1 /*
   2  * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #ifndef _WINDOWS
  27 #include "alloca.h"
  28 #endif
  29 #include "asm/macroAssembler.hpp"
  30 #include "asm/macroAssembler.inline.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/debugInfoRec.hpp"
  33 #include "code/nativeInst.hpp"
  34 #include "code/SCCache.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "gc/shared/gcLocker.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/barrierSetAssembler.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "logging/log.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.hpp"
  45 #include "oops/klass.inline.hpp"
  46 #include "oops/method.inline.hpp"
  47 #include "prims/methodHandles.hpp"
  48 #include "runtime/continuation.hpp"
  49 #include "runtime/continuationEntry.inline.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/jniHandles.hpp"
  52 #include "runtime/safepointMechanism.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/signature.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "runtime/vframeArray.hpp"
  57 #include "runtime/vm_version.hpp"
  58 #include "utilities/align.hpp"
  59 #include "utilities/checkedCast.hpp"
  60 #include "utilities/formatBuffer.hpp"
  61 #include "vmreg_x86.inline.hpp"
  62 #ifdef COMPILER1
  63 #include "c1/c1_Runtime1.hpp"
  64 #endif
  65 #ifdef COMPILER2
  66 #include "opto/runtime.hpp"
  67 #endif
  68 #if INCLUDE_JVMCI
  69 #include "jvmci/jvmciJavaClasses.hpp"
  70 #endif
  71 
  72 #define __ masm->
  73 
  74 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  75 
  76 class SimpleRuntimeFrame {
  77 
  78   public:
  79 
  80   // Most of the runtime stubs have this simple frame layout.
  81   // This class exists to make the layout shared in one place.
  82   // Offsets are for compiler stack slots, which are jints.
  83   enum layout {
  84     // The frame sender code expects that rbp will be in the "natural" place and
  85     // will override any oopMap setting for it. We must therefore force the layout
  86     // so that it agrees with the frame sender code.
  87     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  88     rbp_off2,
  89     return_off, return_off2,
  90     framesize
  91   };
  92 };
  93 
  94 class RegisterSaver {
  95   // Capture info about frame layout.  Layout offsets are in jint
  96   // units because compiler frame slots are jints.
  97 #define XSAVE_AREA_BEGIN 160
  98 #define XSAVE_AREA_YMM_BEGIN 576
  99 #define XSAVE_AREA_OPMASK_BEGIN 1088
 100 #define XSAVE_AREA_ZMM_BEGIN 1152
 101 #define XSAVE_AREA_UPPERBANK 1664
 102 #define DEF_XMM_OFFS(regnum)       xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
 103 #define DEF_YMM_OFFS(regnum)       ymm ## regnum ## _off = ymm_off + (regnum)*16/BytesPerInt, ymm ## regnum ## H_off
 104 #define DEF_ZMM_OFFS(regnum)       zmm ## regnum ## _off = zmm_off + (regnum)*32/BytesPerInt, zmm ## regnum ## H_off
 105 #define DEF_OPMASK_OFFS(regnum)    opmask ## regnum ## _off = opmask_off + (regnum)*8/BytesPerInt,     opmask ## regnum ## H_off
 106 #define DEF_ZMM_UPPER_OFFS(regnum) zmm ## regnum ## _off = zmm_upper_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off
 107   enum layout {
 108     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
 109     xmm_off       = fpu_state_off + XSAVE_AREA_BEGIN/BytesPerInt,            // offset in fxsave save area
 110     DEF_XMM_OFFS(0),
 111     DEF_XMM_OFFS(1),
 112     // 2..15 are implied in range usage
 113     ymm_off = xmm_off + (XSAVE_AREA_YMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
 114     DEF_YMM_OFFS(0),
 115     DEF_YMM_OFFS(1),
 116     // 2..15 are implied in range usage
 117     opmask_off         = xmm_off + (XSAVE_AREA_OPMASK_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
 118     DEF_OPMASK_OFFS(0),
 119     DEF_OPMASK_OFFS(1),
 120     // 2..7 are implied in range usage
 121     zmm_off = xmm_off + (XSAVE_AREA_ZMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
 122     DEF_ZMM_OFFS(0),
 123     DEF_ZMM_OFFS(1),
 124     zmm_upper_off = xmm_off + (XSAVE_AREA_UPPERBANK - XSAVE_AREA_BEGIN)/BytesPerInt,
 125     DEF_ZMM_UPPER_OFFS(16),
 126     DEF_ZMM_UPPER_OFFS(17),
 127     // 18..31 are implied in range usage
 128     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
 129     fpu_stateH_end,
 130     r15_off, r15H_off,
 131     r14_off, r14H_off,
 132     r13_off, r13H_off,
 133     r12_off, r12H_off,
 134     r11_off, r11H_off,
 135     r10_off, r10H_off,
 136     r9_off,  r9H_off,
 137     r8_off,  r8H_off,
 138     rdi_off, rdiH_off,
 139     rsi_off, rsiH_off,
 140     ignore_off, ignoreH_off,  // extra copy of rbp
 141     rsp_off, rspH_off,
 142     rbx_off, rbxH_off,
 143     rdx_off, rdxH_off,
 144     rcx_off, rcxH_off,
 145     rax_off, raxH_off,
 146     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 147     align_off, alignH_off,
 148     flags_off, flagsH_off,
 149     // The frame sender code expects that rbp will be in the "natural" place and
 150     // will override any oopMap setting for it. We must therefore force the layout
 151     // so that it agrees with the frame sender code.
 152     rbp_off, rbpH_off,        // copy of rbp we will restore
 153     return_off, returnH_off,  // slot for return address
 154     reg_save_size             // size in compiler stack slots
 155   };
 156 
 157  public:
 158   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_wide_vectors);
 159   static void restore_live_registers(MacroAssembler* masm, bool restore_wide_vectors = false);
 160 
 161   // Offsets into the register save area
 162   // Used by deoptimization when it is managing result register
 163   // values on its own
 164 
 165   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 166   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 167   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 168   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 169   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 170 
 171   // During deoptimization only the result registers need to be restored,
 172   // all the other values have already been extracted.
 173   static void restore_result_registers(MacroAssembler* masm);
 174 };
 175 
 176 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_wide_vectors) {
 177   int off = 0;
 178   int num_xmm_regs = XMMRegister::available_xmm_registers();
 179 #if COMPILER2_OR_JVMCI
 180   if (save_wide_vectors && UseAVX == 0) {
 181     save_wide_vectors = false; // vectors larger than 16 byte long are supported only with AVX
 182   }
 183   assert(!save_wide_vectors || MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 184 #else
 185   save_wide_vectors = false; // vectors are generated only by C2 and JVMCI
 186 #endif
 187 
 188   // Always make the frame size 16-byte aligned, both vector and non vector stacks are always allocated
 189   int frame_size_in_bytes = align_up(reg_save_size*BytesPerInt, num_xmm_regs);
 190   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 191   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 192   // CodeBlob frame size is in words.
 193   int frame_size_in_words = frame_size_in_bytes / wordSize;
 194   *total_frame_words = frame_size_in_words;
 195 
 196   // Save registers, fpu state, and flags.
 197   // We assume caller has already pushed the return address onto the
 198   // stack, so rsp is 8-byte aligned here.
 199   // We push rpb twice in this sequence because we want the real rbp
 200   // to be under the return like a normal enter.
 201 
 202   __ enter();          // rsp becomes 16-byte aligned here
 203   __ push_CPU_state(); // Push a multiple of 16 bytes
 204 
 205   // push cpu state handles this on EVEX enabled targets
 206   if (save_wide_vectors) {
 207     // Save upper half of YMM registers(0..15)
 208     int base_addr = XSAVE_AREA_YMM_BEGIN;
 209     for (int n = 0; n < 16; n++) {
 210       __ vextractf128_high(Address(rsp, base_addr+n*16), as_XMMRegister(n));
 211     }
 212     if (VM_Version::supports_evex()) {
 213       // Save upper half of ZMM registers(0..15)
 214       base_addr = XSAVE_AREA_ZMM_BEGIN;
 215       for (int n = 0; n < 16; n++) {
 216         __ vextractf64x4_high(Address(rsp, base_addr+n*32), as_XMMRegister(n));
 217       }
 218       // Save full ZMM registers(16..num_xmm_regs)
 219       base_addr = XSAVE_AREA_UPPERBANK;
 220       off = 0;
 221       int vector_len = Assembler::AVX_512bit;
 222       for (int n = 16; n < num_xmm_regs; n++) {
 223         __ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len);
 224       }
 225 #if COMPILER2_OR_JVMCI
 226       base_addr = XSAVE_AREA_OPMASK_BEGIN;
 227       off = 0;
 228       for(int n = 0; n < KRegister::number_of_registers; n++) {
 229         __ kmov(Address(rsp, base_addr+(off++*8)), as_KRegister(n));
 230       }
 231 #endif
 232     }
 233   } else {
 234     if (VM_Version::supports_evex()) {
 235       // Save upper bank of XMM registers(16..31) for scalar or 16-byte vector usage
 236       int base_addr = XSAVE_AREA_UPPERBANK;
 237       off = 0;
 238       int vector_len = VM_Version::supports_avx512vl() ?  Assembler::AVX_128bit : Assembler::AVX_512bit;
 239       for (int n = 16; n < num_xmm_regs; n++) {
 240         __ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len);
 241       }
 242 #if COMPILER2_OR_JVMCI
 243       base_addr = XSAVE_AREA_OPMASK_BEGIN;
 244       off = 0;
 245       for(int n = 0; n < KRegister::number_of_registers; n++) {
 246         __ kmov(Address(rsp, base_addr+(off++*8)), as_KRegister(n));
 247       }
 248 #endif
 249     }
 250   }
 251   __ vzeroupper();
 252   if (frame::arg_reg_save_area_bytes != 0) {
 253     // Allocate argument register save area
 254     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 255   }
 256 
 257   // Set an oopmap for the call site.  This oopmap will map all
 258   // oop-registers and debug-info registers as callee-saved.  This
 259   // will allow deoptimization at this safepoint to find all possible
 260   // debug-info recordings, as well as let GC find all oops.
 261 
 262   OopMapSet *oop_maps = new OopMapSet();
 263   OopMap* map = new OopMap(frame_size_in_slots, 0);
 264 
 265 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x))
 266 
 267   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
 268   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
 269   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
 270   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
 271   // rbp location is known implicitly by the frame sender code, needs no oopmap
 272   // and the location where rbp was saved by is ignored
 273   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
 274   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
 275   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
 276   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
 277   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
 278   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
 279   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
 280   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
 281   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
 282   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
 283   // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 284   // on EVEX enabled targets, we get it included in the xsave area
 285   off = xmm0_off;
 286   int delta = xmm1_off - off;
 287   for (int n = 0; n < 16; n++) {
 288     XMMRegister xmm_name = as_XMMRegister(n);
 289     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 290     off += delta;
 291   }
 292   if (UseAVX > 2) {
 293     // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 294     off = zmm16_off;
 295     delta = zmm17_off - off;
 296     for (int n = 16; n < num_xmm_regs; n++) {
 297       XMMRegister zmm_name = as_XMMRegister(n);
 298       map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg());
 299       off += delta;
 300     }
 301   }
 302 
 303 #if COMPILER2_OR_JVMCI
 304   if (save_wide_vectors) {
 305     // Save upper half of YMM registers(0..15)
 306     off = ymm0_off;
 307     delta = ymm1_off - ymm0_off;
 308     for (int n = 0; n < 16; n++) {
 309       XMMRegister ymm_name = as_XMMRegister(n);
 310       map->set_callee_saved(STACK_OFFSET(off), ymm_name->as_VMReg()->next(4));
 311       off += delta;
 312     }
 313     if (VM_Version::supports_evex()) {
 314       // Save upper half of ZMM registers(0..15)
 315       off = zmm0_off;
 316       delta = zmm1_off - zmm0_off;
 317       for (int n = 0; n < 16; n++) {
 318         XMMRegister zmm_name = as_XMMRegister(n);
 319         map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next(8));
 320         off += delta;
 321       }
 322     }
 323   }
 324 #endif // COMPILER2_OR_JVMCI
 325 
 326   // %%% These should all be a waste but we'll keep things as they were for now
 327   if (true) {
 328     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
 329     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
 330     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
 331     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
 332     // rbp location is known implicitly by the frame sender code, needs no oopmap
 333     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
 334     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
 335     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
 336     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
 337     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
 338     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
 339     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
 340     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
 341     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
 342     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
 343     // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 344     // on EVEX enabled targets, we get it included in the xsave area
 345     off = xmm0H_off;
 346     delta = xmm1H_off - off;
 347     for (int n = 0; n < 16; n++) {
 348       XMMRegister xmm_name = as_XMMRegister(n);
 349       map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
 350       off += delta;
 351     }
 352     if (UseAVX > 2) {
 353       // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 354       off = zmm16H_off;
 355       delta = zmm17H_off - off;
 356       for (int n = 16; n < num_xmm_regs; n++) {
 357         XMMRegister zmm_name = as_XMMRegister(n);
 358         map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next());
 359         off += delta;
 360       }
 361     }
 362   }
 363 
 364   return map;
 365 }
 366 
 367 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_wide_vectors) {
 368   int num_xmm_regs = XMMRegister::available_xmm_registers();
 369   if (frame::arg_reg_save_area_bytes != 0) {
 370     // Pop arg register save area
 371     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 372   }
 373 
 374 #if COMPILER2_OR_JVMCI
 375   if (restore_wide_vectors) {
 376     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 377     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 378   }
 379 #else
 380   assert(!restore_wide_vectors, "vectors are generated only by C2");
 381 #endif
 382 
 383   __ vzeroupper();
 384 
 385   // On EVEX enabled targets everything is handled in pop fpu state
 386   if (restore_wide_vectors) {
 387     // Restore upper half of YMM registers (0..15)
 388     int base_addr = XSAVE_AREA_YMM_BEGIN;
 389     for (int n = 0; n < 16; n++) {
 390       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, base_addr+n*16));
 391     }
 392     if (VM_Version::supports_evex()) {
 393       // Restore upper half of ZMM registers (0..15)
 394       base_addr = XSAVE_AREA_ZMM_BEGIN;
 395       for (int n = 0; n < 16; n++) {
 396         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, base_addr+n*32));
 397       }
 398       // Restore full ZMM registers(16..num_xmm_regs)
 399       base_addr = XSAVE_AREA_UPPERBANK;
 400       int vector_len = Assembler::AVX_512bit;
 401       int off = 0;
 402       for (int n = 16; n < num_xmm_regs; n++) {
 403         __ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len);
 404       }
 405 #if COMPILER2_OR_JVMCI
 406       base_addr = XSAVE_AREA_OPMASK_BEGIN;
 407       off = 0;
 408       for (int n = 0; n < KRegister::number_of_registers; n++) {
 409         __ kmov(as_KRegister(n), Address(rsp, base_addr+(off++*8)));
 410       }
 411 #endif
 412     }
 413   } else {
 414     if (VM_Version::supports_evex()) {
 415       // Restore upper bank of XMM registers(16..31) for scalar or 16-byte vector usage
 416       int base_addr = XSAVE_AREA_UPPERBANK;
 417       int off = 0;
 418       int vector_len = VM_Version::supports_avx512vl() ?  Assembler::AVX_128bit : Assembler::AVX_512bit;
 419       for (int n = 16; n < num_xmm_regs; n++) {
 420         __ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len);
 421       }
 422 #if COMPILER2_OR_JVMCI
 423       base_addr = XSAVE_AREA_OPMASK_BEGIN;
 424       off = 0;
 425       for (int n = 0; n < KRegister::number_of_registers; n++) {
 426         __ kmov(as_KRegister(n), Address(rsp, base_addr+(off++*8)));
 427       }
 428 #endif
 429     }
 430   }
 431 
 432   // Recover CPU state
 433   __ pop_CPU_state();
 434   // Get the rbp described implicitly by the calling convention (no oopMap)
 435   __ pop(rbp);
 436 }
 437 
 438 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 439 
 440   // Just restore result register. Only used by deoptimization. By
 441   // now any callee save register that needs to be restored to a c2
 442   // caller of the deoptee has been extracted into the vframeArray
 443   // and will be stuffed into the c2i adapter we create for later
 444   // restoration so only result registers need to be restored here.
