1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/assembler.hpp" 26 #include "asm/assembler.inline.hpp" 27 #include "code/SCCache.hpp" 28 #include "code/compiledIC.hpp" 29 #include "compiler/compiler_globals.hpp" 30 #include "compiler/disassembler.hpp" 31 #include "crc32c.h" 32 #include "gc/shared/barrierSet.hpp" 33 #include "gc/shared/barrierSetAssembler.hpp" 34 #include "gc/shared/collectedHeap.inline.hpp" 35 #include "gc/shared/tlab_globals.hpp" 36 #include "interpreter/bytecodeHistogram.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "interpreter/interpreterRuntime.hpp" 39 #include "jvm.h" 40 #include "memory/resourceArea.hpp" 41 #include "memory/universe.hpp" 42 #include "oops/accessDecorators.hpp" 43 #include "oops/compressedKlass.inline.hpp" 44 #include "oops/compressedOops.inline.hpp" 45 #include "oops/klass.inline.hpp" 46 #include "prims/methodHandles.hpp" 47 #include "runtime/continuation.hpp" 48 #include "runtime/interfaceSupport.inline.hpp" 49 #include "runtime/javaThread.hpp" 50 #include "runtime/jniHandles.hpp" 51 #include "runtime/objectMonitor.hpp" 52 #include "runtime/os.hpp" 53 #include "runtime/safepoint.hpp" 54 #include "runtime/safepointMechanism.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "utilities/checkedCast.hpp" 58 #include "utilities/macros.hpp" 59 60 #ifdef PRODUCT 61 #define BLOCK_COMMENT(str) /* nothing */ 62 #define STOP(error) stop(error) 63 #else 64 #define BLOCK_COMMENT(str) block_comment(str) 65 #define STOP(error) block_comment(error); stop(error) 66 #endif 67 68 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 69 70 #ifdef ASSERT 71 bool AbstractAssembler::pd_check_instruction_mark() { return true; } 72 #endif 73 74 static const Assembler::Condition reverse[] = { 75 Assembler::noOverflow /* overflow = 0x0 */ , 76 Assembler::overflow /* noOverflow = 0x1 */ , 77 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , 78 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , 79 Assembler::notZero /* zero = 0x4, equal = 0x4 */ , 80 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , 81 Assembler::above /* belowEqual = 0x6 */ , 82 Assembler::belowEqual /* above = 0x7 */ , 83 Assembler::positive /* negative = 0x8 */ , 84 Assembler::negative /* positive = 0x9 */ , 85 Assembler::noParity /* parity = 0xa */ , 86 Assembler::parity /* noParity = 0xb */ , 87 Assembler::greaterEqual /* less = 0xc */ , 88 Assembler::less /* greaterEqual = 0xd */ , 89 Assembler::greater /* lessEqual = 0xe */ , 90 Assembler::lessEqual /* greater = 0xf, */ 91 92 }; 93 94 95 // Implementation of MacroAssembler 96 97 // First all the versions that have distinct versions depending on 32/64 bit 98 // Unless the difference is trivial (1 line or so). 99 100 #ifndef _LP64 101 102 // 32bit versions 103 104 Address MacroAssembler::as_Address(AddressLiteral adr) { 105 return Address(adr.target(), adr.rspec()); 106 } 107 108 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 109 assert(rscratch == noreg, ""); 110 return Address::make_array(adr); 111 } 112 113 void MacroAssembler::call_VM_leaf_base(address entry_point, 114 int number_of_arguments) { 115 call(RuntimeAddress(entry_point)); 116 increment(rsp, number_of_arguments * wordSize); 117 } 118 119 void MacroAssembler::cmpklass(Address src1, Metadata* obj) { 120 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 121 } 122 123 124 void MacroAssembler::cmpklass(Register src1, Metadata* obj) { 125 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 126 } 127 128 void MacroAssembler::cmpoop(Address src1, jobject obj) { 129 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 130 } 131 132 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) { 133 assert(rscratch == noreg, "redundant"); 134 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 135 } 136 137 void MacroAssembler::extend_sign(Register hi, Register lo) { 138 // According to Intel Doc. AP-526, "Integer Divide", p.18. 139 if (VM_Version::is_P6() && hi == rdx && lo == rax) { 140 cdql(); 141 } else { 142 movl(hi, lo); 143 sarl(hi, 31); 144 } 145 } 146 147 void MacroAssembler::jC2(Register tmp, Label& L) { 148 // set parity bit if FPU flag C2 is set (via rax) 149 save_rax(tmp); 150 fwait(); fnstsw_ax(); 151 sahf(); 152 restore_rax(tmp); 153 // branch 154 jcc(Assembler::parity, L); 155 } 156 157 void MacroAssembler::jnC2(Register tmp, Label& L) { 158 // set parity bit if FPU flag C2 is set (via rax) 159 save_rax(tmp); 160 fwait(); fnstsw_ax(); 161 sahf(); 162 restore_rax(tmp); 163 // branch 164 jcc(Assembler::noParity, L); 165 } 166 167 // 32bit can do a case table jump in one instruction but we no longer allow the base 168 // to be installed in the Address class 169 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 170 assert(rscratch == noreg, "not needed"); 171 jmp(as_Address(entry, noreg)); 172 } 173 174 // Note: y_lo will be destroyed 175 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 176 // Long compare for Java (semantics as described in JVM spec.) 177 Label high, low, done; 178 179 cmpl(x_hi, y_hi); 180 jcc(Assembler::less, low); 181 jcc(Assembler::greater, high); 182 // x_hi is the return register 183 xorl(x_hi, x_hi); 184 cmpl(x_lo, y_lo); 185 jcc(Assembler::below, low); 186 jcc(Assembler::equal, done); 187 188 bind(high); 189 xorl(x_hi, x_hi); 190 increment(x_hi); 191 jmp(done); 192 193 bind(low); 194 xorl(x_hi, x_hi); 195 decrementl(x_hi); 196 197 bind(done); 198 } 199 200 void MacroAssembler::lea(Register dst, AddressLiteral src) { 201 mov_literal32(dst, (int32_t)src.target(), src.rspec()); 202 } 203 204 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 205 assert(rscratch == noreg, "not needed"); 206 207 // leal(dst, as_Address(adr)); 208 // see note in movl as to why we must use a move 209 mov_literal32(dst, (int32_t)adr.target(), adr.rspec()); 210 } 211 212 void MacroAssembler::leave() { 213 mov(rsp, rbp); 214 pop(rbp); 215 } 216 217 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) { 218 // Multiplication of two Java long values stored on the stack 219 // as illustrated below. Result is in rdx:rax. 220 // 221 // rsp ---> [ ?? ] \ \ 222 // .... | y_rsp_offset | 223 // [ y_lo ] / (in bytes) | x_rsp_offset 224 // [ y_hi ] | (in bytes) 225 // .... | 226 // [ x_lo ] / 227 // [ x_hi ] 228 // .... 229 // 230 // Basic idea: lo(result) = lo(x_lo * y_lo) 231 // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) 232 Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset); 233 Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset); 234 Label quick; 235 // load x_hi, y_hi and check if quick 236 // multiplication is possible 237 movl(rbx, x_hi); 238 movl(rcx, y_hi); 239 movl(rax, rbx); 240 orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0 241 jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply 242 // do full multiplication 243 // 1st step 244 mull(y_lo); // x_hi * y_lo 245 movl(rbx, rax); // save lo(x_hi * y_lo) in rbx, 246 // 2nd step 247 movl(rax, x_lo); 248 mull(rcx); // x_lo * y_hi 249 addl(rbx, rax); // add lo(x_lo * y_hi) to rbx, 250 // 3rd step 251 bind(quick); // note: rbx, = 0 if quick multiply! 252 movl(rax, x_lo); 253 mull(y_lo); // x_lo * y_lo 254 addl(rdx, rbx); // correct hi(x_lo * y_lo) 255 } 256 257 void MacroAssembler::lneg(Register hi, Register lo) { 258 negl(lo); 259 adcl(hi, 0); 260 negl(hi); 261 } 262 263 void MacroAssembler::lshl(Register hi, Register lo) { 264 // Java shift left long support (semantics as described in JVM spec., p.305) 265 // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n)) 266 // shift value is in rcx ! 267 assert(hi != rcx, "must not use rcx"); 268 assert(lo != rcx, "must not use rcx"); 269 const Register s = rcx; // shift count 270 const int n = BitsPerWord; 271 Label L; 272 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 273 cmpl(s, n); // if (s < n) 274 jcc(Assembler::less, L); // else (s >= n) 275 movl(hi, lo); // x := x << n 276 xorl(lo, lo); 277 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 278 bind(L); // s (mod n) < n 279 shldl(hi, lo); // x := x << s 280 shll(lo); 281 } 282 283 284 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) { 285 // Java shift right long support (semantics as described in JVM spec., p.306 & p.310) 286 // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n)) 287 assert(hi != rcx, "must not use rcx"); 288 assert(lo != rcx, "must not use rcx"); 289 const Register s = rcx; // shift count 290 const int n = BitsPerWord; 291 Label L; 292 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 293 cmpl(s, n); // if (s < n) 294 jcc(Assembler::less, L); // else (s >= n) 295 movl(lo, hi); // x := x >> n 296 if (sign_extension) sarl(hi, 31); 297 else xorl(hi, hi); 298 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 299 bind(L); // s (mod n) < n 300 shrdl(lo, hi); // x := x >> s 301 if (sign_extension) sarl(hi); 302 else shrl(hi); 303 } 304 305 void MacroAssembler::movoop(Register dst, jobject obj) { 306 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 307 } 308 309 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 310 assert(rscratch == noreg, "redundant"); 311 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 312 } 313 314 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 315 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 316 } 317 318 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 319 assert(rscratch == noreg, "redundant"); 320 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 321 } 322 323 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 324 if (src.is_lval()) { 325 mov_literal32(dst, (intptr_t)src.target(), src.rspec()); 326 } else { 327 movl(dst, as_Address(src)); 328 } 329 } 330 331 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 332 assert(rscratch == noreg, "redundant"); 333 movl(as_Address(dst, noreg), src); 334 } 335 336 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 337 movl(dst, as_Address(src, noreg)); 338 } 339 340 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 341 assert(rscratch == noreg, "redundant"); 342 movl(dst, src); 343 } 344 345 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 346 assert(rscratch == noreg, "redundant"); 347 push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate()); 348 } 349 350 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 351 assert(rscratch == noreg, "redundant"); 352 push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate()); 353 } 354 355 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 356 assert(rscratch == noreg, "redundant"); 357 if (src.is_lval()) { 358 push_literal32((int32_t)src.target(), src.rspec()); 359 } else { 360 pushl(as_Address(src)); 361 } 362 } 363 364 static void pass_arg0(MacroAssembler* masm, Register arg) { 365 masm->push(arg); 366 } 367 368 static void pass_arg1(MacroAssembler* masm, Register arg) { 369 masm->push(arg); 370 } 371 372 static void pass_arg2(MacroAssembler* masm, Register arg) { 373 masm->push(arg); 374 } 375 376 static void pass_arg3(MacroAssembler* masm, Register arg) { 377 masm->push(arg); 378 } 379 380 #ifndef PRODUCT 381 extern "C" void findpc(intptr_t x); 382 #endif 383 384 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) { 385 // In order to get locks to work, we need to fake a in_VM state 386 JavaThread* thread = JavaThread::current(); 387 JavaThreadState saved_state = thread->thread_state(); 388 thread->set_thread_state(_thread_in_vm); 389 if (ShowMessageBoxOnError) { 390 JavaThread* thread = JavaThread::current(); 391 JavaThreadState saved_state = thread->thread_state(); 392 thread->set_thread_state(_thread_in_vm); 393 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 394 ttyLocker ttyl; 395 BytecodeCounter::print(); 396 } 397 // To see where a verify_oop failed, get $ebx+40/X for this frame. 398 // This is the value of eip which points to where verify_oop will return. 399 if (os::message_box(msg, "Execution stopped, print registers?")) { 400 print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip); 401 BREAKPOINT; 402 } 403 } 404 fatal("DEBUG MESSAGE: %s", msg); 405 } 406 407 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) { 408 ttyLocker ttyl; 409 DebuggingContext debugging{}; 410 tty->print_cr("eip = 0x%08x", eip); 411 #ifndef PRODUCT 412 if ((WizardMode || Verbose) && PrintMiscellaneous) { 413 tty->cr(); 414 findpc(eip); 415 tty->cr(); 416 } 417 #endif 418 #define PRINT_REG(rax) \ 419 { tty->print("%s = ", #rax); os::print_location(tty, rax); } 420 PRINT_REG(rax); 421 PRINT_REG(rbx); 422 PRINT_REG(rcx); 423 PRINT_REG(rdx); 424 PRINT_REG(rdi); 425 PRINT_REG(rsi); 426 PRINT_REG(rbp); 427 PRINT_REG(rsp); 428 #undef PRINT_REG 429 // Print some words near top of staack. 430 int* dump_sp = (int*) rsp; 431 for (int col1 = 0; col1 < 8; col1++) { 432 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 433 os::print_location(tty, *dump_sp++); 434 } 435 for (int row = 0; row < 16; row++) { 436 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 437 for (int col = 0; col < 8; col++) { 438 tty->print(" 0x%08x", *dump_sp++); 439 } 440 tty->cr(); 441 } 442 // Print some instructions around pc: 443 Disassembler::decode((address)eip-64, (address)eip); 444 tty->print_cr("--------"); 445 Disassembler::decode((address)eip, (address)eip+32); 446 } 447 448 void MacroAssembler::stop(const char* msg) { 449 // push address of message 450 ExternalAddress message((address)msg); 451 pushptr(message.addr(), noreg); 452 { Label L; call(L, relocInfo::none); bind(L); } // push eip 453 pusha(); // push registers 454 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32))); 455 hlt(); 456 } 457 458 void MacroAssembler::warn(const char* msg) { 459 push_CPU_state(); 460 461 // push address of message 462 ExternalAddress message((address)msg); 463 pushptr(message.addr(), noreg); 464 465 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 466 addl(rsp, wordSize); // discard argument 467 pop_CPU_state(); 468 } 469 470 void MacroAssembler::print_state() { 471 { Label L; call(L, relocInfo::none); bind(L); } // push eip 472 pusha(); // push registers 473 474 push_CPU_state(); 475 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32))); 476 pop_CPU_state(); 477 478 popa(); 479 addl(rsp, wordSize); 480 } 481 482 #else // _LP64 483 484 // 64 bit versions 485 486 Address MacroAssembler::as_Address(AddressLiteral adr) { 487 // amd64 always does this as a pc-rel 488 // we can be absolute or disp based on the instruction type 489 // jmp/call are displacements others are absolute 490 assert(!adr.is_lval(), "must be rval"); 491 assert(reachable(adr), "must be"); 492 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc()); 493 494 } 495 496 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 497 AddressLiteral base = adr.base(); 498 lea(rscratch, base); 499 Address index = adr.index(); 500 assert(index._disp == 0, "must not have disp"); // maybe it can? 501 Address array(rscratch, index._index, index._scale, index._disp); 502 return array; 503 } 504 505 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { 506 Label L, E; 507 508 #ifdef _WIN64 509 // Windows always allocates space for it's register args 510 assert(num_args <= 4, "only register arguments supported"); 511 subq(rsp, frame::arg_reg_save_area_bytes); 512 #endif 513 514 // Align stack if necessary 515 testl(rsp, 15); 516 jcc(Assembler::zero, L); 517 518 subq(rsp, 8); 519 call(RuntimeAddress(entry_point)); 520 addq(rsp, 8); 521 jmp(E); 522 523 bind(L); 524 call(RuntimeAddress(entry_point)); 525 526 bind(E); 527 528 #ifdef _WIN64 529 // restore stack pointer 530 addq(rsp, frame::arg_reg_save_area_bytes); 531 #endif 532 } 533 534 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) { 535 assert(!src2.is_lval(), "should use cmpptr"); 536 assert(rscratch != noreg || always_reachable(src2), "missing"); 537 538 if (reachable(src2)) { 539 cmpq(src1, as_Address(src2)); 540 } else { 541 lea(rscratch, src2); 542 Assembler::cmpq(src1, Address(rscratch, 0)); 543 } 544 } 545 546 int MacroAssembler::corrected_idivq(Register reg) { 547 // Full implementation of Java ldiv and lrem; checks for special 548 // case as described in JVM spec., p.243 & p.271. The function 549 // returns the (pc) offset of the idivl instruction - may be needed 550 // for implicit exceptions. 551 // 552 // normal case special case 553 // 554 // input : rax: dividend min_long 555 // reg: divisor (may not be eax/edx) -1 556 // 557 // output: rax: quotient (= rax idiv reg) min_long 558 // rdx: remainder (= rax irem reg) 0 559 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); 560 static const int64_t min_long = 0x8000000000000000; 561 Label normal_case, special_case; 562 563 // check for special case 564 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/); 565 jcc(Assembler::notEqual, normal_case); 566 xorl(rdx, rdx); // prepare rdx for possible special case (where 567 // remainder = 0) 568 cmpq(reg, -1); 569 jcc(Assembler::equal, special_case); 570 571 // handle normal case 572 bind(normal_case); 573 cdqq(); 574 int idivq_offset = offset(); 575 idivq(reg); 576 577 // normal and special case exit 578 bind(special_case); 579 580 return idivq_offset; 581 } 582 583 void MacroAssembler::decrementq(Register reg, int value) { 584 if (value == min_jint) { subq(reg, value); return; } 585 if (value < 0) { incrementq(reg, -value); return; } 586 if (value == 0) { ; return; } 587 if (value == 1 && UseIncDec) { decq(reg) ; return; } 588 /* else */ { subq(reg, value) ; return; } 589 } 590 591 void MacroAssembler::decrementq(Address dst, int value) { 592 if (value == min_jint) { subq(dst, value); return; } 593 if (value < 0) { incrementq(dst, -value); return; } 594 if (value == 0) { ; return; } 595 if (value == 1 && UseIncDec) { decq(dst) ; return; } 596 /* else */ { subq(dst, value) ; return; } 597 } 598 599 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) { 600 assert(rscratch != noreg || always_reachable(dst), "missing"); 601 602 if (reachable(dst)) { 603 incrementq(as_Address(dst)); 604 } else { 605 lea(rscratch, dst); 606 incrementq(Address(rscratch, 0)); 607 } 608 } 609 610 void MacroAssembler::incrementq(Register reg, int value) { 611 if (value == min_jint) { addq(reg, value); return; } 612 if (value < 0) { decrementq(reg, -value); return; } 613 if (value == 0) { ; return; } 614 if (value == 1 && UseIncDec) { incq(reg) ; return; } 615 /* else */ { addq(reg, value) ; return; } 616 } 617 618 void MacroAssembler::incrementq(Address dst, int value) { 619 if (value == min_jint) { addq(dst, value); return; } 620 if (value < 0) { decrementq(dst, -value); return; } 621 if (value == 0) { ; return; } 622 if (value == 1 && UseIncDec) { incq(dst) ; return; } 623 /* else */ { addq(dst, value) ; return; } 624 } 625 626 // 32bit can do a case table jump in one instruction but we no longer allow the base 627 // to be installed in the Address class 628 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 629 lea(rscratch, entry.base()); 630 Address dispatch = entry.index(); 631 assert(dispatch._base == noreg, "must be"); 632 dispatch._base = rscratch; 633 jmp(dispatch); 634 } 635 636 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 637 ShouldNotReachHere(); // 64bit doesn't use two regs 638 cmpq(x_lo, y_lo); 639 } 640 641 void MacroAssembler::lea(Register dst, AddressLiteral src) { 642 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 643 } 644 645 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 646 lea(rscratch, adr); 647 movptr(dst, rscratch); 648 } 649 650 void MacroAssembler::leave() { 651 // %%% is this really better? Why not on 32bit too? 652 emit_int8((unsigned char)0xC9); // LEAVE 653 } 654 655 void MacroAssembler::lneg(Register hi, Register lo) { 656 ShouldNotReachHere(); // 64bit doesn't use two regs 657 negq(lo); 658 } 659 660 void MacroAssembler::movoop(Register dst, jobject obj) { 661 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 662 } 663 664 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 665 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 666 movq(dst, rscratch); 667 } 668 669 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 670 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 671 } 672 673 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 674 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 675 movq(dst, rscratch); 676 } 677 678 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 679 if (src.is_lval()) { 680 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 681 } else { 682 if (reachable(src)) { 683 movq(dst, as_Address(src)); 684 } else { 685 lea(dst, src); 686 movq(dst, Address(dst, 0)); 687 } 688 } 689 } 690 691 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 692 movq(as_Address(dst, rscratch), src); 693 } 694 695 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 696 movq(dst, as_Address(src, dst /*rscratch*/)); 697 } 698 699 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 700 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 701 if (is_simm32(src)) { 702 movptr(dst, checked_cast<int32_t>(src)); 703 } else { 704 mov64(rscratch, src); 705 movq(dst, rscratch); 706 } 707 } 708 709 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 710 movoop(rscratch, obj); 711 push(rscratch); 712 } 713 714 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 715 mov_metadata(rscratch, obj); 716 push(rscratch); 717 } 718 719 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 720 lea(rscratch, src); 721 if (src.is_lval()) { 722 push(rscratch); 723 } else { 724 pushq(Address(rscratch, 0)); 725 } 726 } 727 728 static void pass_arg0(MacroAssembler* masm, Register arg) { 729 if (c_rarg0 != arg ) { 730 masm->mov(c_rarg0, arg); 731 } 732 } 733 734 static void pass_arg1(MacroAssembler* masm, Register arg) { 735 if (c_rarg1 != arg ) { 736 masm->mov(c_rarg1, arg); 737 } 738 } 739 740 static void pass_arg2(MacroAssembler* masm, Register arg) { 741 if (c_rarg2 != arg ) { 742 masm->mov(c_rarg2, arg); 743 } 744 } 745 746 static void pass_arg3(MacroAssembler* masm, Register arg) { 747 if (c_rarg3 != arg ) { 748 masm->mov(c_rarg3, arg); 749 } 750 } 751 752 void MacroAssembler::stop(const char* msg) { 753 if (ShowMessageBoxOnError) { 754 address rip = pc(); 755 pusha(); // get regs on stack 756 lea(c_rarg1, InternalAddress(rip)); 757 movq(c_rarg2, rsp); // pass pointer to regs array 758 } 759 lea(c_rarg0, ExternalAddress((address) msg)); 760 andq(rsp, -16); // align stack as required by ABI 761 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 762 hlt(); 763 SCCache::add_C_string(msg); 764 } 765 766 void MacroAssembler::warn(const char* msg) { 767 push(rbp); 768 movq(rbp, rsp); 769 andq(rsp, -16); // align stack as required by push_CPU_state and call 770 push_CPU_state(); // keeps alignment at 16 bytes 771 772 #ifdef _WIN64 773 // Windows always allocates space for its register args 774 subq(rsp, frame::arg_reg_save_area_bytes); 775 #endif 776 lea(c_rarg0, ExternalAddress((address) msg)); 777 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 778 779 #ifdef _WIN64 780 // restore stack pointer 781 addq(rsp, frame::arg_reg_save_area_bytes); 782 #endif 783 pop_CPU_state(); 784 mov(rsp, rbp); 785 pop(rbp); 786 } 787 788 void MacroAssembler::print_state() { 789 address rip = pc(); 790 pusha(); // get regs on stack 791 push(rbp); 792 movq(rbp, rsp); 793 andq(rsp, -16); // align stack as required by push_CPU_state and call 794 push_CPU_state(); // keeps alignment at 16 bytes 795 796 lea(c_rarg0, InternalAddress(rip)); 797 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array 798 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1); 799 800 pop_CPU_state(); 801 mov(rsp, rbp); 802 pop(rbp); 803 popa(); 804 } 805 806 #ifndef PRODUCT 807 extern "C" void findpc(intptr_t x); 808 #endif 809 810 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { 811 // In order to get locks to work, we need to fake a in_VM state 812 if (ShowMessageBoxOnError) { 813 JavaThread* thread = JavaThread::current(); 814 JavaThreadState saved_state = thread->thread_state(); 815 thread->set_thread_state(_thread_in_vm); 816 #ifndef PRODUCT 817 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 818 ttyLocker ttyl; 819 BytecodeCounter::print(); 820 } 821 #endif 822 // To see where a verify_oop failed, get $ebx+40/X for this frame. 823 // XXX correct this offset for amd64 824 // This is the value of eip which points to where verify_oop will return. 825 if (os::message_box(msg, "Execution stopped, print registers?")) { 826 print_state64(pc, regs); 827 BREAKPOINT; 828 } 829 } 830 fatal("DEBUG MESSAGE: %s", msg); 831 } 832 833 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) { 834 ttyLocker ttyl; 835 DebuggingContext debugging{}; 836 tty->print_cr("rip = 0x%016lx", (intptr_t)pc); 837 #ifndef PRODUCT 838 tty->cr(); 839 findpc(pc); 840 tty->cr(); 841 #endif 842 #define PRINT_REG(rax, value) \ 843 { tty->print("%s = ", #rax); os::print_location(tty, value); } 844 PRINT_REG(rax, regs[15]); 845 PRINT_REG(rbx, regs[12]); 846 PRINT_REG(rcx, regs[14]); 847 PRINT_REG(rdx, regs[13]); 848 PRINT_REG(rdi, regs[8]); 849 PRINT_REG(rsi, regs[9]); 850 PRINT_REG(rbp, regs[10]); 851 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp 852 PRINT_REG(rsp, (intptr_t)(®s[16])); 853 PRINT_REG(r8 , regs[7]); 854 PRINT_REG(r9 , regs[6]); 855 PRINT_REG(r10, regs[5]); 856 PRINT_REG(r11, regs[4]); 857 PRINT_REG(r12, regs[3]); 858 PRINT_REG(r13, regs[2]); 859 PRINT_REG(r14, regs[1]); 860 PRINT_REG(r15, regs[0]); 861 #undef PRINT_REG 862 // Print some words near the top of the stack. 863 int64_t* rsp = ®s[16]; 864 int64_t* dump_sp = rsp; 865 for (int col1 = 0; col1 < 8; col1++) { 866 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 867 os::print_location(tty, *dump_sp++); 868 } 869 for (int row = 0; row < 25; row++) { 870 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 871 for (int col = 0; col < 4; col++) { 872 tty->print(" 0x%016lx", (intptr_t)*dump_sp++); 873 } 874 tty->cr(); 875 } 876 // Print some instructions around pc: 877 Disassembler::decode((address)pc-64, (address)pc); 878 tty->print_cr("--------"); 879 Disassembler::decode((address)pc, (address)pc+32); 880 } 881 882 // The java_calling_convention describes stack locations as ideal slots on 883 // a frame with no abi restrictions. Since we must observe abi restrictions 884 // (like the placement of the register window) the slots must be biased by 885 // the following value. 886 static int reg2offset_in(VMReg r) { 887 // Account for saved rbp and return address 888 // This should really be in_preserve_stack_slots 889 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 890 } 891 892 static int reg2offset_out(VMReg r) { 893 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 894 } 895 896 // A long move 897 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 898 899 // The calling conventions assures us that each VMregpair is either 900 // all really one physical register or adjacent stack slots. 901 902 if (src.is_single_phys_reg() ) { 903 if (dst.is_single_phys_reg()) { 904 if (dst.first() != src.first()) { 905 mov(dst.first()->as_Register(), src.first()->as_Register()); 906 } 907 } else { 908 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)", 909 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name()); 910 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 911 } 912 } else if (dst.is_single_phys_reg()) { 913 assert(src.is_single_reg(), "not a stack pair"); 914 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 915 } else { 916 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 917 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 918 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 919 } 920 } 921 922 // A double move 923 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 924 925 // The calling conventions assures us that each VMregpair is either 926 // all really one physical register or adjacent stack slots. 927 928 if (src.is_single_phys_reg() ) { 929 if (dst.is_single_phys_reg()) { 930 // In theory these overlap but the ordering is such that this is likely a nop 931 if ( src.first() != dst.first()) { 932 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 933 } 934 } else { 935 assert(dst.is_single_reg(), "not a stack pair"); 936 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 937 } 938 } else if (dst.is_single_phys_reg()) { 939 assert(src.is_single_reg(), "not a stack pair"); 940 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 941 } else { 942 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 943 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 944 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 945 } 946 } 947 948 949 // A float arg may have to do float reg int reg conversion 950 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 951 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 952 953 // The calling conventions assures us that each VMregpair is either 954 // all really one physical register or adjacent stack slots. 955 956 if (src.first()->is_stack()) { 957 if (dst.first()->is_stack()) { 958 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 959 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 960 } else { 961 // stack to reg 962 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 963 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 964 } 965 } else if (dst.first()->is_stack()) { 966 // reg to stack 967 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 968 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 969 } else { 970 // reg to reg 971 // In theory these overlap but the ordering is such that this is likely a nop 972 if ( src.first() != dst.first()) { 973 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 974 } 975 } 976 } 977 978 // On 64 bit we will store integer like items to the stack as 979 // 64 bits items (x86_32/64 abi) even though java would only store 980 // 32bits for a parameter. On 32bit it will simply be 32 bits 981 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 982 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 983 if (src.first()->is_stack()) { 984 if (dst.first()->is_stack()) { 985 // stack to stack 986 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 987 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 988 } else { 989 // stack to reg 990 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 991 } 992 } else if (dst.first()->is_stack()) { 993 // reg to stack 994 // Do we really have to sign extend??? 995 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 996 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 997 } else { 998 // Do we really have to sign extend??? 999 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 1000 if (dst.first() != src.first()) { 1001 movq(dst.first()->as_Register(), src.first()->as_Register()); 1002 } 1003 } 1004 } 1005 1006 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) { 1007 if (src.first()->is_stack()) { 1008 if (dst.first()->is_stack()) { 1009 // stack to stack 1010 movq(rax, Address(rbp, reg2offset_in(src.first()))); 1011 movq(Address(rsp, reg2offset_out(dst.first())), rax); 1012 } else { 1013 // stack to reg 1014 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1015 } 1016 } else if (dst.first()->is_stack()) { 1017 // reg to stack 1018 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1019 } else { 1020 if (dst.first() != src.first()) { 1021 movq(dst.first()->as_Register(), src.first()->as_Register()); 1022 } 1023 } 1024 } 1025 1026 // An oop arg. Must pass a handle not the oop itself 1027 void MacroAssembler::object_move(OopMap* map, 1028 int oop_handle_offset, 1029 int framesize_in_slots, 1030 VMRegPair src, 1031 VMRegPair dst, 1032 bool is_receiver, 1033 int* receiver_offset) { 1034 1035 // must pass a handle. First figure out the location we use as a handle 1036 1037 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 1038 1039 // See if oop is null if it is we need no handle 1040 1041 if (src.first()->is_stack()) { 1042 1043 // Oop is already on the stack as an argument 1044 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1045 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1046 if (is_receiver) { 1047 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1048 } 1049 1050 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 1051 lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1052 // conditionally move a null 1053 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 1054 } else { 1055 1056 // Oop is in a register we must store it to the space we reserve 1057 // on the stack for oop_handles and pass a handle if oop is non-null 1058 1059 const Register rOop = src.first()->as_Register(); 1060 int oop_slot; 1061 if (rOop == j_rarg0) 1062 oop_slot = 0; 1063 else if (rOop == j_rarg1) 1064 oop_slot = 1; 1065 else if (rOop == j_rarg2) 1066 oop_slot = 2; 1067 else if (rOop == j_rarg3) 1068 oop_slot = 3; 1069 else if (rOop == j_rarg4) 1070 oop_slot = 4; 1071 else { 1072 assert(rOop == j_rarg5, "wrong register"); 1073 oop_slot = 5; 1074 } 1075 1076 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 1077 int offset = oop_slot*VMRegImpl::stack_slot_size; 1078 1079 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1080 // Store oop in handle area, may be null 1081 movptr(Address(rsp, offset), rOop); 1082 if (is_receiver) { 1083 *receiver_offset = offset; 1084 } 1085 1086 cmpptr(rOop, NULL_WORD); 1087 lea(rHandle, Address(rsp, offset)); 1088 // conditionally move a null from the handle area where it was just stored 1089 cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 1090 } 1091 1092 // If arg is on the stack then place it otherwise it is already in correct reg. 1093 if (dst.first()->is_stack()) { 1094 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1095 } 1096 } 1097 1098 #endif // _LP64 1099 1100 // Now versions that are common to 32/64 bit 1101 1102 void MacroAssembler::addptr(Register dst, int32_t imm32) { 1103 LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32)); 1104 } 1105 1106 void MacroAssembler::addptr(Register dst, Register src) { 1107 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1108 } 1109 1110 void MacroAssembler::addptr(Address dst, Register src) { 1111 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1112 } 1113 1114 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1115 assert(rscratch != noreg || always_reachable(src), "missing"); 1116 1117 if (reachable(src)) { 1118 Assembler::addsd(dst, as_Address(src)); 1119 } else { 1120 lea(rscratch, src); 1121 Assembler::addsd(dst, Address(rscratch, 0)); 1122 } 1123 } 1124 1125 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1126 assert(rscratch != noreg || always_reachable(src), "missing"); 1127 1128 if (reachable(src)) { 1129 addss(dst, as_Address(src)); 1130 } else { 1131 lea(rscratch, src); 1132 addss(dst, Address(rscratch, 0)); 1133 } 1134 } 1135 1136 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1137 assert(rscratch != noreg || always_reachable(src), "missing"); 1138 1139 if (reachable(src)) { 1140 Assembler::addpd(dst, as_Address(src)); 1141 } else { 1142 lea(rscratch, src); 1143 Assembler::addpd(dst, Address(rscratch, 0)); 1144 } 1145 } 1146 1147 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only. 1148 // Stub code is generated once and never copied. 1149 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes. 1150 void MacroAssembler::align64() { 1151 align(64, (uint)(uintptr_t)pc()); 1152 } 1153 1154 void MacroAssembler::align32() { 1155 align(32, (uint)(uintptr_t)pc()); 1156 } 1157 1158 void MacroAssembler::align(uint modulus) { 1159 // 8273459: Ensure alignment is possible with current segment alignment 1160 assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment"); 1161 align(modulus, offset()); 1162 } 1163 1164 void MacroAssembler::align(uint modulus, uint target) { 1165 if (target % modulus != 0) { 1166 nop(modulus - (target % modulus)); 1167 } 1168 } 1169 1170 void MacroAssembler::push_f(XMMRegister r) { 1171 subptr(rsp, wordSize); 1172 movflt(Address(rsp, 0), r); 1173 } 1174 1175 void MacroAssembler::pop_f(XMMRegister r) { 1176 movflt(r, Address(rsp, 0)); 1177 addptr(rsp, wordSize); 1178 } 1179 1180 void MacroAssembler::push_d(XMMRegister r) { 1181 subptr(rsp, 2 * wordSize); 1182 movdbl(Address(rsp, 0), r); 1183 } 1184 1185 void MacroAssembler::pop_d(XMMRegister r) { 1186 movdbl(r, Address(rsp, 0)); 1187 addptr(rsp, 2 * Interpreter::stackElementSize); 1188 } 1189 1190 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1191 // Used in sign-masking with aligned address. 1192 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1193 assert(rscratch != noreg || always_reachable(src), "missing"); 1194 1195 if (UseAVX > 2 && 1196 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 1197 (dst->encoding() >= 16)) { 1198 vpand(dst, dst, src, AVX_512bit, rscratch); 1199 } else if (reachable(src)) { 1200 Assembler::andpd(dst, as_Address(src)); 1201 } else { 1202 lea(rscratch, src); 1203 Assembler::andpd(dst, Address(rscratch, 0)); 1204 } 1205 } 1206 1207 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) { 1208 // Used in sign-masking with aligned address. 1209 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1210 assert(rscratch != noreg || always_reachable(src), "missing"); 1211 1212 if (reachable(src)) { 1213 Assembler::andps(dst, as_Address(src)); 1214 } else { 1215 lea(rscratch, src); 1216 Assembler::andps(dst, Address(rscratch, 0)); 1217 } 1218 } 1219 1220 void MacroAssembler::andptr(Register dst, int32_t imm32) { 1221 LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32)); 1222 } 1223 1224 #ifdef _LP64 1225 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) { 1226 assert(rscratch != noreg || always_reachable(src), "missing"); 1227 1228 if (reachable(src)) { 1229 andq(dst, as_Address(src)); 1230 } else { 1231 lea(rscratch, src); 1232 andq(dst, Address(rscratch, 0)); 1233 } 1234 } 1235 #endif 1236 1237 void MacroAssembler::atomic_incl(Address counter_addr) { 1238 lock(); 1239 incrementl(counter_addr); 1240 } 1241 1242 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) { 1243 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1244 1245 if (reachable(counter_addr)) { 1246 atomic_incl(as_Address(counter_addr)); 1247 } else { 1248 lea(rscratch, counter_addr); 1249 atomic_incl(Address(rscratch, 0)); 1250 } 1251 } 1252 1253 #ifdef _LP64 1254 void MacroAssembler::atomic_incq(Address counter_addr) { 1255 lock(); 1256 incrementq(counter_addr); 1257 } 1258 1259 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) { 1260 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1261 1262 if (reachable(counter_addr)) { 1263 atomic_incq(as_Address(counter_addr)); 1264 } else { 1265 lea(rscratch, counter_addr); 1266 atomic_incq(Address(rscratch, 0)); 1267 } 1268 } 1269 #endif 1270 1271 // Writes to stack successive pages until offset reached to check for 1272 // stack overflow + shadow pages. This clobbers tmp. 1273 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 1274 movptr(tmp, rsp); 1275 // Bang stack for total size given plus shadow page size. 1276 // Bang one page at a time because large size can bang beyond yellow and 1277 // red zones. 1278 Label loop; 1279 bind(loop); 1280 movl(Address(tmp, (-(int)os::vm_page_size())), size ); 1281 subptr(tmp, (int)os::vm_page_size()); 1282 subl(size, (int)os::vm_page_size()); 1283 jcc(Assembler::greater, loop); 1284 1285 // Bang down shadow pages too. 1286 // At this point, (tmp-0) is the last address touched, so don't 1287 // touch it again. (It was touched as (tmp-pagesize) but then tmp 1288 // was post-decremented.) Skip this address by starting at i=1, and 1289 // touch a few more pages below. N.B. It is important to touch all 1290 // the way down including all pages in the shadow zone. 1291 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) { 1292 // this could be any sized move but this is can be a debugging crumb 1293 // so the bigger the better. 1294 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size ); 1295 } 1296 } 1297 1298 void MacroAssembler::reserved_stack_check() { 1299 // testing if reserved zone needs to be enabled 1300 Label no_reserved_zone_enabling; 1301 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 1302 NOT_LP64(get_thread(rsi);) 1303 1304 cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset())); 1305 jcc(Assembler::below, no_reserved_zone_enabling); 1306 1307 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread); 1308 jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 1309 should_not_reach_here(); 1310 1311 bind(no_reserved_zone_enabling); 1312 } 1313 1314 void MacroAssembler::c2bool(Register x) { 1315 // implements x == 0 ? 0 : 1 1316 // note: must only look at least-significant byte of x 1317 // since C-style booleans are stored in one byte 1318 // only! (was bug) 1319 andl(x, 0xFF); 1320 setb(Assembler::notZero, x); 1321 } 1322 1323 // Wouldn't need if AddressLiteral version had new name 1324 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { 1325 Assembler::call(L, rtype); 1326 } 1327 1328 void MacroAssembler::call(Register entry) { 1329 Assembler::call(entry); 1330 } 1331 1332 void MacroAssembler::call(AddressLiteral entry, Register rscratch) { 1333 assert(rscratch != noreg || always_reachable(entry), "missing"); 1334 1335 if (reachable(entry)) { 1336 Assembler::call_literal(entry.target(), entry.rspec()); 1337 } else { 1338 lea(rscratch, entry); 1339 Assembler::call(rscratch); 1340 } 1341 } 1342 1343 void MacroAssembler::ic_call(address entry, jint method_index) { 1344 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1345 #ifdef _LP64 1346 // Needs full 64-bit immediate for later patching. 1347 mov64(rax, (int64_t)Universe::non_oop_word()); 1348 #else 1349 movptr(rax, (intptr_t)Universe::non_oop_word()); 1350 #endif 1351 call(AddressLiteral(entry, rh)); 1352 } 1353 1354 int MacroAssembler::ic_check_size() { 1355 return 1356 LP64_ONLY(UseCompactObjectHeaders ? 