1 /*
2 * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "asm/assembler.hpp"
26 #include "asm/assembler.inline.hpp"
27 #include "code/aotCodeCache.hpp"
28 #include "code/compiledIC.hpp"
29 #include "compiler/compiler_globals.hpp"
30 #include "compiler/disassembler.hpp"
31 #include "crc32c.h"
32 #include "gc/shared/barrierSet.hpp"
33 #include "gc/shared/barrierSetAssembler.hpp"
34 #include "gc/shared/collectedHeap.inline.hpp"
35 #include "gc/shared/tlab_globals.hpp"
36 #include "interpreter/bytecodeHistogram.hpp"
37 #include "interpreter/interpreter.hpp"
38 #include "interpreter/interpreterRuntime.hpp"
39 #include "jvm.h"
40 #include "memory/resourceArea.hpp"
41 #include "memory/universe.hpp"
42 #include "oops/accessDecorators.hpp"
43 #include "oops/compressedKlass.inline.hpp"
44 #include "oops/compressedOops.inline.hpp"
45 #include "oops/klass.inline.hpp"
46 #include "prims/methodHandles.hpp"
47 #include "runtime/continuation.hpp"
48 #include "runtime/interfaceSupport.inline.hpp"
49 #include "runtime/javaThread.hpp"
50 #include "runtime/jniHandles.hpp"
51 #include "runtime/objectMonitor.hpp"
52 #include "runtime/os.hpp"
53 #include "runtime/safepoint.hpp"
54 #include "runtime/safepointMechanism.hpp"
55 #include "runtime/sharedRuntime.hpp"
56 #include "runtime/stubRoutines.hpp"
57 #include "utilities/checkedCast.hpp"
58 #include "utilities/macros.hpp"
59
60 #ifdef PRODUCT
61 #define BLOCK_COMMENT(str) /* nothing */
62 #define STOP(error) stop(error)
63 #else
64 #define BLOCK_COMMENT(str) block_comment(str)
65 #define STOP(error) block_comment(error); stop(error)
66 #endif
67
68 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
69
70 #ifdef ASSERT
71 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
72 #endif
73
74 static const Assembler::Condition reverse[] = {
75 Assembler::noOverflow /* overflow = 0x0 */ ,
76 Assembler::overflow /* noOverflow = 0x1 */ ,
77 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ ,
78 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ ,
79 Assembler::notZero /* zero = 0x4, equal = 0x4 */ ,
80 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ ,
81 Assembler::above /* belowEqual = 0x6 */ ,
82 Assembler::belowEqual /* above = 0x7 */ ,
83 Assembler::positive /* negative = 0x8 */ ,
84 Assembler::negative /* positive = 0x9 */ ,
85 Assembler::noParity /* parity = 0xa */ ,
86 Assembler::parity /* noParity = 0xb */ ,
87 Assembler::greaterEqual /* less = 0xc */ ,
88 Assembler::less /* greaterEqual = 0xd */ ,
89 Assembler::greater /* lessEqual = 0xe */ ,
90 Assembler::lessEqual /* greater = 0xf, */
91
92 };
93
94
95 // Implementation of MacroAssembler
96
97 Address MacroAssembler::as_Address(AddressLiteral adr) {
98 // amd64 always does this as a pc-rel
99 // we can be absolute or disp based on the instruction type
100 // jmp/call are displacements others are absolute
101 assert(!adr.is_lval(), "must be rval");
102 assert(reachable(adr), "must be");
103 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc());
104
105 }
106
107 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) {
108 AddressLiteral base = adr.base();
109 lea(rscratch, base);
110 Address index = adr.index();
111 assert(index._disp == 0, "must not have disp"); // maybe it can?
112 Address array(rscratch, index._index, index._scale, index._disp);
113 return array;
114 }
115
116 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
117 Label L, E;
118
119 #ifdef _WIN64
120 // Windows always allocates space for it's register args
121 assert(num_args <= 4, "only register arguments supported");
122 subq(rsp, frame::arg_reg_save_area_bytes);
123 #endif
124
125 // Align stack if necessary
126 testl(rsp, 15);
127 jcc(Assembler::zero, L);
128
129 subq(rsp, 8);
130 call(RuntimeAddress(entry_point));
131 addq(rsp, 8);
132 jmp(E);
133
134 bind(L);
135 call(RuntimeAddress(entry_point));
136
137 bind(E);
138
139 #ifdef _WIN64
140 // restore stack pointer
141 addq(rsp, frame::arg_reg_save_area_bytes);
142 #endif
143 }
144
145 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) {
146 assert(!src2.is_lval(), "should use cmpptr");
147 assert(rscratch != noreg || always_reachable(src2), "missing");
148
149 if (reachable(src2)) {
150 cmpq(src1, as_Address(src2));
151 } else {
152 lea(rscratch, src2);
153 Assembler::cmpq(src1, Address(rscratch, 0));
154 }
155 }
156
157 int MacroAssembler::corrected_idivq(Register reg) {
158 // Full implementation of Java ldiv and lrem; checks for special
159 // case as described in JVM spec., p.243 & p.271. The function
160 // returns the (pc) offset of the idivl instruction - may be needed
161 // for implicit exceptions.
162 //
163 // normal case special case
164 //
165 // input : rax: dividend min_long
166 // reg: divisor (may not be eax/edx) -1
167 //
168 // output: rax: quotient (= rax idiv reg) min_long
169 // rdx: remainder (= rax irem reg) 0
170 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
171 static const int64_t min_long = 0x8000000000000000;
172 Label normal_case, special_case;
173
174 // check for special case
175 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/);
176 jcc(Assembler::notEqual, normal_case);
177 xorl(rdx, rdx); // prepare rdx for possible special case (where
178 // remainder = 0)
179 cmpq(reg, -1);
180 jcc(Assembler::equal, special_case);
181
182 // handle normal case
183 bind(normal_case);
184 cdqq();
185 int idivq_offset = offset();
186 idivq(reg);
187
188 // normal and special case exit
189 bind(special_case);
190
191 return idivq_offset;
192 }
193
194 void MacroAssembler::decrementq(Register reg, int value) {
195 if (value == min_jint) { subq(reg, value); return; }
196 if (value < 0) { incrementq(reg, -value); return; }
197 if (value == 0) { ; return; }
198 if (value == 1 && UseIncDec) { decq(reg) ; return; }
199 /* else */ { subq(reg, value) ; return; }
200 }
201
202 void MacroAssembler::decrementq(Address dst, int value) {
203 if (value == min_jint) { subq(dst, value); return; }
204 if (value < 0) { incrementq(dst, -value); return; }
205 if (value == 0) { ; return; }
206 if (value == 1 && UseIncDec) { decq(dst) ; return; }
207 /* else */ { subq(dst, value) ; return; }
208 }
209
210 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) {
211 assert(rscratch != noreg || always_reachable(dst), "missing");
212
213 if (reachable(dst)) {
214 incrementq(as_Address(dst));
215 } else {
216 lea(rscratch, dst);
217 incrementq(Address(rscratch, 0));
218 }
219 }
220
221 void MacroAssembler::incrementq(Register reg, int value) {
222 if (value == min_jint) { addq(reg, value); return; }
223 if (value < 0) { decrementq(reg, -value); return; }
224 if (value == 0) { ; return; }
225 if (value == 1 && UseIncDec) { incq(reg) ; return; }
226 /* else */ { addq(reg, value) ; return; }
227 }
228
229 void MacroAssembler::incrementq(Address dst, int value) {
230 if (value == min_jint) { addq(dst, value); return; }
231 if (value < 0) { decrementq(dst, -value); return; }
232 if (value == 0) { ; return; }
233 if (value == 1 && UseIncDec) { incq(dst) ; return; }
234 /* else */ { addq(dst, value) ; return; }
235 }
236
237 // 32bit can do a case table jump in one instruction but we no longer allow the base
238 // to be installed in the Address class
239 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) {
240 lea(rscratch, entry.base());
241 Address dispatch = entry.index();
242 assert(dispatch._base == noreg, "must be");
243 dispatch._base = rscratch;
244 jmp(dispatch);
245 }
246
247 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
248 ShouldNotReachHere(); // 64bit doesn't use two regs
249 cmpq(x_lo, y_lo);
250 }
251
252 void MacroAssembler::lea(Register dst, AddressLiteral src) {
253 mov_literal64(dst, (intptr_t)src.target(), src.rspec());
254 }
255
256 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) {
257 lea(rscratch, adr);
258 movptr(dst, rscratch);
259 }
260
261 void MacroAssembler::leave() {
262 // %%% is this really better? Why not on 32bit too?
263 emit_int8((unsigned char)0xC9); // LEAVE
264 }
265
266 void MacroAssembler::lneg(Register hi, Register lo) {
267 ShouldNotReachHere(); // 64bit doesn't use two regs
268 negq(lo);
269 }
270
271 void MacroAssembler::movoop(Register dst, jobject obj) {
272 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
273 }
274
275 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) {
276 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate());
277 movq(dst, rscratch);
278 }
279
280 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
281 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
282 }
283
284 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) {
285 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
286 movq(dst, rscratch);
287 }
288
289 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
290 if (src.is_lval()) {
291 mov_literal64(dst, (intptr_t)src.target(), src.rspec());
292 } else {
293 if (reachable(src)) {
294 movq(dst, as_Address(src));
295 } else {
296 lea(dst, src);
297 movq(dst, Address(dst, 0));
298 }
299 }
300 }
301
302 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) {
303 movq(as_Address(dst, rscratch), src);
304 }
305
306 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
307 movq(dst, as_Address(src, dst /*rscratch*/));
308 }
309
310 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
311 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) {
312 if (is_simm32(src)) {
313 movptr(dst, checked_cast<int32_t>(src));
314 } else {
315 mov64(rscratch, src);
316 movq(dst, rscratch);
317 }
318 }
319
320 void MacroAssembler::pushoop(jobject obj, Register rscratch) {
321 movoop(rscratch, obj);
322 push(rscratch);
323 }
324
325 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) {
326 mov_metadata(rscratch, obj);
327 push(rscratch);
328 }
329
330 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) {
331 lea(rscratch, src);
332 if (src.is_lval()) {
333 push(rscratch);
334 } else {
335 pushq(Address(rscratch, 0));
336 }
337 }
338
339 static void pass_arg0(MacroAssembler* masm, Register arg) {
340 if (c_rarg0 != arg ) {
341 masm->mov(c_rarg0, arg);
342 }
343 }
344
345 static void pass_arg1(MacroAssembler* masm, Register arg) {
346 if (c_rarg1 != arg ) {
347 masm->mov(c_rarg1, arg);
348 }
349 }
350
351 static void pass_arg2(MacroAssembler* masm, Register arg) {
352 if (c_rarg2 != arg ) {
353 masm->mov(c_rarg2, arg);
354 }
355 }
356
357 static void pass_arg3(MacroAssembler* masm, Register arg) {
358 if (c_rarg3 != arg ) {
359 masm->mov(c_rarg3, arg);
360 }
361 }
362
363 void MacroAssembler::stop(const char* msg) {
364 if (ShowMessageBoxOnError) {
365 address rip = pc();
366 pusha(); // get regs on stack
367 lea(c_rarg1, InternalAddress(rip));
368 movq(c_rarg2, rsp); // pass pointer to regs array
369 }
370 // Skip AOT caching C strings in scratch buffer.
371 const char* str = (code_section()->scratch_emit()) ? msg : AOTCodeCache::add_C_string(msg);
372 lea(c_rarg0, ExternalAddress((address) str));
373 andq(rsp, -16); // align stack as required by ABI
374 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
375 hlt();
376 }
377
378 void MacroAssembler::warn(const char* msg) {
379 push(rbp);
380 movq(rbp, rsp);
381 andq(rsp, -16); // align stack as required by push_CPU_state and call
382 push_CPU_state(); // keeps alignment at 16 bytes
383
384 #ifdef _WIN64
385 // Windows always allocates space for its register args
386 subq(rsp, frame::arg_reg_save_area_bytes);
387 #endif
388 lea(c_rarg0, ExternalAddress((address) msg));
389 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
390
391 #ifdef _WIN64
392 // restore stack pointer
393 addq(rsp, frame::arg_reg_save_area_bytes);
394 #endif
395 pop_CPU_state();
396 mov(rsp, rbp);
397 pop(rbp);
398 }
399
400 void MacroAssembler::print_state() {
401 address rip = pc();
402 pusha(); // get regs on stack
403 push(rbp);
404 movq(rbp, rsp);
405 andq(rsp, -16); // align stack as required by push_CPU_state and call
406 push_CPU_state(); // keeps alignment at 16 bytes
407
408 lea(c_rarg0, InternalAddress(rip));
409 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
410 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
411
412 pop_CPU_state();
413 mov(rsp, rbp);
414 pop(rbp);
415 popa();
416 }
417
418 #ifndef PRODUCT
419 extern "C" void findpc(intptr_t x);
420 #endif
421
422 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
423 // In order to get locks to work, we need to fake a in_VM state
424 if (ShowMessageBoxOnError) {
425 JavaThread* thread = JavaThread::current();
426 JavaThreadState saved_state = thread->thread_state();
427 thread->set_thread_state(_thread_in_vm);
428 #ifndef PRODUCT
429 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
430 ttyLocker ttyl;
431 BytecodeCounter::print();
432 }
433 #endif
434 // To see where a verify_oop failed, get $ebx+40/X for this frame.
435 // XXX correct this offset for amd64
436 // This is the value of eip which points to where verify_oop will return.
437 if (os::message_box(msg, "Execution stopped, print registers?")) {
438 print_state64(pc, regs);
439 BREAKPOINT;
440 }
441 }
442 fatal("DEBUG MESSAGE: %s", msg);
443 }
444
445 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
446 ttyLocker ttyl;
447 DebuggingContext debugging{};
448 tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
449 #ifndef PRODUCT
450 tty->cr();
451 findpc(pc);
452 tty->cr();
453 #endif
454 #define PRINT_REG(rax, value) \
455 { tty->print("%s = ", #rax); os::print_location(tty, value); }
456 PRINT_REG(rax, regs[15]);
457 PRINT_REG(rbx, regs[12]);
458 PRINT_REG(rcx, regs[14]);
459 PRINT_REG(rdx, regs[13]);
460 PRINT_REG(rdi, regs[8]);
461 PRINT_REG(rsi, regs[9]);
462 PRINT_REG(rbp, regs[10]);
463 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp
464 PRINT_REG(rsp, (intptr_t)(®s[16]));
465 PRINT_REG(r8 , regs[7]);
466 PRINT_REG(r9 , regs[6]);
467 PRINT_REG(r10, regs[5]);
468 PRINT_REG(r11, regs[4]);
469 PRINT_REG(r12, regs[3]);
470 PRINT_REG(r13, regs[2]);
471 PRINT_REG(r14, regs[1]);
472 PRINT_REG(r15, regs[0]);
473 #undef PRINT_REG
474 // Print some words near the top of the stack.
475 int64_t* rsp = ®s[16];
476 int64_t* dump_sp = rsp;
477 for (int col1 = 0; col1 < 8; col1++) {
478 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
479 os::print_location(tty, *dump_sp++);
480 }
481 for (int row = 0; row < 25; row++) {
482 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
483 for (int col = 0; col < 4; col++) {
484 tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
485 }
486 tty->cr();
487 }
488 // Print some instructions around pc:
489 Disassembler::decode((address)pc-64, (address)pc);
490 tty->print_cr("--------");
491 Disassembler::decode((address)pc, (address)pc+32);
492 }
493
494 // The java_calling_convention describes stack locations as ideal slots on
495 // a frame with no abi restrictions. Since we must observe abi restrictions
496 // (like the placement of the register window) the slots must be biased by
497 // the following value.
498 static int reg2offset_in(VMReg r) {
499 // Account for saved rbp and return address
500 // This should really be in_preserve_stack_slots
501 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
502 }
503
504 static int reg2offset_out(VMReg r) {
505 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
506 }
507
508 // A long move
509 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
510
511 // The calling conventions assures us that each VMregpair is either
512 // all really one physical register or adjacent stack slots.
513
514 if (src.is_single_phys_reg() ) {
515 if (dst.is_single_phys_reg()) {
516 if (dst.first() != src.first()) {
517 mov(dst.first()->as_Register(), src.first()->as_Register());
518 }
519 } else {
520 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)",
521 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name());
522 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register());
523 }
524 } else if (dst.is_single_phys_reg()) {
525 assert(src.is_single_reg(), "not a stack pair");
526 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
527 } else {
528 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
529 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
530 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
531 }
532 }
533
534 // A double move
535 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
536
537 // The calling conventions assures us that each VMregpair is either
538 // all really one physical register or adjacent stack slots.
539
540 if (src.is_single_phys_reg() ) {
541 if (dst.is_single_phys_reg()) {
542 // In theory these overlap but the ordering is such that this is likely a nop
543 if ( src.first() != dst.first()) {
544 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
545 }
546 } else {
547 assert(dst.is_single_reg(), "not a stack pair");
548 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister());
549 }
550 } else if (dst.is_single_phys_reg()) {
551 assert(src.is_single_reg(), "not a stack pair");
552 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
553 } else {
554 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
555 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
556 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
557 }
558 }
559
560
561 // A float arg may have to do float reg int reg conversion
562 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
563 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
564
565 // The calling conventions assures us that each VMregpair is either
566 // all really one physical register or adjacent stack slots.
567
568 if (src.first()->is_stack()) {
569 if (dst.first()->is_stack()) {
570 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
571 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
572 } else {
573 // stack to reg
574 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
575 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
576 }
577 } else if (dst.first()->is_stack()) {
578 // reg to stack
579 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
580 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister());
581 } else {
582 // reg to reg
583 // In theory these overlap but the ordering is such that this is likely a nop
584 if ( src.first() != dst.first()) {
585 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
586 }
587 }
588 }
589
590 // On 64 bit we will store integer like items to the stack as
591 // 64 bits items (x86_32/64 abi) even though java would only store
592 // 32bits for a parameter. On 32bit it will simply be 32 bits
593 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
594 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
595 if (src.first()->is_stack()) {
596 if (dst.first()->is_stack()) {
597 // stack to stack
598 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
599 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
600 } else {
601 // stack to reg
602 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
603 }
604 } else if (dst.first()->is_stack()) {
605 // reg to stack
606 // Do we really have to sign extend???
607 // __ movslq(src.first()->as_Register(), src.first()->as_Register());
608 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register());
609 } else {
610 // Do we really have to sign extend???
611 // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
612 if (dst.first() != src.first()) {
613 movq(dst.first()->as_Register(), src.first()->as_Register());
614 }
615 }
616 }
617
618 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) {
619 if (src.first()->is_stack()) {
620 if (dst.first()->is_stack()) {
621 // stack to stack
622 movq(rax, Address(rbp, reg2offset_in(src.first())));
623 movq(Address(rsp, reg2offset_out(dst.first())), rax);
624 } else {
625 // stack to reg
626 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
627 }
628 } else if (dst.first()->is_stack()) {
629 // reg to stack
630 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
631 } else {
632 if (dst.first() != src.first()) {
633 movq(dst.first()->as_Register(), src.first()->as_Register());
634 }
635 }
636 }
637
638 // An oop arg. Must pass a handle not the oop itself
639 void MacroAssembler::object_move(OopMap* map,
640 int oop_handle_offset,
641 int framesize_in_slots,
642 VMRegPair src,
643 VMRegPair dst,
644 bool is_receiver,
645 int* receiver_offset) {
646
647 // must pass a handle. First figure out the location we use as a handle
648
649 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
650
651 // See if oop is null if it is we need no handle
652
653 if (src.first()->is_stack()) {
654
655 // Oop is already on the stack as an argument
656 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
657 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
658 if (is_receiver) {
659 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
660 }
661
662 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD);
663 lea(rHandle, Address(rbp, reg2offset_in(src.first())));
664 // conditionally move a null
665 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
666 } else {
667
668 // Oop is in a register we must store it to the space we reserve
669 // on the stack for oop_handles and pass a handle if oop is non-null
670
671 const Register rOop = src.first()->as_Register();
672 int oop_slot;
673 if (rOop == j_rarg0)
674 oop_slot = 0;
675 else if (rOop == j_rarg1)
676 oop_slot = 1;
677 else if (rOop == j_rarg2)
678 oop_slot = 2;
679 else if (rOop == j_rarg3)
680 oop_slot = 3;
681 else if (rOop == j_rarg4)
682 oop_slot = 4;
683 else {
684 assert(rOop == j_rarg5, "wrong register");
685 oop_slot = 5;
686 }
687
688 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
689 int offset = oop_slot*VMRegImpl::stack_slot_size;
690
691 map->set_oop(VMRegImpl::stack2reg(oop_slot));
692 // Store oop in handle area, may be null
693 movptr(Address(rsp, offset), rOop);
694 if (is_receiver) {
695 *receiver_offset = offset;
696 }
697
698 cmpptr(rOop, NULL_WORD);
699 lea(rHandle, Address(rsp, offset));
700 // conditionally move a null from the handle area where it was just stored
701 cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
702 }
703
704 // If arg is on the stack then place it otherwise it is already in correct reg.
705 if (dst.first()->is_stack()) {
706 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
707 }
708 }
709
710 void MacroAssembler::addptr(Register dst, int32_t imm32) {
711 addq(dst, imm32);
712 }
713
714 void MacroAssembler::addptr(Register dst, Register src) {
715 addq(dst, src);
716 }
717
718 void MacroAssembler::addptr(Address dst, Register src) {
719 addq(dst, src);
720 }
721
722 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
723 assert(rscratch != noreg || always_reachable(src), "missing");
724
725 if (reachable(src)) {
726 Assembler::addsd(dst, as_Address(src));
727 } else {
728 lea(rscratch, src);
729 Assembler::addsd(dst, Address(rscratch, 0));
730 }
731 }
732
733 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) {
734 assert(rscratch != noreg || always_reachable(src), "missing");
735
736 if (reachable(src)) {
737 addss(dst, as_Address(src));
738 } else {
739 lea(rscratch, src);
740 addss(dst, Address(rscratch, 0));
741 }
742 }
743
744 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
745 assert(rscratch != noreg || always_reachable(src), "missing");
746
747 if (reachable(src)) {
748 Assembler::addpd(dst, as_Address(src));
749 } else {
750 lea(rscratch, src);
751 Assembler::addpd(dst, Address(rscratch, 0));
752 }
753 }
754
755 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only.
756 // Stub code is generated once and never copied.
757 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes.
758 void MacroAssembler::align64() {
759 align(64, (uint)(uintptr_t)pc());
760 }
761
762 void MacroAssembler::align32() {
763 align(32, (uint)(uintptr_t)pc());
764 }
765
766 void MacroAssembler::align(uint modulus) {
767 // 8273459: Ensure alignment is possible with current segment alignment
768 assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment");
769 align(modulus, offset());
770 }
771
772 void MacroAssembler::align(uint modulus, uint target) {
773 if (target % modulus != 0) {
774 nop(modulus - (target % modulus));
775 }
776 }
777
778 void MacroAssembler::push_f(XMMRegister r) {
779 subptr(rsp, wordSize);
780 movflt(Address(rsp, 0), r);
781 }
782
783 void MacroAssembler::pop_f(XMMRegister r) {
784 movflt(r, Address(rsp, 0));
785 addptr(rsp, wordSize);
786 }
787
788 void MacroAssembler::push_d(XMMRegister r) {
789 subptr(rsp, 2 * wordSize);
790 movdbl(Address(rsp, 0), r);
791 }
792
793 void MacroAssembler::pop_d(XMMRegister r) {
794 movdbl(r, Address(rsp, 0));
795 addptr(rsp, 2 * Interpreter::stackElementSize);
796 }
797
798 void MacroAssembler::push_ppx(Register src) {
799 if (VM_Version::supports_apx_f()) {
800 pushp(src);
801 } else {
802 Assembler::push(src);
803 }
804 }
805
806 void MacroAssembler::pop_ppx(Register dst) {
807 if (VM_Version::supports_apx_f()) {
808 popp(dst);
809 } else {
810 Assembler::pop(dst);
811 }
812 }
813
814 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
815 // Used in sign-masking with aligned address.
816 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
817 assert(rscratch != noreg || always_reachable(src), "missing");
818
819 if (UseAVX > 2 &&
820 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
821 (dst->encoding() >= 16)) {
822 vpand(dst, dst, src, AVX_512bit, rscratch);
823 } else if (reachable(src)) {
824 Assembler::andpd(dst, as_Address(src));
825 } else {
826 lea(rscratch, src);
827 Assembler::andpd(dst, Address(rscratch, 0));
828 }
829 }
830
831 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) {
832 // Used in sign-masking with aligned address.
833 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
834 assert(rscratch != noreg || always_reachable(src), "missing");
835
836 if (reachable(src)) {
837 Assembler::andps(dst, as_Address(src));
838 } else {
839 lea(rscratch, src);
840 Assembler::andps(dst, Address(rscratch, 0));
841 }
842 }
843
844 void MacroAssembler::andptr(Register dst, int32_t imm32) {
845 andq(dst, imm32);
846 }
847
848 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) {
849 assert(rscratch != noreg || always_reachable(src), "missing");
850
851 if (reachable(src)) {
852 andq(dst, as_Address(src));
853 } else {
854 lea(rscratch, src);
855 andq(dst, Address(rscratch, 0));
856 }
857 }
858
859 void MacroAssembler::atomic_incl(Address counter_addr) {
860 lock();
861 incrementl(counter_addr);
862 }
863
864 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) {
865 assert(rscratch != noreg || always_reachable(counter_addr), "missing");
866
867 if (reachable(counter_addr)) {
868 atomic_incl(as_Address(counter_addr));
869 } else {
870 lea(rscratch, counter_addr);
871 atomic_incl(Address(rscratch, 0));
872 }
873 }
874
875 void MacroAssembler::atomic_incq(Address counter_addr) {
876 lock();
877 incrementq(counter_addr);
878 }
879
880 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) {
881 assert(rscratch != noreg || always_reachable(counter_addr), "missing");
882
883 if (reachable(counter_addr)) {
884 atomic_incq(as_Address(counter_addr));
885 } else {
886 lea(rscratch, counter_addr);
887 atomic_incq(Address(rscratch, 0));
888 }
889 }
890
891 // Writes to stack successive pages until offset reached to check for
892 // stack overflow + shadow pages. This clobbers tmp.
893 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
894 movptr(tmp, rsp);
895 // Bang stack for total size given plus shadow page size.
896 // Bang one page at a time because large size can bang beyond yellow and
897 // red zones.
898 Label loop;
899 bind(loop);
900 movl(Address(tmp, (-(int)os::vm_page_size())), size );
901 subptr(tmp, (int)os::vm_page_size());
902 subl(size, (int)os::vm_page_size());
903 jcc(Assembler::greater, loop);
904
905 // Bang down shadow pages too.
906 // At this point, (tmp-0) is the last address touched, so don't
907 // touch it again. (It was touched as (tmp-pagesize) but then tmp
908 // was post-decremented.) Skip this address by starting at i=1, and
909 // touch a few more pages below. N.B. It is important to touch all
910 // the way down including all pages in the shadow zone.
911 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) {
912 // this could be any sized move but this is can be a debugging crumb
913 // so the bigger the better.
914 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size );
915 }
916 }
917
918 void MacroAssembler::reserved_stack_check() {
919 // testing if reserved zone needs to be enabled
920 Label no_reserved_zone_enabling;
921
922 cmpptr(rsp, Address(r15_thread, JavaThread::reserved_stack_activation_offset()));
923 jcc(Assembler::below, no_reserved_zone_enabling);
924
925 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), r15_thread);
926 jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry()));
927 should_not_reach_here();
928
929 bind(no_reserved_zone_enabling);
930 }
931
932 void MacroAssembler::c2bool(Register x) {
933 // implements x == 0 ? 0 : 1
934 // note: must only look at least-significant byte of x
935 // since C-style booleans are stored in one byte
936 // only! (was bug)
937 andl(x, 0xFF);
938 setb(Assembler::notZero, x);
939 }
940
941 // Wouldn't need if AddressLiteral version had new name
942 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
943 Assembler::call(L, rtype);
944 }
945
946 void MacroAssembler::call(Register entry) {
947 Assembler::call(entry);
948 }
949
950 void MacroAssembler::call(AddressLiteral entry, Register rscratch) {
951 assert(rscratch != noreg || always_reachable(entry), "missing");
952
953 if (reachable(entry)) {
954 Assembler::call_literal(entry.target(), entry.rspec());
955 } else {
956 lea(rscratch, entry);
957 Assembler::call(rscratch);
958 }
959 }
960
961 void MacroAssembler::ic_call(address entry, jint method_index) {
962 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
963 // Needs full 64-bit immediate for later patching.
964 mov64(rax, (int64_t)Universe::non_oop_word());
965 call(AddressLiteral(entry, rh));
966 }
967
968 int MacroAssembler::ic_check_size() {
969 return UseCompactObjectHeaders ? 17 : 14;
970 }
971
972 int MacroAssembler::ic_check(int end_alignment) {
973 Register receiver = j_rarg0;
974 Register data = rax;
975 Register temp = rscratch1;
976
977 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed
978 // before the inline cache check, so we don't have to execute any nop instructions when dispatching
979 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align
980 // before the inline cache check here, and not after
981 align(end_alignment, offset() + ic_check_size());
982
983 int uep_offset = offset();
984
985 if (UseCompactObjectHeaders) {
986 load_narrow_klass_compact(temp, receiver);
987 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset()));
988 } else if (UseCompressedClassPointers) {
989 movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
990 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset()));
991 } else {
992 movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
993 cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset()));
994 }
995
996 // if inline cache check fails, then jump to runtime routine
997 jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
998 assert((offset() % end_alignment) == 0, "Misaligned verified entry point (%d, %d, %d)", uep_offset, offset(), end_alignment);
999
1000 return uep_offset;
1001 }
1002
1003 void MacroAssembler::emit_static_call_stub() {
1004 // Static stub relocation also tags the Method* in the code-stream.
1005 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time.
1006 // This is recognized as unresolved by relocs/nativeinst/ic code.
1007 jump(RuntimeAddress(pc()));
1008 }
1009
1010 // Implementation of call_VM versions
1011
1012 void MacroAssembler::call_VM(Register oop_result,
1013 address entry_point,
1014 bool check_exceptions) {
1015 Label C, E;
1016 call(C, relocInfo::none);
1017 jmp(E);
1018
1019 bind(C);
1020 call_VM_helper(oop_result, entry_point, 0, check_exceptions);
1021 ret(0);
1022
1023 bind(E);
1024 }
1025
1026 void MacroAssembler::call_VM(Register oop_result,
1027 address entry_point,
1028 Register arg_1,
1029 bool check_exceptions) {
1030 Label C, E;
1031 call(C, relocInfo::none);
1032 jmp(E);
1033
1034 bind(C);
1035 pass_arg1(this, arg_1);
1036 call_VM_helper(oop_result, entry_point, 1, check_exceptions);
1037 ret(0);
1038
1039 bind(E);
1040 }
1041
1042 void MacroAssembler::call_VM(Register oop_result,
1043 address entry_point,
1044 Register arg_1,
1045 Register arg_2,
1046 bool check_exceptions) {
1047 Label C, E;
1048 call(C, relocInfo::none);
1049 jmp(E);
1050
1051 bind(C);
1052
1053 assert_different_registers(arg_1, c_rarg2);
1054
1055 pass_arg2(this, arg_2);
1056 pass_arg1(this, arg_1);
1057 call_VM_helper(oop_result, entry_point, 2, check_exceptions);
1058 ret(0);
1059
1060 bind(E);
1061 }
1062
1063 void MacroAssembler::call_VM(Register oop_result,
1064 address entry_point,
1065 Register arg_1,
1066 Register arg_2,
1067 Register arg_3,
1068 bool check_exceptions) {
1069 Label C, E;
1070 call(C, relocInfo::none);
1071 jmp(E);
1072
1073 bind(C);
1074
1075 assert_different_registers(arg_1, c_rarg2, c_rarg3);
1076 assert_different_registers(arg_2, c_rarg3);
1077 pass_arg3(this, arg_3);
1078 pass_arg2(this, arg_2);
1079 pass_arg1(this, arg_1);
1080 call_VM_helper(oop_result, entry_point, 3, check_exceptions);
1081 ret(0);
1082
1083 bind(E);
1084 }
1085
1086 void MacroAssembler::call_VM(Register oop_result,
1087 Register last_java_sp,
1088 address entry_point,
1089 int number_of_arguments,
1090 bool check_exceptions) {
1091 call_VM_base(oop_result, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1092 }
1093
1094 void MacroAssembler::call_VM(Register oop_result,
1095 Register last_java_sp,
1096 address entry_point,
1097 Register arg_1,
1098 bool check_exceptions) {
1099 pass_arg1(this, arg_1);
1100 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1101 }
1102
1103 void MacroAssembler::call_VM(Register oop_result,
1104 Register last_java_sp,
1105 address entry_point,
1106 Register arg_1,
1107 Register arg_2,
1108 bool check_exceptions) {
1109
1110 assert_different_registers(arg_1, c_rarg2);
1111 pass_arg2(this, arg_2);
1112 pass_arg1(this, arg_1);
1113 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1114 }
1115
1116 void MacroAssembler::call_VM(Register oop_result,
1117 Register last_java_sp,
1118 address entry_point,
1119 Register arg_1,
1120 Register arg_2,
1121 Register arg_3,
1122 bool check_exceptions) {
1123 assert_different_registers(arg_1, c_rarg2, c_rarg3);
1124 assert_different_registers(arg_2, c_rarg3);
1125 pass_arg3(this, arg_3);
1126 pass_arg2(this, arg_2);
1127 pass_arg1(this, arg_1);
1128 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1129 }
1130
1131 void MacroAssembler::super_call_VM(Register oop_result,
1132 Register last_java_sp,
1133 address entry_point,
1134 int number_of_arguments,
1135 bool check_exceptions) {
1136 MacroAssembler::call_VM_base(oop_result, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1137 }
1138
1139 void MacroAssembler::super_call_VM(Register oop_result,
1140 Register last_java_sp,
1141 address entry_point,
1142 Register arg_1,
1143 bool check_exceptions) {
1144 pass_arg1(this, arg_1);
1145 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1146 }
1147
1148 void MacroAssembler::super_call_VM(Register oop_result,
1149 Register last_java_sp,
1150 address entry_point,
1151 Register arg_1,
1152 Register arg_2,
1153 bool check_exceptions) {
1154
1155 assert_different_registers(arg_1, c_rarg2);
1156 pass_arg2(this, arg_2);
1157 pass_arg1(this, arg_1);
1158 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1159 }
1160
1161 void MacroAssembler::super_call_VM(Register oop_result,
1162 Register last_java_sp,
1163 address entry_point,
1164 Register arg_1,
1165 Register arg_2,
1166 Register arg_3,
1167 bool check_exceptions) {
1168 assert_different_registers(arg_1, c_rarg2, c_rarg3);
1169 assert_different_registers(arg_2, c_rarg3);
1170 pass_arg3(this, arg_3);
1171 pass_arg2(this, arg_2);
1172 pass_arg1(this, arg_1);
1173 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1174 }
1175
1176 void MacroAssembler::call_VM_base(Register oop_result,
1177 Register last_java_sp,
1178 address entry_point,
1179 int number_of_arguments,
1180 bool check_exceptions) {
1181 Register java_thread = r15_thread;
1182
1183 // determine last_java_sp register
1184 if (!last_java_sp->is_valid()) {
1185 last_java_sp = rsp;
1186 }
1187 // debugging support
1188 assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
1189 #ifdef ASSERT
1190 // TraceBytecodes does not use r12 but saves it over the call, so don't verify
1191 // r12 is the heapbase.
1192 if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
1193 #endif // ASSERT
1194
1195 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result");
1196 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
1197
1198 // push java thread (becomes first argument of C function)
1199
1200 mov(c_rarg0, r15_thread);
1201
1202 // set last Java frame before call
1203 assert(last_java_sp != rbp, "can't use ebp/rbp");
1204
1205 // Only interpreter should have to set fp
1206 set_last_Java_frame(last_java_sp, rbp, nullptr, rscratch1);
1207
1208 // do the call, remove parameters
1209 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1210
1211 #ifdef ASSERT
1212 // Check that thread register is not clobbered.
1213 guarantee(java_thread != rax, "change this code");
1214 push(rax);
1215 { Label L;
1216 get_thread_slow(rax);
1217 cmpptr(java_thread, rax);
1218 jcc(Assembler::equal, L);
1219 STOP("MacroAssembler::call_VM_base: java_thread not callee saved?");
1220 bind(L);
1221 }
1222 pop(rax);
1223 #endif
1224
1225 // reset last Java frame
1226 // Only interpreter should have to clear fp
1227 reset_last_Java_frame(true);
1228
1229 // C++ interp handles this in the interpreter
1230 check_and_handle_popframe();
1231 check_and_handle_earlyret();
1232
1233 if (check_exceptions) {
1234 // check for pending exceptions (java_thread is set upon return)
1235 cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
1236 // This used to conditionally jump to forward_exception however it is
1237 // possible if we relocate that the branch will not reach. So we must jump
1238 // around so we can always reach
1239
1240 Label ok;
1241 jcc(Assembler::equal, ok);
1242 jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1243 bind(ok);
1244 }
1245
1246 // get oop result if there is one and reset the value in the thread
1247 if (oop_result->is_valid()) {
1248 get_vm_result_oop(oop_result);
1249 }
1250 }
1251
1252 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
1253 // Calculate the value for last_Java_sp somewhat subtle.
1254 // call_VM does an intermediate call which places a return address on
1255 // the stack just under the stack pointer as the user finished with it.
1256 // This allows use to retrieve last_Java_pc from last_Java_sp[-1].
