1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "code/compiledIC.hpp" 28 #include "code/debugInfoRec.hpp" 29 #include "code/nativeInst.hpp" 30 #include "code/vtableStubs.hpp" 31 #include "compiler/oopMap.hpp" 32 #include "gc/shared/gcLocker.hpp" 33 #include "gc/shared/barrierSet.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "interpreter/interpreter.hpp" 36 #include "logging/log.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/klass.inline.hpp" 39 #include "prims/methodHandles.hpp" 40 #include "runtime/jniHandles.hpp" 41 #include "runtime/safepointMechanism.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "runtime/signature.hpp" 44 #include "runtime/stubRoutines.hpp" 45 #include "runtime/timerTrace.hpp" 46 #include "runtime/vframeArray.hpp" 47 #include "runtime/vm_version.hpp" 48 #include "utilities/align.hpp" 49 #include "vmreg_x86.inline.hpp" 50 #ifdef COMPILER1 51 #include "c1/c1_Runtime1.hpp" 52 #endif 53 #ifdef COMPILER2 54 #include "opto/runtime.hpp" 55 #endif 56 57 #define __ masm-> 58 59 #ifdef PRODUCT 60 #define BLOCK_COMMENT(str) /* nothing */ 61 #else 62 #define BLOCK_COMMENT(str) __ block_comment(str) 63 #endif // PRODUCT 64 65 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 66 67 class RegisterSaver { 68 // Capture info about frame layout 69 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off 70 enum layout { 71 fpu_state_off = 0, 72 fpu_state_end = fpu_state_off+FPUStateSizeInWords, 73 st0_off, st0H_off, 74 st1_off, st1H_off, 75 st2_off, st2H_off, 76 st3_off, st3H_off, 77 st4_off, st4H_off, 78 st5_off, st5H_off, 79 st6_off, st6H_off, 80 st7_off, st7H_off, 81 xmm_off, 82 DEF_XMM_OFFS(0), 83 DEF_XMM_OFFS(1), 84 DEF_XMM_OFFS(2), 85 DEF_XMM_OFFS(3), 86 DEF_XMM_OFFS(4), 87 DEF_XMM_OFFS(5), 88 DEF_XMM_OFFS(6), 89 DEF_XMM_OFFS(7), 90 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word 91 rdi_off, 92 rsi_off, 93 ignore_off, // extra copy of rbp, 94 rsp_off, 95 rbx_off, 96 rdx_off, 97 rcx_off, 98 rax_off, 99 // The frame sender code expects that rbp will be in the "natural" place and 100 // will override any oopMap setting for it. We must therefore force the layout 101 // so that it agrees with the frame sender code. 102 rbp_off, 103 return_off, // slot for return address 104 reg_save_size }; 105 enum { FPU_regs_live = flags_off - fpu_state_end }; 106 107 public: 108 109 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, 110 int* total_frame_words, bool verify_fpu = true, bool save_vectors = false); 111 static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false); 112 113 static int rax_offset() { return rax_off; } 114 static int rbx_offset() { return rbx_off; } 115 116 // Offsets into the register save area 117 // Used by deoptimization when it is managing result register 118 // values on its own 119 120 static int raxOffset(void) { return rax_off; } 121 static int rdxOffset(void) { return rdx_off; } 122 static int rbxOffset(void) { return rbx_off; } 123 static int xmm0Offset(void) { return xmm0_off; } 124 // This really returns a slot in the fp save area, which one is not important 125 static int fpResultOffset(void) { return st0_off; } 126 127 // During deoptimization only the result register need to be restored 128 // all the other values have already been extracted. 129 130 static void restore_result_registers(MacroAssembler* masm); 131 132 }; 133 134 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, 135 int* total_frame_words, bool verify_fpu, bool save_vectors) { 136 int num_xmm_regs = XMMRegister::number_of_registers; 137 int ymm_bytes = num_xmm_regs * 16; 138 int zmm_bytes = num_xmm_regs * 32; 139 #ifdef COMPILER2 140 int opmask_state_bytes = KRegister::number_of_registers * 8; 141 if (save_vectors) { 142 assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX"); 143 assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported"); 144 // Save upper half of YMM registers 145 int vect_bytes = ymm_bytes; 146 if (UseAVX > 2) { 147 // Save upper half of ZMM registers as well 148 vect_bytes += zmm_bytes; 149 additional_frame_words += opmask_state_bytes / wordSize; 150 } 151 additional_frame_words += vect_bytes / wordSize; 152 } 153 #else 154 assert(!save_vectors, "vectors are generated only by C2"); 155 #endif 156 int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize; 157 int frame_words = frame_size_in_bytes / wordSize; 158 *total_frame_words = frame_words; 159 160 assert(FPUStateSizeInWords == 27, "update stack layout"); 161 162 // save registers, fpu state, and flags 163 // We assume caller has already has return address slot on the stack 164 // We push epb twice in this sequence because we want the real rbp, 165 // to be under the return like a normal enter and we want to use pusha 166 // We push by hand instead of using push. 167 __ enter(); 168 __ pusha(); 169 __ pushf(); 170 __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space 171 __ push_FPU_state(); // Save FPU state & init 172 173 if (verify_fpu) { 174 // Some stubs may have non standard FPU control word settings so 175 // only check and reset the value when it required to be the 176 // standard value. The safepoint blob in particular can be used 177 // in methods which are using the 24 bit control word for 178 // optimized float math. 179 180 #ifdef ASSERT 181 // Make sure the control word has the expected value 182 Label ok; 183 __ cmpw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std()); 184 __ jccb(Assembler::equal, ok); 185 __ stop("corrupted control word detected"); 186 __ bind(ok); 187 #endif 188 189 // Reset the control word to guard against exceptions being unmasked 190 // since fstp_d can cause FPU stack underflow exceptions. Write it 191 // into the on stack copy and then reload that to make sure that the 192 // current and future values are correct. 193 __ movw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std()); 194 } 195 196 __ frstor(Address(rsp, 0)); 197 if (!verify_fpu) { 198 // Set the control word so that exceptions are masked for the 199 // following code. 200 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std())); 201 } 202 203 int off = st0_off; 204 int delta = st1_off - off; 205 206 // Save the FPU registers in de-opt-able form 207 for (int n = 0; n < FloatRegister::number_of_registers; n++) { 208 __ fstp_d(Address(rsp, off*wordSize)); 209 off += delta; 210 } 211 212 off = xmm0_off; 213 delta = xmm1_off - off; 214 if(UseSSE == 1) { 215 // Save the XMM state 216 for (int n = 0; n < num_xmm_regs; n++) { 217 __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n)); 218 off += delta; 219 } 220 } else if(UseSSE >= 2) { 221 // Save whole 128bit (16 bytes) XMM registers 222 for (int n = 0; n < num_xmm_regs; n++) { 223 __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n)); 224 off += delta; 225 } 226 } 227 228 #ifdef COMPILER2 229 if (save_vectors) { 230 __ subptr(rsp, ymm_bytes); 231 // Save upper half of YMM registers 232 for (int n = 0; n < num_xmm_regs; n++) { 233 __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n)); 234 } 235 if (UseAVX > 2) { 236 __ subptr(rsp, zmm_bytes); 237 // Save upper half of ZMM registers 238 for (int n = 0; n < num_xmm_regs; n++) { 239 __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n)); 240 } 241 __ subptr(rsp, opmask_state_bytes); 242 // Save opmask registers 243 for (int n = 0; n < KRegister::number_of_registers; n++) { 244 __ kmov(Address(rsp, n*8), as_KRegister(n)); 245 } 246 } 247 } 248 #else 249 assert(!save_vectors, "vectors are generated only by C2"); 250 #endif 251 252 __ vzeroupper(); 253 254 // Set an oopmap for the call site. This oopmap will map all 255 // oop-registers and debug-info registers as callee-saved. This 256 // will allow deoptimization at this safepoint to find all possible 257 // debug-info recordings, as well as let GC find all oops. 258 259 OopMapSet *oop_maps = new OopMapSet(); 260 OopMap* map = new OopMap( frame_words, 0 ); 261 262 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words) 263 #define NEXTREG(x) (x)->as_VMReg()->next() 264 265 map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg()); 266 map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg()); 267 map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg()); 268 map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg()); 269 // rbp, location is known implicitly, no oopMap 270 map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg()); 271 map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg()); 272 273 // %%% This is really a waste but we'll keep things as they were for now for the upper component 274 off = st0_off; 275 delta = st1_off - off; 276 for (int n = 0; n < FloatRegister::number_of_registers; n++) { 277 FloatRegister freg_name = as_FloatRegister(n); 278 map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg()); 279 map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name)); 280 off += delta; 281 } 282 off = xmm0_off; 283 delta = xmm1_off - off; 284 for (int n = 0; n < num_xmm_regs; n++) { 285 XMMRegister xmm_name = as_XMMRegister(n); 286 map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()); 287 map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name)); 288 off += delta; 289 } 290 #undef NEXTREG 291 #undef STACK_OFFSET 292 293 return map; 294 } 295 296 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) { 297 int opmask_state_bytes = 0; 298 int additional_frame_bytes = 0; 299 int num_xmm_regs = XMMRegister::number_of_registers; 300 int ymm_bytes = num_xmm_regs * 16; 301 int zmm_bytes = num_xmm_regs * 32; 302 // Recover XMM & FPU state 303 #ifdef COMPILER2 304 if (restore_vectors) { 305 assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX"); 306 assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported"); 307 // Save upper half of YMM registers 308 additional_frame_bytes = ymm_bytes; 309 if (UseAVX > 2) { 310 // Save upper half of ZMM registers as well 311 additional_frame_bytes += zmm_bytes; 312 opmask_state_bytes = KRegister::number_of_registers * 8; 313 additional_frame_bytes += opmask_state_bytes; 314 } 315 } 316 #else 317 assert(!restore_vectors, "vectors are generated only by C2"); 318 #endif 319 320 int off = xmm0_off; 321 int delta = xmm1_off - off; 322 323 __ vzeroupper(); 324 325 if (UseSSE == 1) { 326 // Restore XMM registers 327 assert(additional_frame_bytes == 0, ""); 328 for (int n = 0; n < num_xmm_regs; n++) { 329 __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize)); 330 off += delta; 331 } 332 } else if (UseSSE >= 2) { 333 // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and 334 // ZMM because the movdqu instruction zeros the upper part of the XMM register. 335 for (int n = 0; n < num_xmm_regs; n++) { 336 __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes)); 337 off += delta; 338 } 339 } 340 341 if (restore_vectors) { 342 off = additional_frame_bytes - ymm_bytes; 343 // Restore upper half of YMM registers. 344 for (int n = 0; n < num_xmm_regs; n++) { 345 __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16+off)); 346 } 347 if (UseAVX > 2) { 348 // Restore upper half of ZMM registers. 349 off = opmask_state_bytes; 350 for (int n = 0; n < num_xmm_regs; n++) { 351 __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32+off)); 352 } 353 for (int n = 0; n < KRegister::number_of_registers; n++) { 354 __ kmov(as_KRegister(n), Address(rsp, n*8)); 355 } 356 } 357 __ addptr(rsp, additional_frame_bytes); 358 } 359 360 __ pop_FPU_state(); 361 __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers 362 363 __ popf(); 364 __ popa(); 365 // Get the rbp, described implicitly by the frame sender code (no oopMap) 366 __ pop(rbp); 367 } 368 369 void RegisterSaver::restore_result_registers(MacroAssembler* masm) { 370 371 // Just restore result register. Only used by deoptimization. By 372 // now any callee save register that needs to be restore to a c2 373 // caller of the deoptee has been extracted into the vframeArray 374 // and will be stuffed into the c2i adapter we create for later 375 // restoration so only result registers need to be restored here. 376 // 377 378 __ frstor(Address(rsp, 0)); // Restore fpu state 379 380 // Recover XMM & FPU state 381 if( UseSSE == 1 ) { 382 __ movflt(xmm0, Address(rsp, xmm0_off*wordSize)); 383 } else if( UseSSE >= 2 ) { 384 __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize)); 385 } 386 __ movptr(rax, Address(rsp, rax_off*wordSize)); 387 __ movptr(rdx, Address(rsp, rdx_off*wordSize)); 388 // Pop all of the register save are off the stack except the return address 389 __ addptr(rsp, return_off * wordSize); 390 } 391 392 // Is vector's size (in bytes) bigger than a size saved by default? 