1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "asm/register.hpp"
  30 #include "code/vmreg.inline.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "utilities/macros.hpp"
  33 #include "runtime/vm_version.hpp"
  34 #include "utilities/checkedCast.hpp"
  35 
  36 // MacroAssembler extends Assembler by frequently used macros.
  37 //
  38 // Instructions for which a 'better' code sequence exists depending
  39 // on arguments should also go in here.
  40 
  41 class MacroAssembler: public Assembler {
  42   friend class LIR_Assembler;
  43   friend class Runtime1;      // as_Address()
  44 
  45  public:
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57  protected:
  58   // This is the base routine called by the different versions of call_VM. The interpreter
  59   // may customize this version by overriding it for its purposes (e.g., to save/restore
  60   // additional registers when doing a VM call).
  61   //
  62   // call_VM_base returns the register which contains the thread upon return.
  63   // If no last_java_sp is specified (noreg) than rsp will be used instead.
  64   virtual void call_VM_base(           // returns the register containing the thread upon return
  65     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  66     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  67     address  entry_point,              // the entry point
  68     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  69     bool     check_exceptions          // whether to check for pending exceptions after return
  70   );
  71 
  72   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  73 
  74  public:
  75   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  76 
  77  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  78  // The implementation is only non-empty for the InterpreterMacroAssembler,
  79  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  80  virtual void check_and_handle_popframe();
  81  virtual void check_and_handle_earlyret();
  82 
  83   Address as_Address(AddressLiteral adr);
  84   Address as_Address(ArrayAddress adr, Register rscratch);
  85 
  86   // Support for null-checks
  87   //
  88   // Generates code that causes a null OS exception if the content of reg is null.
  89   // If the accessed location is M[reg + offset] and the offset is known, provide the
  90   // offset. No explicit code generation is needed if the offset is within a certain
  91   // range (0 <= offset <= page_size).
  92 
  93   void null_check(Register reg, int offset = -1);
  94   static bool needs_explicit_null_check(intptr_t offset);
  95   static bool uses_implicit_null_check(void* address);
  96 
  97   // Required platform-specific helpers for Label::patch_instructions.
  98   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  99   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 100     unsigned char op = branch[0];
 101     assert(op == 0xE8 /* call */ ||
 102         op == 0xE9 /* jmp */ ||
 103         op == 0xEB /* short jmp */ ||
 104         (op & 0xF0) == 0x70 /* short jcc */ ||
 105         (op == 0x0F && (branch[1] & 0xF0) == 0x80) /* jcc */ ||
 106         (op == 0xC7 && branch[1] == 0xF8) /* xbegin */ ||
 107         (op == 0x8D) /* lea */,
 108         "Invalid opcode at patch point");
 109 
 110     if (op == 0xEB || (op & 0xF0) == 0x70) {
 111       // short offset operators (jmp and jcc)
 112       char* disp = (char*) &branch[1];
 113       int imm8 = checked_cast<int>(target - (address) &disp[1]);
 114       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 115                 file == nullptr ? "<null>" : file, line);
 116       *disp = (char)imm8;
 117     } else {
 118       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7 || op == 0x8D) ? 2 : 1];
 119       int imm32 = checked_cast<int>(target - (address) &disp[1]);
 120       *disp = imm32;
 121     }
 122   }
 123 
 124   // The following 4 methods return the offset of the appropriate move instruction
 125 
 126   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 127   int load_unsigned_byte(Register dst, Address src);
 128   int load_unsigned_short(Register dst, Address src);
 129 
 130   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 131   int load_signed_byte(Register dst, Address src);
 132   int load_signed_short(Register dst, Address src);
 133 
 134   // Support for sign-extension (hi:lo = extend_sign(lo))
 135   void extend_sign(Register hi, Register lo);
 136 
 137   // Load and store values by size and signed-ness
 138   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 139   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 140 
 141   // Support for inc/dec with optimal instruction selection depending on value
 142 
 143   void increment(Register reg, int value = 1) { incrementq(reg, value); }
 144   void decrement(Register reg, int value = 1) { decrementq(reg, value); }
 145   void increment(Address dst, int value = 1)  { incrementq(dst, value); }
 146   void decrement(Address dst, int value = 1)  { decrementq(dst, value); }
 147 
 148   void decrementl(Address dst, int value = 1);
 149   void decrementl(Register reg, int value = 1);
 150 
 151   void decrementq(Register reg, int value = 1);
 152   void decrementq(Address dst, int value = 1);
 153 
 154   void incrementl(Address dst, int value = 1);
 155   void incrementl(Register reg, int value = 1);
 156 
 157   void incrementq(Register reg, int value = 1);
 158   void incrementq(Address dst, int value = 1);
 159 
 160   void incrementl(AddressLiteral dst, Register rscratch = noreg);
 161   void incrementl(ArrayAddress   dst, Register rscratch);
 162 
 163   void incrementq(AddressLiteral dst, Register rscratch = noreg);
 164 
 165   // Support optimal SSE move instructions.
 166   void movflt(XMMRegister dst, XMMRegister src) {
 167     if (dst-> encoding() == src->encoding()) return;
 168     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 169     else                       { movss (dst, src); return; }
 170   }
 171   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 172   void movflt(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 173   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 174 
 175   // Move with zero extension
 176   void movfltz(XMMRegister dst, XMMRegister src) { movss(dst, src); }
 177 
 178   void movdbl(XMMRegister dst, XMMRegister src) {
 179     if (dst-> encoding() == src->encoding()) return;
 180     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 181     else                       { movsd (dst, src); return; }
 182   }
 183 
 184   void movdbl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 185 
 186   void movdbl(XMMRegister dst, Address src) {
 187     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 188     else                         { movlpd(dst, src); return; }
 189   }
 190   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 191 
 192   void flt_to_flt16(Register dst, XMMRegister src, XMMRegister tmp) {
 193     // Use separate tmp XMM register because caller may
 194     // requires src XMM register to be unchanged (as in x86.ad).
 195     vcvtps2ph(tmp, src, 0x04, Assembler::AVX_128bit);
 196     movdl(dst, tmp);
 197     movswl(dst, dst);
 198   }
 199 
 200   void flt16_to_flt(XMMRegister dst, Register src) {
 201     movdl(dst, src);
 202     vcvtph2ps(dst, dst, Assembler::AVX_128bit);
 203   }
 204 
 205   // Alignment
 206   void align32();
 207   void align64();
 208   void align(uint modulus);
 209   void align(uint modulus, uint target);
 210 
 211   void post_call_nop();
 212 
 213   // Stack frame creation/removal
 214   void enter();
 215   void leave();
 216 
 217   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information).
 218   // The pointer will be loaded into the thread register. This is a slow version that does native call.
 219   // Normally, JavaThread pointer is available in r15_thread, use that where possible.
 220   void get_thread_slow(Register thread);
 221 
 222   // Support for argument shuffling
 223 
 224   // bias in bytes
 225   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 226   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 227   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 228   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 229   void move_ptr(VMRegPair src, VMRegPair dst);
 230   void object_move(OopMap* map,
 231                    int oop_handle_offset,
 232                    int framesize_in_slots,
 233                    VMRegPair src,
 234                    VMRegPair dst,
 235                    bool is_receiver,
 236                    int* receiver_offset);
 237 
 238   // Support for VM calls
 239   //
 240   // It is imperative that all calls into the VM are handled via the call_VM macros.
 241   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 242   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 243 
 244 
 245   void call_VM(Register oop_result,
 246                address entry_point,
 247                bool check_exceptions = true);
 248   void call_VM(Register oop_result,
 249                address entry_point,
 250                Register arg_1,
 251                bool check_exceptions = true);
 252   void call_VM(Register oop_result,
 253                address entry_point,
 254                Register arg_1, Register arg_2,
 255                bool check_exceptions = true);
 256   void call_VM(Register oop_result,
 257                address entry_point,
 258                Register arg_1, Register arg_2, Register arg_3,
 259                bool check_exceptions = true);
 260 
 261   // Overloadings with last_Java_sp
 262   void call_VM(Register oop_result,
 263                Register last_java_sp,
 264                address entry_point,
 265                int number_of_arguments = 0,
 266                bool check_exceptions = true);
 267   void call_VM(Register oop_result,
 268                Register last_java_sp,
 269                address entry_point,
 270                Register arg_1, bool
 271                check_exceptions = true);
 272   void call_VM(Register oop_result,
 273                Register last_java_sp,
 274                address entry_point,
 275                Register arg_1, Register arg_2,
 276                bool check_exceptions = true);
 277   void call_VM(Register oop_result,
 278                Register last_java_sp,
 279                address entry_point,
 280                Register arg_1, Register arg_2, Register arg_3,
 281                bool check_exceptions = true);
 282 
 283   void get_vm_result_oop(Register oop_result);
 284   void get_vm_result_metadata(Register metadata_result);
 285 
 286   // These always tightly bind to MacroAssembler::call_VM_base
 287   // bypassing the virtual implementation
 288   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 289   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 290   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 291   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 292   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 293 
 294   void call_VM_leaf0(address entry_point);
 295   void call_VM_leaf(address entry_point,
 296                     int number_of_arguments = 0);
 297   void call_VM_leaf(address entry_point,
 298                     Register arg_1);
 299   void call_VM_leaf(address entry_point,
 300                     Register arg_1, Register arg_2);
 301   void call_VM_leaf(address entry_point,
 302                     Register arg_1, Register arg_2, Register arg_3);
 303 
 304   void call_VM_leaf(address entry_point,
 305                     Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 306 
 307   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 308   // bypassing the virtual implementation
 309   void super_call_VM_leaf(address entry_point);
 310   void super_call_VM_leaf(address entry_point, Register arg_1);
 311   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 312   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 313   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 314 
 315   void set_last_Java_frame(Register last_java_sp,
 316                            Register last_java_fp,
 317                            address  last_java_pc,
 318                            Register rscratch);
 319 
 320   void set_last_Java_frame(Register last_java_sp,
 321                            Register last_java_fp,
 322                            Label &last_java_pc,
 323                            Register scratch);
 324 
 325   void reset_last_Java_frame(bool clear_fp);
 326 
 327   // jobjects
 328   void clear_jobject_tag(Register possibly_non_local);
 329   void resolve_jobject(Register value, Register tmp);
 330   void resolve_global_jobject(Register value, Register tmp);
 331 
 332   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 333   void c2bool(Register x);
 334 
 335   // C++ bool manipulation
 336 
 337   void movbool(Register dst, Address src);
 338   void movbool(Address dst, bool boolconst);
 339   void movbool(Address dst, Register src);
 340   void testbool(Register dst);
 341 
 342   void resolve_oop_handle(Register result, Register tmp);
 343   void resolve_weak_handle(Register result, Register tmp);
 344   void load_mirror(Register mirror, Register method, Register tmp);
 345   void load_method_holder_cld(Register rresult, Register rmethod);
 346 
 347   void load_method_holder(Register holder, Register method);
 348 
 349   // oop manipulations
 350   void load_narrow_klass_compact(Register dst, Register src);
 351   void load_klass(Register dst, Register src, Register tmp);
 352   void store_klass(Register dst, Register src, Register tmp);
 353 
 354   // Compares the Klass pointer of an object to a given Klass (which might be narrow,
 355   // depending on UseCompressedClassPointers).