1257
1258 // We've pushed one address, correct last_Java_sp
1259 lea(rax, Address(rsp, wordSize));
1260
1261 call_VM_base(oop_result, rax, entry_point, number_of_arguments, check_exceptions);
1262 }
1263
1264 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
1265 void MacroAssembler::call_VM_leaf0(address entry_point) {
1266 MacroAssembler::call_VM_leaf_base(entry_point, 0);
1267 }
1268
1269 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
1270 call_VM_leaf_base(entry_point, number_of_arguments);
1271 }
1272
1273 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
1274 pass_arg0(this, arg_0);
1275 call_VM_leaf(entry_point, 1);
1276 }
1277
1278 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1279
1280 assert_different_registers(arg_0, c_rarg1);
1281 pass_arg1(this, arg_1);
1282 pass_arg0(this, arg_0);
1283 call_VM_leaf(entry_point, 2);
1284 }
1285
1286 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1287 assert_different_registers(arg_0, c_rarg1, c_rarg2);
1288 assert_different_registers(arg_1, c_rarg2);
1289 pass_arg2(this, arg_2);
1290 pass_arg1(this, arg_1);
1291 pass_arg0(this, arg_0);
1292 call_VM_leaf(entry_point, 3);
1293 }
1294
1295 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
1296 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3);
1297 assert_different_registers(arg_1, c_rarg2, c_rarg3);
1298 assert_different_registers(arg_2, c_rarg3);
1299 pass_arg3(this, arg_3);
1300 pass_arg2(this, arg_2);
1301 pass_arg1(this, arg_1);
1302 pass_arg0(this, arg_0);
1303 call_VM_leaf(entry_point, 3);
1304 }
1305
1306 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1307 pass_arg0(this, arg_0);
1308 MacroAssembler::call_VM_leaf_base(entry_point, 1);
1309 }
1310
1311 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1312 assert_different_registers(arg_0, c_rarg1);
1313 pass_arg1(this, arg_1);
1314 pass_arg0(this, arg_0);
1315 MacroAssembler::call_VM_leaf_base(entry_point, 2);
1316 }
1317
1318 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1319 assert_different_registers(arg_0, c_rarg1, c_rarg2);
1320 assert_different_registers(arg_1, c_rarg2);
1321 pass_arg2(this, arg_2);
1322 pass_arg1(this, arg_1);
1323 pass_arg0(this, arg_0);
1324 MacroAssembler::call_VM_leaf_base(entry_point, 3);
1325 }
1326
1327 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
1328 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3);
1329 assert_different_registers(arg_1, c_rarg2, c_rarg3);
1330 assert_different_registers(arg_2, c_rarg3);
1331 pass_arg3(this, arg_3);
1332 pass_arg2(this, arg_2);
1333 pass_arg1(this, arg_1);
1334 pass_arg0(this, arg_0);
1335 MacroAssembler::call_VM_leaf_base(entry_point, 4);
1336 }
1337
1338 void MacroAssembler::get_vm_result_oop(Register oop_result) {
1339 movptr(oop_result, Address(r15_thread, JavaThread::vm_result_oop_offset()));
1340 movptr(Address(r15_thread, JavaThread::vm_result_oop_offset()), NULL_WORD);
1341 verify_oop_msg(oop_result, "broken oop in call_VM_base");
1342 }
1343
1344 void MacroAssembler::get_vm_result_metadata(Register metadata_result) {
1345 movptr(metadata_result, Address(r15_thread, JavaThread::vm_result_metadata_offset()));
1346 movptr(Address(r15_thread, JavaThread::vm_result_metadata_offset()), NULL_WORD);
1347 }
1348
1349 void MacroAssembler::check_and_handle_earlyret() {
1350 }
1351
1352 void MacroAssembler::check_and_handle_popframe() {
1353 }
1354
1355 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) {
1356 assert(rscratch != noreg || always_reachable(src1), "missing");
1357
1358 if (reachable(src1)) {
1359 cmpl(as_Address(src1), imm);
1360 } else {
1361 lea(rscratch, src1);
1362 cmpl(Address(rscratch, 0), imm);
1363 }
1364 }
1365
1366 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) {
1367 assert(!src2.is_lval(), "use cmpptr");
1368 assert(rscratch != noreg || always_reachable(src2), "missing");
1369
1370 if (reachable(src2)) {
1371 cmpl(src1, as_Address(src2));
1372 } else {
1373 lea(rscratch, src2);
1374 cmpl(src1, Address(rscratch, 0));
1375 }
1376 }
1377
1378 void MacroAssembler::cmp32(Register src1, int32_t imm) {
1379 Assembler::cmpl(src1, imm);
1380 }
1381
1382 void MacroAssembler::cmp32(Register src1, Address src2) {
1383 Assembler::cmpl(src1, src2);
1384 }
1385
1386 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
1387 ucomisd(opr1, opr2);
1388
1389 Label L;
1390 if (unordered_is_less) {
1391 movl(dst, -1);
1392 jcc(Assembler::parity, L);
1393 jcc(Assembler::below , L);
1394 movl(dst, 0);
1395 jcc(Assembler::equal , L);
1396 increment(dst);
1397 } else { // unordered is greater
1398 movl(dst, 1);
1399 jcc(Assembler::parity, L);
1400 jcc(Assembler::above , L);
1401 movl(dst, 0);
1402 jcc(Assembler::equal , L);
1403 decrementl(dst);
1404 }
1405 bind(L);
1406 }
1407
1408 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
1409 ucomiss(opr1, opr2);
1410
1411 Label L;
1412 if (unordered_is_less) {
1413 movl(dst, -1);
1414 jcc(Assembler::parity, L);
1415 jcc(Assembler::below , L);
1416 movl(dst, 0);
1417 jcc(Assembler::equal , L);
1418 increment(dst);
1419 } else { // unordered is greater
1420 movl(dst, 1);
1421 jcc(Assembler::parity, L);
1422 jcc(Assembler::above , L);
1423 movl(dst, 0);
1424 jcc(Assembler::equal , L);
1425 decrementl(dst);
1426 }
1427 bind(L);
1428 }
1429
1430
1431 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) {
1432 assert(rscratch != noreg || always_reachable(src1), "missing");
1433
1434 if (reachable(src1)) {
1435 cmpb(as_Address(src1), imm);
1436 } else {
1437 lea(rscratch, src1);
1438 cmpb(Address(rscratch, 0), imm);
1439 }
1440 }
1441
1442 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) {
1443 assert(rscratch != noreg || always_reachable(src2), "missing");
1444
1445 if (src2.is_lval()) {
1446 movptr(rscratch, src2);
1447 Assembler::cmpq(src1, rscratch);
1448 } else if (reachable(src2)) {
1449 cmpq(src1, as_Address(src2));
1450 } else {
1451 lea(rscratch, src2);
1452 Assembler::cmpq(src1, Address(rscratch, 0));
1453 }
1454 }
1455
1456 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) {
1457 assert(src2.is_lval(), "not a mem-mem compare");
1458 // moves src2's literal address
1459 movptr(rscratch, src2);
1460 Assembler::cmpq(src1, rscratch);
1461 }
1462
1463 void MacroAssembler::cmpoop(Register src1, Register src2) {
1464 cmpptr(src1, src2);
1465 }
1466
1467 void MacroAssembler::cmpoop(Register src1, Address src2) {
1468 cmpptr(src1, src2);
1469 }
1470
1471 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) {
1472 movoop(rscratch, src2);
1473 cmpptr(src1, rscratch);
1474 }
1475
1476 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) {
1477 assert(rscratch != noreg || always_reachable(adr), "missing");
1478
1479 if (reachable(adr)) {
1480 lock();
1481 cmpxchgptr(reg, as_Address(adr));
1482 } else {
1483 lea(rscratch, adr);
1484 lock();
1485 cmpxchgptr(reg, Address(rscratch, 0));
1486 }
1487 }
1488
1489 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
1490 cmpxchgq(reg, adr);
1491 }
1492
1493 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) {
1494 assert(rscratch != noreg || always_reachable(src), "missing");
1495
1496 if (reachable(src)) {
1497 Assembler::comisd(dst, as_Address(src));
1498 } else {
1499 lea(rscratch, src);
1500 Assembler::comisd(dst, Address(rscratch, 0));
1501 }
1502 }
1503
1504 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) {
1505 assert(rscratch != noreg || always_reachable(src), "missing");
1506
1507 if (reachable(src)) {
1508 Assembler::comiss(dst, as_Address(src));
1509 } else {
1510 lea(rscratch, src);
1511 Assembler::comiss(dst, Address(rscratch, 0));
1512 }
1513 }
1514
1515
1516 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) {
1517 assert(rscratch != noreg || always_reachable(counter_addr), "missing");
1518
1519 Condition negated_cond = negate_condition(cond);
1520 Label L;
1521 jcc(negated_cond, L);
1522 pushf(); // Preserve flags
1523 atomic_incl(counter_addr, rscratch);
1524 popf();
1525 bind(L);
1526 }
1527
1528 int MacroAssembler::corrected_idivl(Register reg) {
1529 // Full implementation of Java idiv and irem; checks for
1530 // special case as described in JVM spec., p.243 & p.271.
1531 // The function returns the (pc) offset of the idivl
1532 // instruction - may be needed for implicit exceptions.
1533 //
1534 // normal case special case
1535 //
1536 // input : rax,: dividend min_int
1537 // reg: divisor (may not be rax,/rdx) -1
1538 //
1539 // output: rax,: quotient (= rax, idiv reg) min_int
1540 // rdx: remainder (= rax, irem reg) 0
1541 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
1542 const int min_int = 0x80000000;
1543 Label normal_case, special_case;
1544
1545 // check for special case
1546 cmpl(rax, min_int);
1547 jcc(Assembler::notEqual, normal_case);
1548 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
1549 cmpl(reg, -1);
1550 jcc(Assembler::equal, special_case);
1551
1552 // handle normal case
1553 bind(normal_case);
1554 cdql();
1555 int idivl_offset = offset();
1556 idivl(reg);
1557
1558 // normal and special case exit
1559 bind(special_case);
1560
1561 return idivl_offset;
1562 }
1563
1564
1565
1566 void MacroAssembler::decrementl(Register reg, int value) {
1567 if (value == min_jint) {subl(reg, value) ; return; }
1568 if (value < 0) { incrementl(reg, -value); return; }
1569 if (value == 0) { ; return; }
1570 if (value == 1 && UseIncDec) { decl(reg) ; return; }
1571 /* else */ { subl(reg, value) ; return; }
1572 }
1573
1574 void MacroAssembler::decrementl(Address dst, int value) {
1575 if (value == min_jint) {subl(dst, value) ; return; }
1576 if (value < 0) { incrementl(dst, -value); return; }
1577 if (value == 0) { ; return; }
1578 if (value == 1 && UseIncDec) { decl(dst) ; return; }
1579 /* else */ { subl(dst, value) ; return; }
1580 }
1581
1582 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
1583 assert(shift_value > 0, "illegal shift value");
1584 Label _is_positive;
1585 testl (reg, reg);
1586 jcc (Assembler::positive, _is_positive);
1587 int offset = (1 << shift_value) - 1 ;
1588
1589 if (offset == 1) {
1590 incrementl(reg);
1591 } else {
1592 addl(reg, offset);
1593 }
1594
1595 bind (_is_positive);
1596 sarl(reg, shift_value);
1597 }
1598
1599 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
1600 assert(rscratch != noreg || always_reachable(src), "missing");
1601
1602 if (reachable(src)) {
1603 Assembler::divsd(dst, as_Address(src));
1604 } else {
1605 lea(rscratch, src);
1606 Assembler::divsd(dst, Address(rscratch, 0));
1607 }
1608 }
1609
1610 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) {
1611 assert(rscratch != noreg || always_reachable(src), "missing");
1612
1613 if (reachable(src)) {
1614 Assembler::divss(dst, as_Address(src));
1615 } else {
1616 lea(rscratch, src);
1617 Assembler::divss(dst, Address(rscratch, 0));
1618 }
1619 }
1620
1621 void MacroAssembler::enter() {
1622 push(rbp);
1623 mov(rbp, rsp);
1624 }
1625
1626 void MacroAssembler::post_call_nop() {
1627 if (!Continuations::enabled()) {
1628 return;
1629 }
1630 InstructionMark im(this);
1631 relocate(post_call_nop_Relocation::spec());
1632 InlineSkippedInstructionsCounter skipCounter(this);
1633 emit_int8((uint8_t)0x0f);
1634 emit_int8((uint8_t)0x1f);
1635 emit_int8((uint8_t)0x84);
1636 emit_int8((uint8_t)0x00);
1637 emit_int32(0x00);
1638 }
1639
1640 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
1641 assert(rscratch != noreg || always_reachable(src), "missing");
1642 if (reachable(src)) {
1643 Assembler::mulpd(dst, as_Address(src));
1644 } else {
1645 lea(rscratch, src);
1646 Assembler::mulpd(dst, Address(rscratch, 0));
1647 }
1648 }
1649
1650 // dst = c = a * b + c
1651 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
1652 Assembler::vfmadd231sd(c, a, b);
1653 if (dst != c) {
1654 movdbl(dst, c);
1655 }
1656 }
1657
1658 // dst = c = a * b + c
1659 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
1660 Assembler::vfmadd231ss(c, a, b);
1661 if (dst != c) {
1662 movflt(dst, c);
1663 }
1664 }
1665
1666 // dst = c = a * b + c
1667 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
1668 Assembler::vfmadd231pd(c, a, b, vector_len);
1669 if (dst != c) {
1670 vmovdqu(dst, c);
1671 }
1672 }
1673
1674 // dst = c = a * b + c
1675 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
1676 Assembler::vfmadd231ps(c, a, b, vector_len);
1677 if (dst != c) {
1678 vmovdqu(dst, c);
1679 }
1680 }
1681
1682 // dst = c = a * b + c
1683 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
1684 Assembler::vfmadd231pd(c, a, b, vector_len);
1685 if (dst != c) {
1686 vmovdqu(dst, c);
1687 }
1688 }
1689
1690 // dst = c = a * b + c
1691 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
1692 Assembler::vfmadd231ps(c, a, b, vector_len);
1693 if (dst != c) {
1694 vmovdqu(dst, c);
1695 }
1696 }
1697
1698 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) {
1699 assert(rscratch != noreg || always_reachable(dst), "missing");
1700
1701 if (reachable(dst)) {
1702 incrementl(as_Address(dst));
1703 } else {
1704 lea(rscratch, dst);
1705 incrementl(Address(rscratch, 0));
1706 }
1707 }
1708
1709 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) {
1710 incrementl(as_Address(dst, rscratch));
1711 }
1712
1713 void MacroAssembler::incrementl(Register reg, int value) {
1714 if (value == min_jint) {addl(reg, value) ; return; }
1715 if (value < 0) { decrementl(reg, -value); return; }
1716 if (value == 0) { ; return; }
1717 if (value == 1 && UseIncDec) { incl(reg) ; return; }
1718 /* else */ { addl(reg, value) ; return; }
1719 }
1720
1721 void MacroAssembler::incrementl(Address dst, int value) {
1722 if (value == min_jint) {addl(dst, value) ; return; }
1723 if (value < 0) { decrementl(dst, -value); return; }
1724 if (value == 0) { ; return; }
1725 if (value == 1 && UseIncDec) { incl(dst) ; return; }
1726 /* else */ { addl(dst, value) ; return; }
1727 }
1728
1729 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) {
1730 assert(rscratch != noreg || always_reachable(dst), "missing");
1731 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump");
1732 if (reachable(dst)) {
1733 jmp_literal(dst.target(), dst.rspec());
1734 } else {
1735 lea(rscratch, dst);
1736 jmp(rscratch);
1737 }
1738 }
1739
1740 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) {
1741 assert(rscratch != noreg || always_reachable(dst), "missing");
1742 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc");
1743 if (reachable(dst)) {
1744 InstructionMark im(this);
1745 relocate(dst.reloc());
1746 const int short_size = 2;
1747 const int long_size = 6;
1748 int offs = (intptr_t)dst.target() - ((intptr_t)pc());
1749 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
1750 // 0111 tttn #8-bit disp
1751 emit_int8(0x70 | cc);
1752 emit_int8((offs - short_size) & 0xFF);
1753 } else {
1754 // 0000 1111 1000 tttn #32-bit disp
1755 emit_int8(0x0F);
1756 emit_int8((unsigned char)(0x80 | cc));
1757 emit_int32(offs - long_size);
1758 }
1759 } else {
1760 #ifdef ASSERT
1761 warning("reversing conditional branch");
1762 #endif /* ASSERT */
1763 Label skip;
1764 jccb(reverse[cc], skip);
1765 lea(rscratch, dst);
1766 Assembler::jmp(rscratch);
1767 bind(skip);
1768 }
1769 }
1770
1771 void MacroAssembler::cmp32_mxcsr_std(Address mxcsr_save, Register tmp, Register rscratch) {
1772 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
1773 assert(rscratch != noreg || always_reachable(mxcsr_std), "missing");
1774
1775 stmxcsr(mxcsr_save);
1776 movl(tmp, mxcsr_save);
1777 if (EnableX86ECoreOpts) {
1778 // The mxcsr_std has status bits set for performance on ECore
1779 orl(tmp, 0x003f);
1780 } else {
1781 // Mask out status bits (only check control and mask bits)
1782 andl(tmp, 0xFFC0);
1783 }
1784 cmp32(tmp, mxcsr_std, rscratch);
1785 }
1786
1787 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) {
1788 assert(rscratch != noreg || always_reachable(src), "missing");
1789
1790 if (reachable(src)) {
1791 Assembler::ldmxcsr(as_Address(src));
1792 } else {
1793 lea(rscratch, src);
1794 Assembler::ldmxcsr(Address(rscratch, 0));
1795 }
1796 }
1797
1798 int MacroAssembler::load_signed_byte(Register dst, Address src) {
1799 int off = offset();
1800 movsbl(dst, src); // movsxb
1801 return off;
1802 }
1803
1804 // Note: load_signed_short used to be called load_signed_word.
1805 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
1806 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
1807 // The term "word" in HotSpot means a 32- or 64-bit machine word.
1808 int MacroAssembler::load_signed_short(Register dst, Address src) {
1809 // This is dubious to me since it seems safe to do a signed 16 => 64 bit
1810 // version but this is what 64bit has always done. This seems to imply
1811 // that users are only using 32bits worth.
1812 int off = offset();
1813 movswl(dst, src); // movsxw
1814 return off;
1815 }
1816
1817 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
1818 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
1819 // and "3.9 Partial Register Penalties", p. 22).
1820 int off = offset();
1821 movzbl(dst, src); // movzxb
1822 return off;
1823 }
1824
1825 // Note: load_unsigned_short used to be called load_unsigned_word.
1826 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
1827 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
1828 // and "3.9 Partial Register Penalties", p. 22).
1829 int off = offset();
1830 movzwl(dst, src); // movzxw
1831 return off;
1832 }
1833
1834 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
1835 switch (size_in_bytes) {
1836 case 8: movq(dst, src); break;
1837 case 4: movl(dst, src); break;
1838 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
1839 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
1840 default: ShouldNotReachHere();
1841 }
1842 }
1843
1844 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
1845 switch (size_in_bytes) {
1846 case 8: movq(dst, src); break;
1847 case 4: movl(dst, src); break;
1848 case 2: movw(dst, src); break;
1849 case 1: movb(dst, src); break;
1850 default: ShouldNotReachHere();
1851 }
1852 }
1853
1854 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) {
1855 assert(rscratch != noreg || always_reachable(dst), "missing");
1856
1857 if (reachable(dst)) {
1858 movl(as_Address(dst), src);
1859 } else {
1860 lea(rscratch, dst);
1861 movl(Address(rscratch, 0), src);
1862 }
1863 }
1864
1865 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
1866 if (reachable(src)) {
1867 movl(dst, as_Address(src));
1868 } else {
1869 lea(dst, src);
1870 movl(dst, Address(dst, 0));
1871 }
1872 }
1873
1874 // C++ bool manipulation
1875
1876 void MacroAssembler::movbool(Register dst, Address src) {
1877 if(sizeof(bool) == 1)
1878 movb(dst, src);
1879 else if(sizeof(bool) == 2)
1880 movw(dst, src);
1881 else if(sizeof(bool) == 4)
1882 movl(dst, src);
1883 else
1884 // unsupported
1885 ShouldNotReachHere();
1886 }
1887
1888 void MacroAssembler::movbool(Address dst, bool boolconst) {
1889 if(sizeof(bool) == 1)
1890 movb(dst, (int) boolconst);
1891 else if(sizeof(bool) == 2)
1892 movw(dst, (int) boolconst);
1893 else if(sizeof(bool) == 4)
1894 movl(dst, (int) boolconst);
1895 else
1896 // unsupported
1897 ShouldNotReachHere();
1898 }
1899
1900 void MacroAssembler::movbool(Address dst, Register src) {
1901 if(sizeof(bool) == 1)
1902 movb(dst, src);
1903 else if(sizeof(bool) == 2)
1904 movw(dst, src);
1905 else if(sizeof(bool) == 4)
1906 movl(dst, src);
1907 else
1908 // unsupported
1909 ShouldNotReachHere();
1910 }
1911
1912 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) {
1913 assert(rscratch != noreg || always_reachable(src), "missing");
1914
1915 if (reachable(src)) {
1916 movdl(dst, as_Address(src));
1917 } else {
1918 lea(rscratch, src);
1919 movdl(dst, Address(rscratch, 0));
1920 }
1921 }
1922
1923 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) {
1924 assert(rscratch != noreg || always_reachable(src), "missing");
1925
1926 if (reachable(src)) {
1927 movq(dst, as_Address(src));
1928 } else {
1929 lea(rscratch, src);
1930 movq(dst, Address(rscratch, 0));
1931 }
1932 }
1933
1934 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) {
1935 assert(rscratch != noreg || always_reachable(src), "missing");
1936
1937 if (reachable(src)) {
1938 if (UseXmmLoadAndClearUpper) {
1939 movsd (dst, as_Address(src));
1940 } else {
1941 movlpd(dst, as_Address(src));
1942 }
1943 } else {
1944 lea(rscratch, src);
1945 if (UseXmmLoadAndClearUpper) {
1946 movsd (dst, Address(rscratch, 0));
1947 } else {
1948 movlpd(dst, Address(rscratch, 0));
1949 }
1950 }
1951 }
1952
1953 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) {
1954 assert(rscratch != noreg || always_reachable(src), "missing");
1955
1956 if (reachable(src)) {
1957 movss(dst, as_Address(src));
1958 } else {
1959 lea(rscratch, src);
1960 movss(dst, Address(rscratch, 0));
1961 }
1962 }
1963
1964 void MacroAssembler::movptr(Register dst, Register src) {
1965 movq(dst, src);
1966 }
1967
1968 void MacroAssembler::movptr(Register dst, Address src) {
1969 movq(dst, src);
1970 }
1971
1972 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
1973 void MacroAssembler::movptr(Register dst, intptr_t src) {
1974 if (is_uimm32(src)) {
1975 movl(dst, checked_cast<uint32_t>(src));
1976 } else if (is_simm32(src)) {
1977 movq(dst, checked_cast<int32_t>(src));
1978 } else {
1979 mov64(dst, src);
1980 }
1981 }
1982
1983 void MacroAssembler::movptr(Address dst, Register src) {
1984 movq(dst, src);
1985 }
1986
1987 void MacroAssembler::movptr(Address dst, int32_t src) {
1988 movslq(dst, src);
1989 }
1990
1991 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
1992 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
1993 Assembler::movdqu(dst, src);
1994 }
1995
1996 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
1997 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
1998 Assembler::movdqu(dst, src);
1999 }
2000
2001 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
2002 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
2003 Assembler::movdqu(dst, src);
2004 }
2005
2006 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) {
2007 assert(rscratch != noreg || always_reachable(src), "missing");
2008
2009 if (reachable(src)) {
2010 movdqu(dst, as_Address(src));
2011 } else {
2012 lea(rscratch, src);
2013 movdqu(dst, Address(rscratch, 0));
2014 }
2015 }
2016
2017 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
2018 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
2019 Assembler::vmovdqu(dst, src);
2020 }
2021
2022 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
2023 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
2024 Assembler::vmovdqu(dst, src);
2025 }
2026
2027 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2028 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
2029 Assembler::vmovdqu(dst, src);
2030 }
2031
2032 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) {
2033 assert(rscratch != noreg || always_reachable(src), "missing");
2034
2035 if (reachable(src)) {
2036 vmovdqu(dst, as_Address(src));
2037 }
2038 else {
2039 lea(rscratch, src);
2040 vmovdqu(dst, Address(rscratch, 0));
2041 }
2042 }
2043
2044 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2045 assert(rscratch != noreg || always_reachable(src), "missing");
2046
2047 if (vector_len == AVX_512bit) {
2048 evmovdquq(dst, src, AVX_512bit, rscratch);
2049 } else if (vector_len == AVX_256bit) {
2050 vmovdqu(dst, src, rscratch);
2051 } else {
2052 movdqu(dst, src, rscratch);
2053 }
2054 }
2055
2056 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src, int vector_len) {
2057 if (vector_len == AVX_512bit) {
2058 evmovdquq(dst, src, AVX_512bit);
2059 } else if (vector_len == AVX_256bit) {
2060 vmovdqu(dst, src);
2061 } else {
2062 movdqu(dst, src);
2063 }
2064 }
2065
2066 void MacroAssembler::vmovdqu(Address dst, XMMRegister src, int vector_len) {
2067 if (vector_len == AVX_512bit) {
2068 evmovdquq(dst, src, AVX_512bit);
2069 } else if (vector_len == AVX_256bit) {
2070 vmovdqu(dst, src);
2071 } else {
2072 movdqu(dst, src);
2073 }
2074 }
2075
2076 void MacroAssembler::vmovdqu(XMMRegister dst, Address src, int vector_len) {
2077 if (vector_len == AVX_512bit) {
2078 evmovdquq(dst, src, AVX_512bit);
2079 } else if (vector_len == AVX_256bit) {
2080 vmovdqu(dst, src);
2081 } else {
2082 movdqu(dst, src);
2083 }
2084 }
2085
2086 void MacroAssembler::vmovdqa(XMMRegister dst, AddressLiteral src, Register rscratch) {
2087 assert(rscratch != noreg || always_reachable(src), "missing");
2088
2089 if (reachable(src)) {
2090 vmovdqa(dst, as_Address(src));
2091 }
2092 else {
2093 lea(rscratch, src);
2094 vmovdqa(dst, Address(rscratch, 0));
2095 }
2096 }
2097
2098 void MacroAssembler::vmovdqa(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2099 assert(rscratch != noreg || always_reachable(src), "missing");
2100
2101 if (vector_len == AVX_512bit) {
2102 evmovdqaq(dst, src, AVX_512bit, rscratch);
2103 } else if (vector_len == AVX_256bit) {
2104 vmovdqa(dst, src, rscratch);
2105 } else {
2106 movdqa(dst, src, rscratch);
2107 }
2108 }
2109
2110 void MacroAssembler::kmov(KRegister dst, Address src) {
2111 if (VM_Version::supports_avx512bw()) {
2112 kmovql(dst, src);
2113 } else {
2114 assert(VM_Version::supports_evex(), "");
2115 kmovwl(dst, src);
2116 }
2117 }
2118
2119 void MacroAssembler::kmov(Address dst, KRegister src) {
2120 if (VM_Version::supports_avx512bw()) {
2121 kmovql(dst, src);
2122 } else {
2123 assert(VM_Version::supports_evex(), "");
2124 kmovwl(dst, src);
2125 }
2126 }
2127
2128 void MacroAssembler::kmov(KRegister dst, KRegister src) {
2129 if (VM_Version::supports_avx512bw()) {
2130 kmovql(dst, src);
2131 } else {
2132 assert(VM_Version::supports_evex(), "");
2133 kmovwl(dst, src);
2134 }
2135 }
2136
2137 void MacroAssembler::kmov(Register dst, KRegister src) {
2138 if (VM_Version::supports_avx512bw()) {
2139 kmovql(dst, src);
2140 } else {
2141 assert(VM_Version::supports_evex(), "");
2142 kmovwl(dst, src);
2143 }
2144 }
2145
2146 void MacroAssembler::kmov(KRegister dst, Register src) {
2147 if (VM_Version::supports_avx512bw()) {
2148 kmovql(dst, src);
2149 } else {
2150 assert(VM_Version::supports_evex(), "");
2151 kmovwl(dst, src);
2152 }
2153 }
2154
2155 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) {
2156 assert(rscratch != noreg || always_reachable(src), "missing");
2157
2158 if (reachable(src)) {
2159 kmovql(dst, as_Address(src));
2160 } else {
2161 lea(rscratch, src);
2162 kmovql(dst, Address(rscratch, 0));
2163 }
2164 }
2165
2166 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) {
2167 assert(rscratch != noreg || always_reachable(src), "missing");
2168
2169 if (reachable(src)) {
2170 kmovwl(dst, as_Address(src));
2171 } else {
2172 lea(rscratch, src);
2173 kmovwl(dst, Address(rscratch, 0));
2174 }
2175 }
2176
2177 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge,
2178 int vector_len, Register rscratch) {
2179 assert(rscratch != noreg || always_reachable(src), "missing");
2180
2181 if (reachable(src)) {
2182 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len);
2183 } else {
2184 lea(rscratch, src);
2185 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len);
2186 }
2187 }
2188
2189 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge,
2190 int vector_len, Register rscratch) {
2191 assert(rscratch != noreg || always_reachable(src), "missing");
2192
2193 if (reachable(src)) {
2194 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len);
2195 } else {
2196 lea(rscratch, src);
2197 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len);
2198 }
2199 }
2200
2201 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
2202 assert(rscratch != noreg || always_reachable(src), "missing");
2203
2204 if (reachable(src)) {
2205 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len);
2206 } else {
2207 lea(rscratch, src);
2208 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len);
2209 }
2210 }
2211
2212 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
2213 assert(rscratch != noreg || always_reachable(src), "missing");
2214
2215 if (reachable(src)) {
2216 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len);
2217 } else {
2218 lea(rscratch, src);
2219 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len);
2220 }
2221 }
2222
2223 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2224 assert(rscratch != noreg || always_reachable(src), "missing");
2225
2226 if (reachable(src)) {
2227 Assembler::evmovdquq(dst, as_Address(src), vector_len);
2228 } else {
2229 lea(rscratch, src);
2230 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
2231 }
2232 }
2233
2234 void MacroAssembler::evmovdqaq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
2235 assert(rscratch != noreg || always_reachable(src), "missing");
2236
2237 if (reachable(src)) {
2238 Assembler::evmovdqaq(dst, mask, as_Address(src), merge, vector_len);
2239 } else {
2240 lea(rscratch, src);
2241 Assembler::evmovdqaq(dst, mask, Address(rscratch, 0), merge, vector_len);
2242 }
2243 }
2244
2245 void MacroAssembler::evmovdqaq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2246 assert(rscratch != noreg || always_reachable(src), "missing");
2247
2248 if (reachable(src)) {
2249 Assembler::evmovdqaq(dst, as_Address(src), vector_len);
2250 } else {
2251 lea(rscratch, src);
2252 Assembler::evmovdqaq(dst, Address(rscratch, 0), vector_len);
2253 }
2254 }
2255
2256 void MacroAssembler::movapd(XMMRegister dst, AddressLiteral src, Register rscratch) {
2257 assert(rscratch != noreg || always_reachable(src), "missing");
2258
2259 if (reachable(src)) {
2260 Assembler::movapd(dst, as_Address(src));
2261 } else {
2262 lea(rscratch, src);
2263 Assembler::movapd(dst, Address(rscratch, 0));
2264 }
2265 }
2266
2267 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) {
2268 assert(rscratch != noreg || always_reachable(src), "missing");
2269
2270 if (reachable(src)) {
2271 Assembler::movdqa(dst, as_Address(src));
2272 } else {
2273 lea(rscratch, src);
2274 Assembler::movdqa(dst, Address(rscratch, 0));
2275 }
2276 }
2277
2278 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
2279 assert(rscratch != noreg || always_reachable(src), "missing");
2280
2281 if (reachable(src)) {
2282 Assembler::movsd(dst, as_Address(src));
2283 } else {
2284 lea(rscratch, src);
2285 Assembler::movsd(dst, Address(rscratch, 0));
2286 }
2287 }
2288
2289 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) {
2290 assert(rscratch != noreg || always_reachable(src), "missing");
2291
2292 if (reachable(src)) {
2293 Assembler::movss(dst, as_Address(src));
2294 } else {
2295 lea(rscratch, src);
2296 Assembler::movss(dst, Address(rscratch, 0));
2297 }
2298 }
2299
2300 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) {
2301 assert(rscratch != noreg || always_reachable(src), "missing");
2302
2303 if (reachable(src)) {
2304 Assembler::movddup(dst, as_Address(src));
2305 } else {
2306 lea(rscratch, src);
2307 Assembler::movddup(dst, Address(rscratch, 0));
2308 }
2309 }
2310
2311 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2312 assert(rscratch != noreg || always_reachable(src), "missing");
2313
2314 if (reachable(src)) {
2315 Assembler::vmovddup(dst, as_Address(src), vector_len);
2316 } else {
2317 lea(rscratch, src);
2318 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len);
2319 }
2320 }
2321
2322 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
2323 assert(rscratch != noreg || always_reachable(src), "missing");
2324
2325 if (reachable(src)) {
2326 Assembler::mulsd(dst, as_Address(src));
2327 } else {
2328 lea(rscratch, src);
2329 Assembler::mulsd(dst, Address(rscratch, 0));
2330 }
2331 }
2332
2333 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) {
2334 assert(rscratch != noreg || always_reachable(src), "missing");
2335
2336 if (reachable(src)) {
2337 Assembler::mulss(dst, as_Address(src));
2338 } else {
2339 lea(rscratch, src);
2340 Assembler::mulss(dst, Address(rscratch, 0));
2341 }
2342 }
2343
2344 void MacroAssembler::null_check(Register reg, int offset) {
2345 if (needs_explicit_null_check(offset)) {
2346 // provoke OS null exception if reg is null by
2347 // accessing M[reg] w/o changing any (non-CC) registers
2348 // NOTE: cmpl is plenty here to provoke a segv
2349 cmpptr(rax, Address(reg, 0));
2350 // Note: should probably use testl(rax, Address(reg, 0));
2351 // may be shorter code (however, this version of
2352 // testl needs to be implemented first)
2353 } else {
2354 // nothing to do, (later) access of M[reg + offset]
2355 // will provoke OS null exception if reg is null
2356 }
2357 }
2358
2359 void MacroAssembler::os_breakpoint() {
2360 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
2361 // (e.g., MSVC can't call ps() otherwise)
2362 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
2363 }
2364
2365 void MacroAssembler::unimplemented(const char* what) {
2366 const char* buf = nullptr;
2367 {
2368 ResourceMark rm;
2369 stringStream ss;
2370 ss.print("unimplemented: %s", what);
2371 buf = code_string(ss.as_string());
2372 }
2373 stop(buf);
2374 }
2375
2376 #define XSTATE_BV 0x200
2377
2378 void MacroAssembler::pop_CPU_state() {
2379 pop_FPU_state();
2380 pop_IU_state();
2381 }
2382
2383 void MacroAssembler::pop_FPU_state() {
2384 fxrstor(Address(rsp, 0));
2385 addptr(rsp, FPUStateSizeInWords * wordSize);
2386 }
2387
2388 void MacroAssembler::pop_IU_state() {
2389 popa();
2390 addq(rsp, 8);
2391 popf();
2392 }
2393
2394 // Save Integer and Float state
2395 // Warning: Stack must be 16 byte aligned (64bit)
2396 void MacroAssembler::push_CPU_state() {
2397 push_IU_state();
2398 push_FPU_state();
2399 }
2400
2401 void MacroAssembler::push_FPU_state() {
2402 subptr(rsp, FPUStateSizeInWords * wordSize);
2403 fxsave(Address(rsp, 0));
2404 }
2405
2406 void MacroAssembler::push_IU_state() {
2407 // Push flags first because pusha kills them
2408 pushf();
2409 // Make sure rsp stays 16-byte aligned
2410 subq(rsp, 8);
2411 pusha();
2412 }
2413
2414 void MacroAssembler::push_cont_fastpath() {
2415 if (!Continuations::enabled()) return;
2416
2417 Label L_done;
2418 cmpptr(rsp, Address(r15_thread, JavaThread::cont_fastpath_offset()));
2419 jccb(Assembler::belowEqual, L_done);
2420 movptr(Address(r15_thread, JavaThread::cont_fastpath_offset()), rsp);
2421 bind(L_done);
2422 }
2423
2424 void MacroAssembler::pop_cont_fastpath() {
2425 if (!Continuations::enabled()) return;
2426
2427 Label L_done;
2428 cmpptr(rsp, Address(r15_thread, JavaThread::cont_fastpath_offset()));
2429 jccb(Assembler::below, L_done);
2430 movptr(Address(r15_thread, JavaThread::cont_fastpath_offset()), 0);
2431 bind(L_done);
2432 }
2433
2434 #ifdef ASSERT
2435 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) {
2436 Label no_cont;
2437 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset()));
2438 testl(cont, cont);
2439 jcc(Assembler::zero, no_cont);
2440 stop(name);
2441 bind(no_cont);
2442 }
2443 #endif
2444
2445 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { // determine java_thread register
2446 // we must set sp to zero to clear frame
2447 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
2448 // must clear fp, so that compiled frames are not confused; it is
2449 // possible that we need it only for debugging
2450 if (clear_fp) {
2451 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
2452 }
2453 // Always clear the pc because it could have been set by make_walkable()
2454 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
2455 vzeroupper();
2456 }
2457
2458 void MacroAssembler::round_to(Register reg, int modulus) {
2459 addptr(reg, modulus - 1);
2460 andptr(reg, -modulus);
2461 }
2462
2463 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod) {
2464 if (at_return) {
2465 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore,
2466 // we may safely use rsp instead to perform the stack watermark check.
2467 cmpptr(in_nmethod ? rsp : rbp, Address(r15_thread, JavaThread::polling_word_offset()));
2468 jcc(Assembler::above, slow_path);
2469 return;
2470 }
2471 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
2472 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
2473 }
2474
2475 // Calls to C land
2476 //
2477 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
2478 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
2479 // has to be reset to 0. This is required to allow proper stack traversal.
2480 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
2481 Register last_java_fp,
2482 address last_java_pc,
2483 Register rscratch) {
2484 vzeroupper();
2485 // determine last_java_sp register
2486 if (!last_java_sp->is_valid()) {
2487 last_java_sp = rsp;
2488 }
2489 // last_java_fp is optional
2490 if (last_java_fp->is_valid()) {
2491 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
2492 }
2493 // last_java_pc is optional
2494 if (last_java_pc != nullptr) {
2495 Address java_pc(r15_thread,
2496 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
2497 lea(java_pc, InternalAddress(last_java_pc), rscratch);
2498 }
2499 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
2500 }
2501
2502 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
2503 Register last_java_fp,
2504 Label &L,
2505 Register scratch) {
2506 lea(scratch, L);
2507 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), scratch);
2508 set_last_Java_frame(last_java_sp, last_java_fp, nullptr, scratch);
2509 }
2510
2511 void MacroAssembler::shlptr(Register dst, int imm8) {
2512 shlq(dst, imm8);
2513 }
2514
2515 void MacroAssembler::shrptr(Register dst, int imm8) {
2516 shrq(dst, imm8);
2517 }
2518
2519 void MacroAssembler::sign_extend_byte(Register reg) {
2520 movsbl(reg, reg); // movsxb
2521 }
2522
2523 void MacroAssembler::sign_extend_short(Register reg) {
2524 movswl(reg, reg); // movsxw
2525 }
2526
2527 void MacroAssembler::testl(Address dst, int32_t imm32) {
2528 if (imm32 >= 0 && is8bit(imm32)) {
2529 testb(dst, imm32);
2530 } else {
2531 Assembler::testl(dst, imm32);
2532 }
2533 }
2534
2535 void MacroAssembler::testl(Register dst, int32_t imm32) {
2536 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) {
2537 testb(dst, imm32);
2538 } else {
2539 Assembler::testl(dst, imm32);
2540 }
2541 }
2542
2543 void MacroAssembler::testl(Register dst, AddressLiteral src) {
2544 assert(always_reachable(src), "Address should be reachable");
2545 testl(dst, as_Address(src));
2546 }
2547
2548 void MacroAssembler::testq(Address dst, int32_t imm32) {
2549 if (imm32 >= 0) {
2550 testl(dst, imm32);
2551 } else {
2552 Assembler::testq(dst, imm32);
2553 }
2554 }
2555
2556 void MacroAssembler::testq(Register dst, int32_t imm32) {
2557 if (imm32 >= 0) {
2558 testl(dst, imm32);
2559 } else {
2560 Assembler::testq(dst, imm32);
2561 }
2562 }
2563
2564 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
2565 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2566 Assembler::pcmpeqb(dst, src);
2567 }
2568
2569 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
2570 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2571 Assembler::pcmpeqw(dst, src);
2572 }
2573
2574 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2575 assert((dst->encoding() < 16),"XMM register should be 0-15");
2576 Assembler::pcmpestri(dst, src, imm8);
2577 }
2578
2579 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2580 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
2581 Assembler::pcmpestri(dst, src, imm8);
2582 }
2583
2584 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2585 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2586 Assembler::pmovzxbw(dst, src);
2587 }
2588
2589 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
2590 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2591 Assembler::pmovzxbw(dst, src);
2592 }
2593
2594 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
2595 assert((src->encoding() < 16),"XMM register should be 0-15");
2596 Assembler::pmovmskb(dst, src);
2597 }
2598
2599 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
2600 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
2601 Assembler::ptest(dst, src);
2602 }
2603
2604 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) {
2605 assert(rscratch != noreg || always_reachable(src), "missing");
2606
2607 if (reachable(src)) {
2608 Assembler::sqrtss(dst, as_Address(src));
2609 } else {
2610 lea(rscratch, src);
2611 Assembler::sqrtss(dst, Address(rscratch, 0));
2612 }
2613 }
2614
2615 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
2616 assert(rscratch != noreg || always_reachable(src), "missing");
2617
2618 if (reachable(src)) {
2619 Assembler::subsd(dst, as_Address(src));
2620 } else {
2621 lea(rscratch, src);
2622 Assembler::subsd(dst, Address(rscratch, 0));
2623 }
2624 }
2625
2626 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) {
2627 assert(rscratch != noreg || always_reachable(src), "missing");
2628
2629 if (reachable(src)) {
2630 Assembler::roundsd(dst, as_Address(src), rmode);
2631 } else {
2632 lea(rscratch, src);
2633 Assembler::roundsd(dst, Address(rscratch, 0), rmode);
2634 }
2635 }
2636
2637 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) {
2638 assert(rscratch != noreg || always_reachable(src), "missing");
2639
2640 if (reachable(src)) {
2641 Assembler::subss(dst, as_Address(src));
2642 } else {
2643 lea(rscratch, src);
2644 Assembler::subss(dst, Address(rscratch, 0));
2645 }
2646 }
2647
2648 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) {
2649 assert(rscratch != noreg || always_reachable(src), "missing");
2650
2651 if (reachable(src)) {
2652 Assembler::ucomisd(dst, as_Address(src));
2653 } else {
2654 lea(rscratch, src);
2655 Assembler::ucomisd(dst, Address(rscratch, 0));
2656 }
2657 }
2658
2659 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) {
2660 assert(rscratch != noreg || always_reachable(src), "missing");
2661
2662 if (reachable(src)) {
2663 Assembler::ucomiss(dst, as_Address(src));
2664 } else {
2665 lea(rscratch, src);
2666 Assembler::ucomiss(dst, Address(rscratch, 0));
2667 }
2668 }
2669
2670 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
2671 assert(rscratch != noreg || always_reachable(src), "missing");
2672
2673 // Used in sign-bit flipping with aligned address.
