge, vector_len);
 9700       break;
 9701     case T_CHAR:
 9702     case T_SHORT:
 9703       evmovdquw(dst, kmask, src, merge, vector_len);
 9704       break;
 9705     case T_INT:
 9706     case T_FLOAT:
 9707       evmovdqul(dst, kmask, src, merge, vector_len);
 9708       break;
 9709     case T_LONG:
 9710     case T_DOUBLE:
 9711       evmovdquq(dst, kmask, src, merge, vector_len);
 9712       break;
 9713     default:
 9714       fatal("Unexpected type argument %s", type2name(type));
 9715       break;
 9716   }
 9717 }
 9718 
 9719 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) {
 9720   switch(masklen) {
 9721     case 2:
 9722        knotbl(dst, src);
 9723        movl(rtmp, 3);
 9724        kmovbl(ktmp, rtmp);
 9725        kandbl(dst, ktmp, dst);
 9726        break;
 9727     case 4:
 9728        knotbl(dst, src);
 9729        movl(rtmp, 15);
 9730        kmovbl(ktmp, rtmp);
 9731        kandbl(dst, ktmp, dst);
 9732        break;
 9733     case 8:
 9734        knotbl(dst, src);
 9735        break;
 9736     case 16:
 9737        knotwl(dst, src);
 9738        break;
 9739     case 32:
 9740        knotdl(dst, src);
 9741        break;
 9742     case 64:
 9743        knotql(dst, src);
 9744        break;
 9745     default:
 9746       fatal("Unexpected vector length %d", masklen);
 9747       break;
 9748   }
 9749 }
 9750 
 9751 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
 9752   switch(type) {
 9753     case T_BOOLEAN:
 9754     case T_BYTE:
 9755        kandbl(dst, src1, src2);
 9756        break;
 9757     case T_CHAR:
 9758     case T_SHORT:
 9759        kandwl(dst, src1, src2);
 9760        break;
 9761     case T_INT:
 9762     case T_FLOAT:
 9763        kanddl(dst, src1, src2);
 9764        break;
 9765     case T_LONG:
 9766     case T_DOUBLE:
 9767        kandql(dst, src1, src2);
 9768        break;
 9769     default:
 9770       fatal("Unexpected type argument %s", type2name(type));
 9771       break;
 9772   }
 9773 }
 9774 
 9775 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
 9776   switch(type) {
 9777     case T_BOOLEAN:
 9778     case T_BYTE:
 9779        korbl(dst, src1, src2);
 9780        break;
 9781     case T_CHAR:
 9782     case T_SHORT:
 9783        korwl(dst, src1, src2);
 9784        break;
 9785     case T_INT:
 9786     case T_FLOAT:
 9787        kordl(dst, src1, src2);
 9788        break;
 9789     case T_LONG:
 9790     case T_DOUBLE:
 9791        korql(dst, src1, src2);
 9792        break;
 9793     default:
 9794       fatal("Unexpected type argument %s", type2name(type));
 9795       break;
 9796   }
 9797 }
 9798 
 9799 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
 9800   switch(type) {
 9801     case T_BOOLEAN:
 9802     case T_BYTE:
 9803        kxorbl(dst, src1, src2);
 9804        break;
 9805     case T_CHAR:
 9806     case T_SHORT:
 9807        kxorwl(dst, src1, src2);
 9808        break;
 9809     case T_INT:
 9810     case T_FLOAT:
 9811        kxordl(dst, src1, src2);
 9812        break;
 9813     case T_LONG:
 9814     case T_DOUBLE:
 9815        kxorql(dst, src1, src2);
 9816        break;
 9817     default:
 9818       fatal("Unexpected type argument %s", type2name(type));
 9819       break;
 9820   }
 9821 }
 9822 
 9823 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9824   switch(type) {
 9825     case T_BOOLEAN:
 9826     case T_BYTE:
 9827       evpermb(dst, mask, nds, src, merge, vector_len); break;
 9828     case T_CHAR:
 9829     case T_SHORT:
 9830       evpermw(dst, mask, nds, src, merge, vector_len); break;
 9831     case T_INT:
 9832     case T_FLOAT:
 9833       evpermd(dst, mask, nds, src, merge, vector_len); break;
 9834     case T_LONG:
 9835     case T_DOUBLE:
 9836       evpermq(dst, mask, nds, src, merge, vector_len); break;
 9837     default:
 9838       fatal("Unexpected type argument %s", type2name(type)); break;
 9839   }
 9840 }
 9841 
 9842 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9843   switch(type) {
 9844     case T_BOOLEAN:
 9845     case T_BYTE:
 9846       evpermb(dst, mask, nds, src, merge, vector_len); break;
 9847     case T_CHAR:
 9848     case T_SHORT:
 9849       evpermw(dst, mask, nds, src, merge, vector_len); break;
 9850     case T_INT:
 9851     case T_FLOAT:
 9852       evpermd(dst, mask, nds, src, merge, vector_len); break;
 9853     case T_LONG:
 9854     case T_DOUBLE:
 9855       evpermq(dst, mask, nds, src, merge, vector_len); break;
 9856     default:
 9857       fatal("Unexpected type argument %s", type2name(type)); break;
 9858   }
 9859 }
 9860 
 9861 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9862   switch(type) {
 9863     case T_BYTE:
 9864       evpminub(dst, mask, nds, src, merge, vector_len); break;
 9865     case T_SHORT:
 9866       evpminuw(dst, mask, nds, src, merge, vector_len); break;
 9867     case T_INT:
