1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "code/compiledIC.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nativeInst.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "gc/shared/gcLocker.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/barrierSetAssembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "logging/log.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/klass.inline.hpp"
  39 #include "prims/methodHandles.hpp"
  40 #include "runtime/jniHandles.hpp"
  41 #include "runtime/safepointMechanism.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/signature.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "runtime/timerTrace.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "runtime/vm_version.hpp"
  48 #include "utilities/align.hpp"
  49 #include "vmreg_x86.inline.hpp"
  50 #ifdef COMPILER1
  51 #include "c1/c1_Runtime1.hpp"
  52 #endif
  53 #ifdef COMPILER2
  54 #include "opto/runtime.hpp"
  55 #endif
  56 
  57 #define __ masm->
  58 
  59 #ifdef PRODUCT
  60 #define BLOCK_COMMENT(str) /* nothing */
  61 #else
  62 #define BLOCK_COMMENT(str) __ block_comment(str)
  63 #endif // PRODUCT
  64 
  65 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  66 
  67 class RegisterSaver {
  68   // Capture info about frame layout
  69 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  70   enum layout {
  71                 fpu_state_off = 0,
  72                 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
  73                 st0_off, st0H_off,
  74                 st1_off, st1H_off,
  75                 st2_off, st2H_off,
  76                 st3_off, st3H_off,
  77                 st4_off, st4H_off,
  78                 st5_off, st5H_off,
  79                 st6_off, st6H_off,
  80                 st7_off, st7H_off,
  81                 xmm_off,
  82                 DEF_XMM_OFFS(0),
  83                 DEF_XMM_OFFS(1),
  84                 DEF_XMM_OFFS(2),
  85                 DEF_XMM_OFFS(3),
  86                 DEF_XMM_OFFS(4),
  87                 DEF_XMM_OFFS(5),
  88                 DEF_XMM_OFFS(6),
  89                 DEF_XMM_OFFS(7),
  90                 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
  91                 rdi_off,
  92                 rsi_off,
  93                 ignore_off,  // extra copy of rbp,
  94                 rsp_off,
  95                 rbx_off,
  96                 rdx_off,
  97                 rcx_off,
  98                 rax_off,
  99                 // The frame sender code expects that rbp will be in the "natural" place and
 100                 // will override any oopMap setting for it. We must therefore force the layout
 101                 // so that it agrees with the frame sender code.
 102                 rbp_off,
 103                 return_off,      // slot for return address
 104                 reg_save_size };
 105   enum { FPU_regs_live = flags_off - fpu_state_end };
 106 
 107   public:
 108 
 109   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
 110                                      int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
 111   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 112 
 113   static int rax_offset() { return rax_off; }
 114   static int rbx_offset() { return rbx_off; }
 115 
 116   // Offsets into the register save area
 117   // Used by deoptimization when it is managing result register
 118   // values on its own
 119 
 120   static int raxOffset(void) { return rax_off; }
 121   static int rdxOffset(void) { return rdx_off; }
 122   static int rbxOffset(void) { return rbx_off; }
 123   static int xmm0Offset(void) { return xmm0_off; }
 124   // This really returns a slot in the fp save area, which one is not important
 125   static int fpResultOffset(void) { return st0_off; }
 126 
 127   // During deoptimization only the result register need to be restored
 128   // all the other values have already been extracted.
 129 
 130   static void restore_result_registers(MacroAssembler* masm);
 131 
 132 };
 133 
 134 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 135                                            int* total_frame_words, bool verify_fpu, bool save_vectors) {
 136   int num_xmm_regs = XMMRegister::number_of_registers;
 137   int ymm_bytes = num_xmm_regs * 16;
 138   int zmm_bytes = num_xmm_regs * 32;
 139 #ifdef COMPILER2
 140   int opmask_state_bytes = KRegister::number_of_registers * 8;
 141   if (save_vectors) {
 142     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 143     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 144     // Save upper half of YMM registers
 145     int vect_bytes = ymm_bytes;
 146     if (UseAVX > 2) {
 147       // Save upper half of ZMM registers as well
 148       vect_bytes += zmm_bytes;
 149       additional_frame_words += opmask_state_bytes / wordSize;
 150     }
 151     additional_frame_words += vect_bytes / wordSize;
 152   }
 153 #else
 154   assert(!save_vectors, "vectors are generated only by C2");
 155 #endif
 156   int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
 157   int frame_words = frame_size_in_bytes / wordSize;
 158   *total_frame_words = frame_words;
 159 
 160   assert(FPUStateSizeInWords == 27, "update stack layout");
 161 
 162   // save registers, fpu state, and flags
 163   // We assume caller has already has return address slot on the stack
 164   // We push epb twice in this sequence because we want the real rbp,
 165   // to be under the return like a normal enter and we want to use pusha
 166   // We push by hand instead of using push.
 167   __ enter();
 168   __ pusha();
 169   __ pushf();
 170   __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
 171   __ push_FPU_state();          // Save FPU state & init
 172 
 173   if (verify_fpu) {
 174     // Some stubs may have non standard FPU control word settings so
 175     // only check and reset the value when it required to be the
 176     // standard value.  The safepoint blob in particular can be used
 177     // in methods which are using the 24 bit control word for
 178     // optimized float math.
 179 
 180 #ifdef ASSERT
 181     // Make sure the control word has the expected value
 182     Label ok;
 183     __ cmpw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std());
 184     __ jccb(Assembler::equal, ok);
 185     __ stop("corrupted control word detected");
 186     __ bind(ok);
 187 #endif
 188 
 189     // Reset the control word to guard against exceptions being unmasked
 190     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 191     // into the on stack copy and then reload that to make sure that the
 192     // current and future values are correct.
 193     __ movw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std());
 194   }
 195 
 196   __ frstor(Address(rsp, 0));
 197   if (!verify_fpu) {
 198     // Set the control word so that exceptions are masked for the
 199     // following code.
 200     __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
 201   }
 202 
 203   int off = st0_off;
 204   int delta = st1_off - off;
 205 
 206   // Save the FPU registers in de-opt-able form
 207   for (int n = 0; n < FloatRegister::number_of_registers; n++) {
 208     __ fstp_d(Address(rsp, off*wordSize));
 209     off += delta;
 210   }
 211 
 212   off = xmm0_off;
 213   delta = xmm1_off - off;
 214   if(UseSSE == 1) {
 215     // Save the XMM state
 216     for (int n = 0; n < num_xmm_regs; n++) {
 217       __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
 218       off += delta;
 219     }
 220   } else if(UseSSE >= 2) {
 221     // Save whole 128bit (16 bytes) XMM registers
 222     for (int n = 0; n < num_xmm_regs; n++) {
 223       __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
 224       off += delta;
 225     }
 226   }
 227 
 228 #ifdef COMPILER2
 229   if (save_vectors) {
 230     __ subptr(rsp, ymm_bytes);
 231     // Save upper half of YMM registers
 232     for (int n = 0; n < num_xmm_regs; n++) {
 233       __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n));
 234     }
 235     if (UseAVX > 2) {
 236       __ subptr(rsp, zmm_bytes);
 237       // Save upper half of ZMM registers
 238       for (int n = 0; n < num_xmm_regs; n++) {
 239         __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n));
 240       }
 241       __ subptr(rsp, opmask_state_bytes);
 242       // Save opmask registers
 243       for (int n = 0; n < KRegister::number_of_registers; n++) {
 244         __ kmov(Address(rsp, n*8), as_KRegister(n));
 245       }
 246     }
 247   }
 248 #else
 249   assert(!save_vectors, "vectors are generated only by C2");
 250 #endif
 251 
 252   __ vzeroupper();
 253 
 254   // Set an oopmap for the call site.  This oopmap will map all
 255   // oop-registers and debug-info registers as callee-saved.  This
 256   // will allow deoptimization at this safepoint to find all possible
 257   // debug-info recordings, as well as let GC find all oops.
 258 
 259   OopMapSet *oop_maps = new OopMapSet();
 260   OopMap* map =  new OopMap( frame_words, 0 );
 261 
 262 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 263 #define NEXTREG(x) (x)->as_VMReg()->next()
 264 
 265   map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
 266   map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
 267   map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
 268   map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
 269   // rbp, location is known implicitly, no oopMap
 270   map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
 271   map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
 272 
 273   // %%% This is really a waste but we'll keep things as they were for now for the upper component
 274   off = st0_off;
 275   delta = st1_off - off;
 276   for (int n = 0; n < FloatRegister::number_of_registers; n++) {
 277     FloatRegister freg_name = as_FloatRegister(n);
 278     map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
 279     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
 280     off += delta;
 281   }
 282   off = xmm0_off;
 283   delta = xmm1_off - off;
 284   for (int n = 0; n < num_xmm_regs; n++) {
 285     XMMRegister xmm_name = as_XMMRegister(n);
 286     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 287     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
 288     off += delta;
 289   }
 290 #undef NEXTREG
 291 #undef STACK_OFFSET
 292 
 293   return map;
 294 }
 295 
 296 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 297   int opmask_state_bytes = 0;
 298   int additional_frame_bytes = 0;
 299   int num_xmm_regs = XMMRegister::number_of_registers;
 300   int ymm_bytes = num_xmm_regs * 16;
 301   int zmm_bytes = num_xmm_regs * 32;
 302   // Recover XMM & FPU state
 303 #ifdef COMPILER2
 304   if (restore_vectors) {
 305     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 306     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 307     // Save upper half of YMM registers
 308     additional_frame_bytes = ymm_bytes;
 309     if (UseAVX > 2) {
 310       // Save upper half of ZMM registers as well
 311       additional_frame_bytes += zmm_bytes;
 312       opmask_state_bytes = KRegister::number_of_registers * 8;
 313       additional_frame_bytes += opmask_state_bytes;
 314     }
 315   }
 316 #else
 317   assert(!restore_vectors, "vectors are generated only by C2");
 318 #endif
 319 
 320   int off = xmm0_off;
 321   int delta = xmm1_off - off;
 322 
 323   __ vzeroupper();
 324 
 325   if (UseSSE == 1) {
 326     // Restore XMM registers
 327     assert(additional_frame_bytes == 0, "");
 328     for (int n = 0; n < num_xmm_regs; n++) {
 329       __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
 330       off += delta;
 331     }
 332   } else if (UseSSE >= 2) {
 333     // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and
 334     // ZMM because the movdqu instruction zeros the upper part of the XMM register.
 335     for (int n = 0; n < num_xmm_regs; n++) {
 336       __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
 337       off += delta;
 338     }
 339   }
 340 
 341   if (restore_vectors) {
 342     off = additional_frame_bytes - ymm_bytes;
 343     // Restore upper half of YMM registers.
 344     for (int n = 0; n < num_xmm_regs; n++) {
 345       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16+off));
 346     }
 347     if (UseAVX > 2) {
 348       // Restore upper half of ZMM registers.
 349       off = opmask_state_bytes;
 350       for (int n = 0; n < num_xmm_regs; n++) {
 351         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32+off));
 352       }
 353       for (int n = 0; n < KRegister::number_of_registers; n++) {
 354         __ kmov(as_KRegister(n), Address(rsp, n*8));
 355       }
 356     }
 357     __ addptr(rsp, additional_frame_bytes);
 358   }
 359 
 360   __ pop_FPU_state();
 361   __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
 362 
 363   __ popf();
 364   __ popa();
 365   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 366   __ pop(rbp);
 367 }
 368 
 369 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 370 
 371   // Just restore result register. Only used by deoptimization. By
 372   // now any callee save register that needs to be restore to a c2
 373   // caller of the deoptee has been extracted into the vframeArray
 374   // and will be stuffed into the c2i adapter we create for later
 375   // restoration so only result registers need to be restored here.