2674 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
2675
2676 if (UseAVX > 2 &&
2677 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
2678 (dst->encoding() >= 16)) {
2679 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch);
2680 } else if (reachable(src)) {
2681 Assembler::xorpd(dst, as_Address(src));
2682 } else {
2683 lea(rscratch, src);
2684 Assembler::xorpd(dst, Address(rscratch, 0));
2685 }
2686 }
2687
2688 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
2689 if (UseAVX > 2 &&
2690 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
2691 ((dst->encoding() >= 16) || (src->encoding() >= 16))) {
2692 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
2693 } else {
2694 Assembler::xorpd(dst, src);
2695 }
2696 }
2697
2698 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
2699 if (UseAVX > 2 &&
2700 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
2701 ((dst->encoding() >= 16) || (src->encoding() >= 16))) {
2702 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
2703 } else {
2704 Assembler::xorps(dst, src);
2705 }
2706 }
2707
2708 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) {
2709 assert(rscratch != noreg || always_reachable(src), "missing");
2710
2711 // Used in sign-bit flipping with aligned address.
2712 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
2713
2714 if (UseAVX > 2 &&
2715 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) &&
2716 (dst->encoding() >= 16)) {
2717 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch);
2718 } else if (reachable(src)) {
2719 Assembler::xorps(dst, as_Address(src));
2720 } else {
2721 lea(rscratch, src);
2722 Assembler::xorps(dst, Address(rscratch, 0));
2723 }
2724 }
2725
2726 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) {
2727 assert(rscratch != noreg || always_reachable(src), "missing");
2728
2729 // Used in sign-bit flipping with aligned address.
2730 bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
2731 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
2732 if (reachable(src)) {
2733 Assembler::pshufb(dst, as_Address(src));
2734 } else {
2735 lea(rscratch, src);
2736 Assembler::pshufb(dst, Address(rscratch, 0));
2737 }
2738 }
2739
2740 // AVX 3-operands instructions
2741
2742 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
2743 assert(rscratch != noreg || always_reachable(src), "missing");
2744
2745 if (reachable(src)) {
2746 vaddsd(dst, nds, as_Address(src));
2747 } else {
2748 lea(rscratch, src);
2749 vaddsd(dst, nds, Address(rscratch, 0));
2750 }
2751 }
2752
2753 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
2754 assert(rscratch != noreg || always_reachable(src), "missing");
2755
2756 if (reachable(src)) {
2757 vaddss(dst, nds, as_Address(src));
2758 } else {
2759 lea(rscratch, src);
2760 vaddss(dst, nds, Address(rscratch, 0));
2761 }
2762 }
2763
2764 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
2765 assert(UseAVX > 0, "requires some form of AVX");
2766 assert(rscratch != noreg || always_reachable(src), "missing");
2767
2768 if (reachable(src)) {
2769 Assembler::vpaddb(dst, nds, as_Address(src), vector_len);
2770 } else {
2771 lea(rscratch, src);
2772 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len);
2773 }
2774 }
2775
2776 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
2777 assert(UseAVX > 0, "requires some form of AVX");
2778 assert(rscratch != noreg || always_reachable(src), "missing");
2779
2780 if (reachable(src)) {
2781 Assembler::vpaddd(dst, nds, as_Address(src), vector_len);
2782 } else {
2783 lea(rscratch, src);
2784 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len);
2785 }
2786 }
2787
2788 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) {
2789 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
2790 assert(rscratch != noreg || always_reachable(negate_field), "missing");
2791
2792 vandps(dst, nds, negate_field, vector_len, rscratch);
2793 }
2794
2795 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) {
2796 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
2797 assert(rscratch != noreg || always_reachable(negate_field), "missing");
2798
2799 vandpd(dst, nds, negate_field, vector_len, rscratch);
2800 }
2801
2802 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2803 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2804 Assembler::vpaddb(dst, nds, src, vector_len);
2805 }
2806
2807 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
2808 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2809 Assembler::vpaddb(dst, nds, src, vector_len);
2810 }
2811
2812 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2813 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2814 Assembler::vpaddw(dst, nds, src, vector_len);
2815 }
2816
2817 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
2818 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2819 Assembler::vpaddw(dst, nds, src, vector_len);
2820 }
2821
2822 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
2823 assert(rscratch != noreg || always_reachable(src), "missing");
2824
2825 if (reachable(src)) {
2826 Assembler::vpand(dst, nds, as_Address(src), vector_len);
2827 } else {
2828 lea(rscratch, src);
2829 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len);
2830 }
2831 }
2832
2833 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2834 assert(rscratch != noreg || always_reachable(src), "missing");
2835
2836 if (reachable(src)) {
2837 Assembler::vpbroadcastd(dst, as_Address(src), vector_len);
2838 } else {
2839 lea(rscratch, src);
2840 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len);
2841 }
2842 }
2843
2844 void MacroAssembler::vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2845 assert(rscratch != noreg || always_reachable(src), "missing");
2846
2847 if (reachable(src)) {
2848 Assembler::vbroadcasti128(dst, as_Address(src), vector_len);
2849 } else {
2850 lea(rscratch, src);
2851 Assembler::vbroadcasti128(dst, Address(rscratch, 0), vector_len);
2852 }
2853 }
2854
2855 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2856 assert(rscratch != noreg || always_reachable(src), "missing");
2857
2858 if (reachable(src)) {
2859 Assembler::vpbroadcastq(dst, as_Address(src), vector_len);
2860 } else {
2861 lea(rscratch, src);
2862 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len);
2863 }
2864 }
2865
2866 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2867 assert(rscratch != noreg || always_reachable(src), "missing");
2868
2869 if (reachable(src)) {
2870 Assembler::vbroadcastsd(dst, as_Address(src), vector_len);
2871 } else {
2872 lea(rscratch, src);
2873 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len);
2874 }
2875 }
2876
2877 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
2878 assert(rscratch != noreg || always_reachable(src), "missing");
2879
2880 if (reachable(src)) {
2881 Assembler::vbroadcastss(dst, as_Address(src), vector_len);
2882 } else {
2883 lea(rscratch, src);
2884 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len);
2885 }
2886 }
2887
2888 // Vector float blend
2889 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg)
2890 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) {
2891 // WARN: Allow dst == (src1|src2), mask == scratch
2892 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1 &&
2893 !(VM_Version::is_intel_darkmont() && (dst == src1)); // partially fixed on Darkmont
2894 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst;
2895 bool dst_available = dst != mask && (dst != src1 || dst != src2);
2896 if (blend_emulation && scratch_available && dst_available) {
2897 if (compute_mask) {
2898 vpsrad(scratch, mask, 32, vector_len);
2899 mask = scratch;
2900 }
2901 if (dst == src1) {
2902 vpandn(dst, mask, src1, vector_len); // if mask == 0, src1
2903 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2
2904 } else {
2905 vpand (dst, mask, src2, vector_len); // if mask == 1, src2
2906 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1
2907 }
2908 vpor(dst, dst, scratch, vector_len);
2909 } else {
2910 Assembler::vblendvps(dst, src1, src2, mask, vector_len);
2911 }
2912 }
2913
2914 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg)
2915 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) {
2916 // WARN: Allow dst == (src1|src2), mask == scratch
2917 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1 &&
2918 !(VM_Version::is_intel_darkmont() && (dst == src1)); // partially fixed on Darkmont
2919 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask);
2920 bool dst_available = dst != mask && (dst != src1 || dst != src2);
2921 if (blend_emulation && scratch_available && dst_available) {
2922 if (compute_mask) {
2923 vpxor(scratch, scratch, scratch, vector_len);
2924 vpcmpgtq(scratch, scratch, mask, vector_len);
2925 mask = scratch;
2926 }
2927 if (dst == src1) {
2928 vpandn(dst, mask, src1, vector_len); // if mask == 0, src
2929 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2
2930 } else {
2931 vpand (dst, mask, src2, vector_len); // if mask == 1, src2
2932 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src
2933 }
2934 vpor(dst, dst, scratch, vector_len);
2935 } else {
2936 Assembler::vblendvpd(dst, src1, src2, mask, vector_len);
2937 }
2938 }
2939
2940 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2941 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2942 Assembler::vpcmpeqb(dst, nds, src, vector_len);
2943 }
2944
2945 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
2946 assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2947 Assembler::vpcmpeqb(dst, src1, src2, vector_len);
2948 }
2949
2950 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2951 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2952 Assembler::vpcmpeqw(dst, nds, src, vector_len);
2953 }
2954
2955 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
2956 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
2957 Assembler::vpcmpeqw(dst, nds, src, vector_len);
2958 }
2959
2960 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
2961 assert(rscratch != noreg || always_reachable(src), "missing");
2962
2963 if (reachable(src)) {
2964 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len);
2965 } else {
2966 lea(rscratch, src);
2967 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len);
2968 }
2969 }
2970
2971 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
2972 int comparison, bool is_signed, int vector_len, Register rscratch) {
2973 assert(rscratch != noreg || always_reachable(src), "missing");
2974
2975 if (reachable(src)) {
2976 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
2977 } else {
2978 lea(rscratch, src);
2979 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
2980 }
2981 }
2982
2983 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
2984 int comparison, bool is_signed, int vector_len, Register rscratch) {
2985 assert(rscratch != noreg || always_reachable(src), "missing");
2986
2987 if (reachable(src)) {
2988 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
2989 } else {
2990 lea(rscratch, src);
2991 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
2992 }
2993 }
2994
2995 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
2996 int comparison, bool is_signed, int vector_len, Register rscratch) {
2997 assert(rscratch != noreg || always_reachable(src), "missing");
2998
2999 if (reachable(src)) {
3000 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
3001 } else {
3002 lea(rscratch, src);
3003 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
3004 }
3005 }
3006
3007 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
3008 int comparison, bool is_signed, int vector_len, Register rscratch) {
3009 assert(rscratch != noreg || always_reachable(src), "missing");
3010
3011 if (reachable(src)) {
3012 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
3013 } else {
3014 lea(rscratch, src);
3015 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
3016 }
3017 }
3018
3019 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) {
3020 if (width == Assembler::Q) {
3021 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len);
3022 } else {
3023 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len);
3024 }
3025 }
3026
3027 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) {
3028 int eq_cond_enc = 0x29;
3029 int gt_cond_enc = 0x37;
3030 if (width != Assembler::Q) {
3031 eq_cond_enc = 0x74 + width;
3032 gt_cond_enc = 0x64 + width;
3033 }
3034 switch (cond) {
3035 case eq:
3036 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len);
3037 break;
3038 case neq:
3039 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len);
3040 vallones(xtmp, vector_len);
3041 vpxor(dst, xtmp, dst, vector_len);
3042 break;
3043 case le:
3044 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len);
3045 vallones(xtmp, vector_len);
3046 vpxor(dst, xtmp, dst, vector_len);
3047 break;
3048 case nlt:
3049 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len);
3050 vallones(xtmp, vector_len);
3051 vpxor(dst, xtmp, dst, vector_len);
3052 break;
3053 case lt:
3054 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len);
3055 break;
3056 case nle:
3057 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len);
3058 break;
3059 default:
3060 assert(false, "Should not reach here");
3061 }
3062 }
3063
3064 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3065 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3066 Assembler::vpmovzxbw(dst, src, vector_len);
3067 }
3068
3069 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) {
3070 assert((src->encoding() < 16),"XMM register should be 0-15");
3071 Assembler::vpmovmskb(dst, src, vector_len);
3072 }
3073
3074 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3075 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3076 Assembler::vpmullw(dst, nds, src, vector_len);
3077 }
3078
3079 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3080 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3081 Assembler::vpmullw(dst, nds, src, vector_len);
3082 }
3083
3084 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3085 assert((UseAVX > 0), "AVX support is needed");
3086 assert(rscratch != noreg || always_reachable(src), "missing");
3087
3088 if (reachable(src)) {
3089 Assembler::vpmulld(dst, nds, as_Address(src), vector_len);
3090 } else {
3091 lea(rscratch, src);
3092 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len);
3093 }
3094 }
3095
3096 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3097 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3098 Assembler::vpsubb(dst, nds, src, vector_len);
3099 }
3100
3101 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3102 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3103 Assembler::vpsubb(dst, nds, src, vector_len);
3104 }
3105
3106 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3107 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3108 Assembler::vpsubw(dst, nds, src, vector_len);
3109 }
3110
3111 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3112 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3113 Assembler::vpsubw(dst, nds, src, vector_len);
3114 }
3115
3116 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3117 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3118 Assembler::vpsraw(dst, nds, shift, vector_len);
3119 }
3120
3121 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3122 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3123 Assembler::vpsraw(dst, nds, shift, vector_len);
3124 }
3125
3126 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3127 assert(UseAVX > 2,"");
3128 if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3129 vector_len = 2;
3130 }
3131 Assembler::evpsraq(dst, nds, shift, vector_len);
3132 }
3133
3134 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3135 assert(UseAVX > 2,"");
3136 if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3137 vector_len = 2;
3138 }
3139 Assembler::evpsraq(dst, nds, shift, vector_len);
3140 }
3141
3142 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3143 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3144 Assembler::vpsrlw(dst, nds, shift, vector_len);
3145 }
3146
3147 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3148 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3149 Assembler::vpsrlw(dst, nds, shift, vector_len);
3150 }
3151
3152 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3153 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3154 Assembler::vpsllw(dst, nds, shift, vector_len);
3155 }
3156
3157 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3158 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3159 Assembler::vpsllw(dst, nds, shift, vector_len);
3160 }
3161
3162 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
3163 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3164 Assembler::vptest(dst, src);
3165 }
3166
3167 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3168 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3169 Assembler::punpcklbw(dst, src);
3170 }
3171
3172 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
3173 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3174 Assembler::pshufd(dst, src, mode);
3175 }
3176
3177 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3178 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3179 Assembler::pshuflw(dst, src, mode);
3180 }
3181
3182 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3183 assert(rscratch != noreg || always_reachable(src), "missing");
3184
3185 if (reachable(src)) {
3186 vandpd(dst, nds, as_Address(src), vector_len);
3187 } else {
3188 lea(rscratch, src);
3189 vandpd(dst, nds, Address(rscratch, 0), vector_len);
3190 }
3191 }
3192
3193 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3194 assert(rscratch != noreg || always_reachable(src), "missing");
3195
3196 if (reachable(src)) {
3197 vandps(dst, nds, as_Address(src), vector_len);
3198 } else {
3199 lea(rscratch, src);
3200 vandps(dst, nds, Address(rscratch, 0), vector_len);
3201 }
3202 }
3203
3204 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src,
3205 bool merge, int vector_len, Register rscratch) {
3206 assert(rscratch != noreg || always_reachable(src), "missing");
3207
3208 if (reachable(src)) {
3209 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len);
3210 } else {
3211 lea(rscratch, src);
3212 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len);
3213 }
3214 }
3215
3216 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
3217 assert(rscratch != noreg || always_reachable(src), "missing");
3218
3219 if (reachable(src)) {
3220 vdivsd(dst, nds, as_Address(src));
3221 } else {
3222 lea(rscratch, src);
3223 vdivsd(dst, nds, Address(rscratch, 0));
3224 }
3225 }
3226
3227 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
3228 assert(rscratch != noreg || always_reachable(src), "missing");
3229
3230 if (reachable(src)) {
3231 vdivss(dst, nds, as_Address(src));
3232 } else {
3233 lea(rscratch, src);
3234 vdivss(dst, nds, Address(rscratch, 0));
3235 }
3236 }
3237
3238 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
3239 assert(rscratch != noreg || always_reachable(src), "missing");
3240
3241 if (reachable(src)) {
3242 vmulsd(dst, nds, as_Address(src));
3243 } else {
3244 lea(rscratch, src);
3245 vmulsd(dst, nds, Address(rscratch, 0));
3246 }
3247 }
3248
3249 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
3250 assert(rscratch != noreg || always_reachable(src), "missing");
3251
3252 if (reachable(src)) {
3253 vmulss(dst, nds, as_Address(src));
3254 } else {
3255 lea(rscratch, src);
3256 vmulss(dst, nds, Address(rscratch, 0));
3257 }
3258 }
3259
3260 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
3261 assert(rscratch != noreg || always_reachable(src), "missing");
3262
3263 if (reachable(src)) {
3264 vsubsd(dst, nds, as_Address(src));
3265 } else {
3266 lea(rscratch, src);
3267 vsubsd(dst, nds, Address(rscratch, 0));
3268 }
3269 }
3270
3271 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
3272 assert(rscratch != noreg || always_reachable(src), "missing");
3273
3274 if (reachable(src)) {
3275 vsubss(dst, nds, as_Address(src));
3276 } else {
3277 lea(rscratch, src);
3278 vsubss(dst, nds, Address(rscratch, 0));
3279 }
3280 }
3281
3282 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
3283 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3284 assert(rscratch != noreg || always_reachable(src), "missing");
3285
3286 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch);
3287 }
3288
3289 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
3290 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3291 assert(rscratch != noreg || always_reachable(src), "missing");
3292
3293 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch);
3294 }
3295
3296 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3297 assert(rscratch != noreg || always_reachable(src), "missing");
3298
3299 if (reachable(src)) {
3300 vxorpd(dst, nds, as_Address(src), vector_len);
3301 } else {
3302 lea(rscratch, src);
3303 vxorpd(dst, nds, Address(rscratch, 0), vector_len);
3304 }
3305 }
3306
3307 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3308 assert(rscratch != noreg || always_reachable(src), "missing");
3309
3310 if (reachable(src)) {
3311 vxorps(dst, nds, as_Address(src), vector_len);
3312 } else {
3313 lea(rscratch, src);
3314 vxorps(dst, nds, Address(rscratch, 0), vector_len);
3315 }
3316 }
3317
3318 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3319 assert(rscratch != noreg || always_reachable(src), "missing");
3320
3321 if (UseAVX > 1 || (vector_len < 1)) {
3322 if (reachable(src)) {
3323 Assembler::vpxor(dst, nds, as_Address(src), vector_len);
3324 } else {
3325 lea(rscratch, src);
3326 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len);
3327 }
3328 } else {
3329 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch);
3330 }
3331 }
3332
3333 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3334 assert(rscratch != noreg || always_reachable(src), "missing");
3335
3336 if (reachable(src)) {
3337 Assembler::vpermd(dst, nds, as_Address(src), vector_len);
3338 } else {
3339 lea(rscratch, src);
3340 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len);
3341 }
3342 }
3343
3344 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) {
3345 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask);
3346 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code
3347 // The inverted mask is sign-extended
3348 andptr(possibly_non_local, inverted_mask);
3349 }
3350
3351 void MacroAssembler::resolve_jobject(Register value,
3352 Register tmp) {
3353 Register thread = r15_thread;
3354 assert_different_registers(value, thread, tmp);
3355 Label done, tagged, weak_tagged;
3356 testptr(value, value);
3357 jcc(Assembler::zero, done); // Use null as-is.
3358 testptr(value, JNIHandles::tag_mask); // Test for tag.
3359 jcc(Assembler::notZero, tagged);
3360
3361 // Resolve local handle
3362 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp);
3363 verify_oop(value);
3364 jmp(done);
3365
3366 bind(tagged);
3367 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag.
3368 jcc(Assembler::notZero, weak_tagged);
3369
3370 // Resolve global handle
3371 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp);
3372 verify_oop(value);
3373 jmp(done);
3374
3375 bind(weak_tagged);
3376 // Resolve jweak.
3377 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
3378 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp);
3379 verify_oop(value);
3380
3381 bind(done);
3382 }
3383
3384 void MacroAssembler::resolve_global_jobject(Register value,
3385 Register tmp) {
3386 Register thread = r15_thread;
3387 assert_different_registers(value, thread, tmp);
3388 Label done;
3389
3390 testptr(value, value);
3391 jcc(Assembler::zero, done); // Use null as-is.
3392
3393 #ifdef ASSERT
3394 {
3395 Label valid_global_tag;
3396 testptr(value, JNIHandles::TypeTag::global); // Test for global tag.
3397 jcc(Assembler::notZero, valid_global_tag);
3398 stop("non global jobject using resolve_global_jobject");
3399 bind(valid_global_tag);
3400 }
3401 #endif
3402
3403 // Resolve global handle
3404 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp);
3405 verify_oop(value);
3406
3407 bind(done);
3408 }
3409
3410 void MacroAssembler::subptr(Register dst, int32_t imm32) {
3411 subq(dst, imm32);
3412 }
3413
3414 // Force generation of a 4 byte immediate value even if it fits into 8bit
3415 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
3416 subq_imm32(dst, imm32);
3417 }
3418
3419 void MacroAssembler::subptr(Register dst, Register src) {
3420 subq(dst, src);
3421 }
3422
3423 // C++ bool manipulation
3424 void MacroAssembler::testbool(Register dst) {
3425 if(sizeof(bool) == 1)
3426 testb(dst, 0xff);
3427 else if(sizeof(bool) == 2) {
3428 // testw implementation needed for two byte bools
3429 ShouldNotReachHere();
3430 } else if(sizeof(bool) == 4)
3431 testl(dst, dst);
3432 else
3433 // unsupported
3434 ShouldNotReachHere();
3435 }
3436
3437 void MacroAssembler::testptr(Register dst, Register src) {
3438 testq(dst, src);
3439 }
3440
3441 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
3442 void MacroAssembler::tlab_allocate(Register obj,
3443 Register var_size_in_bytes,
3444 int con_size_in_bytes,
3445 Register t1,
3446 Register t2,
3447 Label& slow_case) {
3448 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3449 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
3450 }
3451
3452 RegSet MacroAssembler::call_clobbered_gp_registers() {
3453 RegSet regs;
3454 regs += RegSet::of(rax, rcx, rdx);
3455 #ifndef _WINDOWS
3456 regs += RegSet::of(rsi, rdi);
3457 #endif
3458 regs += RegSet::range(r8, r11);
3459 if (UseAPX) {
3460 regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1));
3461 }
3462 return regs;
3463 }
3464
3465 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() {
3466 int num_xmm_registers = XMMRegister::available_xmm_registers();
3467 #if defined(_WINDOWS)
3468 XMMRegSet result = XMMRegSet::range(xmm0, xmm5);
3469 if (num_xmm_registers > 16) {
3470 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1));
3471 }
3472 return result;
3473 #else
3474 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1));
3475 #endif
3476 }
3477
3478 // C1 only ever uses the first double/float of the XMM register.
3479 static int xmm_save_size() { return sizeof(double); }
3480
3481 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) {
3482 masm->movdbl(Address(rsp, offset), reg);
3483 }
3484
3485 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) {
3486 masm->movdbl(reg, Address(rsp, offset));
3487 }
3488
3489 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers,
3490 bool save_fpu, int& gp_area_size, int& xmm_area_size) {
3491
3492 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size,
3493 StackAlignmentInBytes);
3494 xmm_area_size = save_fpu ? xmm_registers.size() * xmm_save_size() : 0;
3495
3496 return gp_area_size + xmm_area_size;
3497 }
3498
3499 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) {
3500 block_comment("push_call_clobbered_registers start");
3501 // Regular registers
3502 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude;
3503
3504 int gp_area_size;
3505 int xmm_area_size;
3506 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu,
3507 gp_area_size, xmm_area_size);
3508 subptr(rsp, total_save_size);
3509
3510 push_set(gp_registers_to_push, 0);
3511
3512 if (save_fpu) {
3513 push_set(call_clobbered_xmm_registers(), gp_area_size);
3514 }
3515
3516 block_comment("push_call_clobbered_registers end");
3517 }
3518
3519 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) {
3520 block_comment("pop_call_clobbered_registers start");
3521
3522 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude;
3523
3524 int gp_area_size;
3525 int xmm_area_size;
3526 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu,
3527 gp_area_size, xmm_area_size);
3528
3529 if (restore_fpu) {
3530 pop_set(call_clobbered_xmm_registers(), gp_area_size);
3531 }
3532
3533 pop_set(gp_registers_to_pop, 0);
3534
3535 addptr(rsp, total_save_size);
3536
3537 vzeroupper();
3538
3539 block_comment("pop_call_clobbered_registers end");
3540 }
3541
3542 void MacroAssembler::push_set(XMMRegSet set, int offset) {
3543 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be");
3544 int spill_offset = offset;
3545
3546 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) {
3547 save_xmm_register(this, spill_offset, *it);
3548 spill_offset += xmm_save_size();
3549 }
3550 }
3551
3552 void MacroAssembler::pop_set(XMMRegSet set, int offset) {
3553 int restore_size = set.size() * xmm_save_size();
3554 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be");
3555
3556 int restore_offset = offset + restore_size - xmm_save_size();
3557
3558 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) {
3559 restore_xmm_register(this, restore_offset, *it);
3560 restore_offset -= xmm_save_size();
3561 }
3562 }
3563
3564 void MacroAssembler::push_set(RegSet set, int offset) {
3565 int spill_offset;
3566 if (offset == -1) {
3567 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size;
3568 int aligned_size = align_up(register_push_size, StackAlignmentInBytes);
3569 subptr(rsp, aligned_size);
3570 spill_offset = 0;
3571 } else {
3572 spill_offset = offset;
3573 }
3574
3575 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) {
3576 movptr(Address(rsp, spill_offset), *it);
3577 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size;
3578 }
3579 }
3580
3581 void MacroAssembler::pop_set(RegSet set, int offset) {
3582
3583 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size;
3584 int restore_size = set.size() * gp_reg_size;
3585 int aligned_size = align_up(restore_size, StackAlignmentInBytes);
3586
3587 int restore_offset;
3588 if (offset == -1) {
3589 restore_offset = restore_size - gp_reg_size;
3590 } else {
3591 restore_offset = offset + restore_size - gp_reg_size;
3592 }
3593 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) {
3594 movptr(*it, Address(rsp, restore_offset));
3595 restore_offset -= gp_reg_size;
3596 }
3597
3598 if (offset == -1) {
3599 addptr(rsp, aligned_size);
3600 }
3601 }
3602
3603 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
3604 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
3605 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
3606 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
3607 Label done;
3608
3609 testptr(length_in_bytes, length_in_bytes);
3610 jcc(Assembler::zero, done);
3611
3612 // initialize topmost word, divide index by 2, check if odd and test if zero
3613 // note: for the remaining code to work, index must be a multiple of BytesPerWord
3614 #ifdef ASSERT
3615 {
3616 Label L;
3617 testptr(length_in_bytes, BytesPerWord - 1);
3618 jcc(Assembler::zero, L);
3619 stop("length must be a multiple of BytesPerWord");
3620 bind(L);
3621 }
3622 #endif
3623 Register index = length_in_bytes;
3624 xorptr(temp, temp); // use _zero reg to clear memory (shorter code)
3625 if (UseIncDec) {
3626 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set
3627 } else {
3628 shrptr(index, 2); // use 2 instructions to avoid partial flag stall
3629 shrptr(index, 1);
3630 }
3631
3632 // initialize remaining object fields: index is a multiple of 2 now
3633 {
3634 Label loop;
3635 bind(loop);
3636 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
3637 decrement(index);
3638 jcc(Assembler::notZero, loop);
3639 }
3640
3641 bind(done);
3642 }
3643
3644 // Look up the method for a megamorphic invokeinterface call.
3645 // The target method is determined by <intf_klass, itable_index>.
3646 // The receiver klass is in recv_klass.
3647 // On success, the result will be in method_result, and execution falls through.
3648 // On failure, execution transfers to the given label.
3649 void MacroAssembler::lookup_interface_method(Register recv_klass,
3650 Register intf_klass,
3651 RegisterOrConstant itable_index,
3652 Register method_result,
3653 Register scan_temp,
3654 Label& L_no_such_interface,
3655 bool return_method) {
3656 assert_different_registers(recv_klass, intf_klass, scan_temp);
3657 assert_different_registers(method_result, intf_klass, scan_temp);
3658 assert(recv_klass != method_result || !return_method,
3659 "recv_klass can be destroyed when method isn't needed");
3660
3661 assert(itable_index.is_constant() || itable_index.as_register() == method_result,
3662 "caller must use same register for non-constant itable index as for method");
3663
3664 // Compute start of first itableOffsetEntry (which is at the end of the vtable)
3665 int vtable_base = in_bytes(Klass::vtable_start_offset());
3666 int itentry_off = in_bytes(itableMethodEntry::method_offset());
3667 int scan_step = itableOffsetEntry::size() * wordSize;
3668 int vte_size = vtableEntry::size_in_bytes();
3669 Address::ScaleFactor times_vte_scale = Address::times_ptr;
3670 assert(vte_size == wordSize, "else adjust times_vte_scale");
3671
3672 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
3673
3674 // Could store the aligned, prescaled offset in the klass.
3675 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
3676
3677 if (return_method) {
3678 // Adjust recv_klass by scaled itable_index, so we can free itable_index.
3679 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
3680 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
3681 }
3682
3683 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) {
3684 // if (scan->interface() == intf) {
3685 // result = (klass + scan->offset() + itable_index);
3686 // }
3687 // }
3688 Label search, found_method;
3689
3690 for (int peel = 1; peel >= 0; peel--) {
3691 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
3692 cmpptr(intf_klass, method_result);
3693
3694 if (peel) {
3695 jccb(Assembler::equal, found_method);
3696 } else {
3697 jccb(Assembler::notEqual, search);
3698 // (invert the test to fall through to found_method...)
3699 }
3700
3701 if (!peel) break;
3702
3703 bind(search);
3704
3705 // Check that the previous entry is non-null. A null entry means that
3706 // the receiver class doesn't implement the interface, and wasn't the
3707 // same as when the caller was compiled.
3708 testptr(method_result, method_result);
3709 jcc(Assembler::zero, L_no_such_interface);
3710 addptr(scan_temp, scan_step);
3711 }
3712
3713 bind(found_method);
3714
3715 if (return_method) {
3716 // Got a hit.
3717 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset()));
3718 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
3719 }
3720 }
3721
3722 // Look up the method for a megamorphic invokeinterface call in a single pass over itable:
3723 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData
3724 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index
3725 // The target method is determined by <holder_klass, itable_index>.
3726 // The receiver klass is in recv_klass.
3727 // On success, the result will be in method_result, and execution falls through.
3728 // On failure, execution transfers to the given label.
3729 void MacroAssembler::lookup_interface_method_stub(Register recv_klass,
3730 Register holder_klass,
3731 Register resolved_klass,
3732 Register method_result,
3733 Register scan_temp,
3734 Register temp_reg2,
3735 Register receiver,
3736 int itable_index,
3737 Label& L_no_such_interface) {
3738 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver);
3739 Register temp_itbl_klass = method_result;
3740 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl
3741
3742 int vtable_base = in_bytes(Klass::vtable_start_offset());
3743 int itentry_off = in_bytes(itableMethodEntry::method_offset());
3744 int scan_step = itableOffsetEntry::size() * wordSize;
3745 int vte_size = vtableEntry::size_in_bytes();
3746 int ioffset = in_bytes(itableOffsetEntry::interface_offset());
3747 int ooffset = in_bytes(itableOffsetEntry::offset_offset());
3748 Address::ScaleFactor times_vte_scale = Address::times_ptr;
3749 assert(vte_size == wordSize, "adjust times_vte_scale");
3750
3751 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found;
3752
3753 // temp_itbl_klass = recv_klass.itable[0]
3754 // scan_temp = &recv_klass.itable[0] + step
3755 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
3756 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset));
3757 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step));
3758 xorptr(temp_reg, temp_reg);
3759
3760 // Initial checks:
3761 // - if (holder_klass != resolved_klass), go to "scan for resolved"
3762 // - if (itable[0] == 0), no such interface
3763 // - if (itable[0] == holder_klass), shortcut to "holder found"
3764 cmpptr(holder_klass, resolved_klass);
3765 jccb(Assembler::notEqual, L_loop_scan_resolved_entry);
3766 testptr(temp_itbl_klass, temp_itbl_klass);
3767 jccb(Assembler::zero, L_no_such_interface);
3768 cmpptr(holder_klass, temp_itbl_klass);
3769 jccb(Assembler::equal, L_holder_found);
3770
3771 // Loop: Look for holder_klass record in itable
3772 // do {
3773 // tmp = itable[index];
3774 // index += step;
3775 // if (tmp == holder_klass) {
3776 // goto L_holder_found; // Found!
3777 // }
3778 // } while (tmp != 0);
3779 // goto L_no_such_interface // Not found.
3780 Label L_scan_holder;
3781 bind(L_scan_holder);
3782 movptr(temp_itbl_klass, Address(scan_temp, 0));
3783 addptr(scan_temp, scan_step);
3784 cmpptr(holder_klass, temp_itbl_klass);
3785 jccb(Assembler::equal, L_holder_found);
3786 testptr(temp_itbl_klass, temp_itbl_klass);
3787 jccb(Assembler::notZero, L_scan_holder);
3788
3789 jmpb(L_no_such_interface);
3790
3791 // Loop: Look for resolved_class record in itable
3792 // do {
3793 // tmp = itable[index];
3794 // index += step;
3795 // if (tmp == holder_klass) {
3796 // // Also check if we have met a holder klass
3797 // holder_tmp = itable[index-step-ioffset];
3798 // }
3799 // if (tmp == resolved_klass) {
3800 // goto L_resolved_found; // Found!
3801 // }
3802 // } while (tmp != 0);
3803 // goto L_no_such_interface // Not found.
3804 //
3805 Label L_loop_scan_resolved;
3806 bind(L_loop_scan_resolved);
3807 movptr(temp_itbl_klass, Address(scan_temp, 0));
3808 addptr(scan_temp, scan_step);
3809 bind(L_loop_scan_resolved_entry);
3810 cmpptr(holder_klass, temp_itbl_klass);
3811 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step));
3812 cmpptr(resolved_klass, temp_itbl_klass);
3813 jccb(Assembler::equal, L_resolved_found);
3814 testptr(temp_itbl_klass, temp_itbl_klass);
3815 jccb(Assembler::notZero, L_loop_scan_resolved);
3816
3817 jmpb(L_no_such_interface);
3818
3819 Label L_ready;
3820
3821 // See if we already have a holder klass. If not, go and scan for it.
3822 bind(L_resolved_found);
3823 testptr(temp_reg, temp_reg);
3824 jccb(Assembler::zero, L_scan_holder);
3825 jmpb(L_ready);
3826
3827 bind(L_holder_found);
3828 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step));
3829
3830 // Finally, temp_reg contains holder_klass vtable offset
3831 bind(L_ready);
3832 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
3833 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl
3834 load_klass(scan_temp, receiver, noreg);
3835 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off));
3836 } else {
3837 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off));
3838 }
3839 }
3840
3841
3842 // virtual method calling
3843 void MacroAssembler::lookup_virtual_method(Register recv_klass,
3844 RegisterOrConstant vtable_index,
3845 Register method_result) {
3846 const ByteSize base = Klass::vtable_start_offset();
3847 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
3848 Address vtable_entry_addr(recv_klass,
3849 vtable_index, Address::times_ptr,
3850 base + vtableEntry::method_offset());
3851 movptr(method_result, vtable_entry_addr);
3852 }
3853
3854
3855 void MacroAssembler::check_klass_subtype(Register sub_klass,
3856 Register super_klass,
3857 Register temp_reg,
3858 Label& L_success) {
3859 Label L_failure;
3860 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr);
3861 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr);
3862 bind(L_failure);
3863 }
3864
3865
3866 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
3867 Register super_klass,
3868 Register temp_reg,
3869 Label* L_success,
3870 Label* L_failure,
3871 Label* L_slow_path,
3872 RegisterOrConstant super_check_offset) {
3873 assert_different_registers(sub_klass, super_klass, temp_reg);
3874 bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
3875 if (super_check_offset.is_register()) {
3876 assert_different_registers(sub_klass, super_klass,
3877 super_check_offset.as_register());
3878 } else if (must_load_sco) {
3879 assert(temp_reg != noreg, "supply either a temp or a register offset");
3880 }
3881
3882 Label L_fallthrough;
3883 int label_nulls = 0;
3884 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
3885 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
3886 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
3887 assert(label_nulls <= 1, "at most one null in the batch");
3888
3889 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
3890 int sco_offset = in_bytes(Klass::super_check_offset_offset());
3891 Address super_check_offset_addr(super_klass, sco_offset);
3892
3893 // Hacked jcc, which "knows" that L_fallthrough, at least, is in
3894 // range of a jccb. If this routine grows larger, reconsider at
3895 // least some of these.
3896 #define local_jcc(assembler_cond, label) \
3897 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \
3898 else jcc( assembler_cond, label) /*omit semi*/
3899
3900 // Hacked jmp, which may only be used just before L_fallthrough.
3901 #define final_jmp(label) \
3902 if (&(label) == &L_fallthrough) { /*do nothing*/ } \
3903 else jmp(label) /*omit semi*/
3904
3905 // If the pointers are equal, we are done (e.g., String[] elements).
3906 // This self-check enables sharing of secondary supertype arrays among
3907 // non-primary types such as array-of-interface. Otherwise, each such
3908 // type would need its own customized SSA.
3909 // We move this check to the front of the fast path because many
3910 // type checks are in fact trivially successful in this manner,
3911 // so we get a nicely predicted branch right at the start of the check.
3912 cmpptr(sub_klass, super_klass);
3913 local_jcc(Assembler::equal, *L_success);
3914
3915 // Check the supertype display:
3916 if (must_load_sco) {
3917 // Positive movl does right thing on LP64.
3918 movl(temp_reg, super_check_offset_addr);
3919 super_check_offset = RegisterOrConstant(temp_reg);
3920 }
3921 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
3922 cmpptr(super_klass, super_check_addr); // load displayed supertype
3923
3924 // This check has worked decisively for primary supers.
3925 // Secondary supers are sought in the super_cache ('super_cache_addr').
3926 // (Secondary supers are interfaces and very deeply nested subtypes.)
3927 // This works in the same check above because of a tricky aliasing
3928 // between the super_cache and the primary super display elements.
3929 // (The 'super_check_addr' can address either, as the case requires.)
3930 // Note that the cache is updated below if it does not help us find
3931 // what we need immediately.
3932 // So if it was a primary super, we can just fail immediately.
3933 // Otherwise, it's the slow path for us (no success at this point).
3934
3935 if (super_check_offset.is_register()) {
3936 local_jcc(Assembler::equal, *L_success);
3937 cmpl(super_check_offset.as_register(), sc_offset);
3938 if (L_failure == &L_fallthrough) {
3939 local_jcc(Assembler::equal, *L_slow_path);
3940 } else {
3941 local_jcc(Assembler::notEqual, *L_failure);
3942 final_jmp(*L_slow_path);
3943 }
3944 } else if (super_check_offset.as_constant() == sc_offset) {
3945 // Need a slow path; fast failure is impossible.
3946 if (L_slow_path == &L_fallthrough) {
3947 local_jcc(Assembler::equal, *L_success);
3948 } else {
3949 local_jcc(Assembler::notEqual, *L_slow_path);
3950 final_jmp(*L_success);
3951 }
3952 } else {
3953 // No slow path; it's a fast decision.
3954 if (L_failure == &L_fallthrough) {
3955 local_jcc(Assembler::equal, *L_success);
3956 } else {
3957 local_jcc(Assembler::notEqual, *L_failure);
3958 final_jmp(*L_success);
3959 }
3960 }
3961
3962 bind(L_fallthrough);
3963
3964 #undef local_jcc
3965 #undef final_jmp
3966 }
3967
3968
3969 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass,
3970 Register super_klass,
3971 Register temp_reg,
3972 Register temp2_reg,
3973 Label* L_success,
3974 Label* L_failure,
3975 bool set_cond_codes) {
3976 assert_different_registers(sub_klass, super_klass, temp_reg);
3977 if (temp2_reg != noreg)
3978 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
3979 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
3980
3981 Label L_fallthrough;
3982 int label_nulls = 0;
3983 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
3984 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
3985 assert(label_nulls <= 1, "at most one null in the batch");
3986
3987 // a couple of useful fields in sub_klass:
3988 int ss_offset = in_bytes(Klass::secondary_supers_offset());
3989 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
3990 Address secondary_supers_addr(sub_klass, ss_offset);
3991 Address super_cache_addr( sub_klass, sc_offset);
3992
3993 // Do a linear scan of the secondary super-klass chain.
3994 // This code is rarely used, so simplicity is a virtue here.
3995 // The repne_scan instruction uses fixed registers, which we must spill.
3996 // Don't worry too much about pre-existing connections with the input regs.
3997
3998 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
3999 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
4000
4001 // Get super_klass value into rax (even if it was in rdi or rcx).
