1 /*
   2  * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #ifndef _WINDOWS
  27 #include "alloca.h"
  28 #endif
  29 #include "asm/macroAssembler.hpp"
  30 #include "asm/macroAssembler.inline.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/debugInfoRec.hpp"
  33 #include "code/nativeInst.hpp"
  34 #include "code/SCCache.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "gc/shared/gcLocker.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/barrierSetAssembler.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "logging/log.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.hpp"
  45 #include "oops/klass.inline.hpp"
  46 #include "oops/method.inline.hpp"
  47 #include "prims/methodHandles.hpp"
  48 #include "runtime/continuation.hpp"
  49 #include "runtime/continuationEntry.inline.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/jniHandles.hpp"
  52 #include "runtime/safepointMechanism.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/signature.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "runtime/vframeArray.hpp"
  57 #include "runtime/vm_version.hpp"
  58 #include "utilities/align.hpp"
  59 #include "utilities/checkedCast.hpp"
  60 #include "utilities/formatBuffer.hpp"
  61 #include "vmreg_x86.inline.hpp"
  62 #ifdef COMPILER1
  63 #include "c1/c1_Runtime1.hpp"
  64 #endif
  65 #ifdef COMPILER2
  66 #include "opto/runtime.hpp"
  67 #endif
  68 #if INCLUDE_JVMCI
  69 #include "jvmci/jvmciJavaClasses.hpp"
  70 #endif
  71 
  72 #define __ masm->
  73 
  74 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  75 
  76 class SimpleRuntimeFrame {
  77 
  78   public:
  79 
  80   // Most of the runtime stubs have this simple frame layout.
  81   // This class exists to make the layout shared in one place.
  82   // Offsets are for compiler stack slots, which are jints.
  83   enum layout {
  84     // The frame sender code expects that rbp will be in the "natural" place and
  85     // will override any oopMap setting for it. We must therefore force the layout
  86     // so that it agrees with the frame sender code.
  87     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  88     rbp_off2,
  89     return_off, return_off2,
  90     framesize
  91   };
  92 };
  93 
  94 class RegisterSaver {
  95   // Capture info about frame layout.  Layout offsets are in jint
  96   // units because compiler frame slots are jints.
  97 #define XSAVE_AREA_BEGIN 160
  98 #define XSAVE_AREA_YMM_BEGIN 576
  99 #define XSAVE_AREA_EGPRS 960
 100 #define XSAVE_AREA_OPMASK_BEGIN 1088
 101 #define XSAVE_AREA_ZMM_BEGIN 1152
 102 #define XSAVE_AREA_UPPERBANK 1664
 103 #define DEF_XMM_OFFS(regnum)       xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
 104 #define DEF_YMM_OFFS(regnum)       ymm ## regnum ## _off = ymm_off + (regnum)*16/BytesPerInt, ymm ## regnum ## H_off
 105 #define DEF_ZMM_OFFS(regnum)       zmm ## regnum ## _off = zmm_off + (regnum)*32/BytesPerInt, zmm ## regnum ## H_off
 106 #define DEF_OPMASK_OFFS(regnum)    opmask ## regnum ## _off = opmask_off + (regnum)*8/BytesPerInt,     opmask ## regnum ## H_off
 107 #define DEF_ZMM_UPPER_OFFS(regnum) zmm ## regnum ## _off = zmm_upper_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off
 108   enum layout {
 109     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt,    // fxsave save area
 110     xmm_off       = fpu_state_off + XSAVE_AREA_BEGIN/BytesPerInt,  // offset in fxsave save area
 111     DEF_XMM_OFFS(0),
 112     DEF_XMM_OFFS(1),
 113     // 2..15 are implied in range usage
 114     ymm_off = xmm_off + (XSAVE_AREA_YMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
 115     DEF_YMM_OFFS(0),
 116     DEF_YMM_OFFS(1),
 117     // 2..15 are implied in range usage
 118     r31_off = xmm_off + (XSAVE_AREA_EGPRS - XSAVE_AREA_BEGIN)/BytesPerInt,
 119     r31H_off,
 120     r30_off, r30H_off,
 121     r29_off, r29H_off,
 122     r28_off, r28H_off,
 123     r27_off, r27H_off,
 124     r26_off, r26H_off,
 125     r25_off, r25H_off,
 126     r24_off, r24H_off,
 127     r23_off, r23H_off,
 128     r22_off, r22H_off,
 129     r21_off, r21H_off,
 130     r20_off, r20H_off,
 131     r19_off, r19H_off,
 132     r18_off, r18H_off,
 133     r17_off, r17H_off,
 134     r16_off, r16H_off,
 135     opmask_off   = xmm_off + (XSAVE_AREA_OPMASK_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
 136     DEF_OPMASK_OFFS(0),
 137     DEF_OPMASK_OFFS(1),
 138     // 2..7 are implied in range usage
 139     zmm_off = xmm_off + (XSAVE_AREA_ZMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
 140     DEF_ZMM_OFFS(0),
 141     DEF_ZMM_OFFS(1),
 142     zmm_upper_off = xmm_off + (XSAVE_AREA_UPPERBANK - XSAVE_AREA_BEGIN)/BytesPerInt,
 143     DEF_ZMM_UPPER_OFFS(16),
 144     DEF_ZMM_UPPER_OFFS(17),
 145     // 18..31 are implied in range usage
 146     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
 147     fpu_stateH_end,
 148     r15_off, r15H_off,
 149     r14_off, r14H_off,
 150     r13_off, r13H_off,
 151     r12_off, r12H_off,
 152     r11_off, r11H_off,
 153     r10_off, r10H_off,
 154     r9_off,  r9H_off,
 155     r8_off,  r8H_off,
 156     rdi_off, rdiH_off,
 157     rsi_off, rsiH_off,
 158     ignore_off, ignoreH_off,  // extra copy of rbp
 159     rsp_off, rspH_off,
 160     rbx_off, rbxH_off,
 161     rdx_off, rdxH_off,
 162     rcx_off, rcxH_off,
 163     rax_off, raxH_off,
 164     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 165     align_off, alignH_off,
 166     flags_off, flagsH_off,
 167     // The frame sender code expects that rbp will be in the "natural" place and
 168     // will override any oopMap setting for it. We must therefore force the layout
 169     // so that it agrees with the frame sender code.
 170     rbp_off, rbpH_off,        // copy of rbp we will restore
 171     return_off, returnH_off,  // slot for return address
 172     reg_save_size             // size in compiler stack slots
 173   };
 174 
 175  public:
 176   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_wide_vectors);
 177   static void restore_live_registers(MacroAssembler* masm, bool restore_wide_vectors = false);
 178 
 179   // Offsets into the register save area
 180   // Used by deoptimization when it is managing result register
 181   // values on its own
 182 
 183   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 184   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 185   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 186   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 187   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 188 
 189   // During deoptimization only the result registers need to be restored,
 190   // all the other values have already been extracted.
 191   static void restore_result_registers(MacroAssembler* masm);
 192 };
 193 
 194 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_wide_vectors) {
 195   int off = 0;
 196   int num_xmm_regs = XMMRegister::available_xmm_registers();
 197 #if COMPILER2_OR_JVMCI
 198   if (save_wide_vectors && UseAVX == 0) {
 199     save_wide_vectors = false; // vectors larger than 16 byte long are supported only with AVX
 200   }
 201   assert(!save_wide_vectors || MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 202 #else
 203   save_wide_vectors = false; // vectors are generated only by C2 and JVMCI
 204 #endif
 205 
 206   // Always make the frame size 16-byte aligned, both vector and non vector stacks are always allocated
 207   int frame_size_in_bytes = align_up(reg_save_size*BytesPerInt, num_xmm_regs);
 208   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 209   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 210   // CodeBlob frame size is in words.
 211   int frame_size_in_words = frame_size_in_bytes / wordSize;
 212   *total_frame_words = frame_size_in_words;
 213 
 214   // Save registers, fpu state, and flags.
 215   // We assume caller has already pushed the return address onto the
 216   // stack, so rsp is 8-byte aligned here.
 217   // We push rpb twice in this sequence because we want the real rbp
 218   // to be under the return like a normal enter.
 219 
 220   __ enter();          // rsp becomes 16-byte aligned here
 221   __ pushf();
 222   // Make sure rsp stays 16-byte aligned
 223   __ subq(rsp, 8);
 224   // Push CPU state in multiple of 16 bytes
 225   __ save_legacy_gprs();
 226   __ push_FPU_state();
 227 
 228 
 229   // push cpu state handles this on EVEX enabled targets
 230   if (save_wide_vectors) {
 231     // Save upper half of YMM registers(0..15)
 232     int base_addr = XSAVE_AREA_YMM_BEGIN;
 233     for (int n = 0; n < 16; n++) {
 234       __ vextractf128_high(Address(rsp, base_addr+n*16), as_XMMRegister(n));
 235     }
 236     if (VM_Version::supports_evex()) {
 237       // Save upper half of ZMM registers(0..15)
 238       base_addr = XSAVE_AREA_ZMM_BEGIN;
 239       for (int n = 0; n < 16; n++) {
 240         __ vextractf64x4_high(Address(rsp, base_addr+n*32), as_XMMRegister(n));
 241       }
 242       // Save full ZMM registers(16..num_xmm_regs)
 243       base_addr = XSAVE_AREA_UPPERBANK;
 244       off = 0;
 245       int vector_len = Assembler::AVX_512bit;
 246       for (int n = 16; n < num_xmm_regs; n++) {
 247         __ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len);
 248       }
 249 #if COMPILER2_OR_JVMCI
 250       base_addr = XSAVE_AREA_OPMASK_BEGIN;
 251       off = 0;
 252       for(int n = 0; n < KRegister::number_of_registers; n++) {
 253         __ kmov(Address(rsp, base_addr+(off++*8)), as_KRegister(n));
 254       }
 255 #endif
 256     }
 257   } else {
 258     if (VM_Version::supports_evex()) {
 259       // Save upper bank of XMM registers(16..31) for scalar or 16-byte vector usage
 260       int base_addr = XSAVE_AREA_UPPERBANK;
 261       off = 0;
 262       int vector_len = VM_Version::supports_avx512vl() ?  Assembler::AVX_128bit : Assembler::AVX_512bit;
 263       for (int n = 16; n < num_xmm_regs; n++) {
 264         __ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len);
 265       }
 266 #if COMPILER2_OR_JVMCI
 267       base_addr = XSAVE_AREA_OPMASK_BEGIN;
 268       off = 0;
 269       for(int n = 0; n < KRegister::number_of_registers; n++) {
 270         __ kmov(Address(rsp, base_addr+(off++*8)), as_KRegister(n));
 271       }
 272 #endif
 273     }
 274   }
 275 
 276 #if COMPILER2_OR_JVMCI
 277   if (UseAPX) {
 278       int base_addr = XSAVE_AREA_EGPRS;
 279       off = 0;
 280       for(int n = 16; n < Register::number_of_registers; n++) {
 281         __ movq(Address(rsp, base_addr+(off++*8)), as_Register(n));
 282       }
 283   }
 284 #endif
 285 
 286   __ vzeroupper();
 287   if (frame::arg_reg_save_area_bytes != 0) {
 288     // Allocate argument register save area
 289     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 290   }
 291 
 292   // Set an oopmap for the call site.  This oopmap will map all
 293   // oop-registers and debug-info registers as callee-saved.  This
 294   // will allow deoptimization at this safepoint to find all possible
 295   // debug-info recordings, as well as let GC find all oops.
 296 
 297   OopMapSet *oop_maps = new OopMapSet();
 298   OopMap* map = new OopMap(frame_size_in_slots, 0);
 299 
 300 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x))
 301 
 302   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
 303   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
 304   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
 305   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
 306   // rbp location is known implicitly by the frame sender code, needs no oopmap
 307   // and the location where rbp was saved by is ignored
 308   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
 309   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
 310   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
 311   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
 312   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
 313   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
 314   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
 315   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
 316   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
 317   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
 318 
 319   if (UseAPX) {
 320     map->set_callee_saved(STACK_OFFSET( r16_off ), r16->as_VMReg());
 321     map->set_callee_saved(STACK_OFFSET( r17_off ), r17->as_VMReg());
 322     map->set_callee_saved(STACK_OFFSET( r18_off ), r18->as_VMReg());
 323     map->set_callee_saved(STACK_OFFSET( r19_off ), r19->as_VMReg());
 324     map->set_callee_saved(STACK_OFFSET( r20_off ), r20->as_VMReg());
 325     map->set_callee_saved(STACK_OFFSET( r21_off ), r21->as_VMReg());
 326     map->set_callee_saved(STACK_OFFSET( r22_off ), r22->as_VMReg());
 327     map->set_callee_saved(STACK_OFFSET( r23_off ), r23->as_VMReg());
 328     map->set_callee_saved(STACK_OFFSET( r24_off ), r24->as_VMReg());
 329     map->set_callee_saved(STACK_OFFSET( r25_off ), r25->as_VMReg());
 330     map->set_callee_saved(STACK_OFFSET( r26_off ), r26->as_VMReg());
 331     map->set_callee_saved(STACK_OFFSET( r27_off ), r27->as_VMReg());
 332     map->set_callee_saved(STACK_OFFSET( r28_off ), r28->as_VMReg());
 333     map->set_callee_saved(STACK_OFFSET( r29_off ), r29->as_VMReg());
 334     map->set_callee_saved(STACK_OFFSET( r30_off ), r30->as_VMReg());
 335     map->set_callee_saved(STACK_OFFSET( r31_off ), r31->as_VMReg());
 336   }
 337   // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 338   // on EVEX enabled targets, we get it included in the xsave area
 339   off = xmm0_off;
 340   int delta = xmm1_off - off;
 341   for (int n = 0; n < 16; n++) {
 342     XMMRegister xmm_name = as_XMMRegister(n);
 343     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 344     off += delta;
 345   }
 346   if (UseAVX > 2) {
 347     // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 348     off = zmm16_off;
 349     delta = zmm17_off - off;
 350     for (int n = 16; n < num_xmm_regs; n++) {
 351       XMMRegister zmm_name = as_XMMRegister(n);
 352       map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg());
 353       off += delta;
 354     }
 355   }
 356 
 357 #if COMPILER2_OR_JVMCI
 358   if (save_wide_vectors) {
 359     // Save upper half of YMM registers(0..15)
 360     off = ymm0_off;
 361     delta = ymm1_off - ymm0_off;
 362     for (int n = 0; n < 16; n++) {
 363       XMMRegister ymm_name = as_XMMRegister(n);
 364       map->set_callee_saved(STACK_OFFSET(off), ymm_name->as_VMReg()->next(4));
 365       off += delta;
 366     }
 367     if (VM_Version::supports_evex()) {
 368       // Save upper half of ZMM registers(0..15)
 369       off = zmm0_off;
 370       delta = zmm1_off - zmm0_off;
 371       for (int n = 0; n < 16; n++) {
 372         XMMRegister zmm_name = as_XMMRegister(n);
 373         map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next(8));
 374         off += delta;
 375       }
 376     }
 377   }
 378 #endif // COMPILER2_OR_JVMCI
 379 
 380   // %%% These should all be a waste but we'll keep things as they were for now
 381   if (true) {
 382     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
 383     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
 384     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
 385     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
 386     // rbp location is known implicitly by the frame sender code, needs no oopmap
 387     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
 388     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
 389     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
 390     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
 391     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
 392     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
 393     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
 394     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
 395     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
 396     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
 397     if (UseAPX) {
 398       map->set_callee_saved(STACK_OFFSET( r16H_off ), r16->as_VMReg()->next());
 399       map->set_callee_saved(STACK_OFFSET( r17H_off ), r17->as_VMReg()->next());
 400       map->set_callee_saved(STACK_OFFSET( r18H_off ), r18->as_VMReg()->next());
 401       map->set_callee_saved(STACK_OFFSET( r19H_off ), r19->as_VMReg()->next());
 402       map->set_callee_saved(STACK_OFFSET( r20H_off ), r20->as_VMReg()->next());
 403       map->set_callee_saved(STACK_OFFSET( r21H_off ), r21->as_VMReg()->next());
 404       map->set_callee_saved(STACK_OFFSET( r22H_off ), r22->as_VMReg()->next());
 405       map->set_callee_saved(STACK_OFFSET( r23H_off ), r23->as_VMReg()->next());
 406       map->set_callee_saved(STACK_OFFSET( r24H_off ), r24->as_VMReg()->next());
 407       map->set_callee_saved(STACK_OFFSET( r25H_off ), r25->as_VMReg()->next());
 408       map->set_callee_saved(STACK_OFFSET( r26H_off ), r26->as_VMReg()->next());
 409       map->set_callee_saved(STACK_OFFSET( r27H_off ), r27->as_VMReg()->next());
 410       map->set_callee_saved(STACK_OFFSET( r28H_off ), r28->as_VMReg()->next());
 411       map->set_callee_saved(STACK_OFFSET( r29H_off ), r29->as_VMReg()->next());
 412       map->set_callee_saved(STACK_OFFSET( r30H_off ), r30->as_VMReg()->next());
 413       map->set_callee_saved(STACK_OFFSET( r31H_off ), r31->as_VMReg()->next());
 414     }
 415     // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 416     // on EVEX enabled targets, we get it included in the xsave area
 417     off = xmm0H_off;
 418     delta = xmm1H_off - off;
 419     for (int n = 0; n < 16; n++) {
 420       XMMRegister xmm_name = as_XMMRegister(n);
 421       map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
 422       off += delta;
 423     }
 424     if (UseAVX > 2) {
 425       // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 426       off = zmm16H_off;
 427       delta = zmm17H_off - off;
 428       for (int n = 16; n < num_xmm_regs; n++) {
 429         XMMRegister zmm_name = as_XMMRegister(n);
 430         map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next());
 431         off += delta;
 432       }
 433     }
 434   }
 435 
 436   return map;
 437 }
 438 
 439 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_wide_vectors) {
 440   int num_xmm_regs = XMMRegister::available_xmm_registers();
 441   if (frame::arg_reg_save_area_bytes != 0) {
 442     // Pop arg register save area
 443     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 444   }
 445 
 446 #if COMPILER2_OR_JVMCI
 447   if (restore_wide_vectors) {
 448     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 449     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 450   }
 451 #else
 452   assert(!restore_wide_vectors, "vectors are generated only by C2");
 453 #endif
 454 
 455   __ vzeroupper();
 456 
 457   // On EVEX enabled targets everything is handled in pop fpu state
 458   if (restore_wide_vectors) {
 459     // Restore upper half of YMM registers (0..15)
 460     int base_addr = XSAVE_AREA_YMM_BEGIN;
 461     for (int n = 0; n < 16; n++) {
 462       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, base_addr+n*16));
 463     }
 464     if (VM_Version::supports_evex()) {
 465       // Restore upper half of ZMM registers (0..15)
 466       base_addr = XSAVE_AREA_ZMM_BEGIN;
 467       for (int n = 0; n < 16; n++) {
 468         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, base_addr+n*32));
 469       }
 470       // Restore full ZMM registers(16..num_xmm_regs)
 471       base_addr = XSAVE_AREA_UPPERBANK;
 472       int vector_len = Assembler::AVX_512bit;
 473       int off = 0;
 474       for (int n = 16; n < num_xmm_regs; n++) {
 475         __ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len);
 476       }
 477 #if COMPILER2_OR_JVMCI
 478       base_addr = XSAVE_AREA_OPMASK_BEGIN;
 479       off = 0;
 480       for (int n = 0; n < KRegister::number_of_registers; n++) {
 481         __ kmov(as_KRegister(n), Address(rsp, base_addr+(off++*8)));
 482       }
 483 #endif
 484     }
 485   } else {
 486     if (VM_Version::supports_evex()) {
 487       // Restore upper bank of XMM registers(16..31) for scalar or 16-byte vector usage
 488       int base_addr = XSAVE_AREA_UPPERBANK;
 489       int off = 0;
 490       int vector_len = VM_Version::supports_avx512vl() ?  Assembler::AVX_128bit : Assembler::AVX_512bit;
 491       for (int n = 16; n < num_xmm_regs; n++) {
 492         __ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len);
 493       }
 494 #if COMPILER2_OR_JVMCI
 495       base_addr = XSAVE_AREA_OPMASK_BEGIN;
 496       off = 0;
 497       for (int n = 0; n < KRegister::number_of_registers; n++) {
 498         __ kmov(as_KRegister(n), Address(rsp, base_addr+(off++*8)));
 499       }
 500 #endif
 501     }
 502   }
 503 
 504 #if COMPILER2_OR_JVMCI
 505   if (UseAPX) {
 506     int base_addr = XSAVE_AREA_EGPRS;
 507     int off = 0;
 508     for (int n = 16; n < Register::number_of_registers; n++) {
 509       __ movq(as_Register(n), Address(rsp, base_addr+(off++*8)));
 510     }
 511   }
 512 #endif
 513 
 514   // Recover CPU state
 515   __ pop_FPU_state();
 516   __ restore_legacy_gprs();
 517   __ addq(rsp, 8);
 518   __ popf();
 519   // Get the rbp described implicitly by the calling convention (no oopMap)
 520   __ pop(rbp);
 521 }
 522 
 523 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 524 
 525   // Just restore result register. Only used by deoptimization. By
 526   // now any callee save register that needs to be restored to a c2
 527   // caller of the deoptee has been extracted into the vframeArray
 528   // and will be stuffed into the c2i adapter we create for later
 529   // restoration so only result registers need to be restored here.