17 : 14) NOT_LP64(12); 1357 } 1358 1359 int MacroAssembler::ic_check(int end_alignment) { 1360 Register receiver = LP64_ONLY(j_rarg0) NOT_LP64(rcx); 1361 Register data = rax; 1362 Register temp = LP64_ONLY(rscratch1) NOT_LP64(rbx); 1363 1364 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1365 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1366 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1367 // before the inline cache check here, and not after 1368 align(end_alignment, offset() + ic_check_size()); 1369 1370 int uep_offset = offset(); 1371 1372 #ifdef _LP64 1373 if (UseCompactObjectHeaders) { 1374 load_narrow_klass_compact(temp, receiver); 1375 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 1376 } else 1377 #endif 1378 if (UseCompressedClassPointers) { 1379 movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1380 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 1381 } else { 1382 movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1383 cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset())); 1384 } 1385 1386 // if inline cache check fails, then jump to runtime routine 1387 jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1388 assert((offset() % end_alignment) == 0, "Misaligned verified entry point (%d, %d, %d)", uep_offset, offset(), end_alignment); 1389 1390 return uep_offset; 1391 } 1392 1393 void MacroAssembler::emit_static_call_stub() { 1394 // Static stub relocation also tags the Method* in the code-stream. 1395 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time. 1396 // This is recognized as unresolved by relocs/nativeinst/ic code. 1397 jump(RuntimeAddress(pc())); 1398 } 1399 1400 // Implementation of call_VM versions 1401 1402 void MacroAssembler::call_VM(Register oop_result, 1403 address entry_point, 1404 bool check_exceptions) { 1405 Label C, E; 1406 call(C, relocInfo::none); 1407 jmp(E); 1408 1409 bind(C); 1410 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1411 ret(0); 1412 1413 bind(E); 1414 } 1415 1416 void MacroAssembler::call_VM(Register oop_result, 1417 address entry_point, 1418 Register arg_1, 1419 bool check_exceptions) { 1420 Label C, E; 1421 call(C, relocInfo::none); 1422 jmp(E); 1423 1424 bind(C); 1425 pass_arg1(this, arg_1); 1426 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1427 ret(0); 1428 1429 bind(E); 1430 } 1431 1432 void MacroAssembler::call_VM(Register oop_result, 1433 address entry_point, 1434 Register arg_1, 1435 Register arg_2, 1436 bool check_exceptions) { 1437 Label C, E; 1438 call(C, relocInfo::none); 1439 jmp(E); 1440 1441 bind(C); 1442 1443 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1444 1445 pass_arg2(this, arg_2); 1446 pass_arg1(this, arg_1); 1447 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1448 ret(0); 1449 1450 bind(E); 1451 } 1452 1453 void MacroAssembler::call_VM(Register oop_result, 1454 address entry_point, 1455 Register arg_1, 1456 Register arg_2, 1457 Register arg_3, 1458 bool check_exceptions) { 1459 Label C, E; 1460 call(C, relocInfo::none); 1461 jmp(E); 1462 1463 bind(C); 1464 1465 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1466 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1467 pass_arg3(this, arg_3); 1468 pass_arg2(this, arg_2); 1469 pass_arg1(this, arg_1); 1470 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1471 ret(0); 1472 1473 bind(E); 1474 } 1475 1476 void MacroAssembler::call_VM(Register oop_result, 1477 Register last_java_sp, 1478 address entry_point, 1479 int number_of_arguments, 1480 bool check_exceptions) { 1481 call_VM_base(oop_result, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1482 } 1483 1484 void MacroAssembler::call_VM(Register oop_result, 1485 Register last_java_sp, 1486 address entry_point, 1487 Register arg_1, 1488 bool check_exceptions) { 1489 pass_arg1(this, arg_1); 1490 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1491 } 1492 1493 void MacroAssembler::call_VM(Register oop_result, 1494 Register last_java_sp, 1495 address entry_point, 1496 Register arg_1, 1497 Register arg_2, 1498 bool check_exceptions) { 1499 1500 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1501 pass_arg2(this, arg_2); 1502 pass_arg1(this, arg_1); 1503 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1504 } 1505 1506 void MacroAssembler::call_VM(Register oop_result, 1507 Register last_java_sp, 1508 address entry_point, 1509 Register arg_1, 1510 Register arg_2, 1511 Register arg_3, 1512 bool check_exceptions) { 1513 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1514 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1515 pass_arg3(this, arg_3); 1516 pass_arg2(this, arg_2); 1517 pass_arg1(this, arg_1); 1518 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1519 } 1520 1521 void MacroAssembler::super_call_VM(Register oop_result, 1522 Register last_java_sp, 1523 address entry_point, 1524 int number_of_arguments, 1525 bool check_exceptions) { 1526 MacroAssembler::call_VM_base(oop_result, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1527 } 1528 1529 void MacroAssembler::super_call_VM(Register oop_result, 1530 Register last_java_sp, 1531 address entry_point, 1532 Register arg_1, 1533 bool check_exceptions) { 1534 pass_arg1(this, arg_1); 1535 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1536 } 1537 1538 void MacroAssembler::super_call_VM(Register oop_result, 1539 Register last_java_sp, 1540 address entry_point, 1541 Register arg_1, 1542 Register arg_2, 1543 bool check_exceptions) { 1544 1545 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1546 pass_arg2(this, arg_2); 1547 pass_arg1(this, arg_1); 1548 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1549 } 1550 1551 void MacroAssembler::super_call_VM(Register oop_result, 1552 Register last_java_sp, 1553 address entry_point, 1554 Register arg_1, 1555 Register arg_2, 1556 Register arg_3, 1557 bool check_exceptions) { 1558 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1559 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1560 pass_arg3(this, arg_3); 1561 pass_arg2(this, arg_2); 1562 pass_arg1(this, arg_1); 1563 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1564 } 1565 1566 void MacroAssembler::call_VM_base(Register oop_result, 1567 Register last_java_sp, 1568 address entry_point, 1569 int number_of_arguments, 1570 bool check_exceptions) { 1571 Register java_thread = r15_thread; 1572 1573 // determine last_java_sp register 1574 if (!last_java_sp->is_valid()) { 1575 last_java_sp = rsp; 1576 } 1577 // debugging support 1578 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 1579 #ifdef ASSERT 1580 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 1581 // r12 is the heapbase. 1582 if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 1583 #endif // ASSERT 1584 1585 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 1586 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 1587 1588 // push java thread (becomes first argument of C function) 1589 1590 mov(c_rarg0, r15_thread); 1591 1592 // set last Java frame before call 1593 assert(last_java_sp != rbp, "can't use ebp/rbp"); 1594 1595 // Only interpreter should have to set fp 1596 set_last_Java_frame(last_java_sp, rbp, nullptr, rscratch1); 1597 1598 // do the call, remove parameters 1599 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1600 1601 #ifdef ASSERT 1602 // Check that thread register is not clobbered. 1603 guarantee(java_thread != rax, "change this code"); 1604 push(rax); 1605 { Label L; 1606 get_thread_slow(rax); 1607 cmpptr(java_thread, rax); 1608 jcc(Assembler::equal, L); 1609 STOP("MacroAssembler::call_VM_base: java_thread not callee saved?"); 1610 bind(L); 1611 } 1612 pop(rax); 1613 #endif 1614 1615 // reset last Java frame 1616 // Only interpreter should have to clear fp 1617 reset_last_Java_frame(true); 1618 1619 // C++ interp handles this in the interpreter 1620 check_and_handle_popframe(); 1621 check_and_handle_earlyret(); 1622 1623 if (check_exceptions) { 1624 // check for pending exceptions (java_thread is set upon return) 1625 cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 1626 // This used to conditionally jump to forward_exception however it is 1627 // possible if we relocate that the branch will not reach. So we must jump 1628 // around so we can always reach 1629 1630 Label ok; 1631 jcc(Assembler::equal, ok); 1632 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1633 bind(ok); 1634 } 1635 1636 // get oop result if there is one and reset the value in the thread 1637 if (oop_result->is_valid()) { 1638 get_vm_result(oop_result); 1639 } 1640 } 1641 1642 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 1643 // Calculate the value for last_Java_sp somewhat subtle. 1644 // call_VM does an intermediate call which places a return address on 1645 // the stack just under the stack pointer as the user finished with it. 1646 // This allows use to retrieve last_Java_pc from last_Java_sp[-1]. 1647 1648 // We've pushed one address, correct last_Java_sp 1649 lea(rax, Address(rsp, wordSize)); 1650 1651 call_VM_base(oop_result, rax, entry_point, number_of_arguments, check_exceptions); 1652 } 1653 1654 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter. 1655 void MacroAssembler::call_VM_leaf0(address entry_point) { 1656 MacroAssembler::call_VM_leaf_base(entry_point, 0); 1657 } 1658 1659 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1660 call_VM_leaf_base(entry_point, number_of_arguments); 1661 } 1662 1663 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1664 pass_arg0(this, arg_0); 1665 call_VM_leaf(entry_point, 1); 1666 } 1667 1668 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1669 1670 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1671 pass_arg1(this, arg_1); 1672 pass_arg0(this, arg_0); 1673 call_VM_leaf(entry_point, 2); 1674 } 1675 1676 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1677 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1678 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1679 pass_arg2(this, arg_2); 1680 pass_arg1(this, arg_1); 1681 pass_arg0(this, arg_0); 1682 call_VM_leaf(entry_point, 3); 1683 } 1684 1685 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1686 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1687 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1688 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1689 pass_arg3(this, arg_3); 1690 pass_arg2(this, arg_2); 1691 pass_arg1(this, arg_1); 1692 pass_arg0(this, arg_0); 1693 call_VM_leaf(entry_point, 3); 1694 } 1695 1696 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1697 pass_arg0(this, arg_0); 1698 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1699 } 1700 1701 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1702 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1703 pass_arg1(this, arg_1); 1704 pass_arg0(this, arg_0); 1705 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1706 } 1707 1708 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1709 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1710 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1711 pass_arg2(this, arg_2); 1712 pass_arg1(this, arg_1); 1713 pass_arg0(this, arg_0); 1714 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1715 } 1716 1717 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1718 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1719 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1720 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1721 pass_arg3(this, arg_3); 1722 pass_arg2(this, arg_2); 1723 pass_arg1(this, arg_1); 1724 pass_arg0(this, arg_0); 1725 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1726 } 1727 1728 void MacroAssembler::get_vm_result(Register oop_result) { 1729 movptr(oop_result, Address(r15_thread, JavaThread::vm_result_offset())); 1730 movptr(Address(r15_thread, JavaThread::vm_result_offset()), NULL_WORD); 1731 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1732 } 1733 1734 void MacroAssembler::get_vm_result_2(Register metadata_result) { 1735 movptr(metadata_result, Address(r15_thread, JavaThread::vm_result_2_offset())); 1736 movptr(Address(r15_thread, JavaThread::vm_result_2_offset()), NULL_WORD); 1737 } 1738 1739 void MacroAssembler::check_and_handle_earlyret() { 1740 } 1741 1742 void MacroAssembler::check_and_handle_popframe() { 1743 } 1744 1745 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) { 1746 assert(rscratch != noreg || always_reachable(src1), "missing"); 1747 1748 if (reachable(src1)) { 1749 cmpl(as_Address(src1), imm); 1750 } else { 1751 lea(rscratch, src1); 1752 cmpl(Address(rscratch, 0), imm); 1753 } 1754 } 1755 1756 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) { 1757 assert(!src2.is_lval(), "use cmpptr"); 1758 assert(rscratch != noreg || always_reachable(src2), "missing"); 1759 1760 if (reachable(src2)) { 1761 cmpl(src1, as_Address(src2)); 1762 } else { 1763 lea(rscratch, src2); 1764 cmpl(src1, Address(rscratch, 0)); 1765 } 1766 } 1767 1768 void MacroAssembler::cmp32(Register src1, int32_t imm) { 1769 Assembler::cmpl(src1, imm); 1770 } 1771 1772 void MacroAssembler::cmp32(Register src1, Address src2) { 1773 Assembler::cmpl(src1, src2); 1774 } 1775 1776 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1777 ucomisd(opr1, opr2); 1778 1779 Label L; 1780 if (unordered_is_less) { 1781 movl(dst, -1); 1782 jcc(Assembler::parity, L); 1783 jcc(Assembler::below , L); 1784 movl(dst, 0); 1785 jcc(Assembler::equal , L); 1786 increment(dst); 1787 } else { // unordered is greater 1788 movl(dst, 1); 1789 jcc(Assembler::parity, L); 1790 jcc(Assembler::above , L); 1791 movl(dst, 0); 1792 jcc(Assembler::equal , L); 1793 decrementl(dst); 1794 } 1795 bind(L); 1796 } 1797 1798 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1799 ucomiss(opr1, opr2); 1800 1801 Label L; 1802 if (unordered_is_less) { 1803 movl(dst, -1); 1804 jcc(Assembler::parity, L); 1805 jcc(Assembler::below , L); 1806 movl(dst, 0); 1807 jcc(Assembler::equal , L); 1808 increment(dst); 1809 } else { // unordered is greater 1810 movl(dst, 1); 1811 jcc(Assembler::parity, L); 1812 jcc(Assembler::above , L); 1813 movl(dst, 0); 1814 jcc(Assembler::equal , L); 1815 decrementl(dst); 1816 } 1817 bind(L); 1818 } 1819 1820 1821 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) { 1822 assert(rscratch != noreg || always_reachable(src1), "missing"); 1823 1824 if (reachable(src1)) { 1825 cmpb(as_Address(src1), imm); 1826 } else { 1827 lea(rscratch, src1); 1828 cmpb(Address(rscratch, 0), imm); 1829 } 1830 } 1831 1832 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) { 1833 #ifdef _LP64 1834 assert(rscratch != noreg || always_reachable(src2), "missing"); 1835 1836 if (src2.is_lval()) { 1837 movptr(rscratch, src2); 1838 Assembler::cmpq(src1, rscratch); 1839 } else if (reachable(src2)) { 1840 cmpq(src1, as_Address(src2)); 1841 } else { 1842 lea(rscratch, src2); 1843 Assembler::cmpq(src1, Address(rscratch, 0)); 1844 } 1845 #else 1846 assert(rscratch == noreg, "not needed"); 1847 if (src2.is_lval()) { 1848 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1849 } else { 1850 cmpl(src1, as_Address(src2)); 1851 } 1852 #endif // _LP64 1853 } 1854 1855 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) { 1856 assert(src2.is_lval(), "not a mem-mem compare"); 1857 #ifdef _LP64 1858 // moves src2's literal address 1859 movptr(rscratch, src2); 1860 Assembler::cmpq(src1, rscratch); 1861 #else 1862 assert(rscratch == noreg, "not needed"); 1863 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1864 #endif // _LP64 1865 } 1866 1867 void MacroAssembler::cmpoop(Register src1, Register src2) { 1868 cmpptr(src1, src2); 1869 } 1870 1871 void MacroAssembler::cmpoop(Register src1, Address src2) { 1872 cmpptr(src1, src2); 1873 } 1874 1875 #ifdef _LP64 1876 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) { 1877 movoop(rscratch, src2); 1878 cmpptr(src1, rscratch); 1879 } 1880 #endif 1881 1882 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) { 1883 assert(rscratch != noreg || always_reachable(adr), "missing"); 1884 1885 if (reachable(adr)) { 1886 lock(); 1887 cmpxchgptr(reg, as_Address(adr)); 1888 } else { 1889 lea(rscratch, adr); 1890 lock(); 1891 cmpxchgptr(reg, Address(rscratch, 0)); 1892 } 1893 } 1894 1895 void MacroAssembler::cmpxchgptr(Register reg, Address adr) { 1896 LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr)); 1897 } 1898 1899 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1900 assert(rscratch != noreg || always_reachable(src), "missing"); 1901 1902 if (reachable(src)) { 1903 Assembler::comisd(dst, as_Address(src)); 1904 } else { 1905 lea(rscratch, src); 1906 Assembler::comisd(dst, Address(rscratch, 0)); 1907 } 1908 } 1909 1910 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1911 assert(rscratch != noreg || always_reachable(src), "missing"); 1912 1913 if (reachable(src)) { 1914 Assembler::comiss(dst, as_Address(src)); 1915 } else { 1916 lea(rscratch, src); 1917 Assembler::comiss(dst, Address(rscratch, 0)); 1918 } 1919 } 1920 1921 1922 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) { 1923 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1924 1925 Condition negated_cond = negate_condition(cond); 1926 Label L; 1927 jcc(negated_cond, L); 1928 pushf(); // Preserve flags 1929 atomic_incl(counter_addr, rscratch); 1930 popf(); 1931 bind(L); 1932 } 1933 1934 int MacroAssembler::corrected_idivl(Register reg) { 1935 // Full implementation of Java idiv and irem; checks for 1936 // special case as described in JVM spec., p.243 & p.271. 1937 // The function returns the (pc) offset of the idivl 1938 // instruction - may be needed for implicit exceptions. 1939 // 1940 // normal case special case 1941 // 1942 // input : rax,: dividend min_int 1943 // reg: divisor (may not be rax,/rdx) -1 1944 // 1945 // output: rax,: quotient (= rax, idiv reg) min_int 1946 // rdx: remainder (= rax, irem reg) 0 1947 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); 1948 const int min_int = 0x80000000; 1949 Label normal_case, special_case; 1950 1951 // check for special case 1952 cmpl(rax, min_int); 1953 jcc(Assembler::notEqual, normal_case); 1954 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) 1955 cmpl(reg, -1); 1956 jcc(Assembler::equal, special_case); 1957 1958 // handle normal case 1959 bind(normal_case); 1960 cdql(); 1961 int idivl_offset = offset(); 1962 idivl(reg); 1963 1964 // normal and special case exit 1965 bind(special_case); 1966 1967 return idivl_offset; 1968 } 1969 1970 1971 1972 void MacroAssembler::decrementl(Register reg, int value) { 1973 if (value == min_jint) {subl(reg, value) ; return; } 1974 if (value < 0) { incrementl(reg, -value); return; } 1975 if (value == 0) { ; return; } 1976 if (value == 1 && UseIncDec) { decl(reg) ; return; } 1977 /* else */ { subl(reg, value) ; return; } 1978 } 1979 1980 void MacroAssembler::decrementl(Address dst, int value) { 1981 if (value == min_jint) {subl(dst, value) ; return; } 1982 if (value < 0) { incrementl(dst, -value); return; } 1983 if (value == 0) { ; return; } 1984 if (value == 1 && UseIncDec) { decl(dst) ; return; } 1985 /* else */ { subl(dst, value) ; return; } 1986 } 1987 1988 void MacroAssembler::division_with_shift (Register reg, int shift_value) { 1989 assert(shift_value > 0, "illegal shift value"); 1990 Label _is_positive; 1991 testl (reg, reg); 1992 jcc (Assembler::positive, _is_positive); 1993 int offset = (1 << shift_value) - 1 ; 1994 1995 if (offset == 1) { 1996 incrementl(reg); 1997 } else { 1998 addl(reg, offset); 1999 } 2000 2001 bind (_is_positive); 2002 sarl(reg, shift_value); 2003 } 2004 2005 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2006 assert(rscratch != noreg || always_reachable(src), "missing"); 2007 2008 if (reachable(src)) { 2009 Assembler::divsd(dst, as_Address(src)); 2010 } else { 2011 lea(rscratch, src); 2012 Assembler::divsd(dst, Address(rscratch, 0)); 2013 } 2014 } 2015 2016 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2017 assert(rscratch != noreg || always_reachable(src), "missing"); 2018 2019 if (reachable(src)) { 2020 Assembler::divss(dst, as_Address(src)); 2021 } else { 2022 lea(rscratch, src); 2023 Assembler::divss(dst, Address(rscratch, 0)); 2024 } 2025 } 2026 2027 void MacroAssembler::enter() { 2028 push(rbp); 2029 mov(rbp, rsp); 2030 } 2031 2032 void MacroAssembler::post_call_nop() { 2033 if (!Continuations::enabled()) { 2034 return; 2035 } 2036 InstructionMark im(this); 2037 relocate(post_call_nop_Relocation::spec()); 2038 InlineSkippedInstructionsCounter skipCounter(this); 2039 emit_int8((uint8_t)0x0f); 2040 emit_int8((uint8_t)0x1f); 2041 emit_int8((uint8_t)0x84); 2042 emit_int8((uint8_t)0x00); 2043 emit_int32(0x00); 2044 } 2045 2046 // A 5 byte nop that is safe for patching (see patch_verified_entry) 2047 void MacroAssembler::fat_nop() { 2048 if (UseAddressNop) { 2049 addr_nop_5(); 2050 } else { 2051 emit_int8((uint8_t)0x26); // es: 2052 emit_int8((uint8_t)0x2e); // cs: 2053 emit_int8((uint8_t)0x64); // fs: 2054 emit_int8((uint8_t)0x65); // gs: 2055 emit_int8((uint8_t)0x90); 2056 } 2057 } 2058 2059 #ifndef _LP64 2060 void MacroAssembler::fcmp(Register tmp) { 2061 fcmp(tmp, 1, true, true); 2062 } 2063 2064 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) { 2065 assert(!pop_right || pop_left, "usage error"); 2066 if (VM_Version::supports_cmov()) { 2067 assert(tmp == noreg, "unneeded temp"); 2068 if (pop_left) { 2069 fucomip(index); 2070 } else { 2071 fucomi(index); 2072 } 2073 if (pop_right) { 2074 fpop(); 2075 } 2076 } else { 2077 assert(tmp != noreg, "need temp"); 2078 if (pop_left) { 2079 if (pop_right) { 2080 fcompp(); 2081 } else { 2082 fcomp(index); 2083 } 2084 } else { 2085 fcom(index); 2086 } 2087 // convert FPU condition into eflags condition via rax, 2088 save_rax(tmp); 2089 fwait(); fnstsw_ax(); 2090 sahf(); 2091 restore_rax(tmp); 2092 } 2093 // condition codes set as follows: 2094 // 2095 // CF (corresponds to C0) if x < y 2096 // PF (corresponds to C2) if unordered 2097 // ZF (corresponds to C3) if x = y 2098 } 2099 2100 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) { 2101 fcmp2int(dst, unordered_is_less, 1, true, true); 2102 } 2103 2104 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) { 2105 fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right); 2106 Label L; 2107 if (unordered_is_less) { 2108 movl(dst, -1); 2109 jcc(Assembler::parity, L); 2110 jcc(Assembler::below , L); 2111 movl(dst, 0); 2112 jcc(Assembler::equal , L); 2113 increment(dst); 2114 } else { // unordered is greater 2115 movl(dst, 1); 2116 jcc(Assembler::parity, L); 2117 jcc(Assembler::above , L); 2118 movl(dst, 0); 2119 jcc(Assembler::equal , L); 2120 decrementl(dst); 2121 } 2122 bind(L); 2123 } 2124 2125 void MacroAssembler::fld_d(AddressLiteral src) { 2126 fld_d(as_Address(src)); 2127 } 2128 2129 void MacroAssembler::fld_s(AddressLiteral src) { 2130 fld_s(as_Address(src)); 2131 } 2132 2133 void MacroAssembler::fldcw(AddressLiteral src) { 2134 fldcw(as_Address(src)); 2135 } 2136 2137 void MacroAssembler::fpop() { 2138 ffree(); 2139 fincstp(); 2140 } 2141 2142 void MacroAssembler::fremr(Register tmp) { 2143 save_rax(tmp); 2144 { Label L; 2145 bind(L); 2146 fprem(); 2147 fwait(); fnstsw_ax(); 2148 sahf(); 2149 jcc(Assembler::parity, L); 2150 } 2151 restore_rax(tmp); 2152 // Result is in ST0. 2153 // Note: fxch & fpop to get rid of ST1 2154 // (otherwise FPU stack could overflow eventually) 2155 fxch(1); 2156 fpop(); 2157 } 2158 2159 void MacroAssembler::empty_FPU_stack() { 2160 if (VM_Version::supports_mmx()) { 2161 emms(); 2162 } else { 2163 for (int i = 8; i-- > 0; ) ffree(i); 2164 } 2165 } 2166 #endif // !LP64 2167 2168 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2169 assert(rscratch != noreg || always_reachable(src), "missing"); 2170 if (reachable(src)) { 2171 Assembler::mulpd(dst, as_Address(src)); 2172 } else { 2173 lea(rscratch, src); 2174 Assembler::mulpd(dst, Address(rscratch, 0)); 2175 } 2176 } 2177 2178 void MacroAssembler::load_float(Address src) { 2179 #ifdef _LP64 2180 movflt(xmm0, src); 2181 #else 2182 if (UseSSE >= 1) { 2183 movflt(xmm0, src); 2184 } else { 2185 fld_s(src); 2186 } 2187 #endif // LP64 2188 } 2189 2190 void MacroAssembler::store_float(Address dst) { 2191 #ifdef _LP64 2192 movflt(dst, xmm0); 2193 #else 2194 if (UseSSE >= 1) { 2195 movflt(dst, xmm0); 2196 } else { 2197 fstp_s(dst); 2198 } 2199 #endif // LP64 2200 } 2201 2202 void MacroAssembler::load_double(Address src) { 2203 #ifdef _LP64 2204 movdbl(xmm0, src); 2205 #else 2206 if (UseSSE >= 2) { 2207 movdbl(xmm0, src); 2208 } else { 2209 fld_d(src); 2210 } 2211 #endif // LP64 2212 } 2213 2214 void MacroAssembler::store_double(Address dst) { 2215 #ifdef _LP64 2216 movdbl(dst, xmm0); 2217 #else 2218 if (UseSSE >= 2) { 2219 movdbl(dst, xmm0); 2220 } else { 2221 fstp_d(dst); 2222 } 2223 #endif // LP64 2224 } 2225 2226 // dst = c = a * b + c 2227 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2228 Assembler::vfmadd231sd(c, a, b); 2229 if (dst != c) { 2230 movdbl(dst, c); 2231 } 2232 } 2233 2234 // dst = c = a * b + c 2235 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2236 Assembler::vfmadd231ss(c, a, b); 2237 if (dst != c) { 2238 movflt(dst, c); 2239 } 2240 } 2241 2242 // dst = c = a * b + c 2243 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2244 Assembler::vfmadd231pd(c, a, b, vector_len); 2245 if (dst != c) { 2246 vmovdqu(dst, c); 2247 } 2248 } 2249 2250 // dst = c = a * b + c 2251 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2252 Assembler::vfmadd231ps(c, a, b, vector_len); 2253 if (dst != c) { 2254 vmovdqu(dst, c); 2255 } 2256 } 2257 2258 // dst = c = a * b + c 2259 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2260 Assembler::vfmadd231pd(c, a, b, vector_len); 2261 if (dst != c) { 2262 vmovdqu(dst, c); 2263 } 2264 } 2265 2266 // dst = c = a * b + c 2267 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2268 Assembler::vfmadd231ps(c, a, b, vector_len); 2269 if (dst != c) { 2270 vmovdqu(dst, c); 2271 } 2272 } 2273 2274 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) { 2275 assert(rscratch != noreg || always_reachable(dst), "missing"); 2276 2277 if (reachable(dst)) { 2278 incrementl(as_Address(dst)); 2279 } else { 2280 lea(rscratch, dst); 2281 incrementl(Address(rscratch, 0)); 2282 } 2283 } 2284 2285 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) { 2286 incrementl(as_Address(dst, rscratch)); 2287 } 2288 2289 void MacroAssembler::incrementl(Register reg, int value) { 2290 if (value == min_jint) {addl(reg, value) ; return; } 2291 if (value < 0) { decrementl(reg, -value); return; } 2292 if (value == 0) { ; return; } 2293 if (value == 1 && UseIncDec) { incl(reg) ; return; } 2294 /* else */ { addl(reg, value) ; return; } 2295 } 2296 2297 void MacroAssembler::incrementl(Address dst, int value) { 2298 if (value == min_jint) {addl(dst, value) ; return; } 2299 if (value < 0) { decrementl(dst, -value); return; } 2300 if (value == 0) { ; return; } 2301 if (value == 1 && UseIncDec) { incl(dst) ; return; } 2302 /* else */ { addl(dst, value) ; return; } 2303 } 2304 2305 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) { 2306 assert(rscratch != noreg || always_reachable(dst), "missing"); 2307 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump"); 2308 if (reachable(dst)) { 2309 jmp_literal(dst.target(), dst.rspec()); 2310 } else { 2311 lea(rscratch, dst); 2312 jmp(rscratch); 2313 } 2314 } 2315 2316 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) { 2317 assert(rscratch != noreg || always_reachable(dst), "missing"); 2318 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc"); 2319 if (reachable(dst)) { 2320 InstructionMark im(this); 2321 relocate(dst.reloc()); 2322 const int short_size = 2; 2323 const int long_size = 6; 2324 int offs = (intptr_t)dst.target() - ((intptr_t)pc()); 2325 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { 2326 // 0111 tttn #8-bit disp 2327 emit_int8(0x70 | cc); 2328 emit_int8((offs - short_size) & 0xFF); 2329 } else { 2330 // 0000 1111 1000 tttn #32-bit disp 2331 emit_int8(0x0F); 2332 emit_int8((unsigned char)(0x80 | cc)); 2333 emit_int32(offs - long_size); 2334 } 2335 } else { 2336 #ifdef ASSERT 2337 warning("reversing conditional branch"); 2338 #endif /* ASSERT */ 2339 Label skip; 2340 jccb(reverse[cc], skip); 2341 lea(rscratch, dst); 2342 Assembler::jmp(rscratch); 2343 bind(skip); 2344 } 2345 } 2346 2347 void MacroAssembler::cmp32_mxcsr_std(Address mxcsr_save, Register tmp, Register rscratch) { 2348 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 2349 assert(rscratch != noreg || always_reachable(mxcsr_std), "missing"); 2350 2351 stmxcsr(mxcsr_save); 2352 movl(tmp, mxcsr_save); 2353 if (EnableX86ECoreOpts) { 2354 // The mxcsr_std has status bits set for performance on ECore 2355 orl(tmp, 0x003f); 2356 } else { 2357 // Mask out status bits (only check control and mask bits) 2358 andl(tmp, 0xFFC0); 2359 } 2360 cmp32(tmp, mxcsr_std, rscratch); 2361 } 2362 2363 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) { 2364 assert(rscratch != noreg || always_reachable(src), "missing"); 2365 2366 if (reachable(src)) { 2367 Assembler::ldmxcsr(as_Address(src)); 2368 } else { 2369 lea(rscratch, src); 2370 Assembler::ldmxcsr(Address(rscratch, 0)); 2371 } 2372 } 2373 2374 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2375 int off; 2376 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2377 off = offset(); 2378 movsbl(dst, src); // movsxb 2379 } else { 2380 off = load_unsigned_byte(dst, src); 2381 shll(dst, 24); 2382 sarl(dst, 24); 2383 } 2384 return off; 2385 } 2386 2387 // Note: load_signed_short used to be called load_signed_word. 2388 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler 2389 // manual, which means 16 bits, that usage is found nowhere in HotSpot code. 2390 // The term "word" in HotSpot means a 32- or 64-bit machine word. 2391 int MacroAssembler::load_signed_short(Register dst, Address src) { 2392 int off; 2393 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2394 // This is dubious to me since it seems safe to do a signed 16 => 64 bit 2395 // version but this is what 64bit has always done. This seems to imply 2396 // that users are only using 32bits worth. 2397 off = offset(); 2398 movswl(dst, src); // movsxw 2399 } else { 2400 off = load_unsigned_short(dst, src); 2401 shll(dst, 16); 2402 sarl(dst, 16); 2403 } 2404 return off; 2405 } 2406 2407 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2408 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2409 // and "3.9 Partial Register Penalties", p. 22). 2410 int off; 2411 if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) { 2412 off = offset(); 2413 movzbl(dst, src); // movzxb 2414 } else { 2415 xorl(dst, dst); 2416 off = offset(); 2417 movb(dst, src); 2418 } 2419 return off; 2420 } 2421 2422 // Note: load_unsigned_short used to be called load_unsigned_word. 2423 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2424 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2425 // and "3.9 Partial Register Penalties", p. 22). 2426 int off; 2427 if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) { 2428 off = offset(); 2429 movzwl(dst, src); // movzxw 2430 } else { 2431 xorl(dst, dst); 2432 off = offset(); 2433 movw(dst, src); 2434 } 2435 return off; 2436 } 2437 2438 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 2439 switch (size_in_bytes) { 2440 #ifndef _LP64 2441 case 8: 2442 assert(dst2 != noreg, "second dest register required"); 2443 movl(dst, src); 2444 movl(dst2, src.plus_disp(BytesPerInt)); 2445 break; 2446 #else 2447 case 8: movq(dst, src); break; 2448 #endif 2449 case 4: movl(dst, src); break; 2450 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2451 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2452 default: ShouldNotReachHere(); 2453 } 2454 } 2455 2456 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 2457 switch (size_in_bytes) { 2458 #ifndef _LP64 2459 case 8: 2460 assert(src2 != noreg, "second source register required"); 2461 movl(dst, src); 2462 movl(dst.plus_disp(BytesPerInt), src2); 2463 break; 2464 #else 2465 case 8: movq(dst, src); break; 2466 #endif 2467 case 4: movl(dst, src); break; 2468 case 2: movw(dst, src); break; 2469 case 1: movb(dst, src); break; 2470 default: ShouldNotReachHere(); 2471 } 2472 } 2473 2474 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) { 2475 assert(rscratch != noreg || always_reachable(dst), "missing"); 2476 2477 if (reachable(dst)) { 2478 movl(as_Address(dst), src); 2479 } else { 2480 lea(rscratch, dst); 2481 movl(Address(rscratch, 0), src); 2482 } 2483 } 2484 2485 void MacroAssembler::mov32(Register dst, AddressLiteral src) { 2486 if (reachable(src)) { 2487 movl(dst, as_Address(src)); 2488 } else { 2489 lea(dst, src); 2490 movl(dst, Address(dst, 0)); 2491 } 2492 } 2493 2494 // C++ bool manipulation 2495 2496 void MacroAssembler::movbool(Register dst, Address src) { 2497 if(sizeof(bool) == 1) 2498 movb(dst, src); 2499 else if(sizeof(bool) == 2) 2500 movw(dst, src); 2501 else if(sizeof(bool) == 4) 2502 movl(dst, src); 2503 else 2504 // unsupported 2505 ShouldNotReachHere(); 2506 } 2507 2508 void MacroAssembler::movbool(Address dst, bool boolconst) { 2509 if(sizeof(bool) == 1) 2510 movb(dst, (int) boolconst); 2511 else if(sizeof(bool) == 2) 2512 movw(dst, (int) boolconst); 2513 else if(sizeof(bool) == 4) 2514 movl(dst, (int) boolconst); 2515 else 2516 // unsupported 2517 ShouldNotReachHere(); 2518 } 2519 2520 void MacroAssembler::movbool(Address dst, Register src) { 2521 if(sizeof(bool) == 1) 2522 movb(dst, src); 2523 else if(sizeof(bool) == 2) 2524 movw(dst, src); 2525 else if(sizeof(bool) == 4) 2526 movl(dst, src); 2527 else 2528 // unsupported 2529 ShouldNotReachHere(); 2530 } 2531 2532 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2533 assert(rscratch != noreg || always_reachable(src), "missing"); 2534 2535 if (reachable(src)) { 2536 movdl(dst, as_Address(src)); 2537 } else { 2538 lea(rscratch, src); 2539 movdl(dst, Address(rscratch, 0)); 2540 } 2541 } 2542 2543 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) { 2544 assert(rscratch != noreg || always_reachable(src), "missing"); 2545 2546 if (reachable(src)) { 2547 movq(dst, as_Address(src)); 2548 } else { 2549 lea(rscratch, src); 2550 movq(dst, Address(rscratch, 0)); 2551 } 2552 } 2553 2554 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2555 assert(rscratch != noreg || always_reachable(src), "missing"); 2556 2557 if (reachable(src)) { 2558 if (UseXmmLoadAndClearUpper) { 2559 movsd (dst, as_Address(src)); 2560 } else { 2561 movlpd(dst, as_Address(src)); 2562 } 2563 } else { 2564 lea(rscratch, src); 2565 if (UseXmmLoadAndClearUpper) { 2566 movsd (dst, Address(rscratch, 0)); 2567 } else { 2568 movlpd(dst, Address(rscratch, 0)); 2569 } 2570 } 2571 } 2572 2573 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) { 2574 assert(rscratch != noreg || always_reachable(src), "missing"); 2575 2576 if (reachable(src)) { 2577 movss(dst, as_Address(src)); 2578 } else { 2579 lea(rscratch, src); 2580 movss(dst, Address(rscratch, 0)); 2581 } 2582 } 2583 2584 void MacroAssembler::movptr(Register dst, Register src) { 2585 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2586 } 2587 2588 void MacroAssembler::movptr(Register dst, Address src) { 2589 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2590 } 2591 2592 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 2593 void MacroAssembler::movptr(Register dst, intptr_t src) { 2594 #ifdef _LP64 2595 if (is_uimm32(src)) { 2596 movl(dst, checked_cast<uint32_t>(src)); 2597 } else if (is_simm32(src)) { 2598 movq(dst, checked_cast<int32_t>(src)); 2599 } else { 2600 mov64(dst, src); 2601 } 2602 #else 2603 movl(dst, src); 2604 #endif 2605 } 2606 2607 void MacroAssembler::movptr(Address dst, Register src) { 2608 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2609 } 2610 2611 void MacroAssembler::movptr(Address dst, int32_t src) { 2612 LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); 2613 } 2614 2615 void MacroAssembler::movdqu(Address dst, XMMRegister src) { 2616 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2617 Assembler::movdqu(dst, src); 2618 } 2619 2620 void MacroAssembler::movdqu(XMMRegister dst, Address src) { 2621 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2622 Assembler::movdqu(dst, src); 2623 } 2624 2625 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) { 2626 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2627 Assembler::movdqu(dst, src); 2628 } 2629 2630 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2631 assert(rscratch != noreg || always_reachable(src), "missing"); 2632 2633 if (reachable(src)) { 2634 movdqu(dst, as_Address(src)); 2635 } else { 2636 lea(rscratch, src); 2637 movdqu(dst, Address(rscratch, 0)); 2638 } 2639 } 2640 2641 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) { 2642 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2643 Assembler::vmovdqu(dst, src); 2644 } 2645 2646 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) { 2647 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2648 Assembler::vmovdqu(dst, src); 2649 } 2650 2651 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) { 2652 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2653 Assembler::vmovdqu(dst, src); 2654 } 2655 2656 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2657 assert(rscratch != noreg || always_reachable(src), "missing"); 2658 2659 if (reachable(src)) { 2660 vmovdqu(dst, as_Address(src)); 2661 } 2662 else { 2663 lea(rscratch, src); 2664 vmovdqu(dst, Address(rscratch, 0)); 2665 } 2666 } 2667 2668 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2669 assert(rscratch != noreg || always_reachable(src), "missing"); 2670 2671 if (vector_len == AVX_512bit) { 2672 evmovdquq(dst, src, AVX_512bit, rscratch); 2673 } else if (vector_len == AVX_256bit) { 2674 vmovdqu(dst, src, rscratch); 2675 } else { 2676 movdqu(dst, src, rscratch); 2677 } 2678 } 2679 2680 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src, int vector_len) { 2681 if (vector_len == AVX_512bit) { 2682 evmovdquq(dst, src, AVX_512bit); 2683 } else if (vector_len == AVX_256bit) { 2684 vmovdqu(dst, src); 2685 } else { 2686 movdqu(dst, src); 2687 } 2688 } 2689 2690 void MacroAssembler::vmovdqu(Address dst, XMMRegister src, int vector_len) { 2691 if (vector_len == AVX_512bit) { 2692 evmovdquq(dst, src, AVX_512bit); 2693 } else if (vector_len == AVX_256bit) { 2694 vmovdqu(dst, src); 2695 } else { 2696 movdqu(dst, src); 2697 } 2698 } 2699 2700 void MacroAssembler::vmovdqu(XMMRegister dst, Address src, int vector_len) { 2701 if (vector_len == AVX_512bit) { 2702 evmovdquq(dst, src, AVX_512bit); 2703 } else if (vector_len == AVX_256bit) { 2704 vmovdqu(dst, src); 2705 } else { 2706 movdqu(dst, src); 2707 } 2708 } 2709 2710 void MacroAssembler::vmovdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2711 assert(rscratch != noreg || always_reachable(src), "missing"); 2712 2713 if (reachable(src)) { 2714 vmovdqa(dst, as_Address(src)); 2715 } 2716 else { 2717 lea(rscratch, src); 2718 vmovdqa(dst, Address(rscratch, 0)); 2719 } 2720 } 2721 2722 void MacroAssembler::vmovdqa(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2723 assert(rscratch != noreg || always_reachable(src), "missing"); 2724 2725 if (vector_len == AVX_512bit) { 2726 evmovdqaq(dst, src, AVX_512bit, rscratch); 2727 } else if (vector_len == AVX_256bit) { 2728 vmovdqa(dst, src, rscratch); 2729 } else { 2730 movdqa(dst, src, rscratch); 2731 } 2732 } 2733 2734 void MacroAssembler::kmov(KRegister dst, Address src) { 2735 if (VM_Version::supports_avx512bw()) { 2736 kmovql(dst, src); 2737 } else { 2738 assert(VM_Version::supports_evex(), ""); 2739 kmovwl(dst, src); 2740 } 2741 } 2742 2743 void MacroAssembler::kmov(Address dst, KRegister src) { 2744 if (VM_Version::supports_avx512bw()) { 2745 kmovql(dst, src); 2746 } else { 2747 assert(VM_Version::supports_evex(), ""); 2748 kmovwl(dst, src); 2749 } 2750 } 2751 2752 void MacroAssembler::kmov(KRegister dst, KRegister src) { 2753 if (VM_Version::supports_avx512bw()) { 2754 kmovql(dst, src); 2755 } else { 2756 assert(VM_Version::supports_evex(), ""); 2757 kmovwl(dst, src); 2758 } 2759 } 2760 2761 void MacroAssembler::kmov(Register dst, KRegister src) { 2762 if (VM_Version::supports_avx512bw()) { 2763 kmovql(dst, src); 2764 } else { 2765 assert(VM_Version::supports_evex(), ""); 2766 kmovwl(dst, src); 2767 } 2768 } 2769 2770 void MacroAssembler::kmov(KRegister dst, Register src) { 2771 if (VM_Version::supports_avx512bw()) { 2772 kmovql(dst, src); 2773 } else { 2774 assert(VM_Version::supports_evex(), ""); 2775 kmovwl(dst, src); 2776 } 2777 } 2778 2779 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) { 2780 assert(rscratch != noreg || always_reachable(src), "missing"); 2781 2782 if (reachable(src)) { 2783 kmovql(dst, as_Address(src)); 2784 } else { 2785 lea(rscratch, src); 2786 kmovql(dst, Address(rscratch, 0)); 2787 } 2788 } 2789 2790 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) { 2791 assert(rscratch != noreg || always_reachable(src), "missing"); 2792 2793 if (reachable(src)) { 2794 kmovwl(dst, as_Address(src)); 2795 } else { 2796 lea(rscratch, src); 2797 kmovwl(dst, Address(rscratch, 0)); 2798 } 2799 } 2800 2801 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2802 int vector_len, Register rscratch) { 2803 assert(rscratch != noreg || always_reachable(src), "missing"); 2804 2805 if (reachable(src)) { 2806 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len); 2807 } else { 2808 lea(rscratch, src); 2809 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len); 2810 } 2811 } 2812 2813 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2814 int vector_len, Register rscratch) { 2815 assert(rscratch != noreg || always_reachable(src), "missing"); 2816 2817 if (reachable(src)) { 2818 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len); 2819 } else { 2820 lea(rscratch, src); 2821 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len); 2822 } 2823 } 2824 2825 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2826 assert(rscratch != noreg || always_reachable(src), "missing"); 2827 2828 if (reachable(src)) { 2829 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len); 2830 } else { 2831 lea(rscratch, src); 2832 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len); 2833 } 2834 } 2835 2836 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2837 assert(rscratch != noreg || always_reachable(src), "missing"); 2838 2839 if (reachable(src)) { 2840 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len); 2841 } else { 2842 lea(rscratch, src); 2843 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len); 2844 } 2845 } 2846 2847 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2848 assert(rscratch != noreg || always_reachable(src), "missing"); 2849 2850 if (reachable(src)) { 2851 Assembler::evmovdquq(dst, as_Address(src), vector_len); 2852 } else { 2853 lea(rscratch, src); 2854 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len); 2855 } 2856 } 2857 2858 void MacroAssembler::evmovdqaq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2859 assert(rscratch != noreg || always_reachable(src), "missing"); 2860 2861 if (reachable(src)) { 2862 Assembler::evmovdqaq(dst, mask, as_Address(src), merge, vector_len); 2863 } else { 2864 lea(rscratch, src); 2865 Assembler::evmovdqaq(dst, mask, Address(rscratch, 0), merge, vector_len); 2866 } 2867 } 2868 2869 void MacroAssembler::evmovdqaq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2870 assert(rscratch != noreg || always_reachable(src), "missing"); 2871 2872 if (reachable(src)) { 2873 Assembler::evmovdqaq(dst, as_Address(src), vector_len); 2874 } else { 2875 lea(rscratch, src); 2876 Assembler::evmovdqaq(dst, Address(rscratch, 0), vector_len); 2877 } 2878 } 2879 2880 2881 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2882 assert(rscratch != noreg || always_reachable(src), "missing"); 2883 2884 if (reachable(src)) { 2885 Assembler::movdqa(dst, as_Address(src)); 2886 } else { 2887 lea(rscratch, src); 2888 Assembler::movdqa(dst, Address(rscratch, 0)); 2889 } 2890 } 2891 2892 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2893 assert(rscratch != noreg || always_reachable(src), "missing"); 2894 2895 if (reachable(src)) { 2896 Assembler::movsd(dst, as_Address(src)); 2897 } else { 2898 lea(rscratch, src); 2899 Assembler::movsd(dst, Address(rscratch, 0)); 2900 } 2901 } 2902 2903 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2904 assert(rscratch != noreg || always_reachable(src), "missing"); 2905 2906 if (reachable(src)) { 2907 Assembler::movss(dst, as_Address(src)); 2908 } else { 2909 lea(rscratch, src); 2910 Assembler::movss(dst, Address(rscratch, 0)); 2911 } 2912 } 2913 2914 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) { 2915 assert(rscratch != noreg || always_reachable(src), "missing"); 2916 2917 if (reachable(src)) { 2918 Assembler::movddup(dst, as_Address(src)); 2919 } else { 2920 lea(rscratch, src); 2921 Assembler::movddup(dst, Address(rscratch, 0)); 2922 } 2923 } 2924 2925 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2926 assert(rscratch != noreg || always_reachable(src), "missing"); 2927 2928 if (reachable(src)) { 2929 Assembler::vmovddup(dst, as_Address(src), vector_len); 2930 } else { 2931 lea(rscratch, src); 2932 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len); 2933 } 2934 } 2935 2936 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2937 assert(rscratch != noreg || always_reachable(src), "missing"); 2938 2939 if (reachable(src)) { 2940 Assembler::mulsd(dst, as_Address(src)); 2941 } else { 2942 lea(rscratch, src); 2943 Assembler::mulsd(dst, Address(rscratch, 0)); 2944 } 2945 } 2946 2947 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2948 assert(rscratch != noreg || always_reachable(src), "missing"); 2949 2950 if (reachable(src)) { 2951 Assembler::mulss(dst, as_Address(src)); 2952 } else { 2953 lea(rscratch, src); 2954 Assembler::mulss(dst, Address(rscratch, 0)); 2955 } 2956 } 2957 2958 void MacroAssembler::null_check(Register reg, int offset) { 2959 if (needs_explicit_null_check(offset)) { 2960 // provoke OS null exception if reg is null by 2961 // accessing M[reg] w/o changing any (non-CC) registers 2962 // NOTE: cmpl is plenty here to provoke a segv 2963 cmpptr(rax, Address(reg, 0)); 2964 // Note: should probably use testl(rax, Address(reg, 0)); 2965 // may be shorter code (however, this version of 2966 // testl needs to be implemented first) 2967 } else { 2968 // nothing to do, (later) access of M[reg + offset] 2969 // will provoke OS null exception if reg is null 2970 } 2971 } 2972 2973 void MacroAssembler::os_breakpoint() { 2974 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability 2975 // (e.g., MSVC can't call ps() otherwise) 2976 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); 2977 } 2978 2979 void MacroAssembler::unimplemented(const char* what) { 2980 const char* buf = nullptr; 2981 { 2982 ResourceMark rm; 2983 stringStream ss; 2984 ss.print("unimplemented: %s", what); 2985 buf = code_string(ss.as_string()); 2986 } 2987 stop(buf); 2988 } 2989 2990 #ifdef _LP64 2991 #define XSTATE_BV 0x200 2992 #endif 2993 2994 void MacroAssembler::pop_CPU_state() { 2995 pop_FPU_state(); 2996 pop_IU_state(); 2997 } 2998 2999 void MacroAssembler::pop_FPU_state() { 3000 #ifndef _LP64 3001 frstor(Address(rsp, 0)); 3002 #else 3003 fxrstor(Address(rsp, 0)); 3004 #endif 3005 addptr(rsp, FPUStateSizeInWords * wordSize); 3006 } 3007 3008 void MacroAssembler::pop_IU_state() { 3009 popa(); 3010 LP64_ONLY(addq(rsp, 8)); 3011 popf(); 3012 } 3013 3014 // Save Integer and Float state 3015 // Warning: Stack must be 16 byte aligned (64bit) 3016 void MacroAssembler::push_CPU_state() { 3017 push_IU_state(); 3018 push_FPU_state(); 3019 } 3020 3021 void MacroAssembler::push_FPU_state() { 3022 subptr(rsp, FPUStateSizeInWords * wordSize); 3023 #ifndef _LP64 3024 fnsave(Address(rsp, 0)); 3025 fwait(); 3026 #else 3027 fxsave(Address(rsp, 0)); 3028 #endif // LP64 3029 } 3030 3031 void MacroAssembler::push_IU_state() { 3032 // Push flags first because pusha kills them 3033 pushf(); 3034 // Make sure rsp stays 16-byte aligned 3035 LP64_ONLY(subq(rsp, 8)); 3036 pusha(); 3037 } 3038 3039 void MacroAssembler::push_cont_fastpath() { 3040 if (!Continuations::enabled()) return; 3041 3042 #ifndef _LP64 3043 Register rthread = rax; 3044 Register rrealsp = rbx; 3045 push(rthread); 3046 push(rrealsp); 3047 3048 get_thread(rthread); 3049 3050 // The code below wants the original RSP. 3051 // Move it back after the pushes above. 