4002 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
4003 if (super_klass != rax) {
4004 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
4005 mov(rax, super_klass);
4006 }
4007 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
4008 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
4009
4010 #ifndef PRODUCT
4011 uint* pst_counter = &SharedRuntime::_partial_subtype_ctr;
4012 ExternalAddress pst_counter_addr((address) pst_counter);
4013 lea(rcx, pst_counter_addr);
4014 incrementl(Address(rcx, 0));
4015 #endif //PRODUCT
4016
4017 // We will consult the secondary-super array.
4018 movptr(rdi, secondary_supers_addr);
4019 // Load the array length. (Positive movl does right thing on LP64.)
4020 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
4021 // Skip to start of data.
4022 addptr(rdi, Array<Klass*>::base_offset_in_bytes());
4023
4024 // Scan RCX words at [RDI] for an occurrence of RAX.
4025 // Set NZ/Z based on last compare.
4026 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
4027 // not change flags (only scas instruction which is repeated sets flags).
4028 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
4029
4030 testptr(rax,rax); // Set Z = 0
4031 repne_scan();
4032
4033 // Unspill the temp. registers:
4034 if (pushed_rdi) pop(rdi);
4035 if (pushed_rcx) pop(rcx);
4036 if (pushed_rax) pop(rax);
4037
4038 if (set_cond_codes) {
4039 // Special hack for the AD files: rdi is guaranteed non-zero.
4040 assert(!pushed_rdi, "rdi must be left non-null");
4041 // Also, the condition codes are properly set Z/NZ on succeed/failure.
4042 }
4043
4044 if (L_failure == &L_fallthrough)
4045 jccb(Assembler::notEqual, *L_failure);
4046 else jcc(Assembler::notEqual, *L_failure);
4047
4048 // Success. Cache the super we found and proceed in triumph.
4049 movptr(super_cache_addr, super_klass);
4050
4051 if (L_success != &L_fallthrough) {
4052 jmp(*L_success);
4053 }
4054
4055 #undef IS_A_TEMP
4056
4057 bind(L_fallthrough);
4058 }
4059
4060 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
4061 Register super_klass,
4062 Register temp_reg,
4063 Register temp2_reg,
4064 Label* L_success,
4065 Label* L_failure,
4066 bool set_cond_codes) {
4067 assert(set_cond_codes == false, "must be false on 64-bit x86");
4068 check_klass_subtype_slow_path
4069 (sub_klass, super_klass, temp_reg, temp2_reg, noreg, noreg,
4070 L_success, L_failure);
4071 }
4072
4073 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
4074 Register super_klass,
4075 Register temp_reg,
4076 Register temp2_reg,
4077 Register temp3_reg,
4078 Register temp4_reg,
4079 Label* L_success,
4080 Label* L_failure) {
4081 if (UseSecondarySupersTable) {
4082 check_klass_subtype_slow_path_table
4083 (sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, temp4_reg,
4084 L_success, L_failure);
4085 } else {
4086 check_klass_subtype_slow_path_linear
4087 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, /*set_cond_codes*/false);
4088 }
4089 }
4090
4091 Register MacroAssembler::allocate_if_noreg(Register r,
4092 RegSetIterator<Register> &available_regs,
4093 RegSet ®s_to_push) {
4094 if (!r->is_valid()) {
4095 r = *available_regs++;
4096 regs_to_push += r;
4097 }
4098 return r;
4099 }
4100
4101 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass,
4102 Register super_klass,
4103 Register temp_reg,
4104 Register temp2_reg,
4105 Register temp3_reg,
4106 Register result_reg,
4107 Label* L_success,
4108 Label* L_failure) {
4109 // NB! Callers may assume that, when temp2_reg is a valid register,
4110 // this code sets it to a nonzero value.
4111 bool temp2_reg_was_valid = temp2_reg->is_valid();
4112
4113 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg);
4114
4115 Label L_fallthrough;
4116 int label_nulls = 0;
4117 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
4118 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
4119 assert(label_nulls <= 1, "at most one null in the batch");
4120
4121 BLOCK_COMMENT("check_klass_subtype_slow_path_table");
4122
4123 RegSetIterator<Register> available_regs
4124 = (RegSet::of(rax, rcx, rdx, r8) + r9 + r10 + r11 + r12 - temps - sub_klass - super_klass).begin();
4125
4126 RegSet pushed_regs;
4127
4128 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs);
4129 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs);
4130 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs);
4131 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs);
4132 Register temp4_reg = allocate_if_noreg(noreg, available_regs, pushed_regs);
4133
4134 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, result_reg);
4135
4136 {
4137
4138 int register_push_size = pushed_regs.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size;
4139 int aligned_size = align_up(register_push_size, StackAlignmentInBytes);
4140 subptr(rsp, aligned_size);
4141 push_set(pushed_regs, 0);
4142
4143 lookup_secondary_supers_table_var(sub_klass,
4144 super_klass,
4145 temp_reg, temp2_reg, temp3_reg, temp4_reg, result_reg);
4146 cmpq(result_reg, 0);
4147
4148 // Unspill the temp. registers:
4149 pop_set(pushed_regs, 0);
4150 // Increment SP but do not clobber flags.
4151 lea(rsp, Address(rsp, aligned_size));
4152 }
4153
4154 if (temp2_reg_was_valid) {
4155 movq(temp2_reg, 1);
4156 }
4157
4158 jcc(Assembler::notEqual, *L_failure);
4159
4160 if (L_success != &L_fallthrough) {
4161 jmp(*L_success);
4162 }
4163
4164 bind(L_fallthrough);
4165 }
4166
4167 // population_count variant for running without the POPCNT
4168 // instruction, which was introduced with SSE4.2 in 2008.
4169 void MacroAssembler::population_count(Register dst, Register src,
4170 Register scratch1, Register scratch2) {
4171 assert_different_registers(src, scratch1, scratch2);
4172 if (UsePopCountInstruction) {
4173 Assembler::popcntq(dst, src);
4174 } else {
4175 assert_different_registers(src, scratch1, scratch2);
4176 assert_different_registers(dst, scratch1, scratch2);
4177 Label loop, done;
4178
4179 mov(scratch1, src);
4180 // dst = 0;
4181 // while(scratch1 != 0) {
4182 // dst++;
4183 // scratch1 &= (scratch1 - 1);
4184 // }
4185 xorl(dst, dst);
4186 testq(scratch1, scratch1);
4187 jccb(Assembler::equal, done);
4188 {
4189 bind(loop);
4190 incq(dst);
4191 movq(scratch2, scratch1);
4192 decq(scratch2);
4193 andq(scratch1, scratch2);
4194 jccb(Assembler::notEqual, loop);
4195 }
4196 bind(done);
4197 }
4198 #ifdef ASSERT
4199 mov64(scratch1, 0xCafeBabeDeadBeef);
4200 movq(scratch2, scratch1);
4201 #endif
4202 }
4203
4204 // Ensure that the inline code and the stub are using the same registers.
4205 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \
4206 do { \
4207 assert(r_super_klass == rax, "mismatch"); \
4208 assert(r_array_base == rbx, "mismatch"); \
4209 assert(r_array_length == rcx, "mismatch"); \
4210 assert(r_array_index == rdx, "mismatch"); \
4211 assert(r_sub_klass == rsi || r_sub_klass == noreg, "mismatch"); \
4212 assert(r_bitmap == r11 || r_bitmap == noreg, "mismatch"); \
4213 assert(result == rdi || result == noreg, "mismatch"); \
4214 } while(0)
4215
4216 // Versions of salq and rorq that don't need count to be in rcx
4217
4218 void MacroAssembler::salq(Register dest, Register count) {
4219 if (count == rcx) {
4220 Assembler::salq(dest);
4221 } else {
4222 assert_different_registers(rcx, dest);
4223 xchgq(rcx, count);
4224 Assembler::salq(dest);
4225 xchgq(rcx, count);
4226 }
4227 }
4228
4229 void MacroAssembler::rorq(Register dest, Register count) {
4230 if (count == rcx) {
4231 Assembler::rorq(dest);
4232 } else {
4233 assert_different_registers(rcx, dest);
4234 xchgq(rcx, count);
4235 Assembler::rorq(dest);
4236 xchgq(rcx, count);
4237 }
4238 }
4239
4240 // Return true: we succeeded in generating this code
4241 //
4242 // At runtime, return 0 in result if r_super_klass is a superclass of
4243 // r_sub_klass, otherwise return nonzero. Use this if you know the
4244 // super_klass_slot of the class you're looking for. This is always
4245 // the case for instanceof and checkcast.
4246 void MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass,
4247 Register r_super_klass,
4248 Register temp1,
4249 Register temp2,
4250 Register temp3,
4251 Register temp4,
4252 Register result,
4253 u1 super_klass_slot) {
4254 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result);
4255
4256 Label L_fallthrough, L_success, L_failure;
4257
4258 BLOCK_COMMENT("lookup_secondary_supers_table {");
4259
4260 const Register
4261 r_array_index = temp1,
4262 r_array_length = temp2,
4263 r_array_base = temp3,
4264 r_bitmap = temp4;
4265
4266 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
4267
4268 xorq(result, result); // = 0
4269
4270 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
4271 movq(r_array_index, r_bitmap);
4272
4273 // First check the bitmap to see if super_klass might be present. If
4274 // the bit is zero, we are certain that super_klass is not one of
4275 // the secondary supers.
4276 u1 bit = super_klass_slot;
4277 {
4278 // NB: If the count in a x86 shift instruction is 0, the flags are
4279 // not affected, so we do a testq instead.
4280 int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit;
4281 if (shift_count != 0) {
4282 salq(r_array_index, shift_count);
4283 } else {
4284 testq(r_array_index, r_array_index);
4285 }
4286 }
4287 // We test the MSB of r_array_index, i.e. its sign bit
4288 jcc(Assembler::positive, L_failure);
4289
4290 // Get the first array index that can contain super_klass into r_array_index.
4291 if (bit != 0) {
4292 population_count(r_array_index, r_array_index, temp2, temp3);
4293 } else {
4294 movl(r_array_index, 1);
4295 }
4296 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
4297
4298 // We will consult the secondary-super array.
4299 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
4300
4301 // We're asserting that the first word in an Array<Klass*> is the
4302 // length, and the second word is the first word of the data. If
4303 // that ever changes, r_array_base will have to be adjusted here.
4304 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
4305 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
4306
4307 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
4308 jccb(Assembler::equal, L_success);
4309
4310 // Is there another entry to check? Consult the bitmap.
4311 btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK);
4312 jccb(Assembler::carryClear, L_failure);
4313
4314 // Linear probe. Rotate the bitmap so that the next bit to test is
4315 // in Bit 1.
4316 if (bit != 0) {
4317 rorq(r_bitmap, bit);
4318 }
4319
4320 // Calls into the stub generated by lookup_secondary_supers_table_slow_path.
4321 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap.
4322 // Kills: r_array_length.
4323 // Returns: result.
4324 call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()));
4325 // Result (0/1) is in rdi
4326 jmpb(L_fallthrough);
4327
4328 bind(L_failure);
4329 incq(result); // 0 => 1
4330
4331 bind(L_success);
4332 // result = 0;
4333
4334 bind(L_fallthrough);
4335 BLOCK_COMMENT("} lookup_secondary_supers_table");
4336
4337 if (VerifySecondarySupers) {
4338 verify_secondary_supers_table(r_sub_klass, r_super_klass, result,
4339 temp1, temp2, temp3);
4340 }
4341 }
4342
4343 // At runtime, return 0 in result if r_super_klass is a superclass of
4344 // r_sub_klass, otherwise return nonzero. Use this version of
4345 // lookup_secondary_supers_table() if you don't know ahead of time
4346 // which superclass will be searched for. Used by interpreter and
4347 // runtime stubs. It is larger and has somewhat greater latency than
4348 // the version above, which takes a constant super_klass_slot.
4349 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass,
4350 Register r_super_klass,
4351 Register temp1,
4352 Register temp2,
4353 Register temp3,
4354 Register temp4,
4355 Register result) {
4356 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result);
4357 assert_different_registers(r_sub_klass, r_super_klass, rcx);
4358 RegSet temps = RegSet::of(temp1, temp2, temp3, temp4);
4359
4360 Label L_fallthrough, L_success, L_failure;
4361
4362 BLOCK_COMMENT("lookup_secondary_supers_table {");
4363
4364 RegSetIterator<Register> available_regs = (temps - rcx).begin();
4365
4366 // FIXME. Once we are sure that all paths reaching this point really
4367 // do pass rcx as one of our temps we can get rid of the following
4368 // workaround.
4369 assert(temps.contains(rcx), "fix this code");
4370
4371 // We prefer to have our shift count in rcx. If rcx is one of our
4372 // temps, use it for slot. If not, pick any of our temps.
4373 Register slot;
4374 if (!temps.contains(rcx)) {
4375 slot = *available_regs++;
4376 } else {
4377 slot = rcx;
4378 }
4379
4380 const Register r_array_index = *available_regs++;
4381 const Register r_bitmap = *available_regs++;
4382
4383 // The logic above guarantees this property, but we state it here.
4384 assert_different_registers(r_array_index, r_bitmap, rcx);
4385
4386 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
4387 movq(r_array_index, r_bitmap);
4388
4389 // First check the bitmap to see if super_klass might be present. If
4390 // the bit is zero, we are certain that super_klass is not one of
4391 // the secondary supers.
4392 movb(slot, Address(r_super_klass, Klass::hash_slot_offset()));
4393 xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64)
4394 salq(r_array_index, slot);
4395
4396 testq(r_array_index, r_array_index);
4397 // We test the MSB of r_array_index, i.e. its sign bit
4398 jcc(Assembler::positive, L_failure);
4399
4400 const Register r_array_base = *available_regs++;
4401
4402 // Get the first array index that can contain super_klass into r_array_index.
4403 // Note: Clobbers r_array_base and slot.
4404 population_count(r_array_index, r_array_index, /*temp2*/r_array_base, /*temp3*/slot);
4405
4406 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
4407
4408 // We will consult the secondary-super array.
4409 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
4410
4411 // We're asserting that the first word in an Array<Klass*> is the
4412 // length, and the second word is the first word of the data. If
4413 // that ever changes, r_array_base will have to be adjusted here.
4414 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
4415 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
4416
4417 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
4418 jccb(Assembler::equal, L_success);
4419
4420 // Restore slot to its true value
4421 movb(slot, Address(r_super_klass, Klass::hash_slot_offset()));
4422
4423 // Linear probe. Rotate the bitmap so that the next bit to test is
4424 // in Bit 1.
4425 rorq(r_bitmap, slot);
4426
4427 // Is there another entry to check? Consult the bitmap.
4428 btq(r_bitmap, 1);
4429 jccb(Assembler::carryClear, L_failure);
4430
4431 // Calls into the stub generated by lookup_secondary_supers_table_slow_path.
4432 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap.
4433 // Kills: r_array_length.
4434 // Returns: result.
4435 lookup_secondary_supers_table_slow_path(r_super_klass,
4436 r_array_base,
4437 r_array_index,
4438 r_bitmap,
4439 /*temp1*/result,
4440 /*temp2*/slot,
4441 &L_success,
4442 nullptr);
4443
4444 bind(L_failure);
4445 movq(result, 1);
4446 jmpb(L_fallthrough);
4447
4448 bind(L_success);
4449 xorq(result, result); // = 0
4450
4451 bind(L_fallthrough);
4452 BLOCK_COMMENT("} lookup_secondary_supers_table");
4453
4454 if (VerifySecondarySupers) {
4455 verify_secondary_supers_table(r_sub_klass, r_super_klass, result,
4456 temp1, temp2, temp3);
4457 }
4458 }
4459
4460 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit,
4461 Label* L_success, Label* L_failure) {
4462 Label L_loop, L_fallthrough;
4463 {
4464 int label_nulls = 0;
4465 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
4466 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
4467 assert(label_nulls <= 1, "at most one null in the batch");
4468 }
4469 bind(L_loop);
4470 cmpq(value, Address(addr, count, Address::times_8));
4471 jcc(Assembler::equal, *L_success);
4472 addl(count, 1);
4473 cmpl(count, limit);
4474 jcc(Assembler::less, L_loop);
4475
4476 if (&L_fallthrough != L_failure) {
4477 jmp(*L_failure);
4478 }
4479 bind(L_fallthrough);
4480 }
4481
4482 // Called by code generated by check_klass_subtype_slow_path
4483 // above. This is called when there is a collision in the hashed
4484 // lookup in the secondary supers array.
4485 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass,
4486 Register r_array_base,
4487 Register r_array_index,
4488 Register r_bitmap,
4489 Register temp1,
4490 Register temp2,
4491 Label* L_success,
4492 Label* L_failure) {
4493 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2);
4494
4495 const Register
4496 r_array_length = temp1,
4497 r_sub_klass = noreg,
4498 result = noreg;
4499
4500 Label L_fallthrough;
4501 int label_nulls = 0;
4502 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
4503 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
4504 assert(label_nulls <= 1, "at most one null in the batch");
4505
4506 // Load the array length.
4507 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
4508 // And adjust the array base to point to the data.
4509 // NB! Effectively increments current slot index by 1.
4510 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "");
4511 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes());
4512
4513 // Linear probe
4514 Label L_huge;
4515
4516 // The bitmap is full to bursting.
4517 // Implicit invariant: BITMAP_FULL implies (length > 0)
4518 cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2);
4519 jcc(Assembler::greater, L_huge);
4520
4521 // NB! Our caller has checked bits 0 and 1 in the bitmap. The
4522 // current slot (at secondary_supers[r_array_index]) has not yet
4523 // been inspected, and r_array_index may be out of bounds if we
4524 // wrapped around the end of the array.
4525
4526 { // This is conventional linear probing, but instead of terminating
4527 // when a null entry is found in the table, we maintain a bitmap
4528 // in which a 0 indicates missing entries.
4529 // The check above guarantees there are 0s in the bitmap, so the loop
4530 // eventually terminates.
4531
4532 xorl(temp2, temp2); // = 0;
4533
4534 Label L_again;
4535 bind(L_again);
4536
4537 // Check for array wraparound.
4538 cmpl(r_array_index, r_array_length);
4539 cmovl(Assembler::greaterEqual, r_array_index, temp2);
4540
4541 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
4542 jcc(Assembler::equal, *L_success);
4543
4544 // If the next bit in bitmap is zero, we're done.
4545 btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now
4546 jcc(Assembler::carryClear, *L_failure);
4547
4548 rorq(r_bitmap, 1); // Bits 1/2 => 0/1
4549 addl(r_array_index, 1);
4550
4551 jmp(L_again);
4552 }
4553
4554 { // Degenerate case: more than 64 secondary supers.
4555 // FIXME: We could do something smarter here, maybe a vectorized
4556 // comparison or a binary search, but is that worth any added
4557 // complexity?
4558 bind(L_huge);
4559 xorl(r_array_index, r_array_index); // = 0
4560 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length,
4561 L_success,
4562 (&L_fallthrough != L_failure ? L_failure : nullptr));
4563
4564 bind(L_fallthrough);
4565 }
4566 }
4567
4568 struct VerifyHelperArguments {
4569 Klass* _super;
4570 Klass* _sub;
4571 intptr_t _linear_result;
4572 intptr_t _table_result;
4573 };
4574
4575 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) {
4576 Klass::on_secondary_supers_verification_failure(args->_super,
4577 args->_sub,
4578 args->_linear_result,
4579 args->_table_result,
4580 msg);
4581 }
4582
4583 // Make sure that the hashed lookup and a linear scan agree.
4584 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass,
4585 Register r_super_klass,
4586 Register result,
4587 Register temp1,
4588 Register temp2,
4589 Register temp3) {
4590 const Register
4591 r_array_index = temp1,
4592 r_array_length = temp2,
4593 r_array_base = temp3,
4594 r_bitmap = noreg;
4595
4596 BLOCK_COMMENT("verify_secondary_supers_table {");
4597
4598 Label L_success, L_failure, L_check, L_done;
4599
4600 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
4601 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
4602 // And adjust the array base to point to the data.
4603 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes());
4604
4605 testl(r_array_length, r_array_length); // array_length == 0?
4606 jcc(Assembler::zero, L_failure);
4607
4608 movl(r_array_index, 0);
4609 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success);
4610 // fall through to L_failure
4611
4612 const Register linear_result = r_array_index; // reuse temp1
4613
4614 bind(L_failure); // not present
4615 movl(linear_result, 1);
4616 jmp(L_check);
4617
4618 bind(L_success); // present
4619 movl(linear_result, 0);
4620
4621 bind(L_check);
4622 cmpl(linear_result, result);
4623 jcc(Assembler::equal, L_done);
4624
4625 { // To avoid calling convention issues, build a record on the stack
4626 // and pass the pointer to that instead.
4627 push(result);
4628 push(linear_result);
4629 push(r_sub_klass);
4630 push(r_super_klass);
4631 movptr(c_rarg1, rsp);
4632 movptr(c_rarg0, (uintptr_t) "mismatch");
4633 call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper)));
4634 should_not_reach_here();
4635 }
4636 bind(L_done);
4637
4638 BLOCK_COMMENT("} verify_secondary_supers_table");
4639 }
4640
4641 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS
4642
4643 void MacroAssembler::clinit_barrier(Register klass, Label* L_fast_path, Label* L_slow_path) {
4644 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
4645
4646 Label L_fallthrough;
4647 if (L_fast_path == nullptr) {
4648 L_fast_path = &L_fallthrough;
4649 } else if (L_slow_path == nullptr) {
4650 L_slow_path = &L_fallthrough;
4651 }
4652
4653 // Fast path check: class is fully initialized.
4654 // init_state needs acquire, but x86 is TSO, and so we are already good.
4655 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
4656 jcc(Assembler::equal, *L_fast_path);
4657
4658 // Fast path check: current thread is initializer thread
4659 cmpptr(r15_thread, Address(klass, InstanceKlass::init_thread_offset()));
4660 if (L_slow_path == &L_fallthrough) {
4661 jcc(Assembler::equal, *L_fast_path);
4662 bind(*L_slow_path);
4663 } else if (L_fast_path == &L_fallthrough) {
4664 jcc(Assembler::notEqual, *L_slow_path);
4665 bind(*L_fast_path);
4666 } else {
4667 Unimplemented();
4668 }
4669 }
4670
4671 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
4672 if (VM_Version::supports_cmov()) {
4673 cmovl(cc, dst, src);
4674 } else {
4675 Label L;
4676 jccb(negate_condition(cc), L);
4677 movl(dst, src);
4678 bind(L);
4679 }
4680 }
4681
4682 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
4683 if (VM_Version::supports_cmov()) {
4684 cmovl(cc, dst, src);
4685 } else {
4686 Label L;
4687 jccb(negate_condition(cc), L);
4688 movl(dst, src);
4689 bind(L);
4690 }
4691 }
4692
4693 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
4694 if (!VerifyOops) return;
4695
4696 BLOCK_COMMENT("verify_oop {");
4697 push(rscratch1);
4698 push(rax); // save rax
4699 push(reg); // pass register argument
4700
4701 // Pass register number to verify_oop_subroutine
4702 const char* b = nullptr;
4703 {
4704 ResourceMark rm;
4705 stringStream ss;
4706 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
4707 b = code_string(ss.as_string());
4708 }
4709 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate());
4710 pushptr(buffer.addr(), rscratch1);
4711
4712 // call indirectly to solve generation ordering problem
4713 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4714 call(rax);
4715 // Caller pops the arguments (oop, message) and restores rax, r10
4716 BLOCK_COMMENT("} verify_oop");
4717 }
4718
4719 void MacroAssembler::vallones(XMMRegister dst, int vector_len) {
4720 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) {
4721 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without
4722 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog
4723 vpternlogd(dst, 0xFF, dst, dst, vector_len);
4724 } else if (VM_Version::supports_avx()) {
4725 vpcmpeqd(dst, dst, dst, vector_len);
4726 } else {
4727 pcmpeqd(dst, dst);
4728 }
4729 }
4730
4731 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
4732 int extra_slot_offset) {
4733 // cf. TemplateTable::prepare_invoke(), if (load_receiver).
4734 int stackElementSize = Interpreter::stackElementSize;
4735 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
4736 #ifdef ASSERT
4737 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
4738 assert(offset1 - offset == stackElementSize, "correct arithmetic");
4739 #endif
4740 Register scale_reg = noreg;
4741 Address::ScaleFactor scale_factor = Address::no_scale;
4742 if (arg_slot.is_constant()) {
4743 offset += arg_slot.as_constant() * stackElementSize;
4744 } else {
4745 scale_reg = arg_slot.as_register();
4746 scale_factor = Address::times(stackElementSize);
4747 }
4748 offset += wordSize; // return PC is on stack
4749 return Address(rsp, scale_reg, scale_factor, offset);
4750 }
4751
4752 // Handle the receiver type profile update given the "recv" klass.
4753 //
4754 // Normally updates the ReceiverData (RD) that starts at "mdp" + "mdp_offset".
4755 // If there are no matching or claimable receiver entries in RD, updates
4756 // the polymorphic counter.
4757 //
4758 // This code expected to run by either the interpreter or JIT-ed code, without
4759 // extra synchronization. For safety, receiver cells are claimed atomically, which
4760 // avoids grossly misrepresenting the profiles under concurrent updates. For speed,
4761 // counter updates are not atomic.
4762 //
4763 void MacroAssembler::profile_receiver_type(Register recv, Register mdp, int mdp_offset) {
4764 int base_receiver_offset = in_bytes(ReceiverTypeData::receiver_offset(0));
4765 int end_receiver_offset = in_bytes(ReceiverTypeData::receiver_offset(ReceiverTypeData::row_limit()));
4766 int poly_count_offset = in_bytes(CounterData::count_offset());
4767 int receiver_step = in_bytes(ReceiverTypeData::receiver_offset(1)) - base_receiver_offset;
4768 int receiver_to_count_step = in_bytes(ReceiverTypeData::receiver_count_offset(0)) - base_receiver_offset;
4769
4770 // Adjust for MDP offsets. Slots are pointer-sized, so is the global offset.
4771 assert(is_aligned(mdp_offset, BytesPerWord), "sanity");
4772 base_receiver_offset += mdp_offset;
4773 end_receiver_offset += mdp_offset;
4774 poly_count_offset += mdp_offset;
4775
4776 // Scale down to optimize encoding. Slots are pointer-sized.
4777 assert(is_aligned(base_receiver_offset, BytesPerWord), "sanity");
4778 assert(is_aligned(end_receiver_offset, BytesPerWord), "sanity");
4779 assert(is_aligned(poly_count_offset, BytesPerWord), "sanity");
4780 assert(is_aligned(receiver_step, BytesPerWord), "sanity");
4781 assert(is_aligned(receiver_to_count_step, BytesPerWord), "sanity");
4782 base_receiver_offset >>= LogBytesPerWord;
4783 end_receiver_offset >>= LogBytesPerWord;
4784 poly_count_offset >>= LogBytesPerWord;
4785 receiver_step >>= LogBytesPerWord;
4786 receiver_to_count_step >>= LogBytesPerWord;
4787
4788 #ifdef ASSERT
4789 // We are about to walk the MDO slots without asking for offsets.
4790 // Check that our math hits all the right spots.
4791 for (uint c = 0; c < ReceiverTypeData::row_limit(); c++) {
4792 int real_recv_offset = mdp_offset + in_bytes(ReceiverTypeData::receiver_offset(c));
4793 int real_count_offset = mdp_offset + in_bytes(ReceiverTypeData::receiver_count_offset(c));
4794 int offset = base_receiver_offset + receiver_step*c;
4795 int count_offset = offset + receiver_to_count_step;
4796 assert((offset << LogBytesPerWord) == real_recv_offset, "receiver slot math");
4797 assert((count_offset << LogBytesPerWord) == real_count_offset, "receiver count math");
4798 }
4799 int real_poly_count_offset = mdp_offset + in_bytes(CounterData::count_offset());
4800 assert(poly_count_offset << LogBytesPerWord == real_poly_count_offset, "poly counter math");
4801 #endif
4802
4803 // Corner case: no profile table. Increment poly counter and exit.
4804 if (ReceiverTypeData::row_limit() == 0) {
4805 addptr(Address(mdp, poly_count_offset, Address::times_ptr), DataLayout::counter_increment);
4806 return;
4807 }
4808
4809 Register offset = rscratch1;
4810
4811 Label L_loop_search_receiver, L_loop_search_empty;
4812 Label L_restart, L_found_recv, L_found_empty, L_polymorphic, L_count_update;
4813
4814 // The code here recognizes three major cases:
4815 // A. Fastest: receiver found in the table
4816 // B. Fast: no receiver in the table, and the table is full
4817 // C. Slow: no receiver in the table, free slots in the table
4818 //
4819 // The case A performance is most important, as perfectly-behaved code would end up
4820 // there, especially with larger TypeProfileWidth. The case B performance is
4821 // important as well, this is where bulk of code would land for normally megamorphic
4822 // cases. The case C performance is not essential, its job is to deal with installation
4823 // races, we optimize for code density instead. Case C needs to make sure that receiver
4824 // rows are only claimed once. This makes sure we never overwrite a row for another
4825 // receiver and never duplicate the receivers in the list, making profile type-accurate.
4826 //
4827 // It is very tempting to handle these cases in a single loop, and claim the first slot
4828 // without checking the rest of the table. But, profiling code should tolerate free slots
4829 // in the table, as class unloading can clear them. After such cleanup, the receiver
4830 // we need might be _after_ the free slot. Therefore, we need to let at least full scan
4831 // to complete, before trying to install new slots. Splitting the code in several tight
4832 // loops also helpfully optimizes for cases A and B.
4833 //
4834 // This code is effectively:
4835 //
4836 // restart:
4837 // // Fastest: receiver is already installed
4838 // for (i = 0; i < receiver_count(); i++) {
4839 // if (receiver(i) == recv) goto found_recv(i);
4840 // }
4841 //
4842 // // Fast: no receiver, but profile is full
4843 // for (i = 0; i < receiver_count(); i++) {
4844 // if (receiver(i) == null) goto found_null(i);
4845 // }
4846 // goto polymorphic
4847 //
4848 // // Slow: try to install receiver
4849 // found_null(i):
4850 // CAS(&receiver(i), null, recv);
4851 // goto restart
4852 //
4853 // polymorphic:
4854 // count++;
4855 // return
4856 //
4857 // found_recv(i):
4858 // *receiver_count(i)++
4859 //
4860
4861 bind(L_restart);
4862
4863 // Fastest: receiver is already installed
4864 movptr(offset, base_receiver_offset);
4865 bind(L_loop_search_receiver);
4866 cmpptr(recv, Address(mdp, offset, Address::times_ptr));
4867 jccb(Assembler::equal, L_found_recv);
4868 addptr(offset, receiver_step);
4869 cmpptr(offset, end_receiver_offset);
4870 jccb(Assembler::notEqual, L_loop_search_receiver);
4871
4872 // Fast: no receiver, but profile is full
4873 movptr(offset, base_receiver_offset);
4874 bind(L_loop_search_empty);
4875 cmpptr(Address(mdp, offset, Address::times_ptr), NULL_WORD);
4876 jccb(Assembler::equal, L_found_empty);
4877 addptr(offset, receiver_step);
4878 cmpptr(offset, end_receiver_offset);
4879 jccb(Assembler::notEqual, L_loop_search_empty);
4880 jmpb(L_polymorphic);
4881
4882 // Slow: try to install receiver
4883 bind(L_found_empty);
4884
4885 // Atomically swing receiver slot: null -> recv.
4886 //
4887 // The update code uses CAS, which wants RAX register specifically, *and* it needs
4888 // other important registers untouched, as they form the address. Therefore, we need
4889 // to shift any important registers from RAX into some other spare register. If we
4890 // have a spare register, we are forced to save it on stack here.
4891
4892 Register spare_reg = noreg;
4893 Register shifted_mdp = mdp;
4894 Register shifted_recv = recv;
4895 if (recv == rax || mdp == rax) {
4896 spare_reg = (recv != rbx && mdp != rbx) ? rbx :
4897 (recv != rcx && mdp != rcx) ? rcx :
4898 rdx;
4899 assert_different_registers(mdp, recv, offset, spare_reg);
4900
4901 push(spare_reg);
4902 if (recv == rax) {
4903 movptr(spare_reg, recv);
4904 shifted_recv = spare_reg;
4905 } else {
4906 assert(mdp == rax, "Remaining case");
4907 movptr(spare_reg, mdp);
4908 shifted_mdp = spare_reg;
4909 }
4910 } else {
4911 push(rax);
4912 }
4913
4914 // None of the important registers are in RAX after this shuffle.
4915 assert_different_registers(rax, shifted_mdp, shifted_recv, offset);
4916
4917 xorptr(rax, rax);
4918 cmpxchgptr(shifted_recv, Address(shifted_mdp, offset, Address::times_ptr));
4919
4920 // Unshift registers.
4921 if (recv == rax || mdp == rax) {
4922 movptr(rax, spare_reg);
4923 pop(spare_reg);
4924 } else {
4925 pop(rax);
4926 }
4927
4928 // CAS success means the slot now has the receiver we want. CAS failure means
4929 // something had claimed the slot concurrently: it can be the same receiver we want,
4930 // or something else. Since this is a slow path, we can optimize for code density,
4931 // and just restart the search from the beginning.
4932 jmpb(L_restart);
4933
4934 // Counter updates:
4935
4936 // Increment polymorphic counter instead of receiver slot.
4937 bind(L_polymorphic);
4938 movptr(offset, poly_count_offset);
4939 jmpb(L_count_update);
4940
4941 // Found a receiver, convert its slot offset to corresponding count offset.
4942 bind(L_found_recv);
4943 addptr(offset, receiver_to_count_step);
4944
4945 bind(L_count_update);
4946 addptr(Address(mdp, offset, Address::times_ptr), DataLayout::counter_increment);
4947 }
4948
4949 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
4950 if (!VerifyOops) return;
4951
4952 push(rscratch1);
4953 push(rax); // save rax,
4954 // addr may contain rsp so we will have to adjust it based on the push
4955 // we just did (and on 64 bit we do two pushes)
4956 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
4957 // stores rax into addr which is backwards of what was intended.
4958 if (addr.uses(rsp)) {
4959 lea(rax, addr);
4960 pushptr(Address(rax, 2 * BytesPerWord));
4961 } else {
4962 pushptr(addr);
4963 }
4964
4965 // Pass register number to verify_oop_subroutine
4966 const char* b = nullptr;
4967 {
4968 ResourceMark rm;
4969 stringStream ss;
4970 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
4971 b = code_string(ss.as_string());
4972 }
4973 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate());
4974 pushptr(buffer.addr(), rscratch1);
4975
4976 // call indirectly to solve generation ordering problem
4977 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4978 call(rax);
4979 // Caller pops the arguments (addr, message) and restores rax, r10.
4980 }
4981
4982 void MacroAssembler::verify_tlab() {
4983 #ifdef ASSERT
4984 if (UseTLAB && VerifyOops) {
4985 Label next, ok;
4986 Register t1 = rsi;
4987
4988 push(t1);
4989
4990 movptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
4991 cmpptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_start_offset())));
4992 jcc(Assembler::aboveEqual, next);
4993 STOP("assert(top >= start)");
4994 should_not_reach_here();
4995
4996 bind(next);
4997 movptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
4998 cmpptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
4999 jcc(Assembler::aboveEqual, ok);
5000 STOP("assert(top <= end)");
5001 should_not_reach_here();
5002
5003 bind(ok);
5004 pop(t1);
5005 }
5006 #endif
5007 }
5008
5009 class ControlWord {
5010 public:
5011 int32_t _value;
5012
5013 int rounding_control() const { return (_value >> 10) & 3 ; }
5014 int precision_control() const { return (_value >> 8) & 3 ; }
5015 bool precision() const { return ((_value >> 5) & 1) != 0; }
5016 bool underflow() const { return ((_value >> 4) & 1) != 0; }
5017 bool overflow() const { return ((_value >> 3) & 1) != 0; }
5018 bool zero_divide() const { return ((_value >> 2) & 1) != 0; }
5019 bool denormalized() const { return ((_value >> 1) & 1) != 0; }
5020 bool invalid() const { return ((_value >> 0) & 1) != 0; }
5021
5022 void print() const {
5023 // rounding control
5024 const char* rc;
5025 switch (rounding_control()) {
5026 case 0: rc = "round near"; break;
5027 case 1: rc = "round down"; break;
5028 case 2: rc = "round up "; break;
5029 case 3: rc = "chop "; break;
5030 default:
5031 rc = nullptr; // silence compiler warnings
5032 fatal("Unknown rounding control: %d", rounding_control());
5033 };
5034 // precision control
5035 const char* pc;
5036 switch (precision_control()) {
5037 case 0: pc = "24 bits "; break;
5038 case 1: pc = "reserved"; break;
5039 case 2: pc = "53 bits "; break;
5040 case 3: pc = "64 bits "; break;
5041 default:
5042 pc = nullptr; // silence compiler warnings
5043 fatal("Unknown precision control: %d", precision_control());
5044 };
5045 // flags
5046 char f[9];
5047 f[0] = ' ';
5048 f[1] = ' ';
5049 f[2] = (precision ()) ? 'P' : 'p';
5050 f[3] = (underflow ()) ? 'U' : 'u';
5051 f[4] = (overflow ()) ? 'O' : 'o';
5052 f[5] = (zero_divide ()) ? 'Z' : 'z';
5053 f[6] = (denormalized()) ? 'D' : 'd';
5054 f[7] = (invalid ()) ? 'I' : 'i';
5055 f[8] = '\x0';
5056 // output
5057 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5058 }
5059
5060 };
5061
5062 class StatusWord {
5063 public:
5064 int32_t _value;
5065
5066 bool busy() const { return ((_value >> 15) & 1) != 0; }
5067 bool C3() const { return ((_value >> 14) & 1) != 0; }
5068 bool C2() const { return ((_value >> 10) & 1) != 0; }
5069 bool C1() const { return ((_value >> 9) & 1) != 0; }
5070 bool C0() const { return ((_value >> 8) & 1) != 0; }
5071 int top() const { return (_value >> 11) & 7 ; }
5072 bool error_status() const { return ((_value >> 7) & 1) != 0; }
5073 bool stack_fault() const { return ((_value >> 6) & 1) != 0; }
5074 bool precision() const { return ((_value >> 5) & 1) != 0; }
5075 bool underflow() const { return ((_value >> 4) & 1) != 0; }
5076 bool overflow() const { return ((_value >> 3) & 1) != 0; }
5077 bool zero_divide() const { return ((_value >> 2) & 1) != 0; }
5078 bool denormalized() const { return ((_value >> 1) & 1) != 0; }
5079 bool invalid() const { return ((_value >> 0) & 1) != 0; }
5080
5081 void print() const {
5082 // condition codes
5083 char c[5];
5084 c[0] = (C3()) ? '3' : '-';
5085 c[1] = (C2()) ? '2' : '-';
5086 c[2] = (C1()) ? '1' : '-';
5087 c[3] = (C0()) ? '0' : '-';
5088 c[4] = '\x0';
5089 // flags
5090 char f[9];
5091 f[0] = (error_status()) ? 'E' : '-';
5092 f[1] = (stack_fault ()) ? 'S' : '-';
5093 f[2] = (precision ()) ? 'P' : '-';
5094 f[3] = (underflow ()) ? 'U' : '-';
5095 f[4] = (overflow ()) ? 'O' : '-';
5096 f[5] = (zero_divide ()) ? 'Z' : '-';
5097 f[6] = (denormalized()) ? 'D' : '-';
5098 f[7] = (invalid ()) ? 'I' : '-';
5099 f[8] = '\x0';
5100 // output
5101 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top());
5102 }
5103
5104 };
5105
5106 class TagWord {
5107 public:
5108 int32_t _value;
5109
5110 int tag_at(int i) const { return (_value >> (i*2)) & 3; }
5111
5112 void print() const {
5113 printf("%04x", _value & 0xFFFF);
5114 }
5115
5116 };
5117
5118 class FPU_Register {
5119 public:
5120 int32_t _m0;
5121 int32_t _m1;
5122 int16_t _ex;
5123
5124 bool is_indefinite() const {
5125 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5126 }
5127
5128 void print() const {
5129 char sign = (_ex < 0) ? '-' : '+';
5130 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " ";
5131 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind);
5132 };
5133
5134 };
5135
5136 class FPU_State {
5137 public:
5138 enum {
5139 register_size = 10,
5140 number_of_registers = 8,
5141 register_mask = 7
5142 };
5143
5144 ControlWord _control_word;
5145 StatusWord _status_word;
5146 TagWord _tag_word;
5147 int32_t _error_offset;
5148 int32_t _error_selector;
5149 int32_t _data_offset;
5150 int32_t _data_selector;
5151 int8_t _register[register_size * number_of_registers];
5152
5153 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5154 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; }
5155
5156 const char* tag_as_string(int tag) const {
5157 switch (tag) {
5158 case 0: return "valid";
5159 case 1: return "zero";
5160 case 2: return "special";
5161 case 3: return "empty";
5162 }
5163 ShouldNotReachHere();
5164 return nullptr;
5165 }
5166
5167 void print() const {
5168 // print computation registers
5169 { int t = _status_word.top();
5170 for (int i = 0; i < number_of_registers; i++) {
5171 int j = (i - t) & register_mask;
5172 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5173 st(j)->print();
5174 printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5175 }
5176 }
5177 printf("\n");
5178 // print control registers
5179 printf("ctrl = "); _control_word.print(); printf("\n");
5180 printf("stat = "); _status_word .print(); printf("\n");
5181 printf("tags = "); _tag_word .print(); printf("\n");
5182 }
5183
5184 };
5185
5186 class Flag_Register {
5187 public:
5188 int32_t _value;
5189
5190 bool overflow() const { return ((_value >> 11) & 1) != 0; }
5191 bool direction() const { return ((_value >> 10) & 1) != 0; }
5192 bool sign() const { return ((_value >> 7) & 1) != 0; }
5193 bool zero() const { return ((_value >> 6) & 1) != 0; }
5194 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; }
5195 bool parity() const { return ((_value >> 2) & 1) != 0; }
5196 bool carry() const { return ((_value >> 0) & 1) != 0; }
5197
5198 void print() const {
5199 // flags
5200 char f[8];
5201 f[0] = (overflow ()) ? 'O' : '-';
5202 f[1] = (direction ()) ? 'D' : '-';
5203 f[2] = (sign ()) ? 'S' : '-';
5204 f[3] = (zero ()) ? 'Z' : '-';
5205 f[4] = (auxiliary_carry()) ? 'A' : '-';
5206 f[5] = (parity ()) ? 'P' : '-';
5207 f[6] = (carry ()) ? 'C' : '-';
5208 f[7] = '\x0';
5209 // output
5210 printf("%08x flags = %s", _value, f);
5211 }
5212
5213 };
5214
5215 class IU_Register {
5216 public:
5217 int32_t _value;
5218
5219 void print() const {
5220 printf("%08x %11d", _value, _value);
5221 }
5222
5223 };
5224
5225 class IU_State {
5226 public:
5227 Flag_Register _eflags;
5228 IU_Register _rdi;
5229 IU_Register _rsi;
5230 IU_Register _rbp;
5231 IU_Register _rsp;
5232 IU_Register _rbx;
5233 IU_Register _rdx;
5234 IU_Register _rcx;
5235 IU_Register _rax;
5236
5237 void print() const {
5238 // computation registers
5239 printf("rax, = "); _rax.print(); printf("\n");
5240 printf("rbx, = "); _rbx.print(); printf("\n");
5241 printf("rcx = "); _rcx.print(); printf("\n");
5242 printf("rdx = "); _rdx.print(); printf("\n");
5243 printf("rdi = "); _rdi.print(); printf("\n");
5244 printf("rsi = "); _rsi.print(); printf("\n");
5245 printf("rbp, = "); _rbp.print(); printf("\n");
5246 printf("rsp = "); _rsp.print(); printf("\n");
5247 printf("\n");
5248 // control registers
5249 printf("flgs = "); _eflags.print(); printf("\n");
5250 }
5251 };
5252
5253
5254 class CPU_State {
5255 public:
5256 FPU_State _fpu_state;
5257 IU_State _iu_state;
5258
5259 void print() const {
5260 printf("--------------------------------------------------\n");
5261 _iu_state .print();
5262 printf("\n");
5263 _fpu_state.print();
5264 printf("--------------------------------------------------\n");
5265 }
5266
5267 };
5268
5269
5270 static void _print_CPU_state(CPU_State* state) {
5271 state->print();
5272 };
5273
5274
5275 void MacroAssembler::print_CPU_state() {
5276 push_CPU_state();
5277 push(rsp); // pass CPU state
5278 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5279 addptr(rsp, wordSize); // discard argument
5280 pop_CPU_state();
5281 }
5282
5283 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) {
5284 // Either restore the MXCSR register after returning from the JNI Call
5285 // or verify that it wasn't changed (with -Xcheck:jni flag).
