1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/assembler.hpp" 26 #include "asm/assembler.inline.hpp" 27 #include "code/SCCache.hpp" 28 #include "code/compiledIC.hpp" 29 #include "compiler/compiler_globals.hpp" 30 #include "compiler/disassembler.hpp" 31 #include "crc32c.h" 32 #include "gc/shared/barrierSet.hpp" 33 #include "gc/shared/barrierSetAssembler.hpp" 34 #include "gc/shared/collectedHeap.inline.hpp" 35 #include "gc/shared/tlab_globals.hpp" 36 #include "interpreter/bytecodeHistogram.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "interpreter/interpreterRuntime.hpp" 39 #include "jvm.h" 40 #include "memory/resourceArea.hpp" 41 #include "memory/universe.hpp" 42 #include "oops/accessDecorators.hpp" 43 #include "oops/compressedKlass.inline.hpp" 44 #include "oops/compressedOops.inline.hpp" 45 #include "oops/klass.inline.hpp" 46 #include "prims/methodHandles.hpp" 47 #include "runtime/continuation.hpp" 48 #include "runtime/interfaceSupport.inline.hpp" 49 #include "runtime/javaThread.hpp" 50 #include "runtime/jniHandles.hpp" 51 #include "runtime/objectMonitor.hpp" 52 #include "runtime/os.hpp" 53 #include "runtime/safepoint.hpp" 54 #include "runtime/safepointMechanism.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "utilities/checkedCast.hpp" 58 #include "utilities/macros.hpp" 59 60 #ifdef PRODUCT 61 #define BLOCK_COMMENT(str) /* nothing */ 62 #define STOP(error) stop(error) 63 #else 64 #define BLOCK_COMMENT(str) block_comment(str) 65 #define STOP(error) block_comment(error); stop(error) 66 #endif 67 68 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 69 70 #ifdef ASSERT 71 bool AbstractAssembler::pd_check_instruction_mark() { return true; } 72 #endif 73 74 static const Assembler::Condition reverse[] = { 75 Assembler::noOverflow /* overflow = 0x0 */ , 76 Assembler::overflow /* noOverflow = 0x1 */ , 77 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , 78 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , 79 Assembler::notZero /* zero = 0x4, equal = 0x4 */ , 80 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , 81 Assembler::above /* belowEqual = 0x6 */ , 82 Assembler::belowEqual /* above = 0x7 */ , 83 Assembler::positive /* negative = 0x8 */ , 84 Assembler::negative /* positive = 0x9 */ , 85 Assembler::noParity /* parity = 0xa */ , 86 Assembler::parity /* noParity = 0xb */ , 87 Assembler::greaterEqual /* less = 0xc */ , 88 Assembler::less /* greaterEqual = 0xd */ , 89 Assembler::greater /* lessEqual = 0xe */ , 90 Assembler::lessEqual /* greater = 0xf, */ 91 92 }; 93 94 95 // Implementation of MacroAssembler 96 97 // First all the versions that have distinct versions depending on 32/64 bit 98 // Unless the difference is trivial (1 line or so). 99 100 #ifndef _LP64 101 102 // 32bit versions 103 104 Address MacroAssembler::as_Address(AddressLiteral adr) { 105 return Address(adr.target(), adr.rspec()); 106 } 107 108 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 109 assert(rscratch == noreg, ""); 110 return Address::make_array(adr); 111 } 112 113 void MacroAssembler::call_VM_leaf_base(address entry_point, 114 int number_of_arguments) { 115 call(RuntimeAddress(entry_point)); 116 increment(rsp, number_of_arguments * wordSize); 117 } 118 119 void MacroAssembler::cmpklass(Address src1, Metadata* obj) { 120 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 121 } 122 123 124 void MacroAssembler::cmpklass(Register src1, Metadata* obj) { 125 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 126 } 127 128 void MacroAssembler::cmpoop(Address src1, jobject obj) { 129 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 130 } 131 132 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) { 133 assert(rscratch == noreg, "redundant"); 134 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 135 } 136 137 void MacroAssembler::extend_sign(Register hi, Register lo) { 138 // According to Intel Doc. AP-526, "Integer Divide", p.18. 139 if (VM_Version::is_P6() && hi == rdx && lo == rax) { 140 cdql(); 141 } else { 142 movl(hi, lo); 143 sarl(hi, 31); 144 } 145 } 146 147 void MacroAssembler::jC2(Register tmp, Label& L) { 148 // set parity bit if FPU flag C2 is set (via rax) 149 save_rax(tmp); 150 fwait(); fnstsw_ax(); 151 sahf(); 152 restore_rax(tmp); 153 // branch 154 jcc(Assembler::parity, L); 155 } 156 157 void MacroAssembler::jnC2(Register tmp, Label& L) { 158 // set parity bit if FPU flag C2 is set (via rax) 159 save_rax(tmp); 160 fwait(); fnstsw_ax(); 161 sahf(); 162 restore_rax(tmp); 163 // branch 164 jcc(Assembler::noParity, L); 165 } 166 167 // 32bit can do a case table jump in one instruction but we no longer allow the base 168 // to be installed in the Address class 169 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 170 assert(rscratch == noreg, "not needed"); 171 jmp(as_Address(entry, noreg)); 172 } 173 174 // Note: y_lo will be destroyed 175 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 176 // Long compare for Java (semantics as described in JVM spec.) 177 Label high, low, done; 178 179 cmpl(x_hi, y_hi); 180 jcc(Assembler::less, low); 181 jcc(Assembler::greater, high); 182 // x_hi is the return register 183 xorl(x_hi, x_hi); 184 cmpl(x_lo, y_lo); 185 jcc(Assembler::below, low); 186 jcc(Assembler::equal, done); 187 188 bind(high); 189 xorl(x_hi, x_hi); 190 increment(x_hi); 191 jmp(done); 192 193 bind(low); 194 xorl(x_hi, x_hi); 195 decrementl(x_hi); 196 197 bind(done); 198 } 199 200 void MacroAssembler::lea(Register dst, AddressLiteral src) { 201 mov_literal32(dst, (int32_t)src.target(), src.rspec()); 202 } 203 204 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 205 assert(rscratch == noreg, "not needed"); 206 207 // leal(dst, as_Address(adr)); 208 // see note in movl as to why we must use a move 209 mov_literal32(dst, (int32_t)adr.target(), adr.rspec()); 210 } 211 212 void MacroAssembler::leave() { 213 mov(rsp, rbp); 214 pop(rbp); 215 } 216 217 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) { 218 // Multiplication of two Java long values stored on the stack 219 // as illustrated below. Result is in rdx:rax. 220 // 221 // rsp ---> [ ?? ] \ \ 222 // .... | y_rsp_offset | 223 // [ y_lo ] / (in bytes) | x_rsp_offset 224 // [ y_hi ] | (in bytes) 225 // .... | 226 // [ x_lo ] / 227 // [ x_hi ] 228 // .... 229 // 230 // Basic idea: lo(result) = lo(x_lo * y_lo) 231 // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) 232 Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset); 233 Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset); 234 Label quick; 235 // load x_hi, y_hi and check if quick 236 // multiplication is possible 237 movl(rbx, x_hi); 238 movl(rcx, y_hi); 239 movl(rax, rbx); 240 orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0 241 jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply 242 // do full multiplication 243 // 1st step 244 mull(y_lo); // x_hi * y_lo 245 movl(rbx, rax); // save lo(x_hi * y_lo) in rbx, 246 // 2nd step 247 movl(rax, x_lo); 248 mull(rcx); // x_lo * y_hi 249 addl(rbx, rax); // add lo(x_lo * y_hi) to rbx, 250 // 3rd step 251 bind(quick); // note: rbx, = 0 if quick multiply! 252 movl(rax, x_lo); 253 mull(y_lo); // x_lo * y_lo 254 addl(rdx, rbx); // correct hi(x_lo * y_lo) 255 } 256 257 void MacroAssembler::lneg(Register hi, Register lo) { 258 negl(lo); 259 adcl(hi, 0); 260 negl(hi); 261 } 262 263 void MacroAssembler::lshl(Register hi, Register lo) { 264 // Java shift left long support (semantics as described in JVM spec., p.305) 265 // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n)) 266 // shift value is in rcx ! 267 assert(hi != rcx, "must not use rcx"); 268 assert(lo != rcx, "must not use rcx"); 269 const Register s = rcx; // shift count 270 const int n = BitsPerWord; 271 Label L; 272 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 273 cmpl(s, n); // if (s < n) 274 jcc(Assembler::less, L); // else (s >= n) 275 movl(hi, lo); // x := x << n 276 xorl(lo, lo); 277 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 278 bind(L); // s (mod n) < n 279 shldl(hi, lo); // x := x << s 280 shll(lo); 281 } 282 283 284 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) { 285 // Java shift right long support (semantics as described in JVM spec., p.306 & p.310) 286 // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n)) 287 assert(hi != rcx, "must not use rcx"); 288 assert(lo != rcx, "must not use rcx"); 289 const Register s = rcx; // shift count 290 const int n = BitsPerWord; 291 Label L; 292 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 293 cmpl(s, n); // if (s < n) 294 jcc(Assembler::less, L); // else (s >= n) 295 movl(lo, hi); // x := x >> n 296 if (sign_extension) sarl(hi, 31); 297 else xorl(hi, hi); 298 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 299 bind(L); // s (mod n) < n 300 shrdl(lo, hi); // x := x >> s 301 if (sign_extension) sarl(hi); 302 else shrl(hi); 303 } 304 305 void MacroAssembler::movoop(Register dst, jobject obj) { 306 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 307 } 308 309 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 310 assert(rscratch == noreg, "redundant"); 311 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 312 } 313 314 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 315 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 316 } 317 318 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 319 assert(rscratch == noreg, "redundant"); 320 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 321 } 322 323 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 324 if (src.is_lval()) { 325 mov_literal32(dst, (intptr_t)src.target(), src.rspec()); 326 } else { 327 movl(dst, as_Address(src)); 328 } 329 } 330 331 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 332 assert(rscratch == noreg, "redundant"); 333 movl(as_Address(dst, noreg), src); 334 } 335 336 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 337 movl(dst, as_Address(src, noreg)); 338 } 339 340 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 341 assert(rscratch == noreg, "redundant"); 342 movl(dst, src); 343 } 344 345 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 346 assert(rscratch == noreg, "redundant"); 347 push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate()); 348 } 349 350 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 351 assert(rscratch == noreg, "redundant"); 352 push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate()); 353 } 354 355 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 356 assert(rscratch == noreg, "redundant"); 357 if (src.is_lval()) { 358 push_literal32((int32_t)src.target(), src.rspec()); 359 } else { 360 pushl(as_Address(src)); 361 } 362 } 363 364 static void pass_arg0(MacroAssembler* masm, Register arg) { 365 masm->push(arg); 366 } 367 368 static void pass_arg1(MacroAssembler* masm, Register arg) { 369 masm->push(arg); 370 } 371 372 static void pass_arg2(MacroAssembler* masm, Register arg) { 373 masm->push(arg); 374 } 375 376 static void pass_arg3(MacroAssembler* masm, Register arg) { 377 masm->push(arg); 378 } 379 380 #ifndef PRODUCT 381 extern "C" void findpc(intptr_t x); 382 #endif 383 384 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) { 385 // In order to get locks to work, we need to fake a in_VM state 386 JavaThread* thread = JavaThread::current(); 387 JavaThreadState saved_state = thread->thread_state(); 388 thread->set_thread_state(_thread_in_vm); 389 if (ShowMessageBoxOnError) { 390 JavaThread* thread = JavaThread::current(); 391 JavaThreadState saved_state = thread->thread_state(); 392 thread->set_thread_state(_thread_in_vm); 393 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 394 ttyLocker ttyl; 395 BytecodeCounter::print(); 396 } 397 // To see where a verify_oop failed, get $ebx+40/X for this frame. 398 // This is the value of eip which points to where verify_oop will return. 399 if (os::message_box(msg, "Execution stopped, print registers?")) { 400 print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip); 401 BREAKPOINT; 402 } 403 } 404 fatal("DEBUG MESSAGE: %s", msg); 405 } 406 407 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) { 408 ttyLocker ttyl; 409 DebuggingContext debugging{}; 410 tty->print_cr("eip = 0x%08x", eip); 411 #ifndef PRODUCT 412 if ((WizardMode || Verbose) && PrintMiscellaneous) { 413 tty->cr(); 414 findpc(eip); 415 tty->cr(); 416 } 417 #endif 418 #define PRINT_REG(rax) \ 419 { tty->print("%s = ", #rax); os::print_location(tty, rax); } 420 PRINT_REG(rax); 421 PRINT_REG(rbx); 422 PRINT_REG(rcx); 423 PRINT_REG(rdx); 424 PRINT_REG(rdi); 425 PRINT_REG(rsi); 426 PRINT_REG(rbp); 427 PRINT_REG(rsp); 428 #undef PRINT_REG 429 // Print some words near top of staack. 430 int* dump_sp = (int*) rsp; 431 for (int col1 = 0; col1 < 8; col1++) { 432 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 433 os::print_location(tty, *dump_sp++); 434 } 435 for (int row = 0; row < 16; row++) { 436 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 437 for (int col = 0; col < 8; col++) { 438 tty->print(" 0x%08x", *dump_sp++); 439 } 440 tty->cr(); 441 } 442 // Print some instructions around pc: 443 Disassembler::decode((address)eip-64, (address)eip); 444 tty->print_cr("--------"); 445 Disassembler::decode((address)eip, (address)eip+32); 446 } 447 448 void MacroAssembler::stop(const char* msg) { 449 // push address of message 450 ExternalAddress message((address)msg); 451 pushptr(message.addr(), noreg); 452 { Label L; call(L, relocInfo::none); bind(L); } // push eip 453 pusha(); // push registers 454 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32))); 455 hlt(); 456 } 457 458 void MacroAssembler::warn(const char* msg) { 459 push_CPU_state(); 460 461 // push address of message 462 ExternalAddress message((address)msg); 463 pushptr(message.addr(), noreg); 464 465 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 466 addl(rsp, wordSize); // discard argument 467 pop_CPU_state(); 468 } 469 470 void MacroAssembler::print_state() { 471 { Label L; call(L, relocInfo::none); bind(L); } // push eip 472 pusha(); // push registers 473 474 push_CPU_state(); 475 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32))); 476 pop_CPU_state(); 477 478 popa(); 479 addl(rsp, wordSize); 480 } 481 482 #else // _LP64 483 484 // 64 bit versions 485 486 Address MacroAssembler::as_Address(AddressLiteral adr) { 487 // amd64 always does this as a pc-rel 488 // we can be absolute or disp based on the instruction type 489 // jmp/call are displacements others are absolute 490 assert(!adr.is_lval(), "must be rval"); 491 assert(reachable(adr), "must be"); 492 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc()); 493 494 } 495 496 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 497 AddressLiteral base = adr.base(); 498 lea(rscratch, base); 499 Address index = adr.index(); 500 assert(index._disp == 0, "must not have disp"); // maybe it can? 501 Address array(rscratch, index._index, index._scale, index._disp); 502 return array; 503 } 504 505 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { 506 Label L, E; 507 508 #ifdef _WIN64 509 // Windows always allocates space for it's register args 510 assert(num_args <= 4, "only register arguments supported"); 511 subq(rsp, frame::arg_reg_save_area_bytes); 512 #endif 513 514 // Align stack if necessary 515 testl(rsp, 15); 516 jcc(Assembler::zero, L); 517 518 subq(rsp, 8); 519 call(RuntimeAddress(entry_point)); 520 addq(rsp, 8); 521 jmp(E); 522 523 bind(L); 524 call(RuntimeAddress(entry_point)); 525 526 bind(E); 527 528 #ifdef _WIN64 529 // restore stack pointer 530 addq(rsp, frame::arg_reg_save_area_bytes); 531 #endif 532 } 533 534 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) { 535 assert(!src2.is_lval(), "should use cmpptr"); 536 assert(rscratch != noreg || always_reachable(src2), "missing"); 537 538 if (reachable(src2)) { 539 cmpq(src1, as_Address(src2)); 540 } else { 541 lea(rscratch, src2); 542 Assembler::cmpq(src1, Address(rscratch, 0)); 543 } 544 } 545 546 int MacroAssembler::corrected_idivq(Register reg) { 547 // Full implementation of Java ldiv and lrem; checks for special 548 // case as described in JVM spec., p.243 & p.271. The function 549 // returns the (pc) offset of the idivl instruction - may be needed 550 // for implicit exceptions. 551 // 552 // normal case special case 553 // 554 // input : rax: dividend min_long 555 // reg: divisor (may not be eax/edx) -1 556 // 557 // output: rax: quotient (= rax idiv reg) min_long 558 // rdx: remainder (= rax irem reg) 0 559 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); 560 static const int64_t min_long = 0x8000000000000000; 561 Label normal_case, special_case; 562 563 // check for special case 564 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/); 565 jcc(Assembler::notEqual, normal_case); 566 xorl(rdx, rdx); // prepare rdx for possible special case (where 567 // remainder = 0) 568 cmpq(reg, -1); 569 jcc(Assembler::equal, special_case); 570 571 // handle normal case 572 bind(normal_case); 573 cdqq(); 574 int idivq_offset = offset(); 575 idivq(reg); 576 577 // normal and special case exit 578 bind(special_case); 579 580 return idivq_offset; 581 } 582 583 void MacroAssembler::decrementq(Register reg, int value) { 584 if (value == min_jint) { subq(reg, value); return; } 585 if (value < 0) { incrementq(reg, -value); return; } 586 if (value == 0) { ; return; } 587 if (value == 1 && UseIncDec) { decq(reg) ; return; } 588 /* else */ { subq(reg, value) ; return; } 589 } 590 591 void MacroAssembler::decrementq(Address dst, int value) { 592 if (value == min_jint) { subq(dst, value); return; } 593 if (value < 0) { incrementq(dst, -value); return; } 594 if (value == 0) { ; return; } 595 if (value == 1 && UseIncDec) { decq(dst) ; return; } 596 /* else */ { subq(dst, value) ; return; } 597 } 598 599 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) { 600 assert(rscratch != noreg || always_reachable(dst), "missing"); 601 602 if (reachable(dst)) { 603 incrementq(as_Address(dst)); 604 } else { 605 lea(rscratch, dst); 606 incrementq(Address(rscratch, 0)); 607 } 608 } 609 610 void MacroAssembler::incrementq(Register reg, int value) { 611 if (value == min_jint) { addq(reg, value); return; } 612 if (value < 0) { decrementq(reg, -value); return; } 613 if (value == 0) { ; return; } 614 if (value == 1 && UseIncDec) { incq(reg) ; return; } 615 /* else */ { addq(reg, value) ; return; } 616 } 617 618 void MacroAssembler::incrementq(Address dst, int value) { 619 if (value == min_jint) { addq(dst, value); return; } 620 if (value < 0) { decrementq(dst, -value); return; } 621 if (value == 0) { ; return; } 622 if (value == 1 && UseIncDec) { incq(dst) ; return; } 623 /* else */ { addq(dst, value) ; return; } 624 } 625 626 // 32bit can do a case table jump in one instruction but we no longer allow the base 627 // to be installed in the Address class 628 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 629 lea(rscratch, entry.base()); 630 Address dispatch = entry.index(); 631 assert(dispatch._base == noreg, "must be"); 632 dispatch._base = rscratch; 633 jmp(dispatch); 634 } 635 636 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 637 ShouldNotReachHere(); // 64bit doesn't use two regs 638 cmpq(x_lo, y_lo); 639 } 640 641 void MacroAssembler::lea(Register dst, AddressLiteral src) { 642 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 643 } 644 645 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 646 lea(rscratch, adr); 647 movptr(dst, rscratch); 648 } 649 650 void MacroAssembler::leave() { 651 // %%% is this really better? Why not on 32bit too? 652 emit_int8((unsigned char)0xC9); // LEAVE 653 } 654 655 void MacroAssembler::lneg(Register hi, Register lo) { 656 ShouldNotReachHere(); // 64bit doesn't use two regs 657 negq(lo); 658 } 659 660 void MacroAssembler::movoop(Register dst, jobject obj) { 661 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 662 } 663 664 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 665 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 666 movq(dst, rscratch); 667 } 668 669 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 670 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 671 } 672 673 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 674 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 675 movq(dst, rscratch); 676 } 677 678 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 679 if (src.is_lval()) { 680 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 681 } else { 682 if (reachable(src)) { 683 movq(dst, as_Address(src)); 684 } else { 685 lea(dst, src); 686 movq(dst, Address(dst, 0)); 687 } 688 } 689 } 690 691 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 692 movq(as_Address(dst, rscratch), src); 693 } 694 695 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 696 movq(dst, as_Address(src, dst /*rscratch*/)); 697 } 698 699 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 700 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 701 if (is_simm32(src)) { 702 movptr(dst, checked_cast<int32_t>(src)); 703 } else { 704 mov64(rscratch, src); 705 movq(dst, rscratch); 706 } 707 } 708 709 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 710 movoop(rscratch, obj); 711 push(rscratch); 712 } 713 714 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 715 mov_metadata(rscratch, obj); 716 push(rscratch); 717 } 718 719 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 720 lea(rscratch, src); 721 if (src.is_lval()) { 722 push(rscratch); 723 } else { 724 pushq(Address(rscratch, 0)); 725 } 726 } 727 728 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 729 reset_last_Java_frame(r15_thread, clear_fp); 730 } 731 732 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 733 Register last_java_fp, 734 address last_java_pc, 735 Register rscratch) { 736 set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, last_java_pc, rscratch); 737 } 738 739 static void pass_arg0(MacroAssembler* masm, Register arg) { 740 if (c_rarg0 != arg ) { 741 masm->mov(c_rarg0, arg); 742 } 743 } 744 745 static void pass_arg1(MacroAssembler* masm, Register arg) { 746 if (c_rarg1 != arg ) { 747 masm->mov(c_rarg1, arg); 748 } 749 } 750 751 static void pass_arg2(MacroAssembler* masm, Register arg) { 752 if (c_rarg2 != arg ) { 753 masm->mov(c_rarg2, arg); 754 } 755 } 756 757 static void pass_arg3(MacroAssembler* masm, Register arg) { 758 if (c_rarg3 != arg ) { 759 masm->mov(c_rarg3, arg); 760 } 761 } 762 763 void MacroAssembler::stop(const char* msg) { 764 if (ShowMessageBoxOnError) { 765 address rip = pc(); 766 pusha(); // get regs on stack 767 lea(c_rarg1, InternalAddress(rip)); 768 movq(c_rarg2, rsp); // pass pointer to regs array 769 } 770 lea(c_rarg0, ExternalAddress((address) msg)); 771 andq(rsp, -16); // align stack as required by ABI 772 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 773 hlt(); 774 SCCache::add_C_string(msg); 775 } 776 777 void MacroAssembler::warn(const char* msg) { 778 push(rbp); 779 movq(rbp, rsp); 780 andq(rsp, -16); // align stack as required by push_CPU_state and call 781 push_CPU_state(); // keeps alignment at 16 bytes 782 783 #ifdef _WIN64 784 // Windows always allocates space for its register args 785 subq(rsp, frame::arg_reg_save_area_bytes); 786 #endif 787 lea(c_rarg0, ExternalAddress((address) msg)); 788 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 789 790 #ifdef _WIN64 791 // restore stack pointer 792 addq(rsp, frame::arg_reg_save_area_bytes); 793 #endif 794 pop_CPU_state(); 795 mov(rsp, rbp); 796 pop(rbp); 797 } 798 799 void MacroAssembler::print_state() { 800 address rip = pc(); 801 pusha(); // get regs on stack 802 push(rbp); 803 movq(rbp, rsp); 804 andq(rsp, -16); // align stack as required by push_CPU_state and call 805 push_CPU_state(); // keeps alignment at 16 bytes 806 807 lea(c_rarg0, InternalAddress(rip)); 808 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array 809 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1); 810 811 pop_CPU_state(); 812 mov(rsp, rbp); 813 pop(rbp); 814 popa(); 815 } 816 817 #ifndef PRODUCT 818 extern "C" void findpc(intptr_t x); 819 #endif 820 821 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { 822 // In order to get locks to work, we need to fake a in_VM state 823 if (ShowMessageBoxOnError) { 824 JavaThread* thread = JavaThread::current(); 825 JavaThreadState saved_state = thread->thread_state(); 826 thread->set_thread_state(_thread_in_vm); 827 #ifndef PRODUCT 828 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 829 ttyLocker ttyl; 830 BytecodeCounter::print(); 831 } 832 #endif 833 // To see where a verify_oop failed, get $ebx+40/X for this frame. 834 // XXX correct this offset for amd64 835 // This is the value of eip which points to where verify_oop will return. 836 if (os::message_box(msg, "Execution stopped, print registers?")) { 837 print_state64(pc, regs); 838 BREAKPOINT; 839 } 840 } 841 fatal("DEBUG MESSAGE: %s", msg); 842 } 843 844 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) { 845 ttyLocker ttyl; 846 DebuggingContext debugging{}; 847 tty->print_cr("rip = 0x%016lx", (intptr_t)pc); 848 #ifndef PRODUCT 849 tty->cr(); 850 findpc(pc); 851 tty->cr(); 852 #endif 853 #define PRINT_REG(rax, value) \ 854 { tty->print("%s = ", #rax); os::print_location(tty, value); } 855 PRINT_REG(rax, regs[15]); 856 PRINT_REG(rbx, regs[12]); 857 PRINT_REG(rcx, regs[14]); 858 PRINT_REG(rdx, regs[13]); 859 PRINT_REG(rdi, regs[8]); 860 PRINT_REG(rsi, regs[9]); 861 PRINT_REG(rbp, regs[10]); 862 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp 863 PRINT_REG(rsp, (intptr_t)(®s[16])); 864 PRINT_REG(r8 , regs[7]); 865 PRINT_REG(r9 , regs[6]); 866 PRINT_REG(r10, regs[5]); 867 PRINT_REG(r11, regs[4]); 868 PRINT_REG(r12, regs[3]); 869 PRINT_REG(r13, regs[2]); 870 PRINT_REG(r14, regs[1]); 871 PRINT_REG(r15, regs[0]); 872 #undef PRINT_REG 873 // Print some words near the top of the stack. 874 int64_t* rsp = ®s[16]; 875 int64_t* dump_sp = rsp; 876 for (int col1 = 0; col1 < 8; col1++) { 877 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 878 os::print_location(tty, *dump_sp++); 879 } 880 for (int row = 0; row < 25; row++) { 881 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 882 for (int col = 0; col < 4; col++) { 883 tty->print(" 0x%016lx", (intptr_t)*dump_sp++); 884 } 885 tty->cr(); 886 } 887 // Print some instructions around pc: 888 Disassembler::decode((address)pc-64, (address)pc); 889 tty->print_cr("--------"); 890 Disassembler::decode((address)pc, (address)pc+32); 891 } 892 893 // The java_calling_convention describes stack locations as ideal slots on 894 // a frame with no abi restrictions. Since we must observe abi restrictions 895 // (like the placement of the register window) the slots must be biased by 896 // the following value. 897 static int reg2offset_in(VMReg r) { 898 // Account for saved rbp and return address 899 // This should really be in_preserve_stack_slots 900 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 901 } 902 903 static int reg2offset_out(VMReg r) { 904 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 905 } 906 907 // A long move 908 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 909 910 // The calling conventions assures us that each VMregpair is either 911 // all really one physical register or adjacent stack slots. 912 913 if (src.is_single_phys_reg() ) { 914 if (dst.is_single_phys_reg()) { 915 if (dst.first() != src.first()) { 916 mov(dst.first()->as_Register(), src.first()->as_Register()); 917 } 918 } else { 919 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)", 920 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name()); 921 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 922 } 923 } else if (dst.is_single_phys_reg()) { 924 assert(src.is_single_reg(), "not a stack pair"); 925 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 926 } else { 927 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 928 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 929 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 930 } 931 } 932 933 // A double move 934 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 935 936 // The calling conventions assures us that each VMregpair is either 937 // all really one physical register or adjacent stack slots. 938 939 if (src.is_single_phys_reg() ) { 940 if (dst.is_single_phys_reg()) { 941 // In theory these overlap but the ordering is such that this is likely a nop 942 if ( src.first() != dst.first()) { 943 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 944 } 945 } else { 946 assert(dst.is_single_reg(), "not a stack pair"); 947 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 948 } 949 } else if (dst.is_single_phys_reg()) { 950 assert(src.is_single_reg(), "not a stack pair"); 951 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 952 } else { 953 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 954 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 955 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 956 } 957 } 958 959 960 // A float arg may have to do float reg int reg conversion 961 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 962 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 963 964 // The calling conventions assures us that each VMregpair is either 965 // all really one physical register or adjacent stack slots. 966 967 if (src.first()->is_stack()) { 968 if (dst.first()->is_stack()) { 969 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 970 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 971 } else { 972 // stack to reg 973 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 974 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 975 } 976 } else if (dst.first()->is_stack()) { 977 // reg to stack 978 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 979 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 980 } else { 981 // reg to reg 982 // In theory these overlap but the ordering is such that this is likely a nop 983 if ( src.first() != dst.first()) { 984 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 985 } 986 } 987 } 988 989 // On 64 bit we will store integer like items to the stack as 990 // 64 bits items (x86_32/64 abi) even though java would only store 991 // 32bits for a parameter. On 32bit it will simply be 32 bits 992 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 993 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 994 if (src.first()->is_stack()) { 995 if (dst.first()->is_stack()) { 996 // stack to stack 997 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 998 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 999 } else { 1000 // stack to reg 1001 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 1002 } 1003 } else if (dst.first()->is_stack()) { 1004 // reg to stack 1005 // Do we really have to sign extend??? 1006 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 1007 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 1008 } else { 1009 // Do we really have to sign extend??? 1010 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 1011 if (dst.first() != src.first()) { 1012 movq(dst.first()->as_Register(), src.first()->as_Register()); 1013 } 1014 } 1015 } 1016 1017 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) { 1018 if (src.first()->is_stack()) { 1019 if (dst.first()->is_stack()) { 1020 // stack to stack 1021 movq(rax, Address(rbp, reg2offset_in(src.first()))); 1022 movq(Address(rsp, reg2offset_out(dst.first())), rax); 1023 } else { 1024 // stack to reg 1025 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1026 } 1027 } else if (dst.first()->is_stack()) { 1028 // reg to stack 1029 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1030 } else { 1031 if (dst.first() != src.first()) { 1032 movq(dst.first()->as_Register(), src.first()->as_Register()); 1033 } 1034 } 1035 } 1036 1037 // An oop arg. Must pass a handle not the oop itself 1038 void MacroAssembler::object_move(OopMap* map, 1039 int oop_handle_offset, 1040 int framesize_in_slots, 1041 VMRegPair src, 1042 VMRegPair dst, 1043 bool is_receiver, 1044 int* receiver_offset) { 1045 1046 // must pass a handle. First figure out the location we use as a handle 1047 1048 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 1049 1050 // See if oop is null if it is we need no handle 1051 1052 if (src.first()->is_stack()) { 1053 1054 // Oop is already on the stack as an argument 1055 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1056 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1057 if (is_receiver) { 1058 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1059 } 1060 1061 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 1062 lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1063 // conditionally move a null 1064 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 1065 } else { 1066 1067 // Oop is in a register we must store it to the space we reserve 1068 // on the stack for oop_handles and pass a handle if oop is non-null 1069 1070 const Register rOop = src.first()->as_Register(); 1071 int oop_slot; 1072 if (rOop == j_rarg0) 1073 oop_slot = 0; 1074 else if (rOop == j_rarg1) 1075 oop_slot = 1; 1076 else if (rOop == j_rarg2) 1077 oop_slot = 2; 1078 else if (rOop == j_rarg3) 1079 oop_slot = 3; 1080 else if (rOop == j_rarg4) 1081 oop_slot = 4; 1082 else { 1083 assert(rOop == j_rarg5, "wrong register"); 1084 oop_slot = 5; 1085 } 1086 1087 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 1088 int offset = oop_slot*VMRegImpl::stack_slot_size; 1089 1090 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1091 // Store oop in handle area, may be null 1092 movptr(Address(rsp, offset), rOop); 1093 if (is_receiver) { 1094 *receiver_offset = offset; 1095 } 1096 1097 cmpptr(rOop, NULL_WORD); 1098 lea(rHandle, Address(rsp, offset)); 1099 // conditionally move a null from the handle area where it was just stored 1100 cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 1101 } 1102 1103 // If arg is on the stack then place it otherwise it is already in correct reg. 1104 if (dst.first()->is_stack()) { 1105 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1106 } 1107 } 1108 1109 #endif // _LP64 1110 1111 // Now versions that are common to 32/64 bit 1112 1113 void MacroAssembler::addptr(Register dst, int32_t imm32) { 1114 LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32)); 1115 } 1116 1117 void MacroAssembler::addptr(Register dst, Register src) { 1118 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1119 } 1120 1121 void MacroAssembler::addptr(Address dst, Register src) { 1122 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1123 } 1124 1125 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1126 assert(rscratch != noreg || always_reachable(src), "missing"); 1127 1128 if (reachable(src)) { 1129 Assembler::addsd(dst, as_Address(src)); 1130 } else { 1131 lea(rscratch, src); 1132 Assembler::addsd(dst, Address(rscratch, 0)); 1133 } 1134 } 1135 1136 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1137 assert(rscratch != noreg || always_reachable(src), "missing"); 1138 1139 if (reachable(src)) { 1140 addss(dst, as_Address(src)); 1141 } else { 1142 lea(rscratch, src); 1143 addss(dst, Address(rscratch, 0)); 1144 } 1145 } 1146 1147 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1148 assert(rscratch != noreg || always_reachable(src), "missing"); 1149 1150 if (reachable(src)) { 1151 Assembler::addpd(dst, as_Address(src)); 1152 } else { 1153 lea(rscratch, src); 1154 Assembler::addpd(dst, Address(rscratch, 0)); 1155 } 1156 } 1157 1158 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only. 1159 // Stub code is generated once and never copied. 1160 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes. 1161 void MacroAssembler::align64() { 1162 align(64, (uint)(uintptr_t)pc()); 1163 } 1164 1165 void MacroAssembler::align32() { 1166 align(32, (uint)(uintptr_t)pc()); 1167 } 1168 1169 void MacroAssembler::align(uint modulus) { 1170 // 8273459: Ensure alignment is possible with current segment alignment 1171 assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment"); 1172 align(modulus, offset()); 1173 } 1174 1175 void MacroAssembler::align(uint modulus, uint target) { 1176 if (target % modulus != 0) { 1177 nop(modulus - (target % modulus)); 1178 } 1179 } 1180 1181 void MacroAssembler::push_f(XMMRegister r) { 1182 subptr(rsp, wordSize); 1183 movflt(Address(rsp, 0), r); 1184 } 1185 1186 void MacroAssembler::pop_f(XMMRegister r) { 1187 movflt(r, Address(rsp, 0)); 1188 addptr(rsp, wordSize); 1189 } 1190 1191 void MacroAssembler::push_d(XMMRegister r) { 1192 subptr(rsp, 2 * wordSize); 1193 movdbl(Address(rsp, 0), r); 1194 } 1195 1196 void MacroAssembler::pop_d(XMMRegister r) { 1197 movdbl(r, Address(rsp, 0)); 1198 addptr(rsp, 2 * Interpreter::stackElementSize); 1199 } 1200 1201 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1202 // Used in sign-masking with aligned address. 1203 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1204 assert(rscratch != noreg || always_reachable(src), "missing"); 1205 1206 if (UseAVX > 2 && 1207 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 1208 (dst->encoding() >= 16)) { 1209 vpand(dst, dst, src, AVX_512bit, rscratch); 1210 } else if (reachable(src)) { 1211 Assembler::andpd(dst, as_Address(src)); 1212 } else { 1213 lea(rscratch, src); 1214 Assembler::andpd(dst, Address(rscratch, 0)); 1215 } 1216 } 1217 1218 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) { 1219 // Used in sign-masking with aligned address. 1220 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1221 assert(rscratch != noreg || always_reachable(src), "missing"); 1222 1223 if (reachable(src)) { 1224 Assembler::andps(dst, as_Address(src)); 1225 } else { 1226 lea(rscratch, src); 1227 Assembler::andps(dst, Address(rscratch, 0)); 1228 } 1229 } 1230 1231 void MacroAssembler::andptr(Register dst, int32_t imm32) { 1232 LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32)); 1233 } 1234 1235 #ifdef _LP64 1236 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) { 1237 assert(rscratch != noreg || always_reachable(src), "missing"); 1238 1239 if (reachable(src)) { 1240 andq(dst, as_Address(src)); 1241 } else { 1242 lea(rscratch, src); 1243 andq(dst, Address(rscratch, 0)); 1244 } 1245 } 1246 #endif 1247 1248 void MacroAssembler::atomic_incl(Address counter_addr) { 1249 lock(); 1250 incrementl(counter_addr); 1251 } 1252 1253 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) { 1254 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1255 1256 if (reachable(counter_addr)) { 1257 atomic_incl(as_Address(counter_addr)); 1258 } else { 1259 lea(rscratch, counter_addr); 1260 atomic_incl(Address(rscratch, 0)); 1261 } 1262 } 1263 1264 #ifdef _LP64 1265 void MacroAssembler::atomic_incq(Address counter_addr) { 1266 lock(); 1267 incrementq(counter_addr); 1268 } 1269 1270 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) { 1271 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1272 1273 if (reachable(counter_addr)) { 1274 atomic_incq(as_Address(counter_addr)); 1275 } else { 1276 lea(rscratch, counter_addr); 1277 atomic_incq(Address(rscratch, 0)); 1278 } 1279 } 1280 #endif 1281 1282 // Writes to stack successive pages until offset reached to check for 1283 // stack overflow + shadow pages. This clobbers tmp. 1284 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 1285 movptr(tmp, rsp); 1286 // Bang stack for total size given plus shadow page size. 1287 // Bang one page at a time because large size can bang beyond yellow and 1288 // red zones. 1289 Label loop; 1290 bind(loop); 1291 movl(Address(tmp, (-(int)os::vm_page_size())), size ); 1292 subptr(tmp, (int)os::vm_page_size()); 1293 subl(size, (int)os::vm_page_size()); 1294 jcc(Assembler::greater, loop); 1295 1296 // Bang down shadow pages too. 1297 // At this point, (tmp-0) is the last address touched, so don't 1298 // touch it again. (It was touched as (tmp-pagesize) but then tmp 1299 // was post-decremented.) Skip this address by starting at i=1, and 1300 // touch a few more pages below. N.B. It is important to touch all 1301 // the way down including all pages in the shadow zone. 1302 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) { 1303 // this could be any sized move but this is can be a debugging crumb 1304 // so the bigger the better. 1305 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size ); 1306 } 1307 } 1308 1309 void MacroAssembler::reserved_stack_check() { 1310 // testing if reserved zone needs to be enabled 1311 Label no_reserved_zone_enabling; 1312 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 1313 NOT_LP64(get_thread(rsi);) 1314 1315 cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset())); 1316 jcc(Assembler::below, no_reserved_zone_enabling); 1317 1318 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread); 1319 jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 1320 should_not_reach_here(); 1321 1322 bind(no_reserved_zone_enabling); 1323 } 1324 1325 void MacroAssembler::c2bool(Register x) { 1326 // implements x == 0 ? 0 : 1 1327 // note: must only look at least-significant byte of x 1328 // since C-style booleans are stored in one byte 1329 // only! (was bug) 1330 andl(x, 0xFF); 1331 setb(Assembler::notZero, x); 1332 } 1333 1334 // Wouldn't need if AddressLiteral version had new name 1335 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { 1336 Assembler::call(L, rtype); 1337 } 1338 1339 void MacroAssembler::call(Register entry) { 1340 Assembler::call(entry); 1341 } 1342 1343 void MacroAssembler::call(AddressLiteral entry, Register rscratch) { 1344 assert(rscratch != noreg || always_reachable(entry), "missing"); 1345 1346 if (reachable(entry)) { 1347 Assembler::call_literal(entry.target(), entry.rspec()); 1348 } else { 1349 lea(rscratch, entry); 1350 Assembler::call(rscratch); 1351 } 1352 } 1353 1354 void MacroAssembler::ic_call(address entry, jint method_index) { 1355 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1356 #ifdef _LP64 1357 // Needs full 64-bit immediate for later patching. 1358 mov64(rax, (int64_t)Universe::non_oop_word()); 1359 #else 1360 movptr(rax, (intptr_t)Universe::non_oop_word()); 1361 #endif 1362 call(AddressLiteral(entry, rh)); 1363 } 1364 1365 int MacroAssembler::ic_check_size() { 1366 return 1367 LP64_ONLY(UseCompactObjectHeaders ? 