 356   void cmp_klass(Register klass, Register obj, Register tmp);
 357 
 358   // Compares the Klass pointer of two objects obj1 and obj2. Result is in the condition flags.
 359   // Uses tmp1 and tmp2 as temporary registers.
 360   void cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2);
 361 
 362   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 363                       Register tmp1);
 364   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 365                        Register tmp1, Register tmp2, Register tmp3);
 366 
 367   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg, DecoratorSet decorators = 0);
 368   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg, DecoratorSet decorators = 0);
 369   void store_heap_oop(Address dst, Register val, Register tmp1 = noreg,
 370                       Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 371 
 372   // Used for storing null. All other oop constants should be
 373   // stored using routines that take a jobject.
 374   void store_heap_oop_null(Address dst);
 375 
 376   void store_klass_gap(Register dst, Register src);
 377 
 378   // This dummy is to prevent a call to store_heap_oop from
 379   // converting a zero (like null) into a Register by giving
 380   // the compiler two choices it can't resolve
 381 
 382   void store_heap_oop(Address dst, void* dummy);
 383 
 384   void encode_heap_oop(Register r);
 385   void decode_heap_oop(Register r);
 386   void encode_heap_oop_not_null(Register r);
 387   void decode_heap_oop_not_null(Register r);
 388   void encode_heap_oop_not_null(Register dst, Register src);
 389   void decode_heap_oop_not_null(Register dst, Register src);
 390 
 391   void set_narrow_oop(Register dst, jobject obj);
 392   void set_narrow_oop(Address dst, jobject obj);
 393   void cmp_narrow_oop(Register dst, jobject obj);
 394   void cmp_narrow_oop(Address dst, jobject obj);
 395 
 396   void encode_klass_not_null(Register r, Register tmp);
 397   void decode_klass_not_null(Register r, Register tmp);
 398   void encode_and_move_klass_not_null(Register dst, Register src);
 399   void decode_and_move_klass_not_null(Register dst, Register src);
 400   void set_narrow_klass(Register dst, Klass* k);
 401   void set_narrow_klass(Address dst, Klass* k);
 402   void cmp_narrow_klass(Register dst, Klass* k);
 403   void cmp_narrow_klass(Address dst, Klass* k);
 404 
 405   // if heap base register is used - reinit it with the correct value
 406   void reinit_heapbase();
 407 
 408   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 409 
 410   // Int division/remainder for Java
 411   // (as idivl, but checks for special case as described in JVM spec.)
 412   // returns idivl instruction offset for implicit exception handling
 413   int corrected_idivl(Register reg);
 414 
 415   // Long division/remainder for Java
 416   // (as idivq, but checks for special case as described in JVM spec.)
 417   // returns idivq instruction offset for implicit exception handling
 418   int corrected_idivq(Register reg);
 419 
 420   void int3();
 421 
 422   // Long operation macros for a 32bit cpu
 423   // Long negation for Java
 424   void lneg(Register hi, Register lo);
 425 
 426   // Long multiplication for Java
 427   // (destroys contents of eax, ebx, ecx and edx)
 428   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 429 
 430   // Long shifts for Java
 431   // (semantics as described in JVM spec.)
 432   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 433   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 434 
 435   // Long compare for Java
 436   // (semantics as described in JVM spec.)
 437   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 438 
 439 
 440   // misc
 441 
 442   // Sign extension
 443   void sign_extend_short(Register reg);
 444   void sign_extend_byte(Register reg);
 445 
 446   // Division by power of 2, rounding towards 0
 447   void division_with_shift(Register reg, int shift_value);
 448 
 449   // dst = c = a * b + c
 450   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 451   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 452 
 453   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 454   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 455   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 456   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 457 
 458 
 459   // same as fcmp2int, but using SSE2
 460   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 461   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 462 
 463   void push_IU_state();
 464   void pop_IU_state();
 465 
 466   void push_FPU_state();
 467   void pop_FPU_state();
 468 
 469   void push_CPU_state();
 470   void pop_CPU_state();
 471 
 472   void push_cont_fastpath();
 473   void pop_cont_fastpath();
 474 
 475   void inc_held_monitor_count();
 476   void dec_held_monitor_count();
 477 
 478   DEBUG_ONLY(void stop_if_in_cont(Register cont_reg, const char* name);)
 479 
 480   // Round up to a power of two
 481   void round_to(Register reg, int modulus);
 482 
 483 private:
 484   // General purpose and XMM registers potentially clobbered by native code; there
 485   // is no need for FPU or AVX opmask related methods because C1/interpreter
 486   // - we save/restore FPU state as a whole always
 487   // - do not care about AVX-512 opmask
 488   static RegSet call_clobbered_gp_registers();
 489   static XMMRegSet call_clobbered_xmm_registers();
 490 
 491   void push_set(XMMRegSet set, int offset);
 492   void pop_set(XMMRegSet set, int offset);
 493 
 494 public:
 495   void push_set(RegSet set, int offset = -1);
 496   void pop_set(RegSet set, int offset = -1);
 497 
 498   // Push and pop everything that might be clobbered by a native
 499   // runtime call.
 500   // Only save the lower 64 bits of each vector register.
 501   // Additional registers can be excluded in a passed RegSet.
 502   void push_call_clobbered_registers_except(RegSet exclude, bool save_fpu = true);
 503   void pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu = true);
 504 
 505   void push_call_clobbered_registers(bool save_fpu = true) {
 506     push_call_clobbered_registers_except(RegSet(), save_fpu);
 507   }
 508   void pop_call_clobbered_registers(bool restore_fpu = true) {
 509     pop_call_clobbered_registers_except(RegSet(), restore_fpu);
 510   }
 511 
 512   // allocation
 513   void tlab_allocate(
 514     Register obj,                      // result: pointer to object after successful allocation
 515     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 516     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 517     Register t1,                       // temp register
 518     Register t2,                       // temp register
 519     Label&   slow_case                 // continuation point if fast allocation fails
 520   );
 521   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 522 
 523   void population_count(Register dst, Register src, Register scratch1, Register scratch2);
 524 
 525   // interface method calling
 526   void lookup_interface_method(Register recv_klass,
 527                                Register intf_klass,
 528                                RegisterOrConstant itable_index,
 529                                Register method_result,
 530                                Register scan_temp,
 531                                Label& no_such_interface,
 532                                bool return_method = true);
 533 
 534   void lookup_interface_method_stub(Register recv_klass,
 535                                     Register holder_klass,
 536                                     Register resolved_klass,
 537                                     Register method_result,
 538                                     Register scan_temp,
 539                                     Register temp_reg2,
 540                                     Register receiver,
 541                                     int itable_index,
 542                                     Label& L_no_such_interface);
 543 
 544   // virtual method calling
 545   void lookup_virtual_method(Register recv_klass,
 546                              RegisterOrConstant vtable_index,
 547                              Register method_result);
 548 
 549   // Test sub_klass against super_klass, with fast and slow paths.
 550 
 551   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 552   // One of the three labels can be null, meaning take the fall-through.
 553   // If super_check_offset is -1, the value is loaded up from super_klass.
 554   // No registers are killed, except temp_reg.
 555   void check_klass_subtype_fast_path(Register sub_klass,
 556                                      Register super_klass,
 557                                      Register temp_reg,
 558                                      Label* L_success,
 559                                      Label* L_failure,
 560                                      Label* L_slow_path,
 561                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 562 
 563   // The rest of the type check; must be wired to a corresponding fast path.
 564   // It does not repeat the fast path logic, so don't use it standalone.
 565   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 566   // Updates the sub's secondary super cache as necessary.
 567   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 568   void check_klass_subtype_slow_path(Register sub_klass,
 569                                      Register super_klass,
 570                                      Register temp_reg,
 571                                      Register temp2_reg,
 572                                      Label* L_success,
 573                                      Label* L_failure,
 574                                      bool set_cond_codes = false);
 575 
 576   // The 64-bit version, which may do a hashed subclass lookup.
