1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "code/compiledIC.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nativeInst.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "gc/shared/gcLocker.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/barrierSetAssembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "logging/log.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/klass.inline.hpp"
  39 #include "prims/methodHandles.hpp"
  40 #include "runtime/jniHandles.hpp"
  41 #include "runtime/safepointMechanism.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/signature.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "runtime/timerTrace.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "runtime/vm_version.hpp"
  48 #include "utilities/align.hpp"
  49 #include "vmreg_x86.inline.hpp"
  50 #ifdef COMPILER1
  51 #include "c1/c1_Runtime1.hpp"
  52 #endif
  53 #ifdef COMPILER2
  54 #include "opto/runtime.hpp"
  55 #endif
  56 
  57 #define __ masm->
  58 
  59 #ifdef PRODUCT
  60 #define BLOCK_COMMENT(str) /* nothing */
  61 #else
  62 #define BLOCK_COMMENT(str) __ block_comment(str)
  63 #endif // PRODUCT
  64 
  65 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  66 
  67 class RegisterSaver {
  68   // Capture info about frame layout
  69 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  70   enum layout {
  71                 fpu_state_off = 0,
  72                 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
  73                 st0_off, st0H_off,
  74                 st1_off, st1H_off,
  75                 st2_off, st2H_off,
  76                 st3_off, st3H_off,
  77                 st4_off, st4H_off,
  78                 st5_off, st5H_off,
  79                 st6_off, st6H_off,
  80                 st7_off, st7H_off,
  81                 xmm_off,
  82                 DEF_XMM_OFFS(0),
  83                 DEF_XMM_OFFS(1),
  84                 DEF_XMM_OFFS(2),
  85                 DEF_XMM_OFFS(3),
  86                 DEF_XMM_OFFS(4),
  87                 DEF_XMM_OFFS(5),
  88                 DEF_XMM_OFFS(6),
  89                 DEF_XMM_OFFS(7),
  90                 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
  91                 rdi_off,
  92                 rsi_off,
  93                 ignore_off,  // extra copy of rbp,
  94                 rsp_off,
  95                 rbx_off,
  96                 rdx_off,
  97                 rcx_off,
  98                 rax_off,
  99                 // The frame sender code expects that rbp will be in the "natural" place and
 100                 // will override any oopMap setting for it. We must therefore force the layout
 101                 // so that it agrees with the frame sender code.
 102                 rbp_off,
 103                 return_off,      // slot for return address
 104                 reg_save_size };
 105   enum { FPU_regs_live = flags_off - fpu_state_end };
 106 
 107   public:
 108 
 109   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
 110                                      int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
 111   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 112 
 113   static int rax_offset() { return rax_off; }
 114   static int rbx_offset() { return rbx_off; }
 115 
 116   // Offsets into the register save area
 117   // Used by deoptimization when it is managing result register
 118   // values on its own
 119 
 120   static int raxOffset(void) { return rax_off; }
 121   static int rdxOffset(void) { return rdx_off; }
 122   static int rbxOffset(void) { return rbx_off; }
 123   static int xmm0Offset(void) { return xmm0_off; }
 124   // This really returns a slot in the fp save area, which one is not important
 125   static int fpResultOffset(void) { return st0_off; }
 126 
 127   // During deoptimization only the result register need to be restored
 128   // all the other values have already been extracted.
 129 
 130   static void restore_result_registers(MacroAssembler* masm);
 131 
 132 };
 133 
 134 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 135                                            int* total_frame_words, bool verify_fpu, bool save_vectors) {
 136   int num_xmm_regs = XMMRegister::number_of_registers;
 137   int ymm_bytes = num_xmm_regs * 16;
 138   int zmm_bytes = num_xmm_regs * 32;
 139 #ifdef COMPILER2
 140   int opmask_state_bytes = KRegister::number_of_registers * 8;
 141   if (save_vectors) {
 142     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 143     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 144     // Save upper half of YMM registers
 145     int vect_bytes = ymm_bytes;
 146     if (UseAVX > 2) {
 147       // Save upper half of ZMM registers as well
 148       vect_bytes += zmm_bytes;
 149       additional_frame_words += opmask_state_bytes / wordSize;
 150     }
 151     additional_frame_words += vect_bytes / wordSize;
 152   }
 153 #else
 154   assert(!save_vectors, "vectors are generated only by C2");
 155 #endif
 156   int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
 157   int frame_words = frame_size_in_bytes / wordSize;
 158   *total_frame_words = frame_words;
 159 
 160   assert(FPUStateSizeInWords == 27, "update stack layout");
 161 
 162   // save registers, fpu state, and flags
 163   // We assume caller has already has return address slot on the stack
 164   // We push epb twice in this sequence because we want the real rbp,
 165   // to be under the return like a normal enter and we want to use pusha
 166   // We push by hand instead of using push.
 167   __ enter();
 168   __ pusha();
 169   __ pushf();
 170   __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
 171   __ push_FPU_state();          // Save FPU state & init
 172 
 173   if (verify_fpu) {
 174     // Some stubs may have non standard FPU control word settings so
 175     // only check and reset the value when it required to be the
 176     // standard value.  The safepoint blob in particular can be used
 177     // in methods which are using the 24 bit control word for
 178     // optimized float math.
 179 
 180 #ifdef ASSERT
 181     // Make sure the control word has the expected value
 182     Label ok;
 183     __ cmpw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std());
 184     __ jccb(Assembler::equal, ok);
 185     __ stop("corrupted control word detected");
 186     __ bind(ok);
 187 #endif
 188 
 189     // Reset the control word to guard against exceptions being unmasked
 190     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 191     // into the on stack copy and then reload that to make sure that the
 192     // current and future values are correct.
 193     __ movw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std());
 194   }
 195 
 196   __ frstor(Address(rsp, 0));
 197   if (!verify_fpu) {
 198     // Set the control word so that exceptions are masked for the
 199     // following code.
 200     __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
 201   }
 202 
 203   int off = st0_off;
 204   int delta = st1_off - off;
 205 
 206   // Save the FPU registers in de-opt-able form
 207   for (int n = 0; n < FloatRegister::number_of_registers; n++) {
 208     __ fstp_d(Address(rsp, off*wordSize));
 209     off += delta;
 210   }
 211 
 212   off = xmm0_off;
 213   delta = xmm1_off - off;
 214   if(UseSSE == 1) {
 215     // Save the XMM state
 216     for (int n = 0; n < num_xmm_regs; n++) {
 217       __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
 218       off += delta;
 219     }
 220   } else if(UseSSE >= 2) {
 221     // Save whole 128bit (16 bytes) XMM registers
 222     for (int n = 0; n < num_xmm_regs; n++) {
 223       __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
 224       off += delta;
 225     }
 226   }
 227 
 228 #ifdef COMPILER2
 229   if (save_vectors) {
 230     __ subptr(rsp, ymm_bytes);
 231     // Save upper half of YMM registers
 232     for (int n = 0; n < num_xmm_regs; n++) {
 233       __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n));
 234     }
 235     if (UseAVX > 2) {
 236       __ subptr(rsp, zmm_bytes);
 237       // Save upper half of ZMM registers
 238       for (int n = 0; n < num_xmm_regs; n++) {
 239         __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n));
 240       }
 241       __ subptr(rsp, opmask_state_bytes);
 242       // Save opmask registers
 243       for (int n = 0; n < KRegister::number_of_registers; n++) {
 244         __ kmov(Address(rsp, n*8), as_KRegister(n));
 245       }
 246     }
 247   }
 248 #else
 249   assert(!save_vectors, "vectors are generated only by C2");
 250 #endif
 251 
 252   __ vzeroupper();
 253 
 254   // Set an oopmap for the call site.  This oopmap will map all
 255   // oop-registers and debug-info registers as callee-saved.  This
 256   // will allow deoptimization at this safepoint to find all possible
 257   // debug-info recordings, as well as let GC find all oops.
 258 
 259   OopMapSet *oop_maps = new OopMapSet();
 260   OopMap* map =  new OopMap( frame_words, 0 );
 261 
 262 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 263 #define NEXTREG(x) (x)->as_VMReg()->next()
 264 
 265   map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
 266   map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
 267   map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
 268   map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
 269   // rbp, location is known implicitly, no oopMap
 270   map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
 271   map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
 272 
 273   // %%% This is really a waste but we'll keep things as they were for now for the upper component
 274   off = st0_off;
 275   delta = st1_off - off;
 276   for (int n = 0; n < FloatRegister::number_of_registers; n++) {
 277     FloatRegister freg_name = as_FloatRegister(n);
 278     map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
 279     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
 280     off += delta;
 281   }
 282   off = xmm0_off;
 283   delta = xmm1_off - off;
 284   for (int n = 0; n < num_xmm_regs; n++) {
 285     XMMRegister xmm_name = as_XMMRegister(n);
 286     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 287     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
 288     off += delta;
 289   }
 290 #undef NEXTREG
 291 #undef STACK_OFFSET
 292 
 293   return map;
 294 }
 295 
 296 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 297   int opmask_state_bytes = 0;
 298   int additional_frame_bytes = 0;
 299   int num_xmm_regs = XMMRegister::number_of_registers;
 300   int ymm_bytes = num_xmm_regs * 16;
 301   int zmm_bytes = num_xmm_regs * 32;
 302   // Recover XMM & FPU state
 303 #ifdef COMPILER2
 304   if (restore_vectors) {
 305     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 306     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 307     // Save upper half of YMM registers
 308     additional_frame_bytes = ymm_bytes;
 309     if (UseAVX > 2) {
 310       // Save upper half of ZMM registers as well
 311       additional_frame_bytes += zmm_bytes;
 312       opmask_state_bytes = KRegister::number_of_registers * 8;
 313       additional_frame_bytes += opmask_state_bytes;
 314     }
 315   }
 316 #else
 317   assert(!restore_vectors, "vectors are generated only by C2");
 318 #endif
 319 
 320   int off = xmm0_off;
 321   int delta = xmm1_off - off;
 322 
 323   __ vzeroupper();
 324 
 325   if (UseSSE == 1) {
 326     // Restore XMM registers
 327     assert(additional_frame_bytes == 0, "");
 328     for (int n = 0; n < num_xmm_regs; n++) {
 329       __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
 330       off += delta;
 331     }
 332   } else if (UseSSE >= 2) {
 333     // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and
 334     // ZMM because the movdqu instruction zeros the upper part of the XMM register.
 335     for (int n = 0; n < num_xmm_regs; n++) {
 336       __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
 337       off += delta;
 338     }
 339   }
 340 
 341   if (restore_vectors) {
 342     off = additional_frame_bytes - ymm_bytes;
 343     // Restore upper half of YMM registers.
 344     for (int n = 0; n < num_xmm_regs; n++) {
 345       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16+off));
 346     }
 347     if (UseAVX > 2) {
 348       // Restore upper half of ZMM registers.
 349       off = opmask_state_bytes;
 350       for (int n = 0; n < num_xmm_regs; n++) {
 351         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32+off));
 352       }
 353       for (int n = 0; n < KRegister::number_of_registers; n++) {
 354         __ kmov(as_KRegister(n), Address(rsp, n*8));
 355       }
 356     }
 357     __ addptr(rsp, additional_frame_bytes);
 358   }
 359 
 360   __ pop_FPU_state();
 361   __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
 362 
 363   __ popf();
 364   __ popa();
 365   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 366   __ pop(rbp);
 367 }
 368 
 369 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 370 
 371   // Just restore result register. Only used by deoptimization. By
 372   // now any callee save register that needs to be restore to a c2
 373   // caller of the deoptee has been extracted into the vframeArray
 374   // and will be stuffed into the c2i adapter we create for later
 375   // restoration so only result registers need to be restored here.