393 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions. 394 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated. 395 bool SharedRuntime::is_wide_vector(int size) { 396 return size > 16; 397 } 398 399 // The java_calling_convention describes stack locations as ideal slots on 400 // a frame with no abi restrictions. Since we must observe abi restrictions 401 // (like the placement of the register window) the slots must be biased by 402 // the following value. 403 static int reg2offset_in(VMReg r) { 404 // Account for saved rbp, and return address 405 // This should really be in_preserve_stack_slots 406 return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size; 407 } 408 409 static int reg2offset_out(VMReg r) { 410 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 411 } 412 413 // --------------------------------------------------------------------------- 414 // Read the array of BasicTypes from a signature, and compute where the 415 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 416 // quantities. Values less than SharedInfo::stack0 are registers, those above 417 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 418 // as framesizes are fixed. 419 // VMRegImpl::stack0 refers to the first slot 0(sp). 420 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 421 // Register up to Register::number_of_registers are the 32-bit 422 // integer registers. 423 424 // Pass first two oop/int args in registers ECX and EDX. 425 // Pass first two float/double args in registers XMM0 and XMM1. 426 // Doubles have precedence, so if you pass a mix of floats and doubles 427 // the doubles will grab the registers before the floats will. 428 429 // Note: the INPUTS in sig_bt are in units of Java argument words, which are 430 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit 431 // units regardless of build. Of course for i486 there is no 64 bit build 432 433 434 // --------------------------------------------------------------------------- 435 // The compiled Java calling convention. 436 // Pass first two oop/int args in registers ECX and EDX. 437 // Pass first two float/double args in registers XMM0 and XMM1. 438 // Doubles have precedence, so if you pass a mix of floats and doubles 439 // the doubles will grab the registers before the floats will. 440 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 441 VMRegPair *regs, 442 int total_args_passed) { 443 uint stack = 0; // Starting stack position for args on stack 444 445 446 // Pass first two oop/int args in registers ECX and EDX. 447 uint reg_arg0 = 9999; 448 uint reg_arg1 = 9999; 449 450 // Pass first two float/double args in registers XMM0 and XMM1. 451 // Doubles have precedence, so if you pass a mix of floats and doubles 452 // the doubles will grab the registers before the floats will. 453 // CNC - TURNED OFF FOR non-SSE. 454 // On Intel we have to round all doubles (and most floats) at 455 // call sites by storing to the stack in any case. 456 // UseSSE=0 ==> Don't Use ==> 9999+0 457 // UseSSE=1 ==> Floats only ==> 9999+1 458 // UseSSE>=2 ==> Floats or doubles ==> 9999+2 459 enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 }; 460 uint fargs = (UseSSE>=2) ? 2 : UseSSE; 461 uint freg_arg0 = 9999+fargs; 462 uint freg_arg1 = 9999+fargs; 463 464 // Pass doubles & longs aligned on the stack. First count stack slots for doubles 465 int i; 466 for( i = 0; i < total_args_passed; i++) { 467 if( sig_bt[i] == T_DOUBLE ) { 468 // first 2 doubles go in registers 469 if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i; 470 else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i; 471 else // Else double is passed low on the stack to be aligned. 472 stack += 2; 473 } else if( sig_bt[i] == T_LONG ) { 474 stack += 2; 475 } 476 } 477 int dstack = 0; // Separate counter for placing doubles 478 479 // Now pick where all else goes. 480 for( i = 0; i < total_args_passed; i++) { 481 // From the type and the argument number (count) compute the location 482 switch( sig_bt[i] ) { 483 case T_SHORT: 484 case T_CHAR: 485 case T_BYTE: 486 case T_BOOLEAN: 487 case T_INT: 488 case T_ARRAY: 489 case T_OBJECT: 490 case T_ADDRESS: 491 if( reg_arg0 == 9999 ) { 492 reg_arg0 = i; 493 regs[i].set1(rcx->as_VMReg()); 494 } else if( reg_arg1 == 9999 ) { 495 reg_arg1 = i; 496 regs[i].set1(rdx->as_VMReg()); 497 } else { 498 regs[i].set1(VMRegImpl::stack2reg(stack++)); 499 } 500 break; 501 case T_FLOAT: 502 if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) { 503 freg_arg0 = i; 504 regs[i].set1(xmm0->as_VMReg()); 505 } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) { 506 freg_arg1 = i; 507 regs[i].set1(xmm1->as_VMReg()); 508 } else { 509 regs[i].set1(VMRegImpl::stack2reg(stack++)); 510 } 511 break; 512 case T_LONG: 513 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" ); 514 regs[i].set2(VMRegImpl::stack2reg(dstack)); 515 dstack += 2; 516 break; 517 case T_DOUBLE: 518 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" ); 519 if( freg_arg0 == (uint)i ) { 520 regs[i].set2(xmm0->as_VMReg()); 521 } else if( freg_arg1 == (uint)i ) { 522 regs[i].set2(xmm1->as_VMReg()); 523 } else { 524 regs[i].set2(VMRegImpl::stack2reg(dstack)); 525 dstack += 2; 526 } 527 break; 528 case T_VOID: regs[i].set_bad(); break; 529 break; 530 default: 531 ShouldNotReachHere(); 532 break; 533 } 534 } 535 536 return stack; 537 } 538 539 // Patch the callers callsite with entry to compiled code if it exists. 540 static void patch_callers_callsite(MacroAssembler *masm) { 541 Label L; 542 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD); 543 __ jcc(Assembler::equal, L); 544 // Schedule the branch target address early. 545 // Call into the VM to patch the caller, then jump to compiled callee 546 // rax, isn't live so capture return address while we easily can 547 __ movptr(rax, Address(rsp, 0)); 548 __ pusha(); 549 __ pushf(); 550 551 if (UseSSE == 1) { 552 __ subptr(rsp, 2*wordSize); 553 __ movflt(Address(rsp, 0), xmm0); 554 __ movflt(Address(rsp, wordSize), xmm1); 555 } 556 if (UseSSE >= 2) { 557 __ subptr(rsp, 4*wordSize); 558 __ movdbl(Address(rsp, 0), xmm0); 559 __ movdbl(Address(rsp, 2*wordSize), xmm1); 560 } 561 #ifdef COMPILER2 562 // C2 may leave the stack dirty if not in SSE2+ mode 563 if (UseSSE >= 2) { 564 __ verify_FPU(0, "c2i transition should have clean FPU stack"); 565 } else { 566 __ empty_FPU_stack(); 567 } 568 #endif /* COMPILER2 */ 569 570 // VM needs caller's callsite 571 __ push(rax); 572 // VM needs target method 573 __ push(rbx); 574 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 575 __ addptr(rsp, 2*wordSize); 576 577 if (UseSSE == 1) { 578 __ movflt(xmm0, Address(rsp, 0)); 579 __ movflt(xmm1, Address(rsp, wordSize)); 580 __ addptr(rsp, 2*wordSize); 581 } 582 if (UseSSE >= 2) { 583 __ movdbl(xmm0, Address(rsp, 0)); 584 __ movdbl(xmm1, Address(rsp, 2*wordSize)); 585 __ addptr(rsp, 4*wordSize); 586 } 587 588 __ popf(); 589 __ popa(); 590 __ bind(L); 591 } 592 593 594 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) { 595 int next_off = st_off - Interpreter::stackElementSize; 596 __ movdbl(Address(rsp, next_off), r); 597 } 598 599 static void gen_c2i_adapter(MacroAssembler *masm, 600 int total_args_passed, 601 int comp_args_on_stack, 602 const BasicType *sig_bt, 603 const VMRegPair *regs, 604 Label& skip_fixup) { 605 // Before we get into the guts of the C2I adapter, see if we should be here 606 // at all. We've come from compiled code and are attempting to jump to the 607 // interpreter, which means the caller made a static call to get here 608 // (vcalls always get a compiled target if there is one). Check for a 609 // compiled target. If there is one, we need to patch the caller's call. 610 patch_callers_callsite(masm); 611 612 __ bind(skip_fixup); 613 614 #ifdef COMPILER2 615 // C2 may leave the stack dirty if not in SSE2+ mode 616 if (UseSSE >= 2) { 617 __ verify_FPU(0, "c2i transition should have clean FPU stack"); 618 } else { 619 __ empty_FPU_stack(); 620 } 621 #endif /* COMPILER2 */ 622 623 // Since all args are passed on the stack, total_args_passed * interpreter_ 624 // stack_element_size is the 625 // space we need. 626 int extraspace = total_args_passed * Interpreter::stackElementSize; 627 628 // Get return address 629 __ pop(rax); 630 631 // set senderSP value 632 __ movptr(rsi, rsp); 633 634 __ subptr(rsp, extraspace); 635 636 // Now write the args into the outgoing interpreter space 637 for (int i = 0; i < total_args_passed; i++) { 638 if (sig_bt[i] == T_VOID) { 639 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 640 continue; 641 } 642 643 // st_off points to lowest address on stack. 644 int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize; 645 int next_off = st_off - Interpreter::stackElementSize; 646 647 // Say 4 args: 648 // i st_off 649 // 0 12 T_LONG 650 // 1 8 T_VOID 651 // 2 4 T_OBJECT 652 // 3 0 T_BOOL 653 VMReg r_1 = regs[i].first(); 654 VMReg r_2 = regs[i].second(); 655 if (!r_1->is_valid()) { 656 assert(!r_2->is_valid(), ""); 657 continue; 658 } 659 660 if (r_1->is_stack()) { 661 // memory to memory use fpu stack top 662 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace; 663 664 if (!r_2->is_valid()) { 665 __ movl(rdi, Address(rsp, ld_off)); 666 __ movptr(Address(rsp, st_off), rdi); 667 } else { 668 669 // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW 670 // st_off == MSW, st_off-wordSize == LSW 671 672 __ movptr(rdi, Address(rsp, ld_off)); 673 __ movptr(Address(rsp, next_off), rdi); 674 __ movptr(rdi, Address(rsp, ld_off + wordSize)); 675 __ movptr(Address(rsp, st_off), rdi); 676 } 677 } else if (r_1->is_Register()) { 678 Register r = r_1->as_Register(); 679 if (!r_2->is_valid()) { 680 __ movl(Address(rsp, st_off), r); 681 } else { 682 // long/double in gpr 683 ShouldNotReachHere(); 684 } 685 } else { 686 assert(r_1->is_XMMRegister(), ""); 687 if (!r_2->is_valid()) { 688 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister()); 689 } else { 690 assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type"); 691 move_c2i_double(masm, r_1->as_XMMRegister(), st_off); 692 } 693 } 694 } 695 696 // Schedule the branch target address early. 697 __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset()))); 698 // And repush original return address 699 __ push(rax); 700 __ jmp(rcx); 701 } 702 703 704 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) { 705 int next_val_off = ld_off - Interpreter::stackElementSize; 706 __ movdbl(r, Address(saved_sp, next_val_off)); 707 } 708 709 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, 710 address code_start, address code_end, 711 Label& L_ok) { 712 Label L_fail; 713 __ lea(temp_reg, AddressLiteral(code_start, relocInfo::none)); 714 __ cmpptr(pc_reg, temp_reg); 715 __ jcc(Assembler::belowEqual, L_fail); 716 __ lea(temp_reg, AddressLiteral(code_end, relocInfo::none)); 717 __ cmpptr(pc_reg, temp_reg); 718 __ jcc(Assembler::below, L_ok); 719 __ bind(L_fail); 720 } 721 722 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 723 int total_args_passed, 724 int comp_args_on_stack, 725 const BasicType *sig_bt, 726 const VMRegPair *regs) { 727 // Note: rsi contains the senderSP on entry. We must preserve it since 728 // we may do a i2c -> c2i transition if we lose a race where compiled 729 // code goes non-entrant while we get args ready. 730 731 // Adapters can be frameless because they do not require the caller 732 // to perform additional cleanup work, such as correcting the stack pointer. 733 // An i2c adapter is frameless because the *caller* frame, which is interpreted, 734 // routinely repairs its own stack pointer (from interpreter_frame_last_sp), 735 // even if a callee has modified the stack pointer. 736 // A c2i adapter is frameless because the *callee* frame, which is interpreted, 737 // routinely repairs its caller's stack pointer (from sender_sp, which is set 738 // up via the senderSP register). 739 // In other words, if *either* the caller or callee is interpreted, we can 740 // get the stack pointer repaired after a call. 741 // This is why c2i and i2c adapters cannot be indefinitely composed. 742 // In particular, if a c2i adapter were to somehow call an i2c adapter, 743 // both caller and callee would be compiled methods, and neither would 744 // clean up the stack pointer changes performed by the two adapters. 745 // If this happens, control eventually transfers back to the compiled 746 // caller, but with an uncorrected stack, causing delayed havoc. 