 577   void check_klass_subtype_slow_path(Register sub_klass,
 578                                      Register super_klass,
 579                                      Register temp_reg,
 580                                      Register temp2_reg,
 581                                      Register temp3_reg,
 582                                      Register temp4_reg,
 583                                      Label* L_success,
 584                                      Label* L_failure);
 585 
 586   // Three parts of a hashed subclass lookup: a simple linear search,
 587   // a table lookup, and a fallback that does linear probing in the
 588   // event of a hash collision.
 589   void check_klass_subtype_slow_path_linear(Register sub_klass,
 590                                             Register super_klass,
 591                                             Register temp_reg,
 592                                             Register temp2_reg,
 593                                             Label* L_success,
 594                                             Label* L_failure,
 595                                             bool set_cond_codes = false);
 596   void check_klass_subtype_slow_path_table(Register sub_klass,
 597                                            Register super_klass,
 598                                            Register temp_reg,
 599                                            Register temp2_reg,
 600                                            Register temp3_reg,
 601                                            Register result_reg,
 602                                            Label* L_success,
 603                                            Label* L_failure);
 604   void hashed_check_klass_subtype_slow_path(Register sub_klass,
 605                                             Register super_klass,
 606                                             Register temp_reg,
 607                                             Label* L_success,
 608                                             Label* L_failure);
 609 
 610   // As above, but with a constant super_klass.
 611   // The result is in Register result, not the condition codes.
 612   void lookup_secondary_supers_table_const(Register sub_klass,
 613                                            Register super_klass,
 614                                            Register temp1,
 615                                            Register temp2,
 616                                            Register temp3,
 617                                            Register temp4,
 618                                            Register result,
 619                                            u1 super_klass_slot);
 620 
 621   using Assembler::salq;
 622   void salq(Register dest, Register count);
 623   using Assembler::rorq;
 624   void rorq(Register dest, Register count);
 625   void lookup_secondary_supers_table_var(Register sub_klass,
 626                                          Register super_klass,
 627                                          Register temp1,
 628                                          Register temp2,
 629                                          Register temp3,
 630                                          Register temp4,
 631                                          Register result);
 632 
 633   void lookup_secondary_supers_table_slow_path(Register r_super_klass,
 634                                                Register r_array_base,
 635                                                Register r_array_index,
 636                                                Register r_bitmap,
 637                                                Register temp1,
 638                                                Register temp2,
 639                                                Label* L_success,
 640                                                Label* L_failure = nullptr);
 641 
 642   void verify_secondary_supers_table(Register r_sub_klass,
 643                                      Register r_super_klass,
 644                                      Register expected,
 645                                      Register temp1,
 646                                      Register temp2,
 647                                      Register temp3);
 648 
 649   void repne_scanq(Register addr, Register value, Register count, Register limit,
 650                    Label* L_success,
 651                    Label* L_failure = nullptr);
 652 
 653   // If r is valid, return r.
 654   // If r is invalid, remove a register r2 from available_regs, add r2
 655   // to regs_to_push, then return r2.
 656   Register allocate_if_noreg(const Register r,
 657                              RegSetIterator<Register> &available_regs,
 658                              RegSet &regs_to_push);
 659 
 660   // Simplified, combined version, good for typical uses.
 661   // Falls through on failure.
 662   void check_klass_subtype(Register sub_klass,
 663                            Register super_klass,
 664                            Register temp_reg,
 665                            Label& L_success);
 666 
 667   void clinit_barrier(Register klass,
 668                       Label* L_fast_path = nullptr,
 669                       Label* L_slow_path = nullptr);
 670 
 671   // method handles (JSR 292)
 672   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 673 
 674   // Debugging
 675 
 676   // only if +VerifyOops
 677   void _verify_oop(Register reg, const char* s, const char* file, int line);
 678   void _verify_oop_addr(Address addr, const char* s, const char* file, int line);
 679 
 680   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
 681     if (VerifyOops) {
 682       _verify_oop(reg, s, file, line);
 683     }
 684   }
 685   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
 686     if (VerifyOops) {
 687       _verify_oop_addr(reg, s, file, line);
 688     }
 689   }
 690 
 691   // TODO: verify method and klass metadata (compare against vptr?)
 692   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 693   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 694 
 695 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
 696 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
 697 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
 698 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 699 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 700 
 701   // Verify or restore cpu control state after JNI call
 702   void restore_cpu_control_state_after_jni(Register rscratch);
 703 
 704   // prints msg, dumps registers and stops execution
 705   void stop(const char* msg);
 706 
 707   // prints msg and continues
 708   void warn(const char* msg);
 709 
 710   // dumps registers and other state
 711   void print_state();
 712 
 713   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 714   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 715   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 716   static void print_state64(int64_t pc, int64_t regs[]);
 717 
 718   void os_breakpoint();
 719 
 720   void untested()                                { stop("untested"); }
 721 
 722   void unimplemented(const char* what = "");
 723 
 724   void should_not_reach_here()                   { stop("should not reach here"); }
 725 
 726   void print_CPU_state();
 727 
 728   // Stack overflow checking
 729   void bang_stack_with_offset(int offset) {
 730     // stack grows down, caller passes positive offset
 731     assert(offset > 0, "must bang with negative offset");
 732     movl(Address(rsp, (-offset)), rax);
 733   }
 734 
 735   // Writes to stack successive pages until offset reached to check for
 736   // stack overflow + shadow pages.  Also, clobbers tmp
 737   void bang_stack_size(Register size, Register tmp);
 738 
 739   // Check for reserved stack access in method being exited (for JIT)
 740   void reserved_stack_check();
 741 
 742   void safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod);
 743 
 744   void verify_tlab();
 745 
 746   static Condition negate_condition(Condition cond);
 747 
 748   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 749   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 750   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 751   // here in MacroAssembler. The major exception to this rule is call
 752 
 753   // Arithmetics
 754 
 755 
 756   void addptr(Address dst, int32_t src) { addq(dst, src); }
 757   void addptr(Address dst, Register src);
 758 
 759   void addptr(Register dst, Address src) { addq(dst, src); }
 760   void addptr(Register dst, int32_t src);
 761   void addptr(Register dst, Register src);
 762   void addptr(Register dst, RegisterOrConstant src) {
 763     if (src.is_constant()) addptr(dst, checked_cast<int>(src.as_constant()));
 764     else                   addptr(dst, src.as_register());
 765   }
 766 
 767   void andptr(Register dst, int32_t src);
 768   void andptr(Register src1, Register src2) { andq(src1, src2); }
 769 
 770   using Assembler::andq;
 771   void andq(Register dst, AddressLiteral src, Register rscratch = noreg);
 772 
 773   void cmp8(AddressLiteral src1, int imm, Register rscratch = noreg);
 774 
 775   // renamed to drag out the casting of address to int32_t/intptr_t
 776   void cmp32(Register src1, int32_t imm);
 777 
 778   void cmp32(AddressLiteral src1, int32_t imm, Register rscratch = noreg);
 779   // compare reg - mem, or reg - &mem
 780   void cmp32(Register src1, AddressLiteral src2, Register rscratch = noreg);
 781 
 782   void cmp32(Register src1, Address src2);
 783 
 784   void cmpoop(Register src1, Register src2);
 785   void cmpoop(Register src1, Address src2);
 786   void cmpoop(Register dst, jobject obj, Register rscratch);
 787 
 788   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 789   void cmpptr(Address src1, AddressLiteral src2, Register rscratch);
 790 
 791   void cmpptr(Register src1, AddressLiteral src2, Register rscratch = noreg);
 792 
 793   void cmpptr(Register src1, Register src2) { cmpq(src1, src2); }
 794   void cmpptr(Register src1, Address src2) { cmpq(src1, src2); }
 795 
 796   void cmpptr(Register src1, int32_t src2) { cmpq(src1, src2); }
 797   void cmpptr(Address src1, int32_t src2) { cmpq(src1, src2); }
 798 
 799   // cmp64 to avoild hiding cmpq
 800   void cmp64(Register src1, AddressLiteral src, Register rscratch = noreg);
 801 
 802   void cmpxchgptr(Register reg, Address adr);
 803 
 804   void locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch = noreg);
 805 
 806   void imulptr(Register dst, Register src) { imulq(dst, src); }
 807   void imulptr(Register dst, Register src, int imm32) { imulq(dst, src, imm32); }
 808 
 809 
 810   void negptr(Register dst) { negq(dst); }
 811 
 812   void notptr(Register dst) { notq(dst); }
 813 
 814   void shlptr(Register dst, int32_t shift);
 815   void shlptr(Register dst) { shlq(dst); }
 816 
 817   void shrptr(Register dst, int32_t shift);
 818   void shrptr(Register dst) { shrq(dst); }
 819 
 820   void sarptr(Register dst) { sarq(dst); }
 821   void sarptr(Register dst, int32_t src) { sarq(dst, src); }
 822 
 823   void subptr(Address dst, int32_t src) { subq(dst, src); }
 824 
 825   void subptr(Register dst, Address src) { subq(dst, src); }
 826   void subptr(Register dst, int32_t src);
 827   // Force generation of a 4 byte immediate value even if it fits into 8bit
 828   void subptr_imm32(Register dst, int32_t src);
 829   void subptr(Register dst, Register src);
 830   void subptr(Register dst, RegisterOrConstant src) {
 831     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 832     else                   subptr(dst,       src.as_register());
 833   }
 834 
 835   void sbbptr(Address dst, int32_t src) { sbbq(dst, src); }
 836   void sbbptr(Register dst, int32_t src) { sbbq(dst, src); }
 837 
 838   void xchgptr(Register src1, Register src2) { xchgq(src1, src2); }
 839   void xchgptr(Register src1, Address src2) { xchgq(src1, src2); }
 840 
 841   void xaddptr(Address src1, Register src2) { xaddq(src1, src2); }
 842 
 843 
 844 
 845   // Helper functions for statistics gathering.
 846   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 847   void cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch = noreg);
 848   // Unconditional atomic increment.