 376   //
 377 
 378   __ frstor(Address(rsp, 0));      // Restore fpu state
 379 
 380   // Recover XMM & FPU state
 381   if( UseSSE == 1 ) {
 382     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 383   } else if( UseSSE >= 2 ) {
 384     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 385   }
 386   __ movptr(rax, Address(rsp, rax_off*wordSize));
 387   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 388   // Pop all of the register save are off the stack except the return address
 389   __ addptr(rsp, return_off * wordSize);
 390 }
 391 
 392 // Is vector's size (in bytes) bigger than a size saved by default?
 393 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
 394 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
 395 bool SharedRuntime::is_wide_vector(int size) {
 396   return size > 16;
 397 }
 398 
 399 // The java_calling_convention describes stack locations as ideal slots on
 400 // a frame with no abi restrictions. Since we must observe abi restrictions
 401 // (like the placement of the register window) the slots must be biased by
 402 // the following value.
 403 static int reg2offset_in(VMReg r) {
 404   // Account for saved rbp, and return address
 405   // This should really be in_preserve_stack_slots
 406   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 407 }
 408 
 409 static int reg2offset_out(VMReg r) {
 410   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 411 }
 412 
 413 // ---------------------------------------------------------------------------
 414 // Read the array of BasicTypes from a signature, and compute where the
 415 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 416 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 417 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 418 // as framesizes are fixed.
 419 // VMRegImpl::stack0 refers to the first slot 0(sp).
 420 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.
 421 // Register up to Register::number_of_registers are the 32-bit
 422 // integer registers.
 423 
 424 // Pass first two oop/int args in registers ECX and EDX.
 425 // Pass first two float/double args in registers XMM0 and XMM1.
 426 // Doubles have precedence, so if you pass a mix of floats and doubles
 427 // the doubles will grab the registers before the floats will.
 428 
 429 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 430 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 431 // units regardless of build. Of course for i486 there is no 64 bit build
 432 
 433 
 434 // ---------------------------------------------------------------------------
 435 // The compiled Java calling convention.
 436 // Pass first two oop/int args in registers ECX and EDX.
 437 // Pass first two float/double args in registers XMM0 and XMM1.
 438 // Doubles have precedence, so if you pass a mix of floats and doubles
 439 // the doubles will grab the registers before the floats will.
 440 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 441                                            VMRegPair *regs,
 442                                            int total_args_passed) {
 443   uint    stack = 0;          // Starting stack position for args on stack
 444 
 445 
 446   // Pass first two oop/int args in registers ECX and EDX.
 447   uint reg_arg0 = 9999;
 448   uint reg_arg1 = 9999;
 449 
 450   // Pass first two float/double args in registers XMM0 and XMM1.
 451   // Doubles have precedence, so if you pass a mix of floats and doubles
 452   // the doubles will grab the registers before the floats will.
 453   // CNC - TURNED OFF FOR non-SSE.
 454   //       On Intel we have to round all doubles (and most floats) at
 455   //       call sites by storing to the stack in any case.
 456   // UseSSE=0 ==> Don't Use ==> 9999+0
 457   // UseSSE=1 ==> Floats only ==> 9999+1
 458   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 459   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 460   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 461   uint freg_arg0 = 9999+fargs;
 462   uint freg_arg1 = 9999+fargs;
 463 
 464   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 465   int i;
 466   for( i = 0; i < total_args_passed; i++) {
 467     if( sig_bt[i] == T_DOUBLE ) {
 468       // first 2 doubles go in registers
 469       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 470       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 471       else // Else double is passed low on the stack to be aligned.
 472         stack += 2;
 473     } else if( sig_bt[i] == T_LONG ) {
 474       stack += 2;
 475     }
 476   }
 477   int dstack = 0;             // Separate counter for placing doubles
 478 
 479   // Now pick where all else goes.
 480   for( i = 0; i < total_args_passed; i++) {
 481     // From the type and the argument number (count) compute the location
 482     switch( sig_bt[i] ) {
 483     case T_SHORT:
 484     case T_CHAR:
 485     case T_BYTE:
 486     case T_BOOLEAN:
 487     case T_INT:
 488     case T_ARRAY:
 489     case T_OBJECT:
 490     case T_ADDRESS:
 491       if( reg_arg0 == 9999 )  {
 492         reg_arg0 = i;
 493         regs[i].set1(rcx->as_VMReg());
 494       } else if( reg_arg1 == 9999 )  {
 495         reg_arg1 = i;
 496         regs[i].set1(rdx->as_VMReg());
 497       } else {
 498         regs[i].set1(VMRegImpl::stack2reg(stack++));
 499       }
 500       break;
 501     case T_FLOAT:
 502       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 503         freg_arg0 = i;
 504         regs[i].set1(xmm0->as_VMReg());
 505       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 506         freg_arg1 = i;
 507         regs[i].set1(xmm1->as_VMReg());
 508       } else {
 509         regs[i].set1(VMRegImpl::stack2reg(stack++));
 510       }
 511       break;
 512     case T_LONG:
 513       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 514       regs[i].set2(VMRegImpl::stack2reg(dstack));
 515       dstack += 2;
 516       break;
 517     case T_DOUBLE:
 518       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 519       if( freg_arg0 == (uint)i ) {
 520         regs[i].set2(xmm0->as_VMReg());
 521       } else if( freg_arg1 == (uint)i ) {
 522         regs[i].set2(xmm1->as_VMReg());
 523       } else {
 524         regs[i].set2(VMRegImpl::stack2reg(dstack));
 525         dstack += 2;
 526       }
 527       break;
 528     case T_VOID: regs[i].set_bad(); break;
 529       break;
 530     default:
 531       ShouldNotReachHere();
 532       break;
 533     }
 534   }
 535 
 536   return stack;
 537 }
 538 
 539 // Patch the callers callsite with entry to compiled code if it exists.
 540 static void patch_callers_callsite(MacroAssembler *masm) {
 541   Label L;
 542   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
 543   __ jcc(Assembler::equal, L);
 544   // Schedule the branch target address early.
 545   // Call into the VM to patch the caller, then jump to compiled callee
 546   // rax, isn't live so capture return address while we easily can
 547   __ movptr(rax, Address(rsp, 0));
 548   __ pusha();
 549   __ pushf();
 550 
 551   if (UseSSE == 1) {
 552     __ subptr(rsp, 2*wordSize);
 553     __ movflt(Address(rsp, 0), xmm0);
 554     __ movflt(Address(rsp, wordSize), xmm1);
 555   }
 556   if (UseSSE >= 2) {
 557     __ subptr(rsp, 4*wordSize);
 558     __ movdbl(Address(rsp, 0), xmm0);
 559     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 560   }
 561 #ifdef COMPILER2
 562   // C2 may leave the stack dirty if not in SSE2+ mode
 563   if (UseSSE >= 2) {
 564     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 565   } else {
 566     __ empty_FPU_stack();
 567   }
 568 #endif /* COMPILER2 */
 569 
 570   // VM needs caller's callsite
 571   __ push(rax);
 572   // VM needs target method
 573   __ push(rbx);
 574   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 575   __ addptr(rsp, 2*wordSize);
 576 
 577   if (UseSSE == 1) {
 578     __ movflt(xmm0, Address(rsp, 0));
 579     __ movflt(xmm1, Address(rsp, wordSize));
 580     __ addptr(rsp, 2*wordSize);
 581   }
 582   if (UseSSE >= 2) {
 583     __ movdbl(xmm0, Address(rsp, 0));
 584     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 585     __ addptr(rsp, 4*wordSize);
 586   }
 587 
 588   __ popf();
 589   __ popa();
 590   __ bind(L);
 591 }
 592 
 593 
 594 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 595   int next_off = st_off - Interpreter::stackElementSize;
 596   __ movdbl(Address(rsp, next_off), r);
 597 }
 598 
 599 static void gen_c2i_adapter(MacroAssembler *masm,
 600                             int total_args_passed,
 601                             int comp_args_on_stack,
 602                             const BasicType *sig_bt,
 603                             const VMRegPair *regs,
 604                             Label& skip_fixup) {
 605   // Before we get into the guts of the C2I adapter, see if we should be here
 606   // at all.  We've come from compiled code and are attempting to jump to the
 607   // interpreter, which means the caller made a static call to get here
 608   // (vcalls always get a compiled target if there is one).  Check for a
 609   // compiled target.  If there is one, we need to patch the caller's call.
 610   patch_callers_callsite(masm);
 611 
 612   __ bind(skip_fixup);
 613 
 614 #ifdef COMPILER2
 615   // C2 may leave the stack dirty if not in SSE2+ mode
 616   if (UseSSE >= 2) {
 617     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 618   } else {
 619     __ empty_FPU_stack();
 620   }
 621 #endif /* COMPILER2 */
 622 
 623   // Since all args are passed on the stack, total_args_passed * interpreter_
 624   // stack_element_size  is the
 625   // space we need.
 626   int extraspace = total_args_passed * Interpreter::stackElementSize;
 627 
 628   // Get return address
 629   __ pop(rax);
 630 
 631   // set senderSP value
 632   __ movptr(rsi, rsp);
 633 
 634   __ subptr(rsp, extraspace);
 635 
 636   // Now write the args into the outgoing interpreter space
 637   for (int i = 0; i < total_args_passed; i++) {
 638     if (sig_bt[i] == T_VOID) {
 639       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 640       continue;
 641     }
 642 
 643     // st_off points to lowest address on stack.
 644     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
 645     int next_off = st_off - Interpreter::stackElementSize;
 646 
 647     // Say 4 args:
 648     // i   st_off
 649     // 0   12 T_LONG
 650     // 1    8 T_VOID
 651     // 2    4 T_OBJECT
 652     // 3    0 T_BOOL
 653     VMReg r_1 = regs[i].first();
 654     VMReg r_2 = regs[i].second();
 655     if (!r_1->is_valid()) {
 656       assert(!r_2->is_valid(), "");
 657       continue;
 658     }
 659 
 660     if (r_1->is_stack()) {
 661       // memory to memory use fpu stack top
 662       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 663 
 664       if (!r_2->is_valid()) {
 665         __ movl(rdi, Address(rsp, ld_off));
 666         __ movptr(Address(rsp, st_off), rdi);
 667       } else {
 668 
 669         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 670         // st_off == MSW, st_off-wordSize == LSW
 671 
 672         __ movptr(rdi, Address(rsp, ld_off));
 673         __ movptr(Address(rsp, next_off), rdi);
 674         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 675         __ movptr(Address(rsp, st_off), rdi);
 676       }
 677     } else if (r_1->is_Register()) {
 678       Register r = r_1->as_Register();
 679       if (!r_2->is_valid()) {
 680         __ movl(Address(rsp, st_off), r);
 681       } else {
 682         // long/double in gpr
 683         ShouldNotReachHere();
 684       }
 685     } else {
 686       assert(r_1->is_XMMRegister(), "");
 687       if (!r_2->is_valid()) {
 688         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 689       } else {
 690         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
 691         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 692       }
 693     }
 694   }
 695 
 696   // Schedule the branch target address early.
 697   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 698   // And repush original return address
 699   __ push(rax);
 700   __ jmp(rcx);
 701 }
 702 
 703 
 704 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 705   int next_val_off = ld_off - Interpreter::stackElementSize;
 706   __ movdbl(r, Address(saved_sp, next_val_off));
 707 }
 708 
 709 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 710                         address code_start, address code_end,
 711                         Label& L_ok) {
 712   Label L_fail;
 713   __ lea(temp_reg, AddressLiteral(code_start, relocInfo::none));
 714   __ cmpptr(pc_reg, temp_reg);
 715   __ jcc(Assembler::belowEqual, L_fail);
 716   __ lea(temp_reg, AddressLiteral(code_end, relocInfo::none));
 717   __ cmpptr(pc_reg, temp_reg);
 718   __ jcc(Assembler::below, L_ok);
 719   __ bind(L_fail);
 720 }
 721 
 722 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 723                                     int total_args_passed,
 724                                     int comp_args_on_stack,
 725                                     const BasicType *sig_bt,
 726                                     const VMRegPair *regs) {
 727   // Note: rsi contains the senderSP on entry. We must preserve it since
 728   // we may do a i2c -> c2i transition if we lose a race where compiled
 729   // code goes non-entrant while we get args ready.