 445 
 446   // Restore fp result register
 447   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 448   // Restore integer result register
 449   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 450   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 451 
 452   // Pop all of the register save are off the stack except the return address
 453   __ addptr(rsp, return_offset_in_bytes());
 454 }
 455 
 456 // Is vector's size (in bytes) bigger than a size saved by default?
 457 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
 458 bool SharedRuntime::is_wide_vector(int size) {
 459   return size > 16;
 460 }
 461 
 462 // ---------------------------------------------------------------------------
 463 // Read the array of BasicTypes from a signature, and compute where the
 464 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 465 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 466 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 467 // as framesizes are fixed.
 468 // VMRegImpl::stack0 refers to the first slot 0(sp).
 469 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.
 470 // Register up to Register::number_of_registers are the 64-bit
 471 // integer registers.
 472 
 473 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 474 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 475 // units regardless of build. Of course for i486 there is no 64 bit build
 476 
 477 // The Java calling convention is a "shifted" version of the C ABI.
 478 // By skipping the first C ABI register we can call non-static jni methods
 479 // with small numbers of arguments without having to shuffle the arguments
 480 // at all. Since we control the java ABI we ought to at least get some
 481 // advantage out of it.
 482 
 483 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 484                                            VMRegPair *regs,
 485                                            int total_args_passed) {
 486 
 487   // Create the mapping between argument positions and
 488   // registers.
 489   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 490     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 491   };
 492   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 493     j_farg0, j_farg1, j_farg2, j_farg3,
 494     j_farg4, j_farg5, j_farg6, j_farg7
 495   };
 496 
 497 
 498   uint int_args = 0;
 499   uint fp_args = 0;
 500   uint stk_args = 0;
 501 
 502   for (int i = 0; i < total_args_passed; i++) {
 503     switch (sig_bt[i]) {
 504     case T_BOOLEAN:
 505     case T_CHAR:
 506     case T_BYTE:
 507     case T_SHORT:
 508     case T_INT:
 509       if (int_args < Argument::n_int_register_parameters_j) {
 510         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 511       } else {
 512         stk_args = align_up(stk_args, 2);
 513         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 514         stk_args += 1;
 515       }
 516       break;
 517     case T_VOID:
 518       // halves of T_LONG or T_DOUBLE
 519       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 520       regs[i].set_bad();
 521       break;
 522     case T_LONG:
 523       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 524       // fall through
 525     case T_OBJECT:
 526     case T_ARRAY:
 527     case T_ADDRESS:
 528       if (int_args < Argument::n_int_register_parameters_j) {
 529         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 530       } else {
 531         stk_args = align_up(stk_args, 2);
 532         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 533         stk_args += 2;
 534       }
 535       break;
 536     case T_FLOAT:
 537       if (fp_args < Argument::n_float_register_parameters_j) {
 538         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 539       } else {
 540         stk_args = align_up(stk_args, 2);
 541         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 542         stk_args += 1;
 543       }
 544       break;
 545     case T_DOUBLE:
 546       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 547       if (fp_args < Argument::n_float_register_parameters_j) {
 548         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 549       } else {
 550         stk_args = align_up(stk_args, 2);
 551         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 552         stk_args += 2;
 553       }
 554       break;
 555     default:
 556       ShouldNotReachHere();
 557       break;
 558     }
 559   }
 560 
 561   return stk_args;
 562 }
 563 
 564 // Patch the callers callsite with entry to compiled code if it exists.
 565 static void patch_callers_callsite(MacroAssembler *masm) {
 566   Label L;
 567   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
 568   __ jcc(Assembler::equal, L);
 569 
 570   // Save the current stack pointer
 571   __ mov(r13, rsp);
 572   // Schedule the branch target address early.
 573   // Call into the VM to patch the caller, then jump to compiled callee
 574   // rax isn't live so capture return address while we easily can
 575   __ movptr(rax, Address(rsp, 0));
 576 
 577   // align stack so push_CPU_state doesn't fault
 578   __ andptr(rsp, -(StackAlignmentInBytes));
 579   __ push_CPU_state();
 580   __ vzeroupper();
 581   // VM needs caller's callsite
 582   // VM needs target method
 583   // This needs to be a long call since we will relocate this adapter to
 584   // the codeBuffer and it may not reach
 585 
 586   // Allocate argument register save area
 587   if (frame::arg_reg_save_area_bytes != 0) {
 588     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 589   }
 590   __ mov(c_rarg0, rbx);
 591   __ mov(c_rarg1, rax);
 592   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 593 
 594   // De-allocate argument register save area
 595   if (frame::arg_reg_save_area_bytes != 0) {
 596     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 597   }
 598 
 599   __ vzeroupper();
 600   __ pop_CPU_state();
 601   // restore sp
 602   __ mov(rsp, r13);
 603   __ bind(L);
 604 }
 605 
 606 
 607 static void gen_c2i_adapter(MacroAssembler *masm,
 608                             int total_args_passed,
 609                             int comp_args_on_stack,
 610                             const BasicType *sig_bt,
 611                             const VMRegPair *regs,
 612                             Label& skip_fixup) {
 613   // Before we get into the guts of the C2I adapter, see if we should be here
 614   // at all.  We've come from compiled code and are attempting to jump to the
 615   // interpreter, which means the caller made a static call to get here
 616   // (vcalls always get a compiled target if there is one).  Check for a
 617   // compiled target.  If there is one, we need to patch the caller's call.
 618   patch_callers_callsite(masm);
 619 
 620   __ bind(skip_fixup);
 621 
 622   // Since all args are passed on the stack, total_args_passed *
 623   // Interpreter::stackElementSize is the space we need.
 624 
 625   assert(total_args_passed >= 0, "total_args_passed is %d", total_args_passed);
 626 
 627   int extraspace = (total_args_passed * Interpreter::stackElementSize);
 628 
 629   // stack is aligned, keep it that way
 630   // This is not currently needed or enforced by the interpreter, but
 631   // we might as well conform to the ABI.
 632   extraspace = align_up(extraspace, 2*wordSize);
 633 
 634   // set senderSP value
 635   __ lea(r13, Address(rsp, wordSize));
 636 
 637 #ifdef ASSERT
 638   __ check_stack_alignment(r13, "sender stack not aligned");
 639 #endif
 640   if (extraspace > 0) {
 641     // Pop the return address
 642     __ pop(rax);
 643 
 644     __ subptr(rsp, extraspace);
 645 
 646     // Push the return address
 647     __ push(rax);
 648 
 649     // Account for the return address location since we store it first rather
 650     // than hold it in a register across all the shuffling
 651     extraspace += wordSize;
 652   }
 653 
 654 #ifdef ASSERT
 655   __ check_stack_alignment(rsp, "callee stack not aligned", wordSize, rax);
 656 #endif
 657 
 658   // Now write the args into the outgoing interpreter space
 659   for (int i = 0; i < total_args_passed; i++) {
 660     if (sig_bt[i] == T_VOID) {
 661       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 662       continue;
 663     }
 664 
 665     // offset to start parameters
 666     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 667     int next_off = st_off - Interpreter::stackElementSize;
 668 
 669     // Say 4 args:
 670     // i   st_off
 671     // 0   32 T_LONG
 672     // 1   24 T_VOID
 673     // 2   16 T_OBJECT
 674     // 3    8 T_BOOL
 675     // -    0 return address
 676     //
 677     // However to make thing extra confusing. Because we can fit a long/double in
 678     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 679     // leaves one slot empty and only stores to a single slot. In this case the
 680     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 681 
 682     VMReg r_1 = regs[i].first();
 683     VMReg r_2 = regs[i].second();
 684     if (!r_1->is_valid()) {
 685       assert(!r_2->is_valid(), "");
 686       continue;
 687     }
 688     if (r_1->is_stack()) {
 689       // memory to memory use rax
 690       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 691       if (!r_2->is_valid()) {
 692         // sign extend??
 693         __ movl(rax, Address(rsp, ld_off));
 694         __ movptr(Address(rsp, st_off), rax);
 695 
 696       } else {
 697 
 698         __ movq(rax, Address(rsp, ld_off));
 699 
 700         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 701         // T_DOUBLE and T_LONG use two slots in the interpreter
 702         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 703           // ld_off == LSW, ld_off+wordSize == MSW
 704           // st_off == MSW, next_off == LSW
 705           __ movq(Address(rsp, next_off), rax);
 706 #ifdef ASSERT
 707           // Overwrite the unused slot with known junk
 708           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 709           __ movptr(Address(rsp, st_off), rax);
 710 #endif /* ASSERT */
 711         } else {
 712           __ movq(Address(rsp, st_off), rax);
 713         }
 714       }
 715     } else if (r_1->is_Register()) {
 716       Register r = r_1->as_Register();
 717       if (!r_2->is_valid()) {
 718         // must be only an int (or less ) so move only 32bits to slot
 719         // why not sign extend??
 720         __ movl(Address(rsp, st_off), r);
 721       } else {
 722         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 723         // T_DOUBLE and T_LONG use two slots in the interpreter
 724         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 725           // long/double in gpr
 726 #ifdef ASSERT
 727           // Overwrite the unused slot with known junk
 728           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 729           __ movptr(Address(rsp, st_off), rax);
 730 #endif /* ASSERT */
 731           __ movq(Address(rsp, next_off), r);
 732         } else {
 733           __ movptr(Address(rsp, st_off), r);
 734         }
 735       }
 736     } else {
 737       assert(r_1->is_XMMRegister(), "");
 738       if (!r_2->is_valid()) {
 739         // only a float use just part of the slot
 740         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 741       } else {
 742 #ifdef ASSERT
 743         // Overwrite the unused slot with known junk
 744         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 745         __ movptr(Address(rsp, st_off), rax);
 746 #endif /* ASSERT */
 747         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 748       }
 749     }
 750   }
 751 
 752   // Schedule the branch target address early.
 753   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 754   __ jmp(rcx);
 755 }
 756 
 757 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 758                         address code_start, address code_end,
 759                         Label& L_ok) {
 760   Label L_fail;
 761   __ lea(temp_reg, ExternalAddress(code_start));
 762   __ cmpptr(pc_reg, temp_reg);
 763   __ jcc(Assembler::belowEqual, L_fail);
 764   __ lea(temp_reg, ExternalAddress(code_end));
 765   __ cmpptr(pc_reg, temp_reg);
 766   __ jcc(Assembler::below, L_ok);
 767   __ bind(L_fail);
 768 }
 769 
 770 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 771                                     int total_args_passed,
 772                                     int comp_args_on_stack,
 773                                     const BasicType *sig_bt,
 774                                     const VMRegPair *regs) {
 775 
 776   // Note: r13 contains the senderSP on entry. We must preserve it since
 777   // we may do a i2c -> c2i transition if we lose a race where compiled
 778   // code goes non-entrant while we get args ready.
 779   // In addition we use r13 to locate all the interpreter args as
 780   // we must align the stack to 16 bytes on an i2c entry else we
 781   // lose alignment we expect in all compiled code and register
 782   // save code can segv when fxsave instructions find improperly
 783   // aligned stack pointer.
 784 
 785   // Adapters can be frameless because they do not require the caller
 786   // to perform additional cleanup work, such as correcting the stack pointer.
 787   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 788   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 789   // even if a callee has modified the stack pointer.
 790   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 791   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 792   // up via the senderSP register).
 793   // In other words, if *either* the caller or callee is interpreted, we can
 794   // get the stack pointer repaired after a call.
 795   // This is why c2i and i2c adapters cannot be indefinitely composed.
 796   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 797   // both caller and callee would be compiled methods, and neither would
 798   // clean up the stack pointer changes performed by the two adapters.
 799   // If this happens, control eventually transfers back to the compiled
 800   // caller, but with an uncorrected stack, causing delayed havoc.
 801 
 802   if (VerifyAdapterCalls &&
 803       (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) {
 804     // So, let's test for cascading c2i/i2c adapters right now.
 805     //  assert(Interpreter::contains($return_addr) ||
 806     //         StubRoutines::contains($return_addr),
 807     //         "i2c adapter must return to an interpreter frame");
 808     __ block_comment("verify_i2c { ");
 809     // Pick up the return address
 810     __ movptr(rax, Address(rsp, 0));
 811     Label L_ok;
 812     if (Interpreter::code() != nullptr) {
 813       range_check(masm, rax, r11,
 814                   Interpreter::code()->code_start(),
 815                   Interpreter::code()->code_end(),
 816                   L_ok);
 817     }
 818     if (StubRoutines::initial_stubs_code() != nullptr) {
 819       range_check(masm, rax, r11,
 820                   StubRoutines::initial_stubs_code()->code_begin(),
 821                   StubRoutines::initial_stubs_code()->code_end(),
 822                   L_ok);
 823     }
 824     if (StubRoutines::final_stubs_code() != nullptr) {
 825       range_check(masm, rax, r11,
 826                   StubRoutines::final_stubs_code()->code_begin(),
 827                   StubRoutines::final_stubs_code()->code_end(),
 828                   L_ok);
 829     }
 830     const char* msg = "i2c adapter must return to an interpreter frame";
 831     __ block_comment(msg);
 832     __ stop(msg);
 833     __ bind(L_ok);
 834     __ block_comment("} verify_i2ce ");
 835   }
 836 
 837   // Must preserve original SP for loading incoming arguments because
 838   // we need to align the outgoing SP for compiled code.
 839   __ movptr(r11, rsp);
 840 
 841   // Pick up the return address
 842   __ pop(rax);
 843 
 844   // Convert 4-byte c2 stack slots to words.
 845   int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 846 
 847   if (comp_args_on_stack) {
 848     __ subptr(rsp, comp_words_on_stack * wordSize);
 849   }
 850 
 851   // Ensure compiled code always sees stack at proper alignment
 852   __ andptr(rsp, -16);
 853 
 854   // push the return address and misalign the stack that youngest frame always sees
 855   // as far as the placement of the call instruction
 856   __ push(rax);
 857 
 858   // Put saved SP in another register
 859   const Register saved_sp = rax;
 860   __ movptr(saved_sp, r11);
 861 
 862   // Will jump to the compiled code just as if compiled code was doing it.
 863   // Pre-load the register-jump target early, to schedule it better.
 864   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
 865 
 866 #if INCLUDE_JVMCI
 867   if (EnableJVMCI) {
 868     // check if this call should be routed towards a specific entry point
 869     __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
 870     Label no_alternative_target;
 871     __ jcc(Assembler::equal, no_alternative_target);
 872     __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 873     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
 874     __ bind(no_alternative_target);
 875   }
 876 #endif // INCLUDE_JVMCI
 877 
 878   // Now generate the shuffle code.  Pick up all register args and move the
 879   // rest through the floating point stack top.
 880   for (int i = 0; i < total_args_passed; i++) {
 881     if (sig_bt[i] == T_VOID) {
 882       // Longs and doubles are passed in native word order, but misaligned
 883       // in the 32-bit build.
 884       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 885       continue;
 886     }
 887 
 888     // Pick up 0, 1 or 2 words from SP+offset.
 889 
 890     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 891             "scrambled load targets?");
 892     // Load in argument order going down.
 893     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 894     // Point to interpreter value (vs. tag)
 895     int next_off = ld_off - Interpreter::stackElementSize;
 896     //
 897     //
 898     //
 899     VMReg r_1 = regs[i].first();
 900     VMReg r_2 = regs[i].second();
 901     if (!r_1->is_valid()) {
 902       assert(!r_2->is_valid(), "");
 903       continue;
 904     }
 905     if (r_1->is_stack()) {
 906       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 907       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 908 
 909       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 910       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 911       // will be generated.
 912       if (!r_2->is_valid()) {
 913         // sign extend???
 914         __ movl(r13, Address(saved_sp, ld_off));
 915         __ movptr(Address(rsp, st_off), r13);
 916       } else {
 917         //
 918         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 919         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 920         // So we must adjust where to pick up the data to match the interpreter.
 921         //
 922         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 923         // are accessed as negative so LSW is at LOW address
 924 
 925         // ld_off is MSW so get LSW
 926         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 927                            next_off : ld_off;
 928         __ movq(r13, Address(saved_sp, offset));
 929         // st_off is LSW (i.e. reg.first())
 930         __ movq(Address(rsp, st_off), r13);
 931       }
 932     } else if (r_1->is_Register()) {  // Register argument
 933       Register r = r_1->as_Register();
 934       assert(r != rax, "must be different");
 935       if (r_2->is_valid()) {
 936         //
 937         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 938         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 939         // So we must adjust where to pick up the data to match the interpreter.