747 748 // Pick up the return address 749 __ movptr(rax, Address(rsp, 0)); 750 751 if (VerifyAdapterCalls && 752 (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) { 753 // So, let's test for cascading c2i/i2c adapters right now. 754 // assert(Interpreter::contains($return_addr) || 755 // StubRoutines::contains($return_addr), 756 // "i2c adapter must return to an interpreter frame"); 757 __ block_comment("verify_i2c { "); 758 Label L_ok; 759 if (Interpreter::code() != nullptr) { 760 range_check(masm, rax, rdi, 761 Interpreter::code()->code_start(), Interpreter::code()->code_end(), 762 L_ok); 763 } 764 if (StubRoutines::initial_stubs_code() != nullptr) { 765 range_check(masm, rax, rdi, 766 StubRoutines::initial_stubs_code()->code_begin(), 767 StubRoutines::initial_stubs_code()->code_end(), 768 L_ok); 769 } 770 if (StubRoutines::final_stubs_code() != nullptr) { 771 range_check(masm, rax, rdi, 772 StubRoutines::final_stubs_code()->code_begin(), 773 StubRoutines::final_stubs_code()->code_end(), 774 L_ok); 775 } 776 const char* msg = "i2c adapter must return to an interpreter frame"; 777 __ block_comment(msg); 778 __ stop(msg); 779 __ bind(L_ok); 780 __ block_comment("} verify_i2ce "); 781 } 782 783 // Must preserve original SP for loading incoming arguments because 784 // we need to align the outgoing SP for compiled code. 785 __ movptr(rdi, rsp); 786 787 // Cut-out for having no stack args. Since up to 2 int/oop args are passed 788 // in registers, we will occasionally have no stack args. 789 int comp_words_on_stack = 0; 790 if (comp_args_on_stack) { 791 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in 792 // registers are below. By subtracting stack0, we either get a negative 793 // number (all values in registers) or the maximum stack slot accessed. 794 // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg); 795 // Convert 4-byte stack slots to words. 796 comp_words_on_stack = align_up(comp_args_on_stack*4, wordSize)>>LogBytesPerWord; 797 // Round up to miminum stack alignment, in wordSize 798 comp_words_on_stack = align_up(comp_words_on_stack, 2); 799 __ subptr(rsp, comp_words_on_stack * wordSize); 800 } 801 802 // Align the outgoing SP 803 __ andptr(rsp, -(StackAlignmentInBytes)); 804 805 // push the return address on the stack (note that pushing, rather 806 // than storing it, yields the correct frame alignment for the callee) 807 __ push(rax); 808 809 // Put saved SP in another register 810 const Register saved_sp = rax; 811 __ movptr(saved_sp, rdi); 812 813 814 // Will jump to the compiled code just as if compiled code was doing it. 815 // Pre-load the register-jump target early, to schedule it better. 816 __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset()))); 817 818 // Now generate the shuffle code. Pick up all register args and move the 819 // rest through the floating point stack top. 820 for (int i = 0; i < total_args_passed; i++) { 821 if (sig_bt[i] == T_VOID) { 822 // Longs and doubles are passed in native word order, but misaligned 823 // in the 32-bit build. 824 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 825 continue; 826 } 827 828 // Pick up 0, 1 or 2 words from SP+offset. 829 830 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 831 "scrambled load targets?"); 832 // Load in argument order going down. 833 int ld_off = (total_args_passed - i) * Interpreter::stackElementSize; 834 // Point to interpreter value (vs. tag) 835 int next_off = ld_off - Interpreter::stackElementSize; 836 // 837 // 838 // 839 VMReg r_1 = regs[i].first(); 840 VMReg r_2 = regs[i].second(); 841 if (!r_1->is_valid()) { 842 assert(!r_2->is_valid(), ""); 843 continue; 844 } 845 if (r_1->is_stack()) { 846 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 847 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize; 848 849 // We can use rsi as a temp here because compiled code doesn't need rsi as an input 850 // and if we end up going thru a c2i because of a miss a reasonable value of rsi 851 // we be generated. 852 if (!r_2->is_valid()) { 853 // __ fld_s(Address(saved_sp, ld_off)); 854 // __ fstp_s(Address(rsp, st_off)); 855 __ movl(rsi, Address(saved_sp, ld_off)); 856 __ movptr(Address(rsp, st_off), rsi); 857 } else { 858 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 859 // are accessed as negative so LSW is at LOW address 860 861 // ld_off is MSW so get LSW 862 // st_off is LSW (i.e. reg.first()) 863 // __ fld_d(Address(saved_sp, next_off)); 864 // __ fstp_d(Address(rsp, st_off)); 865 // 866 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE 867 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case 868 // So we must adjust where to pick up the data to match the interpreter. 869 // 870 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 871 // are accessed as negative so LSW is at LOW address 872 873 // ld_off is MSW so get LSW 874 __ movptr(rsi, Address(saved_sp, next_off)); 875 __ movptr(Address(rsp, st_off), rsi); 876 __ movptr(rsi, Address(saved_sp, ld_off)); 877 __ movptr(Address(rsp, st_off + wordSize), rsi); 878 } 879 } else if (r_1->is_Register()) { // Register argument 880 Register r = r_1->as_Register(); 881 assert(r != rax, "must be different"); 882 if (r_2->is_valid()) { 883 // 884 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE 885 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case 886 // So we must adjust where to pick up the data to match the interpreter. 887 888 // this can be a misaligned move 889 __ movptr(r, Address(saved_sp, next_off)); 890 assert(r_2->as_Register() != rax, "need another temporary register"); 891 // Remember r_1 is low address (and LSB on x86) 892 // So r_2 gets loaded from high address regardless of the platform 893 __ movptr(r_2->as_Register(), Address(saved_sp, ld_off)); 894 } else { 895 __ movl(r, Address(saved_sp, ld_off)); 896 } 897 } else { 898 assert(r_1->is_XMMRegister(), ""); 899 if (!r_2->is_valid()) { 900 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off)); 901 } else { 902 move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off); 903 } 904 } 905 } 906 907 // 6243940 We might end up in handle_wrong_method if 908 // the callee is deoptimized as we race thru here. If that 909 // happens we don't want to take a safepoint because the 910 // caller frame will look interpreted and arguments are now 911 // "compiled" so it is much better to make this transition 912 // invisible to the stack walking code. Unfortunately if 913 // we try and find the callee by normal means a safepoint 914 // is possible. So we stash the desired callee in the thread 915 // and the vm will find there should this case occur. 916 917 __ get_thread(rax); 918 __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx); 919 920 // move Method* to rax, in case we end up in an c2i adapter. 921 // the c2i adapters expect Method* in rax, (c2) because c2's 922 // resolve stubs return the result (the method) in rax,. 923 // I'd love to fix this. 924 __ mov(rax, rbx); 925 926 __ jmp(rdi); 927 } 928 929 // --------------------------------------------------------------- 930 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 931 int total_args_passed, 932 int comp_args_on_stack, 933 const BasicType *sig_bt, 934 const VMRegPair *regs, 935 AdapterFingerPrint* fingerprint) { 936 address i2c_entry = __ pc(); 937 938 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 939 940 // ------------------------------------------------------------------------- 941 // Generate a C2I adapter. On entry we know rbx, holds the Method* during calls 942 // to the interpreter. The args start out packed in the compiled layout. They 943 // need to be unpacked into the interpreter layout. This will almost always 944 // require some stack space. We grow the current (compiled) stack, then repack 945 // the args. We finally end in a jump to the generic interpreter entry point. 946 // On exit from the interpreter, the interpreter will restore our SP (lest the 947 // compiled code, which relies solely on SP and not EBP, get sick). 948 949 address c2i_unverified_entry = __ pc(); 950 Label skip_fixup; 951 952 Register data = rax; 953 Register receiver = rcx; 954 Register temp = rbx; 955 956 { 957 __ ic_check(1 /* end_alignment */); 958 __ movptr(rbx, Address(data, CompiledICData::speculated_method_offset())); 959 // Method might have been compiled since the call site was patched to 960 // interpreted if that is the case treat it as a miss so we can get 961 // the call site corrected. 962 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD); 963 __ jcc(Assembler::equal, skip_fixup); 964 } 965 966 address c2i_entry = __ pc(); 967 968 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 969 bs->c2i_entry_barrier(masm); 970 971 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 972 973 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 974 } 975 976 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 977 VMRegPair *regs, 978 int total_args_passed) { 979 980 // We return the amount of VMRegImpl stack slots we need to reserve for all 981 // the arguments NOT counting out_preserve_stack_slots. 982 983 uint stack = 0; // All arguments on stack 984 985 for( int i = 0; i < total_args_passed; i++) { 986 // From the type and the argument number (count) compute the location 987 switch( sig_bt[i] ) { 988 case T_BOOLEAN: 989 case T_CHAR: 990 case T_FLOAT: 991 case T_BYTE: 992 case T_SHORT: 993 case T_INT: 994 case T_OBJECT: 995 case T_ARRAY: 996 case T_ADDRESS: 997 case T_METADATA: 998 regs[i].set1(VMRegImpl::stack2reg(stack++)); 999 break; 1000 case T_LONG: 1001 case T_DOUBLE: // The stack numbering is reversed from Java 1002 // Since C arguments do not get reversed, the ordering for 1003 // doubles on the stack must be opposite the Java convention 1004 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" ); 1005 regs[i].set2(VMRegImpl::stack2reg(stack)); 1006 stack += 2; 1007 break; 1008 case T_VOID: regs[i].set_bad(); break; 1009 default: 1010 ShouldNotReachHere(); 1011 break; 1012 } 1013 } 1014 return stack; 1015 } 1016 1017 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 1018 uint num_bits, 1019 uint total_args_passed) { 1020 Unimplemented(); 1021 return 0; 1022 } 1023 1024 // A simple move of integer like type 1025 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1026 if (src.first()->is_stack()) { 1027 if (dst.first()->is_stack()) { 1028 // stack to stack 1029 // __ ld(FP, reg2offset(src.first()), L5); 1030 // __ st(L5, SP, reg2offset(dst.first())); 1031 __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first()))); 1032 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1033 } else { 1034 // stack to reg 1035 __ movl2ptr(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1036 } 1037 } else if (dst.first()->is_stack()) { 1038 // reg to stack 1039 // no need to sign extend on 64bit 1040 __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1041 } else { 1042 if (dst.first() != src.first()) { 1043 __ mov(dst.first()->as_Register(), src.first()->as_Register()); 1044 } 1045 } 1046 } 1047 1048 // An oop arg. Must pass a handle not the oop itself 1049 static void object_move(MacroAssembler* masm, 1050 OopMap* map, 1051 int oop_handle_offset, 1052 int framesize_in_slots, 1053 VMRegPair src, 1054 VMRegPair dst, 1055 bool is_receiver, 1056 int* receiver_offset) { 1057 1058 // Because of the calling conventions we know that src can be a 1059 // register or a stack location. dst can only be a stack location. 1060 1061 assert(dst.first()->is_stack(), "must be stack"); 1062 // must pass a handle. First figure out the location we use as a handle 1063 1064 if (src.first()->is_stack()) { 1065 // Oop is already on the stack as an argument 1066 Register rHandle = rax; 1067 Label nil; 1068 __ xorptr(rHandle, rHandle); 1069 __ cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 1070 __ jcc(Assembler::equal, nil); 1071 __ lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1072 __ bind(nil); 1073 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1074 1075 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1076 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1077 if (is_receiver) { 1078 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1079 } 1080 } else { 1081 // Oop is in a register we must store it to the space we reserve 1082 // on the stack for oop_handles 1083 const Register rOop = src.first()->as_Register(); 1084 const Register rHandle = rax; 1085 int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset; 1086 int offset = oop_slot*VMRegImpl::stack_slot_size; 1087 Label skip; 1088 __ movptr(Address(rsp, offset), rOop); 1089 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1090 __ xorptr(rHandle, rHandle); 1091 __ cmpptr(rOop, NULL_WORD); 1092 __ jcc(Assembler::equal, skip); 1093 __ lea(rHandle, Address(rsp, offset)); 1094 __ bind(skip); 1095 // Store the handle parameter 1096 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1097 if (is_receiver) { 1098 *receiver_offset = offset; 1099 } 1100 } 1101 } 1102 1103 // A float arg may have to do float reg int reg conversion 1104 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1105 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 1106 1107 // Because of the calling convention we know that src is either a stack location 1108 // or an xmm register. dst can only be a stack location. 