 9868       evpminud(dst, mask, nds, src, merge, vector_len); break;
 9869     case T_LONG:
 9870       evpminuq(dst, mask, nds, src, merge, vector_len); break;
 9871     default:
 9872       fatal("Unexpected type argument %s", type2name(type)); break;
 9873   }
 9874 }
 9875 
 9876 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9877   switch(type) {
 9878     case T_BYTE:
 9879       evpmaxub(dst, mask, nds, src, merge, vector_len); break;
 9880     case T_SHORT:
 9881       evpmaxuw(dst, mask, nds, src, merge, vector_len); break;
 9882     case T_INT:
 9883       evpmaxud(dst, mask, nds, src, merge, vector_len); break;
 9884     case T_LONG:
 9885       evpmaxuq(dst, mask, nds, src, merge, vector_len); break;
 9886     default:
 9887       fatal("Unexpected type argument %s", type2name(type)); break;
 9888   }
 9889 }
 9890 
 9891 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9892   switch(type) {
 9893     case T_BYTE:
 9894       evpminub(dst, mask, nds, src, merge, vector_len); break;
 9895     case T_SHORT:
 9896       evpminuw(dst, mask, nds, src, merge, vector_len); break;
 9897     case T_INT:
 9898       evpminud(dst, mask, nds, src, merge, vector_len); break;
 9899     case T_LONG:
 9900       evpminuq(dst, mask, nds, src, merge, vector_len); break;
 9901     default:
 9902       fatal("Unexpected type argument %s", type2name(type)); break;
 9903   }
 9904 }
 9905 
 9906 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9907   switch(type) {
 9908     case T_BYTE:
 9909       evpmaxub(dst, mask, nds, src, merge, vector_len); break;
 9910     case T_SHORT:
 9911       evpmaxuw(dst, mask, nds, src, merge, vector_len); break;
 9912     case T_INT:
 9913       evpmaxud(dst, mask, nds, src, merge, vector_len); break;
 9914     case T_LONG:
 9915       evpmaxuq(dst, mask, nds, src, merge, vector_len); break;
 9916     default:
 9917       fatal("Unexpected type argument %s", type2name(type)); break;
 9918   }
 9919 }
 9920 
 9921 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9922   switch(type) {
 9923     case T_BYTE:
 9924       evpminsb(dst, mask, nds, src, merge, vector_len); break;
 9925     case T_SHORT:
 9926       evpminsw(dst, mask, nds, src, merge, vector_len); break;
 9927     case T_INT:
 9928       evpminsd(dst, mask, nds, src, merge, vector_len); break;
 9929     case T_LONG:
 9930       evpminsq(dst, mask, nds, src, merge, vector_len); break;
 9931     default:
 9932       fatal("Unexpected type argument %s", type2name(type)); break;
 9933   }
 9934 }
 9935 
 9936 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9937   switch(type) {
 9938     case T_BYTE:
 9939       evpmaxsb(dst, mask, nds, src, merge, vector_len); break;
 9940     case T_SHORT:
 9941       evpmaxsw(dst, mask, nds, src, merge, vector_len); break;
 9942     case T_INT:
 9943       evpmaxsd(dst, mask, nds, src, merge, vector_len); break;
 9944     case T_LONG:
 9945       evpmaxsq(dst, mask, nds, src, merge, vector_len); break;
 9946     default:
 9947       fatal("Unexpected type argument %s", type2name(type)); break;
 9948   }
 9949 }
 9950 
 9951 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9952   switch(type) {
 9953     case T_BYTE:
 9954       evpminsb(dst, mask, nds, src, merge, vector_len); break;
 9955     case T_SHORT:
 9956       evpminsw(dst, mask, nds, src, merge, vector_len); break;
 9957     case T_INT:
 9958       evpminsd(dst, mask, nds, src, merge, vector_len); break;
 9959     case T_LONG:
 9960       evpminsq(dst, mask, nds, src, merge, vector_len); break;
 9961     default:
 9962       fatal("Unexpected type argument %s", type2name(type)); break;
 9963   }
 9964 }
 9965 
 9966 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9967   switch(type) {
 9968     case T_BYTE:
 9969       evpmaxsb(dst, mask, nds, src, merge, vector_len); break;
 9970     case T_SHORT:
 9971       evpmaxsw(dst, mask, nds, src, merge, vector_len); break;
 9972     case T_INT:
 9973       evpmaxsd(dst, mask, nds, src, merge, vector_len); break;
 9974     case T_LONG:
 9975       evpmaxsq(dst, mask, nds, src, merge, vector_len); break;
 9976     default:
 9977       fatal("Unexpected type argument %s", type2name(type)); break;
 9978   }
 9979 }
 9980 
 9981 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9982   switch(type) {
 9983     case T_INT:
 9984       evpxord(dst, mask, nds, src, merge, vector_len); break;
 9985     case T_LONG:
 9986       evpxorq(dst, mask, nds, src, merge, vector_len); break;
 9987     default:
 9988       fatal("Unexpected type argument %s", type2name(type)); break;
 9989   }
 9990 }
 9991 
 9992 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9993   switch(type) {
 9994     case T_INT:
 9995       evpxord(dst, mask, nds, src, merge, vector_len); break;
 9996     case T_LONG:
 9997       evpxorq(dst, mask, nds, src, merge, vector_len); break;