17 : 14) NOT_LP64(12); 1368 } 1369 1370 int MacroAssembler::ic_check(int end_alignment) { 1371 Register receiver = LP64_ONLY(j_rarg0) NOT_LP64(rcx); 1372 Register data = rax; 1373 Register temp = LP64_ONLY(rscratch1) NOT_LP64(rbx); 1374 1375 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1376 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1377 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1378 // before the inline cache check here, and not after 1379 align(end_alignment, offset() + ic_check_size()); 1380 1381 int uep_offset = offset(); 1382 1383 #ifdef _LP64 1384 if (UseCompactObjectHeaders) { 1385 load_narrow_klass_compact(temp, receiver); 1386 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 1387 } else 1388 #endif 1389 if (UseCompressedClassPointers) { 1390 movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1391 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 1392 } else { 1393 movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1394 cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset())); 1395 } 1396 1397 // if inline cache check fails, then jump to runtime routine 1398 jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1399 assert((offset() % end_alignment) == 0, "Misaligned verified entry point (%d, %d, %d)", uep_offset, offset(), end_alignment); 1400 1401 return uep_offset; 1402 } 1403 1404 void MacroAssembler::emit_static_call_stub() { 1405 // Static stub relocation also tags the Method* in the code-stream. 1406 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time. 1407 // This is recognized as unresolved by relocs/nativeinst/ic code. 1408 jump(RuntimeAddress(pc())); 1409 } 1410 1411 // Implementation of call_VM versions 1412 1413 void MacroAssembler::call_VM(Register oop_result, 1414 address entry_point, 1415 bool check_exceptions) { 1416 Label C, E; 1417 call(C, relocInfo::none); 1418 jmp(E); 1419 1420 bind(C); 1421 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1422 ret(0); 1423 1424 bind(E); 1425 } 1426 1427 void MacroAssembler::call_VM(Register oop_result, 1428 address entry_point, 1429 Register arg_1, 1430 bool check_exceptions) { 1431 Label C, E; 1432 call(C, relocInfo::none); 1433 jmp(E); 1434 1435 bind(C); 1436 pass_arg1(this, arg_1); 1437 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1438 ret(0); 1439 1440 bind(E); 1441 } 1442 1443 void MacroAssembler::call_VM(Register oop_result, 1444 address entry_point, 1445 Register arg_1, 1446 Register arg_2, 1447 bool check_exceptions) { 1448 Label C, E; 1449 call(C, relocInfo::none); 1450 jmp(E); 1451 1452 bind(C); 1453 1454 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1455 1456 pass_arg2(this, arg_2); 1457 pass_arg1(this, arg_1); 1458 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1459 ret(0); 1460 1461 bind(E); 1462 } 1463 1464 void MacroAssembler::call_VM(Register oop_result, 1465 address entry_point, 1466 Register arg_1, 1467 Register arg_2, 1468 Register arg_3, 1469 bool check_exceptions) { 1470 Label C, E; 1471 call(C, relocInfo::none); 1472 jmp(E); 1473 1474 bind(C); 1475 1476 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1477 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1478 pass_arg3(this, arg_3); 1479 pass_arg2(this, arg_2); 1480 pass_arg1(this, arg_1); 1481 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1482 ret(0); 1483 1484 bind(E); 1485 } 1486 1487 void MacroAssembler::call_VM(Register oop_result, 1488 Register last_java_sp, 1489 address entry_point, 1490 int number_of_arguments, 1491 bool check_exceptions) { 1492 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1493 call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1494 } 1495 1496 void MacroAssembler::call_VM(Register oop_result, 1497 Register last_java_sp, 1498 address entry_point, 1499 Register arg_1, 1500 bool check_exceptions) { 1501 pass_arg1(this, arg_1); 1502 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1503 } 1504 1505 void MacroAssembler::call_VM(Register oop_result, 1506 Register last_java_sp, 1507 address entry_point, 1508 Register arg_1, 1509 Register arg_2, 1510 bool check_exceptions) { 1511 1512 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1513 pass_arg2(this, arg_2); 1514 pass_arg1(this, arg_1); 1515 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1516 } 1517 1518 void MacroAssembler::call_VM(Register oop_result, 1519 Register last_java_sp, 1520 address entry_point, 1521 Register arg_1, 1522 Register arg_2, 1523 Register arg_3, 1524 bool check_exceptions) { 1525 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1526 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1527 pass_arg3(this, arg_3); 1528 pass_arg2(this, arg_2); 1529 pass_arg1(this, arg_1); 1530 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1531 } 1532 1533 void MacroAssembler::super_call_VM(Register oop_result, 1534 Register last_java_sp, 1535 address entry_point, 1536 int number_of_arguments, 1537 bool check_exceptions) { 1538 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1539 MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1540 } 1541 1542 void MacroAssembler::super_call_VM(Register oop_result, 1543 Register last_java_sp, 1544 address entry_point, 1545 Register arg_1, 1546 bool check_exceptions) { 1547 pass_arg1(this, arg_1); 1548 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1549 } 1550 1551 void MacroAssembler::super_call_VM(Register oop_result, 1552 Register last_java_sp, 1553 address entry_point, 1554 Register arg_1, 1555 Register arg_2, 1556 bool check_exceptions) { 1557 1558 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1559 pass_arg2(this, arg_2); 1560 pass_arg1(this, arg_1); 1561 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1562 } 1563 1564 void MacroAssembler::super_call_VM(Register oop_result, 1565 Register last_java_sp, 1566 address entry_point, 1567 Register arg_1, 1568 Register arg_2, 1569 Register arg_3, 1570 bool check_exceptions) { 1571 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1572 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1573 pass_arg3(this, arg_3); 1574 pass_arg2(this, arg_2); 1575 pass_arg1(this, arg_1); 1576 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1577 } 1578 1579 void MacroAssembler::call_VM_base(Register oop_result, 1580 Register java_thread, 1581 Register last_java_sp, 1582 address entry_point, 1583 int number_of_arguments, 1584 bool check_exceptions) { 1585 // determine java_thread register 1586 if (!java_thread->is_valid()) { 1587 #ifdef _LP64 1588 java_thread = r15_thread; 1589 #else 1590 java_thread = rdi; 1591 get_thread(java_thread); 1592 #endif // LP64 1593 } 1594 // determine last_java_sp register 1595 if (!last_java_sp->is_valid()) { 1596 last_java_sp = rsp; 1597 } 1598 // debugging support 1599 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 1600 LP64_ONLY(assert(java_thread == r15_thread, "unexpected register")); 1601 #ifdef ASSERT 1602 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 1603 // r12 is the heapbase. 1604 LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");) 1605 #endif // ASSERT 1606 1607 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 1608 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 1609 1610 // push java thread (becomes first argument of C function) 1611 1612 NOT_LP64(push(java_thread); number_of_arguments++); 1613 LP64_ONLY(mov(c_rarg0, r15_thread)); 1614 1615 // set last Java frame before call 1616 assert(last_java_sp != rbp, "can't use ebp/rbp"); 1617 1618 // Only interpreter should have to set fp 1619 set_last_Java_frame(java_thread, last_java_sp, rbp, nullptr, rscratch1); 1620 1621 // do the call, remove parameters 1622 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1623 1624 // restore the thread (cannot use the pushed argument since arguments 1625 // may be overwritten by C code generated by an optimizing compiler); 1626 // however can use the register value directly if it is callee saved. 1627 if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) { 1628 // rdi & rsi (also r15) are callee saved -> nothing to do 1629 #ifdef ASSERT 1630 guarantee(java_thread != rax, "change this code"); 1631 push(rax); 1632 { Label L; 1633 get_thread(rax); 1634 cmpptr(java_thread, rax); 1635 jcc(Assembler::equal, L); 1636 STOP("MacroAssembler::call_VM_base: rdi not callee saved?"); 1637 bind(L); 1638 } 1639 pop(rax); 1640 #endif 1641 } else { 1642 get_thread(java_thread); 1643 } 1644 // reset last Java frame 1645 // Only interpreter should have to clear fp 1646 reset_last_Java_frame(java_thread, true); 1647 1648 // C++ interp handles this in the interpreter 1649 check_and_handle_popframe(java_thread); 1650 check_and_handle_earlyret(java_thread); 1651 1652 if (check_exceptions) { 1653 // check for pending exceptions (java_thread is set upon return) 1654 cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD); 1655 #ifndef _LP64 1656 jump_cc(Assembler::notEqual, 1657 RuntimeAddress(StubRoutines::forward_exception_entry())); 1658 #else 1659 // This used to conditionally jump to forward_exception however it is 1660 // possible if we relocate that the branch will not reach. So we must jump 1661 // around so we can always reach 1662 1663 Label ok; 1664 jcc(Assembler::equal, ok); 1665 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1666 bind(ok); 1667 #endif // LP64 1668 } 1669 1670 // get oop result if there is one and reset the value in the thread 1671 if (oop_result->is_valid()) { 1672 get_vm_result(oop_result, java_thread); 1673 } 1674 } 1675 1676 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 1677 1678 // Calculate the value for last_Java_sp 1679 // somewhat subtle. call_VM does an intermediate call 1680 // which places a return address on the stack just under the 1681 // stack pointer as the user finished with it. This allows 1682 // use to retrieve last_Java_pc from last_Java_sp[-1]. 1683 // On 32bit we then have to push additional args on the stack to accomplish 1684 // the actual requested call. On 64bit call_VM only can use register args 1685 // so the only extra space is the return address that call_VM created. 1686 // This hopefully explains the calculations here. 1687 1688 #ifdef _LP64 1689 // We've pushed one address, correct last_Java_sp 1690 lea(rax, Address(rsp, wordSize)); 1691 #else 1692 lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize)); 1693 #endif // LP64 1694 1695 call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions); 1696 1697 } 1698 1699 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter. 1700 void MacroAssembler::call_VM_leaf0(address entry_point) { 1701 MacroAssembler::call_VM_leaf_base(entry_point, 0); 1702 } 1703 1704 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1705 call_VM_leaf_base(entry_point, number_of_arguments); 1706 } 1707 1708 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1709 pass_arg0(this, arg_0); 1710 call_VM_leaf(entry_point, 1); 1711 } 1712 1713 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1714 1715 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1716 pass_arg1(this, arg_1); 1717 pass_arg0(this, arg_0); 1718 call_VM_leaf(entry_point, 2); 1719 } 1720 1721 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1722 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1723 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1724 pass_arg2(this, arg_2); 1725 pass_arg1(this, arg_1); 1726 pass_arg0(this, arg_0); 1727 call_VM_leaf(entry_point, 3); 1728 } 1729 1730 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1731 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1732 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1733 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1734 pass_arg3(this, arg_3); 1735 pass_arg2(this, arg_2); 1736 pass_arg1(this, arg_1); 1737 pass_arg0(this, arg_0); 1738 call_VM_leaf(entry_point, 3); 1739 } 1740 1741 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1742 pass_arg0(this, arg_0); 1743 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1744 } 1745 1746 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1747 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1748 pass_arg1(this, arg_1); 1749 pass_arg0(this, arg_0); 1750 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1751 } 1752 1753 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1754 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1755 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1756 pass_arg2(this, arg_2); 1757 pass_arg1(this, arg_1); 1758 pass_arg0(this, arg_0); 1759 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1760 } 1761 1762 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1763 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1764 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1765 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1766 pass_arg3(this, arg_3); 1767 pass_arg2(this, arg_2); 1768 pass_arg1(this, arg_1); 1769 pass_arg0(this, arg_0); 1770 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1771 } 1772 1773 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1774 movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1775 movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD); 1776 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1777 } 1778 1779 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1780 movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1781 movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD); 1782 } 1783 1784 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { 1785 } 1786 1787 void MacroAssembler::check_and_handle_popframe(Register java_thread) { 1788 } 1789 1790 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) { 1791 assert(rscratch != noreg || always_reachable(src1), "missing"); 1792 1793 if (reachable(src1)) { 1794 cmpl(as_Address(src1), imm); 1795 } else { 1796 lea(rscratch, src1); 1797 cmpl(Address(rscratch, 0), imm); 1798 } 1799 } 1800 1801 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) { 1802 assert(!src2.is_lval(), "use cmpptr"); 1803 assert(rscratch != noreg || always_reachable(src2), "missing"); 1804 1805 if (reachable(src2)) { 1806 cmpl(src1, as_Address(src2)); 1807 } else { 1808 lea(rscratch, src2); 1809 cmpl(src1, Address(rscratch, 0)); 1810 } 1811 } 1812 1813 void MacroAssembler::cmp32(Register src1, int32_t imm) { 1814 Assembler::cmpl(src1, imm); 1815 } 1816 1817 void MacroAssembler::cmp32(Register src1, Address src2) { 1818 Assembler::cmpl(src1, src2); 1819 } 1820 1821 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1822 ucomisd(opr1, opr2); 1823 1824 Label L; 1825 if (unordered_is_less) { 1826 movl(dst, -1); 1827 jcc(Assembler::parity, L); 1828 jcc(Assembler::below , L); 1829 movl(dst, 0); 1830 jcc(Assembler::equal , L); 1831 increment(dst); 1832 } else { // unordered is greater 1833 movl(dst, 1); 1834 jcc(Assembler::parity, L); 1835 jcc(Assembler::above , L); 1836 movl(dst, 0); 1837 jcc(Assembler::equal , L); 1838 decrementl(dst); 1839 } 1840 bind(L); 1841 } 1842 1843 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1844 ucomiss(opr1, opr2); 1845 1846 Label L; 1847 if (unordered_is_less) { 1848 movl(dst, -1); 1849 jcc(Assembler::parity, L); 1850 jcc(Assembler::below , L); 1851 movl(dst, 0); 1852 jcc(Assembler::equal , L); 1853 increment(dst); 1854 } else { // unordered is greater 1855 movl(dst, 1); 1856 jcc(Assembler::parity, L); 1857 jcc(Assembler::above , L); 1858 movl(dst, 0); 1859 jcc(Assembler::equal , L); 1860 decrementl(dst); 1861 } 1862 bind(L); 1863 } 1864 1865 1866 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) { 1867 assert(rscratch != noreg || always_reachable(src1), "missing"); 1868 1869 if (reachable(src1)) { 1870 cmpb(as_Address(src1), imm); 1871 } else { 1872 lea(rscratch, src1); 1873 cmpb(Address(rscratch, 0), imm); 1874 } 1875 } 1876 1877 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) { 1878 #ifdef _LP64 1879 assert(rscratch != noreg || always_reachable(src2), "missing"); 1880 1881 if (src2.is_lval()) { 1882 movptr(rscratch, src2); 1883 Assembler::cmpq(src1, rscratch); 1884 } else if (reachable(src2)) { 1885 cmpq(src1, as_Address(src2)); 1886 } else { 1887 lea(rscratch, src2); 1888 Assembler::cmpq(src1, Address(rscratch, 0)); 1889 } 1890 #else 1891 assert(rscratch == noreg, "not needed"); 1892 if (src2.is_lval()) { 1893 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1894 } else { 1895 cmpl(src1, as_Address(src2)); 1896 } 1897 #endif // _LP64 1898 } 1899 1900 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) { 1901 assert(src2.is_lval(), "not a mem-mem compare"); 1902 #ifdef _LP64 1903 // moves src2's literal address 1904 movptr(rscratch, src2); 1905 Assembler::cmpq(src1, rscratch); 1906 #else 1907 assert(rscratch == noreg, "not needed"); 1908 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1909 #endif // _LP64 1910 } 1911 1912 void MacroAssembler::cmpoop(Register src1, Register src2) { 1913 cmpptr(src1, src2); 1914 } 1915 1916 void MacroAssembler::cmpoop(Register src1, Address src2) { 1917 cmpptr(src1, src2); 1918 } 1919 1920 #ifdef _LP64 1921 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) { 1922 movoop(rscratch, src2); 1923 cmpptr(src1, rscratch); 1924 } 1925 #endif 1926 1927 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) { 1928 assert(rscratch != noreg || always_reachable(adr), "missing"); 1929 1930 if (reachable(adr)) { 1931 lock(); 1932 cmpxchgptr(reg, as_Address(adr)); 1933 } else { 1934 lea(rscratch, adr); 1935 lock(); 1936 cmpxchgptr(reg, Address(rscratch, 0)); 1937 } 1938 } 1939 1940 void MacroAssembler::cmpxchgptr(Register reg, Address adr) { 1941 LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr)); 1942 } 1943 1944 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1945 assert(rscratch != noreg || always_reachable(src), "missing"); 1946 1947 if (reachable(src)) { 1948 Assembler::comisd(dst, as_Address(src)); 1949 } else { 1950 lea(rscratch, src); 1951 Assembler::comisd(dst, Address(rscratch, 0)); 1952 } 1953 } 1954 1955 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1956 assert(rscratch != noreg || always_reachable(src), "missing"); 1957 1958 if (reachable(src)) { 1959 Assembler::comiss(dst, as_Address(src)); 1960 } else { 1961 lea(rscratch, src); 1962 Assembler::comiss(dst, Address(rscratch, 0)); 1963 } 1964 } 1965 1966 1967 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) { 1968 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1969 1970 Condition negated_cond = negate_condition(cond); 1971 Label L; 1972 jcc(negated_cond, L); 1973 pushf(); // Preserve flags 1974 atomic_incl(counter_addr, rscratch); 1975 popf(); 1976 bind(L); 1977 } 1978 1979 int MacroAssembler::corrected_idivl(Register reg) { 1980 // Full implementation of Java idiv and irem; checks for 1981 // special case as described in JVM spec., p.243 & p.271. 1982 // The function returns the (pc) offset of the idivl 1983 // instruction - may be needed for implicit exceptions. 1984 // 1985 // normal case special case 1986 // 1987 // input : rax,: dividend min_int 1988 // reg: divisor (may not be rax,/rdx) -1 1989 // 1990 // output: rax,: quotient (= rax, idiv reg) min_int 1991 // rdx: remainder (= rax, irem reg) 0 1992 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); 1993 const int min_int = 0x80000000; 1994 Label normal_case, special_case; 1995 1996 // check for special case 1997 cmpl(rax, min_int); 1998 jcc(Assembler::notEqual, normal_case); 1999 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) 2000 cmpl(reg, -1); 2001 jcc(Assembler::equal, special_case); 2002 2003 // handle normal case 2004 bind(normal_case); 2005 cdql(); 2006 int idivl_offset = offset(); 2007 idivl(reg); 2008 2009 // normal and special case exit 2010 bind(special_case); 2011 2012 return idivl_offset; 2013 } 2014 2015 2016 2017 void MacroAssembler::decrementl(Register reg, int value) { 2018 if (value == min_jint) {subl(reg, value) ; return; } 2019 if (value < 0) { incrementl(reg, -value); return; } 2020 if (value == 0) { ; return; } 2021 if (value == 1 && UseIncDec) { decl(reg) ; return; } 2022 /* else */ { subl(reg, value) ; return; } 2023 } 2024 2025 void MacroAssembler::decrementl(Address dst, int value) { 2026 if (value == min_jint) {subl(dst, value) ; return; } 2027 if (value < 0) { incrementl(dst, -value); return; } 2028 if (value == 0) { ; return; } 2029 if (value == 1 && UseIncDec) { decl(dst) ; return; } 2030 /* else */ { subl(dst, value) ; return; } 2031 } 2032 2033 void MacroAssembler::division_with_shift (Register reg, int shift_value) { 2034 assert(shift_value > 0, "illegal shift value"); 2035 Label _is_positive; 2036 testl (reg, reg); 2037 jcc (Assembler::positive, _is_positive); 2038 int offset = (1 << shift_value) - 1 ; 2039 2040 if (offset == 1) { 2041 incrementl(reg); 2042 } else { 2043 addl(reg, offset); 2044 } 2045 2046 bind (_is_positive); 2047 sarl(reg, shift_value); 2048 } 2049 2050 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2051 assert(rscratch != noreg || always_reachable(src), "missing"); 2052 2053 if (reachable(src)) { 2054 Assembler::divsd(dst, as_Address(src)); 2055 } else { 2056 lea(rscratch, src); 2057 Assembler::divsd(dst, Address(rscratch, 0)); 2058 } 2059 } 2060 2061 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2062 assert(rscratch != noreg || always_reachable(src), "missing"); 2063 2064 if (reachable(src)) { 2065 Assembler::divss(dst, as_Address(src)); 2066 } else { 2067 lea(rscratch, src); 2068 Assembler::divss(dst, Address(rscratch, 0)); 2069 } 2070 } 2071 2072 void MacroAssembler::enter() { 2073 push(rbp); 2074 mov(rbp, rsp); 2075 } 2076 2077 void MacroAssembler::post_call_nop() { 2078 if (!Continuations::enabled()) { 2079 return; 2080 } 2081 InstructionMark im(this); 2082 relocate(post_call_nop_Relocation::spec()); 2083 InlineSkippedInstructionsCounter skipCounter(this); 2084 emit_int8((uint8_t)0x0f); 2085 emit_int8((uint8_t)0x1f); 2086 emit_int8((uint8_t)0x84); 2087 emit_int8((uint8_t)0x00); 2088 emit_int32(0x00); 2089 } 2090 2091 // A 5 byte nop that is safe for patching (see patch_verified_entry) 2092 void MacroAssembler::fat_nop() { 2093 if (UseAddressNop) { 2094 addr_nop_5(); 2095 } else { 2096 emit_int8((uint8_t)0x26); // es: 2097 emit_int8((uint8_t)0x2e); // cs: 2098 emit_int8((uint8_t)0x64); // fs: 2099 emit_int8((uint8_t)0x65); // gs: 2100 emit_int8((uint8_t)0x90); 2101 } 2102 } 2103 2104 #ifndef _LP64 2105 void MacroAssembler::fcmp(Register tmp) { 2106 fcmp(tmp, 1, true, true); 2107 } 2108 2109 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) { 2110 assert(!pop_right || pop_left, "usage error"); 2111 if (VM_Version::supports_cmov()) { 2112 assert(tmp == noreg, "unneeded temp"); 2113 if (pop_left) { 2114 fucomip(index); 2115 } else { 2116 fucomi(index); 2117 } 2118 if (pop_right) { 2119 fpop(); 2120 } 2121 } else { 2122 assert(tmp != noreg, "need temp"); 2123 if (pop_left) { 2124 if (pop_right) { 2125 fcompp(); 2126 } else { 2127 fcomp(index); 2128 } 2129 } else { 2130 fcom(index); 2131 } 2132 // convert FPU condition into eflags condition via rax, 2133 save_rax(tmp); 2134 fwait(); fnstsw_ax(); 2135 sahf(); 2136 restore_rax(tmp); 2137 } 2138 // condition codes set as follows: 2139 // 2140 // CF (corresponds to C0) if x < y 2141 // PF (corresponds to C2) if unordered 2142 // ZF (corresponds to C3) if x = y 2143 } 2144 2145 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) { 2146 fcmp2int(dst, unordered_is_less, 1, true, true); 2147 } 2148 2149 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) { 2150 fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right); 2151 Label L; 2152 if (unordered_is_less) { 2153 movl(dst, -1); 2154 jcc(Assembler::parity, L); 2155 jcc(Assembler::below , L); 2156 movl(dst, 0); 2157 jcc(Assembler::equal , L); 2158 increment(dst); 2159 } else { // unordered is greater 2160 movl(dst, 1); 2161 jcc(Assembler::parity, L); 2162 jcc(Assembler::above , L); 2163 movl(dst, 0); 2164 jcc(Assembler::equal , L); 2165 decrementl(dst); 2166 } 2167 bind(L); 2168 } 2169 2170 void MacroAssembler::fld_d(AddressLiteral src) { 2171 fld_d(as_Address(src)); 2172 } 2173 2174 void MacroAssembler::fld_s(AddressLiteral src) { 2175 fld_s(as_Address(src)); 2176 } 2177 2178 void MacroAssembler::fldcw(AddressLiteral src) { 2179 fldcw(as_Address(src)); 2180 } 2181 2182 void MacroAssembler::fpop() { 2183 ffree(); 2184 fincstp(); 2185 } 2186 2187 void MacroAssembler::fremr(Register tmp) { 2188 save_rax(tmp); 2189 { Label L; 2190 bind(L); 2191 fprem(); 2192 fwait(); fnstsw_ax(); 2193 sahf(); 2194 jcc(Assembler::parity, L); 2195 } 2196 restore_rax(tmp); 2197 // Result is in ST0. 2198 // Note: fxch & fpop to get rid of ST1 2199 // (otherwise FPU stack could overflow eventually) 2200 fxch(1); 2201 fpop(); 2202 } 2203 2204 void MacroAssembler::empty_FPU_stack() { 2205 if (VM_Version::supports_mmx()) { 2206 emms(); 2207 } else { 2208 for (int i = 8; i-- > 0; ) ffree(i); 2209 } 2210 } 2211 #endif // !LP64 2212 2213 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2214 assert(rscratch != noreg || always_reachable(src), "missing"); 2215 if (reachable(src)) { 2216 Assembler::mulpd(dst, as_Address(src)); 2217 } else { 2218 lea(rscratch, src); 2219 Assembler::mulpd(dst, Address(rscratch, 0)); 2220 } 2221 } 2222 2223 void MacroAssembler::load_float(Address src) { 2224 #ifdef _LP64 2225 movflt(xmm0, src); 2226 #else 2227 if (UseSSE >= 1) { 2228 movflt(xmm0, src); 2229 } else { 2230 fld_s(src); 2231 } 2232 #endif // LP64 2233 } 2234 2235 void MacroAssembler::store_float(Address dst) { 2236 #ifdef _LP64 2237 movflt(dst, xmm0); 2238 #else 2239 if (UseSSE >= 1) { 2240 movflt(dst, xmm0); 2241 } else { 2242 fstp_s(dst); 2243 } 2244 #endif // LP64 2245 } 2246 2247 void MacroAssembler::load_double(Address src) { 2248 #ifdef _LP64 2249 movdbl(xmm0, src); 2250 #else 2251 if (UseSSE >= 2) { 2252 movdbl(xmm0, src); 2253 } else { 2254 fld_d(src); 2255 } 2256 #endif // LP64 2257 } 2258 2259 void MacroAssembler::store_double(Address dst) { 2260 #ifdef _LP64 2261 movdbl(dst, xmm0); 2262 #else 2263 if (UseSSE >= 2) { 2264 movdbl(dst, xmm0); 2265 } else { 2266 fstp_d(dst); 2267 } 2268 #endif // LP64 2269 } 2270 2271 // dst = c = a * b + c 2272 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2273 Assembler::vfmadd231sd(c, a, b); 2274 if (dst != c) { 2275 movdbl(dst, c); 2276 } 2277 } 2278 2279 // dst = c = a * b + c 2280 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2281 Assembler::vfmadd231ss(c, a, b); 2282 if (dst != c) { 2283 movflt(dst, c); 2284 } 2285 } 2286 2287 // dst = c = a * b + c 2288 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2289 Assembler::vfmadd231pd(c, a, b, vector_len); 2290 if (dst != c) { 2291 vmovdqu(dst, c); 2292 } 2293 } 2294 2295 // dst = c = a * b + c 2296 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2297 Assembler::vfmadd231ps(c, a, b, vector_len); 2298 if (dst != c) { 2299 vmovdqu(dst, c); 2300 } 2301 } 2302 2303 // dst = c = a * b + c 2304 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2305 Assembler::vfmadd231pd(c, a, b, vector_len); 2306 if (dst != c) { 2307 vmovdqu(dst, c); 2308 } 2309 } 2310 2311 // dst = c = a * b + c 2312 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2313 Assembler::vfmadd231ps(c, a, b, vector_len); 2314 if (dst != c) { 2315 vmovdqu(dst, c); 2316 } 2317 } 2318 2319 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) { 2320 assert(rscratch != noreg || always_reachable(dst), "missing"); 2321 2322 if (reachable(dst)) { 2323 incrementl(as_Address(dst)); 2324 } else { 2325 lea(rscratch, dst); 2326 incrementl(Address(rscratch, 0)); 2327 } 2328 } 2329 2330 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) { 2331 incrementl(as_Address(dst, rscratch)); 2332 } 2333 2334 void MacroAssembler::incrementl(Register reg, int value) { 2335 if (value == min_jint) {addl(reg, value) ; return; } 2336 if (value < 0) { decrementl(reg, -value); return; } 2337 if (value == 0) { ; return; } 2338 if (value == 1 && UseIncDec) { incl(reg) ; return; } 2339 /* else */ { addl(reg, value) ; return; } 2340 } 2341 2342 void MacroAssembler::incrementl(Address dst, int value) { 2343 if (value == min_jint) {addl(dst, value) ; return; } 2344 if (value < 0) { decrementl(dst, -value); return; } 2345 if (value == 0) { ; return; } 2346 if (value == 1 && UseIncDec) { incl(dst) ; return; } 2347 /* else */ { addl(dst, value) ; return; } 2348 } 2349 2350 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) { 2351 assert(rscratch != noreg || always_reachable(dst), "missing"); 2352 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump"); 2353 if (reachable(dst)) { 2354 jmp_literal(dst.target(), dst.rspec()); 2355 } else { 2356 lea(rscratch, dst); 2357 jmp(rscratch); 2358 } 2359 } 2360 2361 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) { 2362 assert(rscratch != noreg || always_reachable(dst), "missing"); 2363 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc"); 2364 if (reachable(dst)) { 2365 InstructionMark im(this); 2366 relocate(dst.reloc()); 2367 const int short_size = 2; 2368 const int long_size = 6; 2369 int offs = (intptr_t)dst.target() - ((intptr_t)pc()); 2370 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { 2371 // 0111 tttn #8-bit disp 2372 emit_int8(0x70 | cc); 2373 emit_int8((offs - short_size) & 0xFF); 2374 } else { 2375 // 0000 1111 1000 tttn #32-bit disp 2376 emit_int8(0x0F); 2377 emit_int8((unsigned char)(0x80 | cc)); 2378 emit_int32(offs - long_size); 2379 } 2380 } else { 2381 #ifdef ASSERT 2382 warning("reversing conditional branch"); 2383 #endif /* ASSERT */ 2384 Label skip; 2385 jccb(reverse[cc], skip); 2386 lea(rscratch, dst); 2387 Assembler::jmp(rscratch); 2388 bind(skip); 2389 } 2390 } 2391 2392 void MacroAssembler::cmp32_mxcsr_std(Address mxcsr_save, Register tmp, Register rscratch) { 2393 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 2394 assert(rscratch != noreg || always_reachable(mxcsr_std), "missing"); 2395 2396 stmxcsr(mxcsr_save); 2397 movl(tmp, mxcsr_save); 2398 if (EnableX86ECoreOpts) { 2399 // The mxcsr_std has status bits set for performance on ECore 2400 orl(tmp, 0x003f); 2401 } else { 2402 // Mask out status bits (only check control and mask bits) 2403 andl(tmp, 0xFFC0); 2404 } 2405 cmp32(tmp, mxcsr_std, rscratch); 2406 } 2407 2408 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) { 2409 assert(rscratch != noreg || always_reachable(src), "missing"); 2410 2411 if (reachable(src)) { 2412 Assembler::ldmxcsr(as_Address(src)); 2413 } else { 2414 lea(rscratch, src); 2415 Assembler::ldmxcsr(Address(rscratch, 0)); 2416 } 2417 } 2418 2419 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2420 int off; 2421 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2422 off = offset(); 2423 movsbl(dst, src); // movsxb 2424 } else { 2425 off = load_unsigned_byte(dst, src); 2426 shll(dst, 24); 2427 sarl(dst, 24); 2428 } 2429 return off; 2430 } 2431 2432 // Note: load_signed_short used to be called load_signed_word. 2433 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler 2434 // manual, which means 16 bits, that usage is found nowhere in HotSpot code. 2435 // The term "word" in HotSpot means a 32- or 64-bit machine word. 2436 int MacroAssembler::load_signed_short(Register dst, Address src) { 2437 int off; 2438 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2439 // This is dubious to me since it seems safe to do a signed 16 => 64 bit 2440 // version but this is what 64bit has always done. This seems to imply 2441 // that users are only using 32bits worth. 2442 off = offset(); 2443 movswl(dst, src); // movsxw 2444 } else { 2445 off = load_unsigned_short(dst, src); 2446 shll(dst, 16); 2447 sarl(dst, 16); 2448 } 2449 return off; 2450 } 2451 2452 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2453 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2454 // and "3.9 Partial Register Penalties", p. 22). 2455 int off; 2456 if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) { 2457 off = offset(); 2458 movzbl(dst, src); // movzxb 2459 } else { 2460 xorl(dst, dst); 2461 off = offset(); 2462 movb(dst, src); 2463 } 2464 return off; 2465 } 2466 2467 // Note: load_unsigned_short used to be called load_unsigned_word. 2468 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2469 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2470 // and "3.9 Partial Register Penalties", p. 22). 2471 int off; 2472 if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) { 2473 off = offset(); 2474 movzwl(dst, src); // movzxw 2475 } else { 2476 xorl(dst, dst); 2477 off = offset(); 2478 movw(dst, src); 2479 } 2480 return off; 2481 } 2482 2483 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 2484 switch (size_in_bytes) { 2485 #ifndef _LP64 2486 case 8: 2487 assert(dst2 != noreg, "second dest register required"); 2488 movl(dst, src); 2489 movl(dst2, src.plus_disp(BytesPerInt)); 2490 break; 2491 #else 2492 case 8: movq(dst, src); break; 2493 #endif 2494 case 4: movl(dst, src); break; 2495 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2496 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2497 default: ShouldNotReachHere(); 2498 } 2499 } 2500 2501 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 2502 switch (size_in_bytes) { 2503 #ifndef _LP64 2504 case 8: 2505 assert(src2 != noreg, "second source register required"); 2506 movl(dst, src); 2507 movl(dst.plus_disp(BytesPerInt), src2); 2508 break; 2509 #else 2510 case 8: movq(dst, src); break; 2511 #endif 2512 case 4: movl(dst, src); break; 2513 case 2: movw(dst, src); break; 2514 case 1: movb(dst, src); break; 2515 default: ShouldNotReachHere(); 2516 } 2517 } 2518 2519 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) { 2520 assert(rscratch != noreg || always_reachable(dst), "missing"); 2521 2522 if (reachable(dst)) { 2523 movl(as_Address(dst), src); 2524 } else { 2525 lea(rscratch, dst); 2526 movl(Address(rscratch, 0), src); 2527 } 2528 } 2529 2530 void MacroAssembler::mov32(Register dst, AddressLiteral src) { 2531 if (reachable(src)) { 2532 movl(dst, as_Address(src)); 2533 } else { 2534 lea(dst, src); 2535 movl(dst, Address(dst, 0)); 2536 } 2537 } 2538 2539 // C++ bool manipulation 2540 2541 void MacroAssembler::movbool(Register dst, Address src) { 2542 if(sizeof(bool) == 1) 2543 movb(dst, src); 2544 else if(sizeof(bool) == 2) 2545 movw(dst, src); 2546 else if(sizeof(bool) == 4) 2547 movl(dst, src); 2548 else 2549 // unsupported 2550 ShouldNotReachHere(); 2551 } 2552 2553 void MacroAssembler::movbool(Address dst, bool boolconst) { 2554 if(sizeof(bool) == 1) 2555 movb(dst, (int) boolconst); 2556 else if(sizeof(bool) == 2) 2557 movw(dst, (int) boolconst); 2558 else if(sizeof(bool) == 4) 2559 movl(dst, (int) boolconst); 2560 else 2561 // unsupported 2562 ShouldNotReachHere(); 2563 } 2564 2565 void MacroAssembler::movbool(Address dst, Register src) { 2566 if(sizeof(bool) == 1) 2567 movb(dst, src); 2568 else if(sizeof(bool) == 2) 2569 movw(dst, src); 2570 else if(sizeof(bool) == 4) 2571 movl(dst, src); 2572 else 2573 // unsupported 2574 ShouldNotReachHere(); 2575 } 2576 2577 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2578 assert(rscratch != noreg || always_reachable(src), "missing"); 2579 2580 if (reachable(src)) { 2581 movdl(dst, as_Address(src)); 2582 } else { 2583 lea(rscratch, src); 2584 movdl(dst, Address(rscratch, 0)); 2585 } 2586 } 2587 2588 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) { 2589 assert(rscratch != noreg || always_reachable(src), "missing"); 2590 2591 if (reachable(src)) { 2592 movq(dst, as_Address(src)); 2593 } else { 2594 lea(rscratch, src); 2595 movq(dst, Address(rscratch, 0)); 2596 } 2597 } 2598 2599 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2600 assert(rscratch != noreg || always_reachable(src), "missing"); 2601 2602 if (reachable(src)) { 2603 if (UseXmmLoadAndClearUpper) { 2604 movsd (dst, as_Address(src)); 2605 } else { 2606 movlpd(dst, as_Address(src)); 2607 } 2608 } else { 2609 lea(rscratch, src); 2610 if (UseXmmLoadAndClearUpper) { 2611 movsd (dst, Address(rscratch, 0)); 2612 } else { 2613 movlpd(dst, Address(rscratch, 0)); 2614 } 2615 } 2616 } 2617 2618 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) { 2619 assert(rscratch != noreg || always_reachable(src), "missing"); 2620 2621 if (reachable(src)) { 2622 movss(dst, as_Address(src)); 2623 } else { 2624 lea(rscratch, src); 2625 movss(dst, Address(rscratch, 0)); 2626 } 2627 } 2628 2629 void MacroAssembler::movptr(Register dst, Register src) { 2630 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2631 } 2632 2633 void MacroAssembler::movptr(Register dst, Address src) { 2634 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2635 } 2636 2637 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 2638 void MacroAssembler::movptr(Register dst, intptr_t src) { 2639 #ifdef _LP64 2640 if (is_uimm32(src)) { 2641 movl(dst, checked_cast<uint32_t>(src)); 2642 } else if (is_simm32(src)) { 2643 movq(dst, checked_cast<int32_t>(src)); 2644 } else { 2645 mov64(dst, src); 2646 } 2647 #else 2648 movl(dst, src); 2649 #endif 2650 } 2651 2652 void MacroAssembler::movptr(Address dst, Register src) { 2653 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2654 } 2655 2656 void MacroAssembler::movptr(Address dst, int32_t src) { 2657 LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); 2658 } 2659 2660 void MacroAssembler::movdqu(Address dst, XMMRegister src) { 2661 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2662 Assembler::movdqu(dst, src); 2663 } 2664 2665 void MacroAssembler::movdqu(XMMRegister dst, Address src) { 2666 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2667 Assembler::movdqu(dst, src); 2668 } 2669 2670 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) { 2671 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2672 Assembler::movdqu(dst, src); 2673 } 2674 2675 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2676 assert(rscratch != noreg || always_reachable(src), "missing"); 2677 2678 if (reachable(src)) { 2679 movdqu(dst, as_Address(src)); 2680 } else { 2681 lea(rscratch, src); 2682 movdqu(dst, Address(rscratch, 0)); 2683 } 2684 } 2685 2686 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) { 2687 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2688 Assembler::vmovdqu(dst, src); 2689 } 2690 2691 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) { 2692 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2693 Assembler::vmovdqu(dst, src); 2694 } 2695 2696 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) { 2697 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2698 Assembler::vmovdqu(dst, src); 2699 } 2700 2701 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2702 assert(rscratch != noreg || always_reachable(src), "missing"); 2703 2704 if (reachable(src)) { 2705 vmovdqu(dst, as_Address(src)); 2706 } 2707 else { 2708 lea(rscratch, src); 2709 vmovdqu(dst, Address(rscratch, 0)); 2710 } 2711 } 2712 2713 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2714 assert(rscratch != noreg || always_reachable(src), "missing"); 2715 2716 if (vector_len == AVX_512bit) { 2717 evmovdquq(dst, src, AVX_512bit, rscratch); 2718 } else if (vector_len == AVX_256bit) { 2719 vmovdqu(dst, src, rscratch); 2720 } else { 2721 movdqu(dst, src, rscratch); 2722 } 2723 } 2724 2725 void MacroAssembler::kmov(KRegister dst, Address src) { 2726 if (VM_Version::supports_avx512bw()) { 2727 kmovql(dst, src); 2728 } else { 2729 assert(VM_Version::supports_evex(), ""); 2730 kmovwl(dst, src); 2731 } 2732 } 2733 2734 void MacroAssembler::kmov(Address dst, KRegister src) { 2735 if (VM_Version::supports_avx512bw()) { 2736 kmovql(dst, src); 2737 } else { 2738 assert(VM_Version::supports_evex(), ""); 2739 kmovwl(dst, src); 2740 } 2741 } 2742 2743 void MacroAssembler::kmov(KRegister dst, KRegister src) { 2744 if (VM_Version::supports_avx512bw()) { 2745 kmovql(dst, src); 2746 } else { 2747 assert(VM_Version::supports_evex(), ""); 2748 kmovwl(dst, src); 2749 } 2750 } 2751 2752 void MacroAssembler::kmov(Register dst, KRegister src) { 2753 if (VM_Version::supports_avx512bw()) { 2754 kmovql(dst, src); 2755 } else { 2756 assert(VM_Version::supports_evex(), ""); 2757 kmovwl(dst, src); 2758 } 2759 } 2760 2761 void MacroAssembler::kmov(KRegister dst, Register src) { 2762 if (VM_Version::supports_avx512bw()) { 2763 kmovql(dst, src); 2764 } else { 2765 assert(VM_Version::supports_evex(), ""); 2766 kmovwl(dst, src); 2767 } 2768 } 2769 2770 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) { 2771 assert(rscratch != noreg || always_reachable(src), "missing"); 2772 2773 if (reachable(src)) { 2774 kmovql(dst, as_Address(src)); 2775 } else { 2776 lea(rscratch, src); 2777 kmovql(dst, Address(rscratch, 0)); 2778 } 2779 } 2780 2781 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) { 2782 assert(rscratch != noreg || always_reachable(src), "missing"); 2783 2784 if (reachable(src)) { 2785 kmovwl(dst, as_Address(src)); 2786 } else { 2787 lea(rscratch, src); 2788 kmovwl(dst, Address(rscratch, 0)); 2789 } 2790 } 2791 2792 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2793 int vector_len, Register rscratch) { 2794 assert(rscratch != noreg || always_reachable(src), "missing"); 2795 2796 if (reachable(src)) { 2797 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len); 2798 } else { 2799 lea(rscratch, src); 2800 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len); 2801 } 2802 } 2803 2804 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2805 int vector_len, Register rscratch) { 2806 assert(rscratch != noreg || always_reachable(src), "missing"); 2807 2808 if (reachable(src)) { 2809 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len); 2810 } else { 2811 lea(rscratch, src); 2812 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len); 2813 } 2814 } 2815 2816 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2817 assert(rscratch != noreg || always_reachable(src), "missing"); 2818 2819 if (reachable(src)) { 2820 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len); 2821 } else { 2822 lea(rscratch, src); 2823 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len); 2824 } 2825 } 2826 2827 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2828 assert(rscratch != noreg || always_reachable(src), "missing"); 2829 2830 if (reachable(src)) { 2831 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len); 2832 } else { 2833 lea(rscratch, src); 2834 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len); 2835 } 2836 } 2837 2838 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2839 assert(rscratch != noreg || always_reachable(src), "missing"); 2840 2841 if (reachable(src)) { 2842 Assembler::evmovdquq(dst, as_Address(src), vector_len); 2843 } else { 2844 lea(rscratch, src); 2845 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len); 2846 } 2847 } 2848 2849 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2850 assert(rscratch != noreg || always_reachable(src), "missing"); 2851 2852 if (reachable(src)) { 2853 Assembler::movdqa(dst, as_Address(src)); 2854 } else { 2855 lea(rscratch, src); 2856 Assembler::movdqa(dst, Address(rscratch, 0)); 2857 } 2858 } 2859 2860 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2861 assert(rscratch != noreg || always_reachable(src), "missing"); 2862 2863 if (reachable(src)) { 2864 Assembler::movsd(dst, as_Address(src)); 2865 } else { 2866 lea(rscratch, src); 2867 Assembler::movsd(dst, Address(rscratch, 0)); 2868 } 2869 } 2870 2871 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2872 assert(rscratch != noreg || always_reachable(src), "missing"); 2873 2874 if (reachable(src)) { 2875 Assembler::movss(dst, as_Address(src)); 2876 } else { 2877 lea(rscratch, src); 2878 Assembler::movss(dst, Address(rscratch, 0)); 2879 } 2880 } 2881 2882 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) { 2883 assert(rscratch != noreg || always_reachable(src), "missing"); 2884 2885 if (reachable(src)) { 2886 Assembler::movddup(dst, as_Address(src)); 2887 } else { 2888 lea(rscratch, src); 2889 Assembler::movddup(dst, Address(rscratch, 0)); 2890 } 2891 } 2892 2893 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2894 assert(rscratch != noreg || always_reachable(src), "missing"); 2895 2896 if (reachable(src)) { 2897 Assembler::vmovddup(dst, as_Address(src), vector_len); 2898 } else { 2899 lea(rscratch, src); 2900 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len); 2901 } 2902 } 2903 2904 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2905 assert(rscratch != noreg || always_reachable(src), "missing"); 2906 2907 if (reachable(src)) { 2908 Assembler::mulsd(dst, as_Address(src)); 2909 } else { 2910 lea(rscratch, src); 2911 Assembler::mulsd(dst, Address(rscratch, 0)); 2912 } 2913 } 2914 2915 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2916 assert(rscratch != noreg || always_reachable(src), "missing"); 2917 2918 if (reachable(src)) { 2919 Assembler::mulss(dst, as_Address(src)); 2920 } else { 2921 lea(rscratch, src); 2922 Assembler::mulss(dst, Address(rscratch, 0)); 2923 } 2924 } 2925 2926 void MacroAssembler::null_check(Register reg, int offset) { 2927 if (needs_explicit_null_check(offset)) { 2928 // provoke OS null exception if reg is null by 2929 // accessing M[reg] w/o changing any (non-CC) registers 2930 // NOTE: cmpl is plenty here to provoke a segv 2931 cmpptr(rax, Address(reg, 0)); 2932 // Note: should probably use testl(rax, Address(reg, 0)); 2933 // may be shorter code (however, this version of 2934 // testl needs to be implemented first) 2935 } else { 2936 // nothing to do, (later) access of M[reg + offset] 2937 // will provoke OS null exception if reg is null 2938 } 2939 } 2940 2941 void MacroAssembler::os_breakpoint() { 2942 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability 2943 // (e.g., MSVC can't call ps() otherwise) 2944 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); 2945 } 2946 2947 void MacroAssembler::unimplemented(const char* what) { 2948 const char* buf = nullptr; 2949 { 2950 ResourceMark rm; 2951 stringStream ss; 2952 ss.print("unimplemented: %s", what); 2953 buf = code_string(ss.as_string()); 2954 } 2955 stop(buf); 2956 } 2957 2958 #ifdef _LP64 2959 #define XSTATE_BV 0x200 2960 #endif 2961 2962 void MacroAssembler::pop_CPU_state() { 2963 pop_FPU_state(); 2964 pop_IU_state(); 2965 } 2966 2967 void MacroAssembler::pop_FPU_state() { 2968 #ifndef _LP64 2969 frstor(Address(rsp, 0)); 2970 #else 2971 fxrstor(Address(rsp, 0)); 2972 #endif 2973 addptr(rsp, FPUStateSizeInWords * wordSize); 2974 } 2975 2976 void MacroAssembler::pop_IU_state() { 2977 popa(); 2978 LP64_ONLY(addq(rsp, 8)); 2979 popf(); 2980 } 2981 2982 // Save Integer and Float state 2983 // Warning: Stack must be 16 byte aligned (64bit) 2984 void MacroAssembler::push_CPU_state() { 2985 push_IU_state(); 2986 push_FPU_state(); 2987 } 2988 2989 void MacroAssembler::push_FPU_state() { 2990 subptr(rsp, FPUStateSizeInWords * wordSize); 2991 #ifndef _LP64 2992 fnsave(Address(rsp, 0)); 2993 fwait(); 2994 #else 2995 fxsave(Address(rsp, 0)); 2996 #endif // LP64 2997 } 2998 2999 void MacroAssembler::push_IU_state() { 3000 // Push flags first because pusha kills them 3001 pushf(); 3002 // Make sure rsp stays 16-byte aligned 3003 LP64_ONLY(subq(rsp, 8)); 3004 pusha(); 3005 } 3006 3007 void MacroAssembler::push_cont_fastpath() { 3008 if (!Continuations::enabled()) return; 3009 3010 #ifndef _LP64 3011 Register rthread = rax; 3012 Register rrealsp = rbx; 3013 push(rthread); 3014 push(rrealsp); 3015 3016 get_thread(rthread); 3017 3018 // The code below wants the original RSP. 3019 // Move it back after the pushes above. 