1109 1110 assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters"); 1111 1112 if (src.first()->is_stack()) { 1113 __ movl(rax, Address(rbp, reg2offset_in(src.first()))); 1114 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1115 } else { 1116 // reg to stack 1117 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); 1118 } 1119 } 1120 1121 // A long move 1122 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1123 1124 // The only legal possibility for a long_move VMRegPair is: 1125 // 1: two stack slots (possibly unaligned) 1126 // as neither the java or C calling convention will use registers 1127 // for longs. 1128 1129 if (src.first()->is_stack() && dst.first()->is_stack()) { 1130 assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack"); 1131 __ movptr(rax, Address(rbp, reg2offset_in(src.first()))); 1132 __ movptr(rbx, Address(rbp, reg2offset_in(src.second()))); 1133 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1134 __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx); 1135 } else { 1136 ShouldNotReachHere(); 1137 } 1138 } 1139 1140 // A double move 1141 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1142 1143 // The only legal possibilities for a double_move VMRegPair are: 1144 // The painful thing here is that like long_move a VMRegPair might be 1145 1146 // Because of the calling convention we know that src is either 1147 // 1: a single physical register (xmm registers only) 1148 // 2: two stack slots (possibly unaligned) 1149 // dst can only be a pair of stack slots. 1150 1151 assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args"); 1152 1153 if (src.first()->is_stack()) { 1154 // source is all stack 1155 __ movptr(rax, Address(rbp, reg2offset_in(src.first()))); 1156 __ movptr(rbx, Address(rbp, reg2offset_in(src.second()))); 1157 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1158 __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx); 1159 } else { 1160 // reg to stack 1161 // No worries about stack alignment 1162 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); 1163 } 1164 } 1165 1166 1167 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1168 // We always ignore the frame_slots arg and just use the space just below frame pointer 1169 // which by this time is free to use 1170 switch (ret_type) { 1171 case T_FLOAT: 1172 __ fstp_s(Address(rbp, -wordSize)); 1173 break; 1174 case T_DOUBLE: 1175 __ fstp_d(Address(rbp, -2*wordSize)); 1176 break; 1177 case T_VOID: break; 1178 case T_LONG: 1179 __ movptr(Address(rbp, -wordSize), rax); 1180 __ movptr(Address(rbp, -2*wordSize), rdx); 1181 break; 1182 default: { 1183 __ movptr(Address(rbp, -wordSize), rax); 1184 } 1185 } 1186 } 1187 1188 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1189 // We always ignore the frame_slots arg and just use the space just below frame pointer 1190 // which by this time is free to use 1191 switch (ret_type) { 1192 case T_FLOAT: 1193 __ fld_s(Address(rbp, -wordSize)); 1194 break; 1195 case T_DOUBLE: 1196 __ fld_d(Address(rbp, -2*wordSize)); 1197 break; 1198 case T_LONG: 1199 __ movptr(rax, Address(rbp, -wordSize)); 1200 __ movptr(rdx, Address(rbp, -2*wordSize)); 1201 break; 1202 case T_VOID: break; 1203 default: { 1204 __ movptr(rax, Address(rbp, -wordSize)); 1205 } 1206 } 1207 } 1208 1209 static void verify_oop_args(MacroAssembler* masm, 1210 const methodHandle& method, 1211 const BasicType* sig_bt, 1212 const VMRegPair* regs) { 1213 Register temp_reg = rbx; // not part of any compiled calling seq 1214 if (VerifyOops) { 1215 for (int i = 0; i < method->size_of_parameters(); i++) { 1216 if (is_reference_type(sig_bt[i])) { 1217 VMReg r = regs[i].first(); 1218 assert(r->is_valid(), "bad oop arg"); 1219 if (r->is_stack()) { 1220 __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1221 __ verify_oop(temp_reg); 1222 } else { 1223 __ verify_oop(r->as_Register()); 1224 } 1225 } 1226 } 1227 } 1228 } 1229 1230 static void gen_special_dispatch(MacroAssembler* masm, 1231 const methodHandle& method, 1232 const BasicType* sig_bt, 1233 const VMRegPair* regs) { 1234 verify_oop_args(masm, method, sig_bt, regs); 1235 vmIntrinsics::ID iid = method->intrinsic_id(); 1236 1237 // Now write the args into the outgoing interpreter space 1238 bool has_receiver = false; 1239 Register receiver_reg = noreg; 1240 int member_arg_pos = -1; 1241 Register member_reg = noreg; 1242 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1243 if (ref_kind != 0) { 1244 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1245 member_reg = rbx; // known to be free at this point 1246 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1247 } else if (iid == vmIntrinsics::_invokeBasic) { 1248 has_receiver = true; 1249 } else { 1250 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1251 } 1252 1253 if (member_reg != noreg) { 1254 // Load the member_arg into register, if necessary. 1255 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1256 VMReg r = regs[member_arg_pos].first(); 1257 if (r->is_stack()) { 1258 __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1259 } else { 1260 // no data motion is needed 1261 member_reg = r->as_Register(); 1262 } 1263 } 1264 1265 if (has_receiver) { 1266 // Make sure the receiver is loaded into a register. 1267 assert(method->size_of_parameters() > 0, "oob"); 1268 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1269 VMReg r = regs[0].first(); 1270 assert(r->is_valid(), "bad receiver arg"); 1271 if (r->is_stack()) { 1272 // Porting note: This assumes that compiled calling conventions always 1273 // pass the receiver oop in a register. If this is not true on some 1274 // platform, pick a temp and load the receiver from stack. 1275 fatal("receiver always in a register"); 1276 receiver_reg = rcx; // known to be free at this point 1277 __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1278 } else { 1279 // no data motion is needed 1280 receiver_reg = r->as_Register(); 1281 } 1282 } 1283 1284 // Figure out which address we are really jumping to: 1285 MethodHandles::generate_method_handle_dispatch(masm, iid, 1286 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1287 } 1288 1289 // --------------------------------------------------------------------------- 1290 // Generate a native wrapper for a given method. The method takes arguments 1291 // in the Java compiled code convention, marshals them to the native 1292 // convention (handlizes oops, etc), transitions to native, makes the call, 1293 // returns to java state (possibly blocking), unhandlizes any result and 1294 // returns. 1295 // 1296 // Critical native functions are a shorthand for the use of 1297 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1298 // functions. The wrapper is expected to unpack the arguments before 1299 // passing them to the callee. Critical native functions leave the state _in_Java, 1300 // since they cannot stop for GC. 1301 // Some other parts of JNI setup are skipped like the tear down of the JNI handle 1302 // block and the check for pending exceptions it's impossible for them 1303 // to be thrown. 1304 // 1305 // 1306 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1307 const methodHandle& method, 1308 int compile_id, 1309 BasicType* in_sig_bt, 1310 VMRegPair* in_regs, 1311 BasicType ret_type) { 1312 if (method->is_method_handle_intrinsic()) { 1313 vmIntrinsics::ID iid = method->intrinsic_id(); 1314 intptr_t start = (intptr_t)__ pc(); 1315 int vep_offset = ((intptr_t)__ pc()) - start; 1316 gen_special_dispatch(masm, 1317 method, 1318 in_sig_bt, 1319 in_regs); 1320 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1321 __ flush(); 1322 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1323 return nmethod::new_native_nmethod(method, 1324 compile_id, 1325 masm->code(), 1326 vep_offset, 1327 frame_complete, 1328 stack_slots / VMRegImpl::slots_per_word, 1329 in_ByteSize(-1), 1330 in_ByteSize(-1), 1331 (OopMapSet*)nullptr); 1332 } 1333 address native_func = method->native_function(); 1334 assert(native_func != nullptr, "must have function"); 1335 1336 // An OopMap for lock (and class if static) 1337 OopMapSet *oop_maps = new OopMapSet(); 1338 1339 // We have received a description of where all the java arg are located 1340 // on entry to the wrapper. We need to convert these args to where 1341 // the jni function will expect them. To figure out where they go 1342 // we convert the java signature to a C signature by inserting 1343 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1344 1345 const int total_in_args = method->size_of_parameters(); 1346 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1347 1348 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1349 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1350 1351 int argc = 0; 1352 out_sig_bt[argc++] = T_ADDRESS; 1353 if (method->is_static()) { 1354 out_sig_bt[argc++] = T_OBJECT; 1355 } 1356 1357 for (int i = 0; i < total_in_args ; i++ ) { 1358 out_sig_bt[argc++] = in_sig_bt[i]; 1359 } 1360 1361 // Now figure out where the args must be stored and how much stack space 1362 // they require. 1363 int out_arg_slots; 1364 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args); 1365 1366 // Compute framesize for the wrapper. We need to handlize all oops in 1367 // registers a max of 2 on x86. 1368 1369 // Calculate the total number of stack slots we will need. 1370 1371 // First count the abi requirement plus all of the outgoing args 1372 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1373 1374 // Now the space for the inbound oop handle area 1375 int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers 1376 1377 int oop_handle_offset = stack_slots; 1378 stack_slots += total_save_slots; 1379 1380 // Now any space we need for handlizing a klass if static method 1381 1382 int klass_slot_offset = 0; 1383 int klass_offset = -1; 1384 int lock_slot_offset = 0; 1385 bool is_static = false; 1386 1387 if (method->is_static()) { 1388 klass_slot_offset = stack_slots; 1389 stack_slots += VMRegImpl::slots_per_word; 1390 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1391 is_static = true; 1392 } 1393 1394 // Plus a lock if needed 1395 1396 if (method->is_synchronized()) { 1397 lock_slot_offset = stack_slots; 1398 stack_slots += VMRegImpl::slots_per_word; 1399 } 1400 1401 // Now a place (+2) to save return values or temp during shuffling 1402 // + 2 for return address (which we own) and saved rbp, 1403 stack_slots += 4; 1404 1405 // Ok The space we have allocated will look like: 1406 // 1407 // 1408 // FP-> | | 1409 // |---------------------| 1410 // | 2 slots for moves | 1411 // |---------------------| 1412 // | lock box (if sync) | 1413 // |---------------------| <- lock_slot_offset (-lock_slot_rbp_offset) 1414 // | klass (if static) | 1415 // |---------------------| <- klass_slot_offset 1416 // | oopHandle area | 1417 // |---------------------| <- oop_handle_offset (a max of 2 registers) 1418 // | outbound memory | 1419 // | based arguments | 1420 // | | 1421 // |---------------------| 1422 // | | 1423 // SP-> | out_preserved_slots | 1424 // 1425 // 1426 // **************************************************************************** 1427 // WARNING - on Windows Java Natives use pascal calling convention and pop the 1428 // arguments off of the stack after the jni call. Before the call we can use 1429 // instructions that are SP relative. After the jni call we switch to FP 1430 // relative instructions instead of re-adjusting the stack on windows. 1431 // **************************************************************************** 1432 1433 1434 // Now compute actual number of stack words we need rounding to make 1435 // stack properly aligned. 1436 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1437 1438 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1439 1440 intptr_t start = (intptr_t)__ pc(); 1441 1442 // First thing make an ic check to see if we should even be here 1443 1444 // We are free to use all registers as temps without saving them and 1445 // restoring them except rbp. rbp is the only callee save register 1446 // as far as the interpreter and the compiler(s) are concerned. 1447 1448 1449 const Register receiver = rcx; 1450 Label exception_pending; 1451 1452 __ verify_oop(receiver); 1453 // verified entry must be aligned for code patching. 1454 __ ic_check(8 /* end_alignment */); 1455 1456 int vep_offset = ((intptr_t)__ pc()) - start; 1457 1458 #ifdef COMPILER1 1459 // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available. 