 530 
 531   // Restore fp result register
 532   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 533   // Restore integer result register
 534   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 535   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 536 
 537   // Pop all of the register save are off the stack except the return address
 538   __ addptr(rsp, return_offset_in_bytes());
 539 }
 540 
 541 // Is vector's size (in bytes) bigger than a size saved by default?
 542 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
 543 bool SharedRuntime::is_wide_vector(int size) {
 544   return size > 16;
 545 }
 546 
 547 // ---------------------------------------------------------------------------
 548 // Read the array of BasicTypes from a signature, and compute where the
 549 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 550 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 551 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 552 // as framesizes are fixed.
 553 // VMRegImpl::stack0 refers to the first slot 0(sp).
 554 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.
 555 // Register up to Register::number_of_registers are the 64-bit
 556 // integer registers.
 557 
 558 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 559 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 560 // units regardless of build. Of course for i486 there is no 64 bit build
 561 
 562 // The Java calling convention is a "shifted" version of the C ABI.
 563 // By skipping the first C ABI register we can call non-static jni methods
 564 // with small numbers of arguments without having to shuffle the arguments
 565 // at all. Since we control the java ABI we ought to at least get some
 566 // advantage out of it.
 567 
 568 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 569                                            VMRegPair *regs,
 570                                            int total_args_passed) {
 571 
 572   // Create the mapping between argument positions and
 573   // registers.
 574   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 575     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 576   };
 577   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 578     j_farg0, j_farg1, j_farg2, j_farg3,
 579     j_farg4, j_farg5, j_farg6, j_farg7
 580   };
 581 
 582 
 583   uint int_args = 0;
 584   uint fp_args = 0;
 585   uint stk_args = 0;
 586 
 587   for (int i = 0; i < total_args_passed; i++) {
 588     switch (sig_bt[i]) {
 589     case T_BOOLEAN:
 590     case T_CHAR:
 591     case T_BYTE:
 592     case T_SHORT:
 593     case T_INT:
 594       if (int_args < Argument::n_int_register_parameters_j) {
 595         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 596       } else {
 597         stk_args = align_up(stk_args, 2);
 598         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 599         stk_args += 1;
 600       }
 601       break;
 602     case T_VOID:
 603       // halves of T_LONG or T_DOUBLE
 604       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 605       regs[i].set_bad();
 606       break;
 607     case T_LONG:
 608       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 609       // fall through
 610     case T_OBJECT:
 611     case T_ARRAY:
 612     case T_ADDRESS:
 613       if (int_args < Argument::n_int_register_parameters_j) {
 614         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 615       } else {
 616         stk_args = align_up(stk_args, 2);
 617         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 618         stk_args += 2;
 619       }
 620       break;
 621     case T_FLOAT:
 622       if (fp_args < Argument::n_float_register_parameters_j) {
 623         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 624       } else {
 625         stk_args = align_up(stk_args, 2);
 626         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 627         stk_args += 1;
 628       }
 629       break;
 630     case T_DOUBLE:
 631       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 632       if (fp_args < Argument::n_float_register_parameters_j) {
 633         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 634       } else {
 635         stk_args = align_up(stk_args, 2);
 636         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 637         stk_args += 2;
 638       }
 639       break;
 640     default:
 641       ShouldNotReachHere();
 642       break;
 643     }
 644   }
 645 
 646   return stk_args;
 647 }
 648 
 649 // Patch the callers callsite with entry to compiled code if it exists.
 650 static void patch_callers_callsite(MacroAssembler *masm) {
 651   Label L;
 652   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
 653   __ jcc(Assembler::equal, L);
 654 
 655   // Save the current stack pointer
 656   __ mov(r13, rsp);
 657   // Schedule the branch target address early.
 658   // Call into the VM to patch the caller, then jump to compiled callee
 659   // rax isn't live so capture return address while we easily can
 660   __ movptr(rax, Address(rsp, 0));
 661 
 662   // align stack so push_CPU_state doesn't fault
 663   __ andptr(rsp, -(StackAlignmentInBytes));
 664   __ push_CPU_state();
 665   __ vzeroupper();
 666   // VM needs caller's callsite
 667   // VM needs target method
 668   // This needs to be a long call since we will relocate this adapter to
 669   // the codeBuffer and it may not reach
 670 
 671   // Allocate argument register save area
 672   if (frame::arg_reg_save_area_bytes != 0) {
 673     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 674   }
 675   __ mov(c_rarg0, rbx);
 676   __ mov(c_rarg1, rax);
 677   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 678 
 679   // De-allocate argument register save area
 680   if (frame::arg_reg_save_area_bytes != 0) {
 681     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 682   }
 683 
 684   __ vzeroupper();
 685   __ pop_CPU_state();
 686   // restore sp
 687   __ mov(rsp, r13);
 688   __ bind(L);
 689 }
 690 
 691 
 692 static void gen_c2i_adapter(MacroAssembler *masm,
 693                             int total_args_passed,
 694                             int comp_args_on_stack,
 695                             const BasicType *sig_bt,
 696                             const VMRegPair *regs,
 697                             Label& skip_fixup) {
 698   // Before we get into the guts of the C2I adapter, see if we should be here
 699   // at all.  We've come from compiled code and are attempting to jump to the
 700   // interpreter, which means the caller made a static call to get here
 701   // (vcalls always get a compiled target if there is one).  Check for a
 702   // compiled target.  If there is one, we need to patch the caller's call.
 703   patch_callers_callsite(masm);
 704 
 705   __ bind(skip_fixup);
 706 
 707   // Since all args are passed on the stack, total_args_passed *
 708   // Interpreter::stackElementSize is the space we need.
 709 
 710   assert(total_args_passed >= 0, "total_args_passed is %d", total_args_passed);
 711 
 712   int extraspace = (total_args_passed * Interpreter::stackElementSize);
 713 
 714   // stack is aligned, keep it that way
 715   // This is not currently needed or enforced by the interpreter, but
 716   // we might as well conform to the ABI.
 717   extraspace = align_up(extraspace, 2*wordSize);
 718 
 719   // set senderSP value
 720   __ lea(r13, Address(rsp, wordSize));
 721 
 722 #ifdef ASSERT
 723   __ check_stack_alignment(r13, "sender stack not aligned");
 724 #endif
 725   if (extraspace > 0) {
 726     // Pop the return address
 727     __ pop(rax);
 728 
 729     __ subptr(rsp, extraspace);
 730 
 731     // Push the return address
 732     __ push(rax);
 733 
 734     // Account for the return address location since we store it first rather
 735     // than hold it in a register across all the shuffling
 736     extraspace += wordSize;
 737   }
 738 
 739 #ifdef ASSERT
 740   __ check_stack_alignment(rsp, "callee stack not aligned", wordSize, rax);
 741 #endif
 742 
 743   // Now write the args into the outgoing interpreter space
 744   for (int i = 0; i < total_args_passed; i++) {
 745     if (sig_bt[i] == T_VOID) {
 746       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 747       continue;
 748     }
 749 
 750     // offset to start parameters
 751     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 752     int next_off = st_off - Interpreter::stackElementSize;
 753 
 754     // Say 4 args:
 755     // i   st_off
 756     // 0   32 T_LONG
 757     // 1   24 T_VOID
 758     // 2   16 T_OBJECT
 759     // 3    8 T_BOOL
 760     // -    0 return address
 761     //
 762     // However to make thing extra confusing. Because we can fit a long/double in
 763     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 764     // leaves one slot empty and only stores to a single slot. In this case the
 765     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 766 
 767     VMReg r_1 = regs[i].first();
 768     VMReg r_2 = regs[i].second();
 769     if (!r_1->is_valid()) {
 770       assert(!r_2->is_valid(), "");
 771       continue;
 772     }
 773     if (r_1->is_stack()) {
 774       // memory to memory use rax
 775       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 776       if (!r_2->is_valid()) {
 777         // sign extend??
 778         __ movl(rax, Address(rsp, ld_off));
 779         __ movptr(Address(rsp, st_off), rax);
 780 
 781       } else {
 782 
 783         __ movq(rax, Address(rsp, ld_off));
 784 
 785         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 786         // T_DOUBLE and T_LONG use two slots in the interpreter
 787         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 788           // ld_off == LSW, ld_off+wordSize == MSW
 789           // st_off == MSW, next_off == LSW
 790           __ movq(Address(rsp, next_off), rax);
 791 #ifdef ASSERT
 792           // Overwrite the unused slot with known junk
 793           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 794           __ movptr(Address(rsp, st_off), rax);
 795 #endif /* ASSERT */
 796         } else {
 797           __ movq(Address(rsp, st_off), rax);
 798         }
 799       }
 800     } else if (r_1->is_Register()) {
 801       Register r = r_1->as_Register();
 802       if (!r_2->is_valid()) {
 803         // must be only an int (or less ) so move only 32bits to slot
 804         // why not sign extend??
 805         __ movl(Address(rsp, st_off), r);
 806       } else {
 807         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 808         // T_DOUBLE and T_LONG use two slots in the interpreter
 809         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 810           // long/double in gpr
 811 #ifdef ASSERT
 812           // Overwrite the unused slot with known junk
 813           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 814           __ movptr(Address(rsp, st_off), rax);
 815 #endif /* ASSERT */
 816           __ movq(Address(rsp, next_off), r);
 817         } else {
 818           __ movptr(Address(rsp, st_off), r);
 819         }
 820       }
 821     } else {
 822       assert(r_1->is_XMMRegister(), "");
 823       if (!r_2->is_valid()) {
 824         // only a float use just part of the slot
 825         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 826       } else {
 827 #ifdef ASSERT
 828         // Overwrite the unused slot with known junk
 829         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 830         __ movptr(Address(rsp, st_off), rax);
 831 #endif /* ASSERT */
 832         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 833       }
 834     }
 835   }
 836 
 837   // Schedule the branch target address early.
 838   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 839   __ jmp(rcx);
 840 }
 841 
 842 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 843                         address code_start, address code_end,
 844                         Label& L_ok) {
 845   Label L_fail;
 846   __ lea(temp_reg, ExternalAddress(code_start));
 847   __ cmpptr(pc_reg, temp_reg);
 848   __ jcc(Assembler::belowEqual, L_fail);
 849   __ lea(temp_reg, ExternalAddress(code_end));
 850   __ cmpptr(pc_reg, temp_reg);
 851   __ jcc(Assembler::below, L_ok);
 852   __ bind(L_fail);
 853 }
 854 
 855 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 856                                     int total_args_passed,
 857                                     int comp_args_on_stack,
 858                                     const BasicType *sig_bt,
 859                                     const VMRegPair *regs) {
 860 
 861   // Note: r13 contains the senderSP on entry. We must preserve it since
 862   // we may do a i2c -> c2i transition if we lose a race where compiled
 863   // code goes non-entrant while we get args ready.
 864   // In addition we use r13 to locate all the interpreter args as
 865   // we must align the stack to 16 bytes on an i2c entry else we
 866   // lose alignment we expect in all compiled code and register
 867   // save code can segv when fxsave instructions find improperly
 868   // aligned stack pointer.
 869 
 870   // Adapters can be frameless because they do not require the caller
 871   // to perform additional cleanup work, such as correcting the stack pointer.
 872   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 873   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 874   // even if a callee has modified the stack pointer.
 875   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 876   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 877   // up via the senderSP register).
 878   // In other words, if *either* the caller or callee is interpreted, we can
 879   // get the stack pointer repaired after a call.
 880   // This is why c2i and i2c adapters cannot be indefinitely composed.
 881   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 882   // both caller and callee would be compiled methods, and neither would
 883   // clean up the stack pointer changes performed by the two adapters.
 884   // If this happens, control eventually transfers back to the compiled
 885   // caller, but with an uncorrected stack, causing delayed havoc.
 886 
 887   if (VerifyAdapterCalls &&
 888       (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) {
 889     // So, let's test for cascading c2i/i2c adapters right now.