 376   //
 377 
 378   __ frstor(Address(rsp, 0));      // Restore fpu state
 379 
 380   // Recover XMM & FPU state
 381   if( UseSSE == 1 ) {
 382     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 383   } else if( UseSSE >= 2 ) {
 384     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 385   }
 386   __ movptr(rax, Address(rsp, rax_off*wordSize));
 387   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 388   // Pop all of the register save are off the stack except the return address
 389   __ addptr(rsp, return_off * wordSize);
 390 }
 391 
 392 // Is vector's size (in bytes) bigger than a size saved by default?
 393 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
 394 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
 395 bool SharedRuntime::is_wide_vector(int size) {
 396   return size > 16;
 397 }
 398 
 399 // The java_calling_convention describes stack locations as ideal slots on
 400 // a frame with no abi restrictions. Since we must observe abi restrictions
 401 // (like the placement of the register window) the slots must be biased by
 402 // the following value.
 403 static int reg2offset_in(VMReg r) {
 404   // Account for saved rbp, and return address
 405   // This should really be in_preserve_stack_slots
 406   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 407 }
 408 
 409 static int reg2offset_out(VMReg r) {
 410   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 411 }
 412 
 413 // ---------------------------------------------------------------------------
 414 // Read the array of BasicTypes from a signature, and compute where the
 415 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 416 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 417 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 418 // as framesizes are fixed.
 419 // VMRegImpl::stack0 refers to the first slot 0(sp).
 420 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.
 421 // Register up to Register::number_of_registers are the 32-bit
 422 // integer registers.
 423 
 424 // Pass first two oop/int args in registers ECX and EDX.
 425 // Pass first two float/double args in registers XMM0 and XMM1.
 426 // Doubles have precedence, so if you pass a mix of floats and doubles
 427 // the doubles will grab the registers before the floats will.
 428 
 429 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 430 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 431 // units regardless of build. Of course for i486 there is no 64 bit build
 432 
 433 
 434 // ---------------------------------------------------------------------------
 435 // The compiled Java calling convention.
 436 // Pass first two oop/int args in registers ECX and EDX.
 437 // Pass first two float/double args in registers XMM0 and XMM1.
 438 // Doubles have precedence, so if you pass a mix of floats and doubles
 439 // the doubles will grab the registers before the floats will.
 440 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 441                                            VMRegPair *regs,
 442                                            int total_args_passed) {
 443   uint    stack = 0;          // Starting stack position for args on stack
 444 
 445 
 446   // Pass first two oop/int args in registers ECX and EDX.
 447   uint reg_arg0 = 9999;
 448   uint reg_arg1 = 9999;
 449 
 450   // Pass first two float/double args in registers XMM0 and XMM1.
 451   // Doubles have precedence, so if you pass a mix of floats and doubles
 452   // the doubles will grab the registers before the floats will.
 453   // CNC - TURNED OFF FOR non-SSE.
 454   //       On Intel we have to round all doubles (and most floats) at
 455   //       call sites by storing to the stack in any case.
 456   // UseSSE=0 ==> Don't Use ==> 9999+0
 457   // UseSSE=1 ==> Floats only ==> 9999+1
 458   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 459   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 460   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 461   uint freg_arg0 = 9999+fargs;
 462   uint freg_arg1 = 9999+fargs;
 463 
 464   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 465   int i;
 466   for( i = 0; i < total_args_passed; i++) {
 467     if( sig_bt[i] == T_DOUBLE ) {
 468       // first 2 doubles go in registers
 469       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 470       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 471       else // Else double is passed low on the stack to be aligned.
 472         stack += 2;
 473     } else if( sig_bt[i] == T_LONG ) {
 474       stack += 2;
 475     }
 476   }
 477   int dstack = 0;             // Separate counter for placing doubles
 478 
 479   // Now pick where all else goes.
 480   for( i = 0; i < total_args_passed; i++) {
 481     // From the type and the argument number (count) compute the location
 482     switch( sig_bt[i] ) {
 483     case T_SHORT:
 484     case T_CHAR:
 485     case T_BYTE:
 486     case T_BOOLEAN:
 487     case T_INT:
 488     case T_ARRAY:
 489     case T_OBJECT:
 490     case T_ADDRESS:
 491       if( reg_arg0 == 9999 )  {
 492         reg_arg0 = i;
 493         regs[i].set1(rcx->as_VMReg());
 494       } else if( reg_arg1 == 9999 )  {
 495         reg_arg1 = i;
 496         regs[i].set1(rdx->as_VMReg());
 497       } else {
 498         regs[i].set1(VMRegImpl::stack2reg(stack++));
 499       }
 500       break;
 501     case T_FLOAT:
 502       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 503         freg_arg0 = i;
 504         regs[i].set1(xmm0->as_VMReg());
 505       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 506         freg_arg1 = i;
 507         regs[i].set1(xmm1->as_VMReg());
 508       } else {
 509         regs[i].set1(VMRegImpl::stack2reg(stack++));
 510       }
 511       break;
 512     case T_LONG:
 513       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 514       regs[i].set2(VMRegImpl::stack2reg(dstack));
 515       dstack += 2;
 516       break;
 517     case T_DOUBLE:
 518       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 519       if( freg_arg0 == (uint)i ) {
 520         regs[i].set2(xmm0->as_VMReg());
 521       } else if( freg_arg1 == (uint)i ) {
 522         regs[i].set2(xmm1->as_VMReg());
 523       } else {
 524         regs[i].set2(VMRegImpl::stack2reg(dstack));
 525         dstack += 2;
 526       }
 527       break;
 528     case T_VOID: regs[i].set_bad(); break;
 529       break;
 530     default:
 531       ShouldNotReachHere();
 532       break;
 533     }
 534   }
 535 
 536   return stack;
 537 }
 538 
 539 // Patch the callers callsite with entry to compiled code if it exists.
 540 static void patch_callers_callsite(MacroAssembler *masm) {
 541   Label L;
 542   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
 543   __ jcc(Assembler::equal, L);
 544   // Schedule the branch target address early.
 545   // Call into the VM to patch the caller, then jump to compiled callee
 546   // rax, isn't live so capture return address while we easily can
 547   __ movptr(rax, Address(rsp, 0));
 548   __ pusha();
 549   __ pushf();
 550 
 551   if (UseSSE == 1) {
 552     __ subptr(rsp, 2*wordSize);
 553     __ movflt(Address(rsp, 0), xmm0);
 554     __ movflt(Address(rsp, wordSize), xmm1);
 555   }
 556   if (UseSSE >= 2) {
 557     __ subptr(rsp, 4*wordSize);
 558     __ movdbl(Address(rsp, 0), xmm0);
 559     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 560   }
 561 #ifdef COMPILER2
 562   // C2 may leave the stack dirty if not in SSE2+ mode
 563   if (UseSSE >= 2) {
 564     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 565   } else {
 566     __ empty_FPU_stack();
 567   }
 568 #endif /* COMPILER2 */
 569 
 570   // VM needs caller's callsite
 571   __ push(rax);
 572   // VM needs target method
 573   __ push(rbx);
 574   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 575   __ addptr(rsp, 2*wordSize);
 576 
 577   if (UseSSE == 1) {
 578     __ movflt(xmm0, Address(rsp, 0));
 579     __ movflt(xmm1, Address(rsp, wordSize));
 580     __ addptr(rsp, 2*wordSize);
 581   }
 582   if (UseSSE >= 2) {
 583     __ movdbl(xmm0, Address(rsp, 0));
 584     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 585     __ addptr(rsp, 4*wordSize);
 586   }
 587 
 588   __ popf();
 589   __ popa();
 590   __ bind(L);
 591 }
 592 
 593 
 594 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 595   int next_off = st_off - Interpreter::stackElementSize;
 596   __ movdbl(Address(rsp, next_off), r);
 597 }
 598 
 599 static void gen_c2i_adapter(MacroAssembler *masm,
 600                             int total_args_passed,
 601                             int comp_args_on_stack,
 602                             const BasicType *sig_bt,
 603                             const VMRegPair *regs,
 604                             Label& skip_fixup) {
 605   // Before we get into the guts of the C2I adapter, see if we should be here
 606   // at all.  We've come from compiled code and are attempting to jump to the
 607   // interpreter, which means the caller made a static call to get here
 608   // (vcalls always get a compiled target if there is one).  Check for a
 609   // compiled target.  If there is one, we need to patch the caller's call.
 610   patch_callers_callsite(masm);
 611 
 612   __ bind(skip_fixup);
 613 
 614 #ifdef COMPILER2
 615   // C2 may leave the stack dirty if not in SSE2+ mode
 616   if (UseSSE >= 2) {
 617     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 618   } else {
 619     __ empty_FPU_stack();
 620   }
 621 #endif /* COMPILER2 */
 622 
 623   // Since all args are passed on the stack, total_args_passed * interpreter_
 624   // stack_element_size  is the
 625   // space we need.
 626   int extraspace = total_args_passed * Interpreter::stackElementSize;
 627 
 628   // Get return address
 629   __ pop(rax);
 630 
 631   // set senderSP value
 632   __ movptr(rsi, rsp);
 633 
 634   __ subptr(rsp, extraspace);
 635 
 636   // Now write the args into the outgoing interpreter space
 637   for (int i = 0; i < total_args_passed; i++) {
 638     if (sig_bt[i] == T_VOID) {
 639       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 640       continue;
 641     }
 642 
 643     // st_off points to lowest address on stack.
 644     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
 645     int next_off = st_off - Interpreter::stackElementSize;
 646 
 647     // Say 4 args:
 648     // i   st_off
 649     // 0   12 T_LONG
 650     // 1    8 T_VOID
 651     // 2    4 T_OBJECT
 652     // 3    0 T_BOOL
 653     VMReg r_1 = regs[i].first();
 654     VMReg r_2 = regs[i].second();
 655     if (!r_1->is_valid()) {
 656       assert(!r_2->is_valid(), "");
 657       continue;
 658     }
 659 
 660     if (r_1->is_stack()) {
 661       // memory to memory use fpu stack top
 662       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 663 
 664       if (!r_2->is_valid()) {
 665         __ movl(rdi, Address(rsp, ld_off));
 666         __ movptr(Address(rsp, st_off), rdi);
 667       } else {
 668 
 669         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 670         // st_off == MSW, st_off-wordSize == LSW
 671 
 672         __ movptr(rdi, Address(rsp, ld_off));
 673         __ movptr(Address(rsp, next_off), rdi);
 674         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 675         __ movptr(Address(rsp, st_off), rdi);
 676       }
 677     } else if (r_1->is_Register()) {
 678       Register r = r_1->as_Register();
 679       if (!r_2->is_valid()) {
 680         __ movl(Address(rsp, st_off), r);
 681       } else {
 682         // long/double in gpr
 683         ShouldNotReachHere();
 684       }
 685     } else {
 686       assert(r_1->is_XMMRegister(), "");
 687       if (!r_2->is_valid()) {
 688         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 689       } else {
 690         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
 691         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 692       }
 693     }
 694   }
 695 
 696   // Schedule the branch target address early.
 697   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 698   // And repush original return address
 699   __ push(rax);
 700   __ jmp(rcx);
 701 }
 702 
 703 
 704 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 705   int next_val_off = ld_off - Interpreter::stackElementSize;
 706   __ movdbl(r, Address(saved_sp, next_val_off));
 707 }
 708 
 709 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 710                                     int total_args_passed,
 711                                     int comp_args_on_stack,
 712                                     const BasicType *sig_bt,
 713                                     const VMRegPair *regs) {
 714   // Note: rsi contains the senderSP on entry. We must preserve it since
 715   // we may do a i2c -> c2i transition if we lose a race where compiled
 716   // code goes non-entrant while we get args ready.