 9998     default:
 9999       fatal("Unexpected type argument %s", type2name(type)); break;
10000   }
10001 }
10002 
10003 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10004   switch(type) {
10005     case T_INT:
10006       Assembler::evpord(dst, mask, nds, src, merge, vector_len); break;
10007     case T_LONG:
10008       evporq(dst, mask, nds, src, merge, vector_len); break;
10009     default:
10010       fatal("Unexpected type argument %s", type2name(type)); break;
10011   }
10012 }
10013 
10014 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
10015   switch(type) {
10016     case T_INT:
10017       Assembler::evpord(dst, mask, nds, src, merge, vector_len); break;
10018     case T_LONG:
10019       evporq(dst, mask, nds, src, merge, vector_len); break;
10020     default:
10021       fatal("Unexpected type argument %s", type2name(type)); break;
10022   }
10023 }
10024 
10025 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10026   switch(type) {
10027     case T_INT:
10028       evpandd(dst, mask, nds, src, merge, vector_len); break;
10029     case T_LONG:
10030       evpandq(dst, mask, nds, src, merge, vector_len); break;
10031     default:
10032       fatal("Unexpected type argument %s", type2name(type)); break;
10033   }
10034 }
10035 
10036 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
10037   switch(type) {
10038     case T_INT:
10039       evpandd(dst, mask, nds, src, merge, vector_len); break;
10040     case T_LONG:
10041       evpandq(dst, mask, nds, src, merge, vector_len); break;
10042     default:
10043       fatal("Unexpected type argument %s", type2name(type)); break;
10044   }
10045 }
10046 
10047 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) {
10048   switch(masklen) {
10049     case 8:
10050        kortestbl(src1, src2);
10051        break;
10052     case 16:
10053        kortestwl(src1, src2);
10054        break;
10055     case 32:
10056        kortestdl(src1, src2);
10057        break;
10058     case 64:
10059        kortestql(src1, src2);
10060        break;
10061     default:
10062       fatal("Unexpected mask length %d", masklen);
10063       break;
10064   }
10065 }
10066 
10067 
10068 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) {
10069   switch(masklen)  {
10070     case 8:
10071        ktestbl(src1, src2);
10072        break;
10073     case 16:
10074        ktestwl(src1, src2);
10075        break;
10076     case 32:
10077        ktestdl(src1, src2);
10078        break;
10079     case 64:
10080        ktestql(src1, src2);
10081        break;
10082     default:
10083       fatal("Unexpected mask length %d", masklen);
10084       break;
10085   }
10086 }
10087 
10088 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) {
10089   switch(type) {
10090     case T_INT:
10091       evprold(dst, mask, src, shift, merge, vlen_enc); break;
10092     case T_LONG:
10093       evprolq(dst, mask, src, shift, merge, vlen_enc); break;
10094     default:
10095       fatal("Unexpected type argument %s", type2name(type)); break;
10096       break;
10097   }
10098 }
10099 
10100 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) {
10101   switch(type) {
10102     case T_INT:
10103       evprord(dst, mask, src, shift, merge, vlen_enc); break;
10104     case T_LONG:
10105       evprorq(dst, mask, src, shift, merge, vlen_enc); break;
10106     default:
10107       fatal("Unexpected type argument %s", type2name(type)); break;
10108   }
10109 }
10110 
10111 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) {
10112   switch(type) {
10113     case T_INT:
10114       evprolvd(dst, mask, src1, src2, merge, vlen_enc); break;
10115     case T_LONG:
10116       evprolvq(dst, mask, src1, src2, merge, vlen_enc); break;
10117     default:
10118       fatal("Unexpected type argument %s", type2name(type)); break;
10119   }
10120 }
10121 
10122 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) {
10123   switch(type) {
10124     case T_INT:
10125       evprorvd(dst, mask, src1, src2, merge, vlen_enc); break;
10126     case T_LONG:
10127       evprorvq(dst, mask, src1, src2, merge, vlen_enc); break;
10128     default:
10129       fatal("Unexpected type argument %s", type2name(type)); break;
10130   }
10131 }
10132 
10133 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
10134   assert(rscratch != noreg || always_reachable(src), "missing");
10135 
10136   if (reachable(src)) {
10137     evpandq(dst, nds, as_Address(src), vector_len);
10138   } else {
10139     lea(rscratch, src);
10140     evpandq(dst, nds, Address(rscratch, 0), vector_len);
10141   }
10142 }
10143 
10144 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
10145   assert(rscratch != noreg || always_reachable(src), "missing");
10146 
10147   if (reachable(src)) {
10148     Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len);