 890     //  assert(Interpreter::contains($return_addr) ||
 891     //         StubRoutines::contains($return_addr),
 892     //         "i2c adapter must return to an interpreter frame");
 893     __ block_comment("verify_i2c { ");
 894     // Pick up the return address
 895     __ movptr(rax, Address(rsp, 0));
 896     Label L_ok;
 897     if (Interpreter::code() != nullptr) {
 898       range_check(masm, rax, r11,
 899                   Interpreter::code()->code_start(),
 900                   Interpreter::code()->code_end(),
 901                   L_ok);
 902     }
 903     if (StubRoutines::initial_stubs_code() != nullptr) {
 904       range_check(masm, rax, r11,
 905                   StubRoutines::initial_stubs_code()->code_begin(),
 906                   StubRoutines::initial_stubs_code()->code_end(),
 907                   L_ok);
 908     }
 909     if (StubRoutines::final_stubs_code() != nullptr) {
 910       range_check(masm, rax, r11,
 911                   StubRoutines::final_stubs_code()->code_begin(),
 912                   StubRoutines::final_stubs_code()->code_end(),
 913                   L_ok);
 914     }
 915     const char* msg = "i2c adapter must return to an interpreter frame";
 916     __ block_comment(msg);
 917     __ stop(msg);
 918     __ bind(L_ok);
 919     __ block_comment("} verify_i2ce ");
 920   }
 921 
 922   // Must preserve original SP for loading incoming arguments because
 923   // we need to align the outgoing SP for compiled code.
 924   __ movptr(r11, rsp);
 925 
 926   // Pick up the return address
 927   __ pop(rax);
 928 
 929   // Convert 4-byte c2 stack slots to words.
 930   int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 931 
 932   if (comp_args_on_stack) {
 933     __ subptr(rsp, comp_words_on_stack * wordSize);
 934   }
 935 
 936   // Ensure compiled code always sees stack at proper alignment
 937   __ andptr(rsp, -16);
 938 
 939   // push the return address and misalign the stack that youngest frame always sees
 940   // as far as the placement of the call instruction
 941   __ push(rax);
 942 
 943   // Put saved SP in another register
 944   const Register saved_sp = rax;
 945   __ movptr(saved_sp, r11);
 946 
 947   // Will jump to the compiled code just as if compiled code was doing it.
 948   // Pre-load the register-jump target early, to schedule it better.
 949   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
 950 
 951 #if INCLUDE_JVMCI
 952   if (EnableJVMCI) {
 953     // check if this call should be routed towards a specific entry point
 954     __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
 955     Label no_alternative_target;
 956     __ jcc(Assembler::equal, no_alternative_target);
 957     __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 958     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
 959     __ bind(no_alternative_target);
 960   }
 961 #endif // INCLUDE_JVMCI
 962 
 963   // Now generate the shuffle code.  Pick up all register args and move the
 964   // rest through the floating point stack top.
 965   for (int i = 0; i < total_args_passed; i++) {
 966     if (sig_bt[i] == T_VOID) {
 967       // Longs and doubles are passed in native word order, but misaligned
 968       // in the 32-bit build.
 969       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 970       continue;
 971     }
 972 
 973     // Pick up 0, 1 or 2 words from SP+offset.
 974 
 975     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 976             "scrambled load targets?");
 977     // Load in argument order going down.
 978     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 979     // Point to interpreter value (vs. tag)
 980     int next_off = ld_off - Interpreter::stackElementSize;
 981     //
 982     //
 983     //
 984     VMReg r_1 = regs[i].first();
 985     VMReg r_2 = regs[i].second();
 986     if (!r_1->is_valid()) {
 987       assert(!r_2->is_valid(), "");
 988       continue;
 989     }
 990     if (r_1->is_stack()) {
 991       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 992       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 993 
 994       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 995       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 996       // will be generated.
 997       if (!r_2->is_valid()) {
 998         // sign extend???
 999         __ movl(r13, Address(saved_sp, ld_off));
1000         __ movptr(Address(rsp, st_off), r13);
1001       } else {
1002         //
1003         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
1004         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
1005         // So we must adjust where to pick up the data to match the interpreter.
1006         //
1007         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
1008         // are accessed as negative so LSW is at LOW address
1009 
1010         // ld_off is MSW so get LSW
1011         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
1012                            next_off : ld_off;
1013         __ movq(r13, Address(saved_sp, offset));
1014         // st_off is LSW (i.e. reg.first())
1015         __ movq(Address(rsp, st_off), r13);
1016       }
1017     } else if (r_1->is_Register()) {  // Register argument
1018       Register r = r_1->as_Register();
1019       assert(r != rax, "must be different");
1020       if (r_2->is_valid()) {
1021         //
1022         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
1023         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
1024         // So we must adjust where to pick up the data to match the interpreter.
1025 
1026         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
1027                            next_off : ld_off;
1028 
1029         // this can be a misaligned move
1030         __ movq(r, Address(saved_sp, offset));
1031       } else {
1032         // sign extend and use a full word?
1033         __ movl(r, Address(saved_sp, ld_off));
1034       }
1035     } else {
1036       if (!r_2->is_valid()) {
1037         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
1038       } else {
1039         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
1040       }
1041     }
1042   }
1043 
1044   __ push_cont_fastpath(); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about
1045 
1046   // 6243940 We might end up in handle_wrong_method if
1047   // the callee is deoptimized as we race thru here. If that
1048   // happens we don't want to take a safepoint because the
1049   // caller frame will look interpreted and arguments are now
1050   // "compiled" so it is much better to make this transition
1051   // invisible to the stack walking code. Unfortunately if
1052   // we try and find the callee by normal means a safepoint
1053   // is possible. So we stash the desired callee in the thread
1054   // and the vm will find there should this case occur.
1055 
1056   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
1057 
1058   // put Method* where a c2i would expect should we end up there
1059   // only needed because eof c2 resolve stubs return Method* as a result in
1060   // rax
1061   __ mov(rax, rbx);
1062   __ jmp(r11);
1063 }
1064 
1065 // ---------------------------------------------------------------
1066 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1067                                                             int total_args_passed,
1068                                                             int comp_args_on_stack,
1069                                                             const BasicType *sig_bt,
1070                                                             const VMRegPair *regs,
1071                                                             AdapterFingerPrint* fingerprint) {
1072   address i2c_entry = __ pc();
1073 
1074   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
1075 
1076   // -------------------------------------------------------------------------
1077   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
1078   // to the interpreter.  The args start out packed in the compiled layout.  They
1079   // need to be unpacked into the interpreter layout.  This will almost always
1080   // require some stack space.  We grow the current (compiled) stack, then repack
1081   // the args.  We  finally end in a jump to the generic interpreter entry point.
1082   // On exit from the interpreter, the interpreter will restore our SP (lest the
1083   // compiled code, which relies solely on SP and not RBP, get sick).
1084 
1085   address c2i_unverified_entry = __ pc();
1086   Label skip_fixup;
1087 
1088   Register data = rax;
1089   Register receiver = j_rarg0;
1090   Register temp = rbx;
1091 
1092   {
1093     __ ic_check(1 /* end_alignment */);
1094     __ movptr(rbx, Address(data, CompiledICData::speculated_method_offset()));
1095     // Method might have been compiled since the call site was patched to
1096     // interpreted if that is the case treat it as a miss so we can get
1097     // the call site corrected.
1098     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
1099     __ jcc(Assembler::equal, skip_fixup);
1100     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1101   }
1102 
1103   address c2i_entry = __ pc();
1104 
1105   // Class initialization barrier for static methods
1106   address c2i_no_clinit_check_entry = nullptr;
1107   if (VM_Version::supports_fast_class_init_checks()) {
1108     Label L_skip_barrier;
1109     Register method = rbx;
1110 
1111     { // Bypass the barrier for non-static methods
1112       Register flags = rscratch1;
1113       __ movl(flags, Address(method, Method::access_flags_offset()));
1114       __ testl(flags, JVM_ACC_STATIC);
1115       __ jcc(Assembler::zero, L_skip_barrier); // non-static
1116     }
1117 
1118     Register klass = rscratch1;
1119     __ load_method_holder(klass, method);
1120     __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/);
1121 
1122     __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
1123 
1124     __ bind(L_skip_barrier);
1125     c2i_no_clinit_check_entry = __ pc();
1126   }
1127 
1128   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1129   bs->c2i_entry_barrier(masm);
1130 
1131   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
1132 
1133   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
1134 }
1135 
1136 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1137                                          VMRegPair *regs,
1138                                          int total_args_passed) {
1139 
1140 // We return the amount of VMRegImpl stack slots we need to reserve for all
1141 // the arguments NOT counting out_preserve_stack_slots.
1142 
1143 // NOTE: These arrays will have to change when c1 is ported
1144 #ifdef _WIN64
1145     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1146       c_rarg0, c_rarg1, c_rarg2, c_rarg3
1147     };
1148     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1149       c_farg0, c_farg1, c_farg2, c_farg3
1150     };
1151 #else
1152     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1153       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
1154     };
1155     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1156       c_farg0, c_farg1, c_farg2, c_farg3,
1157       c_farg4, c_farg5, c_farg6, c_farg7
1158     };
1159 #endif // _WIN64
1160 
1161 
1162     uint int_args = 0;
1163     uint fp_args = 0;
1164     uint stk_args = 0; // inc by 2 each time
1165 
1166     for (int i = 0; i < total_args_passed; i++) {
1167       switch (sig_bt[i]) {
1168       case T_BOOLEAN:
1169       case T_CHAR:
1170       case T_BYTE:
1171       case T_SHORT:
1172       case T_INT:
1173         if (int_args < Argument::n_int_register_parameters_c) {
1174           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
1175 #ifdef _WIN64
1176           fp_args++;
1177           // Allocate slots for callee to stuff register args the stack.
1178           stk_args += 2;
1179 #endif
1180         } else {
1181           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1182           stk_args += 2;
1183         }
1184         break;
1185       case T_LONG:
1186         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1187         // fall through
1188       case T_OBJECT:
1189       case T_ARRAY:
1190       case T_ADDRESS:
1191       case T_METADATA:
1192         if (int_args < Argument::n_int_register_parameters_c) {
1193           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
1194 #ifdef _WIN64
1195           fp_args++;
1196           stk_args += 2;
1197 #endif
1198         } else {
1199           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1200           stk_args += 2;
1201         }
1202         break;
1203       case T_FLOAT:
1204         if (fp_args < Argument::n_float_register_parameters_c) {
1205           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
1206 #ifdef _WIN64
1207           int_args++;
1208           // Allocate slots for callee to stuff register args the stack.
1209           stk_args += 2;
1210 #endif
1211         } else {
1212           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1213           stk_args += 2;
1214         }
1215         break;
1216       case T_DOUBLE:
1217         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1218         if (fp_args < Argument::n_float_register_parameters_c) {
1219           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
1220 #ifdef _WIN64
1221           int_args++;
1222           // Allocate slots for callee to stuff register args the stack.
1223           stk_args += 2;
1224 #endif
1225         } else {
1226           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1227           stk_args += 2;
1228         }
1229         break;
1230       case T_VOID: // Halves of longs and doubles
1231         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
1232         regs[i].set_bad();
1233         break;
1234       default:
1235         ShouldNotReachHere();
1236         break;
1237       }
1238     }
1239 #ifdef _WIN64
1240   // windows abi requires that we always allocate enough stack space
1241   // for 4 64bit registers to be stored down.
1242   if (stk_args < 8) {
1243     stk_args = 8;
1244   }
1245 #endif // _WIN64
1246 
1247   return stk_args;
1248 }
1249 
1250 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
1251                                              uint num_bits,
1252                                              uint total_args_passed) {
1253   assert(num_bits == 64 || num_bits == 128 || num_bits == 256 || num_bits == 512,
1254          "only certain vector sizes are supported for now");
1255 
1256   static const XMMRegister VEC_ArgReg[32] = {
1257      xmm0,  xmm1,  xmm2,  xmm3,  xmm4,  xmm5,  xmm6,  xmm7,
1258      xmm8,  xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15,
1259     xmm16, xmm17, xmm18, xmm19, xmm20, xmm21, xmm22, xmm23,
1260     xmm24, xmm25, xmm26, xmm27, xmm28, xmm29, xmm30, xmm31
1261   };
1262 
1263   uint stk_args = 0;
1264   uint fp_args = 0;
1265 
1266   for (uint i = 0; i < total_args_passed; i++) {
1267     VMReg vmreg = VEC_ArgReg[fp_args++]->as_VMReg();
1268     int next_val = num_bits == 64 ? 1 : (num_bits == 128 ? 3 : (num_bits  == 256 ? 7 : 15));
1269     regs[i].set_pair(vmreg->next(next_val), vmreg);
1270   }
1271 
1272   return stk_args;
1273 }
1274 
1275 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1276   // We always ignore the frame_slots arg and just use the space just below frame pointer
1277   // which by this time is free to use
1278   switch (ret_type) {
1279   case T_FLOAT:
1280     __ movflt(Address(rbp, -wordSize), xmm0);
1281     break;
1282   case T_DOUBLE:
1283     __ movdbl(Address(rbp, -wordSize), xmm0);
1284     break;
1285   case T_VOID:  break;
1286   default: {
1287     __ movptr(Address(rbp, -wordSize), rax);
1288     }
1289   }
1290 }
1291 
1292 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1293   // We always ignore the frame_slots arg and just use the space just below frame pointer
1294   // which by this time is free to use
1295   switch (ret_type) {
1296   case T_FLOAT:
1297     __ movflt(xmm0, Address(rbp, -wordSize));
1298     break;
1299   case T_DOUBLE:
1300     __ movdbl(xmm0, Address(rbp, -wordSize));
1301     break;
1302   case T_VOID:  break;
1303   default: {
1304     __ movptr(rax, Address(rbp, -wordSize));
1305     }
1306   }
1307 }
1308 
1309 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1310     for ( int i = first_arg ; i < arg_count ; i++ ) {
1311       if (args[i].first()->is_Register()) {
1312         __ push(args[i].first()->as_Register());
1313       } else if (args[i].first()->is_XMMRegister()) {
1314         __ subptr(rsp, 2*wordSize);
1315         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1316       }
1317     }
1318 }
1319 
1320 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1321     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1322       if (args[i].first()->is_Register()) {
1323         __ pop(args[i].first()->as_Register());
1324       } else if (args[i].first()->is_XMMRegister()) {
1325         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1326         __ addptr(rsp, 2*wordSize);
1327       }
1328     }
1329 }
1330 
1331 static void verify_oop_args(MacroAssembler* masm,
1332                             const methodHandle& method,
1333                             const BasicType* sig_bt,
1334                             const VMRegPair* regs) {
1335   Register temp_reg = rbx;  // not part of any compiled calling seq
1336   if (VerifyOops) {
1337     for (int i = 0; i < method->size_of_parameters(); i++) {
1338       if (is_reference_type(sig_bt[i])) {
1339         VMReg r = regs[i].first();
1340         assert(r->is_valid(), "bad oop arg");
1341         if (r->is_stack()) {
1342           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1343           __ verify_oop(temp_reg);
1344         } else {
1345           __ verify_oop(r->as_Register());
1346         }
1347       }
1348     }
1349   }
1350 }
1351 
1352 static void check_continuation_enter_argument(VMReg actual_vmreg,
1353                                               Register expected_reg,
1354                                               const char* name) {
1355   assert(!actual_vmreg->is_stack(), "%s cannot be on stack", name);
1356   assert(actual_vmreg->as_Register() == expected_reg,
1357          "%s is in unexpected register: %s instead of %s",
1358          name, actual_vmreg->as_Register()->name(), expected_reg->name());
1359 }
1360 
1361 
1362 //---------------------------- continuation_enter_setup ---------------------------
1363 //
1364 // Arguments:
1365 //   None.