 717 
 718   // Adapters can be frameless because they do not require the caller
 719   // to perform additional cleanup work, such as correcting the stack pointer.
 720   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 721   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 722   // even if a callee has modified the stack pointer.
 723   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 724   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 725   // up via the senderSP register).
 726   // In other words, if *either* the caller or callee is interpreted, we can
 727   // get the stack pointer repaired after a call.
 728   // This is why c2i and i2c adapters cannot be indefinitely composed.
 729   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 730   // both caller and callee would be compiled methods, and neither would
 731   // clean up the stack pointer changes performed by the two adapters.
 732   // If this happens, control eventually transfers back to the compiled
 733   // caller, but with an uncorrected stack, causing delayed havoc.
 734 
 735   // Pick up the return address
 736   __ movptr(rax, Address(rsp, 0));
 737 
 738   // Must preserve original SP for loading incoming arguments because
 739   // we need to align the outgoing SP for compiled code.
 740   __ movptr(rdi, rsp);
 741 
 742   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 743   // in registers, we will occasionally have no stack args.
 744   int comp_words_on_stack = 0;
 745   if (comp_args_on_stack) {
 746     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 747     // registers are below.  By subtracting stack0, we either get a negative
 748     // number (all values in registers) or the maximum stack slot accessed.
 749     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 750     // Convert 4-byte stack slots to words.
 751     comp_words_on_stack = align_up(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 752     // Round up to miminum stack alignment, in wordSize
 753     comp_words_on_stack = align_up(comp_words_on_stack, 2);
 754     __ subptr(rsp, comp_words_on_stack * wordSize);
 755   }
 756 
 757   // Align the outgoing SP
 758   __ andptr(rsp, -(StackAlignmentInBytes));
 759 
 760   // push the return address on the stack (note that pushing, rather
 761   // than storing it, yields the correct frame alignment for the callee)
 762   __ push(rax);
 763 
 764   // Put saved SP in another register
 765   const Register saved_sp = rax;
 766   __ movptr(saved_sp, rdi);
 767 
 768 
 769   // Will jump to the compiled code just as if compiled code was doing it.
 770   // Pre-load the register-jump target early, to schedule it better.
 771   __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
 772 
 773   // Now generate the shuffle code.  Pick up all register args and move the
 774   // rest through the floating point stack top.
 775   for (int i = 0; i < total_args_passed; i++) {
 776     if (sig_bt[i] == T_VOID) {
 777       // Longs and doubles are passed in native word order, but misaligned
 778       // in the 32-bit build.
 779       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 780       continue;
 781     }
 782 
 783     // Pick up 0, 1 or 2 words from SP+offset.
 784 
 785     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 786             "scrambled load targets?");
 787     // Load in argument order going down.
 788     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
 789     // Point to interpreter value (vs. tag)
 790     int next_off = ld_off - Interpreter::stackElementSize;
 791     //
 792     //
 793     //
 794     VMReg r_1 = regs[i].first();
 795     VMReg r_2 = regs[i].second();
 796     if (!r_1->is_valid()) {
 797       assert(!r_2->is_valid(), "");
 798       continue;
 799     }
 800     if (r_1->is_stack()) {
 801       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 802       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 803 
 804       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 805       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 806       // we be generated.
 807       if (!r_2->is_valid()) {
 808         // __ fld_s(Address(saved_sp, ld_off));
 809         // __ fstp_s(Address(rsp, st_off));
 810         __ movl(rsi, Address(saved_sp, ld_off));
 811         __ movptr(Address(rsp, st_off), rsi);
 812       } else {
 813         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 814         // are accessed as negative so LSW is at LOW address
 815 
 816         // ld_off is MSW so get LSW
 817         // st_off is LSW (i.e. reg.first())
 818         // __ fld_d(Address(saved_sp, next_off));
 819         // __ fstp_d(Address(rsp, st_off));
 820         //
 821         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 822         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 823         // So we must adjust where to pick up the data to match the interpreter.
 824         //
 825         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 826         // are accessed as negative so LSW is at LOW address
 827 
 828         // ld_off is MSW so get LSW
 829         __ movptr(rsi, Address(saved_sp, next_off));
 830         __ movptr(Address(rsp, st_off), rsi);
 831         __ movptr(rsi, Address(saved_sp, ld_off));
 832         __ movptr(Address(rsp, st_off + wordSize), rsi);
 833       }
 834     } else if (r_1->is_Register()) {  // Register argument
 835       Register r = r_1->as_Register();
 836       assert(r != rax, "must be different");
 837       if (r_2->is_valid()) {
 838         //
 839         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 840         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 841         // So we must adjust where to pick up the data to match the interpreter.
 842 
 843         // this can be a misaligned move
 844         __ movptr(r, Address(saved_sp, next_off));
 845         assert(r_2->as_Register() != rax, "need another temporary register");
 846         // Remember r_1 is low address (and LSB on x86)
 847         // So r_2 gets loaded from high address regardless of the platform
 848         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 849       } else {
 850         __ movl(r, Address(saved_sp, ld_off));
 851       }
 852     } else {
 853       assert(r_1->is_XMMRegister(), "");
 854       if (!r_2->is_valid()) {
 855         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 856       } else {
 857         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 858       }
 859     }
 860   }
 861 
 862   // 6243940 We might end up in handle_wrong_method if
 863   // the callee is deoptimized as we race thru here. If that
 864   // happens we don't want to take a safepoint because the
 865   // caller frame will look interpreted and arguments are now
 866   // "compiled" so it is much better to make this transition
 867   // invisible to the stack walking code. Unfortunately if
 868   // we try and find the callee by normal means a safepoint
 869   // is possible. So we stash the desired callee in the thread
 870   // and the vm will find there should this case occur.
 871 
 872   __ get_thread(rax);
 873   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 874 
 875   // move Method* to rax, in case we end up in an c2i adapter.
 876   // the c2i adapters expect Method* in rax, (c2) because c2's
 877   // resolve stubs return the result (the method) in rax,.
 878   // I'd love to fix this.
 879   __ mov(rax, rbx);
 880 
 881   __ jmp(rdi);
 882 }
 883 
 884 // ---------------------------------------------------------------
 885 void SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 886                                             int total_args_passed,
 887                                             int comp_args_on_stack,
 888                                             const BasicType *sig_bt,
 889                                             const VMRegPair *regs,
 890                                             AdapterHandlerEntry* handler) {
 891   address i2c_entry = __ pc();
 892 
 893   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 894 
 895   // -------------------------------------------------------------------------
 896   // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
 897   // to the interpreter.  The args start out packed in the compiled layout.  They
 898   // need to be unpacked into the interpreter layout.  This will almost always
 899   // require some stack space.  We grow the current (compiled) stack, then repack
 900   // the args.  We  finally end in a jump to the generic interpreter entry point.
 901   // On exit from the interpreter, the interpreter will restore our SP (lest the
 902   // compiled code, which relies solely on SP and not EBP, get sick).
 903 
 904   address c2i_unverified_entry = __ pc();
 905   Label skip_fixup;
 906 
 907   Register data = rax;
 908   Register receiver = rcx;
 909   Register temp = rbx;
 910 
 911   {
 912     __ ic_check(1 /* end_alignment */);
 913     __ movptr(rbx, Address(data, CompiledICData::speculated_method_offset()));
 914     // Method might have been compiled since the call site was patched to
 915     // interpreted if that is the case treat it as a miss so we can get
 916     // the call site corrected.
 917     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
 918     __ jcc(Assembler::equal, skip_fixup);
 919   }
 920 
 921   address c2i_entry = __ pc();
 922 
 923   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 924   bs->c2i_entry_barrier(masm);
 925 
 926   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 927 
 928   handler->set_entry_points(i2c_entry, c2i_entry, c2i_unverified_entry, nullptr);
 929   return;
 930 }
 931 
 932 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 933                                          VMRegPair *regs,
 934                                          int total_args_passed) {
 935 
 936 // We return the amount of VMRegImpl stack slots we need to reserve for all
 937 // the arguments NOT counting out_preserve_stack_slots.
 938 
 939   uint    stack = 0;        // All arguments on stack
 940 
 941   for( int i = 0; i < total_args_passed; i++) {
 942     // From the type and the argument number (count) compute the location
 943     switch( sig_bt[i] ) {
 944     case T_BOOLEAN:
 945     case T_CHAR:
 946     case T_FLOAT:
 947     case T_BYTE:
 948     case T_SHORT:
 949     case T_INT:
 950     case T_OBJECT:
 951     case T_ARRAY:
 952     case T_ADDRESS:
 953     case T_METADATA:
 954       regs[i].set1(VMRegImpl::stack2reg(stack++));
 955       break;
 956     case T_LONG:
 957     case T_DOUBLE: // The stack numbering is reversed from Java
 958       // Since C arguments do not get reversed, the ordering for
 959       // doubles on the stack must be opposite the Java convention
 960       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 961       regs[i].set2(VMRegImpl::stack2reg(stack));
 962       stack += 2;
 963       break;
 964     case T_VOID: regs[i].set_bad(); break;
 965     default:
 966       ShouldNotReachHere();
 967       break;
 968     }
 969   }
 970   return stack;
 971 }
 972 
 973 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
 974                                              uint num_bits,
 975                                              uint total_args_passed) {
 976   Unimplemented();
 977   return 0;
 978 }
 979 
 980 // A simple move of integer like type
 981 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
 982   if (src.first()->is_stack()) {
 983     if (dst.first()->is_stack()) {
 984       // stack to stack
 985       // __ ld(FP, reg2offset(src.first()), L5);
 986       // __ st(L5, SP, reg2offset(dst.first()));
 987       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
 988       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
 989     } else {
 990       // stack to reg
 991       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
 992     }
 993   } else if (dst.first()->is_stack()) {
 994     // reg to stack
 995     // no need to sign extend on 64bit
 996     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 997   } else {
 998     if (dst.first() != src.first()) {
 999       __ mov(dst.first()->as_Register(), src.first()->as_Register());
1000     }
1001   }
1002 }
1003 
1004 // An oop arg. Must pass a handle not the oop itself
1005 static void object_move(MacroAssembler* masm,
1006                         OopMap* map,
1007                         int oop_handle_offset,
1008                         int framesize_in_slots,
1009                         VMRegPair src,
1010                         VMRegPair dst,
1011                         bool is_receiver,
1012                         int* receiver_offset) {
1013 
1014   // Because of the calling conventions we know that src can be a
1015   // register or a stack location. dst can only be a stack location.
1016 
1017   assert(dst.first()->is_stack(), "must be stack");
1018   // must pass a handle. First figure out the location we use as a handle
1019 
1020   if (src.first()->is_stack()) {
1021     // Oop is already on the stack as an argument
1022     Register rHandle = rax;
1023     Label nil;
1024     __ xorptr(rHandle, rHandle);
1025     __ cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD);
1026     __ jcc(Assembler::equal, nil);
1027     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1028     __ bind(nil);
1029     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1030 
1031     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1032     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1033     if (is_receiver) {
1034       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1035     }
1036   } else {
1037     // Oop is in a register we must store it to the space we reserve
1038     // on the stack for oop_handles
1039     const Register rOop = src.first()->as_Register();
1040     const Register rHandle = rax;
1041     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1042     int offset = oop_slot*VMRegImpl::stack_slot_size;
1043     Label skip;
1044     __ movptr(Address(rsp, offset), rOop);
1045     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1046     __ xorptr(rHandle, rHandle);
1047     __ cmpptr(rOop, NULL_WORD);
1048     __ jcc(Assembler::equal, skip);
1049     __ lea(rHandle, Address(rsp, offset));
1050     __ bind(skip);
1051     // Store the handle parameter
1052     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1053     if (is_receiver) {
1054       *receiver_offset = offset;
1055     }
1056   }
1057 }
1058 
1059 // A float arg may have to do float reg int reg conversion
1060 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1061   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1062 
1063   // Because of the calling convention we know that src is either a stack location
1064   // or an xmm register. dst can only be a stack location.