3020 movptr(rrealsp, rsp); 3021 addptr(rrealsp, 2*wordSize); 3022 #else 3023 Register rthread = r15_thread; 3024 Register rrealsp = rsp; 3025 #endif 3026 3027 Label done; 3028 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3029 jccb(Assembler::belowEqual, done); 3030 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp); 3031 bind(done); 3032 3033 #ifndef _LP64 3034 pop(rrealsp); 3035 pop(rthread); 3036 #endif 3037 } 3038 3039 void MacroAssembler::pop_cont_fastpath() { 3040 if (!Continuations::enabled()) return; 3041 3042 #ifndef _LP64 3043 Register rthread = rax; 3044 Register rrealsp = rbx; 3045 push(rthread); 3046 push(rrealsp); 3047 3048 get_thread(rthread); 3049 3050 // The code below wants the original RSP. 3051 // Move it back after the pushes above. 3052 movptr(rrealsp, rsp); 3053 addptr(rrealsp, 2*wordSize); 3054 #else 3055 Register rthread = r15_thread; 3056 Register rrealsp = rsp; 3057 #endif 3058 3059 Label done; 3060 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3061 jccb(Assembler::below, done); 3062 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0); 3063 bind(done); 3064 3065 #ifndef _LP64 3066 pop(rrealsp); 3067 pop(rthread); 3068 #endif 3069 } 3070 3071 void MacroAssembler::inc_held_monitor_count() { 3072 #ifdef _LP64 3073 incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3074 #endif 3075 } 3076 3077 void MacroAssembler::dec_held_monitor_count() { 3078 #ifdef _LP64 3079 decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3080 #endif 3081 } 3082 3083 #ifdef ASSERT 3084 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) { 3085 #ifdef _LP64 3086 Label no_cont; 3087 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset())); 3088 testl(cont, cont); 3089 jcc(Assembler::zero, no_cont); 3090 stop(name); 3091 bind(no_cont); 3092 #else 3093 Unimplemented(); 3094 #endif 3095 } 3096 #endif 3097 3098 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register 3099 if (!java_thread->is_valid()) { 3100 java_thread = rdi; 3101 get_thread(java_thread); 3102 } 3103 // we must set sp to zero to clear frame 3104 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); 3105 // must clear fp, so that compiled frames are not confused; it is 3106 // possible that we need it only for debugging 3107 if (clear_fp) { 3108 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); 3109 } 3110 // Always clear the pc because it could have been set by make_walkable() 3111 movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); 3112 vzeroupper(); 3113 } 3114 3115 void MacroAssembler::restore_rax(Register tmp) { 3116 if (tmp == noreg) pop(rax); 3117 else if (tmp != rax) mov(rax, tmp); 3118 } 3119 3120 void MacroAssembler::round_to(Register reg, int modulus) { 3121 addptr(reg, modulus - 1); 3122 andptr(reg, -modulus); 3123 } 3124 3125 void MacroAssembler::save_rax(Register tmp) { 3126 if (tmp == noreg) push(rax); 3127 else if (tmp != rax) mov(tmp, rax); 3128 } 3129 3130 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod) { 3131 if (at_return) { 3132 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 3133 // we may safely use rsp instead to perform the stack watermark check. 3134 cmpptr(in_nmethod ? rsp : rbp, Address(thread_reg, JavaThread::polling_word_offset())); 3135 jcc(Assembler::above, slow_path); 3136 return; 3137 } 3138 testb(Address(thread_reg, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 3139 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll 3140 } 3141 3142 // Calls to C land 3143 // 3144 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded 3145 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 3146 // has to be reset to 0. This is required to allow proper stack traversal. 3147 void MacroAssembler::set_last_Java_frame(Register java_thread, 3148 Register last_java_sp, 3149 Register last_java_fp, 3150 address last_java_pc, 3151 Register rscratch) { 3152 vzeroupper(); 3153 // determine java_thread register 3154 if (!java_thread->is_valid()) { 3155 java_thread = rdi; 3156 get_thread(java_thread); 3157 } 3158 // determine last_java_sp register 3159 if (!last_java_sp->is_valid()) { 3160 last_java_sp = rsp; 3161 } 3162 // last_java_fp is optional 3163 if (last_java_fp->is_valid()) { 3164 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp); 3165 } 3166 // last_java_pc is optional 3167 if (last_java_pc != nullptr) { 3168 Address java_pc(java_thread, 3169 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); 3170 lea(java_pc, InternalAddress(last_java_pc), rscratch); 3171 } 3172 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp); 3173 } 3174 3175 #ifdef _LP64 3176 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 3177 Register last_java_fp, 3178 Label &L, 3179 Register scratch) { 3180 lea(scratch, L); 3181 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), scratch); 3182 set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, nullptr, scratch); 3183 } 3184 #endif 3185 3186 void MacroAssembler::shlptr(Register dst, int imm8) { 3187 LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8)); 3188 } 3189 3190 void MacroAssembler::shrptr(Register dst, int imm8) { 3191 LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8)); 3192 } 3193 3194 void MacroAssembler::sign_extend_byte(Register reg) { 3195 if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) { 3196 movsbl(reg, reg); // movsxb 3197 } else { 3198 shll(reg, 24); 3199 sarl(reg, 24); 3200 } 3201 } 3202 3203 void MacroAssembler::sign_extend_short(Register reg) { 3204 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 3205 movswl(reg, reg); // movsxw 3206 } else { 3207 shll(reg, 16); 3208 sarl(reg, 16); 3209 } 3210 } 3211 3212 void MacroAssembler::testl(Address dst, int32_t imm32) { 3213 if (imm32 >= 0 && is8bit(imm32)) { 3214 testb(dst, imm32); 3215 } else { 3216 Assembler::testl(dst, imm32); 3217 } 3218 } 3219 3220 void MacroAssembler::testl(Register dst, int32_t imm32) { 3221 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) { 3222 testb(dst, imm32); 3223 } else { 3224 Assembler::testl(dst, imm32); 3225 } 3226 } 3227 3228 void MacroAssembler::testl(Register dst, AddressLiteral src) { 3229 assert(always_reachable(src), "Address should be reachable"); 3230 testl(dst, as_Address(src)); 3231 } 3232 3233 #ifdef _LP64 3234 3235 void MacroAssembler::testq(Address dst, int32_t imm32) { 3236 if (imm32 >= 0) { 3237 testl(dst, imm32); 3238 } else { 3239 Assembler::testq(dst, imm32); 3240 } 3241 } 3242 3243 void MacroAssembler::testq(Register dst, int32_t imm32) { 3244 if (imm32 >= 0) { 3245 testl(dst, imm32); 3246 } else { 3247 Assembler::testq(dst, imm32); 3248 } 3249 } 3250 3251 #endif 3252 3253 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) { 3254 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3255 Assembler::pcmpeqb(dst, src); 3256 } 3257 3258 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) { 3259 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3260 Assembler::pcmpeqw(dst, src); 3261 } 3262 3263 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) { 3264 assert((dst->encoding() < 16),"XMM register should be 0-15"); 3265 Assembler::pcmpestri(dst, src, imm8); 3266 } 3267 3268 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { 3269 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3270 Assembler::pcmpestri(dst, src, imm8); 3271 } 3272 3273 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) { 3274 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3275 Assembler::pmovzxbw(dst, src); 3276 } 3277 3278 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) { 3279 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3280 Assembler::pmovzxbw(dst, src); 3281 } 3282 3283 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) { 3284 assert((src->encoding() < 16),"XMM register should be 0-15"); 3285 Assembler::pmovmskb(dst, src); 3286 } 3287 3288 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) { 3289 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3290 Assembler::ptest(dst, src); 3291 } 3292 3293 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3294 assert(rscratch != noreg || always_reachable(src), "missing"); 3295 3296 if (reachable(src)) { 3297 Assembler::sqrtss(dst, as_Address(src)); 3298 } else { 3299 lea(rscratch, src); 3300 Assembler::sqrtss(dst, Address(rscratch, 0)); 3301 } 3302 } 3303 3304 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3305 assert(rscratch != noreg || always_reachable(src), "missing"); 3306 3307 if (reachable(src)) { 3308 Assembler::subsd(dst, as_Address(src)); 3309 } else { 3310 lea(rscratch, src); 3311 Assembler::subsd(dst, Address(rscratch, 0)); 3312 } 3313 } 3314 3315 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) { 3316 assert(rscratch != noreg || always_reachable(src), "missing"); 3317 3318 if (reachable(src)) { 3319 Assembler::roundsd(dst, as_Address(src), rmode); 3320 } else { 3321 lea(rscratch, src); 3322 Assembler::roundsd(dst, Address(rscratch, 0), rmode); 3323 } 3324 } 3325 3326 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3327 assert(rscratch != noreg || always_reachable(src), "missing"); 3328 3329 if (reachable(src)) { 3330 Assembler::subss(dst, as_Address(src)); 3331 } else { 3332 lea(rscratch, src); 3333 Assembler::subss(dst, Address(rscratch, 0)); 3334 } 3335 } 3336 3337 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3338 assert(rscratch != noreg || always_reachable(src), "missing"); 3339 3340 if (reachable(src)) { 3341 Assembler::ucomisd(dst, as_Address(src)); 3342 } else { 3343 lea(rscratch, src); 3344 Assembler::ucomisd(dst, Address(rscratch, 0)); 3345 } 3346 } 3347 3348 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3349 assert(rscratch != noreg || always_reachable(src), "missing"); 3350 3351 if (reachable(src)) { 3352 Assembler::ucomiss(dst, as_Address(src)); 3353 } else { 3354 lea(rscratch, src); 3355 Assembler::ucomiss(dst, Address(rscratch, 0)); 3356 } 3357 } 3358 3359 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3360 assert(rscratch != noreg || always_reachable(src), "missing"); 3361 3362 // Used in sign-bit flipping with aligned address. 3363 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3364 3365 if (UseAVX > 2 && 3366 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 3367 (dst->encoding() >= 16)) { 3368 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch); 3369 } else if (reachable(src)) { 3370 Assembler::xorpd(dst, as_Address(src)); 3371 } else { 3372 lea(rscratch, src); 3373 Assembler::xorpd(dst, Address(rscratch, 0)); 3374 } 3375 } 3376 3377 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) { 3378 if (UseAVX > 2 && 3379 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 3380 ((dst->encoding() >= 16) || (src->encoding() >= 16))) { 3381 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3382 } else { 3383 Assembler::xorpd(dst, src); 3384 } 3385 } 3386 3387 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) { 3388 if (UseAVX > 2 && 3389 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 3390 ((dst->encoding() >= 16) || (src->encoding() >= 16))) { 3391 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3392 } else { 3393 Assembler::xorps(dst, src); 3394 } 3395 } 3396 3397 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) { 3398 assert(rscratch != noreg || always_reachable(src), "missing"); 3399 3400 // Used in sign-bit flipping with aligned address. 3401 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3402 3403 if (UseAVX > 2 && 3404 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 3405 (dst->encoding() >= 16)) { 3406 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch); 3407 } else if (reachable(src)) { 3408 Assembler::xorps(dst, as_Address(src)); 3409 } else { 3410 lea(rscratch, src); 3411 Assembler::xorps(dst, Address(rscratch, 0)); 3412 } 3413 } 3414 3415 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) { 3416 assert(rscratch != noreg || always_reachable(src), "missing"); 3417 3418 // Used in sign-bit flipping with aligned address. 3419 bool aligned_adr = (((intptr_t)src.target() & 15) == 0); 3420 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes"); 3421 if (reachable(src)) { 3422 Assembler::pshufb(dst, as_Address(src)); 3423 } else { 3424 lea(rscratch, src); 3425 Assembler::pshufb(dst, Address(rscratch, 0)); 3426 } 3427 } 3428 3429 // AVX 3-operands instructions 3430 3431 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3432 assert(rscratch != noreg || always_reachable(src), "missing"); 3433 3434 if (reachable(src)) { 3435 vaddsd(dst, nds, as_Address(src)); 3436 } else { 3437 lea(rscratch, src); 3438 vaddsd(dst, nds, Address(rscratch, 0)); 3439 } 3440 } 3441 3442 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3443 assert(rscratch != noreg || always_reachable(src), "missing"); 3444 3445 if (reachable(src)) { 3446 vaddss(dst, nds, as_Address(src)); 3447 } else { 3448 lea(rscratch, src); 3449 vaddss(dst, nds, Address(rscratch, 0)); 3450 } 3451 } 3452 3453 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3454 assert(UseAVX > 0, "requires some form of AVX"); 3455 assert(rscratch != noreg || always_reachable(src), "missing"); 3456 3457 if (reachable(src)) { 3458 Assembler::vpaddb(dst, nds, as_Address(src), vector_len); 3459 } else { 3460 lea(rscratch, src); 3461 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len); 3462 } 3463 } 3464 3465 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3466 assert(UseAVX > 0, "requires some form of AVX"); 3467 assert(rscratch != noreg || always_reachable(src), "missing"); 3468 3469 if (reachable(src)) { 3470 Assembler::vpaddd(dst, nds, as_Address(src), vector_len); 3471 } else { 3472 lea(rscratch, src); 3473 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len); 3474 } 3475 } 3476 3477 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3478 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3479 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3480 3481 vandps(dst, nds, negate_field, vector_len, rscratch); 3482 } 3483 3484 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3485 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3486 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3487 3488 vandpd(dst, nds, negate_field, vector_len, rscratch); 3489 } 3490 3491 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3492 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3493 Assembler::vpaddb(dst, nds, src, vector_len); 3494 } 3495 3496 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3497 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3498 Assembler::vpaddb(dst, nds, src, vector_len); 3499 } 3500 3501 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3502 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3503 Assembler::vpaddw(dst, nds, src, vector_len); 3504 } 3505 3506 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3507 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3508 Assembler::vpaddw(dst, nds, src, vector_len); 3509 } 3510 3511 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3512 assert(rscratch != noreg || always_reachable(src), "missing"); 3513 3514 if (reachable(src)) { 3515 Assembler::vpand(dst, nds, as_Address(src), vector_len); 3516 } else { 3517 lea(rscratch, src); 3518 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len); 3519 } 3520 } 3521 3522 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3523 assert(rscratch != noreg || always_reachable(src), "missing"); 3524 3525 if (reachable(src)) { 3526 Assembler::vpbroadcastd(dst, as_Address(src), vector_len); 3527 } else { 3528 lea(rscratch, src); 3529 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len); 3530 } 3531 } 3532 3533 void MacroAssembler::vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3534 assert(rscratch != noreg || always_reachable(src), "missing"); 3535 3536 if (reachable(src)) { 3537 Assembler::vbroadcasti128(dst, as_Address(src), vector_len); 3538 } else { 3539 lea(rscratch, src); 3540 Assembler::vbroadcasti128(dst, Address(rscratch, 0), vector_len); 3541 } 3542 } 3543 3544 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3545 assert(rscratch != noreg || always_reachable(src), "missing"); 3546 3547 if (reachable(src)) { 3548 Assembler::vpbroadcastq(dst, as_Address(src), vector_len); 3549 } else { 3550 lea(rscratch, src); 3551 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len); 3552 } 3553 } 3554 3555 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3556 assert(rscratch != noreg || always_reachable(src), "missing"); 3557 3558 if (reachable(src)) { 3559 Assembler::vbroadcastsd(dst, as_Address(src), vector_len); 3560 } else { 3561 lea(rscratch, src); 3562 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len); 3563 } 3564 } 3565 3566 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3567 assert(rscratch != noreg || always_reachable(src), "missing"); 3568 3569 if (reachable(src)) { 3570 Assembler::vbroadcastss(dst, as_Address(src), vector_len); 3571 } else { 3572 lea(rscratch, src); 3573 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len); 3574 } 3575 } 3576 3577 // Vector float blend 3578 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3579 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3580 // WARN: Allow dst == (src1|src2), mask == scratch 3581 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3582 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst; 3583 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3584 if (blend_emulation && scratch_available && dst_available) { 3585 if (compute_mask) { 3586 vpsrad(scratch, mask, 32, vector_len); 3587 mask = scratch; 3588 } 3589 if (dst == src1) { 3590 vpandn(dst, mask, src1, vector_len); // if mask == 0, src1 3591 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3592 } else { 3593 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3594 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1 3595 } 3596 vpor(dst, dst, scratch, vector_len); 3597 } else { 3598 Assembler::vblendvps(dst, src1, src2, mask, vector_len); 3599 } 3600 } 3601 3602 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3603 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3604 // WARN: Allow dst == (src1|src2), mask == scratch 3605 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3606 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask); 3607 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3608 if (blend_emulation && scratch_available && dst_available) { 3609 if (compute_mask) { 3610 vpxor(scratch, scratch, scratch, vector_len); 3611 vpcmpgtq(scratch, scratch, mask, vector_len); 3612 mask = scratch; 3613 } 3614 if (dst == src1) { 3615 vpandn(dst, mask, src1, vector_len); // if mask == 0, src 3616 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3617 } else { 3618 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3619 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src 3620 } 3621 vpor(dst, dst, scratch, vector_len); 3622 } else { 3623 Assembler::vblendvpd(dst, src1, src2, mask, vector_len); 3624 } 3625 } 3626 3627 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3628 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3629 Assembler::vpcmpeqb(dst, nds, src, vector_len); 3630 } 3631 3632 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) { 3633 assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3634 Assembler::vpcmpeqb(dst, src1, src2, vector_len); 3635 } 3636 3637 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3638 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3639 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3640 } 3641 3642 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3643 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3644 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3645 } 3646 3647 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3648 assert(rscratch != noreg || always_reachable(src), "missing"); 3649 3650 if (reachable(src)) { 3651 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len); 3652 } else { 3653 lea(rscratch, src); 3654 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len); 3655 } 3656 } 3657 3658 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3659 int comparison, bool is_signed, int vector_len, Register rscratch) { 3660 assert(rscratch != noreg || always_reachable(src), "missing"); 3661 3662 if (reachable(src)) { 3663 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3664 } else { 3665 lea(rscratch, src); 3666 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3667 } 3668 } 3669 3670 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3671 int comparison, bool is_signed, int vector_len, Register rscratch) { 3672 assert(rscratch != noreg || always_reachable(src), "missing"); 3673 3674 if (reachable(src)) { 3675 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3676 } else { 3677 lea(rscratch, src); 3678 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3679 } 3680 } 3681 3682 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3683 int comparison, bool is_signed, int vector_len, Register rscratch) { 3684 assert(rscratch != noreg || always_reachable(src), "missing"); 3685 3686 if (reachable(src)) { 3687 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3688 } else { 3689 lea(rscratch, src); 3690 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3691 } 3692 } 3693 3694 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3695 int comparison, bool is_signed, int vector_len, Register rscratch) { 3696 assert(rscratch != noreg || always_reachable(src), "missing"); 3697 3698 if (reachable(src)) { 3699 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3700 } else { 3701 lea(rscratch, src); 3702 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3703 } 3704 } 3705 3706 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) { 3707 if (width == Assembler::Q) { 3708 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len); 3709 } else { 3710 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len); 3711 } 3712 } 3713 3714 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) { 3715 int eq_cond_enc = 0x29; 3716 int gt_cond_enc = 0x37; 3717 if (width != Assembler::Q) { 3718 eq_cond_enc = 0x74 + width; 3719 gt_cond_enc = 0x64 + width; 3720 } 3721 switch (cond) { 3722 case eq: 3723 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3724 break; 3725 case neq: 3726 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3727 vallones(xtmp, vector_len); 3728 vpxor(dst, xtmp, dst, vector_len); 3729 break; 3730 case le: 3731 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3732 vallones(xtmp, vector_len); 3733 vpxor(dst, xtmp, dst, vector_len); 3734 break; 3735 case nlt: 3736 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3737 vallones(xtmp, vector_len); 3738 vpxor(dst, xtmp, dst, vector_len); 3739 break; 3740 case lt: 3741 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3742 break; 3743 case nle: 3744 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3745 break; 3746 default: 3747 assert(false, "Should not reach here"); 3748 } 3749 } 3750 3751 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) { 3752 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3753 Assembler::vpmovzxbw(dst, src, vector_len); 3754 } 3755 3756 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) { 3757 assert((src->encoding() < 16),"XMM register should be 0-15"); 3758 Assembler::vpmovmskb(dst, src, vector_len); 3759 } 3760 3761 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3762 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3763 Assembler::vpmullw(dst, nds, src, vector_len); 3764 } 3765 3766 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3767 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3768 Assembler::vpmullw(dst, nds, src, vector_len); 3769 } 3770 3771 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3772 assert((UseAVX > 0), "AVX support is needed"); 3773 assert(rscratch != noreg || always_reachable(src), "missing"); 3774 3775 if (reachable(src)) { 3776 Assembler::vpmulld(dst, nds, as_Address(src), vector_len); 3777 } else { 3778 lea(rscratch, src); 3779 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len); 3780 } 3781 } 3782 3783 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3784 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3785 Assembler::vpsubb(dst, nds, src, vector_len); 3786 } 3787 3788 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3789 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3790 Assembler::vpsubb(dst, nds, src, vector_len); 3791 } 3792 3793 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3794 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3795 Assembler::vpsubw(dst, nds, src, vector_len); 3796 } 3797 3798 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3799 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3800 Assembler::vpsubw(dst, nds, src, vector_len); 3801 } 3802 3803 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3804 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3805 Assembler::vpsraw(dst, nds, shift, vector_len); 3806 } 3807 3808 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3809 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3810 Assembler::vpsraw(dst, nds, shift, vector_len); 3811 } 3812 3813 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3814 assert(UseAVX > 2,""); 3815 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3816 vector_len = 2; 3817 } 3818 Assembler::evpsraq(dst, nds, shift, vector_len); 3819 } 3820 3821 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3822 assert(UseAVX > 2,""); 3823 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3824 vector_len = 2; 3825 } 3826 Assembler::evpsraq(dst, nds, shift, vector_len); 3827 } 3828 3829 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3830 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3831 Assembler::vpsrlw(dst, nds, shift, vector_len); 3832 } 3833 3834 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3835 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3836 Assembler::vpsrlw(dst, nds, shift, vector_len); 3837 } 3838 3839 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3840 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3841 Assembler::vpsllw(dst, nds, shift, vector_len); 3842 } 3843 3844 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3845 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3846 Assembler::vpsllw(dst, nds, shift, vector_len); 3847 } 3848 3849 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) { 3850 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3851 Assembler::vptest(dst, src); 3852 } 3853 3854 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) { 3855 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3856 Assembler::punpcklbw(dst, src); 3857 } 3858 3859 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) { 3860 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 3861 Assembler::pshufd(dst, src, mode); 3862 } 3863 3864 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { 3865 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3866 Assembler::pshuflw(dst, src, mode); 3867 } 3868 3869 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3870 assert(rscratch != noreg || always_reachable(src), "missing"); 3871 3872 if (reachable(src)) { 3873 vandpd(dst, nds, as_Address(src), vector_len); 3874 } else { 3875 lea(rscratch, src); 3876 vandpd(dst, nds, Address(rscratch, 0), vector_len); 3877 } 3878 } 3879 3880 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3881 assert(rscratch != noreg || always_reachable(src), "missing"); 3882 3883 if (reachable(src)) { 3884 vandps(dst, nds, as_Address(src), vector_len); 3885 } else { 3886 lea(rscratch, src); 3887 vandps(dst, nds, Address(rscratch, 0), vector_len); 3888 } 3889 } 3890 3891 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, 3892 bool merge, int vector_len, Register rscratch) { 3893 assert(rscratch != noreg || always_reachable(src), "missing"); 3894 3895 if (reachable(src)) { 3896 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len); 3897 } else { 3898 lea(rscratch, src); 3899 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 3900 } 3901 } 3902 3903 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3904 assert(rscratch != noreg || always_reachable(src), "missing"); 3905 3906 if (reachable(src)) { 3907 vdivsd(dst, nds, as_Address(src)); 3908 } else { 3909 lea(rscratch, src); 3910 vdivsd(dst, nds, Address(rscratch, 0)); 3911 } 3912 } 3913 3914 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3915 assert(rscratch != noreg || always_reachable(src), "missing"); 3916 3917 if (reachable(src)) { 3918 vdivss(dst, nds, as_Address(src)); 3919 } else { 3920 lea(rscratch, src); 3921 vdivss(dst, nds, Address(rscratch, 0)); 3922 } 3923 } 3924 3925 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3926 assert(rscratch != noreg || always_reachable(src), "missing"); 3927 3928 if (reachable(src)) { 3929 vmulsd(dst, nds, as_Address(src)); 3930 } else { 3931 lea(rscratch, src); 3932 vmulsd(dst, nds, Address(rscratch, 0)); 3933 } 3934 } 3935 3936 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3937 assert(rscratch != noreg || always_reachable(src), "missing"); 3938 3939 if (reachable(src)) { 3940 vmulss(dst, nds, as_Address(src)); 3941 } else { 3942 lea(rscratch, src); 3943 vmulss(dst, nds, Address(rscratch, 0)); 3944 } 3945 } 3946 3947 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3948 assert(rscratch != noreg || always_reachable(src), "missing"); 3949 3950 if (reachable(src)) { 3951 vsubsd(dst, nds, as_Address(src)); 3952 } else { 3953 lea(rscratch, src); 3954 vsubsd(dst, nds, Address(rscratch, 0)); 3955 } 3956 } 3957 3958 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3959 assert(rscratch != noreg || always_reachable(src), "missing"); 3960 3961 if (reachable(src)) { 3962 vsubss(dst, nds, as_Address(src)); 3963 } else { 3964 lea(rscratch, src); 3965 vsubss(dst, nds, Address(rscratch, 0)); 3966 } 3967 } 3968 3969 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3970 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3971 assert(rscratch != noreg || always_reachable(src), "missing"); 3972 3973 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch); 3974 } 3975 3976 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3977 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3978 assert(rscratch != noreg || always_reachable(src), "missing"); 3979 3980 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch); 3981 } 3982 3983 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3984 assert(rscratch != noreg || always_reachable(src), "missing"); 3985 3986 if (reachable(src)) { 3987 vxorpd(dst, nds, as_Address(src), vector_len); 3988 } else { 3989 lea(rscratch, src); 3990 vxorpd(dst, nds, Address(rscratch, 0), vector_len); 3991 } 3992 } 3993 3994 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3995 assert(rscratch != noreg || always_reachable(src), "missing"); 3996 3997 if (reachable(src)) { 3998 vxorps(dst, nds, as_Address(src), vector_len); 3999 } else { 4000 lea(rscratch, src); 4001 vxorps(dst, nds, Address(rscratch, 0), vector_len); 4002 } 4003 } 4004 4005 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 4006 assert(rscratch != noreg || always_reachable(src), "missing"); 4007 4008 if (UseAVX > 1 || (vector_len < 1)) { 4009 if (reachable(src)) { 4010 Assembler::vpxor(dst, nds, as_Address(src), vector_len); 4011 } else { 4012 lea(rscratch, src); 4013 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len); 4014 } 4015 } else { 4016 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch); 4017 } 4018 } 4019 4020 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 4021 assert(rscratch != noreg || always_reachable(src), "missing"); 4022 4023 if (reachable(src)) { 4024 Assembler::vpermd(dst, nds, as_Address(src), vector_len); 4025 } else { 4026 lea(rscratch, src); 4027 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len); 4028 } 4029 } 4030 4031 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) { 4032 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask); 4033 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code 4034 // The inverted mask is sign-extended 4035 andptr(possibly_non_local, inverted_mask); 4036 } 4037 4038 void MacroAssembler::resolve_jobject(Register value, 4039 Register thread, 4040 Register tmp) { 4041 assert_different_registers(value, thread, tmp); 4042 Label done, tagged, weak_tagged; 4043 testptr(value, value); 4044 jcc(Assembler::zero, done); // Use null as-is. 4045 testptr(value, JNIHandles::tag_mask); // Test for tag. 4046 jcc(Assembler::notZero, tagged); 4047 4048 // Resolve local handle 4049 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread); 4050 verify_oop(value); 4051 jmp(done); 4052 4053 bind(tagged); 4054 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag. 4055 jcc(Assembler::notZero, weak_tagged); 4056 4057 // Resolve global handle 4058 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4059 verify_oop(value); 4060 jmp(done); 4061 4062 bind(weak_tagged); 4063 // Resolve jweak. 4064 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 4065 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread); 4066 verify_oop(value); 4067 4068 bind(done); 4069 } 4070 4071 void MacroAssembler::resolve_global_jobject(Register value, 4072 Register thread, 4073 Register tmp) { 4074 assert_different_registers(value, thread, tmp); 4075 Label done; 4076 4077 testptr(value, value); 4078 jcc(Assembler::zero, done); // Use null as-is. 4079 4080 #ifdef ASSERT 4081 { 4082 Label valid_global_tag; 4083 testptr(value, JNIHandles::TypeTag::global); // Test for global tag. 4084 jcc(Assembler::notZero, valid_global_tag); 4085 stop("non global jobject using resolve_global_jobject"); 4086 bind(valid_global_tag); 4087 } 4088 #endif 4089 4090 // Resolve global handle 4091 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4092 verify_oop(value); 4093 4094 bind(done); 4095 } 4096 4097 void MacroAssembler::subptr(Register dst, int32_t imm32) { 4098 LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32)); 4099 } 4100 4101 // Force generation of a 4 byte immediate value even if it fits into 8bit 4102 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) { 4103 LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32)); 4104 } 4105 4106 void MacroAssembler::subptr(Register dst, Register src) { 4107 LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); 4108 } 4109 4110 // C++ bool manipulation 4111 void MacroAssembler::testbool(Register dst) { 4112 if(sizeof(bool) == 1) 4113 testb(dst, 0xff); 4114 else if(sizeof(bool) == 2) { 4115 // testw implementation needed for two byte bools 4116 ShouldNotReachHere(); 4117 } else if(sizeof(bool) == 4) 4118 testl(dst, dst); 4119 else 4120 // unsupported 4121 ShouldNotReachHere(); 4122 } 4123 4124 void MacroAssembler::testptr(Register dst, Register src) { 4125 LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src)); 4126 } 4127 4128 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4129 void MacroAssembler::tlab_allocate(Register thread, Register obj, 4130 Register var_size_in_bytes, 4131 int con_size_in_bytes, 4132 Register t1, 4133 Register t2, 4134 Label& slow_case) { 4135 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4136 bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4137 } 4138 4139 RegSet MacroAssembler::call_clobbered_gp_registers() { 4140 RegSet regs; 4141 #ifdef _LP64 4142 regs += RegSet::of(rax, rcx, rdx); 4143 #ifndef _WINDOWS 4144 regs += RegSet::of(rsi, rdi); 4145 #endif 4146 regs += RegSet::range(r8, r11); 4147 #else 4148 regs += RegSet::of(rax, rcx, rdx); 4149 #endif 4150 #ifdef _LP64 4151 if (UseAPX) { 4152 regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1)); 4153 } 4154 #endif 4155 return regs; 4156 } 4157 4158 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() { 4159 int num_xmm_registers = XMMRegister::available_xmm_registers(); 4160 #if defined(_WINDOWS) 4161 XMMRegSet result = XMMRegSet::range(xmm0, xmm5); 4162 if (num_xmm_registers > 16) { 4163 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1)); 4164 } 4165 return result; 4166 #else 4167 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1)); 4168 #endif 4169 } 4170 4171 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor 4172 4173 #ifndef _LP64 4174 static bool use_x87_registers() { return UseSSE < 2; } 4175 #endif 4176 static bool use_xmm_registers() { return UseSSE >= 1; } 4177 4178 // C1 only ever uses the first double/float of the XMM register. 