10149   } else {
10150     lea(rscratch, src);
10151     Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len);
10152   }
10153 }
10154 
10155 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
10156   assert(rscratch != noreg || always_reachable(src), "missing");
10157 
10158   if (reachable(src)) {
10159     evporq(dst, nds, as_Address(src), vector_len);
10160   } else {
10161     lea(rscratch, src);
10162     evporq(dst, nds, Address(rscratch, 0), vector_len);
10163   }
10164 }
10165 
10166 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
10167   assert(rscratch != noreg || always_reachable(src), "missing");
10168 
10169   if (reachable(src)) {
10170     vpshufb(dst, nds, as_Address(src), vector_len);
10171   } else {
10172     lea(rscratch, src);
10173     vpshufb(dst, nds, Address(rscratch, 0), vector_len);
10174   }
10175 }
10176 
10177 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
10178   assert(rscratch != noreg || always_reachable(src), "missing");
10179 
10180   if (reachable(src)) {
10181     Assembler::vpor(dst, nds, as_Address(src), vector_len);
10182   } else {
10183     lea(rscratch, src);
10184     Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len);
10185   }
10186 }
10187 
10188 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) {
10189   assert(rscratch != noreg || always_reachable(src3), "missing");
10190 
10191   if (reachable(src3)) {
10192     vpternlogq(dst, imm8, src2, as_Address(src3), vector_len);
10193   } else {
10194     lea(rscratch, src3);
10195     vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len);
10196   }
10197 }
10198 
10199 #if COMPILER2_OR_JVMCI
10200 
10201 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
10202                                  Register length, Register temp, int vec_enc) {
10203   // Computing mask for predicated vector store.
10204   movptr(temp, -1);
10205   bzhiq(temp, temp, length);
10206   kmov(mask, temp);
10207   evmovdqu(bt, mask, dst, xmm, true, vec_enc);
10208 }
10209 
10210 // Set memory operation for length "less than" 64 bytes.
10211 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp,
10212                                        XMMRegister xmm, KRegister mask, Register length,
10213                                        Register temp, bool use64byteVector) {
10214   assert(MaxVectorSize >= 32, "vector length should be >= 32");
10215   const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
10216   if (!use64byteVector) {
10217     fill32(dst, disp, xmm);
10218     subptr(length, 32 >> shift);
10219     fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp);
10220   } else {
10221     assert(MaxVectorSize == 64, "vector length != 64");
10222     fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit);
10223   }
10224 }
10225 
10226 
10227 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp,
10228                                        XMMRegister xmm, KRegister mask, Register length,
10229                                        Register temp) {
10230   assert(MaxVectorSize >= 32, "vector length should be >= 32");
10231   const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
10232   fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit);
10233 }
10234 
10235 
10236 void MacroAssembler::fill32(Address dst, XMMRegister xmm) {
10237   assert(MaxVectorSize >= 32, "vector length should be >= 32");
10238   vmovdqu(dst, xmm);
10239 }
10240 
10241 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) {
10242   fill32(Address(dst, disp), xmm);
10243 }
10244 
10245 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) {
10246   assert(MaxVectorSize >= 32, "vector length should be >= 32");
10247   if (!use64byteVector) {
10248     fill32(dst, xmm);
10249     fill32(dst.plus_disp(32), xmm);
10250   } else {
10251     evmovdquq(dst, xmm, Assembler::AVX_512bit);
10252   }
10253 }
10254 
10255 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) {
10256   fill64(Address(dst, disp), xmm, use64byteVector);
10257 }
10258 
10259 #ifdef _LP64
10260 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value,
10261                                         Register count, Register rtmp, XMMRegister xtmp) {
10262   Label L_exit;
10263   Label L_fill_start;
10264   Label L_fill_64_bytes;
10265   Label L_fill_96_bytes;
10266   Label L_fill_128_bytes;
10267   Label L_fill_128_bytes_loop;
10268   Label L_fill_128_loop_header;
10269   Label L_fill_128_bytes_loop_header;
10270   Label L_fill_128_bytes_loop_pre_header;
10271   Label L_fill_zmm_sequence;
10272 
10273   int shift = -1;
10274   int avx3threshold = VM_Version::avx3_threshold();
10275   switch(type) {
10276     case T_BYTE:  shift = 0;
10277       break;
10278     case T_SHORT: shift = 1;
10279       break;
10280     case T_INT:   shift = 2;
10281       break;
10282     /* Uncomment when LONG fill stubs are supported.