3052 movptr(rrealsp, rsp); 3053 addptr(rrealsp, 2*wordSize); 3054 #else 3055 Register rthread = r15_thread; 3056 Register rrealsp = rsp; 3057 #endif 3058 3059 Label done; 3060 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3061 jccb(Assembler::belowEqual, done); 3062 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp); 3063 bind(done); 3064 3065 #ifndef _LP64 3066 pop(rrealsp); 3067 pop(rthread); 3068 #endif 3069 } 3070 3071 void MacroAssembler::pop_cont_fastpath() { 3072 if (!Continuations::enabled()) return; 3073 3074 #ifndef _LP64 3075 Register rthread = rax; 3076 Register rrealsp = rbx; 3077 push(rthread); 3078 push(rrealsp); 3079 3080 get_thread(rthread); 3081 3082 // The code below wants the original RSP. 3083 // Move it back after the pushes above. 3084 movptr(rrealsp, rsp); 3085 addptr(rrealsp, 2*wordSize); 3086 #else 3087 Register rthread = r15_thread; 3088 Register rrealsp = rsp; 3089 #endif 3090 3091 Label done; 3092 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3093 jccb(Assembler::below, done); 3094 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0); 3095 bind(done); 3096 3097 #ifndef _LP64 3098 pop(rrealsp); 3099 pop(rthread); 3100 #endif 3101 } 3102 3103 void MacroAssembler::inc_held_monitor_count() { 3104 #ifdef _LP64 3105 incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3106 #endif 3107 } 3108 3109 void MacroAssembler::dec_held_monitor_count() { 3110 #ifdef _LP64 3111 decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3112 #endif 3113 } 3114 3115 #ifdef ASSERT 3116 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) { 3117 #ifdef _LP64 3118 Label no_cont; 3119 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset())); 3120 testl(cont, cont); 3121 jcc(Assembler::zero, no_cont); 3122 stop(name); 3123 bind(no_cont); 3124 #else 3125 Unimplemented(); 3126 #endif 3127 } 3128 #endif 3129 3130 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { // determine java_thread register 3131 // we must set sp to zero to clear frame 3132 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); 3133 // must clear fp, so that compiled frames are not confused; it is 3134 // possible that we need it only for debugging 3135 if (clear_fp) { 3136 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); 3137 } 3138 // Always clear the pc because it could have been set by make_walkable() 3139 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); 3140 vzeroupper(); 3141 } 3142 3143 void MacroAssembler::restore_rax(Register tmp) { 3144 if (tmp == noreg) pop(rax); 3145 else if (tmp != rax) mov(rax, tmp); 3146 } 3147 3148 void MacroAssembler::round_to(Register reg, int modulus) { 3149 addptr(reg, modulus - 1); 3150 andptr(reg, -modulus); 3151 } 3152 3153 void MacroAssembler::save_rax(Register tmp) { 3154 if (tmp == noreg) push(rax); 3155 else if (tmp != rax) mov(tmp, rax); 3156 } 3157 3158 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod) { 3159 if (at_return) { 3160 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 3161 // we may safely use rsp instead to perform the stack watermark check. 3162 cmpptr(in_nmethod ? rsp : rbp, Address(r15_thread, JavaThread::polling_word_offset())); 3163 jcc(Assembler::above, slow_path); 3164 return; 3165 } 3166 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 3167 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll 3168 } 3169 3170 // Calls to C land 3171 // 3172 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded 3173 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 3174 // has to be reset to 0. This is required to allow proper stack traversal. 3175 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 3176 Register last_java_fp, 3177 address last_java_pc, 3178 Register rscratch) { 3179 vzeroupper(); 3180 // determine last_java_sp register 3181 if (!last_java_sp->is_valid()) { 3182 last_java_sp = rsp; 3183 } 3184 // last_java_fp is optional 3185 if (last_java_fp->is_valid()) { 3186 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), last_java_fp); 3187 } 3188 // last_java_pc is optional 3189 if (last_java_pc != nullptr) { 3190 Address java_pc(r15_thread, 3191 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); 3192 lea(java_pc, InternalAddress(last_java_pc), rscratch); 3193 } 3194 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp); 3195 } 3196 3197 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 3198 Register last_java_fp, 3199 Label &L, 3200 Register scratch) { 3201 lea(scratch, L); 3202 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), scratch); 3203 set_last_Java_frame(last_java_sp, last_java_fp, nullptr, scratch); 3204 } 3205 3206 void MacroAssembler::shlptr(Register dst, int imm8) { 3207 LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8)); 3208 } 3209 3210 void MacroAssembler::shrptr(Register dst, int imm8) { 3211 LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8)); 3212 } 3213 3214 void MacroAssembler::sign_extend_byte(Register reg) { 3215 if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) { 3216 movsbl(reg, reg); // movsxb 3217 } else { 3218 shll(reg, 24); 3219 sarl(reg, 24); 3220 } 3221 } 3222 3223 void MacroAssembler::sign_extend_short(Register reg) { 3224 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 3225 movswl(reg, reg); // movsxw 3226 } else { 3227 shll(reg, 16); 3228 sarl(reg, 16); 3229 } 3230 } 3231 3232 void MacroAssembler::testl(Address dst, int32_t imm32) { 3233 if (imm32 >= 0 && is8bit(imm32)) { 3234 testb(dst, imm32); 3235 } else { 3236 Assembler::testl(dst, imm32); 3237 } 3238 } 3239 3240 void MacroAssembler::testl(Register dst, int32_t imm32) { 3241 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) { 3242 testb(dst, imm32); 3243 } else { 3244 Assembler::testl(dst, imm32); 3245 } 3246 } 3247 3248 void MacroAssembler::testl(Register dst, AddressLiteral src) { 3249 assert(always_reachable(src), "Address should be reachable"); 3250 testl(dst, as_Address(src)); 3251 } 3252 3253 #ifdef _LP64 3254 3255 void MacroAssembler::testq(Address dst, int32_t imm32) { 3256 if (imm32 >= 0) { 3257 testl(dst, imm32); 3258 } else { 3259 Assembler::testq(dst, imm32); 3260 } 3261 } 3262 3263 void MacroAssembler::testq(Register dst, int32_t imm32) { 3264 if (imm32 >= 0) { 3265 testl(dst, imm32); 3266 } else { 3267 Assembler::testq(dst, imm32); 3268 } 3269 } 3270 3271 #endif 3272 3273 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) { 3274 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3275 Assembler::pcmpeqb(dst, src); 3276 } 3277 3278 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) { 3279 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3280 Assembler::pcmpeqw(dst, src); 3281 } 3282 3283 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) { 3284 assert((dst->encoding() < 16),"XMM register should be 0-15"); 3285 Assembler::pcmpestri(dst, src, imm8); 3286 } 3287 3288 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { 3289 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3290 Assembler::pcmpestri(dst, src, imm8); 3291 } 3292 3293 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) { 3294 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3295 Assembler::pmovzxbw(dst, src); 3296 } 3297 3298 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) { 3299 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3300 Assembler::pmovzxbw(dst, src); 3301 } 3302 3303 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) { 3304 assert((src->encoding() < 16),"XMM register should be 0-15"); 3305 Assembler::pmovmskb(dst, src); 3306 } 3307 3308 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) { 3309 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3310 Assembler::ptest(dst, src); 3311 } 3312 3313 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3314 assert(rscratch != noreg || always_reachable(src), "missing"); 3315 3316 if (reachable(src)) { 3317 Assembler::sqrtss(dst, as_Address(src)); 3318 } else { 3319 lea(rscratch, src); 3320 Assembler::sqrtss(dst, Address(rscratch, 0)); 3321 } 3322 } 3323 3324 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3325 assert(rscratch != noreg || always_reachable(src), "missing"); 3326 3327 if (reachable(src)) { 3328 Assembler::subsd(dst, as_Address(src)); 3329 } else { 3330 lea(rscratch, src); 3331 Assembler::subsd(dst, Address(rscratch, 0)); 3332 } 3333 } 3334 3335 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) { 3336 assert(rscratch != noreg || always_reachable(src), "missing"); 3337 3338 if (reachable(src)) { 3339 Assembler::roundsd(dst, as_Address(src), rmode); 3340 } else { 3341 lea(rscratch, src); 3342 Assembler::roundsd(dst, Address(rscratch, 0), rmode); 3343 } 3344 } 3345 3346 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3347 assert(rscratch != noreg || always_reachable(src), "missing"); 3348 3349 if (reachable(src)) { 3350 Assembler::subss(dst, as_Address(src)); 3351 } else { 3352 lea(rscratch, src); 3353 Assembler::subss(dst, Address(rscratch, 0)); 3354 } 3355 } 3356 3357 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3358 assert(rscratch != noreg || always_reachable(src), "missing"); 3359 3360 if (reachable(src)) { 3361 Assembler::ucomisd(dst, as_Address(src)); 3362 } else { 3363 lea(rscratch, src); 3364 Assembler::ucomisd(dst, Address(rscratch, 0)); 3365 } 3366 } 3367 3368 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3369 assert(rscratch != noreg || always_reachable(src), "missing"); 3370 3371 if (reachable(src)) { 3372 Assembler::ucomiss(dst, as_Address(src)); 3373 } else { 3374 lea(rscratch, src); 3375 Assembler::ucomiss(dst, Address(rscratch, 0)); 3376 } 3377 } 3378 3379 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3380 assert(rscratch != noreg || always_reachable(src), "missing"); 3381 3382 // Used in sign-bit flipping with aligned address. 3383 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3384 3385 if (UseAVX > 2 && 3386 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 3387 (dst->encoding() >= 16)) { 3388 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch); 3389 } else if (reachable(src)) { 3390 Assembler::xorpd(dst, as_Address(src)); 3391 } else { 3392 lea(rscratch, src); 3393 Assembler::xorpd(dst, Address(rscratch, 0)); 3394 } 3395 } 3396 3397 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) { 3398 if (UseAVX > 2 && 3399 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 3400 ((dst->encoding() >= 16) || (src->encoding() >= 16))) { 3401 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3402 } else { 3403 Assembler::xorpd(dst, src); 3404 } 3405 } 3406 3407 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) { 3408 if (UseAVX > 2 && 3409 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 3410 ((dst->encoding() >= 16) || (src->encoding() >= 16))) { 3411 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3412 } else { 3413 Assembler::xorps(dst, src); 3414 } 3415 } 3416 3417 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) { 3418 assert(rscratch != noreg || always_reachable(src), "missing"); 3419 3420 // Used in sign-bit flipping with aligned address. 3421 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3422 3423 if (UseAVX > 2 && 3424 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 3425 (dst->encoding() >= 16)) { 3426 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch); 3427 } else if (reachable(src)) { 3428 Assembler::xorps(dst, as_Address(src)); 3429 } else { 3430 lea(rscratch, src); 3431 Assembler::xorps(dst, Address(rscratch, 0)); 3432 } 3433 } 3434 3435 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) { 3436 assert(rscratch != noreg || always_reachable(src), "missing"); 3437 3438 // Used in sign-bit flipping with aligned address. 3439 bool aligned_adr = (((intptr_t)src.target() & 15) == 0); 3440 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes"); 3441 if (reachable(src)) { 3442 Assembler::pshufb(dst, as_Address(src)); 3443 } else { 3444 lea(rscratch, src); 3445 Assembler::pshufb(dst, Address(rscratch, 0)); 3446 } 3447 } 3448 3449 // AVX 3-operands instructions 3450 3451 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3452 assert(rscratch != noreg || always_reachable(src), "missing"); 3453 3454 if (reachable(src)) { 3455 vaddsd(dst, nds, as_Address(src)); 3456 } else { 3457 lea(rscratch, src); 3458 vaddsd(dst, nds, Address(rscratch, 0)); 3459 } 3460 } 3461 3462 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3463 assert(rscratch != noreg || always_reachable(src), "missing"); 3464 3465 if (reachable(src)) { 3466 vaddss(dst, nds, as_Address(src)); 3467 } else { 3468 lea(rscratch, src); 3469 vaddss(dst, nds, Address(rscratch, 0)); 3470 } 3471 } 3472 3473 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3474 assert(UseAVX > 0, "requires some form of AVX"); 3475 assert(rscratch != noreg || always_reachable(src), "missing"); 3476 3477 if (reachable(src)) { 3478 Assembler::vpaddb(dst, nds, as_Address(src), vector_len); 3479 } else { 3480 lea(rscratch, src); 3481 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len); 3482 } 3483 } 3484 3485 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3486 assert(UseAVX > 0, "requires some form of AVX"); 3487 assert(rscratch != noreg || always_reachable(src), "missing"); 3488 3489 if (reachable(src)) { 3490 Assembler::vpaddd(dst, nds, as_Address(src), vector_len); 3491 } else { 3492 lea(rscratch, src); 3493 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len); 3494 } 3495 } 3496 3497 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3498 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3499 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3500 3501 vandps(dst, nds, negate_field, vector_len, rscratch); 3502 } 3503 3504 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3505 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3506 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3507 3508 vandpd(dst, nds, negate_field, vector_len, rscratch); 3509 } 3510 3511 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3512 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3513 Assembler::vpaddb(dst, nds, src, vector_len); 3514 } 3515 3516 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3517 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3518 Assembler::vpaddb(dst, nds, src, vector_len); 3519 } 3520 3521 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3522 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3523 Assembler::vpaddw(dst, nds, src, vector_len); 3524 } 3525 3526 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3527 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3528 Assembler::vpaddw(dst, nds, src, vector_len); 3529 } 3530 3531 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3532 assert(rscratch != noreg || always_reachable(src), "missing"); 3533 3534 if (reachable(src)) { 3535 Assembler::vpand(dst, nds, as_Address(src), vector_len); 3536 } else { 3537 lea(rscratch, src); 3538 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len); 3539 } 3540 } 3541 3542 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3543 assert(rscratch != noreg || always_reachable(src), "missing"); 3544 3545 if (reachable(src)) { 3546 Assembler::vpbroadcastd(dst, as_Address(src), vector_len); 3547 } else { 3548 lea(rscratch, src); 3549 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len); 3550 } 3551 } 3552 3553 void MacroAssembler::vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3554 assert(rscratch != noreg || always_reachable(src), "missing"); 3555 3556 if (reachable(src)) { 3557 Assembler::vbroadcasti128(dst, as_Address(src), vector_len); 3558 } else { 3559 lea(rscratch, src); 3560 Assembler::vbroadcasti128(dst, Address(rscratch, 0), vector_len); 3561 } 3562 } 3563 3564 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3565 assert(rscratch != noreg || always_reachable(src), "missing"); 3566 3567 if (reachable(src)) { 3568 Assembler::vpbroadcastq(dst, as_Address(src), vector_len); 3569 } else { 3570 lea(rscratch, src); 3571 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len); 3572 } 3573 } 3574 3575 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3576 assert(rscratch != noreg || always_reachable(src), "missing"); 3577 3578 if (reachable(src)) { 3579 Assembler::vbroadcastsd(dst, as_Address(src), vector_len); 3580 } else { 3581 lea(rscratch, src); 3582 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len); 3583 } 3584 } 3585 3586 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3587 assert(rscratch != noreg || always_reachable(src), "missing"); 3588 3589 if (reachable(src)) { 3590 Assembler::vbroadcastss(dst, as_Address(src), vector_len); 3591 } else { 3592 lea(rscratch, src); 3593 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len); 3594 } 3595 } 3596 3597 // Vector float blend 3598 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3599 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3600 // WARN: Allow dst == (src1|src2), mask == scratch 3601 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3602 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst; 3603 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3604 if (blend_emulation && scratch_available && dst_available) { 3605 if (compute_mask) { 3606 vpsrad(scratch, mask, 32, vector_len); 3607 mask = scratch; 3608 } 3609 if (dst == src1) { 3610 vpandn(dst, mask, src1, vector_len); // if mask == 0, src1 3611 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3612 } else { 3613 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3614 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1 3615 } 3616 vpor(dst, dst, scratch, vector_len); 3617 } else { 3618 Assembler::vblendvps(dst, src1, src2, mask, vector_len); 3619 } 3620 } 3621 3622 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3623 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3624 // WARN: Allow dst == (src1|src2), mask == scratch 3625 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3626 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask); 3627 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3628 if (blend_emulation && scratch_available && dst_available) { 3629 if (compute_mask) { 3630 vpxor(scratch, scratch, scratch, vector_len); 3631 vpcmpgtq(scratch, scratch, mask, vector_len); 3632 mask = scratch; 3633 } 3634 if (dst == src1) { 3635 vpandn(dst, mask, src1, vector_len); // if mask == 0, src 3636 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3637 } else { 3638 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3639 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src 3640 } 3641 vpor(dst, dst, scratch, vector_len); 3642 } else { 3643 Assembler::vblendvpd(dst, src1, src2, mask, vector_len); 3644 } 3645 } 3646 3647 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3648 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3649 Assembler::vpcmpeqb(dst, nds, src, vector_len); 3650 } 3651 3652 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) { 3653 assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3654 Assembler::vpcmpeqb(dst, src1, src2, vector_len); 3655 } 3656 3657 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3658 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3659 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3660 } 3661 3662 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3663 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3664 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3665 } 3666 3667 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3668 assert(rscratch != noreg || always_reachable(src), "missing"); 3669 3670 if (reachable(src)) { 3671 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len); 3672 } else { 3673 lea(rscratch, src); 3674 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len); 3675 } 3676 } 3677 3678 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3679 int comparison, bool is_signed, int vector_len, Register rscratch) { 3680 assert(rscratch != noreg || always_reachable(src), "missing"); 3681 3682 if (reachable(src)) { 3683 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3684 } else { 3685 lea(rscratch, src); 3686 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3687 } 3688 } 3689 3690 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3691 int comparison, bool is_signed, int vector_len, Register rscratch) { 3692 assert(rscratch != noreg || always_reachable(src), "missing"); 3693 3694 if (reachable(src)) { 3695 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3696 } else { 3697 lea(rscratch, src); 3698 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3699 } 3700 } 3701 3702 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3703 int comparison, bool is_signed, int vector_len, Register rscratch) { 3704 assert(rscratch != noreg || always_reachable(src), "missing"); 3705 3706 if (reachable(src)) { 3707 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3708 } else { 3709 lea(rscratch, src); 3710 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3711 } 3712 } 3713 3714 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3715 int comparison, bool is_signed, int vector_len, Register rscratch) { 3716 assert(rscratch != noreg || always_reachable(src), "missing"); 3717 3718 if (reachable(src)) { 3719 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3720 } else { 3721 lea(rscratch, src); 3722 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3723 } 3724 } 3725 3726 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) { 3727 if (width == Assembler::Q) { 3728 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len); 3729 } else { 3730 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len); 3731 } 3732 } 3733 3734 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) { 3735 int eq_cond_enc = 0x29; 3736 int gt_cond_enc = 0x37; 3737 if (width != Assembler::Q) { 3738 eq_cond_enc = 0x74 + width; 3739 gt_cond_enc = 0x64 + width; 3740 } 3741 switch (cond) { 3742 case eq: 3743 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3744 break; 3745 case neq: 3746 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3747 vallones(xtmp, vector_len); 3748 vpxor(dst, xtmp, dst, vector_len); 3749 break; 3750 case le: 3751 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3752 vallones(xtmp, vector_len); 3753 vpxor(dst, xtmp, dst, vector_len); 3754 break; 3755 case nlt: 3756 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3757 vallones(xtmp, vector_len); 3758 vpxor(dst, xtmp, dst, vector_len); 3759 break; 3760 case lt: 3761 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3762 break; 3763 case nle: 3764 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3765 break; 3766 default: 3767 assert(false, "Should not reach here"); 3768 } 3769 } 3770 3771 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) { 3772 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3773 Assembler::vpmovzxbw(dst, src, vector_len); 3774 } 3775 3776 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) { 3777 assert((src->encoding() < 16),"XMM register should be 0-15"); 3778 Assembler::vpmovmskb(dst, src, vector_len); 3779 } 3780 3781 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3782 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3783 Assembler::vpmullw(dst, nds, src, vector_len); 3784 } 3785 3786 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3787 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3788 Assembler::vpmullw(dst, nds, src, vector_len); 3789 } 3790 3791 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3792 assert((UseAVX > 0), "AVX support is needed"); 3793 assert(rscratch != noreg || always_reachable(src), "missing"); 3794 3795 if (reachable(src)) { 3796 Assembler::vpmulld(dst, nds, as_Address(src), vector_len); 3797 } else { 3798 lea(rscratch, src); 3799 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len); 3800 } 3801 } 3802 3803 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3804 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3805 Assembler::vpsubb(dst, nds, src, vector_len); 3806 } 3807 3808 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3809 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3810 Assembler::vpsubb(dst, nds, src, vector_len); 3811 } 3812 3813 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3814 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3815 Assembler::vpsubw(dst, nds, src, vector_len); 3816 } 3817 3818 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3819 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3820 Assembler::vpsubw(dst, nds, src, vector_len); 3821 } 3822 3823 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3824 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3825 Assembler::vpsraw(dst, nds, shift, vector_len); 3826 } 3827 3828 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3829 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3830 Assembler::vpsraw(dst, nds, shift, vector_len); 3831 } 3832 3833 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3834 assert(UseAVX > 2,""); 3835 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3836 vector_len = 2; 3837 } 3838 Assembler::evpsraq(dst, nds, shift, vector_len); 3839 } 3840 3841 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3842 assert(UseAVX > 2,""); 3843 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3844 vector_len = 2; 3845 } 3846 Assembler::evpsraq(dst, nds, shift, vector_len); 3847 } 3848 3849 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3850 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3851 Assembler::vpsrlw(dst, nds, shift, vector_len); 3852 } 3853 3854 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3855 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3856 Assembler::vpsrlw(dst, nds, shift, vector_len); 3857 } 3858 3859 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3860 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3861 Assembler::vpsllw(dst, nds, shift, vector_len); 3862 } 3863 3864 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3865 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3866 Assembler::vpsllw(dst, nds, shift, vector_len); 3867 } 3868 3869 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) { 3870 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3871 Assembler::vptest(dst, src); 3872 } 3873 3874 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) { 3875 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3876 Assembler::punpcklbw(dst, src); 3877 } 3878 3879 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) { 3880 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 3881 Assembler::pshufd(dst, src, mode); 3882 } 3883 3884 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { 3885 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3886 Assembler::pshuflw(dst, src, mode); 3887 } 3888 3889 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3890 assert(rscratch != noreg || always_reachable(src), "missing"); 3891 3892 if (reachable(src)) { 3893 vandpd(dst, nds, as_Address(src), vector_len); 3894 } else { 3895 lea(rscratch, src); 3896 vandpd(dst, nds, Address(rscratch, 0), vector_len); 3897 } 3898 } 3899 3900 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3901 assert(rscratch != noreg || always_reachable(src), "missing"); 3902 3903 if (reachable(src)) { 3904 vandps(dst, nds, as_Address(src), vector_len); 3905 } else { 3906 lea(rscratch, src); 3907 vandps(dst, nds, Address(rscratch, 0), vector_len); 3908 } 3909 } 3910 3911 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, 3912 bool merge, int vector_len, Register rscratch) { 3913 assert(rscratch != noreg || always_reachable(src), "missing"); 3914 3915 if (reachable(src)) { 3916 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len); 3917 } else { 3918 lea(rscratch, src); 3919 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 3920 } 3921 } 3922 3923 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3924 assert(rscratch != noreg || always_reachable(src), "missing"); 3925 3926 if (reachable(src)) { 3927 vdivsd(dst, nds, as_Address(src)); 3928 } else { 3929 lea(rscratch, src); 3930 vdivsd(dst, nds, Address(rscratch, 0)); 3931 } 3932 } 3933 3934 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3935 assert(rscratch != noreg || always_reachable(src), "missing"); 3936 3937 if (reachable(src)) { 3938 vdivss(dst, nds, as_Address(src)); 3939 } else { 3940 lea(rscratch, src); 3941 vdivss(dst, nds, Address(rscratch, 0)); 3942 } 3943 } 3944 3945 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3946 assert(rscratch != noreg || always_reachable(src), "missing"); 3947 3948 if (reachable(src)) { 3949 vmulsd(dst, nds, as_Address(src)); 3950 } else { 3951 lea(rscratch, src); 3952 vmulsd(dst, nds, Address(rscratch, 0)); 3953 } 3954 } 3955 3956 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3957 assert(rscratch != noreg || always_reachable(src), "missing"); 3958 3959 if (reachable(src)) { 3960 vmulss(dst, nds, as_Address(src)); 3961 } else { 3962 lea(rscratch, src); 3963 vmulss(dst, nds, Address(rscratch, 0)); 3964 } 3965 } 3966 3967 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3968 assert(rscratch != noreg || always_reachable(src), "missing"); 3969 3970 if (reachable(src)) { 3971 vsubsd(dst, nds, as_Address(src)); 3972 } else { 3973 lea(rscratch, src); 3974 vsubsd(dst, nds, Address(rscratch, 0)); 3975 } 3976 } 3977 3978 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3979 assert(rscratch != noreg || always_reachable(src), "missing"); 3980 3981 if (reachable(src)) { 3982 vsubss(dst, nds, as_Address(src)); 3983 } else { 3984 lea(rscratch, src); 3985 vsubss(dst, nds, Address(rscratch, 0)); 3986 } 3987 } 3988 3989 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3990 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3991 assert(rscratch != noreg || always_reachable(src), "missing"); 3992 3993 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch); 3994 } 3995 3996 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3997 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3998 assert(rscratch != noreg || always_reachable(src), "missing"); 3999 4000 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch); 4001 } 4002 4003 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 4004 assert(rscratch != noreg || always_reachable(src), "missing"); 4005 4006 if (reachable(src)) { 4007 vxorpd(dst, nds, as_Address(src), vector_len); 4008 } else { 4009 lea(rscratch, src); 4010 vxorpd(dst, nds, Address(rscratch, 0), vector_len); 4011 } 4012 } 4013 4014 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 4015 assert(rscratch != noreg || always_reachable(src), "missing"); 4016 4017 if (reachable(src)) { 4018 vxorps(dst, nds, as_Address(src), vector_len); 4019 } else { 4020 lea(rscratch, src); 4021 vxorps(dst, nds, Address(rscratch, 0), vector_len); 4022 } 4023 } 4024 4025 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 4026 assert(rscratch != noreg || always_reachable(src), "missing"); 4027 4028 if (UseAVX > 1 || (vector_len < 1)) { 4029 if (reachable(src)) { 4030 Assembler::vpxor(dst, nds, as_Address(src), vector_len); 4031 } else { 4032 lea(rscratch, src); 4033 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len); 4034 } 4035 } else { 4036 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch); 4037 } 4038 } 4039 4040 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 4041 assert(rscratch != noreg || always_reachable(src), "missing"); 4042 4043 if (reachable(src)) { 4044 Assembler::vpermd(dst, nds, as_Address(src), vector_len); 4045 } else { 4046 lea(rscratch, src); 4047 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len); 4048 } 4049 } 4050 4051 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) { 4052 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask); 4053 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code 4054 // The inverted mask is sign-extended 4055 andptr(possibly_non_local, inverted_mask); 4056 } 4057 4058 void MacroAssembler::resolve_jobject(Register value, 4059 Register tmp) { 4060 Register thread = r15_thread; 4061 assert_different_registers(value, thread, tmp); 4062 Label done, tagged, weak_tagged; 4063 testptr(value, value); 4064 jcc(Assembler::zero, done); // Use null as-is. 4065 testptr(value, JNIHandles::tag_mask); // Test for tag. 4066 jcc(Assembler::notZero, tagged); 4067 4068 // Resolve local handle 4069 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread); 4070 verify_oop(value); 4071 jmp(done); 4072 4073 bind(tagged); 4074 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag. 4075 jcc(Assembler::notZero, weak_tagged); 4076 4077 // Resolve global handle 4078 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4079 verify_oop(value); 4080 jmp(done); 4081 4082 bind(weak_tagged); 4083 // Resolve jweak. 4084 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 4085 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread); 4086 verify_oop(value); 4087 4088 bind(done); 4089 } 4090 4091 void MacroAssembler::resolve_global_jobject(Register value, 4092 Register tmp) { 4093 Register thread = r15_thread; 4094 assert_different_registers(value, thread, tmp); 4095 Label done; 4096 4097 testptr(value, value); 4098 jcc(Assembler::zero, done); // Use null as-is. 4099 4100 #ifdef ASSERT 4101 { 4102 Label valid_global_tag; 4103 testptr(value, JNIHandles::TypeTag::global); // Test for global tag. 4104 jcc(Assembler::notZero, valid_global_tag); 4105 stop("non global jobject using resolve_global_jobject"); 4106 bind(valid_global_tag); 4107 } 4108 #endif 4109 4110 // Resolve global handle 4111 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4112 verify_oop(value); 4113 4114 bind(done); 4115 } 4116 4117 void MacroAssembler::subptr(Register dst, int32_t imm32) { 4118 LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32)); 4119 } 4120 4121 // Force generation of a 4 byte immediate value even if it fits into 8bit 4122 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) { 4123 LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32)); 4124 } 4125 4126 void MacroAssembler::subptr(Register dst, Register src) { 4127 LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); 4128 } 4129 4130 // C++ bool manipulation 4131 void MacroAssembler::testbool(Register dst) { 4132 if(sizeof(bool) == 1) 4133 testb(dst, 0xff); 4134 else if(sizeof(bool) == 2) { 4135 // testw implementation needed for two byte bools 4136 ShouldNotReachHere(); 4137 } else if(sizeof(bool) == 4) 4138 testl(dst, dst); 4139 else 4140 // unsupported 4141 ShouldNotReachHere(); 4142 } 4143 4144 void MacroAssembler::testptr(Register dst, Register src) { 4145 LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src)); 4146 } 4147 4148 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4149 void MacroAssembler::tlab_allocate(Register thread, Register obj, 4150 Register var_size_in_bytes, 4151 int con_size_in_bytes, 4152 Register t1, 4153 Register t2, 4154 Label& slow_case) { 4155 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4156 bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4157 } 4158 4159 RegSet MacroAssembler::call_clobbered_gp_registers() { 4160 RegSet regs; 4161 #ifdef _LP64 4162 regs += RegSet::of(rax, rcx, rdx); 4163 #ifndef _WINDOWS 4164 regs += RegSet::of(rsi, rdi); 4165 #endif 4166 regs += RegSet::range(r8, r11); 4167 #else 4168 regs += RegSet::of(rax, rcx, rdx); 4169 #endif 4170 #ifdef _LP64 4171 if (UseAPX) { 4172 regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1)); 4173 } 4174 #endif 4175 return regs; 4176 } 4177 4178 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() { 4179 int num_xmm_registers = XMMRegister::available_xmm_registers(); 4180 #if defined(_WINDOWS) 4181 XMMRegSet result = XMMRegSet::range(xmm0, xmm5); 4182 if (num_xmm_registers > 16) { 4183 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1)); 4184 } 4185 return result; 4186 #else 4187 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1)); 4188 #endif 4189 } 4190 4191 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor 4192 4193 #ifndef _LP64 4194 static bool use_x87_registers() { return UseSSE < 2; } 4195 #endif 4196 static bool use_xmm_registers() { return UseSSE >= 1; } 4197 4198 // C1 only ever uses the first double/float of the XMM register. 