4179 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); } 4180 4181 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4182 if (UseSSE == 1) { 4183 masm->movflt(Address(rsp, offset), reg); 4184 } else { 4185 masm->movdbl(Address(rsp, offset), reg); 4186 } 4187 } 4188 4189 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4190 if (UseSSE == 1) { 4191 masm->movflt(reg, Address(rsp, offset)); 4192 } else { 4193 masm->movdbl(reg, Address(rsp, offset)); 4194 } 4195 } 4196 4197 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers, 4198 bool save_fpu, int& gp_area_size, 4199 int& fp_area_size, int& xmm_area_size) { 4200 4201 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size, 4202 StackAlignmentInBytes); 4203 #ifdef _LP64 4204 fp_area_size = 0; 4205 #else 4206 fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0; 4207 #endif 4208 xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0; 4209 4210 return gp_area_size + fp_area_size + xmm_area_size; 4211 } 4212 4213 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) { 4214 block_comment("push_call_clobbered_registers start"); 4215 // Regular registers 4216 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude; 4217 4218 int gp_area_size; 4219 int fp_area_size; 4220 int xmm_area_size; 4221 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu, 4222 gp_area_size, fp_area_size, xmm_area_size); 4223 subptr(rsp, total_save_size); 4224 4225 push_set(gp_registers_to_push, 0); 4226 4227 #ifndef _LP64 4228 if (save_fpu && use_x87_registers()) { 4229 fnsave(Address(rsp, gp_area_size)); 4230 fwait(); 4231 } 4232 #endif 4233 if (save_fpu && use_xmm_registers()) { 4234 push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4235 } 4236 4237 block_comment("push_call_clobbered_registers end"); 4238 } 4239 4240 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) { 4241 block_comment("pop_call_clobbered_registers start"); 4242 4243 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude; 4244 4245 int gp_area_size; 4246 int fp_area_size; 4247 int xmm_area_size; 4248 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu, 4249 gp_area_size, fp_area_size, xmm_area_size); 4250 4251 if (restore_fpu && use_xmm_registers()) { 4252 pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4253 } 4254 #ifndef _LP64 4255 if (restore_fpu && use_x87_registers()) { 4256 frstor(Address(rsp, gp_area_size)); 4257 } 4258 #endif 4259 4260 pop_set(gp_registers_to_pop, 0); 4261 4262 addptr(rsp, total_save_size); 4263 4264 vzeroupper(); 4265 4266 block_comment("pop_call_clobbered_registers end"); 4267 } 4268 4269 void MacroAssembler::push_set(XMMRegSet set, int offset) { 4270 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be"); 4271 int spill_offset = offset; 4272 4273 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) { 4274 save_xmm_register(this, spill_offset, *it); 4275 spill_offset += xmm_save_size(); 4276 } 4277 } 4278 4279 void MacroAssembler::pop_set(XMMRegSet set, int offset) { 4280 int restore_size = set.size() * xmm_save_size(); 4281 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be"); 4282 4283 int restore_offset = offset + restore_size - xmm_save_size(); 4284 4285 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) { 4286 restore_xmm_register(this, restore_offset, *it); 4287 restore_offset -= xmm_save_size(); 4288 } 4289 } 4290 4291 void MacroAssembler::push_set(RegSet set, int offset) { 4292 int spill_offset; 4293 if (offset == -1) { 4294 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4295 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4296 subptr(rsp, aligned_size); 4297 spill_offset = 0; 4298 } else { 4299 spill_offset = offset; 4300 } 4301 4302 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) { 4303 movptr(Address(rsp, spill_offset), *it); 4304 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4305 } 4306 } 4307 4308 void MacroAssembler::pop_set(RegSet set, int offset) { 4309 4310 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4311 int restore_size = set.size() * gp_reg_size; 4312 int aligned_size = align_up(restore_size, StackAlignmentInBytes); 4313 4314 int restore_offset; 4315 if (offset == -1) { 4316 restore_offset = restore_size - gp_reg_size; 4317 } else { 4318 restore_offset = offset + restore_size - gp_reg_size; 4319 } 4320 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) { 4321 movptr(*it, Address(rsp, restore_offset)); 4322 restore_offset -= gp_reg_size; 4323 } 4324 4325 if (offset == -1) { 4326 addptr(rsp, aligned_size); 4327 } 4328 } 4329 4330 // Preserves the contents of address, destroys the contents length_in_bytes and temp. 4331 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) { 4332 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different"); 4333 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord"); 4334 Label done; 4335 4336 testptr(length_in_bytes, length_in_bytes); 4337 jcc(Assembler::zero, done); 4338 4339 // initialize topmost word, divide index by 2, check if odd and test if zero 4340 // note: for the remaining code to work, index must be a multiple of BytesPerWord 4341 #ifdef ASSERT 4342 { 4343 Label L; 4344 testptr(length_in_bytes, BytesPerWord - 1); 4345 jcc(Assembler::zero, L); 4346 stop("length must be a multiple of BytesPerWord"); 4347 bind(L); 4348 } 4349 #endif 4350 Register index = length_in_bytes; 4351 xorptr(temp, temp); // use _zero reg to clear memory (shorter code) 4352 if (UseIncDec) { 4353 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set 4354 } else { 4355 shrptr(index, 2); // use 2 instructions to avoid partial flag stall 4356 shrptr(index, 1); 4357 } 4358 #ifndef _LP64 4359 // index could have not been a multiple of 8 (i.e., bit 2 was set) 4360 { 4361 Label even; 4362 // note: if index was a multiple of 8, then it cannot 4363 // be 0 now otherwise it must have been 0 before 4364 // => if it is even, we don't need to check for 0 again 4365 jcc(Assembler::carryClear, even); 4366 // clear topmost word (no jump would be needed if conditional assignment worked here) 4367 movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp); 4368 // index could be 0 now, must check again 4369 jcc(Assembler::zero, done); 4370 bind(even); 4371 } 4372 #endif // !_LP64 4373 // initialize remaining object fields: index is a multiple of 2 now 4374 { 4375 Label loop; 4376 bind(loop); 4377 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp); 4378 NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);) 4379 decrement(index); 4380 jcc(Assembler::notZero, loop); 4381 } 4382 4383 bind(done); 4384 } 4385 4386 // Look up the method for a megamorphic invokeinterface call. 4387 // The target method is determined by <intf_klass, itable_index>. 4388 // The receiver klass is in recv_klass. 4389 // On success, the result will be in method_result, and execution falls through. 4390 // On failure, execution transfers to the given label. 4391 void MacroAssembler::lookup_interface_method(Register recv_klass, 4392 Register intf_klass, 4393 RegisterOrConstant itable_index, 4394 Register method_result, 4395 Register scan_temp, 4396 Label& L_no_such_interface, 4397 bool return_method) { 4398 assert_different_registers(recv_klass, intf_klass, scan_temp); 4399 assert_different_registers(method_result, intf_klass, scan_temp); 4400 assert(recv_klass != method_result || !return_method, 4401 "recv_klass can be destroyed when method isn't needed"); 4402 4403 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 4404 "caller must use same register for non-constant itable index as for method"); 4405 4406 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 4407 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4408 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4409 int scan_step = itableOffsetEntry::size() * wordSize; 4410 int vte_size = vtableEntry::size_in_bytes(); 4411 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4412 assert(vte_size == wordSize, "else adjust times_vte_scale"); 4413 4414 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4415 4416 // Could store the aligned, prescaled offset in the klass. 4417 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 4418 4419 if (return_method) { 4420 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 4421 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4422 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 4423 } 4424 4425 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 4426 // if (scan->interface() == intf) { 4427 // result = (klass + scan->offset() + itable_index); 4428 // } 4429 // } 4430 Label search, found_method; 4431 4432 for (int peel = 1; peel >= 0; peel--) { 4433 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 4434 cmpptr(intf_klass, method_result); 4435 4436 if (peel) { 4437 jccb(Assembler::equal, found_method); 4438 } else { 4439 jccb(Assembler::notEqual, search); 4440 // (invert the test to fall through to found_method...) 4441 } 4442 4443 if (!peel) break; 4444 4445 bind(search); 4446 4447 // Check that the previous entry is non-null. A null entry means that 4448 // the receiver class doesn't implement the interface, and wasn't the 4449 // same as when the caller was compiled. 4450 testptr(method_result, method_result); 4451 jcc(Assembler::zero, L_no_such_interface); 4452 addptr(scan_temp, scan_step); 4453 } 4454 4455 bind(found_method); 4456 4457 if (return_method) { 4458 // Got a hit. 4459 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 4460 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); 4461 } 4462 } 4463 4464 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 4465 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 4466 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 4467 // The target method is determined by <holder_klass, itable_index>. 4468 // The receiver klass is in recv_klass. 4469 // On success, the result will be in method_result, and execution falls through. 4470 // On failure, execution transfers to the given label. 4471 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 4472 Register holder_klass, 4473 Register resolved_klass, 4474 Register method_result, 4475 Register scan_temp, 4476 Register temp_reg2, 4477 Register receiver, 4478 int itable_index, 4479 Label& L_no_such_interface) { 4480 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver); 4481 Register temp_itbl_klass = method_result; 4482 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl 4483 4484 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4485 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4486 int scan_step = itableOffsetEntry::size() * wordSize; 4487 int vte_size = vtableEntry::size_in_bytes(); 4488 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 4489 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 4490 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4491 assert(vte_size == wordSize, "adjust times_vte_scale"); 4492 4493 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found; 4494 4495 // temp_itbl_klass = recv_klass.itable[0] 4496 // scan_temp = &recv_klass.itable[0] + step 4497 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4498 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset)); 4499 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step)); 4500 xorptr(temp_reg, temp_reg); 4501 4502 // Initial checks: 4503 // - if (holder_klass != resolved_klass), go to "scan for resolved" 4504 // - if (itable[0] == 0), no such interface 4505 // - if (itable[0] == holder_klass), shortcut to "holder found" 4506 cmpptr(holder_klass, resolved_klass); 4507 jccb(Assembler::notEqual, L_loop_scan_resolved_entry); 4508 testptr(temp_itbl_klass, temp_itbl_klass); 4509 jccb(Assembler::zero, L_no_such_interface); 4510 cmpptr(holder_klass, temp_itbl_klass); 4511 jccb(Assembler::equal, L_holder_found); 4512 4513 // Loop: Look for holder_klass record in itable 4514 // do { 4515 // tmp = itable[index]; 4516 // index += step; 4517 // if (tmp == holder_klass) { 4518 // goto L_holder_found; // Found! 4519 // } 4520 // } while (tmp != 0); 4521 // goto L_no_such_interface // Not found. 4522 Label L_scan_holder; 4523 bind(L_scan_holder); 4524 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4525 addptr(scan_temp, scan_step); 4526 cmpptr(holder_klass, temp_itbl_klass); 4527 jccb(Assembler::equal, L_holder_found); 4528 testptr(temp_itbl_klass, temp_itbl_klass); 4529 jccb(Assembler::notZero, L_scan_holder); 4530 4531 jmpb(L_no_such_interface); 4532 4533 // Loop: Look for resolved_class record in itable 4534 // do { 4535 // tmp = itable[index]; 4536 // index += step; 4537 // if (tmp == holder_klass) { 4538 // // Also check if we have met a holder klass 4539 // holder_tmp = itable[index-step-ioffset]; 4540 // } 4541 // if (tmp == resolved_klass) { 4542 // goto L_resolved_found; // Found! 4543 // } 4544 // } while (tmp != 0); 4545 // goto L_no_such_interface // Not found. 4546 // 4547 Label L_loop_scan_resolved; 4548 bind(L_loop_scan_resolved); 4549 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4550 addptr(scan_temp, scan_step); 4551 bind(L_loop_scan_resolved_entry); 4552 cmpptr(holder_klass, temp_itbl_klass); 4553 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4554 cmpptr(resolved_klass, temp_itbl_klass); 4555 jccb(Assembler::equal, L_resolved_found); 4556 testptr(temp_itbl_klass, temp_itbl_klass); 4557 jccb(Assembler::notZero, L_loop_scan_resolved); 4558 4559 jmpb(L_no_such_interface); 4560 4561 Label L_ready; 4562 4563 // See if we already have a holder klass. If not, go and scan for it. 4564 bind(L_resolved_found); 4565 testptr(temp_reg, temp_reg); 4566 jccb(Assembler::zero, L_scan_holder); 4567 jmpb(L_ready); 4568 4569 bind(L_holder_found); 4570 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4571 4572 // Finally, temp_reg contains holder_klass vtable offset 4573 bind(L_ready); 4574 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4575 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl 4576 load_klass(scan_temp, receiver, noreg); 4577 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4578 } else { 4579 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4580 } 4581 } 4582 4583 4584 // virtual method calling 4585 void MacroAssembler::lookup_virtual_method(Register recv_klass, 4586 RegisterOrConstant vtable_index, 4587 Register method_result) { 4588 const ByteSize base = Klass::vtable_start_offset(); 4589 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below"); 4590 Address vtable_entry_addr(recv_klass, 4591 vtable_index, Address::times_ptr, 4592 base + vtableEntry::method_offset()); 4593 movptr(method_result, vtable_entry_addr); 4594 } 4595 4596 4597 void MacroAssembler::check_klass_subtype(Register sub_klass, 4598 Register super_klass, 4599 Register temp_reg, 4600 Label& L_success) { 4601 Label L_failure; 4602 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 4603 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 4604 bind(L_failure); 4605 } 4606 4607 4608 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 4609 Register super_klass, 4610 Register temp_reg, 4611 Label* L_success, 4612 Label* L_failure, 4613 Label* L_slow_path, 4614 RegisterOrConstant super_check_offset) { 4615 assert_different_registers(sub_klass, super_klass, temp_reg); 4616 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 4617 if (super_check_offset.is_register()) { 4618 assert_different_registers(sub_klass, super_klass, 4619 super_check_offset.as_register()); 4620 } else if (must_load_sco) { 4621 assert(temp_reg != noreg, "supply either a temp or a register offset"); 4622 } 4623 4624 Label L_fallthrough; 4625 int label_nulls = 0; 4626 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4627 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4628 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 4629 assert(label_nulls <= 1, "at most one null in the batch"); 4630 4631 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4632 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 4633 Address super_check_offset_addr(super_klass, sco_offset); 4634 4635 // Hacked jcc, which "knows" that L_fallthrough, at least, is in 4636 // range of a jccb. If this routine grows larger, reconsider at 4637 // least some of these. 4638 #define local_jcc(assembler_cond, label) \ 4639 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ 4640 else jcc( assembler_cond, label) /*omit semi*/ 4641 4642 // Hacked jmp, which may only be used just before L_fallthrough. 4643 #define final_jmp(label) \ 4644 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 4645 else jmp(label) /*omit semi*/ 4646 4647 // If the pointers are equal, we are done (e.g., String[] elements). 4648 // This self-check enables sharing of secondary supertype arrays among 4649 // non-primary types such as array-of-interface. Otherwise, each such 4650 // type would need its own customized SSA. 4651 // We move this check to the front of the fast path because many 4652 // type checks are in fact trivially successful in this manner, 4653 // so we get a nicely predicted branch right at the start of the check. 4654 cmpptr(sub_klass, super_klass); 4655 local_jcc(Assembler::equal, *L_success); 4656 4657 // Check the supertype display: 4658 if (must_load_sco) { 4659 // Positive movl does right thing on LP64. 4660 movl(temp_reg, super_check_offset_addr); 4661 super_check_offset = RegisterOrConstant(temp_reg); 4662 } 4663 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); 4664 cmpptr(super_klass, super_check_addr); // load displayed supertype 4665 4666 // This check has worked decisively for primary supers. 4667 // Secondary supers are sought in the super_cache ('super_cache_addr'). 4668 // (Secondary supers are interfaces and very deeply nested subtypes.) 4669 // This works in the same check above because of a tricky aliasing 4670 // between the super_cache and the primary super display elements. 4671 // (The 'super_check_addr' can address either, as the case requires.) 4672 // Note that the cache is updated below if it does not help us find 4673 // what we need immediately. 4674 // So if it was a primary super, we can just fail immediately. 4675 // Otherwise, it's the slow path for us (no success at this point). 4676 4677 if (super_check_offset.is_register()) { 4678 local_jcc(Assembler::equal, *L_success); 4679 cmpl(super_check_offset.as_register(), sc_offset); 4680 if (L_failure == &L_fallthrough) { 4681 local_jcc(Assembler::equal, *L_slow_path); 4682 } else { 4683 local_jcc(Assembler::notEqual, *L_failure); 4684 final_jmp(*L_slow_path); 4685 } 4686 } else if (super_check_offset.as_constant() == sc_offset) { 4687 // Need a slow path; fast failure is impossible. 4688 if (L_slow_path == &L_fallthrough) { 4689 local_jcc(Assembler::equal, *L_success); 4690 } else { 4691 local_jcc(Assembler::notEqual, *L_slow_path); 4692 final_jmp(*L_success); 4693 } 4694 } else { 4695 // No slow path; it's a fast decision. 4696 if (L_failure == &L_fallthrough) { 4697 local_jcc(Assembler::equal, *L_success); 4698 } else { 4699 local_jcc(Assembler::notEqual, *L_failure); 4700 final_jmp(*L_success); 4701 } 4702 } 4703 4704 bind(L_fallthrough); 4705 4706 #undef local_jcc 4707 #undef final_jmp 4708 } 4709 4710 4711 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 4712 Register super_klass, 4713 Register temp_reg, 4714 Register temp2_reg, 4715 Label* L_success, 4716 Label* L_failure, 4717 bool set_cond_codes) { 4718 assert_different_registers(sub_klass, super_klass, temp_reg); 4719 if (temp2_reg != noreg) 4720 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); 4721 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 4722 4723 Label L_fallthrough; 4724 int label_nulls = 0; 4725 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4726 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4727 assert(label_nulls <= 1, "at most one null in the batch"); 4728 4729 // a couple of useful fields in sub_klass: 4730 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 4731 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4732 Address secondary_supers_addr(sub_klass, ss_offset); 4733 Address super_cache_addr( sub_klass, sc_offset); 4734 4735 // Do a linear scan of the secondary super-klass chain. 4736 // This code is rarely used, so simplicity is a virtue here. 4737 // The repne_scan instruction uses fixed registers, which we must spill. 4738 // Don't worry too much about pre-existing connections with the input regs. 4739 4740 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) 4741 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) 4742 4743 // Get super_klass value into rax (even if it was in rdi or rcx). 4744 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; 4745 if (super_klass != rax) { 4746 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } 4747 mov(rax, super_klass); 4748 } 4749 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } 4750 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } 4751 4752 #ifndef PRODUCT 4753 uint* pst_counter = &SharedRuntime::_partial_subtype_ctr; 4754 ExternalAddress pst_counter_addr((address) pst_counter); 4755 NOT_LP64( incrementl(pst_counter_addr) ); 4756 LP64_ONLY( lea(rcx, pst_counter_addr) ); 4757 LP64_ONLY( incrementl(Address(rcx, 0)) ); 4758 #endif //PRODUCT 4759 4760 // We will consult the secondary-super array. 4761 movptr(rdi, secondary_supers_addr); 4762 // Load the array length. (Positive movl does right thing on LP64.) 4763 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes())); 4764 // Skip to start of data. 4765 addptr(rdi, Array<Klass*>::base_offset_in_bytes()); 4766 4767 // Scan RCX words at [RDI] for an occurrence of RAX. 4768 // Set NZ/Z based on last compare. 4769 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does 4770 // not change flags (only scas instruction which is repeated sets flags). 4771 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. 4772 4773 testptr(rax,rax); // Set Z = 0 4774 repne_scan(); 4775 4776 // Unspill the temp. registers: 4777 if (pushed_rdi) pop(rdi); 4778 if (pushed_rcx) pop(rcx); 4779 if (pushed_rax) pop(rax); 4780 4781 if (set_cond_codes) { 4782 // Special hack for the AD files: rdi is guaranteed non-zero. 4783 assert(!pushed_rdi, "rdi must be left non-null"); 4784 // Also, the condition codes are properly set Z/NZ on succeed/failure. 4785 } 4786 4787 if (L_failure == &L_fallthrough) 4788 jccb(Assembler::notEqual, *L_failure); 4789 else jcc(Assembler::notEqual, *L_failure); 4790 4791 // Success. Cache the super we found and proceed in triumph. 4792 movptr(super_cache_addr, super_klass); 4793 4794 if (L_success != &L_fallthrough) { 4795 jmp(*L_success); 4796 } 4797 4798 #undef IS_A_TEMP 4799 4800 bind(L_fallthrough); 4801 } 4802 4803 #ifndef _LP64 4804 4805 // 32-bit x86 only: always use the linear search. 4806 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4807 Register super_klass, 4808 Register temp_reg, 4809 Register temp2_reg, 4810 Label* L_success, 4811 Label* L_failure, 4812 bool set_cond_codes) { 4813 check_klass_subtype_slow_path_linear 4814 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 4815 } 4816 4817 #else // _LP64 4818 4819 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4820 Register super_klass, 4821 Register temp_reg, 4822 Register temp2_reg, 4823 Label* L_success, 4824 Label* L_failure, 4825 bool set_cond_codes) { 4826 assert(set_cond_codes == false, "must be false on 64-bit x86"); 4827 check_klass_subtype_slow_path 4828 (sub_klass, super_klass, temp_reg, temp2_reg, noreg, noreg, 4829 L_success, L_failure); 4830 } 4831 4832 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4833 Register super_klass, 4834 Register temp_reg, 4835 Register temp2_reg, 4836 Register temp3_reg, 4837 Register temp4_reg, 4838 Label* L_success, 4839 Label* L_failure) { 4840 if (UseSecondarySupersTable) { 4841 check_klass_subtype_slow_path_table 4842 (sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, temp4_reg, 4843 L_success, L_failure); 4844 } else { 4845 check_klass_subtype_slow_path_linear 4846 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, /*set_cond_codes*/false); 4847 } 4848 } 4849 4850 Register MacroAssembler::allocate_if_noreg(Register r, 4851 RegSetIterator<Register> &available_regs, 4852 RegSet ®s_to_push) { 4853 if (!r->is_valid()) { 4854 r = *available_regs++; 4855 regs_to_push += r; 4856 } 4857 return r; 4858 } 4859 4860 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 4861 Register super_klass, 4862 Register temp_reg, 4863 Register temp2_reg, 4864 Register temp3_reg, 4865 Register result_reg, 4866 Label* L_success, 4867 Label* L_failure) { 4868 // NB! Callers may assume that, when temp2_reg is a valid register, 4869 // this code sets it to a nonzero value. 4870 bool temp2_reg_was_valid = temp2_reg->is_valid(); 4871 4872 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 4873 4874 Label L_fallthrough; 4875 int label_nulls = 0; 4876 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4877 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4878 assert(label_nulls <= 1, "at most one null in the batch"); 4879 4880 BLOCK_COMMENT("check_klass_subtype_slow_path_table"); 4881 4882 RegSetIterator<Register> available_regs 4883 = (RegSet::of(rax, rcx, rdx, r8) + r9 + r10 + r11 + r12 - temps - sub_klass - super_klass).begin(); 4884 4885 RegSet pushed_regs; 4886 4887 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 4888 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 4889 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 4890 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 4891 Register temp4_reg = allocate_if_noreg(noreg, available_regs, pushed_regs); 4892 4893 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, result_reg); 4894 4895 { 4896 4897 int register_push_size = pushed_regs.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4898 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4899 subptr(rsp, aligned_size); 4900 push_set(pushed_regs, 0); 4901 4902 lookup_secondary_supers_table_var(sub_klass, 4903 super_klass, 4904 temp_reg, temp2_reg, temp3_reg, temp4_reg, result_reg); 4905 cmpq(result_reg, 0); 4906 4907 // Unspill the temp. registers: 4908 pop_set(pushed_regs, 0); 4909 // Increment SP but do not clobber flags. 4910 lea(rsp, Address(rsp, aligned_size)); 4911 } 4912 4913 if (temp2_reg_was_valid) { 4914 movq(temp2_reg, 1); 4915 } 4916 4917 jcc(Assembler::notEqual, *L_failure); 4918 4919 if (L_success != &L_fallthrough) { 4920 jmp(*L_success); 4921 } 4922 4923 bind(L_fallthrough); 4924 } 4925 4926 // population_count variant for running without the POPCNT 4927 // instruction, which was introduced with SSE4.2 in 2008. 4928 void MacroAssembler::population_count(Register dst, Register src, 4929 Register scratch1, Register scratch2) { 4930 assert_different_registers(src, scratch1, scratch2); 4931 if (UsePopCountInstruction) { 4932 Assembler::popcntq(dst, src); 4933 } else { 4934 assert_different_registers(src, scratch1, scratch2); 4935 assert_different_registers(dst, scratch1, scratch2); 4936 Label loop, done; 4937 4938 mov(scratch1, src); 4939 // dst = 0; 4940 // while(scratch1 != 0) { 4941 // dst++; 4942 // scratch1 &= (scratch1 - 1); 4943 // } 4944 xorl(dst, dst); 4945 testq(scratch1, scratch1); 4946 jccb(Assembler::equal, done); 4947 { 4948 bind(loop); 4949 incq(dst); 4950 movq(scratch2, scratch1); 4951 decq(scratch2); 4952 andq(scratch1, scratch2); 4953 jccb(Assembler::notEqual, loop); 4954 } 4955 bind(done); 4956 } 4957 #ifdef ASSERT 4958 mov64(scratch1, 0xCafeBabeDeadBeef); 4959 movq(scratch2, scratch1); 4960 #endif 4961 } 4962 4963 // Ensure that the inline code and the stub are using the same registers. 4964 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 4965 do { \ 4966 assert(r_super_klass == rax, "mismatch"); \ 4967 assert(r_array_base == rbx, "mismatch"); \ 4968 assert(r_array_length == rcx, "mismatch"); \ 4969 assert(r_array_index == rdx, "mismatch"); \ 4970 assert(r_sub_klass == rsi || r_sub_klass == noreg, "mismatch"); \ 4971 assert(r_bitmap == r11 || r_bitmap == noreg, "mismatch"); \ 4972 assert(result == rdi || result == noreg, "mismatch"); \ 4973 } while(0) 4974 4975 // Versions of salq and rorq that don't need count to be in rcx 4976 4977 void MacroAssembler::salq(Register dest, Register count) { 4978 if (count == rcx) { 4979 Assembler::salq(dest); 4980 } else { 4981 assert_different_registers(rcx, dest); 4982 xchgq(rcx, count); 4983 Assembler::salq(dest); 4984 xchgq(rcx, count); 4985 } 4986 } 4987 4988 void MacroAssembler::rorq(Register dest, Register count) { 4989 if (count == rcx) { 4990 Assembler::rorq(dest); 4991 } else { 4992 assert_different_registers(rcx, dest); 4993 xchgq(rcx, count); 4994 Assembler::rorq(dest); 4995 xchgq(rcx, count); 4996 } 4997 } 4998 4999 // Return true: we succeeded in generating this code 5000 // 5001 // At runtime, return 0 in result if r_super_klass is a superclass of 5002 // r_sub_klass, otherwise return nonzero. Use this if you know the 5003 // super_klass_slot of the class you're looking for. This is always 5004 // the case for instanceof and checkcast. 5005 void MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 5006 Register r_super_klass, 5007 Register temp1, 5008 Register temp2, 5009 Register temp3, 5010 Register temp4, 5011 Register result, 5012 u1 super_klass_slot) { 5013 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 5014 5015 Label L_fallthrough, L_success, L_failure; 5016 5017 BLOCK_COMMENT("lookup_secondary_supers_table {"); 5018 5019 const Register 5020 r_array_index = temp1, 5021 r_array_length = temp2, 5022 r_array_base = temp3, 5023 r_bitmap = temp4; 5024 5025 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 5026 5027 xorq(result, result); // = 0 5028 5029 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 5030 movq(r_array_index, r_bitmap); 5031 5032 // First check the bitmap to see if super_klass might be present. If 5033 // the bit is zero, we are certain that super_klass is not one of 5034 // the secondary supers. 5035 u1 bit = super_klass_slot; 5036 { 5037 // NB: If the count in a x86 shift instruction is 0, the flags are 5038 // not affected, so we do a testq instead. 5039 int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit; 5040 if (shift_count != 0) { 5041 salq(r_array_index, shift_count); 5042 } else { 5043 testq(r_array_index, r_array_index); 5044 } 5045 } 5046 // We test the MSB of r_array_index, i.e. its sign bit 5047 jcc(Assembler::positive, L_failure); 5048 5049 // Get the first array index that can contain super_klass into r_array_index. 5050 if (bit != 0) { 5051 population_count(r_array_index, r_array_index, temp2, temp3); 5052 } else { 5053 movl(r_array_index, 1); 5054 } 5055 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 5056 5057 // We will consult the secondary-super array. 5058 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5059 5060 // We're asserting that the first word in an Array<Klass*> is the 5061 // length, and the second word is the first word of the data. If 5062 // that ever changes, r_array_base will have to be adjusted here. 5063 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 5064 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 5065 5066 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5067 jccb(Assembler::equal, L_success); 5068 5069 // Is there another entry to check? Consult the bitmap. 5070 btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK); 5071 jccb(Assembler::carryClear, L_failure); 5072 5073 // Linear probe. Rotate the bitmap so that the next bit to test is 5074 // in Bit 1. 5075 if (bit != 0) { 5076 rorq(r_bitmap, bit); 5077 } 5078 5079 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 5080 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 5081 // Kills: r_array_length. 5082 // Returns: result. 5083 call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub())); 5084 // Result (0/1) is in rdi 5085 jmpb(L_fallthrough); 5086 5087 bind(L_failure); 5088 incq(result); // 0 => 1 5089 5090 bind(L_success); 5091 // result = 0; 5092 5093 bind(L_fallthrough); 5094 BLOCK_COMMENT("} lookup_secondary_supers_table"); 5095 5096 if (VerifySecondarySupers) { 5097 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 5098 temp1, temp2, temp3); 5099 } 5100 } 5101 5102 // At runtime, return 0 in result if r_super_klass is a superclass of 5103 // r_sub_klass, otherwise return nonzero. Use this version of 5104 // lookup_secondary_supers_table() if you don't know ahead of time 5105 // which superclass will be searched for. Used by interpreter and 5106 // runtime stubs. It is larger and has somewhat greater latency than 5107 // the version above, which takes a constant super_klass_slot. 5108 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 5109 Register r_super_klass, 5110 Register temp1, 5111 Register temp2, 5112 Register temp3, 5113 Register temp4, 5114 Register result) { 5115 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 5116 assert_different_registers(r_sub_klass, r_super_klass, rcx); 5117 RegSet temps = RegSet::of(temp1, temp2, temp3, temp4); 5118 5119 Label L_fallthrough, L_success, L_failure; 5120 5121 BLOCK_COMMENT("lookup_secondary_supers_table {"); 5122 5123 RegSetIterator<Register> available_regs = (temps - rcx).begin(); 5124 5125 // FIXME. Once we are sure that all paths reaching this point really 5126 // do pass rcx as one of our temps we can get rid of the following 5127 // workaround. 5128 assert(temps.contains(rcx), "fix this code"); 5129 5130 // We prefer to have our shift count in rcx. If rcx is one of our 5131 // temps, use it for slot. If not, pick any of our temps. 5132 Register slot; 5133 if (!temps.contains(rcx)) { 5134 slot = *available_regs++; 5135 } else { 5136 slot = rcx; 5137 } 5138 5139 const Register r_array_index = *available_regs++; 5140 const Register r_bitmap = *available_regs++; 5141 5142 // The logic above guarantees this property, but we state it here. 5143 assert_different_registers(r_array_index, r_bitmap, rcx); 5144 5145 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 5146 movq(r_array_index, r_bitmap); 5147 5148 // First check the bitmap to see if super_klass might be present. If 5149 // the bit is zero, we are certain that super_klass is not one of 5150 // the secondary supers. 5151 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 5152 xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64) 5153 salq(r_array_index, slot); 5154 5155 testq(r_array_index, r_array_index); 5156 // We test the MSB of r_array_index, i.e. its sign bit 5157 jcc(Assembler::positive, L_failure); 5158 5159 const Register r_array_base = *available_regs++; 5160 5161 // Get the first array index that can contain super_klass into r_array_index. 5162 // Note: Clobbers r_array_base and slot. 5163 population_count(r_array_index, r_array_index, /*temp2*/r_array_base, /*temp3*/slot); 5164 5165 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 5166 5167 // We will consult the secondary-super array. 5168 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5169 5170 // We're asserting that the first word in an Array<Klass*> is the 5171 // length, and the second word is the first word of the data. If 5172 // that ever changes, r_array_base will have to be adjusted here. 5173 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 5174 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 5175 5176 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5177 jccb(Assembler::equal, L_success); 5178 5179 // Restore slot to its true value 5180 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 5181 5182 // Linear probe. Rotate the bitmap so that the next bit to test is 5183 // in Bit 1. 5184 rorq(r_bitmap, slot); 5185 5186 // Is there another entry to check? Consult the bitmap. 5187 btq(r_bitmap, 1); 5188 jccb(Assembler::carryClear, L_failure); 5189 5190 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 5191 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 5192 // Kills: r_array_length. 5193 // Returns: result. 5194 lookup_secondary_supers_table_slow_path(r_super_klass, 5195 r_array_base, 5196 r_array_index, 5197 r_bitmap, 5198 /*temp1*/result, 5199 /*temp2*/slot, 5200 &L_success, 5201 nullptr); 5202 5203 bind(L_failure); 5204 movq(result, 1); 5205 jmpb(L_fallthrough); 5206 5207 bind(L_success); 5208 xorq(result, result); // = 0 5209 5210 bind(L_fallthrough); 5211 BLOCK_COMMENT("} lookup_secondary_supers_table"); 5212 5213 if (VerifySecondarySupers) { 5214 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 5215 temp1, temp2, temp3); 5216 } 5217 } 5218 5219 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit, 5220 Label* L_success, Label* L_failure) { 5221 Label L_loop, L_fallthrough; 5222 { 5223 int label_nulls = 0; 5224 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 5225 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 5226 assert(label_nulls <= 1, "at most one null in the batch"); 5227 } 5228 bind(L_loop); 5229 cmpq(value, Address(addr, count, Address::times_8)); 5230 jcc(Assembler::equal, *L_success); 5231 addl(count, 1); 5232 cmpl(count, limit); 5233 jcc(Assembler::less, L_loop); 5234 5235 if (&L_fallthrough != L_failure) { 5236 jmp(*L_failure); 5237 } 5238 bind(L_fallthrough); 5239 } 5240 5241 // Called by code generated by check_klass_subtype_slow_path 5242 // above. This is called when there is a collision in the hashed 5243 // lookup in the secondary supers array. 5244 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 5245 Register r_array_base, 5246 Register r_array_index, 5247 Register r_bitmap, 5248 Register temp1, 5249 Register temp2, 5250 Label* L_success, 5251 Label* L_failure) { 5252 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2); 5253 5254 const Register 5255 r_array_length = temp1, 5256 r_sub_klass = noreg, 5257 result = noreg; 5258 5259 Label L_fallthrough; 5260 int label_nulls = 0; 5261 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 5262 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 5263 assert(label_nulls <= 1, "at most one null in the batch"); 5264 5265 // Load the array length. 5266 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 5267 // And adjust the array base to point to the data. 5268 // NB! Effectively increments current slot index by 1. 5269 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 5270 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 5271 5272 // Linear probe 5273 Label L_huge; 5274 5275 // The bitmap is full to bursting. 5276 // Implicit invariant: BITMAP_FULL implies (length > 0) 5277 cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2); 5278 jcc(Assembler::greater, L_huge); 5279 5280 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 5281 // current slot (at secondary_supers[r_array_index]) has not yet 5282 // been inspected, and r_array_index may be out of bounds if we 5283 // wrapped around the end of the array. 5284 5285 { // This is conventional linear probing, but instead of terminating 5286 // when a null entry is found in the table, we maintain a bitmap 5287 // in which a 0 indicates missing entries. 5288 // The check above guarantees there are 0s in the bitmap, so the loop 5289 // eventually terminates. 5290 5291 xorl(temp2, temp2); // = 0; 5292 5293 Label L_again; 5294 bind(L_again); 5295 5296 // Check for array wraparound. 5297 cmpl(r_array_index, r_array_length); 5298 cmovl(Assembler::greaterEqual, r_array_index, temp2); 5299 5300 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5301 jcc(Assembler::equal, *L_success); 5302 5303 // If the next bit in bitmap is zero, we're done. 5304 btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now 5305 jcc(Assembler::carryClear, *L_failure); 5306 5307 rorq(r_bitmap, 1); // Bits 1/2 => 0/1 5308 addl(r_array_index, 1); 5309 5310 jmp(L_again); 5311 } 5312 5313 { // Degenerate case: more than 64 secondary supers. 5314 // FIXME: We could do something smarter here, maybe a vectorized 5315 // comparison or a binary search, but is that worth any added 5316 // complexity? 5317 bind(L_huge); 5318 xorl(r_array_index, r_array_index); // = 0 5319 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, 5320 L_success, 5321 (&L_fallthrough != L_failure ? L_failure : nullptr)); 5322 5323 bind(L_fallthrough); 5324 } 5325 } 5326 5327 struct VerifyHelperArguments { 5328 Klass* _super; 5329 Klass* _sub; 5330 intptr_t _linear_result; 5331 intptr_t _table_result; 5332 }; 5333 5334 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) { 5335 Klass::on_secondary_supers_verification_failure(args->_super, 5336 args->_sub, 5337 args->_linear_result, 5338 args->_table_result, 5339 msg); 5340 } 5341 5342 // Make sure that the hashed lookup and a linear scan agree. 5343 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 5344 Register r_super_klass, 5345 Register result, 5346 Register temp1, 5347 Register temp2, 5348 Register temp3) { 5349 const Register 5350 r_array_index = temp1, 5351 r_array_length = temp2, 5352 r_array_base = temp3, 5353 r_bitmap = noreg; 5354 5355 BLOCK_COMMENT("verify_secondary_supers_table {"); 5356 5357 Label L_success, L_failure, L_check, L_done; 5358 5359 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5360 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 5361 // And adjust the array base to point to the data. 5362 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 5363 5364 testl(r_array_length, r_array_length); // array_length == 0? 5365 jcc(Assembler::zero, L_failure); 5366 5367 movl(r_array_index, 0); 5368 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success); 5369 // fall through to L_failure 5370 5371 const Register linear_result = r_array_index; // reuse temp1 5372 5373 bind(L_failure); // not present 5374 movl(linear_result, 1); 5375 jmp(L_check); 5376 5377 bind(L_success); // present 5378 movl(linear_result, 0); 5379 5380 bind(L_check); 5381 cmpl(linear_result, result); 5382 jcc(Assembler::equal, L_done); 5383 5384 { // To avoid calling convention issues, build a record on the stack 5385 // and pass the pointer to that instead. 5386 push(result); 5387 push(linear_result); 5388 push(r_sub_klass); 5389 push(r_super_klass); 5390 movptr(c_rarg1, rsp); 5391 movptr(c_rarg0, (uintptr_t) "mismatch"); 5392 call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper))); 5393 should_not_reach_here(); 5394 } 5395 bind(L_done); 5396 5397 BLOCK_COMMENT("} verify_secondary_supers_table"); 5398 } 5399 5400 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS 5401 5402 #endif // LP64 5403 5404 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) { 5405 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 5406 5407 Label L_fallthrough; 5408 if (L_fast_path == nullptr) { 5409 L_fast_path = &L_fallthrough; 5410 } else if (L_slow_path == nullptr) { 5411 L_slow_path = &L_fallthrough; 5412 } 5413 5414 // Fast path check: class is fully initialized. 