1460 if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) { 1461 inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/); 1462 } 1463 #endif // COMPILER1 1464 1465 // The instruction at the verified entry point must be 5 bytes or longer 1466 // because it can be patched on the fly by make_non_entrant. The stack bang 1467 // instruction fits that requirement. 1468 1469 // Generate stack overflow check 1470 __ bang_stack_with_offset((int)StackOverflow::stack_shadow_zone_size()); 1471 1472 // Generate a new frame for the wrapper. 1473 __ enter(); 1474 // -2 because return address is already present and so is saved rbp 1475 __ subptr(rsp, stack_size - 2*wordSize); 1476 1477 1478 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1479 bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */); 1480 1481 // Frame is now completed as far as size and linkage. 1482 int frame_complete = ((intptr_t)__ pc()) - start; 1483 1484 // Calculate the difference between rsp and rbp,. We need to know it 1485 // after the native call because on windows Java Natives will pop 1486 // the arguments and it is painful to do rsp relative addressing 1487 // in a platform independent way. So after the call we switch to 1488 // rbp, relative addressing. 1489 1490 int fp_adjustment = stack_size - 2*wordSize; 1491 1492 #ifdef COMPILER2 1493 // C2 may leave the stack dirty if not in SSE2+ mode 1494 if (UseSSE >= 2) { 1495 __ verify_FPU(0, "c2i transition should have clean FPU stack"); 1496 } else { 1497 __ empty_FPU_stack(); 1498 } 1499 #endif /* COMPILER2 */ 1500 1501 // Compute the rbp, offset for any slots used after the jni call 1502 1503 int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment; 1504 1505 // We use rdi as a thread pointer because it is callee save and 1506 // if we load it once it is usable thru the entire wrapper 1507 const Register thread = rdi; 1508 1509 // We use rsi as the oop handle for the receiver/klass 1510 // It is callee save so it survives the call to native 1511 1512 const Register oop_handle_reg = rsi; 1513 1514 __ get_thread(thread); 1515 1516 // 1517 // We immediately shuffle the arguments so that any vm call we have to 1518 // make from here on out (sync slow path, jvmti, etc.) we will have 1519 // captured the oops from our caller and have a valid oopMap for 1520 // them. 1521 1522 // ----------------- 1523 // The Grand Shuffle 1524 // 1525 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv* 1526 // and, if static, the class mirror instead of a receiver. This pretty much 1527 // guarantees that register layout will not match (and x86 doesn't use reg 1528 // parms though amd does). Since the native abi doesn't use register args 1529 // and the java conventions does we don't have to worry about collisions. 1530 // All of our moved are reg->stack or stack->stack. 1531 // We ignore the extra arguments during the shuffle and handle them at the 1532 // last moment. The shuffle is described by the two calling convention 1533 // vectors we have in our possession. We simply walk the java vector to 1534 // get the source locations and the c vector to get the destinations. 1535 1536 int c_arg = method->is_static() ? 2 : 1; 1537 1538 // Record rsp-based slot for receiver on stack for non-static methods 1539 int receiver_offset = -1; 1540 1541 // This is a trick. We double the stack slots so we can claim 1542 // the oops in the caller's frame. Since we are sure to have 1543 // more args than the caller doubling is enough to make 1544 // sure we can capture all the incoming oop args from the 1545 // caller. 1546 // 1547 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1548 1549 // Mark location of rbp, 1550 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg()); 1551 1552 // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx 1553 // Are free to temporaries if we have to do stack to steck moves. 1554 // All inbound args are referenced based on rbp, and all outbound args via rsp. 1555 1556 for (int i = 0; i < total_in_args ; i++, c_arg++ ) { 1557 switch (in_sig_bt[i]) { 1558 case T_ARRAY: 1559 case T_OBJECT: 1560 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1561 ((i == 0) && (!is_static)), 1562 &receiver_offset); 1563 break; 1564 case T_VOID: 1565 break; 1566 1567 case T_FLOAT: 1568 float_move(masm, in_regs[i], out_regs[c_arg]); 1569 break; 1570 1571 case T_DOUBLE: 1572 assert( i + 1 < total_in_args && 1573 in_sig_bt[i + 1] == T_VOID && 1574 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1575 double_move(masm, in_regs[i], out_regs[c_arg]); 1576 break; 1577 1578 case T_LONG : 1579 long_move(masm, in_regs[i], out_regs[c_arg]); 1580 break; 1581 1582 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1583 1584 default: 1585 simple_move32(masm, in_regs[i], out_regs[c_arg]); 1586 } 1587 } 1588 1589 // Pre-load a static method's oop into rsi. Used both by locking code and 1590 // the normal JNI call code. 1591 if (method->is_static()) { 1592 1593 // load opp into a register 1594 __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror())); 1595 1596 // Now handlize the static class mirror it's known not-null. 1597 __ movptr(Address(rsp, klass_offset), oop_handle_reg); 1598 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1599 1600 // Now get the handle 1601 __ lea(oop_handle_reg, Address(rsp, klass_offset)); 1602 // store the klass handle as second argument 1603 __ movptr(Address(rsp, wordSize), oop_handle_reg); 1604 } 1605 1606 // Change state to native (we save the return address in the thread, since it might not 1607 // be pushed on the stack when we do a stack traversal). It is enough that the pc() 1608 // points into the right code segment. It does not have to be the correct return pc. 1609 // We use the same pc/oopMap repeatedly when we call out 1610 1611 intptr_t the_pc = (intptr_t) __ pc(); 1612 oop_maps->add_gc_map(the_pc - start, map); 1613 1614 __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc, noreg); 1615 1616 1617 // We have all of the arguments setup at this point. We must not touch any register 1618 // argument registers at this point (what if we save/restore them there are no oop? 1619 1620 if (DTraceMethodProbes) { 1621 __ mov_metadata(rax, method()); 1622 __ call_VM_leaf( 1623 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1624 thread, rax); 1625 } 1626 1627 // RedefineClasses() tracing support for obsolete method entry 1628 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1629 __ mov_metadata(rax, method()); 1630 __ call_VM_leaf( 1631 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1632 thread, rax); 1633 } 1634 1635 // These are register definitions we need for locking/unlocking 1636 const Register swap_reg = rax; // Must use rax, for cmpxchg instruction 1637 const Register obj_reg = rcx; // Will contain the oop 1638 const Register lock_reg = rdx; // Address of compiler lock object (BasicLock) 1639 1640 Label slow_path_lock; 1641 Label lock_done; 1642 1643 // Lock a synchronized method 1644 if (method->is_synchronized()) { 1645 Label count_mon; 1646 1647 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 1648 1649 // Get the handle (the 2nd argument) 1650 __ movptr(oop_handle_reg, Address(rsp, wordSize)); 1651 1652 // Get address of the box 1653 1654 __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset)); 1655 1656 // Load the oop from the handle 1657 __ movptr(obj_reg, Address(oop_handle_reg, 0)); 1658 1659 if (LockingMode == LM_MONITOR) { 1660 __ jmp(slow_path_lock); 1661 } else if (LockingMode == LM_LEGACY) { 1662 // Load immediate 1 into swap_reg %rax, 1663 __ movptr(swap_reg, 1); 1664 1665 // Load (object->mark() | 1) into swap_reg %rax, 1666 __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1667 1668 // Save (object->mark() | 1) into BasicLock's displaced header 1669 __ movptr(Address(lock_reg, mark_word_offset), swap_reg); 1670 1671 // src -> dest iff dest == rax, else rax, <- dest 1672 // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg) 1673 __ lock(); 1674 __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1675 __ jcc(Assembler::equal, count_mon); 1676 1677 // Test if the oopMark is an obvious stack pointer, i.e., 1678 // 1) (mark & 3) == 0, and 1679 // 2) rsp <= mark < mark + os::pagesize() 1680 // These 3 tests can be done by evaluating the following 1681 // expression: ((mark - rsp) & (3 - os::vm_page_size())), 1682 // assuming both stack pointer and pagesize have their 1683 // least significant 2 bits clear. 1684 // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg 1685 1686 __ subptr(swap_reg, rsp); 1687 __ andptr(swap_reg, 3 - (int)os::vm_page_size()); 1688 1689 // Save the test result, for recursive case, the result is zero 1690 __ movptr(Address(lock_reg, mark_word_offset), swap_reg); 1691 __ jcc(Assembler::notEqual, slow_path_lock); 1692 } else { 1693 assert(LockingMode == LM_LIGHTWEIGHT, "must be"); 1694 // Lacking registers and thread on x86_32. Always take slow path. 1695 __ jmp(slow_path_lock); 1696 } 1697 __ bind(count_mon); 1698 __ inc_held_monitor_count(); 1699 1700 // Slow path will re-enter here 1701 __ bind(lock_done); 1702 } 1703 1704 1705 // Finally just about ready to make the JNI call 1706 1707 // get JNIEnv* which is first argument to native 1708 __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset()))); 1709 __ movptr(Address(rsp, 0), rdx); 1710 1711 // Now set thread in native 1712 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native); 1713 1714 __ call(RuntimeAddress(native_func)); 1715 1716 // Verify or restore cpu control state after JNI call 1717 __ restore_cpu_control_state_after_jni(noreg); 1718 1719 // WARNING - on Windows Java Natives use pascal calling convention and pop the 1720 // arguments off of the stack. We could just re-adjust the stack pointer here 1721 // and continue to do SP relative addressing but we instead switch to FP 1722 // relative addressing. 1723 1724 // Unpack native results. 1725 switch (ret_type) { 1726 case T_BOOLEAN: __ c2bool(rax); break; 1727 case T_CHAR : __ andptr(rax, 0xFFFF); break; 1728 case T_BYTE : __ sign_extend_byte (rax); break; 1729 case T_SHORT : __ sign_extend_short(rax); break; 1730 case T_INT : /* nothing to do */ break; 1731 case T_DOUBLE : 1732 case T_FLOAT : 1733 // Result is in st0 we'll save as needed 1734 break; 1735 case T_ARRAY: // Really a handle 1736 case T_OBJECT: // Really a handle 1737 break; // can't de-handlize until after safepoint check 1738 case T_VOID: break; 1739 case T_LONG: break; 1740 default : ShouldNotReachHere(); 1741 } 1742 1743 // Switch thread to "native transition" state before reading the synchronization state. 1744 // This additional state is necessary because reading and testing the synchronization 1745 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1746 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1747 // VM thread changes sync state to synchronizing and suspends threads for GC. 1748 // Thread A is resumed to finish this native method, but doesn't block here since it 1749 // didn't see any synchronization is progress, and escapes. 1750 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans); 1751 1752 // Force this write out before the read below 1753 if (!UseSystemMemoryBarrier) { 1754 __ membar(Assembler::Membar_mask_bits( 1755 Assembler::LoadLoad | Assembler::LoadStore | 1756 Assembler::StoreLoad | Assembler::StoreStore)); 1757 } 1758 1759 if (AlwaysRestoreFPU) { 1760 // Make sure the control word is correct. 1761 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std())); 1762 } 1763 1764 // check for safepoint operation in progress and/or pending suspend requests 1765 { Label Continue, slow_path; 1766 1767 __ safepoint_poll(slow_path, thread, true /* at_return */, false /* in_nmethod */); 1768 1769 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0); 1770 __ jcc(Assembler::equal, Continue); 1771 __ bind(slow_path); 1772 1773 // Don't use call_VM as it will see a possible pending exception and forward it 1774 // and never return here preventing us from clearing _last_native_pc down below. 