4199 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); } 4200 4201 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4202 if (UseSSE == 1) { 4203 masm->movflt(Address(rsp, offset), reg); 4204 } else { 4205 masm->movdbl(Address(rsp, offset), reg); 4206 } 4207 } 4208 4209 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4210 if (UseSSE == 1) { 4211 masm->movflt(reg, Address(rsp, offset)); 4212 } else { 4213 masm->movdbl(reg, Address(rsp, offset)); 4214 } 4215 } 4216 4217 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers, 4218 bool save_fpu, int& gp_area_size, 4219 int& fp_area_size, int& xmm_area_size) { 4220 4221 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size, 4222 StackAlignmentInBytes); 4223 #ifdef _LP64 4224 fp_area_size = 0; 4225 #else 4226 fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0; 4227 #endif 4228 xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0; 4229 4230 return gp_area_size + fp_area_size + xmm_area_size; 4231 } 4232 4233 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) { 4234 block_comment("push_call_clobbered_registers start"); 4235 // Regular registers 4236 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude; 4237 4238 int gp_area_size; 4239 int fp_area_size; 4240 int xmm_area_size; 4241 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu, 4242 gp_area_size, fp_area_size, xmm_area_size); 4243 subptr(rsp, total_save_size); 4244 4245 push_set(gp_registers_to_push, 0); 4246 4247 #ifndef _LP64 4248 if (save_fpu && use_x87_registers()) { 4249 fnsave(Address(rsp, gp_area_size)); 4250 fwait(); 4251 } 4252 #endif 4253 if (save_fpu && use_xmm_registers()) { 4254 push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4255 } 4256 4257 block_comment("push_call_clobbered_registers end"); 4258 } 4259 4260 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) { 4261 block_comment("pop_call_clobbered_registers start"); 4262 4263 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude; 4264 4265 int gp_area_size; 4266 int fp_area_size; 4267 int xmm_area_size; 4268 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu, 4269 gp_area_size, fp_area_size, xmm_area_size); 4270 4271 if (restore_fpu && use_xmm_registers()) { 4272 pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4273 } 4274 #ifndef _LP64 4275 if (restore_fpu && use_x87_registers()) { 4276 frstor(Address(rsp, gp_area_size)); 4277 } 4278 #endif 4279 4280 pop_set(gp_registers_to_pop, 0); 4281 4282 addptr(rsp, total_save_size); 4283 4284 vzeroupper(); 4285 4286 block_comment("pop_call_clobbered_registers end"); 4287 } 4288 4289 void MacroAssembler::push_set(XMMRegSet set, int offset) { 4290 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be"); 4291 int spill_offset = offset; 4292 4293 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) { 4294 save_xmm_register(this, spill_offset, *it); 4295 spill_offset += xmm_save_size(); 4296 } 4297 } 4298 4299 void MacroAssembler::pop_set(XMMRegSet set, int offset) { 4300 int restore_size = set.size() * xmm_save_size(); 4301 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be"); 4302 4303 int restore_offset = offset + restore_size - xmm_save_size(); 4304 4305 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) { 4306 restore_xmm_register(this, restore_offset, *it); 4307 restore_offset -= xmm_save_size(); 4308 } 4309 } 4310 4311 void MacroAssembler::push_set(RegSet set, int offset) { 4312 int spill_offset; 4313 if (offset == -1) { 4314 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4315 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4316 subptr(rsp, aligned_size); 4317 spill_offset = 0; 4318 } else { 4319 spill_offset = offset; 4320 } 4321 4322 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) { 4323 movptr(Address(rsp, spill_offset), *it); 4324 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4325 } 4326 } 4327 4328 void MacroAssembler::pop_set(RegSet set, int offset) { 4329 4330 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4331 int restore_size = set.size() * gp_reg_size; 4332 int aligned_size = align_up(restore_size, StackAlignmentInBytes); 4333 4334 int restore_offset; 4335 if (offset == -1) { 4336 restore_offset = restore_size - gp_reg_size; 4337 } else { 4338 restore_offset = offset + restore_size - gp_reg_size; 4339 } 4340 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) { 4341 movptr(*it, Address(rsp, restore_offset)); 4342 restore_offset -= gp_reg_size; 4343 } 4344 4345 if (offset == -1) { 4346 addptr(rsp, aligned_size); 4347 } 4348 } 4349 4350 // Preserves the contents of address, destroys the contents length_in_bytes and temp. 4351 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) { 4352 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different"); 4353 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord"); 4354 Label done; 4355 4356 testptr(length_in_bytes, length_in_bytes); 4357 jcc(Assembler::zero, done); 4358 4359 // initialize topmost word, divide index by 2, check if odd and test if zero 4360 // note: for the remaining code to work, index must be a multiple of BytesPerWord 4361 #ifdef ASSERT 4362 { 4363 Label L; 4364 testptr(length_in_bytes, BytesPerWord - 1); 4365 jcc(Assembler::zero, L); 4366 stop("length must be a multiple of BytesPerWord"); 4367 bind(L); 4368 } 4369 #endif 4370 Register index = length_in_bytes; 4371 xorptr(temp, temp); // use _zero reg to clear memory (shorter code) 4372 if (UseIncDec) { 4373 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set 4374 } else { 4375 shrptr(index, 2); // use 2 instructions to avoid partial flag stall 4376 shrptr(index, 1); 4377 } 4378 #ifndef _LP64 4379 // index could have not been a multiple of 8 (i.e., bit 2 was set) 4380 { 4381 Label even; 4382 // note: if index was a multiple of 8, then it cannot 4383 // be 0 now otherwise it must have been 0 before 4384 // => if it is even, we don't need to check for 0 again 4385 jcc(Assembler::carryClear, even); 4386 // clear topmost word (no jump would be needed if conditional assignment worked here) 4387 movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp); 4388 // index could be 0 now, must check again 4389 jcc(Assembler::zero, done); 4390 bind(even); 4391 } 4392 #endif // !_LP64 4393 // initialize remaining object fields: index is a multiple of 2 now 4394 { 4395 Label loop; 4396 bind(loop); 4397 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp); 4398 NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);) 4399 decrement(index); 4400 jcc(Assembler::notZero, loop); 4401 } 4402 4403 bind(done); 4404 } 4405 4406 // Look up the method for a megamorphic invokeinterface call. 4407 // The target method is determined by <intf_klass, itable_index>. 4408 // The receiver klass is in recv_klass. 4409 // On success, the result will be in method_result, and execution falls through. 4410 // On failure, execution transfers to the given label. 4411 void MacroAssembler::lookup_interface_method(Register recv_klass, 4412 Register intf_klass, 4413 RegisterOrConstant itable_index, 4414 Register method_result, 4415 Register scan_temp, 4416 Label& L_no_such_interface, 4417 bool return_method) { 4418 assert_different_registers(recv_klass, intf_klass, scan_temp); 4419 assert_different_registers(method_result, intf_klass, scan_temp); 4420 assert(recv_klass != method_result || !return_method, 4421 "recv_klass can be destroyed when method isn't needed"); 4422 4423 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 4424 "caller must use same register for non-constant itable index as for method"); 4425 4426 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 4427 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4428 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4429 int scan_step = itableOffsetEntry::size() * wordSize; 4430 int vte_size = vtableEntry::size_in_bytes(); 4431 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4432 assert(vte_size == wordSize, "else adjust times_vte_scale"); 4433 4434 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4435 4436 // Could store the aligned, prescaled offset in the klass. 4437 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 4438 4439 if (return_method) { 4440 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 4441 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4442 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 4443 } 4444 4445 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 4446 // if (scan->interface() == intf) { 4447 // result = (klass + scan->offset() + itable_index); 4448 // } 4449 // } 4450 Label search, found_method; 4451 4452 for (int peel = 1; peel >= 0; peel--) { 4453 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 4454 cmpptr(intf_klass, method_result); 4455 4456 if (peel) { 4457 jccb(Assembler::equal, found_method); 4458 } else { 4459 jccb(Assembler::notEqual, search); 4460 // (invert the test to fall through to found_method...) 4461 } 4462 4463 if (!peel) break; 4464 4465 bind(search); 4466 4467 // Check that the previous entry is non-null. A null entry means that 4468 // the receiver class doesn't implement the interface, and wasn't the 4469 // same as when the caller was compiled. 4470 testptr(method_result, method_result); 4471 jcc(Assembler::zero, L_no_such_interface); 4472 addptr(scan_temp, scan_step); 4473 } 4474 4475 bind(found_method); 4476 4477 if (return_method) { 4478 // Got a hit. 4479 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 4480 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); 4481 } 4482 } 4483 4484 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 4485 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 4486 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 4487 // The target method is determined by <holder_klass, itable_index>. 4488 // The receiver klass is in recv_klass. 4489 // On success, the result will be in method_result, and execution falls through. 4490 // On failure, execution transfers to the given label. 4491 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 4492 Register holder_klass, 4493 Register resolved_klass, 4494 Register method_result, 4495 Register scan_temp, 4496 Register temp_reg2, 4497 Register receiver, 4498 int itable_index, 4499 Label& L_no_such_interface) { 4500 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver); 4501 Register temp_itbl_klass = method_result; 4502 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl 4503 4504 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4505 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4506 int scan_step = itableOffsetEntry::size() * wordSize; 4507 int vte_size = vtableEntry::size_in_bytes(); 4508 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 4509 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 4510 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4511 assert(vte_size == wordSize, "adjust times_vte_scale"); 4512 4513 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found; 4514 4515 // temp_itbl_klass = recv_klass.itable[0] 4516 // scan_temp = &recv_klass.itable[0] + step 4517 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4518 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset)); 4519 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step)); 4520 xorptr(temp_reg, temp_reg); 4521 4522 // Initial checks: 4523 // - if (holder_klass != resolved_klass), go to "scan for resolved" 4524 // - if (itable[0] == 0), no such interface 4525 // - if (itable[0] == holder_klass), shortcut to "holder found" 4526 cmpptr(holder_klass, resolved_klass); 4527 jccb(Assembler::notEqual, L_loop_scan_resolved_entry); 4528 testptr(temp_itbl_klass, temp_itbl_klass); 4529 jccb(Assembler::zero, L_no_such_interface); 4530 cmpptr(holder_klass, temp_itbl_klass); 4531 jccb(Assembler::equal, L_holder_found); 4532 4533 // Loop: Look for holder_klass record in itable 4534 // do { 4535 // tmp = itable[index]; 4536 // index += step; 4537 // if (tmp == holder_klass) { 4538 // goto L_holder_found; // Found! 4539 // } 4540 // } while (tmp != 0); 4541 // goto L_no_such_interface // Not found. 4542 Label L_scan_holder; 4543 bind(L_scan_holder); 4544 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4545 addptr(scan_temp, scan_step); 4546 cmpptr(holder_klass, temp_itbl_klass); 4547 jccb(Assembler::equal, L_holder_found); 4548 testptr(temp_itbl_klass, temp_itbl_klass); 4549 jccb(Assembler::notZero, L_scan_holder); 4550 4551 jmpb(L_no_such_interface); 4552 4553 // Loop: Look for resolved_class record in itable 4554 // do { 4555 // tmp = itable[index]; 4556 // index += step; 4557 // if (tmp == holder_klass) { 4558 // // Also check if we have met a holder klass 4559 // holder_tmp = itable[index-step-ioffset]; 4560 // } 4561 // if (tmp == resolved_klass) { 4562 // goto L_resolved_found; // Found! 4563 // } 4564 // } while (tmp != 0); 4565 // goto L_no_such_interface // Not found. 4566 // 4567 Label L_loop_scan_resolved; 4568 bind(L_loop_scan_resolved); 4569 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4570 addptr(scan_temp, scan_step); 4571 bind(L_loop_scan_resolved_entry); 4572 cmpptr(holder_klass, temp_itbl_klass); 4573 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4574 cmpptr(resolved_klass, temp_itbl_klass); 4575 jccb(Assembler::equal, L_resolved_found); 4576 testptr(temp_itbl_klass, temp_itbl_klass); 4577 jccb(Assembler::notZero, L_loop_scan_resolved); 4578 4579 jmpb(L_no_such_interface); 4580 4581 Label L_ready; 4582 4583 // See if we already have a holder klass. If not, go and scan for it. 4584 bind(L_resolved_found); 4585 testptr(temp_reg, temp_reg); 4586 jccb(Assembler::zero, L_scan_holder); 4587 jmpb(L_ready); 4588 4589 bind(L_holder_found); 4590 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4591 4592 // Finally, temp_reg contains holder_klass vtable offset 4593 bind(L_ready); 4594 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4595 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl 4596 load_klass(scan_temp, receiver, noreg); 4597 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4598 } else { 4599 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4600 } 4601 } 4602 4603 4604 // virtual method calling 4605 void MacroAssembler::lookup_virtual_method(Register recv_klass, 4606 RegisterOrConstant vtable_index, 4607 Register method_result) { 4608 const ByteSize base = Klass::vtable_start_offset(); 4609 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below"); 4610 Address vtable_entry_addr(recv_klass, 4611 vtable_index, Address::times_ptr, 4612 base + vtableEntry::method_offset()); 4613 movptr(method_result, vtable_entry_addr); 4614 } 4615 4616 4617 void MacroAssembler::check_klass_subtype(Register sub_klass, 4618 Register super_klass, 4619 Register temp_reg, 4620 Label& L_success) { 4621 Label L_failure; 4622 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 4623 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 4624 bind(L_failure); 4625 } 4626 4627 4628 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 4629 Register super_klass, 4630 Register temp_reg, 4631 Label* L_success, 4632 Label* L_failure, 4633 Label* L_slow_path, 4634 RegisterOrConstant super_check_offset) { 4635 assert_different_registers(sub_klass, super_klass, temp_reg); 4636 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 4637 if (super_check_offset.is_register()) { 4638 assert_different_registers(sub_klass, super_klass, 4639 super_check_offset.as_register()); 4640 } else if (must_load_sco) { 4641 assert(temp_reg != noreg, "supply either a temp or a register offset"); 4642 } 4643 4644 Label L_fallthrough; 4645 int label_nulls = 0; 4646 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4647 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4648 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 4649 assert(label_nulls <= 1, "at most one null in the batch"); 4650 4651 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4652 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 4653 Address super_check_offset_addr(super_klass, sco_offset); 4654 4655 // Hacked jcc, which "knows" that L_fallthrough, at least, is in 4656 // range of a jccb. If this routine grows larger, reconsider at 4657 // least some of these. 4658 #define local_jcc(assembler_cond, label) \ 4659 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ 4660 else jcc( assembler_cond, label) /*omit semi*/ 4661 4662 // Hacked jmp, which may only be used just before L_fallthrough. 4663 #define final_jmp(label) \ 4664 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 4665 else jmp(label) /*omit semi*/ 4666 4667 // If the pointers are equal, we are done (e.g., String[] elements). 4668 // This self-check enables sharing of secondary supertype arrays among 4669 // non-primary types such as array-of-interface. Otherwise, each such 4670 // type would need its own customized SSA. 4671 // We move this check to the front of the fast path because many 4672 // type checks are in fact trivially successful in this manner, 4673 // so we get a nicely predicted branch right at the start of the check. 4674 cmpptr(sub_klass, super_klass); 4675 local_jcc(Assembler::equal, *L_success); 4676 4677 // Check the supertype display: 4678 if (must_load_sco) { 4679 // Positive movl does right thing on LP64. 4680 movl(temp_reg, super_check_offset_addr); 4681 super_check_offset = RegisterOrConstant(temp_reg); 4682 } 4683 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); 4684 cmpptr(super_klass, super_check_addr); // load displayed supertype 4685 4686 // This check has worked decisively for primary supers. 4687 // Secondary supers are sought in the super_cache ('super_cache_addr'). 4688 // (Secondary supers are interfaces and very deeply nested subtypes.) 4689 // This works in the same check above because of a tricky aliasing 4690 // between the super_cache and the primary super display elements. 4691 // (The 'super_check_addr' can address either, as the case requires.) 4692 // Note that the cache is updated below if it does not help us find 4693 // what we need immediately. 4694 // So if it was a primary super, we can just fail immediately. 4695 // Otherwise, it's the slow path for us (no success at this point). 4696 4697 if (super_check_offset.is_register()) { 4698 local_jcc(Assembler::equal, *L_success); 4699 cmpl(super_check_offset.as_register(), sc_offset); 4700 if (L_failure == &L_fallthrough) { 4701 local_jcc(Assembler::equal, *L_slow_path); 4702 } else { 4703 local_jcc(Assembler::notEqual, *L_failure); 4704 final_jmp(*L_slow_path); 4705 } 4706 } else if (super_check_offset.as_constant() == sc_offset) { 4707 // Need a slow path; fast failure is impossible. 4708 if (L_slow_path == &L_fallthrough) { 4709 local_jcc(Assembler::equal, *L_success); 4710 } else { 4711 local_jcc(Assembler::notEqual, *L_slow_path); 4712 final_jmp(*L_success); 4713 } 4714 } else { 4715 // No slow path; it's a fast decision. 4716 if (L_failure == &L_fallthrough) { 4717 local_jcc(Assembler::equal, *L_success); 4718 } else { 4719 local_jcc(Assembler::notEqual, *L_failure); 4720 final_jmp(*L_success); 4721 } 4722 } 4723 4724 bind(L_fallthrough); 4725 4726 #undef local_jcc 4727 #undef final_jmp 4728 } 4729 4730 4731 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 4732 Register super_klass, 4733 Register temp_reg, 4734 Register temp2_reg, 4735 Label* L_success, 4736 Label* L_failure, 4737 bool set_cond_codes) { 4738 assert_different_registers(sub_klass, super_klass, temp_reg); 4739 if (temp2_reg != noreg) 4740 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); 4741 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 4742 4743 Label L_fallthrough; 4744 int label_nulls = 0; 4745 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4746 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4747 assert(label_nulls <= 1, "at most one null in the batch"); 4748 4749 // a couple of useful fields in sub_klass: 4750 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 4751 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4752 Address secondary_supers_addr(sub_klass, ss_offset); 4753 Address super_cache_addr( sub_klass, sc_offset); 4754 4755 // Do a linear scan of the secondary super-klass chain. 4756 // This code is rarely used, so simplicity is a virtue here. 4757 // The repne_scan instruction uses fixed registers, which we must spill. 4758 // Don't worry too much about pre-existing connections with the input regs. 4759 4760 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) 4761 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) 4762 4763 // Get super_klass value into rax (even if it was in rdi or rcx). 4764 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; 4765 if (super_klass != rax) { 4766 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } 4767 mov(rax, super_klass); 4768 } 4769 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } 4770 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } 4771 4772 #ifndef PRODUCT 4773 uint* pst_counter = &SharedRuntime::_partial_subtype_ctr; 4774 ExternalAddress pst_counter_addr((address) pst_counter); 4775 NOT_LP64( incrementl(pst_counter_addr) ); 4776 LP64_ONLY( lea(rcx, pst_counter_addr) ); 4777 LP64_ONLY( incrementl(Address(rcx, 0)) ); 4778 #endif //PRODUCT 4779 4780 // We will consult the secondary-super array. 4781 movptr(rdi, secondary_supers_addr); 4782 // Load the array length. (Positive movl does right thing on LP64.) 4783 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes())); 4784 // Skip to start of data. 4785 addptr(rdi, Array<Klass*>::base_offset_in_bytes()); 4786 4787 // Scan RCX words at [RDI] for an occurrence of RAX. 4788 // Set NZ/Z based on last compare. 4789 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does 4790 // not change flags (only scas instruction which is repeated sets flags). 4791 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. 4792 4793 testptr(rax,rax); // Set Z = 0 4794 repne_scan(); 4795 4796 // Unspill the temp. registers: 4797 if (pushed_rdi) pop(rdi); 4798 if (pushed_rcx) pop(rcx); 4799 if (pushed_rax) pop(rax); 4800 4801 if (set_cond_codes) { 4802 // Special hack for the AD files: rdi is guaranteed non-zero. 4803 assert(!pushed_rdi, "rdi must be left non-null"); 4804 // Also, the condition codes are properly set Z/NZ on succeed/failure. 4805 } 4806 4807 if (L_failure == &L_fallthrough) 4808 jccb(Assembler::notEqual, *L_failure); 4809 else jcc(Assembler::notEqual, *L_failure); 4810 4811 // Success. Cache the super we found and proceed in triumph. 4812 movptr(super_cache_addr, super_klass); 4813 4814 if (L_success != &L_fallthrough) { 4815 jmp(*L_success); 4816 } 4817 4818 #undef IS_A_TEMP 4819 4820 bind(L_fallthrough); 4821 } 4822 4823 #ifndef _LP64 4824 4825 // 32-bit x86 only: always use the linear search. 4826 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4827 Register super_klass, 4828 Register temp_reg, 4829 Register temp2_reg, 4830 Label* L_success, 4831 Label* L_failure, 4832 bool set_cond_codes) { 4833 check_klass_subtype_slow_path_linear 4834 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 4835 } 4836 4837 #else // _LP64 4838 4839 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4840 Register super_klass, 4841 Register temp_reg, 4842 Register temp2_reg, 4843 Label* L_success, 4844 Label* L_failure, 4845 bool set_cond_codes) { 4846 assert(set_cond_codes == false, "must be false on 64-bit x86"); 4847 check_klass_subtype_slow_path 4848 (sub_klass, super_klass, temp_reg, temp2_reg, noreg, noreg, 4849 L_success, L_failure); 4850 } 4851 4852 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4853 Register super_klass, 4854 Register temp_reg, 4855 Register temp2_reg, 4856 Register temp3_reg, 4857 Register temp4_reg, 4858 Label* L_success, 4859 Label* L_failure) { 4860 if (UseSecondarySupersTable) { 4861 check_klass_subtype_slow_path_table 4862 (sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, temp4_reg, 4863 L_success, L_failure); 4864 } else { 4865 check_klass_subtype_slow_path_linear 4866 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, /*set_cond_codes*/false); 4867 } 4868 } 4869 4870 Register MacroAssembler::allocate_if_noreg(Register r, 4871 RegSetIterator<Register> &available_regs, 4872 RegSet ®s_to_push) { 4873 if (!r->is_valid()) { 4874 r = *available_regs++; 4875 regs_to_push += r; 4876 } 4877 return r; 4878 } 4879 4880 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 4881 Register super_klass, 4882 Register temp_reg, 4883 Register temp2_reg, 4884 Register temp3_reg, 4885 Register result_reg, 4886 Label* L_success, 4887 Label* L_failure) { 4888 // NB! Callers may assume that, when temp2_reg is a valid register, 4889 // this code sets it to a nonzero value. 4890 bool temp2_reg_was_valid = temp2_reg->is_valid(); 4891 4892 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 4893 4894 Label L_fallthrough; 4895 int label_nulls = 0; 4896 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4897 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4898 assert(label_nulls <= 1, "at most one null in the batch"); 4899 4900 BLOCK_COMMENT("check_klass_subtype_slow_path_table"); 4901 4902 RegSetIterator<Register> available_regs 4903 = (RegSet::of(rax, rcx, rdx, r8) + r9 + r10 + r11 + r12 - temps - sub_klass - super_klass).begin(); 4904 4905 RegSet pushed_regs; 4906 4907 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 4908 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 4909 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 4910 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 4911 Register temp4_reg = allocate_if_noreg(noreg, available_regs, pushed_regs); 4912 4913 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, result_reg); 4914 4915 { 4916 4917 int register_push_size = pushed_regs.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4918 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4919 subptr(rsp, aligned_size); 4920 push_set(pushed_regs, 0); 4921 4922 lookup_secondary_supers_table_var(sub_klass, 4923 super_klass, 4924 temp_reg, temp2_reg, temp3_reg, temp4_reg, result_reg); 4925 cmpq(result_reg, 0); 4926 4927 // Unspill the temp. registers: 4928 pop_set(pushed_regs, 0); 4929 // Increment SP but do not clobber flags. 4930 lea(rsp, Address(rsp, aligned_size)); 4931 } 4932 4933 if (temp2_reg_was_valid) { 4934 movq(temp2_reg, 1); 4935 } 4936 4937 jcc(Assembler::notEqual, *L_failure); 4938 4939 if (L_success != &L_fallthrough) { 4940 jmp(*L_success); 4941 } 4942 4943 bind(L_fallthrough); 4944 } 4945 4946 // population_count variant for running without the POPCNT 4947 // instruction, which was introduced with SSE4.2 in 2008. 4948 void MacroAssembler::population_count(Register dst, Register src, 4949 Register scratch1, Register scratch2) { 4950 assert_different_registers(src, scratch1, scratch2); 4951 if (UsePopCountInstruction) { 4952 Assembler::popcntq(dst, src); 4953 } else { 4954 assert_different_registers(src, scratch1, scratch2); 4955 assert_different_registers(dst, scratch1, scratch2); 4956 Label loop, done; 4957 4958 mov(scratch1, src); 4959 // dst = 0; 4960 // while(scratch1 != 0) { 4961 // dst++; 4962 // scratch1 &= (scratch1 - 1); 4963 // } 4964 xorl(dst, dst); 4965 testq(scratch1, scratch1); 4966 jccb(Assembler::equal, done); 4967 { 4968 bind(loop); 4969 incq(dst); 4970 movq(scratch2, scratch1); 4971 decq(scratch2); 4972 andq(scratch1, scratch2); 4973 jccb(Assembler::notEqual, loop); 4974 } 4975 bind(done); 4976 } 4977 #ifdef ASSERT 4978 mov64(scratch1, 0xCafeBabeDeadBeef); 4979 movq(scratch2, scratch1); 4980 #endif 4981 } 4982 4983 // Ensure that the inline code and the stub are using the same registers. 4984 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 4985 do { \ 4986 assert(r_super_klass == rax, "mismatch"); \ 4987 assert(r_array_base == rbx, "mismatch"); \ 4988 assert(r_array_length == rcx, "mismatch"); \ 4989 assert(r_array_index == rdx, "mismatch"); \ 4990 assert(r_sub_klass == rsi || r_sub_klass == noreg, "mismatch"); \ 4991 assert(r_bitmap == r11 || r_bitmap == noreg, "mismatch"); \ 4992 assert(result == rdi || result == noreg, "mismatch"); \ 4993 } while(0) 4994 4995 // Versions of salq and rorq that don't need count to be in rcx 4996 4997 void MacroAssembler::salq(Register dest, Register count) { 4998 if (count == rcx) { 4999 Assembler::salq(dest); 5000 } else { 5001 assert_different_registers(rcx, dest); 5002 xchgq(rcx, count); 5003 Assembler::salq(dest); 5004 xchgq(rcx, count); 5005 } 5006 } 5007 5008 void MacroAssembler::rorq(Register dest, Register count) { 5009 if (count == rcx) { 5010 Assembler::rorq(dest); 5011 } else { 5012 assert_different_registers(rcx, dest); 5013 xchgq(rcx, count); 5014 Assembler::rorq(dest); 5015 xchgq(rcx, count); 5016 } 5017 } 5018 5019 // Return true: we succeeded in generating this code 5020 // 5021 // At runtime, return 0 in result if r_super_klass is a superclass of 5022 // r_sub_klass, otherwise return nonzero. Use this if you know the 5023 // super_klass_slot of the class you're looking for. This is always 5024 // the case for instanceof and checkcast. 5025 void MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 5026 Register r_super_klass, 5027 Register temp1, 5028 Register temp2, 5029 Register temp3, 5030 Register temp4, 5031 Register result, 5032 u1 super_klass_slot) { 5033 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 5034 5035 Label L_fallthrough, L_success, L_failure; 5036 5037 BLOCK_COMMENT("lookup_secondary_supers_table {"); 5038 5039 const Register 5040 r_array_index = temp1, 5041 r_array_length = temp2, 5042 r_array_base = temp3, 5043 r_bitmap = temp4; 5044 5045 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 5046 5047 xorq(result, result); // = 0 5048 5049 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 5050 movq(r_array_index, r_bitmap); 5051 5052 // First check the bitmap to see if super_klass might be present. If 5053 // the bit is zero, we are certain that super_klass is not one of 5054 // the secondary supers. 5055 u1 bit = super_klass_slot; 5056 { 5057 // NB: If the count in a x86 shift instruction is 0, the flags are 5058 // not affected, so we do a testq instead. 5059 int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit; 5060 if (shift_count != 0) { 5061 salq(r_array_index, shift_count); 5062 } else { 5063 testq(r_array_index, r_array_index); 5064 } 5065 } 5066 // We test the MSB of r_array_index, i.e. its sign bit 5067 jcc(Assembler::positive, L_failure); 5068 5069 // Get the first array index that can contain super_klass into r_array_index. 5070 if (bit != 0) { 5071 population_count(r_array_index, r_array_index, temp2, temp3); 5072 } else { 5073 movl(r_array_index, 1); 5074 } 5075 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 5076 5077 // We will consult the secondary-super array. 5078 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5079 5080 // We're asserting that the first word in an Array<Klass*> is the 5081 // length, and the second word is the first word of the data. If 5082 // that ever changes, r_array_base will have to be adjusted here. 5083 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 5084 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 5085 5086 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5087 jccb(Assembler::equal, L_success); 5088 5089 // Is there another entry to check? Consult the bitmap. 5090 btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK); 5091 jccb(Assembler::carryClear, L_failure); 5092 5093 // Linear probe. Rotate the bitmap so that the next bit to test is 5094 // in Bit 1. 5095 if (bit != 0) { 5096 rorq(r_bitmap, bit); 5097 } 5098 5099 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 5100 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 5101 // Kills: r_array_length. 5102 // Returns: result. 5103 call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub())); 5104 // Result (0/1) is in rdi 5105 jmpb(L_fallthrough); 5106 5107 bind(L_failure); 5108 incq(result); // 0 => 1 5109 5110 bind(L_success); 5111 // result = 0; 5112 5113 bind(L_fallthrough); 5114 BLOCK_COMMENT("} lookup_secondary_supers_table"); 5115 5116 if (VerifySecondarySupers) { 5117 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 5118 temp1, temp2, temp3); 5119 } 5120 } 5121 5122 // At runtime, return 0 in result if r_super_klass is a superclass of 5123 // r_sub_klass, otherwise return nonzero. Use this version of 5124 // lookup_secondary_supers_table() if you don't know ahead of time 5125 // which superclass will be searched for. Used by interpreter and 5126 // runtime stubs. It is larger and has somewhat greater latency than 5127 // the version above, which takes a constant super_klass_slot. 5128 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 5129 Register r_super_klass, 5130 Register temp1, 5131 Register temp2, 5132 Register temp3, 5133 Register temp4, 5134 Register result) { 5135 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 5136 assert_different_registers(r_sub_klass, r_super_klass, rcx); 5137 RegSet temps = RegSet::of(temp1, temp2, temp3, temp4); 5138 5139 Label L_fallthrough, L_success, L_failure; 5140 5141 BLOCK_COMMENT("lookup_secondary_supers_table {"); 5142 5143 RegSetIterator<Register> available_regs = (temps - rcx).begin(); 5144 5145 // FIXME. Once we are sure that all paths reaching this point really 5146 // do pass rcx as one of our temps we can get rid of the following 5147 // workaround. 5148 assert(temps.contains(rcx), "fix this code"); 5149 5150 // We prefer to have our shift count in rcx. If rcx is one of our 5151 // temps, use it for slot. If not, pick any of our temps. 5152 Register slot; 5153 if (!temps.contains(rcx)) { 5154 slot = *available_regs++; 5155 } else { 5156 slot = rcx; 5157 } 5158 5159 const Register r_array_index = *available_regs++; 5160 const Register r_bitmap = *available_regs++; 5161 5162 // The logic above guarantees this property, but we state it here. 5163 assert_different_registers(r_array_index, r_bitmap, rcx); 5164 5165 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 5166 movq(r_array_index, r_bitmap); 5167 5168 // First check the bitmap to see if super_klass might be present. If 5169 // the bit is zero, we are certain that super_klass is not one of 5170 // the secondary supers. 5171 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 5172 xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64) 5173 salq(r_array_index, slot); 5174 5175 testq(r_array_index, r_array_index); 5176 // We test the MSB of r_array_index, i.e. its sign bit 5177 jcc(Assembler::positive, L_failure); 5178 5179 const Register r_array_base = *available_regs++; 5180 5181 // Get the first array index that can contain super_klass into r_array_index. 5182 // Note: Clobbers r_array_base and slot. 5183 population_count(r_array_index, r_array_index, /*temp2*/r_array_base, /*temp3*/slot); 5184 5185 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 5186 5187 // We will consult the secondary-super array. 5188 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5189 5190 // We're asserting that the first word in an Array<Klass*> is the 5191 // length, and the second word is the first word of the data. If 5192 // that ever changes, r_array_base will have to be adjusted here. 5193 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 5194 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 5195 5196 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5197 jccb(Assembler::equal, L_success); 5198 5199 // Restore slot to its true value 5200 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 5201 5202 // Linear probe. Rotate the bitmap so that the next bit to test is 5203 // in Bit 1. 5204 rorq(r_bitmap, slot); 5205 5206 // Is there another entry to check? Consult the bitmap. 5207 btq(r_bitmap, 1); 5208 jccb(Assembler::carryClear, L_failure); 5209 5210 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 5211 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 5212 // Kills: r_array_length. 5213 // Returns: result. 5214 lookup_secondary_supers_table_slow_path(r_super_klass, 5215 r_array_base, 5216 r_array_index, 5217 r_bitmap, 5218 /*temp1*/result, 5219 /*temp2*/slot, 5220 &L_success, 5221 nullptr); 5222 5223 bind(L_failure); 5224 movq(result, 1); 5225 jmpb(L_fallthrough); 5226 5227 bind(L_success); 5228 xorq(result, result); // = 0 5229 5230 bind(L_fallthrough); 5231 BLOCK_COMMENT("} lookup_secondary_supers_table"); 5232 5233 if (VerifySecondarySupers) { 5234 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 5235 temp1, temp2, temp3); 5236 } 5237 } 5238 5239 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit, 5240 Label* L_success, Label* L_failure) { 5241 Label L_loop, L_fallthrough; 5242 { 5243 int label_nulls = 0; 5244 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 5245 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 5246 assert(label_nulls <= 1, "at most one null in the batch"); 5247 } 5248 bind(L_loop); 5249 cmpq(value, Address(addr, count, Address::times_8)); 5250 jcc(Assembler::equal, *L_success); 5251 addl(count, 1); 5252 cmpl(count, limit); 5253 jcc(Assembler::less, L_loop); 5254 5255 if (&L_fallthrough != L_failure) { 5256 jmp(*L_failure); 5257 } 5258 bind(L_fallthrough); 5259 } 5260 5261 // Called by code generated by check_klass_subtype_slow_path 5262 // above. This is called when there is a collision in the hashed 5263 // lookup in the secondary supers array. 5264 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 5265 Register r_array_base, 5266 Register r_array_index, 5267 Register r_bitmap, 5268 Register temp1, 5269 Register temp2, 5270 Label* L_success, 5271 Label* L_failure) { 5272 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2); 5273 5274 const Register 5275 r_array_length = temp1, 5276 r_sub_klass = noreg, 5277 result = noreg; 5278 5279 Label L_fallthrough; 5280 int label_nulls = 0; 5281 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 5282 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 5283 assert(label_nulls <= 1, "at most one null in the batch"); 5284 5285 // Load the array length. 5286 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 5287 // And adjust the array base to point to the data. 5288 // NB! Effectively increments current slot index by 1. 5289 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 5290 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 5291 5292 // Linear probe 5293 Label L_huge; 5294 5295 // The bitmap is full to bursting. 5296 // Implicit invariant: BITMAP_FULL implies (length > 0) 5297 cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2); 5298 jcc(Assembler::greater, L_huge); 5299 5300 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 5301 // current slot (at secondary_supers[r_array_index]) has not yet 5302 // been inspected, and r_array_index may be out of bounds if we 5303 // wrapped around the end of the array. 5304 5305 { // This is conventional linear probing, but instead of terminating 5306 // when a null entry is found in the table, we maintain a bitmap 5307 // in which a 0 indicates missing entries. 5308 // The check above guarantees there are 0s in the bitmap, so the loop 5309 // eventually terminates. 5310 5311 xorl(temp2, temp2); // = 0; 5312 5313 Label L_again; 5314 bind(L_again); 5315 5316 // Check for array wraparound. 5317 cmpl(r_array_index, r_array_length); 5318 cmovl(Assembler::greaterEqual, r_array_index, temp2); 5319 5320 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5321 jcc(Assembler::equal, *L_success); 5322 5323 // If the next bit in bitmap is zero, we're done. 5324 btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now 5325 jcc(Assembler::carryClear, *L_failure); 5326 5327 rorq(r_bitmap, 1); // Bits 1/2 => 0/1 5328 addl(r_array_index, 1); 5329 5330 jmp(L_again); 5331 } 5332 5333 { // Degenerate case: more than 64 secondary supers. 5334 // FIXME: We could do something smarter here, maybe a vectorized 5335 // comparison or a binary search, but is that worth any added 5336 // complexity? 5337 bind(L_huge); 5338 xorl(r_array_index, r_array_index); // = 0 5339 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, 5340 L_success, 5341 (&L_fallthrough != L_failure ? L_failure : nullptr)); 5342 5343 bind(L_fallthrough); 5344 } 5345 } 5346 5347 struct VerifyHelperArguments { 5348 Klass* _super; 5349 Klass* _sub; 5350 intptr_t _linear_result; 5351 intptr_t _table_result; 5352 }; 5353 5354 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) { 5355 Klass::on_secondary_supers_verification_failure(args->_super, 5356 args->_sub, 5357 args->_linear_result, 5358 args->_table_result, 5359 msg); 5360 } 5361 5362 // Make sure that the hashed lookup and a linear scan agree. 5363 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 5364 Register r_super_klass, 5365 Register result, 5366 Register temp1, 5367 Register temp2, 5368 Register temp3) { 5369 const Register 5370 r_array_index = temp1, 5371 r_array_length = temp2, 5372 r_array_base = temp3, 5373 r_bitmap = noreg; 5374 5375 BLOCK_COMMENT("verify_secondary_supers_table {"); 5376 5377 Label L_success, L_failure, L_check, L_done; 5378 5379 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5380 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 5381 // And adjust the array base to point to the data. 5382 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 5383 5384 testl(r_array_length, r_array_length); // array_length == 0? 5385 jcc(Assembler::zero, L_failure); 5386 5387 movl(r_array_index, 0); 5388 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success); 5389 // fall through to L_failure 5390 5391 const Register linear_result = r_array_index; // reuse temp1 5392 5393 bind(L_failure); // not present 5394 movl(linear_result, 1); 5395 jmp(L_check); 5396 5397 bind(L_success); // present 5398 movl(linear_result, 0); 5399 5400 bind(L_check); 5401 cmpl(linear_result, result); 5402 jcc(Assembler::equal, L_done); 5403 5404 { // To avoid calling convention issues, build a record on the stack 5405 // and pass the pointer to that instead. 