 730 
 731   // Adapters can be frameless because they do not require the caller
 732   // to perform additional cleanup work, such as correcting the stack pointer.
 733   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 734   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 735   // even if a callee has modified the stack pointer.
 736   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 737   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 738   // up via the senderSP register).
 739   // In other words, if *either* the caller or callee is interpreted, we can
 740   // get the stack pointer repaired after a call.
 741   // This is why c2i and i2c adapters cannot be indefinitely composed.
 742   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 743   // both caller and callee would be compiled methods, and neither would
 744   // clean up the stack pointer changes performed by the two adapters.
 745   // If this happens, control eventually transfers back to the compiled
 746   // caller, but with an uncorrected stack, causing delayed havoc.
 747 
 748   // Pick up the return address
 749   __ movptr(rax, Address(rsp, 0));
 750 
 751   if (VerifyAdapterCalls &&
 752       (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) {
 753     // So, let's test for cascading c2i/i2c adapters right now.
 754     //  assert(Interpreter::contains($return_addr) ||
 755     //         StubRoutines::contains($return_addr),
 756     //         "i2c adapter must return to an interpreter frame");
 757     __ block_comment("verify_i2c { ");
 758     Label L_ok;
 759     if (Interpreter::code() != nullptr) {
 760       range_check(masm, rax, rdi,
 761                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 762                   L_ok);
 763     }
 764     if (StubRoutines::initial_stubs_code() != nullptr) {
 765       range_check(masm, rax, rdi,
 766                   StubRoutines::initial_stubs_code()->code_begin(),
 767                   StubRoutines::initial_stubs_code()->code_end(),
 768                   L_ok);
 769     }
 770     if (StubRoutines::final_stubs_code() != nullptr) {
 771       range_check(masm, rax, rdi,
 772                   StubRoutines::final_stubs_code()->code_begin(),
 773                   StubRoutines::final_stubs_code()->code_end(),
 774                   L_ok);
 775     }
 776     const char* msg = "i2c adapter must return to an interpreter frame";
 777     __ block_comment(msg);
 778     __ stop(msg);
 779     __ bind(L_ok);
 780     __ block_comment("} verify_i2ce ");
 781   }
 782 
 783   // Must preserve original SP for loading incoming arguments because
 784   // we need to align the outgoing SP for compiled code.
 785   __ movptr(rdi, rsp);
 786 
 787   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 788   // in registers, we will occasionally have no stack args.
 789   int comp_words_on_stack = 0;
 790   if (comp_args_on_stack) {
 791     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 792     // registers are below.  By subtracting stack0, we either get a negative
 793     // number (all values in registers) or the maximum stack slot accessed.
 794     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 795     // Convert 4-byte stack slots to words.
 796     comp_words_on_stack = align_up(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 797     // Round up to miminum stack alignment, in wordSize
 798     comp_words_on_stack = align_up(comp_words_on_stack, 2);
 799     __ subptr(rsp, comp_words_on_stack * wordSize);
 800   }
 801 
 802   // Align the outgoing SP
 803   __ andptr(rsp, -(StackAlignmentInBytes));
 804 
 805   // push the return address on the stack (note that pushing, rather
 806   // than storing it, yields the correct frame alignment for the callee)
 807   __ push(rax);
 808 
 809   // Put saved SP in another register
 810   const Register saved_sp = rax;
 811   __ movptr(saved_sp, rdi);
 812 
 813 
 814   // Will jump to the compiled code just as if compiled code was doing it.
 815   // Pre-load the register-jump target early, to schedule it better.
 816   __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
 817 
 818   // Now generate the shuffle code.  Pick up all register args and move the
 819   // rest through the floating point stack top.
 820   for (int i = 0; i < total_args_passed; i++) {
 821     if (sig_bt[i] == T_VOID) {
 822       // Longs and doubles are passed in native word order, but misaligned
 823       // in the 32-bit build.
 824       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 825       continue;
 826     }
 827 
 828     // Pick up 0, 1 or 2 words from SP+offset.
 829 
 830     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 831             "scrambled load targets?");
 832     // Load in argument order going down.
 833     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
 834     // Point to interpreter value (vs. tag)
 835     int next_off = ld_off - Interpreter::stackElementSize;
 836     //
 837     //
 838     //
 839     VMReg r_1 = regs[i].first();
 840     VMReg r_2 = regs[i].second();
 841     if (!r_1->is_valid()) {
 842       assert(!r_2->is_valid(), "");
 843       continue;
 844     }
 845     if (r_1->is_stack()) {
 846       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 847       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 848 
 849       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 850       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 851       // we be generated.
 852       if (!r_2->is_valid()) {
 853         // __ fld_s(Address(saved_sp, ld_off));
 854         // __ fstp_s(Address(rsp, st_off));
 855         __ movl(rsi, Address(saved_sp, ld_off));
 856         __ movptr(Address(rsp, st_off), rsi);
 857       } else {
 858         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 859         // are accessed as negative so LSW is at LOW address
 860 
 861         // ld_off is MSW so get LSW
 862         // st_off is LSW (i.e. reg.first())
 863         // __ fld_d(Address(saved_sp, next_off));
 864         // __ fstp_d(Address(rsp, st_off));
 865         //
 866         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 867         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 868         // So we must adjust where to pick up the data to match the interpreter.
 869         //
 870         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 871         // are accessed as negative so LSW is at LOW address
 872 
 873         // ld_off is MSW so get LSW
 874         __ movptr(rsi, Address(saved_sp, next_off));
 875         __ movptr(Address(rsp, st_off), rsi);
 876         __ movptr(rsi, Address(saved_sp, ld_off));
 877         __ movptr(Address(rsp, st_off + wordSize), rsi);
 878       }
 879     } else if (r_1->is_Register()) {  // Register argument
 880       Register r = r_1->as_Register();
 881       assert(r != rax, "must be different");
 882       if (r_2->is_valid()) {
 883         //
 884         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 885         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 886         // So we must adjust where to pick up the data to match the interpreter.
 887 
 888         // this can be a misaligned move
 889         __ movptr(r, Address(saved_sp, next_off));
 890         assert(r_2->as_Register() != rax, "need another temporary register");
 891         // Remember r_1 is low address (and LSB on x86)
 892         // So r_2 gets loaded from high address regardless of the platform
 893         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 894       } else {
 895         __ movl(r, Address(saved_sp, ld_off));
 896       }
 897     } else {
 898       assert(r_1->is_XMMRegister(), "");
 899       if (!r_2->is_valid()) {
 900         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 901       } else {
 902         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 903       }
 904     }
 905   }
 906 
 907   // 6243940 We might end up in handle_wrong_method if
 908   // the callee is deoptimized as we race thru here. If that
 909   // happens we don't want to take a safepoint because the
 910   // caller frame will look interpreted and arguments are now
 911   // "compiled" so it is much better to make this transition
 912   // invisible to the stack walking code. Unfortunately if
 913   // we try and find the callee by normal means a safepoint
 914   // is possible. So we stash the desired callee in the thread
 915   // and the vm will find there should this case occur.
 916 
 917   __ get_thread(rax);
 918   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 919 
 920   // move Method* to rax, in case we end up in an c2i adapter.
 921   // the c2i adapters expect Method* in rax, (c2) because c2's
 922   // resolve stubs return the result (the method) in rax,.
 923   // I'd love to fix this.
 924   __ mov(rax, rbx);
 925 
 926   __ jmp(rdi);
 927 }
 928 
 929 // ---------------------------------------------------------------
 930 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 931                                                             int total_args_passed,
 932                                                             int comp_args_on_stack,
 933                                                             const BasicType *sig_bt,
 934                                                             const VMRegPair *regs,
 935                                                             AdapterFingerPrint* fingerprint) {
 936   address i2c_entry = __ pc();
 937 
 938   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 939 
 940   // -------------------------------------------------------------------------
 941   // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
 942   // to the interpreter.  The args start out packed in the compiled layout.  They
 943   // need to be unpacked into the interpreter layout.  This will almost always
 944   // require some stack space.  We grow the current (compiled) stack, then repack
 945   // the args.  We  finally end in a jump to the generic interpreter entry point.
 946   // On exit from the interpreter, the interpreter will restore our SP (lest the
 947   // compiled code, which relies solely on SP and not EBP, get sick).
 948 
 949   address c2i_unverified_entry = __ pc();
 950   Label skip_fixup;
 951 
 952   Register data = rax;
 953   Register receiver = rcx;
 954   Register temp = rbx;
 955 
 956   {
 957     __ ic_check(1 /* end_alignment */);
 958     __ movptr(rbx, Address(data, CompiledICData::speculated_method_offset()));
 959     // Method might have been compiled since the call site was patched to
 960     // interpreted if that is the case treat it as a miss so we can get
 961     // the call site corrected.
 962     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
 963     __ jcc(Assembler::equal, skip_fixup);
 964   }
 965 
 966   address c2i_entry = __ pc();
 967 
 968   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 969   bs->c2i_entry_barrier(masm);
 970 
 971   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 972 
 973   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 974 }
 975 
 976 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 977                                          VMRegPair *regs,
 978                                          int total_args_passed) {
 979 
 980 // We return the amount of VMRegImpl stack slots we need to reserve for all
 981 // the arguments NOT counting out_preserve_stack_slots.
 982 
 983   uint    stack = 0;        // All arguments on stack
 984 
 985   for( int i = 0; i < total_args_passed; i++) {
 986     // From the type and the argument number (count) compute the location
 987     switch( sig_bt[i] ) {
 988     case T_BOOLEAN:
 989     case T_CHAR:
 990     case T_FLOAT:
 991     case T_BYTE:
 992     case T_SHORT:
 993     case T_INT:
 994     case T_OBJECT:
 995     case T_ARRAY:
 996     case T_ADDRESS:
 997     case T_METADATA:
 998       regs[i].set1(VMRegImpl::stack2reg(stack++));
 999       break;
1000     case T_LONG:
1001     case T_DOUBLE: // The stack numbering is reversed from Java
1002       // Since C arguments do not get reversed, the ordering for
1003       // doubles on the stack must be opposite the Java convention
1004       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
1005       regs[i].set2(VMRegImpl::stack2reg(stack));
1006       stack += 2;
1007       break;
1008     case T_VOID: regs[i].set_bad(); break;
1009     default:
1010       ShouldNotReachHere();
1011       break;
1012     }
1013   }
1014   return stack;
1015 }
1016 
1017 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
1018                                              uint num_bits,
1019                                              uint total_args_passed) {
1020   Unimplemented();
1021   return 0;
1022 }
1023 
1024 // A simple move of integer like type
1025 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1026   if (src.first()->is_stack()) {
1027     if (dst.first()->is_stack()) {
1028       // stack to stack
1029       // __ ld(FP, reg2offset(src.first()), L5);
1030       // __ st(L5, SP, reg2offset(dst.first()));
1031       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
1032       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1033     } else {
1034       // stack to reg
1035       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
1036     }
1037   } else if (dst.first()->is_stack()) {
1038     // reg to stack
1039     // no need to sign extend on 64bit
1040     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1041   } else {
1042     if (dst.first() != src.first()) {
1043       __ mov(dst.first()->as_Register(), src.first()->as_Register());
1044     }
1045   }
1046 }
1047 
1048 // An oop arg. Must pass a handle not the oop itself
1049 static void object_move(MacroAssembler* masm,
1050                         OopMap* map,
1051                         int oop_handle_offset,
1052                         int framesize_in_slots,
1053                         VMRegPair src,
1054                         VMRegPair dst,
1055                         bool is_receiver,
1056                         int* receiver_offset) {
1057 
1058   // Because of the calling conventions we know that src can be a
1059   // register or a stack location. dst can only be a stack location.