1775 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are 1776 // preserved and correspond to the bcp/locals pointers. So we do a runtime call 1777 // by hand. 1778 // 1779 __ vzeroupper(); 1780 1781 save_native_result(masm, ret_type, stack_slots); 1782 __ push(thread); 1783 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, 1784 JavaThread::check_special_condition_for_native_trans))); 1785 __ increment(rsp, wordSize); 1786 // Restore any method result value 1787 restore_native_result(masm, ret_type, stack_slots); 1788 __ bind(Continue); 1789 } 1790 1791 // change thread state 1792 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java); 1793 1794 Label reguard; 1795 Label reguard_done; 1796 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_yellow_reserved_disabled); 1797 __ jcc(Assembler::equal, reguard); 1798 1799 // slow path reguard re-enters here 1800 __ bind(reguard_done); 1801 1802 // Handle possible exception (will unlock if necessary) 1803 1804 // native result if any is live 1805 1806 // Unlock 1807 Label slow_path_unlock; 1808 Label unlock_done; 1809 if (method->is_synchronized()) { 1810 1811 Label fast_done; 1812 1813 // Get locked oop from the handle we passed to jni 1814 __ movptr(obj_reg, Address(oop_handle_reg, 0)); 1815 1816 if (LockingMode == LM_LEGACY) { 1817 Label not_recur; 1818 // Simple recursive lock? 1819 __ cmpptr(Address(rbp, lock_slot_rbp_offset), NULL_WORD); 1820 __ jcc(Assembler::notEqual, not_recur); 1821 __ dec_held_monitor_count(); 1822 __ jmpb(fast_done); 1823 __ bind(not_recur); 1824 } 1825 1826 // Must save rax, if it is live now because cmpxchg must use it 1827 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1828 save_native_result(masm, ret_type, stack_slots); 1829 } 1830 1831 if (LockingMode == LM_MONITOR) { 1832 __ jmp(slow_path_unlock); 1833 } else if (LockingMode == LM_LEGACY) { 1834 // get old displaced header 1835 __ movptr(rbx, Address(rbp, lock_slot_rbp_offset)); 1836 1837 // get address of the stack lock 1838 __ lea(rax, Address(rbp, lock_slot_rbp_offset)); 1839 1840 // Atomic swap old header if oop still contains the stack lock 1841 // src -> dest iff dest == rax, else rax, <- dest 1842 // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg) 1843 __ lock(); 1844 __ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1845 __ jcc(Assembler::notEqual, slow_path_unlock); 1846 __ dec_held_monitor_count(); 1847 } else { 1848 assert(LockingMode == LM_LIGHTWEIGHT, "must be"); 1849 __ lightweight_unlock(obj_reg, swap_reg, thread, lock_reg, slow_path_unlock); 1850 __ dec_held_monitor_count(); 1851 } 1852 1853 // slow path re-enters here 1854 __ bind(unlock_done); 1855 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1856 restore_native_result(masm, ret_type, stack_slots); 1857 } 1858 1859 __ bind(fast_done); 1860 } 1861 1862 if (DTraceMethodProbes) { 1863 // Tell dtrace about this method exit 1864 save_native_result(masm, ret_type, stack_slots); 1865 __ mov_metadata(rax, method()); 1866 __ call_VM_leaf( 1867 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1868 thread, rax); 1869 restore_native_result(masm, ret_type, stack_slots); 1870 } 1871 1872 // We can finally stop using that last_Java_frame we setup ages ago 1873 1874 __ reset_last_Java_frame(thread, false); 1875 1876 // Unbox oop result, e.g. JNIHandles::resolve value. 1877 if (is_reference_type(ret_type)) { 1878 __ resolve_jobject(rax /* value */, 1879 thread /* thread */, 1880 rcx /* tmp */); 1881 } 1882 1883 if (CheckJNICalls) { 1884 // clear_pending_jni_exception_check 1885 __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD); 1886 } 1887 1888 // reset handle block 1889 __ movptr(rcx, Address(thread, JavaThread::active_handles_offset())); 1890 __ movl(Address(rcx, JNIHandleBlock::top_offset()), NULL_WORD); 1891 1892 // Any exception pending? 1893 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD); 1894 __ jcc(Assembler::notEqual, exception_pending); 1895 1896 // no exception, we're almost done 1897 1898 // check that only result value is on FPU stack 1899 __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit"); 1900 1901 // Fixup floating pointer results so that result looks like a return from a compiled method 1902 if (ret_type == T_FLOAT) { 1903 if (UseSSE >= 1) { 1904 // Pop st0 and store as float and reload into xmm register 1905 __ fstp_s(Address(rbp, -4)); 1906 __ movflt(xmm0, Address(rbp, -4)); 1907 } 1908 } else if (ret_type == T_DOUBLE) { 1909 if (UseSSE >= 2) { 1910 // Pop st0 and store as double and reload into xmm register 1911 __ fstp_d(Address(rbp, -8)); 1912 __ movdbl(xmm0, Address(rbp, -8)); 1913 } 1914 } 1915 1916 // Return 1917 1918 __ leave(); 1919 __ ret(0); 1920 1921 // Unexpected paths are out of line and go here 1922 1923 // Slow path locking & unlocking 1924 if (method->is_synchronized()) { 1925 1926 // BEGIN Slow path lock 1927 1928 __ bind(slow_path_lock); 1929 1930 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 1931 // args are (oop obj, BasicLock* lock, JavaThread* thread) 1932 __ push(thread); 1933 __ push(lock_reg); 1934 __ push(obj_reg); 1935 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C))); 1936 __ addptr(rsp, 3*wordSize); 1937 1938 #ifdef ASSERT 1939 { Label L; 1940 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD); 1941 __ jcc(Assembler::equal, L); 1942 __ stop("no pending exception allowed on exit from monitorenter"); 1943 __ bind(L); 1944 } 1945 #endif 1946 __ jmp(lock_done); 1947 1948 // END Slow path lock 1949 1950 // BEGIN Slow path unlock 1951 __ bind(slow_path_unlock); 1952 __ vzeroupper(); 1953 // Slow path unlock 1954 1955 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 1956 save_native_result(masm, ret_type, stack_slots); 1957 } 1958 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 1959 1960 __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset()))); 1961 __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD); 1962 1963 1964 // should be a peal 1965 // +wordSize because of the push above 1966 // args are (oop obj, BasicLock* lock, JavaThread* thread) 1967 __ push(thread); 1968 __ lea(rax, Address(rbp, lock_slot_rbp_offset)); 1969 __ push(rax); 1970 1971 __ push(obj_reg); 1972 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C))); 1973 __ addptr(rsp, 3*wordSize); 1974 #ifdef ASSERT 1975 { 1976 Label L; 1977 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD); 1978 __ jcc(Assembler::equal, L); 1979 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 1980 __ bind(L); 1981 } 1982 #endif /* ASSERT */ 1983 1984 __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset()))); 1985 1986 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 1987 restore_native_result(masm, ret_type, stack_slots); 1988 } 1989 __ jmp(unlock_done); 1990 // END Slow path unlock 1991 1992 } 1993 1994 // SLOW PATH Reguard the stack if needed 1995 1996 __ bind(reguard); 1997 __ vzeroupper(); 1998 save_native_result(masm, ret_type, stack_slots); 1999 { 2000 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); 2001 } 2002 restore_native_result(masm, ret_type, stack_slots); 2003 __ jmp(reguard_done); 2004 2005 2006 // BEGIN EXCEPTION PROCESSING 2007 2008 // Forward the exception 2009 __ bind(exception_pending); 2010 2011 // remove possible return value from FPU register stack 2012 __ empty_FPU_stack(); 2013 2014 // pop our frame 2015 __ leave(); 2016 // and forward the exception 2017 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2018 2019 __ flush(); 2020 2021 nmethod *nm = nmethod::new_native_nmethod(method, 2022 compile_id, 2023 masm->code(), 2024 vep_offset, 2025 frame_complete, 2026 stack_slots / VMRegImpl::slots_per_word, 2027 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2028 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2029 oop_maps); 2030 2031 return nm; 2032 2033 } 2034 2035 // this function returns the adjust size (in number of words) to a c2i adapter 2036 // activation for use during deoptimization 2037 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) { 2038 return (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2039 } 2040 2041 2042 // Number of stack slots between incoming argument block and the start of 2043 // a new frame. The PROLOG must add this many slots to the stack. The 2044 // EPILOG must remove this many slots. Intel needs one slot for 2045 // return address and one for rbp, (must save rbp) 2046 uint SharedRuntime::in_preserve_stack_slots() { 2047 return 2+VerifyStackAtCalls; 2048 } 2049 2050 uint SharedRuntime::out_preserve_stack_slots() { 2051 return 0; 2052 } 2053 2054 VMReg SharedRuntime::thread_register() { 2055 Unimplemented(); 2056 return nullptr; 2057 } 2058 2059 //------------------------------generate_deopt_blob---------------------------- 2060 void SharedRuntime::generate_deopt_blob() { 2061 // allocate space for the code 2062 ResourceMark rm; 2063 // setup code generation tools 2064 // note: the buffer code size must account for StackShadowPages=50 2065 const char* name = SharedRuntime::stub_name(SharedStubId::deopt_id); 2066 CodeBuffer buffer(name, 1536, 1024); 2067 MacroAssembler* masm = new MacroAssembler(&buffer); 2068 int frame_size_in_words; 2069 OopMap* map = nullptr; 2070 // Account for the extra args we place on the stack 2071 // by the time we call fetch_unroll_info 2072 const int additional_words = 2; // deopt kind, thread 2073 2074 OopMapSet *oop_maps = new OopMapSet(); 2075 2076 // ------------- 2077 // This code enters when returning to a de-optimized nmethod. A return 2078 // address has been pushed on the stack, and return values are in 2079 // registers. 2080 // If we are doing a normal deopt then we were called from the patched 2081 // nmethod from the point we returned to the nmethod. So the return 2082 // address on the stack is wrong by NativeCall::instruction_size 2083 // We will adjust the value to it looks like we have the original return 2084 // address on the stack (like when we eagerly deoptimized). 2085 // In the case of an exception pending with deoptimized then we enter 2086 // with a return address on the stack that points after the call we patched 2087 // into the exception handler. We have the following register state: 2088 // rax,: exception 2089 // rbx,: exception handler 2090 // rdx: throwing pc 2091 // So in this case we simply jam rdx into the useless return address and 2092 // the stack looks just like we want. 2093 // 2094 // At this point we need to de-opt. We save the argument return 2095 // registers. We call the first C routine, fetch_unroll_info(). This 2096 // routine captures the return values and returns a structure which 2097 // describes the current frame size and the sizes of all replacement frames. 2098 // The current frame is compiled code and may contain many inlined 2099 // functions, each with their own JVM state. We pop the current frame, then 2100 // push all the new frames. Then we call the C routine unpack_frames() to 2101 // populate these frames. Finally unpack_frames() returns us the new target 2102 // address. Notice that callee-save registers are BLOWN here; they have 2103 // already been captured in the vframeArray at the time the return PC was 2104 // patched. 2105 address start = __ pc(); 2106 Label cont; 2107 2108 // Prolog for non exception case! 2109 2110 // Save everything in sight. 2111 2112 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); 2113 // Normal deoptimization 2114 __ push(Deoptimization::Unpack_deopt); 2115 __ jmp(cont); 2116 2117 int reexecute_offset = __ pc() - start; 2118 2119 // Reexecute case 2120 // return address is the pc describes what bci to do re-execute at 2121 2122 // No need to update map as each call to save_live_registers will produce identical oopmap 2123 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); 2124 2125 __ push(Deoptimization::Unpack_reexecute); 2126 __ jmp(cont); 2127 2128 int exception_offset = __ pc() - start; 2129 2130 // Prolog for exception case 2131 2132 // all registers are dead at this entry point, except for rax, and 2133 // rdx which contain the exception oop and exception pc 2134 // respectively. Set them in TLS and fall thru to the 2135 // unpack_with_exception_in_tls entry point. 2136 2137 __ get_thread(rdi); 2138 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx); 2139 __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax); 2140 2141 int exception_in_tls_offset = __ pc() - start; 2142 2143 // new implementation because exception oop is now passed in JavaThread 2144 2145 // Prolog for exception case 2146 // All registers must be preserved because they might be used by LinearScan 2147 // Exceptiop oop and throwing PC are passed in JavaThread 2148 // tos: stack at point of call to method that threw the exception (i.e. only 2149 // args are on the stack, no return address) 2150 2151 // make room on stack for the return address 2152 // It will be patched later with the throwing pc. The correct value is not 2153 // available now because loading it from memory would destroy registers. 2154 __ push(0); 2155 2156 // Save everything in sight. 