1065 
1066   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1067 
1068   if (src.first()->is_stack()) {
1069     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1070     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1071   } else {
1072     // reg to stack
1073     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1074   }
1075 }
1076 
1077 // A long move
1078 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1079 
1080   // The only legal possibility for a long_move VMRegPair is:
1081   // 1: two stack slots (possibly unaligned)
1082   // as neither the java  or C calling convention will use registers
1083   // for longs.
1084 
1085   if (src.first()->is_stack() && dst.first()->is_stack()) {
1086     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1087     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1088     __ movptr(rbx, Address(rbp, reg2offset_in(src.second())));
1089     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1090     __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx);
1091   } else {
1092     ShouldNotReachHere();
1093   }
1094 }
1095 
1096 // A double move
1097 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1098 
1099   // The only legal possibilities for a double_move VMRegPair are:
1100   // The painful thing here is that like long_move a VMRegPair might be
1101 
1102   // Because of the calling convention we know that src is either
1103   //   1: a single physical register (xmm registers only)
1104   //   2: two stack slots (possibly unaligned)
1105   // dst can only be a pair of stack slots.
1106 
1107   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1108 
1109   if (src.first()->is_stack()) {
1110     // source is all stack
1111     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1112     __ movptr(rbx, Address(rbp, reg2offset_in(src.second())));
1113     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1114     __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx);
1115   } else {
1116     // reg to stack
1117     // No worries about stack alignment
1118     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1119   }
1120 }
1121 
1122 
1123 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1124   // We always ignore the frame_slots arg and just use the space just below frame pointer
1125   // which by this time is free to use
1126   switch (ret_type) {
1127   case T_FLOAT:
1128     __ fstp_s(Address(rbp, -wordSize));
1129     break;
1130   case T_DOUBLE:
1131     __ fstp_d(Address(rbp, -2*wordSize));
1132     break;
1133   case T_VOID:  break;
1134   case T_LONG:
1135     __ movptr(Address(rbp, -wordSize), rax);
1136     __ movptr(Address(rbp, -2*wordSize), rdx);
1137     break;
1138   default: {
1139     __ movptr(Address(rbp, -wordSize), rax);
1140     }
1141   }
1142 }
1143 
1144 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1145   // We always ignore the frame_slots arg and just use the space just below frame pointer
1146   // which by this time is free to use
1147   switch (ret_type) {
1148   case T_FLOAT:
1149     __ fld_s(Address(rbp, -wordSize));
1150     break;
1151   case T_DOUBLE:
1152     __ fld_d(Address(rbp, -2*wordSize));
1153     break;
1154   case T_LONG:
1155     __ movptr(rax, Address(rbp, -wordSize));
1156     __ movptr(rdx, Address(rbp, -2*wordSize));
1157     break;
1158   case T_VOID:  break;
1159   default: {
1160     __ movptr(rax, Address(rbp, -wordSize));
1161     }
1162   }
1163 }
1164 
1165 static void verify_oop_args(MacroAssembler* masm,
1166                             const methodHandle& method,
1167                             const BasicType* sig_bt,
1168                             const VMRegPair* regs) {
1169   Register temp_reg = rbx;  // not part of any compiled calling seq
1170   if (VerifyOops) {
1171     for (int i = 0; i < method->size_of_parameters(); i++) {
1172       if (is_reference_type(sig_bt[i])) {
1173         VMReg r = regs[i].first();
1174         assert(r->is_valid(), "bad oop arg");
1175         if (r->is_stack()) {
1176           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1177           __ verify_oop(temp_reg);
1178         } else {
1179           __ verify_oop(r->as_Register());
1180         }
1181       }
1182     }
1183   }
1184 }
1185 
1186 static void gen_special_dispatch(MacroAssembler* masm,
1187                                  const methodHandle& method,
1188                                  const BasicType* sig_bt,
1189                                  const VMRegPair* regs) {
1190   verify_oop_args(masm, method, sig_bt, regs);
1191   vmIntrinsics::ID iid = method->intrinsic_id();
1192 
1193   // Now write the args into the outgoing interpreter space
1194   bool     has_receiver   = false;
1195   Register receiver_reg   = noreg;
1196   int      member_arg_pos = -1;
1197   Register member_reg     = noreg;
1198   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1199   if (ref_kind != 0) {
1200     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1201     member_reg = rbx;  // known to be free at this point
1202     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1203   } else if (iid == vmIntrinsics::_invokeBasic) {
1204     has_receiver = true;
1205   } else {
1206     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1207   }
1208 
1209   if (member_reg != noreg) {
1210     // Load the member_arg into register, if necessary.
1211     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1212     VMReg r = regs[member_arg_pos].first();
1213     if (r->is_stack()) {
1214       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1215     } else {
1216       // no data motion is needed
1217       member_reg = r->as_Register();
1218     }
1219   }
1220 
1221   if (has_receiver) {
1222     // Make sure the receiver is loaded into a register.
1223     assert(method->size_of_parameters() > 0, "oob");
1224     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1225     VMReg r = regs[0].first();
1226     assert(r->is_valid(), "bad receiver arg");
1227     if (r->is_stack()) {
1228       // Porting note:  This assumes that compiled calling conventions always
1229       // pass the receiver oop in a register.  If this is not true on some
1230       // platform, pick a temp and load the receiver from stack.
1231       fatal("receiver always in a register");
1232       receiver_reg = rcx;  // known to be free at this point
1233       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1234     } else {
1235       // no data motion is needed
1236       receiver_reg = r->as_Register();
1237     }
1238   }
1239 
1240   // Figure out which address we are really jumping to:
1241   MethodHandles::generate_method_handle_dispatch(masm, iid,
1242                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1243 }
1244 
1245 // ---------------------------------------------------------------------------
1246 // Generate a native wrapper for a given method.  The method takes arguments
1247 // in the Java compiled code convention, marshals them to the native
1248 // convention (handlizes oops, etc), transitions to native, makes the call,
1249 // returns to java state (possibly blocking), unhandlizes any result and
1250 // returns.
1251 //
1252 // Critical native functions are a shorthand for the use of
1253 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1254 // functions.  The wrapper is expected to unpack the arguments before
1255 // passing them to the callee. Critical native functions leave the state _in_Java,
1256 // since they cannot stop for GC.
1257 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
1258 // block and the check for pending exceptions it's impossible for them
1259 // to be thrown.
1260 //
1261 //
1262 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1263                                                 const methodHandle& method,
1264                                                 int compile_id,
1265                                                 BasicType* in_sig_bt,
1266                                                 VMRegPair* in_regs,
1267                                                 BasicType ret_type) {
1268   if (method->is_method_handle_intrinsic()) {
1269     vmIntrinsics::ID iid = method->intrinsic_id();
1270     intptr_t start = (intptr_t)__ pc();
1271     int vep_offset = ((intptr_t)__ pc()) - start;
1272     gen_special_dispatch(masm,
1273                          method,
1274                          in_sig_bt,
1275                          in_regs);
1276     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1277     __ flush();
1278     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1279     return nmethod::new_native_nmethod(method,
1280                                        compile_id,
1281                                        masm->code(),
1282                                        vep_offset,
1283                                        frame_complete,
1284                                        stack_slots / VMRegImpl::slots_per_word,
1285                                        in_ByteSize(-1),
1286                                        in_ByteSize(-1),
1287                                        (OopMapSet*)nullptr);
1288   }
1289   address native_func = method->native_function();
1290   assert(native_func != nullptr, "must have function");
1291 
1292   // An OopMap for lock (and class if static)
1293   OopMapSet *oop_maps = new OopMapSet();
1294 
1295   // We have received a description of where all the java arg are located
1296   // on entry to the wrapper. We need to convert these args to where
1297   // the jni function will expect them. To figure out where they go
1298   // we convert the java signature to a C signature by inserting
1299   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1300 
1301   const int total_in_args = method->size_of_parameters();
1302   int  total_c_args       = total_in_args + (method->is_static() ? 2 : 1);
1303 
1304   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1305   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1306 
1307   int argc = 0;
1308   out_sig_bt[argc++] = T_ADDRESS;
1309   if (method->is_static()) {
1310     out_sig_bt[argc++] = T_OBJECT;
1311   }
1312 
1313   for (int i = 0; i < total_in_args ; i++ ) {
1314     out_sig_bt[argc++] = in_sig_bt[i];
1315   }
1316 
1317   // Now figure out where the args must be stored and how much stack space
1318   // they require.
1319   int out_arg_slots;
1320   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1321 
1322   // Compute framesize for the wrapper.  We need to handlize all oops in
1323   // registers a max of 2 on x86.
1324 
1325   // Calculate the total number of stack slots we will need.
1326 
1327   // First count the abi requirement plus all of the outgoing args
1328   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1329 
1330   // Now the space for the inbound oop handle area
1331   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
1332 
1333   int oop_handle_offset = stack_slots;
1334   stack_slots += total_save_slots;
1335 
1336   // Now any space we need for handlizing a klass if static method
1337 
1338   int klass_slot_offset = 0;
1339   int klass_offset = -1;
1340   int lock_slot_offset = 0;
1341   bool is_static = false;
1342 
1343   if (method->is_static()) {
1344     klass_slot_offset = stack_slots;
1345     stack_slots += VMRegImpl::slots_per_word;
1346     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1347     is_static = true;
1348   }
1349 
1350   // Plus a lock if needed
1351 
1352   if (method->is_synchronized()) {
1353     lock_slot_offset = stack_slots;
1354     stack_slots += VMRegImpl::slots_per_word;
1355   }
1356 
1357   // Now a place (+2) to save return values or temp during shuffling
1358   // + 2 for return address (which we own) and saved rbp,
1359   stack_slots += 4;
1360 
1361   // Ok The space we have allocated will look like:
1362   //
1363   //
1364   // FP-> |                     |
1365   //      |---------------------|
1366   //      | 2 slots for moves   |
1367   //      |---------------------|
1368   //      | lock box (if sync)  |
1369   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1370   //      | klass (if static)   |
1371   //      |---------------------| <- klass_slot_offset
1372   //      | oopHandle area      |
1373   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1374   //      | outbound memory     |
1375   //      | based arguments     |
1376   //      |                     |
1377   //      |---------------------|
1378   //      |                     |
1379   // SP-> | out_preserved_slots |
1380   //
1381   //
1382   // ****************************************************************************
1383   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1384   // arguments off of the stack after the jni call. Before the call we can use
1385   // instructions that are SP relative. After the jni call we switch to FP
1386   // relative instructions instead of re-adjusting the stack on windows.
1387   // ****************************************************************************
1388 
1389 
1390   // Now compute actual number of stack words we need rounding to make
1391   // stack properly aligned.
1392   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1393 
1394   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1395 
1396   intptr_t start = (intptr_t)__ pc();
1397 
1398   // First thing make an ic check to see if we should even be here
1399 
1400   // We are free to use all registers as temps without saving them and
1401   // restoring them except rbp. rbp is the only callee save register
1402   // as far as the interpreter and the compiler(s) are concerned.
1403 
1404 
1405   const Register receiver = rcx;
1406   Label exception_pending;
1407 
1408   __ verify_oop(receiver);
1409   // verified entry must be aligned for code patching.