 849   void atomic_incl(Address counter_addr);
 850   void atomic_incl(AddressLiteral counter_addr, Register rscratch = noreg);
 851   void atomic_incq(Address counter_addr);
 852   void atomic_incq(AddressLiteral counter_addr, Register rscratch = noreg);
 853   void atomic_incptr(AddressLiteral counter_addr, Register rscratch = noreg) { atomic_incq(counter_addr, rscratch); }
 854   void atomic_incptr(Address counter_addr) { atomic_incq(counter_addr); }
 855 
 856   using Assembler::lea;
 857   void lea(Register dst, AddressLiteral adr);
 858   void lea(Address  dst, AddressLiteral adr, Register rscratch);
 859 
 860   void leal32(Register dst, Address src) { leal(dst, src); }
 861 
 862   // Import other testl() methods from the parent class or else
 863   // they will be hidden by the following overriding declaration.
 864   using Assembler::testl;
 865   void testl(Address dst, int32_t imm32);
 866   void testl(Register dst, int32_t imm32);
 867   void testl(Register dst, AddressLiteral src); // requires reachable address
 868   using Assembler::testq;
 869   void testq(Address dst, int32_t imm32);
 870   void testq(Register dst, int32_t imm32);
 871 
 872   void orptr(Register dst, Address src) { orq(dst, src); }
 873   void orptr(Register dst, Register src) { orq(dst, src); }
 874   void orptr(Register dst, int32_t src) { orq(dst, src); }
 875   void orptr(Address dst, int32_t imm32) { orq(dst, imm32); }
 876 
 877   void testptr(Register src, int32_t imm32) { testq(src, imm32); }
 878   void testptr(Register src1, Address src2) { testq(src1, src2); }
 879   void testptr(Address src, int32_t imm32) { testq(src, imm32); }
 880   void testptr(Register src1, Register src2);
 881 
 882   void xorptr(Register dst, Register src) { xorq(dst, src); }
 883   void xorptr(Register dst, Address src) { xorq(dst, src); }
 884 
 885   // Calls
 886 
 887   void call(Label& L, relocInfo::relocType rtype);
 888   void call(Register entry);
 889   void call(Address addr) { Assembler::call(addr); }
 890 
 891   // NOTE: this call transfers to the effective address of entry NOT
 892   // the address contained by entry. This is because this is more natural
 893   // for jumps/calls.
 894   void call(AddressLiteral entry, Register rscratch = rax);
 895 
 896   // Emit the CompiledIC call idiom
 897   void ic_call(address entry, jint method_index = 0);
 898   static int ic_check_size();
 899   int ic_check(int end_alignment);
 900 
 901   void emit_static_call_stub();
 902 
 903   // Jumps
 904 
 905   // NOTE: these jumps transfer to the effective address of dst NOT
 906   // the address contained by dst. This is because this is more natural
 907   // for jumps/calls.
 908   void jump(AddressLiteral dst, Register rscratch = noreg);
 909 
 910   void jump_cc(Condition cc, AddressLiteral dst, Register rscratch = noreg);
 911 
 912   // 32bit can do a case table jump in one instruction but we no longer allow the base
 913   // to be installed in the Address class. This jump will transfer to the address
 914   // contained in the location described by entry (not the address of entry)
 915   void jump(ArrayAddress entry, Register rscratch);
 916 
 917   // Adding more natural conditional jump instructions
 918   void ALWAYSINLINE jo(Label& L, bool maybe_short = true) { jcc(Assembler::overflow, L, maybe_short); }
 919   void ALWAYSINLINE jno(Label& L, bool maybe_short = true) { jcc(Assembler::noOverflow, L, maybe_short); }
 920   void ALWAYSINLINE js(Label& L, bool maybe_short = true) { jcc(Assembler::negative, L, maybe_short); }
 921   void ALWAYSINLINE jns(Label& L, bool maybe_short = true) { jcc(Assembler::positive, L, maybe_short); }
 922   void ALWAYSINLINE je(Label& L, bool maybe_short = true) { jcc(Assembler::equal, L, maybe_short); }
 923   void ALWAYSINLINE jz(Label& L, bool maybe_short = true) { jcc(Assembler::zero, L, maybe_short); }
 924   void ALWAYSINLINE jne(Label& L, bool maybe_short = true) { jcc(Assembler::notEqual, L, maybe_short); }
 925   void ALWAYSINLINE jnz(Label& L, bool maybe_short = true) { jcc(Assembler::notZero, L, maybe_short); }
 926   void ALWAYSINLINE jb(Label& L, bool maybe_short = true) { jcc(Assembler::below, L, maybe_short); }
 927   void ALWAYSINLINE jnae(Label& L, bool maybe_short = true) { jcc(Assembler::below, L, maybe_short); }
 928   void ALWAYSINLINE jc(Label& L, bool maybe_short = true) { jcc(Assembler::carrySet, L, maybe_short); }
 929   void ALWAYSINLINE jnb(Label& L, bool maybe_short = true) { jcc(Assembler::aboveEqual, L, maybe_short); }
 930   void ALWAYSINLINE jae(Label& L, bool maybe_short = true) { jcc(Assembler::aboveEqual, L, maybe_short); }
 931   void ALWAYSINLINE jnc(Label& L, bool maybe_short = true) { jcc(Assembler::carryClear, L, maybe_short); }
 932   void ALWAYSINLINE jbe(Label& L, bool maybe_short = true) { jcc(Assembler::belowEqual, L, maybe_short); }
 933   void ALWAYSINLINE jna(Label& L, bool maybe_short = true) { jcc(Assembler::belowEqual, L, maybe_short); }
 934   void ALWAYSINLINE ja(Label& L, bool maybe_short = true) { jcc(Assembler::above, L, maybe_short); }
 935   void ALWAYSINLINE jnbe(Label& L, bool maybe_short = true) { jcc(Assembler::above, L, maybe_short); }
 936   void ALWAYSINLINE jl(Label& L, bool maybe_short = true) { jcc(Assembler::less, L, maybe_short); }
 937   void ALWAYSINLINE jnge(Label& L, bool maybe_short = true) { jcc(Assembler::less, L, maybe_short); }
 938   void ALWAYSINLINE jge(Label& L, bool maybe_short = true) { jcc(Assembler::greaterEqual, L, maybe_short); }
 939   void ALWAYSINLINE jnl(Label& L, bool maybe_short = true) { jcc(Assembler::greaterEqual, L, maybe_short); }
 940   void ALWAYSINLINE jle(Label& L, bool maybe_short = true) { jcc(Assembler::lessEqual, L, maybe_short); }
 941   void ALWAYSINLINE jng(Label& L, bool maybe_short = true) { jcc(Assembler::lessEqual, L, maybe_short); }
 942   void ALWAYSINLINE jg(Label& L, bool maybe_short = true) { jcc(Assembler::greater, L, maybe_short); }
 943   void ALWAYSINLINE jnle(Label& L, bool maybe_short = true) { jcc(Assembler::greater, L, maybe_short); }
 944   void ALWAYSINLINE jp(Label& L, bool maybe_short = true) { jcc(Assembler::parity, L, maybe_short); }
 945   void ALWAYSINLINE jpe(Label& L, bool maybe_short = true) { jcc(Assembler::parity, L, maybe_short); }
 946   void ALWAYSINLINE jnp(Label& L, bool maybe_short = true) { jcc(Assembler::noParity, L, maybe_short); }
 947   void ALWAYSINLINE jpo(Label& L, bool maybe_short = true) { jcc(Assembler::noParity, L, maybe_short); }
 948   // * No condition for this *  void ALWAYSINLINE jcxz(Label& L, bool maybe_short = true) { jcc(Assembler::cxz, L, maybe_short); }
 949   // * No condition for this *  void ALWAYSINLINE jecxz(Label& L, bool maybe_short = true) { jcc(Assembler::cxz, L, maybe_short); }
 950 
 951   // Short versions of the above
 952   void ALWAYSINLINE jo_b(Label& L) { jccb(Assembler::overflow, L); }
 953   void ALWAYSINLINE jno_b(Label& L) { jccb(Assembler::noOverflow, L); }
 954   void ALWAYSINLINE js_b(Label& L) { jccb(Assembler::negative, L); }
 955   void ALWAYSINLINE jns_b(Label& L) { jccb(Assembler::positive, L); }
 956   void ALWAYSINLINE je_b(Label& L) { jccb(Assembler::equal, L); }
 957   void ALWAYSINLINE jz_b(Label& L) { jccb(Assembler::zero, L); }
 958   void ALWAYSINLINE jne_b(Label& L) { jccb(Assembler::notEqual, L); }
 959   void ALWAYSINLINE jnz_b(Label& L) { jccb(Assembler::notZero, L); }
 960   void ALWAYSINLINE jb_b(Label& L) { jccb(Assembler::below, L); }
 961   void ALWAYSINLINE jnae_b(Label& L) { jccb(Assembler::below, L); }
 962   void ALWAYSINLINE jc_b(Label& L) { jccb(Assembler::carrySet, L); }
 963   void ALWAYSINLINE jnb_b(Label& L) { jccb(Assembler::aboveEqual, L); }
 964   void ALWAYSINLINE jae_b(Label& L) { jccb(Assembler::aboveEqual, L); }
 965   void ALWAYSINLINE jnc_b(Label& L) { jccb(Assembler::carryClear, L); }
 966   void ALWAYSINLINE jbe_b(Label& L) { jccb(Assembler::belowEqual, L); }
 967   void ALWAYSINLINE jna_b(Label& L) { jccb(Assembler::belowEqual, L); }
 968   void ALWAYSINLINE ja_b(Label& L) { jccb(Assembler::above, L); }
 969   void ALWAYSINLINE jnbe_b(Label& L) { jccb(Assembler::above, L); }
 970   void ALWAYSINLINE jl_b(Label& L) { jccb(Assembler::less, L); }
 971   void ALWAYSINLINE jnge_b(Label& L) { jccb(Assembler::less, L); }
 972   void ALWAYSINLINE jge_b(Label& L) { jccb(Assembler::greaterEqual, L); }
 973   void ALWAYSINLINE jnl_b(Label& L) { jccb(Assembler::greaterEqual, L); }
 974   void ALWAYSINLINE jle_b(Label& L) { jccb(Assembler::lessEqual, L); }
 975   void ALWAYSINLINE jng_b(Label& L) { jccb(Assembler::lessEqual, L); }
 976   void ALWAYSINLINE jg_b(Label& L) { jccb(Assembler::greater, L); }
 977   void ALWAYSINLINE jnle_b(Label& L) { jccb(Assembler::greater, L); }
 978   void ALWAYSINLINE jp_b(Label& L) { jccb(Assembler::parity, L); }
 979   void ALWAYSINLINE jpe_b(Label& L) { jccb(Assembler::parity, L); }
 980   void ALWAYSINLINE jnp_b(Label& L) { jccb(Assembler::noParity, L); }