2157 2158 // No need to update map as each call to save_live_registers will produce identical oopmap 2159 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); 2160 2161 // Now it is safe to overwrite any register 2162 2163 // store the correct deoptimization type 2164 __ push(Deoptimization::Unpack_exception); 2165 2166 // load throwing pc from JavaThread and patch it as the return address 2167 // of the current frame. Then clear the field in JavaThread 2168 __ get_thread(rdi); 2169 __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset())); 2170 __ movptr(Address(rbp, wordSize), rdx); 2171 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD); 2172 2173 #ifdef ASSERT 2174 // verify that there is really an exception oop in JavaThread 2175 __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset())); 2176 __ verify_oop(rax); 2177 2178 // verify that there is no pending exception 2179 Label no_pending_exception; 2180 __ movptr(rax, Address(rdi, Thread::pending_exception_offset())); 2181 __ testptr(rax, rax); 2182 __ jcc(Assembler::zero, no_pending_exception); 2183 __ stop("must not have pending exception here"); 2184 __ bind(no_pending_exception); 2185 #endif 2186 2187 __ bind(cont); 2188 2189 // Compiled code leaves the floating point stack dirty, empty it. 2190 __ empty_FPU_stack(); 2191 2192 2193 // Call C code. Need thread and this frame, but NOT official VM entry 2194 // crud. We cannot block on this call, no GC can happen. 2195 __ get_thread(rcx); 2196 __ push(rcx); 2197 // fetch_unroll_info needs to call last_java_frame() 2198 __ set_last_Java_frame(rcx, noreg, noreg, nullptr, noreg); 2199 2200 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2201 2202 // Need to have an oopmap that tells fetch_unroll_info where to 2203 // find any register it might need. 2204 2205 oop_maps->add_gc_map( __ pc()-start, map); 2206 2207 // Discard args to fetch_unroll_info 2208 __ pop(rcx); 2209 __ pop(rcx); 2210 2211 __ get_thread(rcx); 2212 __ reset_last_Java_frame(rcx, false); 2213 2214 // Load UnrollBlock into EDI 2215 __ mov(rdi, rax); 2216 2217 // Move the unpack kind to a safe place in the UnrollBlock because 2218 // we are very short of registers 2219 2220 Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset()); 2221 // retrieve the deopt kind from the UnrollBlock. 2222 __ movl(rax, unpack_kind); 2223 2224 Label noException; 2225 __ cmpl(rax, Deoptimization::Unpack_exception); // Was exception pending? 2226 __ jcc(Assembler::notEqual, noException); 2227 __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset())); 2228 __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset())); 2229 __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD); 2230 __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD); 2231 2232 __ verify_oop(rax); 2233 2234 // Overwrite the result registers with the exception results. 2235 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax); 2236 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx); 2237 2238 __ bind(noException); 2239 2240 // Stack is back to only having register save data on the stack. 2241 // Now restore the result registers. Everything else is either dead or captured 2242 // in the vframeArray. 2243 2244 RegisterSaver::restore_result_registers(masm); 2245 2246 // Non standard control word may be leaked out through a safepoint blob, and we can 2247 // deopt at a poll point with the non standard control word. However, we should make 2248 // sure the control word is correct after restore_result_registers. 2249 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std())); 2250 2251 // All of the register save area has been popped of the stack. Only the 2252 // return address remains. 2253 2254 // Pop all the frames we must move/replace. 2255 // 2256 // Frame picture (youngest to oldest) 2257 // 1: self-frame (no frame link) 2258 // 2: deopting frame (no frame link) 2259 // 3: caller of deopting frame (could be compiled/interpreted). 2260 // 2261 // Note: by leaving the return address of self-frame on the stack 2262 // and using the size of frame 2 to adjust the stack 2263 // when we are done the return to frame 3 will still be on the stack. 2264 2265 // Pop deoptimized frame 2266 __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset())); 2267 2268 // sp should be pointing at the return address to the caller (3) 2269 2270 // Pick up the initial fp we should save 2271 // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) 2272 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset())); 2273 2274 #ifdef ASSERT 2275 // Compilers generate code that bang the stack by as much as the 2276 // interpreter would need. So this stack banging should never 2277 // trigger a fault. Verify that it does not on non product builds. 2278 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset())); 2279 __ bang_stack_size(rbx, rcx); 2280 #endif 2281 2282 // Load array of frame pcs into ECX 2283 __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset())); 2284 2285 __ pop(rsi); // trash the old pc 2286 2287 // Load array of frame sizes into ESI 2288 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset())); 2289 2290 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset()); 2291 2292 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset())); 2293 __ movl(counter, rbx); 2294 2295 // Now adjust the caller's stack to make up for the extra locals 2296 // but record the original sp so that we can save it in the skeletal interpreter 2297 // frame and the stack walking of interpreter_sender will get the unextended sp 2298 // value and not the "real" sp value. 2299 2300 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset()); 2301 __ movptr(sp_temp, rsp); 2302 __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset())); 2303 __ subptr(rsp, rbx); 2304 2305 // Push interpreter frames in a loop 2306 Label loop; 2307 __ bind(loop); 2308 __ movptr(rbx, Address(rsi, 0)); // Load frame size 2309 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand 2310 __ pushptr(Address(rcx, 0)); // save return address 2311 __ enter(); // save old & set new rbp, 2312 __ subptr(rsp, rbx); // Prolog! 2313 __ movptr(rbx, sp_temp); // sender's sp 2314 // This value is corrected by layout_activation_impl 2315 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 2316 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable 2317 __ movptr(sp_temp, rsp); // pass to next frame 2318 __ addptr(rsi, wordSize); // Bump array pointer (sizes) 2319 __ addptr(rcx, wordSize); // Bump array pointer (pcs) 2320 __ decrementl(counter); // decrement counter 2321 __ jcc(Assembler::notZero, loop); 2322 __ pushptr(Address(rcx, 0)); // save final return address 2323 2324 // Re-push self-frame 2325 __ enter(); // save old & set new rbp, 2326 2327 // Return address and rbp, are in place 2328 // We'll push additional args later. Just allocate a full sized 2329 // register save area 2330 __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize); 2331 2332 // Restore frame locals after moving the frame 2333 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax); 2334 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx); 2335 __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize)); // Pop float stack and store in local 2336 if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0); 2337 if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0); 2338 2339 // Set up the args to unpack_frame 2340 2341 __ pushl(unpack_kind); // get the unpack_kind value 2342 __ get_thread(rcx); 2343 __ push(rcx); 2344 2345 // set last_Java_sp, last_Java_fp 2346 __ set_last_Java_frame(rcx, noreg, rbp, nullptr, noreg); 2347 2348 // Call C code. Need thread but NOT official VM entry 2349 // crud. We cannot block on this call, no GC can happen. Call should 2350 // restore return values to their stack-slots with the new SP. 2351 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2352 // Set an oopmap for the call site 2353 oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 )); 2354 2355 // rax, contains the return result type 2356 __ push(rax); 2357 2358 __ get_thread(rcx); 2359 __ reset_last_Java_frame(rcx, false); 2360 2361 // Collect return values 2362 __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize)); 2363 __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize)); 2364 2365 // Clear floating point stack before returning to interpreter 2366 __ empty_FPU_stack(); 2367 2368 // Check if we should push the float or double return value. 2369 Label results_done, yes_double_value; 2370 __ cmpl(Address(rsp, 0), T_DOUBLE); 2371 __ jcc (Assembler::zero, yes_double_value); 2372 __ cmpl(Address(rsp, 0), T_FLOAT); 2373 __ jcc (Assembler::notZero, results_done); 2374 2375 // return float value as expected by interpreter 2376 if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize)); 2377 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize)); 2378 __ jmp(results_done); 2379 2380 // return double value as expected by interpreter 2381 __ bind(yes_double_value); 2382 if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize)); 2383 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize)); 2384 2385 __ bind(results_done); 2386 2387 // Pop self-frame. 2388 __ leave(); // Epilog! 2389 2390 // Jump to interpreter 2391 __ ret(0); 2392 2393 // ------------- 2394 // make sure all code is generated 2395 masm->flush(); 2396 2397 _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2398 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2399 } 2400 2401 //------------------------------generate_handler_blob------ 2402 // 2403 // Generate a special Compile2Runtime blob that saves all registers, 2404 // setup oopmap, and calls safepoint code to stop the compiled code for 2405 // a safepoint. 2406 // 2407 SafepointBlob* SharedRuntime::generate_handler_blob(SharedStubId id, address call_ptr) { 2408 2409 // Account for thread arg in our frame 2410 const int additional_words = 1; 2411 int frame_size_in_words; 2412 2413 assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 2414 assert(is_polling_page_id(id), "expected a polling page stub id"); 2415 2416 ResourceMark rm; 2417 OopMapSet *oop_maps = new OopMapSet(); 2418 OopMap* map; 2419 2420 // allocate space for the code 2421 // setup code generation tools 2422 const char* name = SharedRuntime::stub_name(id); 2423 CodeBuffer buffer(name, 2048, 1024); 2424 MacroAssembler* masm = new MacroAssembler(&buffer); 2425 2426 const Register java_thread = rdi; // callee-saved for VC++ 2427 address start = __ pc(); 2428 address call_pc = nullptr; 2429 bool cause_return = (id == SharedStubId::polling_page_return_handler_id); 2430 bool save_vectors = (id == SharedStubId::polling_page_vectors_safepoint_handler_id); 2431 2432 // If cause_return is true we are at a poll_return and there is 2433 // the return address on the stack to the caller on the nmethod 2434 // that is safepoint. We can leave this return on the stack and 2435 // effectively complete the return and safepoint in the caller. 2436 // Otherwise we push space for a return address that the safepoint 2437 // handler will install later to make the stack walking sensible. 2438 if (!cause_return) 2439 __ push(rbx); // Make room for return address (or push it again) 2440 2441 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors); 2442 2443 // The following is basically a call_VM. However, we need the precise 2444 // address of the call in order to generate an oopmap. Hence, we do all the 2445 // work ourselves. 2446 2447 // Push thread argument and setup last_Java_sp 2448 __ get_thread(java_thread); 2449 __ push(java_thread); 2450 __ set_last_Java_frame(java_thread, noreg, noreg, nullptr, noreg); 2451 2452 // if this was not a poll_return then we need to correct the return address now. 2453 if (!cause_return) { 2454 // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack. 2455 // Additionally, rbx is a callee saved register and we can look at it later to determine 2456 // if someone changed the return address for us! 2457 __ movptr(rbx, Address(java_thread, JavaThread::saved_exception_pc_offset())); 2458 __ movptr(Address(rbp, wordSize), rbx); 2459 } 2460 2461 // do the call 2462 __ call(RuntimeAddress(call_ptr)); 2463 2464 // Set an oopmap for the call site. This oopmap will map all 2465 // oop-registers and debug-info registers as callee-saved. This 2466 // will allow deoptimization at this safepoint to find all possible 2467 // debug-info recordings, as well as let GC find all oops. 2468 2469 oop_maps->add_gc_map( __ pc() - start, map); 2470 2471 // Discard arg 2472 __ pop(rcx); 2473 2474 Label noException; 2475 2476 // Clear last_Java_sp again 2477 __ get_thread(java_thread); 2478 __ reset_last_Java_frame(java_thread, false); 2479 2480 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD); 2481 __ jcc(Assembler::equal, noException); 2482 2483 // Exception pending 2484 RegisterSaver::restore_live_registers(masm, save_vectors); 2485 2486 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2487 2488 __ bind(noException); 2489 2490 Label no_adjust, bail, not_special; 2491 if (!cause_return) { 2492 // If our stashed return pc was modified by the runtime we avoid touching it 2493 __ cmpptr(rbx, Address(rbp, wordSize)); 2494 __ jccb(Assembler::notEqual, no_adjust); 2495 2496 // Skip over the poll instruction. 