10283     case T_LONG:  shift = 3;
10284       break;
10285     */
10286     default:
10287       fatal("Unhandled type: %s\n", type2name(type));
10288   }
10289 
10290   if ((avx3threshold != 0)  || (MaxVectorSize == 32)) {
10291 
10292     if (MaxVectorSize == 64) {
10293       cmpq(count, avx3threshold >> shift);
10294       jcc(Assembler::greater, L_fill_zmm_sequence);
10295     }
10296 
10297     evpbroadcast(type, xtmp, value, Assembler::AVX_256bit);
10298 
10299     bind(L_fill_start);
10300 
10301     cmpq(count, 32 >> shift);
10302     jccb(Assembler::greater, L_fill_64_bytes);
10303     fill32_masked(shift, to, 0, xtmp, k2, count, rtmp);
10304     jmp(L_exit);
10305 
10306     bind(L_fill_64_bytes);
10307     cmpq(count, 64 >> shift);
10308     jccb(Assembler::greater, L_fill_96_bytes);
10309     fill64_masked(shift, to, 0, xtmp, k2, count, rtmp);
10310     jmp(L_exit);
10311 
10312     bind(L_fill_96_bytes);
10313     cmpq(count, 96 >> shift);
10314     jccb(Assembler::greater, L_fill_128_bytes);
10315     fill64(to, 0, xtmp);
10316     subq(count, 64 >> shift);
10317     fill32_masked(shift, to, 64, xtmp, k2, count, rtmp);
10318     jmp(L_exit);
10319 
10320     bind(L_fill_128_bytes);
10321     cmpq(count, 128 >> shift);
10322     jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header);
10323     fill64(to, 0, xtmp);
10324     fill32(to, 64, xtmp);
10325     subq(count, 96 >> shift);
10326     fill32_masked(shift, to, 96, xtmp, k2, count, rtmp);
10327     jmp(L_exit);
10328 
10329     bind(L_fill_128_bytes_loop_pre_header);
10330     {
10331       mov(rtmp, to);
10332       andq(rtmp, 31);
10333       jccb(Assembler::zero, L_fill_128_bytes_loop_header);
10334       negq(rtmp);
10335       addq(rtmp, 32);
10336       mov64(r8, -1L);
10337       bzhiq(r8, r8, rtmp);
10338       kmovql(k2, r8);
10339       evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit);
10340       addq(to, rtmp);
10341       shrq(rtmp, shift);
10342       subq(count, rtmp);
10343     }
10344 
10345     cmpq(count, 128 >> shift);
10346     jcc(Assembler::less, L_fill_start);
10347 
10348     bind(L_fill_128_bytes_loop_header);
10349     subq(count, 128 >> shift);
10350 
10351     align32();
10352     bind(L_fill_128_bytes_loop);
10353       fill64(to, 0, xtmp);
10354       fill64(to, 64, xtmp);
10355       addq(to, 128);
10356       subq(count, 128 >> shift);
10357       jccb(Assembler::greaterEqual, L_fill_128_bytes_loop);
10358 
10359     addq(count, 128 >> shift);
10360     jcc(Assembler::zero, L_exit);
10361     jmp(L_fill_start);
10362   }
10363 
10364   if (MaxVectorSize == 64) {
10365     // Sequence using 64 byte ZMM register.
10366     Label L_fill_128_bytes_zmm;
10367     Label L_fill_192_bytes_zmm;
10368     Label L_fill_192_bytes_loop_zmm;
10369     Label L_fill_192_bytes_loop_header_zmm;
10370     Label L_fill_192_bytes_loop_pre_header_zmm;
10371     Label L_fill_start_zmm_sequence;
10372 
10373     bind(L_fill_zmm_sequence);
10374     evpbroadcast(type, xtmp, value, Assembler::AVX_512bit);
10375 
10376     bind(L_fill_start_zmm_sequence);
10377     cmpq(count, 64 >> shift);
10378     jccb(Assembler::greater, L_fill_128_bytes_zmm);
10379     fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true);
10380     jmp(L_exit);
10381 
10382     bind(L_fill_128_bytes_zmm);
10383     cmpq(count, 128 >> shift);
10384     jccb(Assembler::greater, L_fill_192_bytes_zmm);
10385     fill64(to, 0, xtmp, true);
10386     subq(count, 64 >> shift);
10387     fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true);
10388     jmp(L_exit);
10389 
10390     bind(L_fill_192_bytes_zmm);
10391     cmpq(count, 192 >> shift);
10392     jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm);
10393     fill64(to, 0, xtmp, true);
10394     fill64(to, 64, xtmp, true);
10395     subq(count, 128 >> shift);
10396     fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true);
10397     jmp(L_exit);
10398 
10399     bind(L_fill_192_bytes_loop_pre_header_zmm);
10400     {
10401       movq(rtmp, to);
10402       andq(rtmp, 63);
10403       jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm);
10404       negq(rtmp);
10405       addq(rtmp, 64);
10406       mov64(r8, -1L);
10407       bzhiq(r8, r8, rtmp);
10408       kmovql(k2, r8);
10409       evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit);
10410       addq(to, rtmp);
10411       shrq(rtmp, shift);
10412       subq(count, rtmp);
10413     }
10414 
10415     cmpq(count, 192 >> shift);
10416     jcc(Assembler::less, L_fill_start_zmm_sequence);
10417 
10418     bind(L_fill_192_bytes_loop_header_zmm);
10419     subq(count, 192 >> shift);
10420 
10421     align32();
10422     bind(L_fill_192_bytes_loop_zmm);
10423       fill64(to, 0, xtmp, true);
10424       fill64(to, 64, xtmp, true);
10425       fill64(to, 128, xtmp, true);
10426       addq(to, 192);
10427       subq(count, 192 >> shift);
10428       jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm);
10429 
10430     addq(count, 192 >> shift);
10431     jcc(Assembler::zero, L_exit);
10432     jmp(L_fill_start_zmm_sequence);
10433   }
10434   bind(L_exit);
10435 }
10436 #endif
10437 #endif //COMPILER2_OR_JVMCI
10438 
10439 
10440 #ifdef _LP64
10441 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) {
10442   Label done;
10443   cvttss2sil(dst, src);
10444   // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
10445   cmpl(dst, 0x80000000); // float_sign_flip
10446   jccb(Assembler::notEqual, done);
10447   subptr(rsp, 8);
10448   movflt(Address(rsp, 0), src);
10449   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup())));
10450   pop(dst);
10451   bind(done);
10452 }
10453 
10454 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) {
10455   Label done;
10456   cvttsd2sil(dst, src);
10457   // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
10458   cmpl(dst, 0x80000000); // float_sign_flip
10459   jccb(Assembler::notEqual, done);
10460   subptr(rsp, 8);
10461   movdbl(Address(rsp, 0), src);
10462   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup())));
10463   pop(dst);
10464   bind(done);
10465 }
10466 
10467 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) {
10468   Label done;
10469   cvttss2siq(dst, src);
10470   cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
10471   jccb(Assembler::notEqual, done);
10472   subptr(rsp, 8);
10473   movflt(Address(rsp, 0), src);
10474   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup())));
10475   pop(dst);
10476   bind(done);
10477 }
10478 
10479 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) {
10480   // Following code is line by line assembly translation rounding algorithm.