1060 
1061   assert(dst.first()->is_stack(), "must be stack");
1062   // must pass a handle. First figure out the location we use as a handle
1063 
1064   if (src.first()->is_stack()) {
1065     // Oop is already on the stack as an argument
1066     Register rHandle = rax;
1067     Label nil;
1068     __ xorptr(rHandle, rHandle);
1069     __ cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD);
1070     __ jcc(Assembler::equal, nil);
1071     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1072     __ bind(nil);
1073     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1074 
1075     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1076     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1077     if (is_receiver) {
1078       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1079     }
1080   } else {
1081     // Oop is in a register we must store it to the space we reserve
1082     // on the stack for oop_handles
1083     const Register rOop = src.first()->as_Register();
1084     const Register rHandle = rax;
1085     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1086     int offset = oop_slot*VMRegImpl::stack_slot_size;
1087     Label skip;
1088     __ movptr(Address(rsp, offset), rOop);
1089     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1090     __ xorptr(rHandle, rHandle);
1091     __ cmpptr(rOop, NULL_WORD);
1092     __ jcc(Assembler::equal, skip);
1093     __ lea(rHandle, Address(rsp, offset));
1094     __ bind(skip);
1095     // Store the handle parameter
1096     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1097     if (is_receiver) {
1098       *receiver_offset = offset;
1099     }
1100   }
1101 }
1102 
1103 // A float arg may have to do float reg int reg conversion
1104 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1105   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1106 
1107   // Because of the calling convention we know that src is either a stack location
1108   // or an xmm register. dst can only be a stack location.
1109 
1110   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1111 
1112   if (src.first()->is_stack()) {
1113     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1114     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1115   } else {
1116     // reg to stack
1117     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1118   }
1119 }
1120 
1121 // A long move
1122 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1123 
1124   // The only legal possibility for a long_move VMRegPair is:
1125   // 1: two stack slots (possibly unaligned)
1126   // as neither the java  or C calling convention will use registers
1127   // for longs.
1128 
1129   if (src.first()->is_stack() && dst.first()->is_stack()) {
1130     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1131     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1132     __ movptr(rbx, Address(rbp, reg2offset_in(src.second())));
1133     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1134     __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx);
1135   } else {
1136     ShouldNotReachHere();
1137   }
1138 }
1139 
1140 // A double move
1141 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1142 
1143   // The only legal possibilities for a double_move VMRegPair are:
1144   // The painful thing here is that like long_move a VMRegPair might be
1145 
1146   // Because of the calling convention we know that src is either
1147   //   1: a single physical register (xmm registers only)
1148   //   2: two stack slots (possibly unaligned)
1149   // dst can only be a pair of stack slots.
1150 
1151   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1152 
1153   if (src.first()->is_stack()) {
1154     // source is all stack
1155     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1156     __ movptr(rbx, Address(rbp, reg2offset_in(src.second())));
1157     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1158     __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx);
1159   } else {
1160     // reg to stack
1161     // No worries about stack alignment
1162     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1163   }
1164 }
1165 
1166 
1167 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1168   // We always ignore the frame_slots arg and just use the space just below frame pointer
1169   // which by this time is free to use
1170   switch (ret_type) {
1171   case T_FLOAT:
1172     __ fstp_s(Address(rbp, -wordSize));
1173     break;
1174   case T_DOUBLE:
1175     __ fstp_d(Address(rbp, -2*wordSize));
1176     break;
1177   case T_VOID:  break;
1178   case T_LONG:
1179     __ movptr(Address(rbp, -wordSize), rax);
1180     __ movptr(Address(rbp, -2*wordSize), rdx);
1181     break;
1182   default: {
1183     __ movptr(Address(rbp, -wordSize), rax);
1184     }
1185   }
1186 }
1187 
1188 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1189   // We always ignore the frame_slots arg and just use the space just below frame pointer
1190   // which by this time is free to use
1191   switch (ret_type) {
1192   case T_FLOAT:
1193     __ fld_s(Address(rbp, -wordSize));
1194     break;
1195   case T_DOUBLE:
1196     __ fld_d(Address(rbp, -2*wordSize));
1197     break;
1198   case T_LONG:
1199     __ movptr(rax, Address(rbp, -wordSize));
1200     __ movptr(rdx, Address(rbp, -2*wordSize));
1201     break;
1202   case T_VOID:  break;
1203   default: {
1204     __ movptr(rax, Address(rbp, -wordSize));
1205     }
1206   }
1207 }
1208 
1209 static void verify_oop_args(MacroAssembler* masm,
1210                             const methodHandle& method,
1211                             const BasicType* sig_bt,
1212                             const VMRegPair* regs) {
1213   Register temp_reg = rbx;  // not part of any compiled calling seq
1214   if (VerifyOops) {
1215     for (int i = 0; i < method->size_of_parameters(); i++) {
1216       if (is_reference_type(sig_bt[i])) {
1217         VMReg r = regs[i].first();
1218         assert(r->is_valid(), "bad oop arg");
1219         if (r->is_stack()) {
1220           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1221           __ verify_oop(temp_reg);
1222         } else {
1223           __ verify_oop(r->as_Register());
1224         }
1225       }
1226     }
1227   }
1228 }
1229 
1230 static void gen_special_dispatch(MacroAssembler* masm,
1231                                  const methodHandle& method,
1232                                  const BasicType* sig_bt,
1233                                  const VMRegPair* regs) {
1234   verify_oop_args(masm, method, sig_bt, regs);
1235   vmIntrinsics::ID iid = method->intrinsic_id();
1236 
1237   // Now write the args into the outgoing interpreter space
1238   bool     has_receiver   = false;
1239   Register receiver_reg   = noreg;
1240   int      member_arg_pos = -1;
1241   Register member_reg     = noreg;
1242   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1243   if (ref_kind != 0) {
1244     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1245     member_reg = rbx;  // known to be free at this point
1246     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1247   } else if (iid == vmIntrinsics::_invokeBasic) {
1248     has_receiver = true;
1249   } else {
1250     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1251   }
1252 
1253   if (member_reg != noreg) {
1254     // Load the member_arg into register, if necessary.
1255     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1256     VMReg r = regs[member_arg_pos].first();
1257     if (r->is_stack()) {
1258       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1259     } else {
1260       // no data motion is needed
1261       member_reg = r->as_Register();
1262     }
1263   }
1264 
1265   if (has_receiver) {
1266     // Make sure the receiver is loaded into a register.
1267     assert(method->size_of_parameters() > 0, "oob");
1268     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1269     VMReg r = regs[0].first();
1270     assert(r->is_valid(), "bad receiver arg");
1271     if (r->is_stack()) {
1272       // Porting note:  This assumes that compiled calling conventions always
1273       // pass the receiver oop in a register.  If this is not true on some
1274       // platform, pick a temp and load the receiver from stack.
1275       fatal("receiver always in a register");
1276       receiver_reg = rcx;  // known to be free at this point
1277       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1278     } else {
1279       // no data motion is needed
1280       receiver_reg = r->as_Register();
1281     }
1282   }
1283 
1284   // Figure out which address we are really jumping to:
1285   MethodHandles::generate_method_handle_dispatch(masm, iid,
1286                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1287 }
1288 
1289 // ---------------------------------------------------------------------------
1290 // Generate a native wrapper for a given method.  The method takes arguments
1291 // in the Java compiled code convention, marshals them to the native
1292 // convention (handlizes oops, etc), transitions to native, makes the call,
1293 // returns to java state (possibly blocking), unhandlizes any result and
1294 // returns.
1295 //
1296 // Critical native functions are a shorthand for the use of
1297 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1298 // functions.  The wrapper is expected to unpack the arguments before
1299 // passing them to the callee. Critical native functions leave the state _in_Java,
1300 // since they cannot stop for GC.
1301 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
1302 // block and the check for pending exceptions it's impossible for them
1303 // to be thrown.
1304 //
1305 //
1306 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1307                                                 const methodHandle& method,
1308                                                 int compile_id,
1309                                                 BasicType* in_sig_bt,
1310                                                 VMRegPair* in_regs,
1311                                                 BasicType ret_type) {
1312   if (method->is_method_handle_intrinsic()) {
1313     vmIntrinsics::ID iid = method->intrinsic_id();
1314     intptr_t start = (intptr_t)__ pc();
1315     int vep_offset = ((intptr_t)__ pc()) - start;
1316     gen_special_dispatch(masm,
1317                          method,
1318                          in_sig_bt,
1319                          in_regs);
1320     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1321     __ flush();
1322     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1323     return nmethod::new_native_nmethod(method,
1324                                        compile_id,
1325                                        masm->code(),
1326                                        vep_offset,
1327                                        frame_complete,
1328                                        stack_slots / VMRegImpl::slots_per_word,
1329                                        in_ByteSize(-1),
1330                                        in_ByteSize(-1),
1331                                        (OopMapSet*)nullptr);
1332   }
1333   address native_func = method->native_function();
1334   assert(native_func != nullptr, "must have function");
1335 
1336   // An OopMap for lock (and class if static)
1337   OopMapSet *oop_maps = new OopMapSet();
1338 
1339   // We have received a description of where all the java arg are located
1340   // on entry to the wrapper. We need to convert these args to where
1341   // the jni function will expect them. To figure out where they go
1342   // we convert the java signature to a C signature by inserting
1343   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1344 
1345   const int total_in_args = method->size_of_parameters();
1346   int  total_c_args       = total_in_args + (method->is_static() ? 2 : 1);
1347 
1348   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1349   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1350 
1351   int argc = 0;
1352   out_sig_bt[argc++] = T_ADDRESS;
1353   if (method->is_static()) {
1354     out_sig_bt[argc++] = T_OBJECT;
1355   }
1356 
1357   for (int i = 0; i < total_in_args ; i++ ) {
1358     out_sig_bt[argc++] = in_sig_bt[i];
1359   }
1360 
1361   // Now figure out where the args must be stored and how much stack space
1362   // they require.
1363   int out_arg_slots;
1364   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1365 
1366   // Compute framesize for the wrapper.  We need to handlize all oops in
1367   // registers a max of 2 on x86.
1368 
1369   // Calculate the total number of stack slots we will need.
1370 
1371   // First count the abi requirement plus all of the outgoing args
1372   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1373 
1374   // Now the space for the inbound oop handle area
1375   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
1376 
1377   int oop_handle_offset = stack_slots;
1378   stack_slots += total_save_slots;
1379 
1380   // Now any space we need for handlizing a klass if static method
1381 
1382   int klass_slot_offset = 0;
1383   int klass_offset = -1;
1384   int lock_slot_offset = 0;
1385   bool is_static = false;
1386 
1387   if (method->is_static()) {
1388     klass_slot_offset = stack_slots;
1389     stack_slots += VMRegImpl::slots_per_word;
1390     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1391     is_static = true;
1392   }
1393 
1394   // Plus a lock if needed
1395 
1396   if (method->is_synchronized()) {
1397     lock_slot_offset = stack_slots;
1398     stack_slots += VMRegImpl::slots_per_word;
1399   }
1400 
1401   // Now a place (+2) to save return values or temp during shuffling
1402   // + 2 for return address (which we own) and saved rbp,
1403   stack_slots += 4;
1404 
1405   // Ok The space we have allocated will look like:
1406   //
1407   //
1408   // FP-> |                     |
1409   //      |---------------------|
1410   //      | 2 slots for moves   |
1411   //      |---------------------|
1412   //      | lock box (if sync)  |
1413   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1414   //      | klass (if static)   |
1415   //      |---------------------| <- klass_slot_offset
1416   //      | oopHandle area      |
1417   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1418   //      | outbound memory     |
1419   //      | based arguments     |
1420   //      |                     |
1421   //      |---------------------|
1422   //      |                     |
1423   // SP-> | out_preserved_slots |
1424   //
1425   //
1426   // ****************************************************************************
1427   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1428   // arguments off of the stack after the jni call. Before the call we can use
1429   // instructions that are SP relative. After the jni call we switch to FP
1430   // relative instructions instead of re-adjusting the stack on windows.