 981   void ALWAYSINLINE jpo_b(Label& L) { jccb(Assembler::noParity, L); }
 982   // * No condition for this *  void ALWAYSINLINE jcxz_b(Label& L) { jccb(Assembler::cxz, L); }
 983   // * No condition for this *  void ALWAYSINLINE jecxz_b(Label& L) { jccb(Assembler::cxz, L); }
 984 
 985   // Floating
 986 
 987   void push_f(XMMRegister r);
 988   void pop_f(XMMRegister r);
 989   void push_d(XMMRegister r);
 990   void pop_d(XMMRegister r);
 991 
 992   void push_ppx(Register src);
 993   void pop_ppx(Register dst);
 994 
 995   void andpd(XMMRegister dst, XMMRegister    src) { Assembler::andpd(dst, src); }
 996   void andpd(XMMRegister dst, Address        src) { Assembler::andpd(dst, src); }
 997   void andpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 998 
 999   void andnpd(XMMRegister dst, XMMRegister src) { Assembler::andnpd(dst, src); }
1000 
1001   void andps(XMMRegister dst, XMMRegister    src) { Assembler::andps(dst, src); }
1002   void andps(XMMRegister dst, Address        src) { Assembler::andps(dst, src); }
1003   void andps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1004 
1005   void comiss(XMMRegister dst, XMMRegister    src) { Assembler::comiss(dst, src); }
1006   void comiss(XMMRegister dst, Address        src) { Assembler::comiss(dst, src); }
1007   void comiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1008 
1009   void comisd(XMMRegister dst, XMMRegister    src) { Assembler::comisd(dst, src); }
1010   void comisd(XMMRegister dst, Address        src) { Assembler::comisd(dst, src); }
1011   void comisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1012 
1013   void orpd(XMMRegister dst, XMMRegister src) { Assembler::orpd(dst, src); }
1014 
1015   void cmp32_mxcsr_std(Address mxcsr_save, Register tmp, Register rscratch = noreg);
1016   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
1017   void ldmxcsr(AddressLiteral src, Register rscratch = noreg);
1018 
1019  private:
1020   void sha256_AVX2_one_round_compute(
1021     Register  reg_old_h,
1022     Register  reg_a,
1023     Register  reg_b,
1024     Register  reg_c,
1025     Register  reg_d,
1026     Register  reg_e,
1027     Register  reg_f,
1028     Register  reg_g,
1029     Register  reg_h,
1030     int iter);
1031   void sha256_AVX2_four_rounds_compute_first(int start);
1032   void sha256_AVX2_four_rounds_compute_last(int start);
1033   void sha256_AVX2_one_round_and_sched(
1034         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
1035         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
1036         XMMRegister xmm_2,     /* ymm6 */
1037         XMMRegister xmm_3,     /* ymm7 */
1038         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
1039         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
1040         Register    reg_c,      /* edi */
1041         Register    reg_d,      /* esi */
1042         Register    reg_e,      /* r8d */
1043         Register    reg_f,      /* r9d */
1044         Register    reg_g,      /* r10d */
1045         Register    reg_h,      /* r11d */
1046         int iter);
1047 
1048   void addm(int disp, Register r1, Register r2);
1049 
1050   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
1051                                      Register e, Register f, Register g, Register h, int iteration);
1052 
1053   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1054                                           Register a, Register b, Register c, Register d, Register e, Register f,
1055                                           Register g, Register h, int iteration);
1056 
1057   void addmq(int disp, Register r1, Register r2);
1058  public:
1059   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1060                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1061                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1062                    bool multi_block, XMMRegister shuf_mask);
1063   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1064                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1065                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
1066                    XMMRegister shuf_mask);
1067   void sha512_update_ni_x1(Register arg_hash, Register arg_msg, Register ofs, Register limit, bool multi_block);
1068 
1069   void fast_md5(Register buf, Address state, Address ofs, Address limit,
1070                 bool multi_block);
1071 
1072   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1073                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1074                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1075                  bool multi_block);
1076 
1077   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1078                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1079                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1080                    bool multi_block, XMMRegister shuf_mask);
1081 
1082   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1083                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1084                 Register rax, Register rcx, Register rdx, Register tmp);
1085 
1086 private:
1087 
1088   // these are private because users should be doing movflt/movdbl
1089 
1090   void movss(Address     dst, XMMRegister    src) { Assembler::movss(dst, src); }
1091   void movss(XMMRegister dst, XMMRegister    src) { Assembler::movss(dst, src); }
1092   void movss(XMMRegister dst, Address        src) { Assembler::movss(dst, src); }
1093   void movss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1094 
1095   void movlpd(XMMRegister dst, Address        src) {Assembler::movlpd(dst, src); }
1096   void movlpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1097 
1098 public:
1099 
1100   void addsd(XMMRegister dst, XMMRegister    src) { Assembler::addsd(dst, src); }
1101   void addsd(XMMRegister dst, Address        src) { Assembler::addsd(dst, src); }
1102   void addsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1103 
1104   void addss(XMMRegister dst, XMMRegister    src) { Assembler::addss(dst, src); }
1105   void addss(XMMRegister dst, Address        src) { Assembler::addss(dst, src); }
1106   void addss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1107 
1108   void addpd(XMMRegister dst, XMMRegister    src) { Assembler::addpd(dst, src); }
1109   void addpd(XMMRegister dst, Address        src) { Assembler::addpd(dst, src); }
1110   void addpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1111 
1112   using Assembler::vbroadcasti128;
1113   void vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1114 
1115   using Assembler::vbroadcastsd;
1116   void vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1117 
1118   using Assembler::vbroadcastss;
1119   void vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1120 
1121   // Vector float blend
1122   void vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg);
1123   void vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg);
1124 
1125   void divsd(XMMRegister dst, XMMRegister    src) { Assembler::divsd(dst, src); }
1126   void divsd(XMMRegister dst, Address        src) { Assembler::divsd(dst, src); }
1127   void divsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1128 
1129   void divss(XMMRegister dst, XMMRegister    src) { Assembler::divss(dst, src); }
1130   void divss(XMMRegister dst, Address        src) { Assembler::divss(dst, src); }
1131   void divss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1132 
1133   // Move Unaligned Double Quadword
1134   void movdqu(Address     dst, XMMRegister    src);
1135   void movdqu(XMMRegister dst, XMMRegister    src);
1136   void movdqu(XMMRegister dst, Address        src);
1137   void movdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1138 
1139   void kmovwl(Register  dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1140   void kmovwl(Address   dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1141   void kmovwl(KRegister dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1142   void kmovwl(KRegister dst, Register       src) { Assembler::kmovwl(dst, src); }
1143   void kmovwl(KRegister dst, Address        src) { Assembler::kmovwl(dst, src); }
1144   void kmovwl(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1145 
1146   void kmovql(KRegister dst, KRegister      src) { Assembler::kmovql(dst, src); }
1147   void kmovql(KRegister dst, Register       src) { Assembler::kmovql(dst, src); }
1148   void kmovql(Register  dst, KRegister      src) { Assembler::kmovql(dst, src); }
1149   void kmovql(KRegister dst, Address        src) { Assembler::kmovql(dst, src); }
1150   void kmovql(Address   dst, KRegister      src) { Assembler::kmovql(dst, src); }
1151   void kmovql(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1152 
1153   // Safe move operation, lowers down to 16bit moves for targets supporting
1154   // AVX512F feature and 64bit moves for targets supporting AVX512BW feature.