5415 // init_state needs acquire, but x86 is TSO, and so we are already good. 5416 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 5417 jcc(Assembler::equal, *L_fast_path); 5418 5419 // Fast path check: current thread is initializer thread 5420 cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset())); 5421 if (L_slow_path == &L_fallthrough) { 5422 jcc(Assembler::equal, *L_fast_path); 5423 bind(*L_slow_path); 5424 } else if (L_fast_path == &L_fallthrough) { 5425 jcc(Assembler::notEqual, *L_slow_path); 5426 bind(*L_fast_path); 5427 } else { 5428 Unimplemented(); 5429 } 5430 } 5431 5432 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { 5433 if (VM_Version::supports_cmov()) { 5434 cmovl(cc, dst, src); 5435 } else { 5436 Label L; 5437 jccb(negate_condition(cc), L); 5438 movl(dst, src); 5439 bind(L); 5440 } 5441 } 5442 5443 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { 5444 if (VM_Version::supports_cmov()) { 5445 cmovl(cc, dst, src); 5446 } else { 5447 Label L; 5448 jccb(negate_condition(cc), L); 5449 movl(dst, src); 5450 bind(L); 5451 } 5452 } 5453 5454 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 5455 if (!VerifyOops) return; 5456 5457 BLOCK_COMMENT("verify_oop {"); 5458 #ifdef _LP64 5459 push(rscratch1); 5460 #endif 5461 push(rax); // save rax 5462 push(reg); // pass register argument 5463 5464 // Pass register number to verify_oop_subroutine 5465 const char* b = nullptr; 5466 { 5467 ResourceMark rm; 5468 stringStream ss; 5469 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 5470 b = code_string(ss.as_string()); 5471 } 5472 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 5473 pushptr(buffer.addr(), rscratch1); 5474 5475 // call indirectly to solve generation ordering problem 5476 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5477 call(rax); 5478 // Caller pops the arguments (oop, message) and restores rax, r10 5479 BLOCK_COMMENT("} verify_oop"); 5480 } 5481 5482 void MacroAssembler::vallones(XMMRegister dst, int vector_len) { 5483 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) { 5484 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without 5485 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog 5486 vpternlogd(dst, 0xFF, dst, dst, vector_len); 5487 } else if (VM_Version::supports_avx()) { 5488 vpcmpeqd(dst, dst, dst, vector_len); 5489 } else { 5490 pcmpeqd(dst, dst); 5491 } 5492 } 5493 5494 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 5495 int extra_slot_offset) { 5496 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 5497 int stackElementSize = Interpreter::stackElementSize; 5498 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 5499 #ifdef ASSERT 5500 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 5501 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 5502 #endif 5503 Register scale_reg = noreg; 5504 Address::ScaleFactor scale_factor = Address::no_scale; 5505 if (arg_slot.is_constant()) { 5506 offset += arg_slot.as_constant() * stackElementSize; 5507 } else { 5508 scale_reg = arg_slot.as_register(); 5509 scale_factor = Address::times(stackElementSize); 5510 } 5511 offset += wordSize; // return PC is on stack 5512 return Address(rsp, scale_reg, scale_factor, offset); 5513 } 5514 5515 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 5516 if (!VerifyOops) return; 5517 5518 #ifdef _LP64 5519 push(rscratch1); 5520 #endif 5521 push(rax); // save rax, 5522 // addr may contain rsp so we will have to adjust it based on the push 5523 // we just did (and on 64 bit we do two pushes) 5524 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which 5525 // stores rax into addr which is backwards of what was intended. 5526 if (addr.uses(rsp)) { 5527 lea(rax, addr); 5528 pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord)); 5529 } else { 5530 pushptr(addr); 5531 } 5532 5533 // Pass register number to verify_oop_subroutine 5534 const char* b = nullptr; 5535 { 5536 ResourceMark rm; 5537 stringStream ss; 5538 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 5539 b = code_string(ss.as_string()); 5540 } 5541 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 5542 pushptr(buffer.addr(), rscratch1); 5543 5544 // call indirectly to solve generation ordering problem 5545 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5546 call(rax); 5547 // Caller pops the arguments (addr, message) and restores rax, r10. 5548 } 5549 5550 void MacroAssembler::verify_tlab() { 5551 #ifdef ASSERT 5552 if (UseTLAB && VerifyOops) { 5553 Label next, ok; 5554 Register t1 = rsi; 5555 Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread); 5556 5557 push(t1); 5558 NOT_LP64(push(thread_reg)); 5559 NOT_LP64(get_thread(thread_reg)); 5560 5561 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5562 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset()))); 5563 jcc(Assembler::aboveEqual, next); 5564 STOP("assert(top >= start)"); 5565 should_not_reach_here(); 5566 5567 bind(next); 5568 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); 5569 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5570 jcc(Assembler::aboveEqual, ok); 5571 STOP("assert(top <= end)"); 5572 should_not_reach_here(); 5573 5574 bind(ok); 5575 NOT_LP64(pop(thread_reg)); 5576 pop(t1); 5577 } 5578 #endif 5579 } 5580 5581 class ControlWord { 5582 public: 5583 int32_t _value; 5584 5585 int rounding_control() const { return (_value >> 10) & 3 ; } 5586 int precision_control() const { return (_value >> 8) & 3 ; } 5587 bool precision() const { return ((_value >> 5) & 1) != 0; } 5588 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5589 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5590 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5591 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5592 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5593 5594 void print() const { 5595 // rounding control 5596 const char* rc; 5597 switch (rounding_control()) { 5598 case 0: rc = "round near"; break; 5599 case 1: rc = "round down"; break; 5600 case 2: rc = "round up "; break; 5601 case 3: rc = "chop "; break; 5602 default: 5603 rc = nullptr; // silence compiler warnings 5604 fatal("Unknown rounding control: %d", rounding_control()); 5605 }; 5606 // precision control 5607 const char* pc; 5608 switch (precision_control()) { 5609 case 0: pc = "24 bits "; break; 5610 case 1: pc = "reserved"; break; 5611 case 2: pc = "53 bits "; break; 5612 case 3: pc = "64 bits "; break; 5613 default: 5614 pc = nullptr; // silence compiler warnings 5615 fatal("Unknown precision control: %d", precision_control()); 5616 }; 5617 // flags 5618 char f[9]; 5619 f[0] = ' '; 5620 f[1] = ' '; 5621 f[2] = (precision ()) ? 'P' : 'p'; 5622 f[3] = (underflow ()) ? 'U' : 'u'; 5623 f[4] = (overflow ()) ? 'O' : 'o'; 5624 f[5] = (zero_divide ()) ? 'Z' : 'z'; 5625 f[6] = (denormalized()) ? 'D' : 'd'; 5626 f[7] = (invalid ()) ? 'I' : 'i'; 5627 f[8] = '\x0'; 5628 // output 5629 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); 5630 } 5631 5632 }; 5633 5634 class StatusWord { 5635 public: 5636 int32_t _value; 5637 5638 bool busy() const { return ((_value >> 15) & 1) != 0; } 5639 bool C3() const { return ((_value >> 14) & 1) != 0; } 5640 bool C2() const { return ((_value >> 10) & 1) != 0; } 5641 bool C1() const { return ((_value >> 9) & 1) != 0; } 5642 bool C0() const { return ((_value >> 8) & 1) != 0; } 5643 int top() const { return (_value >> 11) & 7 ; } 5644 bool error_status() const { return ((_value >> 7) & 1) != 0; } 5645 bool stack_fault() const { return ((_value >> 6) & 1) != 0; } 5646 bool precision() const { return ((_value >> 5) & 1) != 0; } 5647 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5648 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5649 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5650 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5651 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5652 5653 void print() const { 5654 // condition codes 5655 char c[5]; 5656 c[0] = (C3()) ? '3' : '-'; 5657 c[1] = (C2()) ? '2' : '-'; 5658 c[2] = (C1()) ? '1' : '-'; 5659 c[3] = (C0()) ? '0' : '-'; 5660 c[4] = '\x0'; 5661 // flags 5662 char f[9]; 5663 f[0] = (error_status()) ? 'E' : '-'; 5664 f[1] = (stack_fault ()) ? 'S' : '-'; 5665 f[2] = (precision ()) ? 'P' : '-'; 5666 f[3] = (underflow ()) ? 'U' : '-'; 5667 f[4] = (overflow ()) ? 'O' : '-'; 5668 f[5] = (zero_divide ()) ? 'Z' : '-'; 5669 f[6] = (denormalized()) ? 'D' : '-'; 5670 f[7] = (invalid ()) ? 'I' : '-'; 5671 f[8] = '\x0'; 5672 // output 5673 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); 5674 } 5675 5676 }; 5677 5678 class TagWord { 5679 public: 5680 int32_t _value; 5681 5682 int tag_at(int i) const { return (_value >> (i*2)) & 3; } 5683 5684 void print() const { 5685 printf("%04x", _value & 0xFFFF); 5686 } 5687 5688 }; 5689 5690 class FPU_Register { 5691 public: 5692 int32_t _m0; 5693 int32_t _m1; 5694 int16_t _ex; 5695 5696 bool is_indefinite() const { 5697 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; 5698 } 5699 5700 void print() const { 5701 char sign = (_ex < 0) ? '-' : '+'; 5702 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; 5703 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); 5704 }; 5705 5706 }; 5707 5708 class FPU_State { 5709 public: 5710 enum { 5711 register_size = 10, 5712 number_of_registers = 8, 5713 register_mask = 7 5714 }; 5715 5716 ControlWord _control_word; 5717 StatusWord _status_word; 5718 TagWord _tag_word; 5719 int32_t _error_offset; 5720 int32_t _error_selector; 5721 int32_t _data_offset; 5722 int32_t _data_selector; 5723 int8_t _register[register_size * number_of_registers]; 5724 5725 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } 5726 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } 5727 5728 const char* tag_as_string(int tag) const { 5729 switch (tag) { 5730 case 0: return "valid"; 5731 case 1: return "zero"; 5732 case 2: return "special"; 5733 case 3: return "empty"; 5734 } 5735 ShouldNotReachHere(); 5736 return nullptr; 5737 } 5738 5739 void print() const { 5740 // print computation registers 5741 { int t = _status_word.top(); 5742 for (int i = 0; i < number_of_registers; i++) { 5743 int j = (i - t) & register_mask; 5744 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); 5745 st(j)->print(); 5746 printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); 5747 } 5748 } 5749 printf("\n"); 5750 // print control registers 5751 printf("ctrl = "); _control_word.print(); printf("\n"); 5752 printf("stat = "); _status_word .print(); printf("\n"); 5753 printf("tags = "); _tag_word .print(); printf("\n"); 5754 } 5755 5756 }; 5757 5758 class Flag_Register { 5759 public: 5760 int32_t _value; 5761 5762 bool overflow() const { return ((_value >> 11) & 1) != 0; } 5763 bool direction() const { return ((_value >> 10) & 1) != 0; } 5764 bool sign() const { return ((_value >> 7) & 1) != 0; } 5765 bool zero() const { return ((_value >> 6) & 1) != 0; } 5766 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } 5767 bool parity() const { return ((_value >> 2) & 1) != 0; } 5768 bool carry() const { return ((_value >> 0) & 1) != 0; } 5769 5770 void print() const { 5771 // flags 5772 char f[8]; 5773 f[0] = (overflow ()) ? 'O' : '-'; 5774 f[1] = (direction ()) ? 'D' : '-'; 5775 f[2] = (sign ()) ? 'S' : '-'; 5776 f[3] = (zero ()) ? 'Z' : '-'; 5777 f[4] = (auxiliary_carry()) ? 'A' : '-'; 5778 f[5] = (parity ()) ? 'P' : '-'; 5779 f[6] = (carry ()) ? 'C' : '-'; 5780 f[7] = '\x0'; 5781 // output 5782 printf("%08x flags = %s", _value, f); 5783 } 5784 5785 }; 5786 5787 class IU_Register { 5788 public: 5789 int32_t _value; 5790 5791 void print() const { 5792 printf("%08x %11d", _value, _value); 5793 } 5794 5795 }; 5796 5797 class IU_State { 5798 public: 5799 Flag_Register _eflags; 5800 IU_Register _rdi; 5801 IU_Register _rsi; 5802 IU_Register _rbp; 5803 IU_Register _rsp; 5804 IU_Register _rbx; 5805 IU_Register _rdx; 5806 IU_Register _rcx; 5807 IU_Register _rax; 5808 5809 void print() const { 5810 // computation registers 5811 printf("rax, = "); _rax.print(); printf("\n"); 5812 printf("rbx, = "); _rbx.print(); printf("\n"); 5813 printf("rcx = "); _rcx.print(); printf("\n"); 5814 printf("rdx = "); _rdx.print(); printf("\n"); 5815 printf("rdi = "); _rdi.print(); printf("\n"); 5816 printf("rsi = "); _rsi.print(); printf("\n"); 5817 printf("rbp, = "); _rbp.print(); printf("\n"); 5818 printf("rsp = "); _rsp.print(); printf("\n"); 5819 printf("\n"); 5820 // control registers 5821 printf("flgs = "); _eflags.print(); printf("\n"); 5822 } 5823 }; 5824 5825 5826 class CPU_State { 5827 public: 5828 FPU_State _fpu_state; 5829 IU_State _iu_state; 5830 5831 void print() const { 5832 printf("--------------------------------------------------\n"); 5833 _iu_state .print(); 5834 printf("\n"); 5835 _fpu_state.print(); 5836 printf("--------------------------------------------------\n"); 5837 } 5838 5839 }; 5840 5841 5842 static void _print_CPU_state(CPU_State* state) { 5843 state->print(); 5844 }; 5845 5846 5847 void MacroAssembler::print_CPU_state() { 5848 push_CPU_state(); 5849 push(rsp); // pass CPU state 5850 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); 5851 addptr(rsp, wordSize); // discard argument 5852 pop_CPU_state(); 5853 } 5854 5855 5856 #ifndef _LP64 5857 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) { 5858 static int counter = 0; 5859 FPU_State* fs = &state->_fpu_state; 5860 counter++; 5861 // For leaf calls, only verify that the top few elements remain empty. 5862 // We only need 1 empty at the top for C2 code. 5863 if( stack_depth < 0 ) { 5864 if( fs->tag_for_st(7) != 3 ) { 5865 printf("FPR7 not empty\n"); 5866 state->print(); 5867 assert(false, "error"); 5868 return false; 5869 } 5870 return true; // All other stack states do not matter 5871 } 5872 5873 assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(), 5874 "bad FPU control word"); 5875 5876 // compute stack depth 5877 int i = 0; 5878 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++; 5879 int d = i; 5880 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++; 5881 // verify findings 5882 if (i != FPU_State::number_of_registers) { 5883 // stack not contiguous 5884 printf("%s: stack not contiguous at ST%d\n", s, i); 5885 state->print(); 5886 assert(false, "error"); 5887 return false; 5888 } 5889 // check if computed stack depth corresponds to expected stack depth 5890 if (stack_depth < 0) { 5891 // expected stack depth is -stack_depth or less 5892 if (d > -stack_depth) { 5893 // too many elements on the stack 5894 printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d); 5895 state->print(); 5896 assert(false, "error"); 5897 return false; 5898 } 5899 } else { 5900 // expected stack depth is stack_depth 5901 if (d != stack_depth) { 5902 // wrong stack depth 5903 printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d); 5904 state->print(); 5905 assert(false, "error"); 5906 return false; 5907 } 5908 } 5909 // everything is cool 5910 return true; 5911 } 5912 5913 void MacroAssembler::verify_FPU(int stack_depth, const char* s) { 5914 if (!VerifyFPU) return; 5915 push_CPU_state(); 5916 push(rsp); // pass CPU state 5917 ExternalAddress msg((address) s); 5918 // pass message string s 5919 pushptr(msg.addr(), noreg); 5920 push(stack_depth); // pass stack depth 5921 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU))); 5922 addptr(rsp, 3 * wordSize); // discard arguments 5923 // check for error 5924 { Label L; 5925 testl(rax, rax); 5926 jcc(Assembler::notZero, L); 5927 int3(); // break if error condition 5928 bind(L); 5929 } 5930 pop_CPU_state(); 5931 } 5932 #endif // _LP64 5933 5934 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) { 5935 // Either restore the MXCSR register after returning from the JNI Call 5936 // or verify that it wasn't changed (with -Xcheck:jni flag). 5937 if (VM_Version::supports_sse()) { 5938 if (RestoreMXCSROnJNICalls) { 5939 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch); 5940 } else if (CheckJNICalls) { 5941 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry())); 5942 } 5943 } 5944 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty. 5945 vzeroupper(); 5946 5947 #ifndef _LP64 5948 // Either restore the x87 floating pointer control word after returning 5949 // from the JNI call or verify that it wasn't changed. 5950 if (CheckJNICalls) { 5951 call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry())); 5952 } 5953 #endif // _LP64 5954 } 5955 5956 // ((OopHandle)result).resolve(); 5957 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 5958 assert_different_registers(result, tmp); 5959 5960 // Only 64 bit platforms support GCs that require a tmp register 5961 // Only IN_HEAP loads require a thread_tmp register 5962 // OopHandle::resolve is an indirection like jobject. 5963 access_load_at(T_OBJECT, IN_NATIVE, 5964 result, Address(result, 0), tmp, /*tmp_thread*/noreg); 5965 } 5966 5967 // ((WeakHandle)result).resolve(); 5968 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 5969 assert_different_registers(rresult, rtmp); 5970 Label resolved; 5971 5972 // A null weak handle resolves to null. 5973 cmpptr(rresult, 0); 5974 jcc(Assembler::equal, resolved); 5975 5976 // Only 64 bit platforms support GCs that require a tmp register 5977 // Only IN_HEAP loads require a thread_tmp register 5978 // WeakHandle::resolve is an indirection like jweak. 5979 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5980 rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg); 5981 bind(resolved); 5982 } 5983 5984 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) { 5985 // get mirror 5986 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5987 load_method_holder(mirror, method); 5988 movptr(mirror, Address(mirror, mirror_offset)); 5989 resolve_oop_handle(mirror, tmp); 5990 } 5991 5992 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5993 load_method_holder(rresult, rmethod); 5994 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5995 } 5996 5997 void MacroAssembler::load_method_holder(Register holder, Register method) { 5998 movptr(holder, Address(method, Method::const_offset())); // ConstMethod* 5999 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 6000 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 6001 } 6002 6003 #ifdef _LP64 6004 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 6005 assert(UseCompactObjectHeaders, "expect compact object headers"); 6006 movq(dst, Address(src, oopDesc::mark_offset_in_bytes())); 6007 shrq(dst, markWord::klass_shift); 6008 } 6009 #endif 6010 6011 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) { 6012 assert_different_registers(src, tmp); 6013 assert_different_registers(dst, tmp); 6014 #ifdef _LP64 6015 if (UseCompactObjectHeaders) { 6016 load_narrow_klass_compact(dst, src); 6017 decode_klass_not_null(dst, tmp); 6018 } else if (UseCompressedClassPointers) { 6019 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 6020 decode_klass_not_null(dst, tmp); 6021 } else 6022 #endif 6023 { 6024 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 6025 } 6026 } 6027 6028 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) { 6029 assert(!UseCompactObjectHeaders, "not with compact headers"); 6030 assert_different_registers(src, tmp); 6031 assert_different_registers(dst, tmp); 6032 #ifdef _LP64 6033 if (UseCompressedClassPointers) { 6034 encode_klass_not_null(src, tmp); 6035 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); 6036 } else 6037 #endif 6038 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); 6039 } 6040 6041 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) { 6042 #ifdef _LP64 6043 if (UseCompactObjectHeaders) { 6044 assert(tmp != noreg, "need tmp"); 6045 assert_different_registers(klass, obj, tmp); 6046 load_narrow_klass_compact(tmp, obj); 6047 cmpl(klass, tmp); 6048 } else if (UseCompressedClassPointers) { 6049 cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 6050 } else 6051 #endif 6052 { 6053 cmpptr(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 6054 } 6055 } 6056 6057 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 6058 #ifdef _LP64 6059 if (UseCompactObjectHeaders) { 6060 assert(tmp2 != noreg, "need tmp2"); 6061 assert_different_registers(obj1, obj2, tmp1, tmp2); 6062 load_narrow_klass_compact(tmp1, obj1); 6063 load_narrow_klass_compact(tmp2, obj2); 6064 cmpl(tmp1, tmp2); 6065 } else if (UseCompressedClassPointers) { 6066 movl(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 6067 cmpl(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes())); 6068 } else 6069 #endif 6070 { 6071 movptr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 6072 cmpptr(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes())); 6073 } 6074 } 6075 6076 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 6077 Register tmp1, Register thread_tmp) { 6078 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 6079 decorators = AccessInternal::decorator_fixup(decorators, type); 6080 bool as_raw = (decorators & AS_RAW) != 0; 6081 if (as_raw) { 6082 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 6083 } else { 6084 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 6085 } 6086 } 6087 6088 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 6089 Register tmp1, Register tmp2, Register tmp3) { 6090 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 6091 decorators = AccessInternal::decorator_fixup(decorators, type); 6092 bool as_raw = (decorators & AS_RAW) != 0; 6093 if (as_raw) { 6094 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 6095 } else { 6096 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 6097 } 6098 } 6099 6100 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 6101 Register thread_tmp, DecoratorSet decorators) { 6102 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 6103 } 6104 6105 // Doesn't do verification, generates fixed size code 6106 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 6107 Register thread_tmp, DecoratorSet decorators) { 6108 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); 6109 } 6110 6111 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 6112 Register tmp2, Register tmp3, DecoratorSet decorators) { 6113 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 6114 } 6115 6116 // Used for storing nulls. 6117 void MacroAssembler::store_heap_oop_null(Address dst) { 6118 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 6119 } 6120 6121 #ifdef _LP64 6122 void MacroAssembler::store_klass_gap(Register dst, Register src) { 6123 assert(!UseCompactObjectHeaders, "Don't use with compact headers"); 6124 if (UseCompressedClassPointers) { 6125 // Store to klass gap in destination 6126 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); 6127 } 6128 } 6129 6130 #ifdef ASSERT 6131 void MacroAssembler::verify_heapbase(const char* msg) { 6132 assert (UseCompressedOops, "should be compressed"); 6133 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6134 if (CheckCompressedOops) { 6135 Label ok; 6136 ExternalAddress src2(CompressedOops::base_addr()); 6137 const bool is_src2_reachable = reachable(src2); 6138 if (!is_src2_reachable) { 6139 push(rscratch1); // cmpptr trashes rscratch1 6140 } 6141 cmpptr(r12_heapbase, src2, rscratch1); 6142 jcc(Assembler::equal, ok); 6143 STOP(msg); 6144 bind(ok); 6145 if (!is_src2_reachable) { 6146 pop(rscratch1); 6147 } 6148 } 6149 } 6150 #endif 6151 6152 // Algorithm must match oop.inline.hpp encode_heap_oop. 6153 void MacroAssembler::encode_heap_oop(Register r) { 6154 #ifdef ASSERT 6155 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 6156 #endif 6157 verify_oop_msg(r, "broken oop in encode_heap_oop"); 6158 if (CompressedOops::base() == nullptr) { 6159 if (CompressedOops::shift() != 0) { 6160 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6161 shrq(r, LogMinObjAlignmentInBytes); 6162 } 6163 return; 6164 } 6165 testq(r, r); 6166 cmovq(Assembler::equal, r, r12_heapbase); 6167 subq(r, r12_heapbase); 6168 shrq(r, LogMinObjAlignmentInBytes); 6169 } 6170 6171 void MacroAssembler::encode_heap_oop_not_null(Register r) { 6172 #ifdef ASSERT 6173 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 6174 if (CheckCompressedOops) { 6175 Label ok; 6176 testq(r, r); 6177 jcc(Assembler::notEqual, ok); 6178 STOP("null oop passed to encode_heap_oop_not_null"); 6179 bind(ok); 6180 } 6181 #endif 6182 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 6183 if (CompressedOops::base() != nullptr) { 6184 subq(r, r12_heapbase); 6185 } 6186 if (CompressedOops::shift() != 0) { 6187 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6188 shrq(r, LogMinObjAlignmentInBytes); 6189 } 6190 } 6191 6192 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 6193 #ifdef ASSERT 6194 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 6195 if (CheckCompressedOops) { 6196 Label ok; 6197 testq(src, src); 6198 jcc(Assembler::notEqual, ok); 6199 STOP("null oop passed to encode_heap_oop_not_null2"); 6200 bind(ok); 6201 } 6202 #endif 6203 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 6204 if (dst != src) { 6205 movq(dst, src); 6206 } 6207 if (CompressedOops::base() != nullptr) { 6208 subq(dst, r12_heapbase); 6209 } 6210 if (CompressedOops::shift() != 0) { 6211 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6212 shrq(dst, LogMinObjAlignmentInBytes); 6213 } 6214 } 6215 6216 void MacroAssembler::decode_heap_oop(Register r) { 6217 #ifdef ASSERT 6218 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 6219 #endif 6220 if (CompressedOops::base() == nullptr) { 6221 if (CompressedOops::shift() != 0) { 6222 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6223 shlq(r, LogMinObjAlignmentInBytes); 6224 } 6225 } else { 6226 Label done; 6227 shlq(r, LogMinObjAlignmentInBytes); 6228 jccb(Assembler::equal, done); 6229 addq(r, r12_heapbase); 6230 bind(done); 6231 } 6232 verify_oop_msg(r, "broken oop in decode_heap_oop"); 6233 } 6234 6235 void MacroAssembler::decode_heap_oop_not_null(Register r) { 6236 // Note: it will change flags 6237 assert (UseCompressedOops, "should only be used for compressed headers"); 6238 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6239 // Cannot assert, unverified entry point counts instructions (see .ad file) 6240 // vtableStubs also counts instructions in pd_code_size_limit. 6241 // Also do not verify_oop as this is called by verify_oop. 6242 if (CompressedOops::shift() != 0) { 6243 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6244 shlq(r, LogMinObjAlignmentInBytes); 6245 if (CompressedOops::base() != nullptr) { 6246 addq(r, r12_heapbase); 6247 } 6248 } else { 6249 assert (CompressedOops::base() == nullptr, "sanity"); 6250 } 6251 } 6252 6253 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 6254 // Note: it will change flags 6255 assert (UseCompressedOops, "should only be used for compressed headers"); 6256 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6257 // Cannot assert, unverified entry point counts instructions (see .ad file) 6258 // vtableStubs also counts instructions in pd_code_size_limit. 6259 // Also do not verify_oop as this is called by verify_oop. 6260 if (CompressedOops::shift() != 0) { 6261 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6262 if (LogMinObjAlignmentInBytes == Address::times_8) { 6263 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); 6264 } else { 6265 if (dst != src) { 6266 movq(dst, src); 6267 } 6268 shlq(dst, LogMinObjAlignmentInBytes); 6269 if (CompressedOops::base() != nullptr) { 6270 addq(dst, r12_heapbase); 6271 } 6272 } 6273 } else { 6274 assert (CompressedOops::base() == nullptr, "sanity"); 6275 if (dst != src) { 6276 movq(dst, src); 6277 } 6278 } 6279 } 6280 6281 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) { 6282 assert_different_registers(r, tmp); 6283 if (CompressedKlassPointers::base() != nullptr) { 6284 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 6285 subq(r, tmp); 6286 } 6287 if (CompressedKlassPointers::shift() != 0) { 6288 shrq(r, CompressedKlassPointers::shift()); 6289 } 6290 } 6291 6292 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) { 6293 assert_different_registers(src, dst); 6294 if (CompressedKlassPointers::base() != nullptr) { 6295 mov64(dst, -(int64_t)CompressedKlassPointers::base()); 6296 addq(dst, src); 6297 } else { 6298 movptr(dst, src); 6299 } 6300 if (CompressedKlassPointers::shift() != 0) { 6301 shrq(dst, CompressedKlassPointers::shift()); 6302 } 6303 } 6304 6305 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) { 6306 assert_different_registers(r, tmp); 6307 // Note: it will change flags 6308 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 6309 // Cannot assert, unverified entry point counts instructions (see .ad file) 6310 // vtableStubs also counts instructions in pd_code_size_limit. 6311 // Also do not verify_oop as this is called by verify_oop. 6312 if (CompressedKlassPointers::shift() != 0) { 6313 shlq(r, CompressedKlassPointers::shift()); 6314 } 6315 if (CompressedKlassPointers::base() != nullptr) { 6316 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 6317 addq(r, tmp); 6318 } 6319 } 6320 6321 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) { 6322 assert_different_registers(src, dst); 6323 // Note: it will change flags 6324 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6325 // Cannot assert, unverified entry point counts instructions (see .ad file) 6326 // vtableStubs also counts instructions in pd_code_size_limit. 6327 // Also do not verify_oop as this is called by verify_oop. 6328 6329 if (CompressedKlassPointers::base() == nullptr && 6330 CompressedKlassPointers::shift() == 0) { 6331 // The best case scenario is that there is no base or shift. Then it is already 6332 // a pointer that needs nothing but a register rename. 6333 movl(dst, src); 6334 } else { 6335 if (CompressedKlassPointers::shift() <= Address::times_8) { 6336 if (CompressedKlassPointers::base() != nullptr) { 6337 mov64(dst, (int64_t)CompressedKlassPointers::base()); 6338 } else { 6339 xorq(dst, dst); 6340 } 6341 if (CompressedKlassPointers::shift() != 0) { 6342 assert(CompressedKlassPointers::shift() == Address::times_8, "klass not aligned on 64bits?"); 6343 leaq(dst, Address(dst, src, Address::times_8, 0)); 6344 } else { 6345 addq(dst, src); 6346 } 6347 } else { 6348 if (CompressedKlassPointers::base() != nullptr) { 6349 const uint64_t base_right_shifted = 6350 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 6351 mov64(dst, base_right_shifted); 6352 } else { 6353 xorq(dst, dst); 6354 } 6355 addq(dst, src); 6356 shlq(dst, CompressedKlassPointers::shift()); 6357 } 6358 } 6359 } 6360 6361 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 6362 assert (UseCompressedOops, "should only be used for compressed headers"); 6363 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6364 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6365 int oop_index = oop_recorder()->find_index(obj); 6366 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6367 mov_narrow_oop(dst, oop_index, rspec); 6368 } 6369 6370 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { 6371 assert (UseCompressedOops, "should only be used for compressed headers"); 6372 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6373 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6374 int oop_index = oop_recorder()->find_index(obj); 6375 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6376 mov_narrow_oop(dst, oop_index, rspec); 6377 } 6378 6379 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 6380 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6381 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6382 int klass_index = oop_recorder()->find_index(k); 6383 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6384 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6385 } 6386 6387 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) { 6388 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6389 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6390 int klass_index = oop_recorder()->find_index(k); 6391 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6392 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6393 } 6394 6395 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { 6396 assert (UseCompressedOops, "should only be used for compressed headers"); 6397 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6398 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6399 int oop_index = oop_recorder()->find_index(obj); 6400 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6401 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6402 } 6403 6404 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { 6405 assert (UseCompressedOops, "should only be used for compressed headers"); 6406 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6407 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6408 int oop_index = oop_recorder()->find_index(obj); 6409 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6410 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6411 } 6412 6413 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) { 6414 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6415 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6416 int klass_index = oop_recorder()->find_index(k); 6417 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6418 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6419 } 6420 6421 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) { 6422 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6423 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6424 int klass_index = oop_recorder()->find_index(k); 6425 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6426 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6427 } 6428 6429 void MacroAssembler::reinit_heapbase() { 6430 if (UseCompressedOops) { 6431 if (Universe::heap() != nullptr) { 6432 if (CompressedOops::base() == nullptr) { 6433 MacroAssembler::xorptr(r12_heapbase, r12_heapbase); 6434 } else { 6435 mov64(r12_heapbase, (int64_t)CompressedOops::base()); 6436 } 6437 } else { 6438 movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr())); 6439 } 6440 } 6441 } 6442 6443 #endif // _LP64 6444 6445 #if COMPILER2_OR_JVMCI 6446 6447 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers 6448 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6449 // cnt - number of qwords (8-byte words). 6450 // base - start address, qword aligned. 6451 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end; 6452 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0); 6453 if (use64byteVector) { 6454 vpxor(xtmp, xtmp, xtmp, AVX_512bit); 6455 } else if (MaxVectorSize >= 32) { 6456 vpxor(xtmp, xtmp, xtmp, AVX_256bit); 6457 } else { 6458 pxor(xtmp, xtmp); 6459 } 6460 jmp(L_zero_64_bytes); 6461 6462 BIND(L_loop); 6463 if (MaxVectorSize >= 32) { 6464 fill64(base, 0, xtmp, use64byteVector); 6465 } else { 6466 movdqu(Address(base, 0), xtmp); 6467 movdqu(Address(base, 16), xtmp); 6468 movdqu(Address(base, 32), xtmp); 6469 movdqu(Address(base, 48), xtmp); 6470 } 6471 addptr(base, 64); 6472 6473 BIND(L_zero_64_bytes); 6474 subptr(cnt, 8); 6475 jccb(Assembler::greaterEqual, L_loop); 6476 6477 // Copy trailing 64 bytes 6478 if (use64byteVector) { 6479 addptr(cnt, 8); 6480 jccb(Assembler::equal, L_end); 6481 fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true); 6482 jmp(L_end); 6483 } else { 6484 addptr(cnt, 4); 6485 jccb(Assembler::less, L_tail); 6486 if (MaxVectorSize >= 32) { 6487 vmovdqu(Address(base, 0), xtmp); 6488 } else { 6489 movdqu(Address(base, 0), xtmp); 6490 movdqu(Address(base, 16), xtmp); 6491 } 6492 } 6493 addptr(base, 32); 6494 subptr(cnt, 4); 6495 6496 BIND(L_tail); 6497 addptr(cnt, 4); 6498 jccb(Assembler::lessEqual, L_end); 6499 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) { 6500 fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp); 6501 } else { 6502 decrement(cnt); 6503 6504 BIND(L_sloop); 6505 movq(Address(base, 0), xtmp); 6506 addptr(base, 8); 6507 decrement(cnt); 6508 jccb(Assembler::greaterEqual, L_sloop); 6509 } 6510 BIND(L_end); 6511 } 6512 6513 // Clearing constant sized memory using YMM/ZMM registers. 6514 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6515 assert(UseAVX > 2 && VM_Version::supports_avx512vl(), ""); 6516 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0); 6517 6518 int vector64_count = (cnt & (~0x7)) >> 3; 6519 cnt = cnt & 0x7; 6520 const int fill64_per_loop = 4; 6521 const int max_unrolled_fill64 = 8; 6522 6523 // 64 byte initialization loop. 6524 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit); 6525 int start64 = 0; 6526 if (vector64_count > max_unrolled_fill64) { 6527 Label LOOP; 6528 Register index = rtmp; 6529 6530 start64 = vector64_count - (vector64_count % fill64_per_loop); 6531 6532 movl(index, 0); 6533 BIND(LOOP); 6534 for (int i = 0; i < fill64_per_loop; i++) { 6535 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector); 6536 } 6537 addl(index, fill64_per_loop * 64); 6538 cmpl(index, start64 * 64); 6539 jccb(Assembler::less, LOOP); 6540 } 6541 for (int i = start64; i < vector64_count; i++) { 6542 fill64(base, i * 64, xtmp, use64byteVector); 6543 } 6544 6545 // Clear remaining 64 byte tail. 6546 int disp = vector64_count * 64; 6547 if (cnt) { 6548 switch (cnt) { 6549 case 1: 6550 movq(Address(base, disp), xtmp); 6551 break; 6552 case 2: 6553 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit); 6554 break; 6555 case 3: 6556 movl(rtmp, 0x7); 6557 kmovwl(mask, rtmp); 6558 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit); 6559 break; 6560 case 4: 6561 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6562 break; 6563 case 5: 6564 if (use64byteVector) { 6565 movl(rtmp, 0x1F); 6566 kmovwl(mask, rtmp); 6567 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6568 } else { 6569 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6570 movq(Address(base, disp + 32), xtmp); 6571 } 6572 break; 6573 case 6: 6574 if (use64byteVector) { 6575 movl(rtmp, 0x3F); 6576 kmovwl(mask, rtmp); 6577 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6578 } else { 6579 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6580 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit); 6581 } 6582 break; 6583 case 7: 6584 if (use64byteVector) { 6585 movl(rtmp, 0x7F); 6586 kmovwl(mask, rtmp); 6587 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6588 } else { 6589 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6590 movl(rtmp, 0x7); 6591 kmovwl(mask, rtmp); 6592 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit); 6593 } 6594 break; 6595 default: 6596 fatal("Unexpected length : %d\n",cnt); 6597 break; 6598 } 6599 } 6600 } 6601 6602 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, 6603 bool is_large, KRegister mask) { 6604 // cnt - number of qwords (8-byte words). 6605 // base - start address, qword aligned. 