10481   // Please refer to java.lang.Math.round(float) algorithm for details.
10482   const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000;
10483   const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24;
10484   const int32_t FloatConsts_EXP_BIAS = 127;
10485   const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF;
10486   const int32_t MINUS_32 = 0xFFFFFFE0;
10487   Label L_special_case, L_block1, L_exit;
10488   movl(rtmp, FloatConsts_EXP_BIT_MASK);
10489   movdl(dst, src);
10490   andl(dst, rtmp);
10491   sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1);
10492   movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS);
10493   subl(rtmp, dst);
10494   movl(rcx, rtmp);
10495   movl(dst, MINUS_32);
10496   testl(rtmp, dst);
10497   jccb(Assembler::notEqual, L_special_case);
10498   movdl(dst, src);
10499   andl(dst, FloatConsts_SIGNIF_BIT_MASK);
10500   orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1);
10501   movdl(rtmp, src);
10502   testl(rtmp, rtmp);
10503   jccb(Assembler::greaterEqual, L_block1);
10504   negl(dst);
10505   bind(L_block1);
10506   sarl(dst);
10507   addl(dst, 0x1);
10508   sarl(dst, 0x1);
10509   jmp(L_exit);
10510   bind(L_special_case);
10511   convert_f2i(dst, src);
10512   bind(L_exit);
10513 }
10514 
10515 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) {
10516   // Following code is line by line assembly translation rounding algorithm.
10517   // Please refer to java.lang.Math.round(double) algorithm for details.
10518   const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L;
10519   const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53;
10520   const int64_t DoubleConsts_EXP_BIAS = 1023;
10521   const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL;
10522   const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L;
10523   Label L_special_case, L_block1, L_exit;
10524   mov64(rtmp, DoubleConsts_EXP_BIT_MASK);
10525   movq(dst, src);
10526   andq(dst, rtmp);
10527   sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1);
10528   mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS);
10529   subq(rtmp, dst);
10530   movq(rcx, rtmp);
10531   mov64(dst, MINUS_64);
10532   testq(rtmp, dst);
10533   jccb(Assembler::notEqual, L_special_case);
10534   movq(dst, src);
10535   mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK);
10536   andq(dst, rtmp);
10537   mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1);
10538   orq(dst, rtmp);
10539   movq(rtmp, src);
10540   testq(rtmp, rtmp);
10541   jccb(Assembler::greaterEqual, L_block1);
10542   negq(dst);
10543   bind(L_block1);
10544   sarq(dst);
10545   addq(dst, 0x1);
10546   sarq(dst, 0x1);
10547   jmp(L_exit);
10548   bind(L_special_case);
10549   convert_d2l(dst, src);
10550   bind(L_exit);
10551 }
10552 
10553 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) {
10554   Label done;
10555   cvttsd2siq(dst, src);
10556   cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
10557   jccb(Assembler::notEqual, done);
10558   subptr(rsp, 8);
10559   movdbl(Address(rsp, 0), src);
10560   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup())));
10561   pop(dst);
10562   bind(done);
10563 }
10564 
10565 void MacroAssembler::cache_wb(Address line)
10566 {
10567   // 64 bit cpus always support clflush
10568   assert(VM_Version::supports_clflush(), "clflush should be available");
10569   bool optimized = VM_Version::supports_clflushopt();
10570   bool no_evict = VM_Version::supports_clwb();
10571 
10572   // prefer clwb (writeback without evict) otherwise
10573   // prefer clflushopt (potentially parallel writeback with evict)
10574   // otherwise fallback on clflush (serial writeback with evict)
10575 
10576   if (optimized) {
10577     if (no_evict) {
10578       clwb(line);
10579     } else {
10580       clflushopt(line);
10581     }
10582   } else {
10583     // no need for fence when using CLFLUSH
10584     clflush(line);
10585   }
10586 }
10587 
10588 void MacroAssembler::cache_wbsync(bool is_pre)
10589 {
10590   assert(VM_Version::supports_clflush(), "clflush should be available");
10591   bool optimized = VM_Version::supports_clflushopt();
10592   bool no_evict = VM_Version::supports_clwb();
10593 
10594   // pick the correct implementation
10595 
10596   if (!is_pre && (optimized || no_evict)) {
10597     // need an sfence for post flush when using clflushopt or clwb
10598     // otherwise no no need for any synchroniaztion
10599 
10600     sfence();
10601   }
10602 }
10603 
10604 #endif // _LP64
10605 