1155   void kmov(Address  dst, KRegister src);
1156   void kmov(KRegister dst, Address src);
1157   void kmov(KRegister dst, KRegister src);
1158   void kmov(Register dst, KRegister src);
1159   void kmov(KRegister dst, Register src);
1160 
1161   using Assembler::movddup;
1162   void movddup(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1163 
1164   using Assembler::vmovddup;
1165   void vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1166 
1167   // AVX Unaligned forms
1168   void vmovdqu(Address     dst, XMMRegister    src);
1169   void vmovdqu(XMMRegister dst, Address        src);
1170   void vmovdqu(XMMRegister dst, XMMRegister    src);
1171   void vmovdqu(XMMRegister dst, AddressLiteral src,                 Register rscratch = noreg);
1172   void vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1173   void vmovdqu(XMMRegister dst, XMMRegister    src, int vector_len);
1174   void vmovdqu(XMMRegister dst, Address        src, int vector_len);
1175   void vmovdqu(Address     dst, XMMRegister    src, int vector_len);
1176 
1177   // AVX Aligned forms
1178   using Assembler::vmovdqa;
1179   void vmovdqa(XMMRegister dst, AddressLiteral src,                 Register rscratch = noreg);
1180   void vmovdqa(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1181 
1182   // AVX512 Unaligned
1183   void evmovdqu(BasicType type, KRegister kmask, Address     dst, XMMRegister src, bool merge, int vector_len);
1184   void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address     src, bool merge, int vector_len);
1185   void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len);
1186 
1187   void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1188   void evmovdqub(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1189 
1190   void evmovdqub(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1191     if (dst->encoding() != src->encoding() || mask != k0)  {
1192       Assembler::evmovdqub(dst, mask, src, merge, vector_len);
1193     }
1194   }
1195   void evmovdqub(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1196   void evmovdqub(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1197   void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1198 
1199   void evmovdquw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1200   void evmovdquw(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1201   void evmovdquw(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1202 
1203   void evmovdquw(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1204     if (dst->encoding() != src->encoding() || mask != k0) {
1205       Assembler::evmovdquw(dst, mask, src, merge, vector_len);
1206     }
1207   }
1208   void evmovdquw(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1209   void evmovdquw(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1210   void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1211 
1212   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
1213      if (dst->encoding() != src->encoding()) {
1214        Assembler::evmovdqul(dst, src, vector_len);
1215      }
1216   }
1217   void evmovdqul(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1218   void evmovdqul(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1219 
1220   void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1221     if (dst->encoding() != src->encoding() || mask != k0)  {
1222       Assembler::evmovdqul(dst, mask, src, merge, vector_len);
1223     }
1224   }
1225   void evmovdqul(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1226   void evmovdqul(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1227   void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1228 
1229   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
1230     if (dst->encoding() != src->encoding()) {
1231       Assembler::evmovdquq(dst, src, vector_len);
1232     }
1233   }
1234   void evmovdquq(XMMRegister dst, Address        src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1235   void evmovdquq(Address     dst, XMMRegister    src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1236   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1237   void evmovdqaq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1238 
1239   void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1240     if (dst->encoding() != src->encoding() || mask != k0) {
1241       Assembler::evmovdquq(dst, mask, src, merge, vector_len);
1242     }
1243   }
1244   void evmovdquq(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1245   void evmovdquq(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1246   void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1247   void evmovdqaq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1248 
1249   using Assembler::movapd;
1250   void movapd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1251 
1252   // Move Aligned Double Quadword
1253   void movdqa(XMMRegister dst, XMMRegister    src) { Assembler::movdqa(dst, src); }
1254   void movdqa(XMMRegister dst, Address        src) { Assembler::movdqa(dst, src); }
1255   void movdqa(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1256 
1257   void movsd(Address     dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1258   void movsd(XMMRegister dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1259   void movsd(XMMRegister dst, Address        src) { Assembler::movsd(dst, src); }
1260   void movsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1261 
1262   void mulpd(XMMRegister dst, XMMRegister    src) { Assembler::mulpd(dst, src); }
1263   void mulpd(XMMRegister dst, Address        src) { Assembler::mulpd(dst, src); }
1264   void mulpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1265 
1266   void mulsd(XMMRegister dst, XMMRegister    src) { Assembler::mulsd(dst, src); }
1267   void mulsd(XMMRegister dst, Address        src) { Assembler::mulsd(dst, src); }
1268   void mulsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1269 
1270   void mulss(XMMRegister dst, XMMRegister    src) { Assembler::mulss(dst, src); }
1271   void mulss(XMMRegister dst, Address        src) { Assembler::mulss(dst, src); }
1272   void mulss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1273 
1274   // Carry-Less Multiplication Quadword
1275   void pclmulldq(XMMRegister dst, XMMRegister src) {
1276     // 0x00 - multiply lower 64 bits [0:63]
1277     Assembler::pclmulqdq(dst, src, 0x00);
1278   }
1279   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1280     // 0x11 - multiply upper 64 bits [64:127]
1281     Assembler::pclmulqdq(dst, src, 0x11);
1282   }
1283 
1284   void pcmpeqb(XMMRegister dst, XMMRegister src);
1285   void pcmpeqw(XMMRegister dst, XMMRegister src);
1286 
1287   void pcmpestri(XMMRegister dst, Address src, int imm8);
1288   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1289 
1290   void pmovzxbw(XMMRegister dst, XMMRegister src);
1291   void pmovzxbw(XMMRegister dst, Address src);
1292 
1293   void pmovmskb(Register dst, XMMRegister src);
1294 
1295   void ptest(XMMRegister dst, XMMRegister src);
1296 
1297   void roundsd(XMMRegister dst, XMMRegister    src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1298   void roundsd(XMMRegister dst, Address        src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1299   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch = noreg);
1300 
1301   void sqrtss(XMMRegister dst, XMMRegister     src) { Assembler::sqrtss(dst, src); }
1302   void sqrtss(XMMRegister dst, Address         src) { Assembler::sqrtss(dst, src); }
1303   void sqrtss(XMMRegister dst, AddressLiteral  src, Register rscratch = noreg);
1304 
1305   void subsd(XMMRegister dst, XMMRegister    src) { Assembler::subsd(dst, src); }
1306   void subsd(XMMRegister dst, Address        src) { Assembler::subsd(dst, src); }
1307   void subsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1308 
1309   void subss(XMMRegister dst, XMMRegister    src) { Assembler::subss(dst, src); }
1310   void subss(XMMRegister dst, Address        src) { Assembler::subss(dst, src); }
1311   void subss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1312 
1313   void ucomiss(XMMRegister dst, XMMRegister    src) { Assembler::ucomiss(dst, src); }
1314   void ucomiss(XMMRegister dst, Address        src) { Assembler::ucomiss(dst, src); }
1315   void ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1316 
1317   void ucomisd(XMMRegister dst, XMMRegister    src) { Assembler::ucomisd(dst, src); }
1318   void ucomisd(XMMRegister dst, Address        src) { Assembler::ucomisd(dst, src); }
1319   void ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1320 
1321   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1322   void xorpd(XMMRegister dst, XMMRegister    src);
1323   void xorpd(XMMRegister dst, Address        src) { Assembler::xorpd(dst, src); }
1324   void xorpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1325 
1326   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1327   void xorps(XMMRegister dst, XMMRegister    src);
1328   void xorps(XMMRegister dst, Address        src) { Assembler::xorps(dst, src); }
1329   void xorps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1330 
1331   // Shuffle Bytes
1332   void pshufb(XMMRegister dst, XMMRegister    src) { Assembler::pshufb(dst, src); }
1333   void pshufb(XMMRegister dst, Address        src) { Assembler::pshufb(dst, src); }
1334   void pshufb(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1335   // AVX 3-operands instructions
1336 
1337   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddsd(dst, nds, src); }
1338   void vaddsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddsd(dst, nds, src); }
1339   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1340 
1341   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddss(dst, nds, src); }
1342   void vaddss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddss(dst, nds, src); }
1343   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1344 
1345   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1346   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1347 
1348   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len);
1349   void vpaddb(XMMRegister dst, XMMRegister nds, Address        src, int vector_len);
1350   void vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1351 
1352   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1353   void vpaddw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1354 
1355   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1356   void vpaddd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1357   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1358 
1359   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1360   void vpand(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1361   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1362 
1363   using Assembler::vpbroadcastd;
1364   void vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1365 
1366   using Assembler::vpbroadcastq;
1367   void vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1368 
1369   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1370   void vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len);
1371 
1372   void vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1373   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1374   void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1375 
1376   // Vector compares
1377   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1378     Assembler::evpcmpd(kdst, mask, nds, src, comparison, is_signed, vector_len);
1379   }
1380   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1381 
1382   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1383     Assembler::evpcmpq(kdst, mask, nds, src, comparison, is_signed, vector_len);
1384   }
1385   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1386 
1387   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1388     Assembler::evpcmpb(kdst, mask, nds, src, comparison, is_signed, vector_len);
1389   }
1390   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1391 
1392   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1393     Assembler::evpcmpw(kdst, mask, nds, src, comparison, is_signed, vector_len);
1394   }
1395   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1396 
1397   void evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len);
1398 
1399   // Emit comparison instruction for the specified comparison predicate.