5286 if (VM_Version::supports_sse()) {
5287 if (RestoreMXCSROnJNICalls) {
5288 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch);
5289 } else if (CheckJNICalls) {
5290 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5291 }
5292 }
5293 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5294 vzeroupper();
5295 }
5296
5297 // ((OopHandle)result).resolve();
5298 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
5299 assert_different_registers(result, tmp);
5300
5301 // Only 64 bit platforms support GCs that require a tmp register
5302 // Only IN_HEAP loads require a thread_tmp register
5303 // OopHandle::resolve is an indirection like jobject.
5304 access_load_at(T_OBJECT, IN_NATIVE,
5305 result, Address(result, 0), tmp);
5306 }
5307
5308 // ((WeakHandle)result).resolve();
5309 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) {
5310 assert_different_registers(rresult, rtmp);
5311 Label resolved;
5312
5313 // A null weak handle resolves to null.
5314 cmpptr(rresult, 0);
5315 jcc(Assembler::equal, resolved);
5316
5317 // Only 64 bit platforms support GCs that require a tmp register
5318 // Only IN_HEAP loads require a thread_tmp register
5319 // WeakHandle::resolve is an indirection like jweak.
5320 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
5321 rresult, Address(rresult, 0), rtmp);
5322 bind(resolved);
5323 }
5324
5325 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
5326 // get mirror
5327 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
5328 load_method_holder(mirror, method);
5329 movptr(mirror, Address(mirror, mirror_offset));
5330 resolve_oop_handle(mirror, tmp);
5331 }
5332
5333 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
5334 load_method_holder(rresult, rmethod);
5335 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
5336 }
5337
5338 void MacroAssembler::load_method_holder(Register holder, Register method) {
5339 movptr(holder, Address(method, Method::const_offset())); // ConstMethod*
5340 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool*
5341 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass*
5342 }
5343
5344 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) {
5345 assert(UseCompactObjectHeaders, "expect compact object headers");
5346 movq(dst, Address(src, oopDesc::mark_offset_in_bytes()));
5347 shrq(dst, markWord::klass_shift);
5348 }
5349
5350 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) {
5351 assert_different_registers(src, tmp);
5352 assert_different_registers(dst, tmp);
5353
5354 if (UseCompactObjectHeaders) {
5355 load_narrow_klass_compact(dst, src);
5356 decode_klass_not_null(dst, tmp);
5357 } else if (UseCompressedClassPointers) {
5358 movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5359 decode_klass_not_null(dst, tmp);
5360 } else {
5361 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5362 }
5363 }
5364
5365 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) {
5366 assert(!UseCompactObjectHeaders, "not with compact headers");
5367 assert_different_registers(src, tmp);
5368 assert_different_registers(dst, tmp);
5369 if (UseCompressedClassPointers) {
5370 encode_klass_not_null(src, tmp);
5371 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5372 } else {
5373 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5374 }
5375 }
5376
5377 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) {
5378 if (UseCompactObjectHeaders) {
5379 assert(tmp != noreg, "need tmp");
5380 assert_different_registers(klass, obj, tmp);
5381 load_narrow_klass_compact(tmp, obj);
5382 cmpl(klass, tmp);
5383 } else if (UseCompressedClassPointers) {
5384 cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes()));
5385 } else {
5386 cmpptr(klass, Address(obj, oopDesc::klass_offset_in_bytes()));
5387 }
5388 }
5389
5390 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) {
5391 if (UseCompactObjectHeaders) {
5392 assert(tmp2 != noreg, "need tmp2");
5393 assert_different_registers(obj1, obj2, tmp1, tmp2);
5394 load_narrow_klass_compact(tmp1, obj1);
5395 load_narrow_klass_compact(tmp2, obj2);
5396 cmpl(tmp1, tmp2);
5397 } else if (UseCompressedClassPointers) {
5398 movl(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes()));
5399 cmpl(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes()));
5400 } else {
5401 movptr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes()));
5402 cmpptr(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes()));
5403 }
5404 }
5405
5406 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
5407 Register tmp1) {
5408 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5409 decorators = AccessInternal::decorator_fixup(decorators, type);
5410 bool as_raw = (decorators & AS_RAW) != 0;
5411 if (as_raw) {
5412 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1);
5413 } else {
5414 bs->load_at(this, decorators, type, dst, src, tmp1);
5415 }
5416 }
5417
5418 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
5419 Register tmp1, Register tmp2, Register tmp3) {
5420 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5421 decorators = AccessInternal::decorator_fixup(decorators, type);
5422 bool as_raw = (decorators & AS_RAW) != 0;
5423 if (as_raw) {
5424 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5425 } else {
5426 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5427 }
5428 }
5429
5430 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, DecoratorSet decorators) {
5431 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1);
5432 }
5433
5434 // Doesn't do verification, generates fixed size code
5435 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, DecoratorSet decorators) {
5436 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1);
5437 }
5438
5439 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
5440 Register tmp2, Register tmp3, DecoratorSet decorators) {
5441 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
5442 }
5443
5444 // Used for storing nulls.
5445 void MacroAssembler::store_heap_oop_null(Address dst) {
5446 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
5447 }
5448
5449 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5450 assert(!UseCompactObjectHeaders, "Don't use with compact headers");
5451 if (UseCompressedClassPointers) {
5452 // Store to klass gap in destination
5453 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5454 }
5455 }
5456
5457 #ifdef ASSERT
5458 void MacroAssembler::verify_heapbase(const char* msg) {
5459 assert (UseCompressedOops, "should be compressed");
5460 assert (Universe::heap() != nullptr, "java heap should be initialized");
5461 if (CheckCompressedOops) {
5462 Label ok;
5463 ExternalAddress src2(CompressedOops::base_addr());
5464 const bool is_src2_reachable = reachable(src2);
5465 if (!is_src2_reachable) {
5466 push(rscratch1); // cmpptr trashes rscratch1
5467 }
5468 cmpptr(r12_heapbase, src2, rscratch1);
5469 jcc(Assembler::equal, ok);
5470 STOP(msg);
5471 bind(ok);
5472 if (!is_src2_reachable) {
5473 pop(rscratch1);
5474 }
5475 }
5476 }
5477 #endif
5478
5479 // Algorithm must match oop.inline.hpp encode_heap_oop.
5480 void MacroAssembler::encode_heap_oop(Register r) {
5481 #ifdef ASSERT
5482 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5483 #endif
5484 verify_oop_msg(r, "broken oop in encode_heap_oop");
5485 if (CompressedOops::base() == nullptr) {
5486 if (CompressedOops::shift() != 0) {
5487 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5488 shrq(r, LogMinObjAlignmentInBytes);
5489 }
5490 return;
5491 }
5492 testq(r, r);
5493 cmovq(Assembler::equal, r, r12_heapbase);
5494 subq(r, r12_heapbase);
5495 shrq(r, LogMinObjAlignmentInBytes);
5496 }
5497
5498 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5499 #ifdef ASSERT
5500 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5501 if (CheckCompressedOops) {
5502 Label ok;
5503 testq(r, r);
5504 jcc(Assembler::notEqual, ok);
5505 STOP("null oop passed to encode_heap_oop_not_null");
5506 bind(ok);
5507 }
5508 #endif
5509 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null");
5510 if (CompressedOops::base() != nullptr) {
5511 subq(r, r12_heapbase);
5512 }
5513 if (CompressedOops::shift() != 0) {
5514 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5515 shrq(r, LogMinObjAlignmentInBytes);
5516 }
5517 }
5518
5519 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5520 #ifdef ASSERT
5521 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5522 if (CheckCompressedOops) {
5523 Label ok;
5524 testq(src, src);
5525 jcc(Assembler::notEqual, ok);
5526 STOP("null oop passed to encode_heap_oop_not_null2");
5527 bind(ok);
5528 }
5529 #endif
5530 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2");
5531 if (dst != src) {
5532 movq(dst, src);
5533 }
5534 if (CompressedOops::base() != nullptr) {
5535 subq(dst, r12_heapbase);
5536 }
5537 if (CompressedOops::shift() != 0) {
5538 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5539 shrq(dst, LogMinObjAlignmentInBytes);
5540 }
5541 }
5542
5543 void MacroAssembler::decode_heap_oop(Register r) {
5544 #ifdef ASSERT
5545 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5546 #endif
5547 if (CompressedOops::base() == nullptr) {
5548 if (CompressedOops::shift() != 0) {
5549 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5550 shlq(r, LogMinObjAlignmentInBytes);
5551 }
5552 } else {
5553 Label done;
5554 shlq(r, LogMinObjAlignmentInBytes);
5555 jccb(Assembler::equal, done);
5556 addq(r, r12_heapbase);
5557 bind(done);
5558 }
5559 verify_oop_msg(r, "broken oop in decode_heap_oop");
5560 }
5561
5562 void MacroAssembler::decode_heap_oop_not_null(Register r) {
5563 // Note: it will change flags
5564 assert (UseCompressedOops, "should only be used for compressed headers");
5565 assert (Universe::heap() != nullptr, "java heap should be initialized");
5566 // Cannot assert, unverified entry point counts instructions (see .ad file)
5567 // vtableStubs also counts instructions in pd_code_size_limit.
5568 // Also do not verify_oop as this is called by verify_oop.
5569 if (CompressedOops::shift() != 0) {
5570 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5571 shlq(r, LogMinObjAlignmentInBytes);
5572 if (CompressedOops::base() != nullptr) {
5573 addq(r, r12_heapbase);
5574 }
5575 } else {
5576 assert (CompressedOops::base() == nullptr, "sanity");
5577 }
5578 }
5579
5580 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5581 // Note: it will change flags
5582 assert (UseCompressedOops, "should only be used for compressed headers");
5583 assert (Universe::heap() != nullptr, "java heap should be initialized");
5584 // Cannot assert, unverified entry point counts instructions (see .ad file)
5585 // vtableStubs also counts instructions in pd_code_size_limit.
5586 // Also do not verify_oop as this is called by verify_oop.
5587 if (CompressedOops::shift() != 0) {
5588 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5589 if (LogMinObjAlignmentInBytes == Address::times_8) {
5590 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5591 } else {
5592 if (dst != src) {
5593 movq(dst, src);
5594 }
5595 shlq(dst, LogMinObjAlignmentInBytes);
5596 if (CompressedOops::base() != nullptr) {
5597 addq(dst, r12_heapbase);
5598 }
5599 }
5600 } else {
5601 assert (CompressedOops::base() == nullptr, "sanity");
5602 if (dst != src) {
5603 movq(dst, src);
5604 }
5605 }
5606 }
5607
5608 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) {
5609 BLOCK_COMMENT("encode_klass_not_null {");
5610 assert_different_registers(r, tmp);
5611 if (CompressedKlassPointers::base() != nullptr) {
5612 if (AOTCodeCache::is_on_for_dump()) {
5613 movptr(tmp, ExternalAddress(CompressedKlassPointers::base_addr()));
5614 } else {
5615 movptr(tmp, (intptr_t)CompressedKlassPointers::base());
5616 }
5617 subq(r, tmp);
5618 }
5619 if (CompressedKlassPointers::shift() != 0) {
5620 shrq(r, CompressedKlassPointers::shift());
5621 }
5622 BLOCK_COMMENT("} encode_klass_not_null");
5623 }
5624
5625 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) {
5626 BLOCK_COMMENT("encode_and_move_klass_not_null {");
5627 assert_different_registers(src, dst);
5628 if (CompressedKlassPointers::base() != nullptr) {
5629 if (AOTCodeCache::is_on_for_dump()) {
5630 movptr(dst, ExternalAddress(CompressedKlassPointers::base_addr()));
5631 negq(dst);
5632 } else {
5633 movptr(dst, -(intptr_t)CompressedKlassPointers::base());
5634 }
5635 addq(dst, src);
5636 } else {
5637 movptr(dst, src);
5638 }
5639 if (CompressedKlassPointers::shift() != 0) {
5640 shrq(dst, CompressedKlassPointers::shift());
5641 }
5642 BLOCK_COMMENT("} encode_and_move_klass_not_null");
5643 }
5644
5645 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) {
5646 BLOCK_COMMENT("decode_klass_not_null {");
5647 assert_different_registers(r, tmp);
5648 // Note: it will change flags
5649 assert(UseCompressedClassPointers, "should only be used for compressed headers");
5650 // Cannot assert, unverified entry point counts instructions (see .ad file)
5651 // vtableStubs also counts instructions in pd_code_size_limit.
5652 // Also do not verify_oop as this is called by verify_oop.
5653 if (CompressedKlassPointers::shift() != 0) {
5654 shlq(r, CompressedKlassPointers::shift());
5655 }
5656 if (CompressedKlassPointers::base() != nullptr) {
5657 if (AOTCodeCache::is_on_for_dump()) {
5658 movptr(tmp, ExternalAddress(CompressedKlassPointers::base_addr()));
5659 } else {
5660 movptr(tmp, (intptr_t)CompressedKlassPointers::base());
5661 }
5662 addq(r, tmp);
5663 }
5664 BLOCK_COMMENT("} decode_klass_not_null");
5665 }
5666
5667 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) {
5668 BLOCK_COMMENT("decode_and_move_klass_not_null {");
5669 assert_different_registers(src, dst);
5670 // Note: it will change flags
5671 assert (UseCompressedClassPointers, "should only be used for compressed headers");
5672 // Cannot assert, unverified entry point counts instructions (see .ad file)
5673 // vtableStubs also counts instructions in pd_code_size_limit.
5674 // Also do not verify_oop as this is called by verify_oop.
5675
5676 if (CompressedKlassPointers::base() == nullptr &&
5677 CompressedKlassPointers::shift() == 0) {
5678 // The best case scenario is that there is no base or shift. Then it is already
5679 // a pointer that needs nothing but a register rename.
5680 movptr(dst, src);
5681 } else {
5682 if (CompressedKlassPointers::shift() <= Address::times_8) {
5683 if (CompressedKlassPointers::base() != nullptr) {
5684 if (AOTCodeCache::is_on_for_dump()) {
5685 movptr(dst, ExternalAddress(CompressedKlassPointers::base_addr()));
5686 } else {
5687 movptr(dst, (intptr_t)CompressedKlassPointers::base());
5688 }
5689 } else {
5690 xorq(dst, dst);
5691 }
5692 if (CompressedKlassPointers::shift() != 0) {
5693 assert(CompressedKlassPointers::shift() == Address::times_8, "klass not aligned on 64bits?");
5694 leaq(dst, Address(dst, src, Address::times_8, 0));
5695 } else {
5696 addq(dst, src);
5697 }
5698 } else {
5699 if (CompressedKlassPointers::base() != nullptr) {
5700 if (AOTCodeCache::is_on_for_dump()) {
5701 movptr(dst, ExternalAddress(CompressedKlassPointers::base_addr()));
5702 shrq(dst, CompressedKlassPointers::shift());
5703 } else {
5704 const intptr_t base_right_shifted =
5705 (intptr_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift();
5706 movptr(dst, base_right_shifted);
5707 }
5708 } else {
5709 xorq(dst, dst);
5710 }
5711 addq(dst, src);
5712 shlq(dst, CompressedKlassPointers::shift());
5713 }
5714 }
5715 BLOCK_COMMENT("} decode_and_move_klass_not_null");
5716 }
5717
5718 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5719 assert (UseCompressedOops, "should only be used for compressed headers");
5720 assert (Universe::heap() != nullptr, "java heap should be initialized");
5721 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5722 int oop_index = oop_recorder()->find_index(obj);
5723 RelocationHolder rspec = oop_Relocation::spec(oop_index);
5724 mov_narrow_oop(dst, oop_index, rspec);
5725 }
5726
5727 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
5728 assert (UseCompressedOops, "should only be used for compressed headers");
5729 assert (Universe::heap() != nullptr, "java heap should be initialized");
5730 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5731 int oop_index = oop_recorder()->find_index(obj);
5732 RelocationHolder rspec = oop_Relocation::spec(oop_index);
5733 mov_narrow_oop(dst, oop_index, rspec);
5734 }
5735
5736 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5737 assert (UseCompressedClassPointers, "should only be used for compressed headers");
5738 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5739 int klass_index = oop_recorder()->find_index(k);
5740 RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5741 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5742 }
5743
5744 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
5745 assert (UseCompressedClassPointers, "should only be used for compressed headers");
5746 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5747 int klass_index = oop_recorder()->find_index(k);
5748 RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5749 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5750 }
5751
5752 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
5753 assert (UseCompressedOops, "should only be used for compressed headers");
5754 assert (Universe::heap() != nullptr, "java heap should be initialized");
5755 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5756 int oop_index = oop_recorder()->find_index(obj);
5757 RelocationHolder rspec = oop_Relocation::spec(oop_index);
5758 Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5759 }
5760
5761 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
5762 assert (UseCompressedOops, "should only be used for compressed headers");
5763 assert (Universe::heap() != nullptr, "java heap should be initialized");
5764 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5765 int oop_index = oop_recorder()->find_index(obj);
5766 RelocationHolder rspec = oop_Relocation::spec(oop_index);
5767 Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5768 }
5769
5770 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
5771 assert (UseCompressedClassPointers, "should only be used for compressed headers");
5772 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5773 int klass_index = oop_recorder()->find_index(k);
5774 RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5775 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5776 }
5777
5778 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
5779 assert (UseCompressedClassPointers, "should only be used for compressed headers");
5780 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5781 int klass_index = oop_recorder()->find_index(k);
5782 RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5783 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5784 }
5785
5786 void MacroAssembler::reinit_heapbase() {
5787 if (UseCompressedOops) {
5788 if (Universe::heap() != nullptr) { // GC was initialized
5789 if (CompressedOops::base() == nullptr) {
5790 MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
5791 } else if (AOTCodeCache::is_on_for_dump()) {
5792 movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr()));
5793 } else {
5794 mov64(r12_heapbase, (int64_t)CompressedOops::base());
5795 }
5796 } else {
5797 movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr()));
5798 }
5799 }
5800 }
5801
5802 #if COMPILER2_OR_JVMCI
5803
5804 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers
5805 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
5806 // cnt - number of qwords (8-byte words).
5807 // base - start address, qword aligned.
5808 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
5809 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0);
5810 if (use64byteVector) {
5811 vpxor(xtmp, xtmp, xtmp, AVX_512bit);
5812 } else if (MaxVectorSize >= 32) {
5813 vpxor(xtmp, xtmp, xtmp, AVX_256bit);
5814 } else {
5815 pxor(xtmp, xtmp);
5816 }
5817 jmp(L_zero_64_bytes);
5818
5819 BIND(L_loop);
5820 if (MaxVectorSize >= 32) {
5821 fill64(base, 0, xtmp, use64byteVector);
5822 } else {
5823 movdqu(Address(base, 0), xtmp);
5824 movdqu(Address(base, 16), xtmp);
5825 movdqu(Address(base, 32), xtmp);
5826 movdqu(Address(base, 48), xtmp);
5827 }
5828 addptr(base, 64);
5829
5830 BIND(L_zero_64_bytes);
5831 subptr(cnt, 8);
5832 jccb(Assembler::greaterEqual, L_loop);
5833
5834 // Copy trailing 64 bytes
5835 if (use64byteVector) {
5836 addptr(cnt, 8);
5837 jccb(Assembler::equal, L_end);
5838 fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true);
5839 jmp(L_end);
5840 } else {
5841 addptr(cnt, 4);
5842 jccb(Assembler::less, L_tail);
5843 if (MaxVectorSize >= 32) {
5844 vmovdqu(Address(base, 0), xtmp);
5845 } else {
5846 movdqu(Address(base, 0), xtmp);
5847 movdqu(Address(base, 16), xtmp);
5848 }
5849 }
5850 addptr(base, 32);
5851 subptr(cnt, 4);
5852
5853 BIND(L_tail);
5854 addptr(cnt, 4);
5855 jccb(Assembler::lessEqual, L_end);
5856 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) {
5857 fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp);
5858 } else {
5859 decrement(cnt);
5860
5861 BIND(L_sloop);
5862 movq(Address(base, 0), xtmp);
5863 addptr(base, 8);
5864 decrement(cnt);
5865 jccb(Assembler::greaterEqual, L_sloop);
5866 }
5867 BIND(L_end);
5868 }
5869
5870 // Clearing constant sized memory using YMM/ZMM registers.
5871 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
5872 assert(UseAVX > 2 && VM_Version::supports_avx512vl(), "");
5873 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0);
5874
5875 int vector64_count = (cnt & (~0x7)) >> 3;
5876 cnt = cnt & 0x7;
5877 const int fill64_per_loop = 4;
5878 const int max_unrolled_fill64 = 8;
5879
5880 // 64 byte initialization loop.
5881 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit);
5882 int start64 = 0;
5883 if (vector64_count > max_unrolled_fill64) {
5884 Label LOOP;
5885 Register index = rtmp;
5886
5887 start64 = vector64_count - (vector64_count % fill64_per_loop);
5888
5889 movl(index, 0);
5890 BIND(LOOP);
5891 for (int i = 0; i < fill64_per_loop; i++) {
5892 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector);
5893 }
5894 addl(index, fill64_per_loop * 64);
5895 cmpl(index, start64 * 64);
5896 jccb(Assembler::less, LOOP);
5897 }
5898 for (int i = start64; i < vector64_count; i++) {
5899 fill64(base, i * 64, xtmp, use64byteVector);
5900 }
5901
5902 // Clear remaining 64 byte tail.
5903 int disp = vector64_count * 64;
5904 if (cnt) {
5905 switch (cnt) {
5906 case 1:
5907 movq(Address(base, disp), xtmp);
5908 break;
5909 case 2:
5910 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit);
5911 break;
5912 case 3:
5913 movl(rtmp, 0x7);
5914 kmovwl(mask, rtmp);
5915 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit);
5916 break;
5917 case 4:
5918 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
5919 break;
5920 case 5:
5921 if (use64byteVector) {
5922 movl(rtmp, 0x1F);
5923 kmovwl(mask, rtmp);
5924 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
5925 } else {
5926 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
5927 movq(Address(base, disp + 32), xtmp);
5928 }
5929 break;
5930 case 6:
5931 if (use64byteVector) {
5932 movl(rtmp, 0x3F);
5933 kmovwl(mask, rtmp);
5934 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
5935 } else {
5936 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
5937 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit);
5938 }
5939 break;
5940 case 7:
5941 if (use64byteVector) {
5942 movl(rtmp, 0x7F);
5943 kmovwl(mask, rtmp);
5944 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
5945 } else {
5946 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
5947 movl(rtmp, 0x7);
5948 kmovwl(mask, rtmp);
5949 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit);
5950 }
5951 break;
5952 default:
5953 fatal("Unexpected length : %d\n",cnt);
5954 break;
5955 }
5956 }
5957 }
5958
5959 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp,
5960 bool is_large, KRegister mask) {
5961 // cnt - number of qwords (8-byte words).
5962 // base - start address, qword aligned.
5963 // is_large - if optimizers know cnt is larger than InitArrayShortSize
5964 assert(base==rdi, "base register must be edi for rep stos");
5965 assert(tmp==rax, "tmp register must be eax for rep stos");
5966 assert(cnt==rcx, "cnt register must be ecx for rep stos");
5967 assert(InitArrayShortSize % BytesPerLong == 0,
5968 "InitArrayShortSize should be the multiple of BytesPerLong");
5969
5970 Label DONE;
5971 if (!is_large || !UseXMMForObjInit) {
5972 xorptr(tmp, tmp);
5973 }
5974
5975 if (!is_large) {
5976 Label LOOP, LONG;
5977 cmpptr(cnt, InitArrayShortSize/BytesPerLong);
5978 jccb(Assembler::greater, LONG);
5979
5980 decrement(cnt);
5981 jccb(Assembler::negative, DONE); // Zero length
5982
5983 // Use individual pointer-sized stores for small counts:
5984 BIND(LOOP);
5985 movptr(Address(base, cnt, Address::times_ptr), tmp);
5986 decrement(cnt);
5987 jccb(Assembler::greaterEqual, LOOP);
5988 jmpb(DONE);
5989
5990 BIND(LONG);
5991 }
5992
5993 // Use longer rep-prefixed ops for non-small counts:
5994 if (UseFastStosb) {
5995 shlptr(cnt, 3); // convert to number of bytes
5996 rep_stosb();
5997 } else if (UseXMMForObjInit) {
5998 xmm_clear_mem(base, cnt, tmp, xtmp, mask);
5999 } else {
6000 rep_stos();
6001 }
6002
6003 BIND(DONE);
6004 }
6005
6006 #endif //COMPILER2_OR_JVMCI
6007
6008
6009 void MacroAssembler::generate_fill(BasicType t, bool aligned,
6010 Register to, Register value, Register count,
6011 Register rtmp, XMMRegister xtmp) {
6012 ShortBranchVerifier sbv(this);
6013 assert_different_registers(to, value, count, rtmp);
6014 Label L_exit;
6015 Label L_fill_2_bytes, L_fill_4_bytes;
6016
6017 #if defined(COMPILER2)
6018 if(MaxVectorSize >=32 &&
6019 VM_Version::supports_avx512vlbw() &&
6020 VM_Version::supports_bmi2()) {
6021 generate_fill_avx3(t, to, value, count, rtmp, xtmp);
6022 return;
6023 }
6024 #endif
6025
6026 int shift = -1;
6027 switch (t) {
6028 case T_BYTE:
6029 shift = 2;
6030 break;
6031 case T_SHORT:
6032 shift = 1;
6033 break;
6034 case T_INT:
6035 shift = 0;
6036 break;
6037 default: ShouldNotReachHere();
6038 }
6039
6040 if (t == T_BYTE) {
6041 andl(value, 0xff);
6042 movl(rtmp, value);
6043 shll(rtmp, 8);
6044 orl(value, rtmp);
6045 }
6046 if (t == T_SHORT) {
6047 andl(value, 0xffff);
6048 }
6049 if (t == T_BYTE || t == T_SHORT) {
6050 movl(rtmp, value);
6051 shll(rtmp, 16);
6052 orl(value, rtmp);
6053 }
6054
6055 cmpptr(count, 8 << shift); // Short arrays (< 32 bytes) fill by element
6056 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
6057 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
6058 Label L_skip_align2;
6059 // align source address at 4 bytes address boundary
6060 if (t == T_BYTE) {
6061 Label L_skip_align1;
6062 // One byte misalignment happens only for byte arrays
6063 testptr(to, 1);
6064 jccb(Assembler::zero, L_skip_align1);
6065 movb(Address(to, 0), value);
6066 increment(to);
6067 decrement(count);
6068 BIND(L_skip_align1);
6069 }
6070 // Two bytes misalignment happens only for byte and short (char) arrays
6071 testptr(to, 2);
6072 jccb(Assembler::zero, L_skip_align2);
6073 movw(Address(to, 0), value);
6074 addptr(to, 2);
6075 subptr(count, 1<<(shift-1));
6076 BIND(L_skip_align2);
6077 }
6078 {
6079 Label L_fill_32_bytes;
6080 if (!UseUnalignedLoadStores) {
6081 // align to 8 bytes, we know we are 4 byte aligned to start
6082 testptr(to, 4);
6083 jccb(Assembler::zero, L_fill_32_bytes);
6084 movl(Address(to, 0), value);
6085 addptr(to, 4);
6086 subptr(count, 1<<shift);
6087 }
6088 BIND(L_fill_32_bytes);
6089 {
6090 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
6091 movdl(xtmp, value);
6092 if (UseAVX >= 2 && UseUnalignedLoadStores) {
6093 Label L_check_fill_32_bytes;
6094 if (UseAVX > 2) {
6095 // Fill 64-byte chunks
6096 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2;
6097
6098 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2
6099 cmpptr(count, VM_Version::avx3_threshold());
6100 jccb(Assembler::below, L_check_fill_64_bytes_avx2);
6101
6102 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
6103
6104 subptr(count, 16 << shift);
6105 jcc(Assembler::less, L_check_fill_32_bytes);
6106 align(16);
6107
6108 BIND(L_fill_64_bytes_loop_avx3);
6109 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
6110 addptr(to, 64);
6111 subptr(count, 16 << shift);
6112 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3);
6113 jmpb(L_check_fill_32_bytes);
6114
6115 BIND(L_check_fill_64_bytes_avx2);
6116 }
6117 // Fill 64-byte chunks
6118 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
6119
6120 subptr(count, 16 << shift);
6121 jcc(Assembler::less, L_check_fill_32_bytes);
6122
6123 // align data for 64-byte chunks
6124 Label L_fill_64_bytes_loop, L_align_64_bytes_loop;
6125 if (EnableX86ECoreOpts) {
6126 // align 'big' arrays to cache lines to minimize split_stores
6127 cmpptr(count, 96 << shift);
6128 jcc(Assembler::below, L_fill_64_bytes_loop);
6129
6130 // Find the bytes needed for alignment
6131 movptr(rtmp, to);
6132 andptr(rtmp, 0x1c);
6133 jcc(Assembler::zero, L_fill_64_bytes_loop);
6134 negptr(rtmp); // number of bytes to fill 32-rtmp. it filled by 2 mov by 32
6135 addptr(rtmp, 32);
6136 shrptr(rtmp, 2 - shift);// get number of elements from bytes
6137 subptr(count, rtmp); // adjust count by number of elements
6138
6139 align(16);
6140 BIND(L_align_64_bytes_loop);
6141 movdl(Address(to, 0), xtmp);
6142 addptr(to, 4);
6143 subptr(rtmp, 1 << shift);
6144 jcc(Assembler::greater, L_align_64_bytes_loop);
6145 }
6146
6147 align(16);
6148 BIND(L_fill_64_bytes_loop);
6149 vmovdqu(Address(to, 0), xtmp);
6150 vmovdqu(Address(to, 32), xtmp);
6151 addptr(to, 64);
6152 subptr(count, 16 << shift);
6153 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
6154
6155 align(16);
6156 BIND(L_check_fill_32_bytes);
6157 addptr(count, 8 << shift);
6158 jccb(Assembler::less, L_check_fill_8_bytes);
6159 vmovdqu(Address(to, 0), xtmp);
6160 addptr(to, 32);
6161 subptr(count, 8 << shift);
6162
6163 BIND(L_check_fill_8_bytes);
6164 // clean upper bits of YMM registers
6165 movdl(xtmp, value);
6166 pshufd(xtmp, xtmp, 0);
6167 } else {
6168 // Fill 32-byte chunks
6169 pshufd(xtmp, xtmp, 0);
6170
6171 subptr(count, 8 << shift);
6172 jcc(Assembler::less, L_check_fill_8_bytes);
6173 align(16);
6174
6175 BIND(L_fill_32_bytes_loop);
6176
6177 if (UseUnalignedLoadStores) {
6178 movdqu(Address(to, 0), xtmp);
6179 movdqu(Address(to, 16), xtmp);
6180 } else {
6181 movq(Address(to, 0), xtmp);
6182 movq(Address(to, 8), xtmp);
6183 movq(Address(to, 16), xtmp);
6184 movq(Address(to, 24), xtmp);
6185 }
6186
6187 addptr(to, 32);
6188 subptr(count, 8 << shift);
6189 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
6190
6191 BIND(L_check_fill_8_bytes);
6192 }
6193 addptr(count, 8 << shift);
6194 jccb(Assembler::zero, L_exit);
6195 jmpb(L_fill_8_bytes);
6196
6197 //
6198 // length is too short, just fill qwords
6199 //
6200 align(16);
6201 BIND(L_fill_8_bytes_loop);
6202 movq(Address(to, 0), xtmp);
6203 addptr(to, 8);
6204 BIND(L_fill_8_bytes);
6205 subptr(count, 1 << (shift + 1));
6206 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
6207 }
6208 }
6209
6210 Label L_fill_4_bytes_loop;
6211 testl(count, 1 << shift);
6212 jccb(Assembler::zero, L_fill_2_bytes);
6213
6214 align(16);
6215 BIND(L_fill_4_bytes_loop);
6216 movl(Address(to, 0), value);
6217 addptr(to, 4);
6218
6219 BIND(L_fill_4_bytes);
6220 subptr(count, 1 << shift);
6221 jccb(Assembler::greaterEqual, L_fill_4_bytes_loop);
6222
6223 if (t == T_BYTE || t == T_SHORT) {
6224 Label L_fill_byte;
6225 BIND(L_fill_2_bytes);
6226 // fill trailing 2 bytes
6227 testl(count, 1<<(shift-1));
6228 jccb(Assembler::zero, L_fill_byte);
6229 movw(Address(to, 0), value);
6230 if (t == T_BYTE) {
6231 addptr(to, 2);
6232 BIND(L_fill_byte);
6233 // fill trailing byte
6234 testl(count, 1);
6235 jccb(Assembler::zero, L_exit);
6236 movb(Address(to, 0), value);
6237 } else {
6238 BIND(L_fill_byte);
6239 }
6240 } else {
6241 BIND(L_fill_2_bytes);
6242 }
6243 BIND(L_exit);
6244 }
6245
6246 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) {
6247 switch(type) {
6248 case T_BYTE:
6249 case T_BOOLEAN:
6250 evpbroadcastb(dst, src, vector_len);
6251 break;
6252 case T_SHORT:
6253 case T_CHAR:
6254 evpbroadcastw(dst, src, vector_len);
6255 break;
6256 case T_INT:
6257 case T_FLOAT:
6258 evpbroadcastd(dst, src, vector_len);
6259 break;
6260 case T_LONG:
6261 case T_DOUBLE:
6262 evpbroadcastq(dst, src, vector_len);
6263 break;
6264 default:
6265 fatal("Unhandled type : %s", type2name(type));
6266 break;
6267 }
6268 }
6269
6270 // encode char[] to byte[] in ISO_8859_1 or ASCII
6271 //@IntrinsicCandidate
6272 //private static int implEncodeISOArray(byte[] sa, int sp,
6273 //byte[] da, int dp, int len) {
6274 // int i = 0;
6275 // for (; i < len; i++) {
6276 // char c = StringUTF16.getChar(sa, sp++);
6277 // if (c > '\u00FF')
6278 // break;
6279 // da[dp++] = (byte)c;
6280 // }
6281 // return i;
6282 //}
6283 //
6284 //@IntrinsicCandidate
6285 //private static int implEncodeAsciiArray(char[] sa, int sp,
6286 // byte[] da, int dp, int len) {
6287 // int i = 0;
6288 // for (; i < len; i++) {
6289 // char c = sa[sp++];
6290 // if (c >= '\u0080')
6291 // break;
6292 // da[dp++] = (byte)c;
6293 // }
6294 // return i;
6295 //}
6296 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
6297 XMMRegister tmp1Reg, XMMRegister tmp2Reg,
6298 XMMRegister tmp3Reg, XMMRegister tmp4Reg,
6299 Register tmp5, Register result, bool ascii) {
6300
6301 // rsi: src
6302 // rdi: dst
6303 // rdx: len
6304 // rcx: tmp5
6305 // rax: result
6306 ShortBranchVerifier sbv(this);
6307 assert_different_registers(src, dst, len, tmp5, result);
6308 Label L_done, L_copy_1_char, L_copy_1_char_exit;
6309
6310 int mask = ascii ? 0xff80ff80 : 0xff00ff00;
6311 int short_mask = ascii ? 0xff80 : 0xff00;
6312
6313 // set result
6314 xorl(result, result);
6315 // check for zero length
6316 testl(len, len);
6317 jcc(Assembler::zero, L_done);
6318
6319 movl(result, len);
6320
6321 // Setup pointers
6322 lea(src, Address(src, len, Address::times_2)); // char[]
6323 lea(dst, Address(dst, len, Address::times_1)); // byte[]
6324 negptr(len);
6325
6326 if (UseSSE42Intrinsics || UseAVX >= 2) {
6327 Label L_copy_8_chars, L_copy_8_chars_exit;
6328 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
6329
6330 if (UseAVX >= 2) {
6331 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
6332 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector
6333 movdl(tmp1Reg, tmp5);
6334 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
6335 jmp(L_chars_32_check);
6336
6337 bind(L_copy_32_chars);
6338 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
6339 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
6340 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
6341 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector
6342 jccb(Assembler::notZero, L_copy_32_chars_exit);
6343 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
6344 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
6345 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
6346
6347 bind(L_chars_32_check);
6348 addptr(len, 32);
6349 jcc(Assembler::lessEqual, L_copy_32_chars);
6350
6351 bind(L_copy_32_chars_exit);
6352 subptr(len, 16);
6353 jccb(Assembler::greater, L_copy_16_chars_exit);
6354
6355 } else if (UseSSE42Intrinsics) {
6356 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector
6357 movdl(tmp1Reg, tmp5);
6358 pshufd(tmp1Reg, tmp1Reg, 0);
6359 jmpb(L_chars_16_check);
6360 }
6361
6362 bind(L_copy_16_chars);
6363 if (UseAVX >= 2) {
6364 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
6365 vptest(tmp2Reg, tmp1Reg);
6366 jcc(Assembler::notZero, L_copy_16_chars_exit);
6367 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
6368 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
6369 } else {
6370 if (UseAVX > 0) {
6371 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
6372 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
6373 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
6374 } else {
6375 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
6376 por(tmp2Reg, tmp3Reg);
6377 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
6378 por(tmp2Reg, tmp4Reg);
6379 }
6380 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector
6381 jccb(Assembler::notZero, L_copy_16_chars_exit);
6382 packuswb(tmp3Reg, tmp4Reg);
6383 }
6384 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
6385
6386 bind(L_chars_16_check);
6387 addptr(len, 16);
6388 jcc(Assembler::lessEqual, L_copy_16_chars);
6389
6390 bind(L_copy_16_chars_exit);
6391 if (UseAVX >= 2) {
6392 // clean upper bits of YMM registers
6393 vpxor(tmp2Reg, tmp2Reg);
6394 vpxor(tmp3Reg, tmp3Reg);
6395 vpxor(tmp4Reg, tmp4Reg);
6396 movdl(tmp1Reg, tmp5);
6397 pshufd(tmp1Reg, tmp1Reg, 0);
6398 }
6399 subptr(len, 8);
6400 jccb(Assembler::greater, L_copy_8_chars_exit);
6401
6402 bind(L_copy_8_chars);
6403 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
6404 ptest(tmp3Reg, tmp1Reg);
6405 jccb(Assembler::notZero, L_copy_8_chars_exit);
6406 packuswb(tmp3Reg, tmp1Reg);
6407 movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
6408 addptr(len, 8);
6409 jccb(Assembler::lessEqual, L_copy_8_chars);
6410
6411 bind(L_copy_8_chars_exit);
6412 subptr(len, 8);
6413 jccb(Assembler::zero, L_done);
6414 }
6415
6416 bind(L_copy_1_char);
6417 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
6418 testl(tmp5, short_mask); // check if Unicode or non-ASCII char
6419 jccb(Assembler::notZero, L_copy_1_char_exit);
6420 movb(Address(dst, len, Address::times_1, 0), tmp5);
6421 addptr(len, 1);
6422 jccb(Assembler::less, L_copy_1_char);
6423
6424 bind(L_copy_1_char_exit);
6425 addptr(result, len); // len is negative count of not processed elements
6426
6427 bind(L_done);
6428 }
6429
6430 /**
6431 * Helper for multiply_to_len().