10606 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
10607   switch (cond) {
10608     // Note some conditions are synonyms for others
10609     case Assembler::zero:         return Assembler::notZero;
10610     case Assembler::notZero:      return Assembler::zero;
10611     case Assembler::less:         return Assembler::greaterEqual;
10612     case Assembler::lessEqual:    return Assembler::greater;
10613     case Assembler::greater:      return Assembler::lessEqual;
10614     case Assembler::greaterEqual: return Assembler::less;
10615     case Assembler::below:        return Assembler::aboveEqual;
10616     case Assembler::belowEqual:   return Assembler::above;
10617     case Assembler::above:        return Assembler::belowEqual;
10618     case Assembler::aboveEqual:   return Assembler::below;
10619     case Assembler::overflow:     return Assembler::noOverflow;
10620     case Assembler::noOverflow:   return Assembler::overflow;
10621     case Assembler::negative:     return Assembler::positive;
10622     case Assembler::positive:     return Assembler::negative;
10623     case Assembler::parity:       return Assembler::noParity;
10624     case Assembler::noParity:     return Assembler::parity;
10625   }
10626   ShouldNotReachHere(); return Assembler::overflow;
10627 }
10628 
10629 // This is simply a call to Thread::current()
10630 void MacroAssembler::get_thread(Register thread) {
10631   if (thread != rax) {
10632     push(rax);
10633   }
10634   LP64_ONLY(push(rdi);)
10635   LP64_ONLY(push(rsi);)
10636   push(rdx);
10637   push(rcx);
10638 #ifdef _LP64
10639   push(r8);
10640   push(r9);
10641   push(r10);
10642   push(r11);
10643 #endif
10644 
10645   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
10646 
10647 #ifdef _LP64
10648   pop(r11);
10649   pop(r10);
10650   pop(r9);
10651   pop(r8);
10652 #endif
10653   pop(rcx);
10654   pop(rdx);
10655   LP64_ONLY(pop(rsi);)
10656   LP64_ONLY(pop(rdi);)
10657   if (thread != rax) {
10658     mov(thread, rax);
10659     pop(rax);
10660   }
10661 }
10662 
10663 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) {
10664   Label L_stack_ok;
10665   if (bias == 0) {
10666     testptr(sp, 2 * wordSize - 1);
10667   } else {
10668     // lea(tmp, Address(rsp, bias);
10669     mov(tmp, sp);
10670     addptr(tmp, bias);
10671     testptr(tmp, 2 * wordSize - 1);
10672   }
10673   jcc(Assembler::equal, L_stack_ok);
10674   block_comment(msg);
10675   stop(msg);
10676   bind(L_stack_ok);
10677 }
10678 
10679 // Implements lightweight-locking.
10680 //
10681 // obj: the object to be locked
10682 // reg_rax: rax
10683 // thread: the thread which attempts to lock obj
10684 // tmp: a temporary register
10685 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) {
10686   assert(reg_rax == rax, "");
10687   assert_different_registers(basic_lock, obj, reg_rax, thread, tmp);
10688 
10689   Label push;
10690   const Register top = tmp;
10691 
10692   // Preload the markWord. It is important that this is the first
10693   // instruction emitted as it is part of C1's null check semantics.
10694   movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes()));
10695 
10696   if (UseObjectMonitorTable) {
10697     // Clear cache in case fast locking succeeds.
10698     movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0);
10699   }
10700 
10701   // Load top.
10702   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10703 
10704   // Check if the lock-stack is full.
10705   cmpl(top, LockStack::end_offset());
10706   jcc(Assembler::greaterEqual, slow);
10707 
10708   // Check for recursion.
10709   cmpptr(obj, Address(thread, top, Address::times_1, -oopSize));
10710   jcc(Assembler::equal, push);
10711 
10712   // Check header for monitor (0b10).
10713   testptr(reg_rax, markWord::monitor_value);
10714   jcc(Assembler::notZero, slow);
10715 
10716   // Try to lock. Transition lock bits 0b01 => 0b00
10717   movptr(tmp, reg_rax);
10718   andptr(tmp, ~(int32_t)markWord::unlocked_value);
10719   orptr(reg_rax, markWord::unlocked_value);
10720   lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
10721   jcc(Assembler::notEqual, slow);
10722 
10723   // Restore top, CAS clobbers register.
10724   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10725 
10726   bind(push);
10727   // After successful lock, push object on lock-stack.
10728   movptr(Address(thread, top), obj);
10729   incrementl(top, oopSize);
10730   movl(Address(thread, JavaThread::lock_stack_top_offset()), top);
10731 }
10732 
10733 // Implements lightweight-unlocking.