1366 //
1367 // Results:
1368 //   rsp: pointer to blank ContinuationEntry
1369 //
1370 // Kills:
1371 //   rax
1372 //
1373 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) {
1374   assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, "");
1375   assert(in_bytes(ContinuationEntry::cont_offset())  % VMRegImpl::stack_slot_size == 0, "");
1376   assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, "");
1377 
1378   stack_slots += checked_cast<int>(ContinuationEntry::size()) / wordSize;
1379   __ subptr(rsp, checked_cast<int32_t>(ContinuationEntry::size()));
1380 
1381   int frame_size = (checked_cast<int>(ContinuationEntry::size()) + wordSize) / VMRegImpl::stack_slot_size;
1382   OopMap* map = new OopMap(frame_size, 0);
1383 
1384   __ movptr(rax, Address(r15_thread, JavaThread::cont_entry_offset()));
1385   __ movptr(Address(rsp, ContinuationEntry::parent_offset()), rax);
1386   __ movptr(Address(r15_thread, JavaThread::cont_entry_offset()), rsp);
1387 
1388   return map;
1389 }
1390 
1391 //---------------------------- fill_continuation_entry ---------------------------
1392 //
1393 // Arguments:
1394 //   rsp: pointer to blank Continuation entry
1395 //   reg_cont_obj: pointer to the continuation
1396 //   reg_flags: flags
1397 //
1398 // Results:
1399 //   rsp: pointer to filled out ContinuationEntry
1400 //
1401 // Kills:
1402 //   rax
1403 //
1404 static void fill_continuation_entry(MacroAssembler* masm, Register reg_cont_obj, Register reg_flags) {
1405   assert_different_registers(rax, reg_cont_obj, reg_flags);
1406 #ifdef ASSERT
1407   __ movl(Address(rsp, ContinuationEntry::cookie_offset()), ContinuationEntry::cookie_value());
1408 #endif
1409   __ movptr(Address(rsp, ContinuationEntry::cont_offset()), reg_cont_obj);
1410   __ movl  (Address(rsp, ContinuationEntry::flags_offset()), reg_flags);
1411   __ movptr(Address(rsp, ContinuationEntry::chunk_offset()), 0);
1412   __ movl(Address(rsp, ContinuationEntry::argsize_offset()), 0);
1413   __ movl(Address(rsp, ContinuationEntry::pin_count_offset()), 0);
1414 
1415   __ movptr(rax, Address(r15_thread, JavaThread::cont_fastpath_offset()));
1416   __ movptr(Address(rsp, ContinuationEntry::parent_cont_fastpath_offset()), rax);
1417   __ movq(rax, Address(r15_thread, JavaThread::held_monitor_count_offset()));
1418   __ movq(Address(rsp, ContinuationEntry::parent_held_monitor_count_offset()), rax);
1419 
1420   __ movptr(Address(r15_thread, JavaThread::cont_fastpath_offset()), 0);
1421   __ movq(Address(r15_thread, JavaThread::held_monitor_count_offset()), 0);
1422 }
1423 
1424 //---------------------------- continuation_enter_cleanup ---------------------------
1425 //
1426 // Arguments:
1427 //   rsp: pointer to the ContinuationEntry
1428 //
1429 // Results:
1430 //   rsp: pointer to the spilled rbp in the entry frame
1431 //
1432 // Kills:
1433 //   rbx
1434 //
1435 void static continuation_enter_cleanup(MacroAssembler* masm) {
1436 #ifdef ASSERT
1437   Label L_good_sp;
1438   __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
1439   __ jcc(Assembler::equal, L_good_sp);
1440   __ stop("Incorrect rsp at continuation_enter_cleanup");
1441   __ bind(L_good_sp);
1442 #endif
1443   __ movptr(rbx, Address(rsp, ContinuationEntry::parent_cont_fastpath_offset()));
1444   __ movptr(Address(r15_thread, JavaThread::cont_fastpath_offset()), rbx);
1445 
1446   if (CheckJNICalls) {
1447     // Check if this is a virtual thread continuation
1448     Label L_skip_vthread_code;
1449     __ cmpl(Address(rsp, ContinuationEntry::flags_offset()), 0);
1450     __ jcc(Assembler::equal, L_skip_vthread_code);
1451 
1452     // If the held monitor count is > 0 and this vthread is terminating then
1453     // it failed to release a JNI monitor. So we issue the same log message
1454     // that JavaThread::exit does.
1455     __ cmpptr(Address(r15_thread, JavaThread::jni_monitor_count_offset()), 0);
1456     __ jcc(Assembler::equal, L_skip_vthread_code);
1457 
1458     // rax may hold an exception oop, save it before the call
1459     __ push(rax);
1460     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::log_jni_monitor_still_held));
1461     __ pop(rax);
1462 
1463     // For vthreads we have to explicitly zero the JNI monitor count of the carrier
1464     // on termination. The held count is implicitly zeroed below when we restore from
1465     // the parent held count (which has to be zero).
1466     __ movq(Address(r15_thread, JavaThread::jni_monitor_count_offset()), 0);
1467 
1468     __ bind(L_skip_vthread_code);
1469   }
1470 #ifdef ASSERT
1471   else {
1472     // Check if this is a virtual thread continuation
1473     Label L_skip_vthread_code;
1474     __ cmpl(Address(rsp, ContinuationEntry::flags_offset()), 0);
1475     __ jcc(Assembler::equal, L_skip_vthread_code);
1476 
1477     // See comment just above. If not checking JNI calls the JNI count is only
1478     // needed for assertion checking.
1479     __ movq(Address(r15_thread, JavaThread::jni_monitor_count_offset()), 0);
1480 
1481     __ bind(L_skip_vthread_code);
1482   }
1483 #endif
1484 
1485   __ movq(rbx, Address(rsp, ContinuationEntry::parent_held_monitor_count_offset()));
1486   __ movq(Address(r15_thread, JavaThread::held_monitor_count_offset()), rbx);
1487 
1488   __ movptr(rbx, Address(rsp, ContinuationEntry::parent_offset()));
1489   __ movptr(Address(r15_thread, JavaThread::cont_entry_offset()), rbx);
1490   __ addptr(rsp, checked_cast<int32_t>(ContinuationEntry::size()));
1491 }
1492 
1493 static void gen_continuation_enter(MacroAssembler* masm,
1494                                    const VMRegPair* regs,
1495                                    int& exception_offset,
1496                                    OopMapSet* oop_maps,
1497                                    int& frame_complete,
1498                                    int& stack_slots,
1499                                    int& interpreted_entry_offset,
1500                                    int& compiled_entry_offset) {
1501 
1502   // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread)
1503   int pos_cont_obj   = 0;
1504   int pos_is_cont    = 1;
1505   int pos_is_virtual = 2;
1506 
1507   // The platform-specific calling convention may present the arguments in various registers.
1508   // To simplify the rest of the code, we expect the arguments to reside at these known
1509   // registers, and we additionally check the placement here in case calling convention ever
1510   // changes.
1511   Register reg_cont_obj   = c_rarg1;
1512   Register reg_is_cont    = c_rarg2;
1513   Register reg_is_virtual = c_rarg3;
1514 
1515   check_continuation_enter_argument(regs[pos_cont_obj].first(),   reg_cont_obj,   "Continuation object");
1516   check_continuation_enter_argument(regs[pos_is_cont].first(),    reg_is_cont,    "isContinue");
1517   check_continuation_enter_argument(regs[pos_is_virtual].first(), reg_is_virtual, "isVirtualThread");
1518 
1519   // Utility methods kill rax, make sure there are no collisions
1520   assert_different_registers(rax, reg_cont_obj, reg_is_cont, reg_is_virtual);
1521 
1522   AddressLiteral resolve(SharedRuntime::get_resolve_static_call_stub(),
1523                          relocInfo::static_call_type);
1524 
1525   address start = __ pc();
1526 
1527   Label L_thaw, L_exit;
1528 
1529   // i2i entry used at interp_only_mode only
1530   interpreted_entry_offset = __ pc() - start;
1531   {
1532 #ifdef ASSERT
1533     Label is_interp_only;
1534     __ cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0);
1535     __ jcc(Assembler::notEqual, is_interp_only);
1536     __ stop("enterSpecial interpreter entry called when not in interp_only_mode");
1537     __ bind(is_interp_only);
1538 #endif
1539 
1540     __ pop(rax); // return address
1541     // Read interpreter arguments into registers (this is an ad-hoc i2c adapter)
1542     __ movptr(c_rarg1, Address(rsp, Interpreter::stackElementSize*2));
1543     __ movl(c_rarg2,   Address(rsp, Interpreter::stackElementSize*1));
1544     __ movl(c_rarg3,   Address(rsp, Interpreter::stackElementSize*0));
1545     __ andptr(rsp, -16); // Ensure compiled code always sees stack at proper alignment
1546     __ push(rax); // return address
1547     __ push_cont_fastpath();
1548 
1549     __ enter();
1550 
1551     stack_slots = 2; // will be adjusted in setup
1552     OopMap* map = continuation_enter_setup(masm, stack_slots);
1553     // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe,
1554     // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway.
1555 
1556     __ verify_oop(reg_cont_obj);
1557 
1558     fill_continuation_entry(masm, reg_cont_obj, reg_is_virtual);
1559 
1560     // If continuation, call to thaw. Otherwise, resolve the call and exit.
1561     __ testptr(reg_is_cont, reg_is_cont);
1562     __ jcc(Assembler::notZero, L_thaw);
1563 
1564     // --- Resolve path
1565 
1566     // Make sure the call is patchable
1567     __ align(BytesPerWord, __ offset() + NativeCall::displacement_offset);
1568     // Emit stub for static call
1569     address stub = CompiledDirectCall::emit_to_interp_stub(masm, __ pc());
1570     if (stub == nullptr) {
1571       fatal("CodeCache is full at gen_continuation_enter");
1572     }
1573     __ call(resolve);
1574     oop_maps->add_gc_map(__ pc() - start, map);
1575     __ post_call_nop();
1576 
1577     __ jmp(L_exit);
1578   }
1579 
1580   // compiled entry
1581   __ align(CodeEntryAlignment);
1582   compiled_entry_offset = __ pc() - start;
1583   __ enter();
1584 
1585   stack_slots = 2; // will be adjusted in setup
1586   OopMap* map = continuation_enter_setup(masm, stack_slots);
1587 
1588   // Frame is now completed as far as size and linkage.
1589   frame_complete = __ pc() - start;
1590 
1591   __ verify_oop(reg_cont_obj);
1592 
1593   fill_continuation_entry(masm, reg_cont_obj, reg_is_virtual);
1594 
1595   // If isContinue, call to thaw. Otherwise, call Continuation.enter(Continuation c, boolean isContinue)
1596   __ testptr(reg_is_cont, reg_is_cont);
1597   __ jccb(Assembler::notZero, L_thaw);
1598 
1599   // --- call Continuation.enter(Continuation c, boolean isContinue)
1600 
1601   // Make sure the call is patchable
1602   __ align(BytesPerWord, __ offset() + NativeCall::displacement_offset);
1603 
1604   // Emit stub for static call
1605   address stub = CompiledDirectCall::emit_to_interp_stub(masm, __ pc());
1606   if (stub == nullptr) {
1607     fatal("CodeCache is full at gen_continuation_enter");
1608   }
1609 
1610   // The call needs to be resolved. There's a special case for this in
1611   // SharedRuntime::find_callee_info_helper() which calls
1612   // LinkResolver::resolve_continuation_enter() which resolves the call to
1613   // Continuation.enter(Continuation c, boolean isContinue).
1614   __ call(resolve);
1615 
1616   oop_maps->add_gc_map(__ pc() - start, map);
1617   __ post_call_nop();
1618 
1619   __ jmpb(L_exit);
1620 
1621   // --- Thawing path
1622 
1623   __ bind(L_thaw);
1624 
1625   __ call(RuntimeAddress(StubRoutines::cont_thaw()));
1626 
1627   ContinuationEntry::_return_pc_offset = __ pc() - start;
1628   oop_maps->add_gc_map(__ pc() - start, map->deep_copy());
1629   __ post_call_nop();
1630 
1631   // --- Normal exit (resolve/thawing)
1632 
1633   __ bind(L_exit);
1634 
1635   continuation_enter_cleanup(masm);
1636   __ pop(rbp);
1637   __ ret(0);
1638 
1639   // --- Exception handling path
1640 
1641   exception_offset = __ pc() - start;
1642 
1643   continuation_enter_cleanup(masm);
1644   __ pop(rbp);
1645 
1646   __ movptr(c_rarg0, r15_thread);
1647   __ movptr(c_rarg1, Address(rsp, 0)); // return address
1648 
1649   // rax still holds the original exception oop, save it before the call
1650   __ push(rax);
1651 
1652   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2);
1653   __ movptr(rbx, rax);
1654 
1655   // Continue at exception handler:
1656   //   rax: exception oop
1657   //   rbx: exception handler
1658   //   rdx: exception pc
1659   __ pop(rax);
1660   __ verify_oop(rax);
1661   __ pop(rdx);
1662   __ jmp(rbx);
1663 }
1664 
1665 static void gen_continuation_yield(MacroAssembler* masm,
1666                                    const VMRegPair* regs,
1667                                    OopMapSet* oop_maps,
1668                                    int& frame_complete,
1669                                    int& stack_slots,
1670                                    int& compiled_entry_offset) {
1671   enum layout {
1672     rbp_off,
1673     rbpH_off,
1674     return_off,
1675     return_off2,
1676     framesize // inclusive of return address
1677   };
1678   stack_slots = framesize /  VMRegImpl::slots_per_word;
1679   assert(stack_slots == 2, "recheck layout");
1680 
1681   address start = __ pc();
1682   compiled_entry_offset = __ pc() - start;
1683   __ enter();
1684   address the_pc = __ pc();
1685 
1686   frame_complete = the_pc - start;
1687 
1688   // This nop must be exactly at the PC we push into the frame info.
1689   // We use this nop for fast CodeBlob lookup, associate the OopMap
1690   // with it right away.
1691   __ post_call_nop();
1692   OopMap* map = new OopMap(framesize, 1);
1693   oop_maps->add_gc_map(frame_complete, map);
1694 
1695   __ set_last_Java_frame(rsp, rbp, the_pc, rscratch1);
1696   __ movptr(c_rarg0, r15_thread);
1697   __ movptr(c_rarg1, rsp);
1698   __ call_VM_leaf(Continuation::freeze_entry(), 2);
1699   __ reset_last_Java_frame(true);
1700 
1701   Label L_pinned;
1702 
1703   __ testptr(rax, rax);
1704   __ jcc(Assembler::notZero, L_pinned);
1705 
1706   __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
1707   continuation_enter_cleanup(masm);
1708   __ pop(rbp);
1709   __ ret(0);
1710 
1711   __ bind(L_pinned);
1712 
1713   // Pinned, return to caller
1714 
1715   // handle pending exception thrown by freeze
1716   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
1717   Label ok;
1718   __ jcc(Assembler::equal, ok);
1719   __ leave();
1720   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1721   __ bind(ok);
1722 
1723   __ leave();
1724   __ ret(0);
1725 }
1726 
1727 static void gen_special_dispatch(MacroAssembler* masm,
1728                                  const methodHandle& method,
1729                                  const BasicType* sig_bt,
1730                                  const VMRegPair* regs) {
1731   verify_oop_args(masm, method, sig_bt, regs);
1732   vmIntrinsics::ID iid = method->intrinsic_id();
1733 
1734   // Now write the args into the outgoing interpreter space
1735   bool     has_receiver   = false;
1736   Register receiver_reg   = noreg;
1737   int      member_arg_pos = -1;
1738   Register member_reg     = noreg;
1739   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1740   if (ref_kind != 0) {
1741     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1742     member_reg = rbx;  // known to be free at this point
1743     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1744   } else if (iid == vmIntrinsics::_invokeBasic) {
1745     has_receiver = true;
1746   } else if (iid == vmIntrinsics::_linkToNative) {
1747     member_arg_pos = method->size_of_parameters() - 1;  // trailing NativeEntryPoint argument
1748     member_reg = rbx;  // known to be free at this point
1749   } else {
1750     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1751   }
1752 
1753   if (member_reg != noreg) {
1754     // Load the member_arg into register, if necessary.
1755     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1756     VMReg r = regs[member_arg_pos].first();
1757     if (r->is_stack()) {
1758       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1759     } else {
1760       // no data motion is needed
1761       member_reg = r->as_Register();
1762     }
1763   }
1764 
1765   if (has_receiver) {
1766     // Make sure the receiver is loaded into a register.
1767     assert(method->size_of_parameters() > 0, "oob");
1768     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1769     VMReg r = regs[0].first();
1770     assert(r->is_valid(), "bad receiver arg");
1771     if (r->is_stack()) {
1772       // Porting note:  This assumes that compiled calling conventions always
1773       // pass the receiver oop in a register.  If this is not true on some
1774       // platform, pick a temp and load the receiver from stack.
1775       fatal("receiver always in a register");
1776       receiver_reg = j_rarg0;  // known to be free at this point
1777       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1778     } else {
1779       // no data motion is needed
1780       receiver_reg = r->as_Register();
1781     }
1782   }
1783 
1784   // Figure out which address we are really jumping to:
1785   MethodHandles::generate_method_handle_dispatch(masm, iid,
1786                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1787 }
1788 
1789 // ---------------------------------------------------------------------------
1790 // Generate a native wrapper for a given method.  The method takes arguments
1791 // in the Java compiled code convention, marshals them to the native
1792 // convention (handlizes oops, etc), transitions to native, makes the call,
1793 // returns to java state (possibly blocking), unhandlizes any result and
1794 // returns.
1795 //
1796 // Critical native functions are a shorthand for the use of
1797 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1798 // functions.  The wrapper is expected to unpack the arguments before
1799 // passing them to the callee. Critical native functions leave the state _in_Java,
1800 // since they cannot stop for GC.
1801 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
1802 // block and the check for pending exceptions it's impossible for them
1803 // to be thrown.