6432 */
6433 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
6434 addq(dest_lo, src1);
6435 adcq(dest_hi, 0);
6436 addq(dest_lo, src2);
6437 adcq(dest_hi, 0);
6438 }
6439
6440 /**
6441 * Multiply 64 bit by 64 bit first loop.
6442 */
6443 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
6444 Register y, Register y_idx, Register z,
6445 Register carry, Register product,
6446 Register idx, Register kdx) {
6447 //
6448 // jlong carry, x[], y[], z[];
6449 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
6450 // huge_128 product = y[idx] * x[xstart] + carry;
6451 // z[kdx] = (jlong)product;
6452 // carry = (jlong)(product >>> 64);
6453 // }
6454 // z[xstart] = carry;
6455 //
6456
6457 Label L_first_loop, L_first_loop_exit;
6458 Label L_one_x, L_one_y, L_multiply;
6459
6460 decrementl(xstart);
6461 jcc(Assembler::negative, L_one_x);
6462
6463 movq(x_xstart, Address(x, xstart, Address::times_4, 0));
6464 rorq(x_xstart, 32); // convert big-endian to little-endian
6465
6466 bind(L_first_loop);
6467 decrementl(idx);
6468 jcc(Assembler::negative, L_first_loop_exit);
6469 decrementl(idx);
6470 jcc(Assembler::negative, L_one_y);
6471 movq(y_idx, Address(y, idx, Address::times_4, 0));
6472 rorq(y_idx, 32); // convert big-endian to little-endian
6473 bind(L_multiply);
6474 movq(product, x_xstart);
6475 mulq(y_idx); // product(rax) * y_idx -> rdx:rax
6476 addq(product, carry);
6477 adcq(rdx, 0);
6478 subl(kdx, 2);
6479 movl(Address(z, kdx, Address::times_4, 4), product);
6480 shrq(product, 32);
6481 movl(Address(z, kdx, Address::times_4, 0), product);
6482 movq(carry, rdx);
6483 jmp(L_first_loop);
6484
6485 bind(L_one_y);
6486 movl(y_idx, Address(y, 0));
6487 jmp(L_multiply);
6488
6489 bind(L_one_x);
6490 movl(x_xstart, Address(x, 0));
6491 jmp(L_first_loop);
6492
6493 bind(L_first_loop_exit);
6494 }
6495
6496 /**
6497 * Multiply 64 bit by 64 bit and add 128 bit.
6498 */
6499 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
6500 Register yz_idx, Register idx,
6501 Register carry, Register product, int offset) {
6502 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
6503 // z[kdx] = (jlong)product;
6504
6505 movq(yz_idx, Address(y, idx, Address::times_4, offset));
6506 rorq(yz_idx, 32); // convert big-endian to little-endian
6507 movq(product, x_xstart);
6508 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
6509 movq(yz_idx, Address(z, idx, Address::times_4, offset));
6510 rorq(yz_idx, 32); // convert big-endian to little-endian
6511
6512 add2_with_carry(rdx, product, carry, yz_idx);
6513
6514 movl(Address(z, idx, Address::times_4, offset+4), product);
6515 shrq(product, 32);
6516 movl(Address(z, idx, Address::times_4, offset), product);
6517
6518 }
6519
6520 /**
6521 * Multiply 128 bit by 128 bit. Unrolled inner loop.
6522 */
6523 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
6524 Register yz_idx, Register idx, Register jdx,
6525 Register carry, Register product,
6526 Register carry2) {
6527 // jlong carry, x[], y[], z[];
6528 // int kdx = ystart+1;
6529 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
6530 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
6531 // z[kdx+idx+1] = (jlong)product;
6532 // jlong carry2 = (jlong)(product >>> 64);
6533 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
6534 // z[kdx+idx] = (jlong)product;
6535 // carry = (jlong)(product >>> 64);
6536 // }
6537 // idx += 2;
6538 // if (idx > 0) {
6539 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
6540 // z[kdx+idx] = (jlong)product;
6541 // carry = (jlong)(product >>> 64);
6542 // }
6543 //
6544
6545 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
6546
6547 movl(jdx, idx);
6548 andl(jdx, 0xFFFFFFFC);
6549 shrl(jdx, 2);
6550
6551 bind(L_third_loop);
6552 subl(jdx, 1);
6553 jcc(Assembler::negative, L_third_loop_exit);
6554 subl(idx, 4);
6555
6556 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
6557 movq(carry2, rdx);
6558
6559 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
6560 movq(carry, rdx);
6561 jmp(L_third_loop);
6562
6563 bind (L_third_loop_exit);
6564
6565 andl (idx, 0x3);
6566 jcc(Assembler::zero, L_post_third_loop_done);
6567
6568 Label L_check_1;
6569 subl(idx, 2);
6570 jcc(Assembler::negative, L_check_1);
6571
6572 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
6573 movq(carry, rdx);
6574
6575 bind (L_check_1);
6576 addl (idx, 0x2);
6577 andl (idx, 0x1);
6578 subl(idx, 1);
6579 jcc(Assembler::negative, L_post_third_loop_done);
6580
6581 movl(yz_idx, Address(y, idx, Address::times_4, 0));
6582 movq(product, x_xstart);
6583 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
6584 movl(yz_idx, Address(z, idx, Address::times_4, 0));
6585
6586 add2_with_carry(rdx, product, yz_idx, carry);
6587
6588 movl(Address(z, idx, Address::times_4, 0), product);
6589 shrq(product, 32);
6590
6591 shlq(rdx, 32);
6592 orq(product, rdx);
6593 movq(carry, product);
6594
6595 bind(L_post_third_loop_done);
6596 }
6597
6598 /**
6599 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
6600 *
6601 */
6602 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
6603 Register carry, Register carry2,
6604 Register idx, Register jdx,
6605 Register yz_idx1, Register yz_idx2,
6606 Register tmp, Register tmp3, Register tmp4) {
6607 assert(UseBMI2Instructions, "should be used only when BMI2 is available");
6608
6609 // jlong carry, x[], y[], z[];
6610 // int kdx = ystart+1;
6611 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
6612 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
6613 // jlong carry2 = (jlong)(tmp3 >>> 64);
6614 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2;
6615 // carry = (jlong)(tmp4 >>> 64);
6616 // z[kdx+idx+1] = (jlong)tmp3;
6617 // z[kdx+idx] = (jlong)tmp4;
6618 // }
6619 // idx += 2;
6620 // if (idx > 0) {
6621 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
6622 // z[kdx+idx] = (jlong)yz_idx1;
6623 // carry = (jlong)(yz_idx1 >>> 64);
6624 // }
6625 //
6626
6627 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
6628
6629 movl(jdx, idx);
6630 andl(jdx, 0xFFFFFFFC);
6631 shrl(jdx, 2);
6632
6633 bind(L_third_loop);
6634 subl(jdx, 1);
6635 jcc(Assembler::negative, L_third_loop_exit);
6636 subl(idx, 4);
6637
6638 movq(yz_idx1, Address(y, idx, Address::times_4, 8));
6639 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
6640 movq(yz_idx2, Address(y, idx, Address::times_4, 0));
6641 rorxq(yz_idx2, yz_idx2, 32);
6642
6643 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3
6644 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp
6645
6646 movq(yz_idx1, Address(z, idx, Address::times_4, 8));
6647 rorxq(yz_idx1, yz_idx1, 32);
6648 movq(yz_idx2, Address(z, idx, Address::times_4, 0));
6649 rorxq(yz_idx2, yz_idx2, 32);
6650
6651 if (VM_Version::supports_adx()) {
6652 adcxq(tmp3, carry);
6653 adoxq(tmp3, yz_idx1);
6654
6655 adcxq(tmp4, tmp);
6656 adoxq(tmp4, yz_idx2);
6657
6658 movl(carry, 0); // does not affect flags
6659 adcxq(carry2, carry);
6660 adoxq(carry2, carry);
6661 } else {
6662 add2_with_carry(tmp4, tmp3, carry, yz_idx1);
6663 add2_with_carry(carry2, tmp4, tmp, yz_idx2);
6664 }
6665 movq(carry, carry2);
6666
6667 movl(Address(z, idx, Address::times_4, 12), tmp3);
6668 shrq(tmp3, 32);
6669 movl(Address(z, idx, Address::times_4, 8), tmp3);
6670
6671 movl(Address(z, idx, Address::times_4, 4), tmp4);
6672 shrq(tmp4, 32);
6673 movl(Address(z, idx, Address::times_4, 0), tmp4);
6674
6675 jmp(L_third_loop);
6676
6677 bind (L_third_loop_exit);
6678
6679 andl (idx, 0x3);
6680 jcc(Assembler::zero, L_post_third_loop_done);
6681
6682 Label L_check_1;
6683 subl(idx, 2);
6684 jcc(Assembler::negative, L_check_1);
6685
6686 movq(yz_idx1, Address(y, idx, Address::times_4, 0));
6687 rorxq(yz_idx1, yz_idx1, 32);
6688 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3
6689 movq(yz_idx2, Address(z, idx, Address::times_4, 0));
6690 rorxq(yz_idx2, yz_idx2, 32);
6691
6692 add2_with_carry(tmp4, tmp3, carry, yz_idx2);
6693
6694 movl(Address(z, idx, Address::times_4, 4), tmp3);
6695 shrq(tmp3, 32);
6696 movl(Address(z, idx, Address::times_4, 0), tmp3);
6697 movq(carry, tmp4);
6698
6699 bind (L_check_1);
6700 addl (idx, 0x2);
6701 andl (idx, 0x1);
6702 subl(idx, 1);
6703 jcc(Assembler::negative, L_post_third_loop_done);
6704 movl(tmp4, Address(y, idx, Address::times_4, 0));
6705 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3
6706 movl(tmp4, Address(z, idx, Address::times_4, 0));
6707
6708 add2_with_carry(carry2, tmp3, tmp4, carry);
6709
6710 movl(Address(z, idx, Address::times_4, 0), tmp3);
6711 shrq(tmp3, 32);
6712
6713 shlq(carry2, 32);
6714 orq(tmp3, carry2);
6715 movq(carry, tmp3);
6716
6717 bind(L_post_third_loop_done);
6718 }
6719
6720 /**
6721 * Code for BigInteger::multiplyToLen() intrinsic.
6722 *
6723 * rdi: x
6724 * rax: xlen
6725 * rsi: y
6726 * rcx: ylen
6727 * r8: z
6728 * r11: tmp0
6729 * r12: tmp1
6730 * r13: tmp2
6731 * r14: tmp3
6732 * r15: tmp4
6733 * rbx: tmp5
6734 *
6735 */
6736 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0,
6737 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
6738 ShortBranchVerifier sbv(this);
6739 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
6740
6741 push(tmp0);
6742 push(tmp1);
6743 push(tmp2);
6744 push(tmp3);
6745 push(tmp4);
6746 push(tmp5);
6747
6748 push(xlen);
6749
6750 const Register idx = tmp1;
6751 const Register kdx = tmp2;
6752 const Register xstart = tmp3;
6753
6754 const Register y_idx = tmp4;
6755 const Register carry = tmp5;
6756 const Register product = xlen;
6757 const Register x_xstart = tmp0;
6758
6759 // First Loop.
6760 //
6761 // final static long LONG_MASK = 0xffffffffL;
6762 // int xstart = xlen - 1;
6763 // int ystart = ylen - 1;
6764 // long carry = 0;
6765 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
6766 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
6767 // z[kdx] = (int)product;
6768 // carry = product >>> 32;
6769 // }
6770 // z[xstart] = (int)carry;
6771 //
6772
6773 movl(idx, ylen); // idx = ylen;
6774 lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen;
6775 xorq(carry, carry); // carry = 0;
6776
6777 Label L_done;
6778
6779 movl(xstart, xlen);
6780 decrementl(xstart);
6781 jcc(Assembler::negative, L_done);
6782
6783 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
6784
6785 Label L_second_loop;
6786 testl(kdx, kdx);
6787 jcc(Assembler::zero, L_second_loop);
6788
6789 Label L_carry;
6790 subl(kdx, 1);
6791 jcc(Assembler::zero, L_carry);
6792
6793 movl(Address(z, kdx, Address::times_4, 0), carry);
6794 shrq(carry, 32);
6795 subl(kdx, 1);
6796
6797 bind(L_carry);
6798 movl(Address(z, kdx, Address::times_4, 0), carry);
6799
6800 // Second and third (nested) loops.
6801 //
6802 // for (int i = xstart-1; i >= 0; i--) { // Second loop
6803 // carry = 0;
6804 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
6805 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
6806 // (z[k] & LONG_MASK) + carry;
6807 // z[k] = (int)product;
6808 // carry = product >>> 32;
6809 // }
6810 // z[i] = (int)carry;
6811 // }
6812 //
6813 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
6814
6815 const Register jdx = tmp1;
6816
6817 bind(L_second_loop);
6818 xorl(carry, carry); // carry = 0;
6819 movl(jdx, ylen); // j = ystart+1
6820
6821 subl(xstart, 1); // i = xstart-1;
6822 jcc(Assembler::negative, L_done);
6823
6824 push (z);
6825
6826 Label L_last_x;
6827 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
6828 subl(xstart, 1); // i = xstart-1;
6829 jcc(Assembler::negative, L_last_x);
6830
6831 if (UseBMI2Instructions) {
6832 movq(rdx, Address(x, xstart, Address::times_4, 0));
6833 rorxq(rdx, rdx, 32); // convert big-endian to little-endian
6834 } else {
6835 movq(x_xstart, Address(x, xstart, Address::times_4, 0));
6836 rorq(x_xstart, 32); // convert big-endian to little-endian
6837 }
6838
6839 Label L_third_loop_prologue;
6840 bind(L_third_loop_prologue);
6841
6842 push (x);
6843 push (xstart);
6844 push (ylen);
6845
6846
6847 if (UseBMI2Instructions) {
6848 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
6849 } else { // !UseBMI2Instructions
6850 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
6851 }
6852
6853 pop(ylen);
6854 pop(xlen);
6855 pop(x);
6856 pop(z);
6857
6858 movl(tmp3, xlen);
6859 addl(tmp3, 1);
6860 movl(Address(z, tmp3, Address::times_4, 0), carry);
6861 subl(tmp3, 1);
6862 jccb(Assembler::negative, L_done);
6863
6864 shrq(carry, 32);
6865 movl(Address(z, tmp3, Address::times_4, 0), carry);
6866 jmp(L_second_loop);
6867
6868 // Next infrequent code is moved outside loops.
6869 bind(L_last_x);
6870 if (UseBMI2Instructions) {
6871 movl(rdx, Address(x, 0));
6872 } else {
6873 movl(x_xstart, Address(x, 0));
6874 }
6875 jmp(L_third_loop_prologue);
6876
6877 bind(L_done);
6878
6879 pop(xlen);
6880
6881 pop(tmp5);
6882 pop(tmp4);
6883 pop(tmp3);
6884 pop(tmp2);
6885 pop(tmp1);
6886 pop(tmp0);
6887 }
6888
6889 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
6890 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
6891 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
6892 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
6893 Label VECTOR8_TAIL, VECTOR4_TAIL;
6894 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
6895 Label SAME_TILL_END, DONE;
6896 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
6897
6898 //scale is in rcx in both Win64 and Unix
6899 ShortBranchVerifier sbv(this);
6900
6901 shlq(length);
6902 xorq(result, result);
6903
6904 if ((AVX3Threshold == 0) && (UseAVX > 2) &&
6905 VM_Version::supports_avx512vlbw()) {
6906 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
6907
6908 cmpq(length, 64);
6909 jcc(Assembler::less, VECTOR32_TAIL);
6910
6911 movq(tmp1, length);
6912 andq(tmp1, 0x3F); // tail count
6913 andq(length, ~(0x3F)); //vector count
6914
6915 bind(VECTOR64_LOOP);
6916 // AVX512 code to compare 64 byte vectors.
6917 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
6918 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
6919 kortestql(k7, k7);
6920 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch
6921 addq(result, 64);
6922 subq(length, 64);
6923 jccb(Assembler::notZero, VECTOR64_LOOP);
6924
6925 //bind(VECTOR64_TAIL);
6926 testq(tmp1, tmp1);
6927 jcc(Assembler::zero, SAME_TILL_END);
6928
6929 //bind(VECTOR64_TAIL);
6930 // AVX512 code to compare up to 63 byte vectors.
6931 mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
6932 shlxq(tmp2, tmp2, tmp1);
6933 notq(tmp2);
6934 kmovql(k3, tmp2);
6935
6936 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit);
6937 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
6938
6939 ktestql(k7, k3);
6940 jcc(Assembler::below, SAME_TILL_END); // not mismatch
6941
6942 bind(VECTOR64_NOT_EQUAL);
6943 kmovql(tmp1, k7);
6944 notq(tmp1);
6945 tzcntq(tmp1, tmp1);
6946 addq(result, tmp1);
6947 shrq(result);
6948 jmp(DONE);
6949 bind(VECTOR32_TAIL);
6950 }
6951
6952 cmpq(length, 8);
6953 jcc(Assembler::equal, VECTOR8_LOOP);
6954 jcc(Assembler::less, VECTOR4_TAIL);
6955
6956 if (UseAVX >= 2) {
6957 Label VECTOR16_TAIL, VECTOR32_LOOP;
6958
6959 cmpq(length, 16);
6960 jcc(Assembler::equal, VECTOR16_LOOP);
6961 jcc(Assembler::less, VECTOR8_LOOP);
6962
6963 cmpq(length, 32);
6964 jccb(Assembler::less, VECTOR16_TAIL);
6965
6966 subq(length, 32);
6967 bind(VECTOR32_LOOP);
6968 vmovdqu(rymm0, Address(obja, result));
6969 vmovdqu(rymm1, Address(objb, result));
6970 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
6971 vptest(rymm2, rymm2);
6972 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
6973 addq(result, 32);
6974 subq(length, 32);
6975 jcc(Assembler::greaterEqual, VECTOR32_LOOP);
6976 addq(length, 32);
6977 jcc(Assembler::equal, SAME_TILL_END);
6978 //falling through if less than 32 bytes left //close the branch here.
6979
6980 bind(VECTOR16_TAIL);
6981 cmpq(length, 16);
6982 jccb(Assembler::less, VECTOR8_TAIL);
6983 bind(VECTOR16_LOOP);
6984 movdqu(rymm0, Address(obja, result));
6985 movdqu(rymm1, Address(objb, result));
6986 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
6987 ptest(rymm2, rymm2);
6988 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
6989 addq(result, 16);
6990 subq(length, 16);
6991 jcc(Assembler::equal, SAME_TILL_END);
6992 //falling through if less than 16 bytes left
6993 } else {//regular intrinsics
6994
6995 cmpq(length, 16);
6996 jccb(Assembler::less, VECTOR8_TAIL);
6997
6998 subq(length, 16);
6999 bind(VECTOR16_LOOP);
7000 movdqu(rymm0, Address(obja, result));
7001 movdqu(rymm1, Address(objb, result));
7002 pxor(rymm0, rymm1);
7003 ptest(rymm0, rymm0);
7004 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
7005 addq(result, 16);
7006 subq(length, 16);
7007 jccb(Assembler::greaterEqual, VECTOR16_LOOP);
7008 addq(length, 16);
7009 jcc(Assembler::equal, SAME_TILL_END);
7010 //falling through if less than 16 bytes left
7011 }
7012
7013 bind(VECTOR8_TAIL);
7014 cmpq(length, 8);
7015 jccb(Assembler::less, VECTOR4_TAIL);
7016 bind(VECTOR8_LOOP);
7017 movq(tmp1, Address(obja, result));
7018 movq(tmp2, Address(objb, result));
7019 xorq(tmp1, tmp2);
7020 testq(tmp1, tmp1);
7021 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
7022 addq(result, 8);
7023 subq(length, 8);
7024 jcc(Assembler::equal, SAME_TILL_END);
7025 //falling through if less than 8 bytes left
7026
7027 bind(VECTOR4_TAIL);
7028 cmpq(length, 4);
7029 jccb(Assembler::less, BYTES_TAIL);
7030 bind(VECTOR4_LOOP);
7031 movl(tmp1, Address(obja, result));
7032 xorl(tmp1, Address(objb, result));
7033 testl(tmp1, tmp1);
7034 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
7035 addq(result, 4);
7036 subq(length, 4);
7037 jcc(Assembler::equal, SAME_TILL_END);
7038 //falling through if less than 4 bytes left
7039
7040 bind(BYTES_TAIL);
7041 bind(BYTES_LOOP);
7042 load_unsigned_byte(tmp1, Address(obja, result));
7043 load_unsigned_byte(tmp2, Address(objb, result));
7044 xorl(tmp1, tmp2);
7045 testl(tmp1, tmp1);
7046 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
7047 decq(length);
7048 jcc(Assembler::zero, SAME_TILL_END);
7049 incq(result);
7050 load_unsigned_byte(tmp1, Address(obja, result));
7051 load_unsigned_byte(tmp2, Address(objb, result));
7052 xorl(tmp1, tmp2);
7053 testl(tmp1, tmp1);
7054 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
7055 decq(length);
7056 jcc(Assembler::zero, SAME_TILL_END);
7057 incq(result);
7058 load_unsigned_byte(tmp1, Address(obja, result));
7059 load_unsigned_byte(tmp2, Address(objb, result));
7060 xorl(tmp1, tmp2);
7061 testl(tmp1, tmp1);
7062 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
7063 jmp(SAME_TILL_END);
7064
7065 if (UseAVX >= 2) {
7066 bind(VECTOR32_NOT_EQUAL);
7067 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
7068 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
7069 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
7070 vpmovmskb(tmp1, rymm0);
7071 bsfq(tmp1, tmp1);
7072 addq(result, tmp1);
7073 shrq(result);
7074 jmp(DONE);
7075 }
7076
7077 bind(VECTOR16_NOT_EQUAL);
7078 if (UseAVX >= 2) {
7079 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
7080 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
7081 pxor(rymm0, rymm2);
7082 } else {
7083 pcmpeqb(rymm2, rymm2);
7084 pxor(rymm0, rymm1);
7085 pcmpeqb(rymm0, rymm1);
7086 pxor(rymm0, rymm2);
7087 }
7088 pmovmskb(tmp1, rymm0);
7089 bsfq(tmp1, tmp1);
7090 addq(result, tmp1);
7091 shrq(result);
7092 jmpb(DONE);
7093
7094 bind(VECTOR8_NOT_EQUAL);
7095 bind(VECTOR4_NOT_EQUAL);
7096 bsfq(tmp1, tmp1);
7097 shrq(tmp1, 3);
7098 addq(result, tmp1);
7099 bind(BYTES_NOT_EQUAL);
7100 shrq(result);
7101 jmpb(DONE);
7102
7103 bind(SAME_TILL_END);
7104 mov64(result, -1);
7105
7106 bind(DONE);
7107 }
7108
7109 //Helper functions for square_to_len()
7110
7111 /**
7112 * Store the squares of x[], right shifted one bit (divided by 2) into z[]
7113 * Preserves x and z and modifies rest of the registers.
7114 */
7115 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7116 // Perform square and right shift by 1
7117 // Handle odd xlen case first, then for even xlen do the following
7118 // jlong carry = 0;
7119 // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
7120 // huge_128 product = x[j:j+1] * x[j:j+1];
7121 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
7122 // z[i+2:i+3] = (jlong)(product >>> 1);
7123 // carry = (jlong)product;
7124 // }
7125
7126 xorq(tmp5, tmp5); // carry
7127 xorq(rdxReg, rdxReg);
7128 xorl(tmp1, tmp1); // index for x
7129 xorl(tmp4, tmp4); // index for z
7130
7131 Label L_first_loop, L_first_loop_exit;
7132
7133 testl(xlen, 1);
7134 jccb(Assembler::zero, L_first_loop); //jump if xlen is even
7135
7136 // Square and right shift by 1 the odd element using 32 bit multiply
7137 movl(raxReg, Address(x, tmp1, Address::times_4, 0));
7138 imulq(raxReg, raxReg);
7139 shrq(raxReg, 1);
7140 adcq(tmp5, 0);
7141 movq(Address(z, tmp4, Address::times_4, 0), raxReg);
7142 incrementl(tmp1);
7143 addl(tmp4, 2);
7144
7145 // Square and right shift by 1 the rest using 64 bit multiply
7146 bind(L_first_loop);
7147 cmpptr(tmp1, xlen);
7148 jccb(Assembler::equal, L_first_loop_exit);
7149
7150 // Square
7151 movq(raxReg, Address(x, tmp1, Address::times_4, 0));
7152 rorq(raxReg, 32); // convert big-endian to little-endian
7153 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax
7154
7155 // Right shift by 1 and save carry
7156 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
7157 rcrq(rdxReg, 1);
7158 rcrq(raxReg, 1);
7159 adcq(tmp5, 0);
7160
7161 // Store result in z
7162 movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
7163 movq(Address(z, tmp4, Address::times_4, 8), raxReg);
7164
7165 // Update indices for x and z
7166 addl(tmp1, 2);
7167 addl(tmp4, 4);
7168 jmp(L_first_loop);
7169
7170 bind(L_first_loop_exit);
7171 }
7172
7173
7174 /**
7175 * Perform the following multiply add operation using BMI2 instructions
7176 * carry:sum = sum + op1*op2 + carry
7177 * op2 should be in rdx
7178 * op2 is preserved, all other registers are modified
7179 */
7180 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
7181 // assert op2 is rdx
7182 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1
7183 addq(sum, carry);
7184 adcq(tmp2, 0);
7185 addq(sum, op1);
7186 adcq(tmp2, 0);
7187 movq(carry, tmp2);
7188 }
7189
7190 /**
7191 * Perform the following multiply add operation:
7192 * carry:sum = sum + op1*op2 + carry
7193 * Preserves op1, op2 and modifies rest of registers
7194 */
7195 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
7196 // rdx:rax = op1 * op2
7197 movq(raxReg, op2);
7198 mulq(op1);
7199
7200 // rdx:rax = sum + carry + rdx:rax
7201 addq(sum, carry);
7202 adcq(rdxReg, 0);
7203 addq(sum, raxReg);
7204 adcq(rdxReg, 0);
7205
7206 // carry:sum = rdx:sum
7207 movq(carry, rdxReg);
7208 }
7209
7210 /**
7211 * Add 64 bit long carry into z[] with carry propagation.
7212 * Preserves z and carry register values and modifies rest of registers.
7213 *
7214 */
7215 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
7216 Label L_fourth_loop, L_fourth_loop_exit;
7217
7218 movl(tmp1, 1);
7219 subl(zlen, 2);
7220 addq(Address(z, zlen, Address::times_4, 0), carry);
7221
7222 bind(L_fourth_loop);
7223 jccb(Assembler::carryClear, L_fourth_loop_exit);
7224 subl(zlen, 2);
7225 jccb(Assembler::negative, L_fourth_loop_exit);
7226 addq(Address(z, zlen, Address::times_4, 0), tmp1);
7227 jmp(L_fourth_loop);
7228 bind(L_fourth_loop_exit);
7229 }
7230
7231 /**
7232 * Shift z[] left by 1 bit.
7233 * Preserves x, len, z and zlen registers and modifies rest of the registers.
7234 *
7235 */
7236 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
7237
7238 Label L_fifth_loop, L_fifth_loop_exit;
7239
7240 // Fifth loop
7241 // Perform primitiveLeftShift(z, zlen, 1)
7242
7243 const Register prev_carry = tmp1;
7244 const Register new_carry = tmp4;
7245 const Register value = tmp2;
7246 const Register zidx = tmp3;
7247
7248 // int zidx, carry;
7249 // long value;
7250 // carry = 0;
7251 // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
7252 // (carry:value) = (z[i] << 1) | carry ;
7253 // z[i] = value;
7254 // }
7255
7256 movl(zidx, zlen);
7257 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
7258
7259 bind(L_fifth_loop);
7260 decl(zidx); // Use decl to preserve carry flag
7261 decl(zidx);
7262 jccb(Assembler::negative, L_fifth_loop_exit);
7263
7264 if (UseBMI2Instructions) {
7265 movq(value, Address(z, zidx, Address::times_4, 0));
7266 rclq(value, 1);
7267 rorxq(value, value, 32);
7268 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form
7269 }
7270 else {
7271 // clear new_carry
7272 xorl(new_carry, new_carry);
7273
7274 // Shift z[i] by 1, or in previous carry and save new carry
7275 movq(value, Address(z, zidx, Address::times_4, 0));
7276 shlq(value, 1);
7277 adcl(new_carry, 0);
7278
7279 orq(value, prev_carry);
7280 rorq(value, 0x20);
7281 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form
7282
7283 // Set previous carry = new carry
7284 movl(prev_carry, new_carry);
7285 }
7286 jmp(L_fifth_loop);
7287
7288 bind(L_fifth_loop_exit);
7289 }
7290
7291
7292 /**
7293 * Code for BigInteger::squareToLen() intrinsic
7294 *
7295 * rdi: x
7296 * rsi: len
7297 * r8: z
7298 * rcx: zlen
7299 * r12: tmp1
7300 * r13: tmp2
7301 * r14: tmp3
7302 * r15: tmp4
7303 * rbx: tmp5
7304 *
7305 */
7306 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7307
7308 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
7309 push(tmp1);
7310 push(tmp2);
7311 push(tmp3);
7312 push(tmp4);
7313 push(tmp5);
7314
7315 // First loop
7316 // Store the squares, right shifted one bit (i.e., divided by 2).
7317 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
7318
7319 // Add in off-diagonal sums.
7320 //
7321 // Second, third (nested) and fourth loops.
7322 // zlen +=2;
7323 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
7324 // carry = 0;
7325 // long op2 = x[xidx:xidx+1];
7326 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
7327 // k -= 2;
7328 // long op1 = x[j:j+1];
7329 // long sum = z[k:k+1];
7330 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
7331 // z[k:k+1] = sum;
7332 // }
7333 // add_one_64(z, k, carry, tmp_regs);
7334 // }
7335
7336 const Register carry = tmp5;
7337 const Register sum = tmp3;
7338 const Register op1 = tmp4;
7339 Register op2 = tmp2;
7340
7341 push(zlen);
7342 push(len);
7343 addl(zlen,2);
7344 bind(L_second_loop);
7345 xorq(carry, carry);
7346 subl(zlen, 4);
7347 subl(len, 2);
7348 push(zlen);
7349 push(len);
7350 cmpl(len, 0);
7351 jccb(Assembler::lessEqual, L_second_loop_exit);
7352
7353 // Multiply an array by one 64 bit long.
7354 if (UseBMI2Instructions) {
7355 op2 = rdxReg;
7356 movq(op2, Address(x, len, Address::times_4, 0));
7357 rorxq(op2, op2, 32);
7358 }
7359 else {
7360 movq(op2, Address(x, len, Address::times_4, 0));
7361 rorq(op2, 32);
7362 }
7363
7364 bind(L_third_loop);
7365 decrementl(len);
7366 jccb(Assembler::negative, L_third_loop_exit);
7367 decrementl(len);
7368 jccb(Assembler::negative, L_last_x);
7369
7370 movq(op1, Address(x, len, Address::times_4, 0));
7371 rorq(op1, 32);
7372
7373 bind(L_multiply);
7374 subl(zlen, 2);
7375 movq(sum, Address(z, zlen, Address::times_4, 0));
7376
7377 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
7378 if (UseBMI2Instructions) {
7379 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
7380 }
7381 else {
7382 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
7383 }
7384
7385 movq(Address(z, zlen, Address::times_4, 0), sum);
7386
7387 jmp(L_third_loop);
7388 bind(L_third_loop_exit);
7389
7390 // Fourth loop
7391 // Add 64 bit long carry into z with carry propagation.
7392 // Uses offsetted zlen.
7393 add_one_64(z, zlen, carry, tmp1);
7394
7395 pop(len);
7396 pop(zlen);
7397 jmp(L_second_loop);
7398
7399 // Next infrequent code is moved outside loops.
7400 bind(L_last_x);
7401 movl(op1, Address(x, 0));
7402 jmp(L_multiply);
7403
7404 bind(L_second_loop_exit);
7405 pop(len);
7406 pop(zlen);
7407 pop(len);
7408 pop(zlen);
7409
7410 // Fifth loop
7411 // Shift z left 1 bit.
7412 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
7413
7414 // z[zlen-1] |= x[len-1] & 1;
7415 movl(tmp3, Address(x, len, Address::times_4, -4));
7416 andl(tmp3, 1);
7417 orl(Address(z, zlen, Address::times_4, -4), tmp3);
7418
7419 pop(tmp5);
7420 pop(tmp4);
7421 pop(tmp3);
7422 pop(tmp2);
7423 pop(tmp1);
7424 }
7425
7426 /**
7427 * Helper function for mul_add()
7428 * Multiply the in[] by int k and add to out[] starting at offset offs using
7429 * 128 bit by 32 bit multiply and return the carry in tmp5.
7430 * Only quad int aligned length of in[] is operated on in this function.
7431 * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
7432 * This function preserves out, in and k registers.
7433 * len and offset point to the appropriate index in "in" & "out" correspondingly
7434 * tmp5 has the carry.
7435 * other registers are temporary and are modified.
7436 *
7437 */
7438 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
7439 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
7440 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7441
7442 Label L_first_loop, L_first_loop_exit;
7443
7444 movl(tmp1, len);
7445 shrl(tmp1, 2);
7446
7447 bind(L_first_loop);
7448 subl(tmp1, 1);
7449 jccb(Assembler::negative, L_first_loop_exit);
7450
7451 subl(len, 4);
7452 subl(offset, 4);
7453
7454 Register op2 = tmp2;
7455 const Register sum = tmp3;
7456 const Register op1 = tmp4;
7457 const Register carry = tmp5;
7458
7459 if (UseBMI2Instructions) {
7460 op2 = rdxReg;
7461 }
7462
7463 movq(op1, Address(in, len, Address::times_4, 8));
7464 rorq(op1, 32);
7465 movq(sum, Address(out, offset, Address::times_4, 8));
7466 rorq(sum, 32);
7467 if (UseBMI2Instructions) {
7468 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
7469 }
7470 else {
7471 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
7472 }
7473 // Store back in big endian from little endian
7474 rorq(sum, 0x20);
7475 movq(Address(out, offset, Address::times_4, 8), sum);
7476
7477 movq(op1, Address(in, len, Address::times_4, 0));
7478 rorq(op1, 32);
7479 movq(sum, Address(out, offset, Address::times_4, 0));
7480 rorq(sum, 32);
7481 if (UseBMI2Instructions) {
7482 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
7483 }
7484 else {
7485 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
7486 }
7487 // Store back in big endian from little endian
7488 rorq(sum, 0x20);
7489 movq(Address(out, offset, Address::times_4, 0), sum);
7490
7491 jmp(L_first_loop);
7492 bind(L_first_loop_exit);
7493 }
7494
7495 /**
7496 * Code for BigInteger::mulAdd() intrinsic
7497 *
7498 * rdi: out
7499 * rsi: in
7500 * r11: offs (out.length - offset)
7501 * rcx: len
7502 * r8: k
7503 * r12: tmp1
7504 * r13: tmp2
7505 * r14: tmp3
7506 * r15: tmp4
7507 * rbx: tmp5
7508 * Multiply the in[] by word k and add to out[], return the carry in rax
7509 */
7510 void MacroAssembler::mul_add(Register out, Register in, Register offs,
7511 Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
7512 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7513
7514 Label L_carry, L_last_in, L_done;
7515
7516 // carry = 0;
7517 // for (int j=len-1; j >= 0; j--) {
7518 // long product = (in[j] & LONG_MASK) * kLong +
7519 // (out[offs] & LONG_MASK) + carry;
7520 // out[offs--] = (int)product;
7521 // carry = product >>> 32;
7522 // }
7523 //
7524 push(tmp1);
7525 push(tmp2);
7526 push(tmp3);
7527 push(tmp4);
7528 push(tmp5);
7529
7530 Register op2 = tmp2;
7531 const Register sum = tmp3;
7532 const Register op1 = tmp4;
7533 const Register carry = tmp5;
7534
7535 if (UseBMI2Instructions) {
7536 op2 = rdxReg;
7537 movl(op2, k);
7538 }
7539 else {
7540 movl(op2, k);
7541 }
7542
7543 xorq(carry, carry);
7544
7545 //First loop
7546
7547 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
7548 //The carry is in tmp5
7549 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
7550
7551 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
7552 decrementl(len);
7553 jccb(Assembler::negative, L_carry);
7554 decrementl(len);
7555 jccb(Assembler::negative, L_last_in);
7556
7557 movq(op1, Address(in, len, Address::times_4, 0));
7558 rorq(op1, 32);
7559
7560 subl(offs, 2);
7561 movq(sum, Address(out, offs, Address::times_4, 0));
7562 rorq(sum, 32);
7563
7564 if (UseBMI2Instructions) {
7565 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
7566 }
7567 else {
7568 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
7569 }
7570
7571 // Store back in big endian from little endian
7572 rorq(sum, 0x20);
7573 movq(Address(out, offs, Address::times_4, 0), sum);
7574
7575 testl(len, len);
7576 jccb(Assembler::zero, L_carry);
7577
7578 //Multiply the last in[] entry, if any
7579 bind(L_last_in);
7580 movl(op1, Address(in, 0));
7581 movl(sum, Address(out, offs, Address::times_4, -4));
7582
7583 movl(raxReg, k);
7584 mull(op1); //tmp4 * eax -> edx:eax
7585 addl(sum, carry);
7586 adcl(rdxReg, 0);
7587 addl(sum, raxReg);
7588 adcl(rdxReg, 0);
7589 movl(carry, rdxReg);
7590
7591 movl(Address(out, offs, Address::times_4, -4), sum);
7592
7593 bind(L_carry);
7594 //return tmp5/carry as carry in rax
7595 movl(rax, carry);
7596
7597 bind(L_done);
7598 pop(tmp5);
7599 pop(tmp4);
7600 pop(tmp3);
7601 pop(tmp2);
7602 pop(tmp1);
7603 }
7604
7605 /**
7606 * Emits code to update CRC-32 with a byte value according to constants in table
7607 *
7608 * @param [in,out]crc Register containing the crc.