 940 
 941         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 942                            next_off : ld_off;
 943 
 944         // this can be a misaligned move
 945         __ movq(r, Address(saved_sp, offset));
 946       } else {
 947         // sign extend and use a full word?
 948         __ movl(r, Address(saved_sp, ld_off));
 949       }
 950     } else {
 951       if (!r_2->is_valid()) {
 952         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 953       } else {
 954         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 955       }
 956     }
 957   }
 958 
 959   __ push_cont_fastpath(); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about
 960 
 961   // 6243940 We might end up in handle_wrong_method if
 962   // the callee is deoptimized as we race thru here. If that
 963   // happens we don't want to take a safepoint because the
 964   // caller frame will look interpreted and arguments are now
 965   // "compiled" so it is much better to make this transition
 966   // invisible to the stack walking code. Unfortunately if
 967   // we try and find the callee by normal means a safepoint
 968   // is possible. So we stash the desired callee in the thread
 969   // and the vm will find there should this case occur.
 970 
 971   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 972 
 973   // put Method* where a c2i would expect should we end up there
 974   // only needed because eof c2 resolve stubs return Method* as a result in
 975   // rax
 976   __ mov(rax, rbx);
 977   __ jmp(r11);
 978 }
 979 
 980 // ---------------------------------------------------------------
 981 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 982                                                             int total_args_passed,
 983                                                             int comp_args_on_stack,
 984                                                             const BasicType *sig_bt,
 985                                                             const VMRegPair *regs,
 986                                                             AdapterFingerPrint* fingerprint) {
 987   address i2c_entry = __ pc();
 988 
 989   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 990 
 991   // -------------------------------------------------------------------------
 992   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
 993   // to the interpreter.  The args start out packed in the compiled layout.  They
 994   // need to be unpacked into the interpreter layout.  This will almost always
 995   // require some stack space.  We grow the current (compiled) stack, then repack
 996   // the args.  We  finally end in a jump to the generic interpreter entry point.
 997   // On exit from the interpreter, the interpreter will restore our SP (lest the
 998   // compiled code, which relies solely on SP and not RBP, get sick).
 999 
1000   address c2i_unverified_entry = __ pc();
1001   Label skip_fixup;
1002 
1003   Register data = rax;
1004   Register receiver = j_rarg0;
1005   Register temp = rbx;
1006 
1007   {
1008     __ ic_check(1 /* end_alignment */);
1009     __ movptr(rbx, Address(data, CompiledICData::speculated_method_offset()));
1010     // Method might have been compiled since the call site was patched to
1011     // interpreted if that is the case treat it as a miss so we can get
1012     // the call site corrected.
1013     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
1014     __ jcc(Assembler::equal, skip_fixup);
1015     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1016   }
1017 
1018   address c2i_entry = __ pc();
1019 
1020   // Class initialization barrier for static methods
1021   address c2i_no_clinit_check_entry = nullptr;
1022   if (VM_Version::supports_fast_class_init_checks()) {
1023     Label L_skip_barrier;
1024     Register method = rbx;
1025 
1026     { // Bypass the barrier for non-static methods
1027       Register flags = rscratch1;
1028       __ movl(flags, Address(method, Method::access_flags_offset()));
1029       __ testl(flags, JVM_ACC_STATIC);
1030       __ jcc(Assembler::zero, L_skip_barrier); // non-static
1031     }
1032 
1033     Register klass = rscratch1;
1034     __ load_method_holder(klass, method);
1035     __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/);
1036 
1037     __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
1038 
1039     __ bind(L_skip_barrier);
1040     c2i_no_clinit_check_entry = __ pc();
1041   }
1042 
1043   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1044   bs->c2i_entry_barrier(masm);
1045 
1046   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
1047 
1048   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
1049 }
1050 
1051 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1052                                          VMRegPair *regs,
1053                                          int total_args_passed) {
1054 
1055 // We return the amount of VMRegImpl stack slots we need to reserve for all
1056 // the arguments NOT counting out_preserve_stack_slots.
1057 
1058 // NOTE: These arrays will have to change when c1 is ported
1059 #ifdef _WIN64
1060     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1061       c_rarg0, c_rarg1, c_rarg2, c_rarg3
1062     };
1063     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1064       c_farg0, c_farg1, c_farg2, c_farg3
1065     };
1066 #else
1067     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1068       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
1069     };
1070     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1071       c_farg0, c_farg1, c_farg2, c_farg3,
1072       c_farg4, c_farg5, c_farg6, c_farg7
1073     };
1074 #endif // _WIN64
1075 
1076 
1077     uint int_args = 0;
1078     uint fp_args = 0;
1079     uint stk_args = 0; // inc by 2 each time
1080 
1081     for (int i = 0; i < total_args_passed; i++) {
1082       switch (sig_bt[i]) {
1083       case T_BOOLEAN:
1084       case T_CHAR:
1085       case T_BYTE:
1086       case T_SHORT:
1087       case T_INT:
1088         if (int_args < Argument::n_int_register_parameters_c) {
1089           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
1090 #ifdef _WIN64
1091           fp_args++;
1092           // Allocate slots for callee to stuff register args the stack.
1093           stk_args += 2;
1094 #endif
1095         } else {
1096           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1097           stk_args += 2;
1098         }
1099         break;
1100       case T_LONG:
1101         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1102         // fall through
1103       case T_OBJECT:
1104       case T_ARRAY:
1105       case T_ADDRESS:
1106       case T_METADATA:
1107         if (int_args < Argument::n_int_register_parameters_c) {
1108           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
1109 #ifdef _WIN64
1110           fp_args++;
1111           stk_args += 2;
1112 #endif
1113         } else {
1114           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1115           stk_args += 2;
1116         }
1117         break;
1118       case T_FLOAT:
1119         if (fp_args < Argument::n_float_register_parameters_c) {
1120           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
1121 #ifdef _WIN64
1122           int_args++;
1123           // Allocate slots for callee to stuff register args the stack.
1124           stk_args += 2;
1125 #endif
1126         } else {
1127           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1128           stk_args += 2;
1129         }
1130         break;
1131       case T_DOUBLE:
1132         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1133         if (fp_args < Argument::n_float_register_parameters_c) {
1134           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
1135 #ifdef _WIN64
1136           int_args++;
1137           // Allocate slots for callee to stuff register args the stack.
1138           stk_args += 2;
1139 #endif
1140         } else {
1141           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1142           stk_args += 2;
1143         }
1144         break;
1145       case T_VOID: // Halves of longs and doubles
1146         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
1147         regs[i].set_bad();
1148         break;
1149       default:
1150         ShouldNotReachHere();
1151         break;
1152       }
1153     }
1154 #ifdef _WIN64
1155   // windows abi requires that we always allocate enough stack space
1156   // for 4 64bit registers to be stored down.
1157   if (stk_args < 8) {
1158     stk_args = 8;
1159   }
1160 #endif // _WIN64
1161 
1162   return stk_args;
1163 }
1164 
1165 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
1166                                              uint num_bits,
1167                                              uint total_args_passed) {
1168   assert(num_bits == 64 || num_bits == 128 || num_bits == 256 || num_bits == 512,
1169          "only certain vector sizes are supported for now");
1170 
1171   static const XMMRegister VEC_ArgReg[32] = {
1172      xmm0,  xmm1,  xmm2,  xmm3,  xmm4,  xmm5,  xmm6,  xmm7,
1173      xmm8,  xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15,
1174     xmm16, xmm17, xmm18, xmm19, xmm20, xmm21, xmm22, xmm23,
1175     xmm24, xmm25, xmm26, xmm27, xmm28, xmm29, xmm30, xmm31
1176   };
1177 
1178   uint stk_args = 0;
1179   uint fp_args = 0;
1180 
1181   for (uint i = 0; i < total_args_passed; i++) {
1182     VMReg vmreg = VEC_ArgReg[fp_args++]->as_VMReg();
1183     int next_val = num_bits == 64 ? 1 : (num_bits == 128 ? 3 : (num_bits  == 256 ? 7 : 15));
1184     regs[i].set_pair(vmreg->next(next_val), vmreg);
1185   }
1186 
1187   return stk_args;
1188 }
1189 
1190 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1191   // We always ignore the frame_slots arg and just use the space just below frame pointer
1192   // which by this time is free to use
1193   switch (ret_type) {
1194   case T_FLOAT:
1195     __ movflt(Address(rbp, -wordSize), xmm0);
1196     break;
1197   case T_DOUBLE:
1198     __ movdbl(Address(rbp, -wordSize), xmm0);
1199     break;
1200   case T_VOID:  break;
1201   default: {
1202     __ movptr(Address(rbp, -wordSize), rax);
1203     }
1204   }
1205 }
1206 
1207 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1208   // We always ignore the frame_slots arg and just use the space just below frame pointer
1209   // which by this time is free to use
1210   switch (ret_type) {
1211   case T_FLOAT:
1212     __ movflt(xmm0, Address(rbp, -wordSize));
1213     break;
1214   case T_DOUBLE:
1215     __ movdbl(xmm0, Address(rbp, -wordSize));
1216     break;
1217   case T_VOID:  break;
1218   default: {
1219     __ movptr(rax, Address(rbp, -wordSize));
1220     }
1221   }
1222 }
1223 
1224 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1225     for ( int i = first_arg ; i < arg_count ; i++ ) {
1226       if (args[i].first()->is_Register()) {
1227         __ push(args[i].first()->as_Register());
1228       } else if (args[i].first()->is_XMMRegister()) {
1229         __ subptr(rsp, 2*wordSize);
1230         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1231       }
1232     }
1233 }
1234 
1235 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1236     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1237       if (args[i].first()->is_Register()) {
1238         __ pop(args[i].first()->as_Register());
1239       } else if (args[i].first()->is_XMMRegister()) {
1240         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1241         __ addptr(rsp, 2*wordSize);
1242       }
1243     }
1244 }
1245 
1246 static void verify_oop_args(MacroAssembler* masm,
1247                             const methodHandle& method,
1248                             const BasicType* sig_bt,
1249                             const VMRegPair* regs) {
1250   Register temp_reg = rbx;  // not part of any compiled calling seq
1251   if (VerifyOops) {
1252     for (int i = 0; i < method->size_of_parameters(); i++) {
1253       if (is_reference_type(sig_bt[i])) {
1254         VMReg r = regs[i].first();
1255         assert(r->is_valid(), "bad oop arg");
1256         if (r->is_stack()) {
1257           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1258           __ verify_oop(temp_reg);
1259         } else {
1260           __ verify_oop(r->as_Register());
1261         }
1262       }
1263     }
1264   }
1265 }
1266 
1267 static void check_continuation_enter_argument(VMReg actual_vmreg,
1268                                               Register expected_reg,
1269                                               const char* name) {
1270   assert(!actual_vmreg->is_stack(), "%s cannot be on stack", name);
1271   assert(actual_vmreg->as_Register() == expected_reg,
1272          "%s is in unexpected register: %s instead of %s",
1273          name, actual_vmreg->as_Register()->name(), expected_reg->name());
1274 }
1275 
1276 
1277 //---------------------------- continuation_enter_setup ---------------------------
1278 //
1279 // Arguments:
1280 //   None.
1281 //
1282 // Results:
1283 //   rsp: pointer to blank ContinuationEntry
1284 //
1285 // Kills:
1286 //   rax
1287 //
1288 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) {
1289   assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, "");
1290   assert(in_bytes(ContinuationEntry::cont_offset())  % VMRegImpl::stack_slot_size == 0, "");
1291   assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, "");
1292 
1293   stack_slots += checked_cast<int>(ContinuationEntry::size()) / wordSize;
1294   __ subptr(rsp, checked_cast<int32_t>(ContinuationEntry::size()));
1295 
1296   int frame_size = (checked_cast<int>(ContinuationEntry::size()) + wordSize) / VMRegImpl::stack_slot_size;
1297   OopMap* map = new OopMap(frame_size, 0);
1298 
1299   __ movptr(rax, Address(r15_thread, JavaThread::cont_entry_offset()));
1300   __ movptr(Address(rsp, ContinuationEntry::parent_offset()), rax);
1301   __ movptr(Address(r15_thread, JavaThread::cont_entry_offset()), rsp);
1302 
1303   return map;
1304 }
1305 
1306 //---------------------------- fill_continuation_entry ---------------------------
1307 //
1308 // Arguments:
1309 //   rsp: pointer to blank Continuation entry
1310 //   reg_cont_obj: pointer to the continuation
1311 //   reg_flags: flags
1312 //
1313 // Results:
1314 //   rsp: pointer to filled out ContinuationEntry
1315 //
1316 // Kills:
1317 //   rax
1318 //
1319 static void fill_continuation_entry(MacroAssembler* masm, Register reg_cont_obj, Register reg_flags) {
1320   assert_different_registers(rax, reg_cont_obj, reg_flags);
1321 #ifdef ASSERT
1322   __ movl(Address(rsp, ContinuationEntry::cookie_offset()), ContinuationEntry::cookie_value());
1323 #endif
1324   __ movptr(Address(rsp, ContinuationEntry::cont_offset()), reg_cont_obj);
1325   __ movl  (Address(rsp, ContinuationEntry::flags_offset()), reg_flags);
1326   __ movptr(Address(rsp, ContinuationEntry::chunk_offset()), 0);
1327   __ movl(Address(rsp, ContinuationEntry::argsize_offset()), 0);
1328   __ movl(Address(rsp, ContinuationEntry::pin_count_offset()), 0);
1329 
1330   __ movptr(rax, Address(r15_thread, JavaThread::cont_fastpath_offset()));
1331   __ movptr(Address(rsp, ContinuationEntry::parent_cont_fastpath_offset()), rax);
1332   __ movq(rax, Address(r15_thread, JavaThread::held_monitor_count_offset()));
1333   __ movq(Address(rsp, ContinuationEntry::parent_held_monitor_count_offset()), rax);
1334 
1335   __ movptr(Address(r15_thread, JavaThread::cont_fastpath_offset()), 0);
1336   __ movq(Address(r15_thread, JavaThread::held_monitor_count_offset()), 0);
1337 }
1338 
1339 //---------------------------- continuation_enter_cleanup ---------------------------
1340 //
1341 // Arguments:
1342 //   rsp: pointer to the ContinuationEntry
1343 //
1344 // Results:
1345 //   rsp: pointer to the spilled rbp in the entry frame
1346 //
1347 // Kills:
1348 //   rbx
1349 //
1350 void static continuation_enter_cleanup(MacroAssembler* masm) {
1351 #ifdef ASSERT
1352   Label L_good_sp;
1353   __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
1354   __ jcc(Assembler::equal, L_good_sp);
1355   __ stop("Incorrect rsp at continuation_enter_cleanup");
1356   __ bind(L_good_sp);
1357 #endif
1358   __ movptr(rbx, Address(rsp, ContinuationEntry::parent_cont_fastpath_offset()));
1359   __ movptr(Address(r15_thread, JavaThread::cont_fastpath_offset()), rbx);
1360 
1361   if (CheckJNICalls) {
1362     // Check if this is a virtual thread continuation
1363     Label L_skip_vthread_code;
1364     __ cmpl(Address(rsp, ContinuationEntry::flags_offset()), 0);
1365     __ jcc(Assembler::equal, L_skip_vthread_code);
1366 
1367     // If the held monitor count is > 0 and this vthread is terminating then
1368     // it failed to release a JNI monitor. So we issue the same log message
1369     // that JavaThread::exit does.
1370     __ cmpptr(Address(r15_thread, JavaThread::jni_monitor_count_offset()), 0);
1371     __ jcc(Assembler::equal, L_skip_vthread_code);
1372 
1373     // rax may hold an exception oop, save it before the call
1374     __ push(rax);
1375     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::log_jni_monitor_still_held));
1376     __ pop(rax);
1377 
1378     // For vthreads we have to explicitly zero the JNI monitor count of the carrier
1379     // on termination. The held count is implicitly zeroed below when we restore from
1380     // the parent held count (which has to be zero).
1381     __ movq(Address(r15_thread, JavaThread::jni_monitor_count_offset()), 0);
1382 
1383     __ bind(L_skip_vthread_code);
1384   }
1385 #ifdef ASSERT
1386   else {
1387     // Check if this is a virtual thread continuation
1388     Label L_skip_vthread_code;
1389     __ cmpl(Address(rsp, ContinuationEntry::flags_offset()), 0);
1390     __ jcc(Assembler::equal, L_skip_vthread_code);
1391 
1392     // See comment just above. If not checking JNI calls the JNI count is only
1393     // needed for assertion checking.