1804 //
1805 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1806                                                 const methodHandle& method,
1807                                                 int compile_id,
1808                                                 BasicType* in_sig_bt,
1809                                                 VMRegPair* in_regs,
1810                                                 BasicType ret_type) {
1811   if (method->is_continuation_native_intrinsic()) {
1812     int exception_offset = -1;
1813     OopMapSet* oop_maps = new OopMapSet();
1814     int frame_complete = -1;
1815     int stack_slots = -1;
1816     int interpreted_entry_offset = -1;
1817     int vep_offset = -1;
1818     if (method->is_continuation_enter_intrinsic()) {
1819       gen_continuation_enter(masm,
1820                              in_regs,
1821                              exception_offset,
1822                              oop_maps,
1823                              frame_complete,
1824                              stack_slots,
1825                              interpreted_entry_offset,
1826                              vep_offset);
1827     } else if (method->is_continuation_yield_intrinsic()) {
1828       gen_continuation_yield(masm,
1829                              in_regs,
1830                              oop_maps,
1831                              frame_complete,
1832                              stack_slots,
1833                              vep_offset);
1834     } else {
1835       guarantee(false, "Unknown Continuation native intrinsic");
1836     }
1837 
1838 #ifdef ASSERT
1839     if (method->is_continuation_enter_intrinsic()) {
1840       assert(interpreted_entry_offset != -1, "Must be set");
1841       assert(exception_offset != -1,         "Must be set");
1842     } else {
1843       assert(interpreted_entry_offset == -1, "Must be unset");
1844       assert(exception_offset == -1,         "Must be unset");
1845     }
1846     assert(frame_complete != -1,    "Must be set");
1847     assert(stack_slots != -1,       "Must be set");
1848     assert(vep_offset != -1,        "Must be set");
1849 #endif
1850 
1851     __ flush();
1852     nmethod* nm = nmethod::new_native_nmethod(method,
1853                                               compile_id,
1854                                               masm->code(),
1855                                               vep_offset,
1856                                               frame_complete,
1857                                               stack_slots,
1858                                               in_ByteSize(-1),
1859                                               in_ByteSize(-1),
1860                                               oop_maps,
1861                                               exception_offset);
1862     if (nm == nullptr) return nm;
1863     if (method->is_continuation_enter_intrinsic()) {
1864       ContinuationEntry::set_enter_code(nm, interpreted_entry_offset);
1865     } else if (method->is_continuation_yield_intrinsic()) {
1866       _cont_doYield_stub = nm;
1867     }
1868     return nm;
1869   }
1870 
1871   if (method->is_method_handle_intrinsic()) {
1872     vmIntrinsics::ID iid = method->intrinsic_id();
1873     intptr_t start = (intptr_t)__ pc();
1874     int vep_offset = ((intptr_t)__ pc()) - start;
1875     gen_special_dispatch(masm,
1876                          method,
1877                          in_sig_bt,
1878                          in_regs);
1879     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1880     __ flush();
1881     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1882     return nmethod::new_native_nmethod(method,
1883                                        compile_id,
1884                                        masm->code(),
1885                                        vep_offset,
1886                                        frame_complete,
1887                                        stack_slots / VMRegImpl::slots_per_word,
1888                                        in_ByteSize(-1),
1889                                        in_ByteSize(-1),
1890                                        nullptr);
1891   }
1892   address native_func = method->native_function();
1893   assert(native_func != nullptr, "must have function");
1894 
1895   // An OopMap for lock (and class if static)
1896   OopMapSet *oop_maps = new OopMapSet();
1897   intptr_t start = (intptr_t)__ pc();
1898 
1899   // We have received a description of where all the java arg are located
1900   // on entry to the wrapper. We need to convert these args to where
1901   // the jni function will expect them. To figure out where they go
1902   // we convert the java signature to a C signature by inserting
1903   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1904 
1905   const int total_in_args = method->size_of_parameters();
1906   int total_c_args = total_in_args + (method->is_static() ? 2 : 1);
1907 
1908   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1909   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1910   BasicType* in_elem_bt = nullptr;
1911 
1912   int argc = 0;
1913   out_sig_bt[argc++] = T_ADDRESS;
1914   if (method->is_static()) {
1915     out_sig_bt[argc++] = T_OBJECT;
1916   }
1917 
1918   for (int i = 0; i < total_in_args ; i++ ) {
1919     out_sig_bt[argc++] = in_sig_bt[i];
1920   }
1921 
1922   // Now figure out where the args must be stored and how much stack space
1923   // they require.
1924   int out_arg_slots;
1925   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1926 
1927   // Compute framesize for the wrapper.  We need to handlize all oops in
1928   // incoming registers
1929 
1930   // Calculate the total number of stack slots we will need.
1931 
1932   // First count the abi requirement plus all of the outgoing args
1933   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1934 
1935   // Now the space for the inbound oop handle area
1936   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
1937 
1938   int oop_handle_offset = stack_slots;
1939   stack_slots += total_save_slots;
1940 
1941   // Now any space we need for handlizing a klass if static method
1942 
1943   int klass_slot_offset = 0;
1944   int klass_offset = -1;
1945   int lock_slot_offset = 0;
1946   bool is_static = false;
1947 
1948   if (method->is_static()) {
1949     klass_slot_offset = stack_slots;
1950     stack_slots += VMRegImpl::slots_per_word;
1951     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1952     is_static = true;
1953   }
1954 
1955   // Plus a lock if needed
1956 
1957   if (method->is_synchronized()) {
1958     lock_slot_offset = stack_slots;
1959     stack_slots += VMRegImpl::slots_per_word;
1960   }
1961 
1962   // Now a place (+2) to save return values or temp during shuffling
1963   // + 4 for return address (which we own) and saved rbp
1964   stack_slots += 6;
1965 
1966   // Ok The space we have allocated will look like:
1967   //
1968   //
1969   // FP-> |                     |
1970   //      |---------------------|
1971   //      | 2 slots for moves   |
1972   //      |---------------------|
1973   //      | lock box (if sync)  |
1974   //      |---------------------| <- lock_slot_offset
1975   //      | klass (if static)   |
1976   //      |---------------------| <- klass_slot_offset
1977   //      | oopHandle area      |
1978   //      |---------------------| <- oop_handle_offset (6 java arg registers)
1979   //      | outbound memory     |
1980   //      | based arguments     |
1981   //      |                     |
1982   //      |---------------------|
1983   //      |                     |
1984   // SP-> | out_preserved_slots |
1985   //
1986   //
1987 
1988 
1989   // Now compute actual number of stack words we need rounding to make
1990   // stack properly aligned.
1991   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1992 
1993   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1994 
1995   // First thing make an ic check to see if we should even be here
1996 
1997   // We are free to use all registers as temps without saving them and
1998   // restoring them except rbp. rbp is the only callee save register
1999   // as far as the interpreter and the compiler(s) are concerned.
2000 
2001   const Register receiver = j_rarg0;
2002 
2003   Label exception_pending;
2004 
2005   assert_different_registers(receiver, rscratch1, rscratch2);
2006   __ verify_oop(receiver);
2007   __ ic_check(8 /* end_alignment */);
2008 
2009   int vep_offset = ((intptr_t)__ pc()) - start;
2010 
2011   if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
2012     Label L_skip_barrier;
2013     Register klass = r10;
2014     __ mov_metadata(klass, method->method_holder()); // InstanceKlass*
2015     __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/);
2016 
2017     __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
2018 
2019     __ bind(L_skip_barrier);
2020   }
2021 
2022 #ifdef COMPILER1
2023   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
2024   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
2025     inline_check_hashcode_from_object_header(masm, method, j_rarg0 /*obj_reg*/, rax /*result*/);
2026   }
2027 #endif // COMPILER1
2028 
2029   // The instruction at the verified entry point must be 5 bytes or longer
2030   // because it can be patched on the fly by make_non_entrant. The stack bang
2031   // instruction fits that requirement.
2032 
2033   // Generate stack overflow check
2034   __ bang_stack_with_offset((int)StackOverflow::stack_shadow_zone_size());
2035 
2036   // Generate a new frame for the wrapper.
2037   __ enter();
2038   // -2 because return address is already present and so is saved rbp
2039   __ subptr(rsp, stack_size - 2*wordSize);
2040 
2041   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2042   // native wrapper is not hot enough to micro optimize the nmethod entry barrier with an out-of-line stub
2043   bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */);
2044 
2045   // Frame is now completed as far as size and linkage.
2046   int frame_complete = ((intptr_t)__ pc()) - start;
2047 
2048 #ifdef ASSERT
2049   __ check_stack_alignment(rsp, "improperly aligned stack");
2050 #endif /* ASSERT */
2051 
2052 
2053   // We use r14 as the oop handle for the receiver/klass
2054   // It is callee save so it survives the call to native
2055 
2056   const Register oop_handle_reg = r14;
2057 
2058   //
2059   // We immediately shuffle the arguments so that any vm call we have to
2060   // make from here on out (sync slow path, jvmti, etc.) we will have
2061   // captured the oops from our caller and have a valid oopMap for
2062   // them.
2063 
2064   // -----------------
2065   // The Grand Shuffle
2066 
2067   // The Java calling convention is either equal (linux) or denser (win64) than the
2068   // c calling convention. However the because of the jni_env argument the c calling
2069   // convention always has at least one more (and two for static) arguments than Java.
2070   // Therefore if we move the args from java -> c backwards then we will never have
2071   // a register->register conflict and we don't have to build a dependency graph
2072   // and figure out how to break any cycles.
2073   //
2074 
2075   // Record esp-based slot for receiver on stack for non-static methods
2076   int receiver_offset = -1;
2077 
2078   // This is a trick. We double the stack slots so we can claim
2079   // the oops in the caller's frame. Since we are sure to have
2080   // more args than the caller doubling is enough to make
2081   // sure we can capture all the incoming oop args from the
2082   // caller.
2083   //
2084   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2085 
2086   // Mark location of rbp (someday)
2087   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2088 
2089   // Use eax, ebx as temporaries during any memory-memory moves we have to do
2090   // All inbound args are referenced based on rbp and all outbound args via rsp.
2091 
2092 
2093 #ifdef ASSERT
2094   bool reg_destroyed[Register::number_of_registers];
2095   bool freg_destroyed[XMMRegister::number_of_registers];
2096   for ( int r = 0 ; r < Register::number_of_registers ; r++ ) {
2097     reg_destroyed[r] = false;
2098   }
2099   for ( int f = 0 ; f < XMMRegister::number_of_registers ; f++ ) {
2100     freg_destroyed[f] = false;
2101   }
2102 
2103 #endif /* ASSERT */
2104 
2105   // For JNI natives the incoming and outgoing registers are offset upwards.
2106   GrowableArray<int> arg_order(2 * total_in_args);
2107 
2108   VMRegPair tmp_vmreg;
2109   tmp_vmreg.set2(rbx->as_VMReg());
2110 
2111   for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2112     arg_order.push(i);
2113     arg_order.push(c_arg);
2114   }
2115 
2116   int temploc = -1;
2117   for (int ai = 0; ai < arg_order.length(); ai += 2) {
2118     int i = arg_order.at(ai);
2119     int c_arg = arg_order.at(ai + 1);
2120     __ block_comment(err_msg("move %d -> %d", i, c_arg));
2121 #ifdef ASSERT
2122     if (in_regs[i].first()->is_Register()) {
2123       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2124     } else if (in_regs[i].first()->is_XMMRegister()) {
2125       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2126     }
2127     if (out_regs[c_arg].first()->is_Register()) {
2128       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2129     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2130       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2131     }
2132 #endif /* ASSERT */
2133     switch (in_sig_bt[i]) {
2134       case T_ARRAY:
2135       case T_OBJECT:
2136         __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2137                     ((i == 0) && (!is_static)),
2138                     &receiver_offset);
2139         break;
2140       case T_VOID:
2141         break;
2142 
2143       case T_FLOAT:
2144         __ float_move(in_regs[i], out_regs[c_arg]);
2145           break;
2146 
2147       case T_DOUBLE:
2148         assert( i + 1 < total_in_args &&
2149                 in_sig_bt[i + 1] == T_VOID &&
2150                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2151         __ double_move(in_regs[i], out_regs[c_arg]);
2152         break;
2153 
2154       case T_LONG :
2155         __ long_move(in_regs[i], out_regs[c_arg]);
2156         break;
2157 
2158       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2159 
2160       default:
2161         __ move32_64(in_regs[i], out_regs[c_arg]);
2162     }
2163   }
2164 
2165   int c_arg;
2166 
2167   // Pre-load a static method's oop into r14.  Used both by locking code and
2168   // the normal JNI call code.
2169   // point c_arg at the first arg that is already loaded in case we
2170   // need to spill before we call out
2171   c_arg = total_c_args - total_in_args;
2172 
2173   if (method->is_static()) {
2174 
2175     //  load oop into a register
2176     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2177 
2178     // Now handlize the static class mirror it's known not-null.
2179     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2180     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2181 
2182     // Now get the handle
2183     __ lea(oop_handle_reg, Address(rsp, klass_offset));
2184     // store the klass handle as second argument
2185     __ movptr(c_rarg1, oop_handle_reg);
2186     // and protect the arg if we must spill
2187     c_arg--;
2188   }
2189 
2190   // Change state to native (we save the return address in the thread, since it might not
2191   // be pushed on the stack when we do a stack traversal). It is enough that the pc()
2192   // points into the right code segment. It does not have to be the correct return pc.
2193   // We use the same pc/oopMap repeatedly when we call out
2194 
2195   intptr_t the_pc = (intptr_t) __ pc();
2196   oop_maps->add_gc_map(the_pc - start, map);
2197 
2198   __ set_last_Java_frame(rsp, noreg, (address)the_pc, rscratch1);
2199 
2200 
2201   // We have all of the arguments setup at this point. We must not touch any register
2202   // argument registers at this point (what if we save/restore them there are no oop?
2203 
2204   if (DTraceMethodProbes) {
2205     // protect the args we've loaded
2206     save_args(masm, total_c_args, c_arg, out_regs);
2207     __ mov_metadata(c_rarg1, method());
2208     __ call_VM_leaf(
2209       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2210       r15_thread, c_rarg1);
2211     restore_args(masm, total_c_args, c_arg, out_regs);
2212   }
2213 
2214   // RedefineClasses() tracing support for obsolete method entry
2215   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2216     // protect the args we've loaded
2217     save_args(masm, total_c_args, c_arg, out_regs);
2218     __ mov_metadata(c_rarg1, method());
2219     __ call_VM_leaf(
2220       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2221       r15_thread, c_rarg1);
2222     restore_args(masm, total_c_args, c_arg, out_regs);
2223   }
2224 
2225   // Lock a synchronized method
2226 
2227   // Register definitions used by locking and unlocking
2228 
2229   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2230   const Register obj_reg  = rbx;  // Will contain the oop
2231   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2232   const Register old_hdr  = r13;  // value of old header at unlock time
2233 
2234   Label slow_path_lock;
2235   Label lock_done;
2236 
2237   if (method->is_synchronized()) {
2238     Label count_mon;
2239 
2240     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2241 
2242     // Get the handle (the 2nd argument)
2243     __ mov(oop_handle_reg, c_rarg1);
2244 
2245     // Get address of the box
2246 
2247     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2248 
2249     // Load the oop from the handle
2250     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2251 
2252     if (LockingMode == LM_MONITOR) {
2253       __ jmp(slow_path_lock);
2254     } else if (LockingMode == LM_LEGACY) {
2255       // Load immediate 1 into swap_reg %rax
2256       __ movl(swap_reg, 1);
2257 
2258       // Load (object->mark() | 1) into swap_reg %rax
2259       __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2260 
2261       // Save (object->mark() | 1) into BasicLock's displaced header
2262       __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2263 
2264       // src -> dest iff dest == rax else rax <- dest
2265       __ lock();
2266       __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2267       __ jcc(Assembler::equal, count_mon);
2268 
2269       // Hmm should this move to the slow path code area???
2270 
2271       // Test if the oopMark is an obvious stack pointer, i.e.,
2272       //  1) (mark & 3) == 0, and
2273       //  2) rsp <= mark < mark + os::pagesize()
2274       // These 3 tests can be done by evaluating the following
2275       // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2276       // assuming both stack pointer and pagesize have their
2277       // least significant 2 bits clear.
2278       // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2279 
2280       __ subptr(swap_reg, rsp);
2281       __ andptr(swap_reg, 3 - (int)os::vm_page_size());
2282 
2283       // Save the test result, for recursive case, the result is zero
2284       __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2285       __ jcc(Assembler::notEqual, slow_path_lock);
2286     } else {
2287       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
2288       __ lightweight_lock(obj_reg, swap_reg, r15_thread, rscratch1, slow_path_lock);
2289     }
2290     __ bind(count_mon);
2291     __ inc_held_monitor_count();
2292 
2293     // Slow path will re-enter here
2294     __ bind(lock_done);
2295   }
2296 
2297   // Finally just about ready to make the JNI call
2298 
2299   // get JNIEnv* which is first argument to native
2300   __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2301 
2302   // Now set thread in native
2303   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2304 
2305   __ call(RuntimeAddress(native_func));
2306 
2307   // Verify or restore cpu control state after JNI call
2308   __ restore_cpu_control_state_after_jni(rscratch1);
2309 
2310   // Unpack native results.