6606 // is_large - if optimizers know cnt is larger than InitArrayShortSize 6607 assert(base==rdi, "base register must be edi for rep stos"); 6608 assert(tmp==rax, "tmp register must be eax for rep stos"); 6609 assert(cnt==rcx, "cnt register must be ecx for rep stos"); 6610 assert(InitArrayShortSize % BytesPerLong == 0, 6611 "InitArrayShortSize should be the multiple of BytesPerLong"); 6612 6613 Label DONE; 6614 if (!is_large || !UseXMMForObjInit) { 6615 xorptr(tmp, tmp); 6616 } 6617 6618 if (!is_large) { 6619 Label LOOP, LONG; 6620 cmpptr(cnt, InitArrayShortSize/BytesPerLong); 6621 jccb(Assembler::greater, LONG); 6622 6623 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 6624 6625 decrement(cnt); 6626 jccb(Assembler::negative, DONE); // Zero length 6627 6628 // Use individual pointer-sized stores for small counts: 6629 BIND(LOOP); 6630 movptr(Address(base, cnt, Address::times_ptr), tmp); 6631 decrement(cnt); 6632 jccb(Assembler::greaterEqual, LOOP); 6633 jmpb(DONE); 6634 6635 BIND(LONG); 6636 } 6637 6638 // Use longer rep-prefixed ops for non-small counts: 6639 if (UseFastStosb) { 6640 shlptr(cnt, 3); // convert to number of bytes 6641 rep_stosb(); 6642 } else if (UseXMMForObjInit) { 6643 xmm_clear_mem(base, cnt, tmp, xtmp, mask); 6644 } else { 6645 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 6646 rep_stos(); 6647 } 6648 6649 BIND(DONE); 6650 } 6651 6652 #endif //COMPILER2_OR_JVMCI 6653 6654 6655 void MacroAssembler::generate_fill(BasicType t, bool aligned, 6656 Register to, Register value, Register count, 6657 Register rtmp, XMMRegister xtmp) { 6658 ShortBranchVerifier sbv(this); 6659 assert_different_registers(to, value, count, rtmp); 6660 Label L_exit; 6661 Label L_fill_2_bytes, L_fill_4_bytes; 6662 6663 #if defined(COMPILER2) && defined(_LP64) 6664 if(MaxVectorSize >=32 && 6665 VM_Version::supports_avx512vlbw() && 6666 VM_Version::supports_bmi2()) { 6667 generate_fill_avx3(t, to, value, count, rtmp, xtmp); 6668 return; 6669 } 6670 #endif 6671 6672 int shift = -1; 6673 switch (t) { 6674 case T_BYTE: 6675 shift = 2; 6676 break; 6677 case T_SHORT: 6678 shift = 1; 6679 break; 6680 case T_INT: 6681 shift = 0; 6682 break; 6683 default: ShouldNotReachHere(); 6684 } 6685 6686 if (t == T_BYTE) { 6687 andl(value, 0xff); 6688 movl(rtmp, value); 6689 shll(rtmp, 8); 6690 orl(value, rtmp); 6691 } 6692 if (t == T_SHORT) { 6693 andl(value, 0xffff); 6694 } 6695 if (t == T_BYTE || t == T_SHORT) { 6696 movl(rtmp, value); 6697 shll(rtmp, 16); 6698 orl(value, rtmp); 6699 } 6700 6701 cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element 6702 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp 6703 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) { 6704 Label L_skip_align2; 6705 // align source address at 4 bytes address boundary 6706 if (t == T_BYTE) { 6707 Label L_skip_align1; 6708 // One byte misalignment happens only for byte arrays 6709 testptr(to, 1); 6710 jccb(Assembler::zero, L_skip_align1); 6711 movb(Address(to, 0), value); 6712 increment(to); 6713 decrement(count); 6714 BIND(L_skip_align1); 6715 } 6716 // Two bytes misalignment happens only for byte and short (char) arrays 6717 testptr(to, 2); 6718 jccb(Assembler::zero, L_skip_align2); 6719 movw(Address(to, 0), value); 6720 addptr(to, 2); 6721 subptr(count, 1<<(shift-1)); 6722 BIND(L_skip_align2); 6723 } 6724 if (UseSSE < 2) { 6725 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6726 // Fill 32-byte chunks 6727 subptr(count, 8 << shift); 6728 jcc(Assembler::less, L_check_fill_8_bytes); 6729 align(16); 6730 6731 BIND(L_fill_32_bytes_loop); 6732 6733 for (int i = 0; i < 32; i += 4) { 6734 movl(Address(to, i), value); 6735 } 6736 6737 addptr(to, 32); 6738 subptr(count, 8 << shift); 6739 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6740 BIND(L_check_fill_8_bytes); 6741 addptr(count, 8 << shift); 6742 jccb(Assembler::zero, L_exit); 6743 jmpb(L_fill_8_bytes); 6744 6745 // 6746 // length is too short, just fill qwords 6747 // 6748 BIND(L_fill_8_bytes_loop); 6749 movl(Address(to, 0), value); 6750 movl(Address(to, 4), value); 6751 addptr(to, 8); 6752 BIND(L_fill_8_bytes); 6753 subptr(count, 1 << (shift + 1)); 6754 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6755 // fall through to fill 4 bytes 6756 } else { 6757 Label L_fill_32_bytes; 6758 if (!UseUnalignedLoadStores) { 6759 // align to 8 bytes, we know we are 4 byte aligned to start 6760 testptr(to, 4); 6761 jccb(Assembler::zero, L_fill_32_bytes); 6762 movl(Address(to, 0), value); 6763 addptr(to, 4); 6764 subptr(count, 1<<shift); 6765 } 6766 BIND(L_fill_32_bytes); 6767 { 6768 assert( UseSSE >= 2, "supported cpu only" ); 6769 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6770 movdl(xtmp, value); 6771 if (UseAVX >= 2 && UseUnalignedLoadStores) { 6772 Label L_check_fill_32_bytes; 6773 if (UseAVX > 2) { 6774 // Fill 64-byte chunks 6775 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2; 6776 6777 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2 6778 cmpptr(count, VM_Version::avx3_threshold()); 6779 jccb(Assembler::below, L_check_fill_64_bytes_avx2); 6780 6781 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit); 6782 6783 subptr(count, 16 << shift); 6784 jccb(Assembler::less, L_check_fill_32_bytes); 6785 align(16); 6786 6787 BIND(L_fill_64_bytes_loop_avx3); 6788 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit); 6789 addptr(to, 64); 6790 subptr(count, 16 << shift); 6791 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3); 6792 jmpb(L_check_fill_32_bytes); 6793 6794 BIND(L_check_fill_64_bytes_avx2); 6795 } 6796 // Fill 64-byte chunks 6797 Label L_fill_64_bytes_loop; 6798 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit); 6799 6800 subptr(count, 16 << shift); 6801 jcc(Assembler::less, L_check_fill_32_bytes); 6802 align(16); 6803 6804 BIND(L_fill_64_bytes_loop); 6805 vmovdqu(Address(to, 0), xtmp); 6806 vmovdqu(Address(to, 32), xtmp); 6807 addptr(to, 64); 6808 subptr(count, 16 << shift); 6809 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop); 6810 6811 BIND(L_check_fill_32_bytes); 6812 addptr(count, 8 << shift); 6813 jccb(Assembler::less, L_check_fill_8_bytes); 6814 vmovdqu(Address(to, 0), xtmp); 6815 addptr(to, 32); 6816 subptr(count, 8 << shift); 6817 6818 BIND(L_check_fill_8_bytes); 6819 // clean upper bits of YMM registers 6820 movdl(xtmp, value); 6821 pshufd(xtmp, xtmp, 0); 6822 } else { 6823 // Fill 32-byte chunks 6824 pshufd(xtmp, xtmp, 0); 6825 6826 subptr(count, 8 << shift); 6827 jcc(Assembler::less, L_check_fill_8_bytes); 6828 align(16); 6829 6830 BIND(L_fill_32_bytes_loop); 6831 6832 if (UseUnalignedLoadStores) { 6833 movdqu(Address(to, 0), xtmp); 6834 movdqu(Address(to, 16), xtmp); 6835 } else { 6836 movq(Address(to, 0), xtmp); 6837 movq(Address(to, 8), xtmp); 6838 movq(Address(to, 16), xtmp); 6839 movq(Address(to, 24), xtmp); 6840 } 6841 6842 addptr(to, 32); 6843 subptr(count, 8 << shift); 6844 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6845 6846 BIND(L_check_fill_8_bytes); 6847 } 6848 addptr(count, 8 << shift); 6849 jccb(Assembler::zero, L_exit); 6850 jmpb(L_fill_8_bytes); 6851 6852 // 6853 // length is too short, just fill qwords 6854 // 6855 BIND(L_fill_8_bytes_loop); 6856 movq(Address(to, 0), xtmp); 6857 addptr(to, 8); 6858 BIND(L_fill_8_bytes); 6859 subptr(count, 1 << (shift + 1)); 6860 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6861 } 6862 } 6863 // fill trailing 4 bytes 6864 BIND(L_fill_4_bytes); 6865 testl(count, 1<<shift); 6866 jccb(Assembler::zero, L_fill_2_bytes); 6867 movl(Address(to, 0), value); 6868 if (t == T_BYTE || t == T_SHORT) { 6869 Label L_fill_byte; 6870 addptr(to, 4); 6871 BIND(L_fill_2_bytes); 6872 // fill trailing 2 bytes 6873 testl(count, 1<<(shift-1)); 6874 jccb(Assembler::zero, L_fill_byte); 6875 movw(Address(to, 0), value); 6876 if (t == T_BYTE) { 6877 addptr(to, 2); 6878 BIND(L_fill_byte); 6879 // fill trailing byte 6880 testl(count, 1); 6881 jccb(Assembler::zero, L_exit); 6882 movb(Address(to, 0), value); 6883 } else { 6884 BIND(L_fill_byte); 6885 } 6886 } else { 6887 BIND(L_fill_2_bytes); 6888 } 6889 BIND(L_exit); 6890 } 6891 6892 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) { 6893 switch(type) { 6894 case T_BYTE: 6895 case T_BOOLEAN: 6896 evpbroadcastb(dst, src, vector_len); 6897 break; 6898 case T_SHORT: 6899 case T_CHAR: 6900 evpbroadcastw(dst, src, vector_len); 6901 break; 6902 case T_INT: 6903 case T_FLOAT: 6904 evpbroadcastd(dst, src, vector_len); 6905 break; 6906 case T_LONG: 6907 case T_DOUBLE: 6908 evpbroadcastq(dst, src, vector_len); 6909 break; 6910 default: 6911 fatal("Unhandled type : %s", type2name(type)); 6912 break; 6913 } 6914 } 6915 6916 // encode char[] to byte[] in ISO_8859_1 or ASCII 6917 //@IntrinsicCandidate 6918 //private static int implEncodeISOArray(byte[] sa, int sp, 6919 //byte[] da, int dp, int len) { 6920 // int i = 0; 6921 // for (; i < len; i++) { 6922 // char c = StringUTF16.getChar(sa, sp++); 6923 // if (c > '\u00FF') 6924 // break; 6925 // da[dp++] = (byte)c; 6926 // } 6927 // return i; 6928 //} 6929 // 6930 //@IntrinsicCandidate 6931 //private static int implEncodeAsciiArray(char[] sa, int sp, 6932 // byte[] da, int dp, int len) { 6933 // int i = 0; 6934 // for (; i < len; i++) { 6935 // char c = sa[sp++]; 6936 // if (c >= '\u0080') 6937 // break; 6938 // da[dp++] = (byte)c; 6939 // } 6940 // return i; 6941 //} 6942 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, 6943 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 6944 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 6945 Register tmp5, Register result, bool ascii) { 6946 6947 // rsi: src 6948 // rdi: dst 6949 // rdx: len 6950 // rcx: tmp5 6951 // rax: result 6952 ShortBranchVerifier sbv(this); 6953 assert_different_registers(src, dst, len, tmp5, result); 6954 Label L_done, L_copy_1_char, L_copy_1_char_exit; 6955 6956 int mask = ascii ? 0xff80ff80 : 0xff00ff00; 6957 int short_mask = ascii ? 0xff80 : 0xff00; 6958 6959 // set result 6960 xorl(result, result); 6961 // check for zero length 6962 testl(len, len); 6963 jcc(Assembler::zero, L_done); 6964 6965 movl(result, len); 6966 6967 // Setup pointers 6968 lea(src, Address(src, len, Address::times_2)); // char[] 6969 lea(dst, Address(dst, len, Address::times_1)); // byte[] 6970 negptr(len); 6971 6972 if (UseSSE42Intrinsics || UseAVX >= 2) { 6973 Label L_copy_8_chars, L_copy_8_chars_exit; 6974 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit; 6975 6976 if (UseAVX >= 2) { 6977 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit; 6978 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6979 movdl(tmp1Reg, tmp5); 6980 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit); 6981 jmp(L_chars_32_check); 6982 6983 bind(L_copy_32_chars); 6984 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64)); 6985 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32)); 6986 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6987 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6988 jccb(Assembler::notZero, L_copy_32_chars_exit); 6989 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6990 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1); 6991 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg); 6992 6993 bind(L_chars_32_check); 6994 addptr(len, 32); 6995 jcc(Assembler::lessEqual, L_copy_32_chars); 6996 6997 bind(L_copy_32_chars_exit); 6998 subptr(len, 16); 6999 jccb(Assembler::greater, L_copy_16_chars_exit); 7000 7001 } else if (UseSSE42Intrinsics) { 7002 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 7003 movdl(tmp1Reg, tmp5); 7004 pshufd(tmp1Reg, tmp1Reg, 0); 7005 jmpb(L_chars_16_check); 7006 } 7007 7008 bind(L_copy_16_chars); 7009 if (UseAVX >= 2) { 7010 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32)); 7011 vptest(tmp2Reg, tmp1Reg); 7012 jcc(Assembler::notZero, L_copy_16_chars_exit); 7013 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1); 7014 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1); 7015 } else { 7016 if (UseAVX > 0) { 7017 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 7018 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 7019 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0); 7020 } else { 7021 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 7022 por(tmp2Reg, tmp3Reg); 7023 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 7024 por(tmp2Reg, tmp4Reg); 7025 } 7026 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 7027 jccb(Assembler::notZero, L_copy_16_chars_exit); 7028 packuswb(tmp3Reg, tmp4Reg); 7029 } 7030 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg); 7031 7032 bind(L_chars_16_check); 7033 addptr(len, 16); 7034 jcc(Assembler::lessEqual, L_copy_16_chars); 7035 7036 bind(L_copy_16_chars_exit); 7037 if (UseAVX >= 2) { 7038 // clean upper bits of YMM registers 7039 vpxor(tmp2Reg, tmp2Reg); 7040 vpxor(tmp3Reg, tmp3Reg); 7041 vpxor(tmp4Reg, tmp4Reg); 7042 movdl(tmp1Reg, tmp5); 7043 pshufd(tmp1Reg, tmp1Reg, 0); 7044 } 7045 subptr(len, 8); 7046 jccb(Assembler::greater, L_copy_8_chars_exit); 7047 7048 bind(L_copy_8_chars); 7049 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16)); 7050 ptest(tmp3Reg, tmp1Reg); 7051 jccb(Assembler::notZero, L_copy_8_chars_exit); 7052 packuswb(tmp3Reg, tmp1Reg); 7053 movq(Address(dst, len, Address::times_1, -8), tmp3Reg); 7054 addptr(len, 8); 7055 jccb(Assembler::lessEqual, L_copy_8_chars); 7056 7057 bind(L_copy_8_chars_exit); 7058 subptr(len, 8); 7059 jccb(Assembler::zero, L_done); 7060 } 7061 7062 bind(L_copy_1_char); 7063 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0)); 7064 testl(tmp5, short_mask); // check if Unicode or non-ASCII char 7065 jccb(Assembler::notZero, L_copy_1_char_exit); 7066 movb(Address(dst, len, Address::times_1, 0), tmp5); 7067 addptr(len, 1); 7068 jccb(Assembler::less, L_copy_1_char); 7069 7070 bind(L_copy_1_char_exit); 7071 addptr(result, len); // len is negative count of not processed elements 7072 7073 bind(L_done); 7074 } 7075 7076 #ifdef _LP64 7077 /** 7078 * Helper for multiply_to_len(). 7079 */ 7080 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 7081 addq(dest_lo, src1); 7082 adcq(dest_hi, 0); 7083 addq(dest_lo, src2); 7084 adcq(dest_hi, 0); 7085 } 7086 7087 /** 7088 * Multiply 64 bit by 64 bit first loop. 7089 */ 7090 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 7091 Register y, Register y_idx, Register z, 7092 Register carry, Register product, 7093 Register idx, Register kdx) { 7094 // 7095 // jlong carry, x[], y[], z[]; 7096 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 7097 // huge_128 product = y[idx] * x[xstart] + carry; 7098 // z[kdx] = (jlong)product; 7099 // carry = (jlong)(product >>> 64); 7100 // } 7101 // z[xstart] = carry; 7102 // 7103 7104 Label L_first_loop, L_first_loop_exit; 7105 Label L_one_x, L_one_y, L_multiply; 7106 7107 decrementl(xstart); 7108 jcc(Assembler::negative, L_one_x); 7109 7110 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7111 rorq(x_xstart, 32); // convert big-endian to little-endian 7112 7113 bind(L_first_loop); 7114 decrementl(idx); 7115 jcc(Assembler::negative, L_first_loop_exit); 7116 decrementl(idx); 7117 jcc(Assembler::negative, L_one_y); 7118 movq(y_idx, Address(y, idx, Address::times_4, 0)); 7119 rorq(y_idx, 32); // convert big-endian to little-endian 7120 bind(L_multiply); 7121 movq(product, x_xstart); 7122 mulq(y_idx); // product(rax) * y_idx -> rdx:rax 7123 addq(product, carry); 7124 adcq(rdx, 0); 7125 subl(kdx, 2); 7126 movl(Address(z, kdx, Address::times_4, 4), product); 7127 shrq(product, 32); 7128 movl(Address(z, kdx, Address::times_4, 0), product); 7129 movq(carry, rdx); 7130 jmp(L_first_loop); 7131 7132 bind(L_one_y); 7133 movl(y_idx, Address(y, 0)); 7134 jmp(L_multiply); 7135 7136 bind(L_one_x); 7137 movl(x_xstart, Address(x, 0)); 7138 jmp(L_first_loop); 7139 7140 bind(L_first_loop_exit); 7141 } 7142 7143 /** 7144 * Multiply 64 bit by 64 bit and add 128 bit. 7145 */ 7146 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, 7147 Register yz_idx, Register idx, 7148 Register carry, Register product, int offset) { 7149 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; 7150 // z[kdx] = (jlong)product; 7151 7152 movq(yz_idx, Address(y, idx, Address::times_4, offset)); 7153 rorq(yz_idx, 32); // convert big-endian to little-endian 7154 movq(product, x_xstart); 7155 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 7156 movq(yz_idx, Address(z, idx, Address::times_4, offset)); 7157 rorq(yz_idx, 32); // convert big-endian to little-endian 7158 7159 add2_with_carry(rdx, product, carry, yz_idx); 7160 7161 movl(Address(z, idx, Address::times_4, offset+4), product); 7162 shrq(product, 32); 7163 movl(Address(z, idx, Address::times_4, offset), product); 7164 7165 } 7166 7167 /** 7168 * Multiply 128 bit by 128 bit. Unrolled inner loop. 7169 */ 7170 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 7171 Register yz_idx, Register idx, Register jdx, 7172 Register carry, Register product, 7173 Register carry2) { 7174 // jlong carry, x[], y[], z[]; 7175 // int kdx = ystart+1; 7176 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 7177 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; 7178 // z[kdx+idx+1] = (jlong)product; 7179 // jlong carry2 = (jlong)(product >>> 64); 7180 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; 7181 // z[kdx+idx] = (jlong)product; 7182 // carry = (jlong)(product >>> 64); 7183 // } 7184 // idx += 2; 7185 // if (idx > 0) { 7186 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; 7187 // z[kdx+idx] = (jlong)product; 7188 // carry = (jlong)(product >>> 64); 7189 // } 7190 // 7191 7192 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 7193 7194 movl(jdx, idx); 7195 andl(jdx, 0xFFFFFFFC); 7196 shrl(jdx, 2); 7197 7198 bind(L_third_loop); 7199 subl(jdx, 1); 7200 jcc(Assembler::negative, L_third_loop_exit); 7201 subl(idx, 4); 7202 7203 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8); 7204 movq(carry2, rdx); 7205 7206 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0); 7207 movq(carry, rdx); 7208 jmp(L_third_loop); 7209 7210 bind (L_third_loop_exit); 7211 7212 andl (idx, 0x3); 7213 jcc(Assembler::zero, L_post_third_loop_done); 7214 7215 Label L_check_1; 7216 subl(idx, 2); 7217 jcc(Assembler::negative, L_check_1); 7218 7219 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0); 7220 movq(carry, rdx); 7221 7222 bind (L_check_1); 7223 addl (idx, 0x2); 7224 andl (idx, 0x1); 7225 subl(idx, 1); 7226 jcc(Assembler::negative, L_post_third_loop_done); 7227 7228 movl(yz_idx, Address(y, idx, Address::times_4, 0)); 7229 movq(product, x_xstart); 7230 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 7231 movl(yz_idx, Address(z, idx, Address::times_4, 0)); 7232 7233 add2_with_carry(rdx, product, yz_idx, carry); 7234 7235 movl(Address(z, idx, Address::times_4, 0), product); 7236 shrq(product, 32); 7237 7238 shlq(rdx, 32); 7239 orq(product, rdx); 7240 movq(carry, product); 7241 7242 bind(L_post_third_loop_done); 7243 } 7244 7245 /** 7246 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop. 7247 * 7248 */ 7249 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z, 7250 Register carry, Register carry2, 7251 Register idx, Register jdx, 7252 Register yz_idx1, Register yz_idx2, 7253 Register tmp, Register tmp3, Register tmp4) { 7254 assert(UseBMI2Instructions, "should be used only when BMI2 is available"); 7255 7256 // jlong carry, x[], y[], z[]; 7257 // int kdx = ystart+1; 7258 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 7259 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry; 7260 // jlong carry2 = (jlong)(tmp3 >>> 64); 7261 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2; 7262 // carry = (jlong)(tmp4 >>> 64); 7263 // z[kdx+idx+1] = (jlong)tmp3; 7264 // z[kdx+idx] = (jlong)tmp4; 7265 // } 7266 // idx += 2; 7267 // if (idx > 0) { 7268 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry; 7269 // z[kdx+idx] = (jlong)yz_idx1; 7270 // carry = (jlong)(yz_idx1 >>> 64); 7271 // } 7272 // 7273 7274 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 7275 7276 movl(jdx, idx); 7277 andl(jdx, 0xFFFFFFFC); 7278 shrl(jdx, 2); 7279 7280 bind(L_third_loop); 7281 subl(jdx, 1); 7282 jcc(Assembler::negative, L_third_loop_exit); 7283 subl(idx, 4); 7284 7285 movq(yz_idx1, Address(y, idx, Address::times_4, 8)); 7286 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 7287 movq(yz_idx2, Address(y, idx, Address::times_4, 0)); 7288 rorxq(yz_idx2, yz_idx2, 32); 7289 7290 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7291 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp 7292 7293 movq(yz_idx1, Address(z, idx, Address::times_4, 8)); 7294 rorxq(yz_idx1, yz_idx1, 32); 7295 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7296 rorxq(yz_idx2, yz_idx2, 32); 7297 7298 if (VM_Version::supports_adx()) { 7299 adcxq(tmp3, carry); 7300 adoxq(tmp3, yz_idx1); 7301 7302 adcxq(tmp4, tmp); 7303 adoxq(tmp4, yz_idx2); 7304 7305 movl(carry, 0); // does not affect flags 7306 adcxq(carry2, carry); 7307 adoxq(carry2, carry); 7308 } else { 7309 add2_with_carry(tmp4, tmp3, carry, yz_idx1); 7310 add2_with_carry(carry2, tmp4, tmp, yz_idx2); 7311 } 7312 movq(carry, carry2); 7313 7314 movl(Address(z, idx, Address::times_4, 12), tmp3); 7315 shrq(tmp3, 32); 7316 movl(Address(z, idx, Address::times_4, 8), tmp3); 7317 7318 movl(Address(z, idx, Address::times_4, 4), tmp4); 7319 shrq(tmp4, 32); 7320 movl(Address(z, idx, Address::times_4, 0), tmp4); 7321 7322 jmp(L_third_loop); 7323 7324 bind (L_third_loop_exit); 7325 7326 andl (idx, 0x3); 7327 jcc(Assembler::zero, L_post_third_loop_done); 7328 7329 Label L_check_1; 7330 subl(idx, 2); 7331 jcc(Assembler::negative, L_check_1); 7332 7333 movq(yz_idx1, Address(y, idx, Address::times_4, 0)); 7334 rorxq(yz_idx1, yz_idx1, 32); 7335 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7336 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7337 rorxq(yz_idx2, yz_idx2, 32); 7338 7339 add2_with_carry(tmp4, tmp3, carry, yz_idx2); 7340 7341 movl(Address(z, idx, Address::times_4, 4), tmp3); 7342 shrq(tmp3, 32); 7343 movl(Address(z, idx, Address::times_4, 0), tmp3); 7344 movq(carry, tmp4); 7345 7346 bind (L_check_1); 7347 addl (idx, 0x2); 7348 andl (idx, 0x1); 7349 subl(idx, 1); 7350 jcc(Assembler::negative, L_post_third_loop_done); 7351 movl(tmp4, Address(y, idx, Address::times_4, 0)); 7352 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3 7353 movl(tmp4, Address(z, idx, Address::times_4, 0)); 7354 7355 add2_with_carry(carry2, tmp3, tmp4, carry); 7356 7357 movl(Address(z, idx, Address::times_4, 0), tmp3); 7358 shrq(tmp3, 32); 7359 7360 shlq(carry2, 32); 7361 orq(tmp3, carry2); 7362 movq(carry, tmp3); 7363 7364 bind(L_post_third_loop_done); 7365 } 7366 7367 /** 7368 * Code for BigInteger::multiplyToLen() intrinsic. 7369 * 7370 * rdi: x 7371 * rax: xlen 7372 * rsi: y 7373 * rcx: ylen 7374 * r8: z 7375 * r11: tmp0 7376 * r12: tmp1 7377 * r13: tmp2 7378 * r14: tmp3 7379 * r15: tmp4 7380 * rbx: tmp5 7381 * 7382 */ 7383 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0, 7384 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) { 7385 ShortBranchVerifier sbv(this); 7386 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx); 7387 7388 push(tmp0); 7389 push(tmp1); 7390 push(tmp2); 7391 push(tmp3); 7392 push(tmp4); 7393 push(tmp5); 7394 7395 push(xlen); 7396 7397 const Register idx = tmp1; 7398 const Register kdx = tmp2; 7399 const Register xstart = tmp3; 7400 7401 const Register y_idx = tmp4; 7402 const Register carry = tmp5; 7403 const Register product = xlen; 7404 const Register x_xstart = tmp0; 7405 7406 // First Loop. 7407 // 7408 // final static long LONG_MASK = 0xffffffffL; 7409 // int xstart = xlen - 1; 7410 // int ystart = ylen - 1; 7411 // long carry = 0; 7412 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 7413 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 7414 // z[kdx] = (int)product; 7415 // carry = product >>> 32; 7416 // } 7417 // z[xstart] = (int)carry; 7418 // 7419 7420 movl(idx, ylen); // idx = ylen; 7421 lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen; 7422 xorq(carry, carry); // carry = 0; 7423 7424 Label L_done; 7425 7426 movl(xstart, xlen); 7427 decrementl(xstart); 7428 jcc(Assembler::negative, L_done); 7429 7430 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 7431 7432 Label L_second_loop; 7433 testl(kdx, kdx); 7434 jcc(Assembler::zero, L_second_loop); 7435 7436 Label L_carry; 7437 subl(kdx, 1); 7438 jcc(Assembler::zero, L_carry); 7439 7440 movl(Address(z, kdx, Address::times_4, 0), carry); 7441 shrq(carry, 32); 7442 subl(kdx, 1); 7443 7444 bind(L_carry); 7445 movl(Address(z, kdx, Address::times_4, 0), carry); 7446 7447 // Second and third (nested) loops. 7448 // 7449 // for (int i = xstart-1; i >= 0; i--) { // Second loop 7450 // carry = 0; 7451 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 7452 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 7453 // (z[k] & LONG_MASK) + carry; 7454 // z[k] = (int)product; 7455 // carry = product >>> 32; 7456 // } 7457 // z[i] = (int)carry; 7458 // } 7459 // 7460 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx 7461 7462 const Register jdx = tmp1; 7463 7464 bind(L_second_loop); 7465 xorl(carry, carry); // carry = 0; 7466 movl(jdx, ylen); // j = ystart+1 7467 7468 subl(xstart, 1); // i = xstart-1; 7469 jcc(Assembler::negative, L_done); 7470 7471 push (z); 7472 7473 Label L_last_x; 7474 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j 7475 subl(xstart, 1); // i = xstart-1; 7476 jcc(Assembler::negative, L_last_x); 7477 7478 if (UseBMI2Instructions) { 7479 movq(rdx, Address(x, xstart, Address::times_4, 0)); 7480 rorxq(rdx, rdx, 32); // convert big-endian to little-endian 7481 } else { 7482 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7483 rorq(x_xstart, 32); // convert big-endian to little-endian 7484 } 7485 7486 Label L_third_loop_prologue; 7487 bind(L_third_loop_prologue); 7488 7489 push (x); 7490 push (xstart); 7491 push (ylen); 7492 7493 7494 if (UseBMI2Instructions) { 7495 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4); 7496 } else { // !UseBMI2Instructions 7497 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x); 7498 } 7499 7500 pop(ylen); 7501 pop(xlen); 7502 pop(x); 7503 pop(z); 7504 7505 movl(tmp3, xlen); 7506 addl(tmp3, 1); 7507 movl(Address(z, tmp3, Address::times_4, 0), carry); 7508 subl(tmp3, 1); 7509 jccb(Assembler::negative, L_done); 7510 7511 shrq(carry, 32); 7512 movl(Address(z, tmp3, Address::times_4, 0), carry); 7513 jmp(L_second_loop); 7514 7515 // Next infrequent code is moved outside loops. 7516 bind(L_last_x); 7517 if (UseBMI2Instructions) { 7518 movl(rdx, Address(x, 0)); 7519 } else { 7520 movl(x_xstart, Address(x, 0)); 7521 } 7522 jmp(L_third_loop_prologue); 7523 7524 bind(L_done); 7525 7526 pop(xlen); 7527 7528 pop(tmp5); 7529 pop(tmp4); 7530 pop(tmp3); 7531 pop(tmp2); 7532 pop(tmp1); 7533 pop(tmp0); 7534 } 7535 7536 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 7537 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){ 7538 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled."); 7539 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP; 7540 Label VECTOR8_TAIL, VECTOR4_TAIL; 7541 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL; 7542 Label SAME_TILL_END, DONE; 7543 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL; 7544 7545 //scale is in rcx in both Win64 and Unix 7546 ShortBranchVerifier sbv(this); 7547 7548 shlq(length); 7549 xorq(result, result); 7550 7551 if ((AVX3Threshold == 0) && (UseAVX > 2) && 7552 VM_Version::supports_avx512vlbw()) { 7553 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL; 7554 7555 cmpq(length, 64); 7556 jcc(Assembler::less, VECTOR32_TAIL); 7557 7558 movq(tmp1, length); 7559 andq(tmp1, 0x3F); // tail count 7560 andq(length, ~(0x3F)); //vector count 7561 7562 bind(VECTOR64_LOOP); 7563 // AVX512 code to compare 64 byte vectors. 7564 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit); 7565 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit); 7566 kortestql(k7, k7); 7567 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch 7568 addq(result, 64); 7569 subq(length, 64); 7570 jccb(Assembler::notZero, VECTOR64_LOOP); 7571 7572 //bind(VECTOR64_TAIL); 7573 testq(tmp1, tmp1); 7574 jcc(Assembler::zero, SAME_TILL_END); 7575 7576 //bind(VECTOR64_TAIL); 7577 // AVX512 code to compare up to 63 byte vectors. 7578 mov64(tmp2, 0xFFFFFFFFFFFFFFFF); 7579 shlxq(tmp2, tmp2, tmp1); 7580 notq(tmp2); 7581 kmovql(k3, tmp2); 7582 7583 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit); 7584 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit); 7585 7586 ktestql(k7, k3); 7587 jcc(Assembler::below, SAME_TILL_END); // not mismatch 7588 7589 bind(VECTOR64_NOT_EQUAL); 7590 kmovql(tmp1, k7); 7591 notq(tmp1); 7592 tzcntq(tmp1, tmp1); 7593 addq(result, tmp1); 7594 shrq(result); 7595 jmp(DONE); 7596 bind(VECTOR32_TAIL); 7597 } 7598 7599 cmpq(length, 8); 7600 jcc(Assembler::equal, VECTOR8_LOOP); 7601 jcc(Assembler::less, VECTOR4_TAIL); 7602 7603 if (UseAVX >= 2) { 7604 Label VECTOR16_TAIL, VECTOR32_LOOP; 7605 7606 cmpq(length, 16); 7607 jcc(Assembler::equal, VECTOR16_LOOP); 7608 jcc(Assembler::less, VECTOR8_LOOP); 7609 7610 cmpq(length, 32); 7611 jccb(Assembler::less, VECTOR16_TAIL); 7612 7613 subq(length, 32); 7614 bind(VECTOR32_LOOP); 7615 vmovdqu(rymm0, Address(obja, result)); 7616 vmovdqu(rymm1, Address(objb, result)); 7617 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit); 7618 vptest(rymm2, rymm2); 7619 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found 7620 addq(result, 32); 7621 subq(length, 32); 7622 jcc(Assembler::greaterEqual, VECTOR32_LOOP); 7623 addq(length, 32); 7624 jcc(Assembler::equal, SAME_TILL_END); 7625 //falling through if less than 32 bytes left //close the branch here. 7626 7627 bind(VECTOR16_TAIL); 7628 cmpq(length, 16); 7629 jccb(Assembler::less, VECTOR8_TAIL); 7630 bind(VECTOR16_LOOP); 7631 movdqu(rymm0, Address(obja, result)); 7632 movdqu(rymm1, Address(objb, result)); 7633 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit); 7634 ptest(rymm2, rymm2); 7635 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7636 addq(result, 16); 7637 subq(length, 16); 7638 jcc(Assembler::equal, SAME_TILL_END); 7639 //falling through if less than 16 bytes left 7640 } else {//regular intrinsics 7641 7642 cmpq(length, 16); 7643 jccb(Assembler::less, VECTOR8_TAIL); 7644 7645 subq(length, 16); 7646 bind(VECTOR16_LOOP); 7647 movdqu(rymm0, Address(obja, result)); 7648 movdqu(rymm1, Address(objb, result)); 7649 pxor(rymm0, rymm1); 7650 ptest(rymm0, rymm0); 7651 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7652 addq(result, 16); 7653 subq(length, 16); 7654 jccb(Assembler::greaterEqual, VECTOR16_LOOP); 7655 addq(length, 16); 7656 jcc(Assembler::equal, SAME_TILL_END); 7657 //falling through if less than 16 bytes left 7658 } 7659 7660 bind(VECTOR8_TAIL); 7661 cmpq(length, 8); 7662 jccb(Assembler::less, VECTOR4_TAIL); 7663 bind(VECTOR8_LOOP); 7664 movq(tmp1, Address(obja, result)); 7665 movq(tmp2, Address(objb, result)); 7666 xorq(tmp1, tmp2); 7667 testq(tmp1, tmp1); 7668 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found 7669 addq(result, 8); 7670 subq(length, 8); 7671 jcc(Assembler::equal, SAME_TILL_END); 7672 //falling through if less than 8 bytes left 7673 7674 bind(VECTOR4_TAIL); 7675 cmpq(length, 4); 7676 jccb(Assembler::less, BYTES_TAIL); 7677 bind(VECTOR4_LOOP); 7678 movl(tmp1, Address(obja, result)); 7679 xorl(tmp1, Address(objb, result)); 7680 testl(tmp1, tmp1); 7681 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found 7682 addq(result, 4); 7683 subq(length, 4); 7684 jcc(Assembler::equal, SAME_TILL_END); 7685 //falling through if less than 4 bytes left 7686 7687 bind(BYTES_TAIL); 7688 bind(BYTES_LOOP); 7689 load_unsigned_byte(tmp1, Address(obja, result)); 7690 load_unsigned_byte(tmp2, Address(objb, result)); 7691 xorl(tmp1, tmp2); 7692 testl(tmp1, tmp1); 7693 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7694 decq(length); 7695 jcc(Assembler::zero, SAME_TILL_END); 7696 incq(result); 7697 load_unsigned_byte(tmp1, Address(obja, result)); 7698 load_unsigned_byte(tmp2, Address(objb, result)); 7699 xorl(tmp1, tmp2); 7700 testl(tmp1, tmp1); 7701 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7702 decq(length); 7703 jcc(Assembler::zero, SAME_TILL_END); 7704 incq(result); 7705 load_unsigned_byte(tmp1, Address(obja, result)); 7706 load_unsigned_byte(tmp2, Address(objb, result)); 7707 xorl(tmp1, tmp2); 7708 testl(tmp1, tmp1); 7709 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7710 jmp(SAME_TILL_END); 7711 7712 if (UseAVX >= 2) { 7713 bind(VECTOR32_NOT_EQUAL); 7714 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit); 7715 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit); 7716 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit); 7717 vpmovmskb(tmp1, rymm0); 7718 bsfq(tmp1, tmp1); 7719 addq(result, tmp1); 7720 shrq(result); 7721 jmp(DONE); 7722 } 7723 7724 bind(VECTOR16_NOT_EQUAL); 7725 if (UseAVX >= 2) { 7726 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit); 7727 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit); 7728 pxor(rymm0, rymm2); 7729 } else { 7730 pcmpeqb(rymm2, rymm2); 7731 pxor(rymm0, rymm1); 7732 pcmpeqb(rymm0, rymm1); 7733 pxor(rymm0, rymm2); 7734 } 7735 pmovmskb(tmp1, rymm0); 7736 bsfq(tmp1, tmp1); 7737 addq(result, tmp1); 7738 shrq(result); 7739 jmpb(DONE); 7740 7741 bind(VECTOR8_NOT_EQUAL); 7742 bind(VECTOR4_NOT_EQUAL); 7743 bsfq(tmp1, tmp1); 7744 shrq(tmp1, 3); 7745 addq(result, tmp1); 7746 bind(BYTES_NOT_EQUAL); 7747 shrq(result); 7748 jmpb(DONE); 7749 7750 bind(SAME_TILL_END); 7751 mov64(result, -1); 7752 7753 bind(DONE); 7754 } 7755 7756 //Helper functions for square_to_len() 7757 7758 /** 7759 * Store the squares of x[], right shifted one bit (divided by 2) into z[] 7760 * Preserves x and z and modifies rest of the registers. 7761 */ 7762 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7763 // Perform square and right shift by 1 7764 // Handle odd xlen case first, then for even xlen do the following 7765 // jlong carry = 0; 7766 // for (int j=0, i=0; j < xlen; j+=2, i+=4) { 7767 // huge_128 product = x[j:j+1] * x[j:j+1]; 7768 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65); 7769 // z[i+2:i+3] = (jlong)(product >>> 1); 7770 // carry = (jlong)product; 7771 // } 7772 7773 xorq(tmp5, tmp5); // carry 7774 xorq(rdxReg, rdxReg); 7775 xorl(tmp1, tmp1); // index for x 7776 xorl(tmp4, tmp4); // index for z 7777 7778 Label L_first_loop, L_first_loop_exit; 7779 7780 testl(xlen, 1); 7781 jccb(Assembler::zero, L_first_loop); //jump if xlen is even 7782 7783 // Square and right shift by 1 the odd element using 32 bit multiply 7784 movl(raxReg, Address(x, tmp1, Address::times_4, 0)); 7785 imulq(raxReg, raxReg); 7786 shrq(raxReg, 1); 7787 adcq(tmp5, 0); 7788 movq(Address(z, tmp4, Address::times_4, 0), raxReg); 7789 incrementl(tmp1); 7790 addl(tmp4, 2); 7791 7792 // Square and right shift by 1 the rest using 64 bit multiply 7793 bind(L_first_loop); 7794 cmpptr(tmp1, xlen); 7795 jccb(Assembler::equal, L_first_loop_exit); 7796 7797 // Square 7798 movq(raxReg, Address(x, tmp1, Address::times_4, 0)); 7799 rorq(raxReg, 32); // convert big-endian to little-endian 7800 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax 7801 7802 // Right shift by 1 and save carry 7803 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1 7804 rcrq(rdxReg, 1); 7805 rcrq(raxReg, 1); 7806 adcq(tmp5, 0); 7807 7808 // Store result in z 7809 movq(Address(z, tmp4, Address::times_4, 0), rdxReg); 7810 movq(Address(z, tmp4, Address::times_4, 8), raxReg); 7811 7812 // Update indices for x and z 7813 addl(tmp1, 2); 7814 addl(tmp4, 4); 7815 jmp(L_first_loop); 7816 7817 bind(L_first_loop_exit); 7818 } 7819 7820 7821 /** 7822 * Perform the following multiply add operation using BMI2 instructions 7823 * carry:sum = sum + op1*op2 + carry 7824 * op2 should be in rdx 7825 * op2 is preserved, all other registers are modified 7826 */ 7827 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) { 7828 // assert op2 is rdx 7829 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1 7830 addq(sum, carry); 7831 adcq(tmp2, 0); 7832 addq(sum, op1); 7833 adcq(tmp2, 0); 7834 movq(carry, tmp2); 7835 } 7836 7837 /** 7838 * Perform the following multiply add operation: 7839 * carry:sum = sum + op1*op2 + carry 7840 * Preserves op1, op2 and modifies rest of registers 7841 */ 7842 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) { 7843 // rdx:rax = op1 * op2 7844 movq(raxReg, op2); 7845 mulq(op1); 7846 7847 // rdx:rax = sum + carry + rdx:rax 7848 addq(sum, carry); 7849 adcq(rdxReg, 0); 7850 addq(sum, raxReg); 7851 adcq(rdxReg, 0); 7852 7853 // carry:sum = rdx:sum 7854 movq(carry, rdxReg); 7855 } 7856 7857 /** 7858 * Add 64 bit long carry into z[] with carry propagation. 7859 * Preserves z and carry register values and modifies rest of registers. 7860 * 7861 */ 7862 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) { 7863 Label L_fourth_loop, L_fourth_loop_exit; 7864 7865 movl(tmp1, 1); 7866 subl(zlen, 2); 7867 addq(Address(z, zlen, Address::times_4, 0), carry); 7868 7869 bind(L_fourth_loop); 7870 jccb(Assembler::carryClear, L_fourth_loop_exit); 7871 subl(zlen, 2); 7872 jccb(Assembler::negative, L_fourth_loop_exit); 7873 addq(Address(z, zlen, Address::times_4, 0), tmp1); 7874 jmp(L_fourth_loop); 7875 bind(L_fourth_loop_exit); 7876 } 7877 7878 /** 7879 * Shift z[] left by 1 bit. 7880 * Preserves x, len, z and zlen registers and modifies rest of the registers. 7881 * 7882 */ 7883 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { 7884 7885 Label L_fifth_loop, L_fifth_loop_exit; 7886 7887 // Fifth loop 7888 // Perform primitiveLeftShift(z, zlen, 1) 7889 7890 const Register prev_carry = tmp1; 7891 const Register new_carry = tmp4; 7892 const Register value = tmp2; 7893 const Register zidx = tmp3; 7894 7895 // int zidx, carry; 7896 // long value; 7897 // carry = 0; 7898 // for (zidx = zlen-2; zidx >=0; zidx -= 2) { 7899 // (carry:value) = (z[i] << 1) | carry ; 7900 // z[i] = value; 7901 // } 7902 7903 movl(zidx, zlen); 7904 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register 7905 7906 bind(L_fifth_loop); 7907 decl(zidx); // Use decl to preserve carry flag 7908 decl(zidx); 7909 jccb(Assembler::negative, L_fifth_loop_exit); 7910 7911 if (UseBMI2Instructions) { 7912 movq(value, Address(z, zidx, Address::times_4, 0)); 7913 rclq(value, 1); 7914 rorxq(value, value, 32); 7915 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7916 } 7917 else { 7918 // clear new_carry 7919 xorl(new_carry, new_carry); 7920 7921 // Shift z[i] by 1, or in previous carry and save new carry 7922 movq(value, Address(z, zidx, Address::times_4, 0)); 7923 shlq(value, 1); 7924 adcl(new_carry, 0); 7925 7926 orq(value, prev_carry); 7927 rorq(value, 0x20); 7928 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7929 7930 // Set previous carry = new carry 7931 movl(prev_carry, new_carry); 7932 } 7933 jmp(L_fifth_loop); 7934 7935 bind(L_fifth_loop_exit); 7936 } 7937 7938 7939 /** 7940 * Code for BigInteger::squareToLen() intrinsic 7941 * 7942 * rdi: x 7943 * rsi: len 7944 * r8: z 7945 * rcx: zlen 7946 * r12: tmp1 7947 * r13: tmp2 7948 * r14: tmp3 7949 * r15: tmp4 7950 * rbx: tmp5 7951 * 7952 */ 7953 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7954 7955 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply; 7956 push(tmp1); 7957 push(tmp2); 7958 push(tmp3); 7959 push(tmp4); 7960 push(tmp5); 7961 7962 // First loop 7963 // Store the squares, right shifted one bit (i.e., divided by 2). 7964 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg); 7965 7966 // Add in off-diagonal sums. 7967 // 7968 // Second, third (nested) and fourth loops. 7969 // zlen +=2; 7970 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) { 7971 // carry = 0; 7972 // long op2 = x[xidx:xidx+1]; 7973 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) { 7974 // k -= 2; 7975 // long op1 = x[j:j+1]; 7976 // long sum = z[k:k+1]; 7977 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs); 7978 // z[k:k+1] = sum; 7979 // } 7980 // add_one_64(z, k, carry, tmp_regs); 7981 // } 7982 7983 const Register carry = tmp5; 7984 const Register sum = tmp3; 7985 const Register op1 = tmp4; 7986 Register op2 = tmp2; 7987 7988 push(zlen); 7989 push(len); 7990 addl(zlen,2); 7991 bind(L_second_loop); 7992 xorq(carry, carry); 7993 subl(zlen, 4); 7994 subl(len, 2); 7995 push(zlen); 7996 push(len); 7997 cmpl(len, 0); 7998 jccb(Assembler::lessEqual, L_second_loop_exit); 7999 8000 // Multiply an array by one 64 bit long. 8001 if (UseBMI2Instructions) { 8002 op2 = rdxReg; 8003 movq(op2, Address(x, len, Address::times_4, 0)); 8004 rorxq(op2, op2, 32); 8005 } 8006 else { 8007 movq(op2, Address(x, len, Address::times_4, 0)); 8008 rorq(op2, 32); 8009 } 8010 8011 bind(L_third_loop); 8012 decrementl(len); 8013 jccb(Assembler::negative, L_third_loop_exit); 8014 decrementl(len); 8015 jccb(Assembler::negative, L_last_x); 8016 8017 movq(op1, Address(x, len, Address::times_4, 0)); 8018 rorq(op1, 32); 8019 8020 bind(L_multiply); 8021 subl(zlen, 2); 8022 movq(sum, Address(z, zlen, Address::times_4, 0)); 8023 8024 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry. 8025 if (UseBMI2Instructions) { 8026 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2); 8027 } 8028 else { 8029 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8030 } 8031 8032 movq(Address(z, zlen, Address::times_4, 0), sum); 8033 8034 jmp(L_third_loop); 8035 bind(L_third_loop_exit); 8036 8037 // Fourth loop 8038 // Add 64 bit long carry into z with carry propagation. 8039 // Uses offsetted zlen. 8040 add_one_64(z, zlen, carry, tmp1); 8041 8042 pop(len); 8043 pop(zlen); 8044 jmp(L_second_loop); 8045 8046 // Next infrequent code is moved outside loops. 8047 bind(L_last_x); 8048 movl(op1, Address(x, 0)); 8049 jmp(L_multiply); 8050 8051 bind(L_second_loop_exit); 8052 pop(len); 8053 pop(zlen); 8054 pop(len); 8055 pop(zlen); 8056 8057 // Fifth loop 8058 // Shift z left 1 bit. 8059 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4); 8060 8061 // z[zlen-1] |= x[len-1] & 1; 8062 movl(tmp3, Address(x, len, Address::times_4, -4)); 8063 andl(tmp3, 1); 8064 orl(Address(z, zlen, Address::times_4, -4), tmp3); 8065 8066 pop(tmp5); 8067 pop(tmp4); 8068 pop(tmp3); 8069 pop(tmp2); 8070 pop(tmp1); 8071 } 8072 8073 /** 8074 * Helper function for mul_add() 8075 * Multiply the in[] by int k and add to out[] starting at offset offs using 8076 * 128 bit by 32 bit multiply and return the carry in tmp5. 8077 * Only quad int aligned length of in[] is operated on in this function. 8078 * k is in rdxReg for BMI2Instructions, for others it is in tmp2. 8079 * This function preserves out, in and k registers. 8080 * len and offset point to the appropriate index in "in" & "out" correspondingly 8081 * tmp5 has the carry. 8082 * other registers are temporary and are modified. 