1394     __ movq(Address(r15_thread, JavaThread::jni_monitor_count_offset()), 0);
1395 
1396     __ bind(L_skip_vthread_code);
1397   }
1398 #endif
1399 
1400   __ movq(rbx, Address(rsp, ContinuationEntry::parent_held_monitor_count_offset()));
1401   __ movq(Address(r15_thread, JavaThread::held_monitor_count_offset()), rbx);
1402 
1403   __ movptr(rbx, Address(rsp, ContinuationEntry::parent_offset()));
1404   __ movptr(Address(r15_thread, JavaThread::cont_entry_offset()), rbx);
1405   __ addptr(rsp, checked_cast<int32_t>(ContinuationEntry::size()));
1406 }
1407 
1408 static void gen_continuation_enter(MacroAssembler* masm,
1409                                    const VMRegPair* regs,
1410                                    int& exception_offset,
1411                                    OopMapSet* oop_maps,
1412                                    int& frame_complete,
1413                                    int& stack_slots,
1414                                    int& interpreted_entry_offset,
1415                                    int& compiled_entry_offset) {
1416 
1417   // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread)
1418   int pos_cont_obj   = 0;
1419   int pos_is_cont    = 1;
1420   int pos_is_virtual = 2;
1421 
1422   // The platform-specific calling convention may present the arguments in various registers.
1423   // To simplify the rest of the code, we expect the arguments to reside at these known
1424   // registers, and we additionally check the placement here in case calling convention ever
1425   // changes.
1426   Register reg_cont_obj   = c_rarg1;
1427   Register reg_is_cont    = c_rarg2;
1428   Register reg_is_virtual = c_rarg3;
1429 
1430   check_continuation_enter_argument(regs[pos_cont_obj].first(),   reg_cont_obj,   "Continuation object");
1431   check_continuation_enter_argument(regs[pos_is_cont].first(),    reg_is_cont,    "isContinue");
1432   check_continuation_enter_argument(regs[pos_is_virtual].first(), reg_is_virtual, "isVirtualThread");
1433 
1434   // Utility methods kill rax, make sure there are no collisions
1435   assert_different_registers(rax, reg_cont_obj, reg_is_cont, reg_is_virtual);
1436 
1437   AddressLiteral resolve(SharedRuntime::get_resolve_static_call_stub(),
1438                          relocInfo::static_call_type);
1439 
1440   address start = __ pc();
1441 
1442   Label L_thaw, L_exit;
1443 
1444   // i2i entry used at interp_only_mode only
1445   interpreted_entry_offset = __ pc() - start;
1446   {
1447 #ifdef ASSERT
1448     Label is_interp_only;
1449     __ cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0);
1450     __ jcc(Assembler::notEqual, is_interp_only);
1451     __ stop("enterSpecial interpreter entry called when not in interp_only_mode");
1452     __ bind(is_interp_only);
1453 #endif
1454 
1455     __ pop(rax); // return address
1456     // Read interpreter arguments into registers (this is an ad-hoc i2c adapter)
1457     __ movptr(c_rarg1, Address(rsp, Interpreter::stackElementSize*2));
1458     __ movl(c_rarg2,   Address(rsp, Interpreter::stackElementSize*1));
1459     __ movl(c_rarg3,   Address(rsp, Interpreter::stackElementSize*0));
1460     __ andptr(rsp, -16); // Ensure compiled code always sees stack at proper alignment
1461     __ push(rax); // return address
1462     __ push_cont_fastpath();
1463 
1464     __ enter();
1465 
1466     stack_slots = 2; // will be adjusted in setup
1467     OopMap* map = continuation_enter_setup(masm, stack_slots);
1468     // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe,
1469     // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway.
1470 
1471     __ verify_oop(reg_cont_obj);
1472 
1473     fill_continuation_entry(masm, reg_cont_obj, reg_is_virtual);
1474 
1475     // If continuation, call to thaw. Otherwise, resolve the call and exit.
1476     __ testptr(reg_is_cont, reg_is_cont);
1477     __ jcc(Assembler::notZero, L_thaw);
1478 
1479     // --- Resolve path
1480 
1481     // Make sure the call is patchable
1482     __ align(BytesPerWord, __ offset() + NativeCall::displacement_offset);
1483     // Emit stub for static call
1484     address stub = CompiledDirectCall::emit_to_interp_stub(masm, __ pc());
1485     if (stub == nullptr) {
1486       fatal("CodeCache is full at gen_continuation_enter");
1487     }
1488     __ call(resolve);
1489     oop_maps->add_gc_map(__ pc() - start, map);
1490     __ post_call_nop();
1491 
1492     __ jmp(L_exit);
1493   }
1494 
1495   // compiled entry
1496   __ align(CodeEntryAlignment);
1497   compiled_entry_offset = __ pc() - start;
1498   __ enter();
1499 
1500   stack_slots = 2; // will be adjusted in setup
1501   OopMap* map = continuation_enter_setup(masm, stack_slots);
1502 
1503   // Frame is now completed as far as size and linkage.
1504   frame_complete = __ pc() - start;
1505 
1506   __ verify_oop(reg_cont_obj);
1507 
1508   fill_continuation_entry(masm, reg_cont_obj, reg_is_virtual);
1509 
1510   // If isContinue, call to thaw. Otherwise, call Continuation.enter(Continuation c, boolean isContinue)
1511   __ testptr(reg_is_cont, reg_is_cont);
1512   __ jccb(Assembler::notZero, L_thaw);
1513 
1514   // --- call Continuation.enter(Continuation c, boolean isContinue)
1515 
1516   // Make sure the call is patchable
1517   __ align(BytesPerWord, __ offset() + NativeCall::displacement_offset);
1518 
1519   // Emit stub for static call
1520   address stub = CompiledDirectCall::emit_to_interp_stub(masm, __ pc());
1521   if (stub == nullptr) {
1522     fatal("CodeCache is full at gen_continuation_enter");
1523   }
1524 
1525   // The call needs to be resolved. There's a special case for this in
1526   // SharedRuntime::find_callee_info_helper() which calls
1527   // LinkResolver::resolve_continuation_enter() which resolves the call to
1528   // Continuation.enter(Continuation c, boolean isContinue).
1529   __ call(resolve);
1530 
1531   oop_maps->add_gc_map(__ pc() - start, map);
1532   __ post_call_nop();
1533 
1534   __ jmpb(L_exit);
1535 
1536   // --- Thawing path
1537 
1538   __ bind(L_thaw);
1539 
1540   __ call(RuntimeAddress(StubRoutines::cont_thaw()));
1541 
1542   ContinuationEntry::_return_pc_offset = __ pc() - start;
1543   oop_maps->add_gc_map(__ pc() - start, map->deep_copy());
1544   __ post_call_nop();
1545 
1546   // --- Normal exit (resolve/thawing)
1547 
1548   __ bind(L_exit);
1549 
1550   continuation_enter_cleanup(masm);
1551   __ pop(rbp);
1552   __ ret(0);
1553 
1554   // --- Exception handling path
1555 
1556   exception_offset = __ pc() - start;
1557 
1558   continuation_enter_cleanup(masm);
1559   __ pop(rbp);
1560 
1561   __ movptr(c_rarg0, r15_thread);
1562   __ movptr(c_rarg1, Address(rsp, 0)); // return address
1563 
1564   // rax still holds the original exception oop, save it before the call
1565   __ push(rax);
1566 
1567   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2);
1568   __ movptr(rbx, rax);
1569 
1570   // Continue at exception handler:
1571   //   rax: exception oop
1572   //   rbx: exception handler
1573   //   rdx: exception pc
1574   __ pop(rax);
1575   __ verify_oop(rax);
1576   __ pop(rdx);
1577   __ jmp(rbx);
1578 }
1579 
1580 static void gen_continuation_yield(MacroAssembler* masm,
1581                                    const VMRegPair* regs,
1582                                    OopMapSet* oop_maps,
1583                                    int& frame_complete,
1584                                    int& stack_slots,
1585                                    int& compiled_entry_offset) {
1586   enum layout {
1587     rbp_off,
1588     rbpH_off,
1589     return_off,
1590     return_off2,
1591     framesize // inclusive of return address
1592   };
1593   stack_slots = framesize /  VMRegImpl::slots_per_word;
1594   assert(stack_slots == 2, "recheck layout");
1595 
1596   address start = __ pc();
1597   compiled_entry_offset = __ pc() - start;
1598   __ enter();
1599   address the_pc = __ pc();
1600 
1601   frame_complete = the_pc - start;
1602 
1603   // This nop must be exactly at the PC we push into the frame info.
1604   // We use this nop for fast CodeBlob lookup, associate the OopMap
1605   // with it right away.
1606   __ post_call_nop();
1607   OopMap* map = new OopMap(framesize, 1);
1608   oop_maps->add_gc_map(frame_complete, map);
1609 
1610   __ set_last_Java_frame(rsp, rbp, the_pc, rscratch1);
1611   __ movptr(c_rarg0, r15_thread);
1612   __ movptr(c_rarg1, rsp);
1613   __ call_VM_leaf(Continuation::freeze_entry(), 2);
1614   __ reset_last_Java_frame(true);
1615 
1616   Label L_pinned;
1617 
1618   __ testptr(rax, rax);
1619   __ jcc(Assembler::notZero, L_pinned);
1620 
1621   __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
1622   continuation_enter_cleanup(masm);
1623   __ pop(rbp);
1624   __ ret(0);
1625 
1626   __ bind(L_pinned);
1627 
1628   // Pinned, return to caller
1629 
1630   // handle pending exception thrown by freeze
1631   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
1632   Label ok;
1633   __ jcc(Assembler::equal, ok);
1634   __ leave();
1635   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1636   __ bind(ok);
1637 
1638   __ leave();
1639   __ ret(0);
1640 }
1641 
1642 static void gen_special_dispatch(MacroAssembler* masm,
1643                                  const methodHandle& method,
1644                                  const BasicType* sig_bt,
1645                                  const VMRegPair* regs) {
1646   verify_oop_args(masm, method, sig_bt, regs);
1647   vmIntrinsics::ID iid = method->intrinsic_id();
1648 
1649   // Now write the args into the outgoing interpreter space
1650   bool     has_receiver   = false;
1651   Register receiver_reg   = noreg;
1652   int      member_arg_pos = -1;
1653   Register member_reg     = noreg;
1654   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1655   if (ref_kind != 0) {
1656     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1657     member_reg = rbx;  // known to be free at this point
1658     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1659   } else if (iid == vmIntrinsics::_invokeBasic) {
1660     has_receiver = true;
1661   } else if (iid == vmIntrinsics::_linkToNative) {
1662     member_arg_pos = method->size_of_parameters() - 1;  // trailing NativeEntryPoint argument
1663     member_reg = rbx;  // known to be free at this point
1664   } else {
1665     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1666   }
1667 
1668   if (member_reg != noreg) {
1669     // Load the member_arg into register, if necessary.
1670     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1671     VMReg r = regs[member_arg_pos].first();
1672     if (r->is_stack()) {
1673       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1674     } else {
1675       // no data motion is needed
1676       member_reg = r->as_Register();
1677     }
1678   }
1679 
1680   if (has_receiver) {
1681     // Make sure the receiver is loaded into a register.
1682     assert(method->size_of_parameters() > 0, "oob");
1683     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1684     VMReg r = regs[0].first();
1685     assert(r->is_valid(), "bad receiver arg");
1686     if (r->is_stack()) {
1687       // Porting note:  This assumes that compiled calling conventions always
1688       // pass the receiver oop in a register.  If this is not true on some
1689       // platform, pick a temp and load the receiver from stack.
1690       fatal("receiver always in a register");
1691       receiver_reg = j_rarg0;  // known to be free at this point
1692       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1693     } else {
1694       // no data motion is needed
1695       receiver_reg = r->as_Register();
1696     }
1697   }
1698 
1699   // Figure out which address we are really jumping to:
1700   MethodHandles::generate_method_handle_dispatch(masm, iid,
1701                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1702 }
1703 
1704 // ---------------------------------------------------------------------------
1705 // Generate a native wrapper for a given method.  The method takes arguments
1706 // in the Java compiled code convention, marshals them to the native
1707 // convention (handlizes oops, etc), transitions to native, makes the call,
1708 // returns to java state (possibly blocking), unhandlizes any result and
1709 // returns.
1710 //
1711 // Critical native functions are a shorthand for the use of
1712 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1713 // functions.  The wrapper is expected to unpack the arguments before
1714 // passing them to the callee. Critical native functions leave the state _in_Java,
1715 // since they cannot stop for GC.
1716 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
1717 // block and the check for pending exceptions it's impossible for them
1718 // to be thrown.
1719 //
1720 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1721                                                 const methodHandle& method,
1722                                                 int compile_id,
1723                                                 BasicType* in_sig_bt,
1724                                                 VMRegPair* in_regs,
1725                                                 BasicType ret_type) {
1726   if (method->is_continuation_native_intrinsic()) {
1727     int exception_offset = -1;
1728     OopMapSet* oop_maps = new OopMapSet();
1729     int frame_complete = -1;
1730     int stack_slots = -1;
1731     int interpreted_entry_offset = -1;
1732     int vep_offset = -1;
1733     if (method->is_continuation_enter_intrinsic()) {
1734       gen_continuation_enter(masm,
1735                              in_regs,
1736                              exception_offset,
1737                              oop_maps,
1738                              frame_complete,
1739                              stack_slots,
1740                              interpreted_entry_offset,
1741                              vep_offset);
1742     } else if (method->is_continuation_yield_intrinsic()) {
1743       gen_continuation_yield(masm,
1744                              in_regs,
1745                              oop_maps,
1746                              frame_complete,
1747                              stack_slots,
1748                              vep_offset);
1749     } else {
1750       guarantee(false, "Unknown Continuation native intrinsic");
1751     }
1752 
1753 #ifdef ASSERT
1754     if (method->is_continuation_enter_intrinsic()) {
1755       assert(interpreted_entry_offset != -1, "Must be set");
1756       assert(exception_offset != -1,         "Must be set");
1757     } else {
1758       assert(interpreted_entry_offset == -1, "Must be unset");
1759       assert(exception_offset == -1,         "Must be unset");
1760     }
1761     assert(frame_complete != -1,    "Must be set");
1762     assert(stack_slots != -1,       "Must be set");
1763     assert(vep_offset != -1,        "Must be set");
1764 #endif
1765 
1766     __ flush();
1767     nmethod* nm = nmethod::new_native_nmethod(method,
1768                                               compile_id,
1769                                               masm->code(),
1770                                               vep_offset,
1771                                               frame_complete,
1772                                               stack_slots,
1773                                               in_ByteSize(-1),
1774                                               in_ByteSize(-1),
1775                                               oop_maps,
1776                                               exception_offset);
1777     if (nm == nullptr) return nm;
1778     if (method->is_continuation_enter_intrinsic()) {
1779       ContinuationEntry::set_enter_code(nm, interpreted_entry_offset);
1780     } else if (method->is_continuation_yield_intrinsic()) {
1781       _cont_doYield_stub = nm;
1782     }
1783     return nm;
1784   }
1785 
1786   if (method->is_method_handle_intrinsic()) {
1787     vmIntrinsics::ID iid = method->intrinsic_id();
1788     intptr_t start = (intptr_t)__ pc();
1789     int vep_offset = ((intptr_t)__ pc()) - start;
1790     gen_special_dispatch(masm,
1791                          method,
1792                          in_sig_bt,
1793                          in_regs);
1794     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1795     __ flush();
1796     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1797     return nmethod::new_native_nmethod(method,
1798                                        compile_id,
1799                                        masm->code(),
1800                                        vep_offset,
1801                                        frame_complete,
1802                                        stack_slots / VMRegImpl::slots_per_word,
1803                                        in_ByteSize(-1),
1804                                        in_ByteSize(-1),
1805                                        nullptr);
1806   }
1807   address native_func = method->native_function();
1808   assert(native_func != nullptr, "must have function");
1809 
1810   // An OopMap for lock (and class if static)
1811   OopMapSet *oop_maps = new OopMapSet();
1812   intptr_t start = (intptr_t)__ pc();
1813 
1814   // We have received a description of where all the java arg are located
1815   // on entry to the wrapper. We need to convert these args to where
1816   // the jni function will expect them. To figure out where they go
1817   // we convert the java signature to a C signature by inserting
1818   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1819 
1820   const int total_in_args = method->size_of_parameters();
1821   int total_c_args = total_in_args + (method->is_static() ? 2 : 1);
1822 
1823   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1824   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1825   BasicType* in_elem_bt = nullptr;
1826 
1827   int argc = 0;
1828   out_sig_bt[argc++] = T_ADDRESS;
1829   if (method->is_static()) {
1830     out_sig_bt[argc++] = T_OBJECT;
1831   }
1832 
1833   for (int i = 0; i < total_in_args ; i++ ) {
1834     out_sig_bt[argc++] = in_sig_bt[i];
1835   }
1836 
1837   // Now figure out where the args must be stored and how much stack space
1838   // they require.