1410   __ ic_check(8 /* end_alignment */);
1411 
1412   int vep_offset = ((intptr_t)__ pc()) - start;
1413 
1414 #ifdef COMPILER1
1415   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
1416   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
1417     inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/);
1418    }
1419 #endif // COMPILER1
1420 
1421   // The instruction at the verified entry point must be 5 bytes or longer
1422   // because it can be patched on the fly by make_non_entrant. The stack bang
1423   // instruction fits that requirement.
1424 
1425   // Generate stack overflow check
1426   __ bang_stack_with_offset((int)StackOverflow::stack_shadow_zone_size());
1427 
1428   // Generate a new frame for the wrapper.
1429   __ enter();
1430   // -2 because return address is already present and so is saved rbp
1431   __ subptr(rsp, stack_size - 2*wordSize);
1432 
1433 
1434   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1435   bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */);
1436 
1437   // Frame is now completed as far as size and linkage.
1438   int frame_complete = ((intptr_t)__ pc()) - start;
1439 
1440   // Calculate the difference between rsp and rbp,. We need to know it
1441   // after the native call because on windows Java Natives will pop
1442   // the arguments and it is painful to do rsp relative addressing
1443   // in a platform independent way. So after the call we switch to
1444   // rbp, relative addressing.
1445 
1446   int fp_adjustment = stack_size - 2*wordSize;
1447 
1448 #ifdef COMPILER2
1449   // C2 may leave the stack dirty if not in SSE2+ mode
1450   if (UseSSE >= 2) {
1451     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1452   } else {
1453     __ empty_FPU_stack();
1454   }
1455 #endif /* COMPILER2 */
1456 
1457   // Compute the rbp, offset for any slots used after the jni call
1458 
1459   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1460 
1461   // We use rdi as a thread pointer because it is callee save and
1462   // if we load it once it is usable thru the entire wrapper
1463   const Register thread = rdi;
1464 
1465    // We use rsi as the oop handle for the receiver/klass
1466    // It is callee save so it survives the call to native
1467 
1468    const Register oop_handle_reg = rsi;
1469 
1470    __ get_thread(thread);
1471 
1472   //
1473   // We immediately shuffle the arguments so that any vm call we have to
1474   // make from here on out (sync slow path, jvmti, etc.) we will have
1475   // captured the oops from our caller and have a valid oopMap for
1476   // them.
1477 
1478   // -----------------
1479   // The Grand Shuffle
1480   //
1481   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1482   // and, if static, the class mirror instead of a receiver.  This pretty much
1483   // guarantees that register layout will not match (and x86 doesn't use reg
1484   // parms though amd does).  Since the native abi doesn't use register args
1485   // and the java conventions does we don't have to worry about collisions.
1486   // All of our moved are reg->stack or stack->stack.
1487   // We ignore the extra arguments during the shuffle and handle them at the
1488   // last moment. The shuffle is described by the two calling convention
1489   // vectors we have in our possession. We simply walk the java vector to
1490   // get the source locations and the c vector to get the destinations.
1491 
1492   int c_arg = method->is_static() ? 2 : 1;
1493 
1494   // Record rsp-based slot for receiver on stack for non-static methods
1495   int receiver_offset = -1;
1496 
1497   // This is a trick. We double the stack slots so we can claim
1498   // the oops in the caller's frame. Since we are sure to have
1499   // more args than the caller doubling is enough to make
1500   // sure we can capture all the incoming oop args from the
1501   // caller.
1502   //
1503   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1504 
1505   // Mark location of rbp,
1506   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1507 
1508   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1509   // Are free to temporaries if we have to do  stack to steck moves.
1510   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1511 
1512   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
1513     switch (in_sig_bt[i]) {
1514       case T_ARRAY:
1515       case T_OBJECT:
1516         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1517                     ((i == 0) && (!is_static)),
1518                     &receiver_offset);
1519         break;
1520       case T_VOID:
1521         break;
1522 
1523       case T_FLOAT:
1524         float_move(masm, in_regs[i], out_regs[c_arg]);
1525           break;
1526 
1527       case T_DOUBLE:
1528         assert( i + 1 < total_in_args &&
1529                 in_sig_bt[i + 1] == T_VOID &&
1530                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1531         double_move(masm, in_regs[i], out_regs[c_arg]);
1532         break;
1533 
1534       case T_LONG :
1535         long_move(masm, in_regs[i], out_regs[c_arg]);
1536         break;
1537 
1538       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1539 
1540       default:
1541         simple_move32(masm, in_regs[i], out_regs[c_arg]);
1542     }
1543   }
1544 
1545   // Pre-load a static method's oop into rsi.  Used both by locking code and
1546   // the normal JNI call code.
1547   if (method->is_static()) {
1548 
1549     //  load opp into a register
1550     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
1551 
1552     // Now handlize the static class mirror it's known not-null.
1553     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1554     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1555 
1556     // Now get the handle
1557     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1558     // store the klass handle as second argument
1559     __ movptr(Address(rsp, wordSize), oop_handle_reg);
1560   }
1561 
1562   // Change state to native (we save the return address in the thread, since it might not
1563   // be pushed on the stack when we do a stack traversal). It is enough that the pc()
1564   // points into the right code segment. It does not have to be the correct return pc.
1565   // We use the same pc/oopMap repeatedly when we call out
1566 
1567   intptr_t the_pc = (intptr_t) __ pc();
1568   oop_maps->add_gc_map(the_pc - start, map);
1569 
1570   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc, noreg);
1571 
1572 
1573   // We have all of the arguments setup at this point. We must not touch any register
1574   // argument registers at this point (what if we save/restore them there are no oop?
1575 
1576   if (DTraceMethodProbes) {
1577     __ mov_metadata(rax, method());
1578     __ call_VM_leaf(
1579          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1580          thread, rax);
1581   }
1582 
1583   // RedefineClasses() tracing support for obsolete method entry
1584   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1585     __ mov_metadata(rax, method());
1586     __ call_VM_leaf(
1587          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1588          thread, rax);
1589   }
1590 
1591   // These are register definitions we need for locking/unlocking
1592   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1593   const Register obj_reg  = rcx;  // Will contain the oop
1594   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1595 
1596   Label slow_path_lock;
1597   Label lock_done;
1598 
1599   // Lock a synchronized method
1600   if (method->is_synchronized()) {
1601     Label count_mon;
1602 
1603     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1604 
1605     // Get the handle (the 2nd argument)
1606     __ movptr(oop_handle_reg, Address(rsp, wordSize));
1607 
1608     // Get address of the box
1609 
1610     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1611 
1612     // Load the oop from the handle
1613     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1614 
1615     if (LockingMode == LM_MONITOR) {
1616       __ jmp(slow_path_lock);
1617     } else if (LockingMode == LM_LEGACY) {
1618       // Load immediate 1 into swap_reg %rax,
1619       __ movptr(swap_reg, 1);
1620 
1621       // Load (object->mark() | 1) into swap_reg %rax,
1622       __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1623 
1624       // Save (object->mark() | 1) into BasicLock's displaced header
1625       __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1626 
1627       // src -> dest iff dest == rax, else rax, <- dest
1628       // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
1629       __ lock();
1630       __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1631       __ jcc(Assembler::equal, count_mon);
1632 
1633       // Test if the oopMark is an obvious stack pointer, i.e.,
1634       //  1) (mark & 3) == 0, and
1635       //  2) rsp <= mark < mark + os::pagesize()
1636       // These 3 tests can be done by evaluating the following
1637       // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1638       // assuming both stack pointer and pagesize have their
1639       // least significant 2 bits clear.
1640       // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
1641 
1642       __ subptr(swap_reg, rsp);
1643       __ andptr(swap_reg, 3 - (int)os::vm_page_size());
1644 
1645       // Save the test result, for recursive case, the result is zero
1646       __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1647       __ jcc(Assembler::notEqual, slow_path_lock);
1648     } else {
1649       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
1650       // Lacking registers and thread on x86_32. Always take slow path.
1651       __ jmp(slow_path_lock);
1652     }
1653     __ bind(count_mon);
1654     __ inc_held_monitor_count();
1655 
1656     // Slow path will re-enter here
1657     __ bind(lock_done);
1658   }
1659 
1660 
1661   // Finally just about ready to make the JNI call
1662 
1663   // get JNIEnv* which is first argument to native
1664   __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
1665   __ movptr(Address(rsp, 0), rdx);
1666 
1667   // Now set thread in native
1668   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1669 
1670   __ call(RuntimeAddress(native_func));
1671 
1672   // Verify or restore cpu control state after JNI call
1673   __ restore_cpu_control_state_after_jni(noreg);
1674 
1675   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1676   // arguments off of the stack. We could just re-adjust the stack pointer here
1677   // and continue to do SP relative addressing but we instead switch to FP
1678   // relative addressing.
1679 
1680   // Unpack native results.
1681   switch (ret_type) {
1682   case T_BOOLEAN: __ c2bool(rax);            break;
1683   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
1684   case T_BYTE   : __ sign_extend_byte (rax); break;
1685   case T_SHORT  : __ sign_extend_short(rax); break;
1686   case T_INT    : /* nothing to do */        break;
1687   case T_DOUBLE :
1688   case T_FLOAT  :
1689     // Result is in st0 we'll save as needed
1690     break;
1691   case T_ARRAY:                 // Really a handle
1692   case T_OBJECT:                // Really a handle
1693       break; // can't de-handlize until after safepoint check
1694   case T_VOID: break;
1695   case T_LONG: break;
1696   default       : ShouldNotReachHere();
1697   }
1698 
1699   // Switch thread to "native transition" state before reading the synchronization state.
1700   // This additional state is necessary because reading and testing the synchronization
1701   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1702   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1703   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1704   //     Thread A is resumed to finish this native method, but doesn't block here since it
1705   //     didn't see any synchronization is progress, and escapes.
1706   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1707 
1708   // Force this write out before the read below
1709   if (!UseSystemMemoryBarrier) {
1710     __ membar(Assembler::Membar_mask_bits(
1711               Assembler::LoadLoad | Assembler::LoadStore |
1712               Assembler::StoreLoad | Assembler::StoreStore));
1713   }
1714 
1715   if (AlwaysRestoreFPU) {
1716     // Make sure the control word is correct.
1717     __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
1718   }
1719 
1720   // check for safepoint operation in progress and/or pending suspend requests
1721   { Label Continue, slow_path;
1722 
1723     __ safepoint_poll(slow_path, thread, true /* at_return */, false /* in_nmethod */);
1724 
1725     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1726     __ jcc(Assembler::equal, Continue);
1727     __ bind(slow_path);
1728 
1729     // Don't use call_VM as it will see a possible pending exception and forward it
1730     // and never return here preventing us from clearing _last_native_pc down below.
1731     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1732     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1733     // by hand.
1734     //
1735     __ vzeroupper();
1736 
1737     save_native_result(masm, ret_type, stack_slots);
1738     __ push(thread);
1739     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1740                                               JavaThread::check_special_condition_for_native_trans)));
1741     __ increment(rsp, wordSize);
1742     // Restore any method result value
1743     restore_native_result(masm, ret_type, stack_slots);
1744     __ bind(Continue);
1745   }
1746 
1747   // change thread state
1748   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1749 
1750   Label reguard;
1751   Label reguard_done;
1752   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_yellow_reserved_disabled);
1753   __ jcc(Assembler::equal, reguard);
1754 
1755   // slow path reguard  re-enters here
1756   __ bind(reguard_done);
1757 
1758   // Handle possible exception (will unlock if necessary)
1759 
1760   // native result if any is live
1761 
1762   // Unlock
1763   Label slow_path_unlock;
1764   Label unlock_done;
1765   if (method->is_synchronized()) {
1766 
1767     Label fast_done;
1768 
1769     // Get locked oop from the handle we passed to jni
1770     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1771 
1772     if (LockingMode == LM_LEGACY) {
1773       Label not_recur;
1774       // Simple recursive lock?