8083 * 8084 */ 8085 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in, 8086 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, 8087 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 8088 8089 Label L_first_loop, L_first_loop_exit; 8090 8091 movl(tmp1, len); 8092 shrl(tmp1, 2); 8093 8094 bind(L_first_loop); 8095 subl(tmp1, 1); 8096 jccb(Assembler::negative, L_first_loop_exit); 8097 8098 subl(len, 4); 8099 subl(offset, 4); 8100 8101 Register op2 = tmp2; 8102 const Register sum = tmp3; 8103 const Register op1 = tmp4; 8104 const Register carry = tmp5; 8105 8106 if (UseBMI2Instructions) { 8107 op2 = rdxReg; 8108 } 8109 8110 movq(op1, Address(in, len, Address::times_4, 8)); 8111 rorq(op1, 32); 8112 movq(sum, Address(out, offset, Address::times_4, 8)); 8113 rorq(sum, 32); 8114 if (UseBMI2Instructions) { 8115 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8116 } 8117 else { 8118 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8119 } 8120 // Store back in big endian from little endian 8121 rorq(sum, 0x20); 8122 movq(Address(out, offset, Address::times_4, 8), sum); 8123 8124 movq(op1, Address(in, len, Address::times_4, 0)); 8125 rorq(op1, 32); 8126 movq(sum, Address(out, offset, Address::times_4, 0)); 8127 rorq(sum, 32); 8128 if (UseBMI2Instructions) { 8129 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8130 } 8131 else { 8132 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8133 } 8134 // Store back in big endian from little endian 8135 rorq(sum, 0x20); 8136 movq(Address(out, offset, Address::times_4, 0), sum); 8137 8138 jmp(L_first_loop); 8139 bind(L_first_loop_exit); 8140 } 8141 8142 /** 8143 * Code for BigInteger::mulAdd() intrinsic 8144 * 8145 * rdi: out 8146 * rsi: in 8147 * r11: offs (out.length - offset) 8148 * rcx: len 8149 * r8: k 8150 * r12: tmp1 8151 * r13: tmp2 8152 * r14: tmp3 8153 * r15: tmp4 8154 * rbx: tmp5 8155 * Multiply the in[] by word k and add to out[], return the carry in rax 8156 */ 8157 void MacroAssembler::mul_add(Register out, Register in, Register offs, 8158 Register len, Register k, Register tmp1, Register tmp2, Register tmp3, 8159 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 8160 8161 Label L_carry, L_last_in, L_done; 8162 8163 // carry = 0; 8164 // for (int j=len-1; j >= 0; j--) { 8165 // long product = (in[j] & LONG_MASK) * kLong + 8166 // (out[offs] & LONG_MASK) + carry; 8167 // out[offs--] = (int)product; 8168 // carry = product >>> 32; 8169 // } 8170 // 8171 push(tmp1); 8172 push(tmp2); 8173 push(tmp3); 8174 push(tmp4); 8175 push(tmp5); 8176 8177 Register op2 = tmp2; 8178 const Register sum = tmp3; 8179 const Register op1 = tmp4; 8180 const Register carry = tmp5; 8181 8182 if (UseBMI2Instructions) { 8183 op2 = rdxReg; 8184 movl(op2, k); 8185 } 8186 else { 8187 movl(op2, k); 8188 } 8189 8190 xorq(carry, carry); 8191 8192 //First loop 8193 8194 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply 8195 //The carry is in tmp5 8196 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg); 8197 8198 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any 8199 decrementl(len); 8200 jccb(Assembler::negative, L_carry); 8201 decrementl(len); 8202 jccb(Assembler::negative, L_last_in); 8203 8204 movq(op1, Address(in, len, Address::times_4, 0)); 8205 rorq(op1, 32); 8206 8207 subl(offs, 2); 8208 movq(sum, Address(out, offs, Address::times_4, 0)); 8209 rorq(sum, 32); 8210 8211 if (UseBMI2Instructions) { 8212 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8213 } 8214 else { 8215 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8216 } 8217 8218 // Store back in big endian from little endian 8219 rorq(sum, 0x20); 8220 movq(Address(out, offs, Address::times_4, 0), sum); 8221 8222 testl(len, len); 8223 jccb(Assembler::zero, L_carry); 8224 8225 //Multiply the last in[] entry, if any 8226 bind(L_last_in); 8227 movl(op1, Address(in, 0)); 8228 movl(sum, Address(out, offs, Address::times_4, -4)); 8229 8230 movl(raxReg, k); 8231 mull(op1); //tmp4 * eax -> edx:eax 8232 addl(sum, carry); 8233 adcl(rdxReg, 0); 8234 addl(sum, raxReg); 8235 adcl(rdxReg, 0); 8236 movl(carry, rdxReg); 8237 8238 movl(Address(out, offs, Address::times_4, -4), sum); 8239 8240 bind(L_carry); 8241 //return tmp5/carry as carry in rax 8242 movl(rax, carry); 8243 8244 bind(L_done); 8245 pop(tmp5); 8246 pop(tmp4); 8247 pop(tmp3); 8248 pop(tmp2); 8249 pop(tmp1); 8250 } 8251 #endif 8252 8253 /** 8254 * Emits code to update CRC-32 with a byte value according to constants in table 8255 * 8256 * @param [in,out]crc Register containing the crc. 8257 * @param [in]val Register containing the byte to fold into the CRC. 8258 * @param [in]table Register containing the table of crc constants. 8259 * 8260 * uint32_t crc; 8261 * val = crc_table[(val ^ crc) & 0xFF]; 8262 * crc = val ^ (crc >> 8); 8263 * 8264 */ 8265 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 8266 xorl(val, crc); 8267 andl(val, 0xFF); 8268 shrl(crc, 8); // unsigned shift 8269 xorl(crc, Address(table, val, Address::times_4, 0)); 8270 } 8271 8272 /** 8273 * Fold 128-bit data chunk 8274 */ 8275 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { 8276 if (UseAVX > 0) { 8277 vpclmulhdq(xtmp, xK, xcrc); // [123:64] 8278 vpclmulldq(xcrc, xK, xcrc); // [63:0] 8279 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */); 8280 pxor(xcrc, xtmp); 8281 } else { 8282 movdqa(xtmp, xcrc); 8283 pclmulhdq(xtmp, xK); // [123:64] 8284 pclmulldq(xcrc, xK); // [63:0] 8285 pxor(xcrc, xtmp); 8286 movdqu(xtmp, Address(buf, offset)); 8287 pxor(xcrc, xtmp); 8288 } 8289 } 8290 8291 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) { 8292 if (UseAVX > 0) { 8293 vpclmulhdq(xtmp, xK, xcrc); 8294 vpclmulldq(xcrc, xK, xcrc); 8295 pxor(xcrc, xbuf); 8296 pxor(xcrc, xtmp); 8297 } else { 8298 movdqa(xtmp, xcrc); 8299 pclmulhdq(xtmp, xK); 8300 pclmulldq(xcrc, xK); 8301 pxor(xcrc, xbuf); 8302 pxor(xcrc, xtmp); 8303 } 8304 } 8305 8306 /** 8307 * 8-bit folds to compute 32-bit CRC 8308 * 8309 * uint64_t xcrc; 8310 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8); 8311 */ 8312 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) { 8313 movdl(tmp, xcrc); 8314 andl(tmp, 0xFF); 8315 movdl(xtmp, Address(table, tmp, Address::times_4, 0)); 8316 psrldq(xcrc, 1); // unsigned shift one byte 8317 pxor(xcrc, xtmp); 8318 } 8319 8320 /** 8321 * uint32_t crc; 8322 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); 8323 */ 8324 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { 8325 movl(tmp, crc); 8326 andl(tmp, 0xFF); 8327 shrl(crc, 8); 8328 xorl(crc, Address(table, tmp, Address::times_4, 0)); 8329 } 8330 8331 /** 8332 * @param crc register containing existing CRC (32-bit) 8333 * @param buf register pointing to input byte buffer (byte*) 8334 * @param len register containing number of bytes 8335 * @param table register that will contain address of CRC table 8336 * @param tmp scratch register 8337 */ 8338 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) { 8339 assert_different_registers(crc, buf, len, table, tmp, rax); 8340 8341 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8342 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8343 8344 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8345 // context for the registers used, where all instructions below are using 128-bit mode 8346 // On EVEX without VL and BW, these instructions will all be AVX. 8347 lea(table, ExternalAddress(StubRoutines::crc_table_addr())); 8348 notl(crc); // ~crc 8349 cmpl(len, 16); 8350 jcc(Assembler::less, L_tail); 8351 8352 // Align buffer to 16 bytes 8353 movl(tmp, buf); 8354 andl(tmp, 0xF); 8355 jccb(Assembler::zero, L_aligned); 8356 subl(tmp, 16); 8357 addl(len, tmp); 8358 8359 align(4); 8360 BIND(L_align_loop); 8361 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8362 update_byte_crc32(crc, rax, table); 8363 increment(buf); 8364 incrementl(tmp); 8365 jccb(Assembler::less, L_align_loop); 8366 8367 BIND(L_aligned); 8368 movl(tmp, len); // save 8369 shrl(len, 4); 8370 jcc(Assembler::zero, L_tail_restore); 8371 8372 // Fold crc into first bytes of vector 8373 movdqa(xmm1, Address(buf, 0)); 8374 movdl(rax, xmm1); 8375 xorl(crc, rax); 8376 if (VM_Version::supports_sse4_1()) { 8377 pinsrd(xmm1, crc, 0); 8378 } else { 8379 pinsrw(xmm1, crc, 0); 8380 shrl(crc, 16); 8381 pinsrw(xmm1, crc, 1); 8382 } 8383 addptr(buf, 16); 8384 subl(len, 4); // len > 0 8385 jcc(Assembler::less, L_fold_tail); 8386 8387 movdqa(xmm2, Address(buf, 0)); 8388 movdqa(xmm3, Address(buf, 16)); 8389 movdqa(xmm4, Address(buf, 32)); 8390 addptr(buf, 48); 8391 subl(len, 3); 8392 jcc(Assembler::lessEqual, L_fold_512b); 8393 8394 // Fold total 512 bits of polynomial on each iteration, 8395 // 128 bits per each of 4 parallel streams. 8396 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1); 8397 8398 align32(); 8399 BIND(L_fold_512b_loop); 8400 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8401 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16); 8402 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32); 8403 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48); 8404 addptr(buf, 64); 8405 subl(len, 4); 8406 jcc(Assembler::greater, L_fold_512b_loop); 8407 8408 // Fold 512 bits to 128 bits. 8409 BIND(L_fold_512b); 8410 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8411 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2); 8412 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3); 8413 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4); 8414 8415 // Fold the rest of 128 bits data chunks 8416 BIND(L_fold_tail); 8417 addl(len, 3); 8418 jccb(Assembler::lessEqual, L_fold_128b); 8419 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8420 8421 BIND(L_fold_tail_loop); 8422 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8423 addptr(buf, 16); 8424 decrementl(len); 8425 jccb(Assembler::greater, L_fold_tail_loop); 8426 8427 // Fold 128 bits in xmm1 down into 32 bits in crc register. 8428 BIND(L_fold_128b); 8429 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1); 8430 if (UseAVX > 0) { 8431 vpclmulqdq(xmm2, xmm0, xmm1, 0x1); 8432 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */); 8433 vpclmulqdq(xmm0, xmm0, xmm3, 0x1); 8434 } else { 8435 movdqa(xmm2, xmm0); 8436 pclmulqdq(xmm2, xmm1, 0x1); 8437 movdqa(xmm3, xmm0); 8438 pand(xmm3, xmm2); 8439 pclmulqdq(xmm0, xmm3, 0x1); 8440 } 8441 psrldq(xmm1, 8); 8442 psrldq(xmm2, 4); 8443 pxor(xmm0, xmm1); 8444 pxor(xmm0, xmm2); 8445 8446 // 8 8-bit folds to compute 32-bit CRC. 8447 for (int j = 0; j < 4; j++) { 8448 fold_8bit_crc32(xmm0, table, xmm1, rax); 8449 } 8450 movdl(crc, xmm0); // mov 32 bits to general register 8451 for (int j = 0; j < 4; j++) { 8452 fold_8bit_crc32(crc, table, rax); 8453 } 8454 8455 BIND(L_tail_restore); 8456 movl(len, tmp); // restore 8457 BIND(L_tail); 8458 andl(len, 0xf); 8459 jccb(Assembler::zero, L_exit); 8460 8461 // Fold the rest of bytes 8462 align(4); 8463 BIND(L_tail_loop); 8464 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8465 update_byte_crc32(crc, rax, table); 8466 increment(buf); 8467 decrementl(len); 8468 jccb(Assembler::greater, L_tail_loop); 8469 8470 BIND(L_exit); 8471 notl(crc); // ~c 8472 } 8473 8474 #ifdef _LP64 8475 // Helper function for AVX 512 CRC32 8476 // Fold 512-bit data chunks 8477 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, 8478 Register pos, int offset) { 8479 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit); 8480 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64] 8481 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0] 8482 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */); 8483 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */); 8484 } 8485 8486 // Helper function for AVX 512 CRC32 8487 // Compute CRC32 for < 256B buffers 8488 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos, 8489 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 8490 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) { 8491 8492 Label L_less_than_32, L_exact_16_left, L_less_than_16_left; 8493 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left; 8494 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2; 8495 8496 // check if there is enough buffer to be able to fold 16B at a time 8497 cmpl(len, 32); 8498 jcc(Assembler::less, L_less_than_32); 8499 8500 // if there is, load the constants 8501 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10 8502 movdl(xmm0, crc); // get the initial crc value 8503 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8504 pxor(xmm7, xmm0); 8505 8506 // update the buffer pointer 8507 addl(pos, 16); 8508 //update the counter.subtract 32 instead of 16 to save one instruction from the loop 8509 subl(len, 32); 8510 jmp(L_16B_reduction_loop); 8511 8512 bind(L_less_than_32); 8513 //mov initial crc to the return value. this is necessary for zero - length buffers. 8514 movl(rax, crc); 8515 testl(len, len); 8516 jcc(Assembler::equal, L_cleanup); 8517 8518 movdl(xmm0, crc); //get the initial crc value 8519 8520 cmpl(len, 16); 8521 jcc(Assembler::equal, L_exact_16_left); 8522 jcc(Assembler::less, L_less_than_16_left); 8523 8524 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8525 pxor(xmm7, xmm0); //xor the initial crc value 8526 addl(pos, 16); 8527 subl(len, 16); 8528 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10 8529 jmp(L_get_last_two_xmms); 8530 8531 bind(L_less_than_16_left); 8532 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first. 8533 pxor(xmm1, xmm1); 8534 movptr(tmp1, rsp); 8535 movdqu(Address(tmp1, 0 * 16), xmm1); 8536 8537 cmpl(len, 4); 8538 jcc(Assembler::less, L_only_less_than_4); 8539 8540 //backup the counter value 8541 movl(tmp2, len); 8542 cmpl(len, 8); 8543 jcc(Assembler::less, L_less_than_8_left); 8544 8545 //load 8 Bytes 8546 movq(rax, Address(buf, pos, Address::times_1, 0 * 16)); 8547 movq(Address(tmp1, 0 * 16), rax); 8548 addptr(tmp1, 8); 8549 subl(len, 8); 8550 addl(pos, 8); 8551 8552 bind(L_less_than_8_left); 8553 cmpl(len, 4); 8554 jcc(Assembler::less, L_less_than_4_left); 8555 8556 //load 4 Bytes 8557 movl(rax, Address(buf, pos, Address::times_1, 0)); 8558 movl(Address(tmp1, 0 * 16), rax); 8559 addptr(tmp1, 4); 8560 subl(len, 4); 8561 addl(pos, 4); 8562 8563 bind(L_less_than_4_left); 8564 cmpl(len, 2); 8565 jcc(Assembler::less, L_less_than_2_left); 8566 8567 // load 2 Bytes 8568 movw(rax, Address(buf, pos, Address::times_1, 0)); 8569 movl(Address(tmp1, 0 * 16), rax); 8570 addptr(tmp1, 2); 8571 subl(len, 2); 8572 addl(pos, 2); 8573 8574 bind(L_less_than_2_left); 8575 cmpl(len, 1); 8576 jcc(Assembler::less, L_zero_left); 8577 8578 // load 1 Byte 8579 movb(rax, Address(buf, pos, Address::times_1, 0)); 8580 movb(Address(tmp1, 0 * 16), rax); 8581 8582 bind(L_zero_left); 8583 movdqu(xmm7, Address(rsp, 0)); 8584 pxor(xmm7, xmm0); //xor the initial crc value 8585 8586 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8587 movdqu(xmm0, Address(rax, tmp2)); 8588 pshufb(xmm7, xmm0); 8589 jmp(L_128_done); 8590 8591 bind(L_exact_16_left); 8592 movdqu(xmm7, Address(buf, pos, Address::times_1, 0)); 8593 pxor(xmm7, xmm0); //xor the initial crc value 8594 jmp(L_128_done); 8595 8596 bind(L_only_less_than_4); 8597 cmpl(len, 3); 8598 jcc(Assembler::less, L_only_less_than_3); 8599 8600 // load 3 Bytes 8601 movb(rax, Address(buf, pos, Address::times_1, 0)); 8602 movb(Address(tmp1, 0), rax); 8603 8604 movb(rax, Address(buf, pos, Address::times_1, 1)); 8605 movb(Address(tmp1, 1), rax); 8606 8607 movb(rax, Address(buf, pos, Address::times_1, 2)); 8608 movb(Address(tmp1, 2), rax); 8609 8610 movdqu(xmm7, Address(rsp, 0)); 8611 pxor(xmm7, xmm0); //xor the initial crc value 8612 8613 pslldq(xmm7, 0x5); 8614 jmp(L_barrett); 8615 bind(L_only_less_than_3); 8616 cmpl(len, 2); 8617 jcc(Assembler::less, L_only_less_than_2); 8618 8619 // load 2 Bytes 8620 movb(rax, Address(buf, pos, Address::times_1, 0)); 8621 movb(Address(tmp1, 0), rax); 8622 8623 movb(rax, Address(buf, pos, Address::times_1, 1)); 8624 movb(Address(tmp1, 1), rax); 8625 8626 movdqu(xmm7, Address(rsp, 0)); 8627 pxor(xmm7, xmm0); //xor the initial crc value 8628 8629 pslldq(xmm7, 0x6); 8630 jmp(L_barrett); 8631 8632 bind(L_only_less_than_2); 8633 //load 1 Byte 8634 movb(rax, Address(buf, pos, Address::times_1, 0)); 8635 movb(Address(tmp1, 0), rax); 8636 8637 movdqu(xmm7, Address(rsp, 0)); 8638 pxor(xmm7, xmm0); //xor the initial crc value 8639 8640 pslldq(xmm7, 0x7); 8641 } 8642 8643 /** 8644 * Compute CRC32 using AVX512 instructions 8645 * param crc register containing existing CRC (32-bit) 8646 * param buf register pointing to input byte buffer (byte*) 8647 * param len register containing number of bytes 8648 * param table address of crc or crc32c table 8649 * param tmp1 scratch register 8650 * param tmp2 scratch register 8651 * return rax result register 8652 * 8653 * This routine is identical for crc32c with the exception of the precomputed constant 8654 * table which will be passed as the table argument. The calculation steps are 8655 * the same for both variants. 8656 */ 8657 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) { 8658 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12); 8659 8660 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8661 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8662 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop; 8663 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop; 8664 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup; 8665 8666 const Register pos = r12; 8667 push(r12); 8668 subptr(rsp, 16 * 2 + 8); 8669 8670 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8671 // context for the registers used, where all instructions below are using 128-bit mode 8672 // On EVEX without VL and BW, these instructions will all be AVX. 8673 movl(pos, 0); 8674 8675 // check if smaller than 256B 8676 cmpl(len, 256); 8677 jcc(Assembler::less, L_less_than_256); 8678 8679 // load the initial crc value 8680 movdl(xmm10, crc); 8681 8682 // receive the initial 64B data, xor the initial crc value 8683 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); 8684 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); 8685 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit); 8686 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4 8687 8688 subl(len, 256); 8689 cmpl(len, 256); 8690 jcc(Assembler::less, L_fold_128_B_loop); 8691 8692 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); 8693 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); 8694 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2 8695 subl(len, 256); 8696 8697 bind(L_fold_256_B_loop); 8698 addl(pos, 256); 8699 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64); 8700 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64); 8701 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64); 8702 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64); 8703 8704 subl(len, 256); 8705 jcc(Assembler::greaterEqual, L_fold_256_B_loop); 8706 8707 // Fold 256 into 128 8708 addl(pos, 256); 8709 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit); 8710 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit); 8711 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC 8712 8713 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit); 8714 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit); 8715 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC 8716 8717 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit); 8718 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit); 8719 8720 addl(len, 128); 8721 jmp(L_fold_128_B_register); 8722 8723 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop 8724 // loop will fold 128B at a time until we have 128 + y Bytes of buffer 8725 8726 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel 8727 bind(L_fold_128_B_loop); 8728 addl(pos, 128); 8729 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64); 8730 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64); 8731 8732 subl(len, 128); 8733 jcc(Assembler::greaterEqual, L_fold_128_B_loop); 8734 8735 addl(pos, 128); 8736 8737 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 8738 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 8739 bind(L_fold_128_B_register); 8740 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16 8741 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0 8742 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit); 8743 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit); 8744 // save last that has no multiplicand 8745 vextracti64x2(xmm7, xmm4, 3); 8746 8747 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit); 8748 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit); 8749 // Needed later in reduction loop 8750 movdqu(xmm10, Address(table, 1 * 16)); 8751 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC 8752 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC 8753 8754 // Swap 1,0,3,2 - 01 00 11 10 8755 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit); 8756 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit); 8757 vextracti128(xmm5, xmm8, 1); 8758 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit); 8759 8760 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop 8761 // instead of a cmp instruction, we use the negative flag with the jl instruction 8762 addl(len, 128 - 16); 8763 jcc(Assembler::less, L_final_reduction_for_128); 8764 8765 bind(L_16B_reduction_loop); 8766 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8767 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8768 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8769 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16)); 8770 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8771 addl(pos, 16); 8772 subl(len, 16); 8773 jcc(Assembler::greaterEqual, L_16B_reduction_loop); 8774 8775 bind(L_final_reduction_for_128); 8776 addl(len, 16); 8777 jcc(Assembler::equal, L_128_done); 8778 8779 bind(L_get_last_two_xmms); 8780 movdqu(xmm2, xmm7); 8781 addl(pos, len); 8782 movdqu(xmm1, Address(buf, pos, Address::times_1, -16)); 8783 subl(pos, len); 8784 8785 // get rid of the extra data that was loaded before 8786 // load the shift constant 8787 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8788 movdqu(xmm0, Address(rax, len)); 8789 addl(rax, len); 8790 8791 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8792 //Change mask to 512 8793 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2); 8794 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit); 8795 8796 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit); 8797 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8798 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8799 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8800 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit); 8801 8802 bind(L_128_done); 8803 // compute crc of a 128-bit value 8804 movdqu(xmm10, Address(table, 3 * 16)); 8805 movdqu(xmm0, xmm7); 8806 8807 // 64b fold 8808 vpclmulqdq(xmm7, xmm7, xmm10, 0x0); 8809 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit); 8810 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8811 8812 // 32b fold 8813 movdqu(xmm0, xmm7); 8814 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit); 8815 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8816 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8817 jmp(L_barrett); 8818 8819 bind(L_less_than_256); 8820 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup); 8821 8822 //barrett reduction 8823 bind(L_barrett); 8824 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2); 8825 movdqu(xmm1, xmm7); 8826 movdqu(xmm2, xmm7); 8827 movdqu(xmm10, Address(table, 4 * 16)); 8828 8829 pclmulqdq(xmm7, xmm10, 0x0); 8830 pxor(xmm7, xmm2); 8831 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2); 8832 movdqu(xmm2, xmm7); 8833 pclmulqdq(xmm7, xmm10, 0x10); 8834 pxor(xmm7, xmm2); 8835 pxor(xmm7, xmm1); 8836 pextrd(crc, xmm7, 2); 8837 8838 bind(L_cleanup); 8839 addptr(rsp, 16 * 2 + 8); 8840 pop(r12); 8841 } 8842 8843 // S. Gueron / Information Processing Letters 112 (2012) 184 8844 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table. 8845 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0]. 8846 // Output: the 64-bit carry-less product of B * CONST 8847 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n, 8848 Register tmp1, Register tmp2, Register tmp3) { 8849 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8850 if (n > 0) { 8851 addq(tmp3, n * 256 * 8); 8852 } 8853 // Q1 = TABLEExt[n][B & 0xFF]; 8854 movl(tmp1, in); 8855 andl(tmp1, 0x000000FF); 8856 shll(tmp1, 3); 8857 addq(tmp1, tmp3); 8858 movq(tmp1, Address(tmp1, 0)); 8859 8860 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8861 movl(tmp2, in); 8862 shrl(tmp2, 8); 8863 andl(tmp2, 0x000000FF); 8864 shll(tmp2, 3); 8865 addq(tmp2, tmp3); 8866 movq(tmp2, Address(tmp2, 0)); 8867 8868 shlq(tmp2, 8); 8869 xorq(tmp1, tmp2); 8870 8871 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8872 movl(tmp2, in); 8873 shrl(tmp2, 16); 8874 andl(tmp2, 0x000000FF); 8875 shll(tmp2, 3); 8876 addq(tmp2, tmp3); 8877 movq(tmp2, Address(tmp2, 0)); 8878 8879 shlq(tmp2, 16); 8880 xorq(tmp1, tmp2); 8881 8882 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8883 shrl(in, 24); 8884 andl(in, 0x000000FF); 8885 shll(in, 3); 8886 addq(in, tmp3); 8887 movq(in, Address(in, 0)); 8888 8889 shlq(in, 24); 8890 xorq(in, tmp1); 8891 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8892 } 8893 8894 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8895 Register in_out, 8896 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8897 XMMRegister w_xtmp2, 8898 Register tmp1, 8899 Register n_tmp2, Register n_tmp3) { 8900 if (is_pclmulqdq_supported) { 8901 movdl(w_xtmp1, in_out); // modified blindly 8902 8903 movl(tmp1, const_or_pre_comp_const_index); 8904 movdl(w_xtmp2, tmp1); 8905 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8906 8907 movdq(in_out, w_xtmp1); 8908 } else { 8909 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3); 8910 } 8911 } 8912 8913 // Recombination Alternative 2: No bit-reflections 8914 // T1 = (CRC_A * U1) << 1 8915 // T2 = (CRC_B * U2) << 1 8916 // C1 = T1 >> 32 8917 // C2 = T2 >> 32 8918 // T1 = T1 & 0xFFFFFFFF 8919 // T2 = T2 & 0xFFFFFFFF 8920 // T1 = CRC32(0, T1) 8921 // T2 = CRC32(0, T2) 8922 // C1 = C1 ^ T1 8923 // C2 = C2 ^ T2 8924 // CRC = C1 ^ C2 ^ CRC_C 8925 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8926 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8927 Register tmp1, Register tmp2, 8928 Register n_tmp3) { 8929 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8930 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8931 shlq(in_out, 1); 8932 movl(tmp1, in_out); 8933 shrq(in_out, 32); 8934 xorl(tmp2, tmp2); 8935 crc32(tmp2, tmp1, 4); 8936 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here 8937 shlq(in1, 1); 8938 movl(tmp1, in1); 8939 shrq(in1, 32); 8940 xorl(tmp2, tmp2); 8941 crc32(tmp2, tmp1, 4); 8942 xorl(in1, tmp2); 8943 xorl(in_out, in1); 8944 xorl(in_out, in2); 8945 } 8946 8947 // Set N to predefined value 8948 // Subtract from a length of a buffer 8949 // execute in a loop: 8950 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0 8951 // for i = 1 to N do 8952 // CRC_A = CRC32(CRC_A, A[i]) 8953 // CRC_B = CRC32(CRC_B, B[i]) 8954 // CRC_C = CRC32(CRC_C, C[i]) 8955 // end for 8956 // Recombine 8957 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8958 Register in_out1, Register in_out2, Register in_out3, 8959 Register tmp1, Register tmp2, Register tmp3, 8960 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8961 Register tmp4, Register tmp5, 8962 Register n_tmp6) { 8963 Label L_processPartitions; 8964 Label L_processPartition; 8965 Label L_exit; 8966 8967 bind(L_processPartitions); 8968 cmpl(in_out1, 3 * size); 8969 jcc(Assembler::less, L_exit); 8970 xorl(tmp1, tmp1); 8971 xorl(tmp2, tmp2); 8972 movq(tmp3, in_out2); 8973 addq(tmp3, size); 8974 8975 bind(L_processPartition); 8976 crc32(in_out3, Address(in_out2, 0), 8); 8977 crc32(tmp1, Address(in_out2, size), 8); 8978 crc32(tmp2, Address(in_out2, size * 2), 8); 8979 addq(in_out2, 8); 8980 cmpq(in_out2, tmp3); 8981 jcc(Assembler::less, L_processPartition); 8982 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8983 w_xtmp1, w_xtmp2, w_xtmp3, 8984 tmp4, tmp5, 8985 n_tmp6); 8986 addq(in_out2, 2 * size); 8987 subl(in_out1, 3 * size); 8988 jmp(L_processPartitions); 8989 8990 bind(L_exit); 8991 } 8992 #else 8993 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n, 8994 Register tmp1, Register tmp2, Register tmp3, 8995 XMMRegister xtmp1, XMMRegister xtmp2) { 8996 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8997 if (n > 0) { 8998 addl(tmp3, n * 256 * 8); 8999 } 9000 // Q1 = TABLEExt[n][B & 0xFF]; 9001 movl(tmp1, in_out); 9002 andl(tmp1, 0x000000FF); 9003 shll(tmp1, 3); 9004 addl(tmp1, tmp3); 9005 movq(xtmp1, Address(tmp1, 0)); 9006 9007 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 9008 movl(tmp2, in_out); 9009 shrl(tmp2, 8); 9010 andl(tmp2, 0x000000FF); 9011 shll(tmp2, 3); 9012 addl(tmp2, tmp3); 9013 movq(xtmp2, Address(tmp2, 0)); 9014 9015 psllq(xtmp2, 8); 9016 pxor(xtmp1, xtmp2); 9017 9018 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 9019 movl(tmp2, in_out); 9020 shrl(tmp2, 16); 9021 andl(tmp2, 0x000000FF); 9022 shll(tmp2, 3); 9023 addl(tmp2, tmp3); 9024 movq(xtmp2, Address(tmp2, 0)); 9025 9026 psllq(xtmp2, 16); 9027 pxor(xtmp1, xtmp2); 9028 9029 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 9030 shrl(in_out, 24); 9031 andl(in_out, 0x000000FF); 9032 shll(in_out, 3); 9033 addl(in_out, tmp3); 9034 movq(xtmp2, Address(in_out, 0)); 9035 9036 psllq(xtmp2, 24); 9037 pxor(xtmp1, xtmp2); // Result in CXMM 9038 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 9039 } 9040 9041 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 9042 Register in_out, 9043 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 9044 XMMRegister w_xtmp2, 9045 Register tmp1, 9046 Register n_tmp2, Register n_tmp3) { 9047 if (is_pclmulqdq_supported) { 9048 movdl(w_xtmp1, in_out); 9049 9050 movl(tmp1, const_or_pre_comp_const_index); 9051 movdl(w_xtmp2, tmp1); 9052 pclmulqdq(w_xtmp1, w_xtmp2, 0); 9053 // Keep result in XMM since GPR is 32 bit in length 9054 } else { 9055 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2); 9056 } 9057 } 9058 9059 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 9060 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9061 Register tmp1, Register tmp2, 9062 Register n_tmp3) { 9063 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 9064 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 9065 9066 psllq(w_xtmp1, 1); 9067 movdl(tmp1, w_xtmp1); 9068 psrlq(w_xtmp1, 32); 9069 movdl(in_out, w_xtmp1); 9070 9071 xorl(tmp2, tmp2); 9072 crc32(tmp2, tmp1, 4); 9073 xorl(in_out, tmp2); 9074 9075 psllq(w_xtmp2, 1); 9076 movdl(tmp1, w_xtmp2); 9077 psrlq(w_xtmp2, 32); 9078 movdl(in1, w_xtmp2); 9079 9080 xorl(tmp2, tmp2); 9081 crc32(tmp2, tmp1, 4); 9082 xorl(in1, tmp2); 9083 xorl(in_out, in1); 9084 xorl(in_out, in2); 9085 } 9086 9087 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 9088 Register in_out1, Register in_out2, Register in_out3, 9089 Register tmp1, Register tmp2, Register tmp3, 9090 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9091 Register tmp4, Register tmp5, 9092 Register n_tmp6) { 9093 Label L_processPartitions; 9094 Label L_processPartition; 9095 Label L_exit; 9096 9097 bind(L_processPartitions); 9098 cmpl(in_out1, 3 * size); 9099 jcc(Assembler::less, L_exit); 9100 xorl(tmp1, tmp1); 9101 xorl(tmp2, tmp2); 9102 movl(tmp3, in_out2); 9103 addl(tmp3, size); 9104 9105 bind(L_processPartition); 9106 crc32(in_out3, Address(in_out2, 0), 4); 9107 crc32(tmp1, Address(in_out2, size), 4); 9108 crc32(tmp2, Address(in_out2, size*2), 4); 9109 crc32(in_out3, Address(in_out2, 0+4), 4); 9110 crc32(tmp1, Address(in_out2, size+4), 4); 9111 crc32(tmp2, Address(in_out2, size*2+4), 4); 9112 addl(in_out2, 8); 9113 cmpl(in_out2, tmp3); 9114 jcc(Assembler::less, L_processPartition); 9115 9116 push(tmp3); 9117 push(in_out1); 9118 push(in_out2); 9119 tmp4 = tmp3; 9120 tmp5 = in_out1; 9121 n_tmp6 = in_out2; 9122 9123 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 9124 w_xtmp1, w_xtmp2, w_xtmp3, 9125 tmp4, tmp5, 9126 n_tmp6); 9127 9128 pop(in_out2); 9129 pop(in_out1); 9130 pop(tmp3); 9131 9132 addl(in_out2, 2 * size); 9133 subl(in_out1, 3 * size); 9134 jmp(L_processPartitions); 9135 9136 bind(L_exit); 9137 } 9138 #endif //LP64 9139 9140 #ifdef _LP64 9141 // Algorithm 2: Pipelined usage of the CRC32 instruction. 9142 // Input: A buffer I of L bytes. 9143 // Output: the CRC32C value of the buffer. 9144 // Notations: 9145 // Write L = 24N + r, with N = floor (L/24). 9146 // r = L mod 24 (0 <= r < 24). 9147 // Consider I as the concatenation of A|B|C|R, where A, B, C, each, 9148 // N quadwords, and R consists of r bytes. 9149 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1 9150 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1 9151 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1 9152 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1 9153 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 9154 Register tmp1, Register tmp2, Register tmp3, 9155 Register tmp4, Register tmp5, Register tmp6, 9156 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9157 bool is_pclmulqdq_supported) { 9158 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 9159 Label L_wordByWord; 9160 Label L_byteByByteProlog; 9161 Label L_byteByByte; 9162 Label L_exit; 9163 9164 if (is_pclmulqdq_supported ) { 9165 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::crc32c_table_addr(); 9166 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 1); 9167 9168 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 2); 9169 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 3); 9170 9171 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 4); 9172 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 5); 9173 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\""); 9174 } else { 9175 const_or_pre_comp_const_index[0] = 1; 9176 const_or_pre_comp_const_index[1] = 0; 9177 9178 const_or_pre_comp_const_index[2] = 3; 9179 const_or_pre_comp_const_index[3] = 2; 9180 9181 const_or_pre_comp_const_index[4] = 5; 9182 const_or_pre_comp_const_index[5] = 4; 9183 } 9184 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 9185 in2, in1, in_out, 9186 tmp1, tmp2, tmp3, 9187 w_xtmp1, w_xtmp2, w_xtmp3, 9188 tmp4, tmp5, 9189 tmp6); 9190 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 9191 in2, in1, in_out, 9192 tmp1, tmp2, tmp3, 9193 w_xtmp1, w_xtmp2, w_xtmp3, 9194 tmp4, tmp5, 9195 tmp6); 9196 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 9197 in2, in1, in_out, 9198 tmp1, tmp2, tmp3, 9199 w_xtmp1, w_xtmp2, w_xtmp3, 9200 tmp4, tmp5, 9201 tmp6); 9202 movl(tmp1, in2); 9203 andl(tmp1, 0x00000007); 9204 negl(tmp1); 9205 addl(tmp1, in2); 9206 addq(tmp1, in1); 9207 9208 cmpq(in1, tmp1); 9209 jccb(Assembler::greaterEqual, L_byteByByteProlog); 9210 align(16); 9211 BIND(L_wordByWord); 9212 crc32(in_out, Address(in1, 0), 8); 9213 addq(in1, 8); 9214 cmpq(in1, tmp1); 9215 jcc(Assembler::less, L_wordByWord); 9216 9217 BIND(L_byteByByteProlog); 9218 andl(in2, 0x00000007); 9219 movl(tmp2, 1); 9220 9221 cmpl(tmp2, in2); 9222 jccb(Assembler::greater, L_exit); 9223 BIND(L_byteByByte); 9224 crc32(in_out, Address(in1, 0), 1); 9225 incq(in1); 9226 incl(tmp2); 9227 cmpl(tmp2, in2); 9228 jcc(Assembler::lessEqual, L_byteByByte); 9229 9230 BIND(L_exit); 9231 } 9232 #else 9233 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 9234 Register tmp1, Register tmp2, Register tmp3, 9235 Register tmp4, Register tmp5, Register tmp6, 9236 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9237 bool is_pclmulqdq_supported) { 9238 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 9239 Label L_wordByWord; 9240 Label L_byteByByteProlog; 9241 Label L_byteByByte; 9242 Label L_exit; 9243 9244 if (is_pclmulqdq_supported) { 9245 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::crc32c_table_addr(); 9246 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 1); 9247 9248 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 2); 9249 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 3); 9250 9251 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 4); 9252 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 5); 9253 } else { 9254 const_or_pre_comp_const_index[0] = 1; 9255 const_or_pre_comp_const_index[1] = 0; 9256 9257 const_or_pre_comp_const_index[2] = 3; 9258 const_or_pre_comp_const_index[3] = 2; 9259 9260 const_or_pre_comp_const_index[4] = 5; 9261 const_or_pre_comp_const_index[5] = 4; 9262 } 9263 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 9264 in2, in1, in_out, 9265 tmp1, tmp2, tmp3, 9266 w_xtmp1, w_xtmp2, w_xtmp3, 9267 tmp4, tmp5, 9268 tmp6); 9269 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 9270 in2, in1, in_out, 9271 tmp1, tmp2, tmp3, 9272 w_xtmp1, w_xtmp2, w_xtmp3, 9273 tmp4, tmp5, 9274 tmp6); 9275 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 9276 in2, in1, in_out, 9277 tmp1, tmp2, tmp3, 9278 w_xtmp1, w_xtmp2, w_xtmp3, 9279 tmp4, tmp5, 9280 tmp6); 9281 movl(tmp1, in2); 9282 andl(tmp1, 0x00000007); 9283 negl(tmp1); 9284 addl(tmp1, in2); 9285 addl(tmp1, in1); 9286 9287 BIND(L_wordByWord); 9288 cmpl(in1, tmp1); 9289 jcc(Assembler::greaterEqual, L_byteByByteProlog); 9290 crc32(in_out, Address(in1,0), 4); 9291 addl(in1, 4); 9292 jmp(L_wordByWord); 9293 9294 BIND(L_byteByByteProlog); 9295 andl(in2, 0x00000007); 9296 movl(tmp2, 1); 9297 9298 BIND(L_byteByByte); 9299 cmpl(tmp2, in2); 9300 jccb(Assembler::greater, L_exit); 9301 movb(tmp1, Address(in1, 0)); 9302 crc32(in_out, tmp1, 1); 9303 incl(in1); 9304 incl(tmp2); 9305 jmp(L_byteByByte); 9306 9307 BIND(L_exit); 9308 } 9309 #endif // LP64 9310 #undef BIND 9311 #undef BLOCK_COMMENT 9312 9313 // Compress char[] array to byte[]. 9314 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 9315 // Return the array length if every element in array can be encoded, 9316 // otherwise, the index of first non-latin1 (> 0xff) character. 9317 // @IntrinsicCandidate 9318 // public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) { 9319 // for (int i = 0; i < len; i++) { 9320 // char c = src[srcOff]; 9321 // if (c > 0xff) { 9322 // return i; // return index of non-latin1 char 9323 // } 9324 // dst[dstOff] = (byte)c; 9325 // srcOff++; 9326 // dstOff++; 9327 // } 9328 // return len; 9329 // } 9330 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 9331 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 9332 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 9333 Register tmp5, Register result, KRegister mask1, KRegister mask2) { 9334 Label copy_chars_loop, done, reset_sp, copy_tail; 9335 9336 // rsi: src 9337 // rdi: dst 9338 // rdx: len 9339 // rcx: tmp5 9340 // rax: result 9341 9342 // rsi holds start addr of source char[] to be compressed 9343 // rdi holds start addr of destination byte[] 9344 // rdx holds length 9345 9346 assert(len != result, ""); 9347 9348 // save length for return 9349 movl(result, len); 9350 9351 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 9352 VM_Version::supports_avx512vlbw() && 9353 VM_Version::supports_bmi2()) { 9354 9355 Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail; 9356 9357 // alignment 9358 Label post_alignment; 9359 9360 // if length of the string is less than 32, handle it the old fashioned way 9361 testl(len, -32); 9362 jcc(Assembler::zero, below_threshold); 9363 9364 // First check whether a character is compressible ( <= 0xFF). 9365 // Create mask to test for Unicode chars inside zmm vector 9366 movl(tmp5, 0x00FF); 9367 evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit); 9368 9369 testl(len, -64); 9370 jccb(Assembler::zero, post_alignment); 9371 9372 movl(tmp5, dst); 9373 andl(tmp5, (32 - 1)); 9374 negl(tmp5); 9375 andl(tmp5, (32 - 1)); 9376 9377 // bail out when there is nothing to be done 9378 testl(tmp5, 0xFFFFFFFF); 9379 jccb(Assembler::zero, post_alignment); 9380 9381 // ~(~0 << len), where len is the # of remaining elements to process 9382 movl(len, 0xFFFFFFFF); 9383 shlxl(len, len, tmp5); 9384 notl(len); 9385 kmovdl(mask2, len); 9386 movl(len, result); 9387 9388 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9389 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9390 ktestd(mask1, mask2); 9391 jcc(Assembler::carryClear, copy_tail); 9392 9393 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9394 9395 addptr(src, tmp5); 9396 addptr(src, tmp5); 9397 addptr(dst, tmp5); 9398 subl(len, tmp5); 9399 9400 bind(post_alignment); 9401 // end of alignment 9402 9403 movl(tmp5, len); 9404 andl(tmp5, (32 - 1)); // tail count (in chars) 9405 andl(len, ~(32 - 1)); // vector count (in chars) 9406 jccb(Assembler::zero, copy_loop_tail); 9407 9408 lea(src, Address(src, len, Address::times_2)); 9409 lea(dst, Address(dst, len, Address::times_1)); 9410 negptr(len); 9411 9412 bind(copy_32_loop); 9413 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit); 9414 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); 9415 kortestdl(mask1, mask1); 9416 jccb(Assembler::carryClear, reset_for_copy_tail); 9417 9418 // All elements in current processed chunk are valid candidates for 9419 // compression. Write a truncated byte elements to the memory. 9420 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit); 9421 addptr(len, 32); 9422 jccb(Assembler::notZero, copy_32_loop); 9423 9424 bind(copy_loop_tail); 9425 // bail out when there is nothing to be done 9426 testl(tmp5, 0xFFFFFFFF); 9427 jcc(Assembler::zero, done); 9428 9429 movl(len, tmp5); 9430 9431 // ~(~0 << len), where len is the # of remaining elements to process 9432 movl(tmp5, 0xFFFFFFFF); 9433 shlxl(tmp5, tmp5, len); 9434 notl(tmp5); 9435 9436 kmovdl(mask2, tmp5); 9437 9438 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9439 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9440 ktestd(mask1, mask2); 9441 jcc(Assembler::carryClear, copy_tail); 9442 9443 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9444 jmp(done); 9445 9446 bind(reset_for_copy_tail); 9447 lea(src, Address(src, tmp5, Address::times_2)); 9448 lea(dst, Address(dst, tmp5, Address::times_1)); 9449 subptr(len, tmp5); 9450 jmp(copy_chars_loop); 9451 9452 bind(below_threshold); 9453 } 9454 9455 if (UseSSE42Intrinsics) { 9456 Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail; 9457 9458 // vectored compression 9459 testl(len, 0xfffffff8); 9460 jcc(Assembler::zero, copy_tail); 9461 9462 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors 9463 movdl(tmp1Reg, tmp5); 9464 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 9465 9466 andl(len, 0xfffffff0); 9467 jccb(Assembler::zero, copy_16); 9468 9469 // compress 16 chars per iter 9470 pxor(tmp4Reg, tmp4Reg); 9471 9472 lea(src, Address(src, len, Address::times_2)); 9473 lea(dst, Address(dst, len, Address::times_1)); 9474 negptr(len); 9475 9476 bind(copy_32_loop); 9477 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters 9478 por(tmp4Reg, tmp2Reg); 9479 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters 9480 por(tmp4Reg, tmp3Reg); 9481 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector 9482 jccb(Assembler::notZero, reset_for_copy_tail); 9483 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte 9484 movdqu(Address(dst, len, Address::times_1), tmp2Reg); 9485 addptr(len, 16); 9486 jccb(Assembler::notZero, copy_32_loop); 9487 9488 // compress next vector of 8 chars (if any) 9489 bind(copy_16); 9490 // len = 0 9491 testl(result, 0x00000008); // check if there's a block of 8 chars to compress 9492 jccb(Assembler::zero, copy_tail_sse); 9493 9494 pxor(tmp3Reg, tmp3Reg); 9495 9496 movdqu(tmp2Reg, Address(src, 0)); 9497 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector 9498 jccb(Assembler::notZero, reset_for_copy_tail); 9499 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte 9500 movq(Address(dst, 0), tmp2Reg); 9501 addptr(src, 16); 9502 addptr(dst, 8); 9503 jmpb(copy_tail_sse); 9504 9505 bind(reset_for_copy_tail); 9506 movl(tmp5, result); 9507 andl(tmp5, 0x0000000f); 9508 lea(src, Address(src, tmp5, Address::times_2)); 9509 lea(dst, Address(dst, tmp5, Address::times_1)); 9510 subptr(len, tmp5); 9511 jmpb(copy_chars_loop); 9512 9513 bind(copy_tail_sse); 9514 movl(len, result); 9515 andl(len, 0x00000007); // tail count (in chars) 9516 } 9517 // compress 1 char per iter 9518 bind(copy_tail); 9519 testl(len, len); 9520 jccb(Assembler::zero, done); 9521 lea(src, Address(src, len, Address::times_2)); 9522 lea(dst, Address(dst, len, Address::times_1)); 9523 negptr(len); 9524 9525 bind(copy_chars_loop); 9526 load_unsigned_short(tmp5, Address(src, len, Address::times_2)); 9527 testl(tmp5, 0xff00); // check if Unicode char 9528 jccb(Assembler::notZero, reset_sp); 9529 movb(Address(dst, len, Address::times_1), tmp5); // ASCII char; compress to 1 byte 9530 increment(len); 9531 jccb(Assembler::notZero, copy_chars_loop); 9532 9533 // add len then return (len will be zero if compress succeeded, otherwise negative) 9534 bind(reset_sp); 9535 addl(result, len); 9536 9537 bind(done); 9538 } 9539 9540 // Inflate byte[] array to char[]. 