1400   void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len);
1401   void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len);
1402 
1403   void vpmovzxbw(XMMRegister dst, Address     src, int vector_len);
1404   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1405 
1406   void vpmovmskb(Register dst, XMMRegister src, int vector_len = Assembler::AVX_256bit);
1407 
1408   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1409   void vpmullw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1410 
1411   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1412   void vpmulld(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1413   void vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1414 
1415   void vpmuldq(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpmuldq(dst, nds, src, vector_len); }
1416 
1417   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1418   void vpsubb(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1419 
1420   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1421   void vpsubw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1422 
1423   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1424   void vpsraw(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1425 
1426   void evpsrad(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1427   void evpsrad(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1428 
1429   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1430   void evpsraq(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1431 
1432   using Assembler::evpsllw;
1433   void evpsllw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1434     if (!is_varshift) {
1435       Assembler::evpsllw(dst, mask, nds, src, merge, vector_len);
1436     } else {
1437       Assembler::evpsllvw(dst, mask, nds, src, merge, vector_len);
1438     }
1439   }
1440   void evpslld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1441     if (!is_varshift) {
1442       Assembler::evpslld(dst, mask, nds, src, merge, vector_len);
1443     } else {
1444       Assembler::evpsllvd(dst, mask, nds, src, merge, vector_len);
1445     }
1446   }
1447   void evpsllq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1448     if (!is_varshift) {
1449       Assembler::evpsllq(dst, mask, nds, src, merge, vector_len);
1450     } else {
1451       Assembler::evpsllvq(dst, mask, nds, src, merge, vector_len);
1452     }
1453   }
1454   void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1455     if (!is_varshift) {
1456       Assembler::evpsrlw(dst, mask, nds, src, merge, vector_len);
1457     } else {
1458       Assembler::evpsrlvw(dst, mask, nds, src, merge, vector_len);
1459     }
1460   }
1461   void evpsrld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1462     if (!is_varshift) {
1463       Assembler::evpsrld(dst, mask, nds, src, merge, vector_len);
1464     } else {
1465       Assembler::evpsrlvd(dst, mask, nds, src, merge, vector_len);
1466     }
1467   }
1468 
1469   using Assembler::evpsrlq;
1470   void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1471     if (!is_varshift) {
1472       Assembler::evpsrlq(dst, mask, nds, src, merge, vector_len);
1473     } else {
1474       Assembler::evpsrlvq(dst, mask, nds, src, merge, vector_len);
1475     }
1476   }
1477   using Assembler::evpsraw;
1478   void evpsraw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1479     if (!is_varshift) {
1480       Assembler::evpsraw(dst, mask, nds, src, merge, vector_len);
1481     } else {
1482       Assembler::evpsravw(dst, mask, nds, src, merge, vector_len);
1483     }
1484   }
1485   using Assembler::evpsrad;
1486   void evpsrad(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1487     if (!is_varshift) {
1488       Assembler::evpsrad(dst, mask, nds, src, merge, vector_len);
1489     } else {
1490       Assembler::evpsravd(dst, mask, nds, src, merge, vector_len);
1491     }
1492   }
1493   using Assembler::evpsraq;
1494   void evpsraq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1495     if (!is_varshift) {
1496       Assembler::evpsraq(dst, mask, nds, src, merge, vector_len);
1497     } else {
1498       Assembler::evpsravq(dst, mask, nds, src, merge, vector_len);
1499     }
1500   }
1501 
1502   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1503   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1504   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1505   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1506 
1507   void evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1508   void evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1509   void evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1510   void evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1511 
1512   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1513   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1514 
1515   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1516   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1517 
1518   void vptest(XMMRegister dst, XMMRegister src);
1519   void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); }
1520 
1521   void punpcklbw(XMMRegister dst, XMMRegister src);
1522   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1523 
1524   void pshufd(XMMRegister dst, Address src, int mode);
1525   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1526 
1527   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1528   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1529 
1530   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1531   void vandpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1532   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1533 
1534   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1535   void vandps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1536   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1537 
1538   void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1539 
1540   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivsd(dst, nds, src); }
1541   void vdivsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivsd(dst, nds, src); }
1542   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1543 
1544   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivss(dst, nds, src); }
1545   void vdivss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivss(dst, nds, src); }
1546   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1547 
1548   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulsd(dst, nds, src); }
1549   void vmulsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulsd(dst, nds, src); }
1550   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1551 
1552   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulss(dst, nds, src); }
1553   void vmulss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulss(dst, nds, src); }
1554   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1555 
1556   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubsd(dst, nds, src); }
1557   void vsubsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubsd(dst, nds, src); }
1558   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1559 
1560   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubss(dst, nds, src); }
1561   void vsubss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubss(dst, nds, src); }
1562   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1563 
1564   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1565   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1566 
1567   // AVX Vector instructions
1568 
1569   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1570   void vxorpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1571   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1572 
1573   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1574   void vxorps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1575   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1576 
1577   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1578     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1579       Assembler::vpxor(dst, nds, src, vector_len);
1580     else
1581       Assembler::vxorpd(dst, nds, src, vector_len);
1582   }
1583   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1584     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1585       Assembler::vpxor(dst, nds, src, vector_len);
1586     else
1587       Assembler::vxorpd(dst, nds, src, vector_len);
1588   }
1589   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1590 
1591   // Simple version for AVX2 256bit vectors
1592   void vpxor(XMMRegister dst, XMMRegister src) {
1593     assert(UseAVX >= 2, "Should be at least AVX2");
1594     Assembler::vpxor(dst, dst, src, AVX_256bit);
1595   }
1596   void vpxor(XMMRegister dst, Address src) {
1597     assert(UseAVX >= 2, "Should be at least AVX2");
1598     Assembler::vpxor(dst, dst, src, AVX_256bit);
1599   }
1600 
1601   void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); }
1602   void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1603 
1604   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1605     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1606       Assembler::vinserti32x4(dst, nds, src, imm8);
1607     } else if (UseAVX > 1) {
1608       // vinserti128 is available only in AVX2
1609       Assembler::vinserti128(dst, nds, src, imm8);
1610     } else {
1611       Assembler::vinsertf128(dst, nds, src, imm8);
1612     }
1613   }
1614 
1615   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1616     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1617       Assembler::vinserti32x4(dst, nds, src, imm8);
1618     } else if (UseAVX > 1) {
1619       // vinserti128 is available only in AVX2
1620       Assembler::vinserti128(dst, nds, src, imm8);
1621     } else {
1622       Assembler::vinsertf128(dst, nds, src, imm8);
1623     }
1624   }
1625 
1626   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1627     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1628       Assembler::vextracti32x4(dst, src, imm8);
1629     } else if (UseAVX > 1) {
1630       // vextracti128 is available only in AVX2
1631       Assembler::vextracti128(dst, src, imm8);
1632     } else {
1633       Assembler::vextractf128(dst, src, imm8);
1634     }
1635   }
1636 
1637   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1638     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1639       Assembler::vextracti32x4(dst, src, imm8);
1640     } else if (UseAVX > 1) {
1641       // vextracti128 is available only in AVX2
1642       Assembler::vextracti128(dst, src, imm8);
1643     } else {
1644       Assembler::vextractf128(dst, src, imm8);
1645     }
1646   }
1647 
1648   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1649   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1650     vinserti128(dst, dst, src, 1);
1651   }
1652   void vinserti128_high(XMMRegister dst, Address src) {
1653     vinserti128(dst, dst, src, 1);
1654   }
1655   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1656     vextracti128(dst, src, 1);
1657   }
1658   void vextracti128_high(Address dst, XMMRegister src) {
1659     vextracti128(dst, src, 1);
1660   }
1661 
1662   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1663     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1664       Assembler::vinsertf32x4(dst, dst, src, 1);
1665     } else {
1666       Assembler::vinsertf128(dst, dst, src, 1);
1667     }
1668   }
1669 
1670   void vinsertf128_high(XMMRegister dst, Address src) {
1671     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1672       Assembler::vinsertf32x4(dst, dst, src, 1);
1673     } else {
1674       Assembler::vinsertf128(dst, dst, src, 1);
1675     }
1676   }
1677 
1678   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1679     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1680       Assembler::vextractf32x4(dst, src, 1);
1681     } else {
1682       Assembler::vextractf128(dst, src, 1);
1683     }
1684   }
1685 
1686   void vextractf128_high(Address dst, XMMRegister src) {
1687     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1688       Assembler::vextractf32x4(dst, src, 1);
1689     } else {
1690       Assembler::vextractf128(dst, src, 1);
1691     }
1692   }
1693 
1694   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1695   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1696     Assembler::vinserti64x4(dst, dst, src, 1);
1697   }
1698   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1699     Assembler::vinsertf64x4(dst, dst, src, 1);
1700   }
1701   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1702     Assembler::vextracti64x4(dst, src, 1);
1703   }
1704   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1705     Assembler::vextractf64x4(dst, src, 1);
1706   }
1707   void vextractf64x4_high(Address dst, XMMRegister src) {
1708     Assembler::vextractf64x4(dst, src, 1);
1709   }
1710   void vinsertf64x4_high(XMMRegister dst, Address src) {
1711     Assembler::vinsertf64x4(dst, dst, src, 1);
1712   }
1713 
1714   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1715   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1716     vinserti128(dst, dst, src, 0);
1717   }
1718   void vinserti128_low(XMMRegister dst, Address src) {
1719     vinserti128(dst, dst, src, 0);
1720   }
1721   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1722     vextracti128(dst, src, 0);
1723   }
1724   void vextracti128_low(Address dst, XMMRegister src) {
1725     vextracti128(dst, src, 0);
1726   }
1727 
1728   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1729     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1730       Assembler::vinsertf32x4(dst, dst, src, 0);
1731     } else {
1732       Assembler::vinsertf128(dst, dst, src, 0);
1733     }
1734   }
1735 
1736   void vinsertf128_low(XMMRegister dst, Address src) {
1737     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1738       Assembler::vinsertf32x4(dst, dst, src, 0);
1739     } else {
1740       Assembler::vinsertf128(dst, dst, src, 0);
1741     }
1742   }
1743 
1744   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1745     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1746       Assembler::vextractf32x4(dst, src, 0);
1747     } else {
1748       Assembler::vextractf128(dst, src, 0);
1749     }
1750   }
1751 
1752   void vextractf128_low(Address dst, XMMRegister src) {
1753     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1754       Assembler::vextractf32x4(dst, src, 0);
1755     } else {
1756       Assembler::vextractf128(dst, src, 0);
1757     }
1758   }
1759 
1760   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1761   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1762     Assembler::vinserti64x4(dst, dst, src, 0);
1763   }
1764   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1765     Assembler::vinsertf64x4(dst, dst, src, 0);
1766   }
1767   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1768     Assembler::vextracti64x4(dst, src, 0);
1769   }
1770   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1771     Assembler::vextractf64x4(dst, src, 0);
1772   }
1773   void vextractf64x4_low(Address dst, XMMRegister src) {
1774     Assembler::vextractf64x4(dst, src, 0);
1775   }
1776   void vinsertf64x4_low(XMMRegister dst, Address src) {
1777     Assembler::vinsertf64x4(dst, dst, src, 0);
1778   }
1779 
1780   // Carry-Less Multiplication Quadword
1781   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1782     // 0x00 - multiply lower 64 bits [0:63]
1783     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1784   }
1785   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1786     // 0x11 - multiply upper 64 bits [64:127]
1787     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1788   }
1789   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1790     // 0x10 - multiply nds[0:63] and src[64:127]
1791     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1792   }
1793   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1794     //0x01 - multiply nds[64:127] and src[0:63]
1795     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1796   }
1797 
1798   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1799     // 0x00 - multiply lower 64 bits [0:63]
1800     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1801   }
1802   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1803     // 0x11 - multiply upper 64 bits [64:127]
1804     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1805   }
1806 
1807   // AVX-512 mask operations.