1775       __ cmpptr(Address(rbp, lock_slot_rbp_offset), NULL_WORD);
1776       __ jcc(Assembler::notEqual, not_recur);
1777       __ dec_held_monitor_count();
1778       __ jmpb(fast_done);
1779       __ bind(not_recur);
1780     }
1781 
1782     // Must save rax, if it is live now because cmpxchg must use it
1783     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1784       save_native_result(masm, ret_type, stack_slots);
1785     }
1786 
1787     if (LockingMode == LM_MONITOR) {
1788       __ jmp(slow_path_unlock);
1789     } else if (LockingMode == LM_LEGACY) {
1790       //  get old displaced header
1791       __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
1792 
1793       // get address of the stack lock
1794       __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1795 
1796       // Atomic swap old header if oop still contains the stack lock
1797       // src -> dest iff dest == rax, else rax, <- dest
1798       // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
1799       __ lock();
1800       __ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1801       __ jcc(Assembler::notEqual, slow_path_unlock);
1802       __ dec_held_monitor_count();
1803     } else {
1804       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
1805       __ lightweight_unlock(obj_reg, swap_reg, thread, lock_reg, slow_path_unlock);
1806       __ dec_held_monitor_count();
1807     }
1808 
1809     // slow path re-enters here
1810     __ bind(unlock_done);
1811     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1812       restore_native_result(masm, ret_type, stack_slots);
1813     }
1814 
1815     __ bind(fast_done);
1816   }
1817 
1818   if (DTraceMethodProbes) {
1819     // Tell dtrace about this method exit
1820     save_native_result(masm, ret_type, stack_slots);
1821     __ mov_metadata(rax, method());
1822     __ call_VM_leaf(
1823          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1824          thread, rax);
1825     restore_native_result(masm, ret_type, stack_slots);
1826   }
1827 
1828   // We can finally stop using that last_Java_frame we setup ages ago
1829 
1830   __ reset_last_Java_frame(thread, false);
1831 
1832   // Unbox oop result, e.g. JNIHandles::resolve value.
1833   if (is_reference_type(ret_type)) {
1834     __ resolve_jobject(rax /* value */,
1835                        thread /* thread */,
1836                        rcx /* tmp */);
1837   }
1838 
1839   if (CheckJNICalls) {
1840     // clear_pending_jni_exception_check
1841     __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
1842   }
1843 
1844   // reset handle block
1845   __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
1846   __ movl(Address(rcx, JNIHandleBlock::top_offset()), NULL_WORD);
1847 
1848   // Any exception pending?
1849   __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1850   __ jcc(Assembler::notEqual, exception_pending);
1851 
1852   // no exception, we're almost done
1853 
1854   // check that only result value is on FPU stack
1855   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
1856 
1857   // Fixup floating pointer results so that result looks like a return from a compiled method
1858   if (ret_type == T_FLOAT) {
1859     if (UseSSE >= 1) {
1860       // Pop st0 and store as float and reload into xmm register
1861       __ fstp_s(Address(rbp, -4));
1862       __ movflt(xmm0, Address(rbp, -4));
1863     }
1864   } else if (ret_type == T_DOUBLE) {
1865     if (UseSSE >= 2) {
1866       // Pop st0 and store as double and reload into xmm register
1867       __ fstp_d(Address(rbp, -8));
1868       __ movdbl(xmm0, Address(rbp, -8));
1869     }
1870   }
1871 
1872   // Return
1873 
1874   __ leave();
1875   __ ret(0);
1876 
1877   // Unexpected paths are out of line and go here
1878 
1879   // Slow path locking & unlocking
1880   if (method->is_synchronized()) {
1881 
1882     // BEGIN Slow path lock
1883 
1884     __ bind(slow_path_lock);
1885 
1886     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1887     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1888     __ push(thread);
1889     __ push(lock_reg);
1890     __ push(obj_reg);
1891     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
1892     __ addptr(rsp, 3*wordSize);
1893 
1894 #ifdef ASSERT
1895     { Label L;
1896     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1897     __ jcc(Assembler::equal, L);
1898     __ stop("no pending exception allowed on exit from monitorenter");
1899     __ bind(L);
1900     }
1901 #endif
1902     __ jmp(lock_done);
1903 
1904     // END Slow path lock
1905 
1906     // BEGIN Slow path unlock
1907     __ bind(slow_path_unlock);
1908     __ vzeroupper();
1909     // Slow path unlock
1910 
1911     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1912       save_native_result(masm, ret_type, stack_slots);
1913     }
1914     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1915 
1916     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1917     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1918 
1919 
1920     // should be a peal
1921     // +wordSize because of the push above
1922     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1923     __ push(thread);
1924     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1925     __ push(rax);
1926 
1927     __ push(obj_reg);
1928     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
1929     __ addptr(rsp, 3*wordSize);
1930 #ifdef ASSERT
1931     {
1932       Label L;
1933       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1934       __ jcc(Assembler::equal, L);
1935       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
1936       __ bind(L);
1937     }
1938 #endif /* ASSERT */
1939 
1940     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1941 
1942     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1943       restore_native_result(masm, ret_type, stack_slots);
1944     }
1945     __ jmp(unlock_done);
1946     // END Slow path unlock
1947 
1948   }
1949 
1950   // SLOW PATH Reguard the stack if needed
1951 
1952   __ bind(reguard);
1953   __ vzeroupper();
1954   save_native_result(masm, ret_type, stack_slots);
1955   {
1956     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1957   }
1958   restore_native_result(masm, ret_type, stack_slots);
1959   __ jmp(reguard_done);
1960 
1961 
1962   // BEGIN EXCEPTION PROCESSING
1963 
1964   // Forward  the exception
1965   __ bind(exception_pending);
1966 
1967   // remove possible return value from FPU register stack
1968   __ empty_FPU_stack();
1969 
1970   // pop our frame
1971   __ leave();
1972   // and forward the exception
1973   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1974 
1975   __ flush();
1976 
1977   nmethod *nm = nmethod::new_native_nmethod(method,
1978                                             compile_id,
1979                                             masm->code(),
1980                                             vep_offset,
1981                                             frame_complete,
1982                                             stack_slots / VMRegImpl::slots_per_word,
1983                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
1984                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
1985                                             oop_maps);
1986 
1987   return nm;
1988 
1989 }
1990 
1991 // this function returns the adjust size (in number of words) to a c2i adapter
1992 // activation for use during deoptimization
1993 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
1994   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
1995 }
1996 
1997 
1998 // Number of stack slots between incoming argument block and the start of
1999 // a new frame.  The PROLOG must add this many slots to the stack.  The
2000 // EPILOG must remove this many slots.  Intel needs one slot for
2001 // return address and one for rbp, (must save rbp)
2002 uint SharedRuntime::in_preserve_stack_slots() {
2003   return 2+VerifyStackAtCalls;
2004 }
2005 
2006 uint SharedRuntime::out_preserve_stack_slots() {
2007   return 0;
2008 }
2009 
2010 VMReg SharedRuntime::thread_register() {
2011   Unimplemented();
2012   return nullptr;
2013 }
2014 
2015 //------------------------------generate_deopt_blob----------------------------
2016 void SharedRuntime::generate_deopt_blob() {
2017   // allocate space for the code
2018   ResourceMark rm;
2019   // setup code generation tools
2020   // note: the buffer code size must account for StackShadowPages=50
2021   const char* name = SharedRuntime::stub_name(SharedStubId::deopt_id);
2022   CodeBuffer   buffer(name, 1536, 1024);
2023   MacroAssembler* masm = new MacroAssembler(&buffer);
2024   int frame_size_in_words;
2025   OopMap* map = nullptr;
2026   // Account for the extra args we place on the stack
2027   // by the time we call fetch_unroll_info
2028   const int additional_words = 2; // deopt kind, thread
2029 
2030   OopMapSet *oop_maps = new OopMapSet();
2031 
2032   // -------------
2033   // This code enters when returning to a de-optimized nmethod.  A return
2034   // address has been pushed on the stack, and return values are in
2035   // registers.
2036   // If we are doing a normal deopt then we were called from the patched
2037   // nmethod from the point we returned to the nmethod. So the return
2038   // address on the stack is wrong by NativeCall::instruction_size
2039   // We will adjust the value to it looks like we have the original return
2040   // address on the stack (like when we eagerly deoptimized).
2041   // In the case of an exception pending with deoptimized then we enter
2042   // with a return address on the stack that points after the call we patched
2043   // into the exception handler. We have the following register state:
2044   //    rax,: exception
2045   //    rbx,: exception handler
2046   //    rdx: throwing pc
2047   // So in this case we simply jam rdx into the useless return address and
2048   // the stack looks just like we want.
2049   //
2050   // At this point we need to de-opt.  We save the argument return
2051   // registers.  We call the first C routine, fetch_unroll_info().  This
2052   // routine captures the return values and returns a structure which
2053   // describes the current frame size and the sizes of all replacement frames.
2054   // The current frame is compiled code and may contain many inlined
2055   // functions, each with their own JVM state.  We pop the current frame, then
2056   // push all the new frames.  Then we call the C routine unpack_frames() to
2057   // populate these frames.  Finally unpack_frames() returns us the new target
2058   // address.  Notice that callee-save registers are BLOWN here; they have
2059   // already been captured in the vframeArray at the time the return PC was
2060   // patched.
2061   address start = __ pc();
2062   Label cont;
2063 
2064   // Prolog for non exception case!
2065 
2066   // Save everything in sight.
2067 
2068   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2069   // Normal deoptimization
2070   __ push(Deoptimization::Unpack_deopt);
2071   __ jmp(cont);
2072 
2073   int reexecute_offset = __ pc() - start;
2074 
2075   // Reexecute case
2076   // return address is the pc describes what bci to do re-execute at
2077 
2078   // No need to update map as each call to save_live_registers will produce identical oopmap
2079   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2080 
2081   __ push(Deoptimization::Unpack_reexecute);
2082   __ jmp(cont);
2083 
2084   int exception_offset = __ pc() - start;
2085 
2086   // Prolog for exception case
2087 
2088   // all registers are dead at this entry point, except for rax, and
2089   // rdx which contain the exception oop and exception pc
2090   // respectively.  Set them in TLS and fall thru to the
2091   // unpack_with_exception_in_tls entry point.
2092 
2093   __ get_thread(rdi);
2094   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2095   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2096 
2097   int exception_in_tls_offset = __ pc() - start;
2098 
2099   // new implementation because exception oop is now passed in JavaThread
2100 
2101   // Prolog for exception case
2102   // All registers must be preserved because they might be used by LinearScan
2103   // Exceptiop oop and throwing PC are passed in JavaThread
2104   // tos: stack at point of call to method that threw the exception (i.e. only
2105   // args are on the stack, no return address)
2106 
2107   // make room on stack for the return address
2108   // It will be patched later with the throwing pc. The correct value is not
2109   // available now because loading it from memory would destroy registers.
2110   __ push(0);
2111 
2112   // Save everything in sight.
2113 
2114   // No need to update map as each call to save_live_registers will produce identical oopmap
2115   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2116 
2117   // Now it is safe to overwrite any register
2118 
2119   // store the correct deoptimization type
2120   __ push(Deoptimization::Unpack_exception);
2121 
2122   // load throwing pc from JavaThread and patch it as the return address
2123   // of the current frame. Then clear the field in JavaThread
2124   __ get_thread(rdi);
2125   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2126   __ movptr(Address(rbp, wordSize), rdx);
2127   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2128 
2129 #ifdef ASSERT
2130   // verify that there is really an exception oop in JavaThread
2131   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2132   __ verify_oop(rax);
2133 
2134   // verify that there is no pending exception
2135   Label no_pending_exception;
2136   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2137   __ testptr(rax, rax);
2138   __ jcc(Assembler::zero, no_pending_exception);
2139   __ stop("must not have pending exception here");
2140   __ bind(no_pending_exception);
2141 #endif
2142 
2143   __ bind(cont);
2144 
2145   // Compiled code leaves the floating point stack dirty, empty it.