1431   // ****************************************************************************
1432 
1433 
1434   // Now compute actual number of stack words we need rounding to make
1435   // stack properly aligned.
1436   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1437 
1438   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1439 
1440   intptr_t start = (intptr_t)__ pc();
1441 
1442   // First thing make an ic check to see if we should even be here
1443 
1444   // We are free to use all registers as temps without saving them and
1445   // restoring them except rbp. rbp is the only callee save register
1446   // as far as the interpreter and the compiler(s) are concerned.
1447 
1448 
1449   const Register receiver = rcx;
1450   Label exception_pending;
1451 
1452   __ verify_oop(receiver);
1453   // verified entry must be aligned for code patching.
1454   __ ic_check(8 /* end_alignment */);
1455 
1456   int vep_offset = ((intptr_t)__ pc()) - start;
1457 
1458 #ifdef COMPILER1
1459   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
1460   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
1461     inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/);
1462    }
1463 #endif // COMPILER1
1464 
1465   // The instruction at the verified entry point must be 5 bytes or longer
1466   // because it can be patched on the fly by make_non_entrant. The stack bang
1467   // instruction fits that requirement.
1468 
1469   // Generate stack overflow check
1470   __ bang_stack_with_offset((int)StackOverflow::stack_shadow_zone_size());
1471 
1472   // Generate a new frame for the wrapper.
1473   __ enter();
1474   // -2 because return address is already present and so is saved rbp
1475   __ subptr(rsp, stack_size - 2*wordSize);
1476 
1477 
1478   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1479   bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */);
1480 
1481   // Frame is now completed as far as size and linkage.
1482   int frame_complete = ((intptr_t)__ pc()) - start;
1483 
1484   // Calculate the difference between rsp and rbp,. We need to know it
1485   // after the native call because on windows Java Natives will pop
1486   // the arguments and it is painful to do rsp relative addressing
1487   // in a platform independent way. So after the call we switch to
1488   // rbp, relative addressing.
1489 
1490   int fp_adjustment = stack_size - 2*wordSize;
1491 
1492 #ifdef COMPILER2
1493   // C2 may leave the stack dirty if not in SSE2+ mode
1494   if (UseSSE >= 2) {
1495     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1496   } else {
1497     __ empty_FPU_stack();
1498   }
1499 #endif /* COMPILER2 */
1500 
1501   // Compute the rbp, offset for any slots used after the jni call
1502 
1503   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1504 
1505   // We use rdi as a thread pointer because it is callee save and
1506   // if we load it once it is usable thru the entire wrapper
1507   const Register thread = rdi;
1508 
1509    // We use rsi as the oop handle for the receiver/klass
1510    // It is callee save so it survives the call to native
1511 
1512    const Register oop_handle_reg = rsi;
1513 
1514    __ get_thread(thread);
1515 
1516   //
1517   // We immediately shuffle the arguments so that any vm call we have to
1518   // make from here on out (sync slow path, jvmti, etc.) we will have
1519   // captured the oops from our caller and have a valid oopMap for
1520   // them.
1521 
1522   // -----------------
1523   // The Grand Shuffle
1524   //
1525   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1526   // and, if static, the class mirror instead of a receiver.  This pretty much
1527   // guarantees that register layout will not match (and x86 doesn't use reg
1528   // parms though amd does).  Since the native abi doesn't use register args
1529   // and the java conventions does we don't have to worry about collisions.
1530   // All of our moved are reg->stack or stack->stack.
1531   // We ignore the extra arguments during the shuffle and handle them at the
1532   // last moment. The shuffle is described by the two calling convention
1533   // vectors we have in our possession. We simply walk the java vector to
1534   // get the source locations and the c vector to get the destinations.
1535 
1536   int c_arg = method->is_static() ? 2 : 1;
1537 
1538   // Record rsp-based slot for receiver on stack for non-static methods
1539   int receiver_offset = -1;
1540 
1541   // This is a trick. We double the stack slots so we can claim
1542   // the oops in the caller's frame. Since we are sure to have
1543   // more args than the caller doubling is enough to make
1544   // sure we can capture all the incoming oop args from the
1545   // caller.
1546   //
1547   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1548 
1549   // Mark location of rbp,
1550   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1551 
1552   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1553   // Are free to temporaries if we have to do  stack to steck moves.
1554   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1555 
1556   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
1557     switch (in_sig_bt[i]) {
1558       case T_ARRAY:
1559       case T_OBJECT:
1560         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1561                     ((i == 0) && (!is_static)),
1562                     &receiver_offset);
1563         break;
1564       case T_VOID:
1565         break;
1566 
1567       case T_FLOAT:
1568         float_move(masm, in_regs[i], out_regs[c_arg]);
1569           break;
1570 
1571       case T_DOUBLE:
1572         assert( i + 1 < total_in_args &&
1573                 in_sig_bt[i + 1] == T_VOID &&
1574                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1575         double_move(masm, in_regs[i], out_regs[c_arg]);
1576         break;
1577 
1578       case T_LONG :
1579         long_move(masm, in_regs[i], out_regs[c_arg]);
1580         break;
1581 
1582       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1583 
1584       default:
1585         simple_move32(masm, in_regs[i], out_regs[c_arg]);
1586     }
1587   }
1588 
1589   // Pre-load a static method's oop into rsi.  Used both by locking code and
1590   // the normal JNI call code.
1591   if (method->is_static()) {
1592 
1593     //  load opp into a register
1594     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
1595 
1596     // Now handlize the static class mirror it's known not-null.
1597     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1598     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1599 
1600     // Now get the handle
1601     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1602     // store the klass handle as second argument
1603     __ movptr(Address(rsp, wordSize), oop_handle_reg);
1604   }
1605 
1606   // Change state to native (we save the return address in the thread, since it might not
1607   // be pushed on the stack when we do a stack traversal). It is enough that the pc()
1608   // points into the right code segment. It does not have to be the correct return pc.
1609   // We use the same pc/oopMap repeatedly when we call out
1610 
1611   intptr_t the_pc = (intptr_t) __ pc();
1612   oop_maps->add_gc_map(the_pc - start, map);
1613 
1614   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc, noreg);
1615 
1616 
1617   // We have all of the arguments setup at this point. We must not touch any register
1618   // argument registers at this point (what if we save/restore them there are no oop?
1619 
1620   if (DTraceMethodProbes) {
1621     __ mov_metadata(rax, method());
1622     __ call_VM_leaf(
1623          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1624          thread, rax);
1625   }
1626 
1627   // RedefineClasses() tracing support for obsolete method entry
1628   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1629     __ mov_metadata(rax, method());
1630     __ call_VM_leaf(
1631          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1632          thread, rax);
1633   }
1634 
1635   // These are register definitions we need for locking/unlocking
1636   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1637   const Register obj_reg  = rcx;  // Will contain the oop
1638   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1639 
1640   Label slow_path_lock;
1641   Label lock_done;
1642 
1643   // Lock a synchronized method
1644   if (method->is_synchronized()) {
1645     Label count_mon;
1646 
1647     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1648 
1649     // Get the handle (the 2nd argument)
1650     __ movptr(oop_handle_reg, Address(rsp, wordSize));
1651 
1652     // Get address of the box
1653 
1654     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1655 
1656     // Load the oop from the handle
1657     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1658 
1659     if (LockingMode == LM_MONITOR) {
1660       __ jmp(slow_path_lock);
1661     } else if (LockingMode == LM_LEGACY) {
1662       // Load immediate 1 into swap_reg %rax,
1663       __ movptr(swap_reg, 1);
1664 
1665       // Load (object->mark() | 1) into swap_reg %rax,
1666       __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1667 
1668       // Save (object->mark() | 1) into BasicLock's displaced header
1669       __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1670 
1671       // src -> dest iff dest == rax, else rax, <- dest
1672       // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
1673       __ lock();
1674       __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1675       __ jcc(Assembler::equal, count_mon);
1676 
1677       // Test if the oopMark is an obvious stack pointer, i.e.,
1678       //  1) (mark & 3) == 0, and
1679       //  2) rsp <= mark < mark + os::pagesize()
1680       // These 3 tests can be done by evaluating the following
1681       // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1682       // assuming both stack pointer and pagesize have their
1683       // least significant 2 bits clear.
1684       // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
1685 
1686       __ subptr(swap_reg, rsp);
1687       __ andptr(swap_reg, 3 - (int)os::vm_page_size());
1688 
1689       // Save the test result, for recursive case, the result is zero
1690       __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1691       __ jcc(Assembler::notEqual, slow_path_lock);
1692     } else {
1693       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
1694       // Lacking registers and thread on x86_32. Always take slow path.
1695       __ jmp(slow_path_lock);
1696     }
1697     __ bind(count_mon);
1698     __ inc_held_monitor_count();
1699 
1700     // Slow path will re-enter here
1701     __ bind(lock_done);
1702   }
1703 
1704 
1705   // Finally just about ready to make the JNI call
1706 
1707   // get JNIEnv* which is first argument to native
1708   __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
1709   __ movptr(Address(rsp, 0), rdx);
1710 
1711   // Now set thread in native
1712   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1713 
1714   __ call(RuntimeAddress(native_func));
1715 
1716   // Verify or restore cpu control state after JNI call
1717   __ restore_cpu_control_state_after_jni(noreg);
1718 
1719   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1720   // arguments off of the stack. We could just re-adjust the stack pointer here
1721   // and continue to do SP relative addressing but we instead switch to FP
1722   // relative addressing.
1723 
1724   // Unpack native results.
1725   switch (ret_type) {
1726   case T_BOOLEAN: __ c2bool(rax);            break;
1727   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
1728   case T_BYTE   : __ sign_extend_byte (rax); break;
1729   case T_SHORT  : __ sign_extend_short(rax); break;
1730   case T_INT    : /* nothing to do */        break;
1731   case T_DOUBLE :
1732   case T_FLOAT  :
1733     // Result is in st0 we'll save as needed
1734     break;
1735   case T_ARRAY:                 // Really a handle
1736   case T_OBJECT:                // Really a handle
1737       break; // can't de-handlize until after safepoint check
1738   case T_VOID: break;
1739   case T_LONG: break;
1740   default       : ShouldNotReachHere();
1741   }
1742 
1743   // Switch thread to "native transition" state before reading the synchronization state.
1744   // This additional state is necessary because reading and testing the synchronization
1745   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1746   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1747   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1748   //     Thread A is resumed to finish this native method, but doesn't block here since it
1749   //     didn't see any synchronization is progress, and escapes.
1750   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1751 
1752   // Force this write out before the read below
1753   if (!UseSystemMemoryBarrier) {
1754     __ membar(Assembler::Membar_mask_bits(
1755               Assembler::LoadLoad | Assembler::LoadStore |
1756               Assembler::StoreLoad | Assembler::StoreStore));
1757   }
1758 
1759   if (AlwaysRestoreFPU) {
1760     // Make sure the control word is correct.
1761     __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
1762   }
1763 
1764   // check for safepoint operation in progress and/or pending suspend requests
1765   { Label Continue, slow_path;
1766 
1767     __ safepoint_poll(slow_path, thread, true /* at_return */, false /* in_nmethod */);
1768 
1769     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1770     __ jcc(Assembler::equal, Continue);
1771     __ bind(slow_path);
1772 
1773     // Don't use call_VM as it will see a possible pending exception and forward it
1774     // and never return here preventing us from clearing _last_native_pc down below.
1775     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1776     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1777     // by hand.