1839   int out_arg_slots;
1840   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1841 
1842   // Compute framesize for the wrapper.  We need to handlize all oops in
1843   // incoming registers
1844 
1845   // Calculate the total number of stack slots we will need.
1846 
1847   // First count the abi requirement plus all of the outgoing args
1848   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1849 
1850   // Now the space for the inbound oop handle area
1851   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
1852 
1853   int oop_handle_offset = stack_slots;
1854   stack_slots += total_save_slots;
1855 
1856   // Now any space we need for handlizing a klass if static method
1857 
1858   int klass_slot_offset = 0;
1859   int klass_offset = -1;
1860   int lock_slot_offset = 0;
1861   bool is_static = false;
1862 
1863   if (method->is_static()) {
1864     klass_slot_offset = stack_slots;
1865     stack_slots += VMRegImpl::slots_per_word;
1866     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1867     is_static = true;
1868   }
1869 
1870   // Plus a lock if needed
1871 
1872   if (method->is_synchronized()) {
1873     lock_slot_offset = stack_slots;
1874     stack_slots += VMRegImpl::slots_per_word;
1875   }
1876 
1877   // Now a place (+2) to save return values or temp during shuffling
1878   // + 4 for return address (which we own) and saved rbp
1879   stack_slots += 6;
1880 
1881   // Ok The space we have allocated will look like:
1882   //
1883   //
1884   // FP-> |                     |
1885   //      |---------------------|
1886   //      | 2 slots for moves   |
1887   //      |---------------------|
1888   //      | lock box (if sync)  |
1889   //      |---------------------| <- lock_slot_offset
1890   //      | klass (if static)   |
1891   //      |---------------------| <- klass_slot_offset
1892   //      | oopHandle area      |
1893   //      |---------------------| <- oop_handle_offset (6 java arg registers)
1894   //      | outbound memory     |
1895   //      | based arguments     |
1896   //      |                     |
1897   //      |---------------------|
1898   //      |                     |
1899   // SP-> | out_preserved_slots |
1900   //
1901   //
1902 
1903 
1904   // Now compute actual number of stack words we need rounding to make
1905   // stack properly aligned.
1906   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1907 
1908   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1909 
1910   // First thing make an ic check to see if we should even be here
1911 
1912   // We are free to use all registers as temps without saving them and
1913   // restoring them except rbp. rbp is the only callee save register
1914   // as far as the interpreter and the compiler(s) are concerned.
1915 
1916   const Register receiver = j_rarg0;
1917 
1918   Label exception_pending;
1919 
1920   assert_different_registers(receiver, rscratch1, rscratch2);
1921   __ verify_oop(receiver);
1922   __ ic_check(8 /* end_alignment */);
1923 
1924   int vep_offset = ((intptr_t)__ pc()) - start;
1925 
1926   if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
1927     Label L_skip_barrier;
1928     Register klass = r10;
1929     __ mov_metadata(klass, method->method_holder()); // InstanceKlass*
1930     __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/);
1931 
1932     __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
1933 
1934     __ bind(L_skip_barrier);
1935   }
1936 
1937 #ifdef COMPILER1
1938   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
1939   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
1940     inline_check_hashcode_from_object_header(masm, method, j_rarg0 /*obj_reg*/, rax /*result*/);
1941   }
1942 #endif // COMPILER1
1943 
1944   // The instruction at the verified entry point must be 5 bytes or longer
1945   // because it can be patched on the fly by make_non_entrant. The stack bang
1946   // instruction fits that requirement.
1947 
1948   // Generate stack overflow check
1949   __ bang_stack_with_offset((int)StackOverflow::stack_shadow_zone_size());
1950 
1951   // Generate a new frame for the wrapper.
1952   __ enter();
1953   // -2 because return address is already present and so is saved rbp
1954   __ subptr(rsp, stack_size - 2*wordSize);
1955 
1956   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1957   // native wrapper is not hot enough to micro optimize the nmethod entry barrier with an out-of-line stub
1958   bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */);
1959 
1960   // Frame is now completed as far as size and linkage.
1961   int frame_complete = ((intptr_t)__ pc()) - start;
1962 
1963     if (UseRTMLocking) {
1964       // Abort RTM transaction before calling JNI
1965       // because critical section will be large and will be
1966       // aborted anyway. Also nmethod could be deoptimized.
1967       __ xabort(0);
1968     }
1969 
1970 #ifdef ASSERT
1971   __ check_stack_alignment(rsp, "improperly aligned stack");
1972 #endif /* ASSERT */
1973 
1974 
1975   // We use r14 as the oop handle for the receiver/klass
1976   // It is callee save so it survives the call to native
1977 
1978   const Register oop_handle_reg = r14;
1979 
1980   //
1981   // We immediately shuffle the arguments so that any vm call we have to
1982   // make from here on out (sync slow path, jvmti, etc.) we will have
1983   // captured the oops from our caller and have a valid oopMap for
1984   // them.
1985 
1986   // -----------------
1987   // The Grand Shuffle
1988 
1989   // The Java calling convention is either equal (linux) or denser (win64) than the
1990   // c calling convention. However the because of the jni_env argument the c calling
1991   // convention always has at least one more (and two for static) arguments than Java.
1992   // Therefore if we move the args from java -> c backwards then we will never have
1993   // a register->register conflict and we don't have to build a dependency graph
1994   // and figure out how to break any cycles.
1995   //
1996 
1997   // Record esp-based slot for receiver on stack for non-static methods
1998   int receiver_offset = -1;
1999 
2000   // This is a trick. We double the stack slots so we can claim
2001   // the oops in the caller's frame. Since we are sure to have
2002   // more args than the caller doubling is enough to make
2003   // sure we can capture all the incoming oop args from the
2004   // caller.
2005   //
2006   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2007 
2008   // Mark location of rbp (someday)
2009   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2010 
2011   // Use eax, ebx as temporaries during any memory-memory moves we have to do
2012   // All inbound args are referenced based on rbp and all outbound args via rsp.
2013 
2014 
2015 #ifdef ASSERT
2016   bool reg_destroyed[Register::number_of_registers];
2017   bool freg_destroyed[XMMRegister::number_of_registers];
2018   for ( int r = 0 ; r < Register::number_of_registers ; r++ ) {
2019     reg_destroyed[r] = false;
2020   }
2021   for ( int f = 0 ; f < XMMRegister::number_of_registers ; f++ ) {
2022     freg_destroyed[f] = false;
2023   }
2024 
2025 #endif /* ASSERT */
2026 
2027   // For JNI natives the incoming and outgoing registers are offset upwards.
2028   GrowableArray<int> arg_order(2 * total_in_args);
2029 
2030   VMRegPair tmp_vmreg;
2031   tmp_vmreg.set2(rbx->as_VMReg());
2032 
2033   for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2034     arg_order.push(i);
2035     arg_order.push(c_arg);
2036   }
2037 
2038   int temploc = -1;
2039   for (int ai = 0; ai < arg_order.length(); ai += 2) {
2040     int i = arg_order.at(ai);
2041     int c_arg = arg_order.at(ai + 1);
2042     __ block_comment(err_msg("move %d -> %d", i, c_arg));
2043 #ifdef ASSERT
2044     if (in_regs[i].first()->is_Register()) {
2045       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2046     } else if (in_regs[i].first()->is_XMMRegister()) {
2047       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2048     }
2049     if (out_regs[c_arg].first()->is_Register()) {
2050       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2051     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2052       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2053     }
2054 #endif /* ASSERT */
2055     switch (in_sig_bt[i]) {
2056       case T_ARRAY:
2057       case T_OBJECT:
2058         __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2059                     ((i == 0) && (!is_static)),
2060                     &receiver_offset);
2061         break;
2062       case T_VOID:
2063         break;
2064 
2065       case T_FLOAT:
2066         __ float_move(in_regs[i], out_regs[c_arg]);
2067           break;
2068 
2069       case T_DOUBLE:
2070         assert( i + 1 < total_in_args &&
2071                 in_sig_bt[i + 1] == T_VOID &&
2072                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2073         __ double_move(in_regs[i], out_regs[c_arg]);
2074         break;
2075 
2076       case T_LONG :
2077         __ long_move(in_regs[i], out_regs[c_arg]);
2078         break;
2079 
2080       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2081 
2082       default:
2083         __ move32_64(in_regs[i], out_regs[c_arg]);
2084     }
2085   }
2086 
2087   int c_arg;
2088 
2089   // Pre-load a static method's oop into r14.  Used both by locking code and
2090   // the normal JNI call code.
2091   // point c_arg at the first arg that is already loaded in case we
2092   // need to spill before we call out
2093   c_arg = total_c_args - total_in_args;
2094 
2095   if (method->is_static()) {
2096 
2097     //  load oop into a register
2098     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2099 
2100     // Now handlize the static class mirror it's known not-null.
2101     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2102     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2103 
2104     // Now get the handle
2105     __ lea(oop_handle_reg, Address(rsp, klass_offset));
2106     // store the klass handle as second argument
2107     __ movptr(c_rarg1, oop_handle_reg);
2108     // and protect the arg if we must spill
2109     c_arg--;
2110   }
2111 
2112   // Change state to native (we save the return address in the thread, since it might not
2113   // be pushed on the stack when we do a stack traversal). It is enough that the pc()
2114   // points into the right code segment. It does not have to be the correct return pc.
2115   // We use the same pc/oopMap repeatedly when we call out
2116 
2117   intptr_t the_pc = (intptr_t) __ pc();
2118   oop_maps->add_gc_map(the_pc - start, map);
2119 
2120   __ set_last_Java_frame(rsp, noreg, (address)the_pc, rscratch1);
2121 
2122 
2123   // We have all of the arguments setup at this point. We must not touch any register
2124   // argument registers at this point (what if we save/restore them there are no oop?
2125 
2126   {
2127     SkipIfEqual skip(masm, &DTraceMethodProbes, false, rscratch1);
2128     // protect the args we've loaded
2129     save_args(masm, total_c_args, c_arg, out_regs);
2130     __ mov_metadata(c_rarg1, method());
2131     __ call_VM_leaf(
2132       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2133       r15_thread, c_rarg1);
2134     restore_args(masm, total_c_args, c_arg, out_regs);
2135   }
2136 
2137   // RedefineClasses() tracing support for obsolete method entry
2138   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2139     // protect the args we've loaded
2140     save_args(masm, total_c_args, c_arg, out_regs);
2141     __ mov_metadata(c_rarg1, method());
2142     __ call_VM_leaf(
2143       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2144       r15_thread, c_rarg1);
2145     restore_args(masm, total_c_args, c_arg, out_regs);
2146   }
2147 
2148   // Lock a synchronized method
2149 
2150   // Register definitions used by locking and unlocking
2151 
2152   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2153   const Register obj_reg  = rbx;  // Will contain the oop
2154   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2155   const Register old_hdr  = r13;  // value of old header at unlock time
2156 
2157   Label slow_path_lock;
2158   Label lock_done;
2159 
2160   if (method->is_synchronized()) {
2161     Label count_mon;
2162 
2163     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2164 
2165     // Get the handle (the 2nd argument)
2166     __ mov(oop_handle_reg, c_rarg1);
2167 
2168     // Get address of the box
2169 
2170     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2171 
2172     // Load the oop from the handle
2173     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2174 
2175     if (LockingMode == LM_MONITOR) {
2176       __ jmp(slow_path_lock);
2177     } else if (LockingMode == LM_LEGACY) {
2178       // Load immediate 1 into swap_reg %rax
2179       __ movl(swap_reg, 1);
2180 
2181       // Load (object->mark() | 1) into swap_reg %rax
2182       __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2183 
2184       // Save (object->mark() | 1) into BasicLock's displaced header
2185       __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2186 
2187       // src -> dest iff dest == rax else rax <- dest
2188       __ lock();
2189       __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2190       __ jcc(Assembler::equal, count_mon);
2191 
2192       // Hmm should this move to the slow path code area???
2193 
2194       // Test if the oopMark is an obvious stack pointer, i.e.,
2195       //  1) (mark & 3) == 0, and
2196       //  2) rsp <= mark < mark + os::pagesize()
2197       // These 3 tests can be done by evaluating the following
2198       // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2199       // assuming both stack pointer and pagesize have their
2200       // least significant 2 bits clear.
2201       // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2202 
2203       __ subptr(swap_reg, rsp);
2204       __ andptr(swap_reg, 3 - (int)os::vm_page_size());
2205 
2206       // Save the test result, for recursive case, the result is zero
2207       __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2208       __ jcc(Assembler::notEqual, slow_path_lock);
2209     } else {
2210       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
2211       __ lightweight_lock(obj_reg, swap_reg, r15_thread, rscratch1, slow_path_lock);
2212     }
2213     __ bind(count_mon);
2214     __ inc_held_monitor_count();
2215 
2216     // Slow path will re-enter here
2217     __ bind(lock_done);
2218   }
2219 
2220   // Finally just about ready to make the JNI call
2221 
2222   // get JNIEnv* which is first argument to native
2223   __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2224 
2225   // Now set thread in native
2226   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2227 
2228   __ call(RuntimeAddress(native_func));
2229 
2230   // Verify or restore cpu control state after JNI call
2231   __ restore_cpu_control_state_after_jni(rscratch1);
2232 
2233   // Unpack native results.
2234   switch (ret_type) {
2235   case T_BOOLEAN: __ c2bool(rax);            break;
2236   case T_CHAR   : __ movzwl(rax, rax);      break;
2237   case T_BYTE   : __ sign_extend_byte (rax); break;
2238   case T_SHORT  : __ sign_extend_short(rax); break;
2239   case T_INT    : /* nothing to do */        break;
2240   case T_DOUBLE :
2241   case T_FLOAT  :
2242     // Result is in xmm0 we'll save as needed
2243     break;
2244   case T_ARRAY:                 // Really a handle
2245   case T_OBJECT:                // Really a handle
2246       break; // can't de-handlize until after safepoint check
2247   case T_VOID: break;
2248   case T_LONG: break;
2249   default       : ShouldNotReachHere();
2250   }
2251 
2252   Label after_transition;
2253 
2254   // Switch thread to "native transition" state before reading the synchronization state.
2255   // This additional state is necessary because reading and testing the synchronization
2256   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2257   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2258   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2259   //     Thread A is resumed to finish this native method, but doesn't block here since it
2260   //     didn't see any synchronization is progress, and escapes.
2261   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2262 
2263   // Force this write out before the read below
2264   if (!UseSystemMemoryBarrier) {
2265     __ membar(Assembler::Membar_mask_bits(
2266               Assembler::LoadLoad | Assembler::LoadStore |
2267               Assembler::StoreLoad | Assembler::StoreStore));
2268   }
2269 
2270   // check for safepoint operation in progress and/or pending suspend requests
2271   {
2272     Label Continue;
2273     Label slow_path;
2274 
2275     __ safepoint_poll(slow_path, r15_thread, true /* at_return */, false /* in_nmethod */);
2276 
2277     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2278     __ jcc(Assembler::equal, Continue);
2279     __ bind(slow_path);
2280 
2281     // Don't use call_VM as it will see a possible pending exception and forward it
2282     // and never return here preventing us from clearing _last_native_pc down below.
2283     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2284     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2285     // by hand.