5406 push(result); 5407 push(linear_result); 5408 push(r_sub_klass); 5409 push(r_super_klass); 5410 movptr(c_rarg1, rsp); 5411 movptr(c_rarg0, (uintptr_t) "mismatch"); 5412 call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper))); 5413 should_not_reach_here(); 5414 } 5415 bind(L_done); 5416 5417 BLOCK_COMMENT("} verify_secondary_supers_table"); 5418 } 5419 5420 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS 5421 5422 #endif // LP64 5423 5424 void MacroAssembler::clinit_barrier(Register klass, Label* L_fast_path, Label* L_slow_path) { 5425 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 5426 5427 Label L_fallthrough; 5428 if (L_fast_path == nullptr) { 5429 L_fast_path = &L_fallthrough; 5430 } else if (L_slow_path == nullptr) { 5431 L_slow_path = &L_fallthrough; 5432 } 5433 5434 // Fast path check: class is fully initialized. 5435 // init_state needs acquire, but x86 is TSO, and so we are already good. 5436 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 5437 jcc(Assembler::equal, *L_fast_path); 5438 5439 // Fast path check: current thread is initializer thread 5440 cmpptr(r15_thread, Address(klass, InstanceKlass::init_thread_offset())); 5441 if (L_slow_path == &L_fallthrough) { 5442 jcc(Assembler::equal, *L_fast_path); 5443 bind(*L_slow_path); 5444 } else if (L_fast_path == &L_fallthrough) { 5445 jcc(Assembler::notEqual, *L_slow_path); 5446 bind(*L_fast_path); 5447 } else { 5448 Unimplemented(); 5449 } 5450 } 5451 5452 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { 5453 if (VM_Version::supports_cmov()) { 5454 cmovl(cc, dst, src); 5455 } else { 5456 Label L; 5457 jccb(negate_condition(cc), L); 5458 movl(dst, src); 5459 bind(L); 5460 } 5461 } 5462 5463 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { 5464 if (VM_Version::supports_cmov()) { 5465 cmovl(cc, dst, src); 5466 } else { 5467 Label L; 5468 jccb(negate_condition(cc), L); 5469 movl(dst, src); 5470 bind(L); 5471 } 5472 } 5473 5474 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 5475 if (!VerifyOops) return; 5476 5477 BLOCK_COMMENT("verify_oop {"); 5478 #ifdef _LP64 5479 push(rscratch1); 5480 #endif 5481 push(rax); // save rax 5482 push(reg); // pass register argument 5483 5484 // Pass register number to verify_oop_subroutine 5485 const char* b = nullptr; 5486 { 5487 ResourceMark rm; 5488 stringStream ss; 5489 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 5490 b = code_string(ss.as_string()); 5491 } 5492 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 5493 pushptr(buffer.addr(), rscratch1); 5494 5495 // call indirectly to solve generation ordering problem 5496 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5497 call(rax); 5498 // Caller pops the arguments (oop, message) and restores rax, r10 5499 BLOCK_COMMENT("} verify_oop"); 5500 } 5501 5502 void MacroAssembler::vallones(XMMRegister dst, int vector_len) { 5503 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) { 5504 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without 5505 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog 5506 vpternlogd(dst, 0xFF, dst, dst, vector_len); 5507 } else if (VM_Version::supports_avx()) { 5508 vpcmpeqd(dst, dst, dst, vector_len); 5509 } else { 5510 pcmpeqd(dst, dst); 5511 } 5512 } 5513 5514 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 5515 int extra_slot_offset) { 5516 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 5517 int stackElementSize = Interpreter::stackElementSize; 5518 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 5519 #ifdef ASSERT 5520 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 5521 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 5522 #endif 5523 Register scale_reg = noreg; 5524 Address::ScaleFactor scale_factor = Address::no_scale; 5525 if (arg_slot.is_constant()) { 5526 offset += arg_slot.as_constant() * stackElementSize; 5527 } else { 5528 scale_reg = arg_slot.as_register(); 5529 scale_factor = Address::times(stackElementSize); 5530 } 5531 offset += wordSize; // return PC is on stack 5532 return Address(rsp, scale_reg, scale_factor, offset); 5533 } 5534 5535 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 5536 if (!VerifyOops) return; 5537 5538 #ifdef _LP64 5539 push(rscratch1); 5540 #endif 5541 push(rax); // save rax, 5542 // addr may contain rsp so we will have to adjust it based on the push 5543 // we just did (and on 64 bit we do two pushes) 5544 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which 5545 // stores rax into addr which is backwards of what was intended. 5546 if (addr.uses(rsp)) { 5547 lea(rax, addr); 5548 pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord)); 5549 } else { 5550 pushptr(addr); 5551 } 5552 5553 // Pass register number to verify_oop_subroutine 5554 const char* b = nullptr; 5555 { 5556 ResourceMark rm; 5557 stringStream ss; 5558 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 5559 b = code_string(ss.as_string()); 5560 } 5561 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 5562 pushptr(buffer.addr(), rscratch1); 5563 5564 // call indirectly to solve generation ordering problem 5565 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5566 call(rax); 5567 // Caller pops the arguments (addr, message) and restores rax, r10. 5568 } 5569 5570 void MacroAssembler::verify_tlab() { 5571 #ifdef ASSERT 5572 if (UseTLAB && VerifyOops) { 5573 Label next, ok; 5574 Register t1 = rsi; 5575 Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread); 5576 5577 push(t1); 5578 NOT_LP64(push(thread_reg)); 5579 NOT_LP64(get_thread(thread_reg)); 5580 5581 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5582 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset()))); 5583 jcc(Assembler::aboveEqual, next); 5584 STOP("assert(top >= start)"); 5585 should_not_reach_here(); 5586 5587 bind(next); 5588 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); 5589 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5590 jcc(Assembler::aboveEqual, ok); 5591 STOP("assert(top <= end)"); 5592 should_not_reach_here(); 5593 5594 bind(ok); 5595 NOT_LP64(pop(thread_reg)); 5596 pop(t1); 5597 } 5598 #endif 5599 } 5600 5601 class ControlWord { 5602 public: 5603 int32_t _value; 5604 5605 int rounding_control() const { return (_value >> 10) & 3 ; } 5606 int precision_control() const { return (_value >> 8) & 3 ; } 5607 bool precision() const { return ((_value >> 5) & 1) != 0; } 5608 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5609 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5610 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5611 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5612 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5613 5614 void print() const { 5615 // rounding control 5616 const char* rc; 5617 switch (rounding_control()) { 5618 case 0: rc = "round near"; break; 5619 case 1: rc = "round down"; break; 5620 case 2: rc = "round up "; break; 5621 case 3: rc = "chop "; break; 5622 default: 5623 rc = nullptr; // silence compiler warnings 5624 fatal("Unknown rounding control: %d", rounding_control()); 5625 }; 5626 // precision control 5627 const char* pc; 5628 switch (precision_control()) { 5629 case 0: pc = "24 bits "; break; 5630 case 1: pc = "reserved"; break; 5631 case 2: pc = "53 bits "; break; 5632 case 3: pc = "64 bits "; break; 5633 default: 5634 pc = nullptr; // silence compiler warnings 5635 fatal("Unknown precision control: %d", precision_control()); 5636 }; 5637 // flags 5638 char f[9]; 5639 f[0] = ' '; 5640 f[1] = ' '; 5641 f[2] = (precision ()) ? 'P' : 'p'; 5642 f[3] = (underflow ()) ? 'U' : 'u'; 5643 f[4] = (overflow ()) ? 'O' : 'o'; 5644 f[5] = (zero_divide ()) ? 'Z' : 'z'; 5645 f[6] = (denormalized()) ? 'D' : 'd'; 5646 f[7] = (invalid ()) ? 'I' : 'i'; 5647 f[8] = '\x0'; 5648 // output 5649 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); 5650 } 5651 5652 }; 5653 5654 class StatusWord { 5655 public: 5656 int32_t _value; 5657 5658 bool busy() const { return ((_value >> 15) & 1) != 0; } 5659 bool C3() const { return ((_value >> 14) & 1) != 0; } 5660 bool C2() const { return ((_value >> 10) & 1) != 0; } 5661 bool C1() const { return ((_value >> 9) & 1) != 0; } 5662 bool C0() const { return ((_value >> 8) & 1) != 0; } 5663 int top() const { return (_value >> 11) & 7 ; } 5664 bool error_status() const { return ((_value >> 7) & 1) != 0; } 5665 bool stack_fault() const { return ((_value >> 6) & 1) != 0; } 5666 bool precision() const { return ((_value >> 5) & 1) != 0; } 5667 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5668 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5669 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5670 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5671 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5672 5673 void print() const { 5674 // condition codes 5675 char c[5]; 5676 c[0] = (C3()) ? '3' : '-'; 5677 c[1] = (C2()) ? '2' : '-'; 5678 c[2] = (C1()) ? '1' : '-'; 5679 c[3] = (C0()) ? '0' : '-'; 5680 c[4] = '\x0'; 5681 // flags 5682 char f[9]; 5683 f[0] = (error_status()) ? 'E' : '-'; 5684 f[1] = (stack_fault ()) ? 'S' : '-'; 5685 f[2] = (precision ()) ? 'P' : '-'; 5686 f[3] = (underflow ()) ? 'U' : '-'; 5687 f[4] = (overflow ()) ? 'O' : '-'; 5688 f[5] = (zero_divide ()) ? 'Z' : '-'; 5689 f[6] = (denormalized()) ? 'D' : '-'; 5690 f[7] = (invalid ()) ? 'I' : '-'; 5691 f[8] = '\x0'; 5692 // output 5693 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); 5694 } 5695 5696 }; 5697 5698 class TagWord { 5699 public: 5700 int32_t _value; 5701 5702 int tag_at(int i) const { return (_value >> (i*2)) & 3; } 5703 5704 void print() const { 5705 printf("%04x", _value & 0xFFFF); 5706 } 5707 5708 }; 5709 5710 class FPU_Register { 5711 public: 5712 int32_t _m0; 5713 int32_t _m1; 5714 int16_t _ex; 5715 5716 bool is_indefinite() const { 5717 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; 5718 } 5719 5720 void print() const { 5721 char sign = (_ex < 0) ? '-' : '+'; 5722 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; 5723 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); 5724 }; 5725 5726 }; 5727 5728 class FPU_State { 5729 public: 5730 enum { 5731 register_size = 10, 5732 number_of_registers = 8, 5733 register_mask = 7 5734 }; 5735 5736 ControlWord _control_word; 5737 StatusWord _status_word; 5738 TagWord _tag_word; 5739 int32_t _error_offset; 5740 int32_t _error_selector; 5741 int32_t _data_offset; 5742 int32_t _data_selector; 5743 int8_t _register[register_size * number_of_registers]; 5744 5745 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } 5746 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } 5747 5748 const char* tag_as_string(int tag) const { 5749 switch (tag) { 5750 case 0: return "valid"; 5751 case 1: return "zero"; 5752 case 2: return "special"; 5753 case 3: return "empty"; 5754 } 5755 ShouldNotReachHere(); 5756 return nullptr; 5757 } 5758 5759 void print() const { 5760 // print computation registers 5761 { int t = _status_word.top(); 5762 for (int i = 0; i < number_of_registers; i++) { 5763 int j = (i - t) & register_mask; 5764 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); 5765 st(j)->print(); 5766 printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); 5767 } 5768 } 5769 printf("\n"); 5770 // print control registers 5771 printf("ctrl = "); _control_word.print(); printf("\n"); 5772 printf("stat = "); _status_word .print(); printf("\n"); 5773 printf("tags = "); _tag_word .print(); printf("\n"); 5774 } 5775 5776 }; 5777 5778 class Flag_Register { 5779 public: 5780 int32_t _value; 5781 5782 bool overflow() const { return ((_value >> 11) & 1) != 0; } 5783 bool direction() const { return ((_value >> 10) & 1) != 0; } 5784 bool sign() const { return ((_value >> 7) & 1) != 0; } 5785 bool zero() const { return ((_value >> 6) & 1) != 0; } 5786 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } 5787 bool parity() const { return ((_value >> 2) & 1) != 0; } 5788 bool carry() const { return ((_value >> 0) & 1) != 0; } 5789 5790 void print() const { 5791 // flags 5792 char f[8]; 5793 f[0] = (overflow ()) ? 'O' : '-'; 5794 f[1] = (direction ()) ? 'D' : '-'; 5795 f[2] = (sign ()) ? 'S' : '-'; 5796 f[3] = (zero ()) ? 'Z' : '-'; 5797 f[4] = (auxiliary_carry()) ? 'A' : '-'; 5798 f[5] = (parity ()) ? 'P' : '-'; 5799 f[6] = (carry ()) ? 'C' : '-'; 5800 f[7] = '\x0'; 5801 // output 5802 printf("%08x flags = %s", _value, f); 5803 } 5804 5805 }; 5806 5807 class IU_Register { 5808 public: 5809 int32_t _value; 5810 5811 void print() const { 5812 printf("%08x %11d", _value, _value); 5813 } 5814 5815 }; 5816 5817 class IU_State { 5818 public: 5819 Flag_Register _eflags; 5820 IU_Register _rdi; 5821 IU_Register _rsi; 5822 IU_Register _rbp; 5823 IU_Register _rsp; 5824 IU_Register _rbx; 5825 IU_Register _rdx; 5826 IU_Register _rcx; 5827 IU_Register _rax; 5828 5829 void print() const { 5830 // computation registers 5831 printf("rax, = "); _rax.print(); printf("\n"); 5832 printf("rbx, = "); _rbx.print(); printf("\n"); 5833 printf("rcx = "); _rcx.print(); printf("\n"); 5834 printf("rdx = "); _rdx.print(); printf("\n"); 5835 printf("rdi = "); _rdi.print(); printf("\n"); 5836 printf("rsi = "); _rsi.print(); printf("\n"); 5837 printf("rbp, = "); _rbp.print(); printf("\n"); 5838 printf("rsp = "); _rsp.print(); printf("\n"); 5839 printf("\n"); 5840 // control registers 5841 printf("flgs = "); _eflags.print(); printf("\n"); 5842 } 5843 }; 5844 5845 5846 class CPU_State { 5847 public: 5848 FPU_State _fpu_state; 5849 IU_State _iu_state; 5850 5851 void print() const { 5852 printf("--------------------------------------------------\n"); 5853 _iu_state .print(); 5854 printf("\n"); 5855 _fpu_state.print(); 5856 printf("--------------------------------------------------\n"); 5857 } 5858 5859 }; 5860 5861 5862 static void _print_CPU_state(CPU_State* state) { 5863 state->print(); 5864 }; 5865 5866 5867 void MacroAssembler::print_CPU_state() { 5868 push_CPU_state(); 5869 push(rsp); // pass CPU state 5870 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); 5871 addptr(rsp, wordSize); // discard argument 5872 pop_CPU_state(); 5873 } 5874 5875 5876 #ifndef _LP64 5877 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) { 5878 static int counter = 0; 5879 FPU_State* fs = &state->_fpu_state; 5880 counter++; 5881 // For leaf calls, only verify that the top few elements remain empty. 5882 // We only need 1 empty at the top for C2 code. 5883 if( stack_depth < 0 ) { 5884 if( fs->tag_for_st(7) != 3 ) { 5885 printf("FPR7 not empty\n"); 5886 state->print(); 5887 assert(false, "error"); 5888 return false; 5889 } 5890 return true; // All other stack states do not matter 5891 } 5892 5893 assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(), 5894 "bad FPU control word"); 5895 5896 // compute stack depth 5897 int i = 0; 5898 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++; 5899 int d = i; 5900 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++; 5901 // verify findings 5902 if (i != FPU_State::number_of_registers) { 5903 // stack not contiguous 5904 printf("%s: stack not contiguous at ST%d\n", s, i); 5905 state->print(); 5906 assert(false, "error"); 5907 return false; 5908 } 5909 // check if computed stack depth corresponds to expected stack depth 5910 if (stack_depth < 0) { 5911 // expected stack depth is -stack_depth or less 5912 if (d > -stack_depth) { 5913 // too many elements on the stack 5914 printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d); 5915 state->print(); 5916 assert(false, "error"); 5917 return false; 5918 } 5919 } else { 5920 // expected stack depth is stack_depth 5921 if (d != stack_depth) { 5922 // wrong stack depth 5923 printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d); 5924 state->print(); 5925 assert(false, "error"); 5926 return false; 5927 } 5928 } 5929 // everything is cool 5930 return true; 5931 } 5932 5933 void MacroAssembler::verify_FPU(int stack_depth, const char* s) { 5934 if (!VerifyFPU) return; 5935 push_CPU_state(); 5936 push(rsp); // pass CPU state 5937 ExternalAddress msg((address) s); 5938 // pass message string s 5939 pushptr(msg.addr(), noreg); 5940 push(stack_depth); // pass stack depth 5941 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU))); 5942 addptr(rsp, 3 * wordSize); // discard arguments 5943 // check for error 5944 { Label L; 5945 testl(rax, rax); 5946 jcc(Assembler::notZero, L); 5947 int3(); // break if error condition 5948 bind(L); 5949 } 5950 pop_CPU_state(); 5951 } 5952 #endif // _LP64 5953 5954 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) { 5955 // Either restore the MXCSR register after returning from the JNI Call 5956 // or verify that it wasn't changed (with -Xcheck:jni flag). 5957 if (VM_Version::supports_sse()) { 5958 if (RestoreMXCSROnJNICalls) { 5959 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch); 5960 } else if (CheckJNICalls) { 5961 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry())); 5962 } 5963 } 5964 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty. 5965 vzeroupper(); 5966 5967 #ifndef _LP64 5968 // Either restore the x87 floating pointer control word after returning 5969 // from the JNI call or verify that it wasn't changed. 5970 if (CheckJNICalls) { 5971 call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry())); 5972 } 5973 #endif // _LP64 5974 } 5975 5976 // ((OopHandle)result).resolve(); 5977 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 5978 assert_different_registers(result, tmp); 5979 5980 // Only 64 bit platforms support GCs that require a tmp register 5981 // Only IN_HEAP loads require a thread_tmp register 5982 // OopHandle::resolve is an indirection like jobject. 5983 access_load_at(T_OBJECT, IN_NATIVE, 5984 result, Address(result, 0), tmp, /*tmp_thread*/noreg); 5985 } 5986 5987 // ((WeakHandle)result).resolve(); 5988 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 5989 assert_different_registers(rresult, rtmp); 5990 Label resolved; 5991 5992 // A null weak handle resolves to null. 5993 cmpptr(rresult, 0); 5994 jcc(Assembler::equal, resolved); 5995 5996 // Only 64 bit platforms support GCs that require a tmp register 5997 // Only IN_HEAP loads require a thread_tmp register 5998 // WeakHandle::resolve is an indirection like jweak. 5999 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 6000 rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg); 6001 bind(resolved); 6002 } 6003 6004 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) { 6005 // get mirror 6006 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 6007 load_method_holder(mirror, method); 6008 movptr(mirror, Address(mirror, mirror_offset)); 6009 resolve_oop_handle(mirror, tmp); 6010 } 6011 6012 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 6013 load_method_holder(rresult, rmethod); 6014 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 6015 } 6016 6017 void MacroAssembler::load_method_holder(Register holder, Register method) { 6018 movptr(holder, Address(method, Method::const_offset())); // ConstMethod* 6019 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 6020 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 6021 } 6022 6023 #ifdef _LP64 6024 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 6025 assert(UseCompactObjectHeaders, "expect compact object headers"); 6026 movq(dst, Address(src, oopDesc::mark_offset_in_bytes())); 6027 shrq(dst, markWord::klass_shift); 6028 } 6029 #endif 6030 6031 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) { 6032 assert_different_registers(src, tmp); 6033 assert_different_registers(dst, tmp); 6034 #ifdef _LP64 6035 if (UseCompactObjectHeaders) { 6036 load_narrow_klass_compact(dst, src); 6037 decode_klass_not_null(dst, tmp); 6038 } else if (UseCompressedClassPointers) { 6039 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 6040 decode_klass_not_null(dst, tmp); 6041 } else 6042 #endif 6043 { 6044 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 6045 } 6046 } 6047 6048 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) { 6049 assert(!UseCompactObjectHeaders, "not with compact headers"); 6050 assert_different_registers(src, tmp); 6051 assert_different_registers(dst, tmp); 6052 #ifdef _LP64 6053 if (UseCompressedClassPointers) { 6054 encode_klass_not_null(src, tmp); 6055 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); 6056 } else 6057 #endif 6058 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); 6059 } 6060 6061 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) { 6062 #ifdef _LP64 6063 if (UseCompactObjectHeaders) { 6064 assert(tmp != noreg, "need tmp"); 6065 assert_different_registers(klass, obj, tmp); 6066 load_narrow_klass_compact(tmp, obj); 6067 cmpl(klass, tmp); 6068 } else if (UseCompressedClassPointers) { 6069 cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 6070 } else 6071 #endif 6072 { 6073 cmpptr(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 6074 } 6075 } 6076 6077 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 6078 #ifdef _LP64 6079 if (UseCompactObjectHeaders) { 6080 assert(tmp2 != noreg, "need tmp2"); 6081 assert_different_registers(obj1, obj2, tmp1, tmp2); 6082 load_narrow_klass_compact(tmp1, obj1); 6083 load_narrow_klass_compact(tmp2, obj2); 6084 cmpl(tmp1, tmp2); 6085 } else if (UseCompressedClassPointers) { 6086 movl(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 6087 cmpl(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes())); 6088 } else 6089 #endif 6090 { 6091 movptr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 6092 cmpptr(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes())); 6093 } 6094 } 6095 6096 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 6097 Register tmp1, Register thread_tmp) { 6098 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 6099 decorators = AccessInternal::decorator_fixup(decorators, type); 6100 bool as_raw = (decorators & AS_RAW) != 0; 6101 if (as_raw) { 6102 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 6103 } else { 6104 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 6105 } 6106 } 6107 6108 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 6109 Register tmp1, Register tmp2, Register tmp3) { 6110 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 6111 decorators = AccessInternal::decorator_fixup(decorators, type); 6112 bool as_raw = (decorators & AS_RAW) != 0; 6113 if (as_raw) { 6114 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 6115 } else { 6116 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 6117 } 6118 } 6119 6120 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 6121 Register thread_tmp, DecoratorSet decorators) { 6122 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 6123 } 6124 6125 // Doesn't do verification, generates fixed size code 6126 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 6127 Register thread_tmp, DecoratorSet decorators) { 6128 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); 6129 } 6130 6131 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 6132 Register tmp2, Register tmp3, DecoratorSet decorators) { 6133 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 6134 } 6135 6136 // Used for storing nulls. 6137 void MacroAssembler::store_heap_oop_null(Address dst) { 6138 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 6139 } 6140 6141 #ifdef _LP64 6142 void MacroAssembler::store_klass_gap(Register dst, Register src) { 6143 assert(!UseCompactObjectHeaders, "Don't use with compact headers"); 6144 if (UseCompressedClassPointers) { 6145 // Store to klass gap in destination 6146 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); 6147 } 6148 } 6149 6150 #ifdef ASSERT 6151 void MacroAssembler::verify_heapbase(const char* msg) { 6152 assert (UseCompressedOops, "should be compressed"); 6153 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6154 if (CheckCompressedOops) { 6155 Label ok; 6156 ExternalAddress src2(CompressedOops::base_addr()); 6157 const bool is_src2_reachable = reachable(src2); 6158 if (!is_src2_reachable) { 6159 push(rscratch1); // cmpptr trashes rscratch1 6160 } 6161 cmpptr(r12_heapbase, src2, rscratch1); 6162 jcc(Assembler::equal, ok); 6163 STOP(msg); 6164 bind(ok); 6165 if (!is_src2_reachable) { 6166 pop(rscratch1); 6167 } 6168 } 6169 } 6170 #endif 6171 6172 // Algorithm must match oop.inline.hpp encode_heap_oop. 6173 void MacroAssembler::encode_heap_oop(Register r) { 6174 #ifdef ASSERT 6175 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 6176 #endif 6177 verify_oop_msg(r, "broken oop in encode_heap_oop"); 6178 if (CompressedOops::base() == nullptr) { 6179 if (CompressedOops::shift() != 0) { 6180 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6181 shrq(r, LogMinObjAlignmentInBytes); 6182 } 6183 return; 6184 } 6185 testq(r, r); 6186 cmovq(Assembler::equal, r, r12_heapbase); 6187 subq(r, r12_heapbase); 6188 shrq(r, LogMinObjAlignmentInBytes); 6189 } 6190 6191 void MacroAssembler::encode_heap_oop_not_null(Register r) { 6192 #ifdef ASSERT 6193 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 6194 if (CheckCompressedOops) { 6195 Label ok; 6196 testq(r, r); 6197 jcc(Assembler::notEqual, ok); 6198 STOP("null oop passed to encode_heap_oop_not_null"); 6199 bind(ok); 6200 } 6201 #endif 6202 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 6203 if (CompressedOops::base() != nullptr) { 6204 subq(r, r12_heapbase); 6205 } 6206 if (CompressedOops::shift() != 0) { 6207 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6208 shrq(r, LogMinObjAlignmentInBytes); 6209 } 6210 } 6211 6212 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 6213 #ifdef ASSERT 6214 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 6215 if (CheckCompressedOops) { 6216 Label ok; 6217 testq(src, src); 6218 jcc(Assembler::notEqual, ok); 6219 STOP("null oop passed to encode_heap_oop_not_null2"); 6220 bind(ok); 6221 } 6222 #endif 6223 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 6224 if (dst != src) { 6225 movq(dst, src); 6226 } 6227 if (CompressedOops::base() != nullptr) { 6228 subq(dst, r12_heapbase); 6229 } 6230 if (CompressedOops::shift() != 0) { 6231 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6232 shrq(dst, LogMinObjAlignmentInBytes); 6233 } 6234 } 6235 6236 void MacroAssembler::decode_heap_oop(Register r) { 6237 #ifdef ASSERT 6238 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 6239 #endif 6240 if (CompressedOops::base() == nullptr) { 6241 if (CompressedOops::shift() != 0) { 6242 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6243 shlq(r, LogMinObjAlignmentInBytes); 6244 } 6245 } else { 6246 Label done; 6247 shlq(r, LogMinObjAlignmentInBytes); 6248 jccb(Assembler::equal, done); 6249 addq(r, r12_heapbase); 6250 bind(done); 6251 } 6252 verify_oop_msg(r, "broken oop in decode_heap_oop"); 6253 } 6254 6255 void MacroAssembler::decode_heap_oop_not_null(Register r) { 6256 // Note: it will change flags 6257 assert (UseCompressedOops, "should only be used for compressed headers"); 6258 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6259 // Cannot assert, unverified entry point counts instructions (see .ad file) 6260 // vtableStubs also counts instructions in pd_code_size_limit. 6261 // Also do not verify_oop as this is called by verify_oop. 6262 if (CompressedOops::shift() != 0) { 6263 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6264 shlq(r, LogMinObjAlignmentInBytes); 6265 if (CompressedOops::base() != nullptr) { 6266 addq(r, r12_heapbase); 6267 } 6268 } else { 6269 assert (CompressedOops::base() == nullptr, "sanity"); 6270 } 6271 } 6272 6273 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 6274 // Note: it will change flags 6275 assert (UseCompressedOops, "should only be used for compressed headers"); 6276 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6277 // Cannot assert, unverified entry point counts instructions (see .ad file) 6278 // vtableStubs also counts instructions in pd_code_size_limit. 6279 // Also do not verify_oop as this is called by verify_oop. 6280 if (CompressedOops::shift() != 0) { 6281 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6282 if (LogMinObjAlignmentInBytes == Address::times_8) { 6283 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); 6284 } else { 6285 if (dst != src) { 6286 movq(dst, src); 6287 } 6288 shlq(dst, LogMinObjAlignmentInBytes); 6289 if (CompressedOops::base() != nullptr) { 6290 addq(dst, r12_heapbase); 6291 } 6292 } 6293 } else { 6294 assert (CompressedOops::base() == nullptr, "sanity"); 6295 if (dst != src) { 6296 movq(dst, src); 6297 } 6298 } 6299 } 6300 6301 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) { 6302 assert_different_registers(r, tmp); 6303 if (CompressedKlassPointers::base() != nullptr) { 6304 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 6305 subq(r, tmp); 6306 } 6307 if (CompressedKlassPointers::shift() != 0) { 6308 shrq(r, CompressedKlassPointers::shift()); 6309 } 6310 } 6311 6312 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) { 6313 assert_different_registers(src, dst); 6314 if (CompressedKlassPointers::base() != nullptr) { 6315 mov64(dst, -(int64_t)CompressedKlassPointers::base()); 6316 addq(dst, src); 6317 } else { 6318 movptr(dst, src); 6319 } 6320 if (CompressedKlassPointers::shift() != 0) { 6321 shrq(dst, CompressedKlassPointers::shift()); 6322 } 6323 } 6324 6325 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) { 6326 assert_different_registers(r, tmp); 6327 // Note: it will change flags 6328 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 6329 // Cannot assert, unverified entry point counts instructions (see .ad file) 6330 // vtableStubs also counts instructions in pd_code_size_limit. 6331 // Also do not verify_oop as this is called by verify_oop. 6332 if (CompressedKlassPointers::shift() != 0) { 6333 shlq(r, CompressedKlassPointers::shift()); 6334 } 6335 if (CompressedKlassPointers::base() != nullptr) { 6336 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 6337 addq(r, tmp); 6338 } 6339 } 6340 6341 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) { 6342 assert_different_registers(src, dst); 6343 // Note: it will change flags 6344 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6345 // Cannot assert, unverified entry point counts instructions (see .ad file) 6346 // vtableStubs also counts instructions in pd_code_size_limit. 6347 // Also do not verify_oop as this is called by verify_oop. 6348 6349 if (CompressedKlassPointers::base() == nullptr && 6350 CompressedKlassPointers::shift() == 0) { 6351 // The best case scenario is that there is no base or shift. Then it is already 6352 // a pointer that needs nothing but a register rename. 6353 movl(dst, src); 6354 } else { 6355 if (CompressedKlassPointers::shift() <= Address::times_8) { 6356 if (CompressedKlassPointers::base() != nullptr) { 6357 mov64(dst, (int64_t)CompressedKlassPointers::base()); 6358 } else { 6359 xorq(dst, dst); 6360 } 6361 if (CompressedKlassPointers::shift() != 0) { 6362 assert(CompressedKlassPointers::shift() == Address::times_8, "klass not aligned on 64bits?"); 6363 leaq(dst, Address(dst, src, Address::times_8, 0)); 6364 } else { 6365 addq(dst, src); 6366 } 6367 } else { 6368 if (CompressedKlassPointers::base() != nullptr) { 6369 const uint64_t base_right_shifted = 6370 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 6371 mov64(dst, base_right_shifted); 6372 } else { 6373 xorq(dst, dst); 6374 } 6375 addq(dst, src); 6376 shlq(dst, CompressedKlassPointers::shift()); 6377 } 6378 } 6379 } 6380 6381 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 6382 assert (UseCompressedOops, "should only be used for compressed headers"); 6383 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6384 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6385 int oop_index = oop_recorder()->find_index(obj); 6386 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6387 mov_narrow_oop(dst, oop_index, rspec); 6388 } 6389 6390 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { 6391 assert (UseCompressedOops, "should only be used for compressed headers"); 6392 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6393 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6394 int oop_index = oop_recorder()->find_index(obj); 6395 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6396 mov_narrow_oop(dst, oop_index, rspec); 6397 } 6398 6399 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 6400 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6401 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6402 int klass_index = oop_recorder()->find_index(k); 6403 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6404 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6405 } 6406 6407 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) { 6408 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6409 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6410 int klass_index = oop_recorder()->find_index(k); 6411 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6412 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6413 } 6414 6415 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { 6416 assert (UseCompressedOops, "should only be used for compressed headers"); 6417 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6418 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6419 int oop_index = oop_recorder()->find_index(obj); 6420 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6421 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6422 } 6423 6424 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { 6425 assert (UseCompressedOops, "should only be used for compressed headers"); 6426 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6427 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6428 int oop_index = oop_recorder()->find_index(obj); 6429 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6430 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6431 } 6432 6433 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) { 6434 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6435 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6436 int klass_index = oop_recorder()->find_index(k); 6437 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6438 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6439 } 6440 6441 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) { 6442 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6443 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6444 int klass_index = oop_recorder()->find_index(k); 6445 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6446 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6447 } 6448 6449 void MacroAssembler::reinit_heapbase() { 6450 if (UseCompressedOops) { 6451 if (Universe::heap() != nullptr) { 6452 if (CompressedOops::base() == nullptr) { 6453 MacroAssembler::xorptr(r12_heapbase, r12_heapbase); 6454 } else { 6455 mov64(r12_heapbase, (int64_t)CompressedOops::base()); 6456 } 6457 } else { 6458 movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr())); 6459 } 6460 } 6461 } 6462 6463 #endif // _LP64 6464 6465 #if COMPILER2_OR_JVMCI 6466 6467 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers 6468 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6469 // cnt - number of qwords (8-byte words). 6470 // base - start address, qword aligned. 6471 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end; 6472 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0); 6473 if (use64byteVector) { 6474 vpxor(xtmp, xtmp, xtmp, AVX_512bit); 6475 } else if (MaxVectorSize >= 32) { 6476 vpxor(xtmp, xtmp, xtmp, AVX_256bit); 6477 } else { 6478 pxor(xtmp, xtmp); 6479 } 6480 jmp(L_zero_64_bytes); 6481 6482 BIND(L_loop); 6483 if (MaxVectorSize >= 32) { 6484 fill64(base, 0, xtmp, use64byteVector); 6485 } else { 6486 movdqu(Address(base, 0), xtmp); 6487 movdqu(Address(base, 16), xtmp); 6488 movdqu(Address(base, 32), xtmp); 6489 movdqu(Address(base, 48), xtmp); 6490 } 6491 addptr(base, 64); 6492 6493 BIND(L_zero_64_bytes); 6494 subptr(cnt, 8); 6495 jccb(Assembler::greaterEqual, L_loop); 6496 6497 // Copy trailing 64 bytes 6498 if (use64byteVector) { 6499 addptr(cnt, 8); 6500 jccb(Assembler::equal, L_end); 6501 fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true); 6502 jmp(L_end); 6503 } else { 6504 addptr(cnt, 4); 6505 jccb(Assembler::less, L_tail); 6506 if (MaxVectorSize >= 32) { 6507 vmovdqu(Address(base, 0), xtmp); 6508 } else { 6509 movdqu(Address(base, 0), xtmp); 6510 movdqu(Address(base, 16), xtmp); 6511 } 6512 } 6513 addptr(base, 32); 6514 subptr(cnt, 4); 6515 6516 BIND(L_tail); 6517 addptr(cnt, 4); 6518 jccb(Assembler::lessEqual, L_end); 6519 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) { 6520 fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp); 6521 } else { 6522 decrement(cnt); 6523 6524 BIND(L_sloop); 6525 movq(Address(base, 0), xtmp); 6526 addptr(base, 8); 6527 decrement(cnt); 6528 jccb(Assembler::greaterEqual, L_sloop); 6529 } 6530 BIND(L_end); 6531 } 6532 6533 // Clearing constant sized memory using YMM/ZMM registers. 6534 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6535 assert(UseAVX > 2 && VM_Version::supports_avx512vl(), ""); 6536 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0); 6537 6538 int vector64_count = (cnt & (~0x7)) >> 3; 6539 cnt = cnt & 0x7; 6540 const int fill64_per_loop = 4; 6541 const int max_unrolled_fill64 = 8; 6542 6543 // 64 byte initialization loop. 6544 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit); 6545 int start64 = 0; 6546 if (vector64_count > max_unrolled_fill64) { 6547 Label LOOP; 6548 Register index = rtmp; 6549 6550 start64 = vector64_count - (vector64_count % fill64_per_loop); 6551 6552 movl(index, 0); 6553 BIND(LOOP); 6554 for (int i = 0; i < fill64_per_loop; i++) { 6555 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector); 6556 } 6557 addl(index, fill64_per_loop * 64); 6558 cmpl(index, start64 * 64); 6559 jccb(Assembler::less, LOOP); 6560 } 6561 for (int i = start64; i < vector64_count; i++) { 6562 fill64(base, i * 64, xtmp, use64byteVector); 6563 } 6564 6565 // Clear remaining 64 byte tail. 6566 int disp = vector64_count * 64; 6567 if (cnt) { 6568 switch (cnt) { 6569 case 1: 6570 movq(Address(base, disp), xtmp); 6571 break; 6572 case 2: 6573 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit); 6574 break; 6575 case 3: 6576 movl(rtmp, 0x7); 6577 kmovwl(mask, rtmp); 6578 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit); 6579 break; 6580 case 4: 6581 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6582 break; 6583 case 5: 6584 if (use64byteVector) { 6585 movl(rtmp, 0x1F); 6586 kmovwl(mask, rtmp); 6587 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6588 } else { 6589 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6590 movq(Address(base, disp + 32), xtmp); 6591 } 6592 break; 6593 case 6: 6594 if (use64byteVector) { 6595 movl(rtmp, 0x3F); 6596 kmovwl(mask, rtmp); 6597 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6598 } else { 6599 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6600 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit); 6601 } 6602 break; 6603 case 7: 6604 if (use64byteVector) { 6605 movl(rtmp, 0x7F); 6606 kmovwl(mask, rtmp); 6607 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6608 } else { 6609 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6610 movl(rtmp, 0x7); 6611 kmovwl(mask, rtmp); 6612 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit); 6613 } 6614 break; 6615 default: 6616 fatal("Unexpected length : %d\n",cnt); 6617 break; 6618 } 6619 } 6620 } 6621 6622 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, 6623 bool is_large, KRegister mask) { 6624 // cnt - number of qwords (8-byte words). 6625 // base - start address, qword aligned. 