1778     //
1779     __ vzeroupper();
1780 
1781     save_native_result(masm, ret_type, stack_slots);
1782     __ push(thread);
1783     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1784                                               JavaThread::check_special_condition_for_native_trans)));
1785     __ increment(rsp, wordSize);
1786     // Restore any method result value
1787     restore_native_result(masm, ret_type, stack_slots);
1788     __ bind(Continue);
1789   }
1790 
1791   // change thread state
1792   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1793 
1794   Label reguard;
1795   Label reguard_done;
1796   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_yellow_reserved_disabled);
1797   __ jcc(Assembler::equal, reguard);
1798 
1799   // slow path reguard  re-enters here
1800   __ bind(reguard_done);
1801 
1802   // Handle possible exception (will unlock if necessary)
1803 
1804   // native result if any is live
1805 
1806   // Unlock
1807   Label slow_path_unlock;
1808   Label unlock_done;
1809   if (method->is_synchronized()) {
1810 
1811     Label fast_done;
1812 
1813     // Get locked oop from the handle we passed to jni
1814     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1815 
1816     if (LockingMode == LM_LEGACY) {
1817       Label not_recur;
1818       // Simple recursive lock?
1819       __ cmpptr(Address(rbp, lock_slot_rbp_offset), NULL_WORD);
1820       __ jcc(Assembler::notEqual, not_recur);
1821       __ dec_held_monitor_count();
1822       __ jmpb(fast_done);
1823       __ bind(not_recur);
1824     }
1825 
1826     // Must save rax, if it is live now because cmpxchg must use it
1827     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1828       save_native_result(masm, ret_type, stack_slots);
1829     }
1830 
1831     if (LockingMode == LM_MONITOR) {
1832       __ jmp(slow_path_unlock);
1833     } else if (LockingMode == LM_LEGACY) {
1834       //  get old displaced header
1835       __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
1836 
1837       // get address of the stack lock
1838       __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1839 
1840       // Atomic swap old header if oop still contains the stack lock
1841       // src -> dest iff dest == rax, else rax, <- dest
1842       // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
1843       __ lock();
1844       __ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1845       __ jcc(Assembler::notEqual, slow_path_unlock);
1846       __ dec_held_monitor_count();
1847     } else {
1848       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
1849       __ lightweight_unlock(obj_reg, swap_reg, thread, lock_reg, slow_path_unlock);
1850       __ dec_held_monitor_count();
1851     }
1852 
1853     // slow path re-enters here
1854     __ bind(unlock_done);
1855     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1856       restore_native_result(masm, ret_type, stack_slots);
1857     }
1858 
1859     __ bind(fast_done);
1860   }
1861 
1862   if (DTraceMethodProbes) {
1863     // Tell dtrace about this method exit
1864     save_native_result(masm, ret_type, stack_slots);
1865     __ mov_metadata(rax, method());
1866     __ call_VM_leaf(
1867          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1868          thread, rax);
1869     restore_native_result(masm, ret_type, stack_slots);
1870   }
1871 
1872   // We can finally stop using that last_Java_frame we setup ages ago
1873 
1874   __ reset_last_Java_frame(thread, false);
1875 
1876   // Unbox oop result, e.g. JNIHandles::resolve value.
1877   if (is_reference_type(ret_type)) {
1878     __ resolve_jobject(rax /* value */,
1879                        thread /* thread */,
1880                        rcx /* tmp */);
1881   }
1882 
1883   if (CheckJNICalls) {
1884     // clear_pending_jni_exception_check
1885     __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
1886   }
1887 
1888   // reset handle block
1889   __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
1890   __ movl(Address(rcx, JNIHandleBlock::top_offset()), NULL_WORD);
1891 
1892   // Any exception pending?
1893   __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1894   __ jcc(Assembler::notEqual, exception_pending);
1895 
1896   // no exception, we're almost done
1897 
1898   // check that only result value is on FPU stack
1899   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
1900 
1901   // Fixup floating pointer results so that result looks like a return from a compiled method
1902   if (ret_type == T_FLOAT) {
1903     if (UseSSE >= 1) {
1904       // Pop st0 and store as float and reload into xmm register
1905       __ fstp_s(Address(rbp, -4));
1906       __ movflt(xmm0, Address(rbp, -4));
1907     }
1908   } else if (ret_type == T_DOUBLE) {
1909     if (UseSSE >= 2) {
1910       // Pop st0 and store as double and reload into xmm register
1911       __ fstp_d(Address(rbp, -8));
1912       __ movdbl(xmm0, Address(rbp, -8));
1913     }
1914   }
1915 
1916   // Return
1917 
1918   __ leave();
1919   __ ret(0);
1920 
1921   // Unexpected paths are out of line and go here
1922 
1923   // Slow path locking & unlocking
1924   if (method->is_synchronized()) {
1925 
1926     // BEGIN Slow path lock
1927 
1928     __ bind(slow_path_lock);
1929 
1930     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1931     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1932     __ push(thread);
1933     __ push(lock_reg);
1934     __ push(obj_reg);
1935     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
1936     __ addptr(rsp, 3*wordSize);
1937 
1938 #ifdef ASSERT
1939     { Label L;
1940     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1941     __ jcc(Assembler::equal, L);
1942     __ stop("no pending exception allowed on exit from monitorenter");
1943     __ bind(L);
1944     }
1945 #endif
1946     __ jmp(lock_done);
1947 
1948     // END Slow path lock
1949 
1950     // BEGIN Slow path unlock
1951     __ bind(slow_path_unlock);
1952     __ vzeroupper();
1953     // Slow path unlock
1954 
1955     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1956       save_native_result(masm, ret_type, stack_slots);
1957     }
1958     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1959 
1960     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1961     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1962 
1963 
1964     // should be a peal
1965     // +wordSize because of the push above
1966     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1967     __ push(thread);
1968     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1969     __ push(rax);
1970 
1971     __ push(obj_reg);
1972     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
1973     __ addptr(rsp, 3*wordSize);
1974 #ifdef ASSERT
1975     {
1976       Label L;
1977       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1978       __ jcc(Assembler::equal, L);
1979       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
1980       __ bind(L);
1981     }
1982 #endif /* ASSERT */
1983 
1984     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1985 
1986     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1987       restore_native_result(masm, ret_type, stack_slots);
1988     }
1989     __ jmp(unlock_done);
1990     // END Slow path unlock
1991 
1992   }
1993 
1994   // SLOW PATH Reguard the stack if needed
1995 
1996   __ bind(reguard);
1997   __ vzeroupper();
1998   save_native_result(masm, ret_type, stack_slots);
1999   {
2000     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2001   }
2002   restore_native_result(masm, ret_type, stack_slots);
2003   __ jmp(reguard_done);
2004 
2005 
2006   // BEGIN EXCEPTION PROCESSING
2007 
2008   // Forward  the exception
2009   __ bind(exception_pending);
2010 
2011   // remove possible return value from FPU register stack
2012   __ empty_FPU_stack();
2013 
2014   // pop our frame
2015   __ leave();
2016   // and forward the exception
2017   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2018 
2019   __ flush();
2020 
2021   nmethod *nm = nmethod::new_native_nmethod(method,
2022                                             compile_id,
2023                                             masm->code(),
2024                                             vep_offset,
2025                                             frame_complete,
2026                                             stack_slots / VMRegImpl::slots_per_word,
2027                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2028                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2029                                             oop_maps);
2030 
2031   return nm;
2032 
2033 }
2034 
2035 // this function returns the adjust size (in number of words) to a c2i adapter
2036 // activation for use during deoptimization
2037 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2038   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2039 }
2040 
2041 
2042 // Number of stack slots between incoming argument block and the start of
2043 // a new frame.  The PROLOG must add this many slots to the stack.  The
2044 // EPILOG must remove this many slots.  Intel needs one slot for
2045 // return address and one for rbp, (must save rbp)
2046 uint SharedRuntime::in_preserve_stack_slots() {
2047   return 2+VerifyStackAtCalls;
2048 }
2049 
2050 uint SharedRuntime::out_preserve_stack_slots() {
2051   return 0;
2052 }
2053 
2054 VMReg SharedRuntime::thread_register() {
2055   Unimplemented();
2056   return nullptr;
2057 }
2058 
2059 //------------------------------generate_deopt_blob----------------------------
2060 void SharedRuntime::generate_deopt_blob() {
2061   // allocate space for the code
2062   ResourceMark rm;
2063   // setup code generation tools
2064   // note: the buffer code size must account for StackShadowPages=50
2065   const char* name = SharedRuntime::stub_name(SharedStubId::deopt_id);
2066   CodeBuffer   buffer(name, 1536, 1024);
2067   MacroAssembler* masm = new MacroAssembler(&buffer);
2068   int frame_size_in_words;
2069   OopMap* map = nullptr;
2070   // Account for the extra args we place on the stack
2071   // by the time we call fetch_unroll_info
2072   const int additional_words = 2; // deopt kind, thread
2073 
2074   OopMapSet *oop_maps = new OopMapSet();
2075 
2076   // -------------
2077   // This code enters when returning to a de-optimized nmethod.  A return
2078   // address has been pushed on the stack, and return values are in
2079   // registers.
2080   // If we are doing a normal deopt then we were called from the patched
2081   // nmethod from the point we returned to the nmethod. So the return
2082   // address on the stack is wrong by NativeCall::instruction_size
2083   // We will adjust the value to it looks like we have the original return
2084   // address on the stack (like when we eagerly deoptimized).
2085   // In the case of an exception pending with deoptimized then we enter
2086   // with a return address on the stack that points after the call we patched
2087   // into the exception handler. We have the following register state:
2088   //    rax,: exception
2089   //    rbx,: exception handler
2090   //    rdx: throwing pc
2091   // So in this case we simply jam rdx into the useless return address and
2092   // the stack looks just like we want.
2093   //
2094   // At this point we need to de-opt.  We save the argument return
2095   // registers.  We call the first C routine, fetch_unroll_info().  This
2096   // routine captures the return values and returns a structure which
2097   // describes the current frame size and the sizes of all replacement frames.
2098   // The current frame is compiled code and may contain many inlined
2099   // functions, each with their own JVM state.  We pop the current frame, then
2100   // push all the new frames.  Then we call the C routine unpack_frames() to
2101   // populate these frames.  Finally unpack_frames() returns us the new target
2102   // address.  Notice that callee-save registers are BLOWN here; they have
2103   // already been captured in the vframeArray at the time the return PC was
2104   // patched.
2105   address start = __ pc();
2106   Label cont;
2107 
2108   // Prolog for non exception case!
2109 
2110   // Save everything in sight.
2111 
2112   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2113   // Normal deoptimization
2114   __ push(Deoptimization::Unpack_deopt);
2115   __ jmp(cont);
2116 
2117   int reexecute_offset = __ pc() - start;
2118 
2119   // Reexecute case
2120   // return address is the pc describes what bci to do re-execute at
2121 
2122   // No need to update map as each call to save_live_registers will produce identical oopmap
2123   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2124 
2125   __ push(Deoptimization::Unpack_reexecute);
2126   __ jmp(cont);
2127 
2128   int exception_offset = __ pc() - start;
2129 
2130   // Prolog for exception case
2131 
2132   // all registers are dead at this entry point, except for rax, and
2133   // rdx which contain the exception oop and exception pc
2134   // respectively.  Set them in TLS and fall thru to the
2135   // unpack_with_exception_in_tls entry point.
2136 
2137   __ get_thread(rdi);
2138   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2139   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2140 
2141   int exception_in_tls_offset = __ pc() - start;
2142 
2143   // new implementation because exception oop is now passed in JavaThread
2144 
2145   // Prolog for exception case
2146   // All registers must be preserved because they might be used by LinearScan
2147   // Exceptiop oop and throwing PC are passed in JavaThread
2148   // tos: stack at point of call to method that threw the exception (i.e. only
2149   // args are on the stack, no return address)
2150 
2151   // make room on stack for the return address
2152   // It will be patched later with the throwing pc. The correct value is not
2153   // available now because loading it from memory would destroy registers.
2154   __ push(0);
2155 
2156   // Save everything in sight.