7609 * @param [in]val Register containing the byte to fold into the CRC.
7610 * @param [in]table Register containing the table of crc constants.
7611 *
7612 * uint32_t crc;
7613 * val = crc_table[(val ^ crc) & 0xFF];
7614 * crc = val ^ (crc >> 8);
7615 *
7616 */
7617 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
7618 xorl(val, crc);
7619 andl(val, 0xFF);
7620 shrl(crc, 8); // unsigned shift
7621 xorl(crc, Address(table, val, Address::times_4, 0));
7622 }
7623
7624 /**
7625 * Fold 128-bit data chunk
7626 */
7627 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
7628 if (UseAVX > 0) {
7629 vpclmulhdq(xtmp, xK, xcrc); // [123:64]
7630 vpclmulldq(xcrc, xK, xcrc); // [63:0]
7631 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
7632 pxor(xcrc, xtmp);
7633 } else {
7634 movdqa(xtmp, xcrc);
7635 pclmulhdq(xtmp, xK); // [123:64]
7636 pclmulldq(xcrc, xK); // [63:0]
7637 pxor(xcrc, xtmp);
7638 movdqu(xtmp, Address(buf, offset));
7639 pxor(xcrc, xtmp);
7640 }
7641 }
7642
7643 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
7644 if (UseAVX > 0) {
7645 vpclmulhdq(xtmp, xK, xcrc);
7646 vpclmulldq(xcrc, xK, xcrc);
7647 pxor(xcrc, xbuf);
7648 pxor(xcrc, xtmp);
7649 } else {
7650 movdqa(xtmp, xcrc);
7651 pclmulhdq(xtmp, xK);
7652 pclmulldq(xcrc, xK);
7653 pxor(xcrc, xbuf);
7654 pxor(xcrc, xtmp);
7655 }
7656 }
7657
7658 /**
7659 * 8-bit folds to compute 32-bit CRC
7660 *
7661 * uint64_t xcrc;
7662 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
7663 */
7664 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
7665 movdl(tmp, xcrc);
7666 andl(tmp, 0xFF);
7667 movdl(xtmp, Address(table, tmp, Address::times_4, 0));
7668 psrldq(xcrc, 1); // unsigned shift one byte
7669 pxor(xcrc, xtmp);
7670 }
7671
7672 /**
7673 * uint32_t crc;
7674 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
7675 */
7676 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
7677 movl(tmp, crc);
7678 andl(tmp, 0xFF);
7679 shrl(crc, 8);
7680 xorl(crc, Address(table, tmp, Address::times_4, 0));
7681 }
7682
7683 /**
7684 * @param crc register containing existing CRC (32-bit)
7685 * @param buf register pointing to input byte buffer (byte*)
7686 * @param len register containing number of bytes
7687 * @param table register that will contain address of CRC table
7688 * @param tmp scratch register
7689 */
7690 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
7691 assert_different_registers(crc, buf, len, table, tmp, rax);
7692
7693 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
7694 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
7695
7696 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
7697 // context for the registers used, where all instructions below are using 128-bit mode
7698 // On EVEX without VL and BW, these instructions will all be AVX.
7699 lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
7700 notl(crc); // ~crc
7701 cmpl(len, 16);
7702 jcc(Assembler::less, L_tail);
7703
7704 // Align buffer to 16 bytes
7705 movl(tmp, buf);
7706 andl(tmp, 0xF);
7707 jccb(Assembler::zero, L_aligned);
7708 subl(tmp, 16);
7709 addl(len, tmp);
7710
7711 align(4);
7712 BIND(L_align_loop);
7713 movsbl(rax, Address(buf, 0)); // load byte with sign extension
7714 update_byte_crc32(crc, rax, table);
7715 increment(buf);
7716 incrementl(tmp);
7717 jccb(Assembler::less, L_align_loop);
7718
7719 BIND(L_aligned);
7720 movl(tmp, len); // save
7721 shrl(len, 4);
7722 jcc(Assembler::zero, L_tail_restore);
7723
7724 // Fold crc into first bytes of vector
7725 movdqa(xmm1, Address(buf, 0));
7726 movdl(rax, xmm1);
7727 xorl(crc, rax);
7728 if (VM_Version::supports_sse4_1()) {
7729 pinsrd(xmm1, crc, 0);
7730 } else {
7731 pinsrw(xmm1, crc, 0);
7732 shrl(crc, 16);
7733 pinsrw(xmm1, crc, 1);
7734 }
7735 addptr(buf, 16);
7736 subl(len, 4); // len > 0
7737 jcc(Assembler::less, L_fold_tail);
7738
7739 movdqa(xmm2, Address(buf, 0));
7740 movdqa(xmm3, Address(buf, 16));
7741 movdqa(xmm4, Address(buf, 32));
7742 addptr(buf, 48);
7743 subl(len, 3);
7744 jcc(Assembler::lessEqual, L_fold_512b);
7745
7746 // Fold total 512 bits of polynomial on each iteration,
7747 // 128 bits per each of 4 parallel streams.
7748 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1);
7749
7750 align32();
7751 BIND(L_fold_512b_loop);
7752 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0);
7753 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
7754 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
7755 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
7756 addptr(buf, 64);
7757 subl(len, 4);
7758 jcc(Assembler::greater, L_fold_512b_loop);
7759
7760 // Fold 512 bits to 128 bits.
7761 BIND(L_fold_512b);
7762 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1);
7763 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
7764 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
7765 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
7766
7767 // Fold the rest of 128 bits data chunks
7768 BIND(L_fold_tail);
7769 addl(len, 3);
7770 jccb(Assembler::lessEqual, L_fold_128b);
7771 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1);
7772
7773 BIND(L_fold_tail_loop);
7774 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0);
7775 addptr(buf, 16);
7776 decrementl(len);
7777 jccb(Assembler::greater, L_fold_tail_loop);
7778
7779 // Fold 128 bits in xmm1 down into 32 bits in crc register.
7780 BIND(L_fold_128b);
7781 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1);
7782 if (UseAVX > 0) {
7783 vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
7784 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
7785 vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
7786 } else {
7787 movdqa(xmm2, xmm0);
7788 pclmulqdq(xmm2, xmm1, 0x1);
7789 movdqa(xmm3, xmm0);
7790 pand(xmm3, xmm2);
7791 pclmulqdq(xmm0, xmm3, 0x1);
7792 }
7793 psrldq(xmm1, 8);
7794 psrldq(xmm2, 4);
7795 pxor(xmm0, xmm1);
7796 pxor(xmm0, xmm2);
7797
7798 // 8 8-bit folds to compute 32-bit CRC.
7799 for (int j = 0; j < 4; j++) {
7800 fold_8bit_crc32(xmm0, table, xmm1, rax);
7801 }
7802 movdl(crc, xmm0); // mov 32 bits to general register
7803 for (int j = 0; j < 4; j++) {
7804 fold_8bit_crc32(crc, table, rax);
7805 }
7806
7807 BIND(L_tail_restore);
7808 movl(len, tmp); // restore
7809 BIND(L_tail);
7810 andl(len, 0xf);
7811 jccb(Assembler::zero, L_exit);
7812
7813 // Fold the rest of bytes
7814 align(4);
7815 BIND(L_tail_loop);
7816 movsbl(rax, Address(buf, 0)); // load byte with sign extension
7817 update_byte_crc32(crc, rax, table);
7818 increment(buf);
7819 decrementl(len);
7820 jccb(Assembler::greater, L_tail_loop);
7821
7822 BIND(L_exit);
7823 notl(crc); // ~c
7824 }
7825
7826 // Helper function for AVX 512 CRC32
7827 // Fold 512-bit data chunks
7828 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf,
7829 Register pos, int offset) {
7830 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit);
7831 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64]
7832 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0]
7833 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */);
7834 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */);
7835 }
7836
7837 // Helper function for AVX 512 CRC32
7838 // Compute CRC32 for < 256B buffers
7839 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos,
7840 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
7841 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) {
7842
7843 Label L_less_than_32, L_exact_16_left, L_less_than_16_left;
7844 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left;
7845 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2;
7846
7847 // check if there is enough buffer to be able to fold 16B at a time
7848 cmpl(len, 32);
7849 jcc(Assembler::less, L_less_than_32);
7850
7851 // if there is, load the constants
7852 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10
7853 movdl(xmm0, crc); // get the initial crc value
7854 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext
7855 pxor(xmm7, xmm0);
7856
7857 // update the buffer pointer
7858 addl(pos, 16);
7859 //update the counter.subtract 32 instead of 16 to save one instruction from the loop
7860 subl(len, 32);
7861 jmp(L_16B_reduction_loop);
7862
7863 bind(L_less_than_32);
7864 //mov initial crc to the return value. this is necessary for zero - length buffers.
7865 movl(rax, crc);
7866 testl(len, len);
7867 jcc(Assembler::equal, L_cleanup);
7868
7869 movdl(xmm0, crc); //get the initial crc value
7870
7871 cmpl(len, 16);
7872 jcc(Assembler::equal, L_exact_16_left);
7873 jcc(Assembler::less, L_less_than_16_left);
7874
7875 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext
7876 pxor(xmm7, xmm0); //xor the initial crc value
7877 addl(pos, 16);
7878 subl(len, 16);
7879 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10
7880 jmp(L_get_last_two_xmms);
7881
7882 bind(L_less_than_16_left);
7883 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first.
7884 pxor(xmm1, xmm1);
7885 movptr(tmp1, rsp);
7886 movdqu(Address(tmp1, 0 * 16), xmm1);
7887
7888 cmpl(len, 4);
7889 jcc(Assembler::less, L_only_less_than_4);
7890
7891 //backup the counter value
7892 movl(tmp2, len);
7893 cmpl(len, 8);
7894 jcc(Assembler::less, L_less_than_8_left);
7895
7896 //load 8 Bytes
7897 movq(rax, Address(buf, pos, Address::times_1, 0 * 16));
7898 movq(Address(tmp1, 0 * 16), rax);
7899 addptr(tmp1, 8);
7900 subl(len, 8);
7901 addl(pos, 8);
7902
7903 bind(L_less_than_8_left);
7904 cmpl(len, 4);
7905 jcc(Assembler::less, L_less_than_4_left);
7906
7907 //load 4 Bytes
7908 movl(rax, Address(buf, pos, Address::times_1, 0));
7909 movl(Address(tmp1, 0 * 16), rax);
7910 addptr(tmp1, 4);
7911 subl(len, 4);
7912 addl(pos, 4);
7913
7914 bind(L_less_than_4_left);
7915 cmpl(len, 2);
7916 jcc(Assembler::less, L_less_than_2_left);
7917
7918 // load 2 Bytes
7919 movw(rax, Address(buf, pos, Address::times_1, 0));
7920 movl(Address(tmp1, 0 * 16), rax);
7921 addptr(tmp1, 2);
7922 subl(len, 2);
7923 addl(pos, 2);
7924
7925 bind(L_less_than_2_left);
7926 cmpl(len, 1);
7927 jcc(Assembler::less, L_zero_left);
7928
7929 // load 1 Byte
7930 movb(rax, Address(buf, pos, Address::times_1, 0));
7931 movb(Address(tmp1, 0 * 16), rax);
7932
7933 bind(L_zero_left);
7934 movdqu(xmm7, Address(rsp, 0));
7935 pxor(xmm7, xmm0); //xor the initial crc value
7936
7937 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr()));
7938 movdqu(xmm0, Address(rax, tmp2));
7939 pshufb(xmm7, xmm0);
7940 jmp(L_128_done);
7941
7942 bind(L_exact_16_left);
7943 movdqu(xmm7, Address(buf, pos, Address::times_1, 0));
7944 pxor(xmm7, xmm0); //xor the initial crc value
7945 jmp(L_128_done);
7946
7947 bind(L_only_less_than_4);
7948 cmpl(len, 3);
7949 jcc(Assembler::less, L_only_less_than_3);
7950
7951 // load 3 Bytes
7952 movb(rax, Address(buf, pos, Address::times_1, 0));
7953 movb(Address(tmp1, 0), rax);
7954
7955 movb(rax, Address(buf, pos, Address::times_1, 1));
7956 movb(Address(tmp1, 1), rax);
7957
7958 movb(rax, Address(buf, pos, Address::times_1, 2));
7959 movb(Address(tmp1, 2), rax);
7960
7961 movdqu(xmm7, Address(rsp, 0));
7962 pxor(xmm7, xmm0); //xor the initial crc value
7963
7964 pslldq(xmm7, 0x5);
7965 jmp(L_barrett);
7966 bind(L_only_less_than_3);
7967 cmpl(len, 2);
7968 jcc(Assembler::less, L_only_less_than_2);
7969
7970 // load 2 Bytes
7971 movb(rax, Address(buf, pos, Address::times_1, 0));
7972 movb(Address(tmp1, 0), rax);
7973
7974 movb(rax, Address(buf, pos, Address::times_1, 1));
7975 movb(Address(tmp1, 1), rax);
7976
7977 movdqu(xmm7, Address(rsp, 0));
7978 pxor(xmm7, xmm0); //xor the initial crc value
7979
7980 pslldq(xmm7, 0x6);
7981 jmp(L_barrett);
7982
7983 bind(L_only_less_than_2);
7984 //load 1 Byte
7985 movb(rax, Address(buf, pos, Address::times_1, 0));
7986 movb(Address(tmp1, 0), rax);
7987
7988 movdqu(xmm7, Address(rsp, 0));
7989 pxor(xmm7, xmm0); //xor the initial crc value
7990
7991 pslldq(xmm7, 0x7);
7992 }
7993
7994 /**
7995 * Compute CRC32 using AVX512 instructions
7996 * param crc register containing existing CRC (32-bit)
7997 * param buf register pointing to input byte buffer (byte*)
7998 * param len register containing number of bytes
7999 * param table address of crc or crc32c table
8000 * param tmp1 scratch register
8001 * param tmp2 scratch register
8002 * return rax result register
8003 *
8004 * This routine is identical for crc32c with the exception of the precomputed constant
8005 * table which will be passed as the table argument. The calculation steps are
8006 * the same for both variants.
8007 */
8008 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) {
8009 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12);
8010
8011 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8012 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8013 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop;
8014 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop;
8015 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup;
8016
8017 const Register pos = r12;
8018 push(r12);
8019 subptr(rsp, 16 * 2 + 8);
8020
8021 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
8022 // context for the registers used, where all instructions below are using 128-bit mode
8023 // On EVEX without VL and BW, these instructions will all be AVX.
8024 movl(pos, 0);
8025
8026 // check if smaller than 256B
8027 cmpl(len, 256);
8028 jcc(Assembler::less, L_less_than_256);
8029
8030 // load the initial crc value
8031 movdl(xmm10, crc);
8032
8033 // receive the initial 64B data, xor the initial crc value
8034 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit);
8035 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit);
8036 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit);
8037 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4
8038
8039 subl(len, 256);
8040 cmpl(len, 256);
8041 jcc(Assembler::less, L_fold_128_B_loop);
8042
8043 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit);
8044 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit);
8045 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2
8046 subl(len, 256);
8047
8048 bind(L_fold_256_B_loop);
8049 addl(pos, 256);
8050 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64);
8051 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64);
8052 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64);
8053 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64);
8054
8055 subl(len, 256);
8056 jcc(Assembler::greaterEqual, L_fold_256_B_loop);
8057
8058 // Fold 256 into 128
8059 addl(pos, 256);
8060 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit);
8061 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit);
8062 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC
8063
8064 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit);
8065 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit);
8066 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC
8067
8068 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit);
8069 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit);
8070
8071 addl(len, 128);
8072 jmp(L_fold_128_B_register);
8073
8074 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop
8075 // loop will fold 128B at a time until we have 128 + y Bytes of buffer
8076
8077 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel
8078 bind(L_fold_128_B_loop);
8079 addl(pos, 128);
8080 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64);
8081 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64);
8082
8083 subl(len, 128);
8084 jcc(Assembler::greaterEqual, L_fold_128_B_loop);
8085
8086 addl(pos, 128);
8087
8088 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
8089 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7
8090 bind(L_fold_128_B_register);
8091 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16
8092 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0
8093 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit);
8094 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit);
8095 // save last that has no multiplicand
8096 vextracti64x2(xmm7, xmm4, 3);
8097
8098 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit);
8099 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit);
8100 // Needed later in reduction loop
8101 movdqu(xmm10, Address(table, 1 * 16));
8102 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC
8103 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC
8104
8105 // Swap 1,0,3,2 - 01 00 11 10
8106 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit);
8107 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit);
8108 vextracti128(xmm5, xmm8, 1);
8109 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit);
8110
8111 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop
8112 // instead of a cmp instruction, we use the negative flag with the jl instruction
8113 addl(len, 128 - 16);
8114 jcc(Assembler::less, L_final_reduction_for_128);
8115
8116 bind(L_16B_reduction_loop);
8117 vpclmulqdq(xmm8, xmm7, xmm10, 0x01);
8118 vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
8119 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit);
8120 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16));
8121 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
8122 addl(pos, 16);
8123 subl(len, 16);
8124 jcc(Assembler::greaterEqual, L_16B_reduction_loop);
8125
8126 bind(L_final_reduction_for_128);
8127 addl(len, 16);
8128 jcc(Assembler::equal, L_128_done);
8129
8130 bind(L_get_last_two_xmms);
8131 movdqu(xmm2, xmm7);
8132 addl(pos, len);
8133 movdqu(xmm1, Address(buf, pos, Address::times_1, -16));
8134 subl(pos, len);
8135
8136 // get rid of the extra data that was loaded before
8137 // load the shift constant
8138 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr()));
8139 movdqu(xmm0, Address(rax, len));
8140 addl(rax, len);
8141
8142 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
8143 //Change mask to 512
8144 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2);
8145 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit);
8146
8147 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit);
8148 vpclmulqdq(xmm8, xmm7, xmm10, 0x01);
8149 vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
8150 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit);
8151 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit);
8152
8153 bind(L_128_done);
8154 // compute crc of a 128-bit value
8155 movdqu(xmm10, Address(table, 3 * 16));
8156 movdqu(xmm0, xmm7);
8157
8158 // 64b fold
8159 vpclmulqdq(xmm7, xmm7, xmm10, 0x0);
8160 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit);
8161 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
8162
8163 // 32b fold
8164 movdqu(xmm0, xmm7);
8165 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit);
8166 vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
8167 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
8168 jmp(L_barrett);
8169
8170 bind(L_less_than_256);
8171 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup);
8172
8173 //barrett reduction
8174 bind(L_barrett);
8175 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2);
8176 movdqu(xmm1, xmm7);
8177 movdqu(xmm2, xmm7);
8178 movdqu(xmm10, Address(table, 4 * 16));
8179
8180 pclmulqdq(xmm7, xmm10, 0x0);
8181 pxor(xmm7, xmm2);
8182 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2);
8183 movdqu(xmm2, xmm7);
8184 pclmulqdq(xmm7, xmm10, 0x10);
8185 pxor(xmm7, xmm2);
8186 pxor(xmm7, xmm1);
8187 pextrd(crc, xmm7, 2);
8188
8189 bind(L_cleanup);
8190 addptr(rsp, 16 * 2 + 8);
8191 pop(r12);
8192 }
8193
8194 // S. Gueron / Information Processing Letters 112 (2012) 184
8195 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
8196 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
8197 // Output: the 64-bit carry-less product of B * CONST
8198 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
8199 Register tmp1, Register tmp2, Register tmp3) {
8200 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
8201 if (n > 0) {
8202 addq(tmp3, n * 256 * 8);
8203 }
8204 // Q1 = TABLEExt[n][B & 0xFF];
8205 movl(tmp1, in);
8206 andl(tmp1, 0x000000FF);
8207 shll(tmp1, 3);
8208 addq(tmp1, tmp3);
8209 movq(tmp1, Address(tmp1, 0));
8210
8211 // Q2 = TABLEExt[n][B >> 8 & 0xFF];
8212 movl(tmp2, in);
8213 shrl(tmp2, 8);
8214 andl(tmp2, 0x000000FF);
8215 shll(tmp2, 3);
8216 addq(tmp2, tmp3);
8217 movq(tmp2, Address(tmp2, 0));
8218
8219 shlq(tmp2, 8);
8220 xorq(tmp1, tmp2);
8221
8222 // Q3 = TABLEExt[n][B >> 16 & 0xFF];
8223 movl(tmp2, in);
8224 shrl(tmp2, 16);
8225 andl(tmp2, 0x000000FF);
8226 shll(tmp2, 3);
8227 addq(tmp2, tmp3);
8228 movq(tmp2, Address(tmp2, 0));
8229
8230 shlq(tmp2, 16);
8231 xorq(tmp1, tmp2);
8232
8233 // Q4 = TABLEExt[n][B >> 24 & 0xFF];
8234 shrl(in, 24);
8235 andl(in, 0x000000FF);
8236 shll(in, 3);
8237 addq(in, tmp3);
8238 movq(in, Address(in, 0));
8239
8240 shlq(in, 24);
8241 xorq(in, tmp1);
8242 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
8243 }
8244
8245 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
8246 Register in_out,
8247 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
8248 XMMRegister w_xtmp2,
8249 Register tmp1,
8250 Register n_tmp2, Register n_tmp3) {
8251 if (is_pclmulqdq_supported) {
8252 movdl(w_xtmp1, in_out); // modified blindly
8253
8254 movl(tmp1, const_or_pre_comp_const_index);
8255 movdl(w_xtmp2, tmp1);
8256 pclmulqdq(w_xtmp1, w_xtmp2, 0);
8257
8258 movdq(in_out, w_xtmp1);
8259 } else {
8260 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
8261 }
8262 }
8263
8264 // Recombination Alternative 2: No bit-reflections
8265 // T1 = (CRC_A * U1) << 1
8266 // T2 = (CRC_B * U2) << 1
8267 // C1 = T1 >> 32
8268 // C2 = T2 >> 32
8269 // T1 = T1 & 0xFFFFFFFF
8270 // T2 = T2 & 0xFFFFFFFF
8271 // T1 = CRC32(0, T1)
8272 // T2 = CRC32(0, T2)
8273 // C1 = C1 ^ T1
8274 // C2 = C2 ^ T2
8275 // CRC = C1 ^ C2 ^ CRC_C
8276 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
8277 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8278 Register tmp1, Register tmp2,
8279 Register n_tmp3) {
8280 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8281 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8282 shlq(in_out, 1);
8283 movl(tmp1, in_out);
8284 shrq(in_out, 32);
8285 xorl(tmp2, tmp2);
8286 crc32(tmp2, tmp1, 4);
8287 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
8288 shlq(in1, 1);
8289 movl(tmp1, in1);
8290 shrq(in1, 32);
8291 xorl(tmp2, tmp2);
8292 crc32(tmp2, tmp1, 4);
8293 xorl(in1, tmp2);
8294 xorl(in_out, in1);
8295 xorl(in_out, in2);
8296 }
8297
8298 // Set N to predefined value
8299 // Subtract from a length of a buffer
8300 // execute in a loop:
8301 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
8302 // for i = 1 to N do
8303 // CRC_A = CRC32(CRC_A, A[i])
8304 // CRC_B = CRC32(CRC_B, B[i])
8305 // CRC_C = CRC32(CRC_C, C[i])
8306 // end for
8307 // Recombine
8308 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
8309 Register in_out1, Register in_out2, Register in_out3,
8310 Register tmp1, Register tmp2, Register tmp3,
8311 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8312 Register tmp4, Register tmp5,
8313 Register n_tmp6) {
8314 Label L_processPartitions;
8315 Label L_processPartition;
8316 Label L_exit;
8317
8318 bind(L_processPartitions);
8319 cmpl(in_out1, 3 * size);
8320 jcc(Assembler::less, L_exit);
8321 xorl(tmp1, tmp1);
8322 xorl(tmp2, tmp2);
8323 movq(tmp3, in_out2);
8324 addq(tmp3, size);
8325
8326 bind(L_processPartition);
8327 crc32(in_out3, Address(in_out2, 0), 8);
8328 crc32(tmp1, Address(in_out2, size), 8);
8329 crc32(tmp2, Address(in_out2, size * 2), 8);
8330 addq(in_out2, 8);
8331 cmpq(in_out2, tmp3);
8332 jcc(Assembler::less, L_processPartition);
8333 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
8334 w_xtmp1, w_xtmp2, w_xtmp3,
8335 tmp4, tmp5,
8336 n_tmp6);
8337 addq(in_out2, 2 * size);
8338 subl(in_out1, 3 * size);
8339 jmp(L_processPartitions);
8340
8341 bind(L_exit);
8342 }
8343
8344 // Algorithm 2: Pipelined usage of the CRC32 instruction.
8345 // Input: A buffer I of L bytes.
8346 // Output: the CRC32C value of the buffer.
8347 // Notations:
8348 // Write L = 24N + r, with N = floor (L/24).
8349 // r = L mod 24 (0 <= r < 24).
8350 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
8351 // N quadwords, and R consists of r bytes.
8352 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
8353 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
8354 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
8355 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
8356 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
8357 Register tmp1, Register tmp2, Register tmp3,
8358 Register tmp4, Register tmp5, Register tmp6,
8359 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8360 bool is_pclmulqdq_supported) {
8361 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
8362 Label L_wordByWord;
8363 Label L_byteByByteProlog;
8364 Label L_byteByByte;
8365 Label L_exit;
8366
8367 if (is_pclmulqdq_supported ) {
8368 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::crc32c_table_addr();
8369 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 1);
8370
8371 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 2);
8372 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 3);
8373
8374 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 4);
8375 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 5);
8376 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
8377 } else {
8378 const_or_pre_comp_const_index[0] = 1;
8379 const_or_pre_comp_const_index[1] = 0;
8380
8381 const_or_pre_comp_const_index[2] = 3;
8382 const_or_pre_comp_const_index[3] = 2;
8383
8384 const_or_pre_comp_const_index[4] = 5;
8385 const_or_pre_comp_const_index[5] = 4;
8386 }
8387 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
8388 in2, in1, in_out,
8389 tmp1, tmp2, tmp3,
8390 w_xtmp1, w_xtmp2, w_xtmp3,
8391 tmp4, tmp5,
8392 tmp6);
8393 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
8394 in2, in1, in_out,
8395 tmp1, tmp2, tmp3,
8396 w_xtmp1, w_xtmp2, w_xtmp3,
8397 tmp4, tmp5,
8398 tmp6);
8399 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
8400 in2, in1, in_out,
8401 tmp1, tmp2, tmp3,
8402 w_xtmp1, w_xtmp2, w_xtmp3,
8403 tmp4, tmp5,
8404 tmp6);
8405 movl(tmp1, in2);
8406 andl(tmp1, 0x00000007);
8407 negl(tmp1);
8408 addl(tmp1, in2);
8409 addq(tmp1, in1);
8410
8411 cmpq(in1, tmp1);
8412 jccb(Assembler::greaterEqual, L_byteByByteProlog);
8413 align(16);
8414 BIND(L_wordByWord);
8415 crc32(in_out, Address(in1, 0), 8);
8416 addq(in1, 8);
8417 cmpq(in1, tmp1);
8418 jcc(Assembler::less, L_wordByWord);
8419
8420 BIND(L_byteByByteProlog);
8421 andl(in2, 0x00000007);
8422 movl(tmp2, 1);
8423
8424 cmpl(tmp2, in2);
8425 jccb(Assembler::greater, L_exit);
8426 BIND(L_byteByByte);
8427 crc32(in_out, Address(in1, 0), 1);
8428 incq(in1);
8429 incl(tmp2);
8430 cmpl(tmp2, in2);
8431 jcc(Assembler::lessEqual, L_byteByByte);
8432
8433 BIND(L_exit);
8434 }
8435 #undef BIND
8436 #undef BLOCK_COMMENT
8437
8438 // Compress char[] array to byte[].
8439 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
8440 // Return the array length if every element in array can be encoded,
8441 // otherwise, the index of first non-latin1 (> 0xff) character.
8442 // @IntrinsicCandidate
8443 // public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
8444 // for (int i = 0; i < len; i++) {
8445 // char c = src[srcOff];
8446 // if (c > 0xff) {
8447 // return i; // return index of non-latin1 char
8448 // }
8449 // dst[dstOff] = (byte)c;
8450 // srcOff++;
8451 // dstOff++;
8452 // }
8453 // return len;
8454 // }
8455 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
8456 XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8457 XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8458 Register tmp5, Register result, KRegister mask1, KRegister mask2) {
8459 Label copy_chars_loop, done, reset_sp, copy_tail;
8460
8461 // rsi: src
8462 // rdi: dst
8463 // rdx: len
8464 // rcx: tmp5
8465 // rax: result
8466
8467 // rsi holds start addr of source char[] to be compressed
8468 // rdi holds start addr of destination byte[]
8469 // rdx holds length
8470
8471 assert(len != result, "");
8472
8473 // save length for return
8474 movl(result, len);
8475
8476 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
8477 VM_Version::supports_avx512vlbw() &&
8478 VM_Version::supports_bmi2()) {
8479
8480 Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail;
8481
8482 // alignment
8483 Label post_alignment;
8484
8485 // if length of the string is less than 32, handle it the old fashioned way
8486 testl(len, -32);
8487 jcc(Assembler::zero, below_threshold);
8488
8489 // First check whether a character is compressible ( <= 0xFF).
8490 // Create mask to test for Unicode chars inside zmm vector
8491 movl(tmp5, 0x00FF);
8492 evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit);
8493
8494 testl(len, -64);
8495 jccb(Assembler::zero, post_alignment);
8496
8497 movl(tmp5, dst);
8498 andl(tmp5, (32 - 1));
8499 negl(tmp5);
8500 andl(tmp5, (32 - 1));
8501
8502 // bail out when there is nothing to be done
8503 testl(tmp5, 0xFFFFFFFF);
8504 jccb(Assembler::zero, post_alignment);
8505
8506 // ~(~0 << len), where len is the # of remaining elements to process
8507 movl(len, 0xFFFFFFFF);
8508 shlxl(len, len, tmp5);
8509 notl(len);
8510 kmovdl(mask2, len);
8511 movl(len, result);
8512
8513 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit);
8514 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit);
8515 ktestd(mask1, mask2);
8516 jcc(Assembler::carryClear, copy_tail);
8517
8518 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit);
8519
8520 addptr(src, tmp5);
8521 addptr(src, tmp5);
8522 addptr(dst, tmp5);
8523 subl(len, tmp5);
8524
8525 bind(post_alignment);
8526 // end of alignment
8527
8528 movl(tmp5, len);
8529 andl(tmp5, (32 - 1)); // tail count (in chars)
8530 andl(len, ~(32 - 1)); // vector count (in chars)
8531 jccb(Assembler::zero, copy_loop_tail);
8532
8533 lea(src, Address(src, len, Address::times_2));
8534 lea(dst, Address(dst, len, Address::times_1));
8535 negptr(len);
8536
8537 bind(copy_32_loop);
8538 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
8539 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
8540 kortestdl(mask1, mask1);
8541 jccb(Assembler::carryClear, reset_for_copy_tail);
8542
8543 // All elements in current processed chunk are valid candidates for
8544 // compression. Write a truncated byte elements to the memory.
8545 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
8546 addptr(len, 32);
8547 jccb(Assembler::notZero, copy_32_loop);
8548
8549 bind(copy_loop_tail);
8550 // bail out when there is nothing to be done
8551 testl(tmp5, 0xFFFFFFFF);
8552 jcc(Assembler::zero, done);
8553
8554 movl(len, tmp5);
8555
8556 // ~(~0 << len), where len is the # of remaining elements to process
8557 movl(tmp5, 0xFFFFFFFF);
8558 shlxl(tmp5, tmp5, len);
8559 notl(tmp5);
8560
8561 kmovdl(mask2, tmp5);
8562
8563 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit);
8564 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit);
8565 ktestd(mask1, mask2);
8566 jcc(Assembler::carryClear, copy_tail);
8567
8568 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit);
8569 jmp(done);
8570
8571 bind(reset_for_copy_tail);
8572 lea(src, Address(src, tmp5, Address::times_2));
8573 lea(dst, Address(dst, tmp5, Address::times_1));
8574 subptr(len, tmp5);
8575 jmp(copy_chars_loop);
8576
8577 bind(below_threshold);
8578 }
8579
8580 if (UseSSE42Intrinsics) {
8581 Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail;
8582
8583 // vectored compression
8584 testl(len, 0xfffffff8);
8585 jcc(Assembler::zero, copy_tail);
8586
8587 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors
8588 movdl(tmp1Reg, tmp5);
8589 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg
8590
8591 andl(len, 0xfffffff0);
8592 jccb(Assembler::zero, copy_16);
8593
8594 // compress 16 chars per iter
8595 pxor(tmp4Reg, tmp4Reg);
8596
8597 lea(src, Address(src, len, Address::times_2));
8598 lea(dst, Address(dst, len, Address::times_1));
8599 negptr(len);
8600
8601 bind(copy_32_loop);
8602 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters
8603 por(tmp4Reg, tmp2Reg);
8604 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
8605 por(tmp4Reg, tmp3Reg);
8606 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector
8607 jccb(Assembler::notZero, reset_for_copy_tail);
8608 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte
8609 movdqu(Address(dst, len, Address::times_1), tmp2Reg);
8610 addptr(len, 16);
8611 jccb(Assembler::notZero, copy_32_loop);
8612
8613 // compress next vector of 8 chars (if any)
8614 bind(copy_16);
8615 // len = 0
8616 testl(result, 0x00000008); // check if there's a block of 8 chars to compress
8617 jccb(Assembler::zero, copy_tail_sse);
8618
8619 pxor(tmp3Reg, tmp3Reg);
8620
8621 movdqu(tmp2Reg, Address(src, 0));
8622 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector
8623 jccb(Assembler::notZero, reset_for_copy_tail);
8624 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte
8625 movq(Address(dst, 0), tmp2Reg);
8626 addptr(src, 16);
8627 addptr(dst, 8);
8628 jmpb(copy_tail_sse);
8629
8630 bind(reset_for_copy_tail);
8631 movl(tmp5, result);
8632 andl(tmp5, 0x0000000f);
8633 lea(src, Address(src, tmp5, Address::times_2));
8634 lea(dst, Address(dst, tmp5, Address::times_1));
8635 subptr(len, tmp5);
8636 jmpb(copy_chars_loop);
8637
8638 bind(copy_tail_sse);
8639 movl(len, result);
8640 andl(len, 0x00000007); // tail count (in chars)
8641 }
8642 // compress 1 char per iter
8643 bind(copy_tail);
8644 testl(len, len);
8645 jccb(Assembler::zero, done);
8646 lea(src, Address(src, len, Address::times_2));
8647 lea(dst, Address(dst, len, Address::times_1));
8648 negptr(len);
8649
8650 bind(copy_chars_loop);
8651 load_unsigned_short(tmp5, Address(src, len, Address::times_2));
8652 testl(tmp5, 0xff00); // check if Unicode char
8653 jccb(Assembler::notZero, reset_sp);
8654 movb(Address(dst, len, Address::times_1), tmp5); // ASCII char; compress to 1 byte
8655 increment(len);
8656 jccb(Assembler::notZero, copy_chars_loop);
8657
8658 // add len then return (len will be zero if compress succeeded, otherwise negative)
8659 bind(reset_sp);
8660 addl(result, len);
8661
8662 bind(done);
8663 }
8664
8665 // Inflate byte[] array to char[].