6626 // is_large - if optimizers know cnt is larger than InitArrayShortSize 6627 assert(base==rdi, "base register must be edi for rep stos"); 6628 assert(tmp==rax, "tmp register must be eax for rep stos"); 6629 assert(cnt==rcx, "cnt register must be ecx for rep stos"); 6630 assert(InitArrayShortSize % BytesPerLong == 0, 6631 "InitArrayShortSize should be the multiple of BytesPerLong"); 6632 6633 Label DONE; 6634 if (!is_large || !UseXMMForObjInit) { 6635 xorptr(tmp, tmp); 6636 } 6637 6638 if (!is_large) { 6639 Label LOOP, LONG; 6640 cmpptr(cnt, InitArrayShortSize/BytesPerLong); 6641 jccb(Assembler::greater, LONG); 6642 6643 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 6644 6645 decrement(cnt); 6646 jccb(Assembler::negative, DONE); // Zero length 6647 6648 // Use individual pointer-sized stores for small counts: 6649 BIND(LOOP); 6650 movptr(Address(base, cnt, Address::times_ptr), tmp); 6651 decrement(cnt); 6652 jccb(Assembler::greaterEqual, LOOP); 6653 jmpb(DONE); 6654 6655 BIND(LONG); 6656 } 6657 6658 // Use longer rep-prefixed ops for non-small counts: 6659 if (UseFastStosb) { 6660 shlptr(cnt, 3); // convert to number of bytes 6661 rep_stosb(); 6662 } else if (UseXMMForObjInit) { 6663 xmm_clear_mem(base, cnt, tmp, xtmp, mask); 6664 } else { 6665 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 6666 rep_stos(); 6667 } 6668 6669 BIND(DONE); 6670 } 6671 6672 #endif //COMPILER2_OR_JVMCI 6673 6674 6675 void MacroAssembler::generate_fill(BasicType t, bool aligned, 6676 Register to, Register value, Register count, 6677 Register rtmp, XMMRegister xtmp) { 6678 ShortBranchVerifier sbv(this); 6679 assert_different_registers(to, value, count, rtmp); 6680 Label L_exit; 6681 Label L_fill_2_bytes, L_fill_4_bytes; 6682 6683 #if defined(COMPILER2) && defined(_LP64) 6684 if(MaxVectorSize >=32 && 6685 VM_Version::supports_avx512vlbw() && 6686 VM_Version::supports_bmi2()) { 6687 generate_fill_avx3(t, to, value, count, rtmp, xtmp); 6688 return; 6689 } 6690 #endif 6691 6692 int shift = -1; 6693 switch (t) { 6694 case T_BYTE: 6695 shift = 2; 6696 break; 6697 case T_SHORT: 6698 shift = 1; 6699 break; 6700 case T_INT: 6701 shift = 0; 6702 break; 6703 default: ShouldNotReachHere(); 6704 } 6705 6706 if (t == T_BYTE) { 6707 andl(value, 0xff); 6708 movl(rtmp, value); 6709 shll(rtmp, 8); 6710 orl(value, rtmp); 6711 } 6712 if (t == T_SHORT) { 6713 andl(value, 0xffff); 6714 } 6715 if (t == T_BYTE || t == T_SHORT) { 6716 movl(rtmp, value); 6717 shll(rtmp, 16); 6718 orl(value, rtmp); 6719 } 6720 6721 cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element 6722 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp 6723 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) { 6724 Label L_skip_align2; 6725 // align source address at 4 bytes address boundary 6726 if (t == T_BYTE) { 6727 Label L_skip_align1; 6728 // One byte misalignment happens only for byte arrays 6729 testptr(to, 1); 6730 jccb(Assembler::zero, L_skip_align1); 6731 movb(Address(to, 0), value); 6732 increment(to); 6733 decrement(count); 6734 BIND(L_skip_align1); 6735 } 6736 // Two bytes misalignment happens only for byte and short (char) arrays 6737 testptr(to, 2); 6738 jccb(Assembler::zero, L_skip_align2); 6739 movw(Address(to, 0), value); 6740 addptr(to, 2); 6741 subptr(count, 1<<(shift-1)); 6742 BIND(L_skip_align2); 6743 } 6744 if (UseSSE < 2) { 6745 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6746 // Fill 32-byte chunks 6747 subptr(count, 8 << shift); 6748 jcc(Assembler::less, L_check_fill_8_bytes); 6749 align(16); 6750 6751 BIND(L_fill_32_bytes_loop); 6752 6753 for (int i = 0; i < 32; i += 4) { 6754 movl(Address(to, i), value); 6755 } 6756 6757 addptr(to, 32); 6758 subptr(count, 8 << shift); 6759 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6760 BIND(L_check_fill_8_bytes); 6761 addptr(count, 8 << shift); 6762 jccb(Assembler::zero, L_exit); 6763 jmpb(L_fill_8_bytes); 6764 6765 // 6766 // length is too short, just fill qwords 6767 // 6768 BIND(L_fill_8_bytes_loop); 6769 movl(Address(to, 0), value); 6770 movl(Address(to, 4), value); 6771 addptr(to, 8); 6772 BIND(L_fill_8_bytes); 6773 subptr(count, 1 << (shift + 1)); 6774 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6775 // fall through to fill 4 bytes 6776 } else { 6777 Label L_fill_32_bytes; 6778 if (!UseUnalignedLoadStores) { 6779 // align to 8 bytes, we know we are 4 byte aligned to start 6780 testptr(to, 4); 6781 jccb(Assembler::zero, L_fill_32_bytes); 6782 movl(Address(to, 0), value); 6783 addptr(to, 4); 6784 subptr(count, 1<<shift); 6785 } 6786 BIND(L_fill_32_bytes); 6787 { 6788 assert( UseSSE >= 2, "supported cpu only" ); 6789 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6790 movdl(xtmp, value); 6791 if (UseAVX >= 2 && UseUnalignedLoadStores) { 6792 Label L_check_fill_32_bytes; 6793 if (UseAVX > 2) { 6794 // Fill 64-byte chunks 6795 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2; 6796 6797 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2 6798 cmpptr(count, VM_Version::avx3_threshold()); 6799 jccb(Assembler::below, L_check_fill_64_bytes_avx2); 6800 6801 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit); 6802 6803 subptr(count, 16 << shift); 6804 jccb(Assembler::less, L_check_fill_32_bytes); 6805 align(16); 6806 6807 BIND(L_fill_64_bytes_loop_avx3); 6808 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit); 6809 addptr(to, 64); 6810 subptr(count, 16 << shift); 6811 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3); 6812 jmpb(L_check_fill_32_bytes); 6813 6814 BIND(L_check_fill_64_bytes_avx2); 6815 } 6816 // Fill 64-byte chunks 6817 Label L_fill_64_bytes_loop; 6818 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit); 6819 6820 subptr(count, 16 << shift); 6821 jcc(Assembler::less, L_check_fill_32_bytes); 6822 align(16); 6823 6824 BIND(L_fill_64_bytes_loop); 6825 vmovdqu(Address(to, 0), xtmp); 6826 vmovdqu(Address(to, 32), xtmp); 6827 addptr(to, 64); 6828 subptr(count, 16 << shift); 6829 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop); 6830 6831 BIND(L_check_fill_32_bytes); 6832 addptr(count, 8 << shift); 6833 jccb(Assembler::less, L_check_fill_8_bytes); 6834 vmovdqu(Address(to, 0), xtmp); 6835 addptr(to, 32); 6836 subptr(count, 8 << shift); 6837 6838 BIND(L_check_fill_8_bytes); 6839 // clean upper bits of YMM registers 6840 movdl(xtmp, value); 6841 pshufd(xtmp, xtmp, 0); 6842 } else { 6843 // Fill 32-byte chunks 6844 pshufd(xtmp, xtmp, 0); 6845 6846 subptr(count, 8 << shift); 6847 jcc(Assembler::less, L_check_fill_8_bytes); 6848 align(16); 6849 6850 BIND(L_fill_32_bytes_loop); 6851 6852 if (UseUnalignedLoadStores) { 6853 movdqu(Address(to, 0), xtmp); 6854 movdqu(Address(to, 16), xtmp); 6855 } else { 6856 movq(Address(to, 0), xtmp); 6857 movq(Address(to, 8), xtmp); 6858 movq(Address(to, 16), xtmp); 6859 movq(Address(to, 24), xtmp); 6860 } 6861 6862 addptr(to, 32); 6863 subptr(count, 8 << shift); 6864 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6865 6866 BIND(L_check_fill_8_bytes); 6867 } 6868 addptr(count, 8 << shift); 6869 jccb(Assembler::zero, L_exit); 6870 jmpb(L_fill_8_bytes); 6871 6872 // 6873 // length is too short, just fill qwords 6874 // 6875 BIND(L_fill_8_bytes_loop); 6876 movq(Address(to, 0), xtmp); 6877 addptr(to, 8); 6878 BIND(L_fill_8_bytes); 6879 subptr(count, 1 << (shift + 1)); 6880 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6881 } 6882 } 6883 // fill trailing 4 bytes 6884 BIND(L_fill_4_bytes); 6885 testl(count, 1<<shift); 6886 jccb(Assembler::zero, L_fill_2_bytes); 6887 movl(Address(to, 0), value); 6888 if (t == T_BYTE || t == T_SHORT) { 6889 Label L_fill_byte; 6890 addptr(to, 4); 6891 BIND(L_fill_2_bytes); 6892 // fill trailing 2 bytes 6893 testl(count, 1<<(shift-1)); 6894 jccb(Assembler::zero, L_fill_byte); 6895 movw(Address(to, 0), value); 6896 if (t == T_BYTE) { 6897 addptr(to, 2); 6898 BIND(L_fill_byte); 6899 // fill trailing byte 6900 testl(count, 1); 6901 jccb(Assembler::zero, L_exit); 6902 movb(Address(to, 0), value); 6903 } else { 6904 BIND(L_fill_byte); 6905 } 6906 } else { 6907 BIND(L_fill_2_bytes); 6908 } 6909 BIND(L_exit); 6910 } 6911 6912 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) { 6913 switch(type) { 6914 case T_BYTE: 6915 case T_BOOLEAN: 6916 evpbroadcastb(dst, src, vector_len); 6917 break; 6918 case T_SHORT: 6919 case T_CHAR: 6920 evpbroadcastw(dst, src, vector_len); 6921 break; 6922 case T_INT: 6923 case T_FLOAT: 6924 evpbroadcastd(dst, src, vector_len); 6925 break; 6926 case T_LONG: 6927 case T_DOUBLE: 6928 evpbroadcastq(dst, src, vector_len); 6929 break; 6930 default: 6931 fatal("Unhandled type : %s", type2name(type)); 6932 break; 6933 } 6934 } 6935 6936 // encode char[] to byte[] in ISO_8859_1 or ASCII 6937 //@IntrinsicCandidate 6938 //private static int implEncodeISOArray(byte[] sa, int sp, 6939 //byte[] da, int dp, int len) { 6940 // int i = 0; 6941 // for (; i < len; i++) { 6942 // char c = StringUTF16.getChar(sa, sp++); 6943 // if (c > '\u00FF') 6944 // break; 6945 // da[dp++] = (byte)c; 6946 // } 6947 // return i; 6948 //} 6949 // 6950 //@IntrinsicCandidate 6951 //private static int implEncodeAsciiArray(char[] sa, int sp, 6952 // byte[] da, int dp, int len) { 6953 // int i = 0; 6954 // for (; i < len; i++) { 6955 // char c = sa[sp++]; 6956 // if (c >= '\u0080') 6957 // break; 6958 // da[dp++] = (byte)c; 6959 // } 6960 // return i; 6961 //} 6962 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, 6963 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 6964 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 6965 Register tmp5, Register result, bool ascii) { 6966 6967 // rsi: src 6968 // rdi: dst 6969 // rdx: len 6970 // rcx: tmp5 6971 // rax: result 6972 ShortBranchVerifier sbv(this); 6973 assert_different_registers(src, dst, len, tmp5, result); 6974 Label L_done, L_copy_1_char, L_copy_1_char_exit; 6975 6976 int mask = ascii ? 0xff80ff80 : 0xff00ff00; 6977 int short_mask = ascii ? 0xff80 : 0xff00; 6978 6979 // set result 6980 xorl(result, result); 6981 // check for zero length 6982 testl(len, len); 6983 jcc(Assembler::zero, L_done); 6984 6985 movl(result, len); 6986 6987 // Setup pointers 6988 lea(src, Address(src, len, Address::times_2)); // char[] 6989 lea(dst, Address(dst, len, Address::times_1)); // byte[] 6990 negptr(len); 6991 6992 if (UseSSE42Intrinsics || UseAVX >= 2) { 6993 Label L_copy_8_chars, L_copy_8_chars_exit; 6994 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit; 6995 6996 if (UseAVX >= 2) { 6997 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit; 6998 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6999 movdl(tmp1Reg, tmp5); 7000 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit); 7001 jmp(L_chars_32_check); 7002 7003 bind(L_copy_32_chars); 7004 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64)); 7005 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32)); 7006 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 7007 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 7008 jccb(Assembler::notZero, L_copy_32_chars_exit); 7009 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 7010 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1); 7011 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg); 7012 7013 bind(L_chars_32_check); 7014 addptr(len, 32); 7015 jcc(Assembler::lessEqual, L_copy_32_chars); 7016 7017 bind(L_copy_32_chars_exit); 7018 subptr(len, 16); 7019 jccb(Assembler::greater, L_copy_16_chars_exit); 7020 7021 } else if (UseSSE42Intrinsics) { 7022 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 7023 movdl(tmp1Reg, tmp5); 7024 pshufd(tmp1Reg, tmp1Reg, 0); 7025 jmpb(L_chars_16_check); 7026 } 7027 7028 bind(L_copy_16_chars); 7029 if (UseAVX >= 2) { 7030 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32)); 7031 vptest(tmp2Reg, tmp1Reg); 7032 jcc(Assembler::notZero, L_copy_16_chars_exit); 7033 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1); 7034 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1); 7035 } else { 7036 if (UseAVX > 0) { 7037 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 7038 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 7039 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0); 7040 } else { 7041 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 7042 por(tmp2Reg, tmp3Reg); 7043 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 7044 por(tmp2Reg, tmp4Reg); 7045 } 7046 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 7047 jccb(Assembler::notZero, L_copy_16_chars_exit); 7048 packuswb(tmp3Reg, tmp4Reg); 7049 } 7050 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg); 7051 7052 bind(L_chars_16_check); 7053 addptr(len, 16); 7054 jcc(Assembler::lessEqual, L_copy_16_chars); 7055 7056 bind(L_copy_16_chars_exit); 7057 if (UseAVX >= 2) { 7058 // clean upper bits of YMM registers 7059 vpxor(tmp2Reg, tmp2Reg); 7060 vpxor(tmp3Reg, tmp3Reg); 7061 vpxor(tmp4Reg, tmp4Reg); 7062 movdl(tmp1Reg, tmp5); 7063 pshufd(tmp1Reg, tmp1Reg, 0); 7064 } 7065 subptr(len, 8); 7066 jccb(Assembler::greater, L_copy_8_chars_exit); 7067 7068 bind(L_copy_8_chars); 7069 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16)); 7070 ptest(tmp3Reg, tmp1Reg); 7071 jccb(Assembler::notZero, L_copy_8_chars_exit); 7072 packuswb(tmp3Reg, tmp1Reg); 7073 movq(Address(dst, len, Address::times_1, -8), tmp3Reg); 7074 addptr(len, 8); 7075 jccb(Assembler::lessEqual, L_copy_8_chars); 7076 7077 bind(L_copy_8_chars_exit); 7078 subptr(len, 8); 7079 jccb(Assembler::zero, L_done); 7080 } 7081 7082 bind(L_copy_1_char); 7083 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0)); 7084 testl(tmp5, short_mask); // check if Unicode or non-ASCII char 7085 jccb(Assembler::notZero, L_copy_1_char_exit); 7086 movb(Address(dst, len, Address::times_1, 0), tmp5); 7087 addptr(len, 1); 7088 jccb(Assembler::less, L_copy_1_char); 7089 7090 bind(L_copy_1_char_exit); 7091 addptr(result, len); // len is negative count of not processed elements 7092 7093 bind(L_done); 7094 } 7095 7096 #ifdef _LP64 7097 /** 7098 * Helper for multiply_to_len(). 7099 */ 7100 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 7101 addq(dest_lo, src1); 7102 adcq(dest_hi, 0); 7103 addq(dest_lo, src2); 7104 adcq(dest_hi, 0); 7105 } 7106 7107 /** 7108 * Multiply 64 bit by 64 bit first loop. 7109 */ 7110 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 7111 Register y, Register y_idx, Register z, 7112 Register carry, Register product, 7113 Register idx, Register kdx) { 7114 // 7115 // jlong carry, x[], y[], z[]; 7116 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 7117 // huge_128 product = y[idx] * x[xstart] + carry; 7118 // z[kdx] = (jlong)product; 7119 // carry = (jlong)(product >>> 64); 7120 // } 7121 // z[xstart] = carry; 7122 // 7123 7124 Label L_first_loop, L_first_loop_exit; 7125 Label L_one_x, L_one_y, L_multiply; 7126 7127 decrementl(xstart); 7128 jcc(Assembler::negative, L_one_x); 7129 7130 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7131 rorq(x_xstart, 32); // convert big-endian to little-endian 7132 7133 bind(L_first_loop); 7134 decrementl(idx); 7135 jcc(Assembler::negative, L_first_loop_exit); 7136 decrementl(idx); 7137 jcc(Assembler::negative, L_one_y); 7138 movq(y_idx, Address(y, idx, Address::times_4, 0)); 7139 rorq(y_idx, 32); // convert big-endian to little-endian 7140 bind(L_multiply); 7141 movq(product, x_xstart); 7142 mulq(y_idx); // product(rax) * y_idx -> rdx:rax 7143 addq(product, carry); 7144 adcq(rdx, 0); 7145 subl(kdx, 2); 7146 movl(Address(z, kdx, Address::times_4, 4), product); 7147 shrq(product, 32); 7148 movl(Address(z, kdx, Address::times_4, 0), product); 7149 movq(carry, rdx); 7150 jmp(L_first_loop); 7151 7152 bind(L_one_y); 7153 movl(y_idx, Address(y, 0)); 7154 jmp(L_multiply); 7155 7156 bind(L_one_x); 7157 movl(x_xstart, Address(x, 0)); 7158 jmp(L_first_loop); 7159 7160 bind(L_first_loop_exit); 7161 } 7162 7163 /** 7164 * Multiply 64 bit by 64 bit and add 128 bit. 7165 */ 7166 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, 7167 Register yz_idx, Register idx, 7168 Register carry, Register product, int offset) { 7169 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; 7170 // z[kdx] = (jlong)product; 7171 7172 movq(yz_idx, Address(y, idx, Address::times_4, offset)); 7173 rorq(yz_idx, 32); // convert big-endian to little-endian 7174 movq(product, x_xstart); 7175 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 7176 movq(yz_idx, Address(z, idx, Address::times_4, offset)); 7177 rorq(yz_idx, 32); // convert big-endian to little-endian 7178 7179 add2_with_carry(rdx, product, carry, yz_idx); 7180 7181 movl(Address(z, idx, Address::times_4, offset+4), product); 7182 shrq(product, 32); 7183 movl(Address(z, idx, Address::times_4, offset), product); 7184 7185 } 7186 7187 /** 7188 * Multiply 128 bit by 128 bit. Unrolled inner loop. 7189 */ 7190 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 7191 Register yz_idx, Register idx, Register jdx, 7192 Register carry, Register product, 7193 Register carry2) { 7194 // jlong carry, x[], y[], z[]; 7195 // int kdx = ystart+1; 7196 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 7197 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; 7198 // z[kdx+idx+1] = (jlong)product; 7199 // jlong carry2 = (jlong)(product >>> 64); 7200 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; 7201 // z[kdx+idx] = (jlong)product; 7202 // carry = (jlong)(product >>> 64); 7203 // } 7204 // idx += 2; 7205 // if (idx > 0) { 7206 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; 7207 // z[kdx+idx] = (jlong)product; 7208 // carry = (jlong)(product >>> 64); 7209 // } 7210 // 7211 7212 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 7213 7214 movl(jdx, idx); 7215 andl(jdx, 0xFFFFFFFC); 7216 shrl(jdx, 2); 7217 7218 bind(L_third_loop); 7219 subl(jdx, 1); 7220 jcc(Assembler::negative, L_third_loop_exit); 7221 subl(idx, 4); 7222 7223 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8); 7224 movq(carry2, rdx); 7225 7226 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0); 7227 movq(carry, rdx); 7228 jmp(L_third_loop); 7229 7230 bind (L_third_loop_exit); 7231 7232 andl (idx, 0x3); 7233 jcc(Assembler::zero, L_post_third_loop_done); 7234 7235 Label L_check_1; 7236 subl(idx, 2); 7237 jcc(Assembler::negative, L_check_1); 7238 7239 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0); 7240 movq(carry, rdx); 7241 7242 bind (L_check_1); 7243 addl (idx, 0x2); 7244 andl (idx, 0x1); 7245 subl(idx, 1); 7246 jcc(Assembler::negative, L_post_third_loop_done); 7247 7248 movl(yz_idx, Address(y, idx, Address::times_4, 0)); 7249 movq(product, x_xstart); 7250 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 7251 movl(yz_idx, Address(z, idx, Address::times_4, 0)); 7252 7253 add2_with_carry(rdx, product, yz_idx, carry); 7254 7255 movl(Address(z, idx, Address::times_4, 0), product); 7256 shrq(product, 32); 7257 7258 shlq(rdx, 32); 7259 orq(product, rdx); 7260 movq(carry, product); 7261 7262 bind(L_post_third_loop_done); 7263 } 7264 7265 /** 7266 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop. 7267 * 7268 */ 7269 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z, 7270 Register carry, Register carry2, 7271 Register idx, Register jdx, 7272 Register yz_idx1, Register yz_idx2, 7273 Register tmp, Register tmp3, Register tmp4) { 7274 assert(UseBMI2Instructions, "should be used only when BMI2 is available"); 7275 7276 // jlong carry, x[], y[], z[]; 7277 // int kdx = ystart+1; 7278 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 7279 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry; 7280 // jlong carry2 = (jlong)(tmp3 >>> 64); 7281 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2; 7282 // carry = (jlong)(tmp4 >>> 64); 7283 // z[kdx+idx+1] = (jlong)tmp3; 7284 // z[kdx+idx] = (jlong)tmp4; 7285 // } 7286 // idx += 2; 7287 // if (idx > 0) { 7288 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry; 7289 // z[kdx+idx] = (jlong)yz_idx1; 7290 // carry = (jlong)(yz_idx1 >>> 64); 7291 // } 7292 // 7293 7294 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 7295 7296 movl(jdx, idx); 7297 andl(jdx, 0xFFFFFFFC); 7298 shrl(jdx, 2); 7299 7300 bind(L_third_loop); 7301 subl(jdx, 1); 7302 jcc(Assembler::negative, L_third_loop_exit); 7303 subl(idx, 4); 7304 7305 movq(yz_idx1, Address(y, idx, Address::times_4, 8)); 7306 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 7307 movq(yz_idx2, Address(y, idx, Address::times_4, 0)); 7308 rorxq(yz_idx2, yz_idx2, 32); 7309 7310 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7311 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp 7312 7313 movq(yz_idx1, Address(z, idx, Address::times_4, 8)); 7314 rorxq(yz_idx1, yz_idx1, 32); 7315 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7316 rorxq(yz_idx2, yz_idx2, 32); 7317 7318 if (VM_Version::supports_adx()) { 7319 adcxq(tmp3, carry); 7320 adoxq(tmp3, yz_idx1); 7321 7322 adcxq(tmp4, tmp); 7323 adoxq(tmp4, yz_idx2); 7324 7325 movl(carry, 0); // does not affect flags 7326 adcxq(carry2, carry); 7327 adoxq(carry2, carry); 7328 } else { 7329 add2_with_carry(tmp4, tmp3, carry, yz_idx1); 7330 add2_with_carry(carry2, tmp4, tmp, yz_idx2); 7331 } 7332 movq(carry, carry2); 7333 7334 movl(Address(z, idx, Address::times_4, 12), tmp3); 7335 shrq(tmp3, 32); 7336 movl(Address(z, idx, Address::times_4, 8), tmp3); 7337 7338 movl(Address(z, idx, Address::times_4, 4), tmp4); 7339 shrq(tmp4, 32); 7340 movl(Address(z, idx, Address::times_4, 0), tmp4); 7341 7342 jmp(L_third_loop); 7343 7344 bind (L_third_loop_exit); 7345 7346 andl (idx, 0x3); 7347 jcc(Assembler::zero, L_post_third_loop_done); 7348 7349 Label L_check_1; 7350 subl(idx, 2); 7351 jcc(Assembler::negative, L_check_1); 7352 7353 movq(yz_idx1, Address(y, idx, Address::times_4, 0)); 7354 rorxq(yz_idx1, yz_idx1, 32); 7355 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7356 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7357 rorxq(yz_idx2, yz_idx2, 32); 7358 7359 add2_with_carry(tmp4, tmp3, carry, yz_idx2); 7360 7361 movl(Address(z, idx, Address::times_4, 4), tmp3); 7362 shrq(tmp3, 32); 7363 movl(Address(z, idx, Address::times_4, 0), tmp3); 7364 movq(carry, tmp4); 7365 7366 bind (L_check_1); 7367 addl (idx, 0x2); 7368 andl (idx, 0x1); 7369 subl(idx, 1); 7370 jcc(Assembler::negative, L_post_third_loop_done); 7371 movl(tmp4, Address(y, idx, Address::times_4, 0)); 7372 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3 7373 movl(tmp4, Address(z, idx, Address::times_4, 0)); 7374 7375 add2_with_carry(carry2, tmp3, tmp4, carry); 7376 7377 movl(Address(z, idx, Address::times_4, 0), tmp3); 7378 shrq(tmp3, 32); 7379 7380 shlq(carry2, 32); 7381 orq(tmp3, carry2); 7382 movq(carry, tmp3); 7383 7384 bind(L_post_third_loop_done); 7385 } 7386 7387 /** 7388 * Code for BigInteger::multiplyToLen() intrinsic. 7389 * 7390 * rdi: x 7391 * rax: xlen 7392 * rsi: y 7393 * rcx: ylen 7394 * r8: z 7395 * r11: tmp0 7396 * r12: tmp1 7397 * r13: tmp2 7398 * r14: tmp3 7399 * r15: tmp4 7400 * rbx: tmp5 7401 * 7402 */ 7403 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0, 7404 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) { 7405 ShortBranchVerifier sbv(this); 7406 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx); 7407 7408 push(tmp0); 7409 push(tmp1); 7410 push(tmp2); 7411 push(tmp3); 7412 push(tmp4); 7413 push(tmp5); 7414 7415 push(xlen); 7416 7417 const Register idx = tmp1; 7418 const Register kdx = tmp2; 7419 const Register xstart = tmp3; 7420 7421 const Register y_idx = tmp4; 7422 const Register carry = tmp5; 7423 const Register product = xlen; 7424 const Register x_xstart = tmp0; 7425 7426 // First Loop. 7427 // 7428 // final static long LONG_MASK = 0xffffffffL; 7429 // int xstart = xlen - 1; 7430 // int ystart = ylen - 1; 7431 // long carry = 0; 7432 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 7433 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 7434 // z[kdx] = (int)product; 7435 // carry = product >>> 32; 7436 // } 7437 // z[xstart] = (int)carry; 7438 // 7439 7440 movl(idx, ylen); // idx = ylen; 7441 lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen; 7442 xorq(carry, carry); // carry = 0; 7443 7444 Label L_done; 7445 7446 movl(xstart, xlen); 7447 decrementl(xstart); 7448 jcc(Assembler::negative, L_done); 7449 7450 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 7451 7452 Label L_second_loop; 7453 testl(kdx, kdx); 7454 jcc(Assembler::zero, L_second_loop); 7455 7456 Label L_carry; 7457 subl(kdx, 1); 7458 jcc(Assembler::zero, L_carry); 7459 7460 movl(Address(z, kdx, Address::times_4, 0), carry); 7461 shrq(carry, 32); 7462 subl(kdx, 1); 7463 7464 bind(L_carry); 7465 movl(Address(z, kdx, Address::times_4, 0), carry); 7466 7467 // Second and third (nested) loops. 7468 // 7469 // for (int i = xstart-1; i >= 0; i--) { // Second loop 7470 // carry = 0; 7471 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 7472 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 7473 // (z[k] & LONG_MASK) + carry; 7474 // z[k] = (int)product; 7475 // carry = product >>> 32; 7476 // } 7477 // z[i] = (int)carry; 7478 // } 7479 // 7480 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx 7481 7482 const Register jdx = tmp1; 7483 7484 bind(L_second_loop); 7485 xorl(carry, carry); // carry = 0; 7486 movl(jdx, ylen); // j = ystart+1 7487 7488 subl(xstart, 1); // i = xstart-1; 7489 jcc(Assembler::negative, L_done); 7490 7491 push (z); 7492 7493 Label L_last_x; 7494 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j 7495 subl(xstart, 1); // i = xstart-1; 7496 jcc(Assembler::negative, L_last_x); 7497 7498 if (UseBMI2Instructions) { 7499 movq(rdx, Address(x, xstart, Address::times_4, 0)); 7500 rorxq(rdx, rdx, 32); // convert big-endian to little-endian 7501 } else { 7502 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7503 rorq(x_xstart, 32); // convert big-endian to little-endian 7504 } 7505 7506 Label L_third_loop_prologue; 7507 bind(L_third_loop_prologue); 7508 7509 push (x); 7510 push (xstart); 7511 push (ylen); 7512 7513 7514 if (UseBMI2Instructions) { 7515 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4); 7516 } else { // !UseBMI2Instructions 7517 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x); 7518 } 7519 7520 pop(ylen); 7521 pop(xlen); 7522 pop(x); 7523 pop(z); 7524 7525 movl(tmp3, xlen); 7526 addl(tmp3, 1); 7527 movl(Address(z, tmp3, Address::times_4, 0), carry); 7528 subl(tmp3, 1); 7529 jccb(Assembler::negative, L_done); 7530 7531 shrq(carry, 32); 7532 movl(Address(z, tmp3, Address::times_4, 0), carry); 7533 jmp(L_second_loop); 7534 7535 // Next infrequent code is moved outside loops. 7536 bind(L_last_x); 7537 if (UseBMI2Instructions) { 7538 movl(rdx, Address(x, 0)); 7539 } else { 7540 movl(x_xstart, Address(x, 0)); 7541 } 7542 jmp(L_third_loop_prologue); 7543 7544 bind(L_done); 7545 7546 pop(xlen); 7547 7548 pop(tmp5); 7549 pop(tmp4); 7550 pop(tmp3); 7551 pop(tmp2); 7552 pop(tmp1); 7553 pop(tmp0); 7554 } 7555 7556 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 7557 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){ 7558 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled."); 7559 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP; 7560 Label VECTOR8_TAIL, VECTOR4_TAIL; 7561 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL; 7562 Label SAME_TILL_END, DONE; 7563 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL; 7564 7565 //scale is in rcx in both Win64 and Unix 7566 ShortBranchVerifier sbv(this); 7567 7568 shlq(length); 7569 xorq(result, result); 7570 7571 if ((AVX3Threshold == 0) && (UseAVX > 2) && 7572 VM_Version::supports_avx512vlbw()) { 7573 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL; 7574 7575 cmpq(length, 64); 7576 jcc(Assembler::less, VECTOR32_TAIL); 7577 7578 movq(tmp1, length); 7579 andq(tmp1, 0x3F); // tail count 7580 andq(length, ~(0x3F)); //vector count 7581 7582 bind(VECTOR64_LOOP); 7583 // AVX512 code to compare 64 byte vectors. 7584 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit); 7585 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit); 7586 kortestql(k7, k7); 7587 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch 7588 addq(result, 64); 7589 subq(length, 64); 7590 jccb(Assembler::notZero, VECTOR64_LOOP); 7591 7592 //bind(VECTOR64_TAIL); 7593 testq(tmp1, tmp1); 7594 jcc(Assembler::zero, SAME_TILL_END); 7595 7596 //bind(VECTOR64_TAIL); 7597 // AVX512 code to compare up to 63 byte vectors. 7598 mov64(tmp2, 0xFFFFFFFFFFFFFFFF); 7599 shlxq(tmp2, tmp2, tmp1); 7600 notq(tmp2); 7601 kmovql(k3, tmp2); 7602 7603 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit); 7604 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit); 7605 7606 ktestql(k7, k3); 7607 jcc(Assembler::below, SAME_TILL_END); // not mismatch 7608 7609 bind(VECTOR64_NOT_EQUAL); 7610 kmovql(tmp1, k7); 7611 notq(tmp1); 7612 tzcntq(tmp1, tmp1); 7613 addq(result, tmp1); 7614 shrq(result); 7615 jmp(DONE); 7616 bind(VECTOR32_TAIL); 7617 } 7618 7619 cmpq(length, 8); 7620 jcc(Assembler::equal, VECTOR8_LOOP); 7621 jcc(Assembler::less, VECTOR4_TAIL); 7622 7623 if (UseAVX >= 2) { 7624 Label VECTOR16_TAIL, VECTOR32_LOOP; 7625 7626 cmpq(length, 16); 7627 jcc(Assembler::equal, VECTOR16_LOOP); 7628 jcc(Assembler::less, VECTOR8_LOOP); 7629 7630 cmpq(length, 32); 7631 jccb(Assembler::less, VECTOR16_TAIL); 7632 7633 subq(length, 32); 7634 bind(VECTOR32_LOOP); 7635 vmovdqu(rymm0, Address(obja, result)); 7636 vmovdqu(rymm1, Address(objb, result)); 7637 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit); 7638 vptest(rymm2, rymm2); 7639 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found 7640 addq(result, 32); 7641 subq(length, 32); 7642 jcc(Assembler::greaterEqual, VECTOR32_LOOP); 7643 addq(length, 32); 7644 jcc(Assembler::equal, SAME_TILL_END); 7645 //falling through if less than 32 bytes left //close the branch here. 7646 7647 bind(VECTOR16_TAIL); 7648 cmpq(length, 16); 7649 jccb(Assembler::less, VECTOR8_TAIL); 7650 bind(VECTOR16_LOOP); 7651 movdqu(rymm0, Address(obja, result)); 7652 movdqu(rymm1, Address(objb, result)); 7653 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit); 7654 ptest(rymm2, rymm2); 7655 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7656 addq(result, 16); 7657 subq(length, 16); 7658 jcc(Assembler::equal, SAME_TILL_END); 7659 //falling through if less than 16 bytes left 7660 } else {//regular intrinsics 7661 7662 cmpq(length, 16); 7663 jccb(Assembler::less, VECTOR8_TAIL); 7664 7665 subq(length, 16); 7666 bind(VECTOR16_LOOP); 7667 movdqu(rymm0, Address(obja, result)); 7668 movdqu(rymm1, Address(objb, result)); 7669 pxor(rymm0, rymm1); 7670 ptest(rymm0, rymm0); 7671 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7672 addq(result, 16); 7673 subq(length, 16); 7674 jccb(Assembler::greaterEqual, VECTOR16_LOOP); 7675 addq(length, 16); 7676 jcc(Assembler::equal, SAME_TILL_END); 7677 //falling through if less than 16 bytes left 7678 } 7679 7680 bind(VECTOR8_TAIL); 7681 cmpq(length, 8); 7682 jccb(Assembler::less, VECTOR4_TAIL); 7683 bind(VECTOR8_LOOP); 7684 movq(tmp1, Address(obja, result)); 7685 movq(tmp2, Address(objb, result)); 7686 xorq(tmp1, tmp2); 7687 testq(tmp1, tmp1); 7688 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found 7689 addq(result, 8); 7690 subq(length, 8); 7691 jcc(Assembler::equal, SAME_TILL_END); 7692 //falling through if less than 8 bytes left 7693 7694 bind(VECTOR4_TAIL); 7695 cmpq(length, 4); 7696 jccb(Assembler::less, BYTES_TAIL); 7697 bind(VECTOR4_LOOP); 7698 movl(tmp1, Address(obja, result)); 7699 xorl(tmp1, Address(objb, result)); 7700 testl(tmp1, tmp1); 7701 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found 7702 addq(result, 4); 7703 subq(length, 4); 7704 jcc(Assembler::equal, SAME_TILL_END); 7705 //falling through if less than 4 bytes left 7706 7707 bind(BYTES_TAIL); 7708 bind(BYTES_LOOP); 7709 load_unsigned_byte(tmp1, Address(obja, result)); 7710 load_unsigned_byte(tmp2, Address(objb, result)); 7711 xorl(tmp1, tmp2); 7712 testl(tmp1, tmp1); 7713 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7714 decq(length); 7715 jcc(Assembler::zero, SAME_TILL_END); 7716 incq(result); 7717 load_unsigned_byte(tmp1, Address(obja, result)); 7718 load_unsigned_byte(tmp2, Address(objb, result)); 7719 xorl(tmp1, tmp2); 7720 testl(tmp1, tmp1); 7721 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7722 decq(length); 7723 jcc(Assembler::zero, SAME_TILL_END); 7724 incq(result); 7725 load_unsigned_byte(tmp1, Address(obja, result)); 7726 load_unsigned_byte(tmp2, Address(objb, result)); 7727 xorl(tmp1, tmp2); 7728 testl(tmp1, tmp1); 7729 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7730 jmp(SAME_TILL_END); 7731 7732 if (UseAVX >= 2) { 7733 bind(VECTOR32_NOT_EQUAL); 7734 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit); 7735 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit); 7736 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit); 7737 vpmovmskb(tmp1, rymm0); 7738 bsfq(tmp1, tmp1); 7739 addq(result, tmp1); 7740 shrq(result); 7741 jmp(DONE); 7742 } 7743 7744 bind(VECTOR16_NOT_EQUAL); 7745 if (UseAVX >= 2) { 7746 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit); 7747 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit); 7748 pxor(rymm0, rymm2); 7749 } else { 7750 pcmpeqb(rymm2, rymm2); 7751 pxor(rymm0, rymm1); 7752 pcmpeqb(rymm0, rymm1); 7753 pxor(rymm0, rymm2); 7754 } 7755 pmovmskb(tmp1, rymm0); 7756 bsfq(tmp1, tmp1); 7757 addq(result, tmp1); 7758 shrq(result); 7759 jmpb(DONE); 7760 7761 bind(VECTOR8_NOT_EQUAL); 7762 bind(VECTOR4_NOT_EQUAL); 7763 bsfq(tmp1, tmp1); 7764 shrq(tmp1, 3); 7765 addq(result, tmp1); 7766 bind(BYTES_NOT_EQUAL); 7767 shrq(result); 7768 jmpb(DONE); 7769 7770 bind(SAME_TILL_END); 7771 mov64(result, -1); 7772 7773 bind(DONE); 7774 } 7775 7776 //Helper functions for square_to_len() 7777 7778 /** 7779 * Store the squares of x[], right shifted one bit (divided by 2) into z[] 7780 * Preserves x and z and modifies rest of the registers. 7781 */ 7782 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7783 // Perform square and right shift by 1 7784 // Handle odd xlen case first, then for even xlen do the following 7785 // jlong carry = 0; 7786 // for (int j=0, i=0; j < xlen; j+=2, i+=4) { 7787 // huge_128 product = x[j:j+1] * x[j:j+1]; 7788 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65); 7789 // z[i+2:i+3] = (jlong)(product >>> 1); 7790 // carry = (jlong)product; 7791 // } 7792 7793 xorq(tmp5, tmp5); // carry 7794 xorq(rdxReg, rdxReg); 7795 xorl(tmp1, tmp1); // index for x 7796 xorl(tmp4, tmp4); // index for z 7797 7798 Label L_first_loop, L_first_loop_exit; 7799 7800 testl(xlen, 1); 7801 jccb(Assembler::zero, L_first_loop); //jump if xlen is even 7802 7803 // Square and right shift by 1 the odd element using 32 bit multiply 7804 movl(raxReg, Address(x, tmp1, Address::times_4, 0)); 7805 imulq(raxReg, raxReg); 7806 shrq(raxReg, 1); 7807 adcq(tmp5, 0); 7808 movq(Address(z, tmp4, Address::times_4, 0), raxReg); 7809 incrementl(tmp1); 7810 addl(tmp4, 2); 7811 7812 // Square and right shift by 1 the rest using 64 bit multiply 7813 bind(L_first_loop); 7814 cmpptr(tmp1, xlen); 7815 jccb(Assembler::equal, L_first_loop_exit); 7816 7817 // Square 7818 movq(raxReg, Address(x, tmp1, Address::times_4, 0)); 7819 rorq(raxReg, 32); // convert big-endian to little-endian 7820 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax 7821 7822 // Right shift by 1 and save carry 7823 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1 7824 rcrq(rdxReg, 1); 7825 rcrq(raxReg, 1); 7826 adcq(tmp5, 0); 7827 7828 // Store result in z 7829 movq(Address(z, tmp4, Address::times_4, 0), rdxReg); 7830 movq(Address(z, tmp4, Address::times_4, 8), raxReg); 7831 7832 // Update indices for x and z 7833 addl(tmp1, 2); 7834 addl(tmp4, 4); 7835 jmp(L_first_loop); 7836 7837 bind(L_first_loop_exit); 7838 } 7839 7840 7841 /** 7842 * Perform the following multiply add operation using BMI2 instructions 7843 * carry:sum = sum + op1*op2 + carry 7844 * op2 should be in rdx 7845 * op2 is preserved, all other registers are modified 7846 */ 7847 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) { 7848 // assert op2 is rdx 7849 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1 7850 addq(sum, carry); 7851 adcq(tmp2, 0); 7852 addq(sum, op1); 7853 adcq(tmp2, 0); 7854 movq(carry, tmp2); 7855 } 7856 7857 /** 7858 * Perform the following multiply add operation: 7859 * carry:sum = sum + op1*op2 + carry 7860 * Preserves op1, op2 and modifies rest of registers 7861 */ 7862 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) { 7863 // rdx:rax = op1 * op2 7864 movq(raxReg, op2); 7865 mulq(op1); 7866 7867 // rdx:rax = sum + carry + rdx:rax 7868 addq(sum, carry); 7869 adcq(rdxReg, 0); 7870 addq(sum, raxReg); 7871 adcq(rdxReg, 0); 7872 7873 // carry:sum = rdx:sum 7874 movq(carry, rdxReg); 7875 } 7876 7877 /** 7878 * Add 64 bit long carry into z[] with carry propagation. 7879 * Preserves z and carry register values and modifies rest of registers. 7880 * 7881 */ 7882 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) { 7883 Label L_fourth_loop, L_fourth_loop_exit; 7884 7885 movl(tmp1, 1); 7886 subl(zlen, 2); 7887 addq(Address(z, zlen, Address::times_4, 0), carry); 7888 7889 bind(L_fourth_loop); 7890 jccb(Assembler::carryClear, L_fourth_loop_exit); 7891 subl(zlen, 2); 7892 jccb(Assembler::negative, L_fourth_loop_exit); 7893 addq(Address(z, zlen, Address::times_4, 0), tmp1); 7894 jmp(L_fourth_loop); 7895 bind(L_fourth_loop_exit); 7896 } 7897 7898 /** 7899 * Shift z[] left by 1 bit. 7900 * Preserves x, len, z and zlen registers and modifies rest of the registers. 7901 * 7902 */ 7903 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { 7904 7905 Label L_fifth_loop, L_fifth_loop_exit; 7906 7907 // Fifth loop 7908 // Perform primitiveLeftShift(z, zlen, 1) 7909 7910 const Register prev_carry = tmp1; 7911 const Register new_carry = tmp4; 7912 const Register value = tmp2; 7913 const Register zidx = tmp3; 7914 7915 // int zidx, carry; 7916 // long value; 7917 // carry = 0; 7918 // for (zidx = zlen-2; zidx >=0; zidx -= 2) { 7919 // (carry:value) = (z[i] << 1) | carry ; 7920 // z[i] = value; 7921 // } 7922 7923 movl(zidx, zlen); 7924 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register 7925 7926 bind(L_fifth_loop); 7927 decl(zidx); // Use decl to preserve carry flag 7928 decl(zidx); 7929 jccb(Assembler::negative, L_fifth_loop_exit); 7930 7931 if (UseBMI2Instructions) { 7932 movq(value, Address(z, zidx, Address::times_4, 0)); 7933 rclq(value, 1); 7934 rorxq(value, value, 32); 7935 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7936 } 7937 else { 7938 // clear new_carry 7939 xorl(new_carry, new_carry); 7940 7941 // Shift z[i] by 1, or in previous carry and save new carry 7942 movq(value, Address(z, zidx, Address::times_4, 0)); 7943 shlq(value, 1); 7944 adcl(new_carry, 0); 7945 7946 orq(value, prev_carry); 7947 rorq(value, 0x20); 7948 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7949 7950 // Set previous carry = new carry 7951 movl(prev_carry, new_carry); 7952 } 7953 jmp(L_fifth_loop); 7954 7955 bind(L_fifth_loop_exit); 7956 } 7957 7958 7959 /** 7960 * Code for BigInteger::squareToLen() intrinsic 7961 * 7962 * rdi: x 7963 * rsi: len 7964 * r8: z 7965 * rcx: zlen 7966 * r12: tmp1 7967 * r13: tmp2 7968 * r14: tmp3 7969 * r15: tmp4 7970 * rbx: tmp5 7971 * 7972 */ 7973 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7974 7975 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply; 7976 push(tmp1); 7977 push(tmp2); 7978 push(tmp3); 7979 push(tmp4); 7980 push(tmp5); 7981 7982 // First loop 7983 // Store the squares, right shifted one bit (i.e., divided by 2). 7984 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg); 7985 7986 // Add in off-diagonal sums. 7987 // 7988 // Second, third (nested) and fourth loops. 7989 // zlen +=2; 7990 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) { 7991 // carry = 0; 7992 // long op2 = x[xidx:xidx+1]; 7993 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) { 7994 // k -= 2; 7995 // long op1 = x[j:j+1]; 7996 // long sum = z[k:k+1]; 7997 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs); 7998 // z[k:k+1] = sum; 7999 // } 8000 // add_one_64(z, k, carry, tmp_regs); 8001 // } 8002 8003 const Register carry = tmp5; 8004 const Register sum = tmp3; 8005 const Register op1 = tmp4; 8006 Register op2 = tmp2; 8007 8008 push(zlen); 8009 push(len); 8010 addl(zlen,2); 8011 bind(L_second_loop); 8012 xorq(carry, carry); 8013 subl(zlen, 4); 8014 subl(len, 2); 8015 push(zlen); 8016 push(len); 8017 cmpl(len, 0); 8018 jccb(Assembler::lessEqual, L_second_loop_exit); 8019 8020 // Multiply an array by one 64 bit long. 8021 if (UseBMI2Instructions) { 8022 op2 = rdxReg; 8023 movq(op2, Address(x, len, Address::times_4, 0)); 8024 rorxq(op2, op2, 32); 8025 } 8026 else { 8027 movq(op2, Address(x, len, Address::times_4, 0)); 8028 rorq(op2, 32); 8029 } 8030 8031 bind(L_third_loop); 8032 decrementl(len); 8033 jccb(Assembler::negative, L_third_loop_exit); 8034 decrementl(len); 8035 jccb(Assembler::negative, L_last_x); 8036 8037 movq(op1, Address(x, len, Address::times_4, 0)); 8038 rorq(op1, 32); 8039 8040 bind(L_multiply); 8041 subl(zlen, 2); 8042 movq(sum, Address(z, zlen, Address::times_4, 0)); 8043 8044 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry. 8045 if (UseBMI2Instructions) { 8046 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2); 8047 } 8048 else { 8049 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8050 } 8051 8052 movq(Address(z, zlen, Address::times_4, 0), sum); 8053 8054 jmp(L_third_loop); 8055 bind(L_third_loop_exit); 8056 8057 // Fourth loop 8058 // Add 64 bit long carry into z with carry propagation. 8059 // Uses offsetted zlen. 8060 add_one_64(z, zlen, carry, tmp1); 8061 8062 pop(len); 8063 pop(zlen); 8064 jmp(L_second_loop); 8065 8066 // Next infrequent code is moved outside loops. 8067 bind(L_last_x); 8068 movl(op1, Address(x, 0)); 8069 jmp(L_multiply); 8070 8071 bind(L_second_loop_exit); 8072 pop(len); 8073 pop(zlen); 8074 pop(len); 8075 pop(zlen); 8076 8077 // Fifth loop 8078 // Shift z left 1 bit. 8079 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4); 8080 8081 // z[zlen-1] |= x[len-1] & 1; 8082 movl(tmp3, Address(x, len, Address::times_4, -4)); 8083 andl(tmp3, 1); 8084 orl(Address(z, zlen, Address::times_4, -4), tmp3); 8085 8086 pop(tmp5); 8087 pop(tmp4); 8088 pop(tmp3); 8089 pop(tmp2); 8090 pop(tmp1); 8091 } 8092 8093 /** 8094 * Helper function for mul_add() 8095 * Multiply the in[] by int k and add to out[] starting at offset offs using 8096 * 128 bit by 32 bit multiply and return the carry in tmp5. 8097 * Only quad int aligned length of in[] is operated on in this function. 8098 * k is in rdxReg for BMI2Instructions, for others it is in tmp2. 8099 * This function preserves out, in and k registers. 8100 * len and offset point to the appropriate index in "in" & "out" correspondingly 8101 * tmp5 has the carry. 8102 * other registers are temporary and are modified. 