2146   __ empty_FPU_stack();
2147 
2148 
2149   // Call C code.  Need thread and this frame, but NOT official VM entry
2150   // crud.  We cannot block on this call, no GC can happen.
2151   __ get_thread(rcx);
2152   __ push(rcx);
2153   // fetch_unroll_info needs to call last_java_frame()
2154   __ set_last_Java_frame(rcx, noreg, noreg, nullptr, noreg);
2155 
2156   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2157 
2158   // Need to have an oopmap that tells fetch_unroll_info where to
2159   // find any register it might need.
2160 
2161   oop_maps->add_gc_map( __ pc()-start, map);
2162 
2163   // Discard args to fetch_unroll_info
2164   __ pop(rcx);
2165   __ pop(rcx);
2166 
2167   __ get_thread(rcx);
2168   __ reset_last_Java_frame(rcx, false);
2169 
2170   // Load UnrollBlock into EDI
2171   __ mov(rdi, rax);
2172 
2173   // Move the unpack kind to a safe place in the UnrollBlock because
2174   // we are very short of registers
2175 
2176   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset());
2177   // retrieve the deopt kind from the UnrollBlock.
2178   __ movl(rax, unpack_kind);
2179 
2180    Label noException;
2181   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2182   __ jcc(Assembler::notEqual, noException);
2183   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2184   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2185   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2186   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2187 
2188   __ verify_oop(rax);
2189 
2190   // Overwrite the result registers with the exception results.
2191   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2192   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2193 
2194   __ bind(noException);
2195 
2196   // Stack is back to only having register save data on the stack.
2197   // Now restore the result registers. Everything else is either dead or captured
2198   // in the vframeArray.
2199 
2200   RegisterSaver::restore_result_registers(masm);
2201 
2202   // Non standard control word may be leaked out through a safepoint blob, and we can
2203   // deopt at a poll point with the non standard control word. However, we should make
2204   // sure the control word is correct after restore_result_registers.
2205   __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
2206 
2207   // All of the register save area has been popped of the stack. Only the
2208   // return address remains.
2209 
2210   // Pop all the frames we must move/replace.
2211   //
2212   // Frame picture (youngest to oldest)
2213   // 1: self-frame (no frame link)
2214   // 2: deopting frame  (no frame link)
2215   // 3: caller of deopting frame (could be compiled/interpreted).
2216   //
2217   // Note: by leaving the return address of self-frame on the stack
2218   // and using the size of frame 2 to adjust the stack
2219   // when we are done the return to frame 3 will still be on the stack.
2220 
2221   // Pop deoptimized frame
2222   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2223 
2224   // sp should be pointing at the return address to the caller (3)
2225 
2226   // Pick up the initial fp we should save
2227   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2228   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset()));
2229 
2230 #ifdef ASSERT
2231   // Compilers generate code that bang the stack by as much as the
2232   // interpreter would need. So this stack banging should never
2233   // trigger a fault. Verify that it does not on non product builds.
2234   __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2235   __ bang_stack_size(rbx, rcx);
2236 #endif
2237 
2238   // Load array of frame pcs into ECX
2239   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset()));
2240 
2241   __ pop(rsi); // trash the old pc
2242 
2243   // Load array of frame sizes into ESI
2244   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset()));
2245 
2246   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset());
2247 
2248   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset()));
2249   __ movl(counter, rbx);
2250 
2251   // Now adjust the caller's stack to make up for the extra locals
2252   // but record the original sp so that we can save it in the skeletal interpreter
2253   // frame and the stack walking of interpreter_sender will get the unextended sp
2254   // value and not the "real" sp value.
2255 
2256   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset());
2257   __ movptr(sp_temp, rsp);
2258   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset()));
2259   __ subptr(rsp, rbx);
2260 
2261   // Push interpreter frames in a loop
2262   Label loop;
2263   __ bind(loop);
2264   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2265   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2266   __ pushptr(Address(rcx, 0));          // save return address
2267   __ enter();                           // save old & set new rbp,
2268   __ subptr(rsp, rbx);                  // Prolog!
2269   __ movptr(rbx, sp_temp);              // sender's sp
2270   // This value is corrected by layout_activation_impl
2271   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2272   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2273   __ movptr(sp_temp, rsp);              // pass to next frame
2274   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2275   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2276   __ decrementl(counter);             // decrement counter
2277   __ jcc(Assembler::notZero, loop);
2278   __ pushptr(Address(rcx, 0));          // save final return address
2279 
2280   // Re-push self-frame
2281   __ enter();                           // save old & set new rbp,
2282 
2283   //  Return address and rbp, are in place
2284   // We'll push additional args later. Just allocate a full sized
2285   // register save area
2286   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2287 
2288   // Restore frame locals after moving the frame
2289   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2290   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2291   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2292   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2293   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2294 
2295   // Set up the args to unpack_frame
2296 
2297   __ pushl(unpack_kind);                     // get the unpack_kind value
2298   __ get_thread(rcx);
2299   __ push(rcx);
2300 
2301   // set last_Java_sp, last_Java_fp
2302   __ set_last_Java_frame(rcx, noreg, rbp, nullptr, noreg);
2303 
2304   // Call C code.  Need thread but NOT official VM entry
2305   // crud.  We cannot block on this call, no GC can happen.  Call should
2306   // restore return values to their stack-slots with the new SP.
2307   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2308   // Set an oopmap for the call site
2309   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2310 
2311   // rax, contains the return result type
2312   __ push(rax);
2313 
2314   __ get_thread(rcx);
2315   __ reset_last_Java_frame(rcx, false);
2316 
2317   // Collect return values
2318   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2319   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2320 
2321   // Clear floating point stack before returning to interpreter
2322   __ empty_FPU_stack();
2323 
2324   // Check if we should push the float or double return value.
2325   Label results_done, yes_double_value;
2326   __ cmpl(Address(rsp, 0), T_DOUBLE);
2327   __ jcc (Assembler::zero, yes_double_value);
2328   __ cmpl(Address(rsp, 0), T_FLOAT);
2329   __ jcc (Assembler::notZero, results_done);
2330 
2331   // return float value as expected by interpreter
2332   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2333   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2334   __ jmp(results_done);
2335 
2336   // return double value as expected by interpreter
2337   __ bind(yes_double_value);
2338   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2339   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2340 
2341   __ bind(results_done);
2342 
2343   // Pop self-frame.
2344   __ leave();                              // Epilog!
2345 
2346   // Jump to interpreter
2347   __ ret(0);
2348 
2349   // -------------
2350   // make sure all code is generated
2351   masm->flush();
2352 
2353   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2354   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2355 }
2356 
2357 //------------------------------generate_handler_blob------
2358 //
2359 // Generate a special Compile2Runtime blob that saves all registers,
2360 // setup oopmap, and calls safepoint code to stop the compiled code for
2361 // a safepoint.
2362 //
2363 SafepointBlob* SharedRuntime::generate_handler_blob(SharedStubId id, address call_ptr) {
2364 
2365   // Account for thread arg in our frame
2366   const int additional_words = 1;
2367   int frame_size_in_words;
2368 
2369   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2370   assert(is_polling_page_id(id), "expected a polling page stub id");
2371 
2372   ResourceMark rm;
2373   OopMapSet *oop_maps = new OopMapSet();
2374   OopMap* map;
2375 
2376   // allocate space for the code
2377   // setup code generation tools
2378   const char* name = SharedRuntime::stub_name(id);
2379   CodeBuffer   buffer(name, 2048, 1024);
2380   MacroAssembler* masm = new MacroAssembler(&buffer);
2381 
2382   const Register java_thread = rdi; // callee-saved for VC++
2383   address start   = __ pc();
2384   address call_pc = nullptr;
2385   bool cause_return = (id == SharedStubId::polling_page_return_handler_id);
2386   bool save_vectors = (id == SharedStubId::polling_page_vectors_safepoint_handler_id);
2387 
2388   // If cause_return is true we are at a poll_return and there is
2389   // the return address on the stack to the caller on the nmethod
2390   // that is safepoint. We can leave this return on the stack and
2391   // effectively complete the return and safepoint in the caller.
2392   // Otherwise we push space for a return address that the safepoint
2393   // handler will install later to make the stack walking sensible.
2394   if (!cause_return)
2395     __ push(rbx);  // Make room for return address (or push it again)
2396 
2397   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
2398 
2399   // The following is basically a call_VM. However, we need the precise
2400   // address of the call in order to generate an oopmap. Hence, we do all the
2401   // work ourselves.
2402 
2403   // Push thread argument and setup last_Java_sp
2404   __ get_thread(java_thread);
2405   __ push(java_thread);
2406   __ set_last_Java_frame(java_thread, noreg, noreg, nullptr, noreg);
2407 
2408   // if this was not a poll_return then we need to correct the return address now.
2409   if (!cause_return) {
2410     // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
2411     // Additionally, rbx is a callee saved register and we can look at it later to determine
2412     // if someone changed the return address for us!
2413     __ movptr(rbx, Address(java_thread, JavaThread::saved_exception_pc_offset()));
2414     __ movptr(Address(rbp, wordSize), rbx);
2415   }
2416 
2417   // do the call
2418   __ call(RuntimeAddress(call_ptr));
2419 
2420   // Set an oopmap for the call site.  This oopmap will map all
2421   // oop-registers and debug-info registers as callee-saved.  This
2422   // will allow deoptimization at this safepoint to find all possible
2423   // debug-info recordings, as well as let GC find all oops.
2424 
2425   oop_maps->add_gc_map( __ pc() - start, map);
2426 
2427   // Discard arg
2428   __ pop(rcx);
2429 
2430   Label noException;
2431 
2432   // Clear last_Java_sp again
2433   __ get_thread(java_thread);
2434   __ reset_last_Java_frame(java_thread, false);
2435 
2436   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
2437   __ jcc(Assembler::equal, noException);
2438 
2439   // Exception pending
2440   RegisterSaver::restore_live_registers(masm, save_vectors);
2441 
2442   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2443 
2444   __ bind(noException);
2445 
2446   Label no_adjust, bail, not_special;
2447   if (!cause_return) {
2448     // If our stashed return pc was modified by the runtime we avoid touching it
2449     __ cmpptr(rbx, Address(rbp, wordSize));
2450     __ jccb(Assembler::notEqual, no_adjust);
2451 
2452     // Skip over the poll instruction.
2453     // See NativeInstruction::is_safepoint_poll()
2454     // Possible encodings:
2455     //      85 00       test   %eax,(%rax)
2456     //      85 01       test   %eax,(%rcx)
2457     //      85 02       test   %eax,(%rdx)
2458     //      85 03       test   %eax,(%rbx)
2459     //      85 06       test   %eax,(%rsi)
2460     //      85 07       test   %eax,(%rdi)
2461     //
2462     //      85 04 24    test   %eax,(%rsp)
2463     //      85 45 00    test   %eax,0x0(%rbp)
2464 
2465 #ifdef ASSERT
2466     __ movptr(rax, rbx); // remember where 0x85 should be, for verification below
2467 #endif
2468     // rsp/rbp base encoding takes 3 bytes with the following register values:
2469     // rsp 0x04
2470     // rbp 0x05
2471     __ movzbl(rcx, Address(rbx, 1));
2472     __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
2473     __ subptr(rcx, 4);    // looking for 0x00 .. 0x01
2474     __ cmpptr(rcx, 1);
2475     __ jcc(Assembler::above, not_special);
2476     __ addptr(rbx, 1);
2477     __ bind(not_special);
2478 #ifdef ASSERT
2479     // Verify the correct encoding of the poll we're about to skip.