2157 
2158   // No need to update map as each call to save_live_registers will produce identical oopmap
2159   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2160 
2161   // Now it is safe to overwrite any register
2162 
2163   // store the correct deoptimization type
2164   __ push(Deoptimization::Unpack_exception);
2165 
2166   // load throwing pc from JavaThread and patch it as the return address
2167   // of the current frame. Then clear the field in JavaThread
2168   __ get_thread(rdi);
2169   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2170   __ movptr(Address(rbp, wordSize), rdx);
2171   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2172 
2173 #ifdef ASSERT
2174   // verify that there is really an exception oop in JavaThread
2175   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2176   __ verify_oop(rax);
2177 
2178   // verify that there is no pending exception
2179   Label no_pending_exception;
2180   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2181   __ testptr(rax, rax);
2182   __ jcc(Assembler::zero, no_pending_exception);
2183   __ stop("must not have pending exception here");
2184   __ bind(no_pending_exception);
2185 #endif
2186 
2187   __ bind(cont);
2188 
2189   // Compiled code leaves the floating point stack dirty, empty it.
2190   __ empty_FPU_stack();
2191 
2192 
2193   // Call C code.  Need thread and this frame, but NOT official VM entry
2194   // crud.  We cannot block on this call, no GC can happen.
2195   __ get_thread(rcx);
2196   __ push(rcx);
2197   // fetch_unroll_info needs to call last_java_frame()
2198   __ set_last_Java_frame(rcx, noreg, noreg, nullptr, noreg);
2199 
2200   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2201 
2202   // Need to have an oopmap that tells fetch_unroll_info where to
2203   // find any register it might need.
2204 
2205   oop_maps->add_gc_map( __ pc()-start, map);
2206 
2207   // Discard args to fetch_unroll_info
2208   __ pop(rcx);
2209   __ pop(rcx);
2210 
2211   __ get_thread(rcx);
2212   __ reset_last_Java_frame(rcx, false);
2213 
2214   // Load UnrollBlock into EDI
2215   __ mov(rdi, rax);
2216 
2217   // Move the unpack kind to a safe place in the UnrollBlock because
2218   // we are very short of registers
2219 
2220   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset());
2221   // retrieve the deopt kind from the UnrollBlock.
2222   __ movl(rax, unpack_kind);
2223 
2224    Label noException;
2225   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2226   __ jcc(Assembler::notEqual, noException);
2227   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2228   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2229   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2230   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2231 
2232   __ verify_oop(rax);
2233 
2234   // Overwrite the result registers with the exception results.
2235   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2236   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2237 
2238   __ bind(noException);
2239 
2240   // Stack is back to only having register save data on the stack.
2241   // Now restore the result registers. Everything else is either dead or captured
2242   // in the vframeArray.
2243 
2244   RegisterSaver::restore_result_registers(masm);
2245 
2246   // Non standard control word may be leaked out through a safepoint blob, and we can
2247   // deopt at a poll point with the non standard control word. However, we should make
2248   // sure the control word is correct after restore_result_registers.
2249   __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
2250 
2251   // All of the register save area has been popped of the stack. Only the
2252   // return address remains.
2253 
2254   // Pop all the frames we must move/replace.
2255   //
2256   // Frame picture (youngest to oldest)
2257   // 1: self-frame (no frame link)
2258   // 2: deopting frame  (no frame link)
2259   // 3: caller of deopting frame (could be compiled/interpreted).
2260   //
2261   // Note: by leaving the return address of self-frame on the stack
2262   // and using the size of frame 2 to adjust the stack
2263   // when we are done the return to frame 3 will still be on the stack.
2264 
2265   // Pop deoptimized frame
2266   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2267 
2268   // sp should be pointing at the return address to the caller (3)
2269 
2270   // Pick up the initial fp we should save
2271   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2272   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset()));
2273 
2274 #ifdef ASSERT
2275   // Compilers generate code that bang the stack by as much as the
2276   // interpreter would need. So this stack banging should never
2277   // trigger a fault. Verify that it does not on non product builds.
2278   __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2279   __ bang_stack_size(rbx, rcx);
2280 #endif
2281 
2282   // Load array of frame pcs into ECX
2283   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset()));
2284 
2285   __ pop(rsi); // trash the old pc
2286 
2287   // Load array of frame sizes into ESI
2288   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset()));
2289 
2290   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset());
2291 
2292   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset()));
2293   __ movl(counter, rbx);
2294 
2295   // Now adjust the caller's stack to make up for the extra locals
2296   // but record the original sp so that we can save it in the skeletal interpreter
2297   // frame and the stack walking of interpreter_sender will get the unextended sp
2298   // value and not the "real" sp value.
2299 
2300   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset());
2301   __ movptr(sp_temp, rsp);
2302   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset()));
2303   __ subptr(rsp, rbx);
2304 
2305   // Push interpreter frames in a loop
2306   Label loop;
2307   __ bind(loop);
2308   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2309   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2310   __ pushptr(Address(rcx, 0));          // save return address
2311   __ enter();                           // save old & set new rbp,
2312   __ subptr(rsp, rbx);                  // Prolog!
2313   __ movptr(rbx, sp_temp);              // sender's sp
2314   // This value is corrected by layout_activation_impl
2315   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2316   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2317   __ movptr(sp_temp, rsp);              // pass to next frame
2318   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2319   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2320   __ decrementl(counter);             // decrement counter
2321   __ jcc(Assembler::notZero, loop);
2322   __ pushptr(Address(rcx, 0));          // save final return address
2323 
2324   // Re-push self-frame
2325   __ enter();                           // save old & set new rbp,
2326 
2327   //  Return address and rbp, are in place
2328   // We'll push additional args later. Just allocate a full sized
2329   // register save area
2330   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2331 
2332   // Restore frame locals after moving the frame
2333   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2334   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2335   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2336   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2337   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2338 
2339   // Set up the args to unpack_frame
2340 
2341   __ pushl(unpack_kind);                     // get the unpack_kind value
2342   __ get_thread(rcx);
2343   __ push(rcx);
2344 
2345   // set last_Java_sp, last_Java_fp
2346   __ set_last_Java_frame(rcx, noreg, rbp, nullptr, noreg);
2347 
2348   // Call C code.  Need thread but NOT official VM entry
2349   // crud.  We cannot block on this call, no GC can happen.  Call should
2350   // restore return values to their stack-slots with the new SP.
2351   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2352   // Set an oopmap for the call site
2353   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2354 
2355   // rax, contains the return result type
2356   __ push(rax);
2357 
2358   __ get_thread(rcx);
2359   __ reset_last_Java_frame(rcx, false);
2360 
2361   // Collect return values
2362   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2363   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2364 
2365   // Clear floating point stack before returning to interpreter
2366   __ empty_FPU_stack();
2367 
2368   // Check if we should push the float or double return value.
2369   Label results_done, yes_double_value;
2370   __ cmpl(Address(rsp, 0), T_DOUBLE);
2371   __ jcc (Assembler::zero, yes_double_value);
2372   __ cmpl(Address(rsp, 0), T_FLOAT);
2373   __ jcc (Assembler::notZero, results_done);
2374 
2375   // return float value as expected by interpreter
2376   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2377   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2378   __ jmp(results_done);
2379 
2380   // return double value as expected by interpreter
2381   __ bind(yes_double_value);
2382   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2383   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2384 
2385   __ bind(results_done);
2386 
2387   // Pop self-frame.
2388   __ leave();                              // Epilog!
2389 
2390   // Jump to interpreter
2391   __ ret(0);
2392 
2393   // -------------
2394   // make sure all code is generated
2395   masm->flush();
2396 
2397   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2398   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2399 }
2400 
2401 //------------------------------generate_handler_blob------
2402 //
2403 // Generate a special Compile2Runtime blob that saves all registers,
2404 // setup oopmap, and calls safepoint code to stop the compiled code for
2405 // a safepoint.
2406 //
2407 SafepointBlob* SharedRuntime::generate_handler_blob(SharedStubId id, address call_ptr) {
2408 
2409   // Account for thread arg in our frame
2410   const int additional_words = 1;
2411   int frame_size_in_words;
2412 
2413   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2414   assert(is_polling_page_id(id), "expected a polling page stub id");
2415 
2416   ResourceMark rm;
2417   OopMapSet *oop_maps = new OopMapSet();
2418   OopMap* map;
2419 
2420   // allocate space for the code
2421   // setup code generation tools
2422   const char* name = SharedRuntime::stub_name(id);
2423   CodeBuffer   buffer(name, 2048, 1024);
2424   MacroAssembler* masm = new MacroAssembler(&buffer);
2425 
2426   const Register java_thread = rdi; // callee-saved for VC++
2427   address start   = __ pc();
2428   address call_pc = nullptr;
2429   bool cause_return = (id == SharedStubId::polling_page_return_handler_id);
2430   bool save_vectors = (id == SharedStubId::polling_page_vectors_safepoint_handler_id);
2431 
2432   // If cause_return is true we are at a poll_return and there is
2433   // the return address on the stack to the caller on the nmethod
2434   // that is safepoint. We can leave this return on the stack and
2435   // effectively complete the return and safepoint in the caller.
2436   // Otherwise we push space for a return address that the safepoint
2437   // handler will install later to make the stack walking sensible.
2438   if (!cause_return)
2439     __ push(rbx);  // Make room for return address (or push it again)
2440 
2441   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
2442 
2443   // The following is basically a call_VM. However, we need the precise
2444   // address of the call in order to generate an oopmap. Hence, we do all the
2445   // work ourselves.
2446 
2447   // Push thread argument and setup last_Java_sp
2448   __ get_thread(java_thread);
2449   __ push(java_thread);
2450   __ set_last_Java_frame(java_thread, noreg, noreg, nullptr, noreg);
2451 
2452   // if this was not a poll_return then we need to correct the return address now.
2453   if (!cause_return) {
2454     // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
2455     // Additionally, rbx is a callee saved register and we can look at it later to determine
2456     // if someone changed the return address for us!
2457     __ movptr(rbx, Address(java_thread, JavaThread::saved_exception_pc_offset()));
2458     __ movptr(Address(rbp, wordSize), rbx);
2459   }
2460 
2461   // do the call
2462   __ call(RuntimeAddress(call_ptr));
2463 
2464   // Set an oopmap for the call site.  This oopmap will map all
2465   // oop-registers and debug-info registers as callee-saved.  This
2466   // will allow deoptimization at this safepoint to find all possible
2467   // debug-info recordings, as well as let GC find all oops.
2468 
2469   oop_maps->add_gc_map( __ pc() - start, map);
2470 
2471   // Discard arg
2472   __ pop(rcx);
2473 
2474   Label noException;
2475 
2476   // Clear last_Java_sp again
2477   __ get_thread(java_thread);
2478   __ reset_last_Java_frame(java_thread, false);
2479 
2480   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
2481   __ jcc(Assembler::equal, noException);
2482 
2483   // Exception pending
2484   RegisterSaver::restore_live_registers(masm, save_vectors);
2485 
2486   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2487 
2488   __ bind(noException);
2489 
2490   Label no_adjust, bail, not_special;
2491   if (!cause_return) {
2492     // If our stashed return pc was modified by the runtime we avoid touching it
2493     __ cmpptr(rbx, Address(rbp, wordSize));
2494     __ jccb(Assembler::notEqual, no_adjust);
2495 
2496     // Skip over the poll instruction.
2497     // See NativeInstruction::is_safepoint_poll()
2498     // Possible encodings:
2499     //      85 00       test   %eax,(%rax)
2500     //      85 01       test   %eax,(%rcx)
2501     //      85 02       test   %eax,(%rdx)
2502     //      85 03       test   %eax,(%rbx)
2503     //      85 06       test   %eax,(%rsi)
2504     //      85 07       test   %eax,(%rdi)
2505     //
2506     //      85 04 24    test   %eax,(%rsp)
2507     //      85 45 00    test   %eax,0x0(%rbp)
2508 
2509 #ifdef ASSERT
2510     __ movptr(rax, rbx); // remember where 0x85 should be, for verification below
2511 #endif
2512     // rsp/rbp base encoding takes 3 bytes with the following register values:
2513     // rsp 0x04
2514     // rbp 0x05
2515     __ movzbl(rcx, Address(rbx, 1));
2516     __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
2517     __ subptr(rcx, 4);    // looking for 0x00 .. 0x01
2518     __ cmpptr(rcx, 1);
2519     __ jcc(Assembler::above, not_special);
2520     __ addptr(rbx, 1);
2521     __ bind(not_special);
2522 #ifdef ASSERT
2523     // Verify the correct encoding of the poll we're about to skip.