8103 * 8104 */ 8105 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in, 8106 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, 8107 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 8108 8109 Label L_first_loop, L_first_loop_exit; 8110 8111 movl(tmp1, len); 8112 shrl(tmp1, 2); 8113 8114 bind(L_first_loop); 8115 subl(tmp1, 1); 8116 jccb(Assembler::negative, L_first_loop_exit); 8117 8118 subl(len, 4); 8119 subl(offset, 4); 8120 8121 Register op2 = tmp2; 8122 const Register sum = tmp3; 8123 const Register op1 = tmp4; 8124 const Register carry = tmp5; 8125 8126 if (UseBMI2Instructions) { 8127 op2 = rdxReg; 8128 } 8129 8130 movq(op1, Address(in, len, Address::times_4, 8)); 8131 rorq(op1, 32); 8132 movq(sum, Address(out, offset, Address::times_4, 8)); 8133 rorq(sum, 32); 8134 if (UseBMI2Instructions) { 8135 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8136 } 8137 else { 8138 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8139 } 8140 // Store back in big endian from little endian 8141 rorq(sum, 0x20); 8142 movq(Address(out, offset, Address::times_4, 8), sum); 8143 8144 movq(op1, Address(in, len, Address::times_4, 0)); 8145 rorq(op1, 32); 8146 movq(sum, Address(out, offset, Address::times_4, 0)); 8147 rorq(sum, 32); 8148 if (UseBMI2Instructions) { 8149 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8150 } 8151 else { 8152 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8153 } 8154 // Store back in big endian from little endian 8155 rorq(sum, 0x20); 8156 movq(Address(out, offset, Address::times_4, 0), sum); 8157 8158 jmp(L_first_loop); 8159 bind(L_first_loop_exit); 8160 } 8161 8162 /** 8163 * Code for BigInteger::mulAdd() intrinsic 8164 * 8165 * rdi: out 8166 * rsi: in 8167 * r11: offs (out.length - offset) 8168 * rcx: len 8169 * r8: k 8170 * r12: tmp1 8171 * r13: tmp2 8172 * r14: tmp3 8173 * r15: tmp4 8174 * rbx: tmp5 8175 * Multiply the in[] by word k and add to out[], return the carry in rax 8176 */ 8177 void MacroAssembler::mul_add(Register out, Register in, Register offs, 8178 Register len, Register k, Register tmp1, Register tmp2, Register tmp3, 8179 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 8180 8181 Label L_carry, L_last_in, L_done; 8182 8183 // carry = 0; 8184 // for (int j=len-1; j >= 0; j--) { 8185 // long product = (in[j] & LONG_MASK) * kLong + 8186 // (out[offs] & LONG_MASK) + carry; 8187 // out[offs--] = (int)product; 8188 // carry = product >>> 32; 8189 // } 8190 // 8191 push(tmp1); 8192 push(tmp2); 8193 push(tmp3); 8194 push(tmp4); 8195 push(tmp5); 8196 8197 Register op2 = tmp2; 8198 const Register sum = tmp3; 8199 const Register op1 = tmp4; 8200 const Register carry = tmp5; 8201 8202 if (UseBMI2Instructions) { 8203 op2 = rdxReg; 8204 movl(op2, k); 8205 } 8206 else { 8207 movl(op2, k); 8208 } 8209 8210 xorq(carry, carry); 8211 8212 //First loop 8213 8214 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply 8215 //The carry is in tmp5 8216 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg); 8217 8218 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any 8219 decrementl(len); 8220 jccb(Assembler::negative, L_carry); 8221 decrementl(len); 8222 jccb(Assembler::negative, L_last_in); 8223 8224 movq(op1, Address(in, len, Address::times_4, 0)); 8225 rorq(op1, 32); 8226 8227 subl(offs, 2); 8228 movq(sum, Address(out, offs, Address::times_4, 0)); 8229 rorq(sum, 32); 8230 8231 if (UseBMI2Instructions) { 8232 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8233 } 8234 else { 8235 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8236 } 8237 8238 // Store back in big endian from little endian 8239 rorq(sum, 0x20); 8240 movq(Address(out, offs, Address::times_4, 0), sum); 8241 8242 testl(len, len); 8243 jccb(Assembler::zero, L_carry); 8244 8245 //Multiply the last in[] entry, if any 8246 bind(L_last_in); 8247 movl(op1, Address(in, 0)); 8248 movl(sum, Address(out, offs, Address::times_4, -4)); 8249 8250 movl(raxReg, k); 8251 mull(op1); //tmp4 * eax -> edx:eax 8252 addl(sum, carry); 8253 adcl(rdxReg, 0); 8254 addl(sum, raxReg); 8255 adcl(rdxReg, 0); 8256 movl(carry, rdxReg); 8257 8258 movl(Address(out, offs, Address::times_4, -4), sum); 8259 8260 bind(L_carry); 8261 //return tmp5/carry as carry in rax 8262 movl(rax, carry); 8263 8264 bind(L_done); 8265 pop(tmp5); 8266 pop(tmp4); 8267 pop(tmp3); 8268 pop(tmp2); 8269 pop(tmp1); 8270 } 8271 #endif 8272 8273 /** 8274 * Emits code to update CRC-32 with a byte value according to constants in table 8275 * 8276 * @param [in,out]crc Register containing the crc. 8277 * @param [in]val Register containing the byte to fold into the CRC. 8278 * @param [in]table Register containing the table of crc constants. 8279 * 8280 * uint32_t crc; 8281 * val = crc_table[(val ^ crc) & 0xFF]; 8282 * crc = val ^ (crc >> 8); 8283 * 8284 */ 8285 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 8286 xorl(val, crc); 8287 andl(val, 0xFF); 8288 shrl(crc, 8); // unsigned shift 8289 xorl(crc, Address(table, val, Address::times_4, 0)); 8290 } 8291 8292 /** 8293 * Fold 128-bit data chunk 8294 */ 8295 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { 8296 if (UseAVX > 0) { 8297 vpclmulhdq(xtmp, xK, xcrc); // [123:64] 8298 vpclmulldq(xcrc, xK, xcrc); // [63:0] 8299 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */); 8300 pxor(xcrc, xtmp); 8301 } else { 8302 movdqa(xtmp, xcrc); 8303 pclmulhdq(xtmp, xK); // [123:64] 8304 pclmulldq(xcrc, xK); // [63:0] 8305 pxor(xcrc, xtmp); 8306 movdqu(xtmp, Address(buf, offset)); 8307 pxor(xcrc, xtmp); 8308 } 8309 } 8310 8311 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) { 8312 if (UseAVX > 0) { 8313 vpclmulhdq(xtmp, xK, xcrc); 8314 vpclmulldq(xcrc, xK, xcrc); 8315 pxor(xcrc, xbuf); 8316 pxor(xcrc, xtmp); 8317 } else { 8318 movdqa(xtmp, xcrc); 8319 pclmulhdq(xtmp, xK); 8320 pclmulldq(xcrc, xK); 8321 pxor(xcrc, xbuf); 8322 pxor(xcrc, xtmp); 8323 } 8324 } 8325 8326 /** 8327 * 8-bit folds to compute 32-bit CRC 8328 * 8329 * uint64_t xcrc; 8330 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8); 8331 */ 8332 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) { 8333 movdl(tmp, xcrc); 8334 andl(tmp, 0xFF); 8335 movdl(xtmp, Address(table, tmp, Address::times_4, 0)); 8336 psrldq(xcrc, 1); // unsigned shift one byte 8337 pxor(xcrc, xtmp); 8338 } 8339 8340 /** 8341 * uint32_t crc; 8342 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); 8343 */ 8344 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { 8345 movl(tmp, crc); 8346 andl(tmp, 0xFF); 8347 shrl(crc, 8); 8348 xorl(crc, Address(table, tmp, Address::times_4, 0)); 8349 } 8350 8351 /** 8352 * @param crc register containing existing CRC (32-bit) 8353 * @param buf register pointing to input byte buffer (byte*) 8354 * @param len register containing number of bytes 8355 * @param table register that will contain address of CRC table 8356 * @param tmp scratch register 8357 */ 8358 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) { 8359 assert_different_registers(crc, buf, len, table, tmp, rax); 8360 8361 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8362 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8363 8364 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8365 // context for the registers used, where all instructions below are using 128-bit mode 8366 // On EVEX without VL and BW, these instructions will all be AVX. 8367 lea(table, ExternalAddress(StubRoutines::crc_table_addr())); 8368 notl(crc); // ~crc 8369 cmpl(len, 16); 8370 jcc(Assembler::less, L_tail); 8371 8372 // Align buffer to 16 bytes 8373 movl(tmp, buf); 8374 andl(tmp, 0xF); 8375 jccb(Assembler::zero, L_aligned); 8376 subl(tmp, 16); 8377 addl(len, tmp); 8378 8379 align(4); 8380 BIND(L_align_loop); 8381 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8382 update_byte_crc32(crc, rax, table); 8383 increment(buf); 8384 incrementl(tmp); 8385 jccb(Assembler::less, L_align_loop); 8386 8387 BIND(L_aligned); 8388 movl(tmp, len); // save 8389 shrl(len, 4); 8390 jcc(Assembler::zero, L_tail_restore); 8391 8392 // Fold crc into first bytes of vector 8393 movdqa(xmm1, Address(buf, 0)); 8394 movdl(rax, xmm1); 8395 xorl(crc, rax); 8396 if (VM_Version::supports_sse4_1()) { 8397 pinsrd(xmm1, crc, 0); 8398 } else { 8399 pinsrw(xmm1, crc, 0); 8400 shrl(crc, 16); 8401 pinsrw(xmm1, crc, 1); 8402 } 8403 addptr(buf, 16); 8404 subl(len, 4); // len > 0 8405 jcc(Assembler::less, L_fold_tail); 8406 8407 movdqa(xmm2, Address(buf, 0)); 8408 movdqa(xmm3, Address(buf, 16)); 8409 movdqa(xmm4, Address(buf, 32)); 8410 addptr(buf, 48); 8411 subl(len, 3); 8412 jcc(Assembler::lessEqual, L_fold_512b); 8413 8414 // Fold total 512 bits of polynomial on each iteration, 8415 // 128 bits per each of 4 parallel streams. 8416 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1); 8417 8418 align32(); 8419 BIND(L_fold_512b_loop); 8420 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8421 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16); 8422 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32); 8423 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48); 8424 addptr(buf, 64); 8425 subl(len, 4); 8426 jcc(Assembler::greater, L_fold_512b_loop); 8427 8428 // Fold 512 bits to 128 bits. 8429 BIND(L_fold_512b); 8430 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8431 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2); 8432 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3); 8433 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4); 8434 8435 // Fold the rest of 128 bits data chunks 8436 BIND(L_fold_tail); 8437 addl(len, 3); 8438 jccb(Assembler::lessEqual, L_fold_128b); 8439 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8440 8441 BIND(L_fold_tail_loop); 8442 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8443 addptr(buf, 16); 8444 decrementl(len); 8445 jccb(Assembler::greater, L_fold_tail_loop); 8446 8447 // Fold 128 bits in xmm1 down into 32 bits in crc register. 8448 BIND(L_fold_128b); 8449 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1); 8450 if (UseAVX > 0) { 8451 vpclmulqdq(xmm2, xmm0, xmm1, 0x1); 8452 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */); 8453 vpclmulqdq(xmm0, xmm0, xmm3, 0x1); 8454 } else { 8455 movdqa(xmm2, xmm0); 8456 pclmulqdq(xmm2, xmm1, 0x1); 8457 movdqa(xmm3, xmm0); 8458 pand(xmm3, xmm2); 8459 pclmulqdq(xmm0, xmm3, 0x1); 8460 } 8461 psrldq(xmm1, 8); 8462 psrldq(xmm2, 4); 8463 pxor(xmm0, xmm1); 8464 pxor(xmm0, xmm2); 8465 8466 // 8 8-bit folds to compute 32-bit CRC. 8467 for (int j = 0; j < 4; j++) { 8468 fold_8bit_crc32(xmm0, table, xmm1, rax); 8469 } 8470 movdl(crc, xmm0); // mov 32 bits to general register 8471 for (int j = 0; j < 4; j++) { 8472 fold_8bit_crc32(crc, table, rax); 8473 } 8474 8475 BIND(L_tail_restore); 8476 movl(len, tmp); // restore 8477 BIND(L_tail); 8478 andl(len, 0xf); 8479 jccb(Assembler::zero, L_exit); 8480 8481 // Fold the rest of bytes 8482 align(4); 8483 BIND(L_tail_loop); 8484 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8485 update_byte_crc32(crc, rax, table); 8486 increment(buf); 8487 decrementl(len); 8488 jccb(Assembler::greater, L_tail_loop); 8489 8490 BIND(L_exit); 8491 notl(crc); // ~c 8492 } 8493 8494 #ifdef _LP64 8495 // Helper function for AVX 512 CRC32 8496 // Fold 512-bit data chunks 8497 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, 8498 Register pos, int offset) { 8499 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit); 8500 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64] 8501 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0] 8502 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */); 8503 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */); 8504 } 8505 8506 // Helper function for AVX 512 CRC32 8507 // Compute CRC32 for < 256B buffers 8508 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos, 8509 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 8510 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) { 8511 8512 Label L_less_than_32, L_exact_16_left, L_less_than_16_left; 8513 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left; 8514 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2; 8515 8516 // check if there is enough buffer to be able to fold 16B at a time 8517 cmpl(len, 32); 8518 jcc(Assembler::less, L_less_than_32); 8519 8520 // if there is, load the constants 8521 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10 8522 movdl(xmm0, crc); // get the initial crc value 8523 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8524 pxor(xmm7, xmm0); 8525 8526 // update the buffer pointer 8527 addl(pos, 16); 8528 //update the counter.subtract 32 instead of 16 to save one instruction from the loop 8529 subl(len, 32); 8530 jmp(L_16B_reduction_loop); 8531 8532 bind(L_less_than_32); 8533 //mov initial crc to the return value. this is necessary for zero - length buffers. 8534 movl(rax, crc); 8535 testl(len, len); 8536 jcc(Assembler::equal, L_cleanup); 8537 8538 movdl(xmm0, crc); //get the initial crc value 8539 8540 cmpl(len, 16); 8541 jcc(Assembler::equal, L_exact_16_left); 8542 jcc(Assembler::less, L_less_than_16_left); 8543 8544 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8545 pxor(xmm7, xmm0); //xor the initial crc value 8546 addl(pos, 16); 8547 subl(len, 16); 8548 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10 8549 jmp(L_get_last_two_xmms); 8550 8551 bind(L_less_than_16_left); 8552 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first. 8553 pxor(xmm1, xmm1); 8554 movptr(tmp1, rsp); 8555 movdqu(Address(tmp1, 0 * 16), xmm1); 8556 8557 cmpl(len, 4); 8558 jcc(Assembler::less, L_only_less_than_4); 8559 8560 //backup the counter value 8561 movl(tmp2, len); 8562 cmpl(len, 8); 8563 jcc(Assembler::less, L_less_than_8_left); 8564 8565 //load 8 Bytes 8566 movq(rax, Address(buf, pos, Address::times_1, 0 * 16)); 8567 movq(Address(tmp1, 0 * 16), rax); 8568 addptr(tmp1, 8); 8569 subl(len, 8); 8570 addl(pos, 8); 8571 8572 bind(L_less_than_8_left); 8573 cmpl(len, 4); 8574 jcc(Assembler::less, L_less_than_4_left); 8575 8576 //load 4 Bytes 8577 movl(rax, Address(buf, pos, Address::times_1, 0)); 8578 movl(Address(tmp1, 0 * 16), rax); 8579 addptr(tmp1, 4); 8580 subl(len, 4); 8581 addl(pos, 4); 8582 8583 bind(L_less_than_4_left); 8584 cmpl(len, 2); 8585 jcc(Assembler::less, L_less_than_2_left); 8586 8587 // load 2 Bytes 8588 movw(rax, Address(buf, pos, Address::times_1, 0)); 8589 movl(Address(tmp1, 0 * 16), rax); 8590 addptr(tmp1, 2); 8591 subl(len, 2); 8592 addl(pos, 2); 8593 8594 bind(L_less_than_2_left); 8595 cmpl(len, 1); 8596 jcc(Assembler::less, L_zero_left); 8597 8598 // load 1 Byte 8599 movb(rax, Address(buf, pos, Address::times_1, 0)); 8600 movb(Address(tmp1, 0 * 16), rax); 8601 8602 bind(L_zero_left); 8603 movdqu(xmm7, Address(rsp, 0)); 8604 pxor(xmm7, xmm0); //xor the initial crc value 8605 8606 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8607 movdqu(xmm0, Address(rax, tmp2)); 8608 pshufb(xmm7, xmm0); 8609 jmp(L_128_done); 8610 8611 bind(L_exact_16_left); 8612 movdqu(xmm7, Address(buf, pos, Address::times_1, 0)); 8613 pxor(xmm7, xmm0); //xor the initial crc value 8614 jmp(L_128_done); 8615 8616 bind(L_only_less_than_4); 8617 cmpl(len, 3); 8618 jcc(Assembler::less, L_only_less_than_3); 8619 8620 // load 3 Bytes 8621 movb(rax, Address(buf, pos, Address::times_1, 0)); 8622 movb(Address(tmp1, 0), rax); 8623 8624 movb(rax, Address(buf, pos, Address::times_1, 1)); 8625 movb(Address(tmp1, 1), rax); 8626 8627 movb(rax, Address(buf, pos, Address::times_1, 2)); 8628 movb(Address(tmp1, 2), rax); 8629 8630 movdqu(xmm7, Address(rsp, 0)); 8631 pxor(xmm7, xmm0); //xor the initial crc value 8632 8633 pslldq(xmm7, 0x5); 8634 jmp(L_barrett); 8635 bind(L_only_less_than_3); 8636 cmpl(len, 2); 8637 jcc(Assembler::less, L_only_less_than_2); 8638 8639 // load 2 Bytes 8640 movb(rax, Address(buf, pos, Address::times_1, 0)); 8641 movb(Address(tmp1, 0), rax); 8642 8643 movb(rax, Address(buf, pos, Address::times_1, 1)); 8644 movb(Address(tmp1, 1), rax); 8645 8646 movdqu(xmm7, Address(rsp, 0)); 8647 pxor(xmm7, xmm0); //xor the initial crc value 8648 8649 pslldq(xmm7, 0x6); 8650 jmp(L_barrett); 8651 8652 bind(L_only_less_than_2); 8653 //load 1 Byte 8654 movb(rax, Address(buf, pos, Address::times_1, 0)); 8655 movb(Address(tmp1, 0), rax); 8656 8657 movdqu(xmm7, Address(rsp, 0)); 8658 pxor(xmm7, xmm0); //xor the initial crc value 8659 8660 pslldq(xmm7, 0x7); 8661 } 8662 8663 /** 8664 * Compute CRC32 using AVX512 instructions 8665 * param crc register containing existing CRC (32-bit) 8666 * param buf register pointing to input byte buffer (byte*) 8667 * param len register containing number of bytes 8668 * param table address of crc or crc32c table 8669 * param tmp1 scratch register 8670 * param tmp2 scratch register 8671 * return rax result register 8672 * 8673 * This routine is identical for crc32c with the exception of the precomputed constant 8674 * table which will be passed as the table argument. The calculation steps are 8675 * the same for both variants. 8676 */ 8677 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) { 8678 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12); 8679 8680 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8681 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8682 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop; 8683 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop; 8684 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup; 8685 8686 const Register pos = r12; 8687 push(r12); 8688 subptr(rsp, 16 * 2 + 8); 8689 8690 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8691 // context for the registers used, where all instructions below are using 128-bit mode 8692 // On EVEX without VL and BW, these instructions will all be AVX. 8693 movl(pos, 0); 8694 8695 // check if smaller than 256B 8696 cmpl(len, 256); 8697 jcc(Assembler::less, L_less_than_256); 8698 8699 // load the initial crc value 8700 movdl(xmm10, crc); 8701 8702 // receive the initial 64B data, xor the initial crc value 8703 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); 8704 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); 8705 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit); 8706 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4 8707 8708 subl(len, 256); 8709 cmpl(len, 256); 8710 jcc(Assembler::less, L_fold_128_B_loop); 8711 8712 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); 8713 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); 8714 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2 8715 subl(len, 256); 8716 8717 bind(L_fold_256_B_loop); 8718 addl(pos, 256); 8719 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64); 8720 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64); 8721 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64); 8722 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64); 8723 8724 subl(len, 256); 8725 jcc(Assembler::greaterEqual, L_fold_256_B_loop); 8726 8727 // Fold 256 into 128 8728 addl(pos, 256); 8729 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit); 8730 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit); 8731 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC 8732 8733 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit); 8734 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit); 8735 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC 8736 8737 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit); 8738 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit); 8739 8740 addl(len, 128); 8741 jmp(L_fold_128_B_register); 8742 8743 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop 8744 // loop will fold 128B at a time until we have 128 + y Bytes of buffer 8745 8746 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel 8747 bind(L_fold_128_B_loop); 8748 addl(pos, 128); 8749 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64); 8750 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64); 8751 8752 subl(len, 128); 8753 jcc(Assembler::greaterEqual, L_fold_128_B_loop); 8754 8755 addl(pos, 128); 8756 8757 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 8758 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 8759 bind(L_fold_128_B_register); 8760 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16 8761 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0 8762 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit); 8763 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit); 8764 // save last that has no multiplicand 8765 vextracti64x2(xmm7, xmm4, 3); 8766 8767 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit); 8768 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit); 8769 // Needed later in reduction loop 8770 movdqu(xmm10, Address(table, 1 * 16)); 8771 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC 8772 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC 8773 8774 // Swap 1,0,3,2 - 01 00 11 10 8775 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit); 8776 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit); 8777 vextracti128(xmm5, xmm8, 1); 8778 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit); 8779 8780 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop 8781 // instead of a cmp instruction, we use the negative flag with the jl instruction 8782 addl(len, 128 - 16); 8783 jcc(Assembler::less, L_final_reduction_for_128); 8784 8785 bind(L_16B_reduction_loop); 8786 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8787 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8788 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8789 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16)); 8790 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8791 addl(pos, 16); 8792 subl(len, 16); 8793 jcc(Assembler::greaterEqual, L_16B_reduction_loop); 8794 8795 bind(L_final_reduction_for_128); 8796 addl(len, 16); 8797 jcc(Assembler::equal, L_128_done); 8798 8799 bind(L_get_last_two_xmms); 8800 movdqu(xmm2, xmm7); 8801 addl(pos, len); 8802 movdqu(xmm1, Address(buf, pos, Address::times_1, -16)); 8803 subl(pos, len); 8804 8805 // get rid of the extra data that was loaded before 8806 // load the shift constant 8807 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8808 movdqu(xmm0, Address(rax, len)); 8809 addl(rax, len); 8810 8811 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8812 //Change mask to 512 8813 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2); 8814 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit); 8815 8816 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit); 8817 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8818 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8819 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8820 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit); 8821 8822 bind(L_128_done); 8823 // compute crc of a 128-bit value 8824 movdqu(xmm10, Address(table, 3 * 16)); 8825 movdqu(xmm0, xmm7); 8826 8827 // 64b fold 8828 vpclmulqdq(xmm7, xmm7, xmm10, 0x0); 8829 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit); 8830 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8831 8832 // 32b fold 8833 movdqu(xmm0, xmm7); 8834 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit); 8835 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8836 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8837 jmp(L_barrett); 8838 8839 bind(L_less_than_256); 8840 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup); 8841 8842 //barrett reduction 8843 bind(L_barrett); 8844 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2); 8845 movdqu(xmm1, xmm7); 8846 movdqu(xmm2, xmm7); 8847 movdqu(xmm10, Address(table, 4 * 16)); 8848 8849 pclmulqdq(xmm7, xmm10, 0x0); 8850 pxor(xmm7, xmm2); 8851 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2); 8852 movdqu(xmm2, xmm7); 8853 pclmulqdq(xmm7, xmm10, 0x10); 8854 pxor(xmm7, xmm2); 8855 pxor(xmm7, xmm1); 8856 pextrd(crc, xmm7, 2); 8857 8858 bind(L_cleanup); 8859 addptr(rsp, 16 * 2 + 8); 8860 pop(r12); 8861 } 8862 8863 // S. Gueron / Information Processing Letters 112 (2012) 184 8864 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table. 8865 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0]. 8866 // Output: the 64-bit carry-less product of B * CONST 8867 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n, 8868 Register tmp1, Register tmp2, Register tmp3) { 8869 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8870 if (n > 0) { 8871 addq(tmp3, n * 256 * 8); 8872 } 8873 // Q1 = TABLEExt[n][B & 0xFF]; 8874 movl(tmp1, in); 8875 andl(tmp1, 0x000000FF); 8876 shll(tmp1, 3); 8877 addq(tmp1, tmp3); 8878 movq(tmp1, Address(tmp1, 0)); 8879 8880 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8881 movl(tmp2, in); 8882 shrl(tmp2, 8); 8883 andl(tmp2, 0x000000FF); 8884 shll(tmp2, 3); 8885 addq(tmp2, tmp3); 8886 movq(tmp2, Address(tmp2, 0)); 8887 8888 shlq(tmp2, 8); 8889 xorq(tmp1, tmp2); 8890 8891 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8892 movl(tmp2, in); 8893 shrl(tmp2, 16); 8894 andl(tmp2, 0x000000FF); 8895 shll(tmp2, 3); 8896 addq(tmp2, tmp3); 8897 movq(tmp2, Address(tmp2, 0)); 8898 8899 shlq(tmp2, 16); 8900 xorq(tmp1, tmp2); 8901 8902 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8903 shrl(in, 24); 8904 andl(in, 0x000000FF); 8905 shll(in, 3); 8906 addq(in, tmp3); 8907 movq(in, Address(in, 0)); 8908 8909 shlq(in, 24); 8910 xorq(in, tmp1); 8911 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8912 } 8913 8914 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8915 Register in_out, 8916 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8917 XMMRegister w_xtmp2, 8918 Register tmp1, 8919 Register n_tmp2, Register n_tmp3) { 8920 if (is_pclmulqdq_supported) { 8921 movdl(w_xtmp1, in_out); // modified blindly 8922 8923 movl(tmp1, const_or_pre_comp_const_index); 8924 movdl(w_xtmp2, tmp1); 8925 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8926 8927 movdq(in_out, w_xtmp1); 8928 } else { 8929 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3); 8930 } 8931 } 8932 8933 // Recombination Alternative 2: No bit-reflections 8934 // T1 = (CRC_A * U1) << 1 8935 // T2 = (CRC_B * U2) << 1 8936 // C1 = T1 >> 32 8937 // C2 = T2 >> 32 8938 // T1 = T1 & 0xFFFFFFFF 8939 // T2 = T2 & 0xFFFFFFFF 8940 // T1 = CRC32(0, T1) 8941 // T2 = CRC32(0, T2) 8942 // C1 = C1 ^ T1 8943 // C2 = C2 ^ T2 8944 // CRC = C1 ^ C2 ^ CRC_C 8945 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8946 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8947 Register tmp1, Register tmp2, 8948 Register n_tmp3) { 8949 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8950 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8951 shlq(in_out, 1); 8952 movl(tmp1, in_out); 8953 shrq(in_out, 32); 8954 xorl(tmp2, tmp2); 8955 crc32(tmp2, tmp1, 4); 8956 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here 8957 shlq(in1, 1); 8958 movl(tmp1, in1); 8959 shrq(in1, 32); 8960 xorl(tmp2, tmp2); 8961 crc32(tmp2, tmp1, 4); 8962 xorl(in1, tmp2); 8963 xorl(in_out, in1); 8964 xorl(in_out, in2); 8965 } 8966 8967 // Set N to predefined value 8968 // Subtract from a length of a buffer 8969 // execute in a loop: 8970 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0 8971 // for i = 1 to N do 8972 // CRC_A = CRC32(CRC_A, A[i]) 8973 // CRC_B = CRC32(CRC_B, B[i]) 8974 // CRC_C = CRC32(CRC_C, C[i]) 8975 // end for 8976 // Recombine 8977 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8978 Register in_out1, Register in_out2, Register in_out3, 8979 Register tmp1, Register tmp2, Register tmp3, 8980 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8981 Register tmp4, Register tmp5, 8982 Register n_tmp6) { 8983 Label L_processPartitions; 8984 Label L_processPartition; 8985 Label L_exit; 8986 8987 bind(L_processPartitions); 8988 cmpl(in_out1, 3 * size); 8989 jcc(Assembler::less, L_exit); 8990 xorl(tmp1, tmp1); 8991 xorl(tmp2, tmp2); 8992 movq(tmp3, in_out2); 8993 addq(tmp3, size); 8994 8995 bind(L_processPartition); 8996 crc32(in_out3, Address(in_out2, 0), 8); 8997 crc32(tmp1, Address(in_out2, size), 8); 8998 crc32(tmp2, Address(in_out2, size * 2), 8); 8999 addq(in_out2, 8); 9000 cmpq(in_out2, tmp3); 9001 jcc(Assembler::less, L_processPartition); 9002 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 9003 w_xtmp1, w_xtmp2, w_xtmp3, 9004 tmp4, tmp5, 9005 n_tmp6); 9006 addq(in_out2, 2 * size); 9007 subl(in_out1, 3 * size); 9008 jmp(L_processPartitions); 9009 9010 bind(L_exit); 9011 } 9012 #else 9013 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n, 9014 Register tmp1, Register tmp2, Register tmp3, 9015 XMMRegister xtmp1, XMMRegister xtmp2) { 9016 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 9017 if (n > 0) { 9018 addl(tmp3, n * 256 * 8); 9019 } 9020 // Q1 = TABLEExt[n][B & 0xFF]; 9021 movl(tmp1, in_out); 9022 andl(tmp1, 0x000000FF); 9023 shll(tmp1, 3); 9024 addl(tmp1, tmp3); 9025 movq(xtmp1, Address(tmp1, 0)); 9026 9027 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 9028 movl(tmp2, in_out); 9029 shrl(tmp2, 8); 9030 andl(tmp2, 0x000000FF); 9031 shll(tmp2, 3); 9032 addl(tmp2, tmp3); 9033 movq(xtmp2, Address(tmp2, 0)); 9034 9035 psllq(xtmp2, 8); 9036 pxor(xtmp1, xtmp2); 9037 9038 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 9039 movl(tmp2, in_out); 9040 shrl(tmp2, 16); 9041 andl(tmp2, 0x000000FF); 9042 shll(tmp2, 3); 9043 addl(tmp2, tmp3); 9044 movq(xtmp2, Address(tmp2, 0)); 9045 9046 psllq(xtmp2, 16); 9047 pxor(xtmp1, xtmp2); 9048 9049 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 9050 shrl(in_out, 24); 9051 andl(in_out, 0x000000FF); 9052 shll(in_out, 3); 9053 addl(in_out, tmp3); 9054 movq(xtmp2, Address(in_out, 0)); 9055 9056 psllq(xtmp2, 24); 9057 pxor(xtmp1, xtmp2); // Result in CXMM 9058 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 9059 } 9060 9061 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 9062 Register in_out, 9063 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 9064 XMMRegister w_xtmp2, 9065 Register tmp1, 9066 Register n_tmp2, Register n_tmp3) { 9067 if (is_pclmulqdq_supported) { 9068 movdl(w_xtmp1, in_out); 9069 9070 movl(tmp1, const_or_pre_comp_const_index); 9071 movdl(w_xtmp2, tmp1); 9072 pclmulqdq(w_xtmp1, w_xtmp2, 0); 9073 // Keep result in XMM since GPR is 32 bit in length 9074 } else { 9075 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2); 9076 } 9077 } 9078 9079 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 9080 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9081 Register tmp1, Register tmp2, 9082 Register n_tmp3) { 9083 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 9084 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 9085 9086 psllq(w_xtmp1, 1); 9087 movdl(tmp1, w_xtmp1); 9088 psrlq(w_xtmp1, 32); 9089 movdl(in_out, w_xtmp1); 9090 9091 xorl(tmp2, tmp2); 9092 crc32(tmp2, tmp1, 4); 9093 xorl(in_out, tmp2); 9094 9095 psllq(w_xtmp2, 1); 9096 movdl(tmp1, w_xtmp2); 9097 psrlq(w_xtmp2, 32); 9098 movdl(in1, w_xtmp2); 9099 9100 xorl(tmp2, tmp2); 9101 crc32(tmp2, tmp1, 4); 9102 xorl(in1, tmp2); 9103 xorl(in_out, in1); 9104 xorl(in_out, in2); 9105 } 9106 9107 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 9108 Register in_out1, Register in_out2, Register in_out3, 9109 Register tmp1, Register tmp2, Register tmp3, 9110 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9111 Register tmp4, Register tmp5, 9112 Register n_tmp6) { 9113 Label L_processPartitions; 9114 Label L_processPartition; 9115 Label L_exit; 9116 9117 bind(L_processPartitions); 9118 cmpl(in_out1, 3 * size); 9119 jcc(Assembler::less, L_exit); 9120 xorl(tmp1, tmp1); 9121 xorl(tmp2, tmp2); 9122 movl(tmp3, in_out2); 9123 addl(tmp3, size); 9124 9125 bind(L_processPartition); 9126 crc32(in_out3, Address(in_out2, 0), 4); 9127 crc32(tmp1, Address(in_out2, size), 4); 9128 crc32(tmp2, Address(in_out2, size*2), 4); 9129 crc32(in_out3, Address(in_out2, 0+4), 4); 9130 crc32(tmp1, Address(in_out2, size+4), 4); 9131 crc32(tmp2, Address(in_out2, size*2+4), 4); 9132 addl(in_out2, 8); 9133 cmpl(in_out2, tmp3); 9134 jcc(Assembler::less, L_processPartition); 9135 9136 push(tmp3); 9137 push(in_out1); 9138 push(in_out2); 9139 tmp4 = tmp3; 9140 tmp5 = in_out1; 9141 n_tmp6 = in_out2; 9142 9143 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 9144 w_xtmp1, w_xtmp2, w_xtmp3, 9145 tmp4, tmp5, 9146 n_tmp6); 9147 9148 pop(in_out2); 9149 pop(in_out1); 9150 pop(tmp3); 9151 9152 addl(in_out2, 2 * size); 9153 subl(in_out1, 3 * size); 9154 jmp(L_processPartitions); 9155 9156 bind(L_exit); 9157 } 9158 #endif //LP64 9159 9160 #ifdef _LP64 9161 // Algorithm 2: Pipelined usage of the CRC32 instruction. 9162 // Input: A buffer I of L bytes. 9163 // Output: the CRC32C value of the buffer. 9164 // Notations: 9165 // Write L = 24N + r, with N = floor (L/24). 9166 // r = L mod 24 (0 <= r < 24). 9167 // Consider I as the concatenation of A|B|C|R, where A, B, C, each, 9168 // N quadwords, and R consists of r bytes. 9169 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1 9170 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1 9171 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1 9172 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1 9173 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 9174 Register tmp1, Register tmp2, Register tmp3, 9175 Register tmp4, Register tmp5, Register tmp6, 9176 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9177 bool is_pclmulqdq_supported) { 9178 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 9179 Label L_wordByWord; 9180 Label L_byteByByteProlog; 9181 Label L_byteByByte; 9182 Label L_exit; 9183 9184 if (is_pclmulqdq_supported ) { 9185 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::crc32c_table_addr(); 9186 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 1); 9187 9188 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 2); 9189 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 3); 9190 9191 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 4); 9192 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 5); 9193 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\""); 9194 } else { 9195 const_or_pre_comp_const_index[0] = 1; 9196 const_or_pre_comp_const_index[1] = 0; 9197 9198 const_or_pre_comp_const_index[2] = 3; 9199 const_or_pre_comp_const_index[3] = 2; 9200 9201 const_or_pre_comp_const_index[4] = 5; 9202 const_or_pre_comp_const_index[5] = 4; 9203 } 9204 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 9205 in2, in1, in_out, 9206 tmp1, tmp2, tmp3, 9207 w_xtmp1, w_xtmp2, w_xtmp3, 9208 tmp4, tmp5, 9209 tmp6); 9210 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 9211 in2, in1, in_out, 9212 tmp1, tmp2, tmp3, 9213 w_xtmp1, w_xtmp2, w_xtmp3, 9214 tmp4, tmp5, 9215 tmp6); 9216 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 9217 in2, in1, in_out, 9218 tmp1, tmp2, tmp3, 9219 w_xtmp1, w_xtmp2, w_xtmp3, 9220 tmp4, tmp5, 9221 tmp6); 9222 movl(tmp1, in2); 9223 andl(tmp1, 0x00000007); 9224 negl(tmp1); 9225 addl(tmp1, in2); 9226 addq(tmp1, in1); 9227 9228 cmpq(in1, tmp1); 9229 jccb(Assembler::greaterEqual, L_byteByByteProlog); 9230 align(16); 9231 BIND(L_wordByWord); 9232 crc32(in_out, Address(in1, 0), 8); 9233 addq(in1, 8); 9234 cmpq(in1, tmp1); 9235 jcc(Assembler::less, L_wordByWord); 9236 9237 BIND(L_byteByByteProlog); 9238 andl(in2, 0x00000007); 9239 movl(tmp2, 1); 9240 9241 cmpl(tmp2, in2); 9242 jccb(Assembler::greater, L_exit); 9243 BIND(L_byteByByte); 9244 crc32(in_out, Address(in1, 0), 1); 9245 incq(in1); 9246 incl(tmp2); 9247 cmpl(tmp2, in2); 9248 jcc(Assembler::lessEqual, L_byteByByte); 9249 9250 BIND(L_exit); 9251 } 9252 #else 9253 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 9254 Register tmp1, Register tmp2, Register tmp3, 9255 Register tmp4, Register tmp5, Register tmp6, 9256 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9257 bool is_pclmulqdq_supported) { 9258 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 9259 Label L_wordByWord; 9260 Label L_byteByByteProlog; 9261 Label L_byteByByte; 9262 Label L_exit; 9263 9264 if (is_pclmulqdq_supported) { 9265 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::crc32c_table_addr(); 9266 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 1); 9267 9268 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 2); 9269 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 3); 9270 9271 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 4); 9272 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 5); 9273 } else { 9274 const_or_pre_comp_const_index[0] = 1; 9275 const_or_pre_comp_const_index[1] = 0; 9276 9277 const_or_pre_comp_const_index[2] = 3; 9278 const_or_pre_comp_const_index[3] = 2; 9279 9280 const_or_pre_comp_const_index[4] = 5; 9281 const_or_pre_comp_const_index[5] = 4; 9282 } 9283 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 9284 in2, in1, in_out, 9285 tmp1, tmp2, tmp3, 9286 w_xtmp1, w_xtmp2, w_xtmp3, 9287 tmp4, tmp5, 9288 tmp6); 9289 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 9290 in2, in1, in_out, 9291 tmp1, tmp2, tmp3, 9292 w_xtmp1, w_xtmp2, w_xtmp3, 9293 tmp4, tmp5, 9294 tmp6); 9295 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 9296 in2, in1, in_out, 9297 tmp1, tmp2, tmp3, 9298 w_xtmp1, w_xtmp2, w_xtmp3, 9299 tmp4, tmp5, 9300 tmp6); 9301 movl(tmp1, in2); 9302 andl(tmp1, 0x00000007); 9303 negl(tmp1); 9304 addl(tmp1, in2); 9305 addl(tmp1, in1); 9306 9307 BIND(L_wordByWord); 9308 cmpl(in1, tmp1); 9309 jcc(Assembler::greaterEqual, L_byteByByteProlog); 9310 crc32(in_out, Address(in1,0), 4); 9311 addl(in1, 4); 9312 jmp(L_wordByWord); 9313 9314 BIND(L_byteByByteProlog); 9315 andl(in2, 0x00000007); 9316 movl(tmp2, 1); 9317 9318 BIND(L_byteByByte); 9319 cmpl(tmp2, in2); 9320 jccb(Assembler::greater, L_exit); 9321 movb(tmp1, Address(in1, 0)); 9322 crc32(in_out, tmp1, 1); 9323 incl(in1); 9324 incl(tmp2); 9325 jmp(L_byteByByte); 9326 9327 BIND(L_exit); 9328 } 9329 #endif // LP64 9330 #undef BIND 9331 #undef BLOCK_COMMENT 9332 9333 // Compress char[] array to byte[]. 9334 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 9335 // Return the array length if every element in array can be encoded, 9336 // otherwise, the index of first non-latin1 (> 0xff) character. 9337 // @IntrinsicCandidate 9338 // public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) { 9339 // for (int i = 0; i < len; i++) { 9340 // char c = src[srcOff]; 9341 // if (c > 0xff) { 9342 // return i; // return index of non-latin1 char 9343 // } 9344 // dst[dstOff] = (byte)c; 9345 // srcOff++; 9346 // dstOff++; 9347 // } 9348 // return len; 9349 // } 9350 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 9351 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 9352 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 9353 Register tmp5, Register result, KRegister mask1, KRegister mask2) { 9354 Label copy_chars_loop, done, reset_sp, copy_tail; 9355 9356 // rsi: src 9357 // rdi: dst 9358 // rdx: len 9359 // rcx: tmp5 9360 // rax: result 9361 9362 // rsi holds start addr of source char[] to be compressed 9363 // rdi holds start addr of destination byte[] 9364 // rdx holds length 9365 9366 assert(len != result, ""); 9367 9368 // save length for return 9369 movl(result, len); 9370 9371 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 9372 VM_Version::supports_avx512vlbw() && 9373 VM_Version::supports_bmi2()) { 9374 9375 Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail; 9376 9377 // alignment 9378 Label post_alignment; 9379 9380 // if length of the string is less than 32, handle it the old fashioned way 9381 testl(len, -32); 9382 jcc(Assembler::zero, below_threshold); 9383 9384 // First check whether a character is compressible ( <= 0xFF). 9385 // Create mask to test for Unicode chars inside zmm vector 9386 movl(tmp5, 0x00FF); 9387 evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit); 9388 9389 testl(len, -64); 9390 jccb(Assembler::zero, post_alignment); 9391 9392 movl(tmp5, dst); 9393 andl(tmp5, (32 - 1)); 9394 negl(tmp5); 9395 andl(tmp5, (32 - 1)); 9396 9397 // bail out when there is nothing to be done 9398 testl(tmp5, 0xFFFFFFFF); 9399 jccb(Assembler::zero, post_alignment); 9400 9401 // ~(~0 << len), where len is the # of remaining elements to process 9402 movl(len, 0xFFFFFFFF); 9403 shlxl(len, len, tmp5); 9404 notl(len); 9405 kmovdl(mask2, len); 9406 movl(len, result); 9407 9408 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9409 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9410 ktestd(mask1, mask2); 9411 jcc(Assembler::carryClear, copy_tail); 9412 9413 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9414 9415 addptr(src, tmp5); 9416 addptr(src, tmp5); 9417 addptr(dst, tmp5); 9418 subl(len, tmp5); 9419 9420 bind(post_alignment); 9421 // end of alignment 9422 9423 movl(tmp5, len); 9424 andl(tmp5, (32 - 1)); // tail count (in chars) 9425 andl(len, ~(32 - 1)); // vector count (in chars) 9426 jccb(Assembler::zero, copy_loop_tail); 9427 9428 lea(src, Address(src, len, Address::times_2)); 9429 lea(dst, Address(dst, len, Address::times_1)); 9430 negptr(len); 9431 9432 bind(copy_32_loop); 9433 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit); 9434 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); 9435 kortestdl(mask1, mask1); 9436 jccb(Assembler::carryClear, reset_for_copy_tail); 9437 9438 // All elements in current processed chunk are valid candidates for 9439 // compression. Write a truncated byte elements to the memory. 9440 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit); 9441 addptr(len, 32); 9442 jccb(Assembler::notZero, copy_32_loop); 9443 9444 bind(copy_loop_tail); 9445 // bail out when there is nothing to be done 9446 testl(tmp5, 0xFFFFFFFF); 9447 jcc(Assembler::zero, done); 9448 9449 movl(len, tmp5); 9450 9451 // ~(~0 << len), where len is the # of remaining elements to process 9452 movl(tmp5, 0xFFFFFFFF); 9453 shlxl(tmp5, tmp5, len); 9454 notl(tmp5); 9455 9456 kmovdl(mask2, tmp5); 9457 9458 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9459 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9460 ktestd(mask1, mask2); 9461 jcc(Assembler::carryClear, copy_tail); 9462 9463 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9464 jmp(done); 9465 9466 bind(reset_for_copy_tail); 9467 lea(src, Address(src, tmp5, Address::times_2)); 9468 lea(dst, Address(dst, tmp5, Address::times_1)); 9469 subptr(len, tmp5); 9470 jmp(copy_chars_loop); 9471 9472 bind(below_threshold); 9473 } 9474 9475 if (UseSSE42Intrinsics) { 9476 Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail; 9477 9478 // vectored compression 9479 testl(len, 0xfffffff8); 9480 jcc(Assembler::zero, copy_tail); 9481 9482 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors 9483 movdl(tmp1Reg, tmp5); 9484 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 9485 9486 andl(len, 0xfffffff0); 9487 jccb(Assembler::zero, copy_16); 9488 9489 // compress 16 chars per iter 9490 pxor(tmp4Reg, tmp4Reg); 9491 9492 lea(src, Address(src, len, Address::times_2)); 9493 lea(dst, Address(dst, len, Address::times_1)); 9494 negptr(len); 9495 9496 bind(copy_32_loop); 9497 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters 9498 por(tmp4Reg, tmp2Reg); 9499 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters 9500 por(tmp4Reg, tmp3Reg); 9501 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector 9502 jccb(Assembler::notZero, reset_for_copy_tail); 9503 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte 9504 movdqu(Address(dst, len, Address::times_1), tmp2Reg); 9505 addptr(len, 16); 9506 jccb(Assembler::notZero, copy_32_loop); 9507 9508 // compress next vector of 8 chars (if any) 9509 bind(copy_16); 9510 // len = 0 9511 testl(result, 0x00000008); // check if there's a block of 8 chars to compress 9512 jccb(Assembler::zero, copy_tail_sse); 9513 9514 pxor(tmp3Reg, tmp3Reg); 9515 9516 movdqu(tmp2Reg, Address(src, 0)); 9517 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector 9518 jccb(Assembler::notZero, reset_for_copy_tail); 9519 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte 9520 movq(Address(dst, 0), tmp2Reg); 9521 addptr(src, 16); 9522 addptr(dst, 8); 9523 jmpb(copy_tail_sse); 9524 9525 bind(reset_for_copy_tail); 9526 movl(tmp5, result); 9527 andl(tmp5, 0x0000000f); 9528 lea(src, Address(src, tmp5, Address::times_2)); 9529 lea(dst, Address(dst, tmp5, Address::times_1)); 9530 subptr(len, tmp5); 9531 jmpb(copy_chars_loop); 9532 9533 bind(copy_tail_sse); 9534 movl(len, result); 9535 andl(len, 0x00000007); // tail count (in chars) 9536 } 9537 // compress 1 char per iter 9538 bind(copy_tail); 9539 testl(len, len); 9540 jccb(Assembler::zero, done); 9541 lea(src, Address(src, len, Address::times_2)); 9542 lea(dst, Address(dst, len, Address::times_1)); 9543 negptr(len); 9544 9545 bind(copy_chars_loop); 9546 load_unsigned_short(tmp5, Address(src, len, Address::times_2)); 9547 testl(tmp5, 0xff00); // check if Unicode char 9548 jccb(Assembler::notZero, reset_sp); 9549 movb(Address(dst, len, Address::times_1), tmp5); // ASCII char; compress to 1 byte 9550 increment(len); 9551 jccb(Assembler::notZero, copy_chars_loop); 9552 9553 // add len then return (len will be zero if compress succeeded, otherwise negative) 9554 bind(reset_sp); 9555 addl(result, len); 9556 9557 bind(done); 9558 } 9559 9560 // Inflate byte[] array to char[]. 