2286     //
2287     __ vzeroupper();
2288     save_native_result(masm, ret_type, stack_slots);
2289     __ mov(c_rarg0, r15_thread);
2290     __ mov(r12, rsp); // remember sp
2291     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2292     __ andptr(rsp, -16); // align stack as required by ABI
2293     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2294     __ mov(rsp, r12); // restore sp
2295     __ reinit_heapbase();
2296     // Restore any method result value
2297     restore_native_result(masm, ret_type, stack_slots);
2298     __ bind(Continue);
2299   }
2300 
2301   // change thread state
2302   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2303   __ bind(after_transition);
2304 
2305   Label reguard;
2306   Label reguard_done;
2307   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_yellow_reserved_disabled);
2308   __ jcc(Assembler::equal, reguard);
2309   __ bind(reguard_done);
2310 
2311   // native result if any is live
2312 
2313   // Unlock
2314   Label slow_path_unlock;
2315   Label unlock_done;
2316   if (method->is_synchronized()) {
2317 
2318     Label fast_done;
2319 
2320     // Get locked oop from the handle we passed to jni
2321     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2322 
2323     if (LockingMode == LM_LEGACY) {
2324       Label not_recur;
2325       // Simple recursive lock?
2326       __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), NULL_WORD);
2327       __ jcc(Assembler::notEqual, not_recur);
2328       __ dec_held_monitor_count();
2329       __ jmpb(fast_done);
2330       __ bind(not_recur);
2331     }
2332 
2333     // Must save rax if it is live now because cmpxchg must use it
2334     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2335       save_native_result(masm, ret_type, stack_slots);
2336     }
2337 
2338     if (LockingMode == LM_MONITOR) {
2339       __ jmp(slow_path_unlock);
2340     } else if (LockingMode == LM_LEGACY) {
2341       // get address of the stack lock
2342       __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2343       //  get old displaced header
2344       __ movptr(old_hdr, Address(rax, 0));
2345 
2346       // Atomic swap old header if oop still contains the stack lock
2347       __ lock();
2348       __ cmpxchgptr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2349       __ jcc(Assembler::notEqual, slow_path_unlock);
2350       __ dec_held_monitor_count();
2351     } else {
2352       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
2353       __ lightweight_unlock(obj_reg, swap_reg, r15_thread, lock_reg, slow_path_unlock);
2354       __ dec_held_monitor_count();
2355     }
2356 
2357     // slow path re-enters here
2358     __ bind(unlock_done);
2359     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2360       restore_native_result(masm, ret_type, stack_slots);
2361     }
2362 
2363     __ bind(fast_done);
2364   }
2365   {
2366     SkipIfEqual skip(masm, &DTraceMethodProbes, false, rscratch1);
2367     save_native_result(masm, ret_type, stack_slots);
2368     __ mov_metadata(c_rarg1, method());
2369     __ call_VM_leaf(
2370          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2371          r15_thread, c_rarg1);
2372     restore_native_result(masm, ret_type, stack_slots);
2373   }
2374 
2375   __ reset_last_Java_frame(false);
2376 
2377   // Unbox oop result, e.g. JNIHandles::resolve value.
2378   if (is_reference_type(ret_type)) {
2379     __ resolve_jobject(rax /* value */,
2380                        r15_thread /* thread */,
2381                        rcx /* tmp */);
2382   }
2383 
2384   if (CheckJNICalls) {
2385     // clear_pending_jni_exception_check
2386     __ movptr(Address(r15_thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
2387   }
2388 
2389   // reset handle block
2390   __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2391   __ movl(Address(rcx, JNIHandleBlock::top_offset()), NULL_WORD);
2392 
2393   // pop our frame
2394 
2395   __ leave();
2396 
2397   // Any exception pending?
2398   __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2399   __ jcc(Assembler::notEqual, exception_pending);
2400 
2401   // Return
2402 
2403   __ ret(0);
2404 
2405   // Unexpected paths are out of line and go here
2406 
2407   // forward the exception
2408   __ bind(exception_pending);
2409 
2410   // and forward the exception
2411   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2412 
2413   // Slow path locking & unlocking
2414   if (method->is_synchronized()) {
2415 
2416     // BEGIN Slow path lock
2417     __ bind(slow_path_lock);
2418 
2419     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2420     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2421 
2422     // protect the args we've loaded
2423     save_args(masm, total_c_args, c_arg, out_regs);
2424 
2425     __ mov(c_rarg0, obj_reg);
2426     __ mov(c_rarg1, lock_reg);
2427     __ mov(c_rarg2, r15_thread);
2428 
2429     // Not a leaf but we have last_Java_frame setup as we want
2430     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2431     restore_args(masm, total_c_args, c_arg, out_regs);
2432 
2433 #ifdef ASSERT
2434     { Label L;
2435     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2436     __ jcc(Assembler::equal, L);
2437     __ stop("no pending exception allowed on exit from monitorenter");
2438     __ bind(L);
2439     }
2440 #endif
2441     __ jmp(lock_done);
2442 
2443     // END Slow path lock
2444 
2445     // BEGIN Slow path unlock
2446     __ bind(slow_path_unlock);
2447 
2448     // If we haven't already saved the native result we must save it now as xmm registers
2449     // are still exposed.
2450     __ vzeroupper();
2451     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2452       save_native_result(masm, ret_type, stack_slots);
2453     }
2454 
2455     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2456 
2457     __ mov(c_rarg0, obj_reg);
2458     __ mov(c_rarg2, r15_thread);
2459     __ mov(r12, rsp); // remember sp
2460     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2461     __ andptr(rsp, -16); // align stack as required by ABI
2462 
2463     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2464     // NOTE that obj_reg == rbx currently
2465     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2466     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2467 
2468     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2469     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2470     __ mov(rsp, r12); // restore sp
2471     __ reinit_heapbase();
2472 #ifdef ASSERT
2473     {
2474       Label L;
2475       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2476       __ jcc(Assembler::equal, L);
2477       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2478       __ bind(L);
2479     }
2480 #endif /* ASSERT */
2481 
2482     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2483 
2484     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2485       restore_native_result(masm, ret_type, stack_slots);
2486     }
2487     __ jmp(unlock_done);
2488 
2489     // END Slow path unlock
2490 
2491   } // synchronized
2492 
2493   // SLOW PATH Reguard the stack if needed
2494 
2495   __ bind(reguard);
2496   __ vzeroupper();
2497   save_native_result(masm, ret_type, stack_slots);
2498   __ mov(r12, rsp); // remember sp
2499   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2500   __ andptr(rsp, -16); // align stack as required by ABI
2501   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2502   __ mov(rsp, r12); // restore sp
2503   __ reinit_heapbase();
2504   restore_native_result(masm, ret_type, stack_slots);
2505   // and continue
2506   __ jmp(reguard_done);
2507 
2508 
2509 
2510   __ flush();
2511 
2512   nmethod *nm = nmethod::new_native_nmethod(method,
2513                                             compile_id,
2514                                             masm->code(),
2515                                             vep_offset,
2516                                             frame_complete,
2517                                             stack_slots / VMRegImpl::slots_per_word,
2518                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2519                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2520                                             oop_maps);
2521 
2522   return nm;
2523 }
2524 
2525 // this function returns the adjust size (in number of words) to a c2i adapter
2526 // activation for use during deoptimization
2527 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2528   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2529 }
2530 
2531 
2532 uint SharedRuntime::out_preserve_stack_slots() {
2533   return 0;
2534 }
2535 
2536 
2537 // Number of stack slots between incoming argument block and the start of
2538 // a new frame.  The PROLOG must add this many slots to the stack.  The
2539 // EPILOG must remove this many slots.  amd64 needs two slots for
2540 // return address.
2541 uint SharedRuntime::in_preserve_stack_slots() {
2542   return 4 + 2 * VerifyStackAtCalls;
2543 }
2544 
2545 //------------------------------generate_deopt_blob----------------------------
2546 void SharedRuntime::generate_deopt_blob() {
2547   // Allocate space for the code
2548   ResourceMark rm;
2549   // Setup code generation tools
2550   int pad = 0;
2551   if (UseAVX > 2) {
2552     pad += 1024;
2553   }
2554 #if INCLUDE_JVMCI
2555   if (EnableJVMCI) {
2556     pad += 512; // Increase the buffer size when compiling for JVMCI
2557   }
2558 #endif
2559   CodeBuffer buffer("deopt_blob", 2560+pad, 1024);
2560   MacroAssembler* masm = new MacroAssembler(&buffer);
2561   int frame_size_in_words;
2562   OopMap* map = nullptr;
2563   OopMapSet *oop_maps = new OopMapSet();
2564 
2565   // -------------
2566   // This code enters when returning to a de-optimized nmethod.  A return
2567   // address has been pushed on the stack, and return values are in
2568   // registers.
2569   // If we are doing a normal deopt then we were called from the patched
2570   // nmethod from the point we returned to the nmethod. So the return
2571   // address on the stack is wrong by NativeCall::instruction_size
2572   // We will adjust the value so it looks like we have the original return
2573   // address on the stack (like when we eagerly deoptimized).
2574   // In the case of an exception pending when deoptimizing, we enter
2575   // with a return address on the stack that points after the call we patched
2576   // into the exception handler. We have the following register state from,
2577   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2578   //    rax: exception oop
2579   //    rbx: exception handler
2580   //    rdx: throwing pc
2581   // So in this case we simply jam rdx into the useless return address and
2582   // the stack looks just like we want.
2583   //
2584   // At this point we need to de-opt.  We save the argument return
2585   // registers.  We call the first C routine, fetch_unroll_info().  This
2586   // routine captures the return values and returns a structure which
2587   // describes the current frame size and the sizes of all replacement frames.
2588   // The current frame is compiled code and may contain many inlined
2589   // functions, each with their own JVM state.  We pop the current frame, then
2590   // push all the new frames.  Then we call the C routine unpack_frames() to
2591   // populate these frames.  Finally unpack_frames() returns us the new target
2592   // address.  Notice that callee-save registers are BLOWN here; they have
2593   // already been captured in the vframeArray at the time the return PC was
2594   // patched.
2595   address start = __ pc();
2596   Label cont;
2597 
2598   // Prolog for non exception case!
2599 
2600   // Save everything in sight.
2601   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, /*save_wide_vectors*/ true);
2602 
2603   // Normal deoptimization.  Save exec mode for unpack_frames.
2604   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
2605   __ jmp(cont);
2606 
2607   int reexecute_offset = __ pc() - start;
2608 #if INCLUDE_JVMCI && !defined(COMPILER1)
2609   if (EnableJVMCI && UseJVMCICompiler) {
2610     // JVMCI does not use this kind of deoptimization
2611     __ should_not_reach_here();
2612   }
2613 #endif
2614 
2615   // Reexecute case
2616   // return address is the pc describes what bci to do re-execute at
2617 
2618   // No need to update map as each call to save_live_registers will produce identical oopmap
2619   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, /*save_wide_vectors*/ true);
2620 
2621   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
2622   __ jmp(cont);
2623 
2624 #if INCLUDE_JVMCI
2625   Label after_fetch_unroll_info_call;
2626   int implicit_exception_uncommon_trap_offset = 0;
2627   int uncommon_trap_offset = 0;
2628 
2629   if (EnableJVMCI) {
2630     implicit_exception_uncommon_trap_offset = __ pc() - start;
2631 
2632     __ pushptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2633     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())), NULL_WORD);
2634 
2635     uncommon_trap_offset = __ pc() - start;
2636 
2637     // Save everything in sight.
2638     RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, /*save_wide_vectors*/ true);
2639     // fetch_unroll_info needs to call last_java_frame()
2640     __ set_last_Java_frame(noreg, noreg, nullptr, rscratch1);
2641 
2642     __ movl(c_rarg1, Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())));
2643     __ movl(Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())), -1);
2644 
2645     __ movl(r14, Deoptimization::Unpack_reexecute);
2646     __ mov(c_rarg0, r15_thread);
2647     __ movl(c_rarg2, r14); // exec mode
2648     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2649     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2650 
2651     __ reset_last_Java_frame(false);
2652 
2653     __ jmp(after_fetch_unroll_info_call);
2654   } // EnableJVMCI
2655 #endif // INCLUDE_JVMCI
2656 
2657   int exception_offset = __ pc() - start;
2658 
2659   // Prolog for exception case
2660 
2661   // all registers are dead at this entry point, except for rax, and
2662   // rdx which contain the exception oop and exception pc
2663   // respectively.  Set them in TLS and fall thru to the
2664   // unpack_with_exception_in_tls entry point.
2665 
2666   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
2667   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
2668 
2669   int exception_in_tls_offset = __ pc() - start;
2670 
2671   // new implementation because exception oop is now passed in JavaThread
2672 
2673   // Prolog for exception case
2674   // All registers must be preserved because they might be used by LinearScan
2675   // Exceptiop oop and throwing PC are passed in JavaThread
2676   // tos: stack at point of call to method that threw the exception (i.e. only
2677   // args are on the stack, no return address)
2678 
2679   // make room on stack for the return address
2680   // It will be patched later with the throwing pc. The correct value is not
2681   // available now because loading it from memory would destroy registers.
2682   __ push(0);
2683 
2684   // Save everything in sight.
2685   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, /*save_wide_vectors*/ true);
2686 
2687   // Now it is safe to overwrite any register
2688 
2689   // Deopt during an exception.  Save exec mode for unpack_frames.
2690   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
2691 
2692   // load throwing pc from JavaThread and patch it as the return address
2693   // of the current frame. Then clear the field in JavaThread
2694 
2695   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2696   __ movptr(Address(rbp, wordSize), rdx);
2697   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), NULL_WORD);
2698 
2699 #ifdef ASSERT
2700   // verify that there is really an exception oop in JavaThread
2701   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2702   __ verify_oop(rax);
2703 
2704   // verify that there is no pending exception
2705   Label no_pending_exception;
2706   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
2707   __ testptr(rax, rax);
2708   __ jcc(Assembler::zero, no_pending_exception);
2709   __ stop("must not have pending exception here");
2710   __ bind(no_pending_exception);
2711 #endif
2712 
2713   __ bind(cont);
2714 
2715   // Call C code.  Need thread and this frame, but NOT official VM entry
2716   // crud.  We cannot block on this call, no GC can happen.
2717   //
2718   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2719 
2720   // fetch_unroll_info needs to call last_java_frame().
2721 
2722   __ set_last_Java_frame(noreg, noreg, nullptr, rscratch1);
2723 #ifdef ASSERT
2724   { Label L;
2725     __ cmpptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
2726     __ jcc(Assembler::equal, L);
2727     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2728     __ bind(L);
2729   }
2730 #endif // ASSERT
2731   __ mov(c_rarg0, r15_thread);
2732   __ movl(c_rarg1, r14); // exec_mode
2733   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2734 
2735   // Need to have an oopmap that tells fetch_unroll_info where to
2736   // find any register it might need.
2737   oop_maps->add_gc_map(__ pc() - start, map);
2738 
2739   __ reset_last_Java_frame(false);
2740 
2741 #if INCLUDE_JVMCI
2742   if (EnableJVMCI) {
2743     __ bind(after_fetch_unroll_info_call);
2744   }
2745 #endif
2746 
2747   // Load UnrollBlock* into rdi
2748   __ mov(rdi, rax);
2749 
2750   __ movl(r14, Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset()));
2751    Label noException;
2752   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
2753   __ jcc(Assembler::notEqual, noException);
2754   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2755   // QQQ this is useless it was null above
2756   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2757   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), NULL_WORD);
2758   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), NULL_WORD);
2759 
2760   __ verify_oop(rax);
2761 
2762   // Overwrite the result registers with the exception results.
2763   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2764   // I think this is useless
2765   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
2766 
2767   __ bind(noException);
2768 
2769   // Only register save data is on the stack.
2770   // Now restore the result registers.  Everything else is either dead
2771   // or captured in the vframeArray.
2772   RegisterSaver::restore_result_registers(masm);
2773 
2774   // All of the register save area has been popped of the stack. Only the
2775   // return address remains.
2776 
2777   // Pop all the frames we must move/replace.
2778   //
2779   // Frame picture (youngest to oldest)
2780   // 1: self-frame (no frame link)
2781   // 2: deopting frame  (no frame link)
2782   // 3: caller of deopting frame (could be compiled/interpreted).
2783   //
2784   // Note: by leaving the return address of self-frame on the stack
2785   // and using the size of frame 2 to adjust the stack
2786   // when we are done the return to frame 3 will still be on the stack.
2787 
2788   // Pop deoptimized frame
2789   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2790   __ addptr(rsp, rcx);
2791 
2792   // rsp should be pointing at the return address to the caller (3)
2793 
2794   // Pick up the initial fp we should save
2795   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2796   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset()));
2797 
2798 #ifdef ASSERT
2799   // Compilers generate code that bang the stack by as much as the
2800   // interpreter would need. So this stack banging should never
2801   // trigger a fault. Verify that it does not on non product builds.