8666 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
8667 // @IntrinsicCandidate
8668 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
8669 // for (int i = 0; i < len; i++) {
8670 // dst[dstOff++] = (char)(src[srcOff++] & 0xff);
8671 // }
8672 // }
8673 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
8674 XMMRegister tmp1, Register tmp2, KRegister mask) {
8675 Label copy_chars_loop, done, below_threshold, avx3_threshold;
8676 // rsi: src
8677 // rdi: dst
8678 // rdx: len
8679 // rcx: tmp2
8680
8681 // rsi holds start addr of source byte[] to be inflated
8682 // rdi holds start addr of destination char[]
8683 // rdx holds length
8684 assert_different_registers(src, dst, len, tmp2);
8685 movl(tmp2, len);
8686 if ((UseAVX > 2) && // AVX512
8687 VM_Version::supports_avx512vlbw() &&
8688 VM_Version::supports_bmi2()) {
8689
8690 Label copy_32_loop, copy_tail;
8691 Register tmp3_aliased = len;
8692
8693 // if length of the string is less than 16, handle it in an old fashioned way
8694 testl(len, -16);
8695 jcc(Assembler::zero, below_threshold);
8696
8697 testl(len, -1 * AVX3Threshold);
8698 jcc(Assembler::zero, avx3_threshold);
8699
8700 // In order to use only one arithmetic operation for the main loop we use
8701 // this pre-calculation
8702 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
8703 andl(len, -32); // vector count
8704 jccb(Assembler::zero, copy_tail);
8705
8706 lea(src, Address(src, len, Address::times_1));
8707 lea(dst, Address(dst, len, Address::times_2));
8708 negptr(len);
8709
8710
8711 // inflate 32 chars per iter
8712 bind(copy_32_loop);
8713 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
8714 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
8715 addptr(len, 32);
8716 jcc(Assembler::notZero, copy_32_loop);
8717
8718 bind(copy_tail);
8719 // bail out when there is nothing to be done
8720 testl(tmp2, -1); // we don't destroy the contents of tmp2 here
8721 jcc(Assembler::zero, done);
8722
8723 // ~(~0 << length), where length is the # of remaining elements to process
8724 movl(tmp3_aliased, -1);
8725 shlxl(tmp3_aliased, tmp3_aliased, tmp2);
8726 notl(tmp3_aliased);
8727 kmovdl(mask, tmp3_aliased);
8728 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit);
8729 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit);
8730
8731 jmp(done);
8732 bind(avx3_threshold);
8733 }
8734 if (UseSSE42Intrinsics) {
8735 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
8736
8737 if (UseAVX > 1) {
8738 andl(tmp2, (16 - 1));
8739 andl(len, -16);
8740 jccb(Assembler::zero, copy_new_tail);
8741 } else {
8742 andl(tmp2, 0x00000007); // tail count (in chars)
8743 andl(len, 0xfffffff8); // vector count (in chars)
8744 jccb(Assembler::zero, copy_tail);
8745 }
8746
8747 // vectored inflation
8748 lea(src, Address(src, len, Address::times_1));
8749 lea(dst, Address(dst, len, Address::times_2));
8750 negptr(len);
8751
8752 if (UseAVX > 1) {
8753 bind(copy_16_loop);
8754 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
8755 vmovdqu(Address(dst, len, Address::times_2), tmp1);
8756 addptr(len, 16);
8757 jcc(Assembler::notZero, copy_16_loop);
8758
8759 bind(below_threshold);
8760 bind(copy_new_tail);
8761 movl(len, tmp2);
8762 andl(tmp2, 0x00000007);
8763 andl(len, 0xFFFFFFF8);
8764 jccb(Assembler::zero, copy_tail);
8765
8766 pmovzxbw(tmp1, Address(src, 0));
8767 movdqu(Address(dst, 0), tmp1);
8768 addptr(src, 8);
8769 addptr(dst, 2 * 8);
8770
8771 jmp(copy_tail, true);
8772 }
8773
8774 // inflate 8 chars per iter
8775 bind(copy_8_loop);
8776 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words
8777 movdqu(Address(dst, len, Address::times_2), tmp1);
8778 addptr(len, 8);
8779 jcc(Assembler::notZero, copy_8_loop);
8780
8781 bind(copy_tail);
8782 movl(len, tmp2);
8783
8784 cmpl(len, 4);
8785 jccb(Assembler::less, copy_bytes);
8786
8787 movdl(tmp1, Address(src, 0)); // load 4 byte chars
8788 pmovzxbw(tmp1, tmp1);
8789 movq(Address(dst, 0), tmp1);
8790 subptr(len, 4);
8791 addptr(src, 4);
8792 addptr(dst, 8);
8793
8794 bind(copy_bytes);
8795 } else {
8796 bind(below_threshold);
8797 }
8798
8799 testl(len, len);
8800 jccb(Assembler::zero, done);
8801 lea(src, Address(src, len, Address::times_1));
8802 lea(dst, Address(dst, len, Address::times_2));
8803 negptr(len);
8804
8805 // inflate 1 char per iter
8806 bind(copy_chars_loop);
8807 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char
8808 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word
8809 increment(len);
8810 jcc(Assembler::notZero, copy_chars_loop);
8811
8812 bind(done);
8813 }
8814
8815 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len) {
8816 switch(type) {
8817 case T_BYTE:
8818 case T_BOOLEAN:
8819 evmovdqub(dst, kmask, src, merge, vector_len);
8820 break;
8821 case T_CHAR:
8822 case T_SHORT:
8823 evmovdquw(dst, kmask, src, merge, vector_len);
8824 break;
8825 case T_INT:
8826 case T_FLOAT:
8827 evmovdqul(dst, kmask, src, merge, vector_len);
8828 break;
8829 case T_LONG:
8830 case T_DOUBLE:
8831 evmovdquq(dst, kmask, src, merge, vector_len);
8832 break;
8833 default:
8834 fatal("Unexpected type argument %s", type2name(type));
8835 break;
8836 }
8837 }
8838
8839
8840 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) {
8841 switch(type) {
8842 case T_BYTE:
8843 case T_BOOLEAN:
8844 evmovdqub(dst, kmask, src, merge, vector_len);
8845 break;
8846 case T_CHAR:
8847 case T_SHORT:
8848 evmovdquw(dst, kmask, src, merge, vector_len);
8849 break;
8850 case T_INT:
8851 case T_FLOAT:
8852 evmovdqul(dst, kmask, src, merge, vector_len);
8853 break;
8854 case T_LONG:
8855 case T_DOUBLE:
8856 evmovdquq(dst, kmask, src, merge, vector_len);
8857 break;
8858 default:
8859 fatal("Unexpected type argument %s", type2name(type));
8860 break;
8861 }
8862 }
8863
8864 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) {
8865 switch(type) {
8866 case T_BYTE:
8867 case T_BOOLEAN:
8868 evmovdqub(dst, kmask, src, merge, vector_len);
8869 break;
8870 case T_CHAR:
8871 case T_SHORT:
8872 evmovdquw(dst, kmask, src, merge, vector_len);
8873 break;
8874 case T_INT:
8875 case T_FLOAT:
8876 evmovdqul(dst, kmask, src, merge, vector_len);
8877 break;
8878 case T_LONG:
8879 case T_DOUBLE:
8880 evmovdquq(dst, kmask, src, merge, vector_len);
8881 break;
8882 default:
8883 fatal("Unexpected type argument %s", type2name(type));
8884 break;
8885 }
8886 }
8887
8888 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) {
8889 switch(masklen) {
8890 case 2:
8891 knotbl(dst, src);
8892 movl(rtmp, 3);
8893 kmovbl(ktmp, rtmp);
8894 kandbl(dst, ktmp, dst);
8895 break;
8896 case 4:
8897 knotbl(dst, src);
8898 movl(rtmp, 15);
8899 kmovbl(ktmp, rtmp);
8900 kandbl(dst, ktmp, dst);
8901 break;
8902 case 8:
8903 knotbl(dst, src);
8904 break;
8905 case 16:
8906 knotwl(dst, src);
8907 break;
8908 case 32:
8909 knotdl(dst, src);
8910 break;
8911 case 64:
8912 knotql(dst, src);
8913 break;
8914 default:
8915 fatal("Unexpected vector length %d", masklen);
8916 break;
8917 }
8918 }
8919
8920 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
8921 switch(type) {
8922 case T_BOOLEAN:
8923 case T_BYTE:
8924 kandbl(dst, src1, src2);
8925 break;
8926 case T_CHAR:
8927 case T_SHORT:
8928 kandwl(dst, src1, src2);
8929 break;
8930 case T_INT:
8931 case T_FLOAT:
8932 kanddl(dst, src1, src2);
8933 break;
8934 case T_LONG:
8935 case T_DOUBLE:
8936 kandql(dst, src1, src2);
8937 break;
8938 default:
8939 fatal("Unexpected type argument %s", type2name(type));
8940 break;
8941 }
8942 }
8943
8944 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
8945 switch(type) {
8946 case T_BOOLEAN:
8947 case T_BYTE:
8948 korbl(dst, src1, src2);
8949 break;
8950 case T_CHAR:
8951 case T_SHORT:
8952 korwl(dst, src1, src2);
8953 break;
8954 case T_INT:
8955 case T_FLOAT:
8956 kordl(dst, src1, src2);
8957 break;
8958 case T_LONG:
8959 case T_DOUBLE:
8960 korql(dst, src1, src2);
8961 break;
8962 default:
8963 fatal("Unexpected type argument %s", type2name(type));
8964 break;
8965 }
8966 }
8967
8968 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
8969 switch(type) {
8970 case T_BOOLEAN:
8971 case T_BYTE:
8972 kxorbl(dst, src1, src2);
8973 break;
8974 case T_CHAR:
8975 case T_SHORT:
8976 kxorwl(dst, src1, src2);
8977 break;
8978 case T_INT:
8979 case T_FLOAT:
8980 kxordl(dst, src1, src2);
8981 break;
8982 case T_LONG:
8983 case T_DOUBLE:
8984 kxorql(dst, src1, src2);
8985 break;
8986 default:
8987 fatal("Unexpected type argument %s", type2name(type));
8988 break;
8989 }
8990 }
8991
8992 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
8993 switch(type) {
8994 case T_BOOLEAN:
8995 case T_BYTE:
8996 evpermb(dst, mask, nds, src, merge, vector_len); break;
8997 case T_CHAR:
8998 case T_SHORT:
8999 evpermw(dst, mask, nds, src, merge, vector_len); break;
9000 case T_INT:
9001 case T_FLOAT:
9002 evpermd(dst, mask, nds, src, merge, vector_len); break;
9003 case T_LONG:
9004 case T_DOUBLE:
9005 evpermq(dst, mask, nds, src, merge, vector_len); break;
9006 default:
9007 fatal("Unexpected type argument %s", type2name(type)); break;
9008 }
9009 }
9010
9011 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
9012 switch(type) {
9013 case T_BOOLEAN:
9014 case T_BYTE:
9015 evpermb(dst, mask, nds, src, merge, vector_len); break;
9016 case T_CHAR:
9017 case T_SHORT:
9018 evpermw(dst, mask, nds, src, merge, vector_len); break;
9019 case T_INT:
9020 case T_FLOAT:
9021 evpermd(dst, mask, nds, src, merge, vector_len); break;
9022 case T_LONG:
9023 case T_DOUBLE:
9024 evpermq(dst, mask, nds, src, merge, vector_len); break;
9025 default:
9026 fatal("Unexpected type argument %s", type2name(type)); break;
9027 }
9028 }
9029
9030 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
9031 switch(type) {
9032 case T_BYTE:
9033 evpminub(dst, mask, nds, src, merge, vector_len); break;
9034 case T_SHORT:
9035 evpminuw(dst, mask, nds, src, merge, vector_len); break;
9036 case T_INT:
9037 evpminud(dst, mask, nds, src, merge, vector_len); break;
9038 case T_LONG:
9039 evpminuq(dst, mask, nds, src, merge, vector_len); break;
9040 default:
9041 fatal("Unexpected type argument %s", type2name(type)); break;
9042 }
9043 }
9044
9045 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
9046 switch(type) {
9047 case T_BYTE:
9048 evpmaxub(dst, mask, nds, src, merge, vector_len); break;
9049 case T_SHORT:
9050 evpmaxuw(dst, mask, nds, src, merge, vector_len); break;
9051 case T_INT:
9052 evpmaxud(dst, mask, nds, src, merge, vector_len); break;
9053 case T_LONG:
9054 evpmaxuq(dst, mask, nds, src, merge, vector_len); break;
9055 default:
9056 fatal("Unexpected type argument %s", type2name(type)); break;
9057 }
9058 }
9059
9060 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
9061 switch(type) {
9062 case T_BYTE:
9063 evpminub(dst, mask, nds, src, merge, vector_len); break;
9064 case T_SHORT:
9065 evpminuw(dst, mask, nds, src, merge, vector_len); break;
9066 case T_INT:
9067 evpminud(dst, mask, nds, src, merge, vector_len); break;
9068 case T_LONG:
9069 evpminuq(dst, mask, nds, src, merge, vector_len); break;
9070 default:
9071 fatal("Unexpected type argument %s", type2name(type)); break;
9072 }
9073 }
9074
9075 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
9076 switch(type) {
9077 case T_BYTE:
9078 evpmaxub(dst, mask, nds, src, merge, vector_len); break;
9079 case T_SHORT:
9080 evpmaxuw(dst, mask, nds, src, merge, vector_len); break;
9081 case T_INT:
9082 evpmaxud(dst, mask, nds, src, merge, vector_len); break;
9083 case T_LONG:
9084 evpmaxuq(dst, mask, nds, src, merge, vector_len); break;
9085 default:
9086 fatal("Unexpected type argument %s", type2name(type)); break;
9087 }
9088 }
9089
9090 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
9091 switch(type) {
9092 case T_BYTE:
9093 evpminsb(dst, mask, nds, src, merge, vector_len); break;
9094 case T_SHORT:
9095 evpminsw(dst, mask, nds, src, merge, vector_len); break;
9096 case T_INT:
9097 evpminsd(dst, mask, nds, src, merge, vector_len); break;
9098 case T_LONG:
9099 evpminsq(dst, mask, nds, src, merge, vector_len); break;
9100 case T_FLOAT:
9101 evminmaxps(dst, mask, nds, src, merge, AVX10_2_MINMAX_MIN_COMPARE_SIGN, vector_len); break;
9102 case T_DOUBLE:
9103 evminmaxpd(dst, mask, nds, src, merge, AVX10_2_MINMAX_MIN_COMPARE_SIGN, vector_len); break;
9104 default:
9105 fatal("Unexpected type argument %s", type2name(type)); break;
9106 }
9107 }
9108
9109 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
9110 switch(type) {
9111 case T_BYTE:
9112 evpmaxsb(dst, mask, nds, src, merge, vector_len); break;
9113 case T_SHORT:
9114 evpmaxsw(dst, mask, nds, src, merge, vector_len); break;
9115 case T_INT:
9116 evpmaxsd(dst, mask, nds, src, merge, vector_len); break;
9117 case T_LONG:
9118 evpmaxsq(dst, mask, nds, src, merge, vector_len); break;
9119 case T_FLOAT:
9120 evminmaxps(dst, mask, nds, src, merge, AVX10_2_MINMAX_MAX_COMPARE_SIGN, vector_len); break;
9121 case T_DOUBLE:
9122 evminmaxpd(dst, mask, nds, src, merge, AVX10_2_MINMAX_MAX_COMPARE_SIGN, vector_len); break;
9123 default:
9124 fatal("Unexpected type argument %s", type2name(type)); break;
9125 }
9126 }
9127
9128 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
9129 switch(type) {
9130 case T_BYTE:
9131 evpminsb(dst, mask, nds, src, merge, vector_len); break;
9132 case T_SHORT:
9133 evpminsw(dst, mask, nds, src, merge, vector_len); break;
9134 case T_INT:
9135 evpminsd(dst, mask, nds, src, merge, vector_len); break;
9136 case T_LONG:
9137 evpminsq(dst, mask, nds, src, merge, vector_len); break;
9138 case T_FLOAT:
9139 evminmaxps(dst, mask, nds, src, merge, AVX10_2_MINMAX_MIN_COMPARE_SIGN, vector_len); break;
9140 case T_DOUBLE:
9141 evminmaxpd(dst, mask, nds, src, merge, AVX10_2_MINMAX_MIN_COMPARE_SIGN, vector_len); break;
9142 default:
9143 fatal("Unexpected type argument %s", type2name(type)); break;
9144 }
9145 }
9146
9147 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
9148 switch(type) {
9149 case T_BYTE:
9150 evpmaxsb(dst, mask, nds, src, merge, vector_len); break;
9151 case T_SHORT:
9152 evpmaxsw(dst, mask, nds, src, merge, vector_len); break;
9153 case T_INT:
9154 evpmaxsd(dst, mask, nds, src, merge, vector_len); break;
9155 case T_LONG:
9156 evpmaxsq(dst, mask, nds, src, merge, vector_len); break;
9157 case T_FLOAT:
9158 evminmaxps(dst, mask, nds, src, merge, AVX10_2_MINMAX_MAX_COMPARE_SIGN, vector_len); break;
9159 case T_DOUBLE:
9160 evminmaxps(dst, mask, nds, src, merge, AVX10_2_MINMAX_MAX_COMPARE_SIGN, vector_len); break;
9161 default:
9162 fatal("Unexpected type argument %s", type2name(type)); break;
9163 }
9164 }
9165
9166 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
9167 switch(type) {
9168 case T_INT:
9169 evpxord(dst, mask, nds, src, merge, vector_len); break;
9170 case T_LONG:
9171 evpxorq(dst, mask, nds, src, merge, vector_len); break;
9172 default:
9173 fatal("Unexpected type argument %s", type2name(type)); break;
9174 }
9175 }
9176
9177 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
9178 switch(type) {
9179 case T_INT:
9180 evpxord(dst, mask, nds, src, merge, vector_len); break;
9181 case T_LONG:
9182 evpxorq(dst, mask, nds, src, merge, vector_len); break;
9183 default:
9184 fatal("Unexpected type argument %s", type2name(type)); break;
9185 }
9186 }
9187
9188 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
9189 switch(type) {
9190 case T_INT:
9191 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break;
9192 case T_LONG:
9193 evporq(dst, mask, nds, src, merge, vector_len); break;
9194 default:
9195 fatal("Unexpected type argument %s", type2name(type)); break;
9196 }
9197 }
9198
9199 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
9200 switch(type) {
9201 case T_INT:
9202 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break;
9203 case T_LONG:
9204 evporq(dst, mask, nds, src, merge, vector_len); break;
9205 default:
9206 fatal("Unexpected type argument %s", type2name(type)); break;
9207 }
9208 }
9209
9210 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
9211 switch(type) {
9212 case T_INT:
9213 evpandd(dst, mask, nds, src, merge, vector_len); break;
9214 case T_LONG:
9215 evpandq(dst, mask, nds, src, merge, vector_len); break;
9216 default:
9217 fatal("Unexpected type argument %s", type2name(type)); break;
9218 }
9219 }
9220
9221 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
9222 switch(type) {
9223 case T_INT:
9224 evpandd(dst, mask, nds, src, merge, vector_len); break;
9225 case T_LONG:
9226 evpandq(dst, mask, nds, src, merge, vector_len); break;
9227 default:
9228 fatal("Unexpected type argument %s", type2name(type)); break;
9229 }
9230 }
9231
9232 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) {
9233 switch(masklen) {
9234 case 8:
9235 kortestbl(src1, src2);
9236 break;
9237 case 16:
9238 kortestwl(src1, src2);
9239 break;
9240 case 32:
9241 kortestdl(src1, src2);
9242 break;
9243 case 64:
9244 kortestql(src1, src2);
9245 break;
9246 default:
9247 fatal("Unexpected mask length %d", masklen);
9248 break;
9249 }
9250 }
9251
9252
9253 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) {
9254 switch(masklen) {
9255 case 8:
9256 ktestbl(src1, src2);
9257 break;
9258 case 16:
9259 ktestwl(src1, src2);
9260 break;
9261 case 32:
9262 ktestdl(src1, src2);
9263 break;
9264 case 64:
9265 ktestql(src1, src2);
9266 break;
9267 default:
9268 fatal("Unexpected mask length %d", masklen);
9269 break;
9270 }
9271 }
9272
9273 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) {
9274 switch(type) {
9275 case T_INT:
9276 evprold(dst, mask, src, shift, merge, vlen_enc); break;
9277 case T_LONG:
9278 evprolq(dst, mask, src, shift, merge, vlen_enc); break;
9279 default:
9280 fatal("Unexpected type argument %s", type2name(type)); break;
9281 break;
9282 }
9283 }
9284
9285 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) {
9286 switch(type) {
9287 case T_INT:
9288 evprord(dst, mask, src, shift, merge, vlen_enc); break;
9289 case T_LONG:
9290 evprorq(dst, mask, src, shift, merge, vlen_enc); break;
9291 default:
9292 fatal("Unexpected type argument %s", type2name(type)); break;
9293 }
9294 }
9295
9296 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) {
9297 switch(type) {
9298 case T_INT:
9299 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break;
9300 case T_LONG:
9301 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break;
9302 default:
9303 fatal("Unexpected type argument %s", type2name(type)); break;
9304 }
9305 }
9306
9307 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) {
9308 switch(type) {
9309 case T_INT:
9310 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break;
9311 case T_LONG:
9312 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break;
9313 default:
9314 fatal("Unexpected type argument %s", type2name(type)); break;
9315 }
9316 }
9317
9318 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
9319 assert(rscratch != noreg || always_reachable(src), "missing");
9320
9321 if (reachable(src)) {
9322 evpandq(dst, nds, as_Address(src), vector_len);
9323 } else {
9324 lea(rscratch, src);
9325 evpandq(dst, nds, Address(rscratch, 0), vector_len);
9326 }
9327 }
9328
9329 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
9330 assert(rscratch != noreg || always_reachable(src), "missing");
9331
9332 if (reachable(src)) {
9333 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len);
9334 } else {
9335 lea(rscratch, src);
9336 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len);
9337 }
9338 }
9339
9340 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
9341 assert(rscratch != noreg || always_reachable(src), "missing");
9342
9343 if (reachable(src)) {
9344 evporq(dst, nds, as_Address(src), vector_len);
9345 } else {
9346 lea(rscratch, src);
9347 evporq(dst, nds, Address(rscratch, 0), vector_len);
9348 }
9349 }
9350
9351 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
9352 assert(rscratch != noreg || always_reachable(src), "missing");
9353
9354 if (reachable(src)) {
9355 vpshufb(dst, nds, as_Address(src), vector_len);
9356 } else {
9357 lea(rscratch, src);
9358 vpshufb(dst, nds, Address(rscratch, 0), vector_len);
9359 }
9360 }
9361
9362 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
9363 assert(rscratch != noreg || always_reachable(src), "missing");
9364
9365 if (reachable(src)) {
9366 Assembler::vpor(dst, nds, as_Address(src), vector_len);
9367 } else {
9368 lea(rscratch, src);
9369 Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len);
9370 }
9371 }
9372
9373 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) {
9374 assert(rscratch != noreg || always_reachable(src3), "missing");
9375
9376 if (reachable(src3)) {
9377 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len);
9378 } else {
9379 lea(rscratch, src3);
9380 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len);
9381 }
9382 }
9383
9384 #if COMPILER2_OR_JVMCI
9385
9386 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
9387 Register length, Register temp, int vec_enc) {
9388 // Computing mask for predicated vector store.
9389 movptr(temp, -1);
9390 bzhiq(temp, temp, length);
9391 kmov(mask, temp);
9392 evmovdqu(bt, mask, dst, xmm, true, vec_enc);
9393 }
9394
9395 // Set memory operation for length "less than" 64 bytes.
9396 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp,
9397 XMMRegister xmm, KRegister mask, Register length,
9398 Register temp, bool use64byteVector) {
9399 assert(MaxVectorSize >= 32, "vector length should be >= 32");
9400 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
9401 if (!use64byteVector) {
9402 fill32(dst, disp, xmm);
9403 subptr(length, 32 >> shift);
9404 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp);
9405 } else {
9406 assert(MaxVectorSize == 64, "vector length != 64");
9407 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit);
9408 }
9409 }
9410
9411
9412 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp,
9413 XMMRegister xmm, KRegister mask, Register length,
9414 Register temp) {
9415 assert(MaxVectorSize >= 32, "vector length should be >= 32");
9416 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
9417 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit);
9418 }
9419
9420
9421 void MacroAssembler::fill32(Address dst, XMMRegister xmm) {
9422 assert(MaxVectorSize >= 32, "vector length should be >= 32");
9423 vmovdqu(dst, xmm);
9424 }
9425
9426 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) {
9427 fill32(Address(dst, disp), xmm);
9428 }
9429
9430 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) {
9431 assert(MaxVectorSize >= 32, "vector length should be >= 32");
9432 if (!use64byteVector) {
9433 fill32(dst, xmm);
9434 fill32(dst.plus_disp(32), xmm);
9435 } else {
9436 evmovdquq(dst, xmm, Assembler::AVX_512bit);
9437 }
9438 }
9439
9440 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) {
9441 fill64(Address(dst, disp), xmm, use64byteVector);
9442 }
9443
9444 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value,
9445 Register count, Register rtmp, XMMRegister xtmp) {
9446 Label L_exit;
9447 Label L_fill_start;
9448 Label L_fill_64_bytes;
9449 Label L_fill_96_bytes;
9450 Label L_fill_128_bytes;
9451 Label L_fill_128_bytes_loop;
9452 Label L_fill_128_loop_header;
9453 Label L_fill_128_bytes_loop_header;
9454 Label L_fill_128_bytes_loop_pre_header;
9455 Label L_fill_zmm_sequence;
9456
9457 int shift = -1;
9458 int avx3threshold = VM_Version::avx3_threshold();
9459 switch(type) {
9460 case T_BYTE: shift = 0;
9461 break;
9462 case T_SHORT: shift = 1;
9463 break;
9464 case T_INT: shift = 2;
9465 break;
9466 /* Uncomment when LONG fill stubs are supported.
9467 case T_LONG: shift = 3;
9468 break;
9469 */
9470 default:
9471 fatal("Unhandled type: %s\n", type2name(type));
9472 }
9473
9474 if ((avx3threshold != 0) || (MaxVectorSize == 32)) {
9475
9476 if (MaxVectorSize == 64) {
9477 cmpq(count, avx3threshold >> shift);
9478 jcc(Assembler::greater, L_fill_zmm_sequence);
9479 }
9480
9481 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit);
9482
9483 bind(L_fill_start);
9484
9485 cmpq(count, 32 >> shift);
9486 jccb(Assembler::greater, L_fill_64_bytes);
9487 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp);
9488 jmp(L_exit);
9489
9490 bind(L_fill_64_bytes);
9491 cmpq(count, 64 >> shift);
9492 jccb(Assembler::greater, L_fill_96_bytes);
9493 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp);
9494 jmp(L_exit);
9495
9496 bind(L_fill_96_bytes);
9497 cmpq(count, 96 >> shift);
9498 jccb(Assembler::greater, L_fill_128_bytes);
9499 fill64(to, 0, xtmp);
9500 subq(count, 64 >> shift);
9501 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp);
9502 jmp(L_exit);
9503
9504 bind(L_fill_128_bytes);
9505 cmpq(count, 128 >> shift);
9506 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header);
9507 fill64(to, 0, xtmp);
9508 fill32(to, 64, xtmp);
9509 subq(count, 96 >> shift);
9510 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp);
9511 jmp(L_exit);
9512
9513 bind(L_fill_128_bytes_loop_pre_header);
9514 {
9515 mov(rtmp, to);
9516 andq(rtmp, 31);
9517 jccb(Assembler::zero, L_fill_128_bytes_loop_header);
9518 negq(rtmp);
9519 addq(rtmp, 32);
9520 mov64(r8, -1L);
9521 bzhiq(r8, r8, rtmp);
9522 kmovql(k2, r8);
9523 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit);
9524 addq(to, rtmp);
9525 shrq(rtmp, shift);
9526 subq(count, rtmp);
9527 }
9528
9529 cmpq(count, 128 >> shift);
9530 jcc(Assembler::less, L_fill_start);
9531
9532 bind(L_fill_128_bytes_loop_header);
9533 subq(count, 128 >> shift);
9534
9535 align32();
9536 bind(L_fill_128_bytes_loop);
9537 fill64(to, 0, xtmp);
9538 fill64(to, 64, xtmp);
9539 addq(to, 128);
9540 subq(count, 128 >> shift);
9541 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop);
9542
9543 addq(count, 128 >> shift);
9544 jcc(Assembler::zero, L_exit);
9545 jmp(L_fill_start);
9546 }
9547
9548 if (MaxVectorSize == 64) {
9549 // Sequence using 64 byte ZMM register.
9550 Label L_fill_128_bytes_zmm;
9551 Label L_fill_192_bytes_zmm;
9552 Label L_fill_192_bytes_loop_zmm;
9553 Label L_fill_192_bytes_loop_header_zmm;
9554 Label L_fill_192_bytes_loop_pre_header_zmm;
9555 Label L_fill_start_zmm_sequence;
9556
9557 bind(L_fill_zmm_sequence);
9558 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit);
9559
9560 bind(L_fill_start_zmm_sequence);
9561 cmpq(count, 64 >> shift);
9562 jccb(Assembler::greater, L_fill_128_bytes_zmm);
9563 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true);
9564 jmp(L_exit);
9565
9566 bind(L_fill_128_bytes_zmm);
9567 cmpq(count, 128 >> shift);
9568 jccb(Assembler::greater, L_fill_192_bytes_zmm);
9569 fill64(to, 0, xtmp, true);
9570 subq(count, 64 >> shift);
9571 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true);
9572 jmp(L_exit);
9573
9574 bind(L_fill_192_bytes_zmm);
9575 cmpq(count, 192 >> shift);
9576 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm);
9577 fill64(to, 0, xtmp, true);
9578 fill64(to, 64, xtmp, true);
9579 subq(count, 128 >> shift);
9580 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true);
9581 jmp(L_exit);
9582
9583 bind(L_fill_192_bytes_loop_pre_header_zmm);
9584 {
9585 movq(rtmp, to);
9586 andq(rtmp, 63);
9587 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm);
9588 negq(rtmp);
9589 addq(rtmp, 64);
9590 mov64(r8, -1L);
9591 bzhiq(r8, r8, rtmp);
9592 kmovql(k2, r8);
9593 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit);
9594 addq(to, rtmp);
9595 shrq(rtmp, shift);
9596 subq(count, rtmp);
9597 }
9598
9599 cmpq(count, 192 >> shift);
9600 jcc(Assembler::less, L_fill_start_zmm_sequence);
9601
9602 bind(L_fill_192_bytes_loop_header_zmm);
9603 subq(count, 192 >> shift);
9604
9605 align32();
9606 bind(L_fill_192_bytes_loop_zmm);
9607 fill64(to, 0, xtmp, true);
9608 fill64(to, 64, xtmp, true);
9609 fill64(to, 128, xtmp, true);
9610 addq(to, 192);
9611 subq(count, 192 >> shift);
9612 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm);
9613
9614 addq(count, 192 >> shift);
9615 jcc(Assembler::zero, L_exit);
9616 jmp(L_fill_start_zmm_sequence);
9617 }
9618 bind(L_exit);
9619 }
9620 #endif //COMPILER2_OR_JVMCI
9621
9622
9623 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) {
9624 Label done;
9625 cvttss2sil(dst, src);
9626 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
9627 cmpl(dst, 0x80000000); // float_sign_flip
9628 jccb(Assembler::notEqual, done);
9629 subptr(rsp, 8);
9630 movflt(Address(rsp, 0), src);
9631 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup())));
9632 pop(dst);
9633 bind(done);
9634 }
9635
9636 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) {
9637 Label done;
9638 cvttsd2sil(dst, src);
9639 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
9640 cmpl(dst, 0x80000000); // float_sign_flip
9641 jccb(Assembler::notEqual, done);
9642 subptr(rsp, 8);
9643 movdbl(Address(rsp, 0), src);
9644 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup())));
9645 pop(dst);
9646 bind(done);
9647 }
9648
9649 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) {
9650 Label done;
9651 cvttss2siq(dst, src);
9652 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
9653 jccb(Assembler::notEqual, done);
9654 subptr(rsp, 8);
9655 movflt(Address(rsp, 0), src);
9656 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup())));
9657 pop(dst);
9658 bind(done);
9659 }
9660
9661 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) {
9662 // Following code is line by line assembly translation rounding algorithm.
9663 // Please refer to java.lang.Math.round(float) algorithm for details.
9664 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000;
9665 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24;
9666 const int32_t FloatConsts_EXP_BIAS = 127;
9667 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF;
9668 const int32_t MINUS_32 = 0xFFFFFFE0;
9669 Label L_special_case, L_block1, L_exit;
9670 movl(rtmp, FloatConsts_EXP_BIT_MASK);
9671 movdl(dst, src);
9672 andl(dst, rtmp);
9673 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1);
9674 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS);
9675 subl(rtmp, dst);
9676 movl(rcx, rtmp);
9677 movl(dst, MINUS_32);
9678 testl(rtmp, dst);
9679 jccb(Assembler::notEqual, L_special_case);
9680 movdl(dst, src);
9681 andl(dst, FloatConsts_SIGNIF_BIT_MASK);
9682 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1);
9683 movdl(rtmp, src);
9684 testl(rtmp, rtmp);
9685 jccb(Assembler::greaterEqual, L_block1);
9686 negl(dst);
9687 bind(L_block1);
9688 sarl(dst);
9689 addl(dst, 0x1);
9690 sarl(dst, 0x1);
9691 jmp(L_exit);
9692 bind(L_special_case);
9693 convert_f2i(dst, src);
9694 bind(L_exit);
9695 }
9696
9697 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) {
9698 // Following code is line by line assembly translation rounding algorithm.
9699 // Please refer to java.lang.Math.round(double) algorithm for details.
9700 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L;
9701 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53;
9702 const int64_t DoubleConsts_EXP_BIAS = 1023;
9703 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL;
9704 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L;
9705 Label L_special_case, L_block1, L_exit;
9706 mov64(rtmp, DoubleConsts_EXP_BIT_MASK);
9707 movq(dst, src);
9708 andq(dst, rtmp);
9709 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1);
9710 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS);
9711 subq(rtmp, dst);
9712 movq(rcx, rtmp);
9713 mov64(dst, MINUS_64);
9714 testq(rtmp, dst);
9715 jccb(Assembler::notEqual, L_special_case);
9716 movq(dst, src);
9717 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK);
9718 andq(dst, rtmp);
9719 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1);
9720 orq(dst, rtmp);
9721 movq(rtmp, src);
9722 testq(rtmp, rtmp);
9723 jccb(Assembler::greaterEqual, L_block1);
9724 negq(dst);
9725 bind(L_block1);
9726 sarq(dst);
9727 addq(dst, 0x1);
9728 sarq(dst, 0x1);
9729 jmp(L_exit);
9730 bind(L_special_case);
9731 convert_d2l(dst, src);
9732 bind(L_exit);
9733 }
9734
9735 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) {
9736 Label done;
9737 cvttsd2siq(dst, src);
9738 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
9739 jccb(Assembler::notEqual, done);
9740 subptr(rsp, 8);
9741 movdbl(Address(rsp, 0), src);
9742 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup())));
9743 pop(dst);
9744 bind(done);
9745 }
9746
9747 void MacroAssembler::cache_wb(Address line)
9748 {
9749 // 64 bit cpus always support clflush
9750 assert(VM_Version::supports_clflush(), "clflush should be available");
9751 bool optimized = VM_Version::supports_clflushopt();
9752 bool no_evict = VM_Version::supports_clwb();
9753
9754 // prefer clwb (writeback without evict) otherwise
9755 // prefer clflushopt (potentially parallel writeback with evict)
9756 // otherwise fallback on clflush (serial writeback with evict)
9757
9758 if (optimized) {
9759 if (no_evict) {
9760 clwb(line);
9761 } else {
9762 clflushopt(line);
9763 }
9764 } else {
9765 // no need for fence when using CLFLUSH
9766 clflush(line);
9767 }
9768 }
9769
9770 void MacroAssembler::cache_wbsync(bool is_pre)
9771 {
9772 assert(VM_Version::supports_clflush(), "clflush should be available");
9773 bool optimized = VM_Version::supports_clflushopt();
9774 bool no_evict = VM_Version::supports_clwb();
9775
9776 // pick the correct implementation
9777
9778 if (!is_pre && (optimized || no_evict)) {
9779 // need an sfence for post flush when using clflushopt or clwb
9780 // otherwise no no need for any synchroniaztion
9781
9782 sfence();
9783 }
9784 }
9785
9786 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
9787 switch (cond) {
9788 // Note some conditions are synonyms for others
9789 case Assembler::zero: return Assembler::notZero;
9790 case Assembler::notZero: return Assembler::zero;
9791 case Assembler::less: return Assembler::greaterEqual;
9792 case Assembler::lessEqual: return Assembler::greater;
9793 case Assembler::greater: return Assembler::lessEqual;
9794 case Assembler::greaterEqual: return Assembler::less;
9795 case Assembler::below: return Assembler::aboveEqual;
9796 case Assembler::belowEqual: return Assembler::above;
9797 case Assembler::above: return Assembler::belowEqual;
9798 case Assembler::aboveEqual: return Assembler::below;
9799 case Assembler::overflow: return Assembler::noOverflow;
9800 case Assembler::noOverflow: return Assembler::overflow;
9801 case Assembler::negative: return Assembler::positive;
9802 case Assembler::positive: return Assembler::negative;
9803 case Assembler::parity: return Assembler::noParity;
9804 case Assembler::noParity: return Assembler::parity;
9805 }
9806 ShouldNotReachHere(); return Assembler::overflow;
9807 }
9808
9809 // This is simply a call to Thread::current()
9810 void MacroAssembler::get_thread_slow(Register thread) {
9811 if (thread != rax) {
9812 push(rax);
9813 }
9814 push(rdi);
9815 push(rsi);
9816 push(rdx);
9817 push(rcx);
9818 push(r8);
9819 push(r9);
9820 push(r10);
9821 push(r11);
9822
9823 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
9824
9825 pop(r11);
9826 pop(r10);
9827 pop(r9);
9828 pop(r8);
9829 pop(rcx);
9830 pop(rdx);
9831 pop(rsi);
9832 pop(rdi);
9833 if (thread != rax) {
9834 mov(thread, rax);
9835 pop(rax);
9836 }
9837 }
9838
9839 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) {
9840 Label L_stack_ok;
9841 if (bias == 0) {
9842 testptr(sp, 2 * wordSize - 1);
9843 } else {
9844 // lea(tmp, Address(rsp, bias);
9845 mov(tmp, sp);
9846 addptr(tmp, bias);
9847 testptr(tmp, 2 * wordSize - 1);
9848 }
9849 jcc(Assembler::equal, L_stack_ok);
9850 block_comment(msg);
9851 stop(msg);
9852 bind(L_stack_ok);
9853 }
9854
9855 // Implements fast-locking.
9856 //
9857 // obj: the object to be locked
9858 // reg_rax: rax
9859 // thread: the thread which attempts to lock obj
9860 // tmp: a temporary register
9861 void MacroAssembler::fast_lock(Register basic_lock, Register obj, Register reg_rax, Register tmp, Label& slow) {
9862 Register thread = r15_thread;
9863
9864 assert(reg_rax == rax, "");
9865 assert_different_registers(basic_lock, obj, reg_rax, thread, tmp);
9866
9867 Label push;
9868 const Register top = tmp;
9869
9870 // Preload the markWord. It is important that this is the first
9871 // instruction emitted as it is part of C1's null check semantics.
9872 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes()));
9873
9874 if (UseObjectMonitorTable) {
9875 // Clear cache in case fast locking succeeds or we need to take the slow-path.
9876 movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0);
9877 }
9878
9879 if (DiagnoseSyncOnValueBasedClasses != 0) {
9880 load_klass(tmp, obj, rscratch1);
9881 testb(Address(tmp, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class);
9882 jcc(Assembler::notZero, slow);
9883 }
9884
9885 // Load top.
9886 movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
9887
9888 // Check if the lock-stack is full.
9889 cmpl(top, LockStack::end_offset());
9890 jcc(Assembler::greaterEqual, slow);
9891
9892 // Check for recursion.
9893 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize));
9894 jcc(Assembler::equal, push);
9895
9896 // Check header for monitor (0b10).
9897 testptr(reg_rax, markWord::monitor_value);
9898 jcc(Assembler::notZero, slow);
9899
9900 // Try to lock. Transition lock bits 0b01 => 0b00
9901 movptr(tmp, reg_rax);
9902 andptr(tmp, ~(int32_t)markWord::unlocked_value);
9903 orptr(reg_rax, markWord::unlocked_value);
9904 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
9905 jcc(Assembler::notEqual, slow);
9906
9907 // Restore top, CAS clobbers register.
9908 movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
9909
9910 bind(push);
9911 // After successful lock, push object on lock-stack.
9912 movptr(Address(thread, top), obj);
9913 incrementl(top, oopSize);
9914 movl(Address(thread, JavaThread::lock_stack_top_offset()), top);
9915 }
9916
9917 // Implements fast-unlocking.
9918 //
9919 // obj: the object to be unlocked
9920 // reg_rax: rax
9921 // thread: the thread
9922 // tmp: a temporary register
9923 void MacroAssembler::fast_unlock(Register obj, Register reg_rax, Register tmp, Label& slow) {
9924 Register thread = r15_thread;
9925
9926 assert(reg_rax == rax, "");
9927 assert_different_registers(obj, reg_rax, thread, tmp);
9928
9929 Label unlocked, push_and_slow;
9930 const Register top = tmp;
9931
9932 // Check if obj is top of lock-stack.
9933 movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
9934 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize));
9935 jcc(Assembler::notEqual, slow);
9936
9937 // Pop lock-stack.
9938 DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);)
9939 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize);
9940
9941 // Check if recursive.
9942 cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize));
9943 jcc(Assembler::equal, unlocked);
9944
9945 // Not recursive. Check header for monitor (0b10).
9946 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes()));
9947 testptr(reg_rax, markWord::monitor_value);
9948 jcc(Assembler::notZero, push_and_slow);
9949
9950 #ifdef ASSERT
9951 // Check header not unlocked (0b01).
9952 Label not_unlocked;
9953 testptr(reg_rax, markWord::unlocked_value);
9954 jcc(Assembler::zero, not_unlocked);
9955 stop("fast_unlock already unlocked");
9956 bind(not_unlocked);
9957 #endif
9958
9959 // Try to unlock. Transition lock bits 0b00 => 0b01
9960 movptr(tmp, reg_rax);
9961 orptr(tmp, markWord::unlocked_value);
9962 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
9963 jcc(Assembler::equal, unlocked);
9964
9965 bind(push_and_slow);
9966 // Restore lock-stack and handle the unlock in runtime.
9967 #ifdef ASSERT
9968 movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
9969 movptr(Address(thread, top), obj);
9970 #endif
9971 addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize);
9972 jmp(slow);
9973
9974 bind(unlocked);
9975 }
9976
9977 // Saves legacy GPRs state on stack.
9978 void MacroAssembler::save_legacy_gprs() {
9979 subq(rsp, 16 * wordSize);
9980 movq(Address(rsp, 15 * wordSize), rax);
9981 movq(Address(rsp, 14 * wordSize), rcx);
9982 movq(Address(rsp, 13 * wordSize), rdx);
9983 movq(Address(rsp, 12 * wordSize), rbx);
9984 movq(Address(rsp, 10 * wordSize), rbp);
9985 movq(Address(rsp, 9 * wordSize), rsi);
9986 movq(Address(rsp, 8 * wordSize), rdi);
9987 movq(Address(rsp, 7 * wordSize), r8);
9988 movq(Address(rsp, 6 * wordSize), r9);
9989 movq(Address(rsp, 5 * wordSize), r10);
9990 movq(Address(rsp, 4 * wordSize), r11);
9991 movq(Address(rsp, 3 * wordSize), r12);
9992 movq(Address(rsp, 2 * wordSize), r13);
9993 movq(Address(rsp, wordSize), r14);
9994 movq(Address(rsp, 0), r15);
9995 }
9996
9997 // Resotres back legacy GPRs state from stack.
9998 void MacroAssembler::restore_legacy_gprs() {
9999 movq(r15, Address(rsp, 0));
10000 movq(r14, Address(rsp, wordSize));
10001 movq(r13, Address(rsp, 2 * wordSize));
10002 movq(r12, Address(rsp, 3 * wordSize));
10003 movq(r11, Address(rsp, 4 * wordSize));
10004 movq(r10, Address(rsp, 5 * wordSize));
10005 movq(r9, Address(rsp, 6 * wordSize));
10006 movq(r8, Address(rsp, 7 * wordSize));
10007 movq(rdi, Address(rsp, 8 * wordSize));
10008 movq(rsi, Address(rsp, 9 * wordSize));
10009 movq(rbp, Address(rsp, 10 * wordSize));
10010 movq(rbx, Address(rsp, 12 * wordSize));
10011 movq(rdx, Address(rsp, 13 * wordSize));
10012 movq(rcx, Address(rsp, 14 * wordSize));
10013 movq(rax, Address(rsp, 15 * wordSize));
10014 addq(rsp, 16 * wordSize);
10015 }
10016
10017 void MacroAssembler::load_aotrc_address(Register reg, address a) {
10018 #if INCLUDE_CDS
10019 assert(AOTRuntimeConstants::contains(a), "address out of range for data area");
10020 if (AOTCodeCache::is_on_for_dump()) {
10021 // all aotrc field addresses should be registered in the AOTCodeCache address table
10022 lea(reg, ExternalAddress(a));
10023 } else {
10024 mov64(reg, (uint64_t)a);
10025 }
10026 #else
10027 ShouldNotReachHere();
10028 #endif
10029 }
10030
10031 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) {
10032 if (VM_Version::supports_apx_f()) {
10033 esetzucc(comparison, dst);
10034 } else {
10035 setb(comparison, dst);
10036 movzbl(dst, dst);
10037 }
10038 }