9541 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java 9542 // @IntrinsicCandidate 9543 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) { 9544 // for (int i = 0; i < len; i++) { 9545 // dst[dstOff++] = (char)(src[srcOff++] & 0xff); 9546 // } 9547 // } 9548 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 9549 XMMRegister tmp1, Register tmp2, KRegister mask) { 9550 Label copy_chars_loop, done, below_threshold, avx3_threshold; 9551 // rsi: src 9552 // rdi: dst 9553 // rdx: len 9554 // rcx: tmp2 9555 9556 // rsi holds start addr of source byte[] to be inflated 9557 // rdi holds start addr of destination char[] 9558 // rdx holds length 9559 assert_different_registers(src, dst, len, tmp2); 9560 movl(tmp2, len); 9561 if ((UseAVX > 2) && // AVX512 9562 VM_Version::supports_avx512vlbw() && 9563 VM_Version::supports_bmi2()) { 9564 9565 Label copy_32_loop, copy_tail; 9566 Register tmp3_aliased = len; 9567 9568 // if length of the string is less than 16, handle it in an old fashioned way 9569 testl(len, -16); 9570 jcc(Assembler::zero, below_threshold); 9571 9572 testl(len, -1 * AVX3Threshold); 9573 jcc(Assembler::zero, avx3_threshold); 9574 9575 // In order to use only one arithmetic operation for the main loop we use 9576 // this pre-calculation 9577 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop 9578 andl(len, -32); // vector count 9579 jccb(Assembler::zero, copy_tail); 9580 9581 lea(src, Address(src, len, Address::times_1)); 9582 lea(dst, Address(dst, len, Address::times_2)); 9583 negptr(len); 9584 9585 9586 // inflate 32 chars per iter 9587 bind(copy_32_loop); 9588 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit); 9589 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit); 9590 addptr(len, 32); 9591 jcc(Assembler::notZero, copy_32_loop); 9592 9593 bind(copy_tail); 9594 // bail out when there is nothing to be done 9595 testl(tmp2, -1); // we don't destroy the contents of tmp2 here 9596 jcc(Assembler::zero, done); 9597 9598 // ~(~0 << length), where length is the # of remaining elements to process 9599 movl(tmp3_aliased, -1); 9600 shlxl(tmp3_aliased, tmp3_aliased, tmp2); 9601 notl(tmp3_aliased); 9602 kmovdl(mask, tmp3_aliased); 9603 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit); 9604 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit); 9605 9606 jmp(done); 9607 bind(avx3_threshold); 9608 } 9609 if (UseSSE42Intrinsics) { 9610 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail; 9611 9612 if (UseAVX > 1) { 9613 andl(tmp2, (16 - 1)); 9614 andl(len, -16); 9615 jccb(Assembler::zero, copy_new_tail); 9616 } else { 9617 andl(tmp2, 0x00000007); // tail count (in chars) 9618 andl(len, 0xfffffff8); // vector count (in chars) 9619 jccb(Assembler::zero, copy_tail); 9620 } 9621 9622 // vectored inflation 9623 lea(src, Address(src, len, Address::times_1)); 9624 lea(dst, Address(dst, len, Address::times_2)); 9625 negptr(len); 9626 9627 if (UseAVX > 1) { 9628 bind(copy_16_loop); 9629 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit); 9630 vmovdqu(Address(dst, len, Address::times_2), tmp1); 9631 addptr(len, 16); 9632 jcc(Assembler::notZero, copy_16_loop); 9633 9634 bind(below_threshold); 9635 bind(copy_new_tail); 9636 movl(len, tmp2); 9637 andl(tmp2, 0x00000007); 9638 andl(len, 0xFFFFFFF8); 9639 jccb(Assembler::zero, copy_tail); 9640 9641 pmovzxbw(tmp1, Address(src, 0)); 9642 movdqu(Address(dst, 0), tmp1); 9643 addptr(src, 8); 9644 addptr(dst, 2 * 8); 9645 9646 jmp(copy_tail, true); 9647 } 9648 9649 // inflate 8 chars per iter 9650 bind(copy_8_loop); 9651 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words 9652 movdqu(Address(dst, len, Address::times_2), tmp1); 9653 addptr(len, 8); 9654 jcc(Assembler::notZero, copy_8_loop); 9655 9656 bind(copy_tail); 9657 movl(len, tmp2); 9658 9659 cmpl(len, 4); 9660 jccb(Assembler::less, copy_bytes); 9661 9662 movdl(tmp1, Address(src, 0)); // load 4 byte chars 9663 pmovzxbw(tmp1, tmp1); 9664 movq(Address(dst, 0), tmp1); 9665 subptr(len, 4); 9666 addptr(src, 4); 9667 addptr(dst, 8); 9668 9669 bind(copy_bytes); 9670 } else { 9671 bind(below_threshold); 9672 } 9673 9674 testl(len, len); 9675 jccb(Assembler::zero, done); 9676 lea(src, Address(src, len, Address::times_1)); 9677 lea(dst, Address(dst, len, Address::times_2)); 9678 negptr(len); 9679 9680 // inflate 1 char per iter 9681 bind(copy_chars_loop); 9682 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char 9683 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word 9684 increment(len); 9685 jcc(Assembler::notZero, copy_chars_loop); 9686 9687 bind(done); 9688 } 9689 9690 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len) { 9691 switch(type) { 9692 case T_BYTE: 9693 case T_BOOLEAN: 9694 evmovdqub(dst, kmask, src, merge, vector_len); 9695 break; 9696 case T_CHAR: 9697 case T_SHORT: 9698 evmovdquw(dst, kmask, src, merge, vector_len); 9699 break; 9700 case T_INT: 9701 case T_FLOAT: 9702 evmovdqul(dst, kmask, src, merge, vector_len); 9703 break; 9704 case T_LONG: 9705 case T_DOUBLE: 9706 evmovdquq(dst, kmask, src, merge, vector_len); 9707 break; 9708 default: 9709 fatal("Unexpected type argument %s", type2name(type)); 9710 break; 9711 } 9712 } 9713 9714 9715 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) { 9716 switch(type) { 9717 case T_BYTE: 9718 case T_BOOLEAN: 9719 evmovdqub(dst, kmask, src, merge, vector_len); 9720 break; 9721 case T_CHAR: 9722 case T_SHORT: 9723 evmovdquw(dst, kmask, src, merge, vector_len); 9724 break; 9725 case T_INT: 9726 case T_FLOAT: 9727 evmovdqul(dst, kmask, src, merge, vector_len); 9728 break; 9729 case T_LONG: 9730 case T_DOUBLE: 9731 evmovdquq(dst, kmask, src, merge, vector_len); 9732 break; 9733 default: 9734 fatal("Unexpected type argument %s", type2name(type)); 9735 break; 9736 } 9737 } 9738 9739 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) { 9740 switch(type) { 9741 case T_BYTE: 9742 case T_BOOLEAN: 9743 evmovdqub(dst, kmask, src, merge, vector_len); 9744 break; 9745 case T_CHAR: 9746 case T_SHORT: 9747 evmovdquw(dst, kmask, src, merge, vector_len); 9748 break; 9749 case T_INT: 9750 case T_FLOAT: 9751 evmovdqul(dst, kmask, src, merge, vector_len); 9752 break; 9753 case T_LONG: 9754 case T_DOUBLE: 9755 evmovdquq(dst, kmask, src, merge, vector_len); 9756 break; 9757 default: 9758 fatal("Unexpected type argument %s", type2name(type)); 9759 break; 9760 } 9761 } 9762 9763 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) { 9764 switch(masklen) { 9765 case 2: 9766 knotbl(dst, src); 9767 movl(rtmp, 3); 9768 kmovbl(ktmp, rtmp); 9769 kandbl(dst, ktmp, dst); 9770 break; 9771 case 4: 9772 knotbl(dst, src); 9773 movl(rtmp, 15); 9774 kmovbl(ktmp, rtmp); 9775 kandbl(dst, ktmp, dst); 9776 break; 9777 case 8: 9778 knotbl(dst, src); 9779 break; 9780 case 16: 9781 knotwl(dst, src); 9782 break; 9783 case 32: 9784 knotdl(dst, src); 9785 break; 9786 case 64: 9787 knotql(dst, src); 9788 break; 9789 default: 9790 fatal("Unexpected vector length %d", masklen); 9791 break; 9792 } 9793 } 9794 9795 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9796 switch(type) { 9797 case T_BOOLEAN: 9798 case T_BYTE: 9799 kandbl(dst, src1, src2); 9800 break; 9801 case T_CHAR: 9802 case T_SHORT: 9803 kandwl(dst, src1, src2); 9804 break; 9805 case T_INT: 9806 case T_FLOAT: 9807 kanddl(dst, src1, src2); 9808 break; 9809 case T_LONG: 9810 case T_DOUBLE: 9811 kandql(dst, src1, src2); 9812 break; 9813 default: 9814 fatal("Unexpected type argument %s", type2name(type)); 9815 break; 9816 } 9817 } 9818 9819 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9820 switch(type) { 9821 case T_BOOLEAN: 9822 case T_BYTE: 9823 korbl(dst, src1, src2); 9824 break; 9825 case T_CHAR: 9826 case T_SHORT: 9827 korwl(dst, src1, src2); 9828 break; 9829 case T_INT: 9830 case T_FLOAT: 9831 kordl(dst, src1, src2); 9832 break; 9833 case T_LONG: 9834 case T_DOUBLE: 9835 korql(dst, src1, src2); 9836 break; 9837 default: 9838 fatal("Unexpected type argument %s", type2name(type)); 9839 break; 9840 } 9841 } 9842 9843 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9844 switch(type) { 9845 case T_BOOLEAN: 9846 case T_BYTE: 9847 kxorbl(dst, src1, src2); 9848 break; 9849 case T_CHAR: 9850 case T_SHORT: 9851 kxorwl(dst, src1, src2); 9852 break; 9853 case T_INT: 9854 case T_FLOAT: 9855 kxordl(dst, src1, src2); 9856 break; 9857 case T_LONG: 9858 case T_DOUBLE: 9859 kxorql(dst, src1, src2); 9860 break; 9861 default: 9862 fatal("Unexpected type argument %s", type2name(type)); 9863 break; 9864 } 9865 } 9866 9867 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9868 switch(type) { 9869 case T_BOOLEAN: 9870 case T_BYTE: 9871 evpermb(dst, mask, nds, src, merge, vector_len); break; 9872 case T_CHAR: 9873 case T_SHORT: 9874 evpermw(dst, mask, nds, src, merge, vector_len); break; 9875 case T_INT: 9876 case T_FLOAT: 9877 evpermd(dst, mask, nds, src, merge, vector_len); break; 9878 case T_LONG: 9879 case T_DOUBLE: 9880 evpermq(dst, mask, nds, src, merge, vector_len); break; 9881 default: 9882 fatal("Unexpected type argument %s", type2name(type)); break; 9883 } 9884 } 9885 9886 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9887 switch(type) { 9888 case T_BOOLEAN: 9889 case T_BYTE: 9890 evpermb(dst, mask, nds, src, merge, vector_len); break; 9891 case T_CHAR: 9892 case T_SHORT: 9893 evpermw(dst, mask, nds, src, merge, vector_len); break; 9894 case T_INT: 9895 case T_FLOAT: 9896 evpermd(dst, mask, nds, src, merge, vector_len); break; 9897 case T_LONG: 9898 case T_DOUBLE: 9899 evpermq(dst, mask, nds, src, merge, vector_len); break; 9900 default: 9901 fatal("Unexpected type argument %s", type2name(type)); break; 9902 } 9903 } 9904 9905 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9906 switch(type) { 9907 case T_BYTE: 9908 evpminub(dst, mask, nds, src, merge, vector_len); break; 9909 case T_SHORT: 9910 evpminuw(dst, mask, nds, src, merge, vector_len); break; 9911 case T_INT: 9912 evpminud(dst, mask, nds, src, merge, vector_len); break; 9913 case T_LONG: 9914 evpminuq(dst, mask, nds, src, merge, vector_len); break; 9915 default: 9916 fatal("Unexpected type argument %s", type2name(type)); break; 9917 } 9918 } 9919 9920 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9921 switch(type) { 9922 case T_BYTE: 9923 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 9924 case T_SHORT: 9925 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 9926 case T_INT: 9927 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 9928 case T_LONG: 9929 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 9930 default: 9931 fatal("Unexpected type argument %s", type2name(type)); break; 9932 } 9933 } 9934 9935 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9936 switch(type) { 9937 case T_BYTE: 9938 evpminub(dst, mask, nds, src, merge, vector_len); break; 9939 case T_SHORT: 9940 evpminuw(dst, mask, nds, src, merge, vector_len); break; 9941 case T_INT: 9942 evpminud(dst, mask, nds, src, merge, vector_len); break; 9943 case T_LONG: 9944 evpminuq(dst, mask, nds, src, merge, vector_len); break; 9945 default: 9946 fatal("Unexpected type argument %s", type2name(type)); break; 9947 } 9948 } 9949 9950 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9951 switch(type) { 9952 case T_BYTE: 9953 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 9954 case T_SHORT: 9955 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 9956 case T_INT: 9957 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 9958 case T_LONG: 9959 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 9960 default: 9961 fatal("Unexpected type argument %s", type2name(type)); break; 9962 } 9963 } 9964 9965 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9966 switch(type) { 9967 case T_BYTE: 9968 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9969 case T_SHORT: 9970 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9971 case T_INT: 9972 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9973 case T_LONG: 9974 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9975 default: 9976 fatal("Unexpected type argument %s", type2name(type)); break; 9977 } 9978 } 9979 9980 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9981 switch(type) { 9982 case T_BYTE: 9983 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9984 case T_SHORT: 9985 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9986 case T_INT: 9987 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9988 case T_LONG: 9989 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9990 default: 9991 fatal("Unexpected type argument %s", type2name(type)); break; 9992 } 9993 } 9994 9995 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9996 switch(type) { 9997 case T_BYTE: 9998 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9999 case T_SHORT: 10000 evpminsw(dst, mask, nds, src, merge, vector_len); break; 10001 case T_INT: 10002 evpminsd(dst, mask, nds, src, merge, vector_len); break; 10003 case T_LONG: 10004 evpminsq(dst, mask, nds, src, merge, vector_len); break; 10005 default: 10006 fatal("Unexpected type argument %s", type2name(type)); break; 10007 } 10008 } 10009 10010 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10011 switch(type) { 10012 case T_BYTE: 10013 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 10014 case T_SHORT: 10015 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 10016 case T_INT: 10017 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 10018 case T_LONG: 10019 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 10020 default: 10021 fatal("Unexpected type argument %s", type2name(type)); break; 10022 } 10023 } 10024 10025 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10026 switch(type) { 10027 case T_INT: 10028 evpxord(dst, mask, nds, src, merge, vector_len); break; 10029 case T_LONG: 10030 evpxorq(dst, mask, nds, src, merge, vector_len); break; 10031 default: 10032 fatal("Unexpected type argument %s", type2name(type)); break; 10033 } 10034 } 10035 10036 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10037 switch(type) { 10038 case T_INT: 10039 evpxord(dst, mask, nds, src, merge, vector_len); break; 10040 case T_LONG: 10041 evpxorq(dst, mask, nds, src, merge, vector_len); break; 10042 default: 10043 fatal("Unexpected type argument %s", type2name(type)); break; 10044 } 10045 } 10046 10047 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10048 switch(type) { 10049 case T_INT: 10050 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 10051 case T_LONG: 10052 evporq(dst, mask, nds, src, merge, vector_len); break; 10053 default: 10054 fatal("Unexpected type argument %s", type2name(type)); break; 10055 } 10056 } 10057 10058 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10059 switch(type) { 10060 case T_INT: 10061 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 10062 case T_LONG: 10063 evporq(dst, mask, nds, src, merge, vector_len); break; 10064 default: 10065 fatal("Unexpected type argument %s", type2name(type)); break; 10066 } 10067 } 10068 10069 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10070 switch(type) { 10071 case T_INT: 10072 evpandd(dst, mask, nds, src, merge, vector_len); break; 10073 case T_LONG: 10074 evpandq(dst, mask, nds, src, merge, vector_len); break; 10075 default: 10076 fatal("Unexpected type argument %s", type2name(type)); break; 10077 } 10078 } 10079 10080 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10081 switch(type) { 10082 case T_INT: 10083 evpandd(dst, mask, nds, src, merge, vector_len); break; 10084 case T_LONG: 10085 evpandq(dst, mask, nds, src, merge, vector_len); break; 10086 default: 10087 fatal("Unexpected type argument %s", type2name(type)); break; 10088 } 10089 } 10090 10091 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) { 10092 switch(masklen) { 10093 case 8: 10094 kortestbl(src1, src2); 10095 break; 10096 case 16: 10097 kortestwl(src1, src2); 10098 break; 10099 case 32: 10100 kortestdl(src1, src2); 10101 break; 10102 case 64: 10103 kortestql(src1, src2); 10104 break; 10105 default: 10106 fatal("Unexpected mask length %d", masklen); 10107 break; 10108 } 10109 } 10110 10111 10112 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) { 10113 switch(masklen) { 10114 case 8: 10115 ktestbl(src1, src2); 10116 break; 10117 case 16: 10118 ktestwl(src1, src2); 10119 break; 10120 case 32: 10121 ktestdl(src1, src2); 10122 break; 10123 case 64: 10124 ktestql(src1, src2); 10125 break; 10126 default: 10127 fatal("Unexpected mask length %d", masklen); 10128 break; 10129 } 10130 } 10131 10132 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 10133 switch(type) { 10134 case T_INT: 10135 evprold(dst, mask, src, shift, merge, vlen_enc); break; 10136 case T_LONG: 10137 evprolq(dst, mask, src, shift, merge, vlen_enc); break; 10138 default: 10139 fatal("Unexpected type argument %s", type2name(type)); break; 10140 break; 10141 } 10142 } 10143 10144 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 10145 switch(type) { 10146 case T_INT: 10147 evprord(dst, mask, src, shift, merge, vlen_enc); break; 10148 case T_LONG: 10149 evprorq(dst, mask, src, shift, merge, vlen_enc); break; 10150 default: 10151 fatal("Unexpected type argument %s", type2name(type)); break; 10152 } 10153 } 10154 10155 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 10156 switch(type) { 10157 case T_INT: 10158 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break; 10159 case T_LONG: 10160 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break; 10161 default: 10162 fatal("Unexpected type argument %s", type2name(type)); break; 10163 } 10164 } 10165 10166 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 10167 switch(type) { 10168 case T_INT: 10169 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break; 10170 case T_LONG: 10171 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break; 10172 default: 10173 fatal("Unexpected type argument %s", type2name(type)); break; 10174 } 10175 } 10176 10177 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10178 assert(rscratch != noreg || always_reachable(src), "missing"); 10179 10180 if (reachable(src)) { 10181 evpandq(dst, nds, as_Address(src), vector_len); 10182 } else { 10183 lea(rscratch, src); 10184 evpandq(dst, nds, Address(rscratch, 0), vector_len); 10185 } 10186 } 10187 10188 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 10189 assert(rscratch != noreg || always_reachable(src), "missing"); 10190 10191 if (reachable(src)) { 10192 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len); 10193 } else { 10194 lea(rscratch, src); 10195 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 10196 } 10197 } 10198 10199 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10200 assert(rscratch != noreg || always_reachable(src), "missing"); 10201 10202 if (reachable(src)) { 10203 evporq(dst, nds, as_Address(src), vector_len); 10204 } else { 10205 lea(rscratch, src); 10206 evporq(dst, nds, Address(rscratch, 0), vector_len); 10207 } 10208 } 10209 10210 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10211 assert(rscratch != noreg || always_reachable(src), "missing"); 10212 10213 if (reachable(src)) { 10214 vpshufb(dst, nds, as_Address(src), vector_len); 10215 } else { 10216 lea(rscratch, src); 10217 vpshufb(dst, nds, Address(rscratch, 0), vector_len); 10218 } 10219 } 10220 10221 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10222 assert(rscratch != noreg || always_reachable(src), "missing"); 10223 10224 if (reachable(src)) { 10225 Assembler::vpor(dst, nds, as_Address(src), vector_len); 10226 } else { 10227 lea(rscratch, src); 10228 Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len); 10229 } 10230 } 10231 10232 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) { 10233 assert(rscratch != noreg || always_reachable(src3), "missing"); 10234 10235 if (reachable(src3)) { 10236 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len); 10237 } else { 10238 lea(rscratch, src3); 10239 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len); 10240 } 10241 } 10242 10243 #if COMPILER2_OR_JVMCI 10244 10245 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 10246 Register length, Register temp, int vec_enc) { 10247 // Computing mask for predicated vector store. 10248 movptr(temp, -1); 10249 bzhiq(temp, temp, length); 10250 kmov(mask, temp); 10251 evmovdqu(bt, mask, dst, xmm, true, vec_enc); 10252 } 10253 10254 // Set memory operation for length "less than" 64 bytes. 10255 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp, 10256 XMMRegister xmm, KRegister mask, Register length, 10257 Register temp, bool use64byteVector) { 10258 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10259 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 10260 if (!use64byteVector) { 10261 fill32(dst, disp, xmm); 10262 subptr(length, 32 >> shift); 10263 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp); 10264 } else { 10265 assert(MaxVectorSize == 64, "vector length != 64"); 10266 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit); 10267 } 10268 } 10269 10270 10271 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp, 10272 XMMRegister xmm, KRegister mask, Register length, 10273 Register temp) { 10274 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10275 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 10276 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit); 10277 } 10278 10279 10280 void MacroAssembler::fill32(Address dst, XMMRegister xmm) { 10281 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10282 vmovdqu(dst, xmm); 10283 } 10284 10285 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) { 10286 fill32(Address(dst, disp), xmm); 10287 } 10288 10289 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) { 10290 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10291 if (!use64byteVector) { 10292 fill32(dst, xmm); 10293 fill32(dst.plus_disp(32), xmm); 10294 } else { 10295 evmovdquq(dst, xmm, Assembler::AVX_512bit); 10296 } 10297 } 10298 10299 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) { 10300 fill64(Address(dst, disp), xmm, use64byteVector); 10301 } 10302 10303 #ifdef _LP64 10304 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value, 10305 Register count, Register rtmp, XMMRegister xtmp) { 10306 Label L_exit; 10307 Label L_fill_start; 10308 Label L_fill_64_bytes; 10309 Label L_fill_96_bytes; 10310 Label L_fill_128_bytes; 10311 Label L_fill_128_bytes_loop; 10312 Label L_fill_128_loop_header; 10313 Label L_fill_128_bytes_loop_header; 10314 Label L_fill_128_bytes_loop_pre_header; 10315 Label L_fill_zmm_sequence; 10316 10317 int shift = -1; 10318 int avx3threshold = VM_Version::avx3_threshold(); 10319 switch(type) { 10320 case T_BYTE: shift = 0; 10321 break; 10322 case T_SHORT: shift = 1; 10323 break; 10324 case T_INT: shift = 2; 10325 break; 10326 /* Uncomment when LONG fill stubs are supported. 10327 case T_LONG: shift = 3; 10328 break; 10329 */ 10330 default: 10331 fatal("Unhandled type: %s\n", type2name(type)); 10332 } 10333 10334 if ((avx3threshold != 0) || (MaxVectorSize == 32)) { 10335 10336 if (MaxVectorSize == 64) { 10337 cmpq(count, avx3threshold >> shift); 10338 jcc(Assembler::greater, L_fill_zmm_sequence); 10339 } 10340 10341 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit); 10342 10343 bind(L_fill_start); 10344 10345 cmpq(count, 32 >> shift); 10346 jccb(Assembler::greater, L_fill_64_bytes); 10347 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp); 10348 jmp(L_exit); 10349 10350 bind(L_fill_64_bytes); 10351 cmpq(count, 64 >> shift); 10352 jccb(Assembler::greater, L_fill_96_bytes); 10353 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp); 10354 jmp(L_exit); 10355 10356 bind(L_fill_96_bytes); 10357 cmpq(count, 96 >> shift); 10358 jccb(Assembler::greater, L_fill_128_bytes); 10359 fill64(to, 0, xtmp); 10360 subq(count, 64 >> shift); 10361 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp); 10362 jmp(L_exit); 10363 10364 bind(L_fill_128_bytes); 10365 cmpq(count, 128 >> shift); 10366 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header); 10367 fill64(to, 0, xtmp); 10368 fill32(to, 64, xtmp); 10369 subq(count, 96 >> shift); 10370 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp); 10371 jmp(L_exit); 10372 10373 bind(L_fill_128_bytes_loop_pre_header); 10374 { 10375 mov(rtmp, to); 10376 andq(rtmp, 31); 10377 jccb(Assembler::zero, L_fill_128_bytes_loop_header); 10378 negq(rtmp); 10379 addq(rtmp, 32); 10380 mov64(r8, -1L); 10381 bzhiq(r8, r8, rtmp); 10382 kmovql(k2, r8); 10383 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit); 10384 addq(to, rtmp); 10385 shrq(rtmp, shift); 10386 subq(count, rtmp); 10387 } 10388 10389 cmpq(count, 128 >> shift); 10390 jcc(Assembler::less, L_fill_start); 10391 10392 bind(L_fill_128_bytes_loop_header); 10393 subq(count, 128 >> shift); 10394 10395 align32(); 10396 bind(L_fill_128_bytes_loop); 10397 fill64(to, 0, xtmp); 10398 fill64(to, 64, xtmp); 10399 addq(to, 128); 10400 subq(count, 128 >> shift); 10401 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop); 10402 10403 addq(count, 128 >> shift); 10404 jcc(Assembler::zero, L_exit); 10405 jmp(L_fill_start); 10406 } 10407 10408 if (MaxVectorSize == 64) { 10409 // Sequence using 64 byte ZMM register. 10410 Label L_fill_128_bytes_zmm; 10411 Label L_fill_192_bytes_zmm; 10412 Label L_fill_192_bytes_loop_zmm; 10413 Label L_fill_192_bytes_loop_header_zmm; 10414 Label L_fill_192_bytes_loop_pre_header_zmm; 10415 Label L_fill_start_zmm_sequence; 10416 10417 bind(L_fill_zmm_sequence); 10418 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit); 10419 10420 bind(L_fill_start_zmm_sequence); 10421 cmpq(count, 64 >> shift); 10422 jccb(Assembler::greater, L_fill_128_bytes_zmm); 10423 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true); 10424 jmp(L_exit); 10425 10426 bind(L_fill_128_bytes_zmm); 10427 cmpq(count, 128 >> shift); 10428 jccb(Assembler::greater, L_fill_192_bytes_zmm); 10429 fill64(to, 0, xtmp, true); 10430 subq(count, 64 >> shift); 10431 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true); 10432 jmp(L_exit); 10433 10434 bind(L_fill_192_bytes_zmm); 10435 cmpq(count, 192 >> shift); 10436 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm); 10437 fill64(to, 0, xtmp, true); 10438 fill64(to, 64, xtmp, true); 10439 subq(count, 128 >> shift); 10440 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true); 10441 jmp(L_exit); 10442 10443 bind(L_fill_192_bytes_loop_pre_header_zmm); 10444 { 10445 movq(rtmp, to); 10446 andq(rtmp, 63); 10447 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm); 10448 negq(rtmp); 10449 addq(rtmp, 64); 10450 mov64(r8, -1L); 10451 bzhiq(r8, r8, rtmp); 10452 kmovql(k2, r8); 10453 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit); 10454 addq(to, rtmp); 10455 shrq(rtmp, shift); 10456 subq(count, rtmp); 10457 } 10458 10459 cmpq(count, 192 >> shift); 10460 jcc(Assembler::less, L_fill_start_zmm_sequence); 10461 10462 bind(L_fill_192_bytes_loop_header_zmm); 10463 subq(count, 192 >> shift); 10464 10465 align32(); 10466 bind(L_fill_192_bytes_loop_zmm); 10467 fill64(to, 0, xtmp, true); 10468 fill64(to, 64, xtmp, true); 10469 fill64(to, 128, xtmp, true); 10470 addq(to, 192); 10471 subq(count, 192 >> shift); 10472 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm); 10473 10474 addq(count, 192 >> shift); 10475 jcc(Assembler::zero, L_exit); 10476 jmp(L_fill_start_zmm_sequence); 10477 } 10478 bind(L_exit); 10479 } 10480 #endif 10481 #endif //COMPILER2_OR_JVMCI 10482 10483 10484 #ifdef _LP64 10485 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) { 10486 Label done; 10487 cvttss2sil(dst, src); 10488 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10489 cmpl(dst, 0x80000000); // float_sign_flip 10490 jccb(Assembler::notEqual, done); 10491 subptr(rsp, 8); 10492 movflt(Address(rsp, 0), src); 10493 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup()))); 10494 pop(dst); 10495 bind(done); 10496 } 10497 10498 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) { 10499 Label done; 10500 cvttsd2sil(dst, src); 10501 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10502 cmpl(dst, 0x80000000); // float_sign_flip 10503 jccb(Assembler::notEqual, done); 10504 subptr(rsp, 8); 10505 movdbl(Address(rsp, 0), src); 10506 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup()))); 10507 pop(dst); 10508 bind(done); 10509 } 10510 10511 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) { 10512 Label done; 10513 cvttss2siq(dst, src); 10514 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10515 jccb(Assembler::notEqual, done); 10516 subptr(rsp, 8); 10517 movflt(Address(rsp, 0), src); 10518 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup()))); 10519 pop(dst); 10520 bind(done); 10521 } 10522 10523 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10524 // Following code is line by line assembly translation rounding algorithm. 10525 // Please refer to java.lang.Math.round(float) algorithm for details. 10526 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000; 10527 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24; 10528 const int32_t FloatConsts_EXP_BIAS = 127; 10529 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF; 10530 const int32_t MINUS_32 = 0xFFFFFFE0; 10531 Label L_special_case, L_block1, L_exit; 10532 movl(rtmp, FloatConsts_EXP_BIT_MASK); 10533 movdl(dst, src); 10534 andl(dst, rtmp); 10535 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1); 10536 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS); 10537 subl(rtmp, dst); 10538 movl(rcx, rtmp); 10539 movl(dst, MINUS_32); 10540 testl(rtmp, dst); 10541 jccb(Assembler::notEqual, L_special_case); 10542 movdl(dst, src); 10543 andl(dst, FloatConsts_SIGNIF_BIT_MASK); 10544 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1); 10545 movdl(rtmp, src); 10546 testl(rtmp, rtmp); 10547 jccb(Assembler::greaterEqual, L_block1); 10548 negl(dst); 10549 bind(L_block1); 10550 sarl(dst); 10551 addl(dst, 0x1); 10552 sarl(dst, 0x1); 10553 jmp(L_exit); 10554 bind(L_special_case); 10555 convert_f2i(dst, src); 10556 bind(L_exit); 10557 } 10558 10559 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10560 // Following code is line by line assembly translation rounding algorithm. 10561 // Please refer to java.lang.Math.round(double) algorithm for details. 10562 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L; 10563 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53; 10564 const int64_t DoubleConsts_EXP_BIAS = 1023; 10565 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL; 10566 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L; 10567 Label L_special_case, L_block1, L_exit; 10568 mov64(rtmp, DoubleConsts_EXP_BIT_MASK); 10569 movq(dst, src); 10570 andq(dst, rtmp); 10571 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1); 10572 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS); 10573 subq(rtmp, dst); 10574 movq(rcx, rtmp); 10575 mov64(dst, MINUS_64); 10576 testq(rtmp, dst); 10577 jccb(Assembler::notEqual, L_special_case); 10578 movq(dst, src); 10579 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK); 10580 andq(dst, rtmp); 10581 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1); 10582 orq(dst, rtmp); 10583 movq(rtmp, src); 10584 testq(rtmp, rtmp); 10585 jccb(Assembler::greaterEqual, L_block1); 10586 negq(dst); 10587 bind(L_block1); 10588 sarq(dst); 10589 addq(dst, 0x1); 10590 sarq(dst, 0x1); 10591 jmp(L_exit); 10592 bind(L_special_case); 10593 convert_d2l(dst, src); 10594 bind(L_exit); 10595 } 10596 10597 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) { 10598 Label done; 10599 cvttsd2siq(dst, src); 10600 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10601 jccb(Assembler::notEqual, done); 10602 subptr(rsp, 8); 10603 movdbl(Address(rsp, 0), src); 10604 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 10605 pop(dst); 10606 bind(done); 10607 } 10608 10609 void MacroAssembler::cache_wb(Address line) 10610 { 10611 // 64 bit cpus always support clflush 10612 assert(VM_Version::supports_clflush(), "clflush should be available"); 10613 bool optimized = VM_Version::supports_clflushopt(); 10614 bool no_evict = VM_Version::supports_clwb(); 10615 10616 // prefer clwb (writeback without evict) otherwise 10617 // prefer clflushopt (potentially parallel writeback with evict) 10618 // otherwise fallback on clflush (serial writeback with evict) 10619 10620 if (optimized) { 10621 if (no_evict) { 10622 clwb(line); 10623 } else { 10624 clflushopt(line); 10625 } 10626 } else { 10627 // no need for fence when using CLFLUSH 10628 clflush(line); 10629 } 10630 } 10631 10632 void MacroAssembler::cache_wbsync(bool is_pre) 10633 { 10634 assert(VM_Version::supports_clflush(), "clflush should be available"); 10635 bool optimized = VM_Version::supports_clflushopt(); 10636 bool no_evict = VM_Version::supports_clwb(); 10637 10638 // pick the correct implementation 10639 10640 if (!is_pre && (optimized || no_evict)) { 10641 // need an sfence for post flush when using clflushopt or clwb 10642 // otherwise no no need for any synchroniaztion 10643 10644 sfence(); 10645 } 10646 } 10647 10648 #endif // _LP64 10649 10650 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { 10651 switch (cond) { 10652 // Note some conditions are synonyms for others 10653 case Assembler::zero: return Assembler::notZero; 10654 case Assembler::notZero: return Assembler::zero; 10655 case Assembler::less: return Assembler::greaterEqual; 10656 case Assembler::lessEqual: return Assembler::greater; 10657 case Assembler::greater: return Assembler::lessEqual; 10658 case Assembler::greaterEqual: return Assembler::less; 10659 case Assembler::below: return Assembler::aboveEqual; 10660 case Assembler::belowEqual: return Assembler::above; 10661 case Assembler::above: return Assembler::belowEqual; 10662 case Assembler::aboveEqual: return Assembler::below; 10663 case Assembler::overflow: return Assembler::noOverflow; 10664 case Assembler::noOverflow: return Assembler::overflow; 10665 case Assembler::negative: return Assembler::positive; 10666 case Assembler::positive: return Assembler::negative; 10667 case Assembler::parity: return Assembler::noParity; 10668 case Assembler::noParity: return Assembler::parity; 10669 } 10670 ShouldNotReachHere(); return Assembler::overflow; 10671 } 10672 10673 // This is simply a call to Thread::current() 10674 void MacroAssembler::get_thread(Register thread) { 10675 if (thread != rax) { 10676 push(rax); 10677 } 10678 LP64_ONLY(push(rdi);) 10679 LP64_ONLY(push(rsi);) 10680 push(rdx); 10681 push(rcx); 10682 #ifdef _LP64 10683 push(r8); 10684 push(r9); 10685 push(r10); 10686 push(r11); 10687 #endif 10688 10689 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0); 10690 10691 #ifdef _LP64 10692 pop(r11); 10693 pop(r10); 10694 pop(r9); 10695 pop(r8); 10696 #endif 10697 pop(rcx); 10698 pop(rdx); 10699 LP64_ONLY(pop(rsi);) 10700 LP64_ONLY(pop(rdi);) 10701 if (thread != rax) { 10702 mov(thread, rax); 10703 pop(rax); 10704 } 10705 } 10706 10707 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) { 10708 Label L_stack_ok; 10709 if (bias == 0) { 10710 testptr(sp, 2 * wordSize - 1); 10711 } else { 10712 // lea(tmp, Address(rsp, bias); 10713 mov(tmp, sp); 10714 addptr(tmp, bias); 10715 testptr(tmp, 2 * wordSize - 1); 10716 } 10717 jcc(Assembler::equal, L_stack_ok); 10718 block_comment(msg); 10719 stop(msg); 10720 bind(L_stack_ok); 10721 } 10722 10723 // Implements lightweight-locking. 10724 // 10725 // obj: the object to be locked 10726 // reg_rax: rax 10727 // thread: the thread which attempts to lock obj 10728 // tmp: a temporary register 10729 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 10730 assert(reg_rax == rax, ""); 10731 assert_different_registers(basic_lock, obj, reg_rax, thread, tmp); 10732 10733 Label push; 10734 const Register top = tmp; 10735 10736 // Preload the markWord. It is important that this is the first 10737 // instruction emitted as it is part of C1's null check semantics. 10738 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10739 10740 if (UseObjectMonitorTable) { 10741 // Clear cache in case fast locking succeeds. 10742 movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0); 10743 } 10744 10745 // Load top. 10746 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10747 10748 // Check if the lock-stack is full. 10749 cmpl(top, LockStack::end_offset()); 10750 jcc(Assembler::greaterEqual, slow); 10751 10752 // Check for recursion. 10753 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10754 jcc(Assembler::equal, push); 10755 10756 // Check header for monitor (0b10). 10757 testptr(reg_rax, markWord::monitor_value); 10758 jcc(Assembler::notZero, slow); 10759 10760 // Try to lock. Transition lock bits 0b01 => 0b00 10761 movptr(tmp, reg_rax); 10762 andptr(tmp, ~(int32_t)markWord::unlocked_value); 10763 orptr(reg_rax, markWord::unlocked_value); 10764 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10765 jcc(Assembler::notEqual, slow); 10766 10767 // Restore top, CAS clobbers register. 10768 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10769 10770 bind(push); 10771 // After successful lock, push object on lock-stack. 10772 movptr(Address(thread, top), obj); 10773 incrementl(top, oopSize); 10774 movl(Address(thread, JavaThread::lock_stack_top_offset()), top); 10775 } 10776 10777 // Implements lightweight-unlocking. 10778 // 10779 // obj: the object to be unlocked 10780 // reg_rax: rax 10781 // thread: the thread 10782 // tmp: a temporary register 10783 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 10784 assert(reg_rax == rax, ""); 10785 assert_different_registers(obj, reg_rax, thread, tmp); 10786 10787 Label unlocked, push_and_slow; 10788 const Register top = tmp; 10789 10790 // Check if obj is top of lock-stack. 10791 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10792 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10793 jcc(Assembler::notEqual, slow); 10794 10795 // Pop lock-stack. 10796 DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);) 10797 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10798 10799 // Check if recursive. 10800 cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize)); 10801 jcc(Assembler::equal, unlocked); 10802 10803 // Not recursive. Check header for monitor (0b10). 10804 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10805 testptr(reg_rax, markWord::monitor_value); 10806 jcc(Assembler::notZero, push_and_slow); 10807 10808 #ifdef ASSERT 10809 // Check header not unlocked (0b01). 10810 Label not_unlocked; 10811 testptr(reg_rax, markWord::unlocked_value); 10812 jcc(Assembler::zero, not_unlocked); 10813 stop("lightweight_unlock already unlocked"); 10814 bind(not_unlocked); 10815 #endif 10816 10817 // Try to unlock. Transition lock bits 0b00 => 0b01 10818 movptr(tmp, reg_rax); 10819 orptr(tmp, markWord::unlocked_value); 10820 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10821 jcc(Assembler::equal, unlocked); 10822 10823 bind(push_and_slow); 10824 // Restore lock-stack and handle the unlock in runtime. 10825 #ifdef ASSERT 10826 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10827 movptr(Address(thread, top), obj); 10828 #endif 10829 addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10830 jmp(slow); 10831 10832 bind(unlocked); 10833 } 10834 10835 #ifdef _LP64 10836 // Saves legacy GPRs state on stack. 10837 void MacroAssembler::save_legacy_gprs() { 10838 subq(rsp, 16 * wordSize); 10839 movq(Address(rsp, 15 * wordSize), rax); 10840 movq(Address(rsp, 14 * wordSize), rcx); 10841 movq(Address(rsp, 13 * wordSize), rdx); 10842 movq(Address(rsp, 12 * wordSize), rbx); 10843 movq(Address(rsp, 10 * wordSize), rbp); 10844 movq(Address(rsp, 9 * wordSize), rsi); 10845 movq(Address(rsp, 8 * wordSize), rdi); 10846 movq(Address(rsp, 7 * wordSize), r8); 10847 movq(Address(rsp, 6 * wordSize), r9); 10848 movq(Address(rsp, 5 * wordSize), r10); 10849 movq(Address(rsp, 4 * wordSize), r11); 10850 movq(Address(rsp, 3 * wordSize), r12); 10851 movq(Address(rsp, 2 * wordSize), r13); 10852 movq(Address(rsp, wordSize), r14); 10853 movq(Address(rsp, 0), r15); 10854 } 10855 10856 // Resotres back legacy GPRs state from stack. 10857 void MacroAssembler::restore_legacy_gprs() { 10858 movq(r15, Address(rsp, 0)); 10859 movq(r14, Address(rsp, wordSize)); 10860 movq(r13, Address(rsp, 2 * wordSize)); 10861 movq(r12, Address(rsp, 3 * wordSize)); 10862 movq(r11, Address(rsp, 4 * wordSize)); 10863 movq(r10, Address(rsp, 5 * wordSize)); 10864 movq(r9, Address(rsp, 6 * wordSize)); 10865 movq(r8, Address(rsp, 7 * wordSize)); 10866 movq(rdi, Address(rsp, 8 * wordSize)); 10867 movq(rsi, Address(rsp, 9 * wordSize)); 10868 movq(rbp, Address(rsp, 10 * wordSize)); 10869 movq(rbx, Address(rsp, 12 * wordSize)); 10870 movq(rdx, Address(rsp, 13 * wordSize)); 10871 movq(rcx, Address(rsp, 14 * wordSize)); 10872 movq(rax, Address(rsp, 15 * wordSize)); 10873 addq(rsp, 16 * wordSize); 10874 } 10875 10876 void MacroAssembler::load_aotrc_address(Register reg, address a) { 10877 #if INCLUDE_CDS 10878 assert(AOTRuntimeConstants::contains(a), "address out of range for data area"); 10879 if (SCCache::is_on_for_write()) { 10880 // all aotrc field addresses should be registered in the SCC address table 10881 lea(reg, ExternalAddress(a)); 10882 } else { 10883 mov64(reg, (uint64_t)a); 10884 } 10885 #else 10886 ShouldNotReachHere(); 10887 #endif 10888 } 10889 10890 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) { 10891 if (VM_Version::supports_apx_f()) { 10892 esetzucc(comparison, dst); 10893 } else { 10894 setb(comparison, dst); 10895 movzbl(dst, dst); 10896 } 10897 } 10898 10899 #endif