1808   void kand(BasicType etype, KRegister dst, KRegister src1, KRegister src2);
1809   void kor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1810   void knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp = knoreg, Register rtmp = noreg);
1811   void kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1812   void kortest(uint masklen, KRegister src1, KRegister src2);
1813   void ktest(uint masklen, KRegister src1, KRegister src2);
1814 
1815   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1816   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1817 
1818   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1819   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1820 
1821   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1822   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1823 
1824   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1825   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1826 
1827   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
1828   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
1829   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
1830   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
1831 
1832   using Assembler::evpandq;
1833   void evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1834 
1835   using Assembler::evpaddq;
1836   void evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1837 
1838   using Assembler::evporq;
1839   void evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1840 
1841   using Assembler::vpshufb;
1842   void vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1843 
1844   using Assembler::vpor;
1845   void vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1846 
1847   using Assembler::vpternlogq;
1848   void vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch = noreg);
1849 
1850   void cmov32( Condition cc, Register dst, Address  src);
1851   void cmov32( Condition cc, Register dst, Register src);
1852 
1853   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1854 
1855   void cmovptr(Condition cc, Register dst, Address  src) { cmovq(cc, dst, src); }
1856   void cmovptr(Condition cc, Register dst, Register src) { cmovq(cc, dst, src); }
1857 
1858   void movoop(Register dst, jobject obj);
1859   void movoop(Address  dst, jobject obj, Register rscratch);
1860 
1861   void mov_metadata(Register dst, Metadata* obj);
1862   void mov_metadata(Address  dst, Metadata* obj, Register rscratch);
1863 
1864   void movptr(Register     dst, Register       src);
1865   void movptr(Register     dst, Address        src);
1866   void movptr(Register     dst, AddressLiteral src);
1867   void movptr(Register     dst, ArrayAddress   src);
1868   void movptr(Register     dst, intptr_t       src);
1869   void movptr(Address      dst, Register       src);
1870   void movptr(Address      dst, int32_t        imm);
1871   void movptr(Address      dst, intptr_t       src, Register rscratch);
1872   void movptr(ArrayAddress dst, Register       src, Register rscratch);
1873 
1874   void movptr(Register dst, RegisterOrConstant src) {
1875     if (src.is_constant()) movptr(dst, src.as_constant());
1876     else                   movptr(dst, src.as_register());
1877   }
1878 
1879 
1880   // to avoid hiding movl
1881   void mov32(Register       dst, AddressLiteral src);
1882   void mov32(AddressLiteral dst, Register        src, Register rscratch = noreg);
1883 
1884   // Import other mov() methods from the parent class or else
1885   // they will be hidden by the following overriding declaration.
1886   using Assembler::movdl;
1887   void movdl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1888 
1889   using Assembler::movq;
1890   void movq(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1891 
1892   // Can push value or effective address
1893   void pushptr(AddressLiteral src, Register rscratch);
1894 
1895   void pushptr(Address src) { pushq(src); }
1896   void popptr(Address src) { popq(src); }
1897 
1898   void pushoop(jobject obj, Register rscratch);
1899   void pushklass(Metadata* obj, Register rscratch);
1900 
1901   // sign extend as need a l to ptr sized element
1902   void movl2ptr(Register dst, Address src) { movslq(dst, src); }
1903   void movl2ptr(Register dst, Register src) { movslq(dst, src); }
1904 
1905 
1906  public:
1907   // clear memory of size 'cnt' qwords, starting at 'base';
1908   // if 'is_large' is set, do not try to produce short loop
1909   void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large, KRegister mask=knoreg);
1910 
1911   // clear memory initialization sequence for constant size;
1912   void clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
1913 
1914   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1915   void xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
1916 
1917   // Fill primitive arrays
1918   void generate_fill(BasicType t, bool aligned,
1919                      Register to, Register value, Register count,
1920                      Register rtmp, XMMRegister xtmp);
1921 
1922   void encode_iso_array(Register src, Register dst, Register len,
1923                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1924                         XMMRegister tmp4, Register tmp5, Register result, bool ascii);
1925 
1926   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1927   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1928                              Register y, Register y_idx, Register z,
1929                              Register carry, Register product,
1930                              Register idx, Register kdx);
1931   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1932                               Register yz_idx, Register idx,
1933                               Register carry, Register product, int offset);
1934   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1935                                     Register carry, Register carry2,
1936                                     Register idx, Register jdx,
1937                                     Register yz_idx1, Register yz_idx2,
1938                                     Register tmp, Register tmp3, Register tmp4);
1939   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1940                                Register yz_idx, Register idx, Register jdx,
1941                                Register carry, Register product,
1942                                Register carry2);
1943   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0,
1944                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1945   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1946                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1947   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1948                             Register tmp2);
1949   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1950                        Register rdxReg, Register raxReg);
1951   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1952   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1953                        Register tmp3, Register tmp4);
1954   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1955                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1956 
1957   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1958                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1959                Register raxReg);
1960   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1961                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1962                Register raxReg);
1963   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1964                            Register result, Register tmp1, Register tmp2,
1965                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1966 
1967   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1968   void update_byte_crc32(Register crc, Register val, Register table);
1969   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1970 
1971   void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2);
1972   void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos,
1973                                 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
1974                                 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup);
1975 
1976   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1977   // Note on a naming convention:
1978   // Prefix w = register only used on a Westmere+ architecture
1979   // Prefix n = register only used on a Nehalem architecture
1980   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1981                        Register tmp1, Register tmp2, Register tmp3);
1982   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1983                         Register in_out,
1984                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1985                         XMMRegister w_xtmp2,
1986                         Register tmp1,
1987                         Register n_tmp2, Register n_tmp3);
1988   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1989                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1990                        Register tmp1, Register tmp2,
1991                        Register n_tmp3);
1992   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1993                          Register in_out1, Register in_out2, Register in_out3,
1994                          Register tmp1, Register tmp2, Register tmp3,
1995                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1996                          Register tmp4, Register tmp5,
1997                          Register n_tmp6);
1998   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1999                             Register tmp1, Register tmp2, Register tmp3,
2000                             Register tmp4, Register tmp5, Register tmp6,
2001                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2002                             bool is_pclmulqdq_supported);
2003   // Fold 128-bit data chunk
2004   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
2005   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
2006   // Fold 512-bit data chunk
2007   void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset);
2008   // Fold 8-bit data
2009   void fold_8bit_crc32(Register crc, Register table, Register tmp);
2010   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
2011 
2012   // Compress char[] array to byte[].
2013   void char_array_compress(Register src, Register dst, Register len,
2014                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
2015                            XMMRegister tmp4, Register tmp5, Register result,
2016                            KRegister mask1 = knoreg, KRegister mask2 = knoreg);
2017 
2018   // Inflate byte[] array to char[].
2019   void byte_array_inflate(Register src, Register dst, Register len,
2020                           XMMRegister tmp1, Register tmp2, KRegister mask = knoreg);
2021 
2022   void fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
2023                    Register length, Register temp, int vec_enc);
2024 
2025   void fill64_masked(uint shift, Register dst, int disp,
2026                          XMMRegister xmm, KRegister mask, Register length,
2027                          Register temp, bool use64byteVector = false);
2028 
2029   void fill32_masked(uint shift, Register dst, int disp,
2030                          XMMRegister xmm, KRegister mask, Register length,
2031                          Register temp);
2032 
2033   void fill32(Address dst, XMMRegister xmm);
2034 
2035   void fill32(Register dst, int disp, XMMRegister xmm);
2036 
2037   void fill64(Address dst, XMMRegister xmm, bool use64byteVector = false);
2038 
2039   void fill64(Register dst, int dis, XMMRegister xmm, bool use64byteVector = false);
2040 
2041   void convert_f2i(Register dst, XMMRegister src);
2042   void convert_d2i(Register dst, XMMRegister src);
2043   void convert_f2l(Register dst, XMMRegister src);
2044   void convert_d2l(Register dst, XMMRegister src);
2045   void round_double(Register dst, XMMRegister src, Register rtmp, Register rcx);
2046   void round_float(Register dst, XMMRegister src, Register rtmp, Register rcx);
2047 
2048   void cache_wb(Address line);
2049   void cache_wbsync(bool is_pre);
2050 
2051 #ifdef COMPILER2_OR_JVMCI
2052   void generate_fill_avx3(BasicType type, Register to, Register value,
2053                           Register count, Register rtmp, XMMRegister xtmp);
2054 #endif // COMPILER2_OR_JVMCI
2055 
2056   void vallones(XMMRegister dst, int vector_len);
2057 
2058   void check_stack_alignment(Register sp, const char* msg, unsigned bias = 0, Register tmp = noreg);
2059 
2060   void lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register tmp, Label& slow);
2061   void lightweight_unlock(Register obj, Register reg_rax, Register tmp, Label& slow);
2062 
2063   void save_legacy_gprs();
2064   void restore_legacy_gprs();
2065   void load_aotrc_address(Register reg, address a);
2066   void setcc(Assembler::Condition comparison, Register dst);
2067 };
2068 
2069 #endif // CPU_X86_MACROASSEMBLER_X86_HPP