2497 // See NativeInstruction::is_safepoint_poll() 2498 // Possible encodings: 2499 // 85 00 test %eax,(%rax) 2500 // 85 01 test %eax,(%rcx) 2501 // 85 02 test %eax,(%rdx) 2502 // 85 03 test %eax,(%rbx) 2503 // 85 06 test %eax,(%rsi) 2504 // 85 07 test %eax,(%rdi) 2505 // 2506 // 85 04 24 test %eax,(%rsp) 2507 // 85 45 00 test %eax,0x0(%rbp) 2508 2509 #ifdef ASSERT 2510 __ movptr(rax, rbx); // remember where 0x85 should be, for verification below 2511 #endif 2512 // rsp/rbp base encoding takes 3 bytes with the following register values: 2513 // rsp 0x04 2514 // rbp 0x05 2515 __ movzbl(rcx, Address(rbx, 1)); 2516 __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05 2517 __ subptr(rcx, 4); // looking for 0x00 .. 0x01 2518 __ cmpptr(rcx, 1); 2519 __ jcc(Assembler::above, not_special); 2520 __ addptr(rbx, 1); 2521 __ bind(not_special); 2522 #ifdef ASSERT 2523 // Verify the correct encoding of the poll we're about to skip. 2524 __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl); 2525 __ jcc(Assembler::notEqual, bail); 2526 // Mask out the modrm bits 2527 __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask); 2528 // rax encodes to 0, so if the bits are nonzero it's incorrect 2529 __ jcc(Assembler::notZero, bail); 2530 #endif 2531 // Adjust return pc forward to step over the safepoint poll instruction 2532 __ addptr(rbx, 2); 2533 __ movptr(Address(rbp, wordSize), rbx); 2534 } 2535 2536 __ bind(no_adjust); 2537 // Normal exit, register restoring and exit 2538 RegisterSaver::restore_live_registers(masm, save_vectors); 2539 2540 __ ret(0); 2541 2542 #ifdef ASSERT 2543 __ bind(bail); 2544 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2545 #endif 2546 2547 // make sure all code is generated 2548 masm->flush(); 2549 2550 // Fill-out other meta info 2551 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2552 } 2553 2554 // 2555 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2556 // 2557 // Generate a stub that calls into vm to find out the proper destination 2558 // of a java call. All the argument registers are live at this point 2559 // but since this is generic code we don't know what they are and the caller 2560 // must do any gc of the args. 2561 // 2562 RuntimeStub* SharedRuntime::generate_resolve_blob(SharedStubId id, address destination) { 2563 assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 2564 assert(is_resolve_id(id), "expected a resolve stub id"); 2565 2566 // allocate space for the code 2567 ResourceMark rm; 2568 2569 const char* name = SharedRuntime::stub_name(id); 2570 CodeBuffer buffer(name, 1000, 512); 2571 MacroAssembler* masm = new MacroAssembler(&buffer); 2572 2573 int frame_size_words; 2574 enum frame_layout { 2575 thread_off, 2576 extra_words }; 2577 2578 OopMapSet *oop_maps = new OopMapSet(); 2579 OopMap* map = nullptr; 2580 2581 int start = __ offset(); 2582 2583 map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words); 2584 2585 int frame_complete = __ offset(); 2586 2587 const Register thread = rdi; 2588 __ get_thread(rdi); 2589 2590 __ push(thread); 2591 __ set_last_Java_frame(thread, noreg, rbp, nullptr, noreg); 2592 2593 __ call(RuntimeAddress(destination)); 2594 2595 2596 // Set an oopmap for the call site. 2597 // We need this not only for callee-saved registers, but also for volatile 2598 // registers that the compiler might be keeping live across a safepoint. 2599 2600 oop_maps->add_gc_map( __ offset() - start, map); 2601 2602 // rax, contains the address we are going to jump to assuming no exception got installed 2603 2604 __ addptr(rsp, wordSize); 2605 2606 // clear last_Java_sp 2607 __ reset_last_Java_frame(thread, true); 2608 // check for pending exceptions 2609 Label pending; 2610 __ cmpptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD); 2611 __ jcc(Assembler::notEqual, pending); 2612 2613 // get the returned Method* 2614 __ get_vm_result_2(rbx, thread); 2615 __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx); 2616 2617 __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax); 2618 2619 RegisterSaver::restore_live_registers(masm); 2620 2621 // We are back to the original state on entry and ready to go. 2622 2623 __ jmp(rax); 2624 2625 // Pending exception after the safepoint 2626 2627 __ bind(pending); 2628 2629 RegisterSaver::restore_live_registers(masm); 2630 2631 // exception pending => remove activation and forward to exception handler 2632 2633 __ get_thread(thread); 2634 __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD); 2635 __ movptr(rax, Address(thread, Thread::pending_exception_offset())); 2636 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2637 2638 // ------------- 2639 // make sure all code is generated 2640 masm->flush(); 2641 2642 // return the blob 2643 // frame_size_words or bytes?? 2644 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true); 2645 } 2646 2647 //------------------------------------------------------------------------------------------------------------------------ 2648 // Continuation point for throwing of implicit exceptions that are not handled in 2649 // the current activation. Fabricates an exception oop and initiates normal 2650 // exception dispatching in this frame. 2651 // 2652 // Previously the compiler (c2) allowed for callee save registers on Java calls. 2653 // This is no longer true after adapter frames were removed but could possibly 2654 // be brought back in the future if the interpreter code was reworked and it 2655 // was deemed worthwhile. The comment below was left to describe what must 2656 // happen here if callee saves were resurrected. As it stands now this stub 2657 // could actually be a vanilla BufferBlob and have now oopMap at all. 2658 // Since it doesn't make much difference we've chosen to leave it the 2659 // way it was in the callee save days and keep the comment. 2660 2661 // If we need to preserve callee-saved values we need a callee-saved oop map and 2662 // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs. 2663 // If the compiler needs all registers to be preserved between the fault 2664 // point and the exception handler then it must assume responsibility for that in 2665 // AbstractCompiler::continuation_for_implicit_null_exception or 2666 // continuation_for_implicit_division_by_zero_exception. All other implicit 2667 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are 2668 // either at call sites or otherwise assume that stack unwinding will be initiated, 2669 // so caller saved registers were assumed volatile in the compiler. 2670 RuntimeStub* SharedRuntime::generate_throw_exception(SharedStubId id, address runtime_entry) { 2671 assert(is_throw_id(id), "expected a throw stub id"); 2672 2673 const char* name = SharedRuntime::stub_name(id); 2674 2675 // Information about frame layout at time of blocking runtime call. 2676 // Note that we only have to preserve callee-saved registers since 2677 // the compilers are responsible for supplying a continuation point 2678 // if they expect all registers to be preserved. 2679 enum layout { 2680 thread_off, // last_java_sp 2681 arg1_off, 2682 arg2_off, 2683 rbp_off, // callee saved register 2684 ret_pc, 2685 framesize 2686 }; 2687 2688 int insts_size = 256; 2689 int locs_size = 32; 2690 2691 ResourceMark rm; 2692 const char* timer_msg = "SharedRuntime generate_throw_exception"; 2693 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 2694 2695 CodeBuffer code(name, insts_size, locs_size); 2696 OopMapSet* oop_maps = new OopMapSet(); 2697 MacroAssembler* masm = new MacroAssembler(&code); 2698 2699 address start = __ pc(); 2700 2701 // This is an inlined and slightly modified version of call_VM 2702 // which has the ability to fetch the return PC out of 2703 // thread-local storage and also sets up last_Java_sp slightly 2704 // differently than the real call_VM 2705 Register java_thread = rbx; 2706 __ get_thread(java_thread); 2707 2708 __ enter(); // required for proper stackwalking of RuntimeStub frame 2709 2710 // pc and rbp, already pushed 2711 __ subptr(rsp, (framesize-2) * wordSize); // prolog 2712 2713 // Frame is now completed as far as size and linkage. 2714 2715 int frame_complete = __ pc() - start; 2716 2717 // push java thread (becomes first argument of C function) 2718 __ movptr(Address(rsp, thread_off * wordSize), java_thread); 2719 // Set up last_Java_sp and last_Java_fp 2720 __ set_last_Java_frame(java_thread, rsp, rbp, nullptr, noreg); 2721 2722 // Call runtime 2723 BLOCK_COMMENT("call runtime_entry"); 2724 __ call(RuntimeAddress(runtime_entry)); 2725 // Generate oop map 2726 OopMap* map = new OopMap(framesize, 0); 2727 oop_maps->add_gc_map(__ pc() - start, map); 2728 2729 // restore the thread (cannot use the pushed argument since arguments 2730 // may be overwritten by C code generated by an optimizing compiler); 2731 // however can use the register value directly if it is callee saved. 2732 __ get_thread(java_thread); 2733 2734 __ reset_last_Java_frame(java_thread, true); 2735 2736 __ leave(); // required for proper stackwalking of RuntimeStub frame 2737 2738 // check for pending exceptions 2739 #ifdef ASSERT 2740 Label L; 2741 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD); 2742 __ jcc(Assembler::notEqual, L); 2743 __ should_not_reach_here(); 2744 __ bind(L); 2745 #endif /* ASSERT */ 2746 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2747 2748 2749 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false); 2750 return stub; 2751 } 2752 2753 #if INCLUDE_JFR 2754 2755 static void jfr_prologue(address the_pc, MacroAssembler* masm) { 2756 Register java_thread = rdi; 2757 __ get_thread(java_thread); 2758 __ set_last_Java_frame(java_thread, rsp, rbp, the_pc, noreg); 2759 __ movptr(Address(rsp, 0), java_thread); 2760 } 2761 2762 // The handle is dereferenced through a load barrier. 2763 static void jfr_epilogue(MacroAssembler* masm) { 2764 Register java_thread = rdi; 2765 __ get_thread(java_thread); 2766 __ reset_last_Java_frame(java_thread, true); 2767 } 2768 2769 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint. 2770 // It returns a jobject handle to the event writer. 2771 // The handle is dereferenced and the return value is the event writer oop. 2772 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() { 2773 enum layout { 2774 FPUState_off = 0, 2775 rbp_off = FPUStateSizeInWords, 2776 rdi_off, 2777 rsi_off, 2778 rcx_off, 2779 rbx_off, 2780 saved_argument_off, 2781 saved_argument_off2, // 2nd half of double 2782 framesize 2783 }; 2784 2785 int insts_size = 1024; 2786 int locs_size = 64; 2787 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id); 2788 CodeBuffer code(name, insts_size, locs_size); 2789 OopMapSet* oop_maps = new OopMapSet(); 2790 MacroAssembler* masm = new MacroAssembler(&code); 2791 2792 address start = __ pc(); 2793 __ enter(); 2794 int frame_complete = __ pc() - start; 2795 address the_pc = __ pc(); 2796 jfr_prologue(the_pc, masm); 2797 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1); 2798 jfr_epilogue(masm); 2799 __ resolve_global_jobject(rax, rdi, rdx); 2800 __ leave(); 2801 __ ret(0); 2802 2803 OopMap* map = new OopMap(framesize, 1); // rbp 2804 oop_maps->add_gc_map(the_pc - start, map); 2805 2806 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 2807 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 2808 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2809 oop_maps, false); 2810 return stub; 2811 } 2812 2813 // For c2: call to return a leased buffer. 2814 RuntimeStub* SharedRuntime::generate_jfr_return_lease() { 2815 enum layout { 2816 FPUState_off = 0, 2817 rbp_off = FPUStateSizeInWords, 2818 rdi_off, 2819 rsi_off, 2820 rcx_off, 2821 rbx_off, 2822 saved_argument_off, 2823 saved_argument_off2, // 2nd half of double 2824 framesize 2825 }; 2826 2827 int insts_size = 1024; 2828 int locs_size = 64; 2829 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_return_lease_id); 2830 CodeBuffer code(name, insts_size, locs_size); 2831 OopMapSet* oop_maps = new OopMapSet(); 2832 MacroAssembler* masm = new MacroAssembler(&code); 2833 2834 address start = __ pc(); 2835 __ enter(); 2836 int frame_complete = __ pc() - start; 2837 address the_pc = __ pc(); 2838 jfr_prologue(the_pc, masm); 2839 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1); 2840 jfr_epilogue(masm); 2841 __ leave(); 2842 __ ret(0); 2843 2844 OopMap* map = new OopMap(framesize, 1); // rbp 2845 oop_maps->add_gc_map(the_pc - start, map); 2846 2847 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 2848 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 2849 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2850 oop_maps, false); 2851 return stub; 2852 } 2853 2854 #endif // INCLUDE_JFR