2802   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2803   __ bang_stack_size(rbx, rcx);
2804 #endif
2805 
2806   // Load address of array of frame pcs into rcx
2807   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset()));
2808 
2809   // Trash the old pc
2810   __ addptr(rsp, wordSize);
2811 
2812   // Load address of array of frame sizes into rsi
2813   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset()));
2814 
2815   // Load counter into rdx
2816   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset()));
2817 
2818   // Now adjust the caller's stack to make up for the extra locals
2819   // but record the original sp so that we can save it in the skeletal interpreter
2820   // frame and the stack walking of interpreter_sender will get the unextended sp
2821   // value and not the "real" sp value.
2822 
2823   const Register sender_sp = r8;
2824 
2825   __ mov(sender_sp, rsp);
2826   __ movl(rbx, Address(rdi,
2827                        Deoptimization::UnrollBlock::
2828                        caller_adjustment_offset()));
2829   __ subptr(rsp, rbx);
2830 
2831   // Push interpreter frames in a loop
2832   Label loop;
2833   __ bind(loop);
2834   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2835   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
2836   __ pushptr(Address(rcx, 0));          // Save return address
2837   __ enter();                           // Save old & set new ebp
2838   __ subptr(rsp, rbx);                  // Prolog
2839   // This value is corrected by layout_activation_impl
2840   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2841   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
2842   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
2843   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2844   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2845   __ decrementl(rdx);                   // Decrement counter
2846   __ jcc(Assembler::notZero, loop);
2847   __ pushptr(Address(rcx, 0));          // Save final return address
2848 
2849   // Re-push self-frame
2850   __ enter();                           // Save old & set new ebp
2851 
2852   // Allocate a full sized register save area.
2853   // Return address and rbp are in place, so we allocate two less words.
2854   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
2855 
2856   // Restore frame locals after moving the frame
2857   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
2858   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2859 
2860   // Call C code.  Need thread but NOT official VM entry
2861   // crud.  We cannot block on this call, no GC can happen.  Call should
2862   // restore return values to their stack-slots with the new SP.
2863   //
2864   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2865 
2866   // Use rbp because the frames look interpreted now
2867   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
2868   // Don't need the precise return PC here, just precise enough to point into this code blob.
2869   address the_pc = __ pc();
2870   __ set_last_Java_frame(noreg, rbp, the_pc, rscratch1);
2871 
2872   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
2873   __ mov(c_rarg0, r15_thread);
2874   __ movl(c_rarg1, r14); // second arg: exec_mode
2875   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2876   // Revert SP alignment after call since we're going to do some SP relative addressing below
2877   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
2878 
2879   // Set an oopmap for the call site
2880   // Use the same PC we used for the last java frame
2881   oop_maps->add_gc_map(the_pc - start,
2882                        new OopMap( frame_size_in_words, 0 ));
2883 
2884   // Clear fp AND pc
2885   __ reset_last_Java_frame(true);
2886 
2887   // Collect return values
2888   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
2889   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
2890   // I think this is useless (throwing pc?)
2891   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
2892 
2893   // Pop self-frame.
2894   __ leave();                           // Epilog
2895 
2896   // Jump to interpreter
2897   __ ret(0);
2898 
2899   // Make sure all code is generated
2900   masm->flush();
2901 
2902   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2903   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2904 #if INCLUDE_JVMCI
2905   if (EnableJVMCI) {
2906     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
2907     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
2908   }
2909 #endif
2910 }
2911 
2912 #ifdef COMPILER2
2913 //------------------------------generate_uncommon_trap_blob--------------------
2914 void SharedRuntime::generate_uncommon_trap_blob() {
2915   // Allocate space for the code
2916   ResourceMark rm;
2917   // Setup code generation tools
2918   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
2919   MacroAssembler* masm = new MacroAssembler(&buffer);
2920 
2921   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
2922 
2923   address start = __ pc();
2924 
2925   if (UseRTMLocking) {
2926     // Abort RTM transaction before possible nmethod deoptimization.
2927     __ xabort(0);
2928   }
2929 
2930   // Push self-frame.  We get here with a return address on the
2931   // stack, so rsp is 8-byte aligned until we allocate our frame.
2932   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
2933 
2934   // No callee saved registers. rbp is assumed implicitly saved
2935   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
2936 
2937   // compiler left unloaded_class_index in j_rarg0 move to where the
2938   // runtime expects it.
2939   __ movl(c_rarg1, j_rarg0);
2940 
2941   __ set_last_Java_frame(noreg, noreg, nullptr, rscratch1);
2942 
2943   // Call C code.  Need thread but NOT official VM entry
2944   // crud.  We cannot block on this call, no GC can happen.  Call should
2945   // capture callee-saved registers as well as return values.
2946   // Thread is in rdi already.
2947   //
2948   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
2949 
2950   __ mov(c_rarg0, r15_thread);
2951   __ movl(c_rarg2, Deoptimization::Unpack_uncommon_trap);
2952   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2953 
2954   // Set an oopmap for the call site
2955   OopMapSet* oop_maps = new OopMapSet();
2956   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
2957 
2958   // location of rbp is known implicitly by the frame sender code
2959 
2960   oop_maps->add_gc_map(__ pc() - start, map);
2961 
2962   __ reset_last_Java_frame(false);
2963 
2964   // Load UnrollBlock* into rdi
2965   __ mov(rdi, rax);
2966 
2967 #ifdef ASSERT
2968   { Label L;
2969     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset()),
2970               Deoptimization::Unpack_uncommon_trap);
2971     __ jcc(Assembler::equal, L);
2972     __ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap");
2973     __ bind(L);
2974   }
2975 #endif
2976 
2977   // Pop all the frames we must move/replace.
2978   //
2979   // Frame picture (youngest to oldest)
2980   // 1: self-frame (no frame link)
2981   // 2: deopting frame  (no frame link)
2982   // 3: caller of deopting frame (could be compiled/interpreted).
2983 
2984   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
2985   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
2986 
2987   // Pop deoptimized frame (int)
2988   __ movl(rcx, Address(rdi,
2989                        Deoptimization::UnrollBlock::
2990                        size_of_deoptimized_frame_offset()));
2991   __ addptr(rsp, rcx);
2992 
2993   // rsp should be pointing at the return address to the caller (3)
2994 
2995   // Pick up the initial fp we should save
2996   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2997   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset()));
2998 
2999 #ifdef ASSERT
3000   // Compilers generate code that bang the stack by as much as the
3001   // interpreter would need. So this stack banging should never
3002   // trigger a fault. Verify that it does not on non product builds.
3003   __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset()));
3004   __ bang_stack_size(rbx, rcx);
3005 #endif
3006 
3007   // Load address of array of frame pcs into rcx (address*)
3008   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset()));
3009 
3010   // Trash the return pc
3011   __ addptr(rsp, wordSize);
3012 
3013   // Load address of array of frame sizes into rsi (intptr_t*)
3014   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset()));
3015 
3016   // Counter
3017   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset())); // (int)
3018 
3019   // Now adjust the caller's stack to make up for the extra locals but
3020   // record the original sp so that we can save it in the skeletal
3021   // interpreter frame and the stack walking of interpreter_sender
3022   // will get the unextended sp value and not the "real" sp value.
3023 
3024   const Register sender_sp = r8;
3025 
3026   __ mov(sender_sp, rsp);
3027   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset())); // (int)
3028   __ subptr(rsp, rbx);
3029 
3030   // Push interpreter frames in a loop
3031   Label loop;
3032   __ bind(loop);
3033   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3034   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3035   __ pushptr(Address(rcx, 0));     // Save return address
3036   __ enter();                      // Save old & set new rbp
3037   __ subptr(rsp, rbx);             // Prolog
3038   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3039             sender_sp);            // Make it walkable
3040   // This value is corrected by layout_activation_impl
3041   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
3042   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3043   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3044   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3045   __ decrementl(rdx);              // Decrement counter
3046   __ jcc(Assembler::notZero, loop);
3047   __ pushptr(Address(rcx, 0));     // Save final return address
3048 
3049   // Re-push self-frame
3050   __ enter();                 // Save old & set new rbp
3051   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3052                               // Prolog
3053 
3054   // Use rbp because the frames look interpreted now
3055   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3056   // Don't need the precise return PC here, just precise enough to point into this code blob.
3057   address the_pc = __ pc();
3058   __ set_last_Java_frame(noreg, rbp, the_pc, rscratch1);
3059 
3060   // Call C code.  Need thread but NOT official VM entry
3061   // crud.  We cannot block on this call, no GC can happen.  Call should
3062   // restore return values to their stack-slots with the new SP.
3063   // Thread is in rdi already.
3064   //
3065   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3066 
3067   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3068   __ mov(c_rarg0, r15_thread);
3069   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3070   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3071 
3072   // Set an oopmap for the call site
3073   // Use the same PC we used for the last java frame
3074   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3075 
3076   // Clear fp AND pc
3077   __ reset_last_Java_frame(true);
3078 
3079   // Pop self-frame.
3080   __ leave();                 // Epilog
3081 
3082   // Jump to interpreter
3083   __ ret(0);
3084 
3085   // Make sure all code is generated
3086   masm->flush();
3087 
3088   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3089                                                  SimpleRuntimeFrame::framesize >> 1);
3090 }
3091 #endif // COMPILER2
3092 
3093 //------------------------------generate_handler_blob------
3094 //
3095 // Generate a special Compile2Runtime blob that saves all registers,
3096 // and setup oopmap.
3097 //
3098 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3099   assert(StubRoutines::forward_exception_entry() != nullptr,
3100          "must be generated before");
3101 
3102   ResourceMark rm;
3103   OopMapSet *oop_maps = new OopMapSet();
3104   OopMap* map;
3105 
3106   // Allocate space for the code.  Setup code generation tools.
3107   CodeBuffer buffer("handler_blob", 2048, 1024);
3108   MacroAssembler* masm = new MacroAssembler(&buffer);
3109 
3110   address start   = __ pc();
3111   address call_pc = nullptr;
3112   int frame_size_in_words;
3113   bool cause_return = (poll_type == POLL_AT_RETURN);
3114   bool save_wide_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3115 
3116   if (UseRTMLocking) {
3117     // Abort RTM transaction before calling runtime
3118     // because critical section will be large and will be
3119     // aborted anyway. Also nmethod could be deoptimized.
3120     __ xabort(0);
3121   }
3122 
3123   // Make room for return address (or push it again)
3124   if (!cause_return) {
3125     __ push(rbx);
3126   }
3127 
3128   // Save registers, fpu state, and flags
3129   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_wide_vectors);
3130 
3131   // The following is basically a call_VM.  However, we need the precise
3132   // address of the call in order to generate an oopmap. Hence, we do all the
3133   // work ourselves.
3134 
3135   __ set_last_Java_frame(noreg, noreg, nullptr, rscratch1);  // JavaFrameAnchor::capture_last_Java_pc() will get the pc from the return address, which we store next:
3136 
3137   // The return address must always be correct so that frame constructor never
3138   // sees an invalid pc.
3139 
3140   if (!cause_return) {
3141     // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
3142     // Additionally, rbx is a callee saved register and we can look at it later to determine
3143     // if someone changed the return address for us!
3144     __ movptr(rbx, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3145     __ movptr(Address(rbp, wordSize), rbx);
3146   }
3147 
3148   // Do the call
3149   __ mov(c_rarg0, r15_thread);
3150   __ call(RuntimeAddress(call_ptr));
3151 
3152   // Set an oopmap for the call site.  This oopmap will map all
3153   // oop-registers and debug-info registers as callee-saved.  This
3154   // will allow deoptimization at this safepoint to find all possible
3155   // debug-info recordings, as well as let GC find all oops.
3156 
3157   oop_maps->add_gc_map( __ pc() - start, map);
3158 
3159   Label noException;
3160 
3161   __ reset_last_Java_frame(false);
3162 
3163   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
3164   __ jcc(Assembler::equal, noException);
3165 
3166   // Exception pending
3167 
3168   RegisterSaver::restore_live_registers(masm, save_wide_vectors);
3169 
3170   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3171 
3172   // No exception case
3173   __ bind(noException);
3174 
3175   Label no_adjust;
3176 #ifdef ASSERT
3177   Label bail;
3178 #endif
3179   if (!cause_return) {
3180     Label no_prefix, not_special;
3181 
3182     // If our stashed return pc was modified by the runtime we avoid touching it
3183     __ cmpptr(rbx, Address(rbp, wordSize));
3184     __ jccb(Assembler::notEqual, no_adjust);
3185 
3186     // Skip over the poll instruction.
3187     // See NativeInstruction::is_safepoint_poll()
3188     // Possible encodings:
3189     //      85 00       test   %eax,(%rax)
3190     //      85 01       test   %eax,(%rcx)
3191     //      85 02       test   %eax,(%rdx)
3192     //      85 03       test   %eax,(%rbx)
3193     //      85 06       test   %eax,(%rsi)
3194     //      85 07       test   %eax,(%rdi)
3195     //
3196     //   41 85 00       test   %eax,(%r8)
3197     //   41 85 01       test   %eax,(%r9)
3198     //   41 85 02       test   %eax,(%r10)
3199     //   41 85 03       test   %eax,(%r11)
3200     //   41 85 06       test   %eax,(%r14)
3201     //   41 85 07       test   %eax,(%r15)
3202     //
3203     //      85 04 24    test   %eax,(%rsp)
3204     //   41 85 04 24    test   %eax,(%r12)
3205     //      85 45 00    test   %eax,0x0(%rbp)
3206     //   41 85 45 00    test   %eax,0x0(%r13)
3207 
3208     __ cmpb(Address(rbx, 0), NativeTstRegMem::instruction_rex_b_prefix);
3209     __ jcc(Assembler::notEqual, no_prefix);
3210     __ addptr(rbx, 1);
3211     __ bind(no_prefix);
3212 #ifdef ASSERT
3213     __ movptr(rax, rbx); // remember where 0x85 should be, for verification below
3214 #endif
3215     // r12/r13/rsp/rbp base encoding takes 3 bytes with the following register values:
3216     // r12/rsp 0x04
3217     // r13/rbp 0x05
3218     __ movzbq(rcx, Address(rbx, 1));
3219     __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
3220     __ subptr(rcx, 4);    // looking for 0x00 .. 0x01
3221     __ cmpptr(rcx, 1);
3222     __ jcc(Assembler::above, not_special);
3223     __ addptr(rbx, 1);
3224     __ bind(not_special);
3225 #ifdef ASSERT
3226     // Verify the correct encoding of the poll we're about to skip.
3227     __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
3228     __ jcc(Assembler::notEqual, bail);
3229     // Mask out the modrm bits
3230     __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
3231     // rax encodes to 0, so if the bits are nonzero it's incorrect
3232     __ jcc(Assembler::notZero, bail);
3233 #endif
3234     // Adjust return pc forward to step over the safepoint poll instruction
3235     __ addptr(rbx, 2);
3236     __ movptr(Address(rbp, wordSize), rbx);
3237   }
3238 
3239   __ bind(no_adjust);
3240   // Normal exit, restore registers and exit.
3241   RegisterSaver::restore_live_registers(masm, save_wide_vectors);
3242   __ ret(0);
3243 
3244 #ifdef ASSERT
3245   __ bind(bail);
3246   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
3247 #endif
3248 
3249   // Make sure all code is generated
3250   masm->flush();
3251 
3252   // Fill-out other meta info
3253   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3254 }
3255 
3256 //
3257 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3258 //
3259 // Generate a stub that calls into vm to find out the proper destination
3260 // of a java call. All the argument registers are live at this point
3261 // but since this is generic code we don't know what they are and the caller
3262 // must do any gc of the args.
3263 //
3264 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3265   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
3266 
3267   // allocate space for the code
3268   ResourceMark rm;
3269 
3270   CodeBuffer buffer(name, 1200, 512);
3271   MacroAssembler* masm = new MacroAssembler(&buffer);
3272 
3273   int frame_size_in_words;
3274 
3275   OopMapSet *oop_maps = new OopMapSet();
3276   OopMap* map = nullptr;
3277 
3278   int start = __ offset();
3279 
3280   // No need to save vector registers since they are caller-saved anyway.