10734 //
10735 // obj: the object to be unlocked
10736 // reg_rax: rax
10737 // thread: the thread
10738 // tmp: a temporary register
10739 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) {
10740   assert(reg_rax == rax, "");
10741   assert_different_registers(obj, reg_rax, thread, tmp);
10742 
10743   Label unlocked, push_and_slow;
10744   const Register top = tmp;
10745 
10746   // Check if obj is top of lock-stack.
10747   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10748   cmpptr(obj, Address(thread, top, Address::times_1, -oopSize));
10749   jcc(Assembler::notEqual, slow);
10750 
10751   // Pop lock-stack.
10752   DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);)
10753   subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize);
10754 
10755   // Check if recursive.
10756   cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize));
10757   jcc(Assembler::equal, unlocked);
10758 
10759   // Not recursive. Check header for monitor (0b10).
10760   movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes()));
10761   testptr(reg_rax, markWord::monitor_value);
10762   jcc(Assembler::notZero, push_and_slow);
10763 
10764 #ifdef ASSERT
10765   // Check header not unlocked (0b01).
10766   Label not_unlocked;
10767   testptr(reg_rax, markWord::unlocked_value);
10768   jcc(Assembler::zero, not_unlocked);
10769   stop("lightweight_unlock already unlocked");
10770   bind(not_unlocked);
10771 #endif
10772 
10773   // Try to unlock. Transition lock bits 0b00 => 0b01
10774   movptr(tmp, reg_rax);
10775   orptr(tmp, markWord::unlocked_value);
10776   lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
10777   jcc(Assembler::equal, unlocked);
10778 
10779   bind(push_and_slow);
10780   // Restore lock-stack and handle the unlock in runtime.
10781 #ifdef ASSERT
10782   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10783   movptr(Address(thread, top), obj);
10784 #endif
10785   addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize);
10786   jmp(slow);
10787 
10788   bind(unlocked);
10789 }
10790 
10791 #ifdef _LP64
10792 // Saves legacy GPRs state on stack.
10793 void MacroAssembler::save_legacy_gprs() {
10794   subq(rsp, 16 * wordSize);
10795   movq(Address(rsp, 15 * wordSize), rax);
10796   movq(Address(rsp, 14 * wordSize), rcx);
10797   movq(Address(rsp, 13 * wordSize), rdx);
10798   movq(Address(rsp, 12 * wordSize), rbx);
10799   movq(Address(rsp, 10 * wordSize), rbp);
10800   movq(Address(rsp, 9 * wordSize), rsi);
10801   movq(Address(rsp, 8 * wordSize), rdi);
10802   movq(Address(rsp, 7 * wordSize), r8);
10803   movq(Address(rsp, 6 * wordSize), r9);
10804   movq(Address(rsp, 5 * wordSize), r10);
10805   movq(Address(rsp, 4 * wordSize), r11);
10806   movq(Address(rsp, 3 * wordSize), r12);
10807   movq(Address(rsp, 2 * wordSize), r13);
10808   movq(Address(rsp, wordSize), r14);
10809   movq(Address(rsp, 0), r15);
10810 }
10811 
10812 // Resotres back legacy GPRs state from stack.
10813 void MacroAssembler::restore_legacy_gprs() {
10814   movq(r15, Address(rsp, 0));
10815   movq(r14, Address(rsp, wordSize));
10816   movq(r13, Address(rsp, 2 * wordSize));
10817   movq(r12, Address(rsp, 3 * wordSize));
10818   movq(r11, Address(rsp, 4 * wordSize));
10819   movq(r10, Address(rsp, 5 * wordSize));
10820   movq(r9,  Address(rsp, 6 * wordSize));
10821   movq(r8,  Address(rsp, 7 * wordSize));
10822   movq(rdi, Address(rsp, 8 * wordSize));
10823   movq(rsi, Address(rsp, 9 * wordSize));
10824   movq(rbp, Address(rsp, 10 * wordSize));
10825   movq(rbx, Address(rsp, 12 * wordSize));
10826   movq(rdx, Address(rsp, 13 * wordSize));
10827   movq(rcx, Address(rsp, 14 * wordSize));
10828   movq(rax, Address(rsp, 15 * wordSize));
10829   addq(rsp, 16 * wordSize);
10830 }
10831 
10832 void MacroAssembler::load_aotrc_address(Register reg, address a) {
10833 #if INCLUDE_CDS
10834   assert(AOTRuntimeConstants::contains(a), "address out of range for data area");
10835   if (SCCache::is_on_for_write()) {
10836     // all aotrc field addresses should be registered in the SCC address table
10837     lea(reg, ExternalAddress(a));
10838   } else {
10839     mov64(reg, (uint64_t)a);
10840   }
10841 #else
10842   ShouldNotReachHere();
10843 #endif
10844 }
10845 
10846 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) {
10847   if (VM_Version::supports_apx_f()) {
10848     esetzucc(comparison, dst);
10849   } else {
10850     setb(comparison, dst);
10851     movzbl(dst, dst);
10852   }
10853 }
10854 
10855 #endif