2311   switch (ret_type) {
2312   case T_BOOLEAN: __ c2bool(rax);            break;
2313   case T_CHAR   : __ movzwl(rax, rax);      break;
2314   case T_BYTE   : __ sign_extend_byte (rax); break;
2315   case T_SHORT  : __ sign_extend_short(rax); break;
2316   case T_INT    : /* nothing to do */        break;
2317   case T_DOUBLE :
2318   case T_FLOAT  :
2319     // Result is in xmm0 we'll save as needed
2320     break;
2321   case T_ARRAY:                 // Really a handle
2322   case T_OBJECT:                // Really a handle
2323       break; // can't de-handlize until after safepoint check
2324   case T_VOID: break;
2325   case T_LONG: break;
2326   default       : ShouldNotReachHere();
2327   }
2328 
2329   Label after_transition;
2330 
2331   // Switch thread to "native transition" state before reading the synchronization state.
2332   // This additional state is necessary because reading and testing the synchronization
2333   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2334   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2335   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2336   //     Thread A is resumed to finish this native method, but doesn't block here since it
2337   //     didn't see any synchronization is progress, and escapes.
2338   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2339 
2340   // Force this write out before the read below
2341   if (!UseSystemMemoryBarrier) {
2342     __ membar(Assembler::Membar_mask_bits(
2343               Assembler::LoadLoad | Assembler::LoadStore |
2344               Assembler::StoreLoad | Assembler::StoreStore));
2345   }
2346 
2347   // check for safepoint operation in progress and/or pending suspend requests
2348   {
2349     Label Continue;
2350     Label slow_path;
2351 
2352     __ safepoint_poll(slow_path, r15_thread, true /* at_return */, false /* in_nmethod */);
2353 
2354     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2355     __ jcc(Assembler::equal, Continue);
2356     __ bind(slow_path);
2357 
2358     // Don't use call_VM as it will see a possible pending exception and forward it
2359     // and never return here preventing us from clearing _last_native_pc down below.
2360     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2361     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2362     // by hand.
2363     //
2364     __ vzeroupper();
2365     save_native_result(masm, ret_type, stack_slots);
2366     __ mov(c_rarg0, r15_thread);
2367     __ mov(r12, rsp); // remember sp
2368     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2369     __ andptr(rsp, -16); // align stack as required by ABI
2370     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2371     __ mov(rsp, r12); // restore sp
2372     __ reinit_heapbase();
2373     // Restore any method result value
2374     restore_native_result(masm, ret_type, stack_slots);
2375     __ bind(Continue);
2376   }
2377 
2378   // change thread state
2379   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2380   __ bind(after_transition);
2381 
2382   Label reguard;
2383   Label reguard_done;
2384   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_yellow_reserved_disabled);
2385   __ jcc(Assembler::equal, reguard);
2386   __ bind(reguard_done);
2387 
2388   // native result if any is live
2389 
2390   // Unlock
2391   Label slow_path_unlock;
2392   Label unlock_done;
2393   if (method->is_synchronized()) {
2394 
2395     Label fast_done;
2396 
2397     // Get locked oop from the handle we passed to jni
2398     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2399 
2400     if (LockingMode == LM_LEGACY) {
2401       Label not_recur;
2402       // Simple recursive lock?
2403       __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), NULL_WORD);
2404       __ jcc(Assembler::notEqual, not_recur);
2405       __ dec_held_monitor_count();
2406       __ jmpb(fast_done);
2407       __ bind(not_recur);
2408     }
2409 
2410     // Must save rax if it is live now because cmpxchg must use it
2411     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2412       save_native_result(masm, ret_type, stack_slots);
2413     }
2414 
2415     if (LockingMode == LM_MONITOR) {
2416       __ jmp(slow_path_unlock);
2417     } else if (LockingMode == LM_LEGACY) {
2418       // get address of the stack lock
2419       __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2420       //  get old displaced header
2421       __ movptr(old_hdr, Address(rax, 0));
2422 
2423       // Atomic swap old header if oop still contains the stack lock
2424       __ lock();
2425       __ cmpxchgptr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2426       __ jcc(Assembler::notEqual, slow_path_unlock);
2427       __ dec_held_monitor_count();
2428     } else {
2429       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
2430       __ lightweight_unlock(obj_reg, swap_reg, r15_thread, lock_reg, slow_path_unlock);
2431       __ dec_held_monitor_count();
2432     }
2433 
2434     // slow path re-enters here
2435     __ bind(unlock_done);
2436     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2437       restore_native_result(masm, ret_type, stack_slots);
2438     }
2439 
2440     __ bind(fast_done);
2441   }
2442   if (DTraceMethodProbes) {
2443     save_native_result(masm, ret_type, stack_slots);
2444     __ mov_metadata(c_rarg1, method());
2445     __ call_VM_leaf(
2446          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2447          r15_thread, c_rarg1);
2448     restore_native_result(masm, ret_type, stack_slots);
2449   }
2450 
2451   __ reset_last_Java_frame(false);
2452 
2453   // Unbox oop result, e.g. JNIHandles::resolve value.
2454   if (is_reference_type(ret_type)) {
2455     __ resolve_jobject(rax /* value */,
2456                        r15_thread /* thread */,
2457                        rcx /* tmp */);
2458   }
2459 
2460   if (CheckJNICalls) {
2461     // clear_pending_jni_exception_check
2462     __ movptr(Address(r15_thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
2463   }
2464 
2465   // reset handle block
2466   __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2467   __ movl(Address(rcx, JNIHandleBlock::top_offset()), NULL_WORD);
2468 
2469   // pop our frame
2470 
2471   __ leave();
2472 
2473   // Any exception pending?
2474   __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2475   __ jcc(Assembler::notEqual, exception_pending);
2476 
2477   // Return
2478 
2479   __ ret(0);
2480 
2481   // Unexpected paths are out of line and go here
2482 
2483   // forward the exception
2484   __ bind(exception_pending);
2485 
2486   // and forward the exception
2487   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2488 
2489   // Slow path locking & unlocking
2490   if (method->is_synchronized()) {
2491 
2492     // BEGIN Slow path lock
2493     __ bind(slow_path_lock);
2494 
2495     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2496     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2497 
2498     // protect the args we've loaded
2499     save_args(masm, total_c_args, c_arg, out_regs);
2500 
2501     __ mov(c_rarg0, obj_reg);
2502     __ mov(c_rarg1, lock_reg);
2503     __ mov(c_rarg2, r15_thread);
2504 
2505     // Not a leaf but we have last_Java_frame setup as we want
2506     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2507     restore_args(masm, total_c_args, c_arg, out_regs);
2508 
2509 #ifdef ASSERT
2510     { Label L;
2511     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2512     __ jcc(Assembler::equal, L);
2513     __ stop("no pending exception allowed on exit from monitorenter");
2514     __ bind(L);
2515     }
2516 #endif
2517     __ jmp(lock_done);
2518 
2519     // END Slow path lock
2520 
2521     // BEGIN Slow path unlock
2522     __ bind(slow_path_unlock);
2523 
2524     // If we haven't already saved the native result we must save it now as xmm registers
2525     // are still exposed.
2526     __ vzeroupper();
2527     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2528       save_native_result(masm, ret_type, stack_slots);
2529     }
2530 
2531     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2532 
2533     __ mov(c_rarg0, obj_reg);
2534     __ mov(c_rarg2, r15_thread);
2535     __ mov(r12, rsp); // remember sp
2536     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2537     __ andptr(rsp, -16); // align stack as required by ABI
2538 
2539     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2540     // NOTE that obj_reg == rbx currently
2541     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2542     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2543 
2544     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2545     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2546     __ mov(rsp, r12); // restore sp
2547     __ reinit_heapbase();
2548 #ifdef ASSERT
2549     {
2550       Label L;
2551       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2552       __ jcc(Assembler::equal, L);
2553       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2554       __ bind(L);
2555     }
2556 #endif /* ASSERT */
2557 
2558     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2559 
2560     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2561       restore_native_result(masm, ret_type, stack_slots);
2562     }
2563     __ jmp(unlock_done);
2564 
2565     // END Slow path unlock
2566 
2567   } // synchronized
2568 
2569   // SLOW PATH Reguard the stack if needed
2570 
2571   __ bind(reguard);
2572   __ vzeroupper();
2573   save_native_result(masm, ret_type, stack_slots);
2574   __ mov(r12, rsp); // remember sp
2575   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2576   __ andptr(rsp, -16); // align stack as required by ABI
2577   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2578   __ mov(rsp, r12); // restore sp
2579   __ reinit_heapbase();
2580   restore_native_result(masm, ret_type, stack_slots);
2581   // and continue
2582   __ jmp(reguard_done);
2583 
2584 
2585 
2586   __ flush();
2587 
2588   nmethod *nm = nmethod::new_native_nmethod(method,
2589                                             compile_id,
2590                                             masm->code(),
2591                                             vep_offset,
2592                                             frame_complete,
2593                                             stack_slots / VMRegImpl::slots_per_word,
2594                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2595                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2596                                             oop_maps);
2597 
2598   return nm;
2599 }
2600 
2601 // this function returns the adjust size (in number of words) to a c2i adapter
2602 // activation for use during deoptimization
2603 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2604   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2605 }
2606 
2607 
2608 uint SharedRuntime::out_preserve_stack_slots() {
2609   return 0;
2610 }
2611 
2612 
2613 // Number of stack slots between incoming argument block and the start of
2614 // a new frame.  The PROLOG must add this many slots to the stack.  The
2615 // EPILOG must remove this many slots.  amd64 needs two slots for
2616 // return address.
2617 uint SharedRuntime::in_preserve_stack_slots() {
2618   return 4 + 2 * VerifyStackAtCalls;
2619 }
2620 
2621 //------------------------------generate_deopt_blob----------------------------
2622 void SharedRuntime::generate_deopt_blob() {
2623   // Allocate space for the code
2624   ResourceMark rm;
2625   // Setup code generation tools
2626   int pad = 0;
2627   if (UseAVX > 2) {
2628     pad += 1024;
2629   }
2630   if (UseAPX) {
2631     pad += 1024;
2632   }
2633 #if INCLUDE_JVMCI
2634   if (EnableJVMCI) {
2635     pad += 512; // Increase the buffer size when compiling for JVMCI
2636   }
2637 #endif
2638   CodeBuffer buffer("deopt_blob", 2560+pad, 1024);
2639   MacroAssembler* masm = new MacroAssembler(&buffer);
2640   int frame_size_in_words;
2641   OopMap* map = nullptr;
2642   OopMapSet *oop_maps = new OopMapSet();
2643 
2644   // -------------
2645   // This code enters when returning to a de-optimized nmethod.  A return
2646   // address has been pushed on the stack, and return values are in
2647   // registers.
2648   // If we are doing a normal deopt then we were called from the patched
2649   // nmethod from the point we returned to the nmethod. So the return
2650   // address on the stack is wrong by NativeCall::instruction_size
2651   // We will adjust the value so it looks like we have the original return
2652   // address on the stack (like when we eagerly deoptimized).
2653   // In the case of an exception pending when deoptimizing, we enter
2654   // with a return address on the stack that points after the call we patched
2655   // into the exception handler. We have the following register state from,
2656   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2657   //    rax: exception oop
2658   //    rbx: exception handler
2659   //    rdx: throwing pc
2660   // So in this case we simply jam rdx into the useless return address and
2661   // the stack looks just like we want.
2662   //
2663   // At this point we need to de-opt.  We save the argument return
2664   // registers.  We call the first C routine, fetch_unroll_info().  This
2665   // routine captures the return values and returns a structure which
2666   // describes the current frame size and the sizes of all replacement frames.
2667   // The current frame is compiled code and may contain many inlined
2668   // functions, each with their own JVM state.  We pop the current frame, then
2669   // push all the new frames.  Then we call the C routine unpack_frames() to
2670   // populate these frames.  Finally unpack_frames() returns us the new target
2671   // address.  Notice that callee-save registers are BLOWN here; they have
2672   // already been captured in the vframeArray at the time the return PC was
2673   // patched.
2674   address start = __ pc();
2675   Label cont;
2676 
2677   // Prolog for non exception case!
2678 
2679   // Save everything in sight.
2680   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, /*save_wide_vectors*/ true);
2681 
2682   // Normal deoptimization.  Save exec mode for unpack_frames.
2683   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
2684   __ jmp(cont);
2685 
2686   int reexecute_offset = __ pc() - start;
2687 #if INCLUDE_JVMCI && !defined(COMPILER1)
2688   if (EnableJVMCI && UseJVMCICompiler) {
2689     // JVMCI does not use this kind of deoptimization
2690     __ should_not_reach_here();
2691   }
2692 #endif
2693 
2694   // Reexecute case
2695   // return address is the pc describes what bci to do re-execute at
2696 
2697   // No need to update map as each call to save_live_registers will produce identical oopmap
2698   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, /*save_wide_vectors*/ true);
2699 
2700   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
2701   __ jmp(cont);
2702 
2703 #if INCLUDE_JVMCI
2704   Label after_fetch_unroll_info_call;
2705   int implicit_exception_uncommon_trap_offset = 0;
2706   int uncommon_trap_offset = 0;
2707 
2708   if (EnableJVMCI) {
2709     implicit_exception_uncommon_trap_offset = __ pc() - start;
2710 
2711     __ pushptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2712     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())), NULL_WORD);
2713 
2714     uncommon_trap_offset = __ pc() - start;
2715 
2716     // Save everything in sight.
2717     RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, /*save_wide_vectors*/ true);
2718     // fetch_unroll_info needs to call last_java_frame()
2719     __ set_last_Java_frame(noreg, noreg, nullptr, rscratch1);
2720 
2721     __ movl(c_rarg1, Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())));
2722     __ movl(Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())), -1);
2723 
2724     __ movl(r14, Deoptimization::Unpack_reexecute);
2725     __ mov(c_rarg0, r15_thread);
2726     __ movl(c_rarg2, r14); // exec mode
2727     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2728     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2729 
2730     __ reset_last_Java_frame(false);
2731 
2732     __ jmp(after_fetch_unroll_info_call);
2733   } // EnableJVMCI
2734 #endif // INCLUDE_JVMCI
2735 
2736   int exception_offset = __ pc() - start;
2737 
2738   // Prolog for exception case
2739 
2740   // all registers are dead at this entry point, except for rax, and
2741   // rdx which contain the exception oop and exception pc
2742   // respectively.  Set them in TLS and fall thru to the
2743   // unpack_with_exception_in_tls entry point.
2744 
2745   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
2746   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
2747 
2748   int exception_in_tls_offset = __ pc() - start;
2749 
2750   // new implementation because exception oop is now passed in JavaThread
2751 
2752   // Prolog for exception case
2753   // All registers must be preserved because they might be used by LinearScan
2754   // Exceptiop oop and throwing PC are passed in JavaThread
2755   // tos: stack at point of call to method that threw the exception (i.e. only
2756   // args are on the stack, no return address)
2757 
2758   // make room on stack for the return address
2759   // It will be patched later with the throwing pc. The correct value is not
2760   // available now because loading it from memory would destroy registers.
2761   __ push(0);
2762 
2763   // Save everything in sight.
2764   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, /*save_wide_vectors*/ true);
2765 
2766   // Now it is safe to overwrite any register
2767 
2768   // Deopt during an exception.  Save exec mode for unpack_frames.
2769   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
2770 
2771   // load throwing pc from JavaThread and patch it as the return address
2772   // of the current frame. Then clear the field in JavaThread
2773 
2774   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2775   __ movptr(Address(rbp, wordSize), rdx);
2776   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), NULL_WORD);
2777 
2778 #ifdef ASSERT
2779   // verify that there is really an exception oop in JavaThread
2780   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2781   __ verify_oop(rax);
2782 
2783   // verify that there is no pending exception
2784   Label no_pending_exception;
2785   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
2786   __ testptr(rax, rax);
2787   __ jcc(Assembler::zero, no_pending_exception);
2788   __ stop("must not have pending exception here");
2789   __ bind(no_pending_exception);
2790 #endif
2791 
2792   __ bind(cont);
2793 
2794   // Call C code.  Need thread and this frame, but NOT official VM entry
2795   // crud.  We cannot block on this call, no GC can happen.
2796   //
2797   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2798 
2799   // fetch_unroll_info needs to call last_java_frame().
2800 
2801   __ set_last_Java_frame(noreg, noreg, nullptr, rscratch1);
2802 #ifdef ASSERT
2803   { Label L;
2804     __ cmpptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
2805     __ jcc(Assembler::equal, L);
2806     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2807     __ bind(L);
2808   }
2809 #endif // ASSERT
2810   __ mov(c_rarg0, r15_thread);
2811   __ movl(c_rarg1, r14); // exec_mode
2812   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2813 
2814   // Need to have an oopmap that tells fetch_unroll_info where to
2815   // find any register it might need.
2816   oop_maps->add_gc_map(__ pc() - start, map);
2817 
2818   __ reset_last_Java_frame(false);
2819 
2820 #if INCLUDE_JVMCI
2821   if (EnableJVMCI) {
2822     __ bind(after_fetch_unroll_info_call);
2823   }
2824 #endif
2825 
2826   // Load UnrollBlock* into rdi
2827   __ mov(rdi, rax);
2828 
2829   __ movl(r14, Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset()));
2830    Label noException;
2831   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
2832   __ jcc(Assembler::notEqual, noException);
2833   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2834   // QQQ this is useless it was null above
2835   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2836   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), NULL_WORD);
2837   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), NULL_WORD);
2838 
2839   __ verify_oop(rax);
2840 
2841   // Overwrite the result registers with the exception results.