2524     __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
2525     __ jcc(Assembler::notEqual, bail);
2526     // Mask out the modrm bits
2527     __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
2528     // rax encodes to 0, so if the bits are nonzero it's incorrect
2529     __ jcc(Assembler::notZero, bail);
2530 #endif
2531     // Adjust return pc forward to step over the safepoint poll instruction
2532     __ addptr(rbx, 2);
2533     __ movptr(Address(rbp, wordSize), rbx);
2534   }
2535 
2536   __ bind(no_adjust);
2537   // Normal exit, register restoring and exit
2538   RegisterSaver::restore_live_registers(masm, save_vectors);
2539 
2540   __ ret(0);
2541 
2542 #ifdef ASSERT
2543   __ bind(bail);
2544   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
2545 #endif
2546 
2547   // make sure all code is generated
2548   masm->flush();
2549 
2550   // Fill-out other meta info
2551   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2552 }
2553 
2554 //
2555 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2556 //
2557 // Generate a stub that calls into vm to find out the proper destination
2558 // of a java call. All the argument registers are live at this point
2559 // but since this is generic code we don't know what they are and the caller
2560 // must do any gc of the args.
2561 //
2562 RuntimeStub* SharedRuntime::generate_resolve_blob(SharedStubId id, address destination) {
2563   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2564   assert(is_resolve_id(id), "expected a resolve stub id");
2565 
2566   // allocate space for the code
2567   ResourceMark rm;
2568 
2569   const char* name = SharedRuntime::stub_name(id);
2570   CodeBuffer buffer(name, 1000, 512);
2571   MacroAssembler* masm                = new MacroAssembler(&buffer);
2572 
2573   int frame_size_words;
2574   enum frame_layout {
2575                 thread_off,
2576                 extra_words };
2577 
2578   OopMapSet *oop_maps = new OopMapSet();
2579   OopMap* map = nullptr;
2580 
2581   int start = __ offset();
2582 
2583   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
2584 
2585   int frame_complete = __ offset();
2586 
2587   const Register thread = rdi;
2588   __ get_thread(rdi);
2589 
2590   __ push(thread);
2591   __ set_last_Java_frame(thread, noreg, rbp, nullptr, noreg);
2592 
2593   __ call(RuntimeAddress(destination));
2594 
2595 
2596   // Set an oopmap for the call site.
2597   // We need this not only for callee-saved registers, but also for volatile
2598   // registers that the compiler might be keeping live across a safepoint.
2599 
2600   oop_maps->add_gc_map( __ offset() - start, map);
2601 
2602   // rax, contains the address we are going to jump to assuming no exception got installed
2603 
2604   __ addptr(rsp, wordSize);
2605 
2606   // clear last_Java_sp
2607   __ reset_last_Java_frame(thread, true);
2608   // check for pending exceptions
2609   Label pending;
2610   __ cmpptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
2611   __ jcc(Assembler::notEqual, pending);
2612 
2613   // get the returned Method*
2614   __ get_vm_result_2(rbx, thread);
2615   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
2616 
2617   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
2618 
2619   RegisterSaver::restore_live_registers(masm);
2620 
2621   // We are back to the original state on entry and ready to go.
2622 
2623   __ jmp(rax);
2624 
2625   // Pending exception after the safepoint
2626 
2627   __ bind(pending);
2628 
2629   RegisterSaver::restore_live_registers(masm);
2630 
2631   // exception pending => remove activation and forward to exception handler
2632 
2633   __ get_thread(thread);
2634   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
2635   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
2636   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2637 
2638   // -------------
2639   // make sure all code is generated
2640   masm->flush();
2641 
2642   // return the  blob
2643   // frame_size_words or bytes??
2644   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
2645 }
2646 
2647   //------------------------------------------------------------------------------------------------------------------------
2648   // Continuation point for throwing of implicit exceptions that are not handled in
2649   // the current activation. Fabricates an exception oop and initiates normal
2650   // exception dispatching in this frame.
2651   //
2652   // Previously the compiler (c2) allowed for callee save registers on Java calls.
2653   // This is no longer true after adapter frames were removed but could possibly
2654   // be brought back in the future if the interpreter code was reworked and it
2655   // was deemed worthwhile. The comment below was left to describe what must
2656   // happen here if callee saves were resurrected. As it stands now this stub
2657   // could actually be a vanilla BufferBlob and have now oopMap at all.
2658   // Since it doesn't make much difference we've chosen to leave it the
2659   // way it was in the callee save days and keep the comment.
2660 
2661   // If we need to preserve callee-saved values we need a callee-saved oop map and
2662   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
2663   // If the compiler needs all registers to be preserved between the fault
2664   // point and the exception handler then it must assume responsibility for that in
2665   // AbstractCompiler::continuation_for_implicit_null_exception or
2666   // continuation_for_implicit_division_by_zero_exception. All other implicit
2667   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
2668   // either at call sites or otherwise assume that stack unwinding will be initiated,
2669   // so caller saved registers were assumed volatile in the compiler.
2670 RuntimeStub* SharedRuntime::generate_throw_exception(SharedStubId id, address runtime_entry) {
2671   assert(is_throw_id(id), "expected a throw stub id");
2672 
2673   const char* name = SharedRuntime::stub_name(id);
2674 
2675   // Information about frame layout at time of blocking runtime call.
2676   // Note that we only have to preserve callee-saved registers since
2677   // the compilers are responsible for supplying a continuation point
2678   // if they expect all registers to be preserved.
2679   enum layout {
2680     thread_off,    // last_java_sp
2681     arg1_off,
2682     arg2_off,
2683     rbp_off,       // callee saved register
2684     ret_pc,
2685     framesize
2686   };
2687 
2688   int insts_size = 256;
2689   int locs_size  = 32;
2690 
2691   ResourceMark rm;
2692   const char* timer_msg = "SharedRuntime generate_throw_exception";
2693   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
2694 
2695   CodeBuffer code(name, insts_size, locs_size);
2696   OopMapSet* oop_maps  = new OopMapSet();
2697   MacroAssembler* masm = new MacroAssembler(&code);
2698 
2699   address start = __ pc();
2700 
2701   // This is an inlined and slightly modified version of call_VM
2702   // which has the ability to fetch the return PC out of
2703   // thread-local storage and also sets up last_Java_sp slightly
2704   // differently than the real call_VM
2705   Register java_thread = rbx;
2706   __ get_thread(java_thread);
2707 
2708   __ enter(); // required for proper stackwalking of RuntimeStub frame
2709 
2710   // pc and rbp, already pushed
2711   __ subptr(rsp, (framesize-2) * wordSize); // prolog
2712 
2713   // Frame is now completed as far as size and linkage.
2714 
2715   int frame_complete = __ pc() - start;
2716 
2717   // push java thread (becomes first argument of C function)
2718   __ movptr(Address(rsp, thread_off * wordSize), java_thread);
2719   // Set up last_Java_sp and last_Java_fp
2720   __ set_last_Java_frame(java_thread, rsp, rbp, nullptr, noreg);
2721 
2722   // Call runtime
2723   BLOCK_COMMENT("call runtime_entry");
2724   __ call(RuntimeAddress(runtime_entry));
2725   // Generate oop map
2726   OopMap* map =  new OopMap(framesize, 0);
2727   oop_maps->add_gc_map(__ pc() - start, map);
2728 
2729   // restore the thread (cannot use the pushed argument since arguments
2730   // may be overwritten by C code generated by an optimizing compiler);
2731   // however can use the register value directly if it is callee saved.
2732   __ get_thread(java_thread);
2733 
2734   __ reset_last_Java_frame(java_thread, true);
2735 
2736   __ leave(); // required for proper stackwalking of RuntimeStub frame
2737 
2738   // check for pending exceptions
2739 #ifdef ASSERT
2740   Label L;
2741   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
2742   __ jcc(Assembler::notEqual, L);
2743   __ should_not_reach_here();
2744   __ bind(L);
2745 #endif /* ASSERT */
2746   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2747 
2748 
2749   RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
2750   return stub;
2751 }
2752 
2753 #if INCLUDE_JFR
2754 
2755 static void jfr_prologue(address the_pc, MacroAssembler* masm) {
2756   Register java_thread = rdi;
2757   __ get_thread(java_thread);
2758   __ set_last_Java_frame(java_thread, rsp, rbp, the_pc, noreg);
2759   __ movptr(Address(rsp, 0), java_thread);
2760 }
2761 
2762 // The handle is dereferenced through a load barrier.
2763 static void jfr_epilogue(MacroAssembler* masm) {
2764   Register java_thread = rdi;
2765   __ get_thread(java_thread);
2766   __ reset_last_Java_frame(java_thread, true);
2767 }
2768 
2769 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint.
2770 // It returns a jobject handle to the event writer.
2771 // The handle is dereferenced and the return value is the event writer oop.
2772 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() {
2773   enum layout {
2774     FPUState_off         = 0,
2775     rbp_off              = FPUStateSizeInWords,
2776     rdi_off,
2777     rsi_off,
2778     rcx_off,
2779     rbx_off,
2780     saved_argument_off,
2781     saved_argument_off2, // 2nd half of double
2782     framesize
2783   };
2784 
2785   int insts_size = 1024;
2786   int locs_size = 64;
2787   const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id);
2788   CodeBuffer code(name, insts_size, locs_size);
2789   OopMapSet* oop_maps = new OopMapSet();
2790   MacroAssembler* masm = new MacroAssembler(&code);
2791 
2792   address start = __ pc();
2793   __ enter();
2794   int frame_complete = __ pc() - start;
2795   address the_pc = __ pc();
2796   jfr_prologue(the_pc, masm);
2797   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1);
2798   jfr_epilogue(masm);
2799   __ resolve_global_jobject(rax, rdi, rdx);
2800   __ leave();
2801   __ ret(0);
2802 
2803   OopMap* map = new OopMap(framesize, 1); // rbp
2804   oop_maps->add_gc_map(the_pc - start, map);
2805 
2806   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
2807     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
2808                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2809                                   oop_maps, false);
2810   return stub;
2811 }
2812 
2813 // For c2: call to return a leased buffer.
2814 RuntimeStub* SharedRuntime::generate_jfr_return_lease() {
2815   enum layout {
2816     FPUState_off = 0,
2817     rbp_off = FPUStateSizeInWords,
2818     rdi_off,
2819     rsi_off,
2820     rcx_off,
2821     rbx_off,
2822     saved_argument_off,
2823     saved_argument_off2, // 2nd half of double
2824     framesize
2825   };
2826 
2827   int insts_size = 1024;
2828   int locs_size = 64;
2829   const char* name = SharedRuntime::stub_name(SharedStubId::jfr_return_lease_id);
2830   CodeBuffer code(name, insts_size, locs_size);
2831   OopMapSet* oop_maps = new OopMapSet();
2832   MacroAssembler* masm = new MacroAssembler(&code);
2833 
2834   address start = __ pc();
2835   __ enter();
2836   int frame_complete = __ pc() - start;
2837   address the_pc = __ pc();
2838   jfr_prologue(the_pc, masm);
2839   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1);
2840   jfr_epilogue(masm);
2841   __ leave();
2842   __ ret(0);
2843 
2844   OopMap* map = new OopMap(framesize, 1); // rbp
2845   oop_maps->add_gc_map(the_pc - start, map);
2846 
2847   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
2848     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
2849                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2850                                   oop_maps, false);
2851   return stub;
2852 }
2853 
2854 #endif // INCLUDE_JFR