2480     __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
2481     __ jcc(Assembler::notEqual, bail);
2482     // Mask out the modrm bits
2483     __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
2484     // rax encodes to 0, so if the bits are nonzero it's incorrect
2485     __ jcc(Assembler::notZero, bail);
2486 #endif
2487     // Adjust return pc forward to step over the safepoint poll instruction
2488     __ addptr(rbx, 2);
2489     __ movptr(Address(rbp, wordSize), rbx);
2490   }
2491 
2492   __ bind(no_adjust);
2493   // Normal exit, register restoring and exit
2494   RegisterSaver::restore_live_registers(masm, save_vectors);
2495 
2496   __ ret(0);
2497 
2498 #ifdef ASSERT
2499   __ bind(bail);
2500   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
2501 #endif
2502 
2503   // make sure all code is generated
2504   masm->flush();
2505 
2506   // Fill-out other meta info
2507   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2508 }
2509 
2510 //
2511 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2512 //
2513 // Generate a stub that calls into vm to find out the proper destination
2514 // of a java call. All the argument registers are live at this point
2515 // but since this is generic code we don't know what they are and the caller
2516 // must do any gc of the args.
2517 //
2518 RuntimeStub* SharedRuntime::generate_resolve_blob(SharedStubId id, address destination) {
2519   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2520   assert(is_resolve_id(id), "expected a resolve stub id");
2521 
2522   // allocate space for the code
2523   ResourceMark rm;
2524 
2525   const char* name = SharedRuntime::stub_name(id);
2526   CodeBuffer buffer(name, 1000, 512);
2527   MacroAssembler* masm                = new MacroAssembler(&buffer);
2528 
2529   int frame_size_words;
2530   enum frame_layout {
2531                 thread_off,
2532                 extra_words };
2533 
2534   OopMapSet *oop_maps = new OopMapSet();
2535   OopMap* map = nullptr;
2536 
2537   int start = __ offset();
2538 
2539   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
2540 
2541   int frame_complete = __ offset();
2542 
2543   const Register thread = rdi;
2544   __ get_thread(rdi);
2545 
2546   __ push(thread);
2547   __ set_last_Java_frame(thread, noreg, rbp, nullptr, noreg);
2548 
2549   __ call(RuntimeAddress(destination));
2550 
2551 
2552   // Set an oopmap for the call site.
2553   // We need this not only for callee-saved registers, but also for volatile
2554   // registers that the compiler might be keeping live across a safepoint.
2555 
2556   oop_maps->add_gc_map( __ offset() - start, map);
2557 
2558   // rax, contains the address we are going to jump to assuming no exception got installed
2559 
2560   __ addptr(rsp, wordSize);
2561 
2562   // clear last_Java_sp
2563   __ reset_last_Java_frame(thread, true);
2564   // check for pending exceptions
2565   Label pending;
2566   __ cmpptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
2567   __ jcc(Assembler::notEqual, pending);
2568 
2569   // get the returned Method*
2570   __ get_vm_result_2(rbx, thread);
2571   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
2572 
2573   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
2574 
2575   RegisterSaver::restore_live_registers(masm);
2576 
2577   // We are back to the original state on entry and ready to go.
2578 
2579   __ jmp(rax);
2580 
2581   // Pending exception after the safepoint
2582 
2583   __ bind(pending);
2584 
2585   RegisterSaver::restore_live_registers(masm);
2586 
2587   // exception pending => remove activation and forward to exception handler
2588 
2589   __ get_thread(thread);
2590   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
2591   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
2592   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2593 
2594   // -------------
2595   // make sure all code is generated
2596   masm->flush();
2597 
2598   // return the  blob
2599   // frame_size_words or bytes??
2600   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
2601 }
2602 
2603   //------------------------------------------------------------------------------------------------------------------------
2604   // Continuation point for throwing of implicit exceptions that are not handled in
2605   // the current activation. Fabricates an exception oop and initiates normal
2606   // exception dispatching in this frame.
2607   //
2608   // Previously the compiler (c2) allowed for callee save registers on Java calls.
2609   // This is no longer true after adapter frames were removed but could possibly
2610   // be brought back in the future if the interpreter code was reworked and it
2611   // was deemed worthwhile. The comment below was left to describe what must
2612   // happen here if callee saves were resurrected. As it stands now this stub
2613   // could actually be a vanilla BufferBlob and have now oopMap at all.
2614   // Since it doesn't make much difference we've chosen to leave it the
2615   // way it was in the callee save days and keep the comment.
2616 
2617   // If we need to preserve callee-saved values we need a callee-saved oop map and
2618   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
2619   // If the compiler needs all registers to be preserved between the fault
2620   // point and the exception handler then it must assume responsibility for that in
2621   // AbstractCompiler::continuation_for_implicit_null_exception or
2622   // continuation_for_implicit_division_by_zero_exception. All other implicit
2623   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
2624   // either at call sites or otherwise assume that stack unwinding will be initiated,
2625   // so caller saved registers were assumed volatile in the compiler.
2626 RuntimeStub* SharedRuntime::generate_throw_exception(SharedStubId id, address runtime_entry) {
2627   assert(is_throw_id(id), "expected a throw stub id");
2628 
2629   const char* name = SharedRuntime::stub_name(id);
2630 
2631   // Information about frame layout at time of blocking runtime call.
2632   // Note that we only have to preserve callee-saved registers since
2633   // the compilers are responsible for supplying a continuation point
2634   // if they expect all registers to be preserved.
2635   enum layout {
2636     thread_off,    // last_java_sp
2637     arg1_off,
2638     arg2_off,
2639     rbp_off,       // callee saved register
2640     ret_pc,
2641     framesize
2642   };
2643 
2644   int insts_size = 256;
2645   int locs_size  = 32;
2646 
2647   ResourceMark rm;
2648   const char* timer_msg = "SharedRuntime generate_throw_exception";
2649   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
2650 
2651   CodeBuffer code(name, insts_size, locs_size);
2652   OopMapSet* oop_maps  = new OopMapSet();
2653   MacroAssembler* masm = new MacroAssembler(&code);
2654 
2655   address start = __ pc();
2656 
2657   // This is an inlined and slightly modified version of call_VM
2658   // which has the ability to fetch the return PC out of
2659   // thread-local storage and also sets up last_Java_sp slightly
2660   // differently than the real call_VM
2661   Register java_thread = rbx;
2662   __ get_thread(java_thread);
2663 
2664   __ enter(); // required for proper stackwalking of RuntimeStub frame
2665 
2666   // pc and rbp, already pushed
2667   __ subptr(rsp, (framesize-2) * wordSize); // prolog
2668 
2669   // Frame is now completed as far as size and linkage.
2670 
2671   int frame_complete = __ pc() - start;
2672 
2673   // push java thread (becomes first argument of C function)
2674   __ movptr(Address(rsp, thread_off * wordSize), java_thread);
2675   // Set up last_Java_sp and last_Java_fp
2676   __ set_last_Java_frame(java_thread, rsp, rbp, nullptr, noreg);
2677 
2678   // Call runtime
2679   BLOCK_COMMENT("call runtime_entry");
2680   __ call(RuntimeAddress(runtime_entry));
2681   // Generate oop map
2682   OopMap* map =  new OopMap(framesize, 0);
2683   oop_maps->add_gc_map(__ pc() - start, map);
2684 
2685   // restore the thread (cannot use the pushed argument since arguments
2686   // may be overwritten by C code generated by an optimizing compiler);
2687   // however can use the register value directly if it is callee saved.
2688   __ get_thread(java_thread);
2689 
2690   __ reset_last_Java_frame(java_thread, true);
2691 
2692   __ leave(); // required for proper stackwalking of RuntimeStub frame
2693 
2694   // check for pending exceptions
2695 #ifdef ASSERT
2696   Label L;
2697   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
2698   __ jcc(Assembler::notEqual, L);
2699   __ should_not_reach_here();
2700   __ bind(L);
2701 #endif /* ASSERT */
2702   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2703 
2704 
2705   RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
2706   return stub;
2707 }
2708 
2709 #if INCLUDE_JFR
2710 
2711 static void jfr_prologue(address the_pc, MacroAssembler* masm) {
2712   Register java_thread = rdi;
2713   __ get_thread(java_thread);
2714   __ set_last_Java_frame(java_thread, rsp, rbp, the_pc, noreg);
2715   __ movptr(Address(rsp, 0), java_thread);
2716 }
2717 
2718 // The handle is dereferenced through a load barrier.
2719 static void jfr_epilogue(MacroAssembler* masm) {
2720   Register java_thread = rdi;
2721   __ get_thread(java_thread);
2722   __ reset_last_Java_frame(java_thread, true);
2723 }
2724 
2725 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint.
2726 // It returns a jobject handle to the event writer.
2727 // The handle is dereferenced and the return value is the event writer oop.
2728 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() {
2729   enum layout {
2730     FPUState_off         = 0,
2731     rbp_off              = FPUStateSizeInWords,
2732     rdi_off,
2733     rsi_off,
2734     rcx_off,
2735     rbx_off,
2736     saved_argument_off,
2737     saved_argument_off2, // 2nd half of double
2738     framesize
2739   };
2740 
2741   int insts_size = 1024;
2742   int locs_size = 64;
2743   const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id);
2744   CodeBuffer code(name, insts_size, locs_size);
2745   OopMapSet* oop_maps = new OopMapSet();
2746   MacroAssembler* masm = new MacroAssembler(&code);
2747 
2748   address start = __ pc();
2749   __ enter();
2750   int frame_complete = __ pc() - start;
2751   address the_pc = __ pc();
2752   jfr_prologue(the_pc, masm);
2753   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1);
2754   jfr_epilogue(masm);
2755   __ resolve_global_jobject(rax, rdi, rdx);
2756   __ leave();
2757   __ ret(0);
2758 
2759   OopMap* map = new OopMap(framesize, 1); // rbp
2760   oop_maps->add_gc_map(the_pc - start, map);
2761 
2762   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
2763     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
2764                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2765                                   oop_maps, false);
2766   return stub;
2767 }
2768 
2769 // For c2: call to return a leased buffer.
2770 RuntimeStub* SharedRuntime::generate_jfr_return_lease() {
2771   enum layout {
2772     FPUState_off = 0,
2773     rbp_off = FPUStateSizeInWords,
2774     rdi_off,
2775     rsi_off,
2776     rcx_off,
2777     rbx_off,
2778     saved_argument_off,
2779     saved_argument_off2, // 2nd half of double
2780     framesize
2781   };
2782 
2783   int insts_size = 1024;
2784   int locs_size = 64;
2785   const char* name = SharedRuntime::stub_name(SharedStubId::jfr_return_lease_id);
2786   CodeBuffer code(name, insts_size, locs_size);
2787   OopMapSet* oop_maps = new OopMapSet();
2788   MacroAssembler* masm = new MacroAssembler(&code);
2789 
2790   address start = __ pc();
2791   __ enter();
2792   int frame_complete = __ pc() - start;
2793   address the_pc = __ pc();
2794   jfr_prologue(the_pc, masm);
2795   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1);
2796   jfr_epilogue(masm);
2797   __ leave();
2798   __ ret(0);
2799 
2800   OopMap* map = new OopMap(framesize, 1); // rbp
2801   oop_maps->add_gc_map(the_pc - start, map);
2802 
2803   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
2804     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
2805                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2806                                   oop_maps, false);
2807   return stub;
2808 }
2809 
2810 #endif // INCLUDE_JFR