2842   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2843   // I think this is useless
2844   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
2845 
2846   __ bind(noException);
2847 
2848   // Only register save data is on the stack.
2849   // Now restore the result registers.  Everything else is either dead
2850   // or captured in the vframeArray.
2851   RegisterSaver::restore_result_registers(masm);
2852 
2853   // All of the register save area has been popped of the stack. Only the
2854   // return address remains.
2855 
2856   // Pop all the frames we must move/replace.
2857   //
2858   // Frame picture (youngest to oldest)
2859   // 1: self-frame (no frame link)
2860   // 2: deopting frame  (no frame link)
2861   // 3: caller of deopting frame (could be compiled/interpreted).
2862   //
2863   // Note: by leaving the return address of self-frame on the stack
2864   // and using the size of frame 2 to adjust the stack
2865   // when we are done the return to frame 3 will still be on the stack.
2866 
2867   // Pop deoptimized frame
2868   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2869   __ addptr(rsp, rcx);
2870 
2871   // rsp should be pointing at the return address to the caller (3)
2872 
2873   // Pick up the initial fp we should save
2874   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2875   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset()));
2876 
2877 #ifdef ASSERT
2878   // Compilers generate code that bang the stack by as much as the
2879   // interpreter would need. So this stack banging should never
2880   // trigger a fault. Verify that it does not on non product builds.
2881   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2882   __ bang_stack_size(rbx, rcx);
2883 #endif
2884 
2885   // Load address of array of frame pcs into rcx
2886   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset()));
2887 
2888   // Trash the old pc
2889   __ addptr(rsp, wordSize);
2890 
2891   // Load address of array of frame sizes into rsi
2892   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset()));
2893 
2894   // Load counter into rdx
2895   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset()));
2896 
2897   // Now adjust the caller's stack to make up for the extra locals
2898   // but record the original sp so that we can save it in the skeletal interpreter
2899   // frame and the stack walking of interpreter_sender will get the unextended sp
2900   // value and not the "real" sp value.
2901 
2902   const Register sender_sp = r8;
2903 
2904   __ mov(sender_sp, rsp);
2905   __ movl(rbx, Address(rdi,
2906                        Deoptimization::UnrollBlock::
2907                        caller_adjustment_offset()));
2908   __ subptr(rsp, rbx);
2909 
2910   // Push interpreter frames in a loop
2911   Label loop;
2912   __ bind(loop);
2913   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2914   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
2915   __ pushptr(Address(rcx, 0));          // Save return address
2916   __ enter();                           // Save old & set new ebp
2917   __ subptr(rsp, rbx);                  // Prolog
2918   // This value is corrected by layout_activation_impl
2919   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2920   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
2921   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
2922   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2923   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2924   __ decrementl(rdx);                   // Decrement counter
2925   __ jcc(Assembler::notZero, loop);
2926   __ pushptr(Address(rcx, 0));          // Save final return address
2927 
2928   // Re-push self-frame
2929   __ enter();                           // Save old & set new ebp
2930 
2931   // Allocate a full sized register save area.
2932   // Return address and rbp are in place, so we allocate two less words.
2933   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
2934 
2935   // Restore frame locals after moving the frame
2936   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
2937   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2938 
2939   // Call C code.  Need thread but NOT official VM entry
2940   // crud.  We cannot block on this call, no GC can happen.  Call should
2941   // restore return values to their stack-slots with the new SP.
2942   //
2943   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2944 
2945   // Use rbp because the frames look interpreted now
2946   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
2947   // Don't need the precise return PC here, just precise enough to point into this code blob.
2948   address the_pc = __ pc();
2949   __ set_last_Java_frame(noreg, rbp, the_pc, rscratch1);
2950 
2951   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
2952   __ mov(c_rarg0, r15_thread);
2953   __ movl(c_rarg1, r14); // second arg: exec_mode
2954   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2955   // Revert SP alignment after call since we're going to do some SP relative addressing below
2956   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
2957 
2958   // Set an oopmap for the call site
2959   // Use the same PC we used for the last java frame
2960   oop_maps->add_gc_map(the_pc - start,
2961                        new OopMap( frame_size_in_words, 0 ));
2962 
2963   // Clear fp AND pc
2964   __ reset_last_Java_frame(true);
2965 
2966   // Collect return values
2967   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
2968   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
2969   // I think this is useless (throwing pc?)
2970   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
2971 
2972   // Pop self-frame.
2973   __ leave();                           // Epilog
2974 
2975   // Jump to interpreter
2976   __ ret(0);
2977 
2978   // Make sure all code is generated
2979   masm->flush();
2980 
2981   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2982   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2983 #if INCLUDE_JVMCI
2984   if (EnableJVMCI) {
2985     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
2986     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
2987   }
2988 #endif
2989 }
2990 
2991 #ifdef COMPILER2
2992 //------------------------------generate_uncommon_trap_blob--------------------
2993 void SharedRuntime::generate_uncommon_trap_blob() {
2994   // Allocate space for the code
2995   ResourceMark rm;
2996   // Setup code generation tools
2997   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
2998   MacroAssembler* masm = new MacroAssembler(&buffer);
2999 
3000   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3001 
3002   address start = __ pc();
3003 
3004   // Push self-frame.  We get here with a return address on the
3005   // stack, so rsp is 8-byte aligned until we allocate our frame.
3006   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3007 
3008   // No callee saved registers. rbp is assumed implicitly saved
3009   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3010 
3011   // compiler left unloaded_class_index in j_rarg0 move to where the
3012   // runtime expects it.
3013   __ movl(c_rarg1, j_rarg0);
3014 
3015   __ set_last_Java_frame(noreg, noreg, nullptr, rscratch1);
3016 
3017   // Call C code.  Need thread but NOT official VM entry
3018   // crud.  We cannot block on this call, no GC can happen.  Call should
3019   // capture callee-saved registers as well as return values.
3020   // Thread is in rdi already.
3021   //
3022   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3023 
3024   __ mov(c_rarg0, r15_thread);
3025   __ movl(c_rarg2, Deoptimization::Unpack_uncommon_trap);
3026   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3027 
3028   // Set an oopmap for the call site
3029   OopMapSet* oop_maps = new OopMapSet();
3030   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3031 
3032   // location of rbp is known implicitly by the frame sender code
3033 
3034   oop_maps->add_gc_map(__ pc() - start, map);
3035 
3036   __ reset_last_Java_frame(false);
3037 
3038   // Load UnrollBlock* into rdi
3039   __ mov(rdi, rax);
3040 
3041 #ifdef ASSERT
3042   { Label L;
3043     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset()),
3044               Deoptimization::Unpack_uncommon_trap);
3045     __ jcc(Assembler::equal, L);
3046     __ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap");
3047     __ bind(L);
3048   }
3049 #endif
3050 
3051   // Pop all the frames we must move/replace.
3052   //
3053   // Frame picture (youngest to oldest)
3054   // 1: self-frame (no frame link)
3055   // 2: deopting frame  (no frame link)
3056   // 3: caller of deopting frame (could be compiled/interpreted).
3057 
3058   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3059   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3060 
3061   // Pop deoptimized frame (int)
3062   __ movl(rcx, Address(rdi,
3063                        Deoptimization::UnrollBlock::
3064                        size_of_deoptimized_frame_offset()));
3065   __ addptr(rsp, rcx);
3066 
3067   // rsp should be pointing at the return address to the caller (3)
3068 
3069   // Pick up the initial fp we should save
3070   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3071   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset()));
3072 
3073 #ifdef ASSERT
3074   // Compilers generate code that bang the stack by as much as the
3075   // interpreter would need. So this stack banging should never
3076   // trigger a fault. Verify that it does not on non product builds.
3077   __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset()));
3078   __ bang_stack_size(rbx, rcx);
3079 #endif
3080 
3081   // Load address of array of frame pcs into rcx (address*)
3082   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset()));
3083 
3084   // Trash the return pc
3085   __ addptr(rsp, wordSize);
3086 
3087   // Load address of array of frame sizes into rsi (intptr_t*)
3088   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset()));
3089 
3090   // Counter
3091   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset())); // (int)
3092 
3093   // Now adjust the caller's stack to make up for the extra locals but
3094   // record the original sp so that we can save it in the skeletal
3095   // interpreter frame and the stack walking of interpreter_sender
3096   // will get the unextended sp value and not the "real" sp value.
3097 
3098   const Register sender_sp = r8;
3099 
3100   __ mov(sender_sp, rsp);
3101   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset())); // (int)
3102   __ subptr(rsp, rbx);
3103 
3104   // Push interpreter frames in a loop
3105   Label loop;
3106   __ bind(loop);
3107   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3108   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3109   __ pushptr(Address(rcx, 0));     // Save return address
3110   __ enter();                      // Save old & set new rbp
3111   __ subptr(rsp, rbx);             // Prolog
3112   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3113             sender_sp);            // Make it walkable
3114   // This value is corrected by layout_activation_impl
3115   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
3116   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3117   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3118   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3119   __ decrementl(rdx);              // Decrement counter
3120   __ jcc(Assembler::notZero, loop);
3121   __ pushptr(Address(rcx, 0));     // Save final return address
3122 
3123   // Re-push self-frame
3124   __ enter();                 // Save old & set new rbp
3125   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3126                               // Prolog
3127 
3128   // Use rbp because the frames look interpreted now
3129   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3130   // Don't need the precise return PC here, just precise enough to point into this code blob.
3131   address the_pc = __ pc();
3132   __ set_last_Java_frame(noreg, rbp, the_pc, rscratch1);
3133 
3134   // Call C code.  Need thread but NOT official VM entry
3135   // crud.  We cannot block on this call, no GC can happen.  Call should
3136   // restore return values to their stack-slots with the new SP.
3137   // Thread is in rdi already.
3138   //
3139   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3140 
3141   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3142   __ mov(c_rarg0, r15_thread);
3143   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3144   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3145 
3146   // Set an oopmap for the call site
3147   // Use the same PC we used for the last java frame
3148   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3149 
3150   // Clear fp AND pc
3151   __ reset_last_Java_frame(true);
3152 
3153   // Pop self-frame.
3154   __ leave();                 // Epilog
3155 
3156   // Jump to interpreter
3157   __ ret(0);
3158 
3159   // Make sure all code is generated
3160   masm->flush();
3161 
3162   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3163                                                  SimpleRuntimeFrame::framesize >> 1);
3164 }
3165 #endif // COMPILER2
3166 
3167 //------------------------------generate_handler_blob------
3168 //
3169 // Generate a special Compile2Runtime blob that saves all registers,
3170 // and setup oopmap.
3171 //
3172 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3173   assert(StubRoutines::forward_exception_entry() != nullptr,
3174          "must be generated before");
3175 
3176   ResourceMark rm;
3177   OopMapSet *oop_maps = new OopMapSet();
3178   OopMap* map;
3179 
3180   // Allocate space for the code.  Setup code generation tools.
3181   CodeBuffer buffer("handler_blob", 2348, 1024);
3182   MacroAssembler* masm = new MacroAssembler(&buffer);
3183 
3184   address start   = __ pc();
3185   address call_pc = nullptr;
3186   int frame_size_in_words;
3187   bool cause_return = (poll_type == POLL_AT_RETURN);
3188   bool save_wide_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3189 
3190   // Make room for return address (or push it again)
3191   if (!cause_return) {
3192     __ push(rbx);
3193   }
3194 
3195   // Save registers, fpu state, and flags
3196   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_wide_vectors);
3197 
3198   // The following is basically a call_VM.  However, we need the precise
3199   // address of the call in order to generate an oopmap. Hence, we do all the
3200   // work ourselves.
3201 
3202   __ set_last_Java_frame(noreg, noreg, nullptr, rscratch1);  // JavaFrameAnchor::capture_last_Java_pc() will get the pc from the return address, which we store next:
3203 
3204   // The return address must always be correct so that frame constructor never
3205   // sees an invalid pc.
3206 
3207   if (!cause_return) {
3208     // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
3209     // Additionally, rbx is a callee saved register and we can look at it later to determine
3210     // if someone changed the return address for us!
3211     __ movptr(rbx, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3212     __ movptr(Address(rbp, wordSize), rbx);
3213   }
3214 
3215   // Do the call
3216   __ mov(c_rarg0, r15_thread);
3217   __ call(RuntimeAddress(call_ptr));
3218 
3219   // Set an oopmap for the call site.  This oopmap will map all
3220   // oop-registers and debug-info registers as callee-saved.  This
3221   // will allow deoptimization at this safepoint to find all possible
3222   // debug-info recordings, as well as let GC find all oops.
3223 
3224   oop_maps->add_gc_map( __ pc() - start, map);
3225 
3226   Label noException;
3227 
3228   __ reset_last_Java_frame(false);
3229 
3230   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
3231   __ jcc(Assembler::equal, noException);
3232 
3233   // Exception pending
3234 
3235   RegisterSaver::restore_live_registers(masm, save_wide_vectors);
3236 
3237   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3238 
3239   // No exception case
3240   __ bind(noException);
3241 
3242   Label no_adjust;
3243 #ifdef ASSERT
3244   Label bail;
3245 #endif
3246   if (!cause_return) {
3247     Label no_prefix, not_special;
3248 
3249     // If our stashed return pc was modified by the runtime we avoid touching it
3250     __ cmpptr(rbx, Address(rbp, wordSize));
3251     __ jccb(Assembler::notEqual, no_adjust);
3252 
3253     // Skip over the poll instruction.
3254     // See NativeInstruction::is_safepoint_poll()
3255     // Possible encodings:
3256     //      85 00       test   %eax,(%rax)
3257     //      85 01       test   %eax,(%rcx)
3258     //      85 02       test   %eax,(%rdx)
3259     //      85 03       test   %eax,(%rbx)
3260     //      85 06       test   %eax,(%rsi)
3261     //      85 07       test   %eax,(%rdi)
3262     //
3263     //   41 85 00       test   %eax,(%r8)
3264     //   41 85 01       test   %eax,(%r9)
3265     //   41 85 02       test   %eax,(%r10)
3266     //   41 85 03       test   %eax,(%r11)
3267     //   41 85 06       test   %eax,(%r14)
3268     //   41 85 07       test   %eax,(%r15)
3269     //
3270     //      85 04 24    test   %eax,(%rsp)
3271     //   41 85 04 24    test   %eax,(%r12)
3272     //      85 45 00    test   %eax,0x0(%rbp)
3273     //   41 85 45 00    test   %eax,0x0(%r13)
3274 
3275     __ cmpb(Address(rbx, 0), NativeTstRegMem::instruction_rex_b_prefix);
3276     __ jcc(Assembler::notEqual, no_prefix);
3277     __ addptr(rbx, 1);
3278     __ bind(no_prefix);
3279 #ifdef ASSERT
3280     __ movptr(rax, rbx); // remember where 0x85 should be, for verification below
3281 #endif
3282     // r12/r13/rsp/rbp base encoding takes 3 bytes with the following register values:
3283     // r12/rsp 0x04
3284     // r13/rbp 0x05
3285     __ movzbq(rcx, Address(rbx, 1));
3286     __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
3287     __ subptr(rcx, 4);    // looking for 0x00 .. 0x01
3288     __ cmpptr(rcx, 1);
3289     __ jcc(Assembler::above, not_special);
3290     __ addptr(rbx, 1);
3291     __ bind(not_special);
3292 #ifdef ASSERT
3293     // Verify the correct encoding of the poll we're about to skip.
3294     __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
3295     __ jcc(Assembler::notEqual, bail);
3296     // Mask out the modrm bits
3297     __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
3298     // rax encodes to 0, so if the bits are nonzero it's incorrect
3299     __ jcc(Assembler::notZero, bail);
3300 #endif
3301     // Adjust return pc forward to step over the safepoint poll instruction
3302     __ addptr(rbx, 2);
3303     __ movptr(Address(rbp, wordSize), rbx);
3304   }
3305 
3306   __ bind(no_adjust);
3307   // Normal exit, restore registers and exit.
3308   RegisterSaver::restore_live_registers(masm, save_wide_vectors);
3309   __ ret(0);
3310 
3311 #ifdef ASSERT
3312   __ bind(bail);
3313   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
3314 #endif
3315 
3316   // Make sure all code is generated
3317   masm->flush();
3318 
3319   // Fill-out other meta info
3320   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3321 }
3322 
3323 //
3324 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3325 //
3326 // Generate a stub that calls into vm to find out the proper destination
3327 // of a java call. All the argument registers are live at this point
3328 // but since this is generic code we don't know what they are and the caller
3329 // must do any gc of the args.