3281   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, /*save_wide_vectors*/ false);
3282 
3283   int frame_complete = __ offset();
3284 
3285   __ set_last_Java_frame(noreg, noreg, nullptr, rscratch1);
3286 
3287   __ mov(c_rarg0, r15_thread);
3288 
3289   __ call(RuntimeAddress(destination));
3290 
3291 
3292   // Set an oopmap for the call site.
3293   // We need this not only for callee-saved registers, but also for volatile
3294   // registers that the compiler might be keeping live across a safepoint.
3295 
3296   oop_maps->add_gc_map( __ offset() - start, map);
3297 
3298   // rax contains the address we are going to jump to assuming no exception got installed
3299 
3300   // clear last_Java_sp
3301   __ reset_last_Java_frame(false);
3302   // check for pending exceptions
3303   Label pending;
3304   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
3305   __ jcc(Assembler::notEqual, pending);
3306 
3307   // get the returned Method*
3308   __ get_vm_result_2(rbx, r15_thread);
3309   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3310 
3311   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3312 
3313   RegisterSaver::restore_live_registers(masm);
3314 
3315   // We are back to the original state on entry and ready to go.
3316 
3317   __ jmp(rax);
3318 
3319   // Pending exception after the safepoint
3320 
3321   __ bind(pending);
3322 
3323   RegisterSaver::restore_live_registers(masm);
3324 
3325   // exception pending => remove activation and forward to exception handler
3326 
3327   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), NULL_WORD);
3328 
3329   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3330   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3331 
3332   // -------------
3333   // make sure all code is generated
3334   masm->flush();
3335 
3336   // return the  blob
3337   // frame_size_words or bytes??
3338   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3339 }
3340 
3341 //------------------------------Montgomery multiplication------------------------
3342 //
3343 
3344 #ifndef _WINDOWS
3345 
3346 // Subtract 0:b from carry:a.  Return carry.
3347 static julong
3348 sub(julong a[], julong b[], julong carry, long len) {
3349   long long i = 0, cnt = len;
3350   julong tmp;
3351   asm volatile("clc; "
3352                "0: ; "
3353                "mov (%[b], %[i], 8), %[tmp]; "
3354                "sbb %[tmp], (%[a], %[i], 8); "
3355                "inc %[i]; dec %[cnt]; "
3356                "jne 0b; "
3357                "mov %[carry], %[tmp]; sbb $0, %[tmp]; "
3358                : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
3359                : [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
3360                : "memory");
3361   return tmp;
3362 }
3363 
3364 // Multiply (unsigned) Long A by Long B, accumulating the double-
3365 // length result into the accumulator formed of T0, T1, and T2.
3366 #define MACC(A, B, T0, T1, T2)                                  \
3367 do {                                                            \
3368   unsigned long hi, lo;                                         \
3369   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4"   \
3370            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3371            : "r"(A), "a"(B) : "cc");                            \
3372  } while(0)
3373 
3374 // As above, but add twice the double-length result into the
3375 // accumulator.
3376 #define MACC2(A, B, T0, T1, T2)                                 \
3377 do {                                                            \
3378   unsigned long hi, lo;                                         \
3379   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \
3380            "add %%rax, %2; adc %%rdx, %3; adc $0, %4"           \
3381            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3382            : "r"(A), "a"(B) : "cc");                            \
3383  } while(0)
3384 
3385 #else //_WINDOWS
3386 
3387 static julong
3388 sub(julong a[], julong b[], julong carry, long len) {
3389   long i;
3390   julong tmp;
3391   unsigned char c = 1;
3392   for (i = 0; i < len; i++) {
3393     c = _addcarry_u64(c, a[i], ~b[i], &tmp);
3394     a[i] = tmp;
3395   }
3396   c = _addcarry_u64(c, carry, ~0, &tmp);
3397   return tmp;
3398 }
3399 
3400 // Multiply (unsigned) Long A by Long B, accumulating the double-
3401 // length result into the accumulator formed of T0, T1, and T2.
3402 #define MACC(A, B, T0, T1, T2)                          \
3403 do {                                                    \
3404   julong hi, lo;                            \
3405   lo = _umul128(A, B, &hi);                             \
3406   unsigned char c = _addcarry_u64(0, lo, T0, &T0);      \
3407   c = _addcarry_u64(c, hi, T1, &T1);                    \
3408   _addcarry_u64(c, T2, 0, &T2);                         \
3409  } while(0)
3410 
3411 // As above, but add twice the double-length result into the
3412 // accumulator.
3413 #define MACC2(A, B, T0, T1, T2)                         \
3414 do {                                                    \
3415   julong hi, lo;                            \
3416   lo = _umul128(A, B, &hi);                             \
3417   unsigned char c = _addcarry_u64(0, lo, T0, &T0);      \
3418   c = _addcarry_u64(c, hi, T1, &T1);                    \
3419   _addcarry_u64(c, T2, 0, &T2);                         \
3420   c = _addcarry_u64(0, lo, T0, &T0);                    \
3421   c = _addcarry_u64(c, hi, T1, &T1);                    \
3422   _addcarry_u64(c, T2, 0, &T2);                         \
3423  } while(0)
3424 
3425 #endif //_WINDOWS
3426 
3427 // Fast Montgomery multiplication.  The derivation of the algorithm is
3428 // in  A Cryptographic Library for the Motorola DSP56000,
3429 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
3430 
3431 static void NOINLINE
3432 montgomery_multiply(julong a[], julong b[], julong n[],
3433                     julong m[], julong inv, int len) {
3434   julong t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3435   int i;
3436 
3437   assert(inv * n[0] == ULLONG_MAX, "broken inverse in Montgomery multiply");
3438 
3439   for (i = 0; i < len; i++) {
3440     int j;
3441     for (j = 0; j < i; j++) {
3442       MACC(a[j], b[i-j], t0, t1, t2);
3443       MACC(m[j], n[i-j], t0, t1, t2);
3444     }
3445     MACC(a[i], b[0], t0, t1, t2);
3446     m[i] = t0 * inv;
3447     MACC(m[i], n[0], t0, t1, t2);
3448 
3449     assert(t0 == 0, "broken Montgomery multiply");
3450 
3451     t0 = t1; t1 = t2; t2 = 0;
3452   }
3453 
3454   for (i = len; i < 2*len; i++) {
3455     int j;
3456     for (j = i-len+1; j < len; j++) {
3457       MACC(a[j], b[i-j], t0, t1, t2);
3458       MACC(m[j], n[i-j], t0, t1, t2);
3459     }
3460     m[i-len] = t0;
3461     t0 = t1; t1 = t2; t2 = 0;
3462   }
3463 
3464   while (t0)
3465     t0 = sub(m, n, t0, len);
3466 }
3467 
3468 // Fast Montgomery squaring.  This uses asymptotically 25% fewer
3469 // multiplies so it should be up to 25% faster than Montgomery
3470 // multiplication.  However, its loop control is more complex and it
3471 // may actually run slower on some machines.
3472 
3473 static void NOINLINE
3474 montgomery_square(julong a[], julong n[],
3475                   julong m[], julong inv, int len) {
3476   julong t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3477   int i;
3478 
3479   assert(inv * n[0] == ULLONG_MAX, "broken inverse in Montgomery square");
3480 
3481   for (i = 0; i < len; i++) {
3482     int j;
3483     int end = (i+1)/2;
3484     for (j = 0; j < end; j++) {
3485       MACC2(a[j], a[i-j], t0, t1, t2);
3486       MACC(m[j], n[i-j], t0, t1, t2);
3487     }
3488     if ((i & 1) == 0) {
3489       MACC(a[j], a[j], t0, t1, t2);
3490     }
3491     for (; j < i; j++) {
3492       MACC(m[j], n[i-j], t0, t1, t2);
3493     }
3494     m[i] = t0 * inv;
3495     MACC(m[i], n[0], t0, t1, t2);
3496 
3497     assert(t0 == 0, "broken Montgomery square");
3498 
3499     t0 = t1; t1 = t2; t2 = 0;
3500   }
3501 
3502   for (i = len; i < 2*len; i++) {
3503     int start = i-len+1;
3504     int end = start + (len - start)/2;
3505     int j;
3506     for (j = start; j < end; j++) {
3507       MACC2(a[j], a[i-j], t0, t1, t2);
3508       MACC(m[j], n[i-j], t0, t1, t2);
3509     }
3510     if ((i & 1) == 0) {
3511       MACC(a[j], a[j], t0, t1, t2);
3512     }
3513     for (; j < len; j++) {
3514       MACC(m[j], n[i-j], t0, t1, t2);
3515     }
3516     m[i-len] = t0;
3517     t0 = t1; t1 = t2; t2 = 0;
3518   }
3519 
3520   while (t0)
3521     t0 = sub(m, n, t0, len);
3522 }
3523 
3524 // Swap words in a longword.
3525 static julong swap(julong x) {
3526   return (x << 32) | (x >> 32);
3527 }
3528 
3529 // Copy len longwords from s to d, word-swapping as we go.  The
3530 // destination array is reversed.
3531 static void reverse_words(julong *s, julong *d, int len) {
3532   d += len;
3533   while(len-- > 0) {
3534     d--;
3535     *d = swap(*s);
3536     s++;
3537   }
3538 }
3539 
3540 // The threshold at which squaring is advantageous was determined
3541 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
3542 #define MONTGOMERY_SQUARING_THRESHOLD 64
3543 
3544 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
3545                                         jint len, jlong inv,
3546                                         jint *m_ints) {
3547   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
3548   int longwords = len/2;
3549 
3550   // Make very sure we don't use so much space that the stack might
3551   // overflow.  512 jints corresponds to an 16384-bit integer and
3552   // will use here a total of 8k bytes of stack space.
3553   int divisor = sizeof(julong) * 4;
3554   guarantee(longwords <= 8192 / divisor, "must be");
3555   int total_allocation = longwords * sizeof (julong) * 4;
3556   julong *scratch = (julong *)alloca(total_allocation);
3557 
3558   // Local scratch arrays
3559   julong
3560     *a = scratch + 0 * longwords,
3561     *b = scratch + 1 * longwords,
3562     *n = scratch + 2 * longwords,
3563     *m = scratch + 3 * longwords;
3564 
3565   reverse_words((julong *)a_ints, a, longwords);
3566   reverse_words((julong *)b_ints, b, longwords);
3567   reverse_words((julong *)n_ints, n, longwords);
3568 
3569   ::montgomery_multiply(a, b, n, m, (julong)inv, longwords);
3570 
3571   reverse_words(m, (julong *)m_ints, longwords);
3572 }
3573 
3574 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
3575                                       jint len, jlong inv,
3576                                       jint *m_ints) {
3577   assert(len % 2 == 0, "array length in montgomery_square must be even");
3578   int longwords = len/2;
3579 
3580   // Make very sure we don't use so much space that the stack might
3581   // overflow.  512 jints corresponds to an 16384-bit integer and
3582   // will use here a total of 6k bytes of stack space.
3583   int divisor = sizeof(julong) * 3;
3584   guarantee(longwords <= (8192 / divisor), "must be");
3585   int total_allocation = longwords * sizeof (julong) * 3;
3586   julong *scratch = (julong *)alloca(total_allocation);
3587 
3588   // Local scratch arrays
3589   julong
3590     *a = scratch + 0 * longwords,
3591     *n = scratch + 1 * longwords,
3592     *m = scratch + 2 * longwords;
3593 
3594   reverse_words((julong *)a_ints, a, longwords);
3595   reverse_words((julong *)n_ints, n, longwords);
3596 
3597   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
3598     ::montgomery_square(a, n, m, (julong)inv, longwords);
3599   } else {
3600     ::montgomery_multiply(a, a, n, m, (julong)inv, longwords);
3601   }
3602 
3603   reverse_words(m, (julong *)m_ints, longwords);
3604 }
3605 
3606 #ifdef COMPILER2
3607 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3608 //
3609 //------------------------------generate_exception_blob---------------------------
3610 // creates exception blob at the end
3611 // Using exception blob, this code is jumped from a compiled method.
3612 // (see emit_exception_handler in x86_64.ad file)
3613 //
3614 // Given an exception pc at a call we call into the runtime for the
3615 // handler in this method. This handler might merely restore state
3616 // (i.e. callee save registers) unwind the frame and jump to the
3617 // exception handler for the nmethod if there is no Java level handler
3618 // for the nmethod.
3619 //
3620 // This code is entered with a jmp.
3621 //
3622 // Arguments:
3623 //   rax: exception oop
3624 //   rdx: exception pc
3625 //
3626 // Results:
3627 //   rax: exception oop
3628 //   rdx: exception pc in caller or ???
3629 //   destination: exception handler of caller
3630 //
3631 // Note: the exception pc MUST be at a call (precise debug information)
3632 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3633 //
3634 
3635 void OptoRuntime::generate_exception_blob() {
3636   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3637   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3638   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3639 
3640   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3641 
3642   // Allocate space for the code
3643   ResourceMark rm;
3644   // Setup code generation tools
3645   CodeBuffer buffer("exception_blob", 2048, 1024);
3646   int pc_offset = 0;
3647   if (SCCache::load_exception_blob(&buffer, &pc_offset)) {
3648     OopMapSet* oop_maps = new OopMapSet();
3649     oop_maps->add_gc_map(pc_offset, new OopMap(SimpleRuntimeFrame::framesize, 0));
3650 
3651     // Set exception blob
3652     _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3653     return;
3654   }
3655 
3656   MacroAssembler* masm = new MacroAssembler(&buffer);
3657   address start = __ pc();
3658 
3659   // Exception pc is 'return address' for stack walker
3660   __ push(rdx);
3661   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
3662 
3663   // Save callee-saved registers.  See x86_64.ad.
3664 
3665   // rbp is an implicitly saved callee saved register (i.e., the calling
3666   // convention will save/restore it in the prolog/epilog). Other than that
3667   // there are no callee save registers now that adapter frames are gone.
3668 
3669   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3670 
3671   // Store exception in Thread object. We cannot pass any arguments to the
3672   // handle_exception call, since we do not want to make any assumption
3673   // about the size of the frame where the exception happened in.
3674   // c_rarg0 is either rdi (Linux) or rcx (Windows).
3675   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
3676   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3677 
3678   // This call does all the hard work.  It checks if an exception handler
3679   // exists in the method.
3680   // If so, it returns the handler address.
3681   // If not, it prepares for stack-unwinding, restoring the callee-save
3682   // registers of the frame being removed.
3683   //
3684   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3685 
3686   // At a method handle call, the stack may not be properly aligned
3687   // when returning with an exception.
3688   address the_pc = __ pc();
3689   __ set_last_Java_frame(noreg, noreg, the_pc, rscratch1);
3690   __ mov(c_rarg0, r15_thread);
3691   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
3692   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3693 
3694   // Set an oopmap for the call site.  This oopmap will only be used if we
3695   // are unwinding the stack.  Hence, all locations will be dead.
3696   // Callee-saved registers will be the same as the frame above (i.e.,
3697   // handle_exception_stub), since they were restored when we got the
3698   // exception.
3699 
3700   OopMapSet* oop_maps = new OopMapSet();
3701 
3702   pc_offset = the_pc - start;
3703   oop_maps->add_gc_map(pc_offset, new OopMap(SimpleRuntimeFrame::framesize, 0));
3704 
3705   __ reset_last_Java_frame(false);
3706 
3707   // Restore callee-saved registers
3708 
3709   // rbp is an implicitly saved callee-saved register (i.e., the calling
3710   // convention will save restore it in prolog/epilog) Other than that
3711   // there are no callee save registers now that adapter frames are gone.
3712 
3713   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
3714 
3715   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
3716   __ pop(rdx);                  // No need for exception pc anymore
3717 
3718   // rax: exception handler
3719 
3720   // We have a handler in rax (could be deopt blob).
3721   __ mov(r8, rax);
3722 
3723   // Get the exception oop
3724   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3725   // Get the exception pc in case we are deoptimized
3726   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3727 #ifdef ASSERT
3728   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), NULL_WORD);
3729   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), NULL_WORD);
3730 #endif
3731   // Clear the exception oop so GC no longer processes it as a root.
3732   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), NULL_WORD);
3733 
3734   // rax: exception oop
3735   // r8:  exception handler
3736   // rdx: exception pc
3737   // Jump to handler
3738 
3739   __ jmp(r8);
3740 
3741   // Make sure all code is generated
3742   masm->flush();
3743 
3744   SCCache::store_exception_blob(&buffer, pc_offset);
3745   // Set exception blob
3746   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3747 }
3748 #endif // COMPILER2