9561 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java 9562 // @IntrinsicCandidate 9563 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) { 9564 // for (int i = 0; i < len; i++) { 9565 // dst[dstOff++] = (char)(src[srcOff++] & 0xff); 9566 // } 9567 // } 9568 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 9569 XMMRegister tmp1, Register tmp2, KRegister mask) { 9570 Label copy_chars_loop, done, below_threshold, avx3_threshold; 9571 // rsi: src 9572 // rdi: dst 9573 // rdx: len 9574 // rcx: tmp2 9575 9576 // rsi holds start addr of source byte[] to be inflated 9577 // rdi holds start addr of destination char[] 9578 // rdx holds length 9579 assert_different_registers(src, dst, len, tmp2); 9580 movl(tmp2, len); 9581 if ((UseAVX > 2) && // AVX512 9582 VM_Version::supports_avx512vlbw() && 9583 VM_Version::supports_bmi2()) { 9584 9585 Label copy_32_loop, copy_tail; 9586 Register tmp3_aliased = len; 9587 9588 // if length of the string is less than 16, handle it in an old fashioned way 9589 testl(len, -16); 9590 jcc(Assembler::zero, below_threshold); 9591 9592 testl(len, -1 * AVX3Threshold); 9593 jcc(Assembler::zero, avx3_threshold); 9594 9595 // In order to use only one arithmetic operation for the main loop we use 9596 // this pre-calculation 9597 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop 9598 andl(len, -32); // vector count 9599 jccb(Assembler::zero, copy_tail); 9600 9601 lea(src, Address(src, len, Address::times_1)); 9602 lea(dst, Address(dst, len, Address::times_2)); 9603 negptr(len); 9604 9605 9606 // inflate 32 chars per iter 9607 bind(copy_32_loop); 9608 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit); 9609 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit); 9610 addptr(len, 32); 9611 jcc(Assembler::notZero, copy_32_loop); 9612 9613 bind(copy_tail); 9614 // bail out when there is nothing to be done 9615 testl(tmp2, -1); // we don't destroy the contents of tmp2 here 9616 jcc(Assembler::zero, done); 9617 9618 // ~(~0 << length), where length is the # of remaining elements to process 9619 movl(tmp3_aliased, -1); 9620 shlxl(tmp3_aliased, tmp3_aliased, tmp2); 9621 notl(tmp3_aliased); 9622 kmovdl(mask, tmp3_aliased); 9623 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit); 9624 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit); 9625 9626 jmp(done); 9627 bind(avx3_threshold); 9628 } 9629 if (UseSSE42Intrinsics) { 9630 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail; 9631 9632 if (UseAVX > 1) { 9633 andl(tmp2, (16 - 1)); 9634 andl(len, -16); 9635 jccb(Assembler::zero, copy_new_tail); 9636 } else { 9637 andl(tmp2, 0x00000007); // tail count (in chars) 9638 andl(len, 0xfffffff8); // vector count (in chars) 9639 jccb(Assembler::zero, copy_tail); 9640 } 9641 9642 // vectored inflation 9643 lea(src, Address(src, len, Address::times_1)); 9644 lea(dst, Address(dst, len, Address::times_2)); 9645 negptr(len); 9646 9647 if (UseAVX > 1) { 9648 bind(copy_16_loop); 9649 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit); 9650 vmovdqu(Address(dst, len, Address::times_2), tmp1); 9651 addptr(len, 16); 9652 jcc(Assembler::notZero, copy_16_loop); 9653 9654 bind(below_threshold); 9655 bind(copy_new_tail); 9656 movl(len, tmp2); 9657 andl(tmp2, 0x00000007); 9658 andl(len, 0xFFFFFFF8); 9659 jccb(Assembler::zero, copy_tail); 9660 9661 pmovzxbw(tmp1, Address(src, 0)); 9662 movdqu(Address(dst, 0), tmp1); 9663 addptr(src, 8); 9664 addptr(dst, 2 * 8); 9665 9666 jmp(copy_tail, true); 9667 } 9668 9669 // inflate 8 chars per iter 9670 bind(copy_8_loop); 9671 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words 9672 movdqu(Address(dst, len, Address::times_2), tmp1); 9673 addptr(len, 8); 9674 jcc(Assembler::notZero, copy_8_loop); 9675 9676 bind(copy_tail); 9677 movl(len, tmp2); 9678 9679 cmpl(len, 4); 9680 jccb(Assembler::less, copy_bytes); 9681 9682 movdl(tmp1, Address(src, 0)); // load 4 byte chars 9683 pmovzxbw(tmp1, tmp1); 9684 movq(Address(dst, 0), tmp1); 9685 subptr(len, 4); 9686 addptr(src, 4); 9687 addptr(dst, 8); 9688 9689 bind(copy_bytes); 9690 } else { 9691 bind(below_threshold); 9692 } 9693 9694 testl(len, len); 9695 jccb(Assembler::zero, done); 9696 lea(src, Address(src, len, Address::times_1)); 9697 lea(dst, Address(dst, len, Address::times_2)); 9698 negptr(len); 9699 9700 // inflate 1 char per iter 9701 bind(copy_chars_loop); 9702 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char 9703 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word 9704 increment(len); 9705 jcc(Assembler::notZero, copy_chars_loop); 9706 9707 bind(done); 9708 } 9709 9710 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len) { 9711 switch(type) { 9712 case T_BYTE: 9713 case T_BOOLEAN: 9714 evmovdqub(dst, kmask, src, merge, vector_len); 9715 break; 9716 case T_CHAR: 9717 case T_SHORT: 9718 evmovdquw(dst, kmask, src, merge, vector_len); 9719 break; 9720 case T_INT: 9721 case T_FLOAT: 9722 evmovdqul(dst, kmask, src, merge, vector_len); 9723 break; 9724 case T_LONG: 9725 case T_DOUBLE: 9726 evmovdquq(dst, kmask, src, merge, vector_len); 9727 break; 9728 default: 9729 fatal("Unexpected type argument %s", type2name(type)); 9730 break; 9731 } 9732 } 9733 9734 9735 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) { 9736 switch(type) { 9737 case T_BYTE: 9738 case T_BOOLEAN: 9739 evmovdqub(dst, kmask, src, merge, vector_len); 9740 break; 9741 case T_CHAR: 9742 case T_SHORT: 9743 evmovdquw(dst, kmask, src, merge, vector_len); 9744 break; 9745 case T_INT: 9746 case T_FLOAT: 9747 evmovdqul(dst, kmask, src, merge, vector_len); 9748 break; 9749 case T_LONG: 9750 case T_DOUBLE: 9751 evmovdquq(dst, kmask, src, merge, vector_len); 9752 break; 9753 default: 9754 fatal("Unexpected type argument %s", type2name(type)); 9755 break; 9756 } 9757 } 9758 9759 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) { 9760 switch(type) { 9761 case T_BYTE: 9762 case T_BOOLEAN: 9763 evmovdqub(dst, kmask, src, merge, vector_len); 9764 break; 9765 case T_CHAR: 9766 case T_SHORT: 9767 evmovdquw(dst, kmask, src, merge, vector_len); 9768 break; 9769 case T_INT: 9770 case T_FLOAT: 9771 evmovdqul(dst, kmask, src, merge, vector_len); 9772 break; 9773 case T_LONG: 9774 case T_DOUBLE: 9775 evmovdquq(dst, kmask, src, merge, vector_len); 9776 break; 9777 default: 9778 fatal("Unexpected type argument %s", type2name(type)); 9779 break; 9780 } 9781 } 9782 9783 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) { 9784 switch(masklen) { 9785 case 2: 9786 knotbl(dst, src); 9787 movl(rtmp, 3); 9788 kmovbl(ktmp, rtmp); 9789 kandbl(dst, ktmp, dst); 9790 break; 9791 case 4: 9792 knotbl(dst, src); 9793 movl(rtmp, 15); 9794 kmovbl(ktmp, rtmp); 9795 kandbl(dst, ktmp, dst); 9796 break; 9797 case 8: 9798 knotbl(dst, src); 9799 break; 9800 case 16: 9801 knotwl(dst, src); 9802 break; 9803 case 32: 9804 knotdl(dst, src); 9805 break; 9806 case 64: 9807 knotql(dst, src); 9808 break; 9809 default: 9810 fatal("Unexpected vector length %d", masklen); 9811 break; 9812 } 9813 } 9814 9815 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9816 switch(type) { 9817 case T_BOOLEAN: 9818 case T_BYTE: 9819 kandbl(dst, src1, src2); 9820 break; 9821 case T_CHAR: 9822 case T_SHORT: 9823 kandwl(dst, src1, src2); 9824 break; 9825 case T_INT: 9826 case T_FLOAT: 9827 kanddl(dst, src1, src2); 9828 break; 9829 case T_LONG: 9830 case T_DOUBLE: 9831 kandql(dst, src1, src2); 9832 break; 9833 default: 9834 fatal("Unexpected type argument %s", type2name(type)); 9835 break; 9836 } 9837 } 9838 9839 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9840 switch(type) { 9841 case T_BOOLEAN: 9842 case T_BYTE: 9843 korbl(dst, src1, src2); 9844 break; 9845 case T_CHAR: 9846 case T_SHORT: 9847 korwl(dst, src1, src2); 9848 break; 9849 case T_INT: 9850 case T_FLOAT: 9851 kordl(dst, src1, src2); 9852 break; 9853 case T_LONG: 9854 case T_DOUBLE: 9855 korql(dst, src1, src2); 9856 break; 9857 default: 9858 fatal("Unexpected type argument %s", type2name(type)); 9859 break; 9860 } 9861 } 9862 9863 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9864 switch(type) { 9865 case T_BOOLEAN: 9866 case T_BYTE: 9867 kxorbl(dst, src1, src2); 9868 break; 9869 case T_CHAR: 9870 case T_SHORT: 9871 kxorwl(dst, src1, src2); 9872 break; 9873 case T_INT: 9874 case T_FLOAT: 9875 kxordl(dst, src1, src2); 9876 break; 9877 case T_LONG: 9878 case T_DOUBLE: 9879 kxorql(dst, src1, src2); 9880 break; 9881 default: 9882 fatal("Unexpected type argument %s", type2name(type)); 9883 break; 9884 } 9885 } 9886 9887 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9888 switch(type) { 9889 case T_BOOLEAN: 9890 case T_BYTE: 9891 evpermb(dst, mask, nds, src, merge, vector_len); break; 9892 case T_CHAR: 9893 case T_SHORT: 9894 evpermw(dst, mask, nds, src, merge, vector_len); break; 9895 case T_INT: 9896 case T_FLOAT: 9897 evpermd(dst, mask, nds, src, merge, vector_len); break; 9898 case T_LONG: 9899 case T_DOUBLE: 9900 evpermq(dst, mask, nds, src, merge, vector_len); break; 9901 default: 9902 fatal("Unexpected type argument %s", type2name(type)); break; 9903 } 9904 } 9905 9906 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9907 switch(type) { 9908 case T_BOOLEAN: 9909 case T_BYTE: 9910 evpermb(dst, mask, nds, src, merge, vector_len); break; 9911 case T_CHAR: 9912 case T_SHORT: 9913 evpermw(dst, mask, nds, src, merge, vector_len); break; 9914 case T_INT: 9915 case T_FLOAT: 9916 evpermd(dst, mask, nds, src, merge, vector_len); break; 9917 case T_LONG: 9918 case T_DOUBLE: 9919 evpermq(dst, mask, nds, src, merge, vector_len); break; 9920 default: 9921 fatal("Unexpected type argument %s", type2name(type)); break; 9922 } 9923 } 9924 9925 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9926 switch(type) { 9927 case T_BYTE: 9928 evpminub(dst, mask, nds, src, merge, vector_len); break; 9929 case T_SHORT: 9930 evpminuw(dst, mask, nds, src, merge, vector_len); break; 9931 case T_INT: 9932 evpminud(dst, mask, nds, src, merge, vector_len); break; 9933 case T_LONG: 9934 evpminuq(dst, mask, nds, src, merge, vector_len); break; 9935 default: 9936 fatal("Unexpected type argument %s", type2name(type)); break; 9937 } 9938 } 9939 9940 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9941 switch(type) { 9942 case T_BYTE: 9943 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 9944 case T_SHORT: 9945 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 9946 case T_INT: 9947 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 9948 case T_LONG: 9949 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 9950 default: 9951 fatal("Unexpected type argument %s", type2name(type)); break; 9952 } 9953 } 9954 9955 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9956 switch(type) { 9957 case T_BYTE: 9958 evpminub(dst, mask, nds, src, merge, vector_len); break; 9959 case T_SHORT: 9960 evpminuw(dst, mask, nds, src, merge, vector_len); break; 9961 case T_INT: 9962 evpminud(dst, mask, nds, src, merge, vector_len); break; 9963 case T_LONG: 9964 evpminuq(dst, mask, nds, src, merge, vector_len); break; 9965 default: 9966 fatal("Unexpected type argument %s", type2name(type)); break; 9967 } 9968 } 9969 9970 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9971 switch(type) { 9972 case T_BYTE: 9973 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 9974 case T_SHORT: 9975 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 9976 case T_INT: 9977 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 9978 case T_LONG: 9979 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 9980 default: 9981 fatal("Unexpected type argument %s", type2name(type)); break; 9982 } 9983 } 9984 9985 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9986 switch(type) { 9987 case T_BYTE: 9988 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9989 case T_SHORT: 9990 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9991 case T_INT: 9992 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9993 case T_LONG: 9994 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9995 default: 9996 fatal("Unexpected type argument %s", type2name(type)); break; 9997 } 9998 } 9999 10000 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10001 switch(type) { 10002 case T_BYTE: 10003 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 10004 case T_SHORT: 10005 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 10006 case T_INT: 10007 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 10008 case T_LONG: 10009 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 10010 default: 10011 fatal("Unexpected type argument %s", type2name(type)); break; 10012 } 10013 } 10014 10015 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10016 switch(type) { 10017 case T_BYTE: 10018 evpminsb(dst, mask, nds, src, merge, vector_len); break; 10019 case T_SHORT: 10020 evpminsw(dst, mask, nds, src, merge, vector_len); break; 10021 case T_INT: 10022 evpminsd(dst, mask, nds, src, merge, vector_len); break; 10023 case T_LONG: 10024 evpminsq(dst, mask, nds, src, merge, vector_len); break; 10025 default: 10026 fatal("Unexpected type argument %s", type2name(type)); break; 10027 } 10028 } 10029 10030 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10031 switch(type) { 10032 case T_BYTE: 10033 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 10034 case T_SHORT: 10035 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 10036 case T_INT: 10037 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 10038 case T_LONG: 10039 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 10040 default: 10041 fatal("Unexpected type argument %s", type2name(type)); break; 10042 } 10043 } 10044 10045 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10046 switch(type) { 10047 case T_INT: 10048 evpxord(dst, mask, nds, src, merge, vector_len); break; 10049 case T_LONG: 10050 evpxorq(dst, mask, nds, src, merge, vector_len); break; 10051 default: 10052 fatal("Unexpected type argument %s", type2name(type)); break; 10053 } 10054 } 10055 10056 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10057 switch(type) { 10058 case T_INT: 10059 evpxord(dst, mask, nds, src, merge, vector_len); break; 10060 case T_LONG: 10061 evpxorq(dst, mask, nds, src, merge, vector_len); break; 10062 default: 10063 fatal("Unexpected type argument %s", type2name(type)); break; 10064 } 10065 } 10066 10067 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10068 switch(type) { 10069 case T_INT: 10070 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 10071 case T_LONG: 10072 evporq(dst, mask, nds, src, merge, vector_len); break; 10073 default: 10074 fatal("Unexpected type argument %s", type2name(type)); break; 10075 } 10076 } 10077 10078 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10079 switch(type) { 10080 case T_INT: 10081 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 10082 case T_LONG: 10083 evporq(dst, mask, nds, src, merge, vector_len); break; 10084 default: 10085 fatal("Unexpected type argument %s", type2name(type)); break; 10086 } 10087 } 10088 10089 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10090 switch(type) { 10091 case T_INT: 10092 evpandd(dst, mask, nds, src, merge, vector_len); break; 10093 case T_LONG: 10094 evpandq(dst, mask, nds, src, merge, vector_len); break; 10095 default: 10096 fatal("Unexpected type argument %s", type2name(type)); break; 10097 } 10098 } 10099 10100 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10101 switch(type) { 10102 case T_INT: 10103 evpandd(dst, mask, nds, src, merge, vector_len); break; 10104 case T_LONG: 10105 evpandq(dst, mask, nds, src, merge, vector_len); break; 10106 default: 10107 fatal("Unexpected type argument %s", type2name(type)); break; 10108 } 10109 } 10110 10111 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) { 10112 switch(masklen) { 10113 case 8: 10114 kortestbl(src1, src2); 10115 break; 10116 case 16: 10117 kortestwl(src1, src2); 10118 break; 10119 case 32: 10120 kortestdl(src1, src2); 10121 break; 10122 case 64: 10123 kortestql(src1, src2); 10124 break; 10125 default: 10126 fatal("Unexpected mask length %d", masklen); 10127 break; 10128 } 10129 } 10130 10131 10132 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) { 10133 switch(masklen) { 10134 case 8: 10135 ktestbl(src1, src2); 10136 break; 10137 case 16: 10138 ktestwl(src1, src2); 10139 break; 10140 case 32: 10141 ktestdl(src1, src2); 10142 break; 10143 case 64: 10144 ktestql(src1, src2); 10145 break; 10146 default: 10147 fatal("Unexpected mask length %d", masklen); 10148 break; 10149 } 10150 } 10151 10152 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 10153 switch(type) { 10154 case T_INT: 10155 evprold(dst, mask, src, shift, merge, vlen_enc); break; 10156 case T_LONG: 10157 evprolq(dst, mask, src, shift, merge, vlen_enc); break; 10158 default: 10159 fatal("Unexpected type argument %s", type2name(type)); break; 10160 break; 10161 } 10162 } 10163 10164 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 10165 switch(type) { 10166 case T_INT: 10167 evprord(dst, mask, src, shift, merge, vlen_enc); break; 10168 case T_LONG: 10169 evprorq(dst, mask, src, shift, merge, vlen_enc); break; 10170 default: 10171 fatal("Unexpected type argument %s", type2name(type)); break; 10172 } 10173 } 10174 10175 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 10176 switch(type) { 10177 case T_INT: 10178 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break; 10179 case T_LONG: 10180 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break; 10181 default: 10182 fatal("Unexpected type argument %s", type2name(type)); break; 10183 } 10184 } 10185 10186 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 10187 switch(type) { 10188 case T_INT: 10189 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break; 10190 case T_LONG: 10191 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break; 10192 default: 10193 fatal("Unexpected type argument %s", type2name(type)); break; 10194 } 10195 } 10196 10197 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10198 assert(rscratch != noreg || always_reachable(src), "missing"); 10199 10200 if (reachable(src)) { 10201 evpandq(dst, nds, as_Address(src), vector_len); 10202 } else { 10203 lea(rscratch, src); 10204 evpandq(dst, nds, Address(rscratch, 0), vector_len); 10205 } 10206 } 10207 10208 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 10209 assert(rscratch != noreg || always_reachable(src), "missing"); 10210 10211 if (reachable(src)) { 10212 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len); 10213 } else { 10214 lea(rscratch, src); 10215 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 10216 } 10217 } 10218 10219 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10220 assert(rscratch != noreg || always_reachable(src), "missing"); 10221 10222 if (reachable(src)) { 10223 evporq(dst, nds, as_Address(src), vector_len); 10224 } else { 10225 lea(rscratch, src); 10226 evporq(dst, nds, Address(rscratch, 0), vector_len); 10227 } 10228 } 10229 10230 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10231 assert(rscratch != noreg || always_reachable(src), "missing"); 10232 10233 if (reachable(src)) { 10234 vpshufb(dst, nds, as_Address(src), vector_len); 10235 } else { 10236 lea(rscratch, src); 10237 vpshufb(dst, nds, Address(rscratch, 0), vector_len); 10238 } 10239 } 10240 10241 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10242 assert(rscratch != noreg || always_reachable(src), "missing"); 10243 10244 if (reachable(src)) { 10245 Assembler::vpor(dst, nds, as_Address(src), vector_len); 10246 } else { 10247 lea(rscratch, src); 10248 Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len); 10249 } 10250 } 10251 10252 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) { 10253 assert(rscratch != noreg || always_reachable(src3), "missing"); 10254 10255 if (reachable(src3)) { 10256 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len); 10257 } else { 10258 lea(rscratch, src3); 10259 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len); 10260 } 10261 } 10262 10263 #if COMPILER2_OR_JVMCI 10264 10265 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 10266 Register length, Register temp, int vec_enc) { 10267 // Computing mask for predicated vector store. 10268 movptr(temp, -1); 10269 bzhiq(temp, temp, length); 10270 kmov(mask, temp); 10271 evmovdqu(bt, mask, dst, xmm, true, vec_enc); 10272 } 10273 10274 // Set memory operation for length "less than" 64 bytes. 10275 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp, 10276 XMMRegister xmm, KRegister mask, Register length, 10277 Register temp, bool use64byteVector) { 10278 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10279 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 10280 if (!use64byteVector) { 10281 fill32(dst, disp, xmm); 10282 subptr(length, 32 >> shift); 10283 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp); 10284 } else { 10285 assert(MaxVectorSize == 64, "vector length != 64"); 10286 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit); 10287 } 10288 } 10289 10290 10291 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp, 10292 XMMRegister xmm, KRegister mask, Register length, 10293 Register temp) { 10294 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10295 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 10296 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit); 10297 } 10298 10299 10300 void MacroAssembler::fill32(Address dst, XMMRegister xmm) { 10301 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10302 vmovdqu(dst, xmm); 10303 } 10304 10305 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) { 10306 fill32(Address(dst, disp), xmm); 10307 } 10308 10309 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) { 10310 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10311 if (!use64byteVector) { 10312 fill32(dst, xmm); 10313 fill32(dst.plus_disp(32), xmm); 10314 } else { 10315 evmovdquq(dst, xmm, Assembler::AVX_512bit); 10316 } 10317 } 10318 10319 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) { 10320 fill64(Address(dst, disp), xmm, use64byteVector); 10321 } 10322 10323 #ifdef _LP64 10324 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value, 10325 Register count, Register rtmp, XMMRegister xtmp) { 10326 Label L_exit; 10327 Label L_fill_start; 10328 Label L_fill_64_bytes; 10329 Label L_fill_96_bytes; 10330 Label L_fill_128_bytes; 10331 Label L_fill_128_bytes_loop; 10332 Label L_fill_128_loop_header; 10333 Label L_fill_128_bytes_loop_header; 10334 Label L_fill_128_bytes_loop_pre_header; 10335 Label L_fill_zmm_sequence; 10336 10337 int shift = -1; 10338 int avx3threshold = VM_Version::avx3_threshold(); 10339 switch(type) { 10340 case T_BYTE: shift = 0; 10341 break; 10342 case T_SHORT: shift = 1; 10343 break; 10344 case T_INT: shift = 2; 10345 break; 10346 /* Uncomment when LONG fill stubs are supported. 10347 case T_LONG: shift = 3; 10348 break; 10349 */ 10350 default: 10351 fatal("Unhandled type: %s\n", type2name(type)); 10352 } 10353 10354 if ((avx3threshold != 0) || (MaxVectorSize == 32)) { 10355 10356 if (MaxVectorSize == 64) { 10357 cmpq(count, avx3threshold >> shift); 10358 jcc(Assembler::greater, L_fill_zmm_sequence); 10359 } 10360 10361 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit); 10362 10363 bind(L_fill_start); 10364 10365 cmpq(count, 32 >> shift); 10366 jccb(Assembler::greater, L_fill_64_bytes); 10367 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp); 10368 jmp(L_exit); 10369 10370 bind(L_fill_64_bytes); 10371 cmpq(count, 64 >> shift); 10372 jccb(Assembler::greater, L_fill_96_bytes); 10373 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp); 10374 jmp(L_exit); 10375 10376 bind(L_fill_96_bytes); 10377 cmpq(count, 96 >> shift); 10378 jccb(Assembler::greater, L_fill_128_bytes); 10379 fill64(to, 0, xtmp); 10380 subq(count, 64 >> shift); 10381 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp); 10382 jmp(L_exit); 10383 10384 bind(L_fill_128_bytes); 10385 cmpq(count, 128 >> shift); 10386 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header); 10387 fill64(to, 0, xtmp); 10388 fill32(to, 64, xtmp); 10389 subq(count, 96 >> shift); 10390 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp); 10391 jmp(L_exit); 10392 10393 bind(L_fill_128_bytes_loop_pre_header); 10394 { 10395 mov(rtmp, to); 10396 andq(rtmp, 31); 10397 jccb(Assembler::zero, L_fill_128_bytes_loop_header); 10398 negq(rtmp); 10399 addq(rtmp, 32); 10400 mov64(r8, -1L); 10401 bzhiq(r8, r8, rtmp); 10402 kmovql(k2, r8); 10403 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit); 10404 addq(to, rtmp); 10405 shrq(rtmp, shift); 10406 subq(count, rtmp); 10407 } 10408 10409 cmpq(count, 128 >> shift); 10410 jcc(Assembler::less, L_fill_start); 10411 10412 bind(L_fill_128_bytes_loop_header); 10413 subq(count, 128 >> shift); 10414 10415 align32(); 10416 bind(L_fill_128_bytes_loop); 10417 fill64(to, 0, xtmp); 10418 fill64(to, 64, xtmp); 10419 addq(to, 128); 10420 subq(count, 128 >> shift); 10421 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop); 10422 10423 addq(count, 128 >> shift); 10424 jcc(Assembler::zero, L_exit); 10425 jmp(L_fill_start); 10426 } 10427 10428 if (MaxVectorSize == 64) { 10429 // Sequence using 64 byte ZMM register. 10430 Label L_fill_128_bytes_zmm; 10431 Label L_fill_192_bytes_zmm; 10432 Label L_fill_192_bytes_loop_zmm; 10433 Label L_fill_192_bytes_loop_header_zmm; 10434 Label L_fill_192_bytes_loop_pre_header_zmm; 10435 Label L_fill_start_zmm_sequence; 10436 10437 bind(L_fill_zmm_sequence); 10438 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit); 10439 10440 bind(L_fill_start_zmm_sequence); 10441 cmpq(count, 64 >> shift); 10442 jccb(Assembler::greater, L_fill_128_bytes_zmm); 10443 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true); 10444 jmp(L_exit); 10445 10446 bind(L_fill_128_bytes_zmm); 10447 cmpq(count, 128 >> shift); 10448 jccb(Assembler::greater, L_fill_192_bytes_zmm); 10449 fill64(to, 0, xtmp, true); 10450 subq(count, 64 >> shift); 10451 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true); 10452 jmp(L_exit); 10453 10454 bind(L_fill_192_bytes_zmm); 10455 cmpq(count, 192 >> shift); 10456 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm); 10457 fill64(to, 0, xtmp, true); 10458 fill64(to, 64, xtmp, true); 10459 subq(count, 128 >> shift); 10460 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true); 10461 jmp(L_exit); 10462 10463 bind(L_fill_192_bytes_loop_pre_header_zmm); 10464 { 10465 movq(rtmp, to); 10466 andq(rtmp, 63); 10467 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm); 10468 negq(rtmp); 10469 addq(rtmp, 64); 10470 mov64(r8, -1L); 10471 bzhiq(r8, r8, rtmp); 10472 kmovql(k2, r8); 10473 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit); 10474 addq(to, rtmp); 10475 shrq(rtmp, shift); 10476 subq(count, rtmp); 10477 } 10478 10479 cmpq(count, 192 >> shift); 10480 jcc(Assembler::less, L_fill_start_zmm_sequence); 10481 10482 bind(L_fill_192_bytes_loop_header_zmm); 10483 subq(count, 192 >> shift); 10484 10485 align32(); 10486 bind(L_fill_192_bytes_loop_zmm); 10487 fill64(to, 0, xtmp, true); 10488 fill64(to, 64, xtmp, true); 10489 fill64(to, 128, xtmp, true); 10490 addq(to, 192); 10491 subq(count, 192 >> shift); 10492 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm); 10493 10494 addq(count, 192 >> shift); 10495 jcc(Assembler::zero, L_exit); 10496 jmp(L_fill_start_zmm_sequence); 10497 } 10498 bind(L_exit); 10499 } 10500 #endif 10501 #endif //COMPILER2_OR_JVMCI 10502 10503 10504 #ifdef _LP64 10505 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) { 10506 Label done; 10507 cvttss2sil(dst, src); 10508 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10509 cmpl(dst, 0x80000000); // float_sign_flip 10510 jccb(Assembler::notEqual, done); 10511 subptr(rsp, 8); 10512 movflt(Address(rsp, 0), src); 10513 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup()))); 10514 pop(dst); 10515 bind(done); 10516 } 10517 10518 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) { 10519 Label done; 10520 cvttsd2sil(dst, src); 10521 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10522 cmpl(dst, 0x80000000); // float_sign_flip 10523 jccb(Assembler::notEqual, done); 10524 subptr(rsp, 8); 10525 movdbl(Address(rsp, 0), src); 10526 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup()))); 10527 pop(dst); 10528 bind(done); 10529 } 10530 10531 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) { 10532 Label done; 10533 cvttss2siq(dst, src); 10534 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10535 jccb(Assembler::notEqual, done); 10536 subptr(rsp, 8); 10537 movflt(Address(rsp, 0), src); 10538 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup()))); 10539 pop(dst); 10540 bind(done); 10541 } 10542 10543 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10544 // Following code is line by line assembly translation rounding algorithm. 10545 // Please refer to java.lang.Math.round(float) algorithm for details. 10546 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000; 10547 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24; 10548 const int32_t FloatConsts_EXP_BIAS = 127; 10549 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF; 10550 const int32_t MINUS_32 = 0xFFFFFFE0; 10551 Label L_special_case, L_block1, L_exit; 10552 movl(rtmp, FloatConsts_EXP_BIT_MASK); 10553 movdl(dst, src); 10554 andl(dst, rtmp); 10555 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1); 10556 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS); 10557 subl(rtmp, dst); 10558 movl(rcx, rtmp); 10559 movl(dst, MINUS_32); 10560 testl(rtmp, dst); 10561 jccb(Assembler::notEqual, L_special_case); 10562 movdl(dst, src); 10563 andl(dst, FloatConsts_SIGNIF_BIT_MASK); 10564 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1); 10565 movdl(rtmp, src); 10566 testl(rtmp, rtmp); 10567 jccb(Assembler::greaterEqual, L_block1); 10568 negl(dst); 10569 bind(L_block1); 10570 sarl(dst); 10571 addl(dst, 0x1); 10572 sarl(dst, 0x1); 10573 jmp(L_exit); 10574 bind(L_special_case); 10575 convert_f2i(dst, src); 10576 bind(L_exit); 10577 } 10578 10579 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10580 // Following code is line by line assembly translation rounding algorithm. 10581 // Please refer to java.lang.Math.round(double) algorithm for details. 10582 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L; 10583 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53; 10584 const int64_t DoubleConsts_EXP_BIAS = 1023; 10585 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL; 10586 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L; 10587 Label L_special_case, L_block1, L_exit; 10588 mov64(rtmp, DoubleConsts_EXP_BIT_MASK); 10589 movq(dst, src); 10590 andq(dst, rtmp); 10591 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1); 10592 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS); 10593 subq(rtmp, dst); 10594 movq(rcx, rtmp); 10595 mov64(dst, MINUS_64); 10596 testq(rtmp, dst); 10597 jccb(Assembler::notEqual, L_special_case); 10598 movq(dst, src); 10599 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK); 10600 andq(dst, rtmp); 10601 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1); 10602 orq(dst, rtmp); 10603 movq(rtmp, src); 10604 testq(rtmp, rtmp); 10605 jccb(Assembler::greaterEqual, L_block1); 10606 negq(dst); 10607 bind(L_block1); 10608 sarq(dst); 10609 addq(dst, 0x1); 10610 sarq(dst, 0x1); 10611 jmp(L_exit); 10612 bind(L_special_case); 10613 convert_d2l(dst, src); 10614 bind(L_exit); 10615 } 10616 10617 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) { 10618 Label done; 10619 cvttsd2siq(dst, src); 10620 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10621 jccb(Assembler::notEqual, done); 10622 subptr(rsp, 8); 10623 movdbl(Address(rsp, 0), src); 10624 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 10625 pop(dst); 10626 bind(done); 10627 } 10628 10629 void MacroAssembler::cache_wb(Address line) 10630 { 10631 // 64 bit cpus always support clflush 10632 assert(VM_Version::supports_clflush(), "clflush should be available"); 10633 bool optimized = VM_Version::supports_clflushopt(); 10634 bool no_evict = VM_Version::supports_clwb(); 10635 10636 // prefer clwb (writeback without evict) otherwise 10637 // prefer clflushopt (potentially parallel writeback with evict) 10638 // otherwise fallback on clflush (serial writeback with evict) 10639 10640 if (optimized) { 10641 if (no_evict) { 10642 clwb(line); 10643 } else { 10644 clflushopt(line); 10645 } 10646 } else { 10647 // no need for fence when using CLFLUSH 10648 clflush(line); 10649 } 10650 } 10651 10652 void MacroAssembler::cache_wbsync(bool is_pre) 10653 { 10654 assert(VM_Version::supports_clflush(), "clflush should be available"); 10655 bool optimized = VM_Version::supports_clflushopt(); 10656 bool no_evict = VM_Version::supports_clwb(); 10657 10658 // pick the correct implementation 10659 10660 if (!is_pre && (optimized || no_evict)) { 10661 // need an sfence for post flush when using clflushopt or clwb 10662 // otherwise no no need for any synchroniaztion 10663 10664 sfence(); 10665 } 10666 } 10667 10668 #endif // _LP64 10669 10670 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { 10671 switch (cond) { 10672 // Note some conditions are synonyms for others 10673 case Assembler::zero: return Assembler::notZero; 10674 case Assembler::notZero: return Assembler::zero; 10675 case Assembler::less: return Assembler::greaterEqual; 10676 case Assembler::lessEqual: return Assembler::greater; 10677 case Assembler::greater: return Assembler::lessEqual; 10678 case Assembler::greaterEqual: return Assembler::less; 10679 case Assembler::below: return Assembler::aboveEqual; 10680 case Assembler::belowEqual: return Assembler::above; 10681 case Assembler::above: return Assembler::belowEqual; 10682 case Assembler::aboveEqual: return Assembler::below; 10683 case Assembler::overflow: return Assembler::noOverflow; 10684 case Assembler::noOverflow: return Assembler::overflow; 10685 case Assembler::negative: return Assembler::positive; 10686 case Assembler::positive: return Assembler::negative; 10687 case Assembler::parity: return Assembler::noParity; 10688 case Assembler::noParity: return Assembler::parity; 10689 } 10690 ShouldNotReachHere(); return Assembler::overflow; 10691 } 10692 10693 // This is simply a call to Thread::current() 10694 void MacroAssembler::get_thread_slow(Register thread) { 10695 if (thread != rax) { 10696 push(rax); 10697 } 10698 push(rdi); 10699 push(rsi); 10700 push(rdx); 10701 push(rcx); 10702 push(r8); 10703 push(r9); 10704 push(r10); 10705 push(r11); 10706 10707 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0); 10708 10709 pop(r11); 10710 pop(r10); 10711 pop(r9); 10712 pop(r8); 10713 pop(rcx); 10714 pop(rdx); 10715 pop(rsi); 10716 pop(rdi); 10717 if (thread != rax) { 10718 mov(thread, rax); 10719 pop(rax); 10720 } 10721 } 10722 10723 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) { 10724 Label L_stack_ok; 10725 if (bias == 0) { 10726 testptr(sp, 2 * wordSize - 1); 10727 } else { 10728 // lea(tmp, Address(rsp, bias); 10729 mov(tmp, sp); 10730 addptr(tmp, bias); 10731 testptr(tmp, 2 * wordSize - 1); 10732 } 10733 jcc(Assembler::equal, L_stack_ok); 10734 block_comment(msg); 10735 stop(msg); 10736 bind(L_stack_ok); 10737 } 10738 10739 // Implements lightweight-locking. 10740 // 10741 // obj: the object to be locked 10742 // reg_rax: rax 10743 // thread: the thread which attempts to lock obj 10744 // tmp: a temporary register 10745 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register tmp, Label& slow) { 10746 Register thread = r15_thread; 10747 10748 assert(reg_rax == rax, ""); 10749 assert_different_registers(basic_lock, obj, reg_rax, thread, tmp); 10750 10751 Label push; 10752 const Register top = tmp; 10753 10754 // Preload the markWord. It is important that this is the first 10755 // instruction emitted as it is part of C1's null check semantics. 10756 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10757 10758 if (UseObjectMonitorTable) { 10759 // Clear cache in case fast locking succeeds. 10760 movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0); 10761 } 10762 10763 // Load top. 10764 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10765 10766 // Check if the lock-stack is full. 10767 cmpl(top, LockStack::end_offset()); 10768 jcc(Assembler::greaterEqual, slow); 10769 10770 // Check for recursion. 10771 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10772 jcc(Assembler::equal, push); 10773 10774 // Check header for monitor (0b10). 10775 testptr(reg_rax, markWord::monitor_value); 10776 jcc(Assembler::notZero, slow); 10777 10778 // Try to lock. Transition lock bits 0b01 => 0b00 10779 movptr(tmp, reg_rax); 10780 andptr(tmp, ~(int32_t)markWord::unlocked_value); 10781 orptr(reg_rax, markWord::unlocked_value); 10782 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10783 jcc(Assembler::notEqual, slow); 10784 10785 // Restore top, CAS clobbers register. 10786 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10787 10788 bind(push); 10789 // After successful lock, push object on lock-stack. 10790 movptr(Address(thread, top), obj); 10791 incrementl(top, oopSize); 10792 movl(Address(thread, JavaThread::lock_stack_top_offset()), top); 10793 } 10794 10795 // Implements lightweight-unlocking. 10796 // 10797 // obj: the object to be unlocked 10798 // reg_rax: rax 10799 // thread: the thread 10800 // tmp: a temporary register 10801 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register tmp, Label& slow) { 10802 Register thread = r15_thread; 10803 10804 assert(reg_rax == rax, ""); 10805 assert_different_registers(obj, reg_rax, thread, tmp); 10806 10807 Label unlocked, push_and_slow; 10808 const Register top = tmp; 10809 10810 // Check if obj is top of lock-stack. 10811 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10812 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10813 jcc(Assembler::notEqual, slow); 10814 10815 // Pop lock-stack. 10816 DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);) 10817 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10818 10819 // Check if recursive. 10820 cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize)); 10821 jcc(Assembler::equal, unlocked); 10822 10823 // Not recursive. Check header for monitor (0b10). 10824 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10825 testptr(reg_rax, markWord::monitor_value); 10826 jcc(Assembler::notZero, push_and_slow); 10827 10828 #ifdef ASSERT 10829 // Check header not unlocked (0b01). 10830 Label not_unlocked; 10831 testptr(reg_rax, markWord::unlocked_value); 10832 jcc(Assembler::zero, not_unlocked); 10833 stop("lightweight_unlock already unlocked"); 10834 bind(not_unlocked); 10835 #endif 10836 10837 // Try to unlock. Transition lock bits 0b00 => 0b01 10838 movptr(tmp, reg_rax); 10839 orptr(tmp, markWord::unlocked_value); 10840 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10841 jcc(Assembler::equal, unlocked); 10842 10843 bind(push_and_slow); 10844 // Restore lock-stack and handle the unlock in runtime. 10845 #ifdef ASSERT 10846 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10847 movptr(Address(thread, top), obj); 10848 #endif 10849 addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10850 jmp(slow); 10851 10852 bind(unlocked); 10853 } 10854 10855 #ifdef _LP64 10856 // Saves legacy GPRs state on stack. 10857 void MacroAssembler::save_legacy_gprs() { 10858 subq(rsp, 16 * wordSize); 10859 movq(Address(rsp, 15 * wordSize), rax); 10860 movq(Address(rsp, 14 * wordSize), rcx); 10861 movq(Address(rsp, 13 * wordSize), rdx); 10862 movq(Address(rsp, 12 * wordSize), rbx); 10863 movq(Address(rsp, 10 * wordSize), rbp); 10864 movq(Address(rsp, 9 * wordSize), rsi); 10865 movq(Address(rsp, 8 * wordSize), rdi); 10866 movq(Address(rsp, 7 * wordSize), r8); 10867 movq(Address(rsp, 6 * wordSize), r9); 10868 movq(Address(rsp, 5 * wordSize), r10); 10869 movq(Address(rsp, 4 * wordSize), r11); 10870 movq(Address(rsp, 3 * wordSize), r12); 10871 movq(Address(rsp, 2 * wordSize), r13); 10872 movq(Address(rsp, wordSize), r14); 10873 movq(Address(rsp, 0), r15); 10874 } 10875 10876 // Resotres back legacy GPRs state from stack. 10877 void MacroAssembler::restore_legacy_gprs() { 10878 movq(r15, Address(rsp, 0)); 10879 movq(r14, Address(rsp, wordSize)); 10880 movq(r13, Address(rsp, 2 * wordSize)); 10881 movq(r12, Address(rsp, 3 * wordSize)); 10882 movq(r11, Address(rsp, 4 * wordSize)); 10883 movq(r10, Address(rsp, 5 * wordSize)); 10884 movq(r9, Address(rsp, 6 * wordSize)); 10885 movq(r8, Address(rsp, 7 * wordSize)); 10886 movq(rdi, Address(rsp, 8 * wordSize)); 10887 movq(rsi, Address(rsp, 9 * wordSize)); 10888 movq(rbp, Address(rsp, 10 * wordSize)); 10889 movq(rbx, Address(rsp, 12 * wordSize)); 10890 movq(rdx, Address(rsp, 13 * wordSize)); 10891 movq(rcx, Address(rsp, 14 * wordSize)); 10892 movq(rax, Address(rsp, 15 * wordSize)); 10893 addq(rsp, 16 * wordSize); 10894 } 10895 10896 void MacroAssembler::load_aotrc_address(Register reg, address a) { 10897 #if INCLUDE_CDS 10898 assert(AOTRuntimeConstants::contains(a), "address out of range for data area"); 10899 if (SCCache::is_on_for_write()) { 10900 // all aotrc field addresses should be registered in the SCC address table 10901 lea(reg, ExternalAddress(a)); 10902 } else { 10903 mov64(reg, (uint64_t)a); 10904 } 10905 #else 10906 ShouldNotReachHere(); 10907 #endif 10908 } 10909 10910 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) { 10911 if (VM_Version::supports_apx_f()) { 10912 esetzucc(comparison, dst); 10913 } else { 10914 setb(comparison, dst); 10915 movzbl(dst, dst); 10916 } 10917 } 10918 10919 #endif