3330 //
3331 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3332   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
3333 
3334   // allocate space for the code
3335   ResourceMark rm;
3336 
3337   CodeBuffer buffer(name, 1552, 512);
3338   MacroAssembler* masm = new MacroAssembler(&buffer);
3339 
3340   int frame_size_in_words;
3341 
3342   OopMapSet *oop_maps = new OopMapSet();
3343   OopMap* map = nullptr;
3344 
3345   int start = __ offset();
3346 
3347   // No need to save vector registers since they are caller-saved anyway.
3348   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, /*save_wide_vectors*/ false);
3349 
3350   int frame_complete = __ offset();
3351 
3352   __ set_last_Java_frame(noreg, noreg, nullptr, rscratch1);
3353 
3354   __ mov(c_rarg0, r15_thread);
3355 
3356   __ call(RuntimeAddress(destination));
3357 
3358 
3359   // Set an oopmap for the call site.
3360   // We need this not only for callee-saved registers, but also for volatile
3361   // registers that the compiler might be keeping live across a safepoint.
3362 
3363   oop_maps->add_gc_map( __ offset() - start, map);
3364 
3365   // rax contains the address we are going to jump to assuming no exception got installed
3366 
3367   // clear last_Java_sp
3368   __ reset_last_Java_frame(false);
3369   // check for pending exceptions
3370   Label pending;
3371   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
3372   __ jcc(Assembler::notEqual, pending);
3373 
3374   // get the returned Method*
3375   __ get_vm_result_2(rbx, r15_thread);
3376   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3377 
3378   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3379 
3380   RegisterSaver::restore_live_registers(masm);
3381 
3382   // We are back to the original state on entry and ready to go.
3383 
3384   __ jmp(rax);
3385 
3386   // Pending exception after the safepoint
3387 
3388   __ bind(pending);
3389 
3390   RegisterSaver::restore_live_registers(masm);
3391 
3392   // exception pending => remove activation and forward to exception handler
3393 
3394   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), NULL_WORD);
3395 
3396   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3397   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3398 
3399   // -------------
3400   // make sure all code is generated
3401   masm->flush();
3402 
3403   // return the  blob
3404   // frame_size_words or bytes??
3405   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3406 }
3407 
3408 //------------------------------Montgomery multiplication------------------------
3409 //
3410 
3411 #ifndef _WINDOWS
3412 
3413 // Subtract 0:b from carry:a.  Return carry.
3414 static julong
3415 sub(julong a[], julong b[], julong carry, long len) {
3416   long long i = 0, cnt = len;
3417   julong tmp;
3418   asm volatile("clc; "
3419                "0: ; "
3420                "mov (%[b], %[i], 8), %[tmp]; "
3421                "sbb %[tmp], (%[a], %[i], 8); "
3422                "inc %[i]; dec %[cnt]; "
3423                "jne 0b; "
3424                "mov %[carry], %[tmp]; sbb $0, %[tmp]; "
3425                : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
3426                : [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
3427                : "memory");
3428   return tmp;
3429 }
3430 
3431 // Multiply (unsigned) Long A by Long B, accumulating the double-
3432 // length result into the accumulator formed of T0, T1, and T2.
3433 #define MACC(A, B, T0, T1, T2)                                  \
3434 do {                                                            \
3435   unsigned long hi, lo;                                         \
3436   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4"   \
3437            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3438            : "r"(A), "a"(B) : "cc");                            \
3439  } while(0)
3440 
3441 // As above, but add twice the double-length result into the
3442 // accumulator.
3443 #define MACC2(A, B, T0, T1, T2)                                 \
3444 do {                                                            \
3445   unsigned long hi, lo;                                         \
3446   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \
3447            "add %%rax, %2; adc %%rdx, %3; adc $0, %4"           \
3448            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3449            : "r"(A), "a"(B) : "cc");                            \
3450  } while(0)
3451 
3452 #else //_WINDOWS
3453 
3454 static julong
3455 sub(julong a[], julong b[], julong carry, long len) {
3456   long i;
3457   julong tmp;
3458   unsigned char c = 1;
3459   for (i = 0; i < len; i++) {
3460     c = _addcarry_u64(c, a[i], ~b[i], &tmp);
3461     a[i] = tmp;
3462   }
3463   c = _addcarry_u64(c, carry, ~0, &tmp);
3464   return tmp;
3465 }
3466 
3467 // Multiply (unsigned) Long A by Long B, accumulating the double-
3468 // length result into the accumulator formed of T0, T1, and T2.
3469 #define MACC(A, B, T0, T1, T2)                          \
3470 do {                                                    \
3471   julong hi, lo;                            \
3472   lo = _umul128(A, B, &hi);                             \
3473   unsigned char c = _addcarry_u64(0, lo, T0, &T0);      \
3474   c = _addcarry_u64(c, hi, T1, &T1);                    \
3475   _addcarry_u64(c, T2, 0, &T2);                         \
3476  } while(0)
3477 
3478 // As above, but add twice the double-length result into the
3479 // accumulator.
3480 #define MACC2(A, B, T0, T1, T2)                         \
3481 do {                                                    \
3482   julong hi, lo;                            \
3483   lo = _umul128(A, B, &hi);                             \
3484   unsigned char c = _addcarry_u64(0, lo, T0, &T0);      \
3485   c = _addcarry_u64(c, hi, T1, &T1);                    \
3486   _addcarry_u64(c, T2, 0, &T2);                         \
3487   c = _addcarry_u64(0, lo, T0, &T0);                    \
3488   c = _addcarry_u64(c, hi, T1, &T1);                    \
3489   _addcarry_u64(c, T2, 0, &T2);                         \
3490  } while(0)
3491 
3492 #endif //_WINDOWS
3493 
3494 // Fast Montgomery multiplication.  The derivation of the algorithm is
3495 // in  A Cryptographic Library for the Motorola DSP56000,
3496 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
3497 
3498 static void NOINLINE
3499 montgomery_multiply(julong a[], julong b[], julong n[],
3500                     julong m[], julong inv, int len) {
3501   julong t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3502   int i;
3503 
3504   assert(inv * n[0] == ULLONG_MAX, "broken inverse in Montgomery multiply");
3505 
3506   for (i = 0; i < len; i++) {
3507     int j;
3508     for (j = 0; j < i; j++) {
3509       MACC(a[j], b[i-j], t0, t1, t2);
3510       MACC(m[j], n[i-j], t0, t1, t2);
3511     }
3512     MACC(a[i], b[0], t0, t1, t2);
3513     m[i] = t0 * inv;
3514     MACC(m[i], n[0], t0, t1, t2);
3515 
3516     assert(t0 == 0, "broken Montgomery multiply");
3517 
3518     t0 = t1; t1 = t2; t2 = 0;
3519   }
3520 
3521   for (i = len; i < 2*len; i++) {
3522     int j;
3523     for (j = i-len+1; j < len; j++) {
3524       MACC(a[j], b[i-j], t0, t1, t2);
3525       MACC(m[j], n[i-j], t0, t1, t2);
3526     }
3527     m[i-len] = t0;
3528     t0 = t1; t1 = t2; t2 = 0;
3529   }
3530 
3531   while (t0)
3532     t0 = sub(m, n, t0, len);
3533 }
3534 
3535 // Fast Montgomery squaring.  This uses asymptotically 25% fewer
3536 // multiplies so it should be up to 25% faster than Montgomery
3537 // multiplication.  However, its loop control is more complex and it
3538 // may actually run slower on some machines.
3539 
3540 static void NOINLINE
3541 montgomery_square(julong a[], julong n[],
3542                   julong m[], julong inv, int len) {
3543   julong t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3544   int i;
3545 
3546   assert(inv * n[0] == ULLONG_MAX, "broken inverse in Montgomery square");
3547 
3548   for (i = 0; i < len; i++) {
3549     int j;
3550     int end = (i+1)/2;
3551     for (j = 0; j < end; j++) {
3552       MACC2(a[j], a[i-j], t0, t1, t2);
3553       MACC(m[j], n[i-j], t0, t1, t2);
3554     }
3555     if ((i & 1) == 0) {
3556       MACC(a[j], a[j], t0, t1, t2);
3557     }
3558     for (; j < i; j++) {
3559       MACC(m[j], n[i-j], t0, t1, t2);
3560     }
3561     m[i] = t0 * inv;
3562     MACC(m[i], n[0], t0, t1, t2);
3563 
3564     assert(t0 == 0, "broken Montgomery square");
3565 
3566     t0 = t1; t1 = t2; t2 = 0;
3567   }
3568 
3569   for (i = len; i < 2*len; i++) {
3570     int start = i-len+1;
3571     int end = start + (len - start)/2;
3572     int j;
3573     for (j = start; j < end; j++) {
3574       MACC2(a[j], a[i-j], t0, t1, t2);
3575       MACC(m[j], n[i-j], t0, t1, t2);
3576     }
3577     if ((i & 1) == 0) {
3578       MACC(a[j], a[j], t0, t1, t2);
3579     }
3580     for (; j < len; j++) {
3581       MACC(m[j], n[i-j], t0, t1, t2);
3582     }
3583     m[i-len] = t0;
3584     t0 = t1; t1 = t2; t2 = 0;
3585   }
3586 
3587   while (t0)
3588     t0 = sub(m, n, t0, len);
3589 }
3590 
3591 // Swap words in a longword.
3592 static julong swap(julong x) {
3593   return (x << 32) | (x >> 32);
3594 }
3595 
3596 // Copy len longwords from s to d, word-swapping as we go.  The
3597 // destination array is reversed.
3598 static void reverse_words(julong *s, julong *d, int len) {
3599   d += len;
3600   while(len-- > 0) {
3601     d--;
3602     *d = swap(*s);
3603     s++;
3604   }
3605 }
3606 
3607 // The threshold at which squaring is advantageous was determined
3608 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
3609 #define MONTGOMERY_SQUARING_THRESHOLD 64
3610 
3611 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
3612                                         jint len, jlong inv,
3613                                         jint *m_ints) {
3614   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
3615   int longwords = len/2;
3616 
3617   // Make very sure we don't use so much space that the stack might
3618   // overflow.  512 jints corresponds to an 16384-bit integer and
3619   // will use here a total of 8k bytes of stack space.
3620   int divisor = sizeof(julong) * 4;
3621   guarantee(longwords <= 8192 / divisor, "must be");
3622   int total_allocation = longwords * sizeof (julong) * 4;
3623   julong *scratch = (julong *)alloca(total_allocation);
3624 
3625   // Local scratch arrays
3626   julong
3627     *a = scratch + 0 * longwords,
3628     *b = scratch + 1 * longwords,
3629     *n = scratch + 2 * longwords,
3630     *m = scratch + 3 * longwords;
3631 
3632   reverse_words((julong *)a_ints, a, longwords);
3633   reverse_words((julong *)b_ints, b, longwords);
3634   reverse_words((julong *)n_ints, n, longwords);
3635 
3636   ::montgomery_multiply(a, b, n, m, (julong)inv, longwords);
3637 
3638   reverse_words(m, (julong *)m_ints, longwords);
3639 }
3640 
3641 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
3642                                       jint len, jlong inv,
3643                                       jint *m_ints) {
3644   assert(len % 2 == 0, "array length in montgomery_square must be even");
3645   int longwords = len/2;
3646 
3647   // Make very sure we don't use so much space that the stack might
3648   // overflow.  512 jints corresponds to an 16384-bit integer and
3649   // will use here a total of 6k bytes of stack space.
3650   int divisor = sizeof(julong) * 3;
3651   guarantee(longwords <= (8192 / divisor), "must be");
3652   int total_allocation = longwords * sizeof (julong) * 3;
3653   julong *scratch = (julong *)alloca(total_allocation);
3654 
3655   // Local scratch arrays
3656   julong
3657     *a = scratch + 0 * longwords,
3658     *n = scratch + 1 * longwords,
3659     *m = scratch + 2 * longwords;
3660 
3661   reverse_words((julong *)a_ints, a, longwords);
3662   reverse_words((julong *)n_ints, n, longwords);
3663 
3664   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
3665     ::montgomery_square(a, n, m, (julong)inv, longwords);
3666   } else {
3667     ::montgomery_multiply(a, a, n, m, (julong)inv, longwords);
3668   }
3669 
3670   reverse_words(m, (julong *)m_ints, longwords);
3671 }
3672 
3673 #ifdef COMPILER2
3674 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3675 //
3676 //------------------------------generate_exception_blob---------------------------
3677 // creates exception blob at the end
3678 // Using exception blob, this code is jumped from a compiled method.
3679 // (see emit_exception_handler in x86_64.ad file)
3680 //
3681 // Given an exception pc at a call we call into the runtime for the
3682 // handler in this method. This handler might merely restore state
3683 // (i.e. callee save registers) unwind the frame and jump to the
3684 // exception handler for the nmethod if there is no Java level handler
3685 // for the nmethod.
3686 //
3687 // This code is entered with a jmp.
3688 //
3689 // Arguments:
3690 //   rax: exception oop
3691 //   rdx: exception pc
3692 //
3693 // Results:
3694 //   rax: exception oop
3695 //   rdx: exception pc in caller or ???
3696 //   destination: exception handler of caller
3697 //
3698 // Note: the exception pc MUST be at a call (precise debug information)
3699 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3700 //
3701 
3702 void OptoRuntime::generate_exception_blob() {
3703   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3704   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3705   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3706 
3707   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3708 
3709   // Allocate space for the code
3710   ResourceMark rm;
3711   // Setup code generation tools
3712   CodeBuffer buffer("exception_blob", 2048, 1024);
3713   int pc_offset = 0;
3714   if (SCCache::load_exception_blob(&buffer, &pc_offset)) {
3715     OopMapSet* oop_maps = new OopMapSet();
3716     oop_maps->add_gc_map(pc_offset, new OopMap(SimpleRuntimeFrame::framesize, 0));
3717 
3718     // Set exception blob
3719     _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3720     return;
3721   }
3722 
3723   MacroAssembler* masm = new MacroAssembler(&buffer);
3724   address start = __ pc();
3725 
3726   // Exception pc is 'return address' for stack walker
3727   __ push(rdx);
3728   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
3729 
3730   // Save callee-saved registers.  See x86_64.ad.
3731 
3732   // rbp is an implicitly saved callee saved register (i.e., the calling
3733   // convention will save/restore it in the prolog/epilog). Other than that
3734   // there are no callee save registers now that adapter frames are gone.
3735 
3736   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3737 
3738   // Store exception in Thread object. We cannot pass any arguments to the
3739   // handle_exception call, since we do not want to make any assumption
3740   // about the size of the frame where the exception happened in.
3741   // c_rarg0 is either rdi (Linux) or rcx (Windows).
3742   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
3743   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3744 
3745   // This call does all the hard work.  It checks if an exception handler
3746   // exists in the method.
3747   // If so, it returns the handler address.
3748   // If not, it prepares for stack-unwinding, restoring the callee-save
3749   // registers of the frame being removed.
3750   //
3751   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3752 
3753   // At a method handle call, the stack may not be properly aligned
3754   // when returning with an exception.
3755   address the_pc = __ pc();
3756   __ set_last_Java_frame(noreg, noreg, the_pc, rscratch1);
3757   __ mov(c_rarg0, r15_thread);
3758   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
3759   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3760 
3761   // Set an oopmap for the call site.  This oopmap will only be used if we
3762   // are unwinding the stack.  Hence, all locations will be dead.
3763   // Callee-saved registers will be the same as the frame above (i.e.,
3764   // handle_exception_stub), since they were restored when we got the
3765   // exception.
3766 
3767   OopMapSet* oop_maps = new OopMapSet();
3768 
3769   pc_offset = the_pc - start;
3770   oop_maps->add_gc_map(pc_offset, new OopMap(SimpleRuntimeFrame::framesize, 0));
3771 
3772   __ reset_last_Java_frame(false);
3773 
3774   // Restore callee-saved registers
3775 
3776   // rbp is an implicitly saved callee-saved register (i.e., the calling
3777   // convention will save restore it in prolog/epilog) Other than that
3778   // there are no callee save registers now that adapter frames are gone.
3779 
3780   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
3781 
3782   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
3783   __ pop(rdx);                  // No need for exception pc anymore
3784 
3785   // rax: exception handler
3786 
3787   // We have a handler in rax (could be deopt blob).
3788   __ mov(r8, rax);
3789 
3790   // Get the exception oop
3791   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3792   // Get the exception pc in case we are deoptimized
3793   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3794 #ifdef ASSERT
3795   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), NULL_WORD);
3796   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), NULL_WORD);
3797 #endif
3798   // Clear the exception oop so GC no longer processes it as a root.
3799   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), NULL_WORD);
3800 
3801   // rax: exception oop
3802   // r8:  exception handler
3803   // rdx: exception pc
3804   // Jump to handler
3805 
3806   __ jmp(r8);
3807 
3808   // Make sure all code is generated
3809   masm->flush();
3810 
3811   SCCache::store_exception_blob(&buffer, pc_offset);
3812   // Set exception blob
3813   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3814 }
3815 #endif // COMPILER2